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Abstract

We introduce a generalization of the history-independent local load sharing �bre bundle
model that is valid in arbitrarily high dimensions, and study this model numerically in
one to �ve dimensions.

Simulations show that as the dimension D increases, the local load sharing model
behaves more and more like the equal load sharing �bre bundle model. The area under
the di�erence between their averaged strain curves, ∆σ2, follows a power law ∆σ2 ∝ D−µ,
indicating an in�nite critical dimension where the two models converge. The exponent
is estimated to be µ = 3.4 ± 0.2 for the uniform threshold distribution P (x) = x and
µ = 3.7± 0.3 for P (x) = 1− exp (−x), both in the limit of large �bre bundles.

The burst size distribution D (∆) when P (x) = x is studied for bundle sizes of order
N ∼ 104 in one through �ve dimensions. A sudden, qualitative shift is seen when go-
ing from one to two dimensions, with the power law behaviour D (∆) ∝ ∆−ξ valid for
su�ciently small bursts ∆ giving an exponent ξ ≈ 4.6 in one dimension and ξ ≈ 2.6 in
higher dimensions. Additionally, the higher dimensions retain a power law-like behaviour
for much larger bursts than in one dimension, where the burst size distribution begins to
deviate from a power law even for very small bursts.
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Sammendrag

Vi introduserer en generalisering av den historieuavhengige lokale �berbuntmodellen som
er gyldig i vilkårlig høye dimensjoner og studerer denne modellen i én til fem dimensjoner.

Simuleringer viser at når dimensjonen D øker oppfører den lokale modellen seg mer og
mer som den demokratiske �berbuntmodellen. Arealet under kurven som uttrykker den
gjennomsnittlige di�eransen mellom kraften som trengs for å bryte ned �berbunten for de
to modellene, ∆σ2, følger en potenslov ∆σ2 ∝ D−µ. Dette indikerer en uendelig kritisk
dimensjon der de to modellene kovergerer. Eksponenten estimeres til å være µ = 3.4±0.2
for den uniforme fordelingen P (x) = x og µ = 3.7± 0.3 for P (x) = 1− exp (−x), begge i
grensen når buntstørrelsen går mot uendelig.

Glippfordelingen D (∆) blir studert for buntstørrelser av orden N ∼ 104 i én til fem
dimensjoner med den uniforme fordelingen P (x) = x. En plutselig, kvalitativ endring er
synlig når man går fra én til to dimensjoner; potenslovoppførselen D (∆) ∝ ∆−ξ som er
gyldig for tilstrekkelig små glipp ∆ gir eksponenten ξ ≈ 4.6 i én dimensjon og ξ ≈ 2.6 i
to og høyere dimensjoner. I høyere dimensjoner beholdes i tillegg en potenslovlignende
oppførsel for mye større glipp enn i én dimensjon, der glippfordelingen begynner å avvike
betydelig fra en potenslov selv for svært små glipp.
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1 Introduction

The strength of a material under an applied external load has been studied at length
for many di�erent materials. Theoretical descriptions and models of polymeric materials,
for instance, are usually macroscopic even when the interactions between the microscopic
constituent particles of the materials are fairly well known. This is because modelling
a material from the bottom up to describe macroscopic failure is exceedingly di�cult �
even macroscopic descriptions quickly become complicated [1] � although the increase in
computer power in later years has provided the means to help compute such descriptions
numerically [2, 3].

Due to this lack of microscopic descriptions, the heuristic �bre bundle models have
gained widespread use when studying fracture in various materials and have for instance
been used to help describe for instance �bre-reinforced ceramic-matrix composites [4]
and collagen �bres [5] in recent years. They are the simplest available models to study
phenomena occurring in failure processes of real materials, like fatigue failure [6], similar
to how the Ising model is the simplest model to study magnetic materials.

The �bre bundle models, which we will discuss in detail later, describe a system �
called a bundle � of �bres subject to an external force. There are two extremes in the way
forces is distributed among the �bres in the bundle, called equal and local load sharing.
In local load sharing the forces from failed �bres are distributed only on their nearest
neighbours, which one can think of as a nearest neighbour interaction in the bundle.
Equal load sharing, on the other hand, distributes forces equally among the surviving
�bres no matter where the broken �bres are placed in the bundle. In this sense it can
be considered the mean �eld model of local load sharing, where the interactions between
neighbours are replaced by an average interaction spanning the entire bundle.

When considering mean �eld theories the concept of an upper critical dimension, above
which the critical exponents of the mean �eld theory are identical to the exponents of
the exact theory, is important. For many models this dimension in both �nite and quite
small; the Ising model has an upper critical dimension of 4, for example [7].

Encouraged by this and the fact that the local load sharing model in two dimensions
has been observed to give results much closer to equal load sharing than in one dimension
[8], we want to investigate how the di�erence between the two models behave as the
dimension increases. More speci�cally, in this thesis we want to:

• Investigate whether there is a �nite critical dimension where the averaged strain
curves of equal and local load sharing models converge.

• If such a dimension exists, try to �nd a qualitative explanation of why.

A positive result should also apply to any model somewhere in between the equal and
local load sharing models; any model that distributes forces from failed �bres to more
than just nearest neighbours is bound to act more like the equal load sharing model than
local load sharing does, and must then also have a �nite critical dimension.

As the equal load sharing model is much easier to work with analytically, and also
requires much less computational power to simulate, the discovery of a �nite critical
dimension could aid work involving the local load sharing model. It might be possible,
for example, to do an expansion from the critical dimension to lower dimensions, analogous
to the results for 4− ε dimensions for the Ising model [9].



2 1 INTRODUCTION

This thesis is organized in the following way: Chapter 1 is the introduction you are now
reading. In Chapter 2 we present the �bre bundle models that are used, focusing on strain
curves, burst size distributions and how both the equal and local load sharing models are
described in higher dimensions. Details about the simulations and the algorithms used
are found in Chapter 3. Chapter 4 presents the results obtained from the simulations,
which are then discussed and interpreted in Chapter 5. Finally, Chapter 6 contains a
conclusion based on the discussion and also suggests a few prospects for future work that
seem interesting in the light of the presented results.
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2 Fibre bundle models

The treatment of �bre bundle models (FBMs) in modern science began in 1926 when
Pierce wanted to describe cotton yarns [10]. Since then a lot has happened and several
variations of the models have been introduced, di�ering in for instance the way force is
distributed among the �bres or the inclusion of thermal �uctuations. They all, however,
describe the behaviour of a bundle of elastic �bres when subjected to an external force,
and have proved useful in describing a wide array of physical problems, mainly regarding
fracture of various materials [6].

This chapter will describe the �bre bundle models we are using. Section 2.2 and 2.3
consider the speci�cs of the equal load sharing and local load sharing models, respectively,
while Section 2.1 describes the common elements of both models. For the speci�cs we
mention force distribution, strain curves, the burst size distribution, and how the models
are handled higher dimensions.

2.1 Both models

We consider a �bre bundle consisting of N elastic �bres attached at each end to a clamp
and let k ≤ N denote the number of broken �bres. The set-up is shown in Fig. 2.1 for
one dimension. Each �bre is assumed to act as a Hookean spring until it reaches a certain
extension, xi for �bre number i, where it breaks and is unable to carry a force any more:

fi =

{
κx x < xi

0 x ≥ xi.
(2.1)

Here fi is the force the �bre exerts, x is the extension of the �bre from equilibrium,
and κ is the elastic constant of the �bres. One could let the �bres have di�erent elastic
constants � either as a discrete set of values or continuously distributed according to a
probability distribution � but we will not consider this.

2.1.1 Threshold distribution

The thresholds xi are drawn from a probability density p(x), often denoted by its corre-
sponding cumulative probability distribution P (x). It is called the threshold distribution
to signify that it is the distribution from which the �bre thresholds are drawn.

Prob (xi ≤ x) = P (x) =

x∫

−∞

p(v) dv (2.2)

This inherent randomness ensures that two realizations of the breaking of a �bre bundle
will not be identical, and the study of �bre bundle models thus has a statistical nature.
Many samples are needed, both when studying �uctuations and averages. An example of
this is shown in Fig. 2.2, where the strain curve, described in the next paragraph, from
a single sample is compared to the same quantity averaged over many samples, both of
them in one dimension and with local load sharing. The former �uctuates a lot and is
highly dependent on the sample in question, i.e. the N thresholds drawn from p(x), while
the latter is a quantity that could be compared to relevant analytical results if they exist.
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F

x

Figure 2.1: Illustration of a one-dimensional equal load sharing �bre bundle. The �bres
are fastened between two in�nitely sti� clamps, forming a bundle. When exposed to an
external force F , the �bres are stretched from their original positions � shown with a
dashed line � by a distance x.

0 0.2 0.4 0.6 0.8 1
k/N

0

0.05

0.1

σ

1 sample

350 000 samples

Figure 2.2: The strain curve for a �bre bundle of size N = 104 with local load sharing
in one dimension when P (x) = x. The red curve shows a single sample while the black
curve is averaged over 3.5 · 105 samples.
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2.1.2 Strain curve

When the �bre bundle is a�ected by a force F and has k broken �bres, the force per
�bre is de�ned as σ = F/N . Note that this is not the force per remaining �bre, N − k,
but per the total number of �bres, to make it comparable between di�erent places in the
breaking process, i.e. for di�erent values of k. As mentioned earlier, Fig. 2.2 shows the
strain curve, the least force per �bre σ required to break the next �bre as a function of the
fraction of broken �bres k/N , both for a single sample and averaged over many samples.

When loading a �bre bundle, one can proceed in two di�erent ways. In the �rst, the
force acting on the bundle is increased in steps, and in each step any �bres too weak to
support the increased load are broken. This is done until the entire bundle breaks down.
It is clear that in each step, the number of �bres breaking are going to vary; sometimes
none will break and sometimes many will break at the same time. This method is called
the force controlled method because the force applied on the �bre bundle is the control
parameter.

In the second, the strain controlled method, the strain, i.e. the extension of the bundle,
is the control parameter. It is increased from zero until a single �bre breaks, and then it
is once again set to zero. This is then repeated N times until every �bre has been broken.
Such an experiment yields the previously mentioned strain curve, so named because of
its origin from this method of breaking a �bre bundle.

2.1.3 Burst size distribution

The burst size distribution D (∆), which can also be called the exclusive burst size dis-
tribution to distinguish it from the distribution of inclusive bursts [11], is related to the
force controlled method of breaking �bre bundles; when ∆ �bres fail simultaneously it is
called a burst of size ∆, and D (∆) is the expected number of bursts of size ∆ that occur
during the breaking of the entire �bre bundle.

In terms of the strain curve, one can de�ne a burst of size ∆ beginning when breaking
�bre number k0 via two conditions. Firstly, the force used when initiating the burst must
be higher than the force required for breaking any previous �bres. Let σk be the force
per �bre required to break �bre number k in the bundle. Then the �rst condition can
be written mathematically as σk0 > σk ∀ k < k0, which corresponds to the fact that
the burst must begin when breaking �bre number k0. If any of the previous forces were
higher, the burst would have begun there in a force controlled experiment.

Secondly, the next ∆−1 �bres must break at a lower force than k0 did, and k0+∆ must
require a higher force to break to stop the burst. This can be formulated as σk0 ≥ σk0+j

for j = 1, 2, 3, . . . ,∆− 1 and σk0 < σk0+∆ via the strain curve. Then exactly ∆ �bres fail
simultaneously once the force reaches σk0 , and a burst of size ∆ occurs.

How the burst size distribution D (∆) acts as a function of the burst size ∆ depends on
both the force distribution of the �bre bundle model, the bundle size N and the threshold
distribution P (x), as we will see later when we discuss equal and local load sharing.

2.1.4 Dimensionality

We refer to Fig. 2.1 for an illustration of how the �bre bundle looks in one dimension. The
N �bres are arranged on a line, and periodic boundary conditions are used so that every
�bre has two nearest neighbours. De�ning a hole as a collection of connected, broken
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�bres � in the sense that two �bres are connected if they are nearest neighbours � and
its perimeter as the unbroken �bres that have nearest neighbours included in the hole,
we see that any hole in the one-dimensional model has a perimeter consisting of only two
�bres, independent of the size of the hole. (There is one exception, namely when there is
only one unbroken �bre left, and there is a single large hole of size N − 1 with the last
surviving �bre as its perimeter.) The notion of a hole and its corresponding perimeter will
become important when generalizing the local load sharing model to higher dimensions
in Section 2.3.4.

When generalizing to higher dimensions we place the �bres in a hypercubic pattern,
also here using periodic boundary conditions. Thus, in D dimensions, any �bre has 2D
nearest neighbours and the total number of �bres can be written N = nD, where n is
some positive integer. It is worth noting that the two-dimensional model corresponds to
a physical system in three dimensions, while the models with D ≥ 3 seemingly do not
describe any realizable physical systems.

2.2 Equal load sharing

The equal load sharing (ELS) � also called global load sharing � model is the oldest and
simplest of the �bre bundle models, in which force is distributed equally among the intact
�bres at all times. Due to the simplicity of the model, it is possible to derive a number
of analytical results about it, as shown by for instance Daniels in 1945 [12].

2.2.1 Force distribution

A rationalization of equal load sharing can be seen from Fig. 2.1. There the clamps
connected by the �bres are in�nitely sti�, meaning that any �bre is stretched equally far,
and thus they all carry the same load since the elastic constant is identical for all �bres.

When k �bres have failed the force acting on the bundle is evenly distributed among
the N − k remaining �bres. The extension x of the bundle is then given by

σ = κ

(
1− k

N

)
x (2.3)

meaning that for a given force per �bre σ the �bres are stretched further when more have
failed, since the total force is distributed on fewer �bres.

2.2.2 Strain curve

From Eq. (2.3) and the de�nition of the strain curve, it is clear that the strain curve for
equal load sharing is given by the relation

σ = κ

(
1− k

N

)
·min
i∈Ω

(xi) (2.4)

between σ and k, where Ω is the set of numbers corresponding to the remaining �bres.
If the �bres are numbered from weakest to strongest, i.e. x1 ≤ x2 ≤ . . . ≤ xN−1 ≤ xN ,
then Ω = {k + 1, k + 2, . . . , N − 1, N} and min

i∈Ω
(xi) = xk+1, giving

σ = κ

(
1− k

N

)
xk+1 (2.5)
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when breaking �bre number k + 1.
Exactly how this curve looks depends on the threshold distribution P (x), but the re-

sulting formulas can be derived via order statistics [13]. With P (x) = (x− x<) / (1− x<),
the uniform distribution on (x<, 1), the result is the formula

σ = κ

(
1− k

N

)(
x< + (1− x<)

k

N

)
. (2.6)

When x< = 0, meaning that P (x) is the uniform distribution on the unit interval, this
becomes the simple parabola

σ = κ

(
1− k

N

)
k

N
. (2.7)

The distribution P (x) = 1− exp (−x+ x<), where x ∈ [x<,∞), on the other hand, yields

σ = κ

(
1− k

N

)(
x< − ln

(
1− k

N

))
. (2.8)

The derivation of these results requires taking the limit N →∞, so they are only accurate
for large bundles.

2.2.3 Burst size distribution

Hemmer and Hansen [11] have shown that with equal load sharing the burst size distri-
bution is a power law

D (∆)

N
∝ ∆−ξ (2.9)

with an exponent ξ = 5
2 for a large class of threshold distributions, including P (x) = x

and P (x) = 1− exp (x< − x). The result is valid for large bundles, N →∞, and for large
∆, as the Stirling approximation, ∆! '

√
2π∆∆∆e−∆, is used in the derivation.

2.2.4 Higher dimensions

Since the ELS force distribution does not depend on the placement of �bres, in particular
which �bres are neighbours of each other, but only on the number of broken �bres, the
ELS model will be independent of which dimension we use. One can, of course, arrange
the �bres in a D-dimensional hypercube with D > 1, but the breaking process will � given
the same set of thresholds {xi} � proceed in exactly the same way as in one dimension.
That is, the �bres will break in the same order and at the same applied force. Hence one
can talk about the ELS model without specifying the dimension, as it behaves identically
in all dimensions.

2.3 Local load sharing

The one-dimensional local load sharing (LLS) model as we will use it was �rst introduced
by Harlow and Phoenix in 1978 with the intention of creating a more realistic �bre bundle
model for composite materials [14]. In local load sharing, all force from broken �bres is
transferred onto the nearest neighbours.
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While the ELS �bre bundle model is extreme in the sense that force is equally dis-
tributed among �bres no matter the state of the bundle, the LLS model is extreme in
the opposite way: the force originally carried by a �bre that breaks is divided between
its nearest neighbours only. Any other physically reasonable way of distributing the force
will be somewhere in between these two extremes. Examples of this are the soft clamp
model [15] and the γ-model of Hidalgo et al. [16].

2.3.1 Force distribution

We use the same force distribution in one dimension as Harlow and Phoenix originally
did [14], with the force fi on �bre number i being given by

fi =
(

1 +
ri
2

)
σ (2.10)

for intact �bres; broken �bres carry no force at all. Here σ is once again the force per
�bre F/N and ri is the sum of consecutive failed �bres immediately to the left and to the
right of �bre number i. This distribution is history independent as the force acting on
each �bre is determined solely from the state of the bundle � i.e. which �bres are broken
� at the time of loading.

With this way of distributing forces it is easily seen that the sum of the loads on
all �bres is Nσ = F , which must be required for the model to be self-consistent. Note
that this also applies when there is only one intact �bre left, since ri = 2(N − 1) for the
remaining �bre because of the periodic boundary conditions; when counting consecutive
broken �bres both to the left and the right, all the N − 1 broken �bres are counted twice.

While Eq. (2.10) should leave no doubt as to how force is distributed among the
�bres, a description with words is often more ambiguous. �The extreme form for local
load redistribution is that all extra stresses caused by a �ber failure are taken up by the
nearest-neighbor surviving �bers. . . . In this case precisely two �bers, one on each side,
take up, and divide equally, the extra stress.�, as said in Ref. [17], could be interpreted as
simply dividing the force acting on a �bre between its two nearest neighbours once it fails.
This, however, leads to a history dependence as seen in Fig. 2.3; the force distribution
would depend not only on the con�guration of failed �bres, but also on the order in which
they break. This is not physically acceptable, but despite this, many have implemented
the local load sharing model this way numerically, which is why we stress that we use a
history-independent force distribution.

2.3.2 Strain curve

From Eq. (2.1) and (2.10) it is clear that the strain curve for local load sharing in one
dimension is given by

σ = min
i∈Ω

(
κxi

1 + ri
2

)
(2.11)

where Ω again is the set of numbers corresponding to the surviving �bres. The dependence
on the number of broken �bres k is hidden in ri, which will depend on k in some way.

Unlike ELS, where we could easily evaluate the minimum by renumbering the �bres,
there is no easy way to simplify this expression. We will not attempt to do any simpli-
�cations or analytical evaluations for di�erent probability distributions, but an example
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Figure 2.3: How local load sharing is implemented in one dimension when �bres break.
The two leftmost columns show a history-dependent distribution rule where the force from
a failing �bre is divided equally between its nearest neighbours in each direction. The
right column shows how we implement it, via Eq. (2.10). For simplicity the additional
elongation of �bres under higher loads is not shown.

of this curve, computed numerically, is shown in Fig. 2.2 with the threshold distribution
uniform on the unit interval, P (x) = x.

2.3.3 Burst size distribution

It has been shown by Kloster, Hansen and Hemmer [17] that it is possible to calculate
the burst size distribution for local load sharing in one dimension analytically with a
uniform threshold distribution, although it is very complicated. They found that with a
bundle size N = 20 000 the burst size distribution follows a power law D (∆) ∝ ∆−5 for
very small ∆. This power law quickly veers o� into an exponential decay as ∆ increases,
making the power law description valid only for ∆ smaller than roughly 10.

Considering several other distributions as well, Zhang and Ding [18] found that for
small ∆ there is a power law dependence

D (∆) ∝ ∆−ξ, (2.12)

but the exponent ξ depends on the threshold distribution and increases with increasing
bundle size.

In the article that sparked the investigation of Zhang and Ding, Hansen and Hemmer
[19] showed numerically that with a uniform threshold distribution and N = 5000, there
is a power law dependence as in Eq. (2.12) with ξ ' 4.5.
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2.3.4 Generalization to higher dimensions

When generalizing the LLS �bre bundle model to higher dimensions, we insist on keeping
it history independent like it was in one dimension. Using the de�nitions of a hole and
its perimeter from Section 2.1.4, and using hj for the number of �bres in hole number j
as well as sj for the number of �bres in the perimeter of the same hole, we let the force
on a surviving �bre be

f =


1 +

∑

j

hj
sj


σ, (2.13)

where the sum is over the di�erent holes the �bre in question is in the perimeter of - i.e.
is a neighbour of.

It is easy to verify that the sum of this force over all �bres gives a total of Nσ = F ,
as it should. When specializing to one dimension sj will be two, except for the case when
there is only one intact �bre left, when it is one. This reproduces Eq. (2.10), which is
required to make Eq. (2.13) a proper generalization.

The dependence on dimension in Eq. (2.13) is contained in the relation between hj
and sj . As an example, when hj = 1 then sj = 2D in D dimensions, increasing linearly
with the dimension.

For a given bundle size, it is easily discernible that the LLS model will become more
similar to the ELS model as the dimension increases. Any �bre will have more nearest
neighbours in a higher dimension, and thus a hole of a given size will on average have a
larger perimeter, distributing the forces more evenly across the �bre bundle and hence
acting more like the ELS model.
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3 Algorithms and simulations

This chapter details the algorithms used and a few speci�cs about the simulations. Section
3.1 describes how holes and their perimeters are found, with Section 3.1.1 containing the
algorithm used for grouping failed �bres together in holes, and Section 3.2 gives a short
description of the simulations we have done, including a mention of how parallelization is
handled.

3.1 Finding holes and perimeters

To calculate the force distribution in local load sharing, it is necessary to have a list of
existing holes plus knowledge of how large they are and what �bres are in their perimeters,
as seen from Eq. (2.13). To do this e�ectively we employ a variation of the Hoshen-
Kopelman algorithm [20], a special case of the more general union �nd algorithms, which
are used to group objects into disjoint sets based on an equivalence relation de�ned on the
objects. See for instance Introduction to Algorithms [21] for more detailed information
about the union �nd algorithms.

3.1.1 Determining hole structure

First number the N �bres with a label i ∈ {1, 2, 3, . . . , N − 1, N} and then make use of an
array T = [t1, t2, . . . , ti, . . . , tN ]. The array represents a function f : Φ→ Φ from the set
of all �bres Φ = {1, 2, . . . , N − 1, N} onto itself, where f(i) = ti. Initially f(i) = ti = i,
so f is the identity function.

Throughout the process of identifying holes a single �bre in each hole is chosen to
represent the entire hole. This choice is entirely arbitrary, and for simplicity we will use
the �bre with the lowest label of those included in the hole. Once the algorithm has been
executed, T will contain references from broken �bres to the �bre representing the hole
it is a part of, i.e. ti will be the label of the �bre representing the hole �bre number i is
included in. Since ti = i to begin with, every broken �bre is considered a separate hole
and is its own representative at the beginning of the algorithm.

Then de�ne a positive and negative direction for each dimension in the D-dimensional
hypercube, meaning that any �bre has D neighbours when counting only in the positive
directions. Looping over all of the N �bres, consider the neighbours in positive directions
only. As illustrated in Fig. 3.1 for two dimensions, this covers all neighbour relations
between the �bres exactly once, including the ones emerging from the periodic boundary
conditions. Neighbours in negative directions are not considered to avoid covering the
same neighbour relations twice.

Doing this loop over all �bres, �rst check if the �bre in question, labelled i, is broken.
If it is, then check whether its neighbours in the positive directions are broken as well. In
addition, de�ne the sequence bi,l via bi,0 = ti and bi,l+1 = f (bi,l) = tbi,l and iterate until
bi,m+1 = bi,m for some m. Then bi,m is the representative of the hole i is a member of.

If a neighbour, labelled j, is also broken it is part of the same hole as i. Similarly de�ne
the sequence cj,l via cj,0 = tj and cj,l+1 = f (cj,l) = tcj,l and iterate until cj,h+1 = cj,h
for some h, so that cj,h is the representative of the hole j is a part of.

Since the two �bres i and j are in the same hole, so are their representatives bi,m and
cj,h, and so we let ta = min (bi,m, cj,h), with a = max (bi,m, cj,h), letting min (bi,m, cj,h)
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Figure 3.1: Illustration of neighbour relations � arrows indicate positive directions � for
a two-dimensional �bre bundle of size N = 25. The �bres are shown as black discs and
the dashed lines are where we apply periodic boundary conditions.
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Figure 3.2: Flowchart of the algorithm to determine which �bres are part of the same
holes. Only neighbours in positive directions are considered.
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Figure 3.3: An example in two dimensions with N = 25. Fibre numbering is shown in (a)
and (b) displays the bundle state with intact �bres as open circles and broken �bres as
crossed ones. (c) shows the values ti for the bundle after using the algorithm from Fig.
3.2 with the positive directions from Fig. 3.1.

represent the new and larger hole. As bi,m and cj,h were the smallest labels in their
respective holes, this is consistent with letting the �bre with smallest label represent its
hole.

Once all neighbours in positive directions have been checked, go on to the next �bre
and repeat the procedure above. The entire process is outlined as a �owchart in Fig. 3.2.

When this algorithm is �nished, all �bres in the same hole are connected to a single
�bre representing that hole, but as illustrated by the example in Fig. 3.3c we are not
guaranteed that ti for all these �bres will point directly to the representative. To ensure
this, loop over all �bres and once again use the sequence bi,l as de�ned earlier. Iterate until
bi,m+1 = bi,m for some m, as before, and then let ti = bi,m since bi,m is the representative
of the hole i is in. Now all broken �bres i point to their hole's representative via ti.

3.1.2 Perimeters and hole sizes

When the hole structure has been found it is easy to �nd hole sizes and perimeters. Loop
over all �bres, initially setting all hole sizes to zero and letting all perimeters be empty.
If the �bre is broken, add one to the size of its hole. If it is not, then check which holes,
if any, it is a neighbour of. When the loop is complete, we have knowledge of the sizes
of all holes and which �bres are in their perimeters, which is all we need to calculate the
LLS force distribution.

3.1.3 Comments

It is worth mentioning how the speed of the union �nd algorithm described in Section 3.1.1
scales with the dimension of the �bre bundle we simulate. The way we have implemented
it, the number of operations required by the algorithm scales as N lnN with the number
of �bres N [21]. This, however, says nothing about what happens when we compare
two bundles of equal size, i.e. the same N , but with di�erent dimensions. When the
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dimension increases, so does the number of neighbours for each �bre, even when only
those in the de�ned positive directions are included. Because of this, the innermost
part of the algorithm � looping over neighbours in positive directions � will consist of
more operations, meaning that the speed of the algorithm decreases when the dimension
increases. For any given dimension the number of operations still scales as N lnN , but
the proportionality constant will increase with the dimension.

For this reason, we average over fewer samples for higher dimensions when using
roughly the same bundle size, as the number of samples one can compute within a rea-
sonable amount of time is lower than for a lower dimension. The bundle sizes, dimensions
and number of samples used in the simulations are given for all the results presented in
Section 4.

The entire process explained in the previous two sections is repeated for each time a
�bre is broken to �nd the new hole structure after the �bre has failed. While the union
�nd algorithms are very fast, there is more information available that is not used by this
procedure. When doing a strain controlled breaking of a �bre bundle from beginning to
end, which �bres have already failed and how the hole structure looked before breaking
the next �bre is also known; the algorithm is not given random bundle states at any step.

Taking this into account, it might be possible to make a faster algorithm by, for each
�bre broken, modifying the hole structure from the previous state, which the current
algorithm does not use at all. Doing this is reported to have signi�cantly sped up the
numerics of the two-dimensional LLS model [22].

3.2 Simulations

We have done simulations of strain-controlled breaking of �bre bundles with both the
ELS and LLS models for a few di�erent threshold distributions and bundle sizes in up to
�ve dimensions, using dimensionless units and κ = 1. Unlike a physical strain-controlled
experiment, where it would be necessary to increase the strain in�nitesimally until a �bre
breaks before setting it to zero again, we can simply �nd the �bre that breaks under the
lowest external load since the thresholds of all the �bres are known during the simulation.

3.2.1 Parallelization

The algorithm explained in Section 3.1 takes up a very large part of the time used when
computing local load sharing, but it is not possible to parallelize it. However, since
getting useful results requires computing many samples, it is easy to avoid this problem
and parallelize the program by making di�erent threads compute di�erent samples. This
is what we have done in our simulations.
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4 Results

In this chapter we present the results of the simulations carried out using the models from
Chapter 2. First results from one dimension are presented in Section 4.1, for comparison
to existing results in the discussion. We then look at the strain curves, with Section 4.2
displaying size dependencies in four dimensions with P (x) = x and Section 4.3 showing
dimensional dependencies. Lastly, Section 4.4 displays the LLS burst size distribution in
two to �ve dimensions.

4.1 One dimension

We �rst present the results from simulations of equal and local load sharing in one dimen-
sion. The main reason for singling out one dimension is that the existing literature on
the �bre bundle models that is directly comparable to our results only considers one di-
mension, and hence only this dimension is suitable for comparing results and establishing
whether the model has been implemented correctly.

4.1.1 Strain curves

To begin with we show numerical results for strain curves, both for the ELS and LLS
�bre bundle model, in one dimension.

Equal load sharing

The analytical ELS strain curve with P (x) = x, Eq. (2.7), is compared to the strain
curves from simulations with the same threshold distribution, showing the di�erence in
Fig. 4.1. Two di�erent bundle sizes are used, N = 104 and N = 105, whose data sets are
averaged over 3.5 · 105 and 2 · 104 samples, respectively.

The simulations are seen to di�er little from the analytical, large-N result, with better
overall similarity for the largest bundle. We also observe that it seems as though �nite
size e�ects a�ect the di�erence the most when k/N is close to one, and note that the
di�erence goes to 1/N as k/N → 1 for these two bundle sizes.

For the distribution P (x) = 1−exp (−x+ x<), Fig. 4.2 displays the di�erence between
ELS strain curves from simulations and the analytical result, Eq. (2.8), both for x< = 0
and x< = 1. The simulations used N = 104 and 3.5 · 105 samples for averaging.

This shows a good correspondence between the simulations and the analytical result,
and �nite size e�ects seem to mostly occur for the larger values of k, like for the uniform
distribution. Curiously, the di�erence for x< = 1 does not go to zero once k/N gets small
enough, like the other distributions, but goes to 1/N instead.

Local load sharing

The strain curves for local load sharing in one dimension is shown in Fig. 4.3 for three
di�erent threshold distributions: P (x) = x and P (x) = 1 − exp (−x+ x<) with x< = 0
and x< = 1. For all three distributions the bundle size is N = 104 and the results are
averaged over 3.5 · 105 samples.
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Figure 4.1: Di�erence between ELS strain curves from simulations and analytical results
when P (x) = x for two di�erent bundle sizes: N = 104 (black) and N = 105 (red).

4.1.2 Burst size distribution

This section contains results for the burst size distribution with P (x) = x both for equal
and local load sharing in one dimension.

Equal load sharing

The burst size distribution with ELS for two bundles with sizes N = 104 and N = 105 is
shown in Fig. 4.4, using 3.5 · 105 and 2 · 104 samples, respectively.

For small enough ∆ there is a clear power law dependence, and �tting a power law to
D (∆) for ∆ ≤ 8 gives an exponent of ξ ' 2.71 for N = 104 and ξ ' 2.72 for N = 105.
This is not especially close to the theoretical value of ξ = 2.5 from Eq. (2.9), but these
values will be useful for a comparison to the burst size distribution for local load sharing.

However, since the universal exponent is valid only for large ∆, we also try to �t a
power law to the burst size distribution when the smallest bursts, for which the Stirling
approximation is not that good, are removed. Fig. 4.5 shows the burst size distributions
from Fig. 4.4 with 50 ≤ ∆ ≤ 200 and corresponding power law �ts. They give exponents
of approximately ξ ' 2.54 (N = 104) and ξ ' 2.49 (N = 105).

In Fig. 4.4 one can also see spikes in D (∆) for ∆ ≈ N/2, which corresponds to the
fatal bursts that break the entire �bre bundle and begin close to the maximum of the
strain curve, at k/N = 0.5.

Local load sharing

The burst size distribution for a one-dimensional LLS bundle of size N = 104, calculated
from 3.5 · 105 samples, is shown in Fig. 4.6.
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Figure 4.2: Di�erence between ELS strain curves from simulations and analytical results
when P (x) = 1− exp (−x+ x<) for x< = 0 (black) and x< = 1 (red).

A power law �t to the distribution for the eight lowest values of ∆ gives an exponent
(see Eq. (2.12)) of ξ ≈ 4.6. Also, there is a spike situated at ∆ ≈ 0.88N that signi�es the
fatal bursts where the �bre bundle breaks down.

4.2 Size dependence in four dimensions

This section showcases the size dependency of the di�erence between the strain curve for
LLS and ELS in four dimensions. There are two possible ways of doing this, using either
analytical results for ELS or using results from actual simulations. In the following we
look at size dependences for both of these with the threshold distribution uniform on the
unit interval, P (x) = x with x ∈ (0, 1).

4.2.1 Analytical ELS results

In this section the analytical result for the ELS strain curve with the uniform distribution
on the unit interval, i.e. Eq. (2.7), is used. Using this to de�ne σELS and letting σLLS

be the averaged strain curves from LLS simulations, the di�erence between these two for
�ve bundle sizes � N = 44, 64, 84, 104 and 124 � in four dimensions is shown in Fig.
4.7. The results are averaged over 5 · 105, 2.5 · 105, 2.5 · 105, 4 · 104 and 2 · 104 samples,
respectively.

Finite size e�ects are seen to appear mostly for larger values of k/N , like for equal
load sharing in Section 4.1.1, changing the di�erence signi�cantly for the smaller bundles
compared to the larger ones.

As we will see later, from for instance Fig. 4.13, the maxima of this di�erence moves
when the dimension changes. Hence, to evaluate how big the di�erence between ELS and
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Figure 4.3: Averaged strain curves for LLS in one dimension for three di�erent threshold
distributions: P (x) = 1− exp (−x) (a), P (x) = 1− exp (−x+ 1) (b) and P (x) = x (c).
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Figure 4.4: Burst size distributions for two ELS bundles with sizes N = 104 (black) and
N = 105 (red). (a) shows the entire distribution while (b) shows only ∆ ≤ 8 together
with corresponding power law �ts.
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Figure 4.6: LLS burst size distribution for a one-dimensional bundle of size N = 104.
The entire distribution is shown in (a) while (b) shows ∆ ≤ 8 and a corresponding power
law �t.

LLS is, we must calculate a total di�erence of some kind. We propose two ways of doing
this, using

∆σ1 =
1

N

∑

k

|σELS(k)− σLLS(k)| (4.1)

and

∆σ2 =
1

N

∑

k

(σELS(k)− σLLS(k)) . (4.2)

The latter method is the average over all the data points in the curve σELS−σLLS, which
in the limit N → ∞ corresponds to the Riemann sum expression for the integral, while
the former is an average of the absolute value of the data points.

Using these two de�nitions on the strain curves from Fig. 4.7, we get Fig. 4.8 that
shows these total di�erences as functions of 1/N . From the �gure it looks like both the
two measures seem to converge to roughly the same value when N → ∞. See Table 4.1
for the values for the two largest bundles. Doing a linear �t to ∆σ1 as a function of 1/N
yields ∆σ1 = 0.189/N + 0.001353, indicating that ∆σ1 → 0.001353 as N goes to in�nity.

We also notice that, although there is a huge discrepancy between ∆σ1 and ∆σ2 for
the smaller bundles, the two largest bundles have similar ∆σ-values regardless of the
method used. These values are shown in Table 4.1. They are only a few percent o� from
one another, and in addition they are also only a few percent o� from our estimate of
∆σ1 as N →∞.

4.2.2 Numerical ELS results

Since Eq. (2.7), the analytical result for the ELS strain curve, is only valid in the large-
N limit, it seems reasonable to use results from ELS simulations when studying size
dependency. This eliminates errors stemming from discrepancies between the analytical
ELS result and actual ELS simulations for �nite bundle sizes.
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(e) N = 124
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Figure 4.7: The di�erence between LLS and analytical ELS strain curves, σELS − σLLS,
in four dimensions with P (x) = x. Sub�gures (a)-(e) show di�erent bundle sizes while
Sub�gure (f) shows a comparison of (a)-(e).
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Figure 4.8: ∆σ1 (a) and ∆σ2 (b) for P (x) = x in four dimensions as functions of 1/N
when using the analytical ELS strain curve, Eq. (2.7). In (a), the red line is a linear �t
to the data points.

Table 4.1: ∆σi-values for the two largest bundles both when using ELS strain curves from
simulations and the analytical result.

Analytical ELS ELS from simulations
∆σ1 (N = 104) 0.001385002 0.001390294
∆σ2 (N = 104) 0.001346383 0.001390294
∆σ1 (N = 124) 0.001370013 0.001373112
∆σ2 (N = 124) 0.001350410 0.001372659

Thus, we here use results from simulations when calculating σELS. They have the
same sizes N and are averaged over equally many samples as the LLS strain curves they
are compared to. The di�erence σELS−σLLS for various bundle sizes � the same sizes and
number of samples as in the previous section � in four dimensions is shown in Fig. 4.9.

The total di�erences ∆σ1 and ∆σ2 for these results are shown in Fig. 4.10. Now they
are nearly identical, showing no real di�erence between the two ways of measuring the
total di�erence. It is also impossible to discern how the di�erence depends on bundle
size from these results. In fact, all of the �ve sizes we have studied here have ∆σ-values
within 6% of one another, with N = 44 di�ering most from the other four sizes, which
are within 2% of each other.

Interestingly, the ∆σ-values for the two largest bundles, N = 104 and N = 124, are
very similar to ∆σ1 when using the analytical ELS strain curve, di�ering by less than 1%.
All of these data points are shown in Table 4.1.

4.3 Dimensional dependence of strain curves

To carry out an analysis like the one in Section 4.2 for every threshold distribution and
dimension we investigate is outside the scope of this project. Hence, we will here focus
on a single size in each dimension, using bundles of sizes as close to N = 104 as possible.
The results from the previous section suggests this should be large enough that �nite
size e�ects are fairly small, so we use the analytical, large-N results for the ELS strain
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Figure 4.9: The di�erence between strain curves for LLS and ELS from simulations,
σELS − σLLS, in four dimensions with P (x) = x. Sub�gures (a)-(e) show di�erent bundle
sizes while Sub�gure (f) shows a comparison of (a)-(e).
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Figure 4.10: ∆σ1 and ∆σ2 for P (x) = x in four dimensions as functions of 1/N when
using averaged ELS strain curves from simulations.

curves, Eqs. (2.7) and (2.8), as σELS. A few di�erent threshold distributions P (x) are
investigated.

Some of the results presented in this section have been used in an article that has been
submitted to PRL, which is found in its entirety in Appendix A.

4.3.1 Uniform distribution

We let P (x) = x, the uniform distribution on the unit interval1. The ELS strain curve, for
which Eq. (2.7) is used, is presented together with the LLS strain curves for one through
�ve dimensions in Fig. 4.11. The LLS results are for bundle sizes N = 104, 104, 223,
104 and 65 and are averaged over 3.5 · 105, 1.5 · 105, 8 · 104, 4 · 104 and 4 · 104 samples,
respectively. The di�erences between ELS and these LLS strain curves are shown in
Figs. 4.12 and 4.13. It is clearly visible that the di�erence diminishes as the dimension
increases.

Fig. 4.14 displays the total di�erences ∆σ1 and ∆σ2. Fitting the data points to a
power law, a behaviour ∆σi ∝ D−µi with µ1 ' 3.41 and µ2 ' 3.46 is observed. Since the
exponents are a little di�erent, the data points from Fig. 4.14 are listed in Table 4.2.

As the dimension increases, the two measures for the total di�erence become less
similar, with a signi�cant relative di�erence in �ve dimensions. To understand this, we
plot the di�erence in ELS and LLS strain curves for �ve dimensions only, shown in Fig.
4.15. The curve is negative for k/N close to one, with an amplitude that is comparable

1We also did simulations in three, four and �ve dimensions when P (x) was uniform on the interval

(0.4, 1), and the results show that the total di�erence decreases with the dimension. However, since trying

to do a regression with only three data points could easily give very wrong results � especially when the

points are placed close to each other � we do not show these results in any �gures or try to extrapolate

how they depend on the dimension.
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Figure 4.11: The averaged strain curves for LLS simulations when P (x) = x, with the
analytical ELS result for comparison.
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Figure 4.12: The di�erence σELS − σLLS for one through �ve dimensions when P (x) = x.
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Figure 4.13: The di�erence σELS − σLLS for one through �ve dimensions when P (x) = x,
with a logarithmic axis to easier see the results for the highest dimensions.
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Figure 4.14: The total di�erences ∆σi as functions of the dimension D when P (x) = x.
The two lines are power laws �tted to ∆σ1 (green) and ∆σ2 (blue).
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Table 4.2: ∆σi-values for one to �ve dimensions with P (x) = x. These data points are
plotted in Fig. 4.14.

D ∆σ1 ∆σ2

1 1.58582107 · 10−1 1.58582084 · 10−1

2 1.52135839 · 10−2 1.52008615 · 10−2

3 3.46579151 · 10−3 3.44041546 · 10−3

4 1.38500226 · 10−3 1.34638279 · 10−3

5 6.81122003 · 10−4 6.18623163 · 10−4
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Figure 4.15: The di�erence σELS − σLLS for D = 5 when P (x) = x.
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to, although still smaller than, the positive di�erence elsewhere.
When looking at the burst size distribution, as we will in Section 4.4, it is of interest

to know how the strain curve of single samples look, as that is what de�nes the burst
size distribution. Therefore Fig. 4.16 contains the LLS strain curves for a single sample
in one through �ve dimensions, with the averaged ones from Fig. 4.11 for comparison, in
addition to the ELS strain curve for a single sample with N = 104. From two dimensions
and upwards, the number of large �uctuations in the LLS strain curve seems to decrease
when the dimension increases. The single-sample ELS strain curve has much smaller
�uctuations than the LLS results in any of the �ve dimensions.

4.3.2 Exponential distribution

We now use an exponential threshold distribution P (x) = 1 − exp (x< − x), where x ∈
[x<,∞), and study the results for two di�erent values of the cut-o� x<.

Lower cut-o� x< = 0
We let x< = 0, meaning that the threshold distribution is P (x) = 1 − exp (−x). Using
Eq. (2.8) with x< = 0 for the ELS strain curve, we show it together with the LLS results
from simulations in Fig. 4.17. For each dimension the same bundle size and number of
samples as for P (x) = x is used.

Just like for the uniform distribution, the di�erence between equal and local load
sharing diminishes rapidly with increasing dimension. The di�erence is plotted in Figs.
4.18 and 4.19, the latter with a logarithmic axis to better see the highest dimensions.

Using ∆σ1 and ∆σ2 to measure the total di�erence, we plot them as functions of
dimension in Fig. 4.20. The two measures are nearly identical except when D = 5, where
there is a noticeable di�erence even in the logarithmic plot.

The total di�erences are observed to follow a power law ∆σi ∝ D−µi , with �ts to the
values providing µ1 ' 3.61 and µ2 ' 3.73.

Lower cut-o� x< = 1
We now turn our attention to the case where x< = 1, meaning that P (x) = 1 −
exp (−x+ 1). For the ELS strain curve Eq. (2.8) is once again used, but this time
with x< = 1. Plotting this together with the LLS results from simulations in one through
�ve dimensions provides Fig. 4.21. The bundle sizes and number of samples are identical
to the ones used for the uniform distribution on the unit interval and the exponential
distribution with x< = 0. Also here a quickly decaying di�erence between ELS and LLS
when the dimension increases is observed. This di�erence is shown in Fig. 4.22. The total
di�erences ∆σ1 and ∆σ2 are plotted as functions of dimension in Fig. 4.23, together with
power law �ts to the data points. The two measures give almost exactly the same results,
and in fact it is not possible to see any di�erence between the two �ts from the �gure;
they seem to be exactly on top of each other. They give the connection ∆σi ∝ D−µi with
µ1 ' 2.33 and µ2 ' 2.34, but we observe that these power laws do not �t very well with
the results for two dimensions and, to a lesser degree, one dimension.

Fig. 4.21 also provides some information about the stability of the �bre bundles.
The ELS result, as seen from Eq. (2.8), is both globally unstable and locally unstable
everywhere; the force required to break the next �bre decreases for every �bre that breaks.
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Figure 4.16: (a)-(e) show LLS strain curves for single samples (red) and averaged (black)
for one to �ve dimensions, while (f) shows an ELS strain curve from a single sample.
P (x) = x in all the sub�gures.
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Figure 4.17: The averaged strain curves for LLS simulations in one through �ve dimensions
when P (x) = 1− exp (−x), with the analytical ELS result for comparison.
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Figure 4.18: The di�erence σELS − σLLS in one to �ve dimensions when P (x) = 1 −
exp (−x).
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Figure 4.19: The di�erence σELS−σLLS in one to �ve dimensions when P (x) = 1−exp (−x)
with a logarithmic axis to easier see the results for the highest dimensions.
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Figure 4.20: The total di�erences ∆σi as functions of the dimension D when P (x) =
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Figure 4.21: The averaged strain curves for LLS simulations in one through �ve dimensions
when P (x) = 1− exp (−x+ 1), with the analytical ELS result for comparison.
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Figure 4.22: The di�erence σELS − σLLS for one to �ve dimensions when P (x) = 1 −
exp (−x+ 1).
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Figure 4.23: The total di�erences ∆σi as functions of the dimension D when P (x) =
1 − exp (−x+ 1). The two lines are power laws �tted to ∆σ1 (green) and ∆σ2 (blue),
although they are so similar that only one can be seen.

The LLS results are also globally unstable for all �ve dimensions � the force required to
break the �rst �bre is the highest point of the strain curve � but only in one dimension
is a local instability seen everywhere. From two dimensions and upwards there is exists
a region where σ increases with k/N . It moves when the dimension changes and is most
pronounced in two dimensions.

4.4 Burst size distribution in higher dimensions

In this section the burst size distribution for local load sharing changes with dimension
when the threshold distribution is P (x) = x is investigated. Fig. 4.24 shows this distri-
bution for two (N = 104), three (N = 223), four (N = 104) and �ve (N = 65) dimensions
calculated from 1.5 · 105, 8 · 104, 4 · 104 and 4 · 104 samples, respectively.

Surprisingly, they all look very similar and are notably di�erent from the corresponding
one-dimensional result, which is shown in Fig. 4.6. In particular, there is a power law-like
behaviour for much larger bursts than in one dimension, where it very quickly begins to
veer of from the power law. Like in one dimension, we try to �nd the exponent of the
power law dependence D (∆) ∝ ∆ξ observed for small ∆. Fig. 4.25 shows the burst
size distribution for two to �ve dimensions for ∆ ≤ 8 and their corresponding power law
�ts. All of the dimensions give an exponent of ξ ≈ 2.6, which is very di�erent from the
one-dimensional result of ξ ≈ 4.6, but somewhat close to the ELS exponent of ξ ≈ 2.7 for
very small bursts.
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Figure 4.24: LLS Burst size distribution for two to �ve dimensions when P (x) = x.
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5 Discussion

We will here discuss and interpret the results from Chapter 4, mostly discussing the results
in the order they were presented. First the one-dimensional results, both for strain curves
and burst size distributions, are compared to results in existing literature in Section
5.1. Then the size dependence analysis in four dimensions with a uniform distribution is
discussed in Section 5.2, before we continue with the dimensional dependence of strain
curves in Section 5.3, the LLS burst size distribution in higher dimensions for P (x) = x
in Section 5.4, and �nish with a short mention of sources of errors and inaccuracies in
Section 5.5.

5.1 One-dimensional results

Section 4.1 shows results from simulations in one dimension, which we will now consider.

5.1.1 Strain curves

For equal load sharing we compared numerical results to the analytical formulae derived
in the limit of large bundles. The di�erences between these two are seen to be small when
P (x) = x, and we observe that the di�erence is overall much smaller for N = 105 than
for N = 104, in particular when k/N is close to one, as it seems to go to 1/N there. That
we get a better agreement for the larger bundle is expected since analytical results are
valid in the limit N →∞.

When using the exponential distributions P (x) = 1 − exp (−x+ x<), the di�erences
between simulations and analytical expressions are also fairly small, with the largest
di�erence as k/N → 1, just like for the uniform distribution with the same bundle size,
N = 104. Interestingly, the di�erence seems to go to 1/N for small k with x< = 1,
compared to zero for the two other threshold distributions we have studied, but with no
other sizes to compare to we have no way of determining whether this is a coincidence or
not.

For local load sharing, we do not see any di�erence between the curves shown in Fig.
4.3 and the ones found in Ref. [13]. Hence, the one-dimensional LLS simulations seem to
give correct strain curves.

5.1.2 ELS burst size distribution

When using equal load sharing, the burst size distribution should follow a power law as in
Eq. (2.9) with ξ = 2.5 for large N and ∆. Our observed exponents of ξ = 2.54 (N = 104)
and ξ = 2.49 (N = 105) for bursts of sizes 50 ≤ ∆ ≤ 200 are very reasonable in this light,
giving values close to the analytical result while also showing that ξ = 2.5 is the result
acquired in the limit N → ∞, as the exponent is closer to the analytical result for the
largest �bre bundle.

For very small bursts (∆ ≤ 8) there is a power law dependence with a di�erent
exponent, ξ ≈ 2.7. It is reasonable that the burst size distribution does not give the same
exponent here, since the Stirling approximation for ∆! used when deriving the analytical
result [11] is only good for su�ciently large ∆. Hence the slightly larger value is an
acceptable result when compared to the theory.
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We expect the fatal bursts that break the rest of the bundle to be of size ∆/N ≈ 1−
kmax/N , where kmax is the k-value for which the averaged strain curve has its maximum.
Fatal bursts begin when a single sample reaches the highest point on its strain curve, and
these should be distributed close to the maximum of the averaged strain curve for most
threshold distributions.

The spike in the burst size distribution representing fatal bursts is situated at ∆ '
N/2, which is what one would expect since the ELS strain curve for a uniform distribution,
Eq. (2.7), has its maximum at k/N = 0.5. While the power law exponent has been
shown to be universal for most threshold distributions, we expect this spike to occur at
di�erent points for distributions with their strain curve maxima at di�erent values of
k/N . However, since we have only calculated the burst size distributions for P (x) = x,
we cannot con�rm that this is the case.

5.1.3 LLS burst size distribution

For local load sharing we studied the burst size distribution when P (x) = x and observe
the same qualitative e�ects as Kloster et al. [17] show analytically; for small ∆ there is
a power law dependence as in Eq. (2.12) where ξ ≈ 4.6 (N = 104), but the burst size
distribution quickly begins to veer o� from this power law to diminish even faster.

The value ξ ≈ 4.6 seems reasonable when compared to previously found results: ξ '
4.5 for N = 5000 [19] and ξ = 5 for N = 20000 [17]. Since the exponent ξ has been
observed to increase with N for P (x) = x [18] we expect it to be somewhere in the
interval (4.5, 5) for N = 104, which is precisely what we have found.

The fatal bursts are observed to be distributed around ∆ ' 0.88N , which is in fairly
good correspondence with the maximum of the averaged strain curve, see Fig. 4.11, at
k/N ' 0.11. This is not a perfect match, which indicates that the maximum of the strain
curves for single samples is distributed around a k/N -value slightly higher than where
the maximum of the averaged curve is found.

This would mean that single samples like the one shown in Fig. 4.16a, which has its
maximum at a higher k than the corresponding average, is not as uncommon as one might
�rst guess. While we cannot decisively conclude that this is the case without examining
the distribution of strain curve maxima positions in detail, we see an indication that this
might be correct.

5.1.4 Overall remarks

We see that both the strain curves and burst size distributions for equal and local load
sharing in one dimension give reasonable and expected results when compared to pre-
vious analytical and computational work, and can hence conclude that our numerical
implementation works as expected.

5.2 Size dependence in four dimensions

We have proposed two quantities, ∆σ1 and ∆σ2, to measure the total di�erence between
ELS and LLS strain curves, and have studied them for both analytical, large-N ELS
results and ELS results from simulations � and thus of �nite size � in four dimensions
when P (x) = x.
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5.2.1 Analytical ELS

With analytical ELS results we see that ∆σ2, or, equivalently for large bundles, the
area under the di�erence curve, is a misleading quantity for the total di�erence for very
small bundles. When N = 44 = 256 it is nearly zero, which is not representative of the
corresponding curve from which ∆σ2 is calculated at all.

For larger bundles, however, it is very similar to ∆σ1, with both of them seemingly
converging to roughly the same value as the bundle size goes to in�nity, meaning that it
should not matter which measure is used in this limit. Since the two measures behave
very di�erently for small enough sizes � ∆σ1 decreases with larger bundles while ∆σ2

increases � we can interpret the di�erence between these two values as a measure of how
much �nite size e�ects a�ect the results. Based on the behaviour as N changes that we
have seen here, the values attained when N →∞ are expected to be somewhere between
∆σ1 and ∆σ2 found for a �nite size.

When the bundle size is su�ciently large, i.e. of order 104, the two measures are
located within a few percent of each other, and they are also only a few percent o� from
the estimate of ∆σ1 as N →∞ provided by the linear �t in Fig. 4.8a. Hence we can say
that using bundles of size N ≈ 104 should be su�cient to estimate what happens in the
limit of large bundles, at least for this dimension and threshold distribution.

5.2.2 Numerical ELS

When using ELS strain curves from actual simulations, and thus of �nite size, there is no
discernible di�erence between ∆σ1 and ∆σ2 for the sizes we have investigated. It is very
interesting that all the bundle sizes give similar results, as seen from Figs. 4.9f and 4.10.
As one would expect, since the numerical ELS results should grow closer to the analytical
result as the bundle size increases, the two measures are similar to their counterparts
using analytical ELS strain curves for the larger bundles. That similar values are also
attained for much smaller bundles is somewhat surprising. It would mean that e�ects
due to �nite size a�ect equal and local load sharing in nearly the exact same way, and
that the behaviour of the di�erence σELS − σLLS at in�nite size should also be valid for
fairly small �nite bundle sizes when numerical and �nite-sized results are used for both
the equal and local load sharing model.

5.2.3 Validity

The results regarding size dependency discussed here are only shown to be valid in four
dimensions and for the uniform threshold distribution P (x) = x, so we cannot guarantee
that they are still valid for other dimensions or threshold distributions.

5.3 Dimensional dependence of strain curves

We have investigated how the strain curves vary with dimension for a few di�erent thresh-
old distributions. They are discussed separately in the following sections.
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5.3.1 Uniform distribution

When P (x) = x, we observe a power law behaviour for ∆σi as a function of dimension
with slightly di�erent exponents for ∆σ1 and ∆σ2 because of somewhat di�erent values
for the �ve-dimensional case. This is due to two di�erent e�ects.

Smaller bundle: The size of the �ve-dimensional �bre bundle used is 65 = 7776, which
is somewhat smaller than the other dimensions, which use N ' 104. As seen in four
dimensions, a smaller bundle means larger e�ects due to �nite size and thus a larger
di�erence between ∆σ1 and ∆σ2.

Higher dimension: When the dimension increases, the di�erence between equal and
local load sharing diminishes, and so a �nite size e�ect of a given order will a�ect the
result more than in a lower dimension, because the true di�erence does not dominate the
�nite size e�ects as e�ectively. We can see this in Fig. 4.15 and Table 4.2, where the
e�ects due to �nite size � the negative part of the curve for su�ciently large k/N � are
comparable to the rest of the di�erence, causing ∆σ1 and ∆σ2 to di�er signi�cantly.

The di�erence, however, is only a matter of how precisely one wants to determine the
exponent of the power law. To get a more accurate value, a larger bundle size would be
needed in �ve dimensions. Considering the size dependency analysis, which leads us to
expect that the true exponent is somewhere in between the estimates given by ∆σ1 and
∆σ2 here, we expect to �nd a power law dependence ∆σ2 ∝ D−µ with µ ≈ 3.4 in the
limit of large bundles, meaning that the critical dimension where ELS and LLS become
equal is not �nite at all, but in�nity.

It is di�cult to estimate the uncertainty of this exponent, but given the result found
in Appendix A (which partially uses the same data as us), µ ≈ 3.5, and that the power
law is observed only over half a decade, the uncertainty is probably at least 0.1. We
therefore guess that µ = 3.4± 0.2. Since the power law is observed over half a decade, we
cannot say that it is very robust, but extending the region, i.e. the number of dimensions,
further would require computational resources far beyond what has been made available
for this thesis.

It is a little surprising that the one-dimensional LLS model �ts into this power law,
since the LLS model in one dimension is qualitatively di�erent from all higher dimensions
in the sense that the number of neighbours to a hole cannot increase with the hole size.
As we will discuss later, the burst size distribution seems to behave qualitatively di�erent
in one dimension when compared to higher dimensions.

Fig. 4.13 provides valuable insight into why the equal and local load sharing models
become more and more similar as the dimension increases. For small k/N and LLS, �bres
mainly fail because of their small thresholds, not because of force redistribution from
failed neighbours, and hence ELS and LLS behave very similarly in this region.

We also see that the point � in terms of k/N � where the two models become nearly
identical again decreases with increasing dimension. This is ostensibly because the point
where all holes have merged into a single, large hole that has almost all intact �bres in its
perimeter decreases when the number of neighbours per �bre goes up. When this point is
reached, the LLS force distribution is essentially ELS and the two models converge. That
the point of this transition decreases is analogous to how the percolation thresholds for
hypercubic lattices decrease with increasing dimension [23] in the percolation model. If
this is the reason why equal and local load sharing become more similar as the dimension
increases, it is expected that the result ∆σ2 → 0 as D → ∞ is valid for any threshold
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distribution P (x).

Single samples

Looking at the single samples displayed in Fig. 4.16, it seems as though the number
of large �uctuations decrease as the dimension increases. We should be careful about
including the �ve-dimensional result in this argument, as the total number of �bres is a
little lower than in the other dimensions, but the same e�ect can be seen from the samples
from two to four dimensions, where the bundle sizes are nearly identical. From only a
single sample in each dimension, though, we cannot conclude with a decrease, but the
results are indications that such a trend might exist.

This decrease is reasonable, however, as the perimeter size of a hole increases with the
dimension, making thresholds of single �bres in a given con�guration less important. (In
the sense that it is less probable to have a combination of �bre thresholds that make the
required force to break the next �bre deviate signi�cantly from the average.) With ELS
the single samples rarely deviate much from the average, at least for large bundles where
many �bre thresholds must be drawn from P (x), and it we expect single samples with
LLS in higher dimensions to behave more like this than in lower dimensions.

This is of importance for the LLS burst size distribution, which should then behave
more like the ELS burst size distribution in higher dimensions, although how similar they
become and how quickly we cannot judge from this simple argument.

5.3.2 Exponential distribution with x< = 0

When P (x) = 1 − exp (−x) we observe a power law behaviour for ∆σi as a function of
dimension with somewhat di�erent exponents for ∆σ1 and ∆σ2 due to di�ering values in
�ve and, to a lesser degree, four dimensions. While we have not done a size dependency
analysis for this probability distribution, like for P (x) = x in Section 4.2, these di�erences
are likely e�ects due to �nite size, and we therefore expect the exponent attained in the
limit N → ∞ to be somewhere in between the ones we have found for ∆σ1 and ∆σ2.
Hence, we conclude that in the limit of large bundles there likely is a power law dependence
∆σ2 ∝ D−µ with µ ≈ 3.7, and the critical dimension where ELS and LLS become equal
is in�nity.

Also for this threshold distribution the uncertainty of the exponent is di�cult to
gauge, but again considering the results from Appendix A, µ ≈ 3.5, and that we have
only observed the power law behaviour over half a decade, the uncertainty is likely at
least 0.2. Thus we guess that µ = 3.7± 0.3.

The reason for this convergence seems to be the same as for P (x) = x, according to
Fig. 4.19; the point in k/N where the two models become essentially equal decreases with
the dimension, making the total di�erence smaller.

5.3.3 Exponential distribution with x< = 1

For P (x) = 1 − exp (−x+ 1) there are non-negligible e�ects due to �nite size [8], so it
is not possible to conclude with how the total di�erence between ELS and LLS behaves
without doing a size scaling analysis for each dimension. This might be related to the
results observed in one dimension, where the di�erence between analytical and numerical
ELS seems to go to 1/N as k/N → 0. We do, however, see that the di�erence decreases
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with increasing dimension, and the exponent of the power law �t is profoundly di�erent
from the ones found for the two distributions P (x) = x and P (x) = 1−exp (−x+ 1). This
might be an indication that µ is not universal, but changes depending on the threshold
distribution.

A very surprising result when using this threshold distribution is the regions of local
stability that occur for LLS in two to �ve dimensions, as seen in Fig. 4.17. While the
ELS model is still more stable in the sense that σ is higher than in LLS at any point in
the breaking process, it is strange that the LLS model has a local stability that is not
present in the ELS model. Moreover, this stability seems to decrease as the dimension
increases beyond two, becoming less pronounced. We do not have an explanation for this
behaviour, but it likely has something to do with how the hole structure in LLS changes
with the dimension for this threshold distribution.

5.4 Burst size distribution in higher dimensions

The burst size distributions in two to �ve dimensions when P (x) = x shown in Figs. 4.24
and 4.25 are surprising; they are all very similar and the power law dependence for small
bursts, ∆ ≤ 8, give nearly identical exponents of ξ ≈ 2.6. From the discussion on single
samples we might expect the distribution to gradually behave more like in the ELS model,
but this seems not to be the case in our results. From two dimensions onward, it behaves
fundamentally di�erent from in one dimension, where we have seen that the exponent is
much larger. Interestingly, the values seen here for two to �ve dimensions are in between
(and quite close to) the small-burst exponent seen for ELS, ξ ' 2.7, and the analytical,
large-N , large-∆ result ξ = 2.5. The burst size distribution also keeps a power law-like
behaviour for much larger bursts in higher dimensions, while in one dimension it quickly
veers o� from this behaviour once ∆ > 10.

Since ξ depends heavily on N in one dimension with local load sharing, it seems
reasonable to assume that there is also a noticeable size dependence for higher dimensions.
If the exponents then increase with the bundle size as in one dimension, it is possible that
they go to some upper limits as N →∞ � one for each dimension � and that these limits
gradually move closer to the ELS value ξ ' 2.7 for small bursts. It might also be that for
su�ciently large bundles the entire LLS burst size distribution grows closer to the ELS
burst size distribution as the dimension increases, which would be in accordance with the
previous argument regarding how single samples change with dimension. Since we do not
have any data for other bundle sizes we cannot say whether this is the case or not, but it
might be an interesting subject for someone to investigate later.

5.5 Errors and inaccuracies

There are mainly two sources of errors in the results presented in this thesis: �nite
bundle size N and the number of samples used. E�ects due to �nite size grow continually
smaller as the bundle size increases, so larger values of N would give more accurate data.
Similarly, increasing the number of samples used when calculating averages and burst size
distributions should also give more accurate results.

We can see a few examples of the latter a�ecting the results in the burst size distri-
butions; very rare bursts, which typically are quite large, are entirely absent even though
they should occur with a non-zero probability. This is because in all the samples used,
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bursts of many sizes were never observed at all since they are too rare. The rarest bursts
that are actually observed will give uncertain results � which is clearly seen in for instance
Fig. 4.4 � as a single sighting of such a rare burst can change the value of the burst size
distribution signi�cantly.
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6 Conclusion

The purpose of this thesis was to investigate whether there exists a �nite critical dimension
where the equal and local load sharing �bre bundle models behave identically. For this
purpose we introduced a generalization of the local load sharing model to arbitrarily
high dimensions by placing the �bres in a hypercubic pattern and de�ning a history-
independent force distribution mechanism that is consistent with how the model has
previously been treated in one dimension.

The simulations carried out with this model in one to �ve dimensions indicate that the
critical dimension is not �nite, but rather in�nity. The area under the di�erence curves
σELS − σLLS, ∆σ2, behaves as a power law with respect to the dimension D,

∆σ2 ∝ D−µ, (6.1)

in the limit N → ∞. (For σELS we have used the analytical results valid in the limit
of large N .) The exponent is estimated to be µ = 3.4 ± 0.2 for the uniform threshold
distribution P (x) = x and µ = 3.7 ± 0.3 for P (x) = 1 − exp (−x), and hence we cannot
conclude that they are di�erent. However, the results for P (x) = 1−exp (−x+ 1) indicate
that µ is likely not universal, but depends on the threshold distribution in question. Since
we have usedD ≤ 5, this power law dependence has only been observed over half a decade.

Seemingly, the two models converge because the number of nearest neighbours for
each �bre increases with the dimension. At some point in the LLS model, the broken
�bres constitute a single large hole with most of the intact �bres in its perimeter, thus
distributing the forces almost identically to the ELS model. In one dimension this �rst
happens when there are only a few intact �bres left, but as the dimension increases this
point decreases because of the increased connectivity between the �bres.

If this is indeed the reason why ∆σ2 decreases with increasing dimension, one would
expect that it should go to zero as D → ∞ for any threshold distribution P (x). We
see indications that this might be the case for P (x) = 1 − exp (−x+ 1) as well, but the
presence of non-negligible �nite size e�ects requires a size scaling analysis to con�rm this.

From the size dependency analysis done in four dimensions with P (x) = x using
numerical ELS results, it seems that the total di�erence between equal and local load
sharing varies very little with size when using numerical results for both models. This
means that there likely is a power law dependence also for fairly small �bre bundles, not
only in the limit N →∞, at least for the uniform threshold distribution.

An article has been written using some of the data sets shown in this thesis, and it
has been submitted to PRL. It is shown in its entirety in Appendix A.

We have also studied the burst size distribution for the uniform threshold distribution
P (x) = x with local load sharing, seeing a power law dependence

D (∆) ∝ ∆−ξ (6.2)

for small bursts ∆. In one dimension we get ξ ≈ 4.6 when N = 104, which �ts well with
the fact that ξ increases with the bundle size [18] and the previously found values ξ ' 4.5
for N = 5000 [19] and ξ = 5 for N = 20 000 [17].

When going to two dimensions, we see a qualitative shift where ξ ≈ 2.6 when N = 104,
which is also the value found in three, four and �ve dimensions when the bundle sizes
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are N = 223, 104 and 65, respectively. The higher dimensions behave very di�erently
from one dimension, retaining a power law-like behaviour for much larger bursts, and,
surprisingly, the burst size distribution seems to vary little between them, especially so
for the smallest bursts.

While the exponent 2.6 is much closer to the exact ELS result ξ = 2.5, valid in the
limits of large N and ∆, and the numerical ELS result of ξ ≈ 2.7 that we have found for
small ∆, the size dependency of the one-dimensional LLS burst size distribution renders
it probable that there are similar size dependencies for higher dimensions as well. For
this reason we cannot conclude about whether the LLS results converge towards the ELS
burst size distribution or not, but only that there seems to be a qualitative di�erence
between one and all higher dimensions when P (x) = x.

6.1 Suggestions for future work

The results presented in this thesis raise several new questions that may be suitable
subjects for future research.

• Is the critical dimension also in�nite when using models that lie between the equal
and local load sharing models?

Since the ELS and LLS models, which are opposite extremes in terms of force distri-
butions, seem to converge as the dimension increases, the same should hold true when
comparing ELS to any model with a force distribution in between these two extremes.
Checking whether this is indeed true would either support or undermine the results pre-
sented here, depending on the outcome, and is a natural continuation of the work done
in this thesis.

• How does the lattice used for �bre placement and determination of nearest neigh-
bours a�ect the results?

Based on the explanation we have o�ered for the increased similarity between ELS and
LLS in higher dimensions, it is reasonable to ask whether it is simply a matter of connec-
tivity between the �bres that determines how di�erently the two models behave. Would
using a two-dimensional equilateral triangular lattice � where each �bre has six nearest
neighbours, just like in the cubic lattice � give results like our LLS model in three di-
mensions? Does only the number of nearest neighbours matter or does the structure of
neighbour relations a�ect the results as well? These are questions we will not attempt to
answer here, but we consider them interesting and possibly suitable for further research.

• What is the source of the local stability observed for two and higher dimensions in
the LLS model when P (x) = 1− exp (−x+ 1)?

We have not provided any explanation of the very surprising local stability that occurs in
the LLS model once we go from one to two dimensions with P (x) = 1−exp (−x+ 1). The
mechanism behind this behaviour is something we consider to be an interesting subject
for future research.

• How does the LLS burst size distribution vary with the bundle size in two and
higher dimensions?
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• Is the qualitative shift from one to two dimensions when P (x) = x also present for
other threshold distributions?

• Why is there such a large qualitative shift from one dimension to higher dimensions?

The results we have shown for the LLS burst size distribution give us more new questions
than answers. We have not investigated how it varies with N , how it looks for other
threshold distributions, or given an explanation for the sudden shift from one to two
dimensions. Investigating these things might provide valuable, new insight into the LLS
burst size distribution.
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A Article

This appendix contains an article that has been submitted to Physical Review Letters
(PRL), the way it looks as of May 15, 2015. It uses some of the results from this thesis:
the averaged LLS strain curves in three, four and �ve dimensions for P (x) = x and
P (x) = 1− exp (−x).



The local load sharing fiber bundle model in higher dimensions

Santanu Sinha,1, 2, ∗ Jonas T. Kjellstadli,2, † and Alex Hansen2, ‡

1Department of Physics, University of Oslo, P. O. Box 1048 Blindern, N-0316 Oslo, Norway
2Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

(Dated: April 29, 2015)

We consider the local load sharing fiber bundle model in one to five dimensions. Depending on
the breaking threshold distribution of the fibers, there is a transition where the fracture process
becomes localized. In the localized phase, the model behaves as the invasion percolation model.
The difference between the local load sharing fiber bundle model and the equal load sharing fiber
bundle model vanishes with increasing dimensionality with the characteristics of a power law.
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The fiber bundle model has come a long way since its
introduction in 1926 by Peirce [1]. Initially introduced to
model the strength of yarn, the model has slowly gained
ground as a model for fracture in somewhat the same way
that the Ising model has become a paradigm for magnetic
systems. In 1945, Daniels’ paper [2] on the fiber bundle
model led to a continuous interest for the model in the
mechanics community. The statistical physics commu-
nity “discovered” the model in the early nineties in the
aftermath of the surge of interest in fracture and in that
community [3, 4].
The Peirce fiber bundle model is today known as the

equal load sharing (ELS) fiber bundle model. N Hookean
springs — fibers — of length x0 and spring constant κ
are placed between two parallel infinitely stiff clamps.
When the distance between the clamps is x0 + x, each
fiber carries a load σ = κx. Each fiber i has a maximum
elongation threshold xi, drawn from a probability den-
sity p(xi), upto which it can sustain before failing per-
manently. So the corresponding maximum load it can
sustain is therefore σi = κxi. When a fiber fails, its load
is shared equally among the surviving fibers since the
clamps are infinitely stiff — hence “equal load sharing.”
The local load sharing (LLS) fiber bundle model was

introduced by Harlow and Phoenix [5, 6] as a one-
dimensional array of fibers, each having an independent
breaking threshold drawn from some threshold distribu-
tion p(x). They defined the force redistribution rule as
follows: When a fiber fails, the load it carried is redis-
tributed in equal portions onto its two nearest surviving
neighbors. Hence, if a fiber i is adjacent to nl,i failed
fibers to the left and nr,i failed fibers to the right, it will
carry a load [7]

σi = κ

[
1 +

nl,i + nr,i

2

]
x , (1)

where x is the distance between the clamps if all fibers
were intact [4].
Where the ELS fiber bundle model is extreme in the

sense that it redistributes the force carried by the failed
fibers equally among all surviving fibers wherever they
are placed, the LLS fiber bundle model is extreme in the

opposite sense: only the nearest survivors, pick up the
force carried by the failed fiber. There are many models
that are intermediate between the two extreme models.
For example, the γ model of Hidalgo et al. [8] distributes
the force carried by the failed fiber according to a power
law in the distance from the failed fiber. The soft clamp
model [9–12] replaces one of the infinitely stiff clamps in
the ELS model by a clamp with finite elastic constant.
Hence, the load redistribution is governed by the elastic
response of the soft clamp.

We emphasize the following subtle point in the imple-
mentation of the LLS model [4]. If the redistribution of
forces after the failure of a fiber proceeds by dividing the
force it carried in two and adding each half to the two
nearest surviving fibers to the left and right — i.e., ac-
cording to the recipe of Harlow and Phoenix [5] — the
force distribution will not follow Eq. (1). Rather, it will
become dependent on the order in which the fibers have
failed. Hence, it will not be possible to determine the
force distribution among the fibers only from the knowl-
edge of present failed fibers in the system. This history
dependency in the force distribution is unphysical. As
an example, if two adjacent fibers have failed and the
two nearest surviving fibers each has one survivor, the
procedure will produce the following load distribution:
(7/4, 0, 0, 9/4) or (9/4, 0, 0, 7/4) depending on the order
in which the two middle fibers were failed. According to
Eq. (1), the load distribution should be (2, 0, 0, 2) inde-
pendent of the order in which the fibers failed.

When implementing the LLS model in two or more
dimensions, the force redistribution algorithm becomes
even more crucial. We insist that the model should be
physical where the force distribution among the surviv-
ing fibers can be determined by only knowing which fibers
are already failed and it should not depend on the order
in which they have failed. This leads to the concept of
clusters of failed fibers, where the term “cluster” is used
in the same sense as in the site percolation problem [13]:
failed fibers that are nearest neighbors to each other form
a cluster. The total load carried by all the failed fibers
in a given cluster will then be shared equally by the sur-
viving fibers that form the perimeter to that cluster. If
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p(x) = 1 p(x) = exp(−x) p(x) = exp(−x+ 1)

FIG. 1. (Color online) Snapshots of the two-dimensional LLS
model after 1792 failed fibers (top row) and after 13824 failed
fibers (bottom row) with different threshold distributions for
a 128 × 128 system. The red fibers are survivors adjacent to
clusters of failed fibers, the gray fibers are survivors that are
not adjacent to failed fibers and white fibers have failed.

a surviving fiber is adjacent to two different clusters of
failed fibers, the total load it carries is the sum of the
loads contributed from both the clusters.

This generalization of the one-dimensional LLS model
to higher dimensions is the simplest one that ensures his-
tory independence in the force distribution. A more elab-
orate generalization may be found in Patinet et al. [14].
Here, one of the clamps is exchanged for a stretchable
membrane that has no bending resistance. The elastic
response of this model is equivalent to the LLS model
in one dimension. However, it differs from the one we
propose here in two dimensions.

We show in Fig. 1 the two stages of the two-
dimensional LLS model: after 1792 (top row) and after
13824 (bottom row) failed fibers. N = 1282 fibers, placed
at the sites of a square lattice with periodic boundary
conditions in all directions, are seen from above. The
failed fibers are shown as white, the intact fibers that be-
long to the external and internal perimeters of the clus-
ters of failed fibers are shown as red and other intact
fibers are shown as gray. In the first column of the figure,
the threshold distribution p(x) was uniform on the unit
interval. Hence, the cumulative probability was P (x) = x
where x ∈ [0, 1]. In the next two columns, the cumula-
tive threshold probability was P (x) = 1 − exp(x< − x)
where x ∈ [x<,∞) with x< = 0 and x< = 1 respectively.
In the top row, it is hard to distinguish the difference
between the first two panels of the figure. However, the
third panel in the top row is very different. In this case,
the breakdown process is localized from the very begin-
ning. That is, a single cluster of failed fibers forms and
keeps growing. On the other hand, three panels in the
bottom row are all very similar.
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FIG. 2. Force per fiber σ as a function of the relative number
of failed fibers k/N in the one-dimensional local load sharing
model together with the ELS model result (Eq. 5). The
thresholds were distributed according to p(x) = exp(−x+x<)
where x ∈ [x<,∞) with x< = 0 and 1 respectively. Here
N = 4000. Each data series is based on 2000 samples.

When the breakdown process is localized so that only
one cluster of failed fibers forms, the model is equivalent
to the invasion percolation model [15]. In the invasion
percolation model, each site is given a random number.
An initial site is invaded. The perimeter of this one-
site cluster form the growth sites and the growth site
with the smallest random number associated with it is
invaded. This is repeated, letting the perimeter of the
cluster of invaded sites to be the growth sites. In the
LLS model, the perimeter of the single cluster of failed
fibers will carry the extra force that makes these and
only these fibers liable for failure when the threshold is
narrow enough to imply localization. It will be the fiber
in the perimeter that has the smallest failure threshold
that will fail next. Hence, it behaves precisely as the
invasion percolation model.
We now consider the breaking characteristics of the

LLS model in comparison to the ELS model. When k
fibers have failed, the force F carried by the surviving
fibers in the ELS model is

F = Nσ = (N − k) κ x , (2)

where we have defined the applied force per fiber σ =
F/N . In the LLS model, we have

F = Nσ = N κ x , (3)

since the surviving perimeter fibers precisely absorb the
load carried by the failed fibers.
We order the failure thresholds of the N fibers in an

ascending sequence, x(1) < x(2) < · · · < x(k) < · · · <
x(N). According to order statistics [16], the average (over
samples) of the kth member of this sequence is given by

P
(
〈x(k)〉

)
=

k

N
(4)

for large N . We combine this equation with Eq. (2) for
the ELS model assuming that P (x) = 1− exp(−x+ x<)
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FIG. 3. (Color online) Force per fiber σ as a function of the
relative number of failed fibers k/N in the two-dimensional
LLS model compared with the ELS model result. The thresh-
old distribution was p(x) = exp(x< − x) where x ∈ [x<,∞)
with x< = 0 and 1. LLS results for x< = 0 (the lowermost
curve) are also compared for different system sizes, N = 322

(blue), 642 (green), 1282(red), and 2562 (black), and they fall
exactly on each other showing that the results are free from
finite-size effects. For x< = 1, N = 2562. Each data series is
based on 5000 samples.

for x ∈ [x<,∞) to find

σ = κ

[
1− k

N

] [
x< − ln

(
1− k

N

)]
. (5)

For a uniform threshold distribution in [x<, 1], the cu-
mulative probability is P (x) = (x−x<)/(1−x<) we find

σ = κ

[
1− k

N

] [
x< + (1− x<)

k

N

]
. (6)

We show the ELS behavior for the exponential threshold
distribution (Eq. 5) in Fig. 2 together with the corre-
sponding curves (x< = 0 and x< = 1) for the LLS model
in one dimension. There is a large difference between
ELS and LLS models.
This picture changes in two dimensions. In Fig. 3,

we show the results for the two-dimensional LLS model
for exponential threshold distribution with cumulative
threshold probabilities P (x) = 1 − exp(x< − x) where
x ∈ [x<,∞) with x< = 0 and 1. When comparing this
figure to the corresponding one for one dimension (Fig.
2), we see that the LLS model now is much closer to the
ELS model than in one dimension.
It should be pointed out that σ vs. k/N for the expo-

nential threshold distribution with x< = 1 has a curious
upwards bend before its maximum value, see Fig. 3. We
have also observed small upwards bend for the uniform
threshold distribution with x< = 0.4. This means that
the model is stable in this region in the sense that if σ
is used as the control parameter, fiber failures will only
occur if σ is increased. This is not true in the ELS model.
Hence, the LLS model is in fact more stable than the ELS
model in this region.
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FIG. 4. The burst distribution in the two-dimensional LLS
model. The threshold distribution was p(x) = exp(x< − x)
where x ∈ [x<,∞). The data sets are based on 5000 samples
of size N = 2562.

The similarity between the ELS and LLS models is also
evident in other quantities that characterize the two mod-
els. In Fig. 4 we show the burst distribution for the LLS
model in two dimensions for the cumulative threshold
probability P (x) = 1 − exp(x< − x) where x ∈ [x<,∞)
with x< = 0 and 1. The burst distribution is the his-
togram of the number of simultaneously failing fibers ∆
when the force σ is the control parameter. Hemmer and
Hansen showed in 1992 that the burst distribution in the
ELS model is given by

ω(∆) ∼ ∆−5/2 , (7)

for a very wide class of threshold distributions to which
p(x) = exp(x< − x) belongs [17].
Later, Hansen and Hemmer investigated the burst dis-

tribution in the one-dimensional LLS model finding a
burst exponent ≈ 4.5 rather than 5/2 [18]. Kloster et.
al. [7] showed analytically that the burst distribution
falls off faster than a power law in the LLS model when
the threshold distribution is uniform on the unit inter-
val. Fig. 4 shows that the burst distribution in the two-
dimensional LLS model is consistent with Eq. (7) for
p(x) = exp(x< − x) where x< = 0 or x< = 1.
In Fig. 5, we show the σ vs. k/N curves for the three-

dimensional , four-dimensional and five-dimensional LLS
fiber bundle model for the cumulative threshold proba-
bility P (x) = x with x ∈ [0, 1] (top row) and P (x) =
1 − exp(x< − x) with x ∈ [x<,∞) (bottom row). We
compare the curves with the ELS model results given
in Eqs. (5) and (6). Interestingly, the curves for the LLS
and the ELS models are approaching each other more and
more as the dimensionality is increased. The difference
in σ for LLS and ELS for different system dimensions
is measured and plotted in Fig. 6 for the two threshold
distributions.
It can be noticed that the maxima of the ∆σ curves

shifts towards smaller k/N with changing dimensional-
ity. Therefore, in order to quantify the difference between
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FIG. 5. Force per fiber σ as a function of the relative num-
ber of failed fibers k/N in the three-dimensional (3D), four-
dimensional (4D) and five-dimensional (5D) LLS model. The
top row corresponds to P (x) = x with x ∈ [0, 1] and bottom
row corresponds to P (x) = 1− exp(x<−x) with x ∈ [x<,∞).
Each data series is averaged over atleast 40000 samples.
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FIG. 6. (Color online) Difference between the force per fiber
σ in the LLS and ELS models in one to five dimensions for
the two threshold distributions. A rapid decrease in ∆σ can
be observed with increasing dimensionality.

LLS and ELS models, we measure the total area (∆σarea)
under the ∆σ curves. In Fig. 7, we plot ∆σarea as a func-
tion of the dimensionality D of the system. Interestingly,
a power-law dependency

∆σarea ∼ D−µ , (8)

with µ = 3.5± 0.1 is observed.
In the cases where the threshold cutoff is x< > 0, there

is a non-negligible N -dependency in the σ vs. k/N curves
and the effective exponent µ needs further finite size scal-
ing analysis to be determined.
From Eq. (8) we conclude that there is no finite upper

critical dimension for which the LLS and ELS models
become equal. However, the difference falls off rapidly
with increasing D.
Finally, we like to highlight about the breaking process

which makes the LLS and the ELS models similar at the
earlier and at later stage of the breakdown when there is
no localization. Early in the breakdown process, fibers
fail not due to being under stress because they are on the
perimeter of clusters of already failed fibers, but because
they have small thresholds. Hence, we expect the LLS
and the ELS models to be quite similar in all dimensions
in this regime.
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FIG. 7. The area under the ∆σ curves in Fig. 6 as a function
of dimensionality D for the two different threshold distribu-
tions. The system sizes considered for 1 to 5 dimensions are
4000, 2562, 223, 104 and 65 respectively.

As the breakdown process proceeds, the clusters of
failed fibers merge and undergo a percolation transition.
Essentially, all the remaining fibers become part of the
perimeter of a single percolating cluster of failed fibers
which can be seen in the bottom row of Fig. 1. Hence,
as all the remaining fibers are adjacent to the same clus-
ter, they share the same force as in the ELS fiber bundle
model. Moreover, the threshold of percolation transi-
tion decreases with increasing dimensionality [13], which
results in an increasing part of the ELS behavior. There-
fore, as the dimensionality increases, the ELS and the
LLS models must converge.

The LLS model is extreme in that it is the perimeter
fibers that absorb the forces from the failed fibers. We
have mentioned models that are in between the ELS and
the LLS models. When the LLS and ELS models are
rapidly approaching each other with increasingD, so will
the in-between models also; they will rapidly approach
the ELS model with increasing D. This argument also
apply to models that normally are not classified as fiber
bundle models, such as the fuse model where Zapperi et.
al. [19] has reported a burst distribution exponent in
three dimensions equal to 2.55, close to the ELS value
5/2. Hence, already in three dimensions, the ELS model
is not far from the much more complex models of fracture.
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