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Sammendrag
I denne mastergradsoppgaven i teoretisk fysikk har jeg sett p̊a ett sett

med observasjoner fra et neutrino observatiorium i Antarktis kalt IceCube.
Dette observatoriet har observert flere høyenergis neutrinoer enn forven-
tet og jeg ønsket å undersøke hvor godt mørk materie ville passe som en
forklaring p̊a de uforventede neutrino observasjonene. Den synlige massen
i universet er ikke stor nok til å forklare dynamikken vi ser, s̊a man har
konkludert med at mesteparten av massen i universet ikke er synlig for oss.
Denne massen kalles mørk materie. Hvis mørk materie kan henfalle s̊a er
neutrinoer ett av de mulige resultatene.

Jeg har sett p̊a retningen og energien til neutrino observasjonene til
IceCube og sett statistisk p̊a hvor godt de passer med en model for mørk
materie i forhold til andre modeller for deres opphav. Oppgaven har i hov-
edsak vært numerisk og programmet jeg brukte til å finne svar p̊a dette er
vedlagt i appendiksene i slutten av oppgaven. Resultatet var at det kunne
passe med at en liten del av neutrinoene kom fra henfall av mørk materie,
men en modell uten noe kontribusjon fra mørk materie kunne forklare ob-
servasjonene nesten like godt.

Abstract
In this theoretical physics master thesis I’ve looked at a set of obser-

vations from a neutrino observatory in Antarctica called IceCube. This
observatory has observed more high energy neutrinos than expected. I
wanted to investigate whether dark matter would fit as an explanation of
this neutrino excess. The visible mass in the universe isn’t great enough
to explain the dynamics we observe. This has led many to the conclusion
that most of the mass in the universe is not visible to us. This masses is
called Dark Matter. If Dark Matter decays then neutrinos are one of the
possible end products.
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I have looked at the direction and energy of the neutrino excess at Ice-
Cube and investigated statistically how well they fit a model of Dark Matter
compared to other models for their origin. The thesis work has been pri-
marily numerical and the program I wrote to answer the main question is
found in the appendices at the end. The result was that a small amount of
the neutrinos being from Dark Matter decay would fit with observations,
but model with no Dark Matter could explain the data almost equally well.
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Chapter 1

Introduction

One of the outstanding mysteries in astrophysics is the apparent anomaly
in mass distribution in galaxies; the inwards acceleration of orbiting ob-
jects (measured by measuring the radial velocity at a known radius by the
Doppler effect) do not match the gravitational attraction that should be
caused by the visible matter below those radii. While it is possible that the
law of gravity works differently than previously thought in the very weak
field limit it seems more likely that there is some additional massive matter
that we cannot observe directly. Because the extra matter is not directly
observable it must not emit electromagnetic radiation and we therefore call
it Dark Matter.

Since Dark Matter still makes up the majority of the mass in the uni-
verse 13 billion years after the big bang it’s usually been assumed that
whatever particles it’s made of are stable. For the last several decades the
most widely favored candidate for the make up of Dark Matter are the
lightest of the so called super-symmetric particles. That is to say; there is
a theory that posits that each type of boson has a fermionic opposite and
each type of fermion has a bosonic opposite, their so called super-symmetric
partners. If there is a conserved super-symmetric charge then the lightest
super-symmetric particle would be stable. Just like conservation of baryon
number makes the proton stable since it’s the lightest baryon. This lightest
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8 CHAPTER 1. INTRODUCTION

super-symmetric particle would be one possible candidate for making up
stable dark matter.

However it’s not required that Dark Matter is completely stable. As
long as it has a life time significantly longer than the age of the universe
it is possible that Dark Matter decays. Neutrinos are among the possible
products of such decay. The IceCube neutrino detector in Antarctica has
detected several neutrinos at a much higher energy than expected from
atmospheric background, but smaller than that expected from astrophysical
sources, which motivates us to investigate whether they come from the
decay of slightly unstable Dark Matter. In this thesis I will use a statistical
method called maximum likelihood estimation to determine how well the
energy and spatial distribution of the high energy IceCube neutrinos fit with
a Dark Matter model compared several other possible neutrino sources.

In the next sub-chapters of this introduction I’ll give a brief overview
of the astrophysics and statistics used. The next chapter will talk in more
detail about Dark Matter, and possible Dark Matter candidates. Chapter 3
will talk briefly about neutrino detection, the history of neutrino astronomy
and give and overview of the IceCube detector. Chapter 4 deals with how I
approached the problem. It gives a more detailed overview of the statistical
methods used, the astrophysical models and how the program that ran it
all was programmed. Finally, in chapter 5, I present the results with some
analysis and commentary. At the very end of the thesis there’s a number
of appendices that contain the program I used for the main calculation.

1.1 Dark Matter

The orbital velocity of an object is determined by the gravitational force
exerted on it. In most galaxies the majority of the luminous mass is found
in a concentrated area with only limited light sources outside this radius.
For those more distantly orbiting objects we ought to be able to find their
velocity by viewing them as test masses orbiting a point mass with the
overall mass of the Galaxy. Assuming their eccentricity is low enough to
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let us view their orbits as circular we get:

G
M

r2 = v2

r
(1.1)

which implies v ∝ 1/
√
r. Actual observations of the outer parts of galaxies

however show a rotational velocity that’s constant, or even increasing, out
to the furthest radii ever measured. This suggests that the mass density
of most galaxies doesn’t fall of, the way their density of luminous matter
does.

Astronomers have measured the rotational speed of other galaxies using
the Doppler effect. When a radiating body is moving relative to an observer
the frequency of the light seen by the observer will be different from the
frequency seen in the objects frame of reference. Of course to tell how much
a signal is red or blue shifted you would need to know what it’s original
frequency was. In astrophysics a specific line, the 21cm line in the spectrum
of hydrogen, is usually used. Since we know the wavelength of this spectral
line in the rest frame of the source we can find the velocity of the source
relative to us at the time the light was sent. By measuring the velocity
relative to us, on both sides of a Galaxy (assuming it’s axis of rotation is
not pointing at or too near us) and looking at the difference we can find
the rotational speed of said Galaxy.
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Figure 1.1: Rotation curve of a Galaxy (M33) compared to expected curve
based on luminous matter[1]

1.2 Statistics

In order to look at how likely it is that some of the unexpected neutrino
flux is from decaying Dark Matter we will analyze the direction of the in-
coming neutrinos using a statistical method known as maximum likelihood
estimation. The core of this technique is to choose some class of theories
and see which of them assigns a greater probability to the observed events
being observed.

In addition to this analysis of the data we will additionally look at
how well observations are capable of distinguishing between the possible
scenarios. We will look at the degree of overlap between the distributions
and also at the angular resolution of the IceCube observatory.



Chapter 2

Dark Matter: Theory

2.1 Distribution of Dark Matter

As mentioned previously the rotational velocity of a Galaxy at a radius r is
approximately proportional to

√
M(r)/r. Where the M(r) is the enclosed

mass below that radius. That means that for the rotation curve to be flat,
dv
dr = 0, M(r) needs to scale ∝ r as the radius increases, or dM

dr = const. Of
course dM

dr = 4πρ(r)r2 which implies ρflat ∝ r−2. A Galaxy with a rotation
curve increasing at higher radii must then have a mass density falling off
slower than r−2. At some large radius the falloff in the halo density must
become greater than this, or the galactic mass would diverge.

One common model for the density of the Dark Matter halo is the
Navarro-Frenk-White profile,

ρ = ρ0[r(1 + r2/r2
0)]−1 (2.1)

This density function was proposed by Navarro, Frenk and White in the
mid 90s based on N-body simulations of Galaxy formation[3]. There exist
several variations on this kind of distribution. The Navarro-Frenk-White
distribution, which goes as r−1 at small radii and as r−3 at large radii, is
itself a modification of an earlier model that decreased as r−4 at large radii.
And modifications have been suggested to it which would go as r−1.5, or
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similar, at low radii.

Another type of distribution that is starting to see more use is the
Einasto distribution. While actually far older than the Navarro-Frenk-
White profile it didn’t see a lot of use until the 2000s. The distribution,
ρ ∝ exp(−Arα), fits N-body simulations of Galaxy formation somewhat
better than the Navarro-Frenk-White profile. However with the parameters
that are reasonable for the Milkyway this distribution is a lot harder to
distinguish from an isotropic background. Since we are severely limited in
the number of observations we have available we will focus on the Navarro-
Frenk-White distribution.

Figure 2.1: Comparrison of the Einasto and Navarro- Frenk-White (NFW)
distributions[2]



2.2. PROPERTIES OF DARK MATTER 13

2.2 Properties of Dark Matter

2.2.1 Interactions

The most obvious requirement for a Dark Matter candidate is that it must
have electric charge zero. First of all because for any object that couples to
electromagnetism we’d expect to see electromagnetic radiation emitted by
it. The only way to avoid that would be by it being concentrated in dense,
cold objects. But such objects can be seen by the way they bend the light
from objects behind them and astronomers have searched extensively for
this kind of lensing (looking for black holes for instance) and the ones seen
have a combined mass far to small to represent all Dark Matter.

The second reason comes from big bang cosmology: today the universe
is very inhomogeneous, with mass densities ranging from stars and even
black holes to intergalactic space. This is the natural result of matter
accumulating in the gravitational potential created by small starting inho-
mogeneities. The cosmic microwave background (CMB) was remains from
shortly after the big bang when protons and electrons came together to
create charge-neutral atoms. At that point the matter’s cross section with
photons dropped dramatically and space became transparent. Examining
the CMB allows us to measure the inhomogeneity of the baryonic matter
at that time. The homogeneity so measured is too low to result in the
current structure of the universe over the life time of the universe however.
In order to explain the inhomogeneity we see today there must have been
some non-charged, cold matter that being uncoupled from the photon bath
was able to begin accumulating before recombination. The newly created
atoms, decoupled from the photon bath, settling into already existing gravi-
tational potentials would explain the inhomogeneity of the current universe
assuming the total mass of non-baryonic matter was five times that of the
baryonic[4].

Furthermore there is an additional requirement, beyond the limitations
on interactions with non-Dark Matter, that Dark Matter cannot interact
strongly with other Dark Matter. In theory it would be possible to have a
type of particles, or multiple types of particles, that interacted very weakly
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with other matter but have strong interactions among themselves. However
there are several reasons why Dark Matter cannot be like this.

Normal matter, because of the interactions it has, experiences friction.
This leads to the luminous matter in most galaxies becoming concentrated
in the galactic plane as the energy from the movement normal to the plane
of rotation dissipates into radiation. Observations indicate that the Dark
Matter halos of galaxies are generally spherical. This means that there
cannot be any dissipative interactions between Dark Matter on a scale
similar to the ones between luminous matter.

Another strong piece of evidence against strong interactions between
Dark Matter comes from colliding Galaxy clusters. The bullet cluster is a
cluster made up of two colliding Galaxy clusters. Observations of the bullet
cluster revealed that the gas cloud of the smaller cluster was lagging behind
it’s galaxies, due to being slowed down by scatterings as it passed through
the larger cluster. When this was discovered it was quickly realized that
if the mass distributions of the clusters could be mapped this would be
an excellent measure of the strenght of interactions between Dark Matter.
Since the Dark Matter makes up the largest portion of the mass in a Galaxy
cluster being able to locate the majority of the mass in the smaller Galaxy
cluster would pinpoint its Dark Matter halo. Like intergalactic gas the
Dark Matter halo of a Galaxy cluster is very spread out. The galaxies
on the other hand are extremely spread out compared to their size. This
means that the galaxies of two colliding clusters are unlikely to encounter
any areas of comparable density which is why they were not slowed down
in the same way as the intergalactic gas as the clusters past through each
other. If the Dark Matter halo of the smaller cluster lagged behind it in
a similar way as the gas cloud it would imply interactions between Dark
Matter particles. The larger the lag the stronger the interactions. The mass
distribution of the cluster was successfully mapped and the result showed
the Dark Matter halo to be coincident with the galaxies. This placed a
strong limit on interactions between Dark Matter[5].
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2.2.2 Dynamics

Secondly, Dark Matter must be cold. In order to match the universe we
observe Dark Matter must cluster in gravity potentials. Relativistic (ie
high kinetic energy to rest mass ratio) particles would pass through small
gravitational perturbations too fast to be much effected by them. This
means that very light Dark Matter would result in mass clustering only on a
much higher scale than what is observed. Since most creation mechanisms
posited by Dark Matter theories are thermal. Current observations and
numerical simulations place a lower limit for the mass of thermal Dark
Matter at 2keV[6].

2.3 Dark Matter Candidates

2.3.1 WIMPs

Weakly interacting massive particles (WIMPs) are the kind of particle most
widely believed to make up Dark Matter so they will be discussed first. As
the name suggests WIMPs interact only through weak interactions. They
are also massive, generally WIMP posit masses in the order of 100GeV.
These particles are either stable, or so long lived that decays have a neg-
ligible effect on their abundance over the lifetime of the universe. They
can be created from, or annihilated into, ordinary particles through pair
production/annihilation. In the early universe when matter was dense and
hot enough for scatterings with > MDM energy to be common they were
in thermal equilibrium with the baryonic matter.

At some point the temperature of the universe fell below the Dark
Matter mass. At that point Standard Model (SM)-particle scatterings with
high enough energy to create a Dark Matter pair become rare. In order to
remain in equilibrium the density of Dark Matter will fall until the number
of annihilations is as small as the number of pair creations, settling in an
exponentially suppressed density,

neqDM = (2πmT )
3
2 exp

(
−mxc

2

kT

)
. (2.2)
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However, as the universe cools and expands, the likelihood of Dark Matter
pairs impacting each other decreases. This increases the relaxation time,
how fast the system moves towards equilibrium. Once the annihilation rate
becomes slower than the expansion of the universe, the system will quickly
leave equilibrium and there will be an almost, but not completely, stable
abundance of Dark Matter particles[7].

Figure 2.2: WIMP freeze-out scenarios depending on annihilation cross
section and average velocity[23].

Super-symmetry is a class of theories that posit that for each standard
model particle there is a super-symmetric opposite: a fermion for every
boson and a boson for every fermion. Because the Higgs mass depends
strongly on the mass of all particles, even ones that don’t couple directly
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to it if they couple to particles that do, introducing new physics at higher
energy scales becomes difficult. Since the observed Higgs mass is so low
compared to those scales, any new particle would create corrections to the
Higgs mass that are individually much larger than the overall Higgs mass.
This would require some miraculous amount of cancellation of these cor-
rections to produce the Higgs physics we observe. Because bosons and
fermions make contributions to the Higgs mass with opposite sign a sym-
metry relating fermions and bosons would be a good explanation for this
kind of cancellation.

If this is the case then the lightest super-symmetric particle would make
an excellent WIMP candidate. In super-symmetric models baryon and lep-
ton numbers are no longer conserved quantities. However, no violation of
baryon number have been observed despite extensive observations. This
implies that any baryon number violations must be extremely small. R-
parity is a new symmetry introduced in super-symmetric theories to sup-
press baryon and lepton number violating interactions. If R-parity is an
exact symmetry then it will have an associated conserved quantum number
which would make the lightest super-symmetric particle stable[8].

2.3.2 Axions

Another Dark Matter candidate is a kind of particle know as an axion. The
main point in their favor is that they solve another outstanding mystery in
physics. The standard model Lagrangian contains a term:

L = ...+ θg2

32π2G
a
µνG̃

aµν (2.3)

where G is the gluon field-strenght tensor and θ is a parameter. If
θ̄ = θ− arg detmq, wheremq is the quark mass matrix, is different from zero
then parity and CP-symmetry is violated in strong interactions. However
measurements of the neutron dipole moment sets a limit of |θ̄| < 10−9.

The fact that a symmetry that is not required is nevertheless respected
to such a high degree would be a huge coincidence and strongly suggests that
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there is some unknown physics suppressing or forbidding the symmetry-
violating interactions. One solution is to introduce an additional field a(x)
that determines θ as

θ = a(x)
fa

(2.4)

where fa is a constant with unit of energy. The minimum of the effective
potential for this field will be at θ̄ = 0, so as the universe cools it will
naturally settle at this value, solving the naturalness problem of strong
CP-symmetry.

However the aGG̃ term in the Lagrangian is not renormalizable. That
is to say it produces infinities that cannot be ”reduced” to finite quantities
using our normal methods for avoiding infinite quantities. In order to get
around this we can instead posit a renormalizable theory which has that
term as the low energy limit. The proposed solution for this is a broken
U(1) symmetry, called Peccei-Quinn symmetry.

Axions are not produced thermally, which makes them one of the excep-
tions mentioned in the argument placing a lower limit on the Dark Matter
mass based on the temperature of the early universe. Particle physics exper-
iments, stellar evolution and the duration of neutrino pulses in supernovas
have ruled out overlapping areas of axion mass, giving an upper limit of
ma = 3 · 10−3eV[9].

2.3.3 Sterile neutrinos

Normal neutrinos (νe/µ/τ ) were briefly considered as a possible Dark Matter
candidate, but were quickly rejected as while they have the correct inter-
actions they are too light. The heaviest neutrino is lighter than 1eV while
as argued in section 2.2 thermally created Dark Matter particles must have
mass greater than 2keV. When the idea of WIMPs was created a much
heavier fourth generation of neutrino was considered the most likely. How-
ever that too was eventually rejected, as such a heavy normal neutrino
interact too strongly. Some manner of neutrino would make a good Dark
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Matter candidate as they are the only known particles with the right kind
of interactions, but this shows that Dark Matter cannot be made of normal
neutrinos of any kind.

One possible solution is to posit a kind of neutrino that doesn’t interact
weakly. The best motivated example would be right handed neutrinos. All
the fermions in the standard model come in two chiralities: right handed
and left handed. The weak force is the only force (other than gravity)
that neutrinos interact with, and it couples only to left handed particles.
Because of this only left handed neutrinos are observed, and right handed
neutrinos have been mostly ignored. Of course since right handed neu-
trinos only interact by gravity the fact that he haven’t observed them is
neither evidence for or against their existance. And since they only interact
by gravity they would, if they exist, have many of the qualities that are
requried of a dark matter candidate.

Lacking electroweak and strong interactions leaves open only self in-
teractions and lepton/Higgs/right handed neutrino interaction, giving a
general Lagrangian of

L = LSM + iν̄R /∂νR − l̄LFνRΦ̃− ν̄RF †lLΦ̃† − 1
2(ν̄cRMMνR + ν̄RM

†
Mν

c
R)(2.5)

Here the first non-standard model term is the kinetic energy and the
second and third are interactions with the standard model; It describes an
interaction between a right handed neutrino, a standard model lepton and a
Higgs particle. The l is a standard model lepton doublet and F is a matrix
of coupling constants where the indices (suppressed to save space) are the
flavors of the lepton doublet and the flavor of the right handed neutrino
(νR). The final terms are Majorana mass terms. MM is a Majorana mass
matrix, where the two flavor indices have again been suppressed. Usually
an explicit mass term of this kind would be forbidden by gauge symmetry,
but since right handed neutrinos transform as a singlet under every gauge
transformation that doesn’t apply here.

There are two kinds of terms in the Lagrangian that can give a fermion
mass. One is a Dirac mass term, of the form φ̄LMDφR, where φ is some
fermionic field. The other is a Majorana mass term, of the form φ̄LMMφL or
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φ̄RMMφR. All the fermions we know about have Dirac masses, except the
neutrino where we don’t know. There are some experimentally measurable
differences between the Dirac and Majorana mass neutrino scenarios. One
of them is that a Majorana neutrino would allow for neutrinoless double
beta decay. Extensive searches have been made for this with no success.
This combined with the fact that we know neutrinos have mass and that a
Dirac mass term for neutrinos is impossible without the existence of right
handed neutrinos is a strong argument for their existence.

If we look more closely at the non-self interactions, l̄LFνRΦ̃ and its
opposite, focusing first on the fact that in the low temperature limit we can
replace the Higgs field with its vacuum expectation value,

(0
v

)
. The first

thing we see is that since the Higgs vacuum expectation value is purely
in the neutral part of the doublet any interaction with a charged lepton
becomes zero. Second, by actually making the substitution we get:

l̄LFνRΦ̃ = ν̄LFvνR (2.6)

Which is a Dirac mass term for the neutrinos, with a Dirac mass matrix
MD = Fv.

Unlike Dirac mass terms Majorana mass terms are independent for right
and left handed particles. This means that even if the mass of the left
handed neutrinos is solely from a Dirac mass term the right handed neutri-
nos can still have Majorana masses. This is vital for the possibility of right
handed neutrinos explaining Dark Matter, as left handed neutrinos are far
too light to be Dark Matter candidates. In the context of Dark Matter we
are only interested in right handed neutrinos with a Majorana mass term
and MM �MD[10]

2.4 Alternative to Dark Matter

Several alternatives to Dark Matter have been proposed for explaining the
difference between galactic dynamics and apparent masses based on alter-
ing the laws governing the dynamics rather than the distribution of mass.
Of these the most successful by far has been the theory called Modified
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Newtonian Dynamics (MOND). It posits that for very weak gravitational
fields (accelerations below a0 = 1.2 · 108 cm s−2) the actual acceleration
of gravity deviates from the one predicted by general relativity, decreasing
linearly rather than quadratically with distance.

The greatest advantage of MOND is that it’s a simpler theory than
Dark Matter. Because it lacks the free parameters of the later (the distri-
bution of Dark Matter) it cannot be fitted to individual galaxies. A single
modification to the gravitational attraction must be able to explain the
rotation curve of every Galaxy or the theory fails. The strongest empirical
evidence for MOND is the fact that across many different galaxies the effect
of Dark Matter fails to appear at accelerations above a0 and increases with
decreasing acceleration. This emerges naturally in MOND, but in any Dark
Matter theory it is an enormous coincidence.

While MOND describes galaxies very well it fails to explain larger struc-
tures like Galaxy clusters, or cosmology. Further more MOND is in itself
not a relativistic theory, which for many years made it little more than a
curiosity. There have eventually been developed relativistic theories that
produce MOND in the classical limit, but each of these introduce new dif-
ficulties. On the other hand the greatest advantage of cold Dark Matter
(CDM) is that the standard model does not claim to describe all physics
at all energies and we expect to find new particles outside the standard
model while we have no prior reason to expect a modification of the laws
of gravity[4].
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Chapter 3

Overview of neutrino
experiments and IceCube

3.1 Neutrino Astronomy

Neutrinos have several properties that make them useful for astronomical
purposes. Since they only interact weakly they can pass through almost
any medium without significant absorption. This is the reason that neu-
trino observations of the Sun have had such an important place in neutrino
astronomy. Neutrinos, being the only particle created in the nuclear reac-
tions in the Sun’s core that can escape through to the surface, provide the
only view of those reactions unaffected by the layers of the Sun above it.

Furthermore, because they don’t interact electromagnetically they won’t
interact with the background microwave radiation or be deflected by mag-
netic fields and will only interact very weakly with interstellar gas. This
is more valuable than it first seems; in some cases even open space isn’t
unobstructed, even for photons. When a photon hits another photon they
can, if their total energy is above a certain threshold, create a particle anti-
particle pair (an electron and a positron). This has a large cross section and
photons energetic enough to experience it with cosmic background photons
will not have a long mean free path on a cosmological scale[11]. Of course
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while its weak interactions allows it to travel to us unhindered it also makes
neutrinos very difficult to detect.

Figure 3.1: A high energy photon scattering off of a cosmic microwave
background photon and creating an electron positron pair

Because of the small interaction cross sections of neutrinos the rate of
neutrino interactions in the experiment will always be low. This means
that any background of non-neutrino particles entering the experiment,
usually high energy muons created by the scattering of cosmic ray protons
in the atmosphere, will be large relative to the signal. Shielding of neutrino
detectors is therefore extremely important. For this reason it’s common to
construct detectors deep underground. Old mines have been used for many
neutrino detectors. Other detectors have been made deep under water, or
in the case of IceCube deep in the antarctic ice.

Since detecting neutrinos is so difficult only large fluxes of neutrinos can
be successfully detected. In 1987 a super-nova was detected in the Large
Magellianic Cloud that was much closer to us than most super-novas. The
neutrino burst from the super-nova was detected in several neutrino detec-
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tors, but at most 11 individual neutrinos were observed by a single detector.
This number should give some perspective on the difficulty of neutrino de-
tection. That super-nova is the only extra terrestrial object outside the Sun
that has been observed by neutrino detection. Because of the very small
chance of successfully detecting neutrinos neutrino astronomy is generally
about diffuse fluxes. Sources are thought of in terms of detecting neutrinos
from, for example, ”extra galactic sources” rather than in terms of detecting
neutrinos from some specific Galaxy, or cluster.

3.2 History of Neutrino detection

The first type of neutrino detectors built were based on induced beta decay.
A large tank would be created and filled with a liquid containing a large
amount of chlorine (for example perchloroethylene). When a neutrino hits
the nucleus of a chlorine atom it could lead to one of the neutrons undergo-
ing beta decay. This would transmute the chlorine to argon. By measuring
the amount of argon in the tank after a certain time the number of neu-
trino events could be found. The Homestake, or Davis, experiment in the
US first discovered solar neutrinos using this technique in the late 60s. The
fact that the number of solar neutrino events detected was only a third
of the theoretically predicted number lead to what was called the solar
neutrino problem, and eventually to the discovery of neutrino oscillations.

At around the same time atmospheric neutrinos were first detected al-
most simultaneously at the Kolar Gold Fields detector in India and the
East Rand Mine detector in South Africa. Both experiments used a similar
method of neutrino detection. They were based on detecting muons cre-
ated by neutrino scatterings in the rock surrounding the mines. Because
the direction of cosmic ray muons was concentrated around the zenith the
experiments looked at muons with incoming directions near the horizontal
plane. The Kolar Gold Field (KFG) experiment was originally intended to
study muons created from cosmic ray scattering in the atmosphere. How-
ever, when the deepest part of the detector failed to detect any muon events
it was realized that this area would be a good place to study very low cross
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section events like neutrino interactions. Both detectors detected atmo-
spheric neutrinos for the first time within months of each other.

The idea of neutrino detection by Cherenkov radiation in a volume of
water was first suggested by Markov in 1960. The actual implementation
of the idea however came somewhat later than the chemical detectors men-
tioned previously. The first generation of detectors based on this principle
(most notably Kamiokande in Japan and Irvine-Michigan-Brookhaven in
the US) were built around 1980, using tanks of water with photo-detectors
along the tank walls. Originally these were not intended primarily as neu-
trino detectors. Their ability to serve as neutrino detectors was a side
effect of their intended purpose of searching for proton decays. Grand Uni-
fied Theory (GUT) proposed in the seventies predicted that baryon number
would not be perfectly conserved and as a result protons would decay with
a life time of between 1030 and 1034 years. Existent neutrino detectors were
able to set a lower limit on the life time of the proton only at 1030 years,
so a series of specialized proton decay experiments were commissioned to
probe the range of theoretically predicted life times. These experiments
were not able to observe proton decays, but they did produce very useful
data on atmospheric neutrinos[13].

The success of these experiments allowed a scaled up second generation
of water Cherenkov detectors to be built. This included Super-Kamiokande
which used a tank holding 50,000 tons of water, compared to the 3,000
tons used by the original Kamiokande. In 1998 the Super-Kamiokande
collaboration published a definite proof of neutrino oscillations[14].

It was known from the very envisioning of neutrino astronomy that
because of the low interaction cross sections of neutrinos the success of
neutrino observatories would be limited by their size. Because larger water
tanks imply increased pressure and weight, and larger engineering chal-
lenges the idea of placing photo detectors into existent bodies of water in
order to convert some volume of a lake or ocean into a neutrino detector
was proposed early on. The DUMAND project, which developed during
the 70s, was the first attempt at constructing such a detector. The goal of
the project was to create a neutrino detector at almost 5.000 meters depth
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Figure 3.2: The inside of the Super-Kamiokande detector tank during main-
tenance. Of course there can be no photo of it in operation as the tank
must be completely dark to allow Cherenkov radiation to be detected. The
light spheres covering the tank walls are photo detectors[17].

in the ocean near Hawaii. A large amount of work was put into creating the
technology required to operate the required measuring apparatuses at the
pressures involved, and to deal with the challenges of ocean currents etc.
Funding for the project was canceled in ’95 after a number of sensors were
destroyed by water pressure, but the knowledge the project had created by
then was used to create several follow up projects.

Another notable and more successful attempt at an underwater neutrino
detector is the Baikal Neutrino Telescope, in lake Baikal, Siberia. It was
built in considerably shallower water, at around 1,200 meters depth. That
means a larger background, but lessens the engineering challenges some-
what. A more direct successor to DUMAND is the ANTARES detector
built at around 2.5 kilometers depth in the Mediterranean near Toulon.
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3.3 IceCube

The IceCube neutrino observatory turns a cubic kilometer of the antarctic
ice cap into a huge neutrino detector. It is the first detector that really
showcases the ability to scale up detectors that don’t rely on artificial bodies
of water, being 20,000 times larger than Super-Kamiokande. The detector
has a total of 5160 optical sensors, divided among 86 vertical strings that
are placed in a hexagonal pattern. IceCube is the first observatory to use
Cherenkov radiation in ice to detect neutrinos.

IceCube is a Cherenkov radiation based detector. Cherenkov radiation
is an effect similar to a sonic boom. It happens when a charged particle
moves through a medium at a higher speed than the speed of light in that
medium.(figure: 3.3) When that happens the electromagnetic fields in front
of the particle are unable to adjust to the particle’s movement fast enough
and a wave front of electric field is created. This results in a large amount
of radiation being emitted. The optical sensors distributed throughout the
ice are intended to detect this radiation.

Since the neutrinos themselves are electrically neutral they don’t pro-
duce any Cherenkov radiation. The detector relies on neutrinos scatter-
ing off of atomic nuclei in the ice creating charged leptons. Additionally
the neutrino can deposit enough energy in the nuclei to create a hadronic
shower. Neutral current scatterings can only be detected by the hadronic
shower as these results in an outgoing neutrino rather than charged lepton.

The IceCube detector has some ability to determine the flavor of a
detected neutrino. A muon neutrino can create a muon that travels a
considerable distance and can be seen as a track in the detector. On the
other hand electron and tau neutrinos will appear as point-like events in
the detector; electrons lose their energy very quickly, while the taus decay
similarly fast. Hadronic showers created by energy deposited in the nucleus
the neutrino scatters on will likewise appear as a point. It is much easier
for the detector to accurately determine the direction of a muon track, but
even for point-like events the direction can be determined to a degree as the
light emitted is not isotropic, but is determined by the direction of motion.
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Figure 3.3: The ”wake” of light following a charged particle through a
medium faster than the speed of light in that medium[15].

Previous detectors based on similar ideas as IceCube have all used wa-
ter rather than ice. There are several advantages and disadvantages to
both. Ice has the advantages of not having a background of light from
bioluminecence or radioactive trace elements, and of not having to account
for detectors being nudged by currents.

IceCube is the first ice based neutrino observatory. It is more common
to use water rather than ice and IceCube builds on the experience from
several water based observatories. Water offers better optical conditions
than ice, like shorter scattering length, however for the IceCube experiment
it was decided that the benefits of ice outweighed the downsides: reduced
background due to absence of bioluminescence and not having to account
for sensors being nudged by currents.

Because of the long tracks created by the muons the IceCube experi-
ment has by far best angular resolution for muon-neutrino detection. Un-
fortunately this is also the flavor with the largest atmospheric background.
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Of muon tracks in the experiment muons from showers created by cosmic
rays in the atmosphere outnumber neutrino produced muons by a factor
of 500,000:1. The outer most strings of optical sensors, as well as the Ice-
Top and DeepCore experiments, respectively above and below IceCube are
used to attempt to discard external muon events. However, even among
neutrino events there’s a large background of atmospheric muon neutrinos
that makes neutrino astronomy with this flavor difficult. The best solution
is to look only at events with energy above the cut off energy of atmospheric
neutrinos.

In hadronic shower events the most Cherenkov light is created at the
Cherenkov angle (ca 41 degrees), but due to scattering in the ice much of
this directional information is lost before detection.



3.3. ICECUBE 31

Figure 3.4: Diagram of the IceCube experiment



32CHAPTER 3. OVERVIEW OF NEUTRINO EXPERIMENTS AND ICECUBE



Chapter 4

Method

4.1 Maximum Likelihood Estimation

When given a set of data and a model with free parameters one might
want to find which values of the parameters best fit the observed data.
One method for finding this is called Maximum Likelihood Estimation.
Likelihood can be seen as probability looked at backwards. When talking
about probability we have a fixed model and want to find out how probable
different outcomes are under that model. On the other hand, when talking
about likelihood we have a fixed outcome and want to find how likely that
outcome was under different models. The likelihood of the outcome under
some model is the same as the probability the model would assign to that
specific outcome in advance.

In maximum likelihood estimation we have a field of models defined by a
parameter, or a set of parameters, θ. We assume that the data is produced
by the model described by some true value of θ, which we call θ0. For some
value of θ we define f(x1, x2, x3...xn|θ) as the likelihood of a specific set of n
observations, x1, x2, x3...xn, according to the model described by θ. What
we want to find is P (θ|x1, x2, x3...xn), the probability of θ being θ0 given

33
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our set of observations. According to Bayes’ Rule P and f are related by

P (θ|x1, x2, x3...xn) = f(x1, x2, x3...xn|θ)P (θ)
P (x1, x2, x3...xn) (4.1)

where P (θ) is the prior probability of θ being the correct value of the
parameter(s) and P (x1, x2, x3...xn) is the prior probability of seeing that
specific set of observations. The later is independent of θ so if one merely
wishes to find the most likely set of parameters given the data, rather than
how likely those parameters are, then the denominator can be ignored.
And if one further assumes that P (θ) is uniform (that you have no prior
information pointing towards any value of θ) then

P (θ|x1, x2, x3...xn) ∝ f(x1, x2, x3...xn|θ), (4.2)

and it’s merely necessary to find the value of θ that maximizes f(x1, x2, x3...xn|θ).

4.2 Coordinate systems

We will be making use of two coordinate systems here: equatorial coordi-
nates, based on the sky as seen from Earth, but fixed relative to the stars
rather than rotating with the Earth, and the galactic coordinate system
based on the Suns position in the Galaxy.

The equatorial coordinate system has the center of the Earth as the
origin. The coordinate system was created to have a system where the
stars have fixed coordinates. So from the point of view of any observer on
Earth the system appears to be rotating as the Earth rotates around its
axis. The system is a spherical coordinate system: coordinates are given in
terms of two angles, right ascension and declination. The celestial equator
is found by taking the projection of the Earths equator onto the sky. A
point’s declination gives its angle north or south of this celestial equator (so
the zenith above the north pole has declination 90◦ and the zenith at the
south pole has declination −90◦). The right ascension meanwhile gives a
position along the celestial equator. Zero right ascension is the point where



4.2. COORDINATE SYSTEMS 35

Figure 4.1: Diagram explaining the equatorial coordinate system. The red
line is the Earth’s orbital plane around the Sun[19].

the Sun crosses the celestial equator during the spring equinox and positive
direction is towards the east.

By comparison to the equatorial system the galactic coordinate system
is much simpler. It has its center in the Sun rather than the Earth, although
the distance is too short on a galactic scale to make any difference at all
to us. The system uses two coordinates, galactic longitude and galactic
latitude. Galactic latitude gives a direction in the galactic plane, with
longitude 0 being in the direction of the galactic center. Galactic longitude
gives an angle above or below of the galactic plane. Positive direction is in
the direction of the galactic north, as defined by the Galaxy’s rotation.
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Figure 4.2: Diagram showing the meaning of galactic longitude l and galac-
tic latitude b in the galactic coordinate system[18].

4.3 Model

The core of the model we use is the idea that the extra-stellar neutrino flux
can be broken into three contributions, those from luminous matter in the
Galaxy, those from Dark Matter in the Galaxy and those from all extra-
galactic sources. Because of the isotropy of space at large distances the last
is assumed to be isotropic. The Dark Matter contribution is assumed to
be spherically symmetric around the Galactic center. And the contribution
from luminous matter in our Galaxy (from here on called the Galactic
contribution) is assumed to be concentrated around the Galactic plane.

More specifically the density of neutrino sources in the Galactic con-
tribution is assumed to be normally distributed around the Galactic plane
when moving normal to that plane, with a density in the Galactic plane
determined by the distance from the Galactic center.

ρgal = ρ0(r/R0)0.7e
−3.5 r−R0

R0 e
−( Z

Z0
)2

(4.3)
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where r is the distance from the galactic center in the galactic plane, R0 =
8.5kpc is the distance of the Sun from the galactic center and Z0 is a
characteristic length of the model, assumed to be Z0 = 210pc in our case.
The use of the Suns orbital distance doesn’t mean, obviously, that the Suns
orbital distance has some special significance, it is merely a convenient scale
constant. The basis for this density distribution is the approximate density
of supernova in the Galaxy.

For the Dark Matter contribution we assumed the Navarro-Frenk-White
distribution,

ρDM = ρ0[r(1 + r/RDM )2]−1, (4.4)

where r is the distance from the galactic center and RDM is a characteristic
scale of the model, set at RDM = 15kpc in our case.

However while our models describe the density of sources in space, the
observations are the directions of incoming neutrinos. In order to find the
likelihood of an observation under a model we must project the density
predicted by the model onto the Earth’s sky. This is where we benefit
from the equatorial coordinate system being fixed against the sky. For a
point in the sky the likelihood of an incoming neutrino coming from that
direction will be proportional to the integral of the density of sources along
a line extending from the Earth in that direction. Doing this allows us
to transform the model of the galactic and Dark Matter contribution from
distributions in space to distributions on the sky, the uniform extra-galactic
contribution is of course trivial.

The theoretical expression for the projection of the density ρ onto the
sky is:

D(α, δ) =
∫ ∞

0
ρ(α, δ, s)ds, (4.5)

where s is the distance from the earth. In order to calculate it we need to
approximate it as a finite sum. First we choose a number of integration
points N and then a cutoff point, in our case 85kpc. That’s roughly 4 times
the radius of the galaxy and the integral will cover the entire galaxy. The
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expression then becomes:

D(α, δ) =
N∑
n=0

ρ(α, δ, n
N

85kpc)/N, (4.6)

which is what the program actually evaluates.
In addition to this spatial information we also want to make use of

the energy information given by IceCube. Firstly we must define the en-
ergy spectrum, dN

dE (E), that we expect to see from each of our sources.
For the Galactic and extra galactic contributions we use simple power
laws, dN

dE gal(E) ∝ E−2.5, based on the spectrum of γ-ray observations,
and dN

dE extgal(E) ∝ E−2.2, based on what’s typical for cosmic ray accel-
eration. For the Dark Matter decay spectrum I used first a power law with
, dN
dE DM(E) ∝ E−1.8. Later I changed to a more detailed model for the

Dark Matter based on the modeling of the decay of super heavy particles
into leptons in [22].

Figure 4.3: Graph showing the model used for the energy spectrum of
decaying Dark Matter.[22]
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While this describes our model for the neutrino flux from remote sources
we also have to keep in mind that the methods used at IceCube to eliminate
background events is not infallible. So we want our model to account for
the possibility that some fraction of the events are atmospheric neutrinos,
created by cosmic ray particles hitting the atmosphere. These we expect
to be isotropically created and we have to use the energy dependence to
seperate this from the extra-galactic contribution.

4.4 Implementation

Given the three distributions (D) on the sky, DDM (x), Dgal(x) andDextgal(x),
we have a model of three parameters θ = [θ1, θ2, θ3], limited by

∑
i θi = 1,

where the likelihood of an incoming neutrino coming from a given direction
x = (RA = α, dec = δ) is given by

fsp(x|θ) = θ1 ·DDM(x) + θ2 ·Dgal(x) + θ3 ·Dextgal(x) (4.7)

If we also include energy then the likelihood of an incoming neutrino from
a specific direction with a specific energy, x = (α, δ, E) is given by

fmodel(x|θ) = θ1 ·DDM(x)NDM(E) + θ2 ·Dgal(x)Ngal(E)
+ θ3 ·Dextgal(x)Nextgal(E) (4.8)

Adding finally the possibility that some arbitrary fraction of the neu-
trino observations being due to a uniform atmospheric background with a
spectrum Nbg(E):

f(x|θ) =
∫ 1

0
dλ(λ ·Nbg(E) + (1− λ)f(x|θ)) (4.9)

In our case each observation is independent and assumed to be taken
from the same distribution. That means that f(x1, x2, x3...xn|θ) =

∏n
i=1 f(xi|θ).
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Figure 4.4: The sensitivity of IceCube to electron neutrinos at 1, 10 and
100TeV (red, blue and green respectively). On the left is the original data
from [21]. On the right is my function evaluated at the same energy and
the resulting polynomials plotted against cos(δ).

Each observation consists of five facts, right angle and declination giving
the direction of the neutrino, an error estimate for the former, an energy
measurement and the flavor of neutrino (track or shower).

The sensitivity of IceCube, it’s probability of detecting a given neutrino,
is dependent on the declination (δ), energy (E), and flavor (να) of the
neutrino, S(δ, E, να). In order to create this function I looked at the plot
of IceCube sensitivity in [21], which shows a plot of the IceCube sensitivity
against declination at 1TeV, 10TeV, and 100TeV for both electron and muon
neutrinos, on a logarithmic scale. I choose a number of points from each
graph and used interpolation to create a 10th degree polynomial in the
cosine of the declination that matched each graph quite well. To find a
sensitivity at an arbitrary energy I interpolated the three values for the
coefficients to create a second order polynomial in the log energy for each
coefficient. The coefficients thus determined were then used to find the
sensitivity as a function of declination. This is the only place where flavor
is used in our calculations.

The experimental uncertainty in the neutrino measurements is another
factor to consider. If each observation was completely certain then the like-
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Figure 4.5: The sensitivity of IceCube to muon neutrinos at 1, 10 and
100TeV (red, blue and green respectively). On the left is the original data
from [21]. On the right is my function evaluated at the same energy and
the resulting polynomials plotted against cos(δ).

e2
i e1

i e0
i

c10 1.4982 -1.2834 -16.848
c9 -0.65172 2.1804 -0.1432
c8 -2.1716 0.97143 48.638
c7 1.1493 -5.2452 0.7870
c6 -0.15176 1.6071 -52.264
c5 -0.48987 4.464 -1.0083
c4 1.3081 -1.6791 26.01
c3 0.064428 -1.6051 0.42918
c2 -0.64372 0.3115 -6.4204
c1 -0.025337 0.13563 -0.075782
c0 -0.082567 -0.4379 -2.2301

Table 4.1: Approximate icecube sensitivity to electron neutrinos S(E, δ):
ci(E) = e2

i log2
10(E) + e1

i log10(E) + e0
i

S(E, δ) = Σ10
i=0c

i(E) cosi(δ)
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log2
10(E) log10(E) 1

cos10(δ) 4.6898 -8.6509 -6.1085
cos9(δ) 5.2739 -2.9573 -0.17973
cos8(δ) -11.15 23.276 17.835
cos7(δ) -14.665 8.5211 0.33336
cos6(δ) 7.1089 -21.459 -19.653
cos5(δ) 14.047 -8.1772 -0.083802
cos4(δ) 0.74176 7.6195 10.313
cos3(δ) -4.8159 2.554 -0.11426
cos2(δ) -1.7929 -1.0146 -2.934
cos1(δ) -0.057557 0.068357 0.014327

1 -0.16983 -0.063039 -1.1108

Table 4.2: Approximate icecube sensitivity to muon neutrinos

lihood of an events would simply be the likelihood of an event at that precise
point given the distribution. When each observation is uncertain we have
to sum the likelihood of a particle coming from every direction weighted by
the likelihood that a neutrino observed in the observed direction was really
coming from this other direction, based on the error estimate. That is to
say, for x = [α, δ, σ,E, ν] and θ = [θDM , θgal, θextgal]:

f(x|θ) =
∫ ∫

dα′dδ′S(δ′, E, να) · exp
(
− [Ω(α, δ, α′, δ′)]2

2σ2

)
·D(α′, δ′)(4.10)

where Ω(α, δ, α′, δ′) is the angle between (α, δ) and (α′, δ′),

Ω(α, δ, α′, δ′) = cos−1(sin(α) sin(α′) + cos(α) cos(α) cos(δ − δ′)). (4.11)
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4.5 Programming

4.5.1 Overview

The program I wrote to implement this model was written in C++. A
great deal of attention was placed on making it easy to reuse the program
with different resolution, integration step length, models, etc with as little
work required as possible. This was done both so as to be able to easily
deal with changes to the project during development and in the hope that
the program could be useful beyond the scope of this thesis. Most of the
computations carried out in the program are done by various functions
grouped in different files by topic; one file containing all functions relating
to the coordinate systems used and transformations between them, and
so on. This is both to make the program more readable, and easier to
maintain, modify and use. The one thing that is ”hard coded” is the number
of different contribution models considered. Changing that would take
significant rewriting of how the program works. Other changes, like what
the models for the different sources are like, require only that you change
some easily accessible functions or constants. The program consists roughly
of three parts, one part that reads in information and calculates a number of
things that will be used later, a main loop that does the actual calculation
and a final part that saves the result in a MATLAB readable format. The
main loop takes the vast majority of the computational resources. The
preliminary section contains the most code (as there are so many tasks
that are done here), but is executed fairly quickly. The final section is light
in both code and computation time.

4.5.2 Preliminary calculations

Because the problem being solved is much more demanding in terms of
computing power than memory I have tried to move as many calculations
as possible out of the main program loop. Computing and saving certain
results ahead of the main loop prevents unnecessary repetition of calcula-
tions. In a different computation where memory is more of a bottleneck it
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might be better to avoid keeping large amounts of data stored in memory,
but that has definitely not been the case here.

At the very start of the program a couple of parameters are set, one that
defines the resolution used to divide the sky into a grid and one that defines
the number of steps in parameter space (the granularity when varying the
contributions from the different sources). Also set here is the name of the
file that the events are read from.

After these parameters are set the program begins reading in the event
data. The functions used to read the event data assume that the data
follows a certain format; a number of lines, each of which describes a single
observation, followed by at least one blank line and then an explanation
of the data format. The first file reading function is intended to find the
number of events described by the event file. It is given the file name set
as a variable previously and attempts to open any file with that name in
the same file location as the program is run from. It creates a counter and
attempts to read the file line by line. If the line read is not empty the
counter is increased by one and the function moves on to the next line.
If the line is empty the function stops and returns the final value of the
counter to the main program where it’s saved in a variable. This variable
will be used to allocate the correct amount of memory when the rest of the
event data is read in and to loop over all the events in the main computation
loop.

Each line in the event file, that is each set of observation data, is assumed
to follow a format where energy (in TeV), declination (in degrees), right
ascension (in degrees), median angular resolution (degrees), and whether
the event was a track or shower event, are given in that order with spaces
between. The first four are given as numbers while the last is given as a
letter, t for track or s for shower. The next function called in the program
reads and saves the numerical (that is all but the last) data. It is called
with the file name and the number of events found before.

The first thing it does is to create a vector of vectors of floating point
numbers. This vector of vectors contains four vectors, one for each of
the numerical attributes of an observation, that each has a length equal
to the number of events. Note that a vector of vectors is how a matrix
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is represented in C++ and I’ll use the term matrix interchangably with
this. The program then reads the file line by line for a number of lines
equal to the number of events. At the nth line it divides the line into
substrings based on the spaces, with the string from the start to the first
space assumed to correspond to the energy, the substring from the first non-
space character after the first space to the first space after that assumed
to be the declination and so on. It then attempts to parse these substrings
as numbers and sets the nth value of the corresponding vector to that
number. Once it has read the number of lines instructed it returns the
vector of vectors to the main program, where it is saved for later use.

A second similar function creates a vector of characters, then reads
each line, takes the last character on the line and saves it in the vector. In
retrospect it would probably have been a better idea to assign a numerical
value to ”track” and ”shower”. This would have make it possible to have all
the information about the events in a single matrix. Also note that while
this system for reading the data can handle an arbitrary number of spaces
between the data it will fail if there are spaces before or after the data in a
line. The reason for having vectors for each attribute (energy, declination,
etc.) rather than vectors for each event is twofold: When the same quantity
is calculated for all the events using this set up means less jumping around
and therefore faster execution, and secondly because if some function is only
interested in one or two attributes of the events then it’s trivial to just give
it those specific vectors as input. This simplifies some of the programming
significantly.

The sensitivity (the chance of an incoming neutrino being successfully
detected), is as previously mentioned determined by the energy, the dec-
lination, and the flavor of the neutrino. Since the number of events is so
low there’s no reason at all to consider the possibility of repeat energies,
so the sensitivity has to be computed for every declination value for every
event. So the next step in the program calls a function, giving it the vec-
tor of energies, the vector of flavors and the number of declination steps,
which creates a matrix with dimensions of number of events by number of
declination steps. Then it looks at each event, and sends its energy to one
of two functions depending on its flavor. These functions take the log10
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of the energy and create a vector of coefficients, as described in table 4.1
and table 4.2. The outer function then takes the vector of coefficients and
loops over the declination values, taking the cosine, evaluating the resulting
polynomial and saving it in the appropriate place in the matrix. Once this
has been done for every event the matrix is returned to the main program,
which saves it for later use.

After this the program calculates the relative likelihoods of neutrinos
from each of the sources having each of the energies observed. This is saved
in a matrix of size number of events by number of sources. Atmospheric
background is considered as a source here for four total.

Next the program creates a matrix for each of the sources (Dark Mat-
ter, Galactic, extra-galactic) and populates it with the projection of the
distribution of sources onto the sky. The extra-galactic term is merely uni-
form, so that function just creates a normalized uniform matrix. The other
two functions take the indices of a matrix element, find the coordinates in
equatorial coordinates that this corresponds to and then translates those
coordinates into galactic coordinates. Each then starts incrementing a vari-
able representing the distance from Earth, with the size of the steps set at
the start of the program, for each value of the distance from Earth it eval-
uates the source density as a function of direction in the sky and distance.
This is then multiplied by the step length in distance and summed up to
some maximum distance much greater than the size of the Galaxy. Once
this has been done for every entry in the matrix the functions returns the
matrices to the main program.

4.5.3 Main loop

After the preliminary calculations the program enters the main loop. First
a matrix is created to store the result, with the size determined by the
number of steps in the parameter space (p), as set at the beginning of the
program. While there are three parameters (the contribution of exragalac-
tic background, the contribution from galactic luminous sources and the
contribution from Dark Matter) the requirement of normalization means
there are only two independent parameters and a two dimensional matrix
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is large enough to accomodate the result. I chose to use the Dark Matter
parameter (i) and galactic parameter (j) as the variable parameters and
the extra-galactic parameter as the derived parameter, but this is arbitrary.
The main program loop is a nested loop over the Dark Matter and galactic
parameters. The first should go from zero to one and the second from zero
to one minus the first, but in order to get integer values I multiplied them
by p and then divide by the same for the actual calculations. That means
i goes from zero to p. In the inner loop, for each step in the outer loop, j
loops over the integers from 0 to the difference between p and i.

For each set of possible parameters the program loops over all the events.
For each event the program calls a function which is given all the matrices
describing the source distributions, the parameters, the parameter resolu-
tion and the relative likelihood of each of the sources sending a neutrino
at the energy observed for that event(nh(E), where h = gal, extgal, dm).
This function creates a matrix where element m,n is given by:

Di,j(m,n) = i

p
nDM (E) DDM (m,n) + j

p
ngal(E)Dgal(m,n)

+ p− i− j
p

nextgal(E)Dextgal(m,n) (4.12)

Then, once the final matrix describing the sources has been made a
further loop is run, looping over the background parameter b. This runs
from 0 to p. At each step a final matrix Dfinal(m,n) is computed, where

Dfinal(m,n) = (p− b)/p ·Di,j(m,n) + b/p · nbg · 1/l2 · S(n), (4.13)

and l is the size of the matrix and S(n) is the sensitivity. For each step
likelihood of the event is calculated. For every position in the matrix a
function is called which translates the indices into coordinates. Then a
second function is called which computes the angular distance between
those coordinates and those recorded for the event. We’ll call this distance
O. The likelihood of the event given this specific level of background is
then

l∑
m=0

l∑
n=0

Dfinal(m,n) 1
2πσ2l2

exp(−O
2

σ2 ) (4.14)
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where σ is the standard error reported by IceCube. This is summed for
all the steps in the loop to give the likelihood for any level of background.
Once that is done the logarithm is taken and the result is added to (i,j)
in the result matrix. The reason is that the joint likelihood of the events
is the product of the individual event likelihoods. Which is equivalent to
summing their logarithms. Then the program moves on to the next event
in the loop and so on.

4.5.4 Output

Once the main loop of the program has created the matrix of likelihoods a
final function is called to print that result. It creates a MATLAB script file
that when run will recreate the same matrix in MATLAB. First it creates a
file called ”result.m”. Then it writes to that file ”X = [”. After that it starts
looping through the matrix. For each row it loops over all the columns and
for each column writes into the file the value in that position in the matrix
followed by a space. After all the columns have been looped over it writes
a semi colon before moving on to the next column. Once the last row is
finished it writes ”];”, closes the file and the program ends.
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Results

During the project a number of different versions of the calculation were
done as more details were added to the model. I will give a very brief
overview of the earlier results before looking in more depth at the final
result.

The first version of the computation I did looked only at the spacial
distribution of the neutrinos. This computation found that a fully extra-
galactic (that is to say uniform) distribution was favored. Adding a Dark
Matter component would see the likelihood slowly decline while for any
amount of Galactic contribution the likelihood fell rapidly. Because the
likelihood of a set of events is the product of the individual likelihoods I
decided that the geometric mean was the best way to define the average
event. That means multiplying the likelihoods of the events and taking
the n-th root, where n is the number of events. In the first calculation
the likelihood of the average event under the assumption of a pure Dark
Matter contribution was 76% of the likelihood of the average event under
the assumption of a purely extra-galactic contribution.

The results of my computation strongly favored both the extra galac-
tic distribution and the Dark Matter ansatz distribution over the galactic
distribution. Overall the isotropic, extra galactic, distribution was favored,

49
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Figure 5.1: Likelihood as a function of distribution parameters, considering
only the spatial distribution.

but the difference with the Dark Matter distribution was much smaller.
I considered the geometric mean of the likelihood of the events the most
useful way to define the average event. So I computed and compared this
under the different parameter scenarios. I found that the average event was
about 76% as likely under the assumption of a purely Dark Matter distri-
bution as it was under a purely isotropic one. For 32 events, as were in our
sample, this means the overall event series was about 60 times likelier under
the assumption of isotropy than under the pure Dark Matter distribution.

Adding an energy dependence in the likelihoods happened in two stages.
First a power law was assumed for each of the three source contributions.
Very little effect. There was no qualitative change in the shape of the
distribution, but the relative change near the Galactic corner was significant
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Figure 5.2: Likelihood as a function of distribution parameters, pro-
jected onto each axis in turn, considering only the spatial distribu-
tion. If L(θextgal, θgal, θDM) is the likelihood of the average event
in the set given those parameters, then the green line is hextgal =∫ 1−θextgal

0 dθgalL(θextgal, θgal, 1 − θextgal − θgal) plotted against θextgal, while
the blue line is similar for the Dark Matter contribution and the red line
for the galactic contribution.

(between a factor 5 and 6). However the value in this area was very low in
both cases, so a large relative change isn’t necessarily important. On the
extra-galactic/dark matter axis the largest increase was in the dark matter
corner, where the average likelihood was increased by 13%. The purely
extra-galactic corner was unchanged. Figure 5.5 shows the changes from
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Figure 5.3: Likelihood as a function of distribution parameters, considering
the energy dependence via a power law for each source.

adding the energy dependence.
The next step was to replace the power law for the dark energy source

with a more detailed model. This didn’t cause huge changes either, but
it did move the maximum of the likelihood slightly away from a purely
extra-galactic one. The movement happened along the extra-galactic-Dark
Matter axis and any Galactic contribution at all still decreased the like-
lihood. The maximum of the likelihood was now at 92.5% extra-galactic,
7.5% Dark Matter. The likelihood here, per average event was 0.9% higher
than for the case of purely extra-galactic.That would mean that the entire
set of 36 events would have about 39% higher likelihood than under the
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Figure 5.4: Likelihood as a function of distribution parameters, con-
sidering the energy dependence as a simple power law for all the
sources. If L(θextgal, θgal, θDM) is the likelihood of the average event
in the set given those parameters, then the green line is hextgal =∫ 1−θextgal

0 dθgalL(θextgal, θgal, 1 − θextgal − θgal) plotted against θextgal, while
the blue line is similar for the Dark Matter contribution and the red line
for the galactic contribution.

purely extra-galactic theory.
The two ways of presenting the data that I have chosen (3 surface

plot and 2d graph showing projection onto each axis) each has different
strenghts. The 2d graph is easier to read, but the averaging over states
would erase some of the data. This is especially a problem for the graphs
of the Dark Matter and extra galactic contributions on the low contribu-
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Figure 5.5: The ratio of the likelihoods including a power law energy de-
pendence and the likelihoods with no energy dependence.

tion side. Here high Dark Matter/extra galactic states (high likelihood) are
averaged with high galactic contribution states (low likelihood). In order
to provide a clearer picture figure 5.11 plots the edges of the plot. The
extra-galactic/Dark Matter axis (blue) is the most interesting.
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Figure 5.6: Likelihood as a function of distribution parameters, us-
ing the more complicated model for the Dark Matter energy depen-
dence. If L(θextgal, θgal, θDM) is the likelihood of the average event
in the set given those parameters, then the green line is hextgal =∫ 1−θextgal

0 dθgalL(θextgal, θgal, 1 − θextgal − θgal) plotted against θextgal, while
the blue line is similar for the Dark Matter contribution and the red line
for the galactic contribution.
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Figure 5.7: The likelihoods for one θ = 0 as a function of the remaining
parameters. This result is from looking only at the spatial distribution.
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Figure 5.8: The likelihoods for one θ = 0 as a function of the remaining
parameters. This result is for the power law energy model.



58 CHAPTER 5. RESULTS

Figure 5.9: The likelihoods for one θ = 0 as a function of the remaining
parameters. This result is for the more detailed energy model.
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5.1 Comparison

After finding that the data favored the isotropic contribution I tried to
calculate how much evidence an observation would on average give for one
distribution over the other. Here I looked a simpler model of just the
extra-galactic and Dark Matter contributions. I calculated how likely a set
of observations distributed according to the purely extra-galactic would be
according to distributions with different values of θextgal and θDM . Here
I used a simplified model though which disregards the possibility of back-
ground and which disregards the sensitivity information of IceCube. Essen-
tially what I found was how easy the extra-galactic and the Dark Matter
distribution are to tell apart. The result showed that the observed events
fit better with distributions with a large θDM than events distributed ac-
cording to the purely extra-galactic distribution would for both versions of
the model. However it showed that for the model with the most detailed
energy dependence the the model fit better than the purely-extra galactic
one even for small values of θDM and much better for large ones.
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Figure 5.10: The likelihoods, for the model sans energy dependence, of the
observed events l(θDM ) and e(θDM ) = l(0) · 〈 l(θDM )

l(0) 〉|extgal
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Figure 5.11: The likelihoods, for the model with the most detailed en-
ergy dependence, of the observed events l(θDM ) and e(θDM ) = l(0) ·
〈 l(θDM )

l(0) 〉|extgal
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5.2 Other analysis

While I was working on this thesis a paper was published [12] which also
analyses the IceCube data with respect to the possibility that some of the
neutrino flux could be generated by the decay of long lived Dark Matter.
Their focus was different however, looking primarily at the energy distribu-
tion rather than the spatial distribution of the neutrinos. Non Dark Matter
neutrinos were assumed to follow a single power law,

dΦν

dEν
= C0

108 ·
1
E2
ν

·
(

Eν
100TeV

)2−s
(5.1)

where C0 and s are parameters. The flux of neutrinos from the decay
of long lived particles meanwhile was assumed to peak at half the mass of
the particle.

The article looked at the three possibilities that some, all, or none of the
neutrino observations were caused by the decay of long lived particles for
several sets of possible parameters and decay paths. They were unable to
exclude any of the three scenarios. They found that if none of the neutrinos
were from the decay of long lived particles they would be able to reject the
hypothesis that all the neutrinos were caused by long lived particle decays
with twice as many observations than are currently available. Excluding a
mixed origin hypothesis would be much harder, not only because such an
hypothesis would predict data more similar to an extreme scenario than the
opposite extreme scenario, but also because a mixed origin hypothesis has
more unconstrained variables. For some sets of parameters they concluded
that it would not realistically possible to seperate a mixed and a pure
scenario case.

In February 2015 the IceCube collaboration released an analysis of the
flavor composition of events [20]. The flavor composition of neutrinos emit-
ted by astrophysical sources can range from (fe, fµ, fτ ) = (1, 0, 0) to (0, 1
,0). However the most likely case is considered to be (1, 2 ,0). As a result
of neutrino oscillations such neutrinos would arrive at Earth with a com-
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H:I H:IIa H:IIb H:IIIb H:IVb H:V
H:I - 40 9 7 8 4

H:IIa 50 - 10 6 12 4
H:IIb 50 35 - 80 20 50
H:IIIb 2.1 3 10 - 20 50
H:IVb 2.1 4.1 9.8 40 - 50
H:V 1.1 2.1 6 9 7 -

Table 5.1: How many times the current amount of data it would on average
take to exclude an hypothesis given some other hypothesis being true. H:I
is a purely power law signal, H:V is a purely long lived particle decay signal,
H:II is a mixed of power law and decay into neutrino-lepton, H:III is power
law mixed with decay into two Higgs particles, and H:IV is a power law
mixed with decay into four Higgs particles. In all cases a refers to a decaying
particle with mass 2.2 PeV and b refers to a mass of 4PeV[12].

position very near (1, 1, 1), and more extreme source compositions would
still be in that neighborhood, (1,0,0) at the source would result in (1.6,
0.6, 0.8) at Earth and (0,1,0) at the source would result in (0.6, 1.3, 1.1)
at Earth. This means a flavor ratio radically different from (1,1,1) would
imply new physics relating to neutrinos, such as sterile neutrinos. Their
result was that the favor composition observed at IceCube was consistent
with the (1,1,1) ratio expected from astrophysical sources.
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Chapter 6

Conclusion

In the end it’s clear that the result has been that the IceCube data doesn’t
favor our Dark Matter model. Which, at least, is consistent with other
analysis of the data. It’s important to keep in mind, however, how small
the data set is. By the time I’m writing this conclusion the largest data set
I’ve used was only 36 events long, and some of those were likely background.
IceCube will keep producing data and the results would definitely become
clearer with more data.

I’m aware that adding refinements to the model underway in the way
that I have done is, to an extent, bad form, and that both overfitting and
motivated stopping are things to be concerned about. However all the
numeric parameters have the first value I’ve used for them.

I still think the idea that Dark Matter may be responsible for some of
the excess in high energy neutrinos and it would be interesting if someone
were to do similar analysis for other Dark Matter models. One possible
follow up would be to keep the Dark Matter distribution, but to look at
annihilating rather than decaying Dark Matter. In that case the rate at
which neutrinos are emitted would be proportional to the square of the
Dark Matter density, rather than being proportional to the density.

One thing I always wanted to do was to parallelize the program. Exe-
cution time was always a limiting factor and the problem is extremely well
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suited for parallel programing: Since the joint log likelihood for a parameter
set is the sum of the individual log likelihoods the set of events can simply
be divided up, the program run separately for each event sublist and the
resulting result matrices added together element-wise at the end. Unfortu-
nately parallel programming in C++ is somewhat complicated though and
I had no prior experience with it. It was something I was thinking about
doing for most of the project, but I never found the time to learn it.
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Appendix A

Code overview

The appendices include the program I used. In order to increase readability
I made extensive use of sub-functions that I divided between several files
based on their topic. The main program is found in Appendix B, and the
various function files are found in the appendices after that. celestial.hpp,
found in Appendix C, contains all the functions relating to the celestial
coordinate systems used, the transformations between them, and so on.
model.hpp, found in Appendix D, contains the functions related to cre-
ating the probability distribution for the model. Functions for calculating
density of sources at some point in space, for projecting those spatial distri-
butions unto the sky and so on. energy.hpp, found in Appendix E, contains
the functions relating to the energy dependence. IceCube.hpp, found in
Appendix F, contains the functions relating to IceCube’s sensitivity at dif-
ferent energies and angles. Finally inputoutput.hpp, found in Appendix G,
contains the functions related to reading information from files or writing
the result to file.
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main.cpp

// Standard C++ l i b r a r i e s that in c lude f u n c t i o n s l i k e read ing
from f i l e , wr i t i ng to f i l e , s ine , cos ine , exponent ia l , e t c .

#inc lude <iostream>
#inc lude <f stream>
#inc lude <s t d l i b . h>
#inc lude <math . h>
#inc lude <cmath>

us ing namespace std ;

s t a t i c f l o a t p i = 3 .14159265359 ;

// Approximate d i s t a n c e that the sun o r b i t s the g a l a c t i c c en t e r .
s t a t i c f l o a t sund i s t = 8 . 7 ; // [ kpc ]

// C h a r a c t e r i s t i c l ength o f the extra−g a l a c t i c d i s t r i b u t i o n .
s t a t i c f l o a t r0 = 15 ; // [ kpc ]

// C h a r a c t e r i s t i c l ength o f the g a l a c t i c d i s t r i b u t i o n .
s t a t i c f l o a t z0 = 0 . 2 1 ; // [ kpc ]

//number o f i n t e g r a t i o n po in t s used when i n t e g r a t i n g some
dens i ty o f s ou r c e s a long our l i n e o f s i g h t .

s t a t i c i n t m = 1000 ;
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// Header f i l e conta in ing f u n c t i o n s r e l a t i n g to read ing from and
wr i t i ng to f i l e s .

#inc lude ” inputoutput . hpp”

// Header f i l e conta in ing f u n c t i o n s r e l a t i n g to c e l e s t i a l
coo rd ina te systems , t rans f o rmat i ons between them and so
f o r t h .

#inc lude ” c e l e s t i a l . hpp”

// Header f i l e conta in ing f u n c t i o n s r e l a t i n g to our model o f the
neutr ino sources , other that those that have to do with
energy dependence .

#inc lude ”model . hpp”

// Header f i l e conta in ing f u n c t i o n s r e l a t i n g to our model ’ s
energy dependence .

#inc lude ” energy . hpp”

// Header f i l e conta in ing f u n c t i o n s that d i r e c t l y r e l a t e s to the
IceCube experiment , l i k e s e n s i t i v i t y .

#inc lude ” IceCube . hpp”

f l o a t ∗∗ unbinned ( int , int , f l o a t ∗∗ , int , f l o a t ∗∗ , f l o a t ∗∗ , f l o a t
∗∗ , f l o a t ∗∗ , f l o a t ∗∗) ;

f l o a t compute l ike lyhood ( f l o a t ∗∗ , f l o a t , f l o a t , f l o a t , i n t ) ;

i n t main ( ) {
//The name o f the f i l e conta in ing the events .
char ∗ f i l e = ” ICevents ” ;

// g r a n u l a r i t y o f the parameter space
i n t paraRes = 40 ;

//Number o f i n t e g r a t i o n points , in a l l th ree dimensions
i n t nInt = 100 ;
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// Finds the number o f l i n e s ( and thus number o f events ) in
the event f i l e

i n t l en = l i n e c o u n t e r ( f i l e ) ;

// Creates a l en t imes 4 matrix s t o r i n g RA, d e c l i n a t i o n ,
energy and exper imenta l e r r o r in that order

f l o a t ∗∗ events = event s r eade r ( f i l e , l en ) ;

//” s ” ( shower ) i f an e l e c t r o n neutr ino or ” t ” , track , i f a
muon neutr ino

char ∗ f l a v o r s = f l a v o r r e a d e r ( f i l e , l en ) ;

// Creates a vec to r o f v e c t o r s conta in ing one vec to r f o r each
event that ho lds IceCube ’ s s e n s i t i v i t y , at d i f f e r e n t

d e c l i n a t i o n s , f o r that event ’ s energy
f l o a t ∗∗ s e n s i t i v i t y = s e n s i t i v i t y c a l c ( len , events [ 2 ] ,

f l a v o r s , nInt ) ;

// Creates three vector s , one f o r each o f the p o t e n t i a l
s ou r c e s cons ide r ed . Each o f the v e c t o r s conta in a number

o f e lements equal to the number o f events , the nth
element d e s c r i b i n g the r e l a t i v e l i k e l i h o o d o f a neutr ino

from that source having the energy o f the nth event in
the s e t .

f l o a t ∗∗ e n e r g y l i k e l i h o o d s = e n e r g y l i k e l i h o o d s c a l c ( len ,
events [ 2 ] ) ;

// Creates a nInt ∗nInt matrix g i v i n g the neutr ino f l u x
observed at the earth from luminous sour c e s in our
galaxy .

f l o a t ∗∗ ga l = g a l c a l c ( nInt ) ;

// Creates a uniform nInt ∗nInt matrix , r e p r e s e n t i n g extra−
g a l a c t i c sou r c e s .

f l o a t ∗∗ e x t g a l = e x t g a l c a l c ( nInt ) ;

// Creates a nInt ∗nInt matrix g i v i n g the neutr ino f l u x
observed at the earth from dark matter sour c e s in the
galaxy .

f l o a t ∗∗ ansatz = dmansatzcalc ( nInt ) ;
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//Main func t i on in the program that loops over the d i f f e r e n t
parameter s e t s . I t r e tu rn s a matrix that ho lds the

l i k e l i h o o d s o f the event s e t at d i f f e r e n t parameter s e t s
at each po int in the matrix

f l o a t ∗∗ probs = unbinned ( len , nInt , events , paraRes ,
s e n s i t i v i t y , e n e r g y l i k e l i h o o d s , gal , extga l , ansatz ) ;

// Writes the matrix c rea ted above to a f i l e in a matlab
format .

m a t l a b f i l e w r i t e r ( probs , paraRes ) ;

r e turn 1 ;
}

f l o a t ∗∗ unbinned ( i n t len , i n t nInt , f l o a t ∗∗ events , i n t paraRes ,
f l o a t ∗∗ s e n s i t i v i t y , f l o a t ∗∗ e n e r g y l i k e l i h o o d s , f l o a t ∗∗ gal

, f l o a t ∗∗ extga l , f l o a t ∗∗ ansatz ) {

// c r e a t e s a matrix to s t o r e the r e s u l t s . Each p o s i t i o n in
the matrix cor responds to one parameter s e t

f l o a t ∗∗ p r o b a b i l i t i e s = new f l o a t ∗ [ paraRes +1] ;
f o r ( i n t i = 0 ; i<paraRes +1; i++){

p r o b a b i l i t i e s [ i ] = new f l o a t [ paraRes +1] ;
f o r ( i n t j = 0 ; j<paraRes +1; j++){

p r o b a b i l i t i e s [ i ] [ j ] = 0 ;
}

}

// loops over a l l combinat ions o f the three parameters . i , j
and 200 − i − j should cover every combination o f
parameters that sum to 200 .

f o r ( i n t i = 0 ; i<paraRes +1; i++){
f o r ( i n t j = paraRes−i ; j >=0; j−−){

// p r i n t to command l i n e i n s t r u c t i o n that a l l ows you
to t rack the program ’ s p ro g r e s s .

cout << ” i = ” << i << ” j = ” << j << endl ;

p r o b a b i l i t i e s [ i ] [ j ] = 0 ;
f l o a t l o g l i k e l i h o o d = 0 ;
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// loops over a l l the events , and c a l c u l a t e s the log
l i k e l i h o o d o f that event g iven the parameter s e t

g iven by the outer loop .
f o r ( i n t k = 0 ; k<l en ; k++){

// Ca l cu l a t e s the f i n a l d i s t r i b u t i o n o f
a s t r o p h y s i c a l neu t r ino s p r ed i c t ed by the
model f o r a s p e c i f i c event . Taking in to
account both the parameters , the model f o r
the sources , the energy dependence and the
how the s e n s i t i v i t y v a r i e s by ang le at that
energy .

// f l o a t ∗∗ d i s t r i b u t i o n = d i s t r i b u t i o n c a l c ( i , j ,
extga l , gal , ansatz , nInt , paraRes ,
e n e r g y l i k e l i h o o d s [ 0 ] [ k ] , e n e r g y l i k e l i h o o d s
[ 1 ] [ k ] , e n e r g y l i k e l i h o o d s [ 2 ] [ k ] , s e n s i t i v i t y [
k ] ) ;

// Replac ing the above func t i on with the one
below w i l l r e s u l t in l ook ing only at the
s p a t i a l d i s t r i b u t i o n and i g n o r i n g the energy

in fo rmat ion
f l o a t ∗∗ d i s t r i b u t i o n = d i s t r i b u t i o n c a l c ( i , j ,

extga l , gal , ansatz , nInt , paraRes , 1 ,1 ,1 ,
s e n s i t i v i t y [ k ] ) ;

f l o a t l i k e l i h o o d = 0 ;
f l o a t normconst = 0 ;

//Background d i s t r i b u t i o n i s r e c a l c u l a t e d f o r
each event because o f the energy dependence
in the s e n s i t i v i t y .

f l o a t ∗∗ background = new f l o a t ∗ [ nInt ] ;
f o r ( i n t x = 0 ; x<nInt ; x++){

background [ x ] = new f l o a t [ nInt ] ;
f o r ( i n t y = 0 ; y<nInt ; y++){

background [ x ] [ y ] = s i n ( (1 − y /( ( f l o a t )
nInt ) ) ∗ pi ) /( nInt ∗nInt ) ∗ s e n s i t i v i t y [ k
] [ y ] ;

normconst += s i n ( (1 − y /( ( f l o a t ) nInt ) ) ∗
pi ) ∗background [ x ] [ y ] ;
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}
}
f o r ( i n t x = 0 ; x<nInt ; x++){

f o r ( i n t y = 0 ; y<nInt ; y++){
background [ x ] [ y ] = background [ x ] [ y ]∗

normconst ;
}

}

// loops over d i f f e r e n t amounts o f background .
f o r ( i n t l = 0 ; l<paraRes ; l++){

f l o a t ∗∗ f i n a l d i s t = new f l o a t ∗ [ nInt ] ;
f o r ( i n t x = 0 ; x<nInt ; x++){

f i n a l d i s t [ x ] = new f l o a t [ nInt ] ;
f o r ( i n t y = 0 ; y<nInt ; y++){

//For a c e r t a i n amount o f background
the f i n a l l i k e l i h o o d o f s e e i n g

a neutr ino from a given
d i r e c t i o n i s a l i n e a r
combination o f the l i k e l i h o o d o f

s e e i n g an a s t r o p h y s i c a l
neutr ino from that d i r e c t i o n and

o f s e e i n g a background neutr ino
from that d i r e c t i o n .

f i n a l d i s t [ x ] [ y ] = l / ( ( f l o a t ) paraRes )
∗ d i s t r i b u t i o n [ x ] [ y ] + ( paraRes −

l ) / ( ( f l o a t ) paraRes ) ∗background [
x ] [ y ] ;

// S ince we ’ re working with f l o a t i n g
po int numbers we can get
rounding e r r o r s that put a very
smal l number on the wrong s i d e
o f 0 . S ince we ’ l l be doing
logar i thms l a t e r i t ’ s bes t to
nip the problem in the bud .

i f ( f i n a l d i s t [ x ] [ y ] < −1e−5){
cout << ”ERROR: negat ive

p r o b a b i l i t y d i s t r i b u t i o n . ”
<< endl ;

}
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i f ( f i n a l d i s t [ x ] [ y ] < 0) {
f i n a l d i s t [ x ] [ y ] = 0 ;

}
}

}

// compute l ike lyhood i s a func t i on that takes
the p r o b a b i l i t y d i s t r i b u t i o n o f a model

, the c o o r d i n a t e s o f a neutr ino
obse rvat i on and i t ’ s standard e r r o r .
Based on t h i s i t i n t e g r a t e s over a l l
d i r e c t i o n s the p r o b a b i l i t y o f the
observed neutr ino coming from that
d i r e c t i o n t imes the l i k e l i h o o d the model

d e s c r i b e s f o r a neutr ino being observed
from that d i r e c t i o n .∗/

l i k e l i h o o d += compute l ike lyhood ( f i n a l d i s t ,
events [ 0 ] [ k ] , events [ 1 ] [ k ] , events [ 3 ] [ k ] ,

nInt ) ;
f o r ( i n t x = 0 ; x<nInt ; x++){

d e l e t e f i n a l d i s t [ x ] ;
}
d e l e t e f i n a l d i s t ;

}
l o g l i k e l i h o o d += log ( l i k e l i h o o d ) ;

//memory c l e a r i n g
f o r ( i n t m = 0 ; m<nInt ; m++){

d e l e t e d i s t r i b u t i o n [m] ;
d e l e t e background [m] ;

}
d e l e t e d i s t r i b u t i o n ;
d e l e t e background ;

}
f l o a t r e s u l t = l o g l i k e l i h o o d / l en ;
p r o b a b i l i t i e s [ i ] [ j ] = exp ( r e s u l t ) ;

}
}
re turn p r o b a b i l i t i e s ;

}
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//For a matrix g i v i n g the p r o b a b i l i t y d i s t r i b u t i o n o f events
accord ing to some model , the d i r e c t i o n o f an observed event ,
and i t ’ s e r ro r , t h i s f unc t i on w i l l f i n d the l i k e l i h o o d o f

the observed event under the g iven model .
f l o a t compute l ike lyhood ( f l o a t ∗∗ d i s t r i b u t i o n , f l o a t ra , f l o a t

dec , f l o a t err , i n t n) {

f l o a t sum = 0 ;
f o r ( i n t j = 0 ; j<n ; j++){

f o r ( i n t i = 0 ; i<n ; i++){
i n t ∗ i n d i c e s = new i n t [ 2 ] ;
i n d i c e s [ 0 ] = i ;
i n d i c e s [ 1 ] = j ;
f l o a t ∗ coords = i n d i c e s t o c o o r d i n a t e s (n , i n d i c e s ) ;

// grea t c i r c l e d i s t a n c e between f i r s t and second s e t
o f c o o r d i n a t e s .

f l o a t d i s t = angd i s t ( ra , dec , coords [ 0 ] , coords [ 1 ] ) ;

// every event i s viewed as a normal d i s t r i b u t i o n on
the grea t c i r c l e with standard d e v i a t i o n equal
to the exper imenta l e r r o r .

sum += s i n ( p i /2 − coords [ 1 ] ) ∗ e r r f u n c (n , err , d i s t ) ∗
d i s t r i b u t i o n [ i ] [ j ] ;

d e l e t e coords ;
d e l e t e i n d i c e s ;

}
}
re turn sum ;

}
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celestial.hpp

This header file contains the functions relating to the celestial coordinate
systems used.

// Functions that have to do with c e l e s t i a l coo rd ina te systems
and t rans f o rmat i ons between them

// Trans la t e s a s e t o f i n d i c e s in a square matrix in to two angles
, go ing from −pi /2 to p i /2 in the v e r t i c a l and 0 to 2 p i in
the h o r i z o n t a l .

f l o a t ∗ i n d i c e s t o c o o r d i n a t e s ( i n t n , i n t ∗ i n d i c e s ) {

f l o a t ∗ coords = new f l o a t [ 2 ] ;
coords [ 0 ] = i n d i c e s [ 0 ]∗2∗ pi /n ;
coords [ 1 ] = ( i n d i c e s [ 1 ] ∗ 1 . 0 / n−0.5)∗ pi ;
r e turn coords ;

}

// Trans la t e s a s e t o f c o o r d i n a t e s g iven as r i g h t ang le and
d e c l i n a t i o n in to g a l a c t i c l ong i tude and l a t i t u d e

f l o a t ∗ eq toga l ( f l o a t ra , f l o a t d e c l i n a t i o n ) {
f l o a t l ong i tude = 5.2883 − atan ( s i n (3 .3554 − ra ) /( cos (3 .3554

− ra ) ∗ s i n ( 0 . 4 7 8 2 ) − tan ( d e c l i n a t i o n ) ∗ cos ( 0 . 4 7 8 2 ) ) ) ;
f l o a t l a t i t u d e = as in ( s i n ( d e c l i n a t i o n ) ∗ s i n ( 0 . 4 7 8 2 ) + cos (

d e c l i n a t i o n ) ∗ cos ( 0 . 4 7 8 2 ) ∗ cos (3 .3554 − ra ) ) ;
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f l o a t ∗ r e s u l t = new f l o a t [ 2 ] ;
r e s u l t [ 0 ] = long i tude ;
r e s u l t [ 1 ] = l a t i t u d e ;

r e turn r e s u l t ;
}

//Computes the grea t c i r c l e d i s t a n c e between two d i r e c t i o n s
f l o a t angd i s t ( f l o a t long1 , f l o a t la t1 , f l o a t long2 , f l o a t l a t 2 ) {

re turn acos ( s i n ( long1 ) ∗ s i n ( long2 ) + cos ( long1 ) ∗ cos ( long2 ) ∗
cos ( l a t 1 − l a t 2 ) ) ;

}

//Given a g a l a c t i c l ong i tude and g a l a c t i c l ang i tude and a
d i s t a n c e from the sun/ earth i t computes the d i s t a n c e o f the
po int s p e c i f i e d from the g a l a c t i c c ent e r .

f l o a t o r b d i s t ( f l o a t dfe , f l o a t lon , f l o a t l a t ) {
// lon i s g a l a c t i c long i tude , l a t i s g a l a c t i c l a t i t u d e , d fe

i s d i s t a n c e from earth .
f l o a t orbd = s q r t ( abs ( d fe ∗ dfe + sund i s t ∗ sund i s t − 2∗ sund i s t ∗

dfe ∗ cos ( lon ) ∗ cos ( l a t ) ) ) ;
i f ( orbd < 0 .0000001) {

orbd = 0 .0000001 ;
}
re turn orbd ;

}



Appendix D

model.hpp

This header file contains the functions relating to our model of the source
distributions, and the creation of probability distributions for a given model.

//Methods r e l a t i n g to our s p e c i f i c model

//Takes the d i s t a n c e from the g a l a c t i c c ent e r to the p r o j e c t i o n
o f a po int onto the g a l a c t i c plane ( r ) and the he ight o f the

po int above or below the g a l a c t i c plane . Then i t r e tu rn s
the dens i ty o f luminous neutr ino sourc e s at the po int
de s c r ibed by those numbers .

f l o a t g a l d e n s i t y ( f l o a t r , f l o a t z ) {
i f ( r <0.00001){ r = 0 .00001 ;}

//The dens i ty in the g a l a c t i c plane at a d i s t a n c e r from the
cente r .

f l o a t dens i ty = pow( r / sundis t , 0 . 7 ) ∗exp (−3.5∗( r−sund i s t ) /
sund i s t ) ;

//The dens i ty at a po int z d i s t a n c e above or below the
g a l a c t i c plane .

dens i ty = dens i ty ∗exp(−( z/z0 ) ∗( z/z0 ) ) ;
r e turn dens i ty ;

}
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//Takes a g a l a c t i c long i tude , a g a l a c t i c l a t i t u d e and a d i s t a n c e
from earth ( d fe ) and c a l c u l a t e s the dens i ty o f dark matter

at that po int accord ing to the Navarro−Frenk−White p r o f i l e .
f l o a t dmdensity ( f l o a t long i tude , f l o a t l a t i t u d e , f l o a t d fe ) {

f l o a t r = o r b d i s t ( dfe , l ong i tude , l a t i t u d e ) ;
i f ( r <1.0/10000){

r = 1 .0/10000 ;
}
f l o a t temp = 1.0 + r / r0 ;
f l o a t rho = 1/( r ∗temp∗temp ) ;
re turn rho ;

}

// Creates a matrix where each entry r e p r e s e n t s a d i r e c t i o n in
the sky . For each po int the matrix conta in s the Navarro−
Frenk−White p r o f i l e i n t e g r a t e d over our l i n e o f s i g h t in
that d i r e c t i o n .

f l o a t ∗∗ dmansatzcalc ( i n t nInt ) {
f l o a t ∗∗ ansatz = new f l o a t ∗ [ nInt ] ;
f o r ( i n t i = 0 ; i<nInt ; i++){

ansatz [ i ] = new f l o a t [ nInt ] ;
}
f l o a t normconst = 0 ;

// Loops over the matrix i n d i c e s in the matrix being c reated
For each s e t o f i n d i c e s i t f i n d s what d i r e c t i o n in the
sky t h i s cor responds to and numer i ca l ly i n t e g r a t e s the
dens i ty o f s ou r c e s a long our l i n e o f s i g h t in that
d i r e c t i o n .

f o r ( i n t i = 0 ; i<nInt ; i++){
f o r ( i n t j = 0 ; j<nInt ; j++){

ansatz [ i ] [ j ] = 0 ;
i n t ∗ i n d i c e s = new i n t [ 2 ] ;
i n d i c e s [ 0 ] = i ;
i n d i c e s [ 1 ] = j ;
f l o a t ∗ coord = i n d i c e s t o c o o r d i n a t e s ( nInt , i n d i c e s ) ;
coord = eqtoga l ( coord [ 0 ] , coord [ 1 ] ) ;

// I t e r a t e s over a s e r i e s o f po in t s at i n c r e a s i n g
d i s t a n c e from us and sums up the dens i ty at
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those po in t s ( d i s c r e t e approximation o f l i n e
i n t e g r a l ) .

f o r ( i n t k = 0 ; k<m; k++){
f l o a t s = (10∗ sund i s t ∗k ) /m;
ansatz [ i ] [ j ] += dmdensity ( coord [ 0 ] , coord [ 1 ] , s )

;
}

// Adjust ing f o r the f a c t that a g r id in l ong i tude
and l a t i t u d e has dec r ea s ing d i s t a n c e between
nodes c l o s e r to the p o l e s .

ansatz [ i ] [ j ] = s i n ( p i /2 − coord [ 1 ] ) ∗ ansatz [ i ] [ j ] ;
normconst += s i n ( p i /2 − coord [ 1 ] ) ∗ ansatz [ i ] [ j ] ;

//Memory c l e a r i n g .
d e l e t e coord ;
d e l e t e i n d i c e s ;

}
}
f o r ( i n t i = 0 ; i<nInt ; i++){

f o r ( i n t j = 0 ; j<nInt ; j++){
ansatz [ i ] [ j ] = ansatz [ i ] [ j ] / normconst ;

}
}
re turn ansatz ;

}

// Creates a matrix d e s c r i b i n g the g a l a c t i c d i s t r i b u t i o n .
f l o a t ∗∗ g a l c a l c ( i n t nInt ) {

f l o a t ∗∗ ga l = new f l o a t ∗ [ nInt ] ;
f o r ( i n t i = 0 ; i<nInt ; i++){

ga l [ i ] = new f l o a t [ nInt ] ;
}
f l o a t normconst = 0 ;

// Loops over the matrix i n d i c e s in the matrix being c reated .
For each s e t o f i n d i c e s i t f i n d s what d i r e c t i o n in the

sky t h i s cor responds to and numer i ca l ly i n t e g r a t e s the
dens i ty o f s ou r c e s a long our l i n e o f s i g h t in that
d i r e c t i o n .

f o r ( i n t i = 0 ; i<nInt ; i++){



83

f o r ( i n t j = 0 ; j<nInt ; j++){
ga l [ i ] [ j ] = 0 ;
i n t ∗ i n d i c e s = new i n t [ 2 ] ;
i n d i c e s [ 0 ] = i ;
i n d i c e s [ 1 ] = j ;
f l o a t ∗ coord = i n d i c e s t o c o o r d i n a t e s ( nInt , i n d i c e s ) ;
coord = eqtoga l ( coord [ 0 ] , coord [ 1 ] ) ;

// I t e r a t e s over a s e r i e s o f po in t s at i n c r e a s i n g
d i s t a n c e from us and sums up the dens i ty at
those po in t s ( d i s c r e t e approximation o f l i n e
i n t e g r a l ) .

f o r ( i n t k = 0 ; k<m; k++){
f l o a t s = (10∗ sund i s t ∗k ) /m;
i f ( s != s ) {

cout << ” s != s \n” ;
}
f l o a t r = o r b d i s t ( s , coord [ 0 ] , 0 ) ;
i f ( r != r ) {

cout << ” r != r \n” ;
}
f l o a t z = r ∗ s i n ( coord [ 1 ] ) ;
i f ( z != z ) {

cout << ” z !=z\n” ;
}
ga l [ i ] [ j ] += g a l d e n s i t y ( r , z ) ;

}

// Adjust ing f o r the f a c t that a g r id in l ong i tude
and l a t i t u d e has dec r ea s ing d i s t a n c e between
nodes c l o s e r to the p o l e s .

ga l [ i ] [ j ] = s i n ( p i /2 − coord [ 1 ] ) ∗ ga l [ i ] [ j ] ;
normconst += s i n ( p i /2 − coord [ 1 ] ) ∗ ga l [ i ] [ j ] ;

//Memory c l e a r i n g .
d e l e t e coord ;
d e l e t e i n d i c e s ;

}
}
f o r ( i n t i = 0 ; i<nInt ; i++){

f o r ( i n t j = 0 ; j<nInt ; j++){
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ga l [ i ] [ j ] = ga l [ i ] [ j ] / normconst ;
}

}
re turn ga l ;

}

// Creates a normal ized matrix o f constant p r o b a b i l i t y dens i ty .
As the coord ina te po in t s become denser c l o s e r to the p o l e s
the value at each po int i s ang le dependent .

f l o a t ∗∗ e x t g a l c a l c ( i n t nInt ) {
f l o a t ∗∗ e x t g a l = new f l o a t ∗ [ nInt ] ;
f l o a t normconst = 0 ;
f o r ( i n t i = 0 ; i<nInt ; i++){

e x t g a l [ i ] = new f l o a t [ nInt ] ;
f o r ( i n t j = 0 ; j<nInt ; j++){

f l o a t coord = (1 − j ∗1 .0/ nInt ) ∗ pi ;
e x t g a l [ i ] [ j ] = s i n ( coord ) ∗1 .0/ ( nInt ∗nInt ) ;
normconst += s i n ( coord ) ∗ e x t g a l [ i ] [ j ] ;

}
}
f o r ( i n t i = 0 ; i<nInt ; i++){

f o r ( i n t j = 0 ; j<nInt ; j++){
e x t g a l [ i ] [ j ] = e x t g a l [ i ] [ j ] / normconst ;

}
}
re turn e x t g a l ;

}

f l o a t ∗∗ d i s t r i b u t i o n c a l c ( i n t k , i n t l , f l o a t ∗∗ extga l , f l o a t ∗∗
gal , f l o a t ∗∗ ansatz , i n t n , i n t paraRes , f l o a t dmelike ,
f l o a t g a l e l i k e , f l o a t e x t e l i k e , f l o a t ∗ s e n s i t i v i t y ) {

//Turns the v a r i a b l e s k and l used to loop over the
parameters ( which are i n t e g e r s in the range 0 to paraRes

ra the r than f l o a t i n g po int numbers in the range 0 to 1)
in to the ac tua l paramters .

f l o a t dmpara = k /( ( f l o a t ) paraRes ) ;
f l o a t ga lpara = l / ( ( f l o a t ) paraRes ) ;
f l o a t extga lpara = ( paraRes − k − l ) / ( ( f l o a t ) paraRes ) ;

f l o a t ∗∗ d i s t = new f l o a t ∗ [ n ] ;
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f l o a t normconst = 0 ;
f o r ( i n t i = 0 ; i<n ; i++){

d i s t [ i ] = new f l o a t [ n ] ;
f o r ( i n t j = 0 ; j<n ; j++){

d i s t [ i ] [ j ] = s e n s i t i v i t y [ j ] ∗ ( dmel ike ∗dmpara∗ ansatz [ i
] [ j ] + g a l e l i k e ∗ ga lpara ∗ ga l [ i ] [ j ] + e x t e l i k e ∗
extga lpara ∗ e x t g a l [ i ] [ j ] ) ;

f l o a t coord = (1 − j ∗1 .0/ n) ∗ pi ;
normconst += s i n ( coord ) ∗ d i s t [ i ] [ j ] ;

}
}
f o r ( i n t i = 0 ; i<n ; i++){

f o r ( i n t j = 0 ; j<n ; j++){
d i s t [ j ] [ i ] = d i s t [ j ] [ i ] / normconst ;
i f ( ! ( d i s t [ i ] [ j ]== d i s t [ i ] [ j ] ) ) {

cout << ” d i s t = ” <<d i s t [ i ] [ j ] <<endl ;
}

}
}
re turn d i s t ;

}

// Gaussian func t i on .
f l o a t e r r f u n c ( i n t n , f l o a t err , f l o a t d i s t ) {

f l o a t e r r o r = exp(−( d i s t ∗ d i s t ) /(2∗ e r r ∗ e r r ) ) ;
e r r o r = e r r o r /(2∗ pi ∗ e r r ∗ e r r ∗n∗n) ;
r e turn e r r o r ;

}
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energy.hpp

This header file contains the functions relating to the energy dependence
of our model.

// Functions p e r t a i n i n g to the e f f e c t o f energy on the l i k e l i h o o d

f l o a t dmenergy l ike l ihood ( f l o a t energy , f l o a t ∗∗ energytab le ,
f l o a t massparam ) {
f l o a t param = log ( massparam /(2∗ energy ) ) ;
i n t i = 0 ;
whi l e ( i <2004){

i f ( ene rgytab l e [ 0 ] [ i ] > param ) {
re turn energytab l e [ 1 ] [ i ] / energy ;

}
e l s e {

i ++;
}

}
cout << ”ERROR energy range ” ;
r e turn 0 ;

}

/∗
// Replace the above with n the below to use the s i m p l i f i e d

energy dependence . I t ’ s c o r r e c t that two o f the arguments
are unused . That ’ s so i t takes the same arguments as the
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more d e t a i l e d funct ion , and any code c a l l i n g i t doesn ’ t have
to be changed .

f l o a t dmenergy l ike l ihood ( f l o a t energy , f l o a t ∗∗ energytab le ,
f l o a t massparam ) {
f l o a t l i k e = pow( energy , −1.8) ;
r e turn l i k e ;

}
∗/

f l o a t g a l e n e r g y l i k e l i h o o d ( f l o a t energy ) {
f l o a t l i k e = pow( energy , −2.5) ;
r e turn l i k e ;

}

f l o a t e x t g a l e n e r g y l i k e l i h o o d ( f l o a t energy ) {
f l o a t l i k e = pow( energy , −2.2) ;
r e turn l i k e ;

}

f l o a t backgroundenergy l ike l ihood ( f l o a t energy ) {
f l o a t l i k e = pow( energy , −3.7) ;
r e turn l i k e ;

}

f l o a t ∗∗ e n e r g y l i k e l i h o o d s c a l c ( i n t len , f l o a t ∗ e n e r g i e s ) {
//Name o f the f i l e conta in ing a t a b l e which d e s c r i b e s the

more d e t a i l e d energy model .
char ∗ e n e r g y f i l e = ” l o g e M 8 f f ” ;

//The more d e t a i l e d energy model depends on the energy
r e l a t i v e to the assumed dark matter mass . The a r t i c l e
the model i s taken from was c a l c u l a t e d f o r masses around

10ˆGeV
f l o a t massparam = 1000 ; // [TeV]

//Reads the t a b l e in the f i l e s p e c i f i e d by the g iven
f i l ename and saves i t as a 2x2004 matrix . One column i s
ln (2E/M) . And the other i s the a s s o c i a t e d l i k e l i h o o d s .

f l o a t ∗∗ ene rgytab l e = energyreader ( e n e r g y f i l e ) ;

f l o a t ∗∗ e n e r g y l i k e l i h o o d s = new f l o a t ∗ [ 4 ] ;
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f o r ( i n t i = 0 ; i <4; i++){
e n e r g y l i k e l i h o o d s [ i ] = new f l o a t [ l en ] ;

}
f l o a t normconst1 = 0 ;
f l o a t normconst2 = 0 ;
f l o a t normconst3 = 0 ;
f l o a t normconst4 = 0 ;
f o r ( i n t j = 0 ; j<l en ; j++){

e n e r g y l i k e l i h o o d s [ 0 ] [ j ] = dmenergy l ike l ihood ( e n e r g i e s [ j
] , energytab le , massparam ) ;

normconst1 += e n e r g y l i k e l i h o o d s [ 0 ] [ j ] ;
e n e r g y l i k e l i h o o d s [ 1 ] [ j ] = g a l e n e r g y l i k e l i h o o d ( e n e r g i e s [ j

] ) ;
normconst2 += e n e r g y l i k e l i h o o d s [ 1 ] [ j ] ;
e n e r g y l i k e l i h o o d s [ 2 ] [ j ] = e x t g a l e n e r g y l i k e l i h o o d (

e n e r g i e s [ j ] ) ;
normconst3 += e n e r g y l i k e l i h o o d s [ 2 ] [ j ] ;
e n e r g y l i k e l i h o o d s [ 3 ] [ j ] = backgroundenergy l ike l ihood (

e n e r g i e s [ j ] ) ;
normconst4 += e n e r g y l i k e l i h o o d s [ 3 ] [ j ] ;

}
f o r ( i n t j = 0 ; j<l en ; j++){

e n e r g y l i k e l i h o o d s [ 0 ] [ j ] = e n e r g y l i k e l i h o o d s [ 0 ] [ j ] /
normconst1 ;

e n e r g y l i k e l i h o o d s [ 1 ] [ j ] = e n e r g y l i k e l i h o o d s [ 1 ] [ j ] /
normconst2 ;

e n e r g y l i k e l i h o o d s [ 2 ] [ j ] = e n e r g y l i k e l i h o o d s [ 2 ] [ j ] /
normconst3 ;

e n e r g y l i k e l i h o o d s [ 3 ] [ j ] = e n e r g y l i k e l i h o o d s [ 3 ] [ j ] /
normconst4 ;

}
re turn e n e r g y l i k e l i h o o d s ;

}



Appendix F

IceCube.hpp

This header file contains the functions relating to IceCube’s sensitivity at
different neutrino energies, flavors and angles.

// Functions r e l a t i n g to IceCube and i t s p r o p e r t i e s

/∗
Given an energy t h i s func t i on computes the c o e f f i c i e n t s o f the

polynomial that w i l l d e s c r i b e IceCube ’ s s e n s i t i v i t y to
e l e c t r o n neut r ino s as a func t i on o f the c o s i n e o f the
d e c l i n a t i o n .

∗/
f l o a t ∗ c o e f f s e l c a l c ( f l o a t energy ) {

// c o e f f i c i e n t s c i in S( dec ) = sum over i ( c i ∗ cos ( dec ) )
f l o a t lng = log10 ( energy ) ;
f l o a t ∗ c o e f f s = new f l o a t [ 1 1 ] ;
c o e f f s [ 1 0 ] = 1.4982∗ lng ∗ lng −1.2834∗ lng −16.848;
c o e f f s [ 9 ] = −0.65172∗ lng ∗ lng +2.1804∗ lng −0.1432;
c o e f f s [ 8 ] = −2.1716∗ lng ∗ lng +0.97143∗ lng +48.638;
c o e f f s [ 7 ] = 1.1493∗ lng ∗ lng −5.2452∗ lng +0.7870;
c o e f f s [ 6 ] = −0.15176∗ lng ∗ lng +1.6071∗ lng −52.264;
c o e f f s [ 5 ] = −0.48987∗ lng ∗ lng +4.464∗ lng −1.0083;
c o e f f s [ 4 ] = 1.3081∗ lng ∗ lng −1.6791∗ lng +26.01;
c o e f f s [ 3 ] = 0.064428∗ lng ∗ lng −1.6051∗ lng +0.42918;
c o e f f s [ 2 ] = −0.64372∗ lng ∗ lng +0.3115∗ lng −6.4204;
c o e f f s [ 1 ] = −0.025337∗ lng ∗ lng +0.13563∗ lng −0.075782;
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c o e f f s [ 0 ] = −0.082567∗ lng ∗ lng −0.4379∗ lng −2.2301;
re turn c o e f f s ;

}

/∗
Given an energy t h i s func t i on computes the c o e f f i c i e n t s o f the

polynomial that w i l l d e s c r i b e IceCube ’ s s e n s i t i v i t y to mu
neut r ino s as a func t i on o f the c o s i n e o f the d e c l i n a t i o n .

∗/
f l o a t ∗ coe f f smuca l c ( f l o a t energy ) {

// c o e f f i c i e n t s c i in S( dec ) = sum over i ( c i ∗ cos ( dec ) )
f l o a t lng = log10 ( energy ) ;
f l o a t ∗ c o e f f s = new f l o a t [ 1 1 ] ;
c o e f f s [ 1 0 ] = 4.6898∗ lng ∗ lng −8.6509∗ lng −6.1085;
c o e f f s [ 9 ] = 5.2739∗ lng ∗ lng −2.9573∗ lng −0.17973;
c o e f f s [ 8 ] = −11.15∗ lng ∗ lng +23.276∗ lng +17.835;
c o e f f s [ 7 ] = −14.665∗ lng ∗ lng +8.5211∗ lng +0.33336;
c o e f f s [ 6 ] = 7.1089∗ lng ∗ lng −21.459∗ lng −19.653;
c o e f f s [ 5 ] = 14.047∗ lng ∗ lng −8.1772∗ lng −0.083802;
c o e f f s [ 4 ] = 0.74176∗ lng ∗ lng +7.6195∗ lng +10.313;
c o e f f s [ 3 ] = −4.8159∗ lng ∗ lng +2.554∗ lng −0.11426;
c o e f f s [ 2 ] = −1.7929∗ lng ∗ lng −1.0146∗ lng −2.934;
c o e f f s [ 1 ] = −0.057557∗ lng ∗ lng +0.068357∗ lng +0.014327;
c o e f f s [ 0 ] = −0.16983∗ lng ∗ lng −0.063039∗ lng −1.1108;
re turn c o e f f s ;

}

// takes a vec to r and i n t e r p r e t s i t as the c o e f f i c i e n t s o f a
polynomial and ev a lu a t e s that polynomial f o r a g iven value (
cos ( dec ) ) .

f l o a t d e t f a c t o r ( f l o a t ∗ c o e f f s , f l o a t dec ) {
f l o a t f a c t o r = 0 ;
f l o a t cosdec = cos ( dec ) ;
f o r ( i n t i = 0 ; i <11; i++){

f a c t o r += c o e f f s [ i ]∗pow( cosdec , i ) ;
}
re turn pow(10 , f a c t o r ) ;

}

//The s e n s i t i v i t y o f IceCube , i t ’ s p r o b a b i l i t y o f d e t e c t i n g an
incoming neutr ino , i s a func t i on o f the energy , f l a v o r and
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d e c l i n a t i o n . This func t i on c r e a t e s a vec to r o f v e c t o r s . One
vec to r f o r each energy value with each element in that
vec to r s p e c i f y i n g a s e n s i t i v i t y at one d e c l i n a t i o n f o r that
energy .

f l o a t ∗∗ s e n s i t i v i t y c a l c ( i n t len , f l o a t ∗ ene rg i e s , char ∗ f l a v o r ,
i n t nInt ) {
f l o a t ∗∗ s e n s i t i v i t y = new f l o a t ∗ [ l en ] ;
f o r ( i n t i = 0 ; i<l en ; i++){

s e n s i t i v i t y [ i ] = new f l o a t [ nInt ] ;
f l o a t ∗ c o e f f s ;
i f ( f l a v o r [ i ] == ’ s ’ ) {

c o e f f s = c o e f f s e l c a l c ( e n e r g i e s [ i ] ) ;
}
e l s e i f ( f l a v o r [ i ] == ’ t ’ ) {

c o e f f s = coe f f smuca l c ( e n e r g i e s [ i ] ) ;
}
e l s e { cout << ” Error : Event i s n e i t h e r shower nor t rack \n

” ;}

f o r ( i n t j = 0 ; j<nInt ; j++){
f l o a t dec = ( j − nInt / 2 . 0 ) ∗2∗ pi / nInt ;
i f ( dec < −pi ) { cout << ” dec = ” << dec << ”\n” ;}
i f ( dec > pi ) { cout << ” dec = ” << dec << ”\n” ;}
s e n s i t i v i t y [ i ] [ j ] = d e t f a c t o r ( c o e f f s , dec ) ;

}
d e l e t e c o e f f s ;

}
re turn s e n s i t i v i t y ;

}



Appendix G

inputoutput.hpp

This header file contains the functions relating to reading from, and writing
to, files.

//Takes the f i l ename o f the f i l e conta in ing the IceCube data as
input and f i n d s and re tu rn s the number o f events i t
d e s c r i b e s .

i n t l i n e c o u n t e r ( char ∗ f i l e ) {
i n t l en = 0 ;
i f s t r e a m l i n e c o u n t e r ;
l i n e c o u n t e r . open ( f i l e ) ;
s t r i n g wastebasket ;
whi l e ( l i n e c o u n t e r . peek ( ) != EOF) {

g e t l i n e ( l i n e count e r , wastebasket ) ;
i f ( wastebasket == ”” ) {

l i n e c o u n t e r . c l o s e ( ) ;
r e turn l en ;

}
e l s e {

l en++;
}

}
l i n e c o u n t e r . c l o s e ( ) ;
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re turn l en ;
}

// Function f o r read ing the obse rvat i on data ( other than f l a v o r )
from f i l e and sav ing i t in a matrix .

f l o a t ∗∗ event s r eade r ( char ∗ f i l e , i n t l en ) {
i f s t r e a m i n f i l e ;
i n f i l e . open ( f i l e ) ;

f l o a t ∗∗ events = new f l o a t ∗ [ 4 ] ;
f o r ( i n t i = 0 ; i <4; i++){

events [ i ] = new f l o a t [ l en ] ;
}

//Reads the t a b l e and saves va lue s converted in to rad ians
s t r i n g STRING;
f o r ( i n t i = 0 ; i<l en ; i++){

g e t l i n e ( i n f i l e ,STRING) ;
i n t endenergy = STRING. f i n d ( ” ” ) ;
s t r i n g energy = STRING. subs t r (0 , endenergy ) ;
i n t b e g i n f i r s t = STRING. f i n d f i r s t n o t o f ( ” ” , endenergy

+ 1) ;
i n t e n d f i r s t = STRING. f i n d ( ” ” , b e g i n f i r s t ) ;
s t r i n g f i r s t = STRING. subs t r ( b e g i n f i r s t , e n d f i r s t ) ;
i n t beg insecond = STRING. f i n d f i r s t n o t o f ( ” ” , e n d f i r s t

) ;
i n t l ensecond = STRING. f i n d ( ” ” , beg insecond ) −

beginsecond ;
s t r i n g second = STRING. subs t r ( beginsecond , l ensecond ) ;
i n t beg in th i rd = STRING. f i n d f i r s t n o t o f ( ” ” ,

beg insecond + lensecond ) ;
i n t l e n t h i r d = STRING. f i n d ( ” ” , beg in th i rd ) − beg in th i rd

;
s t r i n g t h i r d = STRING. subs t r ( beg inth i rd , l e n t h i r d ) ;
events [ 0 ] [ i ] = a t o f ( second . c s t r ( ) ) ∗ pi /180 ;
events [ 1 ] [ i ] = a t o f ( f i r s t . c s t r ( ) ) ∗ pi /180 ;
events [ 2 ] [ i ] = a t o f ( energy . c s t r ( ) ) ; // energy [TeV]
events [ 3 ] [ i ] = a t o f ( t h i r d . c s t r ( ) ) ∗ pi /180 ; //median

angular r e s o l u t i o n [ rad ians ]
}
i n f i l e . c l o s e ( ) ;
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re turn events ;
}

//Takes the f i l e name with the IceCube data and the number o f
ob s e rva t i on s as input . Creates an array o f c h a r a c t e r s o f
l ength equal to the number o f obse rvat ions , then f i l l s i t
with e i t h e r the l e t t e r ’ s ’ or ’ t ’ depending on whether that
event i s a shower or t rack event .

char ∗ f l a v o r r e a d e r ( char ∗ f i l e , i n t l en ) {
i f s t r e a m i n f i l e ;
i n f i l e . open ( f i l e ) ;
char ∗ f l a v o r s = new char [ l en ] ;
s t r i n g STRING;
f o r ( i n t i = 0 ; i<l en ; i++){

g e t l i n e ( i n f i l e ,STRING) ;
f l a v o r s [ i ] = STRING. at (STRING. l ength ( )−1) ;
cout << f l a v o r s [ i ] ;

}
re turn f l a v o r s ;

}

// Function f o r read ing the t a b l e d e s c r i b i n g the more d e t a i l e d
energy model .

f l o a t ∗∗ energyreader ( char ∗ f i l ename ) {
i n t l ength = 0 ;
i f s t r e a m l i n e c o u n t e r ;
l i n e c o u n t e r . open ( f i l ename ) ;
s t r i n g wastebasket ;
whi l e ( l i n e c o u n t e r . peek ( ) != EOF) {

g e t l i n e ( l i n e count e r , wastebasket ) ;
i f ( wastebasket == ”” ) {break ;}
l ength++;

}
l i n e c o u n t e r . c l o s e ( ) ;
i f s t r e a m energyreader ;
energyreader . open ( f i l ename ) ;
s t r i n g l i n e ;
f l o a t ∗∗ r e s u l t = new f l o a t ∗ [ 2 ] ;
r e s u l t [ 0 ] = new f l o a t [ l ength ] ;
r e s u l t [ 1 ] = new f l o a t [ l ength ] ;
i n t counter = 0 ;
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whi le ( counter < l ength ) {
g e t l i n e ( energyreader , l i n e ) ;
i n t s t a r t = l i n e . f i n d f i r s t n o t o f ( ’ ’ ) ;
i n t l a s t = l i n e . f i n d l a s t n o t o f ( ’ ’ ) ;
l i n e = l i n e . subs t r ( s ta r t , l a s t ) ;
l a s t = l i n e . f i n d f i r s t o f ( ’ ’ ) ;
s t r i n g a = l i n e . subs t r (0 , l a s t ) ;
s t a r t = l i n e . f i n d l a s t o f ( ’ ’ ) ;
s t r i n g b = l i n e . subs t r ( s t a r t , −1) ;
r e s u l t [ 0 ] [ counter ] = a t o f ( a . c s t r ( ) ) ;
r e s u l t [ 1 ] [ counter ] = a t o f (b . c s t r ( ) ) ;
counter++;

}
re turn r e s u l t ;

}

//Takes an i n t e g e r n , and an nxn matrix and saves the matrix as
a MATLAB s c r i p t f i l e c a l l e d r e s u l t .m. Running t h i s f i l e in
MATLAB w i l l l e ave you with an i d e n t i c a l matrix that w i l l be
c a l l e d ”X” .

void m a t l a b f i l e w r i t e r ( f l o a t ∗∗ probs , i n t paraRes ) {
ofstream prob ;

prob . open ( ” r e s u l t .m” ) ;
prob << ”X = [ ” ;

f o r ( i n t i = 0 ; i<paraRes +1; i++){
f o r ( i n t j = 0 ; j<paraRes +1; j++){

prob << ” ” << probs [ i ] [ j ] ;
}
prob << ” ; ” ;

}

prob << ” ] ; ” ;
prob . c l o s e ( ) ;

}
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