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Table 5.1: Standard parameters used in simulations, unless specified otherwise.

Parameter Symbol Value
Surface length L 25.6µm
RMS roughness δ 1µm
Correlation length a 2µm
Wavelength λ 0.6127µm
Beam width g 6.217µm
Discretization ∆x1 0.06217µm
Number discretization points along θs and θt Nθ 501
Number of realizations Nζ 10000
Overhead factor m 20

first measure of the consistency of the simulation. If the medium is non absorbing
(i.e. Im(ε(ω)) = 0), the unitarity should ideally be exactly 1. Figure 5.2 shows
the unitarity of a flat surface without absorption as a function of the angle of
incidence θ0. There are already computational artefacts, as the unitarity is 1-2%
too low for θ0 = [0◦, 70◦] in p-polarization and 1-2% too high in s-polarization.
If θ0 = 80◦ the unitarity suddenly drops for both polarizations. For this work
θ0 will be restricted to the interval [0◦, 60◦]. Note that the unitarity converges
after a few samples, so the standard 10 000 are not needed here. For media with
Im(ε(ω)) > 0 the unitarity should be a number on the interval (0, 1) and is used
to measure the absorption in the medium.

The coherent fraction of the total scattering states how much of the scattered
intensity which was scattered non-diffusely, as discussed in Chapter 2.1 and il-
lustrated in Fig. 2.1. This will be a number between 0 (strongly rough surface)
and 1 (flat surface). Note that the coherent component is not the same as the
scattered intensity in the specular direction, but in a lab experiment it is not
possible to distinguish the coherent and incoherent components.

The mean differential reflection coefficient (MDRC) is the reflected intensity as
a function of the scattering angle θs. It is denoted as 〈∂Rp/∂θs〉 for p-polarization
and 〈∂Rs/∂θs〉 for s-polarization. The MDRC is linked to the unitarity: the total
area under the curve of the MDRC is equal to the unitarity for non absorbing
materials. Unlike the unitarity, the MDRC converges slowly, and is the reason
why 10 000 samples are used. The program Maxwell1D also allows the separation
of the coherent and incoherent parts of the scattered intensity instead of looking
at the total intensity. The coherent fraction of the total scattering is again linked
to the coherent component: it is equal to the total area under the curve of the
coherent component.

For certain parameters, the MDRC demonstrates a phenomenon called en-
hanced backscattering. This is a multiple scattering phenomenon that arises
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Figure 5.2: Unitarity of flat surfaces, calculated using Nζ = 500 realizations, RMS
roughness δ = 0.00001 and ε(ω) = −17.2 (no absorption). The other parameters
are given in Table 5.1.

from the constructive interference of double scattering paths and is a signature
of rough surfaces. An illustration of double backscattering paths is shown in
Fig. 5.3. Two incoming parallel rays are scattered twice at the same locations. If
θ0 6= −θs, the path lengths are different and thus the phases are in general differ-
ent. The waves travelling along the paths will hence not interfere constructively
in general. However, if θ0 = −θs, the path lengths, and thus the phases, are the
same, and the waves interfere constructively. If −θs is close to θ0, there is still
constructive interference, albeit to a lesser extent. This gives rise to an enhanced
backscattering peak in the MDRC around θs = −θ0. The enhanced backscat-
tering phenomenon was experimentally confirmed by Méndez and O’Donnell in
1987 [12].

Figure 5.4 shows an example of a single sample of the differential reflection
coefficient (left) and the average of Nζ = 10 000 samples (right). The single
sample has a large component near the specular direction θs = 20◦. Around this
peak there are random fluctuations in the intensity. These are characteristic of
scattering patterns from randomly rough surfaces and are called speckles. The
MDRC (right) shows a clear example of an enhanced backscattering peak in the
direction of the source at θs = −20◦.

The mean differential transmission coefficient (MDTC) is the equivalent to the
MDRC, but for transmission angles θt (c.f. 5.1). Naturally, it is non-zero only for



5.2. OUTPUT PARAMETERS 31

Figure 5.3: Illustration of double backscattering paths. The paths interfere construc-
tively when θs = −θ0.
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Figure 5.4: Example of single sample differential reflection coefficient (left) and mean
differential reflection coefficient (MDRC) from Nζ = 10 000 samples (right). Both
scattering patterns are from surfaces with a Gaussian height distribution. The angle
of incidence θ0 = 20◦ is indicated by the dashed lines. Note the difference in scale
on the y-axis. The dielectric constant was ε(ω) = −17.2 + 0.498i (silver, [13]), and
the other parameters are given in Table 5.1.
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transparent materials (Re(ε(ω)) > 0). It is denoted 〈∂Tp/∂θt〉 for p-polarization
and 〈∂Ts/∂θt〉 for s-polarization.

Transmittance is the ratio between the incoming energy and the transmitted
energy for transparent materials. For non absorbing materials (i.e. Im(ε(ω)) = 0)
the sum of the transmittance and reflectance is equal to the unitarity and ideally
1. Hence, the transmittance also gives an indication of the size of the reflectance.
The transmittance and the MDTC are also linked as the transmittance is the
area under the curve of the MDTC.

5.3 Nichols revisited: Practical adjustments

For the numerical simulations used in this work, it turned out that the surfaces
needed to be a lot smoother than the ones shown in Chapter 4. If the local deriva-
tives become very large at some location the electromagnetic field will diverge.
This in turn “lights up” the rest of the surface, so large local derivatives at a
few locations affect the whole surface. Ultimately this resulted in unitarites as
large as 1.3 and MDRCs for the special case of normally distributed heights that
did not adequately approximate those from surfaces generated with the Fourier
filtering method. Such unitarities are clearly unacceptable, as this implies the
creation of energy (30% more energy out than in). Nichols’ algorithm is con-
strained to only use the original data, and this turned out to give very large
and noisy local derivatives, as will be demonstrated in Subsection 5.3.2. In this
Section two adjustments to Nichols algorithm are outlined, and their impact on
the surface statistics is shown.

5.3.1 Overhead factor

The first adjustment was using a overhead factor for generating the surfaces.
This was briefly mentioned in Sec. 4.3 as a method to avoid anticorrelation in
cases where the ratio a/L is too large. To generate a surface of length L using N
data points, one instead generates a surface of length mL using mN data points.
Afterwards, a section of length L comprised of N data points is extracted. The
effect of this, in addition to reducing anticorrelation, is that the algorithm has a
larger ‘pool’ of random numbers to choose from, so that peaks caused by outliers
can be smoothened by placing less extreme outliers next to them. There is no
correct or recommended value for m in general as it will vary depending on
the application and input parameters. In particular, the choice of discretization
interval ∆x1 will affect the choice of m. The drawback of large overhead factors is
the computational cost mentioned in Section 4.3.1. By trial and error a reasonable
compromise for the parameters in Table 5.1 was found to be the interval m =
[10, 25]. (The minimum requirement to avoid anticorrelation was mL ≥ 100a,
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which gives gives a minimum overhead factor of m = 7.8 in this case.) Overhead
factors of 50 and 100 were tried, but this resulted in very long generation times
with little or no effect on the MDRC.

It was also discovered during testing that if the number of data points becomes
very large (mN ∼ 20 000), Nichols’ algorithm is increasingly likely to halt in an
infinite loop where two or more elements are swapped cyclically. The exact cause
of this was not investigated, instead the code was modified so that the surface was
discarded and a new was generated if it had not converged after 3000 iterations.

To reduce the computational cost of large overhead factors, it is also possible
to extract multiple sections of length L. As was demonstrated in Sec. 4.3, the
height-height correlation is negligible after about 2a, hence several surfaces which
are statistically independent may be extracted by discarding sections of a few
correlation lengths between them. A last note on overhead factors is that they
are also used in Fourier filtering. Here a surface of length 2L is generated and a
section of length L is extracted from the middle to avoid computational artefacts
at the edges of the surface.

5.3.2 Wavelet filtering

The first attempt to smoothen the surface and its derivatives further was a Fourier
filter which set high frequency components to zero. This proved inefficient, as
local first and second derivatives were still extremely large compared to surfaces
generated with the Fourier filtering method, and the filtered surfaces were unable
to reproduce results produced with the Fourier filtering method. Thus a wavelet
filter was applied, which greatly improved the results. Wavelet transforms are
similar to the Fourier transform in the sense that a signal is represented as a set of
coefficients, and applications for wavelet transforms include data compression and
signal analysis. A detailed description will not be given here, but an “engineer’s
approach” description with examples and code is given in Section 13.10 of Ref. [7].

One of the advantages of wavelets compared to Fourier filters is that while
Fourier filters are localized in frequency but not in space, wavelets are localized
in both. With a Fourier filter, an attempt to remove high frequency structures
may potentially affect the entire surface. A wavelet filter, on the other hand,
allows removal of such structures only at the locations where they exist, leaving
the rest of the surface virtually unaffected. However, for both filtering methods
the correlation length a has a corresponding frequency, and it is extremely im-
portant not to filter out frequencies comparable to or larger than this correlation
frequency.

Wavelet filtering of an extreme example is shown in Fig. 5.5. Here, a surface
has been generated using the parameters in Table 5.1 and skewness parameter
α = 10. The left column shows the surface, its first derivative and its second
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derivative from top to bottom. The right column shows the section of the surface
and derivatives indicated by the black boxes. It is immediately apparent that
the filtering process has a minimal impact on the surface height distribution
and autocorrelation, as the unfiltered and filtered surfaces are so close that the
unfiltered surface is hardly visible behind the filtered surface. For a majority
of the surface, the derivatives are also very close and the wavelet filter simply
removes minor noise. However, an extremely sharp peak has been generated near
x1 = −4µm. The close up (top right) shows that Nichols’ algorithm was not able
to smooth this peak out, even with an overhead factor of 20. The result is a large
and noisy first derivative and a wildly fluctuating second derivative at this peak.
The wavelet filtered surface is very close to the unfiltered, but is substantially
smoother. This results in smoother, smaller derivatives which are more accurate
to the overall trend of the surface. The maximum and minimum values of the
second derivative are in this case reduced to about one tenth of their unfiltered
value. Although the skewness parameter α and example was chosen specifically
to provide a challenge for the filter, the filtering also greatly improves the local
derivatives in general. It will be demonstrated shortly that filtering was strictly
necessary also for the Gaussian case.

Altering the surface heights affects both the height distribution and autocor-
relation of the surfaces. To ensure that the relevant statistics are not altered too
much by the filter, 10 000 surfaces were generated using the parameters in Ta-
ble 5.1 and skewness parameter α = 10, and the statistics were calculated both
with and without the filter. The height distributions and autocorrelations are
shown in Fig. 5.6. The unfiltered and filtered data are hardly distinguishable,
despite a huge difference in local derivatives. The changes of surface heights are
also insignificant with respect to the total averages of the mean, variance and
skewness of the heights of all the sample, as the filtering process changed each of
them by less than 0.1%. These results show that wavelet filtering is an excellent
way of smoothing the surfaces created by Nichols’ algorithm while preserving the
height distribution and autocorrelation.

5.4 Reproduction

To test the quality of the generated surfaces, simulations were run in the Gaussian
case of α = 0 to compare with results from previous work where Fourier filtered
surfaces were used. In this Section the results of these simulations are presented,
and the necessity of wavelet filtering is demonstrated.

The MDRCs generated from rigorous simulations using the Fourier method,
Nichols’ algorithm without filtering and Nichols’ algorithm with an overhead
factor and wavelet filter are shown in Fig. 5.7 as blue, green and red curves,
respectively. Most of the MDRCs show a clear backscattering peak at θs = −θ0,
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Figure 5.5: Illustration of the effect of wavelet filtering on a surface (top), its deriva-
tive (middle) and its second derivative (bottom). The unfiltered realization is shown
in blue, while the filtered is shown in red. The left column shows the entire surface,
while the right column shows the portions indicated by the black boxes. The surface
is generated using the parameters in Table 5.1, skewness parameter α = 10 and an
overhead factor of 20.
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Figure 5.6: Effect of wavelet filtering on surface height statistics and autocorrelation.
The filtered and unfiltered data are for the same ensemble of Nζ = 10 000 surfaces
generated using the parameters in Table 5.1 and α = 10.

Table 5.2: Unitarities for the MDRCs shown in Fig. 5.7.

θ0 [deg] Polarization Fourier Nichols (filtered) Nichols (unfiltered)
0 p 0.9463 0.9460 1.2421
20 p 0.9445 0.9448 1.1550
40 p 0.9379 0.9375 1.0871
0 s 0.9982 0.9986 1.0417
20 s 0.9990 0.9985 1.0392
40 s 1.0007 1.0002 1.0404

indicated by the vertical dashed lines. The results for p-polarization immediately
show that the unitarities for the unfiltered surfaces are not acceptable, as the area
under its curve is substantially larger than that for Fourier filtrated surfaces. The
corresponding unitarities for the MDRCs are given in Table 5.2. The results for
p-polarization are worse than those for s-polarization due to the fact that the
previously mentioned field divergence for large local derivatives only happens
with p-polarized light. Although the MDRCs generated for s-polarized light are
less noisy, they can hardly be said to reproduce those of Fourier filtered surfaces.
For normal incidence (θ0 = 0◦, top right) the MDRC follows the major trends,
but it is about 0.05 too high or too low for most angles θs. Both for θ0 = 20◦ and
θ0 = 40◦, there is a huge dip in the MDRC near the specular directions θs = 20◦

and θ0 = 40◦, respectively. These dips can also be seen in p-polarization, although
it is less apparent due to the fluctuations. All in all, the unfiltered surfaces cannot
be said to reproduce the results of Fourier filtered surfaces.
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Figure 5.7: Plots of the MDRC as a function of θs generated using the parameters in
Table 5.1. The left column is for p-polarized light and the right is for s-polarized. The
angle of incidence θ0 was 0◦, 20◦ and 40◦ for top, middle and bottom row respectively,
and is indicated as a vertical dashed line. For the blue graphs the Fourier filtering
method was used to generate the surfaces, so this represents a target for Nichols’
algorithm. For the green graphs Nichols’ algorithm was used with an overhead factor
of m = 2, while for the red the factor was m = 20 and the surfaces were filtered
using wavelets. The dielectric constant was ε(ω) = −17.2 + 0.498i and the other
parameters are given in Table 5.1.
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Although the MDRCs generated from filtered surfaces are not perfectly consis-
tent with the ones generated from Fourier filtered surfaces, they are close enough
for the purpose of this work. The discrepancies might be reduced by increasing
the number of samples Nζ or the overhead factor m, or by decreasing the sam-
pling interval ∆x1. Naturally, these adjustments all come with a computational
cost. As the surface generator adequately reproduces previous work, the next
step is to tune the skewness parameter α to study the effect of the skewness of
the surface height distribution.



Chapter 6

Results and discussion

Rigorous simulations using the parameters in Table 5.1 on page 29 were run for
multiple values of the skewness parameter α. The results will be divided into
opaque (non transparent) materials and transparent materials. A material is
opaque if Re(ε) < 0 and transparent if Re(ε) > 0. The results for the mean dif-
ferential reflection/transmission coefficient, unitarity, transmittance and coherent
fraction of the scattered intensity are shown in this Chapter, and the impact of
the surface height skewness γ(α) on the scattering process is discussed.

6.1 Opaque materials

For the results in this Section the dielectric constant for silver with a value of
ε(ω) = −17.2 + 0.498i was used [13], unless stated otherwise.

6.1.1 MDRC

Figures 6.1 and 6.2 show results for the MDRC for p- and s-polarizations, re-
spectively. There is still some noise around θs = [−20◦, 40◦] for θ0 = 20◦ and
θ0 = 40◦, which could probably be reduced by more samples or a smaller sampling
interval ∆x1. However, the results show the overall effect. Note that the blue
curves are for Gaussian surfaces and are identical in both columns. The positive
skewnesses (left columns in Figs. 6.1 and 6.2) will be discussed first, before they
are compared to negative skewnesses.

The top left plot in both Figures show MDRCs for varying positive skewnesses
and normal incidence. Although the difference between Gaussian (blue) and
strongly skewed (red) surface heights is not large, one of the effects seems to
be that increasing skewness reduces the backscattering peak at θs = 0◦. This

39
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Figure 6.1: MDRC for p-polarization. The left column is for positive skewnesses γ(α)
with values γ(2) = 0.45 (µm)3 (green) and γ(5) = 0.85 (µm)3 (red), and the right
is for the negative values γ(−2) = −0.45 (µm)3 (green) and γ(−5) = −0.85 (µm)3

(red). The blue curve is for Gaussian surfaces in both columns. The angles of
incidence θ0 were 0◦, 20◦ and 40◦ for top, middle and bottom row respectively, and
are indicated by the vertical dashed lines. The parameters were dielectric constant
was ε(ω) = −17.2 + 0.498i, length L = 25.6µm, wavelength λ = 0.6127µm and
correlation length a = 2µm. The other parameters are given in Table 5.1.
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Figure 6.2: Similar to Fig. 6.1, but for s-polarization.
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intensity is instead scattered near the local maxima located near θs = ±10◦. The
locations of these local maxima are shifted a few degrees towards θs = 0◦. These
locations are related to the average distance between consecutive peaks on the
surface, and this shift is similar to the effect of a longer correlation distance a. A
possible explanation can be found by realizing that as the surface height skewness
increases, the distance between large peaks must also increase. The reason is that
as some peak heights increase, others must decrease in order to keep the RMS
roughness δ constant. This effect can be seen in Fig. 4.1 by comparing the middle
surface (γ(α) = 0µm) to the top and bottom surfaces (γ(α) = ±0.917µm).
Hence, the resulting surface effectively has smaller height fluctuations in between
sharp peaks, with correspondingly larger distances between the sharp peaks. This
argument could explain why the correlation length appears longer than actually
it is.

The argument may also be used to explain the differences seen for θ0 = 20◦

and θ0 = 40◦. For θ0 = 20◦ the MDRCs are still very close, but a skewed surface
height induces more scattering in the forward direction (θs > 0) at the cost of
the backward direction. If the sharp peaks are ignored, the rest of the surface
looks less rough than a corresponding Gaussian surface, and less rough surfaces
scatter more intensity in the specular direction. This is even more apparent in
the MDRCs for θ0 = 40◦. Whereas the Gaussian MDRCs (blue) are almost sym-
metric about θs = 0◦ in this case, a skewness of γ = 0.85µm shifts a significant
amount of the scattered intensity from the backward to the forward directions.
The difference disappears around θs = 60◦. This also has an intuitive explana-
tion: if the scattering location is in a ‘flat’ area in between tall peaks and the
scattering angle θs is large, there is a large probability that the wave will be
scattered again at the next tall peak. After this, it is relatively unlikely to scat-
ter again. Thus, this process reduces the intensity for large θs. In addition, the
backscattering peak becomes slightly more pronounced as the skewness increases,
especially in s-polarization.

From the plots for negative skewnesses (right column in both Figs. 6.1 and
6.2), it is immediately apparent that increasing the magnitude of the surface
height skewness produces many of the same effects regardless of its sign. The
reason for this is that surfaces with large magnitudes of the surface height skew-
ness look very similar outside the peaks and pits. However, there are a few notable
differences in the MDRCs. For θ0 = 0◦ (top), the effect on the backscattering
peak is opposite compared to a positive surface height skewness, as a larger neg-
ative surface height skewness induces more backscattering instead of less. This
is easily explained by looking at the difference of a field scattered from a peak
compared to a pit. Both peaks and pits on the surfaces are relatively symmetric
with respect to the mean surface normal, due to a symmetric correlation func-
tion. At normal incidence, a peak will act as a convex mirror and scatter the
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incoming field in all directions. Only a small fraction of the field has a chance
to scatter again and hence possibly contribute to enhanced backscattering. By
contrast, a pit acts as a concave mirror, and the field scattered in a pit is likely
to scatter in it again. As the pit is relatively symmetric with respect to the angle
of incidence, the double scattering events that cause the backscattering peaks are
very likely compared to a surface peak. By close inspection, the effect of this
enlarged backscattering peak is also visible for θ0 = 20◦ (middle) and θ0 = 40◦

(bottom) in both Figs. 6.1 and 6.2.

A second difference is seen for angle of incidence θ0 = 40◦ (bottom) and
scattering angles θs > 60◦. If a wave is scattered with a large scattering angle θs,
a surface with negative surface height skewness does not have large peaks to stop
it. Thus, the scattered wave is allowed to propagate and contribute to a larger
intensity also for large scattering angles θs.

The arguments given are also consistent with the difference seen for θs =
[−90◦,−60◦]. The results show that positive skewness increases the scattering
in these directions, while negative skewness decreases it. This can again be
explained by the existence of tall peaks for positive skewness, and the lack of
such peaks for negative skewness. If the incident field is scattered at an angle
−90◦ < θs < −60◦ near the top of a tall peak, it is unlikely to scatter again, as
this would require a nearby taller peak. Scattering in the backward direction is
more likely from ‘steep’ sections of the surface, i.e. locations where the local first
derivative is relatively large. Such sections are found on the left side of peaks
and right side of pits. If the incoming field is scattered from the right side of a
pit, it will most likely also scatter against the left side of the pit before escaping.
On the other hand, if it scatters against a peak, it is comparatively more likely
not to scatter again and contribute to the intensity at large negative angles θs.

6.1.2 Unitarity

Figure 6.3 shows the calculated unitarities for different values of the surface height
skewness. The unitarities for θ0 = 0◦, θ0 = 20◦ and θ0 = 40◦ were calculated for
the MDRCs in Figs. 6.1 and 6.2.

The unitarities for p-polarization (left) look fairly constant, i.e. independent of
surface height skewness. A notable feature is a spike for all θ0 at γ(α) = 0.667µm.
This is believed to be a computational artefact, as it was not present when the
data was checked after about 7500 out of 10 000 samples, nor was it present
when an overhead factor of m = 10 was used. A possible explanation is that a
surface may have been generated which the wavelet filter could not make smooth
enough. This would cause a field divergence and an increase in the unitarities,
as was seen in Section 5.4. This also explains why there is no such spike in s-
polarization. There is also a small negative trend for increasing γ(α) for all θ0
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Figure 6.3: Unitarity as a function of surface height skewness for p-polarization (left)
and s-polarization (right). The circles represent the data points while the dashed lines
are interpolations. The dielectric constant was ε(ω) = −17.2+0.498i, and the other
parameters used are given in Table 5.1.

except θ0 = 60◦. However, the difference from maximum to minimum unitarity
(ignoring the spike) is about 0.5% for θ0 = 0◦ and this effect may just as well be
a computational artefact.

The unitarities for s-polarization (right) have a clearer trend, but it is very
small. The difference between the maximum and minimum unitarities is less than
1% for all θ0, and the trend may have the same origin as for p-polarization.

As an extra test to see whether there is a correlation between absorption and
surface height skewness, simulations were performed with a material with a higher
absorption coefficient, i.e. a larger Im(ε(ω)). The material chosen was cobalt with
dielectric constant ε(ω) = −10.8 + 22.95i for λ = 0.6127 nm (SOPRA database).
Figure 6.4 shows the unitarity as a function of the surface height skewness for
p-polarized (left) and s-polarized light. Again, the absorption seems independent
of the surface height skewness. One notable exception is γ(α) = −0.85µm where
the rises significantly for all angles of incidence. Although there also seems to be
a trend in θ0 = 0◦ and θ0 = 20◦ leading up to this, it is quite possible that it is
a numerical artefact as discussed previously.

To summarize, the unitarity cannot be conclusively said to have a dependence
on the skewness.

6.1.3 Coherent component

Figure 6.5 shows the coherent fraction of the total scattered intensity as a func-
tion of the surface height skewness. For all skewnesses and incident angles θ0
the fraction is extremely small (∼ 10−4), as is expected from strongly rough sur-
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Figure 6.4: Unitarity as a function of skewness with p-polarization (left) and s-
polarization (right) calculated using Nζ = 500 samples. The circles represent the
data points while the dashed lines are interpolations. The material was cobalt with
a dielectric constant was ε(ω) = −10.8 + 22.95i (SOPRA database), and the other
parameters used are given in Table 5.1.

faces. Unlike the unitarities seen in the previous Section, there is no apparent
dependence on γ(α) (nor θ0), and the fractions are most likely just noise.

To conduct a better study of the coherent component, simulations using Nζ =
500 samples, δ = 0.2µm and the parameters in Table 5.1 were run. For these
parameters, the Rayleigh criterion for rough surfaces given in Eq. (2.2) gives
θ0 = 40◦. Hence, for the angles of incidence used in these simulations, they are
called weakly rough surfaces. The results for the coherent component are shown
in Fig. 6.6. The tendency seems to be a slightly larger coherent component for
large absolute values of surface height skewness, which is consistent with the
argument of a less rough surface in between large peaks and pits for large |α|.
However, as the effect is fairly small, this should be investigated further before a
conclusion is drawn.
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Figure 6.5: Coherent fraction of the scattered intensity for p-polarization (left) and
s-polarization (right). The circles represent the data points while the dashed lines
are interpolations. The dielectric constant was ε(ω) = −17.2+0.498i, and the other
parameters used are given in Table 5.1.
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Figure 6.6: Coherent fraction of the scattered intensity from a weakly rough surface
for p-polarization (left) and s-polarization (right). The circles represent the data
points while the dashed lines are interpolations. The dielectric constant was ε(ω) =
−17.2 + 0.498i, the RMS roughness was δ = 0.2µm and the other parameters used
are given in Table 5.1.
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6.2 Transparent materials

For the results in this Section the dielectric constant of fused silica glass with a
value of ε(ω) = 2.1247 + 0i was used [14], unless stated otherwise. The effect of
the surface height skewness on the MDRC was the same as for opaque materials
presented in the previous section, and will not be repeated here. As this is a
transparent material, the mean differential transmission coefficient (MTDC) will
be discussed instead.

6.2.1 MDTC

Figures 6.7 and 6.8 show the MDTCs for fused silica glass and the parameters
shown in Table 5.1. It is immediately apparent that there is virtually no difference
between positive (left columns) and negative (right columns) skewnesses, and only
the magnitude affects the results.

For normal incidence (top row) the transmitted intensity is slightly shifted
towards θt = 0◦ as the magnitude of the surface height skewness increases. A
possible explanation for this is that as the peaks get taller or the pits deeper, the
surface outside the peaks and pits flattens, as previously discussed. As coherent
light is transmitted through a rough surface, the interface acts as a diffusion
lens. The coherence is lost and the intensity is spread to other directions than
the incident. A rougher surface gives more diffusion, while a flatter surface gives
less. Hence, a strongly skewed surface profile, being flatter outside peaks and
pits, gives less diffusion. The diffusion effect is demonstrated by the manner in
which the transmitted intensity is centred around θt = θ0, but spread out. If the
interface was flat, the MDTC would have the same profile as the incident wave,
and sharply peaked around θt = θ0.

The diffusion effect reverses as the angle of incidence θ0 becomes large, while
the MDTC peak is shifted slightly towards θt = 0◦. A possible explanation is
again rooted in narrow peaks and pits in an otherwise relatively flat surface.
While the peaks and pits are ‘small’ when viewed from normal incidence, their
relative size to the surrounding surface increases as they are viewed more from the
side. This corresponds to a larger θ0. Hence, as θ0 grows, the surface effectively
grows rougher, inducing more diffusion.

The observant reader will perhaps recognize the shape of the MDTCs in
Figs. 6.7 and 6.8. Indeed, Fig. 6.9 shows an example of an MDTC that is reason-
ably well approximated by the skew normal distribution presented in Chapter 3.
It may seem that the MDTCs are another way of generating skew normal distri-
butions, and that increasing θ0 is equivalent to decreasing α!
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Figure 6.7: MDTC for p-polarization. The left column is for positive skewnesses γ(α)
with values γ(2) = 0.45 (µm)3 (green) and γ(5) = 0.85 (µm)3 (red), and the right
is for the negative values γ(−2) = −0.45 (µm)3 (green) and γ(−5) = −0.85 (µm)3

(red). The blue curve is for Gaussian surfaces in both columns. The angles of
incidence θ0 were 0◦, 20◦ and 40◦ for top, middle and bottom row respectively, and
are indicated by the vertical dashed lines. The parameters were dielectric constant
was ε(ω) = 2.1247 + 0i, length L = 25.6µm, wavelength λ = 0.6127µm and
correlation length a = 2µm. The other parameters are given in Table 5.1.
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Figure 6.8: Similar to Fig. 6.7, but for s-polarization.
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Figure 6.9: MDTC for α = 0, θ0 = 40◦ and p-polarization (blue) and f(x) given
by Eq. (3.1) (dashed green). The parameters for f(x) are ξ = 45◦, ω = 18◦ and
α = −6, and a scaling factor of 58. The MDTC is the same as in Fig. 6.7.

6.2.2 Transmittance

The transmittances of the previous MTDCs (as well as for θ0 = 60◦) are shown in
Fig. 6.10 for p-polarization (left) and s-polarization (right). The transmittances
look fairly constant, indicating that the transmittance is independent of the sur-
face height skewness γ(α). One notable exception is found for p-polarization for
γ(α) = −0.85µm, where the transmittances increase by 1-2% for all θ0. While
it is possible that this is physically real and caused by a scattering phenomenon
(for example the effect of Brewster’s angle), it is most likely a numerical artefact
as seen for the unitarities in Subsection 6.1.2.
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Figure 6.10: Transmittance as a function of surface height skewness for p-polarized
(left) and s-polarized (right) light. The dielectric constant was ε(ω) = 2.1247 + 0i,
and the other parameters used are given in Table 5.1.
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Chapter 7

Summary and conclusions

The effect of surface height skewness on rough surface scattering processes has
been investigated. To this end, a skewed probability distribution with a cor-
responding random number generator was needed, as well as a technique for
generating rough surfaces numerically.

In Chapter 3, a skew normal distribution was motivated for the chosen skewed
probability distribution. A random number generator was implemented in For-
tran 90 and verified to give the expected results.

In Chapter 4, a surface generation surface algorithm described by Nichols et
al. was implemented in Fortran 90 to generate properly correlated surfaces from
the random numbers, and the algorithm was verified to give consistent results.
The limitations of the algorithm were outlined, and its advantages and drawbacks
were compared to the method of Fourier filtering.

In Chapter 5, the surface generator was integrated into the simulation pro-
gram Maxwell1D, a program created by I. Simonsen to numerically simulate the
scattering of an electromagnetic field incident on a rough interface. The necessity
of applying a wavelet filter on the surfaces was justified, after which the generated
surfaces proved able to reproduce known results for the case of a Gaussian height
distribution.

In Chapter 6, the results for rigorous simulations of scattering from surfaces
with different surface height skewnesses are presented and discussed. Both the
reflection from non-transparent (opaque) materials and the transmission from
transparent materials were examined.

For the reflection from opaque materials, strongly skewed surface heights in-
duced more scattered intensity in the forward directions, both for positive and
negative values of the skewness. The proposed explanation is a model for a surface
with strongly skewed heights where the surface is relatively flat between sharp
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peaks or deep pits. A flatter surface scatters more intensity in the forward direc-
tions. For negative values of the skewness, there was an additional increase in the
scattered intensity for scattering angles θs = [60◦, 90◦]. This phenomenon was
attributed to the lack of peaks to scatter the intensity for these directions. Simi-
larly, the scattered intensity showed a negative correlation with the surface height
skewness for oblique angles of incidence for scattering angles θs = [−60◦,−90◦].
Whereas a peak has a relatively large probability of scattering the incident field
in these directions, as pit correspondingly has a smaller probability. The results
also showed a negative correlation between the surface height skewness and the
size of the enhanced backscattering peak. This was attributed to the fact that
the multiple scattering events that cause the enhanced backscattering peak to
occur, happen more frequently in a pit (negative skewness) than between peaks
(positive skewness). There were no strong indications for a correlation between
surface height skewness and absorption in absorbing materials, but a strongly
skewed surface height profile (both positive and negative skewness) seemed to
induce slightly more coherent scattering for weakly rough surfaces. This is again
explained by a relatively flat surface between peaks and pits.

For the transmitted field from transparent materials, the effects of positive
and negative values of the surface height skewness were the same, and only the
magnitude had an effect. For a normal angle of incidence strongly skewed surface
heights induced less diffusion, which is consistent with the model of the surfaces
becoming effectively less rough as the magnitude of the skewness increases. For
oblique angles of incidence the effect is opposite. The suggested explanation was
that the effective size of the peaks and pits as viewed from the source of the field
increases when the angle of incidence increases. This causes the ‘effective rough-
ness’ of the surface to increase, yielding more diffusion. The total transmittance
seemed to be independent of the surface height skewness.



Chapter 8

Further work

The main focus of this work has been the reflection and transmission from strongly
rough interfaces. However, surfaces may also be weakly rough, as was briefly
mentioned in Subsection 6.1.3. For such surfaces, enhanced backscattering from
multiple scattering events is very weak, but instead enhanced backscattering may
be caused by a phenomenon known as surface plasmon polaritons [1, Sec. 3.4].
A study of the effect of the surface height skewness on this process has not yet
been conducted, and is a topic for future research.

The correlation length a and RMS roughness δ were mostly kept constant
in this work. Changing the parameters could possibly enhance or reduce the
effects of a skewed surface height distribution, and a study of this might give
greater insight into the details of the scattering process. Also, other height-height
correlation functions might impact the effects of the surface height skewness.

Scattering systems with more than one interface can produce a phenomenon
called satellite peaks [1, Subsec. 5.2.2]. Here, a film is placed on top of a material,
supporting guided waves. Rigorous numerical simulations could also show how
this phenomenon is affected by the skewness of the height of the interface.

In this work, the angular distribution of the scattered intensity was only
studied in the far field. By studying the distribution of the tangential component
of the field along the surface, the impact of the surface height skewness could
also be determined for the near field.

For two-dimensional surfaces, polarization transitions between p- and s-polar-
izations are possible, and the surface height skewness might enhance or reduce this
effect. This would require implementing and testing Nichols’ (or an equivalent)
algorithm for producing rough surfaces with a height distribution different from
the Gaussian in two dimension and is a larger task than the previous suggestions.

Naturally, it would be interesting to see if the results from these simulations
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are accurate to results from a lab experiment, and if the predicted effects of
increased skewness correspond to the actual effects.

Lastly, as Nichols’ algorithm allows surfaces of any height distribution, it is
up to the imagination of the reader which distribution(s) might be an interesting
case for study.
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Appendix A

Variances of higher
moments

The variance of the second moment is easily calculated using the properties of
the skew normal distribution. Property H in Ref. [6] says that if Z is a skew
normal distributed variable with ξ = 0 and ω = 1, then Z2 is χ2 distributed
with one degree of freedom. This gives Var(Z2) = 2. If X is a skew normal
variable with E(X) = 0 and Var(X) = 1, then (X+E(Z)) ·

√
Var(Z) ∼ Z. Using

Var(aX + b) = a2 Var(X) and Var(X) = 1 gives

Var(Z2) = Var
(
(X + E(Z)) ·

√
Var(Z))2

)
= (Var(Z))2 ·Var

(
X2 + 2X E(Z) + (E(Z))2

)
= (Var(Z))2 ·

(
Var(X2) + 4(E(Z))2

)
= 2, (A.1)

which gives

Var(X2) =
2

(Var(Z))2
− 4(E(Z))2. (A.2)

The expectation and variance of Z are given in Eqs. (3.8) and (3.9) with ξ = 0
and ω = 1. The variance of X2 is α dependent, due to the α dependence of
E(Z) and Var(Z). Finally, for the average 〈X2〉 of a large sample of N numbers,
the second moment has a normal distribution with expectation E(X2) = σ and
standard deviation

σ(〈X2〉) =

√
Var(X2)

N
(A.3)

according to the central limit theorem.
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The variance of the third moment is not as easily calculated. The most obvious
method is to use the method of moments and find

Var(X3) = E
(
(X3)2

)
−
(
E(X3)

)2
.

The expectation values can be found using Eq. (3.5), but this quickly turns
cumbersome as it involves differentiating Eq. (3.7) six times using the chain
rule. However, software allowing algebraic manipulation of expressions such
as Maple handles this well, and the code

Mz := t 7→ e1/2 ξ t+1/2ω2t2
(
1 + erf

(
1/2 δ ω t

√
2
))

f := t 7→ d6

dt6 Mz (t)−
(
d3

dt3 Mz (t)
)2

VarGamma := eval (f (t) , t = 0)

VarGamma := eval
(

VarGamma, [ξ = −ω δ
√

2π−1]
)

VarGamma := eval

(
VarGamma, [ω =

(
1− 2 δ2

π

)−1
]

)
VarGamma := eval

(
VarGamma, [δ = α√

1+α2
]
)

stdGamma :=
√

VarGamma

simplify (stdGamma)

gives the standard deviation

σ(X3) = π3/2

(
1 + α2

)3
2 (π + π α2 − 2α2)

6

(
−18α6 − 75π α6 − 104π2α6

+ 60π3α6 − 312π2α4 + 180π3α4 − 135π α4

− 288π2α2 + 180π3α2 + 60π3
)

(A.4)

for the distribution scaled so that E(X) = 0 and Var(X) = 1. Finally, for the
average 〈X3〉 of a large sample of N numbers, the third moment has a normal
distribution with expectation E(X3) = γ and standard deviation

σ(〈X3〉) =
σ(X3)√

N
(A.5)

according to the central limit theorem.


