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Abstract

In vitro wounds from human skin have been analysed using hyperspec-

tral imaging. The purpose of this research is to use hyperspectral imaging as

a diagnosis tool for skin wounds. The imaging period was 22 days.

The images were analysed using Matlab. This includes noise removal, ca-

libration to reflectance, RGB image analysis, reflectance spectrum analysis,

spectral angle mapper and Monte Carlo. From this analysis, reflectance maxi-

ma and minima were identified, the change in reflectance values with time,

chromophores and cytochromes in skin were indentified and classification

analysis were performed to study the change in relative ratios of pixels of

the different classes.

Results from the analysis show that the reflectance decreases with time, skin

has the lowest reflectance and wound has the highest reflectance. Some samp-

les showes signs of healing, but no samples healed completely. An infection

occurred in some of the samples between day 8 and day 10, and this infection

is detectable in reflectance spectrums and to some extent in SAM classifica-

tions.
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Sammendrag

Denne oppgaven omhandler hyperspektral avbildning av in vitro sår fra

menneskehud. Formålet med dette er å bruke hyperspektral avbildning til

diagnose av hudsår. Avbildningsperioden var 22 dager.

Bildene ble analysert med Matlab. Dette omfatter støyfjerning, kalibrering

til reflektans, analyse av RGB-bilder, analyse av reflektansspektrum, spec-

tral angle mapper og Monte Carlo. Denne analysen førte til at minima og

maksima fra reflektansspektre ble identifisert, endringen i reflektans som

følge av tid, identifisering av kromoforer og cytokromer i hud og klassifi-

seringsanalyse ble gjort for å følge endringen i relative forholdet av piksler

mellom de ulike klassene.

Resultater fra analysen tyder på at reflektans minker med tiden, og at hud-

en har den laveste reflektansen og såret har den høyeste reflektansen. Noen

sårmodeller viser tegn på heling, men ingen av sårmodellene helet komplett.

Det oppstod en infeksjon i noen av sårmodellen mellom dag 8 og dag 10, og

denne infeksjonen kan detekteres i reflektansspektrum og til en viss grad i

SAM-klassifiseringen.
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1 Introduction

The human skin is susceptible to wounds caused by accidents or illness, and as

most wounds heals without complications, in some cases it is helpful or even ne-

cessary to be able to know how or if the wound is healing at all. The healing of

wounds in human skin is a complex process that involves cell migration, prolife-

ration and differentiation [2]. This thesis aims to show that hyperspectral imaging

can be used and utilized as a tool for diagnosis of skin wounds. Hyperspectral

imaging is an imaging technique that combines spectroscopy and imaging and

allows the recording of the entire spectrum for every pixel on the entire image.

The data produced can then be analyzed and used for diagnosis [3].

The origin of hyperspectral imaging is military use, as it was developed as a tool

for satellite imaging [4]. The purposes of this is mainly finding objects, identify-

ing materials, or detecting processes. Within the field of biomedical optics, hy-

perspectral imaging has been used for detection and characterization of advanced

atherosclerotic plaques in vitro [5], monitoring tumor hypoxia, cancer detection

[4] and assessing the risk of diabetic foot ulcer development [6].

The mostly used tecniques used in medical imaging are x-ray, ultrasound, com-

puted tomography and magnetic resonnance imaging. Comparing optical ima-

ging with these other methods, as in table 1 [7], it is apparent that there would

be many advantages to use optical imaging:

Table 1: Comparison of various medical imaging modalities

Characteristics X-ray

imaging

Ultrasonography MRI Optical

imaging
Soft-tissue contrast poor good excellent excellent

Spatial resolution excellent good good mixed

Maximum imaging depth excellent good excellent good

Function none good excellent excellent

Nonionizing radiation no yes yes yes

Data acquisition fast fast slow fast

Cost low low high low

The human skin is divided into three layers; epidermis, dermis and hypodermis.
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The epidermis is the outer protective layer, dermis is where the blood vessels

are, nourishing the skin, and the hypodermis is mainly fat cells. Light penetrates

through the first two layers, and can be reflected back. By measuring the amount

of reflected light, it is possible to aquire information about structures in the skin.

There are several benefits of using optical imaging in biological tissue. Some of

these are listed below [7]:

• Optical photons provide nonionizing and safe radiation for medical appli-

cation.

• Optical spectra - based on absorption, fluorescence, or Raman scattering

- provide biochemical information because they are related to molecular

conformation.

• Optical absorption provides contrast for functional imaging.

• Optical scattering spectra provides information about the size distribution

of optical scatterers, such as cell nuclei.

• Optical polarization provides information about structurally anisotropic

tissue components, such as collagen and mucle fiber.

The purpose of this research is to use hyperspectral imaging in the diagnosis of

wound healing. The imaging has been done in vitro with human skin samples

derived from excess skin after plastic abdominal surgery. It is important to use

human skin instead of a skin imitation model to be able to accurately study the

healing process of a wound. Several in vitro and in vivo models have previously

been used to study skin wounds but human wounds in vivo are variable and dif-

ficult to sample, and the healing process is influenced by the nutritional status of

the patient, the circulation, age, infections and initial treatment of the wound [2].

Previous work on this subject has shown that it is possible to use hyperspectral

imaging in skin wound diagnosis [8]. The use of a hyperspectral imaging setup

would provide a simple and fast diagnosis of the skin wound. In this project, the

hyperspectral images have been analysed by examining change and differences

in reflectance spectrums, spectral angle mapper classification and Monte Carlo

simulation.
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2 Theory

This chapter includes an overview of the composition of the human skin and

the processes included in wound healing, optical properties of the skin, light

propagation in skin and an introduction to hyperspectral imaging. The principles

of the image analysis will also be presented.

2.1 Skin

The human skin is named cutis, and is composed of two layers, a top layer called

epidermis and a bottom layer called dermis. Below dermis, there is a subcutane-

ous fat layer.

The epidermis varies in thickness from 0,3 mm to 1,5 mm, and consists of a

multilayer plate epitel. Almost all of the cells in epidermis, around 90%, are ke-

ratinocytes [9]. The epidermis is further divided into layers called strata. These

layers are the basale layer, the spinous layer, the granular layer and the corneum

layer, as seen in Figure 1[10].

Figure 1: The composition of epidermis [10].

The basal cells undergo mitosis, leading to a renewal of the epidermis. During

the growth of new cells, the older cells get pushed upwards in the epidermis. So

as the cells mature, they travel upwards. The new keratinocytes change structu-

re during maturing, and eventually become flat squamous cells in the stratum

corneum. The keratinocytes syntesizes keratins, which are structural proteins.

Keratin are together with filaggrin tightly packed in arrays. This leads to the

flattening of the cells and gives the structure of the stratum corneum [11]. There
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are no blood vessels in the epidermis, which means that that the epidermis and

especially the stratum basale relies on the dermis for nutrition [12].

The dermis, which is located below the epidermis, varies in thickness from 1,4

mm to 4 mm. Dermis consists of collagen and elastic fibers, and is divided into

two layers, where the lower is called the reticular dermis and the upper is called

the papillary dermis [9]. An illustration of the composition of dermis can be seen

in Figure 2 [13].

Figure 2: The composition of dermis [13].

Most of the cells in the dermis are fibroblasts or macrophages. The fibroblasts

are mainly distributed in the papillary dermis, producing the protein fibres col-

lagen and elastin fibres and renewing the extracellular matrix. The macrophages

eliminate foreign material and damaged tissue [11].

2.1.1 Reepithelializing

The repair of the skin after injury is called reepithelializing. Wound healing is a

process that can be divided into four overlapping phases [14]. These phases are

• Inflammation and clot formation
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• Keratinocyte activation and migration

• Remodeling of the basement membrane and extracellular matrix

• Dermal and epidermal maturation

Reepithelializing occurs during the final three of these stages.The reepitheliali-

zing process begins with keratinocytes migrating from the edges of the wound,

followed by their proliferation, stratification and redifferentiation to form an in-

tact epithelium [14]. An illustration of the reepithelialization phases can be seen

in Figure 3 [14].

Figure 3: Reepithelialization phases [14].

As seen in Figure 3, the healing process of a wound starts 12 to 24 hours adter

the wound occurs. After the wound is made, the first phase is initiated by local

inflammation leading to the formation of a fibrin clot. The blood vessels contract

and decrease the wound extent. The leucocytes start to infiltrate, and provides a

source of neutrophils, monocytes (which mature to macrophages), cytokines and

growth factors which amplify the wound signal. In the next phase, the granula-

tion phase, macrophages, keratinocytes and fibroblasts gets activated, leading to

the formation of granulation tissues. When the wound is completely covered by

this tissue, the wound can close. Activated keratinocytes migrate from the wound
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margins in the bottom layers of epidermis to the granulation tissue, as seen in Fi-

gure 4 [14].

Figure 4: Migration of the activated keratinocytes [14].

Only one layer of keratinocytes will migrate from the wound margins and towards

the middle of the wound, and after the whole wound is covered, the keratinocy-

tes will start to differentiate. After the whole healing process is completed, the

structure of epidermis will be reestablished.

2.1.2 Cytochromes

A cytochrome complex is a heme protein. Cytochromes carries electrons and pro-

tons across the cell membrane [15]. Cytochrome c is known for its function in the

mitochondria. Here, it is a key participant in the life-supporting function of ATP

synthesis [16].

Figure 5 shows the absorption spectrum of cytochrome c. This can be used to

identify possible cytochrome peaks in spectrums from human skin.
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Figure 5: Absorption spectrum of cytochrome c [17]
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2.2 Optical reflectance and transmission

Light is electromagnetic ratiation with the properties of waves. The electromag-

netic spectrum can be divided into band based on the wavelength [18]. In hyper-

spectral imaging, the light source appears as a plane wave. Biological tissues are

referred to as scattering media, resulting from the strong optical scattering that

characterized the tissues [7].

2.2.1 Absorption

Tissue can absorb photons so that electrons can be elevated to an excited state.

This electron can then relax to the ground state and give off luminescence or heat.

The intensity of the absorbed light in an ideal absorbing medium, assuming zero

scattering, is proportional to the absorbing cross-sectional are σa of the object.

This absorption cross-sectional area is related to the geometric cross-sectional

area of the absorber,

σa =Qaσg , (1)

whereQa is the absorption efficiency, and σg is the geometric cross-sectional area.

If there are more than one absorbing object, the total absorbing cross-sectional

are is the sum of the individual areas,

σa,tot = σa,1 + σa,2 + · · ·+ σa,N , (2)

where σa,i denotes the individual cross-sectional areas and N is the total number

of absorbers.

The absorption coefficient µa is defined as the probability of photon absorption

in a medium, per unit path length,

µa =Naσa, (3)

where Na is the number density of absorbers and σa is the absorption cross-

sectional area. Assuming an ideal absorber, there will be no scattering, and the

the absorption cross section σa indicates the absorption capability. Light is at-

tenuated as it propagates in an ideal absorber, this can be expressed as

dI
I

= −µadx, (4)
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where I is the light intensity and x is the distance along the propagation direc-

tion. Equation (4) means that the percentage of light that is absorbed in the in-

terval (x,x + dx) is proportional to the product of µa and dx. Equation (4) can be

integrated into Beer law,

I(x) = I0e
−µadx, (5)

where I0 is the light intensity at x = 0. The minus sign in both equation (4) and

equation (5) is due to the light beeing attenuated as it propagates in the tissue.

Beer law states that there is a logarithmic relation between the absorption coeffi-

cient of the tissue and the length of the propagation path. For equation (5) to be

valid, the absorbers must be independent of each other, the absorbing medium

must be homogeneous at the site of action and the incoming radiation must be

coherent and monochromatic.

The most important absorbers in biological tissue are hemoglobin, melanin, wa-

ter, bilirubin, beta-carotene and lipids [7]. Figure 6 [19] shows the absorption

spectra for melanin, hemoglobin and water. The absorption spectra are mul-

tiplied by their volume fractions and summed to yield the total, wavelength-

dependent dermal absorption coefficient [19]. The epidermal melanin amount is

denoted by the melanin absorption at 694 nm (µa,m,694) [19].

Figure 6: The absorption coefficient of blood, methemoglobin, water and the me-

lanin model for sun-protected North-European skin (µa,m,694 = 350m−1) [19].
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2.2.2 Scattering

In addition to beeing absorbing, biological tissue is also scattering. Assuming

an ideal scattering medium, with µa = 0, the intensity of the scattered light is

proportional to the scattering cross-sectional area σs of the object. The scattering

cross-sectional area is proportional to the geometric cross-sectional area of the

scatterer,

σs =Qsσg , (6)

where Qs is the scattering efficiency and σg is the geometric cross-sectonal area

of the scatterer. In tissue, there are multiple scattering objects, and the total scat-

tering cross section is the sum of the individual scattering cross-sectional areas,

σs,tot = σs,1 + σs,2 + · · ·+ σs,N , (7)

where σs,i denotes the individual cross-sectional areas and N is the total number

of scatterers.

The scattering coefficient µs is defined as the probability of photon scattering

in a medium per unit path length. The scattering coefficient is defined as

µs =Nsσs, (8)

whereNs is the number density of scatterers and σs is the scattering cross section.

From equation (8), the scattering coefficient can be defined as the total cross-

sectional are for scattering per unit volume [7].

In a scattering medium, there is a probability of backscattered photons. When

the light is scattered a sufficient amount of times in a medium, the light pro-

pagation can be represented by the reduced scattering. The reduced scattering

coefficient is defined as

µ′s = µs · (1− g), (9)

where g = cos(θ) is the anisotropy factor, which is the average cosine of the scat-

tering angle θ [7]. g has a value between -1 and 1, where a value of zero indicates

isotropic scattering and a value close to unity indicates dominantly forward scat-

tering [7]. The anisotropy factor for most biological tissues is around 0.9 [7]. If
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normal scattering, by the original scattering coefficient µs, can be represented

by a series of scattering events, reduced scattering can be represented by, on a

macroscopic scale, one scattering event.

There are multiple scatterers in biologial tissue. Some of the most important are

collagen, myelin, cell membranes and cell organelles.

Scattering of light by a spherical particle can be modeled exactly by the Mie1

theory. The Mie theory assumes homogeneous spherical scattering particles of

isotropic material, and utilizes two properties; the relative refractive index betwe-

en the scattering particle and the medium, nr = ns/nm (where the subscript s re-

fers to the scattering particle and the subscript m to the medium), and the size

parameter x = 2πr/(λ/nm) (where r is the radius of the scattering particle). The in-

cident light is assumed to be a plane monochromatic wave. Mie scattering theory

is directly derived from Maxwell’s equations, and the solution takes the form of

an analytical infinite series. The wavelength dependency for the Mie theory can

be expressed as [7]

y = nrelx =
2πnsa
λ

, (10)

where x = ka is the size parameter, a is the radius of the scattering particle,

nrel = ns/nb is the relative refractive index of the sphere with refractive index

ns in a background medium with refractive index nb [7].

The Mie theory reduces to the Rayleigh2 theory if the spherical particle is much

smaller than the wavelength [7]. The Rayleigh scattering theory is valid for elas-

tic scattering of light or electromagnetic radiation by particles much smaller than

the wavelength of the light. The incident light is assumed to be a monochromatic

plane wave, and scattering is caused by localized scattering centers. The scatte-

ring cross section σs can be calculated by the Rayleigh theory,

σs =
a6

λ4 , (11)

where a is the radius of the scattering particles and λ is the wavelength of the

incoming light. Equation (11) shows that scattering depends on the size of the

particle and the wavelength of the light. Smaller wavelengths are much more

1Gustaf Adolf Feodor Wilhelm Ludwig Mie, 1869 - 1957, German physicist
2John William Strutt, 3rd Baron Rayleigh, 1842 - 1919, English physicist
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effectively scattered than longer wavelengths, as long as the particles are much

smaller than the wavelength when using the Rayleigh theory. The Mie theory

can be used regardless of particle size, but is more difficult to calculate than the

Rayleigh theory.

2.2.3 Extinction

Since both absorption and scattering are present in biological tissue, an extinc-

tion coefficient can be defined as the sum of the absorption coefficient and the

scattering coefficient,

µt = µa +µs, (12)

where µt is the extinction coefficient, or the total interaction coefficient. For ex-

tinction, as for ideal scattering, there is a probability for backscattering, and a

reduced extinction coefficient can be defines as

µ′t = µa +µ′s, (13)

using µ′s from equation (9) [7].

2.3 Transport of light in tissue

Photon transport in biological tissue can be modeled by the radiative transfer

equation. This equation is difficult to solve, and can be approximated to a diffu-

sion equation. However, the diffusion approximation will provide less accurate

solutions than the Monte Carlo method [7].

When light is scattered in multiple events, it will lose its coherence and the pola-

rization can be neglected. The absorption and scattering events in tissue leads to

the Boltzmann photon transport equation,

ŝ · ∇L(~r, ŝ) = µs ·
∫

4π
L(~r, ŝ′)p(ŝ′ · ŝ)dΩ′ −µtL(~r, ŝ) + S(~r, ŝ), (14)

where the radiance L is defined as the spectral radiance integrated over a narrow

frequency range [ν,ν +∆ν]:

L(~r, ŝ) = Lν(~r, ŝ)∆ν, (15)
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where the spectral radiance Lν is the energy flow per unit normal area per unit

solid angle per unit temporal frequency bandwidth, and the normal area is per-

pendicular to the flow direction. ~r is the position and ŝ is unit direction vector

[7]. The phase function p in equation (14) describes the probability of scattering

in direction ŝ′ when the original direction of the photon was ŝ. The last term S is

the source term. The derivation of (14) can be found in [7].

The left-hand side of equation (14) describes loss due to divergence of the light

beam. The integration of L and p on the right-hand side is the main scattering

term, where photons are scattered according to the phase function. µt is the ex-

tinction coefficient. S denotes the source term, where new photons enter the po-

sition ~r in the direction ŝ.

The phase function is usually the Henyey-Greenstein phase function,

p(ŝ′ · ŝ) = p(cosθ) =
1− g2

2(1 + g2 − 2gcosθ)
3
2

, (16)

where θ is the angle between the original photon direction and the scattered

photon direction, and g is the anisotrophy factor, which is defined as

g =
∫
cosθp(cosθ)d(cosθ). (17)

The anisotrophy factor is the average cosine of the scattering angle.

The Boltzmann equation, (14), can be solved using the Monte Carlo method, or

by diffusion theory.

2.3.1 Diffusion theory

From the definition of the fluence rate φ and the flux ~j [20], and integrating the

Boltzmann equation (14) over all solid angles, a continuity equation can be ob-

tained:

∇~j(~r) = −µaφ(~r) + q(~r), (18)

where the integrated L and L~s have been replaced with respectively the fluence

rate φ and the diffuse photon flux vector ~j, and the integrated source function S

has been replaced by q.
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If the scattering is assumed to be much stronger than absorption, then the ra-

diance can be expressed as an isotropic fluence rate φ plus a small directional

flux ~j. Equation (14) is then reduced to a diffusion equation [20]. By substituting

a diffusion approximation of L [21] into (14) and multiplying by ŝ and integrating

over all solid angles, gives [20]

~j(~r) = −D∇φ(~r, t), (19)

where D is the photon-diffusion coefficient. Combining equation (18) and (19)

gives an expression for the fluence rate without the flux,

∇2φ−
φ

δ2 = −
q

D
, (20)

where the optical penetration depth δ is defined as

δ =

√
D
µa
. (21)

Equation (20) can be applied for each layer in the skin, with depth-varying source

function. For a more detailed introduction to diffusion theory, see [1].

2.3.2 Monte Carlo simulation

Monte Carlo (MC) simulation is a method for modelling light propagation, which

is used within, amongst others, medical dosimetry [22], metereology [23] and

probability theory [24].

The idea behind using MC in photon migration modelling in biological tissue

is to regard the photon as a particle, and give each photon a random pathlength

and direction of propagation based on the probability distribution defined by µa,

µs, p(θ) and the refractive index of the tissue. By tracking a sufficient number of

photons, physical quantities such as diffuse reflectance can be estimated [7].

By the Monte Carlo method, an ensemble of biological tissues is modeled for

the averaged characteristics of photon transport [7]. This ensemble consists of

all the instances of the tissues that are microscopically different but macrosco-

pically identical [7]. For the method to be statistically valid, a large number of

photons have to be tracked, which is time consuming. However, multiple physi-

cal quantities can be simultanously estimated [7]. Some of these include relative

specific absorption, relative fluence, relative diffuse reflectance and relative dif-

fuse transmittance, all of which are relative to the incident energy [7].
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A Monte Carlo-implementation of (14) will involve tracking each photon pack-

et and accounting for absorption and scattering losses as according to the me-

chanisms described by (14) using probabilistic methods [25]. Figure 7 shows a

flowchart for the Monte Carlo package MCML [7]. s denotes the stepsize. This is

sampled from a random distribution which describes the probability of encoun-

tering an absorption or scattering event. If the particle hit the boundary between

the two layers, the reflection and trasmission will be described by Fresnel’s equa-

tions. If not, they are moved according to step size. The weight of the photon

packet is reduced as according to absorption and back-scattering determined by

µt. The new scattering direction is then determined by sampling a random va-

riable from (16) [25]. Photons with too small weight will be eliminated, but the

Russian roulette will keep some of them alive to ensure energy conservation.
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Figure 7: Program flow in MCML, reproduced from [7].



2 THEORY 32
2.4 Hyperspectral imaging

This chapter contains an introduction to hyperspectral imaging and the concept

behind using hyperspectral imaging for medical applications.

Hyperspectral imaging is an imaging technique that combines spectroscopy and

imaging and allows the recording of an emission spectrum limited by the de-

tector used, for every pixel on the entire image. Hyperspectral imaging combi-

nes both spatial and spectral information. The data from hyperspectral imaging

is called a hypercube, containing information in two spatial directions and one

spectral direction. Hyperspectral data are images of the surface radiance [4]. This

radiance can be converted to reflectance data from the full spectrum. The con-

cept behind hyperspectral imaging is that a two dimensional image is recorded

at discrete emission wavelength intervals, where each image contains spatial and

spectroscopic (intensity) information at a given wavelength [3].

There are numerous possible applications for hyperspectral imaging, for spec-

troscopic analysis, image analysis and tissue optics. From spectroscopic analysis,

it is possible to extract information about, for example, blood oxygenation, pig-

mentation in the skin, erythema and edema. From image analysis, there are for

example spectral differences, classification, information about structure and lo-

cating hidden objects. Tissue optics can give information about the propagation

of light in turbid media and optical properties by applying invers models as the

diffusion model and Monte Carlo.

The quality of the data from hyperspectral imaging, where the amount of photons

available per spectral band is limited, relies on the signal-to-noise ratio (SNR)

that the system can provide. The overall SNR is determined by the intensity of

the incoming light from a reflection-, transmission- or fluorescence process, the

overall effect of noise from sources like photon noise, dark current noise and

readout noise, and also system losses that originates from optical transmission,

absorption and quantum efficiency [26]. Similarly, a combination of some of these

factors determines the total sensitivity per spectral band of the system [26].

2.5 Noise removal

Noise removal can either be done by averaging over the neighboring pixels, or

by a minimal noise fraction (MNF) transform. A MNF transform will guarantee



2 THEORY 33
that the principal componens in the image will be ranged from the least noisy to

the most noisy, measured by a signal-to-noise (SNR) ratio. Firstly, a forward MNF

rotation is done. The MNF transform is a linear transformation which is essenti-

ally two cascaded Principal Components Analysis (PCA) transformations. This

forward transform allows to eliminate the bands that contains mostly noise. The

inverse transform is then done using only the selected bands that contain useful

information. This drastically reduces the amount of data that has to be processed

further, and the result is a noise reduced image without any loss of spatial reso-

lution.

Assuming the hyperspectral image consist of n bands with spatial coordinates

x and y, the data set for the image can then be expressed as [27]

Ai(x,y), i = 1,2, ...,n (22)

Ai can then be divided into one component for the signal and one for the noise,

respectively S(x,y) and N (x,y), under the restricten that the signal and the noise

are orthogonal. The data set thus consist of [27]

A(x,y) = S(x,y) +N (x,y). (23)

The signal-to-noise ratio for the i-th band is defined as [27]

V ar{Si(x,y)}
V ar{Ni(x,y)}

, (24)

the ratio of the signal variance and the noise variance. The maximum noise frac-

tion transformation are then defined as the linear transformations [27]

Yi(x,y) = aTi A(x,y), i = 1, ...,p. (25)

The signal-to-noise eventually becomes [27]

V ar{aTi N (x,y)}
V ar{aTi A(x,y)}

=
aTi ΣNai

aTi Σai
, (26)

and the vectors ai are eigenvectors to the real, symmetrick, generalized eigenpro-

blem [27]

det{ΣN − ηΣ} = 0. (27)

Then the signal-to-noise ratio for Yi(x,y) is given by [27]
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SNR =
1
ηi
− 1, (28)

where ηi is the eigenvalue of ΣN with respect to Σ. For the invers transform,

Y (x,y) is multiplicated by the invers of aT [27],

A(x,y) = (aT )−1Y (x,y). (29)

In summary, the first transformation decorrelates and rescales the noise in the

data. This results in transformed data in which the noise has unit variance and

no band to band correlations. The second transformation is a standard PCA of

the noise-whitened data.

2.6 Spectral angle mapper SAM

SAM is a method for classification of an image spectrum. SAM compares an unk-

nown pixel spectrum to a reference spectrum.

In a SAM analysis, the spectrums are viewed as n-dimensional vectors, where

n is the number of spectral bands. Each vector has a certain length and direction.

The length of the vector is determined by the brightness of the pixel, while the

direction represents the spectral information [28].

Spectral differences between pixels will affect the angle between the vectors. The

angle increases with differences between the two spectrums, and the angle can

have values between 0 and π/2 [28]. Equation (30) shows how the spectral angle

θ is calculated [28],

θ = cos−1

 ∑n
i=1 tiri√∑n

i=1 ti
2∑n

i=1 ri
2

 , (30)

where n is the number of spectral bands, t is the reflectance of the actual spec-

trum and r is the reflectance of the reference spectrum [28]. Pixels are classified

by calculating the spectral angles between the reflectance spectrum of the target

spectra and the reference spectra [28]. Each pixel will be assigned to the class

according to the lowest spectral angle value [28]. Pixels with an angle larger than

a predefined boundary will be unclassified.
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3 Methods of analysis

3.1 Preparation

This chapter includes a description of the preparation of the wound models and

the experimental setup.

3.1.1 Preparation of the samples

The skin used for the wound models, was donated human skin from plastid abdo-

minal surgery. The surgery took place at Aleris in Trondheim, April 8 2014, and

the surgeon was Ivan Pavlovic. The donor was healthy and admitted for elective

abdominoplasty, and had beforehand agreed to give access to excess skin. There

was no available information about age and gender of the donor. The use of the

human skin is ethically approved, as it does not affect an otherwise planned sur-

gery and follow-up postoperatively. The skin would otherwise been thrown away,

but is instead useful in further research. Figure 8 shows the whole piece of skin

that was donated from the surgery.

Figure 8: Donated skin piece.

The skin samples were made by Brita Pukstad, by using punch biopsies with

diameters of 3 mm, 4 mm and 8 mm. The 8 mm punch biopsy was used to cut

out the whole skin sample for all of the samples. The 3 mm and 4 mm punch

biopsies were used to make the wound in the samples. The wound models were
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placed in containers with respect to the medthod that was used in the making.

The skin samples were made approximately 1,5 hours after surgery. The skin was

prepared by cleaning the skin to remove blood from the surface.

The wound models were made by first using the smaller punch biopsy to cut out

the diameter of the wound by cutting approximately 1 mm down in the epider-

mis and slightly into the dermis. The skin was then lifted with either a cannula

or a custom made suction device, and then cut away using a pair of scissors. The

final step is then to cut out the whole wound model by using the 8 mm punch

biopsy, lift the samples with a tweezer and cut them loose. The wound models

were sorted into well trays of 6 well each, with nutrition medium. The medium

used was Dulbecco’s Modified Eagle Medium (DMEM) (Gibco, USA). 10% fetal

calf serum (FCS), 50µg/ml penicillin, 50 U/ml streptomycin and glutamine were

added to the DMEM. Figure 9 shows an illustration of the wound models.

Figure 9: Illustration of the wound models.

Figure 10 shows how the samples were lifted with the cannula, and here, cut

with knife. However, scissors proved to make cleaner cuts so none of the final

wound models were cut with a knife. Figure 11 shows how the suction device

was used to lift the wound.

When making the wound models, it is important to make them as uniform and

equal to insure that they behave as similar as possible. The crucial factors in

preparing the wound models are:

• Only one skin sample in each well in the well tray.
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Figure 10: Sample holder insert seen from above.

• The amount of medium have to be measured and should be the same in

each space.

• Wells with only medium should be included for reference.

• Skin samples without wound should be included for reference with respect

to shrinking. These should be the same size as the wound models.

The well trays used in the experiment have 6 wells each. Inside each well, the-

re was a custom made insert plate used to keep the wound models in a fixed

spot, and preventing them to drown in the medium. The inserts are made of so-

me stainless metal with holes drilled in to insure nutrition supply to the wound

models. The well tray inserts were made by Tore Landsem, staff engineer at the

Department of Electronics and Telecommunications at NTNU. Figure 12 shows

one of the inserts from above, and Figure 13 shows the insert from the side.

There were only one wound model placed in each well in the trays. A total of

three well trays were used. The trays were numered with roman numbers, I, II

and III. Tray I includes wound models with 3 mm wounds lifted up with the suc-

tion device and cut with scissors. Tray II includes 3 mm wounds lifted with a

cannula and cut with scissors. Tray III includes 4 mm wounds lifted with a can-
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Figure 11: Sample holder insert seen from above.

nula and cut with scissors.

In between the imaging, the well trays were kept in a Forma Steri-Cycle CO2

incubator (Thermo Scientific, Waltham, Massachusetts, USA). This cabinet incu-

bates at 37◦ Celcius and with 5% CO2.

Immediately after every imaging session, the medium was changed. The amount

of medium used was 5 mL for all the wells. This provides the skin with sufficient

nutrition, in addition to access to air. Lack of oxygen would prevent the kerati-

nocytes from forming epithelial layers [29].

On April 19., it was discovered that an infection had occurred in some of the

samples since the last imaging. These samples had to be removed immediate-

ly after imaging this day. After removing the infected samples, the rest of the

samples and the well tray inserts were cleaned then inserted into new trays. The

infected wells are the following: I-1, I-2, II-1, II-3 and III-3. Figure 14, Figure 15

and Figure 16 shows pictures of the well trays taken on April 19. Figure 17, Fi-

gure 18 and Figure 19 shows the well trays after the infected samples have been

removed, the remaining cleaned and moved to new well trays.
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Figure 12: Sample holder insert seen from above.

Figure 13: Sample holder insert seen from the side.
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Figure 14: Well tray I with infected wound models. Photo by Brita Pukstad.
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Figure 15: Well tray II with infected wound models. Photo by Brita Pukstad.

Figure 16: Well tray III with infected wound models. Photo by Brita Pukstad.
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Figure 17: Well tray I without infected wound models.

Figure 18: Well tray II without infected wound models.
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Figure 19: Well tray III without infected wound models.
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3.1.2 Experimental setup

The camera is mounted on a robust rack. The camera can be moved up or down do

adjust focus. There is a horizontal translation stage located under the camera, that

allows the samples to be scanned by the camera. The translation stage is driven

by a Standa 8SMC1-USBhF-B1-1 Stepper Motor Controller (Standa Ltd, Svitri-

gailos 4-39, 03222 Vilnius, Lithuania) [30]. The translation stage is controlled in

the image aquisition software used. Attached to the horizontal translation stage

is a custom made support plate for the well tray and a reference standard, made

by Tore Landsem. This support plate provides a smooth and steady surface.

The light sources (one for white and blue light, and one for UV light) are mounted

next to the camera lens, at an angle providing the highest illumination possible.

Attached to the camera lens, is a polarizer. The reason for this is to avoid spec-

ular reflections in the image. Specular reflection results in saturated pixels, and

saturated pixel does not contain any information.

Figure 20 shows the setup from the side. The big black box is the camera, the

light source to the right of the camera is white and blue light. The custom made

support plate is mounted on the translation stage, shown with the white referen-

ce standard and the well tray. The translation stage moves the tray from right to

left.

Figure 20: Imaging setup.
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Figure 21 shows the arrangement of the light sources and camera lens. Here,

the camera lens and a UV light source can be seen.

Figure 21: Imaging setup.

In Figure 22, the setup is shown from the side where the UV light source is

mounted.

3.2 Hyperspectral imaging procedure

This chapter explains how the hyperspectral imaging was performed and the

equipment used.

The imaging was done every second day from April 8. 2014 to April 29. 2014,

resulting in a total of 12 measurements. The imaging was done in the Hypers-

pectral lab at St. Olavs Hospital in Trondheim. The hyperspectral camera used

was the HySpex VNIR-1600 developed and manufactured by Norsk Elektro Op-

tikk [31]. This is a line-scanning camera that records lines of 1600 pixels and 160

bands, or wavelengths. The specifications for the HySpex VNIR-1600 are given in

table 2 [32].

Inside the camera, the light from the scene is focused by an aspheric mirror onto

a slit that defines an instantaneous field of view [26]. Behind the slit, a second
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Figure 22: Sample holder insert seen from the side.

Table 2: Specifications for HySpex VNIR-1600

Detector Si CCD 1600 1200

Spectral range 0,4 - 1,0 µm

Spatial pixels 1600

FOV 17 degrees

Pixel FOV across/along track 0,18 mrad/0,36 mrad

Spectral sampling 3,7 nm

Digitalization 12 bit

Max frame rate 135 fps

aspheric mirror collimates the light onto a transmission grating for spectral dis-

persion in a plane perpendicular to the slit [26]. An objective lens focuses the

light onto a two-dimensional detector array [26]. Figure 23 shows the optical lay-

out of the camera.

The camera uses a custon software provided by NEO, called HySpex Ground

[31]. This software aquires and saves the images as a .hyspex file, with a corre-

sponding header file that contains information about the image. The images were

initially inspected using ENVI [33] and imported into Matlab [34] for analysis.

The hyspex-images can be converted to radiance data using the software HySpex

RAD [31].
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Figure 23: Schematic of the optical layout of the HySpex VNIR-1600 hyperspec-

tral camera [31].

There is a reflectance standard included in all the images. This standard is a

Spectralon Diffuse Reflectance Standard SRS-99-010 (Labsphere Inc., Reflectan-

ce Calibration Laboratory, North Sutton, USA) [35]. The specifications for the

reflectance standard can be found in table 3.

Table 3: Specifications for diffuse reflectance standard

Reflectance factor 99 %

Reflective area (inches) 1,25 D

Dimensions (inches) 1,50 D x 0,55 H

The imaging was done using white light, blue light (440 nm) and UV light. The

light source for white and blue light was a Schott-Fostec DCR II (SCHOTT MO-

RITEX Corporation, 3-13-45 Senzui, Asaka-shi, 351-0024 Saitama, Japan). The

blue light was achieved by attaching a blue filter to the light source. The blue

filter was a Asahi Spectra XHQA440 High Transmission Bandpass Filter (Asahi

Spectra USA, Inc., 23505 Crenshaw Boulevard, Suite 229 Torrance, CA 90505,

USA) [36].

For the white light imaging, 80 % of the total light power was used. This was

found to be the level where there was close to zero specular reflections. The in-

tegration time used for white light imaging was 7500 ms. For blue light, 100 %
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of the available power was used, and an integration time of 50000 ms. White and

blue light imaging was done this exact way for all the well trays and all the ima-

ging sessions.

UV imaging was done with two different integration times, one for two of the

trays, and one for the last tray. This was done to insure at least some of the samp-

les were exposed to less UV radiation. The longest integration time of 50000 ms

was used for tray I and III, and the shorter integration time of 10000 ms was used

for tray II.

The blue light av UV images will not be presented in this thesis, but the ima-

ging was done using these light sources as well, as the process of preparing and

taking care of the wound models is a time consuming process and the access to

available skin can sometimes be limited. By doing imaging with all three light

sources, the blue light and UV images will thus be ready for future analysis.

3.3 Analysis of data

This chapter presents the methods of analysis of the hyperspectral images.

3.3.1 White light images

White light analysis was done with Matlab. The images were imported into Mat-

lab and analysed by plotting reflectance spectrums of the wound, the intact skin

and the wound edge. Before the images was analysed, they were converted to ra-

diance using the HySpex RAD.

For each image, there is a corresponding header file. This header file contains

information such as

• The number of lines and samples, the spatial dimensionality of the image.

• The number of bands, the spectral dimensionality of the image.

• Data type, header offset, interleave and byte order. Data needed to load the

binary data with Matlab.

This header file was first imported into Matlab using the script readHyperHea-

der, which can be found in Appendix A.1. The image itself can then be imported

using the script getHSI, from Appendix A.2, using the data from the header file.
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To view the image, the matlab tool imtool() was used.

After importing the image, the sample and white standard were located, and

saved as individual images in Matlab using the code in Appendix A.2. Each indi-

vidual sample was then converted to reflectance data, using the script in Appen-

dix A.3. To eliminate noise from the data, the images can be transformed using

the minimal noise fraction (MNF). This is done by first applying a forward MNF

transform, using the script in Appendix A.4, and then an inverse MNF transform,

using the script in Appendix A.5. The individual samples were then saved as a

data file for further analysis. This was done because of limited storage space, as

the .hyspex-files created in this hyperspectral imaging session are typically of 5

GB or larger.

In the forward MNF transform, the number of neighbour points included in noise

matrix estimation were 2, and saturation was set to 0. In the inverse MNF trans-

form, the number of included MNF vectors was set to 5.

Using the inverse transformed image, an RGB image of the sample was created,

using the Matlab code in Appendix A.6. This RGB image was used to identify and

distinguish between the intact skin, the wound and the wound edge. The code in

Appendix A.7 was then used to create arrays with the average reflection from the

different classes in the sample. The average reflection was then plotted against

the wavelength, comparing both the different classes for each sample, and the

development over time. This was done using the script in Appendix A.8.

The spectral angle mapper (SAM) analysis was done using reference spectrums

from day 4, the third day of measurements. The code for the SAM analysis can

be found in Appendix A.9 and Appendix A.10. In A.10, black and white images

from the SAM classification were plotted for each class, and then combined to

see how the whole sample was classified and to give an idea of how much of the

sample was classified as skin, wound or wound edge. The number of pixels clas-

sified as skin, wound and wound edge were summed.

The reflectance spectrums were also normalized at an appropriate wavelength

using the script from Appendix A.11, and plotted versus the wavelength. The

normalization was done by creating a variable for the spectrum at the chosen

wavelength, and then dividing the whole spectrum by this value. Most of the
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spectrums were normalized at band 105, which corresponds to a wavelength of

788 nm. Those not normalized at 788 nm were normalized close to this wave-

length, depending on the shape of the spectrums.
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4 Results and discussion

In this chapter, the most significan results will be presented and discussed. This

includes original images, reflection spectrums from the different classes and compa-

rison of these, classification results and statistical analysis.

4.1 Experimental setup

By building the setup and mounting the camera, the light sources and the place-

ment of the samples, there were some important features that had to be opti-

mized.

In the previous experiment, executed in fall 2013 [1], the camera was mounted

on the horizontal translation stage. This time, the horizontal translation stage was

placed so that the well tray and the white standard were the moving parts. This

was done to better position the light sources. As light is a limiting factor in this

type of hyperspectral imaging, the orientation of the light source with respect to

both light intensity and polarization is important.

The well tray was placed on a support plate made of sandblasted metal. The

sandblasting provided a matte surface, which is good for avoiding unnecessary

saturation in the images due to reflections from the light sources. Even though the

support plate provided the necessary support for the well tray, there was a minor

problem where the vibration from the translation stage made the well tray and

reflectance standard moved slightly on the support plate, and there were some

occations where the reflectance standard fell off the support plate as the support

plate was not long enough to hold both the well tray and the reflectance standard.

Another important improvement done in this exsperiment was the use of the

well tray inserts to prevent the samples from moving around in the medium and

from drowning. The samples were exposed to a lot of movement, as they had

to be carried from the lab were the incubator was located and the hyperspectral

imaging lab. The medium was changed in the same lab as the incubator was lo-

cated.
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4.2 Sample health

As mention in the section about preparing the samples, the wells I-1, I-2, II-1,

II-3 and III-3 got infected between imaging on April 17 and April 19. Unfortu-

nately, the source of this infection is not yet known. All the wounds, both healthy

and infected were sent to histology, but the results are at this point not ready. As

a result of this infection, all of the infected samples had to be removed to avoid

contamination to the other wound models, and thus there are no recorded images

of the infected samples after day 10, April 19.

A reason for doing imaging as often as every second day is not only to be able

to closely follow the reepithelializing process, but also to be able to prevent a

possible infection from spreading to all the wells. This proved to be necessary, as

removing the infected samples and cleaning all the remaining samples and well

tray inserts prevented the infection from spreading to the rest of the samples.

4.3 White light images

Figure 24 shows the calibrated reflectance of the reflectance reference standard

used to convert spectrums to reflectance.

Figure 24: Average reflectance of white reference standard.
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4.3.1 RGB images of wound models

In this section, a collection of RGB images of the samples will be presented. These

images were created using code in Appendix A.6. The images have been edited

using Gimp [37], where brightness, contrast and color curves were adjusted to

brighten the image. Figure 25 show an RGB image of wound model I-1-A with

arrows indicating where the intact skin, wound and wound edge are located.

Figure 25: RGB image of I-1-A on day 1

Figure 26 shows an RGB image of I-4-A, which is a sample without a wound.

The skin used for these wound models had quite a few stretchmarkes, which is

quite visible in Figure 26.

Another sample without wound can be seen in Figure 27, which shows II-1-A.

This image is from day 2, as the samples in tray II were made after imaging of
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Figure 26: RGB image of I-4-A on day 1

tray I and III, and were first imaged on the second day.

On the second day of imaging, it was discovered that the well tray inserts provi-

ded favorable conditions for cell growth, and in Figure 28, RGB image of II-3-A,

some of these new cells can be seen in the bottom left corner.

Figure 29 shows an RGB image of wound model III-5-A from day 1. The rest

of the RGB images from samples presented here can be found in Appendix A.12.
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Figure 27: RGB image of II-1-A on day 2

Figure 28: RGB image of II-3-A on day 2



4 RESULTS AND DISCUSSION 56

Figure 29: RGB image of III-5-A on day 1
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4.3.2 Reflectance spectrums

This section will present reflectance spectrums from the wound models.

There is no data from the 7. measurement of I-4-A, I-5-A and I-6-A due to vi-

bration that moved the reflectance standard out of the detection area, and the

images could thus not be calibrated. The reflectance spectrums not presented

here can be found in Appendix A.13 The imaging was done with light settings

purposely chosen to avoid specular reflections, and visually it was not possible

to find any specular reflections in any of the images. However, there might still

be some saturated pixels, and these will impact the reflectance if they are inclu-

ded in the chosen regions. Due to the wound edge being very small, it is hard to

accurately chose the correct region, hence the results may be affected and give

misleading values.. RGB images provides better conditions than a black and whi-

te image, but it is still challenging to indentify the wound edge.

In Figure 30, the average reflectance of the intact skin, wound and wound ed-

ge for I-1-A is plotted against the wavelength.

Figure 30: Average reflectance spectrum of skin, wound and wound edge for I-1-

A from day 1



4 RESULTS AND DISCUSSION 58

Figure 31 shows the reflectance for the same wound model, at day 8, the measure-

ment before the wound model got infected. For I-1-A, the skin has the lowest re-

flectance, and the wound has the highest reflectance. The most distinct change

between day 1 and day 8 is that the reflectance of the wound has some change in

shape, and the reflectance of the skin and wound edge are more similar from 750

nm to the end of the spectrum.

Figure 31: Average reflectance spectrum of skin, wound and wound edge for I-1-

A from day 8
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Figure 32 shows the average reflectance of the intact skin, the wound and the

wound edge of III-5-A on day 1, Figure 33 shows III-5-A on day 8, Figure 34

shows III-5-A on day 16 and Figure 35 shows III-5-A on day 22.

Figure 32: Average reflectance spectrum of skin, wound and wound edge for III-

5-A from day 1

As III-5-A did not get infected, reflectance spectrums from the whole imaging

period can be plotted. The reflectance of all classes do not change significantly

througout the period, and from day 8 the reflectance of the skin is always the

lowest, and the reflectance of the wound is always the highest. However on the

first day, the reflectance of the wound is lower than the reflectance of the wound

edge from 750 nm. This same behaviour can be found in III-2-A and II-2-A (see

Appendix A.13).
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Figure 33: Average reflectance spectrum of skin, wound and wound edge for III-

5-A from day 8
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Figure 34: Average reflectance spectrum of skin, wound and wound edge for III-

5-A from day 16
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Figure 35: Average reflectance spectrum of skin, wound and wound edge for III-

5-A from day 22
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Figure 36 and Figure 37 shows the reflectance of the skin, wound and wound

edge of II-3-A on day 2 and day 8. There is obviosly a lot of change in the re-

flectance for all classes, most likely due to the infection, even though the infection

was not apparent until day 10. The most noticeable change is the overall lower

reflectance values, but also the more flat shape between 500 nm and 700 nm. Al-

so, in Figure 37, the wound has the lowest reflectance for most of the spectrum.

Figure 36: Average reflectance spectrum of skin, wound and wound edge for II-

3-A from day 2

From Appendix A.13, it can be seen that the reflectance of I-2-A does not change

as drastically as II-3-A, but the reflectance of the skin exceeds the wound edge

from 560 nm. From [8] the reflectance of the skin was expected to be the lowest

and the wound the highest, and the results from the spectrums presented here

confirms this. The reflectance values depends on how much light is detected, and

thus depends on how much lights is scattered and absorbed in the layers of the

skin. Thus it seems like wound might be less scattering than skin. The thickness

of the sample will also affect the scattering and absorption of light, and as the

wound models will vary slightly in shape and thickness this will also have an ef-

fect on the measured reflectance. The differences in thickness of the wound will

also cause the wounds to heal differently.
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Figure 37: Average reflectance spectrum of skin, wound and wound edge for II-

3-A from day 8
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In Figure 38 the average reflectance of the skin for I-1-A is plotted to show the

change over time. The reflectance on day 8 is distinctly lower than the previous

days, which indicates that something has happened to the skin, perhaps causing

it to be more scattering.

Figure 38: Average reflectance spectrum of the skin I-1-A

Similarly, the same plot has been made for the wound, in Figure 39. Here, the

reflectance values are more varied. However in Figure ?? where the change in

wound edge is plotted, the reflectance values are lowest on the last days.
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Figure 39: Average reflectance spectrum of the wound I-1-A

Figure 40: Average reflectance spectrum of the wound edge I-1-A
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Figure 38 shows the change in reflectance of I-4-A. This sample had no wound

as it was made as a reference sample. I-4-A did not get infected, and the values

of the reflectance did not change significantly, but it seems like the reflectance

increased slightly with time from 750 nm.

Figure 41: Average reflectance spectrum of the skin I-4-A

Similar plots for the samples not presented here were also created, but will not

be presented. Generally, they showed that the reflectance decreased with time,

and changed significantly for the infected samples.
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In Figure 42, the average reflectance of the medium is plotted against the

wavelength.

Figure 42: Average reflectance spectrum of the medium from day 1

There is a lot of minimas and maximas in the spectrum of the medium, and the

reflectance looks nothing like the reflectance of the medium in [1], where the

medium was more similar in shape to that of the wound model. Here, the medi-

um was only analysed for the first day of imaging. The most distinct maximas are

located at 655 nm, 781 nm and 948 nm. The most distinct minimas are located at

553 nm, 607 nm, 712 nm, 872 nm and 963 nm.

4.3.3 Normalized reflectance spectrums

To be able to identify the changes over time, the spectrums were normalized at a

wavelength where there was no significant maxima or minima. Most of the spec-

trums were normalized at band 105, which corresponds to a wavelength of 788

nm.

Figure 43, Figure 44 and Figure 45 shows the normalized average reflectance

spectrums for the skin, wound and wound edge of I-1-A. In Figure 43, there is
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maximas at 524 nm, 689 nm and 919 nm, and minimas at 560 nm, 872 nm and

973 nm. In Figure 44 the maximas are located at 502 nm, 621 nm and 919 nm,

and the minimas at 564 nm and 977 nm. In Figure 45 there are maximas at 491

nm - 524 nm (shifting to the right with time), 672 nm and 923 nm, and minimas

at 564 nm, 858 nm and 974 nm.

Figure 43: Normalized average reflectance spectrum of the skin I-1-A
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Figure 44: Normalized average reflectance spectrum of the wound I-1-A

Figure 45: Normalized average reflectance spectrum of the edge I-1-A
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Figure 46 shows the normalized average reflectance of I-4-A, sample without

wound. As can be seen in the plot, there is not much change in the reflectance,

except from day 1, where the reflectance is higher at 500 nm - 600 nm. However,

the rest of the measurements seems fairly aligned, and the reason for the higher

reflectance at day 1 might be that this measurement was done directly after the

wound models were made. The maximas are located at 527 nm, 730 nm and 919

nm, and the minimas at 560 nm, 857 nm and 977 nm.

Figure 46: Normalized average reflectance spectrum of the skin I-4-A
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Figure 47, Figure 48 and Figure 49 shows the normalized average reflectance

of III-5-A for skin, wound and wound edge. The skin changes very little, almost

nothing during the time period. Here, the maximas are 516 nm, 712 nm and 915

nm, and the minimas 560 nm, 857 n and 974 nm. The reflectance of the wound

on day 1 is higher than the rest of the period from 450 nm to 600 nm. Except

from this day, all other maximas are located at 499 nm, 624 nm and 918 nm, and

the minimas at 564 nm and 974 nm. For the wound edge, there are maximas at

509 nm, 648 nm and 922 nm, and minimas at 564 nm, 857 nm and 974 nm.

Figure 47: Normalized average reflectance spectrum of the skin III-5-A

Similar normalized reflectance spectrums for samples not presented here can be

found in Appendix A.13.4.
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Figure 48: Normalized average reflectance spectrum of the wound III-5-A

Figure 49: Normalized average reflectance spectrum of the edge III-5-A
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Overall, from both the average reflectance spectrums and the normalized spec-

trums, it seems that the reflectance decreases with time, also according to the fin-

dings of [8] and [38]. Gnyawalli et al. describes hyperspectral images of in vivo

wound models, with limited access to blood, and found that the reflectance de-

creased with time. Considering the results found here, and Hegstad’s results and

conclusion, strengthens the belief that an in vitro model can give similar results

as an in vivo model with limited blood access.

4.3.4 Chromophores

By comparing all the normalized reflectance spectrums, it is evident that there

are some features common to all spectrums.

Table 4: Characteristic maxima and minima for intact skin

Wavelength Skin reflectance

520 Maximum

560 Minimum

700 Maximum

850-870 Minimum

920 Maximum

973-977 Minimum

In table 4 the most characteristic maxima and minima for the intact skin is listed.

These were found by comparing all the normalized average reflectance spectrums

for the samples presented in the previous section and in Appendix A.13.4. In tab-

le 5, similar features are presented for the wound.

Table 5: Characteristic maxima and minima for wound

Wavelength Wound reflectance

500 Maximum

564 Minimum

623 Maximum

857 Minimum

920 Maximum

976 Minimum



4 RESULTS AND DISCUSSION 75
In table 6, these features are also listed for the wound edge.

Table 6: Characteristic maxima and minima for wound edge

Wavelength Wound edge reflectance

510 Maximum

564 Minimum

650-700 Maximum

860 Minimum

922 Maximum

974 Minimum

By comparing these results, there are only slight differences between the clas-

ses. The maxima at 500 nm for wound is shifted to 510 nm for the wound edge

and 520 nm for the skin. The minima at 564 nm seems consistent with all clas-

ses.The minima at 974 nm is also the same in all classes.

Some of the maxima and minima can be identified as absorption peaks by compa-

ring them to absorption spectrums of common chromophores i skin. From [39]

the minima at 974 nm corresponds to water absorption. Water also have higher

harmonics of the absorption peak, at 870 nm - 890 nm. From [40], lipid has ab-

sorption peaks at 900 nm and 770 nm, and a minima in any of these regions may

be caused by lipid absorption.

In human skin, absorption peaks of oxy- and deoxyhemoglobin dominates wave-

lengths shorter than 700 nm [39] [40]. The wound models used here should not

contain any blood after cutting off the subcutis and cleaning the skin. The epider-

mis have no blood vessels, so the only possible place for blood to be present is in

the wound itself as the wound should be deep enough to penetrate all of epider-

mis and a fraction of dermis. The maxima at 500 nm - 520 nm in the reflectance

spectrums for skin, wound and the wound edge looks like the absorption mimi-

mum of hemoglobin at 500 nm in [40]. However, considering the lack of blood in

the samples, these peaks may be absorption of some other chromophore.

All samples have distinct minima at 560 nm - 564 nm. From Figure 5 [17], cytochro-

me Fe(III)c’ has an absorption peak in the same region. From the same figure,

Fe(II)c’NO6 coord has an absorption peak around 540 nm. Fe(III)c’ and Fe(II)c’NO5
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coord have absorption peaks at 400 nm, Fe(III)c’NO has a peak at 420 nm and

Fe(II)c’ has a peak at 430 nm. All the samples have reflectance minima in the

same region. This might indicate that the maxima and minima seen in the spec-

trums from the wound models where blood absorption usually takes place, ac-

tually are absorption of cytochromes. The same results were found in [1].

4.3.5 Spectral angle mapper

The SAM analysis were done using reference spectrums from day 4, the third

day of measurement. Ideally, it would have been better to mask the images be-

fore applying SAM, but there were some issues where the well tray insert and

the medium were classified as something else, and not metal plate and medium,

most likely due to the cell growth around the samples that started already on

day 2. Choosing the right thresholds for the classification is also challenging, and

may cause too many or too few pixels to be classified as any of the classes.

Figure 50 shows plots of the SAM results of I-1-A from day 1, 8 and 10. This

sample got infected between day 8 and 10. From the SAM classification, more

pixels are classified as wound edge on day 8 than day 1. On day 10, almost no

pixels were classified as wound edge, but there is a gap between the skin and the

wound, which may be caused by the infection.

The SAM result from I-5-A is plotted in Figure 51. On day 1, no pixels were

classified as wound edge, thus the wound edge on day 1 is omitted in this figure.

From day 8 to day 22, it looks like the amount classified as skin has increased,

which would be an indication of the wound healing. On day 16, a lot more pixels

than day 8 and 22 are classified as wound edge. Some pixels classified as wound

edge might be new skin since thin skin will let through more light and reflect

more.

Figure 52 shows SAM plots for III-2-A. Also here, more pixels are classified as

skin with time. There are some unclassified pixels as well. More SAM plots we-

re analyzed, but will not be presented here. From these, in generel, none of the

sampled seemed to heal completely, the infection had a huge impact on the classi-

fication, and a lot of pixels were not classified as any of the classes in the infected

samples. For some images, some of the well tray were classified as wound or

wound edge, and this might indicate that there was a reepithelilization process

going on around the samples as well as in the middle, and cells classified as
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wound here might actually be new skin and should rather have been classified

as wound edge. II-2-A in particular had a lot of pixels classified as wound on the

well tray insert (on the metal plate, not the holes/medium) from day 8 to day 22.

SAM analysis of I-4-A and III-1-A, samples without wound, classified almost all

of the sample as skin for the whole period, with no pixels outside the sample,

with I-4-A showing somewhat better results than III-1-A. If a reference spectrum

for wound or wound edge were compared to these images, there might have been

classified some new cells on the well tray insert, as these wells also had undesired

cell growth outside the sample.

(a) Skin day 1. (b) Wound day 1. (c) Edge day 1. (d) Skin, wound and

edge day 1.

(e) Skin day 8. (f) Wound day 8. (g) Edge day 8. (h) Skin, wound and

edge day 8.

(i) Skin day 10. (j) Wound day 10. (k) Edge day 10. (l) Skin, wound and

edge day 10.

Figure 50: SAM I-1-A day 1, 8 and 10.
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(a) Skin day 1. (b) Wound day 1. (c) Skin, wound and

edge day 1.

(d) Skin day 8. (e) Wound day 8. (f) Edge day 8. (g) Skin, wound and

edge day 8.

(h) Skin day 16. (i) Wound day 16. (j) Edge day 16. (k) Skin, wound and

edge day 16.

(l) Skin day 22. (m) Wound day 22. (n) Edge day 22. (o) Skin, wound and

edge day 22.

Figure 51: SAM I-1-A day 1, 8, 16 and 22.
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(a) Skin day 1. (b) Wound day 1. (c) Skin, wound and

edge day 1.

(d) Skin day 8. (e) Wound day 8. (f) Edge day 8. (g) Skin, wound and

edge day 8.

(h) Skin day 16. (i) Wound day 16. (j) Edge day 16. (k) Skin, wound and

edge day 16.

(l) Skin day 22. (m) Wound day 22. (n) Edge day 22. (o) Skin, wound and

edge day 22.

Figure 52: SAM III-2-A day 1, 8, 16 and 22.
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4.3.6 Relative ratios SAM analysis

The amount of pixels classified as skin, wound or wound edge in the SAM ana-

lysis were summed, and the relative ratios of pixels from the different classes

calculated. Here, 100% is the sum of pixels classified as skin, wound and wound

edge.

In Figure 53, the relative ratios of skin, wound and wound edge for I-1-A are

plotted for day 1, 2, 4, 6, 8, and 10. Here, the ratios does not change significant-

ly, but more pixels are classified as wound on day 10, and fewer as wound and

wound edge.

Figure 53: Relative ratios of skin, wound and wound edge from SAM of I-1-A.

In Figure 54 the relative ratios of skin, wound and wound edge are plotted for

I-5-A for the whole period of 22 days. Notice that there are no values from day

12. The ratio of pixels classified as skin increased with time, and the ratios of

wound and wound edge decreased. More plots of relative ratios can be found in

Appendix A.14.

From SAM analysis and visual inspection of the wound models, it can be assumed

that none of the wound models healed completely, even though some showed

signs of reepithelializing occuring in the sample. From [8] and [2], the expected

healing period is 6 - 21 days. The reason why none of these wounds healed might

be the infection, or other factors. Thus it is not possible to either validate or dis-
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Figure 54: Relative ratios of skin, wound and wound edge from SAM of I-5-A.

card the theory that it should be possible to predict the amount of time it takes

for this kind of wounds to heal. Anyway, it seems like SAM classification alone

is not sufficient, as pixels outside the sample are classified as wound or wound

edge and too many pixels might remain unclassified. At least the image must be

masked, remaining only the wound model itself.

The thickness of the wound models might have had an impact on the healing

process. If dermis is too thick, the nutrition medium will not be able to reach the

epidermis. Without this nutrition, the wound cannot heal [9]. This could have

been avoided if the wound model preparation had been done with a custom ma-

de wound cutter. This was also discussed in [1]. Even though it has already been

attempted, the first version, made by Tore Landsem, was unsuccessful. An opti-

mized method for making the wound models could yield better results in similar

researches.

Even though no wound models seemed to heal completely, the infected samp-

les provided an opportunity to study the effect of unexpected cell behaviour on

reflectance spectrums and SAM classification. The most apparent changes from

healthy to infected sample can be seen in the reflectance spectrums, where the

spectrums from the infected day have both a different shape and in some re-

gions much higher or lower values. In Figure 37, it is interesting to see that in

this sample, II-3-A, already on day 8 the reflectance values for skin, wound and

wound edge are so much different. This might indicate that the infection started
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in II-3-A in tray II. The reason for the infection and how the infection spread

from one tray to the other two, or if an infection occured separetely in all three

trays in the same couple of days, is not known. However, it is more likely that the

infection spread from one tray to the other two.

The only occasions where the samples were exposed to risk of infection, was

during the imaging. The lid of the well tray had to be taken off, and therefore

exposing the wound models to air. This was unavoidable, as the whole camera

setup could not be placed inside a laminar flow cabinet, which might have saved

the wound models from getting infected.
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4.3.7 Monte Carlo simulation

A Monte Carlo simulation was done by Matija Milanic for bloodless skin and

wound. As melanin is stored in the keratinocytes in epidermis, skin versus wound

can be compared by removing the melanin from the skin data. As can be seen in

Figure 55, there are distinct differences between skin and wound.

Figure 55: Monte Carlo simulation of bloodless skin and wound.

This corresponds to the results from the reflectance spectrums where the skin has

the lowest reflectance and the wound the highest, and the spectrums are more se-

parated at shorter wavelengths. The water absorption peak from [39] at 974 nm

can also be seen in Figure 55.

The large differences in reflectance value at 400 nm in both the averaged re-

flectance spectrums and the Monte Carlo simulation can most likely be explained

by scattering.
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5 Conclusions

Hyperspectral imaging of in vitro wound models from human skin have been

performed using white light. The imaging period was 22 days. Analysis has been

performed using Matlab.

The hyperspectral images were analysed using Matlab. This was done by ana-

lysing reflectance spectrums, SAM classification and Monte Carlo simulation.

Reflectance spectrums showed that the reflectance overall decreased with time,

and that skin had the lowest reflectance and wound had the highest reflectan-

ce. SAM analysis showed that in some samples, the wound partly healed, but

no wound closed completely in the 22 days the wounds were followed. Monte

Carlo simulation resulted in large differences in reflectance between the intact

skin and the wound. From the reflectance spectrum analysis, some chromopho-

res in skin could be identified using absorption spectrums, and the reflectanc

spectrums might reveal cytochromes present in the skin.

Both reflectance spectrum analysis and SAM analysis showed that an infection

in the wound models will give detectable changes in reflectance.

The preparation of the wound models might have caused the wounds to not heal.

Too thick dermis does not allow the nutrition to reach the epidermis, thus epit-

helialization would be impossible. The reason for why none of the wound healed

completely might also be affected by the infection that occurred in some of the

samples.
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A Appendix

A.1 Reading header files

The script readHyperHeader is used to read the hyperspectral headerfile corre-

sponding to the converted image. The script read the size of the image, the num-

ber of bands and data types, and returns the wavelengths.

Code 1: readHyperHeader.m

1 function info = readHyperHeader(hdrfile)

2 [path name ext] = fileparts(hdrfile);

3 current_dir = pwd;

4 i f ˜isempty(path)

5 cd(path)

6 end

7 hdrfile = [name ’.hdr’];

8 fid = fopen(hdrfile);

9 i f fid > 0

10 info.headerExists = 1;

11 while fid;

12 l ine = f g e t l (fid);

13 i f l ine == -1

14 break

15 e l s e

16 eqsn = f i n d s t r( line ,’=’);

17 i f ˜isempty(eqsn)

18 param = strtrim( l ine (1:eqsn-1));

19 param( f i n d s t r(param,’�’)) = ’_’;

20 value = strtrim( l ine(eqsn+1:end));

21 i f isempty(str2num(value))

22 i f ˜isempty( f i n d s t r(value,’{’)) && isempty(

f i n d s t r(value,’}’))

23 while isempty( f i n d s t r(value,’}’))

24 l ine = f g e t l (fid);

25 value = [value,strtrim( l ine)];

26 end

27 end

28 eval([’info.’,param,’�=�’’’,value,’’’;’])

29 e l s e

30 eval([’info.’,param,’�=�’,value,’;’])



A APPENDIX 91
31 end

32 end

33 end

34 end

35 f c l o s e (fid);

36 %% Put wavelengths into an array:

37 i f isfield( info ,’wavelength’)

38 lambda = sscanf( info.wavelength(2:end-1), ’%f,’);

39 info.wavelength = lambda;

40 e l s e

41 info.wavelength = [];

42 end

43 i f isfield( info ,’default_bands’)

44 rgbBands = cell2mat(textscan( info.default_bands,’{%d8,%

d8,%d8}’));

45 info.default_bands = rgbBands;

46 e l s e

47 info.default_bands = [];

48 end

49 i f isfield( info ,’description’)

50 description = info.description(2:end-1);

51 info.description = description;

52 e l s e

53 info.description = ’’;

54 end

55 %% Set binary format parameters

56 switch info.byte_order

57 case {0}

58 info.byte_order = ’ieee-le’;

59 case {1}

60 info.byte_order = ’ieee-be’;

61 otherwise

62 info.byte_order = ’n’;

63 end

64 switch info.data_type

65 case {1}

66 info.data_type = ’uint8’;

67 case {2}

68 info.data_type= ’int16’;
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69 case{3}

70 info.data_type= ’int32’;

71 case {4}

72 info.data_type= ’single’;

73 case {5}

74 info.data_type= ’double’;

75 case {6}

76 disp(’>>�Sorry,�Complex�(2x32�bits)data�currently�

not�supported’);

77 disp(’>>�Importing�as�double-precision�instead’);

78 info.data_type= ’double’;

79 case {9}

80 error(’Sorry,�double-precision�complex�(2x64�bits)�

data�currently�not�supported’);

81 case {12}

82 info.data_type= ’uint16’;

83 case {13}

84 info.data_type= ’uint32’;

85 case {14}

86 info.data_type= ’int64’;

87 case {15}

88 info.data_type= ’uint64’;

89 otherwise

90 error ([’File�type�number:�’,num2str(dtype),’�not�

supported’]);

91 end

92 e l s e

93 info.headerExists = 0;

94 end

95 cd(current_dir)
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A.2 Import images

The script getHSI is used to read the hyperspectral image and import it into Mat-

lab.

Code 2: getHSI.m

1 function [img, lam] = getHSI(filename, info , lamI, region)

2 %loads HySpex image for Ingvild

3 % INPUT:

4 % filename - hyspex filename

5 % info - header info, use info = readHyperHeader(hdrfile)

6 % lamI - lamI = [lower lam, upper lam]

7 % region - region = [x1,x2,y1,y2]

8 % OUTPUT:

9 % image - hyspex image

10 % lam - wavelength region

11

12 %find bands

13 i f (isempty(lamI))

14 lamI = [ info.wavelength(1), info.wavelength(end)];

15 end

16 i f ( length(lamI)==1)

17 lamI = [lamI, lamI];

18 end

19 lam = info.wavelength;

20 Nl = length(lam);

21 la = find(lam<=lamI(1));

22 i f (˜ isempty(la))

23 la = la(end);

24 e l s e

25 la = 1;

26 end

27

28 lb = find(lam>=lamI(2));

29 i f (˜ isempty(lb))

30 lb = lb(1);

31 e l s e

32 lb = length(lam);

33 end

34 lam = lam(la:lb);
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35

36 %find region

37 rX = info.samples;

38 rY = info.lines;

39

40 i f (isempty(region))

41 x1 = 1;

42 x2 = rX;

43 y1 = 1;

44 y2 = rY;

45 e l s e

46 x1 = region(1);

47 x2 = region(2);

48 y1 = region(3);

49 y2 = region(4);

50 end

51

52 i f (x1>x2)

53 x = x1;

54 x1 = x2;

55 x2 = x;

56 end

57 i f (y1>y2)

58 y = y1;

59 y1 = y2;

60 y2 = y;

61 end

62 i f (x1>rX)

63 f p r i n t f (’\n�x1�too�large\n’);

64 return;

65 end

66 i f (x2>rX)

67 x2 = rX;

68 end

69 i f (y1>rY)

70 f p r i n t f (’\n�y1�too�large\n’)

71 return;

72 end

73 i f (y2>rY)
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74 y2 = rY;

75 end

76

77 %read image

78 I = zeros(rX, length(lam));

79 img = zeros( length(lam),x2-x1+1,y2-y1+1);

80

81 fid = fopen(filename);

82 %read first line

83 tline = fread(fid,8,’*uchar’);

84 i f (tline ˜= [72;89;83;80;69;88;0;0])

85 f p r i n t f (’\nNot�a�hyspex�file.\n’);

86 return;

87 end

88 %move to the HSI

89 fseek(fid, info.header_offset, ’bof’);

90 %read image

91 i f (strcmp( info.data_type,’single’))

92 fini = (y1-1)*rX*Nl*4;%4 bytes

93 fseek(fid,fini,’cof’);

94 for(i=1:(y2-y1+1))

95 I = fread(fid,rX*Nl, info.data_type);

96 I = reshape(I,rX,Nl);

97 I = I’;

98 img(:,:,i) = I(la:lb,x1:x2);

99 f p r i n t f (’.’);

100 i f (mod(i,150)==0)

101 f p r i n t f (’\n’);

102 end

103 end

104 e l s e%int

105 fini = (y1-1)*rX*Nl*2;%2 bytes

106 fseek(fid,fini,’cof’);

107 for(i=1:(y2-y1+1))

108 I = fread(fid,rX*Nl, info.data_type);

109 I = reshape(I,rX,Nl);

110 I = I’;

111 img(:,:,i) = I(la:lb,x1:x2);

112 f p r i n t f (’.’);
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113 i f (mod(i,150)==0)

114 f p r i n t f (’\n’);

115 end

116 end

117 end

118 f c l o s e (fid);

119 f p r i n t f (’\n’);

120 return
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A.3 Convert to reflectance

The script img2R converts radiance data to reflectance data.

Code 3: img2R.m

1 function imgR = img2R(imgS,imgWS, lam)

2 % converts image from radiance to reflectance

3 % INPUT:

4 % imgS - img of sample (lam, x, y)

5 % imgWS - img of WS (lam, x, yWS)

6 % lam - wavelengths

7 % OUTPUT:

8 % imgR - img in R (lam, X, y)

9

10 Nl = s i z e(imgS,1);

11 Nx = s i z e(imgS,2);

12 Ny = s i z e(imgS,3);

13 NyS = s i z e(imgWS,3);

14

15 % mean of WS

16 calWS = mean(imgWS,3);

17

18 % reflectance of WS

19 WS = load(’SRT-99-050.txt’);

20 RWS = interp1(WS(:,1),WS(:,2), lam);

21

22 % calibrate

23 imgR = zeros(Nl, Nx, Ny);

24

25 for i = 1:Ny

26 for j = 1:Nx

27 imgR(:,j,i) = imgS(:,j,i).*RWS./calWS(:,j);

28 end

29 end
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A.4 Forward MNF transformation

The script MNF performs a forward MNF transformation.

Code 4: MNF.m

1 function [imgMNF, V, eigval, mimg] = MNF(img,NaboNo,satur)

2 %Calculates MNF of a hyspex image

3 % Based on Asgeirs C++ code

4 % INPUT:

5 % img - HySpex image (Nl, Nx, Ny)

6 % NaboNo - neigbhour points included in noise matrix

estimation order

7 % values >= 0

8 % satur - find saturation points (0=off/1=on)

9 % OUTPUT:

10 % V - MNF vectors

11 % eigval - eigenvalues

12 % mimg - mean values of the image

13

14 Nl = s i z e(img,1);

15 Nx = s i z e(img,2);

16 Ny = s i z e(img,3);

17

18

19 i f (satur==1)

20 for i=1:Ny

21 for j=1:Nx

22 i f (max(img(:,j,i))>=8e-4)

23 img(:,j,i)=0;

24 end

25 end

26 end

27 end

28

29 % rearange img from 3d to 2d

30 img2 = reshape(img, Nl, Nx*Ny);

31

32 %% forward MNF

33

34 % Remove mean from data
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35 mimg = mean(img2,2);

36 for i = 1:Nl

37 img2(i,:) = img2(i,:) - mimg(i);

38 end

39

40 % calculate img covariance matrix

41 imgCov = (img2*img2.’)/(Nl-1);

42

43 % estimate nose covaraiance matrix

44 % find local mean

45 i f (NaboNo>0)

46 lmimg = zeros(Nl,Nx,Ny);

47 for i = 1:Ny

48 for j = 1:Nx

49 lx = j-NaboNo;

50 hx = j+NaboNo;

51 ly = i-NaboNo;

52 hy = i+NaboNo;

53 i f (lx<=0)

54 lx = 1;

55 end

56 i f (ly<=0)

57 ly = 1;

58 end

59 i f (hx>Nx)

60 hx = Nx;

61 end

62 i f (hy>Ny)

63 hy = Ny;

64 end

65 m = img(:,lx:hx,ly:hy);

66 m = reshape(m,Nl, s i z e(m,2)* s i z e(m,3));

67 %remove zero vectors

68 sizm = s i z e(m,2);

69 for k = 1:sizm

70 ik = sizm-k+1;

71 ms = sum(m(:,ik));

72 i f (ms==0)

73 m(:,ik)=[];
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74 end

75 end

76 i f (isempty(m))

77 m = zeros(Nl,1);

78 end

79 lmimg(:,j,i) = mean(m,2);

80 end

81 end

82 %estimate noise

83 noise = img - lmimg;

84 noise = reshape(noise, Nl, Nx*Ny);

85 noiseCov = (noise*noise.’)/(Nl-1);

86

87 % 0-order = using value from previus line (Asgeir)

88 e l s e

89 noise = zeros(Nl,Nx-1,Ny);

90 for i = 1:Nx-1

91 noise(:,i,:) = img(:,i,:) - img(:,i+1,:);

92 end

93 %estimate noise

94 noise = reshape(noise, Nl, (Nx-1)*Ny);

95 noiseCov = (noise*noise.’)/(Nl-1);

96 end

97

98 % generalized eigenvalue problem

99 [V,D] = eig(imgCov,noiseCov);

100

101 % extracts eigvals from D

102 eigval = zeros( s i z e(D,1),1);

103 for i = 1: s i z e(D,1)

104 eigval(i) = D(i,i);

105 end

106

107 % sort by eigenvalue magnitude

108 [eigval,IX] = s o r t (eigval,’descend’);

109

110 % sort eigen vectors

111 v = zeros( s i z e(V,1),1);

112 for i = 1: f l o o r ( length(eigval)/2)



A APPENDIX 101
113 v = V(:,i);

114 V(:,i)=V(:,IX(i));

115 V(:,IX(i))=v;

116 end

117

118 % calculate MNF transform

119 imgMNF = V’*img2;

120 imgMNF = reshape(imgMNF, Nl, Nx, Ny);

121 end
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A.5 Inverse MNF transformation

The script iMNF performs an inverse MNF transformation.

Code 5: iMNF.m

1 function [imgiMNF] = iMNF(imgMNF, vMNF, mimg, N)

2 %Calculates inverse of MNF transform

3 % INPUT:

4 % imgMNF - MNF transformed image

5 % vMNF - MNF vector matrix

6 % mimg - img mean

7 % N - number of included MNF vectors

8 % OUTPUT:

9 % imgiMNF - inverse of MNF transformed image

10

11 Nl = s i z e(imgMNF,1);

12 i f (N>Nl)

13 N=Nl;

14 end

15 Nx = s i z e(imgMNF,2);

16 Ny = s i z e(imgMNF,3);

17

18 %% Inverse MNF

19 ivMNF = inv(vMNF);

20 i f (N<Nl-1)

21 ivMNF(N+1:end,:)=0;

22 end

23 imgMNF = reshape(imgMNF, Nl, Nx*Ny);

24 imgiMNF = ivMNF’*imgMNF;

25

26 for i = 1:Nl

27 imgiMNF(i,:) = imgiMNF(i,:) + mimg(i);

28 end

29

30 imgiMNF = reshape(imgiMNF, Nl, Nx, Ny);

31 end
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A.6 Create RGB image of sample

The script RGB creates an RGB image of the sample.

Code 6: RGB.m

1 imgRc = squeeze(imgiMNF(66,:,:));

2 imgGc = squeeze(imgiMNF(28,:,:));

3 imgBc = squeeze(imgiMNF(16,:,:));

4

5 imgRGB(:,:,1) = imgRc;

6 imgRGB(:,:,2) = imgGc;

7 imgRGB(:,:,3) = imgBc;

8

9 imtool(imgRGB)
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A.7 Select pixels from the classes skin, wound and wound edge

The script pixel selection allows for point and click-selection of pixels from the

different classes skin, wound and wound edge, and stores the reflectance in arrays

and calculates the average reflectance for each wavelength.

Code 7: pixel selection.m

1 figure; imshow(imgRGB) % change the name of the image

2

3 s1 = impoint;

4 s1_pos = f l o o r (getPosition(s1));

5 s2 = impoint;

6 s2_pos = f l o o r (getPosition(s2));

7 s3 = impoint;

8 s3_pos = f l o o r (getPosition(s3));

9 s4 = impoint;

10 s4_pos = f l o o r (getPosition(s4));

11 s5 = impoint;

12 s5_pos = f l o o r (getPosition(s5));

13 s6 = impoint;

14 s6_pos = f l o o r (getPosition(s6));

15 s7 = impoint;

16 s7_pos = f l o o r (getPosition(s7));

17 s8 = impoint;

18 s8_pos = f l o o r (getPosition(s8));

19 s9 = impoint;

20 s9_pos = f l o o r (getPosition(s9));

21 s10 = impoint;

22 s10_pos = f l o o r (getPosition(s10));

23 s11 = impoint;

24 s11_pos = f l o o r (getPosition(s11));

25 s12 = impoint;

26 s12_pos = f l o o r (getPosition(s12));

27 s13 = impoint;

28 s13_pos = f l o o r (getPosition(s13));

29 s14 = impoint;

30 s14_pos = f l o o r (getPosition(s14));

31 s15 = impoint;

32 s15_pos = f l o o r (getPosition(s15));
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33 s16 = impoint;

34 s16_pos = f l o o r (getPosition(s16));

35 s17 = impoint;

36 s17_pos = f l o o r (getPosition(s17));

37 s18 = impoint;

38 s18_pos = f l o o r (getPosition(s18));

39 s19 = impoint;

40 s19_pos = f l o o r (getPosition(s19));

41 s20 = impoint;

42 s20_pos = f l o o r (getPosition(s20));

43 %%

44 %%GET SPECTRAL INFORMATION

45

46 d1 = imgiMNF(:,s1_pos(2),s1_pos(1));

47 d2 = imgiMNF(:,s2_pos(2),s2_pos(1));

48 d3 = imgiMNF(:,s3_pos(2),s3_pos(1));

49 d4 = imgiMNF(:,s4_pos(2),s4_pos(1));

50 d5 = imgiMNF(:,s5_pos(2),s5_pos(1));

51 d6 = imgiMNF(:,s6_pos(2),s6_pos(1));

52 d7 = imgiMNF(:,s7_pos(2),s7_pos(1));

53 d8 = imgiMNF(:,s8_pos(2),s8_pos(1));

54 d9 = imgiMNF(:,s9_pos(2),s9_pos(1));

55 d10 = imgiMNF(:,s10_pos(2),s10_pos(1));

56 d11 = imgiMNF(:,s11_pos(2),s11_pos(1));

57 d12 = imgiMNF(:,s12_pos(2),s12_pos(1));

58 d13 = imgiMNF(:,s13_pos(2),s13_pos(1));

59 d14 = imgiMNF(:,s14_pos(2),s14_pos(1));

60 d15 = imgiMNF(:,s15_pos(2),s15_pos(1));

61 d16 = imgiMNF(:,s16_pos(2),s16_pos(1));

62 d17 = imgiMNF(:,s17_pos(2),s17_pos(1));

63 d18 = imgiMNF(:,s18_pos(2),s18_pos(1));

64 d19 = imgiMNF(:,s19_pos(2),s19_pos(1));

65 d20 = imgiMNF(:,s20_pos(2),s20_pos(1));

66 %%

67 %SAVE SPECTRA IN ONE VARIABLE

68

69 spectra(:,1) = d1;

70 spectra(:,2) = d2;

71 spectra(:,3) = d3;
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72 spectra(:,4) = d4;

73 spectra(:,5) = d5;

74 spectra(:,6) = d6;

75 spectra(:,7) = d7;

76 spectra(:,8) = d8;

77 spectra(:,9) = d9;

78 spectra(:,10) = d10;

79 spectra(:,11) = d11;

80 spectra(:,12) = d12;

81 spectra(:,13) = d13;

82 spectra(:,14) = d14;

83 spectra(:,15) = d15;

84 spectra(:,16) = d16;

85 spectra(:,17) = d17;

86 spectra(:,18) = d18;

87 spectra(:,19) = d19;

88 spectra(:,20) = d20;

89 %%

90 %CALCULATE MEAN SPECTRUM

91

92 avgs = squeeze(mean(spectra ,2));
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A.8 Plot the average reflectance

The script plotaverage plots the average reflectance for skin, wound and wound

edge versus the wavelength.

Code 8: plotaverage.m

1 %PLOT AVERAGE SPECTRUMS

2 % avgs = average spectrum of intact skin

3 % avgw = average spectrum of wound

4 % avge = average spectrum of wound edge

5

6 figure;

7 plot(lam,avgs,’-.r*’)

8 hold on

9 plot(lam,avgw,’--mo’)

10 plot(lam,avge,’:bs’)

11 hold off

12

13 xlabel(’Wavelength�(nm)’);

14 ylabel(’Reflectance’);

15 legend(’Skin’,’Wound’,’Wound�edge’);

16

17 %REMEMBER to add title and check axis

18 %%

19

20 %PLOT CHANGE IN REFLECTANCE

21

22 figure;

23 plot(lam,day1,’-y+’);

24 hold on

25 plot(lam,day2,’-mo’);

26 %hold on

27 plot(lam,day4,’-c*’);

28 plot(lam,day6,’-rx’);

29 plot(lam,day8,’-gs’);

30 plot(lam,day10,’-bd’);

31 %plot(lam,day12,’-kˆ’);

32 %plot(lam,day14,’-yv’);

33 %plot(lam,day16,’-m>’);

34 %plot(lam,day18,’-c<’);
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35 %plot(lam,day20,’-rp’);

36 %plot(lam,day22,’-gh’);

37 hold off

38

39 xlabel(’Wavelength�(nm)’);

40 ylabel(’Reflectance’);

41 legend(’day1’,’day2’,’day4’,’day6’,’day8’,’day10’);
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A.9 Spectral angle mapper

The script SAM performs spectral angle mapper classification.

Code 9: SAM.m

1 function [imgSAM] = SAM(img, endm)

2 %Calculates spectral angle mapper

3 % INPUT:

4 % img - image (lam, x, y)

5 % endm - end member

6 % OUTPUT:

7 % imgSAM - SAM image

8

9 Nl = s i z e(img,1);

10 Nx = s i z e(img,2);

11 Ny = s i z e(img,3);

12

13 imgSAM = zeros(Nx,Ny);

14

15 for i=1:Ny

16 for j=1:Nx

17 a = img(:,j,i)’;

18 imgSAM(j,i) = a*endm/(norm(a)*norm(endm));

19 end

20 end

21

22

23 end
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A.10 Plot SAM results

The script plotSAM plots the results from the SAM classification and sums the

number of pixels in each class.

Code 10: plotSAM.m

1 %%% PLOT SAM RESULTS

2

3 [skinSAM] = SAM(imgiMNF,avgs);

4 %imtool(skinSAM)

5 skinSAMbw = skinSAM > 0.995;

6 imtool(skinSAMbw);

7 %%

8

9 [woundSAM] = SAM(imgiMNF,avgw);

10 woundSAMbw = woundSAM > 0.997;

11 imtool(woundSAMbw);

12 %%

13

14 [edgeSAM] = SAM(imgiMNF,avge);

15 edgeSAMbw = edgeSAM > 0.9995;

16 imtool(edgeSAMbw);

17 %%

18

19 class = double(skinSAMbw) + 2*double(woundSAMbw) + 3*double(

edgeSAMbw);

20 imtool(class)

21 %%

22

23 skin = sum(skinSAMbw(:))

24 wound = sum(woundSAMbw(:))

25 edge = sum(edgeSAMbw(:))
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A.11 Plotting normalized reflectance spectrums

The script normplot plots normalized average reflectance spectrums.

Code 11: normplot.m

1 %%% Plot normalized reflectance spectrums

2 %%%% b = normalization band

3

4

5 avgn1 = avg1;

6 norm1 = avg1(b);

7 for i = 1: s i z e(avgn1),

8 avgn1(i) = avgn1(i)/norm1;

9 end

10

11 avgn2 = avg2;

12 norm2 = avg2(b);

13 for i = 1: s i z e(avgn2),

14 avgn2(i) = avgn2(i)/norm2;

15 end

16

17 avgn4 = avg4;

18 norm4 = avg4(b);

19 for i = 1: s i z e(avgn4),

20 avgn4(i) = avgn4(i)/norm4;

21 end

22

23 avgn6 = avg6;

24 norm6 = avg6(b);

25 for i = 1: s i z e(avgn6),

26 avgn6(i) = avgn6(i)/norm6;

27 end

28

29 avgn8 = avg8;

30 norm8 = avg8(b);

31 for i = 1: s i z e(avgn8),

32 avgn8(i) = avgn8(i)/norm8;

33 end

34

35 avgn10 = avg10;
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36 norm10 = avg10(b);

37 for i = 1: s i z e(avgn10),

38 avgn10(i) = avgn10(i)/norm10;

39 end

40

41 avgn12 = avg12;

42 norm12 = avg12(b);

43 for i = 1: s i z e(avgn12),

44 avgn12(i) = avgn12(i)/norm12;

45 end

46

47 avgn14 = avg14;

48 norm14 = avg14(b);

49 for i = 1: s i z e(avgn14),

50 avgn14(i) = avgn14(i)/norm14;

51 end

52

53 avgn16 = avg16;

54 norm16 = avg16(b);

55 for i = 1: s i z e(avgn16),

56 avgn16(i) = avgn16(i)/norm16;

57 end

58

59 avgn18 = avg18;

60 norm18 = avg18(b);

61 for i = 1: s i z e(avgn18),

62 avgn18(i) = avgn18(i)/norm18;

63 end

64

65 avgn20 = avg20;

66 norm20 = avg20(b);

67 for i = 1: s i z e(avgn20),

68 avgn20(i) = avgn20(i)/norm20;

69 end

70

71 avgn22 = avg22;

72 norm22 = avg22(b);

73 for i = 1: s i z e(avgn22),

74 avgn22(i) = avgn22(i)/norm22;
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75 end

76

77 figure;

78 plot(lam,avgn1,’-y+’);

79 hold on

80 plot(lam,avgn2,’-mo’);

81 %hold on

82 plot(lam,avgn4,’-c*’);

83 plot(lam,avgn6,’-rx’);

84 plot(lam,avgn8,’-gs’);

85 plot(lam,avgn10,’-bd’);

86 plot(lam,avgn12,’-kˆ’);

87 plot(lam,avgn14,’-yv’);

88 plot(lam,avgn16,’-m>’);

89 plot(lam,avgn18,’-c<’);

90 plot(lam,avgn20,’-rp’);

91 plot(lam,avgn22,’-gh’);

92 hold off

93

94 xlabel(’Wavelength�(nm)’);

95 ylabel(’Normalized�reflectance’);

96 legend(’day1’,’day2’,’day4’,’day6’,’day8’,’day10’,’day12’,’day14

’,’day16’,’day18’,’day20’,’day22’);

97 %legend(’day2’,’day4’,’day6’,’day8’,’day10’);

98 %legend(’day1’,’day2’,’day4’,’day6’,’day8’,’day10’,’day14’,’

day16’,’day18’,’day20’,’day22’);
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A.12 RGB images of samples

A.12.1 Tray I

Wound models with 3 mm wound, lifted with suction device.

Figure 56: RGB image of I-2-A on day 1
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Figure 57: RGB image of I-3-A on day 1
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A.12.2 Tray II

Wound models with 3 mm wound, lifted with needle.

Figure 58: RGB image of II-2-A on day 2
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Figure 59: RGB image of II-6-A on day 2
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A.12.3 Tray III

Wound models with 4 mm wound lifted with needle.

Figure 60: RGB image of III-1-A on day 1
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Figure 61: RGB image of III-2-A on day 1

Figure 62: RGB image of III-3-A on day 1
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A.13 Reflectance spectrums

A.13.1 Tray I

Figure 63: Average reflectance spectrum of skin, wound and wound edge for I-2-

A from day 1
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Figure 64: Average reflectance spectrum of skin, wound and wound edge for I-2-

A from day 8

Figure 65: Average reflectance spectrum of skin, wound and wound edge for I-5-

A from day 1
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Figure 66: Average reflectance spectrum of skin, wound and wound edge for I-5-

A from day 8

Figure 67: Average reflectance spectrum of skin, wound and wound edge for I-5-

A from day 16



A APPENDIX 123

Figure 68: Average reflectance spectrum of skin, wound and wound edge for I-5-

A from day 22
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A.13.2 Tray II

Figure 69: Average reflectance spectrum of skin, wound and wound edge for II-

2-A from day 2
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Figure 70: Average reflectance spectrum of skin, wound and wound edge for II-

2-A from day 8

Figure 71: Average reflectance spectrum of skin, wound and wound edge for II-

2-A from day 16
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Figure 72: Average reflectance spectrum of skin, wound and wound edge for II-

2-A from day 22

Figure 73: Average reflectance spectrum of skin, wound and wound edge for II-

6-A from day 2
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Figure 74: Average reflectance spectrum of skin, wound and wound edge for II-

6-A from day 8

Figure 75: Average reflectance spectrum of skin, wound and wound edge for II-

6-A from day 16
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Figure 76: Average reflectance spectrum of skin, wound and wound edge for II-

6-A from day 22
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A.13.3 Tray III

Figure 77: Average reflectance spectrum of skin, wound and wound edge for III-

2-A from day 1
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Figure 78: Average reflectance spectrum of skin, wound and wound edge for III-

2-A from day 8

Figure 79: Average reflectance spectrum of skin, wound and wound edge for III-

2-A from day 16
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Figure 80: Average reflectance spectrum of skin, wound and wound edge for III-

2-A from day 22

Figure 81: Average reflectance spectrum of skin, wound and wound edge for III-

3-A from day 1
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Figure 82: Average reflectance spectrum of skin, wound and wound edge for III-

3-A from day 8
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A.13.4 Normalized reflectance spectrums

Figure 83: Normalized average reflectance spectrum of the skin I-2-A
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Figure 84: Normalized average reflectance spectrum of the wound I-2-A

Figure 85: Normalized average reflectance spectrum of the edge I-2-A
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Figure 86: Normalized average reflectance spectrum of the skin II-1-A

Figure 87: Normalized average reflectance spectrum of the skin II-3-A
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Figure 88: Normalized average reflectance spectrum of the wound II-3-A

Figure 89: Normalized average reflectance spectrum of the edge II-3-A
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A.14 Relative ratios SAM

Figure 90: Relative ratios of skin, wound and wound edge from SAM of I-2-A.

Figure 91: Relative ratios of skin, wound and wound edge from SAM of II-2-A.
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Figure 92: Relative ratios of skin, wound and wound edge from SAM of II-3-A.

Figure 93: Relative ratios of skin, wound and wound edge from SAM of II-6-A.
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Figure 94: Relative ratios of skin, wound and wound edge from SAM of III-2-A.

Figure 95: Relative ratios of skin, wound and wound edge from SAM of III-5-A.


