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Problem Description

Background and Objective

In transport of natural gas through long export lines, typically 400-600km on the
bed of the North Sea, it is of utmost importance to have accurate computational
models to predict the hydraulic capacity of the line, both under steady state and
at transient �ow conditions. Due to the extreme length of the pipe lines, only
one-dimensional models are applicable, and these require inputs like friction factor
and heat transfer coe�cients. Such parameters are usually results of steady state
correlations, and there are doubts about their validity under transient �ow condi-
tions. The objective of this work is to compare results from 1D-computations and
friction factor with detailed 2D-numerical solutions for transient periods in short
pipes such that conventional CFD-simulations are feasible.

Following tasks are to be considered:

1. To �nd out about the current status in theoretical and computational gas
transport, with special focus on transient �ow conditions.

2. To set up a computational case for turbulent pipe �ow at high Reynolds num-
ber, and to use a commercial CFD-solver with turbulence models included to
predict mean �ow characteristics transient cases.

3. To pay special attention to treatment of boundary conditions for velocity and
turbulence properties, and to have a �ne resolution of the �elds close to the
solid walls; also in cases of �nite roughness of the surface.

4. To extract friction factor and pressure drop from the computed results and
compare with standard results from 1D-analysis.
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Preface

This thesis is the result of the work done during the last year of the Master of
Physics programme at NTNU. The thesis was done at the department of energy-
and process engineering.

In gas transport models it is common to use a stationarily developed friction
factor. The purpose of this thesis was to investigate the importance that transient
dynamics have on the friction factor as opposed to a stationary friction factor.

This task has been undertaken earlier by Torbjørn Lyssand in his Master Thesis
of 2011[16]. Here few comparative results were achieved due to large uncertainties
in the 2D model.

The task of simulating �ow with the CFD packet Fluent has been a di�cult
journey, The ANSYS Academic centre was undergoing upgrading at the time, and
the beginner tutorials that I found were rarely relevant and often included di�cult
geometries. Salvation came with the help of SINTEF employee Christian Etienne
who pointed me to the Cornell University FLUENT learning module, which had
tutorials on pipe-�ow, turbulence and periodically boundary conditions.
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Abstract

When gas is transported in long pipelines, computational models are used as tools
to plan and to optimize hydraulic capacities. Because of the length of the pipelines
the models are mostly one-dimensional (1D) which in turn requires input param-
eters like a friction factor and heat transfer coe�cients. These parameters are
usually the result of steady state correlations. There are doubts about the validity
of using steady state correlation in transient periods.

The objective of this thesis was to simulate transient periods with an one-
dimensional (1D) model and a more detailed two-dimensional (2D) model from a
commercial CFD package, extracting the friction factor and then comparing the
resulting friction factors from the two models.

The RANS k-ω model was chosen from a set of criteria. To limit the computa-
tional demand, periodic boundary conditions were used at the inlet and the outlet
of the pipe-segment and the �ow was simpli�ed to be isothermal, incompressible,
and with constant viscosity. Furthermore, an 1D model was derived and three dif-
ferent friction models were implemented, namely the quasi-steady friction model,
the Instantaneous Acceleration Based (IAB) Daily et al. model, and the Vardy et
al. friction model. Transient periods, de�ned as ramp-up and ramp-down �ows,
were simulated by the models. Ramp-up and ramp-down transients are seen as a
sudden increase or decrease in pressure di�erence, resembling a valve opening or
closing. The pressure di�erence, bulk velocity, and wall shear stress was extracted
from the 1D and 2D simulations. In addition, velocity pro�les and turbulence
pro�les were extracted from the 2D simulations.

There were signi�cantly larger di�erences between quasi-steady friction factor
and transient friction factor in ramp-up �ows than in ramp-down �ow. In ramp-up
simulations the transient friction went from overshooting the steady friction factor
by 152% to undershooting it by 55%; all within the �rst 1/10 of the transient. In
the corresponding ramp-down simulation the maximum di�erence was only 1.45%.
However, the error between the 1D velocity and the 2D bulk velocity in the ramp-
up cases was below the 2D model's velocity uncertainty. Moreover, the opposite
was seen in the ramp-down cases, where the error between the 1D and 2D velocity
was upwards of 20%

In the ramp-up cases four turning points of the transient component of the
wall shear stress were identi�ed, and of those, two were directly coupled to the
turbulence di�usion time and the turbulence production delay.

From the results it was found that the use of quasi-steady friction modelling
in transient models gave a fairly good approximation of the wall shear stress in
decelerating transients; however, the predicted velocity signi�cantly undershot the
2D velocity. In the ramp up simulations the 1D models did not capture the highly
varying 2D wall shear stress at the initial stage of the transients, but the 1D models
predicted the velocity with reasonable accuracy. Neither of the implemented 1D
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transient friction models yielded satisfactory wall shear stress prediction. Overall,
the results suggest that better friction models are needed, and that such models
can signi�cantly improve the accuracy of transient gas transport models.
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Sammendrag

Modeller brukt til å planlegge og optimalisere gasstransport er oftest endimen-
sjonale (1D) og trenger derfor koe�sienter som friksjonsfaktor og varmeoverføringsko-
e�sient. Disse koe�sientene er ofte basert på stasjonære relasjoner, og det er derfor
tvil om deres validitet under transiente perioder.

Målet med denne oppgaven var å simulere transienter med en endimensjonal
modell og med en mer detaljert todimensjonal (2D) modell fra en kommersiell CFD
pakke. Hvor friksjonsfaktoren og trykkgradienten ekstraheres fra simuleringene, og
resultatene fra modellene sammenlignes med hverandre.

En passende todimensjonal turbulent modell fra CFD-pakken ANSYS Fluent
ble valgt fra et sett av krav. Valget falt på RANS k-ω modellen. For å be-
grense kompleksiteten av modelleringen, ble røret modellert med periodiske grense-
betingelser, samt at strømningen ble forenklet til å være inkompressibel, isotermisk
og med konstant viskositet. Den endimensjonale modellen, hvor tre friksjonsmod-
eller ble implementert, ble så utviklet. Disse tre friksjonsmodellene er (1) en kva-
sistasjonær, (2) en øyeblikkelig akselerasjonsbasert modell og (3) en friksjonsmodell
som tar hensyn til hastighetshistorien i transienten. Transiente perioder, som er
de�nert som såkalte �opprampinger� og �nedrampinger�, ble så simulert med mod-
ellene; hvor oppramping og nedramping er en plutselig økning eller senkning av
trykkgradienten fra en konstant verdi til en annen. Trykkgradienten, tverrsnittg-
jennomsnittshastigheten (bulkhastigheten) og veggskjærspenningen ble så ekstra-
hert fra simuleringene, samt hastighets- og turbulens-pro�ler fra de todimensjonale
simuleringene.

Det ble observert signi�kante større forskjeller mellom den kvasistasjonære frik-
sjonsfaktoren og den transiente friksjonsfaktoren i opprampingssimuleringer enn i
tilsvarende nedrampingssimuleringer med reverserte Reynolds tall. I oppramp-
ingssimuleringer varierte avviket mellom kvasistasjonær og transient friksjon fra
152% til −55% innen den første 1/10 av den transiente perioden. I lignende ne-
drampingssimulering var maksimum avvik på 1.45%. Likevel var avviket mellom
den endimensjonal og den todimensjonale bulkhastigheten i opprampingstransien-
tene på under den todimensjonale modellens usikkerhet i tverrsnitthastighet. Det
motsatte ble observert i nedrampingstransientene, hvor relativt liten forskjell i veg-
gskjærspenning skapte stor di�eranse i hastighetsavviket, opp til 20%, mellom de
endimensjonale modellene og den todimensjonale modellen.

Det ble observert �re vendepunkter i utviklingen av den ustasjonære komponen-
ten av veggskjærspenningen i opprampingssimuleringene, hvorav to kan beregnes
av den turbulente di�usive tiden og den turbulente produksjonsforsinkelsen.

Ut ifra resultatene, ble det funnet at bruken av kvasistasjonær friksjonsmodeller-
ing i transiente modeller ga en forholdsvis bra tilnærming til veggskjærspenningen
i deselererende transienter, men den resulterende hastighetsprediksjonen bommet
grovt midtveis i transientene. I opprampingssimuleringene modellerte de endimen-
sjonale friksjonsmodellene veggskjærspenningen utilfredsstillende, men hastighet-
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sprediksjonen stemte godt overens med de todimensjonale resultatene. Ingen av
de implementerte endimensjonale friksjonsmodellene ga en spesielt nøyaktig mod-
ellering veggsskjærspenningen. Resultatetene indikerer derfor at bedre transiente
friksjonsmodeller behøves og at de kan signi�kant øke presisjonen til endimensjonale
transiente gasstransportmodeller.
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Chapter 1
Introduction

Natural gas is an important energy source supplying over 20% of the world's energy
consumption in 2010. Furthermore, the production has grown with over 35% from
2000 to 2011, and in Norway it has more than doubled in the same time period[7].
Prognoses for Norwegian production indicate further increases in the years to come
as oil production is anticipated to fall[22].

In Norway the produced gas is transported through pipes from o�shore �elds
to processing re�neries on land. In the re�neries the gas is separated into natural
gas and lique�ed natural gas (LNG). LNG production makes up for less than 5%
of the total Norwegian gas production and is mainly transported with ships to its
destination, which is usually Europe and North America. The total Norwegian
natural gas production in 2012 was 114.9 billion cubic meters, and of this 92.8%
was exported through pipes to the UK and the continental Europe[7].

With increasing production and exportation of natural gas, exploiting the full
potential of the existing pipelines is important. To optimize gas transport planning
and to maintain correct deliveries to customers, one relies upon good computational
models. These models are derived from the basic equations of �uid dynamics. Due
to the length of the pipes, the models are mostly one-dimensional. In addition to the
one-dimensional simpli�cation, the wall shear stress is replaced with an expression
including the Darcy friction factor, mean velocity and density. To calculate the
friction factor the empirical Colebrook-White equation is often used. This data
is derived from steady state experiments, making the models quasi-steady. The
accuracy of using quasi-steady friction factor in transient �ows is not clear. As
pointed out later in the text, the stationary assumption is not correct; it is just an
approximation.

To investigate the accuracy of the use of quasi-steady modelling, an one-dimensional
quasi-steady model is compared with a more detailed fully transient two-dimensional
model. The commercial CFD package ANSYS Fluent will be used to simulate
the two-dimensional �ow. There are several models to choose from, although the
choices are restricted by the high Reynolds number �ow and the requirement of a

1
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good resolution in the near wall velocity �eld. In addition to the 1D quasi-steady
model, two transient friction models are compared to the 2D results, this to evalu-
ate existing transient friction models which can readily be applied in gas transport
models.

The simulated transients are so-called ramp-up and ramp-down �ows. In these
transients, a step-up or step-down pressure di�erence is applied to a stationary fully
developed �ow, and the transients are modelled until a new stationary solution is
obtained. A ramp-up simulation is often from a zero velocity to a bulk velocity
U1, and a ramp-down simulation is from a bulk velocity U0 to zero. In this thesis
the transients are kept within either the laminar region or the turbulent region, so
a ramp-up and -down goes from U0 to U1, where both U0 and U1 are in the same
�ow region.

The commercial pipelines have a wall roughness which in most cases signi�cantly
a�ects the �ow. Therefore �ow in pipes with simulated wall roughness is also
considered. Di�culties involving the roughness height versus near wall resolution
were encountered, thus transient results with roughness are limited.

In the simulations the �uid has the characteristics of water and it is incompress-
ible and the viscosity is constant. The long pipeline is simulated with a short pipe
using a translational periodic boundary condition to be able to simulate transient
without enormous computational domain.

After this introduction, Chapter 2 follows with an introduction into basic �uid
dynamics, �ow regime, turbulence, friction factor, wall shear stress, and turbulence
velocity pro�le. A short introduction to a typical transient gas transport model
is presented in Chapter 3. A turbulent quasi-steady one-dimensional model along
with two transient friction models are derived in Chapter 4. In Chapter 5 the
necessary properties of the two-dimensional model are identi�ed and a model choice
is made with respect to this. Then the selected model (the k-ω model) is described.
The 2D model's validity and uncertainties, applied to the problem at hand, are
discussed in Chapter 6. Results from the simulations are presented and discussed
in Chapter 7 and a conclusion with suggestions to future work is found in Chapter
8.



Chapter 2
Theoretical Background

The theory of gas transport stems from the science of �uid dynamics, which is the
main subcategory of �uid mechanics. Fluid dynamics treats liquids and gases in
motion. The �uid is treated as a continuous media. In the next sections, the basic
governing equations for Newtonian viscous �ow and fundamentals of gas pipeline
transport theory, will be treated.

2.1 Governing Equations for Pipe Flow

In order to solve gas transport problems, a set of governing di�erential equations
must be identi�ed. The equations follow from the conservation laws for physical
systems:

• Conservation of mass.

• Conservation of momentum (Newton's second law).

• Conservation of energy (the �rst law of thermodynamics).

The conservation laws are formulated for particle systems. In �uid dynamics it
is more suitable to see the �uid as a continuum and study the velocity �eld as a
function of time and space, also known as the Eulerian frame of reference. When
transforming the velocity �eld from the particle reference system (Lagrangian) to
the Eulerian, the substantial derivative appears. For any �uid property Q, the time
derivative becomes [33]

ρ
dQ

dt
=
∂Q

∂t
+ u

∂Q

∂x
+ v

∂Q

∂y
+ w

∂Q

∂z
, (2.1)

where the left hand side is normally written as

dQ

dt
=
DQ

Dt
.

3
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2.1.1 The Equation of Continuity

This equation is a result from the conservation of mass law. The conservation
of mass law, states that mass cannot be created or destroyed in a closed system,
i.e. the mass di�erential in a closed system is zero. In �uid dynamics mass is
replaced with density times a di�erential and is transformed to the Eulerian frame
of reference using the substantial derivative (2.1). The equation in its most general
form reads[34]:

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (2.2)

here Einstein notation is used where summation over repeated indexes are assumed,
where ui is the component velocities u, v and w and ρ is the density. If it is
simpli�ed by assuming incompressible �ow, the density will not change with time
or space and the resulting equation on component form is

∂uj
∂xj

= 0. (2.3)

2.1.2 The Momentum Equation

This is Newton's second law applied to �uids, it expresses mass times acceleration
being equal to forces on a �uid element. In its general form it is written as

ρ
Dui
Dt

= −∂σij
∂xj

+ ρfi, (2.4)

where σij is the stress tensor and fi is an external force, like the gravity. For a
Newtonian �uid the stress tensor is de�ned as

σij = −pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
, (2.5)

where p is the pressure, µ is the dynamic viscosity and δij is the Kronecker delta,
de�ned to be unity when indexes are equal. Inserting Equation (2.5) into Equation
(2.4) yields the famous Navier-Stokes equations:

ρ
Dui
Dt

= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)]
+ ρfi (2.6)

The Navier-Stokes equations in its full form are quasi-linear equations. Mathemat-
ically it has not yet been proven that there exist a smooth solution, or that if a
solution exist it will have bounded velocity[27]. It counts three scalar component
equations for the �ve variables ρ, p and ui and it has to be supplied with the con-
tinuity and the energy equations for a closure. Most analytical solutions that exist
are for incompressible non-turbulent �ow.
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2.1.3 The Energy Equation

Conservation of energy, or the �rst law of thermodynamics states that the increase
of total energy is equal to the sum of the increase of heat and work added to the
system.

dE = dQ+ dW (2.7)

The general expression for internal energy is derived from (2.7) and (2.4), the result
is (see e.g.[37])

ρ
De

Dt
+ p

∂uj
∂xj

= µφ+
∂

∂xj

(
k
∂T

∂xj

)
, (2.8)

where T is the temperature, e is the internal energy and k is the conductivity.
The three primary unknowns that are simultaneously obtained from solving these
equations are velocity ui, pressure p and temperature T . In addition to the �ve
primary variables, the density is related to p and T through an equation of state,
and viscosity µ and thermal conductivity k must be given from physical data.

2.1.4 Equation of State

For a compressible �uid a fourth equation to relate pressure, density, and temper-
ature is needed. This is known as the equation of state. In many cases the ideal
gas law can be applied:

p = ρRgT (2.9)

where Rg is the ideal gas constant. For non-ideal gases or conditions, a non-
dimensional compressibility factor can be introduced to achieve better approxima-
tions of real gases

pV = ρZRgT. (2.10)

There exists other ways to model a more accurate equation of states which will
be mentioned later in the text. In all, a three-dimensional compressible �uid �ow
is described by �ve di�erential equations, equation of continuity (2.2), x, y and z
component of the momentum equation (2.6) and the energy equation (2.8).

2.2 Flow Regimes

There is no general analytical solution and no general existence or uniqueness
theorem to the Navier-Stokes equations. There exist a number of simpli�cations
that will give an exact solution, most of them are for incompressible �ow with a
simple geometry[33]. So to solve the equations for compressible viscous pipe �ow,
which appear in gas transport, numerical methods must be utilized. When solving
the equations it is important to identify which �ow regime is present. There are
three �ow regimes, namely laminar, transitional, and turbulent �ow. In laminar
�ow the �uid �ows in parallel layers; there is no movement perpendicular to the
�ow direction. Furthermore, laminar �ow in pipes is characterized by a parabolic
velocity pro�le, see Figure 2.1, where a laminar and a turbulence velocity pro�le are
shown. Turbulent �ow is chaotic, with perpendicular movement, swirls and random
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Figure 2.1: A laminar and a turbulent velocity pro�le.

�uctuations. Between laminar and turbulent regime is the transitional regime.
The �ow �uctuates at some time interval and is orderly at others. Distinguishing
between the �ow regimes is done by looking at the ratio between inertial e�ect
and viscous drag, known as the dimensionless Reynolds number Re. The Reynolds
number is de�ned as

Re =
ρUD

µ
, (2.11)

where U is the average cross section �uid velocity, D is the diameter, and µ is
the �uids dynamic viscosity. A �ow will have same �ow properties if the Reynolds
number is the same. In smooth pipes the �ow is laminar for Recrit < 2300, fully
turbulent for Re > 4000 and transitional in between. These numbers are not exact
but common for commercial pipes [34].

2.3 Turbulence

The �ow in gas transport pipes during normal daily operation will be well within
the turbulent �ow regime, so the transport models must solve for a turbulent case.
Turbulence has, and will in the foreseeable future be a subject of much research.
The �rst e�ort of understanding turbulence was done by Osbourne Reynolds, hence
the name of the Reynolds number [24]. Turbulence appears when viscous drag no
longer can damp �uid property �uctuations induced by inertial e�ects and wall
roughness (if a wall is present) [10].

Turbulence can be characterized by several �ow properties: Seemingly random
�uctuations in velocity, pressure, temperature and other �uid properties in all
directions; although the �uctuation seems random, the �uid properties have speci�c
energy spectrums. The �ow is very sensitive to initial conditions and is therefore
not repeatable. There is an extreme range of time and length scales, however, the
smallest scales are su�ciently large to satisfy the continuum assumption of �uid
dynamics. The large rotational motions, known as eddies, will have smaller eddies
�feeding� energy from them, the smallest eddies are eventually killed by viscous
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dissipation. The turbulent motion is self-sustaining; producing new eddies when
other vanish due to viscous dissipation.

All this �uctuation result in greater mixing, heat exchange and friction [33], as
compared to the viscous molecular e�ects.

Due to all the complex behaviour, describing turbulent �ow mathematically is
di�cult. It is assumed that the Navier-Stokes equations are valid for turbulent �ow
down to the smallest scales, and solutions are obtainable using �nite di�erences or
�nite elements method. This method is called direct numerical simulations, DNS,
and is very computationally costly, restricted to simple geometry and Reynolds
number below 104. To simulate pipe gas transport with DNS is unrealistic, and
even if it were possible, it is not necessary since one will end up with much more
information than needed. Less demanding methods are su�cient.

2.3.1 Reynolds Time Averaging

To avoid accounting for all the small-scale �uctuations, one can use Reynolds time
averaging. The idea is to separate the main value from the �uctuating value. This
is done by decomposing each variable into two parts, the mean and the �uctuating
part; for a variable Q this becomes:

Q = Q̄+Q′,

where the averaging operator must satisfy the �Reynolds conditions� [17], which
for two turbulent variables, f and g, are as follows:

• The average of the sum is the sum of the averages,

f + g = f + g

• Constants do not a�ect averages,

af = af.

Because of the two �rst conditions, the operator must be linear.

• The operator is ergodic, meaning that time averaging is equal to space av-
eraging. And the averaging of a derivative of a quantity is equal to the
corresponding derivative of the average:(

∂f

∂s

)
=
∂f

∂s
,

where s can be either a time or a space coordinate.

• The average of a product is equal to the product of the averages; taking the
average of an average is still just a average.

fg = fg
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The rest of the conditions can be derived from the above conditions, and they are
as follows:

•
(f) = f

•
f ′ = 0

•
(fg) = fg (2.12)

•
(fg′) = 0

• (
∂f ′

∂s

)
= 0

It is common to use a time dependent averaging operator, because it is di�cult
measuring space averages and especially so for transient conditions. The time
averaging operator is for a turbulent quantity Q de�ned as

Q =
1

T

t0+Tˆ

t0

Q(t) dt, (2.13)

where the time period T must be large compared to any relevant �uctuating period
for the �Reynolds conditions� to hold. The Reynolds averaging gives us then the
mean values, and the result of the �uctuation caused by turbulence. In large
gas transport pipe, this is satisfactory, since the interest is the total deliverance,
temperature, and other mean properties.

Applying the Reynolds time averaging on the Navier-Stokes equations, we get
the Reynolds Averaged Navier-Stokes (RANS). In the RANS equations one ends
up with extra correlation terms i.g. ρu′iu

′
j . These are then yet other unknowns,

and empirical or theoretical relations are needed to obtain a solution. A common
approach in gas transport model is to insert friction factor for wall shear stress.
This due to the di�culty of measuring and calculating the wall shear in transients.

2.3.2 Turbulent Velocity Pro�le

In turbulence theory much of the understanding has come from experiments and
empirical studies. It is conventional to divide the turbulent velocity pro�le in to
tree layers, they are:

• The inner region, close to the wall, low local Reynolds number, the viscous
forces are dominant. Consist of the viscous sublayer, bu�er layer, and some
of the log-law region.



9 2.3. Turbulence

• the overlap layer, both viscous and turbulent shear are important. Overlaps
and connects the inner and outer layer smoothly. Includes the bu�er layer
and the log-law layer.

• the outer layer, turbulent shear dominates. Can be described partly by the
log-law layer and the wake region.

The formulas describing these layers are derived from experiments, dimensional
analysis and curve �tting.

2.3.2.1 Dimensionless Parameters

Dimensional analysis is convenient in developing turbulent models, therefore di-
mensionless variables are introduced.

The velocity scale, also known as the friction velocity, is de�ned as

uτ =

√
τw
ρ
. (2.14)

The dimensionless length scale, y+ is de�ned to be

y+ =
y
√
τwρ

µ
=
uτy

ν
, (2.15)

where y is the distance from the wall. From dimensional analysis one get that the
mean �ow is a function of density, wall distance, viscosity and wall shear stress.
The dimensionless velocity u+ becomes:

u+ =
u

uτ
= f

(uτy
ν

)
(2.16)

Inserting Equation (2.15), will show that u+ is a function of y+.

2.3.2.2 Viscous Sublayer

The viscous sublayer is closest to the wall in the inner layer. The local Reynolds
number uses length scale based on distance y from the pipe wall Rey = ρuy

µ . This
implies that the local Reynolds number goes towards zero close to the wall, meaning
viscous drag must be much greater than inertial forces. The sublayer is very thin,
y+ < 5, so one can assume that the shear stress is equal to the wall shear stress
and that the turbulent shear stress contribution ρu′v′ is zero due to the no-slip
boundary condition at the wall.

τ(y) = µ
∂u

∂y
∼= τw (2.17)

To get the velocity as function of y, an integration on both sides with respect to y
is done ˆ y

0

τw dy
′ = µ

ˆ y

0

∂u

∂y′
dy′
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⇒ τwy

µ
= u(y)

Using the dimensionless variables y+ and u+ gives for the linear sublayer

u+ = y+, (2.18)

also known as the law of the wall, which is valid for y+ < 5.

2.3.2.3 Bu�er Layer

The bu�er layer lies between the viscous sublayer and the logarithmic layer. It
must connect the two layers, not violating the end and start boundaries. The
bu�er layer is typically in the region of 5 < y+ < 60.

Figure 2.2: Turbulent Boundary Velocity Pro�le from [36]

2.3.2.4 The Logarithmic Layer

Outside both the viscous sublayer and the bu�er layer is the log-law layer, typically
for y+ values between 30 − 500. Here turbulent and viscous e�ects are both im-
portant. From curve �tting and dimensional analysis one gets that the logarithmic
layer is de�ned by

u+ =
1

κ
ln(y+) +B (2.19)

This is also known as the log-law of the wall. The constants κ and B have been
determined from measurements. From the pipe-�ow experiment in 1930 Nikuradse
suggested that κ ≈ 0.4 and B ≈ 5.5 [19]. Coles and Hirst revised these numbers in
1968 to κ ≈ 0.41 and B ≈ 5.0[33], which will be used in this work.
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2.3.2.5 Wake Region

Far away from the wall, the e�ect from the wall is present in form of the shear stress,
but not the viscosity. The suitable length scale is the boundary layer thickness δ,
which is the distance from the wall where u(y) = 0.99umax. This means that the
dimensionless velocity can be described as function of distance over boundary layer
thickness[33].

u+ = f
(y
δ

)
.

Since the local speed is 0.99 of the max �ow velocity, the law of the wake is com-
monly written as

umax − u
uτ

= − 1

κ
ln
(y
δ

)
+A. (2.20)

2.3.3 Turbulent Shear Stress

Shear stress is the force per unit area working between the layers in a �uid. It can
be identi�ed in the Navier-Stokes Equations (2.4) as the stress tensor σij without
the pressure term. For a Newtonian incompressible �uid, the shear stress is given
as

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.21)

If the �ow is turbulent and Reynolds time averaging is applied on the Navier-
Stokes equations, an extra term appears ρ ∂

∂xj
u′iu
′
j , where ρu

′
iu
′
j is a turbulent

inertia tensor often referred to as the Reynolds stress tensor. This quantity is a
result of momentum transport due to turbulent �uctuation an it is conveniently
included as stresses in the shear stress tensor as a turbulent contribution to the
shear stress, yielding

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− ρu′iu′j (2.22)

for the total shear stress in the �ow.
The shear stress at the wall determines the force acting on the wall from the

�uid per unit area. At the wall turbulent �uctuations are zero due to the no-slip
boundary condition, and for impermeable surfaces the normal-to-the wall velocity
is zero; hence the wall shear stress is given by

τw = µ

(
∂u

∂y

)
y=0

, (2.23)

where y is the perpendicular distance from the wall. The wall shear stress is di�cult
to calculate since the detailed velocity �eld close to the wall must be known.

2.3.4 Friction Factors

There are two de�nitions for friction, namely the Darcy friction factor and the
Fanning friction factor, also known as the skin friction coe�cient. Both friction
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factors are dimensionless, like the Reynolds number. The Darcy friction factor is
based on the pressure drop and de�ned as[33]

f =
− dp
dxD

1
2ρU

2
. (2.24)

The Fanning friction factor is based on the wall shear stress, and the de�nition
is[33]

Cf =
τw

1
2ρU

2
, (2.25)

here U is the average velocity for a cross section of a pipe. Traditionally the Fanning
friction factor is used in aerodynamics while the Darcy friction factor is widely used
in pipe �uid �ow. The Darcy friction factor can be used to determine the required
pressure to obtain a wanted Reynolds number. Substituting the Reynolds number
gives

f =
− dp
dxD

1
2ρ
(
Reµ
ρD

)2 (2.26)

solving for pressure
dp

dx
= −f (µRe)

2

2ρD3
(2.27)

This can be solved since the friction factor is a function of Reynolds number and
wall roughness, see e.g. Equation (2.40).

2.3.5 Relation between Fanning and Darcy Friction Factor

To �nd an equivalence between the two friction factors, one can make a momentum
analysis on a pipe segment for a steady case, see Figure 2.3.

Without acceleration the force balance isˆ
A1

p1 dA−
ˆ
A2

p2 dA−
ˆ
S

τw dS = 0 (2.28)

Since R is constant, A1 = A2

ˆ R

0

(p1 − p2)2πr dr =

ˆ L

0

dx

ˆ 2π

0

Rdθ τw

−∆pπR2 = 2πRLτw ⇒ τw = −∆pD

4L
(2.29)

using that ∆p/L = dp/dx for incompressible �ow, we get

τw = −D
4

dp

dx
. (2.30)

Substituting the right hand side into Equation (2.25) and inspecting the Darcy
friction factor to get that f = 4Cf for steady �ow.
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τ 

p₁ p₂ 

y
x

D

Figure 2.3: Force Balance on a Pipe Segment

2.3.6 Friction Factor in Smooth Pipes

Finding an expression for the fanning friction factor can be done with the help
from the velocity pro�le formula. For a pipe the wake is almost non existent and
the linear layer is so thin that a good approximation to the whole velocity pro�le
is to use the logarithmic log law of the wall (2.19). Then integrating this over the
area, dividing it by the cross section.

U =
1

πR2

ˆ R

0

(uτ
κ

ln
(uτy
ν

)
+B

)
2πr dr (2.31)

resulting in the following equation

U = uτ

(
1

κ
ln

(
uτR

ν

)
+B − 3

2κ

)
(2.32)

Then using the Fanning friction factor de�nition (2.25) and that f = 4Cf one ends
up with an implicit equation for the Darcy friction factor, derived by Prandtl in
1930.

1

f1/2
= 1.99 log10

(
ReDf

1/2
)
− 1.02 (2.33)

He adjusted the constants to accommodate for the wake that was neglected. The
revised equation is:

1

f1/2
= 2 log10

(
ReDf

1/2
)
− 0.8 (2.34)
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2.3.7 Finite Roughness

The above friction factors are derived for smooth pipes. If the pipe has a roughness
some adjustments must be made. In the 1930is Nikuradse measured the velocity
pro�le and pressure drop in smooth pipes[19] and later in rough pipes. All the mea-
surements were done during steady state conditions over a wide range of Reynolds
number, 4 · 104 to 3 · 106. The roughness was made by uniformly gluing sand grains
on the inside of the pipe. The data-sets from di�erent roughness factors are de-
picted in Figure 2.4. He found that for high Reynolds number the friction factor
becomes independent of the Reynolds number.

The roughness height is taken to be the average roughness height. As is nor-
mal the roughness height can be expressed with a dimensionless number. This
dimensionless number, the wall hight parameter, k+,is de�ned by

k+ =
kuτ
ν
. (2.35)

This can be used to classify the roughness regime of the �ow[33]:

k+ < 4→ hydraulically smooth

4 < k+ < 60→ transitional− roughness regime

k+ > 60→ fully rough regime.

The roughness greatly interferes with the viscous sublayer, making the law of the
wall dependent on roughness height as well as y+; yielding

u+ = f(y+, k+).

The overlap layer is also a�ected, displacing the velocity pro�le away from the wall

u+ =
1

κ
ln
yuτ
ν

+B −∆B(k+) (2.36)

where for sand grain the displacement curve is

∆B(k+) ≈ 1

κ
ln(1 + 0.3k+). (2.37)

For fully rough �ow k+ > 60 Equation (2.36) reduces to

u+ =
1

κ
ln
(y
k

)
+ 8.5 (2.38)

2.3.7.1 Nicuradse and Colebrook-White Friction Formulas

From the measured velocity pro�le in Nicuradse's experiments a friction relation
for sand-grain roughness can be found

1√
f
≈ −2.0 log10

(
Re
√
f

1 + 0.1(k/D)Re
√
f

+

)
− 0.8. (2.39)
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Figure 2.4: Data plot from Nikuradse's experiment

Uniform sand grain roughness is not equal to the roughness we �nd in commercial
pipes. Colebrook did measurements on typical commercial pipes, from this he
derived the Colebrook-White formula

1√
f
≈ −2.0 log10

(
k/D

3.7
+

2.51

Re
√
f

)
. (2.40)

In 1944 Moody[18] plotted this equation for di�erent roughness's as a function of
logarithmic Reynolds number. The famous Moody chart is presented in Figure 2.5.
It can be noted that these equations are also valid for smooth pipes without wall
roughness, by letting k/D → 0.

2.3.8 Transient Friction

When treating transient �ow it is convenient to use the Fanning friction factor. To
�nd an expression for the transient Fanning friction factor the transient wall shear
stress must be found. During transient �ows the wall shear stress is not the same
as during steady �ow conditions,

τw 6= −
D

4

dp

dx
⇒ f 6= 4Cf

(2.41)
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Figure 2.5: Moody chart

To show this one can once again make a force balance on a pipe segment as in
Figure 2.3, but letting the unsteady term be non-zero. It is convenient to write the
Navier-Stokes equation on conservation form; i.e:

∂ρui
∂t

+
∂

∂xj
(ρuiuj) = − ∂p

∂xi
+

∂

∂xj
τij , (2.42)

where the general transformation

ρ
DQ

Dt
→ ∂

∂t
(ρQ) +

∂

∂xj
(ρuiQ) (2.43)

has been applied. For incompressible �ow the density stays constant and the viscous

stress term ∂
∂xj

[
µ
(
∂ui
∂xj

+
∂uj
∂xi
− 2

3δij
∂uk
∂xk

)]
simpli�es as ∂ui

∂xi
= 0 and µ = constant.

Integrating over the control volume Adx, assuming that the �ow is fully devel-
oped

(
∂u
∂x = 0

)
, and applying the divergence theorem yields:

ˆ

V

ρ
∂ui
∂t

dAdx = −
‹

A

~p ·~n dsdx+

‹

A

τij |r=R nj dsdx

= −Adp+2πR τxr|r=R dx

⇒ ρ
∂

∂t

 1

A

ˆ

A

u dA

 dx = − dp−2πR

πR2
τw dx .

(2.44)
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Inserting cross sectional average velocity U = 1
A

´
A

u dA and cleaning up:

ρ
∂U

∂t
= − dp

dx
− 2

R
τw. (2.45)

Solving for the wall shear stress gives;

τw = −D
4

∂p

∂x
− ρD

4

∂U

∂t
. (2.46)

This equation results from a purely one-dimensional analysis, and does not account
for non-uniform acceleration of the velocity pro�le which will alter the near wall
velocity gradients and thus the wall shear stress.

The Equation (2.46) indicates that for an incompressible �ow, there is a tran-
sient contribution to the wall shear stress. The contribution is proportional to the
local acceleration.

2.4 Transient Friction Modelling

In �uid mechanics it is convenient to de�ne the total wall shear stress and the total
friction factor as a sum of the steady and the unsteady components [6]:

τw = τws + τwu,

Cf = Cfs + Cfu.
(2.47)

The subscripts s and u in Equation (2.49) stands for steady component and un-
steady component respectively. This splitting of the transient wall shear stress
and friction factor is done because the steady components are well known, and the
transient contribution can be modelled separately according to �uid acceleration
and other quantities.

From the equations (2.46) and (2.47) we get:

τwu ∝
ρD

4

dU

dt
, (2.48)

Cfu ∝
D

2U2

dU

dt
. (2.49)

To account for additional damping of the wall shear stress found in experimental
results, Daily et al. (1956) [9] proposed that Cfu = k1

D
2U2

dU
dt , where k1 is a non-

dimensional coe�cient determined by theoretical or experimental work. Daily et
al. proposed values for k1 of 1.2 for accelerating �ows and 0.02 for decelerating
�ows. Carstens et al. (1959) [8] suggested that k1 ≈ 0.449 for both accelerating
and decelerating �ow. From theoretical work Carstens et al. advocated that k1

was dependent upon the Reynolds number.
The Brunone model [1] adds convective acceleration ∂U

∂x to the unsteady friction
component. The model gives a good match between the computed and measured
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results using an empirically predicted (by trial and error) friction coe�cient k3

(known as the Brunone unsteady friction coe�cient).
In 1968 Zielke derived a transient friction model for laminar frequency depen-

dent viscous �ow [41]. The unsteady friction is related to instantaneous mean �ow
velocity and to weighted past velocities. In Zielkes model the unsteady component
of the wall shear stress is linked to the acceleration history through a weighted
integral

τwu =
2ρν

R

ˆ T

0

W{T − θ}∂U
∂t

dθ, (2.50)

where W is a weighting function and T is the elapsed time since the �ow was
stationary. The parameter t and θ are times measured forwards and backwards re-
spectively. The model has been modi�ed by several researches to develop weighting
functions for turbulent �ow.

From an idealized form of the radial viscosity distribution and assuming that
changes in the viscosity distribution may be neglected during transient periods,
Vardy et al. (2003 [29] and 2004 [30]) derived simpli�ed weighting functions for
turbulent smooth wall �ows and turbulent fully rough �ows. For smooth wall �ows
the simpli�ed weighting function is

Wa =

√
νw/νlam exp (−ψ/C∗)

2
√
πψ

, (2.51)

in which ψ is the non-dimensional time and C∗ is the shear decay coe�cient. The
non-dimensional time is de�ned by

ψ =
νlamθ

R2
(2.52)

The shear decay coe�cient C∗ is dependent upon the Reynolds number, from
regression analysis Vardy et al. [29] expressed C∗ as a function of Reynolds number;

C∗ =
12.86

Reκ
, (2.53)

where

κ = log10

(
15.29

Re0.0567

)
. (2.54)

The Equation (2.53) is valid in the range 2000 < Re < 108.
For fully rough �ow the simpli�ed weighting function is [30]

War =
A∗ exp (−ψ/C∗r )√

ψ
, (2.55)

where the parameters A∗ and C∗r can be approximated by

A∗ ≈ 0.0103
√
Reνε

0.39,

C∗r ≈
1

0.352Reνε0.41

(2.56)
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By considering the special case of constant accelerating transients the unsteady
skin friction was derived;

fu ≈ 2
√
C∗ erf

(√
ψ/C∗

)
(2.57)

and for fully rough �ow;

fu ≈ 4A∗
√
πC∗r erf

(√
ψ/C∗r

)
, (2.58)

where the error function erf(ψ = 0) = 0 and approaches unity as ψ → ∞. Vardy
et al[28] linked the limiting value of the unsteady friction in equations (2.57) and
(2.58) to the Brunone unsteady friction coe�cient used in the Brunone et al model:

k3 = 2
√
C∗ (2.59)

and for fully rough �ow;
k3 = 4A∗

√
πC∗r . (2.60)

If the transients accelerate approximately constant for a limiting time ψTL, then
the instantaneous acceleration model is a reasonable approximation. The limiting
rise time is the non-dimensional time it takes for the error function to attain a
value of 0.99. For smooth �ow the limiting rise time is

ψTL = 3.323C∗, (2.61)

and for rough �ow it is
ψTLr = 3.317C∗r . (2.62)

To summarize, there are two main approaches to model transient friction that
are applicable in one-dimensional transient models. The �rst of these methods,
models the transient friction according to instantaneous mean velocities and ac-
celerations (e.g.[9] and [1]). The second approach models the transient friction by
accounting for the velocity history of the �ow via a weighting integral (e.g. [41],
[39], [29] and [30]).

The �rst category of models needs only the local acceleration and the local
velocity and are therefore numerically cheap. On the other hand, they lack the
ability to capture more complex behaviour and is presumed to have lower accuracy
than weighting function models. The weighting function approach have reportedly
high accuracy right after the unsteadiness was initiated, the accuracy decreases
as the time increases. It is also computational costly compared to instantaneous
acceleration models seeing as the weighting function must be integrated at each
time-step.
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Chapter 3
Gas Transport Models

Application of gas transport models are numerous: In the planning and building
process they can be used to calculate dimensions of the pipe-lines and the pressure
required at pumping stations. To plan and maintain deliveries to the consumers
with correct pressure, within the tolerance stated in the laws of gas trade. As a real
time monitoring system to automatically detect leaks, unwanted slug creation, and
other anomalies[40]. Optimize pipe capacity; postponing expensive infrastructural
upgrades.

The pipes have �ow meters, pressure transmitters and quality measurement
only at inlet and outlet. So all information of the state of the gas between inlet
and outlet will have to be simulated using gas transport models. Most commercial
pipeline simulators for long transport pipes di�er little from each other, a short
introduction into a typical model is presented in the next sections.

From this point on, to simplify notation, the bar over the cross-sectional average
velocity is omitted; i.e. U ⇒ U .

3.1 One-Dimensional Equations

To model such great distances as in gas transport, the equations are usually made
one-dimensional. The equations must also be valid in the turbulent �ow regime,
thus the equations are Reynolds time averaged. The set of equations for gas trans-
port �ow is stated as the following[15]:

Conservation Equation

∂ρ

∂t
+

∂

∂x
(ρU) (3.1)

where the x-direction is in the pipe axial direction.

21
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The momentum equation

ρ
∂U

∂t
+ ρU

∂U

∂x
= −∂p

∂x
+ ρg sinα− 1

2
ρU |U | f

D
. (3.2)

where α is the incline of the pipe and g is the gravitational force. Here the Darcy
friction factor f is inserted through the assumption that Equation (2.30) is a suf-
�ciently good approximation.

The Energy Equation

ρcv

(
∂T

∂t
+ U

∂T

∂x

)
= T

(
∂p

∂T

)
ρ

∂U

∂x
+ ρ

f

2D
U3 − 4UW,tot

D
(Tgas − Tenv) , (3.3)

where UW,tot is the total heat transfer coe�cient between the gas and the pipe
environment and is de�ned as

UW,tot =
Qtot

(Tgas − Tenv)A
.

The second term on the right hand side in the energy equation represent the energy
dissipation due to viscosity and turbulence.

3.2 Solution Methods

From the three balances mass balance, momentum balance and energy balance,
one ends up with a set of partial di�erential equations (PDE). Where there are
two independent variables, x and t. The dependent variables can be density, mass
�ux and energy. There are several numerical methods that can be used to solve
the equations. Among them are the �nite volume method (FVM), the method of
characteristics (MOC), the �nite di�erence method (FDM) and the �nite element
method (FEM). The most popular of these numerical methods used in pipeline
models is the �nite di�erencing method[15], although other methods has been ap-
plied with success[20].

In the �nite di�erence method, the pipeline is divided into equally sized seg-
ments. The connection points between these segments are called knots. The
derivatives in the partial di�erential equations are approximated by a �nite dif-
ference equation. These �nite di�erences are algebraic and the solution is related
to the knots. In Langelandsvik's PHD thesis[15] a transient gas transport model,
Transient Gas Network (TGNet), which uses FDM is described. The mass and
momentum equations are discretised using the box scheme[14]. For a pipe segment
the equations can be written as

∂u

∂t
+A(x, u)

∂u

∂x
= F (x, t, u), (3.4)

where

u =

[
ρ
ṁ

]
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A(x, u) = L−1

[
0 1

γ2 − ν2 2ν

]

F (x, t, ρ, ṁ) =

[
0,
−fṁ | ṁ |

2Dρ
− L−1ρg sinα

]T
.

Here γ is gas sound velocity and ν is the gas velocity. The �nite di�erence method
su�ers from instability if it encounters non-linear algebraic problems, and as a
result A(x, u) and F (x, t, ρ, ṁ) are linearised about the solution at the jth time level
when solving for j+1 time level. After the linearisation the simulator evaluates the
variables at the new and old time step from the midpoint (xi+1/2, tj+1/2). From
this a complete set of di�erence equations are obtained

U(xi+1/2, tj) =
1

2
(U (xi+1, tj) + U (xi, tj))

U(xi, tj+1/2) =
1

2
(U (xi, tj+1) + U (xi, tj))

∂U

∂x
(xi+1/2, tj+1/2) =

1

∆t

(
U
(
xi+1/2, tj+1

)
− U

(
xi+1/2, tj

))
∂U

∂x
(xi+1/2, tj+1/2) =

1

h

(
U
(
xi+1, tj+1/2

)
− U

(
xi, tj+1/2

))
∂U

∂x
(xi+, tj) =

1

h
(U (xi+1, tj)− U (xi, tj))

(3.5)

In Figure 3.1 the box scheme is schematically drawn up, the knots are market

Figure 3.1: Numerical box scheme schematic[15]

by k and the time step i marked with n. In the box the unknowns are in the
next time step (xi, tj+1) and (xi+1, tj+1). They are dependent upon the previous
time step (xi, tj) , (xi+1, tj) and its neighbour, so that (xi, tj+1) is also dependent
on (xi+1, tj+1) and vice versa. This is an implicit method where the all the next
time step must be solved simultaneously. This can be done by �rst factorizing the



Chapter 3. Gas Transport Models 24

matrices into a lower and upper triangular matrix and then using the Gauss-Seidel
or the more popular, Thomas algorithm (TDMA). After the mass and momentum
balance is solved for the new time step, the energy equation is solved. This is
done due to the fact that the temperature response is signi�cantly slower than the
hydraulic response.

3.3 Heat Transfer

The heat transfer is dependent on three factors. The heat transfer between the
surrounding to the outside of the outer pipe wall, the isolation of the pipe wall
and the heat transfer from the gas �ow to the inner wall of the pipe. The outer
heat transfer depends on burial depth and exposure to water. With di�erent heat
coe�cient whether it is deep burial or shallow burial. Having good temperature
data at sea bottom is important to get accurate solution of the energy equation
[11]

3.4 Friction Factor

In most transient gas transport models the friction factor is modelled with the
stationary friction factor at the instantaneous Reynolds number; neglecting any
transient contribution of the friction. This is a reasonable approximation during
slow transients, but it will reduce the model accuracy during fast transients.

The friction factor correlation most commonly used in transient gas transport
models is the Colebrook-White Equation (2.40). To calibrate the model and correct
for additional drag e�ects an EFF can be multiplied to compensate for additional
drag e�ect

1√
f
≈ −2.0 log10

(
k/D

3.7
+

2.51

ReD
√
f

)
EFF .

Before new pipelines are installed, the roughness of the wall are measured. For
coated and uncoated pipelines the roughness height is within the range of 6.4µm
and 19.1µm respectively[26]. If the measurements of the wall roughness is accurate
and the models correctly depict the drag, a lot of time, and thus money, can be
saved when calibrating the numerical model to the pipeline.
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One Dimensional Numerical Models

To be able to solve the �ow problem numerically, for both one-dimensional and
two-dimensional �ow, the �ow is assumed to be incompressible and isothermal.
Moreover, it is assumed that no external force is applied to the �ow.

4.1 Incompressible Flow and Conservation Form

For the treatment of turbulent �ow the Navier-Stokes equations are written on
conservation form and simpli�ed in the same manner as Equation (2.42).

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+

∂

∂xj
τij . (4.1)

4.2 Reynolds Averaging

In incompressible and isothermal �ow there are two turbulent variables. From the
Reynolds decomposition we then have

ui = ui + u′i,

and
p = p+ p′.

Substituting these variables into the incompressible continuity equation and time
averaging the equation gives

∂ (ui + u′i)

∂xi
= 0 =

∂ui
∂xi

.

Inserting the variables into the Navier-Stokes equations yields

∂

∂t
ρ (ui + u′i) +

∂

∂xj
(ui + u′i)

(
uj + u′j

)
=

∂

∂xi
(p+ p′) +

∂

∂xj

(
τ ij + τ ′ij

)
. (4.2)

25
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Averaging and rewriting yields

∂

∂t
ρui +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+

∂

∂xj

(
τij − ρu′iu′j

)
, (4.3)

where the term −ρu′iu′j represents stresses caused by the turbulent �uctuations, in
analogy with the viscous stresses τ ij which results from random molecular motions.

4.3 Turbulent Pipe Flow

Equation (4.3) is simpli�ed as the �ow is fully developed ∂u
∂x = 0. Integrating the

resulting equation over the control volume Adx:ˆ

V

∂

∂t
ρu dV = −

ˆ

V

∂p

∂xi
dV +

ˆ

V

∂

∂xj

(
τij − ρu′iu′j

)
dV . (4.4)

Applying the divergence theorem givesˆ

V

∂

∂t
ρu dAdx = −

‹

A

~p ·~n ds dx+

‹

A

(
τ ij − ρu′iu′j

)∣∣∣
r=R

nj ds dx (4.5)

= −Adp+
(
τxr − ρu′xu′r

)∣∣
r=R

2πRdx (4.6)

⇒ ρ

A

∂

∂t

ˆ

V

u dAdx = − dp−
(
τxy − ρu′xu′y

)
w

2πR

πR2
dx

= ρ
∂U

∂t
dx = − dp−

(
τxy − ρu′xu′y

)
w

2

R
dx

(4.7)

⇒ ∂U

∂t
= −1

ρ

dp

dx
−τw

2

ρR
. (4.8)

From the de�nition of the Fanning friction factor (2.25) we get the wall shear stress
in terms of friction, velocity, and density

Cf =
τw

1
2ρU

2
⇒ τw =

1

2
CfρU

2. (4.9)

Substituting the wall shear stress into Equation (4.8) and replacing radius with
diameter gives

∂U

∂t
= −1

ρ

dp

dx
−2CfU |U |

D
, (4.10)

where the absolute value is taken of U on the right hand side to ensure correct sign
of the term regardless of �ow direction and acceleration.

For high Reynolds numbers the friction factor is approximately constant, see
chart 2.5. Equation (4.10) can therefore be regarded as a �rst order non-linear
di�erential equation;

dU

dt
= α− βU |U | , (4.11)
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where the parameters α and β are:

−1

ρ

dp

dx
= α ≥ 0

2Cf
D

= β > 0

(4.12)

Equation (4.11) can be solved by �rst dividing the equation with α− βU(t)2;

∂U(t)
∂t

α− βU(t) |U(t)|
= 1, (4.13)

then integrating with respect to t

ˆ ∂U(t)
∂t

α− βU(t) |U(t)|
dt =

ˆ
1 dt, (4.14)

and evaluating the integrals

⇒
tanh−1

(√
β
αU(t)

)
√
αβ

= t+ C, (4.15)

where C is an integrating constant determined by the initial condition. Solving the
equation for U(t) gives

U(t) =

√
α

β
tanh

(√
αβ (t+ C)

)
. (4.16)

Solving for the initial condition U(0) = U0 yields

U(0) = U0 =

√
α

β
tanh

(√
αβC

)
, (4.17)

⇒ C =
1√
αβ

tanh−1

(√
β

α
U0

)
. (4.18)

The full solution is

U(t) =

√
α

β
tanh

(√
αβ

(
t+

1√
αβ

tanh−1

(√
β

α
U0

)))
, (4.19)

where α and β are parameters de�ned in Equation (4.12). α is constant if the
pressure di�erence and the density is constant, which is the case during ramp-
up and ramp-down transients used in this thesis. The parameter β varies with the
friction factor, which may be modelled by friction models mentioned in Section 2.4.
In this work three di�erent friction models were implemented in the 1D turbulence
model. These friction models are the quasi-steady friction model, the Daily et al.
model with the Brunone unsteady friction coe�cient k3, and the Vardy and Brown
frozen viscosity weighting friction model. An outline of the implementations of
these models are found in Section 4.5.
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4.4 Fully Developed Laminar Pipe Flow

In order to analyse 2D Fluent results in the laminar region a 1D model for laminar
�ow was needed. Integrating Equation 2.42 over the control volume Adx and
assuming that the �ow is fully developed, yields

dU

dt
= −1

ρ

dp

dx
− τw

4

ρD
. (4.20)

Recalling the de�nition of the Fanning friction factor

Cf =
τw

1
2ρU

2
, (4.21)

and furthermore in laminar �ow

Cfs =
16

Re
. (4.22)

Inserting Equation 4.21 and including the stationary Fanning friction factor 4.22
gives:

dU

dt
= −1

ρ

dp

dx
− 2CfU

2

D

= −1

ρ

dp

dx
− 2 (Cfs + Cfu)U2

D
,

(4.23)

dU

dt
= −1

ρ

dp

dx
− 32µU

D2ρ
− 2CfuU

2

D
(4.24)

Assuming that the unsteady component is very small, Equation 4.24 may be rear-
ranged into a linear di�erential equation of the form

U̇ + κU = γ, (4.25)

where γ and κ are the parameters de�ned by

γ = −1

ρ

dp

dx
, κ =

32µ

ρD2
− 2CfuU

D
(4.26)

Solving the linear di�erential Equation 4.25 may be done by �rst multiplying it
with e−κt and using the product rule for derivatives

ˆ (
∂U

∂t
e−κt − κUe−κt

)
dt =

ˆ [
∂

∂t

(
Ue−κt

)]
dt =

ˆ
γe−κt dt .

This equates to

Ue−κt =
γe−κt

−κ
+ C ⇒ U = − γ

−κ
+ Ceκt.
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C is an integrating constant and is found from the initial condition

U(t = 0) = U0 ⇒ C =
κ

γ
+ U0.

The end result is a one-dimensional solution which can be used to model laminar
�ow subjected to constant pressure di�erence

U(t) =
γ

−κ
+
(
U0 +

γ

κ

)
eκt. (4.27)

The unsteady component of the Fanning friction factor residing in the parameter κ
may be modelled by several methods, where a few are mentioned in Section 2.4. In
this thesis two friction models where implemented; the quasi-steady friction model,
which neglects the unsteady component altogether and the Daily et al. model with
constant friction coe�cient k1.

4.5 Numerical Models

To model the 1D solution (4.19) and the friction factor within, a numerical code
was programmed in Fortran. Two friction models were implemented in the 1D
laminar model, namely the quasi-steady friction model, and the Daily et al model
with constant friction coe�cient k1. Furthermore, in the turbulent 1D model,
three di�erent friction models was considered and implemented in the code; that
is, the quasi-steady friction model, the Daily et al. model with the Brunone friction
coe�cient, and the simpli�ed weighting function friction model by Vardy et al. To
model the steady friction factor the Darcy friction factor was calculated by solving
the Colebrook-White equation implicitly.
A drawback when applying unsteady friction models to the 1D model (4.19) is that
the in�uence of unsteady contributions of the friction factor only e�ects its own
time step and the acceleration of the neighbouring time steps; when the unsteady
component of the friction factor has diminished the unsteady solution will be the
same as the one with quasi-steady modelling at the same time step. Unsteady
friction contributions early in the transients will therefore not signi�cantly e�ect
the solution at a later time. This occurs because the solution is calculated from
the initial condition and not from the previous time step.

However, when modelling the 1D model with the unsteady friction models,
the unsteady friction is not only dependent upon current time step, but also the
next and previous time steps, or all the previous time steps. Furthermore, in the
unsteady friction models the local acceleration is needed, which is modelled in
following way: The local acceleration in acceleration vector A at index i is found
by

A(i) =
U(i+ 1)− U(i− 1)

T (i+ 1)− T (i− 1)
, (4.28)

where U is the velocity vector and T is the time vector. A short explanation to how
the di�erent 1D models were implemented is found in the forthcoming sections.
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4.5.1 1D Laminar Model with Quasi-Steady Friction Mod-

elling

The quasi-steady 1D laminar model is modelled by solving

U(t) =
γ

−κ
+
(
U0 +

γ

κ

)
eκt (4.27)

implicitly at each time step, where κ = 32
ρD2 and γ = − 1

ρ
dp
dx ; both κ and γ are

constant. In the program-code a �do loop� solves the above equation at each time
step until a pre-set parameter of tolerance is reached.

4.5.2 1D Laminar Model with IAB Friction Modelling

When modelling unsteady friction with the Daily et al. friction model, the Equa-
tion 4.27 is �rst implicitly solved at each time step with the quasi-steady friction
factor. The resulting velocity vector is saved and the acceleration at every time
step is calculated and then the unsteady friction component is calculated. The
velocity is then updated by solving the Equation 4.27 with the updated value of
κ. When the vector is traversed, the updated velocity is compared to the old, the
process continues until a pre-set minimum average di�erence between the old and
the updated velocity is reached.

4.5.3 1D Turbulence Quasi-Steady Friction Model

When the friction factor is modelled with the quasi-steady friction factor, the only
information needed is the time and bulk velocity at the current time step. The
Equation (4.19) was solved implicitly until the di�erence between right hand side
and left hand side velocity was under a predetermined tolerance δ. Solving the
equation implicitly renders the solution independent of the time step size. The
implicit solver code is included below:

1 ! Loop tha t t r a v e r s e s v e c t o r s
2 DO I=2,NSTEPS
3 Ut( I ) = Ut( I−1)
4 UOLD = Ut( I )+1
5 ! Loop tha t im p l i c i t l y s o l v e s Ut ( I )
6 DOWHILE (ABS(Ut( I )−UOLD) > t o l )
7 UOLD = Ut( I )
8 ! Function tha t re turns the Darcy f r i c t i o n f a c t o r
9 CALL FRICTION(Ut( I ) )
10 FS( I )=FRICT
11 BETA = FS( I ) /2/D
12 ! I n t e g ra t i on constant
13 C = 1/SQRT( alpha ∗beta ) ∗(ATANH(DCMPLX(Ut (1 ) ∗SQRT( beta / alpha ) ,0 ) ) )
14 Ut( I ) = SQRT( alpha /beta ) ∗ABS( tanh (DCMPLX( ( sq r t ( alpha ∗beta ) ∗ tVector

( I )+c∗SQRT( alpha ∗beta ) ) ) ) )
15 ENDDO

16 TAU( I ) = (FS( I ) ∗ rho ∗UT( I ) ∗∗2) /8
17 RET( I ) = UT( I ) ∗RHO∗D/MU
18 ENDDO
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4.5.4 1D Turbulence Daily et.al. Model with Brunone Un-

steady Friction Coe�cient

To model the unsteady friction, additional steps must be taken. A step by step
outline of the procedure follows:

1. U(i) is solved at each time step with the quasi-steady friction model and the
velocity vector is saved.

2. The acceleration and unsteady component of the friction factor is calculated
from the saved velocity vector.

3. The 1D model is solved with the newly found unsteady friction. The new
velocity vector is compared to the old velocity vector and saved.

4. Step 2, and 3 are repeated until the average di�erence between the old and
new velocity vector is below a pre-set tolerance.

4.5.5 1D Turbulence Vardy and Brown's Unsteady Friction

Model

The algorithm is similar to the 1D turbulence Daily et al. friction model, however

1. U(i) is solved at each time step with the quasi-steady friction model and the
velocity vector is saved.

2. For U(i) the weighting function and acceleration for all previous time steps
are calculated, convoluted and numerically integrated using the trapezoid
method.

3. The shear decay coe�cient is calculated.

4. The unsteady component of the friction factor is estimated fu
(
Wa(θ), ∂U∂t

)
and is used to update the value of U(i− 1)

5. Step 2, 3, and 4 is repeated until the di�erence between
|U(i− 1)n − U(i− 1)n−1| < δ, where n is number of iteration of step 2, 3,
and 4.

The numerical code in its totality is included in Appendix B.
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Chapter 5
Computational Fluid Dynamics

Model

In this thesis a commercial CFD program is to be used to simulate a detailed
fully transient case which is to be compared to a more simple 1D model. There
exist a number of di�erent CFD programs available, among them are, ANSYS
CFX, ANSYS Fluent, PHOENICS and STAR-CD. There are also open source
alternatives, like the popular OpenFoam.

The CFD package chosen for this thesis is ANSYS Fluent 13. Recently, Fluent
was bought by ANSYS and subsequently brought under their Workbench solution.
ANSYS Workbench is a complete CFD package, delivering a geometric modeller,
mesh generator, CFD solvers, and a result analysis program.

There are several ways to �nd the de�ciencies of a gas transport model. Exe-
cuting experiments on the actual pipe-line and comparing them with the compu-
tational model is a very expensive way of doing it, halting e�ective deliverance.
A cheaper way is to go to numerical methods and inspect the validity of dubious
simpli�cations, like the quasi-steady friction factor during transient periods, by
comparing the model or similar models with a detailed fully transient model. The
scope of this work is to see the potential deviance from a quasi-steady friction-
based one-dimensional model to a more advanced fully transient two-dimensional
model. To simplify notation, the bar over the mean local velocity is omitted from
this point on; i.e. ū⇒ u.

5.1 Finite Volume Method

Fluent, as many other CFD programs, uses the �nite volume method (FVM). FVMs
are robust and numerically cheap for conservation laws. They can be used for all
geometries, using both structured and unstructured meshes. However, achieving
high precision can be di�cult compared to other methods. The �nite volume

33
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Figure 5.1: A 3D control Volume.

method can be decomposed into three main steps:

1. Discretisation of the solution domain into a suitable grid

2. Discretisation of the transport equations into a set of algebraic equations

3. Solving the discretised equations

An outline of these steps are given in the forthcoming sections.

5.1.1 Discretisation of the Solution Domain

One big asset of the FVM is that there is no limit to the shape of the discretised do-
main, grid, and the discrete control volumes, cells, which constitute the discretised
domain. However, guidelines to generate grids to achieve high accuracy solutions
exists. For instance, the grid should follow the stream lines, higher resolution is
recommended where high velocity gradients are expected, the grid aspect ratio and
expansion ratio should not be too great, where the expansion ratio the cells increase
in size compared to neighbouring cells, while the aspect ratio is the ratio between
the two cell walls in a cell.

The grids can be either be orthogonal or non-orthogonal, and structured or
non-structured. The grids are orthogonal if and only if all the cells are orthogonal
at the intersections; the grids are structured if and only if it is possible to make
a N -dimensional array indexing the grid, where N is the spatial dimension of the
domain.

The shape of the cells are often quadrilateral or triangular. Commonly, cells
have a node at its center where the pressure is calculated, and the faces of the cells
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Figure 5.2: A 2D staggered grid.

are identi�ed by their cardinal directions, n,s,w, and e, relative to the cell center.
Neighbouring cell nodal points are identi�ed by capital letters; e.g. N, S, W, and
E. If the domain is three-dimensional, the �fth and sixth faces are identi�ed by
bottom (b) and top (t), see Figure 5.1, where a 3D orthogonal quadrilateral cell
is shown. In addition, to increase stability of the solvers when treating convective
�ows, where the velocity �eld and pressure �eld must be coupled, a staggered grid
is applied. In the staggered grid the velocity �eld is stored at the faces of the
cells while other variables like the pressure and temperature are stored at the cell
nodes, see Figure 5.2. Furthermore, the indexing of cell-nodes and face-intersection
(vertex) in a staggered grid is with capital I and J , and with lower case i and j
for cell-nodes and face-intersections respectively.

5.1.2 Discretisation of the Transport Equations

In FVMs the governing equations are written on the same form, known as the trans-
port equation. If a general variable φ is introduced, the conservative form of the
governing equations, in addition to equations for scalar quantities like temperature
and turbulence kinetic energy, can conveniently be written as

∂ρφ

∂t
+
∂ (ρφui)

∂xi
=

∂

∂xi

[
Γ
∂φ

∂xi

]
+ Sφ, (5.1)

where Γ is a di�usion coe�cient and Sφ is a source term. If the transport equation
is to generate the governing equations for compressible viscous �ow, φ is set to
1, u, v, w, and cvT , additionally, Γ and Sφ must be set to the appropriate values to
satisfy the equations.

Furthermore in �nite volume methods, the transport equations are integrated
over a control volume CV; if the problem is time-dependent, the transport equation
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is also integrated over time, from t to t+ ∆t, thus the integrated general transport
equation becomes

t+∆tˆ

t

ˆ

CV

∂ρφ

∂t
dV dt+

t+∆tˆ

t

ˆ

CV

∂ (ρφui)

∂xi
dV dt

=

t+∆tˆ

t

ˆ

CV

∂

∂xi

[
Γ
∂φ

∂xi

]
dV dt+

t+∆tˆ

t

ˆ

CV

Sφ dV dt .

(5.2)

By applying the divergence theorem and change the order of the integration and
di�erentiation in the temporal term, the general integrated form of the transport
equation is

t+∆tˆ

t

∂

∂t

ˆ
CV

ρφ dV

 dt+

t+∆tˆ

t

ˆ
A

(ρφui) dAi

 dt
=

t+∆tˆ

t

ˆ
A

(
Γ
∂φ

∂xj

)
dAi

 dt+

t+∆tˆ

t

ˆ

cv

Sφ dV dt

(5.3)

where dAi is the face area in i direction.
The general integrated transport equation can yield a discretised equation in

a cell at its nodal point P and its faces. Now for simplicity, consider a one-
dimensional steady di�usion problem for the scalar variable φ; the integrated trans-
port equation is in that case

ˆ

A

(
Γ
∂φ

∂x

)
dA+

ˆ

CV

Sφ dV = 0, (5.4)

where A is the cross-sectional area of the east or west face depending on the in-
tegration limit. The di�usive term is evaluated at the east and west face and the
source term is averaged over the control volume, yielding[

ΓA
∂φ

∂x

]
e

−
[
ΓA

∂φ

∂x

]
w

+ Sφ∆V = 0. (5.5)

The di�usion coe�cient and the gradient of φ is required at the east and west
faces. A common practice in FVM is that the scalar variable and the di�usion
coe�cient are evaluated at the nodal points in accordance with a staggered grid.
There are several ways to approximate the di�usion coe�cient at the faces. The
most straight forward method is to evaluate them by linear interpolation; i.e for a
equidistant grid:

Γe =
ΓE + ΓP

2

Γw =
ΓP + ΓW

2
.

(5.6)
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The gradient of the scalar variable, ∂φ∂x , is approximated by the following equations:(
∂φ

∂x

)
e

=
φE − φP
∆xPE

,(
∂φ

∂x

)
w

=
φP − φW
∆xWP

.

(5.7)

Substituting equations (5.6) and (5.7) into Equation (5.5) gives

ΓeAe

(
φE − φP
∆xPE

)
− ΓwAw

(
φP − φW
∆xWP

)
. (5.8)

This is rearranged to(
Γe

∆xPE
Ae +

Γw
∆xWP

Aw

)
φP =

(
Γw

∆xWP
Aw

)
φW +

(
Γe

∆xPE
Ae

)
φE . (5.9)

Now the coe�cients of φP , φW , and φE are identi�ed to aP , aW , and aE yielding

aPφP = aWφW + aEφE + Sφ, (5.10)

which is a discrete algebraic equation for the 1D di�usion problem for the cell
control volume.

5.1.3 Solving the Discrete Equations

With a whole mesh of cells, algebraic equations e.g. Equation 5.10 is associated
with each cell and constitutes a system of linear algebraic equations. Cells which are
adjacent to boundary conditions must incorporate these in the algebraic equations.
The system of algebraic equations can be solved by any appropriate matrix solution
technique, thus yielding a distribution of the �ow property φ.

5.2 Choice of Turbulent Model

There are many di�erent turbulent models with di�erent accuracy, complexity, and
computer cost. A hierarchy outlining the di�erent models according to complexity
is depicted in Figure 5.3. Choosing a model depend on the physical problem which
is to be modelled, wanted accuracy, and computational power at disposal.

The physical problem is simpli�ed so that it is feasible to do the simulations on
a personal computer. The �uid �ow is assumed to be isothermal, incompressible,
fully developed, and with constant viscosity. To avoid simulating in a long pipe to
achieve fully developed �ow, translational periodic boundary conditions were set
on the inlet and outlet, this is explained in detail in Section 5.4.1. Furthermore,
the pipe is assumed to have constant diameter. Generally, a turbulent pipe �ow
is three-dimensional, but since there is no reason to assume swirl �ow inside the
pipe, the �ow can be modelled as an axis symmetric problem, reducing it to a
two-dimensional �ow. In gas transport �ow, Reynolds numbers up to ∼ 107 are
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Figure 5.3: Hierarchy of turbulence models[33]

expected, so the model must be able to solve for high Reynolds numbers. The area
of interest to evaluate the friction factor is the viscous sublayer; this means that
the chosen model must have high accuracy near the wall. These models are known
as low Reynolds number models, since the local Reynolds number, Rey = ρuy

µ , goes
towards zero near the wall.

Direct numerical simulations and large eddy simulations are not feasible model
alternatives due to the high Reynolds number. Therefore, only Reynolds averaged
models will be considered. The usable turbulent models which are present in Fluent
are given below with short descriptions. If nothing else is speci�ed, the information
is from the Fluent theory guide[3].

5.2.1 The Spalart-Allmaras Model

The Spalart-Allmaras model is a one-equation model, solving a modelled transport
equation for the kinematic eddy viscosity. The model was designed for aerospace
applications involving wall-bounded �ows. It is a low Reynolds number model,
requiring high wall resolution y+ ∼ 1. The Spalart-Allmaras model is not calibrated
for general industrial �ows and lacks sensitivity to rapidly changing �ows. It is also
the simplest of the presented models, making it a numerically cheap model with
low accuracy.
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5.2.2 The k-ε Model

The k-ε model is a popular choice for practical engineering �ow simulations. It
possess a good combination of robustness, computer cost, and reasonable accuracy
for a wide range of turbulent �ows. The model is based on the transport equations
for turbulent kinetic energy k and its dissipation rate ε. The kinetic energy model
equation is derived from the exact equation, while the ε model equation is obtained
from physical reasoning. The model is only valid for fully turbulent �ows. There
are several improved sub-models improving the known weaknesses. Two of them are
included in Fluent, the RNG k-ε model and the Realizable k-ε. The standard k-ε
model is a high Reynolds model, relaying on wall functions near the wall. The RNG
k-ε has a di�erential formula for e�ective viscosity which accounts for low-Reynolds
number e�ects. Its e�ectiveness depend on appropriate near-wall treatment.

5.2.3 The k-ω Model

The k-ω model in Fluent is based on the Wilcox k-ω model. It can be modi�ed with
respect to compressibility, low Reynolds number e�ects, and shear �ow spreading.
It is sensitive to the values of k and ω outside the shear layer. The k-ω model is an
empirical model which is based upon model transport equation for turbulent kinetic
energy k and the speci�c dissipation rate ω, where ω can be seen as a ratio between
ε and k. The k-ω model demonstrates higher accuracy than the k-ε model with
respect to the turbulent boundary layer. With viscous correction added to the k-ω
model it produces almost identical results with measured skin friction coe�cient in
Wilcox article[35], indicating an accurate solution in the near wall region. There
is also a Shear-Stress Transport (SST) k-ω model. This model is better for free
stream �ows, using k-ω in the boundary layer and the ε in the free stream region.

5.2.4 The Transition k-kl-ωModel and Transition SSTModel

As the model names implies, they are transition models. They are used to predict
boundary layer development and calculate transition onset.

5.2.5 The Reynolds Stress Model

The Reynolds stress model is the most elaborate RANS turbulence model in Fluent.
In two-dimensional �ows, �ve additional transport equations are solved. This leads
to high computational cost. The model is best utilized for cyclone �ows, highly
swirling �ows in combustions, rotating �ow passages, and stress induced secondary
�ows in ducts.

5.2.6 Conclusion

The choice of model depends mostly on a balance between boundary-layer accuracy,
computer cost and general accuracy. Getting all in one model is not possible,
but as a compromise the standard k-ω model with low Reynolds treatment is a
good choice. As an alternative the RNG k-ε model could be mentioned, but it is
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not as stable in near wall regions, which might cause problems during transient
simulations.

5.3 The k-ω Model

As mentioned above, the k-ω model is a two-equation model. As most one- and
two-equation models, it is based upon modelled transport equations for turbulent
kinetic energy k and turbulent frequency ω, where the turbulent frequency is a
relation between turbulent dissipation and turbulent kinetic energy

ω ∝ ε

k
.

The k-ω models the Reynolds stress tensor with the Boussinesq approximation,

τij = −ρu′iu′j = 2µtSij −
2

3
ρkδij , (5.11)

where Sij is the mean strain rate tensor and µt is the eddy viscosity. The turbulent
kinetic energy k is expressed as

k =
1

2
u′iu
′
i.

The eddy viscosity is given by

µt = α∗
ρk

ω
. (5.12)

The rate of change in turbulent kinetic energy is an exact equation, while the rate
of change of speci�c dissipation rate ω is derived with the help of dimensional
analysis and empirical relations. The transport equations for k and ω are de�ned
in [3] as:

The Turbulence Kinetic Energy Transport Equation

∂ρk

∂t
+
∂kρui
∂xi

=
∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+Gk − Yk + Sk, (5.13)

The Speci�c Dissipation Rate Transport Equation

∂ρω

∂t
+
∂ωρui
∂xi

=
∂

∂xj

[(
µ+

µt
σω

)
∂ω

∂xj

]
+Gω − Yω + Sω, (5.14)

where σk and σω are the Prandtl numbers for k and ω respectively. The terms
inside the square brackets in both equations are the e�ective di�usivity, (Γ), for
turbulent kinetic energy and speci�c dissipation rate. Gk and Gω represent the
generation of k and ω. Potential sources are described by the source terms Sk and
Sω. The constants in the equations will be summarized in Section 5.3.4.
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5.3.1 Turbulence Production

The production of turbulent energy and ω represented by Gk and Gω. Gk is given
by

Gk = −ρu′iu′j
∂uj
∂xi

(5.15)

remembering and evaluating the Boussinesq approximation (5.11) we get

Gk = µtS
2 (5.16)

The production of ω is

Gω = α
ω

k
Gk, (5.17)

where α is de�ned as

α =
α∞
α∗

[
αo +Ret/Rω
1 +Ret/Rω

]
, (5.18)

and the turbulent Reynolds number is

Ret =
ρk

µω
. (5.19)

5.3.2 Turbulence Dissipation

The dissipation of k is given by

Yk = ρβ∗fβ∗kω, (5.20)

where

fβ∗ =

{
1 if χk ≤ 0
1+680χ2

k

1+400χ2
k

if χk > 0
,

and where

χk =
1

ω3

∂k

∂xj

∂ω

∂xj

The dissipation of ω is de�ned as

Yω = ρβfβω (5.21)

where

fβ∗ =
1 + 70χω
1 + 80χω

and

χω =

∣∣∣∣∣ΩijΩjkSki(β∗∞ω)
3

∣∣∣∣∣
Ωij =

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
S is the strain rate tensor

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
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5.3.3 Low-Reynolds-Number Correction

The coe�cient α∗ in equation (5.12), is used to dampen turbulent viscosity causing
a low Reynolds number correction. It is de�ned as

α∗ = α∗∞

[
α∗0 +Ret/Rk
1 +Ret/Rk

]
(5.22)

where Ret is de�ned in equation (5.19).

5.3.4 Model Constants

The model's constants have been altered along the years to optimize accuracy. The
standard constants in Fluent are as follows

α∗∞ = 1, α∞ = 0.52, α0 = 1/9 β∗∞ = 0.09, βi = 0.072, Rβ = 8, (5.23)

Rk = 6, Rω = 2.95, ζ∗ = 1.5, σk = 2, σω = 2. (5.24)

5.3.5 Wall treatment

There are two di�erent approaches to model the near-wall region. The �rst method
is to calculate the value of the �rst node from the wall with the help of a wall
function. The wall functions are semi empirical functions and enable the use of
models that do not include wall turbulent e�ects with wall bounded �ows. The
other way is to resolve the whole viscous sublayer. This is only sensible to do
with a turbulence model accounting for viscous-a�ected regions; i.e. low Reynolds
number models. The two methods are illustrated in Figure 5.4.
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Figure 5.4: Wall function versus near-wall model approach.

In the k-ω model in Fluent the default wall treatment is the so called enhanced
wall treatment (EWT). With the enhanced wall treatment the user does not need
to select which of the two approaches to use. It is a combination of the law of the
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wall(2.18) and the log law of the wall(2.19). Combining the two velocity contribu-
tions with a blending function yields

u+ = eΓu+
lam + e1/Γu+

turb (5.25)

where the blending function is

Γ = − a(y+)4

1 + by+
, (5.26)

in which the constants are a = 0.01 and b = 5. For y+ < 3 the enhanced wall
treatment ensures that dimensionless velocity is approximately equal to the laminar
value u+ ≈ u+

lam, and for y+ > 30 ⇒ u+ ≈ u+
turb. It should also give reasonable

results in the wall bu�er region. But it is advisable to either keep y+ > 30 or
y+ < 3; preferably around 1.

5.4 Boundary and Initial Conditions

To simulate an accurate solution, correct boundary conditions are essential. There
are four boundaries that needs to be set in the domain. The boundary conditions
are illustrated in Figure 5.5
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x D
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No slip
Periodic at inlet and outlet
Axis symmetry

Numerical
Domain

p₁ 

Figure 5.5: Bondary conditions for a pipe segment

5.4.1 Periodic Boundary Conditions

To simulate fully developed turbulent pipe �ow, a certain entrance length is needed.

The entrance length can be approximated as L ≈ DRe1/6
D [34]. This means that the

pipe length must be 65D at Re ∼ 107. In addition to this, the pipe must be even
longer for a time dependent �ow. Simulating a fully developed �ow is still possible
using periodic boundary conditions at inlet and outlet. This means that the �ow
exiting the pipe segment enters the entrance with the same characteristics. This
makes the pipe, in essence, in�nite in length. A pressure di�erence between the
two periodic boundaries is set to drive the �ow at a wanted bulk-velocity.

There are some limitations when periodic boundary conditions are applied.
The �ow cannot be compressible since this might interfere with the conservation of
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mass in the segment, if the density changes along the pipe. Additionally, sources
of any kind will violate the conservation laws and therefore all source terms must
be zero[4].

5.4.2 Axis boundary condition

The �ow is symmetric about the axis, meaning that the domain can be halved
by setting the axial plane as an axis symmetry boundary condition. A Symmetry
boundary condition functions as a mirror simulating the presence of the other half
of the �ow.

5.4.3 Wall boundary condition

At the pipe wall the normal no-slip condition is used, with the possibility of adding
�nite roughness. With the no-slip condition the velocity is zero at the wall. In
Fluent, the roughness height is modelled as a sand-grain roughness height. To
achieve similar roughness as found in industrial pipes, a roughness constant, Cs
is added. However, no clear guidance to �nd an appropriate roughness constant
exists, and consequently the roughness constant was left unchanged in the Fluent
simulations.

5.4.4 Initial Conditions

In the k-ω the initial conditions of k and ω must be set at the inlet. The value can
be estimated by Fluent via choice of turbulent intensity and hydraulic diameter.
If ω → 0⇒ µt →∞, thus non-zero values of ω must be chosen. The value of k is
less important. Typical values for k and ω at the inlet calculated by Fluent from
the turbulence intensity and the diameter was k = 1.5 · 10−4 and ω0.32 Re = 106

when Re = 107.

5.5 Mesh

In general the accuracy of a CFD solution is governed by the mesh resolution.
With higher resolution comes higher accuracy but also higher computational cost.
To optimize the grid with respect to both accuracy and computational cost one
can use a non-uniform grid with higher resolution where large variations occur[32].
For pipe �ow the biggest gradients will occur near the wall due to the no-slip
condition. When using FVMs it is possible to use an unstructured mesh which
is denser near the wall. This might be a good strategy for many problems, but
with periodic inlet and outlet, and high Reynolds number �ow, this can lead to
inaccuracy for the mass �ux, making the solution diverge. Using a structured mesh
with increasing resolution near the wall is then a better alternative. As a rule of
thumb the increased size between the cells should not increase with more than
a factor of 1.2 per step away from the wall. furthermore, the viscous sublayer
should be covered by at least 15 layers of cells[3]. Near the wall there can be quite
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elongated cells without deteriorating the accuracy as long as the elongation is in
the streamwise direction; albeit generally, very elongated cells should be avoided.
Figure 5.6 depicts the �rst cell from the wall with vertex, node and edges pointed
out. To achieve the wanted y+ ∼ 1 value near the wall, the �rst node becomes very
small. With Reynolds number ∼ 107 and a diameter of 1m, the distance from the
wall to the �rst node is determined by

y =
µy+

√
ρτ

Inserting the numbers and evaluating the wall shear stress using equation (2.30), we
get that y = 3.14 · 10−6m; a distance which one by de�nition must use a microscope
to observe. In an incompressible periodic �ow, the velocity does not change in the

I,J

Wall

Vertex

Node

Max roughness height Face

Figure 5.6: First cell from the wall

axial direction, meaning that the length of the mesh in axial direction can be very
short without losing information. This greatly lessens the numerical domain and
then also the computational cost. For a pipe with �nite roughness height, the
�rst node cannot be closer than the roughness height; this will lead to unphysical
behaviour.

5.5.1 Mesh Generation

To generate a mesh, a geometric �gure depicting the domain is made, then the
�gure is meshed using ANSYS Meshing. In this case the geometric shape is just a
�at face the height of D/2 with an appropriate length. There are several ways to
mesh the domain. Since this is a simple geometry, meshing it with quadrilateral
orthogonal structured grid seems appropriate. In ANSYS Mesher this can be done
by giving the face surface a function called �Mapped Face Meshing� and using
�sizing functions� on the domain edges. To get a denser mesh near the wall, bias
can be added to the radial edges. The inputs in the sizing function are number
of cells, total expansion rate biggest cell over smallest cell. To calculate the �rst
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node, height and expansion rate, an external program may be used (guessing is
also possible). The external program MeshSpace is devised by Marcus Hartinger
at Imperial College. The inputs can be edge length, expansion rate, and �rst node
height, it will then return the bias factor and the number of cells required to achieve
the input criteria. Figure 5.7 shows an example of two meshes with same �rst node
distance, but with di�erent expansion factor.

Figure 5.7: Two meshes with di�erent expansion rate k for Re ∼ 107. Left: k = 1.1
and n = 80. Right: k = 1.2 and n = 54.

5.6 Mesh and Time Independent Solution

A solution is considered mesh and time independent when a substantial increase
of mesh and time resolution give no or negligible alteration of the solution. To
avoid unnecessarily high resolution in space it is common to start solving with a
coarse mesh resolution and increase the resolution until the solution converges. To
avoid making too many re�nements and simulations it is advisable to �search� for
the correct mesh according to binary search or similar. When a su�cient mesh is
found, the mesh can be used to �nd an appropriate time step in a similar manner
as for the mesh. It can be noted that the mesh must be tested for the highest
Reynolds number to be used in the transient case.

5.7 CFD Solvers

There are two �ow solvers, the pressure based solver and the density based solver.
The density based solver is designed to solve compressible �ows and �ow with
shock, and the pressure based solver was derived for incompressible �ow, but can
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work for a wide range of �ows. Since the �ow that is to be solved is incompressible,
it is natural to use the pressure based solver.

To couple pressure and velocity there are several methods, in Fluent the choices
are between four schemes. Three segregated methods SIMPLE, SIMPLEC, and
PISO and a coupled method named Coupled. The segregated methods solve the
governing equations for each solution variable u, v, p, k and ω one after another.
The next step is solving the pressure correction continuity equation. In the coupled
algorithm all governing equations and pressure correction is solved simultaneously.
The segregated solver needs less memory but commonly uses more iterations to
converge. The coupled algorithms are not considered to be good choices due to the
limited memory available in the computer at disposal. SIMPLE is an acronym for
Semi-Implicit Method for Pressure Linked Equations and is a widely used method
and it is also the default in Fluent. SIMPLEC (SIMPLE-Consistent) has an in-
creased under relaxation factor that can be applied to obtain faster convergence
for �ows where the pressure coupling is the limiting factor for convergence. If not,
the SIMPLE and SIMPLEC will yield similar convergence rate. PISO (Pressure
Implicit with Splitting of Operators) is a pressure-velocity calculating method �rst
made for non-iterative computation for transient compressible �ows. It has been
altered to function for iterative methods as well. It is similar to SIMPLE with an
extra correction step. It is a good method for transient �ows since it allows for
larger time steps and, in addition, the Non Iterative Time Advancement (NITA)
can be applied. When NITA is activated the computational cost is further reduced.

The �ow considered in this thesis do not contain the convection term, which
tends to give rise to stability issues regarding the pressure velocity coupling. There-
fore, the SIMPLEC scheme will have no advantage over the SIMPLE algorithm,
thus the SIMPLE method was used in the steady state simulation, and the PISO
method was applied in the transient simulations with the NITA scheme activated
when possible.

5.7.1 Spatial and Time Discretisation

There are several spatial discretisation methods for the momentum, k, and ω equa-
tions. The methods available in Fluent are the �rst order and second order upwind,
the power law, QUICK, and the third order MUSCLE. First order is mostly used
for an initial solution since it tends to give faster converging solution and has low
accuracy. The QUICK and third order MUSCLE can give higher accuracy than
the second order upwind scheme for rotating or swirling �ows. In other �ows the
second order upwind discretisation is su�cient, and the QUICK and MUSCLE
schemes have no special advantage. The power law has similar accuracy as the
�rst order upwind.

For the spatial discretisation in the simulations the second order upwind dis-
cretisation was used, as the simulated �ow neither contains rotating or swirling
�ow.

Time discretisation schemes in Fluent are the �rst order implicit, the second
order implicit and the bounded second order implicit. Bounded second order and
second order implicit yield the same accuracy, but the bounded second order gives
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Table 5.1: Fluent settings.

Steady Simulations Transient Simulations
Solver SIMPLE PISO
Gradient Least squares cell based Least squares cell based
Pressure Standard Standard
Momentum Second order upwind Second order upwind
Turbulent Kinetic Energy Second order upwind Second order upwind
Speci�c Dissipation Rate Second order upwind Second order upwind
Temporal Discretisation Second order implicit

extra stability. For the time discretisation the second order implicit method was
applied, as the stability was not anticipated to cause problems.

5.8 Fluent Settings

A summary of the Fluent settings used in the simulations are presented in this
Section.

The k-ω turbulent model was chosen with the low Reynolds correction and the
default model constants were used (5.24) in all simulations. The pressure based
solver was selected. The settings are conveniently summarised in Table 5.1.

The NITA scheme was used in the transient simulations when possible, this to
save time. However, when the �ow was decelerating it was proven to be quite unsta-
ble and tended to diverge unless very short time steps were chosen. In those cases,
PISO with enough iteration per time step to achieve convergence was selected.

5.8.1 Physical Domain

In all of the simulations an axis-symmetric two-dimensional plane of the upper
part of a 1 m or 0.1 m diameter pipe was used. The pipe length may vary without
altering the solution[16].

The �uid chosen was water, with properties given from ocean level pressure at
15◦C, see table 5.2.

Table 5.2: Fluid Properties

Property Value

Viscosity, µ 1.003 · 10−3 m2/s
Density, ρ 998.2 kg/m3

5.9 Start Solution for the Transient Simulations

Before a solution can be initiated, an initial condition guess must be given. If the
initial guess is zero velocity and only the values for k and ω are given, the solution
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will converge towards a steady solution for the given pressure di�erence set at
the translational periodic boundary condition. This is a common way of �nding
a fully developed steady �ow without the need of a big numerical domain. The
obtained steady solutions was used as a starting solution for the transient cases.
It is important that the initial solution is well within the turbulent domain when
using the k-ω model, since it is fundamentally developed for turbulent �ow and,
thus, is poor at determining transition between laminar and turbulent �ow.

To get the wanted Reynolds number in the steady start solution, the correct
pressure di�erence must be set. The pressure di�erence was found from equation
(2.27),

dp

dx
= −f (µRe)

2

2ρD3
,

where the Darcy friction factor is calculated from the Colebrook-White formula
(2.40).
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Chapter 6
Validation of the k-ω Model

Validation of a CFD model is the process of determining to which degree a model
accurately represents the real world from the perspective of the intended uses of
the model [2]. The process can be described by several sub-processes, these are:
examining iterative convergence, check for consistency in the solution, examine grid
convergence, examine time convergence for time dependent simulations, compare
results to experimental data or theoretical analysis, and �nally to examine model
uncertainties via running a number of simulations with di�erent models and exam-
ining the result. The focus of the validation of the k-ω model will be on the spatial
convergence, on the time convergence, and on comparing stationary results with
1D stationary analysis. The latter of the validation sub-processes has not been
considered as it is out of the scope of the thesis.

The terms uncertainty and error are often used interchangeably in CFD-studies,
however according to the American Institute of Aeronautics and Astronautic (AIAA)
[2] there are clear distinctions between the two terms; uncertainty is the potential
de�ciency in any phase or activity of modelling process that is due to lack of knowl-
edge, whereas error is de�ned as recognizable de�ciency in any phase or activity of
modelling and simulation.

6.1 Iterative Convergence

Iterative convergence was checked by monitoring the respective imbalance of the
linear discretised equations, known as the residuals, and mean �ow characteristics
during iterative solving. Convergence is achieved if the residuals converge towards
zero and the mean �ow characteristics converge to a steady value. The solution
converged monotonically with increasing iterations in all test cases. When the
residuals became below a certain value, ∼ 10−4, monitored �ow characteristics,
such as the mass �ow, was converged to its steady state.

51
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6.2 Consistency

The discrete equations of the CFD model should converge to the di�erential equa-
tions for ∆t→ 0 and ∆x→ 0. Consistency can thus be seen as a re�ection of the
behaviour of the error; if the error reduces with increased spatial resolution and
decreased time step size, the procedure is consistent. This is shown in the two next
sections 6.3 and 6.4.

6.3 Mesh Independence

To generate reliable data from the simulations it is important that the solution is
mesh independent. For the selected CFD model there are mesh requirements with
regards to the �rst node near the wall; if the wall function is to be used the y+

value should be above 30, if the viscous sublayer is to be resolved the y+ value
should be in the order of 1. The simulations in this thesis the viscous sublayer is
resolved i.e the �rst node y+ value should not be higher than ∼ 1.

The mesh can be re�ned both in axial and radial direction, however the number
of cells in axial direction did not a�ect the solution other than increasing the amount
of iterations required for the solution to converge. To �nd adequate mesh resolution
in the radial direction, a mesh with relative high expansion rate e.g. k = 1.3 was
adapted to obtain a y+ value of ≈ 1 when simulating a �ow with the highest
Reynolds number occurring in the transient. Furthermore, the expansion factor
was decreased, while keeping the �rst node y+. When a decrease in the expansion
factor yielded no or little di�erence to the velocity pro�le, the mesh solution may
be regarded as mesh independent
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Figure 6.1: Di�erent velocity pro�les due to di�erent mesh resolution. The bound-
ary conditions are the same and results in a Reynolds number of ∼ 107. Here k is
the cell to cell expansion rate

In �gure 6.1 di�erent solutions obtained from di�erent meshes with same bound-
ary and initial conditions are shown. All the meshes with an y+ value below 5 gives
very similar pro�les. With a cell to cell expansion factor of 1.3, cell close to the
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axis will be very elongated and coarse in radial direction which is not advised [4].
With an expansion factor of 1.1 the number of cells is signi�cantly increased, and
thus the computational time is increased.

The meshes used in the turbulent transient simulations has a cell to cell expan-
sion rate of 1.2 and 1.1 for the transients up to Re = 106 and Re = 107 respectively.

6.4 Time Step Independence

To ensure high accuracy results from the transient simulations it is crucial that the
simulated transients are independent with regards to the chosen time step size and
that the solution is converged at each time step.

To achieve time step independent simulations, several test simulations of the
beginning of the transients was conducted. In the �rst simulation a presumed
suitable time step size was chosen. The best way to be certain of an converged
solution at each time step, in the authors opinion, is to control the convergence
by iterating the solver until the residuals are below a predetermined set criteria,
e.g > 105. In the next simulation the time step size was halved and the then the
simulations were compared, see Figure 6.2

This procedure was repeated for all the transient cases with di�erent start and
end Reynolds number.

From �gures 6.2a and 6.2b it can be concluded that it is important to ensure
that the solution is converged at each time step before reducing the time step size.
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Figure 6.2: Decreasing time step size and increasing number of iterations per time
step for transient from Re0 = 107 to Re1 = 2 · 104.
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Figure 6.3: Decreasing time step size for transient from Re0 = 2 · 104 to Re1 = 107.

6.5 Comparing the k-ω Model to 1D Theory

So far the focus has been to obtain reliable solutions with respect to the solver's
consistency and convergence. Now attention is paid to the uncertainties of the
2D model compared to the �real� world. The geometry and boundary conditions
at hand were chosen to be simple so that it would be possible to compare the
transient 2D results to simple 1D models based on the analytic solution of the
problem. Consequently, it is possible to compare stationary 2D k-ω results to 1D
analysis to assess the model uncertainty.

The mean �ow parameters that are compared are the bulk velocity, the friction
factor, and the wall shear stress. The one-dimensional equations that were used
are:

dp

dx
= −f (µRe)

2

2ρD3
, (2.27)

τw = −D
4

dp

dx
, (2.30)

1√
f
≈ −2.0 log10

(
k/D

3.7
+

2.51

Re
√
f

)
. (2.40)

The pressure di�erence of the 2D stationary periodic boundary condition was de-
termined by choosing a Reynolds number, calculating the corresponding friction
factor from Equation 2.40, and inserting the parameters into Equation 2.27. Thus,
the 2D and 1D pressure di�erence are identical. However the 2D bulk velocity, wall
shear stress, and the friction factor are dependent upon the accuracy of the k-ω
Model.

In this section, results from the 1D stationary analysis are considered the correct
value. The 2D model's uncertainties are given in percent and are calculated by
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dividing the di�erence between 1D and 2D results by the 1D result, e.g.

% Uncertainty = 100

(
2D− 1D

1D

)
.

In the �rst section herein, Section 6.5.1, smooth pipe �ows are considered and in
the second section, Section 6.5.2, �ows with �nite roughness at the wall are treated.

6.5.1 Stationary Flow in Smooth Pipes

Three 2D k-ω simulations were performed on meshes speci�cally suited to the sim-
ulated Reynolds numbers; the Reynolds numbers of the simulations were 104, 106,
and 107, were the meshes yielded y+ ≈ 1 for the �ows. Mean �ow characteristics
from these simulations are compared with the 1D steady analysis in Table 6.1, in
Table 6.2 the resulting uncertainties are listed. Furthermore, several simulations
with di�erent Reynolds number were performed using the meshes applied in the
transient simulations. The two meshes were adapted to attain y+ ∼ 1 at the high-
est occurring Reynolds number, which were Re = 106 and Re = 107. Figures 6.4a
and 6.4b shows the uncertainty of the wall shear stress, bulk velocity and friction
factor versus Reynolds number.

Table 6.1: Results from three steady state simulation in Fluent and 1D steady
analysis �ow for a pipe with D = 1 m and no roughness.

dp
dx

[
Pa
m

] 1D Steady Results 2D k-ω Steady Results

Re f τw Re 4Cf τw
0.00156 104 3.09 · 10−2 0.389 [mPa] 9.51 · 103 3.41 · 10−2 0.389 [mPa]

5.845 106 1.16 · 10−2 1.47[Pa] 9.996 · 105 1.17 · 10−2 1.47 [Pa]
408.16 107 8.10 · 10−3 102[Pa] 9.998 · 106 8.12 · 10−3 102 [Pa]

Table 6.2: Percent uncertainty between 2D and analytical steady-state �ow for a
pipe with D = 1 m and no roughness.

1D Re Re f τw
104 −4.90% 10.4% −1.38 · 10−6%
106 −0.330% 0.664% −5.74 · 10−6%
107 −0.109% 0.219% −2.49 · 10−7%

The bulk velocity and the friction factor predicted by the 2D k-ω simulations
di�ers signi�cantly from the 1D analysis; the highest uncertainty of the bulk ve-
locity is 6.2% and for the friction factor it is 12.5%, see �gure 6.4a. The wall shear
stress on the other hand, has an uncertainty no larger than ∼ 0.15%. The 2D
friction factor is calculated using the wall shear stress and the velocity squared.
The friction factor uncertainty can therefore be calculated from the propagating
uncertainties according to

∆f = ∆τw − 2∆U, (6.1)
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where the ∆ pre�x symbolizes that parameter is the percent uncertainty. The large
uncertainty in the friction factor is almost only caused by the too low bulk velocity.
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Figure 6.4: The 2D model's uncertainty in the mean results versus Reynolds num-
ber from stationary simulations with meshes adapted to Re = 106 and Re = 107

left and right �gure respectively. The Re-scales are logarithmic.

However, the uncertainty of the 2D k-ω model's predicted bulk velocity de-
creases with increased Reynolds number of the simulations. The uncertainty is
below 2% in both meshes when simulating �ow with Re = 106. In addition to the
Reynolds number, the uncertainties are dependent on the mesh; in the simulations
where the �rst node y+ � 1 the uncertainties are larger than in simulations with
the same Reynolds number, but with y+ ∼ 1, and in simulations with y+ > 2 the
k-ω model over-predicts the bulk velocity.

The uncertainty in velocity converges towards zero in the mesh adapted to 106,
while the uncertainty converges towards 0.44% in the mesh adapted to Re = 107.
The two meshes both had y+ ≈ 1, but the radial cell expansion factor was 1.2 and
1.1 for Re = 106 and 107 respectively. A simulation with a cell expansion factor of
1.1 with the same y+ yielded an uncertainty of 0.56% in the velocity. This implies
that the solution was not space resolution independent, and that a high radial
cell expansion factor increases the predicted bulk velocity, and in the case of the
Re = 106 adapted mesh the increased velocity is the similar to the bulk velocity
undershooting occurring in the k-ω simulations. Although the Re = 106 mesh did
not give a mesh independent solution, it was judged that the simulated transient
results was still trustworthy.

There are numerous causes that can increase uncertainties of the k-ω simu-
lations; Oberkampf et al. [21] lists �ve sources to simulation errors; these are:
physical modelling errors, discretization and solution errors, programming errors,
and computer round-o� errors. The programming errors and computer round-o�
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errors are assumed to have been handled by the Fluent development teams.
It is believed that most of the uncertainties in the k-ω model simulations is

the result of uncertainties in the underlying physical models. In general there is a
lack of complete knowledge and understanding of the complex physical processes in
turbulence �ow, this is re�ected in the turbulence models by the uncertainties when
compared to real world experiments. Some of the uncertainty can be related to the
physical geometry; the empirical constants used in the k-ω model are calculated
from �at plate experiments [38], and are likely not applicable to pipe geometry
without calibrations.

6.5.2 Stationary Flow In Rough Pipes

To investigate the impact of roughness height to the wall with respect to the un-
certainty of the simulations several simulations at di�erent Reynolds numbers and
with varying wall roughness height was conducted. The goal was to simulate tran-
sient behaviour in transitional roughness regime where 4 < k+ < 60.

As mentioned in Section 5.5 the wall roughness height should not be resolved
by the mesh. This requirement can be in con�ict with the requirement to the �rst
node y+ value, especially so when a �ow in the transitional regime were to be
simulated. Lets consider a �ow where the roughness height k is equal or smaller
than the �rst node y height, yielding k

y ≤ 1. Dividing k+ by y+ gives

k+

y+
=
k uτν
y uτν

=
k

y
, (6.2)

solving for y+ and inserting k
y ≤ 1

y+ = k+ y

k
⇒ y+ ≥ k+. (6.3)

This means that if the transitional roughness regime is to be simulated the �rst node
must have y+ ≥ 4, which will result in increased uncertainties of the simulation.
Although this was anticipated to occur, simulations at the limit of the transitional
roughness regime was attempted

Five stationary simulations with Reynolds number 106 and four simulations
with Reynolds number 107 were performed; in these simulations the roughness
coe�cient varies from 0.0382 to 6.93, see Table 6.3 for an overview. The right
column of Table 6.3 is a measure of the importance the roughness is to the �ow.
For

(
k
D

)
Re < 10, roughness is unimportant and for

(
k
D

)
Re > 1000 the �ow is

fully rough [33].
As with the stationary simulations of �ows in smooth pipes, the wall shear

stress, bulk velocity and friction factor were extracted and compared to 1D steady-
state analysis.

Figure 6.5 and �gure 6.6a shows that the uncertainty of the bulk velocity in-
creases with increased k+ above 1. The cause of increased uncertainty is most likely
caused by the too high �rst node y+ value, since y+ > 5 tend to give too high bulk
velocity compared to one-dimensional analysis, see �gure 6.1a. This is illustrated
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Table 6.3: Roughness height for the simulations in �gure 6.5 and �gure 6.6.

Simulation k+ Roughness height k[ m]
(
k
D

)
Re

Re 106

0.0382 1 · 10−6 1
0.192 5 · 10−6 5
0.385 1 · 10−5 10
1.99 5 · 10−5 50
4.10 1 · 10−4 100

Re 107

0, 320 1 · 10−6 10
1.64 5 · 10−6 50
3.35 1 · 10−5 100
6.93 2 · 10−5 200

by �gures 6.6a and 6.6b, where the the uncertainty is plotted against roughness
coe�cient in Figure 6.6a and in Figure 6.6b the �rst node y+ value versus k+ from
the same simulations are shown. In addition, u+ is displaced according to equation
(2.36) and equation (2.37). u+ is a function of k+ and y+. If u+ is displaced, so is
y+, as seen in �gure 6.6b.

Reliable solutions was not obtained with roughness coe�cient above 4, due to
the unsatisfactory high y+ value. This severely limits the possibility to simulate
transients in the transitional roughness regime, without compromising the accuracy
of the simulation.
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Chapter 7
Results and Discussion

In this chapter the results are presented and discussed. The �rst section covers
transient laminar �ow, highlighting the di�erence between stationary and transient
friction in simple �ows. In the next section the transient turbulent ramp-up results
are presented, thereafter, a section on the transient ramp-down results, and lastly
the section covering transient �ows in pipes with roughness height. Each section's
main �ndings are summarized at the end of the respective section. There have
been simulated a total of 15 transients, �ve laminar transients, whereof three were
ramp-up �ows and two were ramp-down �ows, and 10 turbulent transients, where
six simulations were in smooth pipes, three accelerating and three decelerating,
and four in rough pipes, two accelerating and two decelerating.

To initiate the transients, a fully developed steady state solution with a constant
pressure di�erence ∆p0 was at time t = 0 subjected to a step change in pressure
di�erence to a new constant pressure di�erence ∆p1. The transients were then
simulated until a new steady state solution was obtained.

To avoid simulating the transition between laminar and turbulent �ow the ini-
tial and end bulk velocities were either well above or below the turbulent region
(Re > 2300 for pipe �ow) in all transient cases. The meshes used in the turbulent
transient simulations up to Re = 106 had an expansion factor of 1.2, and for higher
Reynolds-number �ows the expansion factor was 1.1. All meshes were adapted to
suit the highest Reynolds number occurring in the transient case.

The bulk velocity, wall shear stress and the Darcy friction factor was extracted from
the one-dimensional models and from the two-dimensional model. These quantities
were then manipulated using self-made Fortran-codes to produce data-sets that
were plotted using Gnuplot. Since the Darcy friction factor de�nition (2.24) is
only valid in stationary conditions, the two-dimensional Darcy friction factor is
calculated through the de�nition of the Fanning friction factor (2.25) times four

f = 4Cf = 4
τw

1
2ρU

2
. (7.1)

61
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The bulk velocity from the two-dimensional model had a signi�cant systematic
uncertainty compared to one-dimensional steady-state analysis, see Section 6.5.
However, this was not an issue for the two-dimensional wall shear stress. At the
initial solution in e.g. the turbulent transient Case-2, the 2D wall shear stress un-
certainty from 1D results was 6.27 · 10−3% compared to 3.54% for the bulk velocity.
Transient e�ects on the friction factor stems from the transient e�ects on the the
wall shear stress. Therefore the transient e�ects on the wall shear stress rather
than on the friction factor are shown in the results.

In the forthcoming sections the term �error� will be used instead of uncertainty
when referring to di�erences between the 1D models and the 2D model. It is
assumed that the di�erences between the models are mainly caused by the 1D un-
steady friction modelling, and therefore may be seen as an recognizable de�ciency.
Moreover, the 2D model is considered as the correct, so that the error is calculated
as

% Error = 100
1D − 2D

2D
. (7.2)

In this text, ramp-up transients are considered accelerating �ows and ramp-down
transients are considered decelerating �ows.

In the �gures the data sets are labelled with the model which was used to
obtain the data. The laminar 2D model is labelled with �2D laminar�, the k-ω two-
dimensional model is labelled with �2D k-ω�. Results from the 1D quasi-stationary
friction model are labelled with �Steady Friction�, the results from the instantaneous
acceleration model with the Brunone coe�cient are labelled with �Daily et al.�, and
the weighting function based unsteady friction model are labelled with �Vardy et
al.�.

7.1 Laminar Transient Results

Laminar �ow has fewer variables and simulations are signi�cantly less computa-
tional costly than for turbulence �ows. Simulating laminar transients may yield
understanding of transient e�ects on the friction factor without the added complex-
ity from turbulence. Five laminar transients was therefore simulated with �uent.
They have been compared with two 1D laminar models, one with quasi-steady fric-
tion modelling, and the other with the Daily et al. friction modelling. In Table 7.1
the parameters describing the di�erent cases are presented.

With the diameter set to one meter the �ow evolves slowly so very large time-
steps were used. Transient laminar case �ve has the same non-dimensional param-
eters as laminar case 4, but the diameter was set to 0.1m and the time step was set
to 50s, which yields the same non-dimensional time step ∆t∗ = 7.54. Case 4 and 5
were almost identical in all other aspects, see Figure 7.1. Figure 7.1b shows that
the ramp-down �ows converge faster towards the new steady-state than the ramp-
up �ows. Furthermore, it shows that the �ows with larger di�erence between Re0

and Re1 converged slower in non-dimensional time than those with less di�erence
between start and end Reynolds number.
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The friction factor in the laminar transients deviates clearly from the stationary
friction, as can be seen in �gures 7.2a and 7.2b, where the friction factor from the
laminar transients are plotted alongside the steady friction factor verses Reynolds
number. The unsteady component of the friction factor is positive in the ramp-
up �ows and negative in the ramp-down �ows, see Figure 7.2b. In addition, the
magnitude of the unsteady component increases with increased di�erence between
Re0 and Re1. This validates the assumption that the unsteady component of the
friction factor may be modelled by the instantaneous acceleration, as is the case
for the Daily et al. friction model.

The transient friction in the ramp-down �ows was smaller than the transient
friction in the equivalent ramp-up �ow, this causes the observed faster convergence
of the ramp-down �ows; on average, the decelerating �ow is subjected to less friction
during the transient.

Table 7.1: Summary of the key parameters for the simulated laminar transients.

Laminar case Re0 Re1 ∆t D Flow time
1 0 500 5ks 1m 65ks
2 0 1000 5ks 1m 65ks
3 0 1500 5ks 1m 65ks
4 1500 0 5ks 1m 65ks
5 1500 0 50s 0.1m 650s
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7.1.1 1D Laminar Friction Models Evaluation

In this section the friction models which was implemented in the 1D laminar model
are evaluated. The implemented friction models was the quasi-steady friction model
and the Daily et al. friction model with constant friction coe�cient k1. In the
transients k1 = 0.449; a value proposed by Carstens et al. [8]. However, the
proposed value yielded poor results for the ramp-down simulations, a new value
more suitable was found, by trial and error, for the ramp-down cases.

The bulk velocity and the wall shear stress from the 2D model and the 1D
models are compared in �gures 7.3(case 1), 7.4(case 2), 7.5(case 3), and 7.6(case
4); the left side shows the velocity while the right side depicts the wall shear stress.
Results from case 5 were exempted, as they are in essence the same as for case 4.

The quasi-steady friction model's wall shear stress undershoots the 2D wall
shear stress in the �rst part of the ramp-up simulations. Furthermore, the ini-
tial undershooting causes the 1D velocity to overshoot the 2D bulk velocity until
convergence. The trend is opposite for the ramp-down �ow, where the 1D quasi-
steady wall shear stress overshoots at the start of the transient, and the velocity
subsequently undershoots the 2D bulk velocity.

The Daily et al. friction modelling signi�cantly improved the velocity predic-
tions compared to the quasi-steady friction modelling in all transients, although,
with decreasing accuracy with larger di�erence between Re0 and Re1. However,
the predicted wall shear stress deviated more from the 2D results than the quasi-
steady wall shear stress. This paradox is most likely the result of the 1D laminar
model's time advancement, discussed in Section 4.5. In the ramp-down simulation
the proposed value of k1 = 0.449 yields unsatisfactory modelling of the transient
wall shear stress; trial and error gave a more suitable modelling when k1 = 0.3, see
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Figure 7.6.
Overall, the Daily et al. friction model applied to the 1D laminar model gave

signi�cantly better results than with quasi-steady friction; both by predicting the
correct sign of the unsteady component and to some extent the form. Furthermore
the friction coe�cient k1 can be changed to give more accurate results.
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Figure 7.3: Laminar transient results from simulation of ramp-up from Re0 = 0 to
Re1 = 500
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Figure 7.4: Laminar transient results from simulation of ramp-up from Re0 = 0 to
Re1 = 1000

7.1.2 Laminar Transient Simulations Summary

The simulated laminar transients showed that the wall shear stress indeed di�ers
from the quasi-steady wall shear stress. The sign of the unsteady component is
determined by whether it is an accelerating or a decelerating �ow; accelerating �ows
gives a positive sign and decelerating �ows gives a negative sign. The magnitude of
the unsteady component increases with increased di�erence between Re0 and Re1.
Furthermore the ramp-down �ows converges faster in non-dimensional time then
corresponding ramp-up �ows. This was found to be due to transient behaviour
which decreased the friction in the ramp-down �ows and increased the friction in
the ramp-up �ows.



Chapter 7. Results and Discussion 66

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300

U
 [
m

m
/s

]

time [ks]

2D laminar
Quasi-steady

Daily et al., k1=0.449

(a) Velocity development.

0

2

4

6

8

10

12

14

0 100 200 300

τ
w

 [
µ

P
a
]

time [ks]

2D laminar
Quasi-steady

Daily et al., k1=0.449

(b) Wall shear stress development

Figure 7.5: Laminar transient results from simulation of ramp-up from Re0 = 0 to
Re1 = 1500
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Figure 7.6: Laminar transient results from simulation of ramp-up from Re0 = 1500
to Re1 = 0

The 1D quasi-steady friction model modelled the velocity poorly compared to
the modelling with the 1D Daily et al. friction model. Albeit, the friction coe�-
cient in the Daily et al. model needed re�nement in the ramp-down simulations.
Nevertheless, the Daily et al friction model produced far better results than the
quasi-steady model.
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7.2 Ramp-up Transients in Smooth Pipes

Three accelerating turbulent transient cases were simulated. The �rst case starts
at Reynolds number 104 and ends at Reynolds number 106, the second and third
cases are from Reynolds number 2 · 104 to 107, however, the third case has a dif-
ferent diameter than the second case. The higher start Reynolds number of the
latter two transients was chosen to reduce the k-ω model bulk-velocity undershoot-
ing compared to one-dimensional results. An overview of key parameter of the
simulated transients are found in Table 7.2. It may be noted that data was only
recorded at every 10th time step in the simulations of transient Case-1 and -2; the
calculation at every time step was signi�cantly quicker than writing the data to
�les. The ramp-up simulation with pipe diameter D = 0.01m was not simulated
until a stationary solution was obtained, it is only used to explore the impact of
di�erent diameter in the turbulent transients. The initial solution and end solution
errors from the stationary 1D analysis are listed in Table 7.3.

Table 7.2: Table containing key parameters of the turbulent ramp-up transients.

Case Re0 Re1 D k ∆t Flow time
1 1 · 104 1 · 106 1 m 0 125 ms 700 s
2 2 · 104 1 · 107 1 m 0 25 ms 150 s
3 2 · 104 1 · 107 0.01 m 0 50 µs 0.438 ms

Table 7.3: Start and end uncertainty between the two-dimensional k-ω and one-
dimensional stationary analysis.

Transient Start of simulation End of simulation
case U τw U τw
1 −5.27% 0.957% −0.135% −0.171%
2 −3.54% 0.00627% −0.516% 0.00166%

From Table 7.3 we see that the start and end 2D solutions are close to the 1D
stationary �ow analysis indicating a converged solution at both initial state and
end state.

7.2.1 Observed Flow Behaviour in the Ramp-up Simulations

In this section the �ow behaviour from the 2D k-ω ramp-up simulations are exam-
ined. First, are the key mean �ow parameters, velocity, wall shear stress, unsteady
component of the wall shear stress, and acceleration, from Case-1 and -2 inspected
in an e�ort to identify characteristic �ow behaviour. Four characteristic time scales
are discovered; velocity and turbulence pro�les in the vicinity of the occurrence of
the time scales are extracted from the simulation of Case-2 and plotted. In Section
7.2.2 the pro�les are investigated and related to the wall shear stress, velocity, and
acceleration response.
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Normalized bulk velocities and wall shear stress from the three ramp-up cases
are presented in the two top �gures in Figure 7.7. The bottom left and right �gures
in Figure 7.7 shows the unsteady component of the wall shear stress. To �nd the
unsteady component, the wall shear stress applicable in steady �ows with the same
instantaneous Reynolds number was subtracted at each time step. The velocity
undershooting from the 2D model's inaccuracy propagated to the calculated steady
wall shear stress, causing a higher unsteady component than the actual unsteady
component.
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Figure 7.7: The two top �gures shows the bulk velocities and the wall shear stresses
normalized by their respective maximum; the bulk velocities are on the left side and
the wall shear stresses are on the right side. The bottom �gures shows the unsteady
component of the wall shear stress from Case-1 (left) and -2 (right). In addition,
the wall shear stress' characteristic turning points are marked and labelled on the
bottom two �gures. The time scales in the �gures are non-dimensional.

Case-2 and -3 simulations overlaps when non-dimensional parameters are used,
see �gures 7.7a and 7.7b. This coincide well with the understanding of �uid dynam-
ics; a �ow will behave in the same manner as a �ow with the same non-dimensional
parameters, in this case Re0 and Re1. Di�erent diameters does not change the
nature of the transient �ow if ksD , Re0, and Re1 are the same.
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Transient Case-1 converges faster in non-dimensional time than the two other
cases. This is explained by the smaller di�erence between the initial Reynolds
number and the end Reynolds number.
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Figure 7.8: Acceleration from Case-1 and -2 versus non-dimensional time. Note
that di�erent acceleration scales are used on the cases.

The 2D wall shear stress deviates greatly from the quasi-steady wall shear stress
in the ramp-up transients. Additionally, the unsteady component of the wall shear
stress development in the ramp-up cases exhibits the same pattern. It has four
distinct turning points which are chronologically labelled with t1, t2, t3, and t4 in
�gures 7.7c and 7.7d; these turning points may be considered time-scales describ-
ing the unsteady wall shear stress. First the unsteady component rises up to a
local maximum at time t1, after this it changes sign and becomes negative. At
t2 it reaches its minimum value before abruptly rising becoming positive and fast
encountering a new local maximum at t3. Before reaching the last local minimum
at t4, τwu reverses sign and becomes negative. After the last minimum the un-
steady component converges almost asymptotically towards a quasi-steady state.
The magnitude of the τwu at the turning points may be regarded as measures of
the strength of the unsteady wall shear stress [12].

Despite the large unsteady component components of the wall shear stress, the
velocity development is not signi�cantly altered, see the small �gures in Figure 7.7a
and in Figure 7.7b. However, some impact on the velocity is visible if inspecting
the acceleration, see Figure 7.8; the acceleration is almost constant until the un-
steady component of the wall shear stress reaches its minimum. At that point the
acceleration drops and the negative acceleration slope increases. This transpires
at the same time as the turbulent kinetic energy increases rapidly, indicating that
energy was transferred from inertia to increased turbulence dynamics at that time.

Seddighi et al. [25] which simulated ramp-up �ows with DNS up till Reynolds
number 5000, found that the transient wall shear stress �rst overshoots, then under-
shoots the stationary wall shear stress for a longer period of time before converging
asymptotically. He et al [12] simulated constant accelerating �ow until Reynolds
number 5 · 104, where similar unsteady behaviour was reported. The reported un-
steady wall shear stress behaviour is similar to what is found in this work, but the
number times the unsteady component of the wall shear stress changes sign is not



Chapter 7. Results and Discussion 70

the same, see �gures 7.7c and 7.7d. The 2D wall shear stress from the ramp-up
simulations seems to oscillate with decreasing frequency before converging. Per-
haps the extra �oscillation� is a result of the much greater di�erence between Re0

and Re1 used in the simulations in this thesis compared to the simulations of He
et al.[12] and Seddighi et al.[25].

7.2.2 Flow Dynamics around the Characteristic Time Scales

To investigate the �ow dynamics around the time scales t1, t2, t3, and t4 velocity
pro�les, universal velocity pro�les, turbulent viscosity pro�les, and turbulent ki-
netic pro�les were extracted from simulation of Case-2 and plotted. The pro�les
appear in the same order as listed above. Pro�les from around t1 are shown in Fig-
ure 7.9, t2 in Figure 7.10, t3 in Figure 7.11, and t4 in Figure 7.12. The �gures on
the left depicts the dynamics close to the wall while the right side �gures includes
the whole radius.

The velocity pro�les from the time steps around t1 are accelerated to an almost
uniform velocity pro�le, increasing the velocity �eld close to the wall and thus
the wall shear stress. The distortion reaches its maximum at t1, after this the
velocity pro�le retracts slightly from the wall, see �gures 7.9a and 7.9b. There are
great deviances between the universal velocity pro�le and the unsteady pro�les,
�rst below, then increasingly above as the τwu decreases after the local maximum
(�gures 7.9c and 7.9d. The turbulence viscosity remains unchanged during this
period while the turbulence kinetic energy rises slightly close to the wall from
t = 0.75, see �gures 7.9e and 7.9g.

In the time steps before the minimum at t2 = 2.25s, the velocity pro�le continues
to retract from the wall at a slow rate. At t = 2.5s the velocity pro�le close
to the wall has undergone an angled �attening, increasing the velocity gradient
normal to the wall from r = 0.999R to R, see �gures 7.10a and 7.10c. At the
minimum t2 the turbulence viscosity is still unchanged while the kinetic energy has
increased slightly. Right after the minimum the turbulent kinetic energy close to
the wall increased with a magnitude of over 3 compared to the previous pro�le; a
sharp increase of the turbulence viscosity is also seen. The extent of the induced
turbulence propagates further from the wall with each time step. The increase in
turbulence is highest a short distance from the wall, this increased turbulence slows
down the velocity, creating the angled �attening of the velocity pro�le, see �gures
7.10e and 7.10g.

The unsteady component of the wall shear stress is once again positive as it
rises towards the time-scale t3 = 3.5s. The velocity pro�le is rounding o�, resem-
bling the universal velocity pro�le for larger and larger y+ values, see Figure 7.11d.
The extent of the turbulence extends further for each time step, but is far from
di�using through to the axis. The turbulence viscosity remains mostly unchanged
from the axis to about 0.9R, while the turbulence kinetic energy is unchanged to
r ≈ 0.95R, see �gures 7.11e and 7.11g. The turbulence is rounding o� the velocity
pro�le with increasing distance from the wall.
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The velocity pro�les at times around t4 are almost indistinguishable from the
universal velocity pro�le, although some distortions are visible for y+ > 10000, see
Figure 7.12d. The velocity pro�les right before the last turning point are rounding
o� near the axis, to where the turbulence has di�used. At the minimum t4 = 14s
the turbulence has extended throughout the radius of the pipe, and the �ow evolves
towards a quasi-steady �ow.

According to Vardy et al. [31] the two main reasons for deviation from quasi-
stationary wall shear stress are inertia due to acceleration or deceleration and
e�ects from delayed response of turbulence dynamics. When the unsteady wall
shear stress overshoots, inertia forces dominates and when it undershoots turbulent
forces dominates. This coincide well with the observed �ow dynamics in the ramp-
up simulations.
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Figure 7.9: Velocity, turbulence kinetic energy, inertia, and eddy viscosity before,
during, and right after the �rst turning point of τwu. All result from Case-2 simu-
lation.
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Figure 7.10: Velocity, turbulence kinetic energy, inertia, and eddy viscosity before,
during and right after the second turning point of τwu. All result from Case-2
simulation.
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Figure 7.11: Velocity, turbulence kinetic energy, and eddy viscosity before, dur-
ing and right after the third turning point t3 of the τwu. All result from Case-2
simulation.
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Figure 7.12: Velocity, turbulence kinetic energy, and eddy viscosity before, dur-
ing and right after the fourth turning point of the τwu. All result from Case-2
simulation.
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7.2.3 Parameters Predicting the Characteristic Turning Points

Being able to predict the times at which the turning points occurs is important in
order to correctly predict the unsteady wall shear stress in a 1D friction model. To
predict the delay times of the turbulence, He et al. ([13] 2000) proposed an inner
time scale Tp for the turbulence production delay and an outer scale Td for the
turbulence di�usion delay; the delay from when the turbulence is produced at the
wall until it has propagated to the axis. The time scales are as follows:

Td =
D√
2uτ

, (7.3)

Tp =
ν

u2
τ

. (7.4)

The turbulence di�usion time and turbulence production delay is calculated
at the instantaneous time when the turbulence is created. If the acceleration is
below a certain value, the turbulence di�usion time is only dependent on the initial
conditions. If the acceleration is above this value, the turbulence will have di�used
through from the wall to the axis at the time de�ned by the minimum of the
function f(t, t+ Td), see �gures 7.13a and 7.13b.

The initial rise time ψTL for smooth �ow, (2.61) de�ned in Section 2.4, and the
initial turbulence di�usion time from Case-1 and -2 is found in Table 7.4. Figures
7.13a and 7.13b shows the turbulence di�usion time development over time and
the function f(t, Td+ t) for Case-1 and Case-2 respectively. Figure 7.13c shows the
limiting rise time during the transients.

Table 7.4: Rise times and turbulence di�usion times for the di�erent start Reynolds
numbers in the transient cases. The rise time is de�ned in equation (2.61).

Re0 tLT [s] Td [s] Tp [s]
1 · 104 1571.0 1132.6 2.58
2 · 104 958.5 618.6 0.77

Both the turbulence di�usion time and the rise time at initial conditions are
larger than the convergence time of the transient cases. However, the turbulence
di�usion time reduces with increased Reynolds number. Because of the rapid in-
crease in Reynolds number, the newly created turbulence soon catches up to the
initial turbulence. The �rst turbulence to propagate to the axis is the turbulence
created at min(f(t, Td + t)) which is at 43s and 6s for Case-1 and Case-2 respec-
tively. The turbulence has propagated to the axis at the approximate times of 105s
in Case-1 and 14s in Case-2, see Figure 7.13. This coincide with the 2D pro�les
extracted from the simulation, where the turbulence viscosity and kinetic energy
reaches the axis at 106.25s and 14s.

The characteristic turning points t1 and t2 may be related to the turbulence pro-
duction delay Tp. The turning point t2 can be attributed to an additional delay
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Figure 7.13: The two top �gures show the evolement of turbulence di�usion time
and the instantaneous di�usion time added to the local time. Bottom �gure shows
the limiting rise time. All three �gures from Case-1 and -2 simulations.

in turbulence viscosity compared to the turbulence production delay. The turning
point t3 do not have any particular parameters attached to it. It is in the devel-
oping stage of the �ow, when the turbulence spreads radially but parts of the �ow
are still not e�ected by the induced turbulence. t3 may be regarded as the point
where the turbulence relative to excess inertia is at its lowest. The last character-
istic time can be coupled to the turbulence di�usion delay Td. The calculated Td
deviates little from the observed turbulence di�usion delay in the pro�les and the
occurrence of the turning point at t4, see �gures 7.12f, 7.7d, and 7.13b.

Because of the higher initial Reynolds number, the Case-2 turbulence delay is
shorter in non-dimensional time than in Case-1, this causes the three �rst char-
acteristic turning points to transpire at an earlier non-dimensional time in Case-2
than Case-1, see e.g. Figure 7.7b. The last turning point occurs at an earlier
non-dimensional time in Case-1 than -2 because of the shorter non-dimensional
convergence time.
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7.2.4 Performance of the 1D Models in the Ramp-up Tran-

sients

In this section the 1D and 2D simulation results from the transient ramp-up cases
are compared. There are three 1D friction models that are compared with the 2D
k-ω model, namely the quasi-stationary friction model, the Daily et al. friction
model and the Vardy et al. friction model.

Because of the lack of dependence upon neighbouring time steps in the 1D
models (discussed in Section 4.5), the 1D velocity will not be particularly in�uenced
by unsteady wall shear stress behaviour from earlier time steps. To show the e�ect
of the missing time dependency, the 2D bulk velocity and time were inserted into
the 1D model (4.19) to calculate the 1D wall shear stress required to produce the 2D
bulk velocity development. Subsequently, the steady component of the wall shear
stress was removed from the resulting unsteady wall shear stress to produce the
result presented in �gures 7.14a and 7.14b. The produced unsteady component of
the wall shear stress accounts for any time-shift caused by earlier time steps in the
2D k-ω simulation; resulting in an exaggerated absolute increase of the unsteady
component, before the 2D model and 1D models converge together towards the
end.

The resulting unsteady component does not only show the time development
de�ciency of the 1D model; it can yield information about the 2D wall shear stress.
The turning points can be regarded as the point were the 2D unsteady component of
the wall shear stress changes sign. Moreover, if the unsteady component is positive
the average unsteady component must have been positive and if it is negative, the
average of the unsteady component must also be negative. From the �gures it can
therefore be deduced that the unsteady component changes sign four times and
that the unsteady component is on average positive in the ramp up simulations.
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Figure 7.14: The one-dimensionalized unsteady component. Top �gure from Case-1
k-ω simulation and bottom �gure from Case-2 k-ω simulation.

Results from the 1D models and the 2D model simulations of Case-1 and Case-2
are compared in �gure 7.15 and 7.16 respectively. Additional �gures depicting the
percent error between the 1D models and the 2D model can be found in Appendix
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A.

All of the 1D models predicted a bulk velocity fairly close to the 2D model pre-
dictions (see �gures 7.15b and 7.16b, in fact, in both ramp-up cases the largest
percent error between the 1D models' and the 2D model's bulk velocity was at the
stationary initial solution due to the 2D k-ω model uncertainty, see �gures A.1a
and A.3a in Appendix A. However, the wall shear stress predictions from the 1D
models di�ers greatly from that of the 2D model. Ivo Pothof [23] argued that the
Daily et al. and Vardy et al. friction models have several de�ciencies; the impor-
tance of the initial Reynolds number should diminish after the turbulence di�usion
time, the assumption of linear acceleration in the instantaneous friction model, and
the symmetry of the unsteady component τuw

(
du
dt

)
= −τuw

(
−dudt

)
, which ignores

that the unsteady behaviours are caused by di�erent physical phenomena during
acceleration than in deceleration. In the same article Pothof proposed a friction
model based upon observation of turbulence transients. The proposed model ac-
counts for physical di�erences between acceleration and deceleration, e�ects from
reversed �ow near the wall during rapid deceleration, and the reduction of unsteady
behaviour toward the turbulence di�usion delay.

To further inspect the di�erences, the three 1D friction models are compared
to the 2D results in the three forthcoming sections.
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Figure 7.15: Bulk velocity and wall shear stress from the simulations of transient
Case-1, with Re0 = 104 and Re1 = 106.
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Quasi-Stationary Friction Model

The quasi-stationary models lacks any transient contribution to the wall shear
stress, and therefore, undershoots and overshoots according to the transient be-
haviour of the wall shear stress in the 2D simulations. The largest errors occurs
early in the transients where the quasi-steady wall shear stress ranges from under-
shooting with ∼ 100% to overshooting with ∼ 85% compared to the 2D wall shear
stress, see �gures A.4a and A.4a in Appendix A. Moreover, since the average of
the unsteady wall shear stress were positive in the simulations, the predicted 1D
velocity overshoots throughout the ramp-up simulations, see �gures 7.15b on page
80 and 7.16b on page 83.

The quasi-steady friction model predicts unsatisfactory predictions of the wall
shear stress at the early stages of the simulated transients. However, a short time
after the turbulence di�usion time, the quasi-steady wall shear stress were within
10% of the 2D wall shear stress.

Instantaneous Daily et al. Friction Model

Right after the transients was initiated the wall shear stress predicted by the Daily
et al. friction model overshot the 2D wall shear stress greatly. The error at �rst
time step was 1245% in Case-1 simulations and almost 1600% in Case-2 simulations,
see e.g. �gures A.2a and A.4a in Appendix A. The overshooting reduces rapidly
as the acceleration and the shear decay coe�cient decreases, see �gures 7.16f and
7.16f. After the minimum of the 2D wall shear stress the di�erence between the
1D and 2D wall shear stress decreases, �rst from above then from below (relative
to the 2D wall shear stress). The wall shear stress overshooting in the �rst stage of
the transients, caused the Daily et al. friction model bulk velocity to undershoot
the 2D bulk velocity in the same period.

The Daily et al. friction model has no time dependency and does not capture
any rise time or turbulence delays. The model's Brunone coe�cient was derived
based on the assumption of frozen turbulence viscosity during the transient, and
that the acceleration is constant for a su�cient amount of time de�ned by the rise
time (2.61),

ψTL = 3.323C∗. (7.5)

Turbulence pro�les from the 2D simulations revealed that the viscosity is indeed
frozen, but only for a short amount of time. Moreover, the acceleration in the
ramp-up simulations were fairly constant, see Figure 7.8, but the rise time were
longer than the duration of the transients, see Table 7.4 and Figure 7.13c, making
the instantaneous acceleration model a poor approximation at early stages of fast
ramp-up cases.

Vardy et al. Weighting Friction Model

The Vardy et al model captures the initial rise in unsteady wall shear stress well,
but it overshoots when energy is transferred from inertial forces to �rst turbulence
production and later to increased turbulence viscosity. Vardy et al. [29] pointed
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out that the frozen viscosity assumption �cannot be valid over large time scales
because the �ow must adjust to the evolving conditions�. The viscosity increases
in an annulus near the wall after approximately 2.5s in Case-2, decreasing the
accuracy of the model.

The weighting model is superior to both the instantaneous friction model and
the quasi-steady friction model during the initial rise of wall shear stress in the
transients. This was also at the time which the turbulent viscosity remained ap-
proximately constant.

The Vardy et al. friction model includes time dependency, but the model do not
account for any turbulence e�ects after the turbulence increases in the transients.
The model does not predict any of the characteristic time scales, however it may
be possible to superimpose the e�ects of the delayed turbulence response described
by e.g. the turbulence di�usion time and the turbulence production delay time.
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Figure 7.16: Bulk velocity and wall shear stress from the simulations of transient
Case-2, with Re0 = 2 · 104 and Re1 = 107.
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7.2.5 Section Summary

The 2D wall shear stress exhibit signi�cant transient contribution compared to
quasi-steady wall shear stress. The transient contribution is mainly caused by
deformation of the velocity pro�le due to inertia forces and turbulence dynamics.
Four turning points of the unsteady component were identi�ed, whereof, three was
directly linked to turbulence delays, namely the turbulence di�usion time, Td, and
the turbulence production delay, Tp.

All the 1D models predicted velocity close to the bulk velocity predicted by
the 2D k-ω model; the largest error was at the start of the transients, caused
by the 2D model's inaccuracy. The transient 1D friction models can only model
positive unsteady component of the wall shear stress, and are mostly governed by
the acceleration and could not predict the varying wall shear stress observed in the
2D �ow.
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7.3 Ramp-down Transients in Smooth Pipes

Three decelerating transient cases, referred to as Case-4, Case-5, and Case-6, have
been simulated. Case-4 is from Reynolds number 106 to 104, Case-5 and -6 are
from Reynolds number 107 to 2 · 104. Transient Case-4 and -5 has a diameter of 1m
and Case-6 has a diameter of 0.01m, see Table 7.5. Initial �uid parameters and end
solution parameters are tabulated in Table 7.6. The end solution's mean velocities
and wall shear stresses was as expected from stationary results indicating that the
simulations has converged to steady state �ows, see Table 7.6 and Figure 6.4a.

Table 7.5: Table containing key parameters of the ten di�erent turbulent transient
cases simulated in this thesis.

Case Re0 Re1 D k ∆t Flow time
4 1 · 106 1 · 104 1 m 0 1 s 24000 s
5 1 · 107 2 · 104 1 m 0 0.5 s 21000 s
6 1 · 107 2 · 104 0.01 m 0 0.5 µs 1.5 s

When simulating the ramp-down �ows with Fluent it was intended to use NITA,
(Non Iterative Time Advancement), but the NITA method tended to make the
solver diverge. For the ramp-down from Re = 106 a stable solver was obtained
when the time step ∆t < 0.05 s and relaxation parameters was set to stop potential
divergence. This would require at least 420000 time steps before reaching steady
state. Therefore NITA was replaced by normal time advancement, making bigger
time steps possible and reducing the total number of iterations and thus reducing
the computation time.

Table 7.6: Start and end uncertainty between two-dimensional k-ω and one-
dimensional steady-state analysis. The one-dimensional steady-state analysis
serves as the reference.

Transient Start of simulation End of simulation
case U τw U τw
4 −0.0411% −0.000521% −5.27% 0.840%
5 −0.437% −0.0233% −3.54% 0.359%
6 −0.437% −1.56 · 10−5% −3.40% −0.597%

7.3.1 Observed Flow Behaviour in the Ramp-down Simula-

tions

The �rst apparent observation is that the ramp-down transients used longer time
to converge to its new steady state than the equivalent ramp-up transients, this is
the opposite of what was observed in the laminar transient simulations, see �gures
7.17, 7.7a on page 68, and 7.1b on page 63. This occurs due to the non-linearity
of the friction factor in the turbulent regime; the friction factor is fairly constant
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at the high Reynolds numbers and increases toward the end of the ramp-down
simulations.
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Figure 7.17: Bulk velocity and wall shear stress development from the 2D simula-
tions of transient Case-4,-5, and -6. Non-dimensional time is used.

The ramp-down k-ω simulation results showed no apparent sudden changes in
the wall shear stress, see Figure 7.17b. However, plotting the unsteady component
of the wall shear stress reveals the unsteady behaviour, see top three sub-�gures
in Figure 7.18 on page 88. Nevertheless, the unsteady component relative to the
total wall shear stress is small compared to the ramp-up simulations and converges
asymptotically towards ∼ 10% and ∼ 6% of the total wall shear stress for Case-4,
and Case-5 and -6 respectively, see Figure 7.18d. The large τwu/τw at the the end
of the transients are caused by the propagating uncertainty from the 2D-model's
velocity when calculating the unsteady component.

Even though the unsteady component is smaller than the propagating uncer-
tainty, an idea about the sign and magnitude of the unsteady component can still
be found, at least if it is assumed that the uncertainty is dependent upon the
Reynolds number according to what was found in Figure 6.4 on page 56. With this
in mind, the unsteady component depicted in the three top �gures of Figure 7.17b
will have a positive o�set approximately equal to twice that of the uncertainty in
the 2D bulk velocity. At the start of the simulation of transient Case-4 the bulk
velocity uncertainty was 0.0411%, yielding a very small o�set, see Figure 7.18a.
In Case-5 and -6 however, the uncertainty was 0.44% yielding an uncertainty in
the unsteady component of ≈ 0.87%. This equates to an o�set of the unsteady
component of the wall shear stress at the start of Case-5, and -6 to 0.87Pa and
0.87kPa respectively.

From the unsteady analysis of the laminar ramp-down cases it was expected that
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the unsteady component of the wall shear stress should be negative in the turbulent
ramp-down cases. However, this was not the case for the simulated turbulent
transients; the Case-4 simulation was the only simulated transient with a clear
negative unsteady component in the early stage of the transient. If, however, the
propagating uncertainty is considered in Case-5 and -6, it is conceivable that the
unsteady component is negative in a short period at the beginning. Furthermore,
comparing the velocity development from the 2D simulations with the 1D quasi-
steady based model (done in Section 7.3.2) indicates that there exists a negative
unsteady component at the start of all the ramp-down simulations. Subsequently,
inspecting the unsteady component of the simulations of transient Case-5 and -
6 reveals that the �rst time steps are indeed negative compared to the unsteady
component calculated at the steady state condition. Moreover, the 1D-2D model
comparing suggest that the initial negative unsteady component of the wall shear
stress in�uences the velocity evolvement greatly.

Calculating the wall shear stress that the 1D model requires to produce the
same bulk velocity development as found in the 2D model shows that the the pro-
duced unsteady component at the start is negative, and that it remains so for
t∗ < 106 seconds in Case 4, and t∗ < 0.1 in Case-5 and -6, see �gures 7.19a and
7.19b. In the ramp-up simulations, the turning points of the 1D-model-equivalent
unsteady component of the wall shear stress coincided with the change of sign of
the 2D unsteady component. However, since the unsteady component is so much
smaller relative to the total wall shear in the ramp-down simulations, the uncer-
tainty becomes more important. Consequently, predicting the change of sign of the
2D unsteady component from the turning points of the 1D-model-equivalent un-
steady component of the wall shear stress is not an accurate method. The observed
turning points of the unsteady component in �gures �gures 7.19a and 7.19b may
stem from other reasons: E.g. when the 2D and 1D simulations converges towards
its steady state condition, which consequently reduces the unsteady component of
the wall shear stress and a turning point must be present.

A saw tooth behaviour is observed in the unsteady component of the wall shear
stress, see �gures 7.21b and 7.21d. The origin of the saw tooth behaviour is not
known, but it bear some resemblance with the sudden change in wall shear stress
found in the ramp-up simulations; a decrease in the unsteady component followed
by a rapid increase. The big di�erence is that the increase and decrease sometimes
follow each other in rapid succession creating the jagged form of the unsteady
component. In the ramp-up �ow this behaviour was mainly a result of the delay in
turbulence production and viscosity, this may also be the case in the ramp-down
simulations. However, the �uctuating behaviour is at a very low scale and play very
little role in the velocity evolvement; it can therefore most likely be disregarded in
any 1D friction models meant for predicting gas mean �ow characteristics in the
industry. Nevertheless, further investigation into the phenomena might yield useful
insight into turbulence behaviour.
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Figure 7.18: Wall shear stress from the 2D k-ω simulations of the ramp-down
transients.
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7.3.1.1 Characteristic Time Scales in the Ramp-Down Simulations

The unsteady component of the wall shear stress have two turning points in the
ramp-down cases, two less than in the ramp-up simulations. These turning points
does not �t with the calculated turbulence production delay nor the turbulence
di�usion time, see Table 7.7, where the turbulence di�usion time and turbulence
delay time are tabulated and �gures 7.21a and 7.21c, where the characteristic times
of the unsteady wall shear stress are marked.

Due to the high Reynolds numbers at the start of the ramp-down transient
cases, the turbulence production delay times and turbulence di�usion times are
very short compared to the ramp-up cases. The turbulence production delay times
were not properly resolved in the ramp-down simulations. Furthermore, the turbu-
lence di�usion times were not fully resolved in the transient simulations of Case-5
and -6. The fact that the ramp-down simulations shows two less turning points
than the ramp-up �ow can be coupled with the unresolved turbulence production
delay, which caused the �rst two turning points in the ramp-up simulations. It is
then natural to deduce that the two existing turning points in the ramp-down sim-
ulations were caused by the turbulence di�usion delay and the relation between the
turbulence and the excess inertia. However, the turbulence di�usion times does not
coincide with the existing turning points of the unsteady wall shear stress; e.g. in
the Case-4 simulation the turning points are: t1 = 5s, and t2 = 40s, while the tur-
bulence di�usion time is 18.2s; in the ramp-up simulations, the last turning point
t4 coincided quite accurately with the turbulence di�usion time. It is therefore
logical to assume that the last turning point in the ramp-down simulations, t2, can
be related to the turbulence di�usion time, consequently, t1 is at the time where
the relation between excess inertia and turbulence is at an extreme. However, the
time of the turning point t2 was roughly twice that of the turbulence di�usion time
in the ramp-down cases. This might be a result of the propagating uncertainty, a
coincidence, or perhaps the turning point t2 is related to the time it takes for the
turbulence to propagate from the wall to the wall on the opposite side.

Table 7.7: Rise times and turbulence di�usion times for the di�erent start Reynolds
numbers in the ramp-down transient cases.

Case Re0 Rise Time Td Tp

1 1 · 106 91.5s 18.4s 0.68ms
2 1 · 107 32.7s 2.2s 9.8µs
3 1 · 107 3.27ms 0.22ms 0.98ns

Pro�les from the start of the simulations were extracted to get a better overview
of the inertia and turbulence processes transpiring in the ramp-down �ows. Unlike
in the ramp-up transients the pro�les did not show much distortion due to the
unsteady �ow. Even right after the transient was initiated the velocity pro�les
deviated little from the universal velocity pro�le, see �gures 7.22b 7.23b.

The radial turbulence delay is barely visible in the turbulence kinetic energy
pro�les, �gures 7.22d and 7.23d. Pro�les from the times after the turbulence dif-
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fusion time do not exhibit any visible radial turbulence delay. On the other hand,
the radial turbulence delay is not prominent in the turbulence viscosity pro�les.
The turbulence viscosity remains approximately constant for the duration of the
turbulence di�usion time, see �gures 7.22f and 7.23f.

Generally, the turbulence and velocity pro�les from the 2D ramp-down simulations
showed small transient behaviour compared to the ramp up-cases. Some of the
explanation for this resides in the fact that the turbulence information travels much
faster at high Reynolds numbers than low; the turbulence delay is almost non-
existing. In addition, there was no visible diverting of energy from the acceleration
to turbulence, see the acceleration in Figure 7.20.

The Ramp-down simulations performed by Seddighi et al. [25] the unsteady wall
shear component started o� negative for a short time and then it was positive for
the remainder of the transient, this was also the result in the constantly decelerating
simulation done by Ariyaratne et al[5]. As seen above, this was the result found
in the simulation of transient Case-4. For the transient Cases-5 and -6, however,
this is not as clear, but when accounting for the propagating uncertainty, it can
be argumented to some degree of certainty, that the same is the case for the latter
two transient cases.
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Figure 7.21: Wall shear stress development
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Figure 7.23: Velocity and turbulence pro�les from 2D simulation of transient Case-
5, where Re0 = 107 and Re1 = 2 · 104.
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7.3.2 Performance of the 1D Models in Ramp-Down Tran-

sients

This section treats the performance of the three 1D friction models compared to the
2D k-ω simulations of the ramp-down transients considered in this thesis. Figures
comparing the results are divided into three main �gures, one for each case, where
the subset of �gures depict the same physical parameters. The sub-�gure layout is
as follows: Top left shows the velocity development, top right shows the di�erence
in velocity, middle left shows the wall shear stress development, the middle right
shows a zoomed in version of the same at the start of the transients, the second
from the bottom shows the wall shear stress di�erence, and the last shows the
unsteady component of the wall shear stress. Case-4 �gures are found on page 97,
Case-5 on page 98, and Case-6 �gures are presented on page 99.

Despite that the 2D unsteady component of the wall shear stress is mostly
positive, it is assumed as discussed in the previous section, that it is negative in
the beginning, and that the initial positive unsteady component is a result of the
propagating uncertainty from the bulk velocity undershooting residing in the 2D
k-ω model.

Even though the ramp-down 2D simulations showed relative small unsteady wall
shear stress behaviour, the 1D models velocity predictions have greater errors than
in the ramp-up transients. The errors between the 2D model and the 1D models
velocities were largest at the latter part of the transients, around the time when
the velocity has reached ∼ 0.25U0.

7.3.2.1 Quasi-Stationary Friction Model

With no transient behaviour included, the quasi-stationary friction model predicts
a too high wall shear stress in the beginning and thus a too low velocity. The lower
unsteady wall shear stress of the 2D simulations causes after a while large errors
between the 2D simulations and the 1D quasi-steady simulations. At the maximum
the error in velocity is ∼ 20% and for the wall shear stress it is ∼ 35%, see �gures
A.5, A.6, and A.7 in Appendix A. The velocity errors are signi�cantly higher in
the ramp-down cases than in the corresponding ramp-up simulations, where the
velocity error during the transients were below 6%. However, the wall shear stress
error is lower in the ramp-down cases compared to the ramp-up cases. This can
be explained by that in turbulence �ow the friction factor is not linear to the
Reynolds number, the rate of change decreases with increased Reynolds number.
Consequently, a change in the friction factor at high Reynolds number in�uences
the �ow more than the same change in friction factor at a lower Reynolds number.
Thus, the initial unsteady wall shear stress of the 2D �ow in�uences greatly the
transient �ow, inducing large error in the velocity between the 1D model and the
2D model. Additionally, the larger error in wall shear stress is mostly a result of
the di�erent prediction of velocities; the unsteady component of wall shear stress
in the 2D ramp-down simulations are below the uncertainty, see Figure 7.18d.

The Quasi-Steady friction model yields unsatisfactory velocity predictions for
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the ramp-down transients. The simulations suggests that any transient behaviour
at high Reynolds numbers are especially important to achieve an accurate transient
model.

7.3.2.2 Daily et al. Friction Model

The Daily et al. friction model starts with overpredicting the magnitude of the
unsteady component of the wall shear stress, rendering a too low wall shear stress
in the beginning of the transients. Since the 2D wall shear stress converges relatively
quick towards a quasi-steady state, the Daily et al. wall shear stress continues to
undershoot the 2D wall shear stress for a long period of time. The undershooting
does not in�uence the velocity prediction, since the velocity in the 1D models is
only dependent upon the local parameters. Subsequently, the velocity predicted
when the Daily et al. friction model was applied closely resembles the 1D model
with quasi-steady friction modelling, the velocity is changed by the amount the
local unsteady wall shear stress and time dictates.

The rise time is much shorter in the ramp-down cases than in the ramp-up
cases. However, the rise time is several magnitudes larger than the chosen time
step of the simulations. This renders the Daily et al. friction model unsatisfactory
at the beginning of the transient, neglecting any delay in the inertia forces.

Nevertheless, the use of an instantaneous based friction model is more appro-
priate at high Reynolds numbers; the rise time reduces with increased Reynolds
number. However in the case of turbulence and large di�erence between the initial
Reynolds number and the end Reynolds number in a transient (as the case have
been in this work), the unsteady component of the wall shear stress cannot merely
be a function of the local Reynolds number and the acceleration. In any case,
adjustment can easily be made to calibrate an IAB in order to �t existing data and
can thus be readably implemented into transient gas transport models, likely with
greater success than in ramp-up transients.

7.3.2.3 Vardy et al. Model

Since the Vardy et al. friction model accounts for the rise time, the unsteady wall
shear stress modelling is slightly better than the simpler Daily et al. friction model.
However, the modelled unsteady component of the wall shear stress surpasses that
of the Daily et al. model after a short time and remains larger for the remainder of
the simulated ramp-down transients. Although more sophisticated than the Daily
et al. friction model, the turbulence delays nor the turbulence forces occurring
thereafter are not in any way modelled by the Vardy et al. model. These are
parameters a�ecting the unsteady component in the opposite direction than the
inertia forces, i.e. the modelled wall shear stress/friction factor is exaggerated
compared to the 2D modelled counterparts.
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Figure 7.24: Velocity, wall shear stress, and di�erences between the 1D models and
the 2D model from the simulations of transient Case-4.
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Figure 7.25: Velocity, wall shear stress, and di�erences between the 1D models and
the 2D model from the simulations of transient Case-5.
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Figure 7.26: Velocity, wall shear stress, and di�erences between the 1D models and
the 2D model from the simulations of transient Case-6.
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7.3.3 Section Summary

The ramp-down �ows showed relatively small transient behaviour both on the
velocity pro�les and the wall shear stress. The unsteady component of the wall
shear stress was smaller than the uncertainty of the 2D model. This made it di�cult
to determine the sign of the unsteady component of wall shear stress, especially in
Case-5 and -6. However, there were several indications that the average unsteady
component was generally negative in the ramp-down simulations.

The unsteady component of the wall shear stress from simulation of Case-4
showed clear turning point, however these did not transpire at the times calculated
from the turbulence production delay or the turbulence di�usion time. In addition,
the turbulence production delay time was not fully resolved in the ramp-down 2D
simulations, causing any transient behaviour at that time scale to be lost.

Even though the 2D wall shear stress was close to the quasi-steady wall shear
stress, the the predicted velocity from the 1D models di�ers greatly, with errors up
till 20%. The importance of correctly predicted wall shear stress at the start of a
high Reynolds number ramp-down transient is evidently very important.

The unsteady friction models predicted a too big unsteady component of the
wall shear stress compared to the 2D model's.

7.4 Ramp-up and Ramp-down Transients WithWall

Roughness

There have been simulated four transients in pipes with �nite roughness height
at the wall, two accelerating and two decelerating, see Table 7.6. The wish was
to simulate �ow in the transitional roughness regime, 4 < k+ < 60. This proved
di�cult due to con�icting mesh resolution demand and restriction; the viscous
sublayer should be resolved to achieve good accuracy, and the area to where the
roughness extend, cannot be resolved. Achieving these two conditions at the same
time within the transitional regime was not possible. Case-7 and -9 has k+

max =
0.65, making it possible to resolve the viscous sublayer, achieving the same accuracy
as with smooth wall, but the �ow is regarded as hydraulically smooth, as k+ is below
four. In Case-8 and -10 the k+

max is 3.4 and the �ow is nearly in the transitional
roughness regime, but the viscous sublayer is not properly resolved when y+ & 3
leading to reduced model accuracy and velocity overshooting when comparing to
similar 1D �ow. The development of y+ and k+ from case 8 and 10 are shown in
Figure 7.27.

From Figure 7.27 it can be assumed that the 2D simulation at the start of tran-
sient Case-8 should yield accurate results. Regrettably, the simulation of transient
Case-10 will yield large inaccuracy due to insu�cient mesh resolution near the wall
at the start of the transient. Thus, the results from simulation of Case-10 will
likely not give any reliable data regarding transient e�ects due to wall roughness
in ramp-down transients.

Nevertheless, the selected roughness height is within the relative roughness
height found in coated gas transport pipes.



101 7.4. Ramp-up and Ramp-down Transients With Wall Roughness

Table 7.8: Table containing key parameters of the four turbulent transient cases
simulated in pipes with roughness in this thesis.

Case Re0 Re1 D k ∆t Flow time
7 2 · 104 1 · 107 1 m 2µm 2.5 ms 150 s
8 2 · 104 1 · 107 1 m 10µm 2.5 ms 200 s
9 1 · 107 2 · 104 1 m 2µm 0.5 s 22000 s
10 1 · 107 2 · 104 1 m 10µm 0.5 s 22000 s
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Figure 7.27: y+ and k+ development from case 8 and 10. The y+ curves are shown
with lines, while the k+ curves are shown with points. In addition, the Case-8 data
and time-axis are coloured green and the Case-10 data is coloured red

7.4.1 Ramp-up Transients

In this section the results from the ramp-up transients with �nite roughness are
treated. Firstly the 2D simulations are compared to the corresponding 2D ramp-
up simulation without wall roughness. Secondly, the the 1D friction models are
compared to the 2D simulations.

The velocity overshooting in Case-8, from the poorly resolved viscous sublayer,
is evident in Figure 7.28a where both Case-7 and -8 Reynolds number versus non-
dimensional time are shown. In addition to the velocity overshooting, the wall shear
stress overshoots the 1D predicted wall shear stress in Case-8, see Figure 7.28b.
However, as mentioned in the previous section, it is assumed that the Case-8 2D
simulation yields results with high enough accuracy if y+ & 3, which the simulation
is if t∗ & 120. The largest transient behaviour is observed when t∗ ∼= 23, which
enables analysis of the most important transient behaviour of Case-8.

To �nd any transient e�ects due to the added roughness, results from cases 2,
-3, 7, and 8 are compared at times well before the uncertainty of Case-8 increases
(the Case-3 simulation is selected at the beginning of the transients instead of the



Chapter 7. Results and Discussion 102

 0E0

 1E6

 2E6

 3E6

 4E6

 5E6

 6E6

 7E6

 8E6

 9E6

 1E7

0 200 400 600 800 1000 1200 1400

R
e
 [
-]

t
*
 [-]

2D k-ω, ε/D=2e-6
2D k-ω, ε/D=1e-5

(a) Reynolds number against non-
dimensional time from case 7 and 8.

0

10

20

30

40

50

60

70

80

90

100

110

120

0 200 400 600 800 1000 1200 1400

τ
w

 [
P

a
]

t
*
 [-]

2D k-ω, Case 7
2D k-ω, Case 8

(b) Wall shear stress against non-
dimensional time from case 7 and 8.

Figure 7.28: Case 7 and case 8 with Re0 = 2 · 104 to Re1 = 107 with roughness. In
the top Figure 7.28a the Reynolds number is plotted; in the bottom Figure 7.28b
the wall shear stress is plotted. Case 7 has a roughness height of 2µm and case 8
has a roughness height of 10µm

Case-2 simulation because of the higher time-step density). Firstly, the unsteady
behaviour of the wall shear stress is very similar to what was found in the smooth
�ow ramp-up simulations. However, the turning point of the unsteady component
occurs at earlier times and the unsteady component is at times lower than in the
smooth �ow. This indicates that there is an increase in turbulence forces, which
tend to give an increase in the unsteady component in the negative direction and
that the turbulence delays are e�ected by increase wall roughness. The turbulence
di�usion delay,

Td =
D√
2uτ

, (7.3)

is inverse proportional to the fourth root of the wall shear stress, and the turbulence
production delay,

Tp =
ν

u2
τ

, (7.4)

is inverse proportional to the wall shear stress. An increased wall shear stress will
reduces both the turbulence delays, albeit, the turbulence di�usion delay is not as
strongly dependent upon the wall shear stress as the turbulence production delay.
The observed skewed turbulence delay, is that of the turbulence di�usion delay,
which seems reasonable according to its prescribed equation.
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Figure 7.29: The development of the unsteady component of the wall shear stress
from ramp-up transient cases 3, 7, and 8 plotted against non-dimensional time.

7.4.2 Performance of the 1D Friction Models in Ramp-Up

Transients with Roughness

The transients simulated with wall roughness height never achieve fully rough �ow,
not even transitional �ow is encountered. Therefore, the 1D models with adaptation
for fully rough �ow is not tested, they are however included in the Fortran code
included in the Appendix. The 1D friction models is thus the same as applied in
the smooth wall �ows, but with increased friction factor due to the imposed wall
roughness height.

The wall shear stress development of Case-7 and -8 resembles much what was
found in the simulations of smooth �ow, so the performance of the 1D models
are very similar to what was observed in transient Case-2 and -3. However, the
unsteady component of the wall shear stress is at times slightly shifted downward,
likely due to increased turbulence dynamics, and the 1D models, thus, displays an
increase in wall shear stress error compared to the smooth walled transients.

The error between the 2D and 1D velocities in Case-7 is below the k-ω uncer-
tainty, and the 1D quasi-steady friction model works satisfactory to predict the
bulk velocity, see Figure 7.30b. However, if accurate prediction of the wall shear
stress is needed for real time surveillance and leak detection, the friction models
performs unsatisfactory, see Figure 7.31b
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Figure 7.30: Di�erences between the 2D and 1D models when simulating transient
Case-7.
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7.4.3 Ramp-down Transients

The ramp-down cases are the same as the ramp-up cases, only with reversed start
and end Reynolds number. However, the 2D simulation of the case with roughness
height of 10µm has high uncertainty at the beginning of the transient because of
the poorly resolved viscous sublayer. In addition to this, the convergence criteria
per time step was set larger, 10−3, compared to the other simulations, where it
was set to 10−6. Due to the large uncertainty from the poorly resolved viscous
layer it was decided that a new simulation was not needed. Nevertheless, the
velocity and the wall shear stress from the 2D simulation of transient Case-10 are
depicted alongside the results from Case-9 to show the large uncertainty, see Figure
7.32. Results from Case-10 simulations, will however not be compared with the 1D
models or the equivalent ramp-down simulations with di�erent wall roughness.

The wall shear stress and velocity development was not greatly e�ected by
the roughness height in the 2D simulation of Case-9. If compared to the smooth
walled simulation with same initial and end Reynolds number, Case-5, one can
see that the unsteady component is slightly lower in Case-9, see Figure 7.33. The
unsteady component is, as in the simulation of Case-5, smaller than the propagating
uncertainty. So, claiming that the lower unsteady component is caused by di�erent
�ow dynamics from the imposed wall roughness cannot be done with certainty;
the reduction in unsteady wall shear stress may be a result of altered uncertainties
due to the roughness height; the velocity undershooting decreases with increased
roughness height, see Figure 6.6a on page 59.
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Figure 7.32: Reynolds number and wall shear stress versus non-dimensional time
from the k-ω simulation of transient cases-9 and 10.
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Figure 7.33: Wall shear stress development from the 2D simulations of transient
Case-5 and -9.

7.4.3.1 Performance of the 1D Friction Models in Ramp-Down Tran-

sients with Roughness

Only transient ramp-down Case-9 is considered due to the high uncertainty at the
start of the 2D simulation of transient Case-10. The results are similar to the ramp-
down simulations in smooth pipes, see Figure 7.34. It is evident that the relative
roughness height must be increased to see any real e�ect of unsteady behaviour on
the �ow, both with the 2D and 1D models.
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Figure 7.34: Unsteady component of the wall shear stress and velocity di�erence
from the 1D models and the 2D model simulations of Case-9

7.4.4 Section Summary

The roughness height in combination with the resolution of the near wall �eld cri-
teria was not possible to ful�l. The �rst part of transient Case-8 could be examined
and yield somewhat reliable data on how roughness a�ects the �ow evolvement.
The �ow was not in the fully rough regime, and therefore the 1D friction models
for fully rough �ow was not applied. The wall roughness shortened the turbulence
delay times and increased turbulence dynamics causing a slightly lower wall shear
stress compared to smooth �ow. The reduction in turbulence delay times are in
conjunction with the turbulence di�usion delay ,Td, and the turbulence production
delay, Tp.
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Chapter 8
Conclusion

The scope of this work was to investigate the implication of using a quasi-steady
friction factor modelling in 1D gas transport models. Both laminar and turbulence
transients were considered. Transients were simulated with detailed 2D models and
compared with 1D models with both quasi-steady friction modelling and simple
transient friction modelling.

The Turbulence k-ω model had a systematic bulk velocity undershooting com-
pared to 1D analysis. This uncertainty propagated and doubled the uncertainty of
the friction factor, and thus, the wall shear stress was extensively used to evaluate
the transient behaviour instead of the friction factor.

The laminar transient simulations showed that, in laminar �ow, the transient
contribution to the wall shear stress was not negligible, and furthermore, that the
sign of the unsteady component of the wall shear stress was positive in accelerating
�ows and negative in decelerating �ows. Additionally, the wall shear stress was
highest at the beginning of the transients and converged asymptotically towards a
quasi-steady state in a smooth manner. The 1D IAB Daily et al. friction model
gave higher accuracy predictions compared to the 1D quasi-steady friction model.

The use of quasi-steady friction modelling in the 1D turbulence model, yielded
high accuracy when predicting bulk velocity in the ramp-up transients. However,
the 2D unsteady wall shear stress deviated greatly from the quasi-steady predic-
tions. Similar characteristic transient wall shear stress behaviour was observed in
all the ramp-up �ows. Moreover, the turning points of the unsteady component
was coupled to two turbulence time scales, namely the turbulence di�usion time
and the turbulence production delay.

In the ramp-down simulations the unsteady component of the wall shear stress
was small compared to the total wall shear stress, making it di�cult to accurately
determine the sign of the unsteady component. However, the velocity development
showed that the unsteady component was negative at the start of the transients and
that a relatively small unsteady component of wall shear stress at high Reynolds
numbers, strongly in�uenced the �ow development. In addition, the unsteady be-
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haviour caused large di�erences between the 1D and 2D velocity predictions. Unlike
in the ramp-up simulations, the turbulence time scales were not in conjunction with
any of the turning points of the unsteady component of the wall shear stress.

Neither of the implemented 1D friction models predicted satisfactory wall shear
stress development in the turbulence transients. Furthermore, the large di�erences
between the transient wall shear stress behaviour in the turbulence ramp-up and
ramp-down transients, indicates that 1D transient friction models should not treat
ramp-up and ramp-down transients similarly (as is the case for the implemented
transient friction models). However, the simulations showed that improving the
1D transient friction modelling can signi�cantly improve the accuracy of the 1D
transient velocity modelling in the ramp-down cases.

Due to the limited roughness height, the �ow in rough walled pipes did not di�er
signi�cantly from similar simulations with smooth �ow. Although, slight changes
to the occurrence of the unsteady component's turning points and magnitude were
observed in the ramp-up simulations.

8.1 Future Work

Below are some suggestions for what future work can consist of.

• Simulations of transients in the transitional roughness regime should be at-
tempted. As mentioned, the roughness height was limited by the k-ω model
mesh demands. This has been solved in Fluent 14, where an equation de-
scribing a shift in wall placement has been introduced:

y+ = y+ +
k

2
(8.1)

where k is the roughness height. This equation gives a correct displacement
of the velocity due to roughness. This removes the restriction to the mesh
resolution, so that the mesh can be resolved inside the wall roughness height
without deteriorating the solution.

• Adjust the k-ω model constants to increase the accuracy of the 2D model and
reduce the velocity undershooting at �low� Reynolds number.

• It is advisable to employ other methods to model the 1D momentum equation,
at least if transient friction models are to be validated.

• Investigating the turbulence delayed response and inertial forces with a more
detailed RANS model or perhaps DNS. This might give more insight into
the transient friction development, and its di�erence from the quasi-steady
friction factor, and may eventually lead to better 1D friction models.
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Appendix A
Additional Figures

In this appendix �gures depicting the error between 1D and 2D results are pre-
sented. The 2D results are considered to predict transient behaviour �correctly�
and are therefore treated as the correct value to which the error is evaluated.

A.1 Figures from Case 1

Case 1: Ramp-up from Reynolds number 104 to 106.
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Figure A.1: Percent error in bulk velocity between the 2D k-ω model and 1D
models from Case-1 simulations
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Figure A.2: Percent error in wall shear stress between the 2D k-ω model and 1D
models from Case-1 simulations
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A.2 Figures from Case-2
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Figure A.3: Percent error in bulk velocity between the 2D k-ω model and 1D
models from Case-2 simulations
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Figure A.4: Percent error in wall shear stress between the 2D k-ω model and 1D
models from Case-2 simulations
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A.3 Figures from Transient Case-4
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Figure A.5: Percent error between the 2D k-ω model and 1D models from Case-4
simulations, left shows the velocity error and the right shows the wall shear stress
error.
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A.4 Figures from Transient Case-5
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Figure A.6: Percent error between the 2D k-ω model and 1D models from Case-5
simulations, left shows the velocity error and the right shows the wall shear stress
error.
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A.5 Figures from Transient Case-6
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Figure A.7: Percent error between the 2D k-ω model and 1D models from Case-6
simulations, left shows the velocity error and the right shows the wall shear stress
error.
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Appendix B
One-Dimensional Model Codes

All the 1D models are included in the code herein.

1 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
2 !−−−Program containing 1D turbu l en t and laminar model fo r a −−!
3 !−−−cross sec t i on of a pipe . Both quasi−s teady and unsteady−−−!
4 !−−−f r i c t i o n model l ing i s implemented.−−−−−−−−−−−−−−−−−−−−−−−−!
5 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
6 !−−−−−−−−−−−−−−−−−−−Sigmund A Birkeland−−−−−−−−−−−−−−−−−−−−−−−!
7 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
8 MODULE DECLARATIONS
9 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
10 !−−−Variab les accesab l e to a l l modules tha t uses statement−−−!
11 !−−−''use dec lara t ions ''.−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
12 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
13 IMPLICIT NONE

14 PRIVATE

15 DOUBLE PRECISION, PUBLIC, ALLOCATABLE, DIMENSION( : ) : : Ut ,UT2, Ret , f t , tvector , tau ,
TAUU,TAUS,W,Fu ,FS

16 DOUBLE PRECISION, PUBLIC : : eps , D, rho , mu, alpha , to l , f r i c t , beta , Re_start ,
Re_end ,MAXF,MINF

17 ENDMODULE DECLARATIONS
18
19 MODULE SUB
20 CONTAINS

21 SUBROUTINE FRICTION(U)
22 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
23 !−−−Input i s double prec i s i on and ve l o c i t y , outputs f r i c t i on −−−!
24 !−−−fac tor−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
25 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
26 USE DECLARATIONS
27 IMPLICIT NONE

28 DOUBLE PRECISION, INTENT(IN) : : U
29 DOUBLE PRECISION : : Re , epsD , X, XOLD
30 Re = rho∗U∗D/mu
31 epsD = eps /D
32 X = 1.0
33 XOLD = X+1
34 DO WHILE ( ABS(X−XOLD) > to l )
35 XOLD = X
36 X = − 2 ∗ LOG10( epsD /3.71 + 2.51 ∗ X / RE)
37 END DO

38 Fr i c t = 1 .0/ (X∗X)
39 RETURN

40 END SUBROUTINE FRICTION
41 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
42 SUBROUTINE SIMPSON(S , matrix ,TVECTOR, row )
43 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
44 !−−−Subroutine tha t c a l c u l a t e s the area under a funct ion with the−−−!
45 !−−−Simpsons method . Input i s two vec tor s and the range of those ,−−−!
46 !−−−i t return s , which i s the area.−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
47 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
48 IMPLICIT NONE

49 INTEGER, INTENT(IN) : : row
50 INTEGER : : I ,N
51 DOUBLE PRECISION : : H,A,B
52 DOUBLE PRECISION, INTENT(INOUT) : : S
53 DOUBLE PRECISION, INTENT(IN) , DIMENSION(ROW) : : matrix ,TVECTOR
54 !USE SIMPSONS ON COLUMN 1 AND K

B1
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55 N = ROW−1
56 A = TVECTOR(1)
57 B = TVECTOR(ROW)
58 H = (TVECTOR(ROW)−TVECTOR(1) ) /N
59 S = (MATRIX(1) + MATRIX(ROW) )
60 DO I =2,N,2
61 S = S +4∗MATRIX(INT( I ) )
62 END DO

63 DO I =3,N−1,2
64 S = S +2∗MATRIX(INT( I ) )
65 END DO

66 S = S∗H/3
67 RETURN

68
69 END SUBROUTINE SIMPSON
70 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
71 SUBROUTINE TWODFRICTION(FILE1 ,K)
72 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
73 !−−−Subroutine tha t has the 2D v e l o c i t y as input and c a l c u l a t e s the−!
74 !−−−2D unsteady components by sub t rac t ing the 1D steady component−−−!
75 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
76 USE DECLARATIONS
77 IMPLICIT NONE

78 DOUBLE PRECISION, ALLOCATABLE, DIMENSION( : , : ) : : MATRIX
79 INTEGER : : M,N, I
80 INTEGER, INTENT(IN) : : K
81 DOUBLE COMPLEX : : C
82 CHARACTER(LEN=K) : : FILE1
83 M=2
84 N=2966
85 ALLOCATE(MATRIX(N,M) ,UT(N) ,RET(N) ,TVECTOR(N) ,FT(N) ,FS(N) ,FU(N) ,TAU(N) ,TAUU(N) )
86 CALL read_matrix (MATRIX,N,2 , FILE1 ,K)
87 CALL FRICTION(Re_end∗mu/( rho∗D) )
88 ALPHA = − f r i c t ∗Re_end∗∗2∗mu∗∗2/(2∗ rho∗D∗∗3)
89 WRITE (∗ ,∗) ' Pressure grad i ent : ' ,ALPHA
90 alpha = −ALPHA/rho
91 UT(1) = MATRIX(1 ,2 )
92 CALL FRICTION(UT(1) )
93 FT(1)=FRICT
94 FS(1) = FRICT
95 FU(1) = 0
96 TAU(1) = FT(1)∗UT(1) ∗∗2∗RHO/8
97 TAUU(1) = 0
98 DO I =2,N
99 TVECTOR( I )=MATRIX( I , 1 )
100 UT( I )=MATRIX( I , 2 )
101 RET( I )=MATRIX( I , 2 ) ∗RHO∗D/MU
102 CALL FRICTION(UT( I ) )
103 FS( I ) = FRICT
104 TAU( I ) = FS( I )∗UT( I )∗∗2∗RHO/8
105 END DO

106 CALL WRITEVECTOR(N, tau ,TVECTOR, ' 2DCase9Taus . dat ' ,15)
107 DEALLOCATE(MATRIX,UT,RET,TVECTOR,FT,FS ,FU,TAU,TAUU)
108 END SUBROUTINE TWODFRICTION
109 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
110 SUBROUTINE writeVector (N, Vi , Vt , f i lename ,O)
111 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
112 !−−−Subroutine to pr in t out vectors−−−!
113 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
114 integer , intent ( in ) : : N,O
115 CHARACTER (LEN=O) , intent ( in ) : : f i l ename
116 double precision , dimension (N+1) , intent ( inout ) : : Vt , Vi
117 open (unit=20, f i l e=fi lename , status='unknown ' , action=' wr i te ' )
118 DO i =1, N
119 write (20 ,∗ ) Vt( i ) , Vi ( i )
120 END DO

121 close (20)
122 write (∗ ,∗) f i l ename
123 RETURN

124 END SUBROUTINE writeVector
125 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
126 SUBROUTINE read_matrix ( matrix ,ROW,COL, FILE1 ,N)
127 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
128 !−−−Subroutine to read f i l e s in to matrix−−−!
129 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
130 IMPLICIT NONE

131 INTEGER : : i , j , n , o
132 INTEGER, INTENT(IN) : : ROW,COL
133 CHARACTER(LEN=N) ,INTENT(IN) : : FILE1
134 double precision ,DIMENSION(ROW,COL) , intent ( inout ) : : MATRIX
135 open (unit=10, f i l e=f i l e 1 , status=' old ' , action=' read ' )
136 DO i =1, ROW
137 read (10 ,∗ ) ( matrix ( i , j ) , j =1, co l )
138 END DO

139 close (10)
140 RETURN

141 END SUBROUTINE read_matrix
142 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
143 SUBROUTINE ACCELERATION(REMATRIX,SROW,EROW,COL)
144 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
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145 !−−−Subroutine to c a l c u l a t e acce l e ra t i on from−−−!
146 !−−−the v e l o c i t y and time vector−−−−−−−−−−−−−−−−!
147 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
148 IMPLICIT NONE

149 INTEGER,INTENT(IN) : : SROW,EROW,COL
150 INTEGER : : I
151 DOUBLE PRECISION,INTENT(INOUT) ,DIMENSION(2601 ,COL) : : REMATRIX
152 DOUBLE PRECISION,DIMENSION(EROW−SROW+1,COL) : : ACCEL
153 DOUBLE PRECISION : : DT
154 DT = REMATRIX(SROW+1 ,1)−REMATRIX(SROW,1 )
155 ACCEL(1 ,1 ) = REMATRIX(SROW,1 )
156 ACCEL(1 ,2 ) = (0 .001003/998 .2 ) ∗(REMATRIX(SROW+1 ,2)−REMATRIX(SROW,2 ) ) /(DT)
157 WRITE(∗ ,∗) 1 ,SROW,ACCEL(1 ,1 ) ,ACCEL(1 ,2 )
158 DO I =2,EROW−SROW
159 ACCEL( I , 1 ) = REMATRIX( I+SROW−1 ,1)
160 ACCEL( I , 2 ) = (0 .001003/998 .2 ) ∗(REMATRIX( I+SROW,2 )−REMATRIX( I+SROW−2 ,2) ) /(2∗DT)
161 WRITE(∗ ,∗) I , I+SROW−1,ACCEL( I , 1 ) ,ACCEL( I , 2 )
162 END DO

163 ACCEL(EROW−SROW+1 ,1) = REMATRIX(EROW,1 )
164 ACCEL(EROW−SROW+1 ,2) = (0 .001003/998 .2 ) ∗(REMATRIX(EROW,2 )−REMATRIX(EROW−1 ,2) ) /(DT)
165 WRITE(∗ ,∗) EROW−SROW+1,EROW,ACCEL(EROW−SROW+1 ,1) ,ACCEL(EROW−SROW+1 ,2)
166 CALL WRITEVECTOR(EROW−SROW+1,ACCEL,1 ,ACCEL,2 , ' Acce l e r a t in . txt ' )
167 END SUBROUTINE ACCELERATION
168 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
169 SUBROUTINE INTERPOLATE(INVECTOR,LENGTH,ROW, f i lename ,L , wr i te f i l ename ,M)
170 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
171 !−−−SUBROUTINE TO LINEARLY INTERPOLATE TO GET VALUES AT SAME−−−−−−−−!
172 !−−−TIMESTEP AS IN FLUENT INVECTOR IS VECTOR TO BE LINEARIZED,−−−−−−!
173 !−−−LENGTH IS LENGTH OF INVECTOR,LINRES IS THE LINEARIZED VECTOR,−−−!
174 !−−−wri te f i l ename i s the f i lename tha t i s wr i t t en out.−−−−−−−−−−−−−−!
175 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
176 USE DECLARATIONS
177 IMPLICIT NONE

178 INTEGER, INTENT(IN) : : ROW,LENGTH
179 INTEGER : : I , J ,K,L ,M
180 DOUBLE PRECISION, DIMENSION(LENGTH+1) ,INTENT(IN) : : INVECTOR
181 DOUBLE PRECISION, DIMENSION(ROW) : : LINTVECTOR,LINRES
182 DOUBLE PRECISION, DIMENSION(ROW,2 ) : :TEMP
183 CHARACTER (LEN=L) , intent ( in ) : : f i l ename
184 CHARACTER (LEN=M) , intent ( in ) : : wr i t e f i l ename
185 CALL READ_MATRIX(TEMP,ROW,2 , f i lename ,L)
186 ! Creating time Vector
187 DO I =1,ROW
188 LINTVECTOR( I )=TEMP( I , 1 )
189 END DO

190 J=1
191 LINRES(1) = INVECTOR(1)
192 DO I =2,ROW
193 DO WHILE(LINTVECTOR( I ) > TVECTOR(J ) )
194 IF (LINTVECTOR( I ) < TVECTOR(J+1) ) THEN
195 EXIT

196 END IF

197 J=J+1
198 IF (J>LENGTH)THEN
199 WRITE(∗ ,∗) 'END OF FILE ! ' , I ,INVECTOR(LENGTH)
200 DO K=I , row
201 LINRES(K) = INVECTOR(LENGTH)
202 END DO

203 CALL WRITEVECTOR(row ,LINRES ,LINTVECTOR, wr i te f i l ename ,M)
204 RETURN

205 END IF

206 END DO

207 LINRES( i ) = INVECTOR(J )+(INVECTOR(J+1)−INVECTOR(J ) ) ∗((LINTVECTOR( I )−TVECTOR(J ) ) /(
TVECTOR(J+1)−TVECTOR(J ) ) )

208 END DO

209 CALL WRITEVECTOR(ROW,LINRES ,LINTVECTOR, wr i te f i l ename ,M)
210 RETURN

211 END SUBROUTINE INTERPOLATE
212 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
213 SUBROUTINE WEIGHTINGFUNCTION(TIME,WSUM,DT,NSTEPS)
214 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
215 !−−−Subroutine to c a l c u l a t e the weight ing i n t e g r a l in −−−!
216 !−−−the Vardy e t a l . f r i c t i o n model.−−−−−−−−−−−−−−−−−−−−−!
217 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
218 USE DECLARATIONS
219 IMPLICIT NONE

220 DOUBLE PRECISION : : CSTAR,ASTAR,DT,WEIGHT,WSUM,TEST, PSI
221 INTEGER : : TIME,THETA,T,NSTEPS
222 WSUM=0
223 ALLOCATE(W(TIME+1) )
224 IF (EPS > 1)THEN !SIMPLIFIED WEIGHTING FUNCTION WITH WALL ROUGHNESS
225 DO T=1,TIME−1
226 THETA = TIME−T+1
227 PSI = 4∗MU∗TVECTOR(THETA) /(RHO∗D∗∗2)
228 ASTAR =0.0103∗SQRT(UT(THETA)∗D∗RHO/MU) ∗(EPS/D) ∗∗0.39
229 CSTAR = 0.352∗ (UT(THETA)∗D∗RHO/MU) ∗(EPS/D) ∗∗0.41
230 CSTAR = 1/CSTAR
231 WEIGHT=ASTAR∗EXP(−PSI/CSTAR) /(SQRT(PSI ) )
232 IF (T==1)THEN
233 W(T)=WEIGHT∗(UT(T+1)−UT(T) ) /(DT)
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234 WSUM = W(T)∗DT !FIRST RECTANGULAR
235 ELSE IF (T==NSTEPS)THEN
236 W(T)=WEIGHT∗(UT(T)−UT(T−1) ) /(DT)
237 WSUM = WSUM + (ABS(W(T)−W(T−1) )/2+MIN(W(T) ,W(T−1) ) )∗DT
238 ELSE

239 W(T)=WEIGHT∗(UT(T+1)−UT(T−1) ) /(2∗DT)
240 WSUM = WSUM + (ABS(W(T)−W(T−1) )/2+MIN(W(T) ,W(T−1) ) )∗DT ! Trapeze method
241 END IF

242 END DO

243 ELSE

244 DO T=1,TIME−1
245 THETA = TIME−T+1
246 PSI = 4∗MU∗TVECTOR(THETA) /(RHO∗D∗∗2)
247 CSTAR = 12.86/(UT(THETA)∗RHO∗D/MU) ∗∗(DLOG10(15 . 29/ ( (UT(THETA)∗RHO∗D/MU) ∗∗0.0567) )

)
248 WEIGHT=EXP(−PSI/CSTAR) /(2∗SQRT(DATAN(1D0)∗PSI ) )
249 IF (T==1)THEN
250 W(T)=WEIGHT∗(UT(T+1)−UT(T) ) /(DT)
251 WSUM = W(T)∗DT !FIRST RECTANGULAR
252 ELSE IF (T==NSTEPS)THEN
253 W(T)=WEIGHT∗(UT(T)−UT(T−1) ) /(DT)
254 WSUM = WSUM + (ABS(W(T)−W(T−1) )/2+MIN(W(T) ,W(T−1) ) )∗DT ! Trapeze method
255 ELSE

256 W(T)=WEIGHT∗(UT(T+1)−UT(T−1) ) /(2∗DT)
257 WSUM = WSUM + (ABS(W(T)−W(T−1) )/2+MIN(W(T) ,W(T−1) ) )∗DT ! Trapeze method
258 END IF

259 END DO

260 END IF

261 WSUM=4∗MU/D∗WSUM
262 DEALLOCATE(W)
263 RETURN

264 END SUBROUTINE

265 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
266 SUBROUTINE LAMINARSOLVER(NSTEPS,DT,UNSTEADY, k )
267 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
268 !−−−Laminar so lver , both for quasi−s teady f r i c t i on ,−−−!
269 !−−−and Daily e t a l f r i c t i o n model−−−−−−−−−−−−−−−−−−−−!
270 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
271 USE DECLARATIONS
272 IMPLICIT NONE

273 DOUBLE PRECISION : :DT, k
274 INTEGER: : NSTEPS, I
275 LOGICAL : :UNSTEADY
276 DEALLOCATE(UT,RET,FT,TAU,TVECTOR,FU,FS ,TAUU)
277 ALLOCATE(UT(NSTEPS) ,RET(NSTEPS) ,FT(NSTEPS) ,FS(NSTEPS) ,FU(NSTEPS) ,TAUU(NSTEPS) ,TAU(

NSTEPS) ,TVECTOR(NSTEPS) )
278 ! Ca lcu la t ing pressure grad ient :
279 FRICT = 64/RE_END
280 ALPHA = − f r i c t ∗Re_end∗∗2∗mu∗∗2/(2∗ rho∗D∗∗3)
281 WRITE (∗ ,∗) ' Pressure grad i ent : ' ,ALPHA
282 alpha = −ALPHA/rho
283 BETA = 32∗MU/(RHO∗D∗∗2)
284 ! Creating time Vector
285 DO I =1,NSTEPS
286 tVector ( I ) = ( I−1)∗DT
287 END DO

288 UT(1) = RE_START∗MU/RHO/D
289 FT(1) = 64/RE_START
290 TAU(1) = FRICT∗RHO∗UT(1) ∗∗2/8
291 RET(1)=RE_START
292 DO I =2,NSTEPS
293 UT( I ) = ALPHA/BETA+(UT(1)−ALPHA/BETA)∗EXP(−BETA∗TVECTOR( I ) )
294 RET( I )=UT( I )∗RHO∗D/MU
295 FT( I )=64/RET( I )
296 TAU = FT( I )∗RHO∗UT( I ) ∗∗2/8
297 IF (UNSTEADY)THEN
298 FRICT = 64/RET( I )+2∗k/UT( I )∗∗2∗D∗(UT( I )−UT( I−1) ) /(DT)
299 FT( I ) = FRICT
300 ALPHA = 64∗Re_end∗mu∗∗2/(2∗ rho∗D∗∗3)/RHO−K∗(UT( I )−UT( I−1) ) /(DT)
301 WRITE(∗ ,∗) RET( I ) , f r i c t ,K∗(UT( I )−UT( I−1) ) /(DT)
302 END IF

303 END DO

304 RETURN

305 END SUBROUTINE LAMINARSOLVER
306 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
307 SUBROUTINE QUASI_STEADY_FRICTION_SOLVER(NSTEPS)
308 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
309 !−−−SUBROUTINE TO IMPLICITLY SOLVE THE 1D −−−−−−−−−−−−−−−−−−−−!
310 !−−−MODEL USING QUASI−STEADY FRICTION. THE TIME VECTOR, T,−−−−!
311 !−−−MUST BE INITIALIZED BEFORE CALLING THIS ROUTINE.−−−−−−−−−−!
312 !−−−IN ADDITION, THE VECTORS UT, TAU, RET, AND .−−−−−−−−−−−−−−!
313 !−−−FS MUST BE ALLOCATED BEFOREHAND−−−−−−−−−−−−−−−−−−−−−−−−−−−!
314 !−−−THE VECTORS UT,TAU,RET, AND FS ARE UPDATED.−−−−−−−−−−−−−−−!
315 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
316 USE DECLARATIONS
317 IMPLICIT NONE

318 INTEGER : : I ,NSTEPS
319 DOUBLE COMPLEX : : C
320 DOUBLE PRECISION : : UOLD
321 DO I =2,NSTEPS
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322 Ut( I ) = Ut( I−1)
323 UOLD = Ut( I )+1
324 ! Loop tha t imp l i c i t l y s o l v e s Ut( I )
325 DO WHILE (ABS(Ut( I )−UOLD) > to l )
326 UOLD = Ut( I )
327 ! Function tha t re turns the Darcy f r i c t i o n f a c t o r
328 CALL FRICTION(Ut( I ) )
329 FS( I )=FRICT
330 BETA = FS( I ) /2/D
331 ! In t eg ra t i on constant
332 C = 1/SQRT( alpha∗beta ) ∗(ATANH(DCMPLX(Ut (1)∗SQRT( beta / alpha ) ,0) ) )
333 Ut( I ) = SQRT( alpha/beta )∗ABS( tanh (DCMPLX(( sq r t ( alpha∗beta )∗ tVector ( I )+c∗SQRT( alpha∗

beta ) ) ) ) )
334 END DO

335 TAU( I ) = (FS( I ) ∗ rho ∗UT( I ) ∗∗2) /8
336 RET( I ) = UT( I )∗RHO∗D/MU
337 END DO

338 END SUBROUTINE QUASI_STEADY_FRICTION_SOLVER
339 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
340 SUBROUTINE DAILY_ET_AL(NSTEPS,DT)
341 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
342 !−−−Finds the unsteady component of the f r i c i o n fac tor−−−!
343 !−−−and updates the v e l o c i t y according to Daily e t a l .−−−!
344 !−−− model with Brunone unsteady f r i c t i o n coe f f−−−−−−−−−−!
345 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
346 USE DECLARATIONS
347 IMPLICIT NONE

348 INTEGER : : I , L , nsteps , J
349 DOUBLE PRECISION : : UOLD,DT, k ,ASTAR,CSTAR,M,TEST
350 DOUBLE COMPLEX : : C
351 DOUBLE PRECISION, DIMENSION(NSTEPS) : : TEMP
352 !SETTING INITIAL VALUES
353 M=1
354 UT2(1)=UT(1)
355 DO J=1,3
356 DO I =2,NSTEPS−1
357 CALL FRICTION(Ut( I ) )
358 FS( I )=FRICT
359 IF (EPS>1)THEN
360 ASTAR = 0.0103∗SQRT(UT( I )∗D∗RHO/MU) ∗(EPS/D) ∗∗0.39
361 CSTAR = 0.352∗UT( I )∗D∗RHO/MU∗(EPS/D) ∗∗0.41
362 CSTAR = 1/CSTAR
363 K = 4∗ASTAR∗DSQRT(DATAN(1D0)∗CSTAR)
364 ELSE

365 CSTAR = 12.86/(UT( I )∗RHO∗D/MU) ∗∗(LOG10(15 . 29/ ( (UT( I )∗RHO∗D/MU) ∗∗0.0567) ) )
366 k = M∗2∗SQRT(CSTAR)
367 END IF

368 TAUU( I ) = K∗RHO∗D/4∗(Ut( I+1)−Ut( I−1) ) /(TVECTOR( I+1)−TVECTOR( I−1) )
369 Fu( I ) = 8∗TAUU( I ) /(RHO∗UT( I ) ∗∗2)
370 BETA = (FS( I ) + FU( I ) ) /2/D
371 IF (BETA<0)THEN
372 WRITE(∗ ,∗) ' Negative f r i c t i o n 1 '
373 stop

374 END IF

375 C = 1/ sq r t ( alpha∗beta ) ∗(ATANH(DCMPLX(Ut (1)∗SQRT( beta / alpha ) ,0) ) )
376 UT2( I ) = sqr t ( alpha/beta )∗ABS( tanh (DCMPLX(( sq r t ( alpha∗beta )∗ tVector ( I )+c∗SQRT(

alpha∗beta ) ) ) ) )
377 FT( I ) = FU( I )+FS( I )
378 RET( I )=UT2( I )∗RHO∗D/MU
379 TAUS( I )=(FS( I )∗RHO∗UT2( I ) ∗∗2) /8
380 tau ( I ) = (FT( I ) ∗ rho ∗UT( I ) ∗∗2) /8
381 END DO

382 IF (EPS>1)THEN
383 ASTAR = 0.0103∗SQRT(UT(NSTEPS)∗D∗RHO/MU) ∗(EPS/D) ∗∗0.39
384 CSTAR = 0.352∗UT(NSTEPS)∗D∗RHO/MU∗(EPS/D) ∗∗0.41
385 CSTAR = 1/CSTAR
386 K = 4∗ASTAR∗DSQRT(DATAN(1D0)∗CSTAR)
387 ELSE

388 CSTAR = 12.86/(UT(NSTEPS)∗RHO∗D/MU) ∗∗(LOG10(15 . 29/ ( (UT(NSTEPS)∗RHO∗D/MU) ∗∗0.0567)
) )

389 k = M∗2∗SQRT(CSTAR)
390 END IF

391 CALL FRICTION(Ut(NSTEPS) )
392 FS(NSTEPS)=FRICT
393 TAUU(NSTEPS) = (TAUU(NSTEPS−1)−TAUU(NSTEPS−2) )∗2+TAUU(NSTEPS−2)
394 Fu(NSTEPS) = 8∗TAUU(NSTEPS) /(RHO∗UT(NSTEPS) ∗∗2)
395 BETA = (FS(NSTEPS) + FU(NSTEPS) ) /2/D
396 IF (BETA<0)THEN
397 WRITE(∗ ,∗) 'NEGATIVE FRICTION! ' , I ,UT(NSTEPS)
398 STOP

399 END IF

400 C = 1/ sq r t ( alpha∗beta ) ∗(ATANH(DCMPLX(Ut (1)∗SQRT( beta / alpha ) ,0) ) )
401 UT2( I ) = sqr t ( alpha/beta )∗ABS( tanh (DCMPLX(( sq r t ( alpha∗beta )∗ tVector (NSTEPS)+c∗SQRT(

alpha∗beta ) ) ) ) )
402 FT(NSTEPS)=FS(NSTEPS)+FU(NSTEPS)
403 RET(NSTEPS)=UT2(NSTEPS)∗RHO∗D/MU
404 TAUS( I )=(FS(NSTEPS)∗RHO∗UT2(NSTEPS) ∗∗2) /8
405 tau ( I ) = (FT(NSTEPS) ∗ rho ∗UT2(NSTEPS) ∗∗2) /8
406 TEMP = ABS(UT−UT2)
407 L= (MAXLOC(TEMP,NSTEPS) )
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408 WRITE(∗ ,∗) ' I t e r ' , J , ' Highest d i f f : ' ,TEMP(L) ,L , 'Avg d i f f : ' ,SUM(TEMP) /(NSTEPS)
409 UT=UT2
410 END DO

411 RETURN

412 END SUBROUTINE DAILY_ET_AL
413 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
414 SUBROUTINE VARDY_ET_AL(NSTEPS,DT)
415 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
416 !−−−Finds the unsteady component of the f r i c i on−−−−−−−−−−!
417 !−−−f a c t o r and updates the v e l o c i t y−−−−−−−−−−−−−−−−−−−−−−!
418 !−−−according to Vardy e t a l . we ight ing f r i c t i o n model−−−!
419 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
420 USE DECLARATIONS
421 IMPLICIT NONE

422 INTEGER : : I , L , nsteps , J
423 DOUBLE PRECISION : : UOLD,DT,CSTAR,WSUM,M
424 DOUBLE COMPLEX : : C
425 DOUBLE PRECISION, DIMENSION(NSTEPS) : : TEMP
426 !SETTING INITIAL VALUES
427 UT2(1)=UT(1)
428 M=1
429 TEMP=1
430 DO WHILE(SUM(TEMP)/NSTEPS>TOL∗10000)
431 DO I =2,NSTEPS−1
432 CALL FRICTION(Ut( I ) )
433 FS( I )=FRICT
434 CALL WEIGHTINGFUNCTION( I ,WSUM,TVECTOR( I )−TVECTOR( I−1) ,NSTEPS)
435 WSUM=WSUM∗M
436 TAUU( I )=WSUM
437 FU( I )=WSUM∗8/RHO/UT( I )∗∗2
438 BETA = (FS( I ) + FU( I ) ) /2/D
439 IF (BETA<0)THEN
440 WRITE(∗ ,∗) 'NEGATIVE FRICTION! '
441 STOP

442 END IF

443 C = 1/ sq r t ( alpha∗beta ) ∗(ATANH(DCMPLX(Ut (1)∗DSQRT( beta / alpha ) ,0) ) )
444 UT2( I ) = sqr t ( alpha/beta )∗ABS( tanh (DCMPLX(( dsqrt ( alpha∗beta )∗ tVector ( I )+c∗SQRT(

alpha∗beta ) ) ) ) )
445 IF (mod( I , ( 1000 ) )==0)THEN
446 write (∗ ,∗) I ,FU( I ) ,FS( i ) ,UT2( I )−UT( I )
447 END IF

448 Ft ( I ) = FS( I )+FU( I )
449 Ret ( I ) = rho∗Ut2 ( I )∗D/mu
450 tau ( I ) = (FT( I ) ∗ rho ∗UT2( I ) ∗∗2) /8
451 END DO

452 CALL FRICTION(Ut(NSTEPS) )
453 FS(NSTEPS)=FRICT
454 CALL WEIGHTINGFUNCTION(NSTEPS,WSUM,TVECTOR(NSTEPS)−TVECTOR(NSTEPS−1) ,NSTEPS)
455 WSUM = M∗WSUM
456 TAUU(NSTEPS)=WSUM
457 FU(NSTEPS)=WSUM∗8/RHO/UT(NSTEPS)∗∗2
458 BETA = (FS(NSTEPS)+FU(NSTEPS) ) /2/D
459 C = 1/ sq r t ( alpha∗beta ) ∗(ATANH(DCMPLX(Ut (1)∗SQRT( beta / alpha ) ,0) ) )
460 UT2(NSTEPS) = sqr t ( alpha /beta )∗ABS( tanh (DCMPLX(( sq r t ( alpha∗beta )∗ tVector (NSTEPS)+c∗

SQRT( alpha∗beta ) ) ) ) )
461 WRITE(∗ ,∗) NSTEPS,UT(NSTEPS) ,FU(NSTEPS)
462 Ft (NSTEPS) = FS(NSTEPS)+FU(NSTEPS)
463 Ret (NSTEPS) = rho∗Ut2 (NSTEPS)∗D/mu
464 tau (NSTEPS) = (FT(NSTEPS) ∗ rho ∗UT2(NSTEPS) ∗∗2) /8
465 TEMP = ABS(UT−UT2)
466 L= (MAXLOC(TEMP,NSTEPS) )
467 WRITE(∗ ,∗) 'Max d i f f at ' ,L , ' with ' ,TEMP(L) , ' average ' ,SUM(TEMP) /(NSTEPS)
468 UT=UT2
469 END DO

470 RETURN

471 END SUBROUTINE VARDY_ET_AL
472 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
473 SUBROUTINE QUASI_STEADY_1D_TURB_MODEL(FILE1_NAME,LENGTH_OF_NAME,LENGTH,NSTEPS,DT)
474 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
475 !−−−So lves the 1D turbu l en t model with the−−−!
476 !−−−quasi−s teady f r i c t i on , imp l i c i t l y−−−−−−−−!
477 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
478
479 USE DECLARATIONS
480 IMPLICIT NONE

481
482 INTEGER : : I
483 INTEGER, INTENT(IN) : : NSTEPS,LENGTH,LENGTH_OF_NAME
484 DOUBLE COMPLEX : : C
485 DOUBLE PRECISION : : DT
486 CHARACTER(LEN=LENGTH_OF_NAME) : : FILE1_NAME
487 ALLOCATE(UT(NSTEPS) ,RET(NSTEPS) ,TVECTOR(NSTEPS) ,FS(NSTEPS) ,TAU(NSTEPS) )
488 !CREATING TIME VECTOR
489 DO I =1,NSTEPS
490 TVECTOR( I )=(I−1)∗DT
491 END DO

492 ! INITIALIZING VECTORS
493 CALL FRICTION(Re_end∗mu/( rho∗D) )
494 ALPHA = − f r i c t ∗Re_end∗∗2∗mu∗∗2/(2∗ rho∗D∗∗3)
495 alpha = −ALPHA/rho
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496 UT(1) = RE_START∗MU/D/RHO
497 RET(1)=RE_START
498 CALL FRICTION(UT(1) )
499 FS(1) = FRICT
500 TAU(1) = FS(1)∗UT(1) ∗∗2∗RHO/8
501 !CALLING SOLVER
502 CALL QUASI_STEADY_FRICTION_SOLVER(NSTEPS)
503 !WRITING VECTORS TO FILE
504 CALL INTERPOLATE(UT,NSTEPS,LENGTH,FILE1_NAME,LENGTH_OF_NAME, ' 1DCaseXQSVel . txt ' ,16)
505 CALL INTERPOLATE(RET,NSTEPS,LENGTH,FILE1_NAME,LENGTH_OF_NAME, ' 1DCaseXQSRey . txt ' ,16)
506 CALL INTERPOLATE(FS ,NSTEPS,LENGTH,FILE1_NAME,LENGTH_OF_NAME, ' 1DCaseXQS_Ft . txt ' ,16)
507 CALL INTERPOLATE(TAU,NSTEPS,LENGTH,FILE1_NAME,LENGTH_OF_NAME, ' 1DCaseXQSTau . txt ' ,16)
508 !DEALLOCATING ALLOCATED VECTORS
509 DEALLOCATE(UT,REt ,FS ,TAU,TVECTOR)
510 END SUBROUTINE QUASI_STEADY_1D_TURB_MODEL
511 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
512 SUBROUTINE DAILY_ET_AL_1D_TURB_MODEL(FILE1_NAME,LENGTH_OF_NAME,LENGTH,NSTEPS,DT)
513 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
514 !−−−So lves the 1D turbu l en t model with the−−−!
515 !−−−Daily e t a l . f r i c t i on , imp l i c i t l y−−−−−−−−!
516 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
517 USE DECLARATIONS
518 IMPLICIT NONE

519 INTEGER : : I
520 INTEGER, INTENT(IN) : : NSTEPS,LENGTH,LENGTH_OF_NAME
521 DOUBLE PRECISION : : DT
522 CHARACTER(LEN=LENGTH_OF_NAME) : : FILE1_NAME
523
524 ALLOCATE(Ut(NSTEPS) ,Ret (NSTEPS) , f t (NSTEPS) , tau (NSTEPS) , tVector (NSTEPS) ,Fu(NSTEPS) )
525 ALLOCATE(FS(NSTEPS) ,TAUU(NSTEPS) ,TAUS(NSTEPS) ,UT2(NSTEPS) )
526 !CREATING TIME VECTOR
527 DO I =1,NSTEPS
528 TVECTOR( I )=(I−1)∗DT
529 END DO

530 ! INITIALIZING VECTORS
531 CALL FRICTION(Re_end∗mu/( rho∗D) )
532 ALPHA = − f r i c t ∗Re_end∗∗2∗mu∗∗2/(2∗ rho∗D∗∗3)
533 alpha = −ALPHA/rho
534 UT(1) = RE_START∗MU/D/RHO
535 RET(1)=RE_START
536 CALL FRICTION(UT(1) )
537 FS(1) = FRICT
538 FU(1)=0
539 FT(1)=FS(1)
540 TAU(1) = FS(1)∗UT(1) ∗∗2∗RHO/8
541 TAUS(1)=TAU(1)
542 TAUU(1)=0
543 !CALLING QUASI−STEADY SOLVER
544 CALL QUASI_STEADY_FRICTION_SOLVER(NSTEPS)
545 !CALLING DAILY ET AL. FRICTION MODEL
546 CALL DAILY_ET_AL(NSTEPS,DT)
547 !WRITING OUT VECTORS TO TEXT FILES . DATA IS INTERPOLATED TO FIT 2D TIMEVECTOR
548 CALL INTERPOLATE(UT,NSTEPS,LENGTH,FILE1_NAME,LENGTH_OF_NAME, ' 1DCaseXUK_Ut . txt ' ,16)
549 CALL INTERPOLATE(RET,NSTEPS,LENGTH,FILE1_NAME,LENGTH_OF_NAME, ' 1DCaseXUK_Re. txt ' ,16)
550 CALL INTERPOLATE(FT,NSTEPS,LENGTH,FILE1_NAME,LENGTH_OF_NAME, ' 1DCaseXUK_Ft . txt ' ,16)
551 CALL INTERPOLATE(TAU,NSTEPS,LENGTH,FILE1_NAME,LENGTH_OF_NAME, ' 1DCaseXUK_Tau. txt ' ,17)
552 CALL INTERPOLATE(TAUU,NSTEPS,LENGTH,FILE1_NAME,LENGTH_OF_NAME, ' 1DCaseXUK_TauU. txt '

,18)
553 CALL INTERPOLATE(FU,NSTEPS,LENGTH,FILE1_NAME,LENGTH_OF_NAME, ' 1DCaseXUK_Fu. txt ' ,16)
554 CALL INTERPOLATE(FS ,NSTEPS,LENGTH,FILE1_NAME,LENGTH_OF_NAME, ' 1DCaseXUK_Fs . txt ' ,16)
555 DEALLOCATE(UT,RET,FT,TAU,TVECTOR,FU,FS ,TAUU,TAUS,UT2)
556
557 END SUBROUTINE DAILY_ET_AL_1D_TURB_MODEL
558 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
559 SUBROUTINE VARDY_ET_AL_1D_TURB_MODEL(FILE1_NAME,LENGTH_OF_NAME,LENGTH,NSTEPS,DT)
560 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
561 !−−−So lves the 1D turbu l en t model with the Vardy e t a l .−−−!
562 !−−−f r i c t i on , imp l i c i t l y−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
563 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
564 USE DECLARATIONS
565 IMPLICIT NONE

566 INTEGER : : I
567 INTEGER, INTENT(IN) : : NSTEPS,LENGTH,LENGTH_OF_NAME
568 DOUBLE PRECISION : : DT
569 CHARACTER(LEN=LENGTH_OF_NAME) : : FILE1_NAME
570
571 ALLOCATE(Ut(NSTEPS) ,Ret (NSTEPS) , f t (NSTEPS) , tau (NSTEPS) , tVector (NSTEPS) ,Fu(NSTEPS) )
572 ALLOCATE(FS(NSTEPS) ,TAUU(NSTEPS) ,TAUS(NSTEPS) ,UT2(NSTEPS) )
573 !CREATING TIME VECTOR
574 DO I =1,NSTEPS
575 TVECTOR( I )=(I−1)∗DT
576 END DO

577 ! INITIALIZING VECTORS
578 CALL FRICTION(Re_end∗mu/( rho∗D) )
579 ALPHA = − f r i c t ∗Re_end∗∗2∗mu∗∗2/(2∗ rho∗D∗∗3)
580 alpha = −ALPHA/rho
581 UT(1) = RE_START∗MU/D/RHO
582 RET(1)=RE_START
583 CALL FRICTION(UT(1) )
584 FS(1) = FRICT
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585 FU(1)=0
586 FT(1)=FS(1)
587 TAU(1) = FS(1)∗UT(1) ∗∗2∗RHO/8
588 TAUS(1)=TAU(1)
589 TAUU(1)=0
590 !CALLING QUASI−STEADY SOLVER
591 CALL QUASI_STEADY_FRICTION_SOLVER(NSTEPS)
592 !CALLING DAILY ET AL. FRICTION MODEL
593 CALL VARDY_ET_AL(NSTEPS,DT)
594 CALL INTERPOLATE(UT,NSTEPS,LENGTH,FILE1_NAME,LENGTH_OF_NAME, ' 1DCaseXUW_Ut. txt ' ,16)
595 CALL INTERPOLATE(RET,NSTEPS,LENGTH,FILE1_NAME,LENGTH_OF_NAME, ' 1DCaseXUW_Re. txt ' ,16)
596 CALL INTERPOLATE(FT,NSTEPS,LENGTH,FILE1_NAME,LENGTH_OF_NAME, ' 1DCaseXUW_Ft. txt ' ,16)
597 CALL INTERPOLATE(TAU,NSTEPS,LENGTH,FILE1_NAME,LENGTH_OF_NAME, ' 1DCaseXUW_Tau. txt ' ,17)
598 CALL INTERPOLATE(TAUU,NSTEPS,LENGTH,FILE1_NAME,LENGTH_OF_NAME, ' 1DCaseXUW_TauU. txt '

,18)
599 CALL INTERPOLATE(FU,NSTEPS,LENGTH,FILE1_NAME,LENGTH_OF_NAME, ' 1DCaseXUW_Fu. txt ' ,16)
600 CALL INTERPOLATE(FS ,NSTEPS,LENGTH,FILE1_NAME,LENGTH_OF_NAME, ' 1DCaseXUW_Fs. txt ' ,16)
601 DEALLOCATE(UT,RET,FT,TAU,TVECTOR,FU,FS ,TAUU,TAUS,UT2)
602
603 END SUBROUTINE VARDY_ET_AL_1D_TURB_MODEL
604 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
605 ENDMODULE SUB
606 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
607 PROGRAM ONEDIMTURBFLOW
608 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
609 !−−−Input de s c r i p t i on of the t rans i en t case , the name of −−−−−−−!
610 !−−−the 2D v e l o c i t y f i l e , and the l eng th of sa id f i l e .−−−−−−−−−−!
611 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!
612 USE DECLARATIONS
613 USE SUB
614 IMPLICIT NONE

615 INTEGER : : NSTEPS,LENGTH,LENNAME
616 DOUBLE PRECISION : : DT,K
617 CHARACTER(LEN=30) : : FNAME
618 Re_start = 1e7
619 Re_end = 2e4
620 ! geometry of pipe and f l u i d p rope r t i e s
621 D = 1.0D0
622 eps = 1∗2e−6
623 rho = 998.2D0
624 mu = 0.001003D0
625 ! f r i c t i o n ca l c u l a t i on to l e rance
626 t o l = 1 .0E−10
627 K=0
628 FNAME=' VelocityCaseX . dat ' !NAME OF FLUENT DAT FILE TO EXTRACT TIME VECTOR FROM
629 LENGTH = 10001 !LENGTH OF FLUENT DAT FILE
630 LENNAME = LEN_TRIM(FNAME)
631 ! Finding the unsteady component of wa l l shear s t r e s s in the 2D simulat ion
632 CALL TWODFRICTION(FNAME,LENNAME)
633 IF ( (RE_START >= 2300) .AND. (RE_END >= 2300) ) THEN
634 NSTEPS = 44001
635 DT = 0.5
636 CALL QUASI_STEADY_1D_TURB_MODEL(FNAME,LENNAME,LENGTH,NSTEPS,DT)
637 CALL DAILY_ET_AL_1D_TURB_MODEL(FNAME,LENNAME,LENGTH,NSTEPS,DT)
638 NSTEPS = 11001
639 DT= 2E0
640 CALL VARDY_ET_AL_1D_TURB_MODEL(FNAME,LENNAME,LENGTH,NSTEPS,DT)
641 ELSE IF ( (RE_START < 2300) .AND. (RE_END<2300) ) THEN
642 NSTEPS = 5000
643 DT = 0.000001
644 unsteady = .TRUE.
645 CALL LAMINARSOLVER(NSTEPS,DT,UNSTEADY,K)
646 CALL WRITEVECTOR(NSTEPS,UT,TVECTOR, ' 1DLAM1000VeU. txt ' ,16)
647 CALL WRITEVECTOR(NSTEPS,RET,TVECTOR, ' 1DLAM1000ReU. txt ' ,16)
648 CALL WRITEVECTOR(NSTEPS,FT,TVECTOR, ' 1DLAM1000DaU. txt ' ,16)
649 CALL WRITEVECTOR(NSTEPS,TAU,TVECTOR, ' 1DLAM1000Tau . txt ' ,16)
650 ELSE

651 WRITE(∗ ,∗) 'Warning , both s t a r t and end Reynolds number must be within same regime ,
e i t h e r laminar or turbu lent ! '

652 END IF

653 END PROGRAM ONEDIMTURBFLOW
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