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Abstract

This masters work describes the deformation of a droplet that is illuminated
by a laser beam. The theory for linear fluid mechanical motion of the droplet is
discussed. This is combined with Lorenz-Mie scattering. Droplet deformations
resulting from the optical radiation pressure are computed.

Specific beam profiles are discussed in the literature for the purposes of opti-
cal droplet deformation, namely the cases of linear and circular polarized plane
waves, a Gaussian beam and the Bessel beam. The general case of an arbitrary
beam is not, to the author’s knowledge, given in the published literature. Such a
framework is developed from first principles and presented in this work.

A Mathematica script was written to compute deformations. These are cal-
culated, fitting nicely to those found by Ellingsen in a recent article. The case of
two plane waves from opposite directions is discussed here for the first time, and
droplet shapes produced.

The size droplets considered is between the geometrical limit and the Rayleigh
limit. The numerical load increases quickly with increasing values of the droplet
radius and wave vector. The hardest to compute coefficients die off the most
quickly with time.
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Abstract

I denne masteroppgaven beskrives deformasjonen til en liten dr̊ape
som treffes av en laser-str̊ale. Lineær fluidmekanikk og Lorens-Mie-
teori blir kombinert for å beskrive dette systemet. Dr̊apeformer er
funnet med numeriske beregninger.

Tidligere arbeid for å beskrive dr̊ape-deformasjoner under laserlys
beskriver et knippe spesifikke laserprofiler. Det generelle tilfellet med
en vilk̊arlig laserprofil er, s̊a langt forfatteren vet, ikke beskrevet i den
utgitte literaturen p̊a feltet. Et teoretisk rammeverk for å beskrive
dette tilfelle utvikles og beskrives i dette arbeidet.

Et program er skrevet i Mathematica, for å kalkulere dr̊apeformer
for de ulike laserprofilene. Tilfellet med en enkelt laser-str̊ale fra ven-
stre, med planbølge eller gaussisk profil, er utforsket. Svarene passer
med tildigere publiserte resultater. Tilfellet med to planbølger er beskrevet
for første gang her, og dr̊apeformer gitt.

Størrelsen p̊a dr̊apene som er sett p̊a ligger mellom geometrisk op-
tikk og Rayleigh-grensen. Det numeriske arbeidet blir tyngre for større
dr̊aper, men de leddene det er vanskeligst å beregne er de som forsvin-
ner først n̊ar dr̊apen oscillerer.
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1 Introduction

The field of optofluidics is the combination of microfluidics and optics;
controlling liquids with light and using liquids as optical elements.

A tightly focused laser beam can trap particles and bubbles. The
light interacts with a dielectric particle, excerting forces on it. With a
suitable laser profile this becomes a potential well, keeping the particle
or bubble in place. These optical tweezers allow detailed manipulation
of microsystems , well suitable for a range of biological applications,
where optical tweezers already see use [1]. Grier et.al. [1] also out-
line a wide range of possible uses from motors in microengineering to
measurements of molecular interaction.

Optical sorting of particles was demonstrated by MacDonald et.al.
[2]. The diffraction pattern of a split beam produced an optical lattice
capable of sorting particles efficiently, based on size or refractive index.
See also Guck.et.al. [3] that stretched a dielectric cell using two optical
traps opposite to each other. Their specimen was a red blood cell, used
for its softness, producing shapes similar to the ones with the case of
a droplet. Another interesting example of droplet manipulation work
is done by Ward et.al.,aptly named ”optical sculpting”. A number of
traps sculpt droplet of very low surface tension into various shapes [4],
see Figure 1.

Figure 1: Emulsion droplets, with low surface tension, deformed by a number of traps,
from Ward et.al. [4]. One trap in a), two in b), three in c) and four in d), as can be
guessed from the resulting deformations.

As well as trapping particles, a laser beam can push them. This case
is easily imagined, thinking in terms of radiation pressure. However,
Chen et.al. [5] recently showed how a beam can pull a droplet towards
it, opposite to the travelling direction of the wave. Following the images
in [6], the effect is easier to grasp in Fourier optics. Consider the beam
as an ensemble of sine waves. These individual waves do not travel
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in the same direction, but together they form a beam. When the
droplet scatters the light to collimate these, there is a net momentum
backwards, and thus a tractor beam!

Development in micromanufacture has led to recent development
of, and interest for, lab-on-chip systems, see e.g. [7] for a review. The
essence is that fluids can be transported and manipulated on chips, with
microfluidic channels. This could automate laboratory work, especially
in chemistry and biology, as is alluded to in the name. A crucial element
in these chips is the integration of lasers for the handling of the liquids.
See Psaltis and Li [8] for a discussion of the different laser methods
used.

Droplets can prove to be useful in these chips, as described by
Baroud et.al. [9]. They can be moved, manipulated, split and even
deformed into a desired shape, using electrostatics, acoustics or laser
optics. Droplets can be used as microreactors, e.g. in [10], containing
the materials undergoing a reaction. The future seems promising for
the use of droplets in these systems.

A classical experiment on droplets was performed by Chang and
Zhang in 1989 [11], where a droplet was photographed as a laser beam
hit it. See figure 2 for these droplet photographs. The results were soon
explained [12] using the Mie solutions for the electrodynamic fields.
These articles typically call the force in question ”electrostriction”.
This is something of a misnomer, as shall be seen later. Brevik and
Kluge [13] found the oscillations for a pulse of linearly polarized light.
Ellingsen recently found the motion for a Gaussian beam [14], and
the case where the droplet is pulled in the opposite direction of the
beam [15].

My advisor, Simen. Å. Ellingsen, and collegues, are planning ex-
perimental work with the Central Laser Facility in the UK. To make
sure that the droplet does not gain momentum, and fly away, it is ex-
posed to two identical beams from opposite sides. Calculating how the
droplet will react to two pulses will therefore be a necessary requisite.

The procedure follows the one found in the previous work, e.g.
[12–14]

1. The electromagnetic surface force density is calculated for a spher-
ical droplet at rest.

2. The surface perturbations are calculated with the linearized Navier-
Stokes’ equation, using the EM force.

3. The perturbations are assumed to be much smaller than the radius
of the sphere. Thus a linear surface wave theory can be applied.

The equations involved are expended in the spherical harmonics, or
similarly with Legendre polynomials. This leaves an equation with a
large amount of terms in the usual spherical harmonic parameters l,m
with Y m

l . Different systems allows for some, or most, of these terms to
be ignored. The published work does this simplification early on in the
calculation. This allows for easier calculation and less verbose texts.

The case of two plane waves from opposite sides of the droplet al-
lows less terms to be ignored. This difference can be subtle, it simply
includes higher orders of m for the surface force coefficients. Yet with-
out a general expression of the equations involved, one has to go trough
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Figure 2: Photographs of laser irradiated water droplets, by Zhang and Chang [11].
Droplets are 100µm in diameter, time intervals of 2µsec. Left: Pulse energy of 100mJ .
Right: Pulse energy og 200mJ .

the entire framework to include the terms and check any relevant con-
stants.

This treatment makes no assumptions about which terms to ignore.
It is therefore be expanded as if it had non-zero coefficients for all
spherical harmonic functions. This gives a framework that will work
with all available beams, including the case where beams comes in from
both sides. When a special case is investigated, the appropriate terms
can be neglected, as before.

Numerical calculations are done for a droplet 4µm across. The
shapes found in [14] are reproduced for the single incoming beam, with
two systems. One is a water-droplet in air, as in Figure 2 (but with a
smaller droplet). The other is the oil emulsion system used by Ward
et.al., as in Figure 1.

The case of opposite plane wave beams is also investigated. Plau-
sible droplet shapes are produced for the oil emulsion system. The
script have issues when other systems are applied, such as the water
in air system, or droplets significantly smaller. This gives strange re-
sults that is far more reasonable to denote to programming error, than
actual results. Interestingly, the same general shape of the droplet is
observed.

Much time has gone into bug-hunting in the code, with little result.
Complete rewrites have been attempted, to no effect. Rewriting in a
programming language better known to the author, or getting more fa-
miliar with Mathematica, would be a logical next step. The expansions
contain terms that oscillate quickly, especially the terms not previously
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considered. A problem with the stability of the integrals could explain
some of the trouble nicely.

2 Theory

aw0 ρ1

ρ2
n1

n2

Laser beam

Figure 3: System considered, Figure obtained from Ellingsen [14]. A sphere of fluid 1,
within fluid 2 is illuminated by laser beam. The beam waist is given, for the Gaussian
case. In the plane wave limit, this waist is assumed infinite.

The system under consideration is shown in figure 3. A laser beam
pushes the droplet, causing it to deform and oscillate. In the case of
a pulse it returns to a sphere. For continuous operation it assumes a
new equilibrium, allowing the surface tension to negate the force from
the laser.

The exact profile of the incoming beam will be varied between a sin-
gle plane wave, a single Gaussian wave and plane waves from opposite
sides; all with circular polarization.

This chapter starts with a description of some assumptions of the
system. Then the fluid mechanics and the electromagnetics are han-
dled separately. The electrodynamics will produce an expression for
the surface force density, which is applied in the fluid mechanics. The
equations are massaged to a more concise and usable form, splitting
them into a system-dependent part and constants that can be calcu-
lated once. This framework is then applied to the considered profiles
of the incoming beams.

2.1 Assumptions of the system.

2.1.1 Spherical droplet

The droplet is assumed to remain spherical for the duration of the pulse.
This enables the use of Generalized Lorenz-Mie Theory (GLMT). GLMT
finds a solution to Maxwell’s equations that is expressed in terms of the
spherical harmonics, which are suitable for evaluation over the sphere.

7



With the fields in this form, the scattered fields can be found by ap-
plying the electrodynamic boundary conditions over the sphere. This
results in an expression of the electromagnetic fields in the form of a
spherical harmonic expansion.

If the droplet is deformed while subjected to the laser beam, it
will diffract the light differently. This changes the forces, which again
changes its shape and so on. Boyde et.al. recently found that surface
stresses on a sphere versus a spheroid with an aspect ratio of 1.2 ”hardly
differed” [16], which supports the decision to ignore these effects for
now.

In some cases the droplet deformation leads to a near near spherical
surface of the droplet, in the direction of the laser beam. The most
important diffraction of the beam happens at this boundary. Using the
curvature of the deformed sphere, one could approximate a new defor-
mation, and so on. This way of approximation could be an interesting
undertaking for the future.

The deformations are also assumed to be small in the fluid mechan-
ical calculations, i.e. the calculations are done in the linear regime.
This also limits the theoretic framework to beams with an intensity
low enough to not excite too large deformations. Usefulness at the lim-
its can be expected, as with general linear fluid mechanical theory [14].

2.1.2 Electrostriction

With the system considered, the electrodynamic forces consists of two
terms [13]. These are the Abraham-Minkowski force (AB) and the
electrostrictive force (ES). The AB-force acts on the boundary of the
droplet, while the ES-force acts on the whole droplet, pushing towards
the areas of higher electric or magnetic field intensity. Elastic pressure
will build to cancel the ES-force, cancelling it, if there is enough time
available.

Pressure builds up with the speed of sound in the medium. Over a
droplet with radius a, the pressure thus builds up in a time [17]

τc =
2a

u
(1)

where u is the speed of sound in the medium. For pulses longer than
this the elastic pressure will have time to counter any body forces, and
the droplet can be considered incompressible, negating the ES-force.

For the cases observed in experiment and considered in the theory,
this time is long enough compared to the pulse in question [17]. For
example, droplets of water in air, used by Zhang and Chand [11], where
a = 50µm and n = 1500m/s, give a minimum laser pulse time of
τ ≤ 70ns, well below the pulses used (400 ns). The droplets considered
here are considerably smaller (1-5 µm), so the ES-force is assumed to
be neglible.

Another note on electrostriction is the confusing use of language
found in ref.s [11, 12]. The total electrodynamic forces on the droplet
are called electrostrictive. The terminology used over is, as far as the
author knows, the current way to look at it [17, 18]. This makes the
older nomenclature a bit imprecise to look at, as the electrostrictive
force is, indeed, neglible.
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2.2 Fluid Mechanics

The droplet reaction to incoming light, in the linear regime, is explored.
The approach used is the one found in references [12–15]. Navier-
Stokes’ equation is expanded in spherical harmonics. The equation is
then solved termwise. The result is similarily found, using the velocity
potential, in reference [19].

2.2.1 Identifying the terms in Navier-Stokes.

Take the linearised Navier-Stokes’ equation, inside the droplet. The
electrostrictive body force will, as discussed, be cancelled by a change
in pressure. Following Brevik [13], we ignore these cancelling terms.
This leaves

∂v

∂t
= −1

ρ
∇p+ µ∇2v (2)

where p is the pressure, ρ is the fluid density, µ is the dynamic viscosity
and v is the fluid velocity. Note that the pressure p omits the cancelling
ES-terms, akin to pAM in [13]. We know that the electromagnetic forces
affecting the droplet are all transverse to the spherical surface, or

f = σ(θ, t)δ(r − a)r̂ (3)

in spherical coordinates (r, ϕ, θ), where δ is the Dirac delta function.
The motion to be calculated is therefore the radial motion of the droplet
surface. We then choose to evaluate equation (2) at the droplet surface,
just inside the droplet. The beam is assumed to be turned on at t = 0
and off at t = t0. This allows the EM-force to be written as

σ(θ, t) = σ(θ)[Θ(t)−Θ(t− t0)] (4)

where Θ(t) is the Heaviside step function. This includes the static case
in the special case where t0 is set to infinity. This time-dependence is,
a simpler version of the one found in [13], that takes the rise and fall
time of the beam into account. These times are typically on the order
of tens of nanoseconds [18].

The droplet surface is handily split into two parts

r(θ, ϕ) = a+ h(θ, ϕ) (5)

where a is the droplet radius and h is the displacement from a perfect
sphere. The fluid velocity can then be written as:

v = ḣ(θ, ϕ),
∂v

∂t
= ḧ(θ, ϕ) (6)

At the surface, there will be two contributions to the pressure. The
electromagnetic force will pull the surface, depending on the incoming
fields and the refraction. The surface tension will pull the droplet
surface back to the spherical shape. Thus

p = ∆ps.t. − σ(θ, t) (7)

where ∆ps.t. denotes the surface tension contribution.
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Both contributions to the pressure are only dependent on r, which
gives

∆p =
∂p

∂r
r̄ (8)

for the pressure term.
This leaves an equation of motion

ḣ(θ, ϕ) = −1

ρ

∂

∂r
(∆ps.t. − σ(θ, t)) + µ∇2v (9)

for the system.

2.2.2 Choosing an expansion and normalizing it.

The spherical harmonics are usually normalized as

Yl,m(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimϕ (10)

with the associated Legendre Polynomials Pml . These are Orthonor-
mal. In the previous work, one has not applied this normalization, but
rather used Pml (cos θ)eimϕ directly, taking care of the normalization
in the expression for the expansion parameters. This is done here as
well, both to keep close to previous work, and to avoid introducing
dependencies in l,m in the fluid mechanical equations.

Take an arbitrary function

g(Ω) =
inf∑
l=1

l∑
m=−l

gl,mP
m
l (cos θ)e−imϕ (11)

and invert it

gl,m =

∫
g(Ω)Pm

′
l′ (cos θ)e−im

′ϕdΩ (12)

=
∑
l,m

∫ 2π

0
eiϕ(m−m′)dϕ

∫ 1

−1
Pm

′
l′ P

m
l du (13)

= 2π
2

2l + 1

(l +m)!

(l −m)!
δl,l′δm,m′ (14)

where the orthogonality of the Legendre Polynomials [20] is used. This
should return be 1, which gives expansion parameters of

gl,m =
2l + 1

4π

(l −m)!

(l +m)!

∫
dΩg(Ω)Pml (cos θ)e−imϕ (15)

fitting nicely with the definition of the spherical harmonics.
Note that the expansion coefficients for σ will not carry much in-

formation about which parts contribute to the droplet form. This is
a result of expanding σ on a basis that is orthogonal, but not normal.
The choice made does conform closely to similar discussions in the lit-
erature consulted, and leads to a relatively easy to compute equation.
Thus there is a trade-off here.

10



2.2.3 Expanding the fluid mechanics into associated Leg-
endre polynomials

The next step is to expand every term of equation (9) in these Legendre
polynomials. We define h and σ, and know little of them yet. They
can easily be expanded to

h(t) =
∞∑
l=1

l∑
m=−l

hl,mP
m
l (16)

and

σ(θ) =
∞∑
l=1

m=l∑
m=−l

σl,mP
m
l e

imϕ (17)

where the coefficients of σ are found to be

σl,m =
(2l + 1)

4π

(l −m)!

(l +m)!

∫
dΩσ(Ω)Pml e

−imϕ (18)

whereas the expansion coefficients for h are the unknown found by this
treatment. The coefficients for σ constitute the main numerical work,
and will be found in the electrodynamics chapter.

Expanding the pressure is a bit more involved, as the radial part
is involved as well. Following the derivation in [19], we start with the
fact that ∇2p = 0 [15], due to incompressibility and linear theory. This
is written out as( 1

r2 sin2 θ
∂2
φ +

1

r2
∂rr

2∂r +
1

r2 sin θ
∂θ sin θ∂θ

)
p(r, ϕ, θ) = 0 (19)

in spherical coordinates. Assume we can separate the variables in p

p = T (t)R(r)Θ(θ)eimϕ (20)

where the ϕ-dependence is expressed as a Fourier series. Inserting into
equation (19) gives

cos θΘ′

sin θΘ
+

Θ′′

Θ
− m2

sin2 θ
= −2rR′ + r2R′′

R
= −µ2 (21)

arguing that since the radial and azimuthal parts are independent, and
their sum zero, they must be equal. Substituting

u = cos(θ) (22)

will be practical. This will change the derivatives in θ so that

Θ′(θ) = − sin θΘ̃(u),Θ′′(θ) = − cos θΘ̃′(u) + sin2 Θ̃′′(u) (23)

when changing the variables in Θ(θ) to Θ̃(u). Inserting this into
equation(21) gives the familiar equation

(1− u2)Θ̃′′(u)− 2uΘ̃′(u) + Θ̃(u)(µ2 − m2

1− u2
= 0 (24)

that is recognized as the general Legendre differential equation. The
solution is the associated Legendre polynomials Pml (u), Qml (u), intro-
ducing the integers l

µ2 = l(l + 1) (25)

11



and m. The terms are non-zero for

m ≤ l (26)

The pressure must be finite everywhere, the Qml (u) are not finite
at θ = 0, π, and are thus discarded. Using the new value of µ2 we get

r2R′′ + 2rR′ − l(l + 1)R = 0 (27)

with solutions

R =
(r
a

)l
, R =

(r
a

)1−l
(28)

for R. The pressure inside the sphere, containing the origin, must
be finite. The latter solution must therefore be discarded inside the
sphere. Gathering the terms give

p(θ, ϕ) =

∞∑
l=1

l∑
m=−l

(r
a

)l
pl,mP

m
l (cos θ)eimϕ (29)

as the expanded pressure.
Calculating ∂

∂rp in with equation (29) gives

∂

∂r
p =

l

a
pl,m (30)

in the boundary where r ≈ a.
The viscous damping term is derived in [13]. The total energy of

the system is considered, as in a harmonic oscillator, giving a damping
term

ν∆2vr = −2

∞∑
l=1

l∑
m=−l

µl,mḣlPl(cos θ)eimϕ (31)

µl,m =
ν

a2
(2l2 − l − 1) (32)

where µl determines the life times of the various modes. In cases where
m 6= 0 this becomes [13]

µlm = µl (33)

such that µl is the same for all associated values of m.
The surface tension term can be written as [21]

∆ps.t. = γ

(
1

R1
+

1

R2

)
(34)

where R1, R2 are the principal radii of curvature of the surface. With
expanded radius r = a+ hl this becomes [21] [13]

∆ps.t. =
γ

a2

∞∑
l=1

m=l∑
m=−l

(l2 + l − 2)hl,m(t)Pl(cos θ) (35)

by assuming h� a and discarding the l = 0-terms.
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2.2.4 Combining the terms, and solving for h.

Combining the terms in equation (2) at the boundary gives the termwise
equation

ḧl,m + 2µl,mḣl,m + ω2
l hl,m =

l

ρa
σl,m[Θ(t)−Θ(t− t0)] (36)

ω2
l =

γl

ρa3
(l2 + l − 2) (37)

where we have introduced ωl. Applying the Laplace transform gives

L{hl,m(t)}(s) =
lσl,m
ρa

1− e−t0s

s(s2 + 2µls+ ω2)
(38)

so that hl,m can be found by taking the inverse transform. This yields
a result, as can be expected from a damped oscillator:

hl,m(t) =hl,m(∞)[1− (
µl
γl

sin γlt+ cos γlt)e
−µlt]Θ(t) (39)

−[1− (
µl
γl

sin γl(t− t0) + cos γl(t− t0))e−µlt−t0 ]Θ(t− t0)

hl,m(∞) =
σl,ma

2

γ

1

l2 + l − 2
(40)

γl =
√
w2
l − µ2

l (41)

µ2
l =

γl

ρ2 − ρ1a3
(l2 + l − 2) (42)

where γl is the vibrational frequency, and µl the damping constant.
Notice the lack of dependence upon m in these equations. This leads to
them being easily compared to the similar results found in the reference
material [14, 15]. The same shape is observed.

With a positive γ2
l the motion is underdamped, while a negative γ2

l ,
i.e. complex γl, gives an overdamped motion, replacing the sine terms
with sinh terms and cos with cosh. The regions of underdamped vs.
overdamped motion are worked out by Ellingsen [14], resulting in some
quite large equations. For the droplet sizes discussed here, of a few µm,
it can be summarized as follows: water droplets in air - underdamped,
oil emulsions - underdamped, water bubbles in air - either.

For the static case, with infinite t0, the last term disappears, leaving
the shape determined by hl(∞) after a long time; hence the name. This
will, as discussed earlier, be an approximation, as the new shape will
diffract the light differently.

2.3 Electromagnetics

2.3.1 Maxwells stress tensor

The force density can be found by integrating the gradient of Maxwells
stress tensor

T = E⊗D + H⊗B− 1

2
(E ·D + H ·B)1 (43)
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over the surface of the droplet; here 1 denotes the identity matrix and
E,D,H,B are the complex fields for the incoming wave. These have
time dependence

E = Re{(Er + Eθ + Eϕ)eiωt} (44)

where Er, Eθ, Eϕ are the complex field amplitudes in the corresponding
directions. This gives

〈ErEr〉 =
1

2
| Er |2 (45)

when taking the average over the optical period.
We assume the magnetic permeability to be equal to unity in both

media, so that the magnetic fields are constant over the droplet bound-
ary. They disappear from equation 43, resulting in

Trr =
ε0n

2

2
(E2

r − E2
θ − E2

ϕ) (46)

for the outward force on the bubble; ε0 denotes the vacuum permit-
tivity. The electromagnetic force on the boundary are then found to
be

σ(Ω) = 〈σrr〉 = 〈Trr(r = a+)− Trr(r = a−)〉 (47)

where 〈...〉 denotes the mean over one optical period. Boundary condi-
tions for the electric fields are given, e.g. in Jackson [20], as

n2
1E⊥1 = n2

2E⊥2, E‖1 = E‖2 (48)

over the boundary between mediums 1, 2 as given in Figure 3. With
the droplet geometry the perpendicular ⊥ direction is the r-direction,
the other two being parallel ‖. Combining equations (46,47,48) gives

σ(Ω) =
ε0n

2
2

4
(n̄2 − 1)(n̄2 | Ewr |2 + | Ewϕ |2 + | Ewθ |2) (49)

where Ew is the scattered field directly inside the droplet surface, at
r = a. This simplifies the calculations as the fields outside the droplet
need not be considered.

2.3.2 Expanding the fields.

Lorentz-Mie theory will now be applied to the incoming electric fields.
The incoming fields are expressed in terms of spherical harmonics. The
electromagnetic boundary conditions over a sphere are then applied.
The resulting field can be described by three terms, The field inside
the sphere, the incoming field and the scattered field. The fluid motion
can, as discussed, be fully described by the internal field.

The task at hand then becomes to expand the incoming fields in
spherical harmonics, and apply the appropriate boundary condition
parameters. The results used are included as an appendix by Barton
et.al. [22], widely used in the considered literature [12–15]. Derivations
can also be found in [20] and [23], with different formalism.
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Consider the fields (E and H) of an electromagnetic wave in a source
free medium. The electric field can be expressed as a sum of two fields

E = ETE + ETM (50)

where the where TE and TM describe two directions. Transverse Elec-
tric (TE) fields are the fields that are perpendicular to the r-direction.
The Transverse Magnetic fields are the fields that are not perpendicular
to the r-direction. From Maxwells Equations we know that the electric
and magnetic fields are perpendicular, thus the electric TM fields are
the ones corresponding to a magnetic field that is perpendicular to the
r-direction. From this one naturally have that

ETE
r = 0, HTE

r = 0 (51)

From Maxwell’s equations in a source free medium we know that
E can be found from the curl of H. We can then add up the terms,
knowing where where the radial fields disappear. Assuming the normal
plane wave time dependence and source-free space, we get that

E = Er − ikcε0Hr (52)

where k is the wave number and ε0 the permittivity of free space. A
corresponding argument is found for H, so that the radial fields are
all that is needed to fully describe the incoming fields. Put differently
: the radial H-field ”contains” the angular E-field, and vica verca.
Expanding the TE and TM parts separately, one gets an expression
for E

ψl = ψl(n̄α%) Ylm = Ylm(θ, ϕ) (53)

Er =
E0

%2

∞∑
l=1

l∑
m=−l

l(l + 1)AlmψlYlm (54)

Eθ =
αE0

%

∞∑
l=1

l∑
m=−l

[
Almψ

′
l∂θYlm −

m

n2
2

Blmψl
Ylm

sin(θ)

]

Eϕ =
iαE0

%

∞∑
l=1

l∑
m=−l

[
Almψ

′
l

Ylm
sin(θ)

− 1

n2
2

Blmψl∂θYlm

]
and the corresponding expansion for H, in the same form, which can
be found in the appendix of [22]. The shorthand in equation (53) are
used from here on, to increase readability. The incoming fields are
contained in the Alm, Blm coefficients

Alm =
1

l(l + 1)ψl(α)

∫
Eir
E0
Y ∗lm(Ω)dΩ (55)

Blm =
1

l(l + 1)ψl(α)

∫
H i
r

H0
Y ∗lm(Ω)dΩ (56)

using the radial fields only. Note how the expansion contain the TE-
and TM-terms, so that the field in the r-direction only have one term.
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With magnetic fields perpendicular to electric ones, the factor differ-
ence can be written [15]

Hi = −in2ε0cE
i, H0 = ε0cE0 (57)

for the magnetic field. The integral for the B-coefficients is then only
a complex factor different than that for the A-coefficients. This gives
that

Blm = −in2Alm (58)

for this case. This leads to less coefficients to compute, but doesn’t
cut the computational complexity much, as these are fairly quick to
calculate. It also allows us to focus solely on the electric field, which is
done throughout this work.

We now have the incoming fields on a spherical harmonic basis.
Note that since the magnetic permeability does not differ between the
media, only the electric fields are needed to describe the scattering, and
the magnetic fields come into it as a way to describe the electric fields.
Placing the origin in the center of the sphere, we apply the boundary
conditions over it.

2.3.3 Refraction and surface force density.

The refraction over the sphere changes the coefficients in equation 54.
The fields outside the sphere are described by a combination of the
scattered and incoming fields; these fields are not of interest, as the
forces on the sphere are described by the field inside it. With the
notation of Barton et.al. [22], we get

ψl = ψl(n̄α%), Ylm = Ylm(θ, ϕ) (59)

Ewr =
E0

%2

∞∑
l=1

l∑
m=−l

l(l + 1)clmψlYlm (60)

Ewθ =
αE0

%

∞∑
l=1

l∑
m=−l

[
n̄clmψ

′
l∂θYlm −

dlm
n2

mψl
Ylm

sin(θ)

]

Ewϕ =
iαE0

%

∞∑
l=1

l∑
m=−l

[
mn̄clmψ

′
l

Ylm
sin(θ)

− dlm
n2

ψl∂θYlm

]

clm =
iAlm

n̄2ψl(n̄α)ξ
(1)′
l − n̄ψ′l(n̄α)ξ

(1)
l

(61)

dlm =
iBlm

ψl(n̄α)ξ
(1)′
l (α)− n̄ψ′l(n̄α)ξ

(1)
l )

(62)

where the c and d coefficients have been simplified from the expres-
sions given by Barton et.al. [22]. This is used, but not mentioned, by
Ellingsen [14], and discussed in an earlier article by Barton.et.al [24].
The ξ-factors in the denominator simplify, compared to the expressions
in [22], by using the Wronskian of the Ricatti-Bessel functions [25]:

ξ′n(α)ψn(α)− ξn(α)ψ′n(α) = i (63)
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This field can be plugged directly into equation (49). Taking the
absolute value of a complex field, we multiply the field with the com-
plex conjugate of itself. The expansion parameters used are (l,m) for
the field, and (l′,m′) for the conjugated one. This yields the rather
unwieldy equation:

σ(Ω) =
ε0n

2
2E

2
0

4
(n̄2 − 1)

∞∑
l=1

∞∑
l′=1

l∑
m=−l

l∑
m′=−l

×
(
l(l + 1)l′(l′ + 1)clmc

∗
l′m′ψlψl′Yl,mY

∗
l′,m′

+ α2[n̄2clmc
∗
l′m′ψ′lψ

′
l′∂θYl,m∂θY

∗
l′,m′

− n̄

n2
dlmc

∗
l′m′mψlψ

′
l′
Ylm

sin(θ)
∂θY

∗
l′,m′

− n̄

n2
d∗l′m′clmm

′ψl′ψ
′
l

Y ∗l′,m′

sin(θ)
∂θYlm

+
1

n2
2

dlmd
∗
l′m′mm′ψlψl′

YlmY
∗
l′,m′

sin(θ)2
] (64)

+ α2[n̄2mm′clmc
∗
l′m′ψ′lψ

′
l′
Yl,mY

∗
l′,m′

sin(θ)2

− n̄

n2
mclmd

∗
l′m′ψ′lψl′∂θY

∗
l′,m′

Ylm
sin(θ)

− n̄

n2
m′c∗l′m′dlmψlψ

′
l′∂θYlm

Y ∗l′,m′

sin(θ)

+
1

n2
2

dlmd
∗
l′m′ψlψl′∂θYlm∂θY

∗
l′,m′ ]

)
where % = r/a ≈ 1 at the boundary, so that the %-terms in equation
(54) simply disappear at the boundary.

2.3.4 Power and Intensity

The equation for σ contains a term ε0n
2
2E

2
0 , which describes the strength

of the incoming fields. This will be rewritten in terms of the inten-
sity [14], found by the average of the Poynting vector over the optical
period

I = 〈E×H〉z = n2|Ex|2ε0c (65)

which simplifies to
I = n2E

2
0ε0c = I0 (66)

in the plane wave case.
Experimentally one typically quote the incoming intensity or power.

The power is the integral of the intensity over a cross section of the
entire beam. For comparisons between different beams, the effective
power is used. This is the integral over the intensity over the droplet
only. For a plane wave this simply becomes

Peff = πa2I0 (67)

as the intensity is the same over the cross section of the sphere.
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2.4 Organizing for numerical work.

2.4.1 Rewriting the surface force density.

The obtained expression for σ is unwieldy. Both Ellingsen [14] and
Gouesbet [23] describe the algebra involved as tedious and time con-
suming. We start by writing out the spherical harmonics

Ylm(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimϕ (68)

where complex conjugation simply switches the sign in eimϕ. Some
terms include the derivative in the θ-direction. The Legendre poly-
nomials are dependent upon u = cos θ, and this substitution will be
employed for the entire equation later. The chain rule gives

d

dθ
Pml (cos θ) = − sin θ

d

du
Pml (u) = − sin θ∂uP

m
l (69)

so that the terms with the derivative of the Legendre Polynomials can
be rewritten. Inserting this gives:

σ(Ω) =
ε0n

2
2E

2
0

4
(n̄2 − 1)

∞∑
l=1

∞∑
l′=1

l∑
m=−l

l∑
m′=−l

(eiϕ(m−m′)

(

√
(2l + 1)(l −m)!

4π(l +m)!

√
(2l′ + 1)(l′ −m′)!

4π(l′ +m′)!
)

×
(
l(l + 1)l′(l′ + 1)clmc

∗
l′m′ψlψl′P

m
l P

m′
l′

+ α2n̄2clmc
∗
l′m′ψ′lψ

′
l′ sin2 θ∂uP

m
l ∂uP

m′
l′

+ α2 n̄

n2
dlmc

∗
l′m′mψlψ

′
l′P

m
l ∂uP

m′
l′

+ α2 n̄

n2
d∗l′m′clmm

′ψl′ψ
′
lP

m′
l′ ∂uP

m
l

+ α2 1

n2
2

dlmd
∗
l′m′mm′ψlψl′

Pml P
m′
l′

sin2 θ
(70)

+ α2n̄2mm′clmc
∗
l′m′ψ′lψ

′
l′
Pml P

m′
l′

sin2 θ

+ α2 n̄

n2
mclmd

∗
l′m′ψ′lψl′∂uP

m′
l′ P

m
l

+ α2 n̄

n2
m′c∗l′m′dlmψlψ

′
l′∂uP

m
l P

m′
l′

+ α2 1

n2
2

dlmd
∗
l′m′ψlψl′ sin2 θ∂uP

m
l ∂uP

m′
l′
)

Many of these terms are equal, or similar. They are obtained by
the similar expansions of the electric field, which makes this somewhat
intuitive. Let us start with the terms with dependence upon the Leg-
endre Polynomials and θ, as these will constitute the main numerical
work
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σ(Ω) =
ε0n

2
2E

2
0

4
(n̄2 − 1)

∞∑
l=1

∞∑
l′=1

l∑
m=−l

l∑
m′=−l

(eiϕ(m−m′)

(

√
(2l + 1)(l −m)!

4π(l +m)!

√
(2l′ + 1)(l′ −m′)!

4π(l′ +m′)!
) (71)

×
(
l(l + 1)l′(l′ + 1)clmc

∗
l′m′ψlψl′P

m
l P

m′
l′

+ α2 sin2 θ∂uP
m
l ∂uP

m′
l′ (n̄2clmc

∗
l′m′ψ′lψ

′
l′ +

1

n2
2

dlmd
∗
l′m′ψlψl′)

+ α2mm′
Pml P

m′
l′

sin2 θ
(

1

n2
2

dlmd
∗
l′m′ + n̄2clmc

∗
l′m′ψ′lψ

′
l′)

+ α2m
n̄

n2
Pml ∂uP

m′
l′ (dlmc

∗
l′m′ψlψ

′
l′ + clmd

∗
l′m′ψ′lψl′)

+ α2m′
n̄

n2
∂uP

m
l P

m′
l′ (d∗l′m′clmψl′ψ

′
l + c∗l′m′dlmψlψ

′
l′)

(72)

2.4.2 Expansion of the formalism: use of associated Leg-
endre Polynomials.

Equation (18) gives the coefficients needed for the surface motion. Con-
sider the ϕ-dependence, where σ is a combination of expansions in
spherical harmonics. The constants have no dependence on ϕ, which
leaves

σlσ ,mσ =

∫ 2π

0
eiϕ(−mσ+m−m′)dϕ× ... (73)

ignoring the rest of the equation for now. This has the same result seen
earlier, that the exponent must be zero to ensure a non-zero result. We
can thus write out

σlσ ,mσ =

{
2π × ... if mσ = m−m′

0 otherwise
(74)

for the terms in m. This leaves an integral over u, so that:
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σlσ ,mσ =
(2lσ + 1)

4π

(lσ −mσ)!

(lσ +mσ)!

∞∑
l=1

∞∑
l′=1

l∑
m=−l

l∑
m′=−l

2πδmσ ,(m−m′) (75)

× ε0n
2
2E

2
0

4
(n̄2 − 1)

√
(2l + 1)(l −m)!

4π(l +m)!

√
(2l′ + 1)(l′ −m′)!

4π(l′ +m′)!
)

(76)

×
∫ 1

−1
du
[
Pml P

m′
l′ P

mσ
lσ

(
l(l + 1)l′(l′ + 1)clmc

∗
l′m′ψlψl′ (77)

+ α2(1− u2)∂uP
m
l ∂uP

m′
l′ P

mσ
lσ

(n̄2clmc
∗
l′m′ψ′lψ

′
l′ +

1

n2
2

dlmd
∗
l′m′ψlψl′)

+ α2mm′
Pml P

m′
l′

(1− u2)
Pmσlσ

(
1

n2
2

dlmd
∗
l′m′ + n̄2clmc

∗
l′m′ψ′lψ

′
l′)

+ α2m
n̄

n2
Pml ∂uP

m′
l′ P

mσ
lσ

(dlmc
∗
l′m′ψlψ

′
l′ + clmd

∗
l′m′ψ′lψl′)

+ α2m′
n̄

n2
∂uP

m
l P

m′
l′ P

mσ
lσ

(d∗l′m′clmψl′ψ
′
l + c∗l′m′dlmψlψ

′
l′)
]

(78)

Observe line 4 and 5 in this equation, they share coefficients; simi-
larily line 6 and 7 share coefficients. These can be combined. Defining
some more coefficients a more tractable version is obtained:

σlσ ,mσ =
ε0n

2
2E

2
0

4
(n̄2 − 1)

∞∑
l=1

∞∑
l′=1

l∑
m=−l

l∑
m′=−l

δmσ ,(m−m′) (79)

×K
[
I× clmc∗l′m′ψlψl′

+ Mα2(n̄2clmc
∗
l′m′ψ′lψ

′
l′ +

1

n2
2

dlmd
∗
l′m′ψlψl′)

+ Nα2 n̄

n2
(dlmc

∗
l′m′ψlψ

′
l′ + clmd

∗
l′m′ψ′lψl′)

]

K =
(2lσ + 1)

2

(lσ −mσ)!

(lσ +mσ)!

√
(2l + 1)(l −m)!

4π(l +m)!

√
(2l′ + 1)(l′ −m′)!

4π(l′ +m′)!
(80)

I =

∫ 1

−1
dul(l + 1)l′(l′ + 1)Pml P

m′
l′ P

mσ
lσ

(81)

M =

∫ 1

−1
du
(
(1− u2)∂uP

m
l ∂uP

m′
l′ P

mσ
lσ

+mm′
Pml P

m′
l′

(1− u2)
Pmσlσ

)
N =

∫ 1

−1
du
(
mPml ∂uP

m′
l′ P

mσ
lσ

+m′∂uP
m
l P

m′
l′ P

mσ
lσ

)
The unwieldy equation (70) is thus cut into smaller portions, that

can be dealt with. The coefficients in equations (80) and (81) are inde-
pendent on the parameters of the system, as long as the assumptions
hold: as per the lack of system dependent parameters n, α, c, d. These
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constitute the main computational challenge, and can luckily be reused
for different droplet systems.

Notice that this equation holds as long as the fields are the same
for the duration of the pulse. The rise and fall of the intensity is dealt
with in the fluid mechanics. This means that equation (79) holds with a
different pulse behaviour, for example the rise and fall times described
by Brevik and Kluge [13].

This holds no matter the symmetry of the incoming beam(s). A
symmetry is most helpful for the numerical work, as well as expected.
It will typically manifest itself as disappearing terms of c, d for certain
m,m′.

Applying the fluid mechanical treatment, one obtains that

hl,m(∞) =
a2

γ

1

l2 + l − 2

ε0n
2
2E

2
0

4
(n̄2 − 1)

∑
... (82)

where the contents of the sums are ignored.

2.4.3 Computational complexity

The bulk of the numerical work are the coefficients in equation (81).
These can, handily, be calculated once and reused for different droplet
systems. The condition for a good approximation is that the values
of l, l′, lσ all be truncated at a maximum value of maxL ≈ α. Thus
the numerical load is increased with larger droplets, until the limit for
geometrical optics is found.

The sums in (79) has a total number of terms in l:

T (α) ≈ ll′lσ = O(α3) (83)

where the values of m is not yet taken into account.
If the values of m were allowed to be chosen freely, they would

multiply the number of terms with another α3. This is not the case,
however, as the integral over ϕ is non-zero over only certain values.
Consider the case where l, l′ have the same value, say 3, and mσ is 0.
Since the condition is that

m−m′ = mσ =⇒ m = m′ (84)

we are simply limited to the 2l+1 combinations of equalm,m′. Unequal
l, l′, e.g. 2, 3, will naturally have no extra way of combining that a
corresponding equal pair, e.g. 3, 3 has. Thus the number of terms has
to be l + l′ + 1 or less. With big O-notation, this gives an additional
O(maxL) terms per set of values for l. The total number of terms
increases to

T (α) = O(α3) ∗ O(α) = O(α4) (85)

albeit with a smaller constant factor.
The polynomial behaviour of the total number of terms are found.

Each term will require specific values of the integrals found in equation
(81). These are, however, not linear in l, as the Legendre polynomials
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grow larger with l. Consider their definition

Pml = (1− x2)
m
2
d(l+m)

dx(l+m)
(1− x2)l (86)

= (1− x2)
m
2
d(l+m)

dx(l+m)

[
x2(l−0) + x2(l−1)...+ x2(l−l)]

where the constants have been ignored, for clarity. This is a polynomial
with roughly l/2 terms, as one half is removed by the differentiation.
With a non-zero m, some more terms become zero by the differentia-
tion, but the expression is multiplication of a new polynomial. All in
all we end up with a number of terms linear in l.

With the three Legendre polynomials in the integrands in (81), they
form a polynomial with a number of terms of order O = α3. These
need to be calculated for all the different combinations found earlier,
ending with a polynomial run time of

T (α) = O(α7) (87)

which can be reused for different systems. If the beam profile has
symmetries, so that A,B are non-zero only for specific m, it is reduced
to

T (α) = O(α6) (88)

in most specific cases. Note that the largest saving in time comes by
recognizing that mσ = m−m′, reducing the run time by two orders in
α.

The run time quickly becomes forbidding with higher α. The dif-
ferent terms are not independent upon each other. This indicates that
this system could be parallelized quite effectively. Once the coefficients
in (81) are calculated, the results for different systems could be found,
with a significant lower run time.

2.5 Different cases for the incoming fields

2.5.1 Single plane wave, or Gaussian beam, with circular
polarization.

This is the case described in figure 3, investigated in a recent article
by Ellingsen [14]. The Gaussian beam is typically used to describe a
”perfect” laser beam, and can thus be a practical approximation of the
incoming beam. Taking the limit where the beam waste approaches
infinity, plane wave case is handily obtained.

The electromagnetic fields of the Gaussian wave have no simple,
closed form expression, i.e. we describe them by a sum with an infinite
number of terms. The expansion parameter used here is

s =
1

kw0
=

1

κ
(89)

where k is the wave number. These can be described to many orders
of s, and give a good approximation for as long as s is small. The
expressions used are the ones given by Davis [26], with the formalism
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of Barton et.al. [24] as used by Ellingsen [14]. These are all equivalent,
bar the details of nomenclature. To leading order in s

Eix = E0ψ
∗
0e
ikz, Eiy = iEix Eiz =

2Q∗

kw2
0

(x+ iy) (90)

with

ψ0 = iQe−iQ(x2+y2)/w2
, Q =

1

2i/kw2
(91)

for the usual Cartesian coordinates (x, y, z). More detail on the choice
of expansion parameter can be found in ref [23]. The magnetic field
can be expressed as

Hi = − in2

µ0c
Ei (92)

as described earlier, which simplify the expressions for the spherical
harmonic expansion parameters. Correspondingly, the further treat-
ment will focus on the electrical field.

Assuming a small expansion parameter s restricts the theory to
regions where

κ� 0 (93)

or

κ2 � α =⇒ λ0

w0
� 2πn2

w0

a
(94)

so that the approximation of the beam holds over the droplet [14]. The
important parameters for the applicability are thus wavelength, radius
and beam waist. Take the case with an a = 2µm droplet, illuminated
by a beam with λ = 1064nm this becomes

w0 � 0.5µm (95)

while definitely being a significant portion of the radius, is still small
enough to be of use.

Consider the radial electric field in spherical coordinates

Eir = Eix sin θeiϕ + cos θEiz (96)

needed for the expansion of the fields. Working to leading order in s,
using the series expansion of the exponential, we get [14]

Eir
E0

=
κ4 sin θ

(κ2 + 2ia cos θ)2
exp

[
iακ2 cos θ − α2(1 + cos2 θ)

κ2 + 2ia cos θ

]
eiϕ (97)

for the electric field. This is inserted into equation (61), to get the
expansion parameters. The integral over ϕ can easily be done∫ 2π

0
eiϕ(1−m)dϕ = 2πδm,1 (98)

where δ is the Kroenecker delta. The ϕ-part thus selects m = 1-
terms only. This is consistent with the plane wave expansions found in
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Jackson [20]. Following the nomenclature used by Ellingsen [14]

Alm =
1

l(l + 1)ψl

∫
Er
E0
Y ∗lm(Ω)dΩ (99)

=

√
(2l + 1)

√
π

[l(l + 1)]
3
2

Φl

Φl(α, κ) =

∫ 1

−1
du
κ4
√

(1− u2)P 1
l

(κ2 + 2iαu)2
exp[

iακ2u− α2(1 + u2)

κ2 + 2iαu
] (100)

with the usual substitution in u. This is then calculated numerically.
The plane wave case simplifies it enough for an analytical solution [14]

Φl =
2il+1

α2
l(l + 1)ψl(α) (101)

where the l-dependence is recognized as the same as the one described
in Jackson [20]. With the new dependence on m, equation (79) can be
rewritten as:

σlσ ,0 =
ε0n

2
2E

2
0

4
(n̄2 − 1)

∞∑
l=1

∞∑
l′=1

(102)

×K
[
I× clc∗l′ψlψl′

+ Mα2(n̄2clc
∗
l′ψ
′
lψ
′
l′ +

1

n2
2

dld
∗
l′ψlψl′)

+ Nα2 n̄

n2
(dlc

∗
l′ψlψ

′
l′ + cld

∗
l′ψ
′
lψl′)

]
K =

(2lσ + 1)

2

1

lσ(lσ + 1)

√
(2l + 1)

4πl(l + 1)

√
(2l′ + 1)

4πl′(l′ + 1)
(103)

I =

∫ 1

−1
dul(l + 1)l′(l′ + 1)P 1

l P
1
l′Plσ (104)

M =

∫ 1

−1
du
(
(1− u2)∂uP

1
l ∂uP

1
l′Plσ +

P 1
l P

1
l′

(1− u2)
Plσ
)

N =

∫ 1

−1
du
(
P 1
l ∂uP

1
l′Plσ + ∂uP

1
l P

1
l′Plσ

)

K =
(2lσ + 1)

2

1

lσ(lσ + 1)

√
(2l + 1)

4πl(l + 1)

√
(2l′ + 1)

4πl′(l′ + 1)
(105)

This could, in principle, be solved numerically to find the pertur-
bations, and yield the same results as found in [14]. Making sure this
will fit with the equations found there, will however be a good test to
the work done so far.

From here on the formalism of [14,27] will be applied; using m,n in
place of l, l′ in the incoming fields (as the m,m′ are fixed to one value).
The expansion σlσ ,mσ will then be σl, with mσ = 0. The refracted
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expansion coefficients c, d are changed as well, using the description in
equation (99). The old c, d can be written as

cold =

√
π(2l + 1)

[l(l + 1)]3
cnew (106)

dold = −in2

√
π(2l + 1)

[l(l + 1)]3
dnew

expressed by the new ones. These new definitions are inserted into the
equations for σ. Note that the extra −in2 for d is handled in equation
(102), with an extra negative sign if i∗ = −i. The l, l′-terms are the
same for all combinations of c, d, and are handled in K. This gives

K =
1

8

(2l + 1)(2m+ 1)(2n+ 1)[
m(m+ 1)n(n+ 1)

]2 (107)

which certainly looks neater. The constant 1/8-part is taken into equa-
tion (102), while the rest is applied to equation (104). The integrand
in the N-terms are rewritten with the chain rule, for easier numerical
work. After this step, the same result as in [14] are obtained:

σl =
ε0n

2
2E

2
0(n̄2 − 1)
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∞∑
m=1

∞∑
n=1

cmcn
∗ψmψnIlmn (108)

+ α2[cmc
∗
nψ
′
mψ
′
n + dmd

∗
nψmψn]Mlmn

+ α2[cmd
∗
nψ
′
mψn − dmc∗nψmψ′n]Nlmn

Ilmn =
(2l + 1)(2m+ 1)(2n+ 1)

[m(m+ 1)n(n+ 1)]

∫ 1

−1
duP 0

l P
1
mP

1
n (109)

Mlmn =
(2l + 1)(2m+ 1)(2n+ 1)

[m(m+ 1)n(n+ 1)]2

×
∫ 1

−1
duP 0

l [(1− u2)P 1′
mP

1′
n +

P 1
mP

1
n

1− u2
]

Nlmn =
(2l + 1)(2m+ 1)(2n+ 1)

[m(m+ 1)n(n+ 1)]2

∫ 1

−1
duP 0′

l P
1
mP

1
n

Values of I,M,N for l up to 50 were obtained from Ellingsen, along
with his corresponding scripts in Mathematica. These were used in
the early numerical work, and were a great help for writing similar
programs for the other case.

2.5.2 Plane waves from opposite sides of the droplet.

Take the case of an incoming plane wave with electric field

Eleft
x = E0e

ikz, Eleft
y = iEleft

x (110)

that propagates along the z-axis (from the left). Imagine that this
beam has been split, and an identical beam is sent from the opposite
side, propagating along -z. This flips the sign of the wave vector, as the
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beam travels in the opposite direction. In order to conserve helicity, one
also needs to flip the sign in either Ex or Ey. This gives an incoming
wave from the right

Eright
x = E0e

−ikz, Eright
y = −iEright

x (111)

with the same polarization as the left one. The same result can be found
by writing out the incoming beam as a vector, and doing a rotation
around the x-axis. The optical cables transporting the beams may not
be exactly the same number of wavelengths long. In that case a phase
difference is introduced so that

Eright = Erighteiη, Eleft = Elefteiη (112)

for an angle η. The total incoming electric field becomes the sum of the
fields coming from the left and right side. The total incoming radial
field is then found

Eir = E0 sin(θ)(eiκ cos(θ)eiϕ + e−iκ cos(θ)e−iϕ) (113)

using equation (96) and that kz = kr cos(θ) = α cos(θ) at the droplet
boundary.

This field is inserted into the expression for the expansion parameter
A:

Alm =
1

l(l + 1)ψl(α)

∫
Eir
E0
Y ∗lm(Ω)dΩ (114)

=
1

l(l + 1)ψl

√
(2l + 1)

4π

(l −m)!

(l +m)!

×
∫ 2π

0
dϕ

∫ 1

−1
du
√

1− u2Pml (u)e−imϕ(eiκueiϕ + e−iκue−iϕ)

where the usual parameter u = cos(θ) is used. The ϕ is easily solved

Alm =
1

l(l + 1)ψl

√
π(2l + 1)

(l −m)!

(l +m)!
(115)

×
∫ 1

−1
du
√

1− u2Pml (u)(eiκuδm,1 + e−iκuδm,−1)

where the ϕ-integral has selected values for m. This is the integral
used in the numerical calculations. Certain properties of the Legendre
polynomials [20]

P−ml = (−1)m
(l −m)!

(l +m)!
Pml , P

m
l (−u) = (−1)l+mPml (u) (116)

can be used to massage the case for m = −1, and better display the
result. This simplifies the coefficients to:

Alm = Al(δm,1 + (−1)l+1δm,−1) (117)

Al =
1

l(l + 1)ψl

√
π(2l + 1)

(l −m)!

(l +m)!

∫ 1

−1
eiκuP 1

l

√
1− u2du
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We thus have a field with non-zero coefficients for m = ±1. In the
surface force, equation (75), the m-dependence is given as

δmσ ,(m′−m) (118)

where m′m in this case is limited to ±1. This limits the values of mσ

to 0,±2. This leads to different values for the coefficients in equation
(81), as values for mσ ± 2 needs to be calculated.

Since the incoming beams are plane waves, the intensity is described
by equation (66). The droplet is radiated by two beams, doubling the
effective power, so that

n2E
2
0ε0 =

I0

c
=

Peff

2πa2c
(119)

which is readily used in the expression for the force density. Inserting
into equation (79) gives that

σlσ ,mσ =
ε0n

2
2E

2
0

4
(n̄2 − 1)... =

Peff n2

8πa2c
(n̄2 − 1)

∑
... (120)

so that the surface perturbations become

hl,m(∞) = Peff
1

γ(l2 + l − 2)

n2

8πc
(n̄2 − 1)

∑
... (121)
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3 Numerical calculations

Scripts were written to calculate the droplet shapes of the different
cases. These shapes are the starting points for perturbations that ap-
pear when the beam is turned off. The Mathematica code can be found
in appendices A through C.

Following the approach used in [14], two cases are investigated. A
droplet with air and water, and an oil emulsion with very low surface
tension, such as the one used in the optical sculpting work of Ward
et.al. [4]. The relevant system dependent variables are the refractive
indices and the surface tension, given in Table 1.

Table 1: Physical parameters for the different cases.

Case n1 n2 γ N/m
Water and air 1.33 1 73 · 10−3

Oil emulsion 1.41 1.33 50 · 10−6

3.1 Plane wave and Gaussian wave from one
side.

Using these variables gives the droplets given in figure 4 for the static
case. They display the same deformations as the similar figures in
[14]. In the transient case, these shapes can be imagined as an initial
displacement in the equation for h.

Notice the difference in effective power needed to deform the droplets
in the different cases. The large difference in surface tension between
the oil emulsion and the water results in a difference in effective power
of roughly the same order.

The water-air droplet has higher optical contrast than the oil emul-
sion. This is clearly seen in the deformations, in the way the tip of the
displacement is sharp, also for the plane wave case. The droplet is so
good at bending the light that the plane wave case has a more distinct
deformation with the same effective power! The lower optical contrast
in the oil emulsion is clearly shown in the difference in shape between
the droplets, with the plane wave droplet approaches more of a square
in shape.
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Figure 4: Droplet deformation for the static case, for droplets as given in table (1).
The narrow beam has a beam waist of ω0 = 1, 5µm. The effective powers are chosen
to provide examples with deformations, and are 7 mW in a), 28 mW in c) and 70W in
both b) and d).

3.2 Plane wave beams from both sides.

Writing the code for the numerical treatment of this case turned out
to be more involved than anticipated. The code still have some issues.
Changing the parameters to the water in air case, does for example
make the required input powers unreasonably large. The convergence
of the series also seem to be problematic for some input parameters,
giving strange results between different maximum values of l.

There might a normal programming bug, or a number of them, in
the code. Another possibility is the stability of the numerical calcula-
tions. There are a number of integrals that should return zero. These
contains integrands of highly oscillatory functions. Rewriting the pro-
gram once again, while going over the ”NIntegrate” function in more
detail would be a logical next step.

The oil emulsion case does give some plausible results. The shape
is consistently obtained, no matter the other problems when working
with the code. Figure 6 shows the droplet shape obtained. The droplet
is less symmetric than earlier, being rotationally symmetric in θ, but
not in ϕ. This difference can clearly be seen in Figure 5.

The displacements are of the same magnitude as those found for the
one sided case in Figure 4. The shape is more pointed. Considering
that the beams on both sides of the droplet have been focused by the
droplet ”lens”, this seems reasonable. The general shape also fits the
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one found in the optical sculpting work by Ward et.al., see Figure 1.

Figure 5: Droplet deformation for the oil emulsion case, in a 3 dimensional plot. The
effective power is of 28mW , as with the similar plots in Figure 4.

Figure 6: Droplet deformation for the oil emulsion case. The same shape as in Figure
6, with set values of ϕ.
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4 Discussion and conclusion

A framework for the behaviour of micrometer sized droplets under in-
fluence of a laser beam was presented. The theory presented is not
dependent upon any particular beam symmetry. In particular, equa-
tion (79) is a generalized version of similar expressions found in earlier
work.

The generalization of the theory proved more difficult to do than
anticipated. The calculations are quite involved, and the articles on
the subject concise. Expanding to incoming beams from both sides, in
particular, proved it necessary to change a surprising amount of theory.

The special case of a single Gaussian, or plane wave, beam was
investigated, the equations simplified to account for symmetries in this
case. A mathematica script was written to calculate the deformations
of a 2µm droplet, for the Gaussian and plane wave case. The results
confirm that the theory works for these test cases.

Similarily, a script was written to describe the case with plane
waves from opposite sides of the droplet. Getting the numerics to
work smoothly was difficult, returning problematic values. Much time
was spent hunting for bugs, and rewriting the script from scratch. The
script may still contain regular programming bugs, or there may be a
problem with the accuracy of the numerics used.

Reasonable shapes of the droplet was found, for the case of a plane
wave beams from either side on an oil emulsion system. These shapes fit
well with results for similar systems. Interestingly, the droplet showed
markedly different symmetries than with the single beam case.
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ClearAll@"Global`*"D

H*Script for one sided PW and Gaussian cases*L

H*Natural constants*L
Ε0 = 8.854187817*^-12;

c = 299 792 458;

H*Physical parameters*L
a = 2*^-6; H*radius @mD*L
Λ = 1.064*^-6; H*wavelength @mD*L
w0 = 1.5*^-6; H*Laser waist: 450nm for 1064, 10 micron for 385*L

H* Parameters Oil emulsion*L
Γ = 5*^-7; H*surface tension, water-oil @N�mD*L
n2 = 1.33; H*Surrounding medium is air*L
n12 = 1.41 � n2; H*Relative refractive index vacuum�water*L

H*Parameters water and air

Γ=.073;H*surface tension, water-oil @N�mD*L
n2=1.33;H*Surrounding medium is air*L
n12=n2;H*Relative refractive index vacuum�water*L
*L
H*If setting the power directly. I use the effective power*L
P = 5*^-3; H*Laser power*L
I0 = 2 P � HPi * w0^2L; H*Central intensity, Gaussian beam*L;

H*Total power over the droplet*L
Peff = 0.007;

H*Parameters not used in the static case*L
Ν = 1.01*^-6; H*viscosity @m^2�sD*L
Ρ = 997; H*mass density difference @kg�m^3D*L

H*Value of Α and Κ*L
Α = N@2 Pi a n2 � ΛD;

Κ = N@2 Pi w0 n2 � ΛD;

15.707963267948962`;

11.780972450961723`;

I0;

1.4147106052612917`*^9; 1

a Γ � H100 Ν^2L;

H*Functions and allready computed coefficients*L

H*Riccati-Bessel functions*L
psi@l_, x_D := x * SphericalBesselJ@l, xD;

psip@l_, x_D := H1 + lL SphericalBesselJ@l, xD - x SphericalBesselJ@1 + l, xD;
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xi@l_, x_D := x * SphericalHankelH1@l, xD;

xip@l_, x_D := H1 + lL SphericalHankelH1@l, xD - x SphericalHankelH1@1 + l, xD;

H*Derivative of Legendre polynomial*L

dL@l_, x_D :=

H-1 - lL x LegendreP@l, 1, xD + l LegendreP@1 + l, 1, xD
-1 + x2

;

H*Loading coefficient matrices for Bessel

beams. Coefficients provided by Ellingsen.*L
TbDimI = 70;

TbDimM = 50;

TbDimN = 50;

Ilmn = Import@
"C:\\Users\\Petter\\Desktop\\LasereBobler\\Itb70.dat"D;

Mlmn = Import@
"C:\\Users\\Petter\\Desktop\\LasereBobler\\Mtb50.dat"D;

Nlmn = Import@
"C:\\Users\\Petter\\Desktop\\LasereBobler\\Ntb50.dat"D;

H*3D versions of coeffs*L
I3@l_, m_, n_D := Ilmn@@l, TbDimI Hm - 1L + nDD;

M3@l_, m_, n_D := Mlmn@@l, TbDimM Hm - 1L + nDD;

N3@l_, m_, n_D := Nlmn@@l, TbDimN Hm - 1L + nDD;

H*Gaussian coefficient integral that enters into A and B*L
FIntegrand@l_, Α_, Κ_, u_D := Sqrt@1 - u^2D LegendreP@l, 1, uD

HΚ^2 � HΚ^2 + 2 I Α uLL^2 Exp@H-Α^2 Hu^2 + 1L + I Κ^2 Α uL � HΚ^2 + 2 I Α uLD;

F@l_, Α_, Κ_D := NIntegrate@FIntegrand@l, Α, Κ, uD, 8u, -1, 1<, AccuracyGoal ® 5D;

H*Limit kappa^2>>alpha @plane wave limitD *L
Flimit@l_, Α_D := 2 I^Hl + 1L l Hl + 1L psi@l, ΑD � Α^2;

1

H* Using the variable beamType to determine which case is being considered.

beamType = 0 => plane wave case.

beamType = 1 => gaussian.

*L

H*Calculating the h-coefficients at time = infinity*L
hCoeffsInfty@Α_, Κ_, MaxL_, Θlist_, beamType_D :=

Module@8pn, ppn, p, x, xp, cc, dd, prefac, term, h, sum, Iterm, Mterm, Nterm<,

prefac = n2 * I0 * Hn12^2 - 1L � H32 cL;

H*Constants are needed in table form*L
Print@"Making tables of c and d coefficients"D;

pn = Table@psi@k, n12 ΑD, 8k, 1, MaxL<D;

ppn = Table@psip@k, n12 ΑD, 8k, 1, MaxL<D;

x = Table@xi@k, ΑD, 8k, 1, MaxL<D;

xp = Table@xip@k, ΑD, 8k, 1, MaxL<D;

p = Table@psi@k, ΑD, 8k, 1, MaxL<D;
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Which@beamType == 0,

PhiTable = Table@Flimit@l, ΑD, 8l, 1, MaxL<D;

H*I0 = Peff * functionHw,aL*L
func = Pi * a ^2;

I0 = Peff � func;

prefac = n2 * I0 * Hn12^2 - 1L � H32 cL;

,

beamType == 1,

Monitor@
PhiTable = Table@F@l, Α, ΚD, 8l, 1, MaxL<D;

, Floor@l * 100 � MaxL + .1D "%"D;

H*I0 = Peff * functionHw,aL*L
func = 0.5 * Pi * w0^2 * H1 - E^H-2 Ha � w0L^2LL;

I0 = Peff � func;

prefac = n2 * I0 * Hn12^2 - 1L � H32 cL;

D;

Print@prefacD;

cc = Table@
PhiTable@@lDD � Hn12 pn@@lDD xp@@lDD - ppn@@lDD x@@lDDL � p@@lDD, 8l, 1, MaxL<D;

dd = Table@ PhiTable@@lDD � H pn@@lDD xp@@lDD - n12 ppn@@lDD x@@lDDL � p@@lDD,

8l, 1, MaxL<D;

H*CALCULATING RADIUS COEFFICIENTS*L
Print@"Calculating radius perturbations"D;

H*Create containers*L
Σ = Table@0, 8l, 1, MaxL<D; h = Table@0, 8l, 1, MaxL<D;

Iterm = Table@0, 8l, 1, MaxL<D;

Mterm = Table@0, 8l, 1, MaxL<D;

Nterm = Table@0, 8l, 1, MaxL<D;

Monitor@
Do@

Do@
Do@

Iterm@@lDD = Iterm@@lDD + cc@@mDD cc@@nDD pn@@mDD pn@@nDD I3@l, m, nD;

Mterm@@lDD = Mterm@@lDD + Α^2 Hcc@@mDD cc@@nDD ppn@@mDD ppn@@nDD +

dd@@mDD dd@@nDD pn@@mDD pn@@nDDL M3@l, m, nD;

Nterm@@lDD = Nterm@@lDD + I Α^2 Hcc@@mDD dd@@nDD ppn@@mDD pn@@nDD -

dd@@mDD cc@@nDD pn@@mDD ppn@@nDDL N3@l, m, nD;

, 8m, 1, MaxL<D;

, 8n, 1, MaxL<D;

Σ@@lDD = Iterm@@lDD + Mterm@@lDD + Nterm@@lDD;

h@@lDD = prefac * Σ@@lDD * a^2 � Γ � Hl^2 + l - 2L;

, 8l, 2, MaxL<D;

, Floor@l * 100 � MaxL + .1D "%"D;

Print@ΣD;

Print@hD;
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Re@N@hDD
D;

H*Finding a radius at time=infinity, using the h-calculator.*L
Radius@Α_, Κ_, MaxL_, Θlist_, beamType_D := Module@ 8h, sum<,

H*MAKING LIST OF h-Infinity COEFFICIENTS*L
h = hCoeffsInfty@Α, Κ, MaxL, Θlist, beamTypeD;

SigmaTb = h � a; H*for external inspection*L

H*Summing up the radius*L
Print@"Summing up series"D;

Monitor@
sum = 0;

Do@sum = sum + h@@lDD LegendreP@l, Cos@ΘlistDD;, 8l, 2, MaxL<D
, Floor@l * 100 � MaxL + .1D "%"D;

Print@"Done!"D;

Re@sumD
D;

H*Calculating the time-dependence of the radius. WIP*L
TimeFunction@t_, t0_, Μ1_, Μ2_, Ρ1_, Ρ2_, Γ_, a_, MaxL_D :=

Module@8sum, gammal, omsq, mu<,

D;

H*Doubles a list by adding mirrored list -- for plotting*L
DoubleList@rList_D := Module@8target, len, dbllen<,

len = Length@rListD;

dbllen = 2 len - 1;

target = Table@0, 8i, 1, dbllen<D;

Do@
target@@iDD = rList@@iDD;

target@@len + iDD = rList@@len - iDD;

, 8i, 1, len - 1<D;

target@@lenDD = rList@@lenDD;

target

D;

H*List of theta values*L
thlength = 100;

Θlist = Table@Pi j � thlength, 8j, 0, thlength<D;

Θplotlist = Table@Pi j � thlength, 8j, 0, 2 thlength<D;

H*Lists of radius with l up to 15,25 and 40.*L
rList15 = Radius@Α, Κ, 10, Θlist, 1D; �� Timing

rList25 = Radius@Α, Κ, 25, Θlist, 1D; �� Timing

rList40 = Radius@Α, Κ, 40, Θlist, 1D; �� Timing

Export@"C:\\Users\\Petter\\Desktop\\LasereBobler\\Oil1.5.dat", rList40, "Table"D;
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ListPolarPlot@8Table@8Θplotlist@@iDD, 1<, 8i, 1, 2 thlength + 1<D,

Table@8Θplotlist@@iDD, 1 + DoubleList@rList25D@@iDD � a<, 8i, 1, 2 thlength + 1<D<,

Joined ® True, PlotRange ® Automatic, PlotStyle ® 88Red, Dashed<, Black<D
ListPolarPlot@

Table@8Θplotlist@@iDD, DoubleList@HrList40 - rList25L � HrList40LD@@iDD<,

8i, 1, 2 thlength + 1<D, Joined ® True, PlotRange ® AutomaticD
ListPolarPlot@

8Table@8Θplotlist@@iDD, DoubleList@rList15D@@iDD<, 8i, 1, 2 thlength + 1<D,

Table@8Θplotlist@@iDD, DoubleList@rList25D@@iDD<, 8i, 1, 2 thlength + 1<D,

Table@8Θplotlist@@iDD, DoubleList@rList40D@@iDD<, 8i, 1, 2 thlength + 1<DH*,

Table@8Θplotlist@@iDD,DoubleList@rList50D@@iDD<,8i,1, 2thlength+1<D*L<,

Joined ® True, PlotRange ® Automatic,

PlotStyle ® 88Red, Dashed<, 8Black, Dashed<, Black<D
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H*Clearing the memory of old calculations and constants*L
ClearAll@"Global`*"D

H*Script for the PW two sided case. l1,l2,l3 are l,l',lsigma in the text.*L

n1 = 1.41; n2 = 1.33; H*Oil emulsion parameters*L
n12 = n1 � n2; Γ = 5*^-7;

c = 299 792 458; H*speed of light @m�sD*L
Λ = 1.064*^-6; H*wavelength @mD*L

a = 2*^-6;H*radius @mD*L
Α = N@2 Pi a n2 � ΛD;

Peff = 0.028;

maxL = 17;

coeffs = Import@"PwtsCoeffs2-17.wdx"D;

coeffsL = coeffs@@1DD;

coeffI = coeffs@@2DD;

coeffM = coeffs@@3DD;

coeffN = coeffs@@4DD;

If@maxL > coeffsL,

Print@"Not enough coefficients computed! Making due with a maxL of: ",

coeffsLD; maxL = coeffsL ;D;

Print@"Alpha: ", Α, " Max L: ", maxLD;

H*Tables for the spherical functions*L
psi@l_, x_D := x * SphericalBesselJ@l, xD;

psip@l_, x_D := H1 + lL SphericalBesselJ@l, xD - x SphericalBesselJ@1 + l, xD;

xi@l_, x_D := x * SphericalHankelH1@l, xD;

xip@l_, x_D := H1 + lL SphericalHankelH1@l, xD - x SphericalHankelH1@1 + l, xD;

pn = Table@psi@k, n12 ΑD, 8k, 1, maxL<D;

ppn = Table@psip@k, n12 ΑD, 8k, 1, maxL<D;

x = Table@xi@k, ΑD, 8k, 1, maxL<D;

xp = Table@xip@k, ΑD, 8k, 1, maxL<D;

p = Table@psi@k, ΑD, 8k, 1, maxL<D;

H*Calculating the A coefficients*L
aL = Table@0, 8l, 1, maxL<D;

DoB
integrandAl@u_D := Exp@ä * Α * uD * LegendreP@l, 1, uD * Sqrt@H1 - u^2LD;

aL@@lDD =
1

l Hl + 1L * p@@lDD
SqrtBH2 l + 1L *

Pi

l Hl + 1L
F *

NIntegrate@integrandAl@uD, 8u, -1, 1<, AccuracyGoal ® 5D;

, F
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, 8l, 1, maxL<F

H*Core-function that runs to calculate sigma for all l1,l2.*L
sigmaForL@l1_, l2_, l3_D := ModuleB8sigma, sigmaLM<,

utListe = 80, 0, 0<;

a1 = aL@@l1DD;

b1 = -I * n2 * a1;

a2 = aL@@l2DD;

b2 = -I * n2 * a2;

H* c,d as per Barton*L
c1s = I * a1 � Hn12 * n12 * pn@@l1DD * xp@@l1DD - n12 * ppn@@l1DD * x@@l1DDL;

d1s = I * b1 � Hpn@@l1DD * xp@@l1DD - n12 * ppn@@l1DD * x@@l1DDL;

H*Remember that the second field is conjugated*L
c2s =

N@Conjugate @I * a2 � Hn12 * n12 * pn@@l2DD * xp@@l2DD - n12 * ppn@@l2DD * x@@l2DDLDD;

d2s = Conjugate @I * b2 � Hpn@@l2DD * xp@@l2DD - n12 * ppn@@l2DD * x@@l2DDLD;

place = Hl1 - 1L * coeffsL * coeffsL + Hl2 - 1L * coeffsL + l3;

DoB
Switch@i, H*Same as in the parameter generating code*L

1, m1 = 1; m2 = 1; utPlace = 2;,

2, m1 = 1; m2 = -1; utPlace = 3;,

3, m1 = -1; m2 = 1; utPlace = 1;,

4, m1 = -1; m2 = -1; utPlace = 2;D;

H*Handling the sign flips in A. Quick and Dirty*L
If@Mod@l1, 2D � 0 && Hm1 � -1L, c1 = -c1s; d1 = -d1s;, c1 = c1s; d1 = d1s;D;

If@Mod@l2, 2D � 0 && Hm2 � -1L, c2 = -c2s; d2 = -d2s;, c2 = c2s; d2 = d2s;D;

factorToUtliste =

coeffI@@placeDD@@iDD l1 Hl1 + 1L l2 Hl2 + 1L c1 * c2 * pn@@l1DD * pn@@l2DD +

coeffM@@placeDD@@iDD Α * Α n12 * n12 * c1 * c2 * ppn@@l1DD * ppn@@l2DD +

1

n2 * n2

d1 * d2 * pn@@l1DD * pn@@l2DD +

coeffN@@placeDD@@iDD Α * Α Hd1 * c2 * pn@@l1DD ppn@@l2DD +

c1 * d2 * ppn@@l1DD * pn@@l2DDL ;

utListe@@utPlaceDD = utListe@@utPlaceDD + factorToUtliste;

, 8i, 1, 4<F;

F;
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Return@utListeD
F;

sigmaFinal = Table@80, 0, 0<, 8l, 1, maxL<D;

Do@
Do@

Do@
sigmaSpam = sigmaForL@l1, l2, l3D;

sigmaFinal@@l3DD = sigmaSpam;

, 8l3, 2, maxL<D
, 8l2, 2, maxL<D

, 8l1, 2, maxL<D

r @the_, phi_D = 1; H*r=r�a*L

DoB
spam = sigmaFinal@@lDD;

prefacR =
Peff

Γ Hl * l + l - 2L a

n2

8 Pi c

Hn12 n12 - 1L;

H*Not the extra a to normalize a = r�a*L

toAdd@the_, phi_D := spam@@1DD * Exp@-I * 2 * phiD * LegendreP@l, -2, Cos@theDD +

spam@@2DD * LegendreP@l, 0, Cos@theDD +

spam@@3DD * Exp@I * 2 * phiD * LegendreP@l, 2, Cos@theDD;

r@the_, phi_D = r@the, phiD + prefacR * Re@toAdd@the, phiD D;

, 8l, 2, Length@sigmaFinalD<F;

H*Plotting. The clutter is simply generating the specific looks of the plots.*L
SphericalPlot3D@Re@r@the, phiDD, 8the, 0, Pi<,

8phi, 0, 2 Pi<, AxesLabel ® 8X, Y, Z<, PlotStyle ® 8Red<D
GraphicsGridB

::PolarPlot@81, Re@r@Θ, 0DD<, 8Θ, 0, 2 Pi<, PlotStyle ® 88Red, Dashed<, Black<,

AxesLabel ® 8"z�a", "x�a"<, PlotLabel ® "aL Seen from j=0"D,

PolarPlotB81, Re@r@Θ, Pi � 2DD<, 8Θ, 0, 2 Pi<, PlotStyle ® 88Red, Dashed<, Black<,

AxesLabel ® 8"z�a", "y�a"<, PlotLabel ® "bL Seen from j=
Π

2

"F>>F

Alpha: 15.708 Max L: 17
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In[1499]:= Export@"OilEmulsion.png", %1498, "PNG"D
Out[1499]= OilEmulsion.png
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ClearAll@"Global`*"D
H*Calculating the coefficients needed

for the new cases considered. m1,m2 = +-1.*L

nextMaxL@Coeffs_D :=

ModuleB8<, H*Calculates the coefficients for maxL+1 from coeffs for maxL*L

H*Defining variables and paramters*L
Lold = Coeffs@@1DD;

L = Lold + 1;

termsNew = L * L * L;

old1 = Coeffs@@2DD;

old2 = Coeffs@@3DD;

old3 = Coeffs@@4DD;

new1 = Table@80, 0, 0, 0<, 8i, 1, termsNew<D;

new2 = Table@80, 0, 0, 0<, 8i, 1, termsNew<D;

new3 = Table@80, 0, 0, 0<, 8i, 1, termsNew<D;

DoB

DoB

DoB

H*1D list ® 3d list*L
place = Hl1 - 1L * L * L + Hl2 - 1L * L + l3;

IfBHl1 £ LoldL && Hl2 £ LoldL && Hl3 £ LoldL,

placeOld = Hl1 - 1L * Lold * Lold + Hl2 - 1L * Lold + l3;

new1@@placeDD = old1@@placeOldDD;

new2@@placeDD = old2@@placeOldDD;

new3@@placeDD = old3@@placeOldDD;

,

integrand1@u_, m1_, m2_, m3_D :=

LegendreP@l1, m1, uD LegendreP@l2, m2, uD LegendreP@l3, m3, uD;

integrand2@u_, m1_, m2_, m3_D := H1 - u^2L *

D@LegendreP@l1, m1, uD LegendreP@l2, m2, uD, uD LegendreP@l3, m3, uD +

m1 * m2

H1 - u^2L
* LegendreP@l1, m1, uD LegendreP@l2, m2, uD

LegendreP@l3, m3, uD;

integrand3@u_, m1_, m2_, m3_D := m1 * LegendreP@l1, m1, uD
D@LegendreP@l2, m2, uD, uD LegendreP@l3, m3, uD +

m2 * D@LegendreP@l1, m1, uD, uD LegendreP@l2, m2, uD LegendreP@l3, m3, uD;

DoB
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DoB

Switch@i,

1, m1 = 1; m2 = 1;,

2, m1 = 1; m2 = -1;,

3, m1 = -1; m2 = 1;,

4, m1 = -1; m2 = -1;D;

m3 = m1 - m2;

IfBAbs@l3D ³ Abs@m3D,

prefacK = SqrtBH2 l1 + 1L
HHl1 - m1L!L

4 Pi HHl1 + m1L!L
F

SqrtBH2 l2 + 1L
HHl2 - m2L!L

4 Pi HHl2 - m2L!L
F H2 l3 + 1L

HHl3 - m3L!L
2 HHl3 + m3L!L

;

new1@@placeDD@@iDD = prefacK *

NIntegrate@integrand1@u, m1, m2, m3D, 8u, -1 , 1<, AccuracyGoal ® 5D;

new2@@placeDD@@iDD = prefacK * NIntegrate@integrand2@u, m1, m2, m3D,

8u, -1 , 1<, AccuracyGoal ® 5D;

new3@@placeDD@@iDD = prefacK * NIntegrate@integrand3@u, m1, m2, m3D,

8u, -1 , 1<, AccuracyGoal ® 5D;

F

, 8i, 1, 4<F

F

, 8l3, 1, L<F;

, 8l2, 1, L<F;

, 8l1, 1, L<F;

finalCoeff = 8L, new1, new2, new3<;

Return@finalCoeffD;

F

A = Import@"PwtsCoeffs2-15.wdx"D;

B = Nest@nextMaxL, A, 1D;

Export@"PwtsCoeffs2-17.wdx", BD;

Beep@D;

H*A = Import@"PwtsCoeffs30.wdx"D;

Print@A@@1DDD;

B = nextMaxL@AD;

Beep@D;

Export@"PwtsCoeffs31.wdx",BD;*L
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Print@B@@1DDD;
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