
Phase Stability and Point Defects in 
InMnO3

Mari Reidulff

Chemical Engineering and Biotechnology

Supervisor: Sverre Magnus Selbach, IMTE

Department of Materials Science and Engineering

Submission date: December 2014

Norwegian University of Science and Technology



 



Preface

The studies in this master thesis have been carried out at the Norwegian University of Sci-

ence and Technology (NTNU), at the Department of Material Science and Engineering dur-

ing the fall of 2014. My main supervisor has been Assoc. Professor Sverre M. Selbach and

my co-advisor has been Ph.D. candidate Sandra H. Skjærvø. The present master thesis is a

continuation of my project work The effect of point defects on the polar and non-polar phases

of hexagonal InMnO3[1] carried out during the spring of 2014. The hypothesis and idea be-

hind the previous project and this master thesis are attributed to Assoc. Professor Sverre M.

Selbach. The author has performed all work. Since this is a continuation of my previous

project[1], parts of the theory have been improved and reused in this thesis.

Acknowledgement

I would like to give a special thank to my supervisor Sverre M. Selbach. His guidance, feed-

back and our discussions throughout the project have been of great importance for the final

result. Not to mention his dedication to the project and knowledge about everything. The

dream-team consisting of my co-supervisor Sandra H. Skjærvø, Gerhard Olsen and Didrik

Småbråten need a big thanks for always keeping their door open for solving computational

challenges and providing comments on my work. I want to express my gratitude to the par-

ticipants on the regular ferro- and DFT meetings for showing interest and giving feedback on

the project and its results. I also want to thank my family for always believing in me and sup-

porting me. In the end I want to thank Vegar Bergum for encouraging me and being who you

are.

Trondheim, 2014-12-15

Mari Reidulff

i





Abstract

During the last decade hexagonal manganites (h-RMNO3) have been a widely researched

topic. This is mainly due to their multiferroic property that makes them a potential mate-

rial for use in future electronics, data storage and sensors. The multiferroic property consists

of the combination of ferroelectricity and magnetic order. In general, hexagonal manganites

are assigned to the polar P63cm-space group and show ferroelectric behaviour at room tem-

perature. However, recent experimental and computational studies on InMnO3 have shown

deviating dielectric properties for this material. Both ferroelectric and paraelectric behaviour

have been detected, which have raised questions regarding which space group is the most sta-

ble for InMnO3. The two proposed space groups in literature are ferroelectric, polar, P63cm

and paraelectric, non-polar, P 3̄c1.

In this project the effect of point defects on the relative stability of P63cm and P 3̄c1 is in-

vestigated through a first-principles study using density functional theory. From previous

work it has been shown that interstitial and vacant oxygen decrease the energy difference be-

tween P 3̄c1 and P63cm, hence disfavour the polar structure. In this project the ground-state

energies for both space groups with In-vacancies are found, the phase transition between

non-polar P 3̄c1 and polar P63cm are investigated and the effect of point defects of the po-

larization of P63cm is studied. With In-vacancies present in InMnO3 under oxidizing (ox.)

conditions the non-polar P 3̄c1 phase has the lowest energy and is therefore the most sta-

ble. Stoichiometric InMnO3 is an insulator but has shown to turn metallic when In-vacancies

under ox. conditions are present. This was found for both the polar and non-polar phase. In-

O-vacancy pairs created in a reducing environment favoured the polar P63cm structure. Un-

der these conditions the non-polar P 3̄c1 phase turned metallic, while the polar P 3̄c1 stayed

insulating with some signs of shallow states in the band gap. The phase transition study re-

vealed the presence of an activation energy barrier between stoichiometric P 3̄c1 and P63cm.

This activation energy barrier increased with point defects of interstitial and vacant oxygen

present, decreased for In-O-vacancy pairs and disappeared for In-vacancies at ox. condi-

tion. The polarization of P63cm increased with point defects of vacant oxygen and decreased

substantially with In-vacancies present. The study has shown the great importance of point

defects for the stability of the two phases in InMnO3, and has revealed a possible transition

from insulator to metal with certain point defects present.
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Sammendrag

I løpet av det siste tiåret har heksagonale manganitter (h-RMnO3) vært et populært forskn-

ingsområde. Dette er hovedsakelig på grunn av deres multiferroiske egenskaper som gjør

dem til potensielle materialer for bruk i fremtidig elektronikk, datalagringsenheter og sen-

sorer. Den multiferroiske egenskapen består av en kombinasjon av ferroelektrisitet og fer-

romagnetisme. Heksagonale manganitter krystalliseres i den polare romgruppen P63cm og

er vanligvis ferroelektriske ved romtemperatur. Imidlertid har nyere eksperimentelle og teo-

retiske studier på InMnO3 vist avvikende dielektriske egenskaper for dette materialet. Både

ferro- og paraelektriske egenskaper har blitt detektert. Spørsmålet er nå hvilken romgruppe

som er den mest stabile for InMnO3. Litteraturen foreslår to ulike romgrupper; Polare P63cm

som gir ferroelektriske egenskaper og upolare P 3̄c1 som gir paraelektriske egenskaper.

I dette prosjektet er effekten av punktdefekter på den relative stabiliteten til P63cm og P 3̄c1

studert gjennom en ab initio-studie ved bruk av tetthetsfunksjonalteori. Fra tidligere arbeider

har det blitt vist at interstitielle oksygen og oksygenvakanser reduserer energiforskjellen mel-

lom P 3̄c1 og P63cm. I dette prosjektet er energien til grunntilstanden for begge romgruppene

med In-vakanser funnet, faseovergangen mellom upolar P 3̄c1 og polar P63cm undersøkt og

effekten av punktdefekter på polarisasjonen av P63cm studert. Med In-vakanser tilstede i

InMnO3 ved oksiderende (oks.) betingelser har den upolare P 3̄c1-fasen lavest energi og er

derfor den favoriserte fasen. Støkiometrisk InMnO3 er en isolator, men har vist seg å bli met-

allisk når In-vakanser i et oks. miljø er tilstede. Dette ble funnet for både den polare og upo-

lare fasen. In-O-vakanspar i et reduserende miljø favoriserte den polare P63cm fasen. Under

slike forhold ble den upolare P 3̄c1 fasen metallisk, mens den polar P63cm fortsatt var isol-

erende, men med tegn til tilstander i båndgapet. Studiet av faseovergangen viste at det finnes

en aktiveringsenergibarriere mellom støkiometrisk P 3̄c1 og P63cm. Denne energibarrieren

økte med punktdefekter av interstitielle oksygen og oksygenvakanser tilstede, avtok med In-

O-vakanspar og forsvant for In-vakanser ved oks. betingelser. Polarisasjonen av P63cm økte

med oksygenvakanser tilstede og ble vesentlig redusert i tilfelle med In-vakanser. Dette pros-

jektet har vist at punktdefekter har stor betydning for stabiliteten til de to fasene i InMnO3,

og har avdekket en mulig overgang fra isolator til metall med visse punktdefekter tilstede.
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Chapter 1

Introduction

Hexagonal manganites have drawn a lot of attention in the research community the last

decade. Particularly due to the fact that hexagonal manganites are both ferroelectric and

antiferromagnetic, meaning they are classified as multiferroics. The market experiences a

trend where technology developers try to minimize the size of their devices. This makes the

multiferroicity a much-desired property, since it gives the possibility for one component to

perform more than one task[2]. Examples of technological applications where the multifer-

roic property is desired are ferroelectric random access memory (FeRAM) and magnetic data

storage[2]. Hexagonal manganites are also promising candidates for use as chemical oxygen

storage for chemical looping combustion[3].

Multiferroic hexagonal manganites have demonstrated to not only be important for commer-

cial use. The improper ferroelectric phase transition from the low-symmetric phase P63cm to

the high-symmetric phase P6/mmc has proved to display an appropriate symmetry-breaking

characteristic for explaining the Kibble-Zurek scenario[4]. The Kibble-Zurek scenario de-

scribes the phase transitions taking place right after the Big Bang. By studying the para-

electric/ferroelectric phase transition in hexagonal manganites a better understanding of the

phase transitions that occurred during the creation of university can be obtained.

1.1 Indium manganite - why study this material?

As listed above hexagonal manganites have several interesting properties and areas of appli-

cation. This alone is a motivation for studying these materials further. One of the most stud-

ied hexagonal manganites is YMnO3. This material has showed to crystallize into the polar

space group P63cm at room temperature, and obtain ferroelectric properties[5, 6]. The same

is demonstrated for other rare-earth hexagonal manganites, e.g. ScMnO3 and LuMnO3[7].

Since InMnO3 is another member of the hexagonal manganite family the same ferroelectric

1



2 Chapter 1. Introduction

property would be expected.

InMnO3 is not studied in the same extent as YMnO3, and unlike YMnO3 the research done

is ambiguous. Already in 1995 Greedan et al.[8] observed unusual magnetic properties for

InMnO3. These were later supported by Belik et al.[9] which found no spontaneous polariza-

tion for InMnO3, meaning the material displayed paraelectric properties. Huang et al.[10]

prepared samples of InMnO3 by use of different synthesis routes. The different samples

showed varying properties, some were ferroelectric and some paraelectric. As the discussion

above indicates the properties of InMnO3 is not as crystal clear as for the other hexagonal

manganites, e.g. YMnO3. This makes it interesting to investigate what effects participate in

deciding the dielectric properties of InMnO3.

The main discussion in literature today is regarding which crystal structure is the most stable

for InMnO3. The two competing structures are polar P63cm, as in YMnO3, and non-polar

P 3̄c1. Since these two structures produce two different dielectric properties, ferroelectricity

and paraelectricity respectively, the characterization of which of these are most stable can

help solve the mysteries around InMnO3. When preparing a sample of a material it is im-

possible to make a stoichiometric compound and there will always be some point defects

present, see section 3. Mapping the effect different point defects have on the stability of the

two crystal structures might give a better understanding of the deviating dielectric proper-

ties. The hypothesis of this project is that dissimilar thermal history and small variation in

stoichiometry are the main reasons for the varying dielectric properties for InMnO3 docu-

mented in literature.

1.2 Previous work

In previous work performed by the author[1] the effect of interstitial and vacant oxygen atoms

on the stability of P 3̄c1 and P63cm for InMnO3 were investigated by a density functional the-

ory study (DFT). The work showed that for a stoichiometric cell the polar phase is more sta-

ble than the non-polar phase. However, when point defects of interstitial and vacant oxygen

atoms were introduced in the structure the energy difference between the two phases de-

creased. This indicated that non-stoichiometry and different preparation routes can affect

the stability of the ferroelectric versus the paraelectric phase of InMnO3. A summary of the
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results from previous work can be found in Appendix C.

1.3 Objective

The objective of this project is to further look into the stability of the ferroelectric and para-

electric phase of InMnO3. As a continuation of the previous work In-vacancies will be studied

to investigate the effect on the energy difference between the two phases. The polarization of

the polar P63cm-phase is calculated, for a stoichiometric cell and cells with defects, to inves-

tigate the impact point defects have on the polarization. Based on phase transition theory,

calculations are also done to find out if an activation energy barrier exists when going be-

tween the ferroelectric and paraelectric phase. What happens to this potential energy barrier

when point defects are introduced in the material is also addressed.

At this point, no other studies on point defects in InMnO3 have been published. In addi-

tion no other studies have used density functional theory to investigate the potential energy

barrier that has to be overcome when transferring between structures. Thus this project rep-

resents a new approach to explain the cause behind varying properties of InMnO3. A study

on point defects has in addition several other advantages. Point defects give in general a bet-

ter understanding of the material, and can be used as a tool to optimize, tune and make new

properties. This gives an additional motivation to the project as it is possible to both veri-

fy/invalidate the hypothesis and get a better understanding of a poorly understood material.
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Indium manganite

2.1 Hexagonal manganites

Hexagonal manganites (h-RMnO3, R = Sc, Y, In, Ho,. . . Lu) were discovered in 1962 by Yakel

et al.[5]. Since then they have been a popular research topic due to their multiferroic prop-

erties1. In hexagonal manganites ferroelectricity and antiferromagnetism exist at the same

time, and they are therefore regarded as a multiferroic[7]. Alternating layers of R3+ and corner-

sharing trigonal bypiramids of MnO5 result in the multiferroic property. Most hexagonal

manganites are assigned to the polar P63cm structure. It would be natural to expect InMnO3

to obtain the same crystal structure and properties as the other hexagonal manganites. How-

ever, recent work by Kumagai et al.[7] has showed that the P 3̄c1-structure might describe the

observed dielectric properties better.

InMnO3 is not a very widely studied material compared to the prototypical hexagonal man-

ganite, YMnO3. It is quite difficult to synthesize InMnO3[9], and that is probably the reason

for few articles discussing the structure and properties. This results in a poor understanding

of the material. The debate regarding the correct space group for InMnO3 is of special inter-

est for this project. Different articles show contradicting behaviour for InMnO3, and different

research groups assign InMnO3 to different space groups. From a commercial view point the

most important opportunity for InMnO3 is its electronic properties. The designated space

group decide if the material is ferroelectric or paraelectric, and emphasize the importance of

understanding the structure of this material.

1A multiferroic material is a material that combines two or more of the following properties: ferromagnetism,
ferroelectricity, ferroelastisity and/or ferrotoroidicity[2].

5
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2.2 Stable crystal structures for InMnO3

As mentioned, the debate regarding the crystal structure for InMnO3 is between two space

groups, P 3̄c1 and P63cm. See Figure 2.1 and 2.2 for an illustration of these two. The main

difference between the two structures is that the hexagonal P63cm structure is polar non-

centrosymmetric, while the trigonal P 3̄c1 structure is non-polar centrosymmetric. In the

polar P63cm-structure the MnO5 trigonal bipyramids tilt and trimerize with a trimerization

phase of n · 60°, where n is an integer[7]. The result of this tilting is a net ferroelectric polariza-

tion caused by an additional displacement of the In3+ sublattice relative to the layers of MnO5

trigonal bipyramids. Materials that crystallize in the non-polar P 3̄c1-structure will not obtain

ferroelectricity. This is due to trimerization of the MnO5 trigonal bipyramids in intermediate

angles, causing the inversion centre to be retained. All figures of the InMnO3-structure pre-

sented in this project are made by use of the visualizing software Vesta[11].

(a) P63cm (b) P 3̄c1

Figure 2.1: P63cm-structure, a), and P 3̄c1-structure, b), for InMnO3. The structures show
one unit cell. The positions and lattice parameters are based on experimental work by Kuma-
gai et al.[7]. The figures are made by the visualization tool Vesta[11].

Lee et al. [12] present a nice way of showing one of the structural differences between P 3̄c1

and P63cm, which results in absence of spontaneous polarization, paraelectricity, and spon-
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(a) P63cm (b) P 3̄c1

Figure 2.2: P63cm-structure, a), and P 3̄c1-structure, b), for InMnO3 seen along the c-axis.
Note the difference in the tilting of the MnO5-trigonal bipyramids by examining the apical
oxygen placed in the middle of each trigonal bipyramid.

P63cm P3c1

Pc = 0 Pc = 0

Figure 2.3: Sketch of the different displacements of the In-atoms in the In-layer for the P 3̄c1-
phase compared P63cm[12].

taneous polarization, ferroelectricity. Figure 2.3 show the In-layer along the c-axis in both

structures. This can also be observed in 2.1 by looking at the In-layer (pink atoms). The

figure shows that the In-atoms have an up-down-up-down-up configuration in the P63cm-

structure, leading to a net polarization. In the P 3̄c1-structure they have a none-down-none-

up-none configuration, leading to no net polarization. This combined with the specific tilting

of the trigonal bypiramids result in the respective properties. A more thorough explanation

of this is given in section 4.2.2.

Already in 1994 J. E. Greedan et al.[8] observed unusual magnetic properties for InMnO3.

They noticed that the length of the c-axis for InMnO3 was substantially larger compared to
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the c-axis for other hexagonal manganites, R-MnO3, regardless of what the R-ion represented.

This indicates that the bonding between In and the Mn-O-bipyramids is weaker than in other

hexagonal manganites, and might be a reason for deviating properties for InMnO3.

2.3 Properties of InMnO3

Different synthesis routes for InMnO3 have demonstrated to result in different properties.

Huang et al.[10] prepared InMnO3 by a solid-state reaction method with the following prepa-

ration route: In2O3 (99.999%) and MnO2 (99.99%) powders in a stoichiometric ratio were

ground, pressured into four pellets and heated at 9800 C in air. The four pellets were then

cooled in four different ways, see Table 2.1. After cooling the dielectric behaviour of each

pellet was investigated. The experiments showed different dielectric behaviour for the four

different preparation routes. Some displayed paraelectric properties, while other displayed

ferroelectric properties. This is summarized in Table 2.1. Polarization hysteresis loop mea-

surements proposed by Belik et al.[9] showed that the hysteresis loop for InMnO3 is not ferro-

electric. They therefore concluded that InMnO3 will behave like a paraelectric in the temper-

ature and electric-field ranges studied. These observations are supported by similar experi-

mental observations done by Kumagai et al.[7].

Table 2.1: Cooling paths for synthesizing of InMnO3 from experiments prepared by Huang et
al.[10] giving different dielectric properties.

Name Synthesis route Dielectric properties

IMO-a Slowly cooled (2°C/h) from 980°C Polar (ferroelectric)

IMO-b Furnace cooled Polar matrix with non-polar regions

IMO-c Quenched from 950°C* Long-range non-polar regions

IMO-d Quenched from 650°C* Polar (ferroelectric)
*The samples was cooled slowly (100C/h from 9800C) until they reached
the temperature where they were quenched from.

Both Kumagai et al.[7] and Lee et al.[12] have performed DFT-calculations on InMnO3, com-

paring P63cm and P 3̄c1. This is the "experimental" approach that is going to be used in

this project, and their results will therefore be important for comparison. The conclusions

drawn from the two studies are contradicting. Kumagai’s calculations suggest that the P 3̄c1-



2.4. Crystal structure parameters 9

structure is the most stable, while Lee’s calculations favour P63cm. Although the two studies

favour different crystal structures, both showed that the energy difference between the two

proposed structures is very small compared to other hexagonal manganites, RMnO3 (R=Sc,

Lu, Y)[7].

As described in this section the dielectric properties and structure of InMnO3 are not agreed

upon in literature. The main point to emphasize from recent studies is that the energy dif-

ference between P 3̄c1 and P63cm for InMnO3 is minimal. This means the two structures are

almost equally stable. In addition, the fact that different preparation methods yield differ-

ent dielectric properties might indicate that the synthesis route and surroundings affect the

structure InMnO3 crystallize into.

2.4 Crystal structure parameters

Kumagai et al.[7] used powder XRD to obtain the atomic positions for both P 3̄c1 and P63cm.

These values are used as a basis for DFT-calculations performed in this project. The lattice

parameters for P 3̄c1 and P63cm are given in Table 2.2 and the atomic positions are given as

fractional coordinates in Table 2.3.

Table 2.2: Lattice parameters, a and c, for the P 3̄c1 and P63cm-structure for InMnO3 from
experimental work by Kumagai et al.[7].

Structure Lattice
parameter, a [Å]

Lattice
parameter, c [Å]

Volume [Å3]

P 3̄c1 5.8846 11.4850 344.44

P63cm 5.8846 11.4854 344.44



10 Chapter 2. Indium manganite

Table 2.3: Atomic positions given in fractional coordinates for the P 3̄c1 and P63cm-structure
for InMnO3 from experimental work by Kumagai et al.[7].

Structure Site x y z

P 3̄c1 In1 1/3 2/3 0.51674(8)

In2 0 0 0

Mn 0.6587(10) 0 1/4

O1 0 0 1/4

O2 1/3 2/3 0.7312(7)

O3 0.6829(25) 0.0241(10) 0.0858(2)

P63cm In1 0 0 0.2674(6)

In2 1/3 2/3 0.2383(6)

Mn 0.3250(10) 0 0

O1 0.3117(22) 0 0.174911

O2 0.6466(18) 0 0.3445(10)

O3 0 0 0.4746(20)

O4 1/3 2/3 0.0077(20)
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Point defects

A defect is an imperfection in the crystal structure that differentiates a perfect crystal, which

can only exist at 0K, from a crystal at temperatures above 0K. In this project only point defects,

one subgroup of defects, are considered. Point defects do not extend for more than a few

interatomic distances in any direction in the crystal[13]. They can be further divided into

intrinsic and extrinsic point defects. Intrinsic point defects, also called structural defects,

involve removing or adding an atom of one of the species of the molecule. Extrinsic defects

are defects that result from doping with an impurity atom[14].

3.1 Intrinsic defects

In this project only intrinsic defects are relevant. Intrinsic defects can be divided into two

different categories, vacancies and interstitials. A vacancy represents the removal of an atom

in a perfect periodic lattice, leaving a vacant site in the crystal structure. An interstitial repre-

sents an extra atom placed in a vacant hole in a perfect periodic lattice. Figure 3.1a and 3.1b

give a schematic of a vacancy and interstitial point defect. A certain number of intrinsic de-

fects will always be present in a pure material due to thermodynamic considerations. It exists

a thermodynamic equilibrium concentrations of defects for all materials[15]. This equilib-

rium concentration corresponds to the minimum free Gibbs energy of the material, which

depends on both configurational entropy and the enthalpy of defect formation. Exposing the

material to a certain environment, e.g. an oxygen rich environment to induce interstitial oxy-

gen or a low partial pressure of oxygen to favour oxygen vacancies, can increase the number

of defects. In this project In-vacancies are considered, but defect equations for oxygen vacan-

cies and interstitial oxygen are included as well. Calculations for the latter were performed in

a previous project [1] and the results can be found in Appendix C.

11
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(a) Vacancy defect (b) Interstital defect

Figure 3.1: Sketch showing the two different type of point defects considered, a) the presence
of a vacant atom and b) an atom at an interstital position.

3.2 Indium vacancies

The stability of the ferroelectric versus the paraelectric phase could be connected to the

fundamental differences in the In3+-cation compared to other R3+-cations. In has filled 4d-

orbitals (In3+:[Kr]4s24p64d10) in contrast to for instance Y which has unoccupied 4d-orbitals

(Y3+:[Kr]4s24p64d0). Since the d-orbitals in In are completely filled the formally unoccupied

5s and 5p-orbitals have low enough energy to bind covalently to O-2p. This results in oc-

cupied In-5s states at the bottom of the valence band[7]. For YMnO3 the energy differences

between the valence band, Y-5s and O-2p states, are substantially higher. Therefore the possi-

bility for covalency between O-2p and Y-5s is negligible. Compared to other hexagonal man-

ganites the a lattice parameter is smaller than expected and c-lattice parameter larger than

expected for InMnO3[9]. DFT-calculations performed by Kumagai et al.[7] and experiments

by Greedan et al.[8] demonstrate this trend. The extended c lattice parameter means that the

layers of In and MnO5 bypiramids are further apart. This is perhaps an effect of the increased

covalency between In and O.

The origin of ferroelectricity in hexagonal manganites (h-RMnO3) is tilting of the MnO5-

trigonal bipyramids compared to the R-layer, see section 4.2.2. The additional In-O covalency

makes it harder to tilt the MnO5 bipyramids. This could be a reason for the low energy dif-

ferences between the paraelectric P 3̄c1-phase and ferroelectric P63cm-phase in InMnO3. In
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contrast, YMnO3 is clearly favouring P63cm. Possibly because the negligible Y-O covalency

results in less resistance against tilting.

Recently it has been shown that a large Y deficiency is possible for YMnO3[16]. It is likely that

this is the case for InMnO3 as well. In-vacancies are studied in detail in this project due to

the possible effect the difference in R-cation, for instance In versus Y, has on phase stabil-

ity. In connection to the topics discussed above it is expected that a study on In-vacancies

will increase the understanding of InMnO3. For In-vacancies it is important to both consider

vacancies formed under oxidizing and reducing conditions. Note that the defect reactions

written below takes into account how the non-stoichiometry can arise, in this case by evapo-

ration. The Kröger-Vink equations do not cover this.

3.2.1 Oxidizing environment

Under oxidizing condition the probability of oxygen vacancy formation is small. Charge com-

pensation is therefore believed to happen only on Mn-atoms. The defect reaction for an in-

dium vacancy in an oxidizing environment is given by the following:

InMnO3 → In3+
1−δMn3+

1−3δMn4+
3δO2−

3 +δIn(g) (3.1)

Written in Kröger-Vink notation this becomes:

1

2
Mn2O3 +2Mnx

Mn + 3

4
O2(g)

InMnO3−−−−−→ VIn
′′′+3Mn•

Mn +3Ox
O (3.2)

3.2.2 Reducing environment

Under reducing conditions oxygen vacancies are favoured and preferred for charge compen-

sation. The defect reaction for an indium vacancy in a very reducing environment is given by

the following:

InMnO3 → In3+
1−δMn3+O2−

3− 3δ
2
+δIn(g)+ 3δ

4
O2(g) (3.3)

Written in Kröger-Vink notation this becomes:

1

2
Mn2O3

InMnO3−−−−−→ V
′′′
In +Mnx

Mn + 3

2
Ox

O + 3

2
V••

O (3.4)
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However, this is not very likely to happen nor easy to simulate by calculations. When remov-

ing three electronegative oxygen atoms in proximity to an In-vacancy a very unstable struc-

ture is created. To simulate reducing conditions a middling reducing environment is used

instead. The charge compensation will then be by creating one oxygen vacancy and oxidize

one Mn-atom from 3+ to 4+. The reaction is given as the following:

InMnO3 → In3+
1−δMn3+

1−δMn4+
δ O2−

3−δ+δIn(g)+ δ

2
O2(g) (3.5)

Written in Kröger-Vink notation this becomes:

1

2
Mn2O3 + 1

4
O2(g)

InMnO3−−−−−→ V
′′′
In +Mn•

Mn +2Ox
O +V••

O (3.6)

3.3 Oxygen vacancies

The defect equation for an oxygen vacancy in the InMnO3-structure is given by the following:

InMnO3 → InMnO3−δ+
δ

2
O2(g ) (3.7)

Written in Kröger-Vink notation this becomes:

Ox
O +2Mnx

Mn → V••
O +2Mn

′
Mn +

1

2
O2(g ) (3.8)

It is assumed that the charge compensating electrons are localized on Mn because Mn has

several possible oxidation states, while In only have one oxidation state. For one oxygen va-

cancy it is assumed that two Mn-atoms will be affected. The oxidation state of the two Mn-

atoms will be reduced from +3 to +2 and Mn changed from 3d4 to 3d5.

3.4 Interstitial oxygen

The defect equation for an interstitial oxygen in the InMnO3-structure is given by the follow-

ing:

InMnO3 + δ

2
O2(g ) → InMnO3+δ (3.9)
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Written in Kröger-Vink notation this becomes:

2Mnx
Mn +

1

2
O2(g ) → O

′′
i +2Mn•

Mn (3.10)

With the same explanation as for oxygen vacancies it is assumed that the charge compensat-

ing holes are localized on Mn. In this case the valence of the Mn-atoms will be oxidized from

+3 to +4 and Mn change from 3d4 to 3d3.

3.5 Manganese vacancies

Manganese vacancies are also a possibility. Like oxygen, manganese is present in all hexago-

nal manganites. It would therefore be of interest to examine the effect manganese vacancies

have on the stability of the paraelectric versus the ferroelectric phase of InMnO3. Like In-

vacancies, manganese vacancies can be present in both oxidizing and reducing conditions.

3.5.1 Oxidizing conditions

The defect reaction for a manganese vacancy in an oxidizing environment is given by the

following:

InMnO3 → In3+(Mn3+
1−3δMn4+

3δ )1−δO2−
3 +δMn(g) (3.11)

Written in Kröger-Vink notation this becomes:

1

2
In2O3 +3Mnx

Mn + 3

4
O2(g)

InMnO3−−−−−→ Inx
In +V

′′′
Mn +3Mn•

Mn +3Ox
O (3.12)

3.5.2 Reducing conditions

The defect reaction for a manganese vacancy in a reducing environment is given by the fol-

lowing:

InMnO3 → In3Mn3+
1−δO2−

3− 3δ
2
+δMn(g)+ 3δ

4
O2(g) (3.13)

Written in Kröger-Vink notation this becomes:
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1

2
In2O3

InMnO3−−−−−→ Inx
In +V

′′′
Mn + 3

2
Ox

O + 3

2
V••

O (3.14)

As for indium vacancies, middling reducing conditions are most likely to produce the most

stable structure. The defect reaction for creating a manganese vacancy in middling reducing

conditions is given as the following:

InMnO3 → In3+(Mn3+
1−δMn4+

δ )1−δO2−
3−δ+δMn(g)+ δ

2
O2(g) (3.15)

Written in Kröger-Vink notation this becomes:

1

2
In2O3 +Mnx

Mn + 1

4
O2(g)

InMnO3−−−−−→ Inx
In +V

′′′
Mn +Mn•

Mn +2Ox
O +V••

O (3.16)

It is expected that a Mn-vacancy will be followed by local charge compensation on the other

Mn-atoms in the Mn-plane. This because both In and O have completely filled orbitals in

the outer shell, O2-[3s2] and In3+[4d10][17], while Mn occurs as both Mn2+, Mn3+ and Mn4+.

By assuming that charge compensation occur on every other Mn-atom, as illustrated in Fig-

ure 3.2, one Mn-vacancy will affect three other atoms in the unitcell. The figure shows four

unitcells put together in a supercell since one unitcell is not sufficient to include all relevant

atoms. If calculations were performed on this supercell a total of four out of twelve Mn-atoms

will be affected, see Figure 3.2. This makes the calculations represent something far from a

real situation. Expanding the number of cells even more could be a solution to the problem,

but this would also be very computationally challenging. Therefore, Mn-vacancies are not

considered further in this project.

3.6 Choice of defect positions

Defect positions are chosen by one important factor, symmetry inequivalence. Symmetry

inequivalent positions are unique positions in a unit cell. Therefore symmetry equivalent

positions of point defects will have the same effect on properties and stability. Thus, it is only

necessary to test symmetry inequivalent point defect positions.

As stated in section 3.2, In-vacancies can arise as a result of two different mechanisms regard-

ing if InMnO3 is present in an oxidizing or reducing environment. In theory it is not verified

which of these is most favourable. Therefore both mechanisms have to be tested for all va-
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Figure 3.2: Illustration of the Mn-layer for a 2x2x1 supercell in InMnO3 seen along the c-axis.
The white atom represents a Mn-vacancy and the black atoms represent oxidized Mn4+.

cancy positions. Point defect positions for interstitial oxygen and vacant oxygen can be found

in Table C.3 and C.6.

3.6.1 Indium vacancies

As observed in Table 2.3 the P 3̄c1- and P63cm-structure have two symmetry inequivalent

positions for In. It is therefore relevant to test the effect on the ground-state energy when

removing an In-atom for both these positions. The defect positions are summarized in Table

3.1. Figure 3.3 shows their positions in the two space groups.

Table 3.1: Indium vacancy positions in the P 3̄c1- and P63cm-structure for InMnO3.

Structure Site x y z

P 3̄c1 In1 1/3 2/3 0.51674(8)

In2 0 0 0

P63cm In1 0 0 0.2674(6)

In2 1/3 2/3 0.2383(6)
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Figure 3.3: The P63cm and P 3̄c1 structure showing the positions of the different In-vacancy
positions listed in Table 3.1.

3.6.2 Oxygen vacancies in connection with indium vacancies

For the middling reducing conditions oxygen vacancies are created. When choosing defect

positions it is necessary to do one calculation for each of the different oxygen vacancy po-

sitions combined with each In. In the P63cm structure it exists four symmetry inequivalent

positions, two planar positions placed in the Mn-plane and two apical positions placed above

the Mn-atom. However only three of these positions are tested because two of the positions

gives approximately the same geometry, hence the same result. Since it exists two different

position of the In-atoms, see Table 3.1, the different oxygen positions are relevant for both the

In1- and In2-vacancy. The oxygen positions related to In2 are symmetry equivalent positions

of those for In1. It is chosen to use a nomenclature for the oxygen vacancy positions related

to their position relative to the In-vacancy. This makes it easier to compare relevant energy

differences between P 3̄c1 and P63cm later in the project. There are a total of three different

categories. These are listed below and illustrated schematically in Figure 3.4:

O-type1 Right above/below the In-vacancy in the Mn-layer.

O-type2 Slanting above/below the In-vacancy.
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O-type3 Slanting above/below the In-vacancy in the Mn-layer.

Figure 3.4: The P63cm structure showing an In-vacancy, green atom, and the relative position
of each oxygen vacancy, O-type1, O-type2 and O-type3 respectively. The same is equivalent
for P 3̄c1.

The oxygen positions for P63cm are listed in Table 3.2 with an explanation of their positions

compared to the respective In vacancy. For P 3̄c1 there exist a total of three symmetry inequiv-

alent oxygen positions, two planar in the Mn-plane and one apical. The positions are given in

Table 3.3. Some of the positions for oxygen vacancies differ from the symmetry inequivalent

positions listed in Table 2.3. These are just examples of symmetry equivalent positions.

Table 3.2: Oxygen vacancy positions in the P63cm-structure for InMnO3.

In-atom Site O-type Position

In1 O1 O-type2 (0.311,0,0.17491)

O3 O-type1 (0,0,0.474620)

O4 O-type3 (1/3,2/3,0.00772)

In2 O1 O-type2 (0, 0.311, 0.17491)

O3 O-type3 (0,0,0.47462)

O4 O-type1 (1/3,2/3,0.00772)
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Table 3.3: Oxygen vacancy positions in the P 3̄c1-structure for InMnO3.

In-atom Site O-type Position

In1 O1 O-type3 (0,0,1/4)

O2 O-type1 (1/3, 2/3,0.23126)

O3 O-type2 (0.31708,0.34119,0.41418)

In2 O1 O-type1 (0,0,1/4)

O2 O-type3 (1/3,2/3,0.23126)

O3 O-type2 (0.34119,0.31708,0.08582)

3.7 Formation energy

To determine which defects are most thermodynamically favourable for InMnO3 it is nec-

essary to calculate the formation energy of the different defects. To calculate the formation

energy of a defect the following equation is used[18]:

E f [X q ] = Etot[X q ]−Etot[b]−∑
i

niµi +qEF +Ecorr (3.17)

where Etot[X q ] is the energy of a supercell with a defect, Etot[b] the energy of a perfect sto-

ichiometric supercell of the same size, ni the number of defects added (ni >0) or subtracted

(ni <0), µi the defect atoms respective chemical potential, q the charge, EF the Fermi-energy

and Ecorr the correction term for a finite k-point sampling for shallow defects or for elastic/-

electrostatic interactions between supercells.

Fortunately, by some simple assumptions the two last terms can be neglected. The total

charge, q , equal zero which eliminates the qEF term. Also, when using a supercell a sin-

gle defect will in principle evolve into a periodic array of defects that will interact with each

other, see explanation of this in section 5.3.1. By choosing a large enough supercell these

defect-defect interactions will be negligible[18]. It is assumed that the supercell used in this

project is large enough for the purpose. Regarding shallow defect levels the correction will

be zero when using a gamma-centered k-mesh as done in this project. In addition, the elec-

trostatic potential for the defect will align with the bulk potential when the supercell is large

[18, 19], meaning Ecorr can be neglected as well.
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By taking into account the assumptions listed above the formation energy for an In-vacancy

and an In-O-vacancy pair can be calculated by equation 3.18 and 3.19 respectively:

Ef,defect = Etot,defect −Etot,perfect +µIn (3.18)

Ef,defect = Etot,defect −Etot,perfect +µIn +µO (3.19)

3.8 Limitations for experimental studies on point defects

A computational approach is chosen to investigate point defects in this project. This be-

cause there are several limitations when it comes to observing point defects by experimental

methods. This section will briefly explain some of the challenges regarding the different ex-

perimental methods available.

XRD (X-ray diffraction) provides a diffractogram or diffraction pattern of the structure, but

only detects long-range order. That means point defects will be impossible to detect di-

rectly since they are not periodic. However, for large concentrations of defects changes

in the average structure can be detected. A particular problem regarding InMnO3 is that

the two structure P 3̄c1 and P63cm have the same extinction rules for Bragg reflections[7].

It will therefore be hard to distinguish between polar and non-polar samples.

TEM (Transmission electron microscopy) provides a local diffraction pattern, opposite to

XRD. However, it will have the same problem as XRD since it only detects long-range

order.

XPS (X-ray photoelectron spectroscopy) is a surface sensitive spectroscopy technique. Since

surface and bulk for a material do not have the same defect concentrations and condi-

tions this technique will not disclose the effects of defects in bulk.

EELS (Electron energy loss spectroscopy) measures chemical composition and oxidation

states as an average over an area. It is a device used with TEM and will therefore ex-

perience the same limitations as TEM.

TGA (Thermogravimetric analysis) is only bulk sensitive and gives information about weight

change in a sample during change in temperature. Since the method is bulk sensitive, it
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only gives macroscopic properties and will not reveal the local effects around a defect.

PDF (Pair distribution function) is probably the tool that is closest to disclose the effect of

point defects. The technique detects short-range order, but is limited by the need of a

substantial amount of defects to give a useful result. This might not be the case for all

materials.

EXAFS (Extended X-Ray absorption fine structure) use low-energy X-ray radiation to excite

electrons and give information about local structure. It requires a high concentration

of point defects and is therefore limited to the same applications as PDF. In addition,

due to low resolution EXAFS is not able to detect anything else than the coordination

number for cations, and that with an accuracy of +/-1.

The limitations of different experimental techniques are many. Density functional theory

solves this by providing a tool that can accurately describe point defects in a material and its

effect on properties and energy. The problem with DFT is that it is not "real" and is based on

several assumptions that are going to be covered in Section 5. Despite the fact that DFT is not

"real" it the best tool available to give an indication on the effect of point defects in a material.
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Phase transitions

This section covers a theoretical introduction to phase transitions, as well as a description

of the paraelectric to ferroelectric phase transition for InMnO3. The introduction is mainly

based on the book "The Physics of Phase Transitions" by Papon et al.[20]. This book is rec-

ommended if a more thorough explanation of the phenomena and mathematical aspects is

desired.

4.1 Definitions of phase transitions

Stølen and Grande[21] defines a phase as a state that has a particular composition and also

definite, characteristic chemical and physical properties. Several phases with identical com-

position can exist. A phase can be in the solid, liquid or gas state. For some materials it also

exists more than one crystalline state[21]. The phases discussed in this project are different

crystalline states of the same chemical compound. A phase transition is then a transition

where a compound changes its state, from one phase to another. Phase transitions can be

divided into two measurable categories with regard to their thermodynamic behaviour[20]:

• A first-order phase transition is a transition with latent heat, resulting in discontinuous

thermodynamic quantities as enthalpy and entropy (first derivative of Gibbs energy).

• A second-order transition is a transition without latent heat, resulting in continuous

entropy and enthalpy, but discontinuous heat capacity (second derivative of Gibbs en-

ergy).

Another viewpoint for categorizing phase transitions is the order parameter. The order pa-

rameter is a physical quantity that is defined to be zero at the most symmetric case and non-

zero at the least symmetric case[20]. In case of a paraelectric/ferroelectric phase transition,

which is relevant for this project, the amplitude of one certain vibrational mode is the order

parameter[22]. When the amplitude of this vibrational mode is zero (meaning the vibrational

mode has freezed in an outer position) the polarization is non-zero and the material is in the

23
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ferroelectric state. When the amplitude is non-zero the polarization is zero and the material

is in the paraelectric state. Transitions can then be characterized based on the existence of an

order parameter:

• Transitions with no order parameter: The two symmetry groups does not necessary

have a group/subgroup relationship, see section 4.3.1. These transitions are always

first-order transitions with latent heat, and therefore have an activation energy barrier.

• Transition where an order parameter can be defined: The low symmetric phase is a sub-

group of the high symmetric phase, see section 4.3.1. If the order parameter is con-

tinuous at the transition it is a second-order transition, giving no latent heat and no

activation energy barrier. If the order parameter is discontinuous at the transitions it is

a first-order transition with latent heat giving an activation energy barrier.

4.2 Ferroelectric phase transition in hexagonal manganites

A paraelectric material is a polarizable insulator, meaning the charges in the material are dis-

placed when an electric field is applied. A paraelectric material is most often centrosymmet-

ric, in contrast to a ferroelectric material that is non-centrosymmetric. For a ferroelectric ma-

terial spontaneous electric polarization appears below a certain temperature, the Curie tem-

perature due to orientation of dipoles[20]. Because a ferroelectric material is non-centrosymmetric

the lack of symmetry results in a net polarization when all dipoles are added up. Ferroelectric

materials, both polycrystalline and monocrystalline, often consist of ferroelectric domains.

This because the structural displacement causing ferroelectricity can be directed in different

ways, e.g. the MnO5-trigonal bipyramids in InMnO3 can tilt in six different direction resulting

in six different structural domains[23]. A domain is defined as an area where all dipole mo-

ments are aligned in the same direction. Each domain corresponds to a different direction

of the dipole moment, hence a different direction of the spontaneous polarization[24]. The

net polarization in a ferroelectric material, without an applied electric field, is the vector sum

of the polarization of the different domains. When an electric field is applied the domains

with favourable orientation of the polarization grow on the expense of the others[24]. The

material is saturated when all dipole moments are aligned in the same direction. The result

is that a smaller electric polarization is detected for the ferroelectric material without an ap-

plied electric field than a saturated material. Figure 4.1 shows the domains in a ferroelectric



4.2. Ferroelectric phase transition in hexagonal manganites 25

(a) No applied electric field. (b) With applied electric field.

Figure 4.1: Sketch of how the polarization in ferroelectric materials have different direction
in different domains, but is directed in the same direction when applying an electric field.

material without an applied field, 4.1a, and with an applied field, 4.1b.

The phase transition from paraelectric to ferroelectric can either be first- or second order.

Ferroelectric/paraelectric phase transitions can be grouped into two categories:

An order/disorder transition is characterized by substitution of atoms in a structure, a typ-

ical phase transition in alloys. A small displacement might follow the substitution. By

lowering the temperature the structure goes from one phase to another with a higher

degree of ordering. An example of this is the transition fromβ-brass toβ’-brass (CuZn)[25].

In the disordered high-temperature structure Cu and Zn are arranged in a random way

at the corners and centre of a bcc-lattice. When the temperature decreases it transforms

into an ordered structure, and form a primitive cube with Cu at cube corners and Zn at

cube centre.

A displacive transition consists of finite displacements of atoms or molecular rotation in a

crystal lattice. The low-temperature phase can be seen as a distorted version of the

high-temperature phase. The atoms move collectively, yielding an overall change in

the structure, but with no change in composition. The transition is characterized by

the group/subgroup relationship between the space groups of the different phases ex-

plained in section 4.3.1.
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4.2.1 The Landau model

The Landau theory is based on the definition of an order parameter, Γ, which describes the

cause of the transition. It is related to the change in a macroscopic property during the phase

transition. This macroscopic property can be strain, average site occupancy or crystallo-

graphic distortion[21]. The physical property measured and connected to this order param-

eter often scales proportionally or quadratically with the order parameter.

A soft mode can exist for a phase transition between two crystal structures where the space

group of the low-symmetry structure is a subgroup of the space group of the high-symmetry

structure[21]. A soft mode is a vibrational mode1 where the frequency decreases and reach

zero when it approaches the Curie temperature, TC, from above[20]. When this mode has a

frequency of zero the displacements caused by the vibrations freeze into the structure and

cause ferroelectricity for T<TC. This is the basis of the Landau model.

4.2.2 Phase transition from P63/mmc to P63cm

The nature of the ferroelectric phase transition from the high-temperature paraelectric phase,

P63/mmc, to the low-temperature ferroelectric phase, P63cm, has been widely debated.

Fennie et al.[22] performed first-principles density functional theory calculations on possi-

ble transition paths for the ferroelectric/paraelectric phase transition in YMnO3. They con-

cluded that the most likely path is a second-order transition where a K3 phonon is frozen into

the structure, resulting in a direct transition from the paraelectric P63/mmc phase to the

ferroelectric P63cm phase. This is supported by experimental work covering an in situ high-

temperature synchrotron x-ray powder diffraction study by Kim et al.[27], as well as high-

resolution powder neutron diffraction experiments by Gibbs et al.[28].

The zone-boundary mode K3 is an example of a soft mode as discussed in section 4.2.1. The

soft mode is the vibration of Mn3+ resulting in tilting of the MnO5 trigonal bipyramids. When

the mode freezes the tilting of the bypiramids with respect to the c-axis becomes permanent.

This results in unequal lengths of the two Y-O apical bonds[28] which lead to an up-down-up-

down-up displacement of Y in the yttrium layer. The tilting combined with the displacements

of Y-atoms result in a non-centrosymmetric crystal with a net polarization, hence ferroelec-

1A vibrational mode is the continuous movement of atoms relative to each other[26].
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tricity, as well as a tripling of the unit cell[29]. The hexagonal manganites are considered

improper ferroelectrics. For an improper ferroelectric the primary order parameter is not

polarization[30]. The mode giving polarization is not the one driving the transition, but rather

a secondary effect of the tilting/rotation of the oxygen MnO5 trigonal bipyramids[31, 22]. Al-

though these studies were performed on YMnO3 the same would be expected for the para-

electric/ferroeelectric phase transition in InMnO3.

The phase transition between the high-temperature paraelectric phase, P63/mmc, to the

low-temperature ferroelectric phase P63cm is, as mentioned above, a second-order displacive

transition[22]. This means it does not need to be an activation energy barrier present for

the transition. However, the paraelectric/ferroeelectric phase transition between P 3̄c1 and

P63cm shows a different behaviour. This is explained in section 4.4.

4.2.3 Polarization

The ferroelectric property is classified as spontaneous polarization that can easily switch di-

rection by an electric field. Spontaneous polarization means that the material is polarized

without an applied electric field. This is due to permanent displacements of atoms resulting

in permanent dipoles. It is of interest to investigate how point defects affect the polarization

of the ferroelectric P63cm phase. To be able to do that the term polarization has to be better

explained.

Polarization of a material occurs when the centre of gravity of positive and negative charges

do not coincide[24]. This results in a permanent dipole in the material. Polarization is closely

connected to the dipole moment, ~d , and is defined as the dipole moment divided by the unit

volume. A simple way to calculate the polarization is by use of the point charge model, also

known as the Clausius-Mosotti model, defined below[32]. The dipole moment is defined as

the following:

~d =∑
i

qi~ri (4.1)

where q is the elementary charge, i the sum over all atoms and ~ri the displacement of the

atom from the non-polar state. In this project an artificial non-polar state is made for calcu-

lating the spontaneous polarization of P63cm. The polarization is calculated by dividing the
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dipole moment, ~d , on the volume of the unit cell, V :

~P =
~d

V
= 1

V

∑
i

qi~ri (4.2)

It is important to note that the dipole moment is a vector quantity, hence the polarization

is also defined as a vector. The polarization vector, ~P , points from the negative to the posi-

tive surface. As can be seen from the point charge model the calculated value describes the

difference in polarization from the non-polar state to the polar state. When polarization is

measured experimentally, with for instance the Sawyer-Tower method[32], it is the change in

polarization from one polarized state to another that is measured. This difference divided on

two is the spontaneous polarization[33]. Polarization is therefore not stated as an absolute

value, but rather a change.

The point charge model is a macroscopic model and not suitable for calculating the polar-

ization in crystals, as for instance InMnO3. In general the polarization consists of two main

contributions, the electronic- and ionic polarization. The electronic polarization is a result of

a non-centrosymmetric disposition of electrons around the nucleus. The ionic polarization

comes from atomic displacements[34]. In the point charge model the total polarization is

said to be a sum of the local charge contributions from displacements. Meaning, this model

only considers the ionic polarization. However, for a crystal the electronic polarization has a

periodic continuous contribution[33], and is therefore not negligible. To find the polarization

for crystals the modern theory of polarization has to be used. This is a microscopic model on

polarization. The theory includes a quantum approach and will be better understood after a

brief introduction to density functional theory. The modern theory of polarization is there-

fore further explained in section 5.5.4.

4.3 Symmetry considerations for phase transitions

To better explain the nature behind different phase transitions a brief introduction to sym-

metry and group/subgroup relationship is presented. Symmetry considerations where trans-

lation symmetry is disregarded, meaning only one point is unchanged during the symme-

try operation, are categorized as point groups. There exist 32 different point groups. The
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point groups are again divided into seven subcategories: triclinic, monoclinic, orthorhom-

bic, tetragonal, trigonal, hexagonal and cubic[35]. The point groups can be divided further

into space groups. Space groups include the possibility of translations. A space group gives

a full description of the symmetry of a crystal in space[13]. There exist a total of 230 space

groups, each describing all symmetry elements of the crystals related to the given group. The

relevant space groups combined with their respective point groups and systems are given in

Table 4.1.

Table 4.1: Representation of space groups relevant for this project with their respective point
groups, lattice systems and polarization[24, 35].

Space group Crystal system Point Group Symmetry ele-
ments

Polar

P63cm Hexagonal 6mm 12 Polar

P63/mmc Hexagonal 6/mmm 24 Non-polar

P 3̄c1 Trigonal 3̄m 12 Non-polar

P3c1 Trigonal 3m 6 Polar

4.3.1 Group/subgroup relationship

Point groups and space groups consist of a self-consistent2 finite set of symmetry operation[13].

The group/subgroup relationship between space groups can be defined as the following:

A group A consist of X different symmetry operations (symmetry elements). A group B consist of

Y<X of the same symmetry operations as group A. From definition, B is a subgroup of A and A

is called a supergroup. A subgroup has always lower symmetry than the supergroup.

The group/subgroup relationships for the space groups presented in Table 4.1 are shown in

Figure 4.2. The arrows shows the connection from a group to a subgroup.

2Self-consistent means not having parts or aspects which are in conflict or contradiction with each other[36].
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P63/mmc

P3c1

P 3̄c1 P63cm Lower symmetry

Figure 4.2: Representation of the relationship between the space groups P 3̄c1, P63cm and
P3c1. P3c1 is a subgroup of P 3̄c1 and P63cm. P 3̄c1 and P63cm are subgroups of P63/mmc.
The relationships are found with help from Bilbao Crystallographic Server[37]

.

4.3.2 Symmetry for P 3̄c1, P63cm and P3c1

In P63cm the MnO5-trigonal bypiramids trimerize with a trimerization phase of n ·600, where

n is an integer[7]. Because of this the In-atoms are displaced up or down along the c-axis.

This gives a polar structure and ferroelectricity. When transforming from P63cm to P3c1 the

sixfold symmetry axis is lost, but the inversion symmetry causing centrosymmetricity is still

absent[38]. This gives again a polar structure and ferroelectricity. When P3c1 transform to

P 3̄c1 the MnO5-trigonal bypiramids trimerize at intermediate angles. This results in inver-

sion symmetry and no net polarization since the tiltings neutralize each other.

4.4 Possible transition paths for InMnO3

For phase transitions between two structures that have a group/subgroup relationship the

transition is a second-order transition, and the activation energy barrier is in theory zero.

However, if two structures do not have this relationship an activation energy barrier should

be present throughout the transition. As can be seen in Figure 4.2 P 3̄c1 and P63cm do not
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have a group/subgroup relationship and consequently an activation energy barrier must be

present for the phase transition between them. The interesting question is then in which

direction the value of the activation energy barrier change when intrinsic point defects are

introduced in the material.

To find out if intrinsic point defect increase or decrease the activation energy barrier between

P 3̄c1 and P63cm, the direct phase transition between these structures is investigated. This is

done both for a stoichiometric cell and non-stoichiometric cells. If defects reduce/increase

the activation energy barrier this might help explain the deviating properties for InMnO3

found in literature.

Cano et al.[38] have proposed an alternative path for the transition between P 3̄c1 to P63cm.

Instead of a direct transition, as mentioned above, they suggest that the phase transition goes

through an intermediate structure, P3c1. By observing Figure 4.2 it is noted that P 3̄c1 and

P3c1, and P63cm and P3c1 have a group/subgroup relationship.

4.4.1 Transitions in stoichiometric and non-stoichiometric cells

It is of interest to calculate the activation energy barrier between stoichiometric cells, mean-

ing cells without defects. This can be used as a reference state. The following stoichiometric

phase transition should be investigated:

• P 3̄c1 → P63cm

When investigating the effect point defects have on the activation energy barrier it is chosen

to do one calculation on each type of intrinsic defect. This means the following situations

have to be considered:

1. Phase transition with an interstitial oxygen.

2. Phase transition with an oxygen vacancy.

3. Phase transition with an indium vacancy under oxidizing conditions.

4. Phase transition with an indium vacancy under middling reducing condition.
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The defect positions giving the most stable structure for each of the above categories are used.

This is done to reduce the overall calculation effort and still get enough useful information to

discuss the hypothesis.
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Density functional theory

In this chapter the reader is given an overview of the principles behind density functional the-

ory and how this can be developed into a computational method. The text will not explain the

theory in detail, but aims to make the reader understand the basics behind the calculations

done in this project. Most of the theory is taken from the book “Density Functional Theory -

A practical Introduction” [39] and “Computational Materials Science - An Introduction” [40].

The reader is advised to take a look at these sources if a more thorough explanation of den-

sity functional theory is desired. An introduction to the simulation software Vienna Ab-initio

Simulation Package (VASP) will be given in section 5.6.

5.1 The Schrödinger equation

The Schrödinger equation describes how the energy of quantum mechanical systems change

with time. The first thing to do to when introducing DFT is to define the time-dependent

Schrödinger equation[41]:

i~
∂

∂t
Ψ(~r , t ) =− ~2

2m
∇2Ψ(~r , t )+V (~r , t )Ψ(~r , t ) (5.1)

Due to too many degrees of freedom it is not possible to solve the Schrödinger equation.

Therefore, to be able to implement this equation in a computational tool a few approxima-

tions must be applied. The first approximation is the Born-Oppenheimer approximation.

Born and Oppenheimer stated that the atomic nuclei has a much larger mass compared to

the individual electrons. The electrons will therefore be much more sensitive to changes in

their surrounding than the nuclei[42, 43]. By taking this into account the problem can be

divided into two subproblems:

1. Solve the equation that describes the electron motion when the atomic nuclei is at a

fixed position. This means finding the lowest energy configuration for the electrons,

the ground-state energy (E0).

33
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2. Observe how the ground-state energy changes when the atoms are moved around.

The ground-state energy is not dependent on time and the problem can therefore be solved

by the time-independent Schrödinger equation. This will further reduce the complexity of

the problem. The Schrödinger equation that describes the time-independent situation where

multiple electrons interact with multiple nucleis is given by[39]:− ~2

2m

N∑
i=1

∇2
i︸ ︷︷ ︸

(1)

+
N∑

i=1
V (~ri︸ ︷︷ ︸
(2)

+
N∑

i=1

∑
j<i

U (~ri ,~r j )︸ ︷︷ ︸
(3)

Ψ= EΨ (5.2)

The symbol m stands for the electron mass, N for the number of electrons and E for the

energy. The terms in the parentheses on the left side of the equation represents the Hamilton

operator. The Hamiltion operator describes the following:

1. Kinetic energy of each electron.

2. Interaction energy between electrons and the atomic nuclei.

3. Interaction energy between different electrons.

The wave function, Ψ = Ψ(~r1, ...., ~rN ), where N is the number of electrons, can be approxi-

mated to Ψ = Ψ1(~r )Ψ2(~r ), ....,ΨN (~r ), a product of individual electron wave functions. This

product is called the Hartree-product and has shown to be important when solving the Schrödinger

equation with DFT[39]. The most difficult term to solve is the term considering interactions

between electrons. The individual electron wave functions,Ψi (~r ), cannot be defined without

taking into account the individual electron wave functions of all the other electrons in the

system. This means that solving the Schrödinger equation is a many-body problem1. A ma-

terial has an excessive number of electrons, N , that need to be summed over. This combined

with the fact that solving the equation is a many-body problem makes it impossible to solve

the Schrödinger equation analytically. Fortunately, DFT can help solve that problem.

1A many-body problem is a term used for problems where a large number of particles are coupled. To be able
to solve the equation for one particle the equation for all the other particles have to be solved as well.
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5.2 Density functional theory

The density functional theory is based on two mathematical theorems published by Kohn and

Hohenberg in 1964[44], and later two set of equations derived by Kohn and Sham in 1965[45].

5.2.1 The Kohn-Hohenberg theorems

The first theorem published by Kohn and Hohenberg reads:

The ground-state energy from the Schrödinger equation is a unique functional2

of the electron density[39]. (Theorem 1 - Kohn and Hohenberg)

In other words this theorem states that for every ground-state wave function it exists a ground-

state electron density. Written in mathematical terms this can be expressed as[44]:

E [n(~r )] =
∫

V (~r )n(~r )d~r +F [n(~r )] (5.3)

where V (~r ) is the external potential, F [n(~r )] is the exchange functional and n(~r ) the electron

density given as:

n(~r ) = 2
∑

i
Ψ∗

i (~r )Ψi (~r ) (5.4)

A fact that arises from this theorem is that the ground-state electron density determines all

properties of the ground-state. Meaning, the Schrödinger equation can be solved by looking

only at the electron density. This is beneficial since the electron density is a function of three

spatial variables, compared to the electron wave function which is a function of 3N variables.

This will reduce the computational effort considerably.

The second theorem stated by Kohn and Hohenberg describes an important property for the

functional mentioned in the first theorem:

The electron density that minimizes the energy of the overall functional is the true

electron density corresponding to the full solution of the Schrödinger equation[39].

(Theorem 2 - Kohn and Hohenberg)

2A functional takes a function and defines a single number from the functional, compared to a function that
takes a value of a variable and define a single number.
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Written in mathematical terms this is given in equation 5.5, where n0 is the minimum electron

density [44]:

E0 = E [n0(~r )] (5.5)

This means that the functional representing the relevant electron density can be found by

varying the electron density until the energy from the functional is minimized. In DFT-calculations

this is done by using approximate forms of the functional as described in detail later, see sec-

tion 5.2.3.

5.2.2 The Kohn-Sham equations

Kohn and Sham developed a set of equations that are based on the theorems given by Ho-

henberg and Kohn[45]. These equations give an interpretation of the unknown exchange

functional, F [n(~r )]. They divided F [n(~r )] into three parts given as[40]:

F [n(~r )] = E non
ki n +EH +Exc (5.6)

where E non
ki n is the non-interaction kinetic energy, EH is the Hartree energy and Exc is the

exchange-correlation energy3.

Kohn and Sham presented a way to express each of these terms as a functional of the electron

density. The first term is given as [40]:

E non
ki n [n(~r )] =−1

2

n∑
i
Ψ∗

i (~r )∆2Ψi (~r ) (5.7)

where the argument later can be expressed in terms of electron density by using equation 5.4.

The second term is given as [40]:

EH [n(~r )] = 1

2

∫ ∫
n(~r )−n(~r ′)

|~r −~r ′|
d~r d~r ′ (5.8)

The Hartree energy, EH , comes from interactions between an electron at a distance~r from the

nucleus and the mean electron density at ~r ′ in a mean-field approximation[40]. The mean-

field represents the average (mean) field generated by all other electrons.

3Exc represents all the interaction energies gathered into one term.
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5.2.3 The exchange-correlation functional

The last term Exc is a bit more tricky to define compared to the two others. At this time DFT

does not give an absolute definition of the exchange-correlation energy. Exc covers all quan-

tum effects and cannot be expressed by physical terms for most systems, unlike EH and E non
ki n .

The only situation where the exchange-correlation functional can be derived exactly is for an

uniform electron gas[39]. In this case the electron density is constant and the functional can

be given as E electron gas
xc and Exc can be approximated to:

Exc = E electron gas
xc [n(~r )] (5.9)

The above equation gives the simplest approximation possible and is called the local density

approximation, LDA. By using this approximation the Kohn-Sham equations can be com-

pletely defined and the Schrödinger equation solved. It is important to note that this is just

an approximation and will therefore not solve the true Schrödinger equation. Other approx-

imations have been developed over time to give more accurate descriptions of the exchange

correlation functional. The general gradient approximation, GGA, takes into consideration

both the local electron density and the local gradient in the electron density. For calculations

performed in this project a sub-functional of GGA, PBEsol, is used. This functional, presented

by Perdew et al. in 2008[46], is developed especially for solids.

5.2.4 Result of DFT

To sum up, density functional theory describes energy as a functional of the electron density

to turn the unphysical wave functions into something physical and measurable. This makes

it possible to find an approximation to the solution of the Schrödinger equation. In principle

the Kohn-Sham equations have to be solved to find the electron density, and the electron

density has to be known to solve the Kohn-Sham equations. This means an iterative process

has to be performed to find the ground-state electron density. The process can be described

in four steps[39]:

1. Define an initial electron density, n∗(~r ), by guessing.
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2. Solve the Kohn-Sham equations with n∗(~r ) to find the single-particle wave functions,

Ψi (~r ).

3. Find the electron density, nK S(~r ), by solving equation 5.4 with the value for Ψi (~r ) cal-

culated in 2.

4. Compare n∗(~r ) with nK S(~r ). When these are equal the ground-state electron density is

found. If not, start with nK S(~r ) at step 2.

The next section will describe how VASP interpret the principles behind the density func-

tional theory to give a computational tool that can describe properties of all materials.

5.3 From theory to calculations

Density functional theory provides a set of basic principles and equations that make it pos-

sible to find the ground-state energy and properties for different materials. To convert this

information into something useful in the computational world a few concepts and approxi-

mations have to be defined.

5.3.1 From bulk to k-space

Supercell

A material exists of a high semi-finite number of atoms and it would be computational ex-

hausting to include calculations for all these atoms. The first approximation is to reduce the

bulk material to periodically duplicated supercells[40]. A supercell is several unit cells put

together that efficiently describes the bulk material. It is also big enough to properly describe

interactions inside the material. Calculations are done on a single supercell and then copied

to all the other supercells to constitute an approximation to the bulk material.

Brillouin zone

For DFT calculations the main goal is to be able to calculate the bulk by looking at a small as

possible piece of the material. The next step is to take advantage of how periodicity acts in

reciprocal space. The Brillouin zone (BZ) is the primitive cell in reciprocal space. It possesses

the characteristic that all points outside the first BZ are equivalent to a point inside the first
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BZ due to the periodicity of the reciprocal lattice. In mathematical terms this can be written
~k ′ =~k+~G where ~k ′ is a wave vector outside the first BZ. Meaning two~k-vectors, wave vectors,

that differ from each other by adding or subtracting n~G are equal. To solve the Kohn-Sham

equations it is therefore only necessary to look at a single BZ. The first BZ can be reduced

to the irreducible Brillouin zone (IBZ) by looking at symmetry from inversion and rotation

operation. This will reduce the number of~k-points further.

k-point density

Reciprocal space is the Fourier transform of real space. The characteristic that something

large in real space becomes small in reciprocal space can therefore be used to reduce the cal-

culation size for large cells. Even though any point in the IBZ represents a~k-point, giving an

infinite number of~k-vectors, the properties of a material change smoothly. This means it is

only necessary to sample a finite number of~k-points that will describe each region[40]. For a

large cell fewer k-points are necessary than for a small cell, referring to the fact that a big area

in real space is small in reciprocal space.

Mathematically this can be described and verified through Bloch’s theorem, equation 5.10:

Ψk (~r ) = exp(i~k ·~r )u~k (~r ) (5.10)

where~r is the position vector in real space and uk is a function with the same periodicity as

the supercell. The result of this theorem is that the Schrödinger equation can be solved for

each value of ~k independently, as stated earlier. From a computational point of view it will

be a goal to use as few k-points as possible. Choosing this k-value is an important part of

DFT-calculations. Therefore all systems should test their k-point-convergence before reliable

calculations can be done.

The result of these last three topics is that the bulk material can be described only by calcu-

lating a finite number of k-points. The size of the calculations has been drastically reduced,

and the computational efficiency is much higher.
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5.3.2 Cut-off energy

The term uk that appears in Bloch’s theorem can be defined as the following according to its

periodicity[39]:

u~k (~r ) =∑
~G

exp[i~G ·~r ] (5.11)

By including equation 5.11 in Bloch’s theorem, equation 5.10 becomes:

Ψk (~r ) =∑
~G

exp[i (~G +~k)~r ] (5.12)

The problem with this expression is that solving the equation, even for only one k-point, re-

quires that an infinite number of ~G has to be taken into consideration. To solve this problem

it is efficient to introduce an upper energy limit that confine which solutions that have to be

evaluated. Solutions of high energies often represents unbound free electrons[40] that are

not relevant for most material properties. As a consequence, solutions with lower energies

are the most important for describing a material. The solution of the Schrödinger equation

comes in terms of kinetic energy given as[39]:

E = ~2

2m
|~k + ~G|2 (5.13)

Applying the cut-off energy gives the following equality:

Ecut = ~2

2m
G2

cut (5.14)

Equation 5.12 will now sum up over a finite number of ~G-vectors and the problem is again

possible to solve. To reduce the computational effort it will be desirable to choose a small as

possible cut-off energy. As well as for k-points, choosing the cut-off energy is an important

step in applying DFT. A convergence test on the cut-off energy has to be done for all systems

before reliable calculations can be performed.

5.3.3 Pseudopotentials

The last concept to be introduced is the use of pseudopotentials. To reduce the number of

electrons that have to be calculated the nucleus and core electrons are frozen, thus they are
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kept constant. In general this can be done because the valence electrons dominate chemical

bonding and most physical properties. This approximation will then reduce the complexity

of solving the Schrödinger equation, as well as it will lead to an easier computational descrip-

tion of the valence wave functions. A pseudopotential replaces the electron density for the

core electrons with a constant density developed to match various physical properties[39].

A pseudopotential is given for an isolated atom of one element and by combining the pseu-

dopotential for different atoms calculations on a compound can be done.

Different pseudopotentials for the same atom will include different numbers of valence elec-

trons. In general the more valence electrons included the higher cut-off energy is necessary.

Potentials that require high cut-off energy are often called hard potentials, while potentials

that require a low cut-off energy are often called soft potentials. It is obvious that soft po-

tentials are more computational efficient than hard potentials, but they will also give a less

accurate solution.

5.4 Numerical optimization

As mentioned, it is not possible to find the exact solution of the Schrödinger equation. DFT

only provides a numerical approach to the solution by use of different optimization methods[39].

As a consequence, two calculations with the exact same parameters will not result in the ex-

act same answer. When using numerical methods two criteria have to be set to decide when

the calculation has converged. For calculations on three-dimensional structures the energy

and force criteria are important.

5.4.1 Energy criterion

The energy criterion decides when electronic convergence is reached. The energy is calcu-

lated by solving the Schrödinger equation as explained above. When the difference between

the energy of two iterations becomes smaller than the stated energy criterion the calculation

stops and the atoms relax into the new positions. The energy criterion is set close to zero. A

smaller value gives a more accurate solution, but also requires more computational effort.
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5.4.2 Force criterion

The force on an atom i was defined by Feynman in 1939 as[47]:

~Fi = δE(~r )

δ~ri
(5.15)

where~ri is the position of the i th atom and E(~r ) is the average energy of the system. In the

ground-state the force on all atoms should be zero. The force criterion decides when ionic

convergence is reach, meaning when all the forces on the atoms are below a stated value.

As for the energy criterion this value is set close to zero, and the smaller number the more

accurate solution. However, a smaller value also means more computational effort.

5.5 Types of DFT-calculations

DFT can be used to calculate different properties and give valuable information about the

material. A brief overview of different areas of application of DFT is given below.

5.5.1 Calculation of minimum energy of a structure

The most general use of DFT is to calculate the total energy of a set of atoms prescribed at spe-

cific positions in space[39]. By using numerical optimization and the iteration scheme given

in section 5.2.4 the Kohn-Sham equations can be solved by approximation, and the ground-

state energy for any structure calculated. Calculating the minimum energy of a structure is in

fact done every time a DFT-calculation is performed. This type of calculation calculates the

ground-state energy when every atom position in the supercell is fixed. The only criterion

that has to be obtained is the energy criterion, see section 5.4.1. Static calculation is another

name for this type.

Another use of DFT is to optimize structure parameters and find a geometry that minimizes

the ground-state energy. This is done by calculating the force on each atom after electronic

convergence is reached, meaning the energy criterion is fulfilled. The calculation adjusts the

atomic positions in accordance with the forces calculated, and starts over again. This loop

continues until the differences in the calculated force are less than the force criterion when
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comparing two relaxations. Ionic convergence is reached.

Two different types of ionic relaxations are performed in this project. Both explained below:

Fixed volume - The cell is relaxed until ionic and electronic convergence are reached. The

atom positions are allowed to change, while the cell shape (lattice parameters) and cell

volume are kept constant. In these calculations it is assumed that the defect concen-

tration is low enough (close to the dilute limit) so it does not affect the volume of the

cell.

Relaxed volume - The cell is relaxed until ionic and electronic convergence are reached. The

atom positions, cell shape (lattice parameters) and cell volume are allowed to change.

In these calculations it is assumed that the defect concentration is of an order of mag-

nitude so it affect the volume. Chemical expansion therefore needs to be taken into

account.

5.5.2 Density of states calculations

Density of states, from here on called DOS, is one of the primary quantities to describe the

electronic state of a material[39]. The DOS is given as:

ρ(E)dE = number of electron states with energies in the interval E to E +dE

In section 5.2.1 it was stated that idea behind DFT-calculations is to express the ground state

energy by means of the electron density. The electron density is given in the form exp(i~k ·~r ).

The energy of an electron associated with plane waves have the energy E = (~~k)2/2m. That

means when a DFT-calculation is performed the electronic density of states can be found by

integrating the resulting electron density in k-space[39]. Since the electronic DOS is found

by integrating in k-space a high k-point density is required for a detailed electronic DOS.

Local density of states, LDOS, is defined as the number of electronic states at a specific energy

weighted by the fraction of the total electron density for those states that appears in a specific

volume around a nuclei[39]. LDOS shows the density of state of each atom and its respective

orbitals. This is done by assuming a spherical volume and using the radius of each atom to

classify what parts of the total DOS belong to each atom and orbital.
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5.5.3 Calculations of activation energies for transitions

In theoretical chemistry and condensed matter physics it is often of interest to identify a low-

est energy path for an arrangement of atoms from one stable configuration to another. This

kind of path is in literature referred to as "the minimum energy path" (MEP)[48]. The sad-

dle point along the MEP gives the potential energy maximum, also known as the activation

energy barrier for the transition. It exists several methods for finding the MEP. The climbing

image nudged elastic band method is the method used in this project. This method is de-

scribed in further detail below.

Plain elastic band method

The plain elastic band method is used to find the MEP. It is a chain-of-states method. A chain-

of-state method consists of several states, from here on called images, that are connected to

yield a path. The objective function4 is given for the plain elastic band method as[39]:

M PEB (~r1, ...,~rP ) =
P−1∑
i=1

E(~ri )+
P∑

i=1

k

2
(~ri −~ri−1)2 (5.16)

where ~ri is the position of the images, P the number of images, k the spring constant that

connects adjacent images and E(~ri ) the total energy of the i th image. R0 and RN represent

energy minimized start and end points, thus the states where the activation energy barrier

should be found. The MEP is found by minimizing the object function given in 5.16 with

respect to the intermediate images while keeping the start and end points constant. However,

the plain elastic band method has two problems that often result in incorrect MEPs. Both

problems connect to the spring constant k. If the spring constant between the images are too

low the images tend to slide down the energy landscape away from the MEP[39]. If the spring

constant is too high the calculated MEP cuts the corner of the real MEP, thus overestimating

the activation energy for the transition.

4An objective function is a function which goal is to find a maximum or minimum of the function by using
nonlinear programming techniques.
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Nudged elastic band method

The nudged elastic band (NEB) method is derived from the plain elastic band method and

designed to solve the problems regarding the spring constant. With DFT the force on each

image can be calculated:
~Fi =∆E(~ri ) (5.17)

The direction of the path can be estimated as a unit vector, τ̂i , pointing along the line between

two adjacent images[39]. Mathematically, this is expressed as: τ̂i =~ri+1 −~ri−1. An image will

be at the MEP if all the forces acting on the image, except the force along the direction of the

path, are zero. Thus, the following equation must be satisfied:

~F⊥
i = ~Fi − (~Fi · τ̂i )τ̂i = 0 (5.18)

To adjust the images they can be moved "downhill" along the direction of ~F⊥
i . To include the

harmonic springs between the images the spring constant has to be added to the expression.

The updated downhill direction then becomes:

~Fi ,upd ate = ~F⊥
i +~Fi ,spr i ng = ~F⊥

i +k(|~ri+1 −~ri |− |~ri −~ri−1|) (5.19)

The nudged elastic band method includes one more observation; The only forces of interest

defined by the elastic spring are those that point along the direction of the MEP. It is desired

that the spring forces only act to keep the images evenly spread out along the images, and not

pull the images away from the MEP[39]. This is solved by defining:

~F ||
i ,spr i ng = (~Fi ,spr i ng · τ̂i )τ̂i (5.20)

and updating the images with respect to this:

~Fi ,upd ate = ~F⊥
i +~F ||

i ,spr i ng (5.21)

The calculation has converged when ~Fi ,upd ate is zero for all images. The images will then lay

on the MEP and the energy barrier for a transition can be found be analyzing the minimum

energy for the different images.
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Climbing image nudged elastic band method

The climbing image nudged elastic band method (CI-NEB) is a modification of the nudged

elastic band method for finding minimum energy paths. The method was developed by

Henkelman et al.[49]. In the CI-NEB a rigorous convergence to a saddle point is obtained.

This is done without loosing information about the shape of the NEB, or causing added com-

putational effort. The method works in the following way. After a few iterations the image

with the highest energy is identified. This image is from now on called imax . The force on

imax is defined independently of the other images, meaning that the maximum energy image

is not affected by the spring forces[49]. The force on imax is the full force along the tangent of

the elastic band. This force is inverted such that the image tries to maximize its energy along

the elastic band and minimize it in all other directions. The image will climb up along the

elastic band and when it has converged the image will be at the exact saddle point. Hence,

imax is the climbing image. Since imax is not affected by the other images along the elastic

band the distance between imax and the two neighboring images might not be equal.

5.5.4 Polarization - Berry-Phase calculations

The modern theory of polarization was presented by King-Smith and Vanderbilt in 1993[50].

This method is often called the "Berry-Phase theory of polarization" since the polarization is

expressed in terms of a quantum phase known as the Berry phase[33]. The theory will not be

explained in detail here, only a brief introduction is given. The reader is adviced to take a look

at the following sources for a better view: [50], [33] and [51].

The point charge model looks at each displacement from the non-polar state as a localized

dipole, see section 4.2.3. For a crystal this is not possible since the electron charge density

is continuous[51]. As mentioned in section 4.2.3 both the ionic and electronic contribution

to polarization have to be taken into account. The ionic contribution represents the point

charge ions and can be expressed through the point charge model in equation 4.2. The elec-

tronic contribution has to be explained in terms of quantum mechanics with the help of Wan-

nier functions[32]. The Wannier function in a unit cell ~R associated with band n is defined

as:

wn(~r −~R) = V

2π3

∫
B Z

d 3~ke−i~k~RΨn~k (~r ) (5.22)
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where V is the unit cell volume, Ψ the Bloch functions and the integral is over the Brillouin

zone. The Bloch function, equation 5.10, is inserted and gives the following:

wn(~r −~R) = V

2π3

∫
B Z

d 3~ke−i~k(~r−~R)un~k (~r ) (5.23)

Unlike the Bloch functions the Wannier functions are localized. The Wannier functions can

therefore be used to express the electronic charges separately. The centre of the electronic

charge is for ferroelectric materials not the same as for point charges. The average position

of the electrons in a Wannier function is called the Wannier centre, r̄n . To simplify, all the

electrons are treated as sitting at that point[32]. The polarization is given as the sum over

the contribution from the point charges plus the sum over the electronic charges centred

at the Wannier centres of each occupied Wannier function n[32]. Wave functions, with the

approximations from Kohn-Sham, are a direct output of electronic relaxation calculations.

This information can therefore be extracted from an electronic relaxation DFT calculation,

and be used to calculate the polarization.

5.5.5 Limitations of DFT

It is important to be aware that practical DFT calculations are not exact solutions of the

Schrödinger equation. Since the exchange-correlation functional is not known exactly the

solutions calculated are only approximations of the true solutions. To defend DFT, these as-

sumptions are often good approximations if the user is aware of the limitations of DFT. In the

following section some of the most important limitations are addressed[39]:

• Calculations of electronic excited states are often inaccurate because the theorems de-

veloped by Kohn and Hohenberg only apply to the electron ground-state energy.

• DFT often underestimate the band gap for transition metal oxides with unoccupied d-

orbitals. This can be solved by applying a potential, U, to best describe the experimental

band gap.

• When using the LDA or GGA functional DFT does not take into account the weak van

der Waals attractions that exist between molecules and atoms.

• The LDA functional, especially, has a tendency to overbind. That means the lattice pa-

rameters are typically underestimated while properties as cohesive energies and elastic
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moduli are overestimated. The GGA functional tends to underbind. The lattice param-

eters are often overestimated and the cohesive energies underestimated. The PBEsol

functional[46] is made for solids and is quite accurate both with respect to lattice pa-

rameters and cohesive energies.

5.6 Vienna Ab-initio Simulation Package (VASP)

The basis of DFT is presented, and necessary approximations and computational approaches

have been explained. The next step is to explain the tool that combines this in a simulating

software, VASP. In this project the features of VASP are only described briefly and the reader

is advised to read the VASP manual[52] if a more thorough introduction is desired.

5.6.1 Features

VASP is a simulating tool that calculates the ground-state properties by doing electronic and

ionic relaxations using the Kohn-Sham equations, a plane wave basis set and pseudopoten-

tials. The relaxations are done numerically by use of a self-consistent cycle. The procedure

VASP follows can be described by the following four steps[40]:

1. Choose a pseudopotential and an exchange-correlation functional. Guess a trial elec-

tron density.

2. Calculate all the energy terms in the Schrödinger equation.

3. Solve the Kohn-Sham equations by iteration.

4. Generate a new electron density from the calculated orbitals and start over.

For a static calculation VASP seek electronic convergence defined by the energy criterion to

find the ground-state energy, see section 5.4.1. When electronic convergence is reached VASP

print out the required information from the calculations into output-files. If a fixed relaxation

is performed VASP calculate the force on the atoms when electronic convergence is reached.

The atoms are moved into new position while the cell shape and volume are held constant.

The calculations then start over. This continues until the force criterion is reached. For calcu-

lation allowed relaxation of volume and cell shape the same procedure is used, except atom

positions, lattice parameters and volume are changed between each ionic step. To speed
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up calculations it would sometimes be convenient to use symmetry-constrained relaxations,

called selective dynamics. With selective dynamics the user can specify which atoms that are

allowed to move and which are confined to a specific position.

5.6.2 Input-files

To be able to run a simulation in VASP four input-files are required. Appendix A gives a more

detailed description of these files.

INCAR The INCAR-file gives important parameters/tags that classify how a calculation should

be perform. This regards both accuracy and type of relaxation, as well as spin parame-

ters. For the calculations in this project the following tags are of special importance:

• ENCUT: Defines the cut-off energy.

• EDIFF: Defines the accuracy required by the electronic steps, energy criterion.

• EDIFFG: Defines the accuracy required by the ionic steps, force criterion.

• LDAUU: Defines the Coulomb-correction.

• MAGMOM: Defines spin states on atoms in the cell.

• ISIF: Defines type of relaxation by specifying degrees of freedom during one ionic

relaxation.

• NSW: Defines the maximum number of ionic steps.

KPOINTS The KPOINTS-file defines the k-point density for the calculations and is given in

terms of number of k-points that should be used in each direction. For a hexagonal cell

the k-mesh is given as axaxc, where a refers to number of k-points along the a lattice

parameter and c to the number of k-points along the c lattice parameter.

POTCAR The POTCAR-file gives information about the pseudopotential used for each atom

in the calculations.

POSCAR The POSCAR-file gives the position of each atom and length of each lattice vector

in the cell (unit cell or supercell).
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Computational procedure

The following section presents computational details for the calculations. VASP version 5.3.3

were used on the calculations to find the ground-state energy for non-stoichiometric InMnO3.

VASP version 5.3.5 were used when doing calculations on phase transitions and polarization.

The exchange-correlation functional used was PBEsol[39], a functional especially developed

for solids. All convergence testing and parameter fitting were done on a 30 atoms cell.

6.1 Convergence testing

When performing DFT calculations the goal is to keep the computational effort as low as pos-

sible, while still producing valuable results. One way to reduce the computational effort is to

test which values for different parameters gives convergence of the solution. The solution is

given as a complicated set of mathematical equations[39]. Because of this, several numerical

approximations have to be used to calculate the ground-state energy. To assure that the so-

lutions calculated with DFT are accurate approximations of the true solution it is important

to use parameters that converge. When the parameters used are made stricter the solution

becomes more accurate, but the calculation effort increase. Convergence is reached when

the change in energy is minimal when making the criteria/parameters stricter. Before per-

forming calculations on a supercell, see section 6.3, several parameters were tested to find

the least strict choice that still gave convergence.

6.1.1 K-point and cut-off testing

Convergence testing for k-point density and cut-off energy were done in a previous project[1].

Testing on both the P 3̄c1- and P63cm-structure were performed. For convergence testing on

k-point density and cut-off energy a perfect 30 atoms unit cell were used. A summary of the

51
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chosen parameters for further calculations are given in Table 6.1. A full overview of the k-

point and cut-off testing is given in Appendix B.1.

Table 6.1: Summary of chosen values for k-point density and cut-off energy for calculations
on P 3̄c1 and P63cm for InMnO3. Calculations were performed on a 30 atoms cell.

Parameter Value

K-point density 4x4x2

Cut-off energy 550eV

6.1.2 Force testing

The force criterion that gives convergence has to be found. The meaning and use of the force

criterion were discussed in section 5.4.2. Convergence of the force criterion has been tested

for both phases, P 3̄c1 and P63cm, for InMnO3. Convergence testing on forces were per-

formed on a stoichiometric unit cell and a unit cell with an interstitial oxygen. The most

stable interstitial oxygen positions for P 3̄c1 and P63cm from calculations done in previous

work were used, see Appendix C.2. This was done to investigate the importance of the force

criterion on calculations with and without point defects. Calculations were done for the fol-

lowing force criteria: -0.1 eV, -0.05 eV, -0.04 eV, -0.03 eV, -0.02 eV, -0.01 eV, -0.005 eV and -0.001

eV. The calculation details for force testing are given in Table 6.2. The interstitial oxygen po-

sitions used are given in Table 6.3 for P 3̄c1 and P63cm.

Table 6.2: Calculation details for test of convergence on the force criterion. All calculations
done with a 30 atoms cell.

Relaxation ENCUT
[eV]

EDIFF
[eV]

EDIFFG
[eV]

K-mesh

Force Constant volume 550 10e-6 Varying 4x4x2

When analyzing the trend in Figure 6.1, 6.2 and 6.3 a convergence pattern is observed. This

reflects both testing for P 3̄c1, P63cm and the energy difference between the two structures.

For a non-stoichiometric cell with an interstitial oxygen a convergence pattern is to be found

for the P63cm phase, but not for P 3̄c1. The jumping of the ground-state energy for P 3̄c1

mount back to unpublished work performed by ph.D student Sandra Helen Skjærvø showing
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Table 6.3: Interstitial oxygen positions for force testing on the P 3̄c1- and P63cm-structure of
InMnO3. The positions are given as fractional coordinates.

Structure x y z

P 3̄c1 1/3 1/3 3/4

P63cm 1/3 1/3 0

that three positions for the interstitial oxygen gives a minimum. The oscillation between en-

ergies for low force criteria is therefore most likely related to the interstitial oxygen relaxing

into different minimums. Because of this the conclusion regarding choice of force criteria is

based on the stoichiometric data. In further calculations on defects a force criterion on -0.05

eV is used. It is chosen after evaluating the impact of a stricter force criterion on the accuracy

versus the increased computational effort. Since the energy differences obtained by using a

stricter force criterion are not much smaller (only an improvement in the range of 1-2 meV)

it was concluded that for use in this project -0.05 eV was a sufficient criteria.
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Figure 6.1: Convergence of force criterion for the P 3̄c1-structure for a stoichiometric cell
and a non-stoichiometric cell with an interstitial oxygen. The interstitial oxygen positions
for P 3̄c1 and P63cm are given in Table 6.3. All calculations were performed with PBEsol and
variables as given in Table 6.2.
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Figure 6.2: Convergence of force criterion for the P63cm-structure for a stoichiometric cell
and a non-stoichiometric cell with an interstitial oxygen. Interstitial oxygen positions are
given in Table 6.3. All calculations were performed with PBEsol and variables as given in
Table 6.2.
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Figure 6.3: The energy difference between P 3̄c1 and P63cm for the convergence of the force
criterion for a stoichiometric cell and a non-stoichiometric cell with an interstitial oxygen. In-
terstitial oxygen positions are given in Table 6.3. All calculations were performed with PBEsol
and variables as given in Table 6.2.
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6.2 Hubbard U and pseudopotentials

In previous work with DFT on InMnO3 testing on suitable choices for Hubbard U and pseu-

dopotentials were tested. Results from all the testing as well as arguments for the chosen

parameters are to be found in Appendix B.2. These parameters are used for further calcula-

tions in this project. A summary is given in Table 6.4.

Table 6.4: Summary of chosen parameters for Hubbard U and pseudopotentials. Detailed
description and results given in Appendix B.2.

Parameter Value/type

Hubbard U 5 eV

Pseudopotentials In_d, Mn_sv, O

6.3 The supercell approach

To give a more realistic description of how a defect affects the structure a supercell was used

to minimize the defect-defect interactions, see Section 6.3. Putting together single unit cells

makes a supercell. The unit cells used to make the supercell for each structure, P 3̄c1 and

P63cm, were fully relaxed with respect to atomic positions and volume. In this case it was

desired to use a isotropic cell and the supercell was constructed by increasing with another

unit cell in x- and y-direction, see Figure 6.4. The result is a supercell with double length in x-

and y-direction and same length in z-direction.

When expanding the unit cell into a supercell the k-mesh can be changed. As mentioned

in Section 5.3.1 a larger cell requires a less dense k-mesh. The required k-mesh for a single

unit cell was 4x4x2, as shown in Figure B.1. Since the supercell leads to a doubling in x- and

y-direction it is safe to reduce the k-point density in these directions by diving by two. The

length of the c-axis was not changed when making the supercell and this value is therefore

kept constant. The k-mesh used for the supercell calculations was then 2x2x2.

The supercells used in this project were made from single unitcells with the P 3̄c1 and P63cm

structure. The unit cells were first relaxed w.r.t. atom positions, lattice parameters and vol-
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Unit cell
Supercell

Figure 6.4: Schematic representation of the expansion from a single unit cell to a 2x2x1 su-
percell.

ume with an energy criterion of 10-6 eV and force criterion of -0.01 eV. To be able to achieve

convergence for supercells with defects the force criterion was adjusted to -0.05 eV.

6.4 Ground-state energy calculations

To find the ground-state energy for supercells with different defects the parameters discussed

above were used. See also a summary in Table 6.5. Removing an atom from a supercell is

significant change in the structure. The relaxation of the structures has proved to be difficult.

Therefore the conjugate gradient algorithm for optimization of ions between each ionic step

is used. This algorithm is recommended in the VASP tutorial for difficult relaxations[52].

6.5 Climbing image nudged elastic band calculations

The climbing image nudged elastic band (CI-NEB) approach was used to calculate the acti-

vation energy barrier for transitions between P 3̄c1 and P63cm. This is a method developed

by Henkelman et al.[49] at the University of Austin. The method is described in more detail

in section 5.5.3. CI-NEB calculations were done by making intermediate images between al-

ready relaxed initial and end states. The images were made by utilizing a script, nebmake.pl,

from a script-package called VTST-tools the Henkelman group at the University of Austin[53].

Parameters used for calculations on phase transitions were chosen to be the same as for re-
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laxation to find the ground-state energy for defects. This was done to give a better basis for

comparison. To be sure the force criterion of -0.05 eV was sufficient to reach convergence

also for CI-NEB calculations one control calculation was performed were the criterion was

increased to -0.01 eV. This calculation reproduced the same results and -0.05 eV can therefore

be used with confident.

Another point to note is that a different optimization algorithm was used for CI-NEB com-

pared to ground-state energy calculations. This because the changes in the atompositions

for a CI-NEB method are very small, and it is therefore expected that the new structures

that shall be relaxed are close to the local minimum. The VASP tutorial then recommend

the quasi-Newton algorithm for relaxations[52].

6.6 Berry-Phase calculations

For Berry-Phase calculations only static calculation are done where the atom positions, lat-

tice parameters and volume are kept constant. Parameters used to calculate the polariza-

tion were chosen to be the same as for relaxation to find the ground-state energy for de-

fects. Berry-Phase calculations were done by utilizing the already relaxed structure of the

polar P63cm phase for a stoichiometric and different non-stoichiometric supercells. A cen-

trosymmetric, non-polar, reference structure and intermediate structures between the polar

and non-polar state were made. The intermediate structures were made by utilizing a script,

posinterp.pl, from a script-package called VTST-tools by the Henkelman group at the Univer-

sity of Austin[53].

6.7 Summary of parameters

Table 6.5 gives a brief overview of the parameters used for the different types of calculations

performed in this project. A description of the parameters were presented in section 5.6.2.
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Table 6.5: A summary of the chosen parameters for the DFT-calculations performed in this
project for 120 atom supercells.

Category Defects, phase transitions
and polarization

Density of states

Convergence criteria

PREC Normal High

ENCUT [eV] 550 550

EDIFFG [eV] -0.05 -0.05

EDIFF [eV] 1E-08 1E-08

K-mesh

Type Gamma Gamma

Value 2x2x2 4x4x4

Pseudopotentials

Indium PAW_PBE In_d 06Sep2000 PAW_PBE In_d 06Sep2000

Manganese Mn_sv 23Jul2007 Mn_sv 23Jul2007

Oxygen PAW_PBE O 08Apr2002 PAW_PBE O 08Apr2002
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Results

The following section presents results from DFT-calculations done in this project. All calcula-

tions were performed by using the modified GGA exchange-correlation functional, PBEsol[46].

As mentioned, PBEsol is an exchange-correlations functional especially developed for calcu-

lations on solids.

7.1 In-vacancies

The calculations were done both with fixed and relaxed volume, see explanation in section

5.5.1 for the difference between these two. The calculations were done with a 2x2x1 supercell

with one In-vacancy and one In-O-vacancy pair respectively. The formula for the different

cases then becomes:

• Oxidizing conditions: In0.958MnO3

• Middling reducing conditions: In0.958MnO2.986

7.1.1 Oxidizing conditions - Only In-vacancy

Table 7.1 and Table 7.2 list the calculated values for the ground-state energy and volume for

the different positions of In-vacancies. Figure 7.2 shows a barplot of the calculated ground-

state energy and volume. The supercell was created from a unit cell that was first allowed

to fully relax its atom positions, lattice parameters and volume, see section 6.3. Figure 7.3

shows the density of states and Figure 7.1 the structure after relaxation for the most stable

configuration in P 3̄c1 and P63cm.

59
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(a) Relaxed structure of P 3̄c1 with an indium va-
cancy at the In1 position seen along the c-axis.
The calculation was done with fixed volume. The
diffuse atom is the In-vacancy.

(b) Relaxed structure of P63cm with an indium
vacancy at the In2 position seen along the c-axis.
The calculation was done with fixed volume. The
diffuse atom is the In-vacancy.

Figure 7.1: Only In vacancy.

Table 7.1: Calculated ground-state energy for a 120 atom supercell with an In-vacancy for
P 3̄c1 and P63cm. Calculations were done for the different In-vacancy positions given in Table
3.1. Both fixed volume and relaxed volume calculations were performed.

Structure In-pos. E0 [eV/120 atom cell] w/
fixed volume

E0 [eV/120 atom cell] w/
relaxed volume

P 3̄c1 In1 -809.10070 -809.18887

In2 -809.09702 -809.15608

P63cm In1 -808.90009 -808.99524

In2 -808.96825 -809.03815
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Table 7.2: Calculated volume and lattice parameters for a 120 atom supercell with an In-
vacancy for P 3̄c1 and P63cm. The lattice parameters are divided on two and volume on four
to ease the comparison with experimental values. Calculations were done for the different
In-vacancy positions given in Table 3.1. Both fixed volume and relaxed volume calculations
were performed.

Structure In-pos. Lattice
parameter, a [Å]

Lattice
parameter, c [Å]

Volume per unit
cell, c [Å3]

P 3̄c1 In1 5.90640 11.59943 347.01

In2 5.90483 11.60264 347.17

Fixed vol. 5.90848 11.49836 347.63

P63cm In1 5.87025 11.57802 346.73

In2 5.87801 11.57499 346.85

Fixed vol. 5.91403 11.46870 347.39
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Figure 7.2: Barplot showing a) the ground-state energies and b) the volumes calculated for
a non-stoiciometric supercell for the P 3̄c1 and P63cm phase of InMnO3 with an In-vacancy.
Structural relaxations were done with fixed and relaxed volume. The In-vacancy positions are
given in Table 3.1.
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Figure 7.3: Plot of the density of states for a non-stoiciometric 120 supercell for the P 3̄c1
and P63cm phase of InMnO3 with an In-vacancy. For the P 3̄c1-phase the In1-position is
shown and for the P63cm-phase the In2-position is shown. Calculations were done with fixed
volume.
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7.1.2 Reducing conditions - In-O vacancy pairs

Table 7.4 and Table 7.3 list the calculated values for the ground-state energy and volume

for the different In-O-vacancy pairs for P 3̄c1. Figure 7.4 shows a barplot of the calculated

ground-state energy when an In-vacancy and an O-vacancy is present. The supercell was

created from a unit cell that was first allowed to fully relax its atom positions, lattice param-

eters and volume, see section 6.3. Figure 7.5 shows the density of states and Figure 7.8 the

relaxed structures for each O-type position for the In1 position in P 3̄c1.

Table 7.3: Calculated volume and lattice parameters for a 120 atom supercell with an In-O-
vacancy pair for P 3̄c1. The lattice parameters are divided on two and volume on four to ease
th comparison with experimental values. Calculations were done the different In-vacancy
positions given in Table 3.1. The oxygen positions for middling reducing conditions are given
in Table 3.3.

In-
pos.

O-
pos.

O.type Lattice
parameter, a [Å]

Lattice
parameter, c [Å]

Volume per unit
cell, c [Å3]

In1 O1 O-type3 5.90709 11.53889 348.95

O2 O-type1 5.90543 11.56369 349.53

O3 O-type2 5.90848 11.49836 347.63

In2 O1 O-type1 5.91407 11.53386 349.40

O2 O-type3 5.90593 11.54097 349.03

O3 O-type2 5.90848 11.49836 347.63

Fixed volume case: 5.90848 11.49836 347.63
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Table 7.4: Calculated ground-state energy for a 120 atom supercell with an In-O-vacancy pair
for P 3̄c1. Calculations were done with the different In-vacancy positions given in Table 3.1.
The oxygen positions for middling reducing conditions are given in Table 3.3.

In-pos. O-pos. O-type E0 [eV/120 atom cell] w/
fixed volume

E0 [eV/120 atom cell] w/
relaxed volume

In1 O1 O-type3 -802.65713 -802.71843

O2 O-type1 -803.04141 -803.14190

O3 O-type2 -803.07944 -803.07944

In2 O1 O-type1 -803.19577 -803.27012

O2 O-type3 -802.68988 -802.75643

O3 O-type2 -803.08832 -803.08832
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Figure 7.4: Barplot showing a) the ground-state energies and b) the volumes calculated for
a non-stoiciometric 120 atom supercell for the P 3̄c1 phase of InMnO3 with an In-O-vacancy
pair. Relaxations were done with fixed and relaxed volume. The In-vacancy positions are
given in Table 3.1 and O-vacancy positions in Table 3.3.
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Figure 7.5: Plot of the density of states for a non-stoiciometric 120 atom supercell for the
P 3̄c1 phase of InMnO3 with an In-O-vacancy pair. The plot shows the density of state for
different oxygen vacancy positions and the In1 position. Calculations were performed with
fixed volume.
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Table 7.5 and Table 7.6 list the calculated values for the ground-state energy and volume for

the different In-O-vacancy pairs for P63cm. Figure 7.6 shows a barplot of the calculated

ground-state energy when an In-vacancy and an O-vacancy is present. The supercell was

created from a unit cell that was first allowed to fully relax its atom positions, lattice param-

eters and volume, see section 6.3. Figure 7.7 shows the density of states and Figure 7.8 the

relaxed structure for the each O-type position for the In1 position in P63cm.

Table 7.5: Calculated ground-state energy for a 120 atom supercell with an In-O-vacancy pair
for P63cm. Calculations were done the different In-vacancy positions given in Table 3.1. The
oxygen positions for the middling reducing positions are given in Table 3.2 for P63cm.

In-pos. O-pos. O-type E0 [eV/120 atom cell] w/
fixed volume

E0 [eV/120 atom cell] w/
relaxed volume

In1 O1 O-type2 -803.05637 -803.05637

O3 O-type1 -803.20032 -803.30555

O4 O-type3 -802.69043 -802.77178

In2 O1 O-type2 -803.01675 -803.06348

O3 O-type3 -802.57293 -802.67295

O4 O-type1 -803.28351 -803.37293

Table 7.6: Calculated volume and lattice parameters for a 120 atom supercell with an In-O-
vacancy pair for P63cm. Calculations were done the different In-vacancy positions given in
Table 3.1. The oxygen positions for the middling reducing positions are given in Table 3.2.

In-
pos.

O-
pos.

O.type Lattice
parameter, a [Å]

Lattice
parameter, c [Å]

Volume per unit
cell, c [Å3]

In1 O1 O-type2 5.91403 11.46870 347.39

O3 O-type1 5.89937 11.54533 349.12

O4 O-type3 5.90315 11.53009 348.81

In2 O1 O-type2 5.89374 11.53310 347.71

O3 O-type3 5.90941 11.54855 348.88

O4 O-type1 5.90329 11.53467 349.03

Fixed volume case: 5.91403 11.46870 347.39
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Figure 7.6: Barplot showing a) the ground-state energies and b) the volumes calculated for a
non-stoiciometric 120 atom supercell for the P63cm phase of InMnO3 with an In-O-vacancy
pair. Relaxations were done with fixed and relaxed volume. The In-vacancy positions are
given in Table 3.1 and O-vacancy positions in Table 3.2.
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Figure 7.7: Plot of the density of states for a non-stoiciometric 120 atom supercell for the
P63cm phase of InMnO3 with an In-O-vacancy pair. The plot shows the density of state for
different oxygen vacancy positions and the In1 position. Calculations were performed with
fixed volume.
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(a) P 3̄c1 - In2-Otype1. (b) P63cm - In1-Otype1.

(c) P 3̄c1 - In2-Otype2 (d) P63cm - In1-Otype2

(e) P 3̄c1 - In2-Otype3 (f ) P63cm - In1-Otype3

Figure 7.8: Relaxed structure of In-O vacancy pairs with different configurations of oxygen
and indium position. The positions respective positions can be found in Table 3.1, 3.3 and
3.2. All structures are seen along the c-axis. Calculations were performed with fixed volumes.
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7.1.3 Energy difference

Figure 7.9 shows the calculated energy difference between P 3̄c1 and P63cm, ∆E = EP 3̄c1 −
EP63cm . The two first columns represent the case where only an In-vacancy is present. The

six last columns represent situations where an In-O-vacancy pair is present. From Table 3.1 it

is observed that In1 position of P 3̄c1 is equivalent to the In2 position of P63cm. Likewise, the

In2 position of P 3̄c1 is equivalent to the In1 position of P63cm. When looking at the energy

difference between the two structures it is adequate to look at the energy difference between

positions that represent the same in each structure. Hence, the energy of the In2 position for

the O-type1 configuration in P63cm is subtracted from the energy of the In1 position for the

O-type1 configuration in P 3̄c1. The same approach is used for all the other positions.
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Figure 7.9: A barplot of the energy difference,∆E = EP 3̄c1−EP63cm , between P 3̄c1 and P63cm
for different In-vacancies. The In-position in the x-axis label represents that of P 3̄c1. The
opposite position is equivalent for P63cm. The energy differences for a stoichiometric cell is
added for comparison.
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7.1.4 Calculation of formation energy of defects

To calculate the formation energy for an In-vacancy and an In-O-vacancy pair equation 3.18

and 3.19 were used. The chemical potential of In was calculated by the same method as used

by Shigemi et al. for KNbO3[54]. In2O3 was used to find an appropriate chemical potential

for In in InMnO3. The following equation was used:

µIn = 1

2
E In2O3 −

3

2
µO (7.1)

The ground-state energy for In2O3 was calculated by DFT with relaxed volume and the same

criteria as the defect calculations. The ground-state energy was found to be -29.93 eV/f.u.

Figure 7.10 shows the formation energy of the most stable configurations of In-vacancies and

In-O-vacancy pairs plotted against the chemical potential of oxygen.
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Figure 7.10: Plot of the formation energy of In-vacancies as a function of the chemical poten-
tial of oxygen. The calculations were performed with relaxed volume.
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7.2 Phase transition calculations

The activation energy barrier was calculated for a stoichiometric cell and defect cells. All

calculations were done two or three times, with one, three and five images. This was done to

verify that the correct minimum energy path (MEP) was found. The initial P 3̄c1 and P63cm

for the different defects and the stoichiometric cell were taken from relaxations done to find

the ground-state energy. All calculations were done on a 120 atom supercell, but the energies

are scaled down to a 30 atom unit cell.

7.2.1 Stoichiometric cell

Table 7.7 and Figure 7.11 shows the minimum energy path (MEP), as well as the calculated

activation energy barrier for a phase transition between P 3̄c1 (Initial state) and P63cm (Final

state) for a stoichiometric cell. Since one and three images did not give the same MEP a

calculation with five images were done for confirmation. A software called FINDSYM[55, 56]

was used on to identified the space group for each image. The tolerance for the software was

set to 0.1.
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Figure 7.11: Plot showing the minimum energy path for the phase transition between stoi-
chiometric P 3̄c1 and P63cm. Calculations were performed with fixed volume. FINDSYM[55,
56] was used to identify the space group for each image. The tolerance for the software was
set to 0.1.
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Table 7.7: Calculation of the minimum energy path for the phase transition between stoi-
chiometric P 3̄c1 and P63cm. Calculations were performed with fixed volume.

Images State E0 [eV/30 atom cell] w/
fixed volume

Energy diff. from P 3̄c1
[eV/30 atom cell]

1 P 3̄c1 -204.8330 0

Image1 -204.8335 -0.0005

P63cm -204.8649 -0.0319

3 P 3̄c1 -204.8330 0

Image1 -204.8414 -0.0084

Image2 -204.8323 0.0007

Image3 -204.8336 -0.0006

P63cm -204.8649 -0.0319

5 P 3̄c1 -204.8330 0

Image1 -204.8405 -0.0075

Image2 -204.8412 -0.0082

Image3 -204.8331 -0.00005

Image4 -204.8304 0.0026

Image5 -204.8382 -0.0053

P63cm -204.8649 -0.0319

7.2.2 Defect cells

The defect positions listed in Table 7.8 were used. These represent the most stable defect po-

sitions of interstitial oxygens and In-O vacancy pairs presented in this master thesis and in

previous project work. The oxygen vacancy position and In-vacancy position was chosen out

of convenience since both P 3̄c1 and P63cm were relaxed at these positions. To do calcula-

tions on phase transitions every atom in the P 3̄c1-structure have to represent an atom in the

P63cm-structure. Therefore the unit cell of P63cm was transposed with 3/4 in z-direction to

be similar to P 3̄c1. For all calculations on defect cells a 2x2x1 supercell were used. However,

the results from the calculations are presented in terms of a unit cell. In theory the top-most

point should be the same for both one, three and five images. This is not the case for a cell

with an interstitial oxygen and an In-O-vacancy pair. It seems that more images are necessary

to find the true MEP. The results are still useful for qualitative comparison.
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Table 7.8: Defect positions used for calculation on the activation energy barrier for different
non-stoichiometric cells when going from P 3̄c1 to P63cm for InMnO3.

Defect type Position in P 3̄c1 Position in P63cm Fractional coordinates

VIn-red. In2+Otype1 In1+Otype1 In(0,0,0) and O(0,0,1/4)

VIn-ox. In2 In1 In(0,0,0)

Oi Oi1 Oi1 (1/3,1/3,3/4)

VO O1-planar O3-planar (0,0,1/4)

Interstitial oxygen

Table 7.9 and Figure 7.12 show the minimum energy path (MEP), as well as the calculated

activation energy barrier. Since one and three images did not give the same MEP a calculation

with five images were done for confirmation.

Table 7.9: Calculation of the minimum energy path for the phase transition between non-
stoichiometric P 3̄c1 and P63cm with an interstitials oxygen at the position given in Table 7.8.
Calculations were performed with fixed volume.

Images State E0 [eV/30 atom cell] w/
fixed volume

Energy diff. from P 3̄c1
[eV/30 atom cell]

1 P 3̄c1 -205.9953 0

Image1 -205.9442 0.0512

P63cm -205.9988 -0.0035

3 P 3̄c1 -205.9953 0

Image1 -205.9964 -0.0011

Image2 -205.9631 0.0323

Image3 -205.9807 0.0146

P63cm -205.9988 -0.0035

5 P 3̄c1 -205.9953 0

Image1 -206.0037 -0.0084

Image1 -205.9937 0.0016

Image1 -205.9559 0.0395

Image1 -205.9794 0.0160

Image1 -205.9921 0.0033

P63cm -205.9988 -0.0035
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Figure 7.12: Plot showing the minimum energy path for the phase transition between non-
stoichiometric P 3̄c1 and P63cm with an interstitials oxygen at the position given in Table 7.8.
Calculations were performed with fixed volume.
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Vacant oxygen

Table 7.10 and Figure 7.13 show the minimum energy path (MEP), as well as the calculated

activation energy barrier.

Table 7.10: Calculation of the minimum energy path for the phase transition between non-
stoichiometric P 3̄c1 and P63cm with a vacant oxygen at the position given in Table 7.8. Cal-
culations were performed with fixed volume.

Images State E0 [eV/30 atom cell] w/
fixed volume

Energy diff. from P 3̄c1
[eV/30 atom cell]

1 P 3̄c1 -202.6631 0

Image1 -202.6076 0.0555

P63cm -202.6976 -0.0345

3 P 3̄c1 -202.6631 0

Image1 -202.6441 0.019

Image2 -202.6075 0.0556

Image3 -202.6473 0.0159

P63cm -202.6976 -0.0345
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Figure 7.13: Plot showing the minimum energy path for the phase transition between non-
stoichiometric P 3̄c1 and P63cm with an oxygen vacancy at the position given in Table 7.8.
Calculations were performed with fixed volume.

.
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Vacant indium

Table 7.11 and Figure 7.14 shows the calculated energy for the saddlepoint, as well as the

calculated activation energy barrier. This NEB calculation was also performed with a stricter

force criterion of -0.01 eV producing the same results. This indicates that the chosen force

criterion of -0.05 eV is sufficient for NEB calculations.

Table 7.11: Calculation of the minimum energy path for the phase transition between non-
stoichiometric P 3̄c1 and P63cm with an In-vacancy at the position given in Table 7.8. Calcu-
lations were performed with fixed volume.

Images State E0 [eV/30 atom cell] w/
fixed volume

Energy diff. from P 3̄c1
[eV/30 atom cell]

1 P 3̄c1 -202.2743 0

Image1 -202.2631 0.0112

P63cm -202.2250 0.0493

3 P 3̄c1 -202.2743 0

Image1 -202.2717 0.0026

Image2 -202.2646 0.0097

Image3 -202.2584 0.0159

P63cm -202.2250 0.0493
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Figure 7.14: Plot showing the minimum energy path for the phase transition between non-
stoichiometric P 3̄c1 and P63cm with an In-vacancy at the position given in Table 7.8. Calcu-
lations were performed with fixed volume.

.
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Vacant indium-oxygen pair

Table 7.12 and Figure 7.15 show the minimum energy path (MEP), as well as the calculated

activation energy barrier. Since one and three images did not give the same MEP a calculation

with five images were done for confirmation.

Table 7.12: Calculation of the minimum energy path for the phase transition between non-
stoichiometric P 3̄c1 and P63cm with an In-O-vacancy pair at the position given in Table 7.8.
Calculations were performed with fixed volume.

Images State E0 [eV/30 atom cell] w/
fixed volume

Energy diff. from P 3̄c1
[eV/30 atom cell]

1 P 3̄c1 -200.7989 0

Image1 -200.7990 -0.00003

P63cm -200.8001 -0.0012

3 P 3̄c1 -200.7989 0

Image1 -200.8024 -0.0035

Image2 -200.7999 -0.0010

Image3 -200.8000 -0.0011

P63cm -200.8001 -0.0012

5 P 3̄c1 -200.7989 0

Image1 -200.8032 -0.0043

Image2 -200.8014 -0.0024

Image3 -200.7996 -0.0007

Image4 -200.7986 0.0003

Image5 -200.8008 -0.0019

P63cm -200.8001 -0.0012
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Figure 7.15: Plot showing the minimum energy path for the phase transition between non-
stoichiometric P 3̄c1 and P63cm with an In-O-vacancy pair at the position given in Table 7.8.
Calculations were performed with fixed volume.

.

7.2.3 Summary - activation energy barriers

Table 7.13 gives an overview of the calculated activation energy barriers for the transition

between P 3̄c1 and P63cm in InMnO3. The table includes values for both a stoichiometric

cell and a cell with different types of defects. The activation energy barrier is in each case

measured as the energy difference between P 3̄c1 and the highest point on the MEP.

Table 7.13: Summary of the calculated activation energy barriers for a transition between
P 3̄c1 and P63cm for a stoichiometric cell and different non-stoichiometric cells. The activa-
tion energy barrier is in each case measured as the energy difference between P 3̄c1 and the
highest point on the MEP.

Defect type Position P 3̄c1 Position P63cm Activation energy
barrier [eV/30 atom cell]

Stoichiometric cell 0.026

VIn-red. In2+Otype1 In1+Otype1 0.040

VIn-ox. In2 In1 0.056

Oi Oi1 Oi1 0.003

VO O1-planar O3-planar None
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7.3 Calculations of polarization

To investigate the effect of point defects on the polarization of the ferroelectric P63cm-phase

two methods were used, the point charge model and Berry-Phase calculations with DFT. In

both cases the structure with the relevant point defect relaxed with fixed volume were used.

An artificial non-polar structure was made for each case and used as a reference state. The

positions of the point defects investigated were the same as for the calculations on phase

transitions, see Table 7.8. Table 7.14 shows the calculated values of the polarization in P63cm

with different types of defects. The polarization was calculated with the point charge model

and the Berry-Phase-method for a stoichiometric cell, a cell with an interstitial oxygen, a cell

with an oxygen vacancy and a cell with an In-O-vacancy pair. For the case with an In-vacancy

under oxidizing conditions only the point charge model was used. This because the polar

phase of InMnO3 with an In-vacancy turns metallic making it impossible to do Berry-Phase-

calculations. This is elaborated in the discussion. Figure 7.16 shows the calculated polariza-

tion from Berry-Phase calculations for the polar P63cm-phase for InMnO3. The spontaneous

polarization is given as the value at 100%.

Table 7.14: Calculculated polarization of P63cm with different defects by use of the point
charge model and Berry-Phase-model. The positions of the different defects are given in Ta-
ble 7.8. All calculations were based on structures relaxed with fixed volume.

Type Defect position Point charge
model
[µC/cm2]

Berry-Phase
[µC/cm2]

Property

Stoc. None 0.4370 3.7211 Insulator

Vacant O (0,0,1/4) 2.5781 4.8405 Insulator

Interstitial O (1/3,1/3,0) 1.5085 3.3106 Insulator

Vacant In In1 0.0687 - Metal

Vacant In-O-
pair

In1 + Otype1 0.9859 3.7878 Insulator
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Figure 7.16: Plot showing the calculated polarization of the polar P63cm-phase for InMnO3.
The calculations were performed for a stoichiometric cell and cells with different defects. All
calculations were based on 2x2x1 supercells relaxed with fixed volume. The defect positions
can be found in Table 7.8.
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Chapter 8

Discussion

8.1 In-vacancies

From calculations performed in earlier work, see Figure C.1 in Appendix C, it is shown that

the ferroelectric P63cm phase is vaguely favoured over the paraelectric P 3̄c1 phase in stoi-

chiometric InMnO3. This is in agreement with similar results published by Lee et al.[12] and

Kumagai et al.[7]. It also supports the similarity to other hexagonal manganites that crystal-

lize into the P63cm structure. Previous work[1] showed that point defects of interstitial and

vacant oxygen decreased the energy difference between the two phases, but kept the P63cm

phase as the most stable. From Figure 7.4, 7.6 and 7.2 it is observed that different In-vacancies

have a dramatic effect on the stability of the ferroelectric versus the paraelectric phase. The

two different cases of In-vacancies, only In-vacancies and In-O vacancy pairs, are discussed

further below.

Vacancy formation of cations is not easy to control. The formation of oxygen vacancies and

interstitial oxygen is a reversible process, while formation of In-vacancies can be irreversible.

In-vacancies occurring early in the preparation of the material can therefore be hard to re-

move later on. Recently it has been shown that a large Y deficiency is possible for YMnO3[16].

Although not verified experimentally this might also be the case for InMnO3 since both are

hexagonal manganites. In other words, the presence of In-vacancies are not unlikely and can

for instance be created by synthesizing InMnO3 with less In than the stoichiometric amount.

8.1.1 Oxidizing conditions - Favouring the non-polar phase

As mentioned in section 3.2 oxidizing condition will prevent the formation of oxygen vacan-

cies. In such environment In-vacancies will be charge compensated by manganese, see sec-

tion 3.2.1. Oxidizing condition can be obtained by performing the synthesis in an oxygen rich

environment (e.g. use high partial pressure of oxygen).

83
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Favourable vacant In-position

From Figure 7.9 it is observed that the energy difference between P 3̄c1 and P63cm for a cell

with an In-vacancy is negative. Consequently, for this configuration the P 3̄c1-phase is more

stable than the P63cm-phase. This means the non-polar phase is favoured over the polar

phase. In1 for the non-polar state is equal to In2 for the polar phase, and opposite. To ease

the discussion In1 in P 3̄c1 and In2 in P63cm are referred to as In-2 (since they have a mulit-

plicity of 2 in the unit cell). By use of the same approach, In2 in P 3̄c1 and In1 in P63cm are

referred to as In-8 (8 in multiplicity in the unit cell). See Figure 3.3 for a sketch. Vacant In-2

gives the lowest energy for both phases, which means that due to energetics removal of an

In-2 is favoured over an In-8. Zhang et al.[57] performed molecular dynamics (MD) calcula-

tions1 on different Y substitutions in YMnO3. It was shown that the Y-2 position (Y2) in the

P63cm structure for YMnO3 was the preferred position for substitution. Although MD calcu-

lations are not as accurate as DFT calculations these results still indicate that what observed

in InMnO3 can be found in other hexagonal manganites as well. Table 8.3 shows the distance

between an In atom and three different surrounding oxygen atoms. It is observed that the

In-2 in general is placed further away from the oxygen atoms than the In-8. When creating

an In-vacancy by removing an In-atom a negative charge arises at the position. Since oxygen

is placed further away from the In-vacancy for In-2 compared to In-8 the negative repulsion

between oxygen and vacant In will be smaller. Accordingly the In-2 position will give a more

stable structure both for P 3̄c1 and P63cm.

Change in volume

All calculations were done with both fixed volume and relaxed volume in order to observe

the change in volume and lattice parameters when defects were introduced. Table 8.1 gives

the %-change in lattice parameters and volume when the structure is fully relaxed. From the

proposed Kröger-Vink equation, see equation 3.2, it is observed that three Mn-atoms are oxi-

dized from Mn3+ to Mn4+ to compensate for the three electrons left by the In-vacancy2. When

atoms increase their valance state the atomic radius is reduced, because the core has fewer

electrons to attract. Hence, high-spin Mn3+ (0.645 Å) is larger than Mn4+ (0.53 Å)[59]. From

Table 8.1 a volume decrease is observed for In-vacancies in both structures. This is in conclu-

1The molecular dynamics method was developed by Alder and Wainwright in 1959[58] to calculate the be-
haviour of several interacting classical particles.

2In section 8.3 it is shown that only one Mn-atom is oxidized.
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sion with the reduced atom size. However, by taking a closer look at the change in the lattice

parameter it is evident that the total contraction in volume is actually a result of a decrease in

the a lattice parameter and an increase in the c lattice parameter.

The contraction in the Mn-layer (given by the a lattice parameter) is most likely caused by

what stated above, the decrease in size when Mn is oxidized. By studying Figure 7.1 it is ob-

served that the trigonal bipyramids tilt away from the In-vacancy. The increased tilting will

contribute to the contraction in the Mn-layer since the pyramids can move closer together.

When an indium is removed from the structure the positive shielding of the "electron cloud"

between apical oxygen atoms in the layer above and below the In-vacancy is removed. This

will result in repulsive forces between the oxygen atoms and make them move further apart,

hence increase the c lattice parameter.

Table 8.1: Summary of change in volume when full relaxations were allowed for an In-
vacancy. The change is found by comparing with volume and lattice parameters given in
fixed volume calculations.

Structure Type Change in
lattice

parameter, a [%]

Change in
lattice

parameter, c [%]

Change in
volume [%]

P 3̄c1 In1 -0.93 0.88 -0.82

In2 -0.94 0.91 -0.87

P63cm In1 -0.26 0.95 -0.81

In2 -0.39 0.93 -0.84

8.1.2 Middling reducing conditions - In-O vacancy pairs

Small energy differences between polar and non-polar

From Figure 7.9 it is observed that three positions have positive energy differences and favour

the polar phase P63cm. The other three positions have negative energy differences and favour

the non-polar phase P 3̄c1. The configuration where the vacant oxygen is placed right above

or below the vacant indium, i.e. O-type1 described in Table 3.6.2, gives the most negative

ground-state energies and therefore the most stable structure, see Figure 7.4 and 7.6. This
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is evident for both P 3̄c1 and P63cm. The O-type1 configuration gives a positive energy dif-

ference between P 3̄c1 and P63cm, see Figure 7.9, meaning vacant In-O-pairs will favour the

polar P63cm structure.

For five out of six positions for In-O-vacancy pairs the energy difference between P 3̄c1 and

P63cm is substantially smaller compared to the cases with only an In-vacancy. An In-vacancy

combined with an oxygen vacancy makes the polar and non-polar structures almost equally

stable. In previous work[1] it has been shown that oxygen vacancies favour the polar struc-

ture, see Appendix C.3. It seems like the combination of In- and O-vacancies counteract each

other, in contrast to the clear favouring of the P 3̄c1-phase when only an In-vacancy is present.

Change in volume

From Table 8.2 it is observed that the volume increases when In-O-vacancy pairs are intro-

duced into the structure. This is opposite of what is observed for only an In-vacancy, see Table

8.1. In previous project work[1] it was shown that the volume of the cell increased for oxygen

vacancies. This is most likely related to the fact that the oxygen vacancy is coupled with a

reduction of manganese from Mn3+ to Mn2+. When the Mn-ion acquires one extra electron

it increases in size and hence the total volume increases. The suggested mechanism for an

In-O-vacancy pair formation does not include a reduction of manganese, but rather an oxi-

dation. One Mn-atom is oxidized from Mn3+ to Mn4+. Therefore an expansion instead of a

contraction of the volume would be expected. The a lattice parameter decreases in all cases

except one. The decrease in the a lattice parameter can be connected to the decrease in the

size of the Mn-atom when it is oxidized, as stated above. The total decrease in the a lattice

parameter is more significant when a In-vacancy is present than for an In-O-vacancy pair, see

Table 8.1. In section 8.3 it is shown that for P 3̄c1 the charge compensation is delocalized and

no Mn-atoms are oxidized. This can explain the minimal decrease of the a lattice parameter

in this case. For P63cm the reduction in the a lattice parameter can still be explained by oxi-

dation on Mn. When an oxygen is removed from the MnO5-trional bypiramid the symmetric

stabilization of the bypiramid is removed and a positive charge is left at the vacancy posi-

tion. The Mn- and In-atoms around the oxygen vacancy are positively charged and repulsive

forces between these atoms and the vacant oxygen will form. The expansion due to these

forces can counteract the effect of the reduced size of the Mn-atom and result in a smaller

decrease of the a lattice parameter for P63cm. The c lattice parameter increases in size in all
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cases. This can be connected to the same as for only In-vacancies, repulsive forces that arise

when an In-vacancy is created. For In-O-vacancy pairs the decrease in the c lattice parameter

is larger than for only In-vacancies. The lost oxygen might cause even less shielding resulting

in large repulsive forces in the c-direction. The positive charge left by the oxygen vacancy can

increase this effect. From the above reasoning it is found that the total decrease in volume is

a result of a smaller contraction of the a lattice parameter compared to the expansion of the

c lattice parameter.

Note that three of the configurations (i.e. P 3̄c1-In1-Otype2, P 3̄c1-In2-Otype2 and P63cm-

In1-Otype2) give no change in volume or lattice parameters when the cell is fully relaxed.

This indicates that the cases with the respective In- and O-vacancy changed the structure to

a small degree and a geometry optimization was not necessary to reach the force and energy

criteria. The result is that the combination of an In-vacancy and an O-type2 vacancy (slanting

right above/below the In-vacancy) has no effect on the size and shape of the cell.

Table 8.2: Summary of change in volume when full relaxations were allowed for an In-
vacancy. The change is found by comparing with volume and lattice parameters given in
fixed volume calculations.

Structure Type Change in
lattice

parameter, a [%]

Change in
lattice

parameter, c [%]

Change in
volume [%]

P 3̄c1 In1, Otype1 -0.95 0.57 0.55

In1, Otype2 0 0 0

In1, Otype3 -0.98 0.35 0.38

In2, Otype1 0.09 0.31 0.51

In2, Otype2 0 0 0

In2, Otype3 -0.96 0.37 0.40

P63cm In1, Otype1 -0.75 0.67 0.50

In1, Otype2 0 0 0

In1, Otype3 -0.82 0.54 0.41

In2, Otype1 -0.82 0.58 0.47

In2, Otype2 -0.66 0.56 0.09

In2, Otype3 -0.92 0.70 0.43
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In-O distance

To examine which oxygen positions give the most stable structure, i.e. the structure with

the lowest ground-state energy, E0 is plotted against the distance between the In- and O-

vacancy. To find this distances the coordinates for both In- and O-vacancies were converted

from hexagonal to Cartesian, and subsequently inserted into the following equation:

d =
√

(x2 −x1)2 + (y2 − y1)2 + (z2 − z1)2 (8.1)

where d is the distance, (x1, y1, z1) the In-vacancy position and (x2, y2, z2) the O-vacancy po-

sition in Cartesian coordinates given in Ångström, Å. Table 8.3 and Figure 8.1 show the calcu-

lated relationship between energy and In-O distance.

The most stable configuration is, as mentioned above, when the O-vacancy is of O-type1. It

seems like the structure is most stable when the oxygen vacancy is close to the In-vacancy

and in the Mn-plane. This is however not the configuration that gives the smallest distance

between In-O-vacancy pairs. In previous work[1] it was shown that apical and planar oxygen

vacancies are equally favoured for InMnO3. Because of this it was expected that the In-O-

distance would be more relevant for stabilization than the oxygen position relative to the

Mn-atom.
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Table 8.3: Calculation of the distance between In and O for the different In-O vacancy pairs.
Data taken from calculations performed with fixed volume.

Structure In-pos. O-pos. In-O distance
[Å3]

E0 [eV/120 atom cell] w/
fixed volume

P 3̄c1 In1 O-type3 4.5727 -802.65713

O-type1 3.2757 -803.04141

O-type2 2.2079 -803.07944

In2 O-type1 2.8713 -803.19577

O-type3 4.3125 -802.68988

O-type2 2.1767 -803.08832

P63cm In1 O-type2 2.1164 -802.71843

O-type1 2.3793 -803.14190

O-type3 4.5213 -803.07944

In2 O-type2 2.1573 -803.27012

O-type3 4.3481 -802.75643

O-type1 2.6490 -803.08832
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Figure 8.1: Plot of the ground-state energy for InMnO3 with an In-O vacancy pair against
the accompanying distance between the VIn and VO. Data taken from calculations done with
fixed volume.
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8.1.3 Energy differences for In-vacancies

Figure 7.9 shows the energy difference, ∆E , between the polar and non-polar structure for

different In-vacancies calculated by the following equation:

∆E = EP 3̄c1 −EP63cm (8.2)

From this figure it is observed that under oxidizing conditions the non-polar P 3̄c1 phase is

clearly favoured over the polar P63cm phase. This is a very interesting observation as it is

the first result pointing towards the non-polar phase as the most stable structure. The com-

pound forming with one In-vacancy is In0.958MnO3. As mentioned earlier it has been showed

that YMnO3 allows high Y-deficiency, up to 15-20%[16]. In is more volatile than Y, see Ta-

ble D.2, meaning In will evaporate easier than Y. This can lead to even more vacancies for

InMnO3. Both of these observations indicate that the presence of In-vacancies in InMnO3 is

likely. The paraelectric behaviour in InMnO3 observed by Belik et al.[9] and Kumagai et al.[7]

could therefore be a result of the formation of In-vacancies under the synthesis, making the

non-polar space group the most stable structure. Belik et al.[9] synthesized InMnO3 at 1100°

C. By comparing with the vapour pressure for In at 1000° C, see Table D.2, it is noted that the

vapour pressure is quite high (above 10-4). This means at 1100° C evaporation of In will occur,

which again substantiate the paraelectric behaviour observed. In this project only one va-

cancy concentration of In was tested. This vacancy concentration was quite small, only 4.2%,

compared to what is showed possible for YMnO3. It would be interesting to investigate the

effect of increased vacancy concentration on the stability of the polar versus the non-polar

phase.

Under reducing conditions the polar structure is favoured since the most stable configura-

tion (O-type1 oxygen vacancy) gives a positive energy difference, see Figure 7.9. This means

reducing the oxygen pressure when synthesizing InMnO3 can stabilize the polar structure

since possible In-O-vacancies created prefer the P63cm-phase. An approach would then be

to control the ferroelectric versus paraelectric behaviour by changing the partial pressure of

oxygen. At high pO2 In-vacancies will be charge compensated by three Mn-atoms3 and re-

sult in a non-polar structure. At low pO2 In-vacancies will be charge compensated by one

Mn-atom and a vacant oxygen leading to a polar structure.

3In section 8.3 it is shown that only one Mn-atom is oxidized.
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8.1.4 Formation energy of defects

Figure 7.10 shows the formation energy of the most stable In-vacancy configurations plotted

against the chemical potential of oxygen. An oxidizing atmosphere with high oxygen partial

pressure, pO2 , will favour the formation of In-vacancies. This because high pO2 will move the

equilibrium in equation 3.2 to the right according to Le Chatelier´s principle. By looking at

equation 3.6 it is noted that oxygen gas is present on the left side of the equation also for In-O-

vacancy pairs. However, the amount is 1/3 of the In-vacancy case and reducing atmosphere

with low oxygen partial pressure will favour In-O-vacancy pairs. It is therefore expected a

higher formation energy for In-vacancies than for In-O-vacancy pairs under reducing condi-

tions and opposite at oxidizing conditions. Figure 7.10 confirms this.

When having a mechanism designed for reducing conditions, as the formation of In-O-vacancies,

it is normal to expect the formation energy to increase with increasing chemical potential

of oxygen. This is not the case when observing Figure 7.10. Remember that the reducing

conditions in this project are named middling reducing since the reducing conditions were

too computational challenging. The middling reducing case presented requires some oxy-

gen gas to form the In-O-vacancy pair. The slope for the formation energy of In-O-vacancy

pairs is therefore slightly negative when increasing the chemical potential of oxygen. The

formation energy of In-O-vacancy pairs does not turn negative in the plotted range of the

chemical potential of oxygen. However, the formation energy of In-vacancies turns negative

with µO above -3eV. This means that under oxidizing conditions In-vacancies form spon-

taneously making the stoichiometric compound unstable. By looking at thermodynamic

data[60] Sunde et al.[61] found that the sublimation of In2O3 will mainly occur through the

following reaction:

In2O3(s) → In2O(g )+O2(g) (8.3)

This means by decreasing the partial pressure of oxygen the evaporation will increase. A sim-

ilar process will be present for InMnO3 and increased evaporation of In can be expected at

lower pO2(g ). Since the mechanisms for the formation of In-vacancies in this project are under

oxidizing and middling reducing conditions the exact connection to equation 8.3 cannot be

found by comparing with Figure 7.10. However, if the mechanism for creation of In-vacancies

under very reducing conditions, see equation 3.4, were used the formation energy would de-
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crease with a decrease in µO and pO2(g ) in connection with more evaporation of In and more

vacancies created.

8.2 Stability of the polar and non-polar phase with point de-

fects

Figure 8.2 shows a comparison of the energy differences for different types of point defects

compared to the stoichiometric energy difference between the polar and non-polar structure.

In addition to data obtained in this project, data from previous work on interstitial and va-

cant oxygen are included[1]. The red rectangles highlight the most stable configuration of the

different defects.

By observation of Figure 8.2 it is evident that different defects have different effects on the

relative stability between the polar and non-polar phase of InMnO3. Both In-vacancies in an

oxidizing environment and interstitial oxygen show negative energy differences, leading to

the non-polar P 3̄c1-structure being the most stable. For oxygen vacancies the most stable

configuration leads to a small decrease of the energy difference, which indicates a disfavour-

ing of the polar structure. For In-O vacancy pairs under reducing conditions the polar struc-

ture is clearly favoured due to almost a doubling of the energy difference between P 3̄c1 and

P63cm. The main conclusion drawn from this is that defect chemistry play a substantial role

when looking at the stability between the two space group for InMnO3.

8.2.1 Energy differences compared to experimental

Few experimental studies on InMnO3 can be found in literature, and it is therefore hard to

draw exact conclusions regarding what cause the deviating properties of InMnO3. On the

other hand, a few trends are observed that root back to what are found computationally.

These trends are discussed below.

As presented in Table 2.1 Huang et al. [10] showed that different cooling schemes resulted

in detection of different dielectric properties for InMnO3. The following discussion used the

names listed in Table 2.1 to distinguish the different cooling paths. By slow cooling the sam-
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Figure 8.2: Comparison of the energy difference, ∆E = EP 3̄c1−EP63cm , between the P 3̄c1 and
P63cm phase of InMnO3 for a non-stoichiometric cell with different defects and a stoichio-
metric cell. The red rectangles highlight the most stable configuration for each defect type.
Data show calculations done with both fixed and relaxed volume.

ple, IMO-a, investigating by DF-TEM and HAADF-STEM demonstrated clear presence of fer-

roelectricity. Conversely, when the sample was furnace cooled4 DF-TEM and HAADF-TEM

showed non-polar regions embedded in a polar matrix. Compared to slow cooling furnace

cooling is a much more rapid process, resembling e.g. quenching. To clarify the origin of

the non-polar domains Huang et al. prepared two new samples, IMO-c and IMO-d. These

were quenched from 950°C and 650°C, respectively. The sample quenched from 650°C, IMO-

d, showed small vortex-antivortex domains that indicated ferroelectricity. In contrast, when

the sample quenched from 950°C, IMO-c, was observed by DF-TEM no hint of vortex-type

domains were found. In addition, HAADF-TEM of the IMO-c sample demonstrated down-

4Oven turned off after heating and sample was cooled inside.
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no-up distortion of In, a characteristic of the non-polar P 3̄c1-phase, see Figure 2.3. Belik et

al. [9] published a study where the samples of InMnO3 were prepared with a similar synthesis

route as for Huangs experiments. However, these samples were heated to 1100°C and then

quenched to room temperature. Ferroelectric hysterisis loop measurements at various tem-

peratures revealed no hysterisis loops, indicating paraelectric behaviour.

When a material is quenched from a high to a low temperature, defects formed at higher tem-

peratures are not able to diffuse out of the material during cooling. Instead they are freezed

into the matrix. This can be connected to the findings by Huang et al. and Belik et al. When

the samples are quenched from higher temperatures a high concentration of defects will most

likely be present in the final material. Figure 8.2 shows that the most stable configuration of

interstitial oxygen, vacant oxygen and In-O-vacancy pairs (not In1-Otype1) decrease the en-

ergy difference. Hence disfavours the polar phase compared to a stoichiometric sample. In

addition, the presence of In-vacancies makes the non-polar phase most stable. The presence

of point defects in the final sample can therefore be the explanation for the final properties

of InMnO3 in Huang et al. and Belik et al. experiments. The discovery of the connection be-

tween point defects and relative stability of InMnO3 can then be used to find an appropriate

synthesis route to either form paraelectric or ferroelectric InMnO3.

8.2.2 Energy differences compared to temperature

The following equation describes the relationship between energy, E , and temperature, T [26]:

E = kB T (8.4)

where kB is the Boltzmann constant (i.e. 1.38 ·10−23 J/K). Figure 8.3 show the temperature

that corresponds to the energy difference between the polar and non-polar phase. The neg-

ative temperatures are not real values. They resemble a negative energy difference favouring

the non-polar structure, confer Figure 8.2. When the energy difference is equal to a tempera-

ture below 40K the energy difference is considered too small to be able to distinguish the two

phases experimentally. This is the case for several of the different defect types and makes it

very hard to distinguish the two phases by experimental techniques (e.g. Rietveld analysis).
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8.3 In-vacancies alter the insulating properties of InMnO3

8.3.1 In-vacancies under ox. conditions lead to metallic properties

The Kröger-Vink equation was given in section 3.2.1 as the following:

1

2
Mn2O3 +2Mnx

Mn + 3

4
O2(g)

InMnO3−−−−−→ VIn
′′′+3Mn•

Mn +3Ox
O (8.5)

The proposed equation suggest that three Mn-atoms are oxidized from Mn3+ to Mn4+. In

previous work[1] it was shown that charge compensation for oxygen vacancies and interstitial

oxygen were localized on the respective Mn-atoms. Conversely, the same is not identified for

In-vacancies. Listing 8.1 and 8.2 show an extract of the total charge and magnetization of

each Mn-atom for different orbitals with an In-vacancy for P 3̄c1 and P63cm, respectively.

For P 3̄c1 it is only atom 28 that differs significantly from the other both by looking at charge

and magnetization. The same can be observed for atom 40 for P63cm. It seems like it is only

one Mn-atom prior to three that demonstrate a clear change. A reason for this can be that the

remaining charge compensation is delocalized instead of localized on the Mn-atoms. The

Kröger-Vink equation should in that case be reformulated to the following:

1

2
Mn2O3 + 3

4
O2(g)

InMnO3−−−−−→ VIn
′′′+Mn•

Mn +2h•+3Ox
O (8.6)

Delocalization of electrons or holes is a characteristic of metallic behaviour. It is therefore

logical to think that In-vacancies will lead to InMnO3 becoming a p-metal. This is confirmed

by looking at the density of states plots for In-vacancies in P 3̄c1 and P63cm under oxidizing

conditions. Figure 8.4 shows an enhanced view of the density of states around the Fermi-

level. The stoichiometric compound of InMnO3 is an insulator, which means it has a wide

bandgap with the Fermi level placed at the top of the valence band. However, with an In-

vacancy it is observed that the Fermi level lies in the valence band, making this a p-metal, see

Figure 8.4. The transition between a metal and an insulator is called a Mott transition named

after the researcher Sir Neville Mott[35]. Metallic behaviour of a material that from band the-

ory is believed to be an insulator can be explained by a competition between potential and

kinetic energies of the electrons. In summary, the electrons kinetic energy is lowered by de-

localization and the potential energy is lowered by localization[35].
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Figure 8.4 shows a comparison of the density of states plotted for a stoichiometric cell and a

cell with an In-vacancy under oxidizing conditions. From this it is clear that for stoichiomet-

ric InMnO3 the Fermi level lies at the top of the valence band, which is a characteristic of an

insulator. However, for a cell with an In-vacancy the Fermi level lies inside the valence band

making it a p-metal. Accordingly, this support the hypothesis that charge compensation hap-

pens by delocalized holes as suggested above. The phenomena is evident for both the polar

P63cm-phase and the non-polar P 3̄c1-phase.
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Figure 8.4: A comparison of the density of states around the bandgap for a stoichiometric
cell and a cell with an In-vacancy for P 3̄c1 and P63cm. Data taken from calculation with
fixed volume.
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Listing 8.1: Vacant indium P 3̄c1-In1
total charge
# of ion s p d tot
24 2.176 6.076 4.486 12.738
25 2.176 6.077 4.493 12.746
26 2.178 6.077 4.485 12.740
27 2.174 6.074 4.493 12.741
28 2.188 6.086 4.453 12.727
29 2.176 6.076 4.485 12.738
30 2.176 6.076 4.494 12.747
31 2.174 6.073 4.494 12.741
32 2.177 6.078 4.486 12.741
33 2.178 6.078 4.489 12.745
34 2.176 6.074 4.492 12.741
35 2.179 6.076 4.486 12.740
36 2.174 6.074 4.490 12.738
37 2.176 6.077 4.481 12.734
38 2.176 6.076 4.497 12.749
39 2.174 6.073 4.492 12.739
40 2.173 6.073 4.501 12.747
41 2.175 6.074 4.493 12.741
42 2.182 6.082 4.476 12.740
43 2.177 6.076 4.486 12.738
44 2.173 6.073 4.492 12.737
45 2.177 6.076 4.493 12.747
46 2.176 6.076 4.487 12.738
47 2.175 6.075 4.487 12.737

magnetization (x)
# of ion s p d tot
24 0.018 0.022 3.645 3.685
25 -0.018 -0.021 -3.659 -3.698
26 0.018 0.019 3.593 3.629
27 -0.018 -0.021 -3.674 -3.713
28 -0.018 -0.020 -3.435 -3.473
29 0.019 0.022 3.657 3.698
30 0.018 0.021 3.660 3.699
31 -0.017 -0.021 -3.680 -3.718
32 0.017 0.020 3.608 3.646
33 -0.018 -0.021 -3.640 -3.679
34 -0.019 -0.021 -3.679 -3.719
35 0.020 0.019 3.637 3.676
36 0.018 0.021 3.672 3.711
37 -0.017 -0.020 -3.597 -3.634
38 0.018 0.021 3.670 3.709
39 -0.018 -0.020 -3.673 -3.711
40 -0.018 -0.019 -3.669 -3.706
41 0.017 0.020 3.663 3.700
42 0.019 0.022 3.584 3.625
43 -0.019 -0.022 -3.654 -3.695
44 0.018 0.020 3.654 3.692
45 -0.019 -0.021 -3.669 -3.709
46 -0.018 -0.021 -3.646 -3.685
47 0.018 0.021 3.660 3.700

Listing 8.2: Vacant indium P63cm-In2
total charge
# of ion s p d tot
24 2.181 6.080 4.477 12.738
25 2.173 6.074 4.493 12.740
26 2.176 6.077 4.492 12.745
27 2.176 6.075 4.492 12.742
28 2.179 6.078 4.477 12.734
29 2.182 6.081 4.473 12.737
30 2.176 6.077 4.495 12.748
31 2.174 6.074 4.494 12.742
32 2.170 6.072 4.500 12.742
33 2.177 6.078 4.492 12.747
34 2.174 6.074 4.491 12.739
35 2.176 6.074 4.488 12.738
36 2.173 6.073 4.496 12.741
37 2.175 6.075 4.501 12.750
38 2.177 6.078 4.484 12.739
39 2.176 6.075 4.489 12.741
40 2.193 6.090 4.447 12.730
41 2.173 6.075 4.499 12.747
42 2.173 6.074 4.496 12.744
43 2.173 6.073 4.498 12.744
44 2.175 6.076 4.496 12.747
45 2.175 6.076 4.489 12.740
46 2.178 6.079 4.489 12.747
47 2.172 6.073 4.495 12.740

magnetization (x)
# of ion s p d tot
24 0.018 0.019 3.555 3.592
25 0.017 0.021 3.679 3.718
26 -0.017 -0.021 -3.651 -3.690
27 -0.018 -0.020 -3.652 -3.690
28 -0.020 -0.021 -3.633 -3.674
29 0.017 0.018 3.508 3.543
30 0.017 0.021 3.661 3.700
31 0.018 0.021 3.677 3.716
32 -0.016 -0.020 -3.674 -3.709
33 -0.016 -0.021 -3.634 -3.671
34 -0.018 -0.021 -3.667 -3.706
35 0.020 0.021 3.676 3.717
36 0.018 0.021 3.702 3.742
37 0.018 0.021 3.694 3.733
38 -0.018 -0.020 -3.591 -3.629
39 -0.017 -0.020 -3.632 -3.669
40 -0.020 -0.019 -3.400 -3.439
41 0.016 0.021 3.679 3.716
42 0.017 0.021 3.686 3.725
43 0.018 0.021 3.702 3.741
44 -0.016 -0.019 -3.614 -3.649
45 -0.017 -0.020 -3.636 -3.673
46 -0.018 -0.021 -3.623 -3.662
47 0.019 0.022 3.718 3.759
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8.3.2 In-O vacancy pairs leads to different behaviour of polar and non-

polar phase

The Kröger-Vink equation was given in section 3.2.2 as the following:

1

2
Mn2O3 + 1

4
O2(g )

InMnO3−−−−−→ V
′′′
In +Mn•

Mn +2Ox
O +V••

O (8.7)

The proposed equation suggests that charge neutrality is maintained by oxidizing one Mn-

atom from Mn3+ to Mn4+ and creating an oxygen vacancy. Listing 8.3 and 8.4 show an extract

of the total charge and magnetization of each Mn-atom for different orbitals with an In-O-

vacancy pair with an O-type1 oxygen position. Under oxidizing conditions the same trend

was observed for P 3̄c1 and P63cm. For middling reducing conditions this is not the case.

Neither magnetization nor charge for P 3̄c1 show a significant difference for the Mn-atoms,

see Listing 8.3. As for oxidizing conditions delocalized holes can be expected as charge com-

pensation instead of localized on an Mn-atom. Conversely, when looking at P63cm atom 40

differs considerably from the others, see Listing 8.4. This is the same atom that was affected

under oxidizing conditions. It seems like the mechanism for stabilization for the polar and

non-polar phase of InMnO3 is not the same when both In and oxygen vacancies are present.

The mechanism for P63cm will be as stated in section 3.2.2, but for P 3̄c1 it will change to:

1

2
Mn2O3 + 1

4
O2(g )

InMnO3−−−−−→ V
′′′
In +Mnx

Mn +h•+2Ox
O +V••

O (8.8)

Figure 8.5 shows a comparison of the density of states around the bandgap for the different

O-vacancy positions around the In-vacancy. For all O-vacancy positions in P 3̄c1 the Fermi

level lies inside the valence band, giving metallic properties. This means charge compen-

sation has happened by delocalized holes and the Kröger-Vink equation suggested above,

equation 8.8 will better describe the mechanism. By studying the density of states for differ-

ent O-vacancy positions for P63cm it is noted that the Fermi level lies at the top of the valence

band. However, for O-type1 and O-type3 it seems that an In-O-vacancy pair has induced a

shallow acceptor state in the bandgap right above the valence band. The density of states

plot in Figure 8.5 shows that this acceptor state has moved to below the bottom of the con-

duction band for O-type2 becoming a donor state. Introducing an In-O-vacancy pair in the

polar InMnO3 can be compared to doping the material with an impurity atom and InMnO3

becomes a poor semiconductor.
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Listing 8.3: Vacant In-O P 3̄c1-In1-Oype1
total charge
# of ion s p d tot
24 2.176 6.078 4.502 12.756
25 2.176 6.078 4.504 12.758
26 2.194 6.079 4.538 12.812
27 2.176 6.077 4.502 12.754
28 2.177 6.077 4.487 12.741
29 2.177 6.077 4.486 12.740
30 2.178 6.076 4.493 12.747
31 2.176 6.075 4.494 12.744
32 2.195 6.080 4.537 12.813
33 2.177 6.079 4.502 12.758
34 2.176 6.076 4.502 12.755
35 2.176 6.077 4.502 12.755
36 2.175 6.075 4.492 12.743
37 2.175 6.076 4.491 12.742
38 2.176 6.075 4.494 12.745
39 2.175 6.073 4.496 12.744
40 2.195 6.080 4.537 12.812
41 2.177 6.077 4.502 12.756
42 2.176 6.079 4.500 12.755
43 2.176 6.077 4.500 12.752
44 2.175 6.074 4.494 12.743
45 2.177 6.075 4.494 12.746
46 2.177 6.077 4.489 12.743
47 2.177 6.077 4.487 12.741

magnetization (x)
# of ion s p d tot
24 0.018 0.022 3.673 3.713
25 -0.017 -0.022 -3.673 -3.712
26 0.032 0.019 3.642 3.693
27 -0.018 -0.022 -3.679 -3.719
28 -0.019 -0.021 -3.624 -3.663
29 0.019 0.022 3.657 3.698
30 0.018 0.021 3.651 3.690
31 -0.018 -0.021 -3.668 -3.707
32 0.032 0.019 3.637 3.688
33 -0.017 -0.022 -3.663 -3.702
34 -0.018 -0.022 -3.687 -3.727
35 0.018 0.022 3.682 3.722
36 0.018 0.021 3.670 3.709
37 -0.017 -0.020 -3.632 -3.669
38 0.018 0.021 3.672 3.711
39 -0.018 -0.021 -3.688 -3.728
40 -0.034 -0.020 -3.664 -3.718
41 0.017 0.022 3.666 3.704
42 0.019 0.023 3.685 3.727
43 -0.019 -0.023 -3.691 -3.732
44 0.018 0.020 3.648 3.686
45 -0.019 -0.021 -3.678 -3.719
46 -0.018 -0.021 -3.649 -3.688
47 0.018 0.021 3.640 3.679

Listing 8.4: Vacant In-O P63cm-In2-Otype1
total charge
# of ion s p d tot
24 2.194 6.080 4.535 12.810
25 2.176 6.077 4.503 12.755
26 2.176 6.077 4.503 12.756
27 2.176 6.077 4.501 12.754
28 2.176 6.077 4.502 12.754
29 2.193 6.079 4.536 12.808
30 2.176 6.079 4.503 12.758
31 2.177 6.077 4.505 12.758
32 2.193 6.079 4.536 12.808
33 2.176 6.078 4.504 12.757
34 2.176 6.077 4.501 12.754
35 2.176 6.077 4.504 12.757
36 2.174 6.074 4.498 12.745
37 2.175 6.075 4.501 12.752
38 2.174 6.076 4.493 12.743
39 2.176 6.075 4.492 12.744
40 2.192 6.089 4.452 12.732
41 2.174 6.075 4.499 12.747
42 2.174 6.075 4.497 12.747
43 2.174 6.074 4.499 12.747
44 2.173 6.074 4.501 12.748
45 2.175 6.075 4.492 12.742
46 2.177 6.078 4.495 12.750
47 2.173 6.074 4.497 12.745

magnetization (x)
# of ion s p d tot
24 0.032 0.019 3.638 3.689
25 0.018 0.022 3.677 3.717
26 -0.018 -0.022 -3.684 -3.723
27 -0.018 -0.022 -3.672 -3.711
28 -0.019 -0.022 -3.697 -3.738
29 0.030 0.018 3.615 3.663
30 0.017 0.022 3.666 3.704
31 0.017 0.021 3.669 3.708
32 -0.032 -0.019 -3.651 -3.703
33 -0.015 -0.021 -3.659 -3.695
34 -0.017 -0.022 -3.673 -3.712
35 0.019 0.022 3.690 3.730
36 0.018 0.021 3.697 3.736
37 0.018 0.021 3.689 3.728
38 -0.017 -0.020 -3.634 -3.671
39 -0.017 -0.020 -3.641 -3.678
40 -0.020 -0.019 -3.421 -3.460
41 0.017 0.021 3.677 3.715
42 0.017 0.021 3.684 3.723
43 0.018 0.021 3.693 3.732
44 -0.016 -0.019 -3.643 -3.678
45 -0.017 -0.020 -3.646 -3.683
46 -0.018 -0.022 -3.650 -3.690
47 0.019 0.022 3.714 3.755
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Figure 8.5: A comparison of the density of states around the bandgap for a cell with an In-
O-vacancy pair with different O-vacancy positions for P 3̄c1 and P63cm. Data taken from
calculation with fixed volume.
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8.3.3 Commercial approach and possible error

The above discussion shows that introducing In-vacancies in InMnO3 does not only affect

the stability of the polar and non-polar state, but also change the metallic properties of the

material. This discovery has an interesting technological area of application. By synthesizing

In-deficient InMnO3 with the polar P63cm space group under oxidizing conditions a metal-

lic behaviour is created. If InMnO3 with P63cm is synthesized under reducing condition an

insulator (poor semiconductor) forms. By utilizing this thin films with conducting (metallic)

and non-conducting (insulating) channels can be made. This effect can be compared to a

very important technological discovery made by Albert Fert and Peter Grünberg in 1988[62],

giant magnetoresistance. In brief giant magnetoresistance is when a material can switch be-

tween high and low electrical resistance by applying a magnetic field. This is used in mag-

netic recording systems, e.g. for data storage and retrieval in hard disk drives[63]. In theory

the InMnO3 prepared with the criteria described above can be used for the same application

if a sensor shifts between the conducting and non-conducting regions depending on reading

zeroes or ones.

When calculations to find the ground-state energy of InMnO3 with defects were performed

the criteria set, e.g. k-point density, were adjusted to an insulator. Since InMnO3 in some

cases turned metallic when In-vacancies were introduced the criteria set might not be suffi-

cient to reach convergence. To test this, one calculation was re-done with a higher k-point

density (4x4x4 for a supercell). Also, the value describing how the partial occupancies are set

for each wave function was changed to an appropriate value for a metal, see the VASP man-

ual section 7.33[52]. The calculation gave approximately the same ground-state energy and

showed the same properties regarding charge compensation. This indicates that the error is

most likely small. For greater accuracy the cases where InMnO3 turned into a metal should

be re-calculated with higher k-point density and a different algorithm that sets the partial

occupancy for each wave function.

8.4 Phase transition between P 3̄c1 and P63cm

To calculate the activation energy barrier between P 3̄c1 and P63cm for a stoichiometric cell, a

cell with an interstitial oxygen and a cell with an In-O-vacancy pair one image was not enough
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to show the true energy landscape. An extra calculation with five images was therefore used to

confirm the minimum energy path (MEP) in each case. Some of the results from nudge elas-

tic band (NEB) calculations on the phase transition between the non-polar and polar phase

still raise questions. No literature is published where the NEB is used on as subtle transi-

tions as in this project. This method is usually used to calculate the MEP for e.g. diffusion of

atoms. Therefore the calculations performed are also a test of NEB as a tool for calculating

the phase transition between to phases, and more experience might be necessary to produce

consistent results. In addition, the lattice parameters for the initial (P 3̄c1) and final (P63cm)

state are not the same. This is also a deviation from standard use of NEB. Possible limitations

connected to the use of NEB for the purpose in this project are not addressed and may clarify

the unanswered questions. However, the results can be used as a tool to qualitatively analyse

what happens to the activation energy barrier when defects are introduced, and then indicate

how stable the different structures are against perturbations as electric fields, magnetic fields

and change in stoichiometry.

8.4.1 Phase transition path for a stoichiometric cell

A small activation energy barrier for the phase transition between the non-polar P 3̄c1-phase

and polar P63cm-phase were detected, see Figure 7.11. A software to identify the space group

(FINDSYM[55, 56]) was used on the different images. With a tolerance of 0.1 the following

transition between space groups was found: P 3̄c1 → P3c1 → P 3̄c1 → P3c1 → P63cm, also

see Figure 7.11. This is in agreement with the proposed phase transition route suggested by

Cano et al.[38] and explained in section 4.4. The least energy demanding path from non-polar

P 3̄c1 to polar P63cm goes through the polar P3c1-structure. It is hard to explain why the P 3̄c1

structure change into a lower energy P3c1 structure before it turns back to a higher-energy

P 3̄c1 structure and lastly into the P63cm via the P3c1 structure. As explained by Griffin[64]

the tilting of the MnO5-trigonal bypiramids characterize the different space groups. P63cm

can have a tilt of 30°*n where n is even, P 3̄c1 can have a tilt of 30°*n where n is odd and P3c1

can have any tilt angle except those for P 3̄c1 and P63cm, see Figure 8.6. The intermediate

images made for the phase transition calculation can then meet the different tilting criteria

when tilting the trigonal bipyramids from the angle in P 3̄c1 to that of P63cm. Hence, lead to

the transition to P3c1 and back to P 3̄c1 before reaching the final point.
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Figure 8.6: Graph of possible tilting options for the MnO5-trigonal bypiramids in the different
subgroups of P63/mmc. Figure taken from the Ph.d thesis of Sinead Griffin[64].

8.4.2 The effect of point defects

With point defects of interstitial and vacant oxygen it is noted that the activation energy bar-

rier increases compared to that of a stoichiometric cell, see Table 7.13. As stated, both cells

with interstitial and vacant oxygen favour the polar phase. When the activation energy barrier

increases with a point defect more energy is required to transform from the polar to the non-

polar phase. The transition is therefore less likely to happen. In Table 8.4 the corresponding

temperature to the different activation energy barriers are calculated with equation 8.4. The

temperature equal to the phase transition is 62.42 K and 107.53 K for interstitial and vacant

oxygen respectively. These temperatures are considered significant in terms of energy and

means that InMnO3 will be relative stable in the structure it has crystallized into. When an

In-O-vacancy pair is introduced the activation energy barrier decreases significantly and the

corresponding temperature is very low, see Table 8.4. In this case the energy required for the

phase transition from polar to non-polar is relatively small and small energy contributions

from the surroundings can lead to a phase transition between the polar and non-polar phase.

Figure 7.14 display a very interesting effect on the activation energy barrier when an In-

vacancy is introduced into the structures. The activation energy barrier disappears with this

type of defect present. This means the structure will be unstable in the polar phase, slide

down the energy landscape and transform into the non-polar phase. It seems like point de-

fects involving In-vacancies leads to a more significant change than for point defects of oxy-

gen as it completely remove the energy barrier.
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Table 8.4: The temperature that equals the activation energy barrier for a the transition be-
tween P 3̄c1 and P63cm for a stoichiometric cell and cells with different defects.

Defect type Position P 3̄c1 Position P63cm Activation
energy barrier

[meV/f.u.]

Temp. [K]

Stoichiometric 1.783 20.69

Oi In2+Otype1 In1+Otype1 5.379 62.42

VO In2 In1 9.267 107.53

VIn-red. Oi1 Oi1 0.771 8.94

VIn-ox. O1-planar O3-planar None None

8.5 Polarization

8.5.1 Comparison with experimental values

The experimental values of the spontaneous polarization of InMnO3 and YMnO3 are given in

Table 8.5. Belik et al.[9] reported no hysterisis loop for their measurements on polarization,

indicating that InMnO3 has a net zero spontaneous polarization. Huang et al.[10] prepared

different samples, see Table 2.1, and reported observation of spontaneous polarization from

some of the samples, but not all. The value given in Table 8.5 is from Huang et al. studies.

It is important to bear in mind that the existence of spontaneous polarization in InMnO3 is

the main question in this project and the value given should therefore be taken as a tool for

comparison instead of a fact.

Table 8.5: Experimental values for the polarization of YMnO3[65] and InMnO3[10].

Material Spontaneous polarization[µC/cm2]

YMnO3 5.5

InMnO3 1.4

The experimental value for the polarization in InMnO3 lies in between the calculated val-

ues for a stoichiometric cell with the point charge model and Berry-Phase-model. As men-
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tioned, the point charge model does not take into account the electronic contribution. The

Berry-Phase-method will therefore give a more plausible result. It is important to remember

that some of the samples made by Huang et al.[10] did not detect ferroelectricity. From a

thermodynamic point of view a certain defect concentration will be present in the prepared

InMnO3. In addition to this Huang et al. can not be certain that their sample has not inter-

preted additional defects due to the preparation route. This could therefore be a reason for

lower polarization. By comparing the experimental value for the polarization of YMnO3 with

the calculated stoichiometric value for InMnO3 with the Berry-Phase method it lies within a

reasonable range. Also the differences are quite small since polarization generally is a hard

quantity to measure accurately.

8.5.2 Change in polarization with non-stoichiometric InMnO3

The calculated polarization of InMnO3 with an In-vacancy is very low. As mentioned, see

section 4.2.2, the tilting of the trigonal bypiramids is what leads to polarization and ferroelec-

tricity in InMnO3. It is therefore reasonable to believe that reduced tilting will also reduce the

polarization. Figure 8.7 shows the structure with and without an In-vacancy. For the non-

stoichiometric structure the angle between the Mn- and O-atoms (see highlighted rectan-

gles) becomes zero. This indicates that the tilting of the MnO5-trigonal bypiramids decreases

when an In-vacancy is introduced. This is in agreement with the theory stated above. Since

InMnO3 has showed to turn into a metal with an In-vacancy present it would in theory be

expected to find zero net polarization[66]. Since the point charge model gives an inaccurate

approximation to the polarization by excluding the electronic contributions it might be that

the polarization should have been zero. However, in 1965 Anderson et al.[67] predicted that

in theory a ferroelectric metal can exist. The ferroelectricity arises from a ferroelectric-like

structural transition that occur in the metal[66]. If InMnO3 turns into a ferroelectric metal it

means that a net polarization can be found. Further investigations have to be carried out to

answer this question with certainty.

When an oxygen vacancy is introduced in the structure the polarization increases. This is

shown by calculation done by both the point charge model and the Berry-Phase model. The

framed part of Figure 8.8 shows that with an oxygen vacancy an increased shift along the c-



8.5. Polarization 107

axis in the In-layer occur. As explained with Figure 2.3 the displacement of In in the In-layer

contributes to the total dipole moment in the P 3̄c1-phase. Therefore the increased displace-

ment caused by an oxygen vacancy is most likely the reason for increased polarization.

The presence of interstitial oxygen increases the polarization when calculated by the point

charge model, but decreases the polarization with the Berry-Phase model. Berry-Phase cal-

culations are the most accurate and therefore considered further. The change in polarization

compared to the stoichiometric case is quite small and clear evidence on structural changes

are not detected when investigating the structure. The topic is therefore not elaborated more

in this project. With In-O-vacancy pairs the polarization increases compared to the stoichio-

metric compound. The increase is quite small compared to for instance the change in po-

larization with an oxygen vacancy present. A possible explanation for this is that the effect

of removing oxygen exceeds that of creating an In-vacancy resulting in a net increase of the

polarization.

P63cm - VIn P63cm – Stoc. 

Figure 8.7: Comparison of a relaxed P63cm-cell (fixed volume) with an In-vacancy and a
stoichiometric cell. The highlighted areas inside the rectangles emphasize the change in
bond angle from a few degrees to zero degrees, showing that the tilting decreases with an
In-vacancy.
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P6
3
cm – Stoc.

 
P6

3
cm - V

O 

Figure 8.8: Comparison of a relaxed P63cm-cell (fixed volume) with an oxygen vacancy and
a stoichiometric cell. The highlighted areas inside the rectangles emphasize the change in
the In-displacement along the c-axis, showing that the polarization increase with an oxygen
vacancy.

8.5.3 Effect of volume on polarization

When using DFT it is hard to reproduce the exact experimental value for volume. By con-

vergence testing, parameter fitting and the use of PBEsol as the exchange correlation func-

tional the calculations are optimized to get as close to the "real" volume as possible. Research

have showed that pressure can change the ferroelectric property of a material. Sani et al.[68]

showed that the spontaneous polarization decreased with increasing pressure for the ferro-

electric perovskite PbTiO3. Increased pressure will result in a volume contraction for the unit

cell. The question is then if the artificial cell volume from DFT calculations can give a wrong

interpretation of the polarization and relative phase stability. To give an indication on this

a 30 atom unit cell of P 3̄c1 and P63cm were fully relaxed (relaxed volume) with experimen-

tal positions and lattice parameters from Kumagai et al.[7]. Then the lattice parameters of

P 3̄c1 and P63cm were switched and fully relaxed again. The energy differences between re-

laxing with correct and switched lattice parameters were 1.83 meV/f.u. and 2.5 meV/f.u for

P 3̄c1 and P63cm respectively. Compared to the other energy differences discussed through-

out this project the energy differences due to volume are quite significant, and could affect
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the result in a larger extent than expected. Regarding the influence of volume on polariza-

tion for InMnO3 it is important to mark the difference between a hexagonal manganite and

a perovskite. Sani et al. observed that the polar c-axis experienced a larger contraction with

increasing pressure than the ab-plane, while the opposite was found by Gao et al.[69] for

YMnO3. Polarization in perovskites and hexagonal manganites are driven by different mech-

anisms and cannot be directly compared, but rather give an indication of a problem that can

be relevant for InMnO3 as well.

8.6 Further work

Throughout this project it has been shown that point defects have an important effect on the

stability between the polar and non-polar phase of InMnO3. Point defects affect the activa-

tion energy barrier between the polar and non-polar state, the dielectric properties as well

as the polarization of InMnO3. It is clear that point defects have a significant impact on the

properties of InMnO3, and can probably resolve some of the confusion in literature. How-

ever, this project only takes a computational approach to the problem. As a consequence, a

few topics for further work are suggested:

• Experimental verification

• Computational verification

• Study magnetism and phonon spectre

• Mn-atom on In-position

8.6.1 Experimental verification

It would be of great interest to investigate the effect of point defects on the phase stability in

InMnO3 experimentally. In section 3.8 several arguments against an experimental approach

are listed. Since a computational study is an approximation of the real world experimental

verification is important. The experimental techniques listed below are examples of what

could be used:
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SHG Secondary harmonic generator measurements can be used to measure the polariza-

tion in InMnO3. By making non-stoichiometric samples of InMnO3 the effect of point

defects on the polarization can be studied.

PFM Piezoresponse force microscopy can be used for imaging ferroelectric domain patterns[70].

PFM reveals the direction of the polarization in each domain and can be used for the

same purpose as SHG, i.e. verify the change in polarization with the presence of point

defects. In addition it can be used to study domains and domain walls.

TEM Transmission electron microscopy of a polished single crystal with controlled cation

stoichiometry could give interesting information. However, as mentioned in section 3.8

TEM only detects periodicity and the periodicity of defects might be too small to detect.

In addition it is important to remember that TEM is based on shooting electrons onto

the sample. This might destroy the sample, especially when small variations such as

point defects are studied.

8.6.2 Computational verification

The criteria and parameters in this project are chosen to give convergence of a stoichiometric

cell with as low computational effort as possible. From testing of the force criterion, section

6.1.2, interstitial oxygen in P 3̄c1 showed an oscillating trend. It could be that with defects

the force criterion should be stricter than for a stoichiometric cell in order to reach complete

convergence. Also when testing the force criterion the difference between a force criterion of

-0.05 eV and -0.01 eV was 1-2 meV/30 atom cell (0.17-0.33meV/f.u.), see section 6.1.2. This

energy difference was considered negligible and a force criterion of -0.05 eV was chosen to be

sufficient. However, some of the activation energy barriers and energy differences between

polar and non-polar are in close proximity to the force criterion energy difference and is a

possible source of error. Calculations with a smaller force criterion should therefore be per-

formed to assure that the calculations are fully converged. A lower force criterion will give a

substantial increase in the computational time for one relaxation. As a consequence only one

configuration of each defect should be tested to verify.

Since InMnO3 turned into a metal when In-vacancies were introduced calculations with in-

creased k-point density and different algorithm to set the partial occupancy for each wave



8.6. Further work 111

function, as discussed in Section 8.3.3, should be performed. New density of states calcula-

tions should also be performed. In this project a In-deficiency of only 4.2% is tested. However,

it has been shown that a substantial larger Y-deficiency for YMnO3 is possible[16]. A study of

the effect on the stability of the polar and non-polar phase for InMnO3 with increased In-

deficiency will therefore be interesting.

8.6.3 Phonon spectra and magnetism

A study on phonons can reveal if the material has relaxed into a ground-state or if it is unstable

with regards to displacements of ions. Figure 8.9 shows the phonons connecting the different

space groups in InMnO3[64]. Calculations of the phonon spectre for InMnO3 will give more

information on the stability of the polar and non-polar phase. To do the calculations 2x2x2

supercells have to be made from the original cell. Also the convergence of the force criterion

has to be very strict for phonon calculation. Therefore a 240 atom cells from a 2x2x2 supercell

based on a 30-atom unit cell is the only realistic considering the computational effort.

P63/mmc

P3c1

P 3̄c1 P63cm

K3 K3 +Γ−2

Figure 8.9: Representation of the relationship and phonon modes between the space groups
P 3̄c1, P63cm and P3c1. P3c1 is a subgroup of P 3̄c1 and P63cm. The relationships are found
from Bilbao Crystallographic Server[37] and phonon modes from work by Griffin et al.[64].

It would be of interest to investigate the effect of different point defects on the magnetic prop-

erty of the polar and non-polar phase of InMnO3. In the research community the findings of
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a ferromagnetic and ferroelectric material is of great interest for use in technological applica-

tions. InMnO3 is found to be antiferromagnetic. However, this project has shown that point

defects can dramatically alter the dielectric properties of InMnO3. This indicates that point

defects have an important impact on the functional properties of InMnO3 and might also al-

ter the magnetic property. A DFT-study of the effect of point defect on the magnetization may

reveal other properties of InMnO3.

8.6.4 Mn-vacancies and other point defects

One other type of point defect that is likely to occur is substitution of Mn at an In-position.

Table 8.6 shows the Shannon radii for different valence state of In and Mn. By comparing the

ionic radii of trivalent In and Mn with coordination number six it is noted that Mn3+ is smaller

than In3+. Mn3+ will therefore fit at a vacant In-position. The difference in radii for divalent

Mn and trivalent In is small and substitution of Mn on In-position will also be likely in this

case. Different intrinsic point defects have through this project showed to be very important

when discussing the relative stability of the polar versus non-polar phase of InMnO3. Griffin

et al.[64] were able to tune between the ferroelectric and non-polar state through Ga doping

at Mn-position in a hexagonal manganite. This indicates that substitution or doping also is

important. It would therefore be of interest to see if also defects from substitution of Mn at

an In-position will explain the deviating properties found in literature to a larger extent.

Table 8.6: Shannon radii for different valence state of In and Mn[59].

Atom Coordination number Ionic radii [Å]

In3+ 6 0.8

Mn2+-HS5 6 0.83

Mn3+-HS 6 0.645
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Conclusion

The purpose of this project was to investigate the effect of point defects on the stability of

the ferroelectric, P63cm, versus the paraelectric, P 3̄c1, phase of InMnO3 through a first-

principles study using density functional theory. The ground-state energy for both space

groups with defects are found, the phase transition between non-polar P 3̄c1 and polar P63cm

was investigated and the effect of point defects on the polarization of P63cm was studied.

In-vacancies under oxidizing conditions were found to favour the non-polar P 3̄c1-phase over

the polar P63cm-phase. This is the first result of non-stoichiometry leading to favouritism of

the paraelectric phase. The study showed that In-vacancies under oxidizing conditions alter

the dielectric property of InMnO3 and turns insulating InMnO3 into a metal. Charge compen-

sation was found to not obey the suggested Kröger-Vink equation. Instead charge compen-

sation happened by delocalized holes, supporting the observation of metallic properties. In-

vacancies created in a reducing environment showed favouritism of the polar P63cm struc-

ture. However, the energy difference between the polar and non-polar phase was subtle for

several positions, and the two phases were almost equally stable in these cases. For polar

P63cm the charge compensation was as expected and the material stayed insulating. In con-

trast, In-vacancies under red. conditions lead to charge compensation by holes and non-

polar P 3̄c1 turned into a metal.

The phase transition study revealed an activation energy barrier between stoichiometric P 3̄c1

and P63cm. This energy barrier increased with point defects of interstitial and vacant oxygen

present. Conversely, In-vacancies at reducing conditions decreased the energy barrier and

for In-vacancies at oxidizing conditions it disappeared. The polarization of P63cm increased

with point defects of vacant oxygen and decreased substantially with In-vacancies present.

The study has shown the great importance of point defects for the stability of the two phases

in InMnO3, and increased the understanding of the deviating properties of InMnO3 found in

literature.
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Appendix A

VASP

A.1 Input-files

This section displays and explains important input files for VASP.

A.1.1 INCAR

Listing A.1 displays an INCAR file used for relaxation of a supercell with one In-vacancy un-

der oxidizing conditions. The important tags that distinguish calculations for InMnO3 with

defects from general calculations are:

Spin-polarization: It is necessary to define the spin state for each Mn-atom. This is done in

the tag MAGMOM. (+) is spin up and (-) is spin down.

Band gap: To better represent the experimental value of the band gap the LDAU tag is set.

Listing A.1: INCAR file

system = InMnO3
%Cut -off energy
PREC = Normal
ENCUT = 550
%Convergence criteria
NSW = 80
NELMIN = 6
NELM = 120
EDIFFG = -0.05
EDIFF = 1E-08
%How to relax the cell
ISIF = 2
IBRION = 2
%INPUT - and OUTPUT -files
LCHARG = .FALSE.
LORBIT = 10
%Spin -polarization
ISPIN = 2
MAGMOM = 23*0 5 -5 5 -5 -5 5 5 -5 5 -5 -5 5 5 -5 5 -5 -5 5 5 -5 5 -5 -5 5 72*0
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%L(S)DA+U
LDAU = .TRUE.
LDAUTYPE = 2
LDAUL = -1 2 -1
LDAUU = 0 5 0
LDAUJ = 0 0 0
LDAUPRINT = 2
%Calculation parameters
GGA = PS
LREAL = Auto
ISMEAR = 0
SIGMA = 0.01
LASPH = .TRUE.
LMAXMIX = 4
NPAR = 4
NSIM = 4

A.1.2 POSCAR

The file shown in A.2 shows some of the first rows of the POSCAR-file for a supercell. Line

2-4 gives the length of the a, b and c-vectors, line 5-6 gives the atoms involved and how many

there exist for each type. The lines from 8 and down give the position for each atom in the

cell (this part continues until the positions of all the 120 atoms are listed). The POSCAR-files

are made by building the desired structure in VESTA (Visualization for Electronic Structural

Analysis[11]) and exporting the structure to POSCAR format.

Listing A.2: POSCAR file. Only the first 11 lines are shown. The file continues until the posi-

tions of all the atom in the cell are given.

InMnO3 1.0
11.8280528369505000 0.0000000000000000 0.0000000000000000
-5.9140264184752500 10.2433942341037000 0.0000000000000000
0.0000000000000000 0.0000000000000000 11.4686954886538732

In Mn O
24 24 71

Direct
0.0000000000000000 0.0000000000000000 0.2724904225926252
0.5000000000000000 0.0000000000000000 0.2724904225926252

A.1.3 KPOINTS

The KPOINTS-file describes the k-mesh for the calculation. For calculations on unit cells a

4x4x2 k-mesh are used, see Listing A.3. For calculations on 2x2x1 supercells a 2x2x2 k-mesh
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are used, see Listing A.4.

Listing A.3: KPOINTS file for unit cell calculations

Automatic mesh
0
Gamma

4 4 2
0. 0. 0.

Listing A.4: KPOINTS file for supercell calculations

Automatic mesh
0
Gamma

2 2 2
0. 0. 0.

A.1.4 Job script

The job script is the script that is executed for running a simulation.

Listing A.5: Script for running a simulation

#!/ bin/bash
# Job name:
#SBATCH --job -name="Name of job"
#
# Project:
#SBATCH --account=nn9264k
#
# Wall clock limit:
#SBATCH --time =24:00:00
#
# Max memory usage per task:
#SBATCH --mem -per -cpu =3800M
#
# Number of tasks (cores):
#SBATCH --nodes =2 --ntasks -per -node =16
## SBATCH --ntasks =16
#
## Set up job environment
source /cluster/bin/jobsetup
module load vasp /5.3.3
#
## Set up input/output files:
infiles ="INCAR KPOINTS POSCAR POTCAR CHGCAR WAVECAR"
outfiles ="CHG CHGCAR CONTCAR DOSCAR EIGENVAL IBZKPT OSZICAR OUTCAR* PCDAT PROCAR WAVECAR XDATCAR vasprun.xml progress *"
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cp $infiles $SCRATCH
chkfile $outfiles
#
## Do some work:
cd $SCRATCH
mpirun vasp.sh

A.1.5 POTCAR

The POTCAR-file contains information about the pseudopotentials used in the calculations,

respectively In_d, Mn_sv and O. The POTCAR-files for each atom are combined to one POTCAR-

file for the compound. VASP use the POTCAR file to gather information about the atoms (i.e.

their mass, valence and energy of the reference configuration for which the pseudopotential

was created[52]).

A.2 Density of state calculations

Density of states calculations were done by utilizing an already relaxed supercell and per-

forming a static calculation, atoms not allowed relax, while making the INCAR parameters

listed in Listing A.6 stricter. The k-mesh for the supercell was increased from 2x2x2 to 4x4x4

for increased accuracy. The produced DOSCAR contains the information about density of

states for all atoms.

Listing A.6: Parameters for a density of state calculation

PREC = High
NSW = 0
ISIF = 0
IBRION = 0
LCHARG = .TRUE.
ICHARG = 11
ISMEAR = -5
LORBIT = 11
EMIN = -10
EMAX = 10
NEDOS = 601
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A.3 Climbing image nudged elastic band calculations

Fixed volume was used to perform the CI-NEB calculations. A few tags to specify character-

istics of a CI-NEB calculations were added to the INCAR-file, see Listing A.7. The number

of intermediate images is specified in the IMAGES-tag and the spring force is given in the

SPRING-tag. The LCLIMB-tag activates the climbing-image nudged elastic band method.

Listing A.7: Parameters for a CI-NEB calculation

#### Nudged elastic band calculations ####
ISIF = 2
IBRION = 1
IMAGES = 1
SPRING = -5.0
LCLIMB = .TRUE.

A.4 Berry-Phase calculations

For Berry-Phase calculations only a few tags were changed in the INCAR-file. The number

of ionic steps, NSW, were set to 0 to perform a static calculations and a tag to calculate the

polarization, LCALCPOL, was set to true, see Listing A.8.

Listing A.8: Parameters for a Berry-Phase calculation

NSW = 0
ISIF = 0
IBRION = 0
LCALCPOL = .TRUE.
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Suplementary from project work - choice

of parameters

The following section is taken from the project work performed by the author spring 2014[1].

It includes testing that was done for choosing correct parameters when working with DFT

and InMnO3.

B.1 Convergence testing

Convergence testing has been performed for k-point density and cut-off energy. Testing is

done for both structures, P63cm and P 3̄c1, and atomic positions were fully relaxed with fixed

unit cell volume. Calculation details for each test is given in Table B.1.

Table B.1: Calculation details for test of convergence for k-point density and cut-off energy.

Relaxation ENCUT
[eV]

EDIFF
[eV]

EDIFFG
[eV]

K-mesh

K-point Constant volume 550 10e-6 -0.01 Varying

Cut-off energy Constant volume Varying 10e-6 -0.01 4x4x2

K-point-testing

Calculations were done for the following k-points (a x a x c): 2x2x1, 3x3x1, 4x4x2, 5x5x3, 6x6x3,

6x6x4, 8x8x4. The length of the c-axis is approximately twice as long as the a-axis, see Table

2.2, and as mentioned before, large is small in reciprocal space and therefore about half the

k-point density is necessary along the c-axis compared to the a-axis. Figure B.1a and B.1b

shows the total number of k-points (a · a · c) plotted against the ground-state energy. The

energy difference between P 3̄c1 and P63cm, ∆EP 3̄c1 −EP63cm , is plotted in Figure B.1c. By

127
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analyzing the results from the calculations the structures were considered converged with a

k-point density of 4x4x2. This k-mesh was used for further calculations.
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Figure B.1: K-point density tests on InMnO3 for P 3̄c1 and P63cm, and the energy difference
between P 3̄c1 and P63cm. All calculations were performed with PBEsol and variables as
given in Table B.1.

Cut-off testing

Cut-off testing was done for the following cut-off energies: [250, 300, ...., 650, 700]. The goal

for this testing was to find out what cut-off energy is necessary to reach convergence. Figure

B.2a and B.2b show the cut-off energies plotted against the ground-state energy for the two

structures. The energy difference between P 3̄c1 and P63cm, ∆E = EP 3̄c1 −EP63cm , is plotted

in figure B.2c. By analysing the results from the calculations both structures were considered

converged with a cut-off energy of 550eV and this value was used for further calculations.
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Figure B.2: Cut-off energy tests on InMnO3 for P 3̄c1 and P63cm, and the energy difference
between P 3̄c1 and P63cm. All calculations were performed with PBEsol and variables as
given in Table B.1.

B.2 The meaning of pseudopotential and Hubbard U

To determine what pseudopotential for Mn that should be used tests were performed for the

three combinations given below. The pseudopotential for In was chosen to be In_d since it

represents the potential with most valence electrons, and a detailed and accurate descrip-

tion of In was important for this project. The standard oxygen potential was chosen since it,

from experience, has proved to work well. The different Mn potentials are distinguished by

looking at the number of valence electrons. Mn includes seven, Mn_sv includes fifteen and

Mn_pv includes thirteen valence electrons, respectively. A full volume relaxation was done

and a 550eV cut-off energy and 4x4x2 k-point density were used.

Pseudopotential combinations tested:

1. In_dMnO

2. In_dMn_svO

3. In_dMn_pvO

Since DFT gives a poor description of the band gap an electrostatic potential had to be added

to the Mn d-orbitals to better reproduce this property. This potential was set through the vari-
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able Hubbard U. The goal was to produce a band gap that was as close to the experimental

value as possible. There are no reported values for the band gap for InMnO3, but it is assumed

that it should be in the range of YMnO3 that is given as 1.6 eV[71]. In total, four different val-

ues for Hubbard U were tested, U = 3, 4, 5, 6 eV.

Figure B.3 shows the energy difference between P 3̄c1 and P63cm, ∆E = EP 3̄c1 −EP63cm , plot-

ted against the Hubbard-U for the different pseudopotentials. By observation the energy

difference for Mn and Mn_pv has nearly a linear increase with Hubbard-U, while Mn_sv

slowly converge when approaching U equal to 5 and 6. Figure B.4 shows how the unit cell

volume change with Hubbard-U for the different potential combinations. The unit cell vol-

ume increases with increasing Hubbard-U, which explains the added external potential from

Hubbard-U[7]. By comparing the graphs it is evident that Mn_sv has in general lower unit

cell volume than the two other combinations and this fit better with the experimental value

of 344.44Å3 from Table 2.2. The change in band gap with respect to choice of pseudopotential

and Hubbard-U in Figure B.5 shows that the potential combinations with Mn and Mn_pv are

not able to reproduce the experimental band gap, even when U increases. Mn_sv is much

closer although it still underestimates the band gap in some extent. When comparing the

calculated values for the lattice constants, a and c, with experimental values given in Table

2.2 it is observed that the calculated lattice constants are overestimated. The potential com-

bination with Mn_sv gives the values closest to the experimental.

For all variables, i.e energy difference, unit cell volume, band gap and lattice parameters, the

potential combination with Mn_sv gives the best fit. Even though it is more computational

expensive to use a potential with several valence electrons the Mn_sv potential is chosen to

give better accuracy to the calculations. When choosing Hubbard-U the most important pa-

rameter to consider is the band gap. A Hubbard-U of 5eV was chosen to compensate between

a correct band gap and accurate volume and lattice constants.
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Figure B.3: Energy difference between P 3̄c1 and P63cm for three potential combinations
plotted with respect to values of Hubbard U.
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Figure B.4: Change in unit cell volume for three potential combinations plotted against Hub-
bard U for P 3̄c1 and P63cm in InMnO3.
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Figure B.5: Change in band gap for three potential combinations plotted against Hubbard U
for P 3̄c1 and P63cm in InMnO3.
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Figure B.6: Change in a lattice parameter for three potential combinations plotted against
Hubbard U for P 3̄c1 and P63cm in InMnO3.
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Figure B.7: Change in c lattice parameter for three potential combinations plotted against
Hubbard U for P 3̄c1 and P63cm in InMnO3.
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Results from project work

The following section is taken from the project work performed by the author spring 2014[1].

It includes results from DFT-calcualtions that are relevant for this thesis.

C.1 Stochiometric cell

Table C.1 and Figure C.1 display the calculated energies for a stoichiometric supercell with

the P 3̄c1 and P63cm structure. The relaxations were done with fixed and relaxed volume as

explained in section 5.5.1. Relaxations for the stoichiometric cells were done with and with-

out symmetry constrains. When applying symmetry constrains to calculations the position

of specific atoms are held constant, see section 5.6.1.

Table C.2 shows the calculated new lattice parameters and volumes after relaxation compared

to experimental values from literature. As mentioned before, each supercell was made by do-

ing a full relaxation of volume and atomic positions for a single unit cell. These unit cells were

based on the experimental values for lattice parameters, volume and atomic positions given

in Table 2.3. The a lattice parameters are divided on two and the volumes on four to convert

them from a supercell into a unit cell. This will make it easier to compare with experimen-

tal values. For better comparison the volume is given in terms of a supercell in Figure C.1.

When the single unit cells were fully relaxed the force criterion was set to -0.01eV. To be able

to achieve convergence for the supercell the value had to be adjusted to -0.05eV. This is the

reason for the difference in energy for convergence testing on a stoichiometric unit cell and

the relaxation of stoichiometric supercells.
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Figure C.1: Barplot showing a) the ground-state energies and b) volumes calculated for a
stoichiometric supercell cell for P 3̄c1 and P63cm with and without symmetry constrains. Re-
laxation of positions and lattice parameters was done with fixed volume and relaxed volume.

Table C.1: Calculated ground-state energy for a stoichiometric supercell for P 3̄c1 and P63cm,
done with and without symmetry constrains and for fixed and relaxed volume.

Structure E0[eV/120 atom cell] w/
fixed volume

E0[eV/120 atom cell] w/
relaxed volume

P 3̄c1 -819.33207 -819.35789

P 3̄c1 - SC -819.32353 -*

P63cm -819.45953 -819.46795

P63cm - SC -819.45038 -*
*Relaxations were the volume is relaxed was not performed with symmetry constrains (SC), because when the volume changes the
atomic positions will change accordingly to each other.



C.2. Interstitial oxygens 135

Table C.2: a and c lattice parameters and volume after full relaxation of atomic position and
volume for P 3̄c1 and P63cm. Lengths and volume are given in terms of a single unit cell.

Structure Lattice
parameter, a [Å]

Lattice
parameter, c [Å]

Volume per unit
cell [Å3]

P 3̄c1 - fixed volume 5.9085 11.4984 347.63

P 3̄c1 - relaxed volume 5.9097 11.4826 348.20

P63cm - fixed volume 5.9140 11.4687 347.39

P63cm - relaxed volume 5.9152 11.4754 347.56

Literature values [7]:
P 3̄c1 & P63cm 5.8846 11.4854 344.44

C.2 Interstitial oxygens

The different interstitial positions are listed in Table C.3 and presented with a yellow atom in

the schematics in Figure C.3. Table C.4 lists the ground-state energies after relaxation for the

different interstitial oxygen positions in the two structures. Calculations were done with fixed

and relaxed volume. Table C.5 lists the lattice parameters and volume per unit cell after the

supercells were relaxed in volume and atomic positions. Figure C.2 displays the calculated

energies for the different interstitial oxygen positions and volume for P 3̄c1 and P63cm. For

better comparison the volume is given in terms of a unit cell in Table C.5, while the supercell

volumes are showed in Figure C.2.

Table C.3: Interstitial oxygen positions in the P 3̄c1- and P63cm-structure for InMnO3. All
positions are in the Mn-plane, that means planar positions.

Structure Site Position

P 3̄c1 Oi1 (1/3,1/3,3/4)

Oi2 (2/3, 2/3, 1/4)

P63cm Oi1 (1/3, 1/3, 0)

Oi2 (2/3, 2/3, 1/2)
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Table C.4: Calculated ground-state energy for a supercell with interstitial oxygen in different
positions in P 3̄c1 and P63cm. Relaxation of positions and lattice parameters was done with
fixed volume and relaxed volume.

Structure Site E0[eV/120 atom cell]
w/fixed volume

E0[eV/120 atom cell]
w/relaxed volume

P 3̄c1 Oi1 -823.98135 -824.05357

Oi2 -823.93425 -824.03817

P63cm Oi1 -823.99531 -824.04214

Oi2 -823.99250 -824.04124

Table C.5: Lattice parameters after full relaxation of atomic positions and volume for P 3̄c1
and P63cm with interstitial oxygens in different positions. Lengths and volume are given in
terms of a single unit cell.

Structure Site Lattice
parameter, a [Å]

Lattice
parameter, c [Å]

Volume per unit
cell [Å3]

P 3̄c1 Oi1 5.8943 11.4992 348.56

Oi2 5.8910 11.5059 348.44

P63cm Oi1 5.9070 11.4827 348.34

Oi2 5.9063 11.4840 348.33
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Figure C.2: Barplot showing the a) ground-state energy and b) volume calculated for a super-
cell with interstitial oxygen in different positions in P 3̄c1 and P63cm. Relaxation of positions
and lattice parameters was done with fixed volume and relaxed volume.
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(a) Oi1 - P 3̄c1 (b) Oi2 - P 3̄c1

(c) Oi1 - P63cm (d) Oi2 - P63cm

Figure C.3: Position of interstitial oxygen, yellow atom, in the P 3̄c1 and P63cm structure for
InMnO3 seen from the c-axis.
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C.3 Oxygen vacancies

The different oxygen vacancy positions are listed in Table C.6 and presented with an arrow for

each position in the schematics in Figure C.5. Table C.7 lists the ground-state energies after

relaxation for the different oxygen vacancy positions in the two structures. Calculations were

done with fixed and relaxed volume. Table C.8 lists the lattice parameters and volume per

unit cell after the supercells were relaxed in volume and atomic positions. Figure C.4 displays

the calculated energies for the different oxygen vacancy positions and volume for P 3̄c1 and

P63cm. For better comparison the volume is given in terms of a unit cell in Table C.8, while

the total supercell volumes are showed in Figure C.4.

Table C.6: Oxygen vacancy positions in the P 3̄c1- and P63cm-structure for InMnO3.

Structure Site Position Comment

P 3̄c1 O1 (0,0,1/4) Planar

O2 (1/3, 2/3, 0.2313) Planar

O3 (0.3171, 0.3412, 0.4142) Apical

P63cm O1 (0.311, 0, 0.1749) Apical

O2 (0.6466, 0, 0.3445) Apical

O3 (0, 0, 0.4746) Planar

O4 (1/3, 2/3, 0.0077) Planar

Table C.7: Calculated ground-state energy for a supercell with vacant oxygen in different po-
sitions in P 3̄c1 and P63cm. Relaxation of positions and lattice parameters was done with
fixed volume and relaxed volume.

Structure Site E0[eV/120 atom cell]
w/fixed volume

E0[eV/120 atom cell]
w/relaxed volume

P 3̄c1 O1 -810.65253 -810.77252

O2 -810.92881 -811.00240

O3 -810.94366 -811.05004

P63cm O1 -811.02293 -811.11169

O2 -811.01723 -811.10971

O3 -810.79055 -810.89488

O4 -811.03063 -811.11041
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Table C.8: Lattice parameters after full relaxation of atomic positions and volume for P 3̄c1
and P63cm with vacant oxygens in different positions. Lengths and volume are given in terms
of a single unit cell.

Structure Site Lattice
parameter, a [Å]

Lattice
parameter, c [Å]

Volume per unit
cell [Å3]

P 3̄c1 O1 5.9181 11.5171 350.27

O2 5.9174 11,5120 349.51

O3 5.9251 11.4696 349.60

P63cm O1 5.9338 11.5146 349.64

O2 5.9360 11.4953 349.22

O3 5.9363 11.4575 349.38

O4 5.9292 11.4603 349.51
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Figure C.4: Barplot showing the a) ground-state energy and b) volume calculated for a super-
cell with vacant oxygen in different positions in P 3̄c1 and P63cm. Relaxation of positions and
lattice parameters was done with fixed volume and relaxed volume.
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(1/3, 2/3, 0.23126)

(0.31708, 0.34119, 0.41418)

(0,0,1/4)

(a) P 3̄c1 in 1̄1̄0 direction

(1/3, 2/3, 0.00772)

(b) P63cm in 110-direction

(0,0,0.47)

(0.64662, 0, 0.34451)

(0.311, 0, 0.17491)

(c) P63cm in 1̄1̄0 direction

Figure C.5: Schematic of the position of the different oxygen vacancies in for InMnO3 in P 3̄c1
and P63cm.
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C.4 Energy differences

Table C.9 presents the calculated energy differences between P 3̄c1 and P63cm, ∆E = EP 3̄c1 −
EP63cm , for a stoichiometric cell as well as the different interstitial and vacant oxygen po-

sitions. The energy differences for defects are calculated by subtracting the ground-state

energy for each position, interstitial or vacant, in the P 3̄c1-structure with the ground-state

energy of the most stable position, interstitial or vacant, in the P63cm-structure.

Table C.9: Energy differences between the different point defect positions for P 3̄c1 and the
most stable point defect position for P63cm. Relaxations of positions and lattice parameters
were done with fixed volume and relaxed volume.

Type Site Energy diff. [eV/120
atom cell] w/fixed

volume

Energy diff. [eV/120
atom cell] w/relaxed

volume

Stoc. Symmetry constrained 0.12685 -

Free 0.12746 0.11006

Oi Oi1 0.01396 -0.01143

Oi2 0.06106 0.00397

VO O1 0.37810 0.33789

O2 0.10182 0.10801

O3 0.08697 0.06037





Appendix D

Vapour pressure of In and Y

To calculate the vapour pressure for In(s) and Y(s) at different temperatures the equation and

values from table "Vapor Pressure of the Metallic Elements" in CRC Handbook of Chemistry

and Physics[72] were used. Equation D.1 gives the formula for calculating the vapour pres-

sure at different temperatures, where T is in Kelvin [K]. Figure D.1 lists the constants in the

equation for In(s) and Y(s) respectively. Table D.2 shows the calculated vapour pressures for

In(s) and Y(s) at different temperatures.

log p[atm] = A+ B

T
+C l og (T )+ D

T 3
(D.1)

Table D.1: Constants for calculating the vapour pressure with equation D.1 for In(s) and Y(s).

Compound A B C D

In-sol. 5.991 -12548 0 0

Y-sol. 9.735 -22306 -0.8705 0

Table D.2: Calculated vapour pressure for In(s) and Y(s) at different temperatures with equa-
tion and constant from "Vapor Pressure of the Metallic Elements" in CRC Handbook of Chem-
istry and Physics[72]

.
Temp.[C°] Vapour pressure for In(s)

[atm]
Vapour pressure for Y(s)

[atm]

25 7.65·10-37 5.36·10-68

100 2.24·10-28 4.95·10-53

200 2.90·10-21 1.77·10-40

500 5.73·10-11 2.31·10-22

1000 1.36·10-04 3.24·10-11

2000 2.95·10+00 9.99·10-04
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