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Abstract

The purpose of the thesis is to prove that the mole based formulation of a pellet
model simulating the steam methane reforming reaction is identical to the novel
mass based formulation. To prove this, the numerical methods of orthogonal col-
location and least squares will be used. These numerical methods will also be
examined to ensure that no numerical differences occur because of the numerical
method used.

The different formulations were proven identical for the Maxwell-Stefan and the
dusty gas diffusion models. This was not obtainable for the relatively simpler Wilke
and Wilke-Bosanquet models. It was also proven that the numerical methods of
orthogonal collocation and least squares yield identical results both for diffusion
dominated and convective dominated problems. However, the orthogonal colloca-
tion method was superior in the terms of simulation speed for diffusion dominated
problems, whereas the least squares method is superior for convective dominated
problems.

A novel under-relaxation method was also developed during the thesis. By
application of this method to the pellet models a reduction in simulation times by
approximately 75% was seen.

Sammendrag

Hovedform̊alet med oppgaven er å bevise at pelletmodellene p̊a de forskjellige for-
muleringene, mol- og massebasis, gir identiske resultater. For å bevise at formu-
leringene gir identiske resultater ble det brukt to forskjellige numeriske metoder,
ortogonal kollokasjon og minste kvadraters metode. Disse numeriske metodene er
ogs̊a testet opp mot hverandre for å sikre at ingen numeriske forskjeller inntrer p̊a
grunn av valgt numerisk metode.

De forskjellige formuleringene ble bevist identiske for Maxwell-Stefan- og Dusty
gas-diffusjon. Dette var ikke mulig å oppn̊a med de simplere diffusjonsmodellene
Wilke og Wilke-Bosanquet. Det ble ogs̊a bevist at de numeriske metodene oppn̊ar
identiske resultater for b̊ade diffusjonsdominerte og konveksjonsdominerte proble-
mer. Det kom tydelig fram at ortogonal kollokasjon er betydelig raskere for dif-
fusjonsdominerte problemer, mens minste kvadraters metode er langt raskere for
konveksjonsdominerte problemer.

En hittil ukjent underrelaksasjonsmetode er ogs̊a presentert i denne oppgaven.
Ved bruk av underrelaksasjonsmetoden p̊a pelletmodellene ble det sett en reduksjon
i simuleringstid med ca. 75%.
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∆H Heat of reaction [kJ/mol]

εp Particle porosity [−]

λ Conductivity [W/mK]
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ωi Mass fraction [−]

M Average molecular weight[kg/kmol]

∂ Partial derivative operator [−]

ρ Density [kg/m3]

τp Tortuosity factor [−]
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ki Mass transfer coefficient [m/s]

Mi Molecular weight for species i [kg/kmol]

p Pressure [bar]
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q Heat conductivity flux [J/m2s]
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R Gas constant [J/kmolK]

R Reaction mass source term [kg/m3s]

R Reaction mole source term [kmol/m3s]

r Reaction rate [kmol/kgs]

T Temperature [K]

t Time [s]

u Mole averaged velocity [m/s]

v Mass averaged velocity [m/s]

xi Mole fraction [−]

Subscripts

ξ Radial direction

c Corrective

cat Catalyst

i, j Indicate species type

p Pellet

Superscripts

∗ Dimensionless variable

b Bulk

e Effective

ref Reference value

Abbreviations

LHS Left hand side

RHS Right hand side

OC Orthogonal collocation
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Introduction

1 Introduction

The purpose of this thesis is to prove that the governing equations on mole and
mass basis yield identical results. This has been examined before by Solsvik and
Jakobsen[2] for both the methanol and for the steam methane reforming(SMR) pro-
cess in pellet models. They found a difference between the mass and mole based
models. This was however most noticeable for the aggressive SMR reaction and
the differences were assumed to have been caused by numerical problems.

Since the most noticeable difference was seen for the SMR process, this thesis
will focus on that reaction. To prove that the governing equations on the different
forms are identical, a set of model equations for the pellet will be derived, also
the SMR process will be examined using four different diffusion models. Starting
out with the most simple models only considering reaction and diffusion for both
models and stepwise making the models more rigorous in order to indicate the po-
tential error introduced by each assumption, this will be done until fully rigorous
models are achieved.

Since the error was speculated to be of a numerical kind, two different numeri-
cal methods will be considered: the spectral methods of orthogonal collocation and
least squares. This is done to see if any numerical differences can be seen for the
different numerical methods. These numerical methods will also be further trialled
with the intend to prove that the least squares method is more stable in simulating
problems dominated by convective flow[3]. This is also done by using the SMR
reaction. However here the reaction will take place in a pseudo homogeneous reac-
tor where convective flow dominates rather than a diffusion dominated pellet model.

An extreme test will also be conducted for both of the numerical methods,
solving the pure convective advection equation where no diffusion is present. Since
diffusion is well know to stabilize numerical solvers and reduce occurring oscilla-
tions, the lack of this element is expected to yield problems for the solvers. However
the least squares method is expected to yield better results than the orthogonal
collocation method.

Both of the numerical methods will also be implemented as spectral element
methods in order to examine the computational savings this introduces. For futher
computational savings a novel under-relaxation method is also presented.
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2 Theory

2.1 Steam methane reforming

In the models the steam methane reforming process is considered. Steam methane
reforming is an important process for Norway in order to produce synthesis gas
from natural gas. This reaction will be considered for both the pellet and the
pseudo homogeneous reactor model.

The reaction is usually operated at high temperatures and pressure. In addition
a nickel/alumina catalyst is needed in order to accelerate the reactions. With the
use of a catalyst the reaction is quite rapid and the reaction is usually diffusion lim-
ited creating steep gradients in the pellet/reactor. The reaction kinetics considered
in this thesis are the model presented by Xu and Froment[4].

CH4 + H2O ⇀↽ CO + 3H2, ∆H298 = 206.2kJ/mol (1)

CH4 + 2H2O ⇀↽ CO2 + 4H2, ∆H298 = 164.7kJ/mol (2)

CO + H2O ⇀↽ CO2 + H2, ∆H298 = −41.5kJ/mol (3)

These are the most crucial reactions with the two reforming reactions being
the two first and the water-gas shift reaction being the last. The process is in
total endothermic and requires energy throughout production. Also the reaction
produces moles giving that an increase in pressure or velocity is expected through
the reactor. Less gradients are expected for velocity and pressure in the pellet
model as the hydrogen easily diffuses out of the pellet preventing pressure increase.

2



Theory
Model equations

2.1.1 Reactor/pellet operating conditions

Since the thesis will investigate the differences obtained by Solsvik and Jakobsen[2]
when simulating the SMR reaction, the operating conditions presented in that
article will be used here. These are shown in table 1. The operating conditions
will be used for both the pellet and the reactor model.

Table 1: Reactor operating conditions used in the simulation of the SMR reaction

Description Value Description Value
Dp(m) 0.0173 Dpore(nm) 40
εp(−) 0.528 τp(−) 3.5
pb(bar) 29 T b(K) 800
vb(m/s) 1.89 ρcat(kg/m3) 2300
kcat(W/m K) 25 Cpcat(J/kg K) 1000
xbCO(−) 6.3581E-005 kbCO(m/s) 0.065
xbCO2

(−) 0.0080931 kbCO2
(m/s) 0.055

xbH2
(−) 0.025567 kbH2

(m/s) 0.148
xbH2O

(−) 0.71335 kbH2O
(m/s) 0.16

xbCH4
(−) 0.21218 kbCH4

(m/s) 0.079
xbN2

(−) 0.040755 kbN2
(m/s) 0.067

h(W/m2K) 1236 Twall(K) 1100

2.2 Model equations

The model equations presented here will mainly be for the pellet model. The re-
actor model is presented in chapter 9.

The equations needed for a transient pellet model considering changing temper-
ature, fluxes, species fraction, velocity, pressure and total concentration or density
are presented. However they will only be presented in their original state and the
derivation of the model equations used in the thesis are presented in appendix A.
This is done in order to shorten the derivation of the model equations for each
case, since the general equations will then only need to be simplified in order to
account for the different assumptions in each case. The mass based derivation can
be found in chapter A.1 and the mole based in chapter A.3 in the appendix. In the
appendix also the different terms in the governing equations are explained. The
model equations derived in the appendix are gathered in table 3 and 4 for conve-
nience.

The equations presented in this chapter, are reduced to spherical coordinates in
the appendix A, and total symmetry around the center of the particle is assumed.
This effectively reduces the models to one dimension. To obtain the most accurate
solution the model equations solved in the numerical system will also need to be
approximately in the same order, to reduce the numerical loss in the process. This
is obtained by transforming the equations to a dimensionless form with the use of
the correlations given in table A.9, so that all components range between |0− 1|.

3



Theory
Model equations

2.2.1 Temperature and heat flux

To obtain an equation for temperature evolution through the pellet, the governing
temperature equation(mass: eq.4, mole: eq.5) is considered. This equation gives
the heat flux q which then can be used to obtain the temperature with the use of
Fourier’s law(6).

Temperature equations, mass and mole based respectively:

((1− ε)ρpCpp + ερ
n∑
i=1

ωiCpi)
∂T

∂t
+ ρ

n∑
i=1

ωiCpiv∇ · T = −∇ · q + (−4HR)R+Q

(4)

((1− ε)ρpCpp + ερ

n∑
i=1

xiCp
′
i)
∂T

∂t
+ c

n∑
i=1

xiCp
′
iv∇ · T = −∇ · q + (−∆HR)R+Q

(5)

Fourier’s Law:

q = −λ∇ · T (6)

Reaction term:

(−∆HR)R = (1− εcat)ρcat
∑

(−∆Hri)ri (7)

2.2.2 Species fractions and species transport fluxes

The change in species transport flux is obtained from the governing species bal-
ance(mass: eq.8, mole: eq.9). The species balance will only be solved for N-1
components and the last component will be obtained by using the corresponding
constitutive law(mass: eq.13, mole: eq.15). In the equations the species fractions
used in combination with the total concentration/density instead of component
specific concentration or density which is normally seen.

Species balance equations, mass and mole based:

∂

∂t
(ρωi) +∇ · (ρωiv) = −∇ · (ji) +Ri (8)

∂

∂t
(cxi) +∇ · (cxiu) = −∇ · (Ji) +R′i (9)

Reaction term:

Ri = (1− εcat)ρcatri (10)

R′i = (1− εcat)Miρcatri (11)

(12)
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Constitutive laws, mass and mole based:

n∑
i=1

ji = 0 (13)

n∑
i=1

ωi = 1 (14)

n∑
i=1

Ji = 0 (15)

n∑
i=1

xi = 1 (16)

Since the transport fluxes have been obtained with the use of the species bal-
ance equation, a multi component diffusion model can then be applied to obtain the
species fractions. The diffusion models considered in this thesis will be the Wilke
model[5] and the more rigorous Maxwell-Stefan model[6, 7], which are consider-
ing bulk diffusion. We will also consider some more advanced models considering
both bulk and Knudsen diffusion, the Wilke model combined with the Bosanquet
formula[8] and the rigorous dusty gas model[9, 10].

All the diffusion models can be found in the table 2 for both the mass and mole
based equations. As for the species balance, the diffusion models will only be used
to solve N-1 components, the last is solved with the constitutive law 14 for the
mass based and 16 for the mole based model.

The binary diffusivities needed in the diffusion models are obtained with the
equation[11]:

Dij =
0.00266T 3/2

pM
1/2
ij σ2

ijΩD
(17)

The Knudsen diffusivites are obtained with the equation[12]:

1

DiK
=

1

Dij
+

1

Dk
(18)

where DiK is the diffusion coefficient in a single cylindrical pore, Dij is the bulk
diffusion coefficient and Dk is the Knudsen diffusion coefficient given by:

Dk ≈ 48.5dp
T

M

0.5

(19)

To fully recreate the pellet model used by Solsvik and Jakobsen[2], the same
parallel pore model[13] will be used in this thesis to describe the pore size distri-
bution within the pellet.

De
ij =

ε

τ
Dij (20)

De
iK =

ε

τ
DiK (21)
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Table 2: Diffusion models

Mass based diffusion models:

Wilke diffusion model:

ji = −ρDim∇ωi Dim =
1− ωi

M
∑n
j=1
j 6=i

ωj

MjDij

(22)

Wilke–Bosanquet diffusion model:

ji = −ρDi,eff∇ωi
1

Di,eff
=

1

Dim
+

1

DiK
(23)

Maxwell-Stefan diffusion model:

ji =

−ρωi∇ln(M)− ρ∇ωi +Mωi
∑n
j=1
j 6=i

jj
MjDij

M
∑i
j=1
j 6=i

ωj

MjDij

(24)

Dusty gas diffusion model:

ji =

M2 ∑n
j=1
j 6=i

ωijj

MjD̃ij
− vρiM

D̃iK
− ρ(ωi∇M +M∇ωi)

M2
∑n
j=1
j 6=i

ωj

MjD̃Dij
+ M

DiK

(25)

Mole based diffusion models:

Wilke diffusion model:

Ji = −cD′im∇ · xi D′im =
1− xi∑n
j=1
j 6=i

xj
Dij

(26)

Wilke–Bosanquet diffusion model:

Ji = −cD′i,eff∇ · xii
1

D′i,eff
=

1

D′im
+

1

DiK
(27)

Maxwell-Stefan diffusion model:

Ji =

−cxi +
∑n
j=1
j 6=i

jjxi
Dij∑i

j=1
j 6=i

xj
Dij

(28)

Dusty gas diffusion model:

Ji =

∑n
j=1
j 6=i

jjxi
Dij
− ciu

DiK
− c∇xi∑i

j=1
j 6=i

xj
Dij

+ 1
DiK

(29)
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2.2.3 Velocity

The mass and mole averaged velocity is mainly obtained from the governing con-
tinuity equations(mass: eq. 30 , mole: eq. 31), but a comparison is also made
with the velocities obtained from the flux conversion equations 32 and 33[14]. The
equation 33 is also important for the mole based model where the mass averaged
velocity is needed.

Continuity equations, mass and mole based:

∂ρ

∂t
+∇ · (ρv) = 0 (30)

∂c

∂t
+∇ · (cu) =

n∑
i=1

R′i (31)

Alternate velocity equations:

u− v =

N∑
i=1

jiM

ρMi
(32)

v − u =

N∑
i=1

JiMi

ciM
(33)

2.2.4 Pressure

By obtaining the mass averaged velocity it is possible to produce the pressure
change through the system by the use of Darcy’s law[15] equation 34.

v = −B
µ

∂p

∂ξ
B =

ε

τ

d2
0

32
(34)

2.2.5 Total concentration or density

Total concentration or density is obtained from the ideal gas law or modified ideal
gas law, eq A.36 and A.37 respectively. The modified version is multiplied with
average mole weight to obtain the total density. The concentration equations is
used for the mole based model and the density equation for the mass based.

p

RT
= c (35)

pM

RT
= ρ (36)

2.3 Summaries of the basis equations, mole and mass based

The basis equations derived in the theory appendix A, which are used as a basis
for all the pellet models are presented in table 3 and 4.
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Table 3: Mass based model equations on dimensionless form

Species mass balance:

∂

∂t∗
(ρ∗ωi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗ωiv

∗
ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2
ref

Drefρref
(37)

The basic dimensionless temperature equation:

((1− ε)ρpCpp + ερ∗ρref

n∑
i=1

ωiCpi)
∂T ∗

∂t∗
=

−ρ∗ρrefv∗r
n∑
i=1

ωiCpi
∂T ∗

∂ξ∗
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref

(38)

The basic dimensionless continuity equation:

∂ρ∗

∂t∗
+

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗v∗) = 0 (39)

Wilke diffusion model:

j∗i = −ρ∗ Dim

Dref

∂ωi
∂ξ∗

Dim =
1− ωi

M
∑n
j=1
j 6=i

ωj

MjDij

(40)

Wilke–Bosanquet diffusion model:

j∗i = −ρ∗Di,eff

Dref

∂ωi
∂ξ∗

1

Di,eff
=

1

Dim
+

1

DiK
(41)

Maxwell-Stefan diffusion model:

j∗i =

−ρ∗ωi

Dref

1
M

∂M
∂ξ∗ −

ρ∗

Dref

∂ωi

∂ξ∗ +Mωi
∑n
j=1
j 6=i

j∗j
MjDij

M
∑i
j=1
j 6=i

ωj

MjDij

(42)

Dusty gas diffusion model:

j∗i =

M
2∑n

j=1
j 6=i

ωij
∗
j

MjD̃ij
− v∗ωiM

D̃iK
− ωiρ

∗

Dref

∂M
∂ξ∗ −

ρ∗M
Dref

∂ωi

∂ξ∗

M
2∑n

j=1
j 6=i

ωj

MjD̃Dij
+ M

DiK

(43)
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Table 4: Mole based model equations on dimensionless form

Species mole balance:

∂

∂t∗
(c∗xi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗xiu

∗
ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +R′i

ξ2
ref

Drefcref
(44)

The basic dimensionless temperature equation:

((1− ε)ρpCpp + εc∗cref

n∑
i=1

xiCp
′
i)
∂T ∗

∂t∗
=

−c∗crefv∗r
n∑
i=1

xiCp
′
i

∂T ∗

∂ξ∗
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref

(45)

The basic dimensionless continuity equation:

∂c∗

∂t∗
+

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗u∗ξ) = (

ξ2
ref

crefDref
)

n∑
i=1

R′i (46)

Wilke diffusion model:

J∗i = −c∗ D
′
im

Dref

∂xi
∂ξ∗

D′im =
1− xi∑n
j=1
j 6=i

xj

Dij

(47)

Wilke–Bosanquet diffusion model:

J∗i = −c∗
D′i,eff
Dref

∂xi
∂ξ∗

1

D′i,eff
=

1

D′im
+

1

DiK
(48)

Maxwell-Stefan diffusion model:

J∗i =

− c∗

Dref

∂xi

∂ξ∗ +
∑n
j=1
j 6=i

J∗j xi

Dij∑i
j=1
j 6=i

xj

Dij

(49)

Dusty gas diffusion model:

J∗i =

− c∗

Dref

∂xi

∂ξ∗ +
∑n
j=1
j 6=i

J∗j xi

Dij
− c∗xiu

∗

DiK∑i
j=1
j 6=i

xj

Dij
+ 1

DiK

(50)
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2.4 Numerical methods - Methods of weighted residuals[1]

In order to solve the system of equations a numerical solver has to be used. The
basics of any numerical method is to transform the set of governing equations into
a system of algebraic equations that can be solved using a computer. This can
be achieved by multiple methods such as the finite difference method or the finite
volume method. In this thesis a spectral method of weighted residuals is applied.

To solve the governing equations, two different subclasses in the methods of
weighted residuals will be used: the orthogonal collocation method and the least
squares method. The least squares method is expected to be the better method
for the convective problems and the collocation method to perform best for the
diffusive problems. Before the different subclasses are reviewed, the basics behind
a spectral weighted residuals method is presented.

In the spectral weighted residuals method a numerical solution is obtained by
finding an approximating function f belonging to a functional space X such that:

A(f, v) = F (v), ∀v ∈ Z (51)

where the space of functions Z may or may not be equivalent to X. The algebraic
set of equations is then found when the search space is reduced from X ⊂ XN

and considering trail function fN that can be expanded as linear combinations of
nodal-basis functions such that:

f ∼= fN =
∑
j

αjψj (52)

Then the equation 51 can be expanded to, when also reducing the test space Z to
ZN : ∑

j

A(ψj , ψk) = F (ψk) , ∀ψk ∈ ZN (53)

Rewriting the problem to matrix form:

Af ∼= F (54)

where [A]kj = A(ψj , ψk) , [f ]j = αj and [F ]k = F (ψk).
However, this method will produce a residual unless f = f , with the residual being:

Af − F = R (55)

A method of weighted residuals will then be applied in order to force the resid-
uals to zero in some average sense over the domain:∫

X

R(X)Widx = 0 i = 1, 2, ..., n (56)

Here the number of weight functions Wi is exactly the same as the number of
unknown constants αj in f . This results in a set of n algebraic equations for the
unknown constants αi. The weight functions will then be specified either by the
use of orthogonal collocation or least squares in this thesis.
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2.4.1 Orthogonal collocation[3]

The orthogonal collocation method uses the weighting functions as the Dirac δ
functions in the domain.

Wi(x) = δ(x− xi) (57)

The Dirac δ function has the property that

δ(x− xi) = 1 if x = xi,= 0 otherwise (58)

Inserting and integrating up with the weighted residual statement 56, results
in forcing the residual to zero at the specific points in the domain.

R(xi) = 0 (59)

2.4.2 Least squares method[3]

The least squares method minimizes the continuously summed up squared residuals.

S =

∫
X

R(x)R(x)dx =

∫
X

R2(x)dx (60)

The minimum of this scalar function implies that the derivatives of S with respect
to all the unknown parameters also must be zero.

∂S

∂αj
= 0 (61)

2

∫
X

R(x)
∂R

∂αj
dx = 0 (62)

Comparing the equation 62 to the method of weighted residuals statement 56, it can
be seen that the weight functions for the least squares method are the derivatives
of the residual with respect to the unknown constants.

Wi = 2
∂R

∂αj
(63)

However the ”2” can be dropped as it cancels out in the equation.
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2.4.3 Under-relaxation and convergence criteria[1]

Since the numerical methods presented here are linear systems solvers we need to
linearize the problem. In this thesis the method of Picard iteration is used. With
the linearizion of the equations, some instability problems occur when considering
the new solution that will used for the next iteration. To prevent this, some under-
relaxation is needed in order to stabilize this process. The purpose of the under-
relaxation is to only introduce a fraction of the new solution for each iteration
to maintain a stable iterative process. The under-relaxation of the variables are
defined as:

f = αf
it−1

+ (1− α)f
it

(64)

Since the SMR pellet model is very diffusion limitied, steep gradients will occur
in the pellet and a heavy under-relaxation is needed for a stable iterative process.
However, with high under-relaxation more iterations are needed for a satisfying
solution, resulting in computer costly models. An addition to the basic under-
relaxation method was developed during the thesis, however the method is not
fully investigated. The developed method and results are presented in appendix I.

Furthermore a convergence criteria for the iterative process has to be specified.
In this thesis the residual is specified to be lower than 10−10 according to equation:

Residual =

√∫
Ω

R2dΩ =

√∫
Ω

(Af − F )2dΩ ≤ 10−10 (65)

12
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2.4.4 Spectral element methods[1]

To save computer cycles, the possibility of splitting up the domain in order to use
more calculation points where there are steep gradients and fewer points where the
profile is flat. The method for this is known as the spectral element methods. The
method is fairly straight forward where the domain is separated and an individual
amount of collocation points can be chosen for each element.

Looking at the problem matrix A for a one variable problem it can be seen how
the method is implemented without elements:

A =


A00 A01 · A0N

A10 A11 · A0N

· · · ·
AN0 AN1 · ANN

 (66)

Dividing this matrix into three elements will yield a matrix containing three sub
matrices. The element matrices are joint together in such a way that the overlaps
are only calculated once as seen in equation 68.

A =

[Ae1] 0 0
0 [Ae2] 0
0 0 [Ae3]

 (67)

By expanding the element matrices, it is apparent how the matrices are joint to-
gether. This is shown for whole system Af = F using three elements with two
points in each element.

A1
00 A1

01 0 0
A1

10 A1
11 +A2

00 A2
10 0

0 A2
10 A2

11 +A3
00 A3

01

0 0 A3
10 A3

11



x1

x2

x3

x4

 =


F 1

1

F 1
2 + F 2

1

F 2
2 + F 3

1

F 3
2

 (68)

Using this method will give the opportunity to save computational power and
increase the speed of the simulation. The possible speed increase will be looked
into in the chapter where the numerical methods are compared in chapter 7.
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2.5 Tetha method[1]

For the two dimensional problems where the transient terms are included, it is ei-
ther needed to extend the already explained numerical methods to two dimensions
or to discretise the transient terms using a finite difference method. In this thesis
the latter method will be used as it is the simplest to implement and does not
deviate much from the one-dimensional steady state implementation.

The finite difference θ method will be used to discretise the transient terms:

f t+1 − f t

∆t
+ θ[L(f t+1)− gt+1] = −(1− θ)[L(f t)− gt] (69)

here f represents the discretisized variable, L represents the term in the prob-
lem matrix(A) and g the term in source vector(F). the superscripts (t+1) and (t)
represents the current and previous time-step respectively.

The value of θ indicates which method that is used.
1. Explicit forward Euler method θ = 0
2. Implicit forward Euler method θ = 1
3. Crank-Nicholson for θ = 0.5

In the thesis only the second order Crank-Nicholson method will be considered
as it gives the most accurate results. The equation is rearranged to show the
implemented form:

f t+1 + ∆tθLf t+1 = ∆tθgt+1 + ∆t(1− θ)(gt − Lf t) + f t (70)
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3 Models on their simplest forms

Starting out with the most simplified model for simulating a pellet with the steam
methane reforming reaction, gives the possibility to identify if the models on this
level yield idientical results or deviates from each other.

With the models on their simplest form, steady state and no convective trans-
port are assumed in the pellet. Basic boundary conditions are also used. The use
of basic boundary conditions elimitates the effect of transfer resistances from the
bulk to the pellet surface. A model on both mass and mole basis is to be derived.
The method of implementation will also be shown in order to indicate how the
problem is solved using orthogonal collocation.

3.1 Derivation of the model equations, mass and mole based

The temperature equation (A.56) for mass and (A.63) for the mole based model is
solved in combination with Fouriers law. The temperature equation is only mod-
ified by introducing the assumptions for this case. Here, the heat flux is obtained
from the temperature equation and the temperature is obtained from Fourier’s law.

The species balance for respectively the mass and mole model (A.55) and (A.62),
is used to calulate the fluxes. This is done by solving the species balance for N-1
components and the last component by the constitutive laws (A.39) and (A.41).
In the species balance the continuity equation (A.57) and (A.64) is identified for
the respective model and inserted giving the species balance used in the model.

The species fractions are solved by using one of the four different diffusion mod-
els in table B.2 for the mass based and B.6 for the mole based for N-1 components,
the last component is solved by the appropriate constitutive law (A.40) and (A.42).
These diffusion models are only reformulated from their general form presented in
the theory to reflect their implemented form.

The equations used in these models are derived in detail in appendix B, with
the mass based starting in chapter B.1 and the mole based in B.3. The solution
strategy is shown in table B.1 and B.5 for the mass and the mole based model
respectively. The visualization of the implementation is shown in figure B.1 and
B.2.

A summary of the equations derived in detail in the appendix are shown in
table 5 for the mass based and table 6 for the mole based model along with the
boundary conditions and the constitutive laws used in the models. The reactor
operating conditions are given in the theory, table 1.
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Table 5: Mass based equations, constitutive laws and boundary conditions

Equations: Constitutive Laws:
Temperature equation:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2
ref (−4HR)R

Trefλ
(71)

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (72)

Mass balance:

2j∗i
ξ∗

+
∂j∗i
∂ξ∗

= Ri
ξ2
ref

Drefρref
(73)

Definition:

n∑
i=1

j∗i = 0 (74)

Diffusion model:

One of the four diffusionmodels in table B.2 is used

Definition:

n∑
i=1

ωi = 1 (75)

Ideal gas law modified for density:

pM

RT
= ρ (76)

Boundary conditions in the symmetry
point ξ∗ = 0

Boundary conditions at the surface
ξ∗ = ξ∗p

ji = 0 (77)

q = 0 (78)

T = T b (79)

ωi = ωbi (80)
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Table 6: Mole based equations, constitutive laws and boundary conditions

Equations: Constitutive Laws:
Temperature equation:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2
ref (−4HR)R

Trefλ
(81)

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (82)

Species mole balance:

2J∗i
ξ∗2

+
∂J∗i
∂ξ∗

= (R′i − xi
n∑
i=1

R′i)
ξ2
ref

Drefcref
(83)

Definition:

n∑
i=1

J∗i = 0 (84)

Diffusion model:

One of the four diffusionmodels in table B.6 is used

Definition:

n∑
i=1

xi = 1 (85)

Ideal gas law rearranged for concentration:

p

RT
= c (86)

Boundary conditions in the symmetry
point ξ∗ = 0

Boundary conditions at the surface
ξ∗ = ξ∗p

Ji = 0 (87)

q = 0 (88)

T = T b (89)

xi = xbi (90)
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3.2 Results and discussion - The simple models

3.2.1 General for all simple models

As stated these are the models on their simplest forms with the assumption of
steady state, no convective flow and simple boundary conditions. In the pellet
the steam methane reforming reaction is simulated. The models are driven to a
residual below 10−10 and are simulated using 60 collocation points.

The mole fractions of the reactants H2O and CH4 are expected to decrease from
the surface to the center of the particle, and increase for the products CO2, CO
and H2. The mole fraction of the inert gas N2 is expected to increase slightly, on
the contrary to what might be expected since the reaction generates mole. This
happens because hydrogen easily diffusies out of the pellet, resulting in an effective
mole consuming process for the heavier components in the pellet.

The simulation of the SMR reaction requires heavy under-relaxation of the
diffusion model in order to converge. The Wilke-Bosanquet and the dusty gas
diffusion model tend to be the most sensitive whereas the basic Wilke and Maxwell-
Stefan models are the most robust. These simulations are underrelaxed by a factor
of 1-2 in the order of 10−4 depending on the diffusion model.

3.2.2 Wilke and Wilke-Bosanquet models

Starting out with the Wilke and Wilke-bosanquet diffusion models on their simplest
forms, one can immediately see from the result plots in figure 1 and 2 respectively,
that the mole and mass based model does not yield the same results. The differ-
ences here are due to the inconsistensy in the Wilke model. Adding the effect of
Knudsen diffusion in the Wilke-Bosanquet model does not have any effect on this
problem.

The inconsistency can best be explained by looking at the mole fraction plot
for nitrogen and comparing it with the Wilke equation on the different forms. The
Wilke equation on mass basis is only dependent on the component which it is solv-
ing for. This means that nitrogen, since it does not react, will have a flat mass
fraction profile. The increase seen in mole fraction is only due to the increase in
molar weight. One would then expect a flat mole fraction profile for nitrogen when
using the mole based Wilke model. However, in the mole based species balance it
is accounted for mole generation by including the LHS of the continuity equation.
This inclusion gives a rather significant change in the composition, however not in
the expected direction.

The differences in the the temperature equations are due to the different reac-
tion rates because of the inconsistent Wilke models. The same difference would also
have been seen for the density or concentration and the average molecular weight
since they are directly dependent on the primary variables, temperature and mole
fractions. Result plots for these variables are by that reason not shown.

Additional result plots are given in appendix B, figure B.3 for Wilke and B.4
for Wilke-Bosanquet. Here the diffusive fluxes are compared since the convective
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flow is not considered. The differences seen in the flux plots is the effect of not
considering convective flow. Not considering convective flow is mainly causing the
mole based model to deviate as the convective flow is negligible on mass basis. The
effect of dis-considering convective flow on the mole based models will be further
discussed in the more rigorous models.
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3.2.3 Wilke

0 0.002 0.004 0.006 0.008 0.01
799.85

799.9

799.95

800
Temperature

Position in particle[m]

T
em

pe
ra

tu
re

[K
]

0 0.002 0.004 0.006 0.008 0.01
0.1

0.15

0.2

0.25
CH4

Position in particle[m]

M
ol

ef
ra

ct
io

n[
−

]

0 0.002 0.004 0.006 0.008 0.01
0

2

4
x 10

−3 CO

Position in particle[m]

M
ol

ef
ra

ct
io

n[
−

]

0 0.002 0.004 0.006 0.008 0.01
0

0.05

0.1
CO2

Position in particle[m]

M
ol

ef
ra

ct
io

n[
−

]

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2
H2

Position in particle[m]

M
ol

ef
ra

ct
io

n[
−

]

0 0.002 0.004 0.006 0.008 0.01

0.04

0.045

0.05
N2

Position in particle[m]

M
ol

ef
ra

ct
io

n[
−

]

0 0.002 0.004 0.006 0.008 0.01
0.4

0.6

0.8
H2O

Position in particle[m]

M
ol

ef
ra

ct
io

n[
−

]

Figure 1: Mass(-.-.-) and mole(—) based simulations using the Wilke diffusion
model. The mass based results are converted to mole fractions.

3.2.4 Wilke-Bosanquet
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Figure 2: Mass(-.-.-) and mole(—) based simulations using the Wilke-Bosanquet
diffusion model. The mass based results are converted to mole fractions.
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3.2.5 Maxwell-Stefan and Dusty gas models

Looking at the results for the Maxwell-Stefan model in figure 3 and the dusty gas
model in figure 4 one can immidately see that these models give much more compa-
rable results between mass and mole based models compared to the Wilke diffusion
models. One would also expect this since the Maxwell-Stefan and dusty gas models
are more rigorous diffusion models which consider the other components as well.
This is easily spotted comparing the diffusion equations in table B.2 for mass and
table B.6 for the mole based models.

For the Maxwell-Stefan models only a small deviation between the mass and
mole based models can be seen. The small deviation here is due to not considering
convective flows. This will only affect the mole based model since the mass based
model has negligible convective flow.

The results for the simplest form considering dusty gas diffusion is a bit dif-
ferent. The differences can be seen for the mole fractions in figure 4. This is a
rigorous diffusion model along with the Maxwell-Stefan model, but with the ad-
dition of Knudsen diffusivites. The Knudsen diffusivities added in the dusty gas
model introduces a convective term in the diffusion model, which is not considered
in this simple case. This introduces a difference between the mass and the mole
based models as the convective flows cannot be compared for the different models.
When the models are compared in the chapter with convective flow one can see
that the convective terms on mass basis are negligible but have a significant value
on mole basis. This proves the differences seen on this level.

The temperature equation for both models are more similar than for the Wilke
models due to the more similar reaction rates. The flux comparisons on mole and
mass basis for all diffusion models in figure B.3,B.4,B.5 and B.6 all show great
similarity between the diffusion models because of the very rapid reaction. The
reaction is so rapid that the diffusion equations will yield almost no effect back
to the species balances equations which is used to calculate the fluxes. Since the
diffusion models have so small effect on the flux calculation, the difference here is
mainly due to not considering convective flows.
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3.2.6 Maxwell-Stefan
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Figure 3: Mass(-.-.-) and mole(—) based simulations using the Maxwell-Stefan
diffusion model. The mass based results are converted to mole fractions.

3.2.7 Dusty gas
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Figure 4: Mass(-.-.-) and mole(—) based simulations using the dusty gas diffusion
model. The mass based results are converted to mole fractions.
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4 Alternative methods for solving the simple mod-
els

In this chapter, it is looked into two alternative cases for solving the methods
on their respective simplest forms. Firstly the effect of not assuming constant
reference values when transforming the equations to a dimensionless form is in-
vestigated. This has been done for both the mole and the mass based model, but
since they yielded the same conclusion only the mass based model will be presented.

Secondly, the use of the continuity equation(mass: eq. A.57 mole eq. A.64) in
the species balance is investigated for the simplest models. For the simple mod-
els not considering convective flow the inclusion of the continuity equation in the
species balance only has an effect on the mole based model. This is because the
continuity equation on mass basis equals to zero and does not contribute with any
new terms when dis-considering convective flow. However, the mole based conti-
nuity equation will have one remaining term which is not equal to zero. The effect
of not including this term will be looked into.

For the more rigorous models on both mole and mass basis including convective
flow, the use of the continuity equation to simplify the species balance is expected
to not have any effect on the simulations.

4.1 Using non-constant values for making the fluxes dimen-
sionless

It is speculated that some numerical errors may occur when using different meth-
ods of transforming the model equations to a dimensionless form. In order to
investigate this, a new approach to how the diffusive fluxes are transformed to a
dimensionless form will be trialled. The focus will be on the mass based model
using the Maxwell-Stefan diffusion model, since this will yield the most differences
compared to the method used previously in the thesis.

The derivation of the mass based model will only differ from the model presented
in chapter 3.1 by not assuming constant reference values when making the fluxes
dimensionless, i.e. variable density and diffusive term will now be used instead of
the reference values. The model is solved in a completely similar manner and the
walk-through of the equations can be found there. The model equations are derived
in detail in appendix C with the addition of a solution strategy and a visualization
of the collocation matrix. A summary of the derived equations is presented in table
7 along with the boundary conditions.
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Table 7: Mass based equations, constitutive laws and boundary conditions

Equations: Constitutive Laws:
Temperature equation:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2
ref (−4HR)R

Trefλ
(91)

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (92)

Mass balance:

2j∗i
ξ∗

+
∂j∗i
∂ξ∗

+
j∗i
Ds

∂Ds

∂ξ∗
+
j∗i
c∗
∂c∗

∂ξ∗
+
j∗i
M

∂M

∂ξ∗
= Ri

ξ2
ref

ρDs

(93)

Definition:

n∑
i=1

j∗iDsρ = 0 (94)

Diffusion, Maxwell-Stefan:

j∗i = −ωi
1

M

∂M

∂ξ∗
− ∂ωi
∂ξ∗

+ ωi

n∑
j=1
j 6=i

j∗jDsM

MjDij
(95)

Definition:

n∑
i=1

ωi = 1 (96)

Ideal gas law, concentration and density:

p

RT
= c

pM

RT
= ρ (97)

Boundary conditions in the symme-
try point ξ∗ = 0

Boundary conditions at the surface ξ∗ =
ξ∗p

ji = 0 (98)

q = 0 (99)

T = T b (100)

ωi = ωbi (101)
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4.2 Results and discussion - Alternative dimensionless method

The effect of using constant vs variable density and diffusive term when making
the diffusion fluxes dimensionless are compared for the mass based model in the
figure 5. As expected, this yields no difference between the models. However, it
is recommended to use constant reference values as this will yield a much simpler
model. Using variable reference values will cause a more troublesome implemen-
tation, since the fluxes no longer will directly be in scale. The same results were
seen for the mole based model, although this is not presented.

The simulations are run to a residual below 10−10 whilst using 60 collocation
points.
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Figure 5: Mass based Maxwell-Stefan diffusion model comparing the use of con-
stant(+++) vs variable(—) density and diffusive term for the species transport
flux when transforming the equations to a dimensionless form.
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4.3 Effect of continuity equation in the species balance

In this chapter the effect of including the continuity equation in the species balance
will be investigated. This will as mentioned earlier in this chapter only have an
effect for the mole based model for the cases not considering convective flow. The
mass based model will not change in any manner for a non-conventive model since
the mass based continuity equation does not contribute with any new terms. The
mole based model will however change since the RHS of the continuity equation is a
non-convective term which would not have been considered if it werent included in
the species balance. The inclusion of the continuity equation in the species balance
will be investigated both for a non-convective and a convective model.

A model for this particular case will be derived in detail in appendix C chapter
C.3, with a solution strategy in table C.2 and a visualization of the implementation
in figure C.2. A summary of the equations derived in the appendix along with the
boundary conditions can be seen in table 8. The model is solved similarly to the
simplest case in chapter 3 and the walkthroug of the equations can be found there.

For the rigorous models on both mole and mass basis alternative species balance
equations not including the continuity equation are derived in short in appendix C
chapter C.5. In the appendix, replacement equations for the rigorous models are
suggested.

Table 8: Mole based equations, constitutive laws and boundary conditions

Equations: Constitutive Laws:
Temperature equation:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2ref (−4HR)R

Trefλ
(102)

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (103)

Species mole balance:

2J∗i
ξ∗2

+
∂J∗i
∂ξ∗

= R′i
ξ2ref

Dref cref
(104)

Definition:

n∑
i=1

J∗i = 0 (105)

Diffusion, Maxwell-Stefan:

j∗i Dref

c∗

i∑
j=1
j 6=i

xj

Dij
+
∂xi

∂ξ∗
=
Dref

c∗

n∑
j=1
j 6=i

j∗j xi

Dij
(106)

Definition:

n∑
i=1

xi = 1 (107)

Ideal gas law rearranged for concentration:

p

RT
= c (108)

Boundary conditions in the symmetry point ξ∗ =
0

Boundary conditions at the surface ξ∗ =
ξ∗p

Ji = 0 (109)

q = 0 (110)

T = T b (111)

xi = xbi (112)

26



Alternative methods for solving the simple models
Results and discussion - Effect of continuity equation

4.4 Results and discussion - Effect of continuity equation

The big difference by not including the sum of reactions(RHS of the continuity
equation) for the models dis-considering convective flow can be seen in figure 6.
In the figure the results are compared to the model including the RHS of the con-
tinuity equation presented in the previous chapter. The inclusion of the RHS of
the continuity equation in the models not considering convective flow will compen-
sate for much of the loss where the convective terms have a significant value. The
inclusion of the convective terms is especially important for the mole based SMR
simulation as they have a significant value. This difference can easily be spotted
in the figure 6 were a problem dis-considering convective flow is simulated with or
without the continuity equation in the species balance.

However, if the convective terms were to be included it would not make any
difference whether the convective terms are used or if they are replaced with the
LHS of the continuity equation. This can be seen from the figures C.3 and C.4 in
the additional results chapter presented in appendix C. No performance gain was
seen for either of the models, meaning that the implementation method for models
including convective flow will be optional.
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Figure 6: Comparing the inclusion of the LHS of the continuity equation for a
mole based model assuming steady state, no convective transport and using basic
boundary conditions. The model including the LHS of the continuity equation
is seen as(-.-.-), while the model not considering the continuity equations is seen
as(—).
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5 Rigorous steady state models

Considering convective flow and transfer limitations in the boundary conditions
will yield the fully rigorous steady state models of the SMR reaction in a catalyst
particle. Firstly the convective terms will be added and later the transfer limita-
tions, resulting in two different models for each case.

The addition of transfer limitations in the models will yield some inaccuracy
since the mass transfer coefficients used in the boundary conditions are based on
binary gas compositions [16]. However, the inaccuracy will be investigated by
switching which component that is solved for by the sum of the rest(equation
14 and 16 for mass and mole respectively). Since the last component is solved
without a boundary condition, there should not be any difference if consistent
transfer limitations were used. However, by switching the order of the components
a rough estimate of the yielded inaccuracy can be identified.

5.1 Derivation of the model equations

The basic model equations needed for the rigorous steady state models are equal to
the simple models with the addition of the convective terms. In addition, equations
for calculating the convective flow and the total pressure through the particle are
needed. For the convective flow the continuity equation is used and pressure is
calculated from Darcy’s law.

The temperature equation (A.56) for mass and (A.63) for the mole based model
is solved in combination with Fourier’s law. The temperature equation is only mod-
ified by assuming steady state. The heat flux is obtained from the temperature
equation and the temperature is obtained from Fourier’s law. The temperature
equation is dependent on mass averaged velocity, and for the mole based model
the mass based velocity is obtained from the species transport fluxes according to
equation A.35. For the mass based model the mass averaged velocity is obtained
from the continuity equation.

The species balance for respectively the mass and mole model (A.55) and (A.62),
is used to calculate the species transport fluxes. This is done by solving the species
balance for N-1 components and the last component by the constitutive law’s (A.39)
and (A.41). In the species balance the continuity equation (A.57) and (A.64) is
identified for the respective model and inserted giving the species balance used in
the model.

The species fractions are solved by using one of the four different diffusion mod-
els in table 2. This is done for N-1 components, the last component is solved by the
appropriate constitutive law (14) and (16). The diffusion models are only reformu-
lated from their general form shown in the theory to reflect their implemented form.
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The continuity equation A.57 and A.64 are used to obtain the mass and mole
averaged velocity for the respective models. This equation is only modified by in-
troducing the assumption of steady state. For comparison also the mole averaged
velocity is calculated in the mass based model from the mass based fluxes using
equation A.29, and vice versa for the mole based model with equation A.35.

The pressure is obtained from Darcy’s law and the equation A.38 is used as it is
given in the theory appendix A. This equation is also dependent on mass averaged
velocity, so the mass averaged velocity obtained from the mole based fluxes are
used for the mole based model.

The model derivation is presented in detail in appendix D. In the appendix all
the needed model equations are derived and the mass based derivation is found in
chapter D.1 whereas the mole based is found in chapter D.3. In the appendix the
solution strategy is also presented in table D.1 and D.5 for the respective models
and the visualization in figure D.1 and D.2. A summary of the derived equations
along with the boundary conditions are presented in table 9 and 10 for convenience.
The reactor operating conditions are given in the theory chapter table 1.
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Table 9: Summary of the mass based model equations derived in chapter D.1 in
Appendix D

Equations: Constitutive Laws:

Temperature equation:

Dref
λ

ρ∗ρrefv
∗
r

n∑
i=1

ωiCpi
∂T ∗

∂ξ∗
=

−(
2q∗

ξ∗
+
∂q∗

∂ξ∗
) +

ξ2ref (−4HR)R

Trefλ

(113)

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (114)

Species mass balance, solved for N-1 equations:

∂ωi
∂ξ∗

(ρ∗v∗ξ ) + (
2j∗i
ξ∗

+
∂j∗i
∂ξ∗

) = Ri
ξ2ref

Drefρref
(115)

Definition:

n∑
i=1

j∗i = 0 (116)

Diffusion model, solved for N-1 equations:

One of the four diffusionmodels in table D.2 is used

Definition:

n∑
i=1

ωi = 1 (117)

Mass based continuity equation:

2

ξ∗
v∗ρ∗ +

∂ρ∗

∂ξ∗
v∗ +

∂v∗

∂ξ∗
ρ∗ = 0 (118)

Mole averaged velocity

u =

N∑
i=1

jiM

ρMi
+ v (119)

Ideal gas law modified for density:

pM

RT
= ρ (120)

Darcy’s law:

v∗µDref
Bpref

+
∂p∗

∂ξ∗
= 0 (121)

Boundary conditions in the symmetry
point ξ∗ = 0

Boundary conditions at the surface ξ∗ = ξ∗p
with transfer limitations:

ji = 0 (122)

q = 0 (123)

v = 0 (124)

qr + ρCpgTv = −h(T b − T ) (125)

−ki(ρbi − ωiρ) = ji + vρωi (126)

p = pb (127)

Boundary conditions at the surface ξ∗ = ξ∗p
without transfer limitations:

T = T b (128)

ωi = ωbi (129)

p = pb (130)
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Table 10: Summary of the mole based model equations derived in chapter D.3 in
Appendix D

Equations: Constitutive Laws:

Temperature equation:

Dref
λ

c∗crefv
∗
r

n∑
i=1

xiCp
′
i
∂T ∗

∂ξ∗
+ (

2q∗

ξ∗
+
∂q∗

∂ξ∗
) =

+
ξ2ref (−4HR)R

Trefλ

(131)

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (132)

Species mole balance, solved for N-1 equations:

∂xi
∂ξ∗

(c∗u∗ξ) + (
2J∗i
ξ∗

+
∂J∗i
∂ξ∗

) = (R′i − xi
n∑
i=1

R′i)
ξ2ref

Drefcref

(133)

Definition:

n∑
i=1

J∗i = 0 (134)

Diffusion model, solved for n-1 equations:

One of the four diffusionmodels in table D.6 is used

Definition:

n∑
i=1

xi = 1 (135)

Continuity equation mole based:

2

ξ∗
c∗u∗ +

∂c∗

∂ξ∗
u∗ +

∂u∗

∂ξ∗
c∗ = (

ξ2ref
crefDref

)

n∑
i=1

R′i (136)

Mass averaged velocity:

v =

N∑
i=1

JiMi

cM
+ u (137)

Concentration:

c =
p

RT
(138)

Darcy’s law:

v∗µDref
Bpref

+
∂p∗

∂ξ∗
= 0 (139)

Boundary conditions in the symmetry
point ξ∗ = 0

Boundary conditions at the surface ξ∗ = ξ∗p
with transfer limitations

Ji = 0 (140)

q = 0 (141)

u = 0 (142)

qr + cCp′gTv = −h(T b − T ) (143)

−ki(cbi − xic) = Ji + ucxi (144)

p = pb (145)

Boundary conditions at the surface ξ∗ = ξ∗p
without transfer limitations

T = T b (146)

xi = xbi (147)

p = pb (148)
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5.2 Results and discussion - Rigorous models with simple
boundary conditions

Moving on towards a fully rigorous steady state model gives the model where
all terms are included except the transfer limitations in the boundary conditions.
Without the transfer limitations the simple versions is used where T = T b and
ωi = ωbi at the surface. The difference from the previous models is then the addi-
tion of the convective terms. This does have a positive effect for all the mole based
models, but does not yield any change for the mass based models since the mass
averaged velocity is supposed to be zero, i.e. negligible.

However since most of the convective terms in the mole based species balance
are replaced by the LHS of the continuity equation, the change of adding the re-
maining convective terms is very small. The addition of these terms does not
improve the differences from the mole and mass based models for the Wilke and
Wilke-Bosanquet models figure 7 and 9 enough to make this change noticeable. The
mole based Maxwell-Stefan and dusty gas models profits greatly by the addition
of the convective terms and will now be identical as we can see from the figures 11
and 13. The inclusion of the mole based convective terms are especially important
for the dusty gas model, since the diffusion model also relies on a convective term.

With the addition of the convective transport fluxes, it can now be seen that
all the transport flux plots in figure(D.3,D.5,D.7 and D.9) are very similar. And
due to the very slight back effect from the diffusion models, the differences that
are seen for the mole fractions in the Wilke and Wilke-Bosanquet models, can only
be spotted in the areas with steep gradients. There are however in general for
all the mole based models, some problems with numerical errors when calculating
the transport flux of nitrogen and some small oscillations are seen. Since the flux
is supposed to be zero, small variations in the iteration easily leads to oscillatory
behavior.

The oscillations seen in the convective flux of nitrogen transfers to the mass
averaged velocity since the velocity is obtained from the fluxes in the mole based
models. The numerical errors here are so small that it does not affect the other
components. But, it gives an insignificant increase in pressure by approximately
0.04% for all the diffusion models on the mole based formulation, as we can see
from the pressure plots in figure D.11. The mass based models do not show any
increase in pressure as the numerical error does not appear here.

The secondary variables concentration, density and average molecular weight
are calculated by algebraic equations outside of the solver system and will not be
shown since they are directly dependent on the primary values. I.e the same differ-
ences that are seen for the primary variables will be seen for the secondary variables.
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Looking at the effect of which component that is solved by the sum of other
components with the constitutive law equation 14, it can be seen that this has no
effect since the simple boundary conditions are used. This is as expected since the
boundary conditions will be consistent, this is shown for three of the components
in figure 15. However it is worth mentioning that it might be easier to get the
model to converge using a component that has some presence, since the possibility
of negative species fractions during iteration is reduced. But in this case there
wasn’t seen any major differences when simulating with the different components
as the last in terms of convergence ability.

5.3 Results and discussion - Rigorous models with advanced
boundary conditions

Adding the transfer limitations in the boundary conditions for the temperature and
the diffusion models now gives a fully rigorous steady state model where all terms
are considered. This addition does have an effect on the temperature and the mole
fractions as we can see from the figures (8,10,12 and 14) for the different diffusion
models, the changes are significant and can be easily spotted in the temperature
plots. Also it is easy to see that the mole fractions at the surface are lower for the
reactants because of the transfer limitations.

The transport fluxes behaves similarly to the models using basic boundary con-
dition as we can see in the figures (D.4,D.6,D.8 and D.10), however the numerical
error that occurs for calculating the transport flux of nitrogen is slightly lower,
and the pressure increase seen in the pressure plots figure D.12 drops to 0.03%.
However, this is considered insignificant for the simulation.

These models do not have any great differences from the models using the
simple boundary conditions, and the same discussion applies here. The main dif-
ference can however be seen for the last component that is solved by the equation
16. Here the models will not give the same results changing the last component
since the boundary conditions aren’t consistent. They are however still identical
on mass and mole basis, but this is not shown in a figure. The differences range
from 0-3%, giving a noticeable difference. By the looks of the comparison for the
methane figures it would be reasonable to assume that more comprehensive trans-
fer limitations would range somewhere in between, meaning it’s an acceptable error.
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5.3.1 Wilke - Simple boundary conditions
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Figure 7: Comparison of the mole(—) and the mass (+++) based model, with the
use of simple boundary conditions.

5.3.2 Wilke - Rigorous
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Figure 8: Comparison of the fully rigorous steady state mole(—) and the mass
(+++) based model.
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5.3.3 Wilke-Bosanquet - Simple boundary conditions
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Figure 9: Comparison of the mole(—) and the mass (+++) based model, with the
use of simple boundary conditions.

5.3.4 Wilke-Bosanquet - Rigorous
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Figure 10: Comparison of the fully rigorous steady state mole(—) and the mass
(+++) based model.
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5.3.5 Maxwell-Stefan - Simple boundary conditions
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Figure 11: Comparison of the mole(—) and the mass (+++) based model, with
the use of simple boundary conditions.

5.3.6 Maxwell-Stefan - Rigorous
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Figure 12: Comparison of the fully rigorous steady state mole(—) and the mass
(+++) based model.
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5.3.7 Dusty-gas - Simple boundary conditions
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Figure 13: Comparison of the mole(—) and the mass (+++) based model, with
the use of simple boundary conditions.

5.3.8 Dusty-gas - Rigorous
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Figure 14: Comparison of the fully rigorous steady state mole(—) and the mass
(+++) based model.
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5.3.9 Effect of component solved with eqX
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Figure 15: Comparing the effect of choosing a different component solved by the
equation 14, using simple boundary conditions. H2O(—), CH4(+++),CO(ooo).
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Figure 16: Comparing the effect of choosing a different component solved by the
equation 14, including transfer limitations in the boundary conditions. H2O(—),
CH4(+++),CO(ooo).
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6 Alternative rigorous steady state Wilke model

The Wilke and Wilke-Bosanquet diffusion models are both based on a simplified
version of the Maxwell-Stefan diffusion model. The proposed method from Wilke is
to reduce the Maxwell-Stefan equation to a multicomponent diffusion model based
on the binary Fick’s law form where the binary diffusivities are substituted by an
effective multicomponent diffusivity[3]. The numerical errors introduced by the
simplifications in the Wilke diffusion model will by solving the last component as
a sum of the rest with the constitutive laws 14 and 16 only be included in this last
component.

An alternative method was however presented, where it was suggested to solve
both the fluxes and the diffusion models for N equations with the addition of a
corrective diffusive velocity. This method will be investigated for the Wilke model
and not for the Wilke-Bosanquet model since the addition of Knudsen diffusivities
will not affect this alternative method.

∂

∂t
(ρωi) +∇ · (ρωiv + vc) = −∇ · (ji) +Ri vc =

∑
i

Dim∇ · ωi (149)

∂

∂t
(cxi) +∇ · (cxiu+ uc) = −∇ · (Ji) +Ri uc =

∑
i

Dim∇ · xi (150)

Looking at the suggested modifications to the species mass balance it can
be seen the addition to the equations is vc/uc when comparing to the general
species balance equations (mass:8, mole:9) given in the theory. The corrective
diffusive velocities are obtained from the effective diffusivities from the Wilke
equation(mass:22, mole:26) and the gradient of the species fractions.

The introduction of the corrective velocity terms in the species balance equa-
tions will result in corrected continuity equations for both the mass and the mole
based models. From the corrected continuity equations the new corrected velocity
is obtained. However, since the method only seeks to correct the species mass
balance, the original velocities are still needed for the temperature equation and
Darcy’s law. These velocities are easily obtained by subtracting the corrective
term. A walk-through of the equations used in the alternative model will be given
in appendix E.
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6.1 Results and discussion - Alternative Wilke model

With the use of the modified Wilke model the mass fractions or mole fractions
depending on the model basis will not sum to one, nor will the transport fluxes
sum to zero. The results will by that reason be shown for the original results and
scaled results. The results are easily scaled by dividing each component by the
sum of the mass or mole fractions, in such a way that they sum to one.

In the figure 17 the original and the modified Wilke model is compared with
the Maxwell-Stefan diffusion model using mass fractions. From the looks of the
figure it can be seen that there are significant differences between the Wilke mod-
els, however they still deviate from the Maxwell-Stefan model. Though it is some
times in opposite directions as seen for H2O, the deviations are approximately in
the same magnitude. The models are compared using mass fractions since the mass
fractions do not sum to one and as we can see from the figure the mass fractions
for the modified Wilke model increase approximately by 5%. Converting the mass
fractions to mole fractions would have automatically scaled the mass fractions so
that they sum to one, hence modifying the results.

Looking at the figure 18, the modified Wilke results have now been scaled so
that the mass fraction sum to one. This has a very positive effect for the results,
and the modified Wilke model is now approximately equal to the Maxwell-Stefan
model. The model will however still have problems since the transport fluxes does
not sum to zero and the use of the modified results are questionable.

The same can be seen for the mole based model, where no particular improve-
ments can be seen for the unscaled results in figure 19. Scaling the results in such
a what that the mole fractions sum to one, will have the same effect as for the
mass based model and the mole based model will now be very comparable to the
models using Maxwell-Stefan diffusion, this can be seen in figure 20. The modified
Wilke mole based model deviates by approximately 11 percent in the sum of mole
fractions for the non scaled results, which can be considered a significant loss i ac-
curacy. Still, the modified Wilke model achieves reasonable results if scaling is used.

The modified Wilke models will also become more sensitive, resulting in longer
simulation times than when using the Maxwell-Stefan model. This regards both
the mole and the mass based models.
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6.1.1 Mass based untouched results
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Figure 17: Comparison of the different mass based diffusion models using simple
boundary conditions, original Wilke blue(-.-.-), modified Wilke blue(—), Maxwell-
Stefan red(· · ·)

6.1.2 Mass based scaled results
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Figure 18: Comparison of the different mass based diffusion models using simple
boundary conditions, original Wilke blue(-.-.-), modified scaled Wilke blue(—),
Maxwell-Stefan red(· · ·)
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6.1.3 Mole based untouched results
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Figure 19: Comparison of the different mole based diffusion models using simple
boundary conditions, original Wilke blue(-.-.-), modified Wilke blue(—), Maxwell-
Stefan red(· · ·)

6.1.4 Mole based scaled results
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Figure 20: Comparison of the different mole based diffusion models using simple
boundary conditions, original Wilke blue(-.-.-), modified scaled Wilke blue(—),
Maxwell-Stefan red(· · ·)
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7 Alternative numerical methods for solving the
rigorous steady state models

There are numerous different numerical methods. In this thesis only the numerical
methods of weighted residuals are considered. So far the spectral method of orthog-
onal collocation has been used, which is the preferred method for pellet modeling[3].
The orthogonal collocation method will now be compared against the least squares
method which is considered to be better for solving convective problems. These
numerical methods will be compared for simulating the diffusion dominated pellet
model in this chapter. The methods are also compared for convective dominated
problems in chapter 9.

Both of these numerical methods will be solved as spectral elemental meth-
ods according to the theory chapter 2.4.4, in addition to the traditional spectral
method. This is done in order to reduce the computational costs and reduce the
simulation time whilst keeping the same level of accuracy. The spectral elemental
methods are optimized to use the fewest amount of collocation points whilst main-
taining an equal solution to the non element version. The numerical methods are
are expected to behave differently with the least squares method to have less trou-
ble with fewer collocation points. The orthogonal collocation method is however
still expected to be the faster method as it requires much less computational effort
for each iteration.

The methods are compared simulating a rigorous steady state pellet model on
both mole and mass basis using the Maxwell-Stefan diffusion model. For the or-
thogonal collocation method the model equations are similar to the rigorous steady
state models presented in chapter 5. For the least squares method the model deriva-
tion is the same, but the equations will have to be placed in a specific order in the
problem matrix to obtain a stable system.

7.1 Derivation and visualization of the model equations

The models that are simulated using the orthogonal collocation method are solved
as presented in the rigorous state state chapter 5 with the use of transfer limi-
tations in the boundary conditions. This model is also used when the spectral
element method is considered, however here the model is split into elements as
shown in the theory chapter 2.4.4.

The model equations and the solution strategy used for the least squares method
are identical to the orthogonal collocation models. However since the least squares
method appears to be more sensitive to the variable sequence in the problem matrix,
both matrices for the mass and mole based model will be showed to illustrate a
working implementation strategy. This is presented in appendix F.
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7.2 Results and discussion - Comparing the numerical meth-
ods

The numerical methods are compared as it can be seen from the figures (21-22)
and (23-24) for mass and mole based models respectively. It is clear that both of
the numerical methods yield identical results, with only some insignificant numeri-
cal differences for the mass averaged velocity and transport flux of nitrogen. Since
the numerical methods yield identical results, the focus will be on the performance.

The methods will be compared by implementing the numerical methods both
as spectral methods and as spectral element methods. For the spectral methods,
both methods will be compared using a similar amount of collocation points. The
spectral element methods will be optimized for each of the numerical methods to
use the least amount of collocation points in such a way that the results still are
identical to the non-element results. After obtaining the fastest possible run for
each of the numerical methods, the novel pulse iteration method developed during
this thesis will be applied to further reduce the simulation times.

Looking at the simulation results for the spectral methods in table 11, we can see
that the orthogonal collocation method performs far better than the least squares
method. Without the use of elements the least squares method seems to use ap-
proximately 200% additional time to reach the same residual as the orthogonal
collocation method for the mass based formulation. The mole based formulation is
in general a bit slower than its mass based counterpart since the mole based model
needs additional under-relaxation of the convective term.

Moving on to the spectral element methods in table 12 it can seen that the
differences between the mass and the mole based formulations increase. The mole
based formulation tends to be more sensitive, and thus requiring additional collo-
cation points in the steep gradients. The additional collocation points will result
in a slower model. The same can also be seen for the least squares method and
the orthogonal collocation method, where the least squares method tend to require
less collocation points in the steep gradients. However, the least squares method
is still approximately 150% slower since it requires more operations per iterations.

To further increase the performance of the numerical methods, the pulse iter-
ation method presented in appendix I is applied to the models. The results are
presented in table 13 and as it can be seen the novel under-relaxation method fur-
ther reduces the simulation times by up to 76%. The weaker results from the least
squares mole based model is because the model struggles to achieve a sufficient
residual. For the more stable models the use of pulse iteration gives a very sig-
nificant reduction in simulation times and in combination with a spectral element
method this under-relaxation method can reduce the simulation times to only 8%
of the simulation time used by a spectral method.

The lowest obtainable residual for the mass based formulations were 4×10−12 for
the orthogonal collocation method and 5×10−11 for the least squares method. For
the mole based formulation the residual obtained from the orthogonal collocation
method remains unchanged while the acquired residual increases slightly to 4 ×
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10−10 for the least squares method. This is sufficiently low for all methods and the
difference between them is insignificant.

Table 11: Mass based simulation results

Spectral models
Method Simulation time Increased simula-

tion time
Collocation
points

Mass OC* 97.6 Minutes 0% 60
Mole OC* 101 Minutes 3% 60
Mass LSM** 292 Minutes 199% 60
Mole LSM** 310 Minutes 217% 60

The mass based models are run to a residual of 10−10, while the mole based are
run to a residual of 10−9. * Othogonal Collocation, ** least squares method.

Table 12: Mass based simulation results

Spectral element models
Method Simulation

time
Increased
simulation
time

Collocation
points

Distribution of
collocation points

Mass OC* 29 Minutes 0% 26 12%-6%-4%-78%
20-3-3-3

Mole OC* 49 Minutes 69% 31 12%-6%-4%-78%
24-4-3-3

Mass
LSM**

72 Minutes 148% 21 12%-6%-4%-78%
15-3-3-3

Mole
LSM**

87 Minutes 200% 24 12%-6%-4%-78%
18-3-3-3

The mass based models are run to a residual of 10−10, while the mole based are
run to a residual of 10−9. * Othogonal Collocation, ** least squares method.

Table 13: Adding pulse iteration to the spectral element models to further improve
speed

Spectral element models
Method Simulation

time
Simulation
time with
pulse itera-
tion

Reduction
in simula-
tion time

Collocation
points

Mass OC* 29 Minutes 8 Minutes 73% 26
Mole OC* 49 Minutes 14 Minutes 71% 31
Mass LSM** 72 Minutes 17 Minutes 76% 21
Mole LSM** 87 Minutes 50 Minutes 42% 24

The mass based models are run to a residual of 10−10, while the mole based are
run to a residual of 10−9. * Othogonal Collocation, ** least squares method.
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7.2.1 Maxwell-Stefan
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Figure 21: Comparison of the primary variables using the least squares(+++)
and the orthogonal collocation(—) spectral element methods simulating a mass
formulated Maxwell-Stefan model.
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Figure 22: Comparison of the transport fluxes using the least squares(+++) and
the orthogonal collocation(—) spectral element methods simulating a mass formu-
lated Maxwell-Stefan model.
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7.2.2 Maxwell-Stefan
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Figure 23: Comparison of the primary variables using the least squares(+++)
and the orthogonal collocation(—) spectral element methods simulating a mole
formulated Maxwell-Stefan model.
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Figure 24: Comparison of the transport fluxes using the least squares(+++) and
the orthogonal collocation(—) spectral element methods simulating a mole formu-
lated Maxwell-Stefan model.
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8 Rigorous transient models

Thus far the steady state models have been examined and it has been seen that
the mole and mass based models yield identical results when the models include
the convective terms and a consistent diffusion model are used. The transient term
will now be implemented to see if the models still yield identical results. The fo-
cus will be on the consistent diffusion models Maxwell-Stefan and dusty gas. The
inconsistent diffusion models Wilke and Wilke-Bosanquet will not be considered in
this part since they did not yield identical results for the steady state models.

For the rigorous transient models, both of the numerical methods used in the
previous chapter will be used. This is done to see if a difference between the
numerical methods appear in the obtained steady state solutions.

8.1 Derivation of the model equations

The transient models are comparable to the rigorous models with the addition of
the transient terms. The transient terms are discretized using the theta method as
described in the theory chapter 2.5. Here a theta value of 0.5 is used meaning that
the second order Crank-Nicholson method is applied.

The temperature equation (A.56) for mass and (A.63) for the mole based model
is solved in combination with Fourier’s law. The transient term is discretized using
the theta method and the equation is rearranged for implementation. The heat flux
and the time dependent temperature change are obtained from the temperature
equation and the temperature is obtained from Fourier’s law. The temperature
equation is dependent on mass averaged velocity. The mass based velocity is cal-
culated from the mole based fluxes according to equation A.35 for the mole based
model. For the mass based model the mass averaged velocity is obtained from the
continuity equation.

The species balance for the mass(A.55) and mole(A.62) formulation, is used to
calulate the fluxes and the time dependent change of the species fractions. This is
done by solving the species balance for N-1 components and the last component
by the constitutive laws (A.39) and (A.41). In the species balance the continu-
ity equation (A.57) and (A.64) is identified for the respective model and inserted
giving the species balance used in the model. Swapping the terms in the species
balance with the RHS of the continuity equation will in the transient models also
replace one of the transient terms, yielding a simpler yet fully rigorous equation.
The remaining transient term is discretisized using the aforementioned method.

The species fractions are solved by using the Maxwell-Stefan or dusty gas diffu-
sion model given in the rigorous steady state chapter, table D.2 for the mass based
and D.6 for the mole based. The diffusion model is solved for N-1 components,
and the last component is solved by the appropriate constitutive law (A.40) and
(A.42). The diffusion models are only reformulated from their general form shown
in the theory to reflect their implemented form.
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The continuity equation A.57 and A.64 are for the previous models used to
obtain the mass and mole averaged velocity for the respective models. Adding the
transient term to the equation will now also include the density or concentration
change with time for the mass or mole based model respectively. The mass aver-
aged velocity is obtained from the equation A.35 in the mole based model.

The pressure is obtained from Darcy’s law equation A.38, no modifications are
needed. This equation is also dependent on mass averaged velocity, so the mass
averaged velocity obtained from the mole based fluxes are used for the mole based
model.

When introducing the transient term it is also convenient for a more stable
system to include the ideal gas law eq. A.36 for the mole based model and the
density equation A.37 for the mass based model in the problem matrix.

The equations are derived in detail in appendix G, chapter G.1 for the mass
based model and chapter G.3 for the mole based. The solution strategy for the
respective models are given in table G.1 and G.4, while the visualization of the
implemented equations are given in figure G.1 and G.2 respectively. The equations
derived in detail in the appendix are presented in table 14 and 15 respectively with
the used initial and boundary conditions for convenience.
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Table 14: Mass based equations, constitutive laws and boundary conditions

Equations: Constitutive Laws:
Temperature equation:

Equation G.4 is used

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (151)

Species mass balance for N-1 components:

Equation G.12 is used

Definition:

n∑
i=1

j∗i = 0 (152)

Diffusion model for N-1 components:

Maxwell-Stefan or dusty gas diffusion

model are used from table D.2

Definition:

n∑
i=1

ωi = 1 (153)

Mass based continuity equation:

Equation G.7 is used

Mole averaged velocity, eq.
A.29

u =

N∑
i=1

jiM

ρMi
+ v (154)

Density, dimensionless:

pprefM

RTρref
= ρ∗ (155)

Darcy’s law:

v∗µDref

Bpref
+
∂p∗

∂ξ∗
= 0 (156)

Boundary conditions in the symme-
try point ξ∗ = 0

Boundary conditions at the surface ξ∗ =
ξ∗p with transfer limitations:

ji = 0 (157)

q = 0 (158)

v = 0 (159)

qr + ρCpgTv = −h(T b − T ) (160)

−ki(ρbi − ωiρ) = ji + vρωi (161)

p = pb (162)

Initial conditions at t=0, ∀ξ:

q = 0 T = T b ji = 0 ωi = ωbi vξ = 0 p = pb ρ = ρb

(163)
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Table 15: Mole based equations, constitutive laws and boundary conditions

Equations: Constitutive Laws:
Temperature equation:

Equation G.27 is used

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (164)

Species mole balance for N-1 components:

Equation G.35 is used

Definition:

n∑
i=1

J∗i = 0 (165)

Diffusion model for N-1 components:

Maxwell-Stefan or dusty gas diffusion

model are used from table D.6

Definition:

n∑
i=1

xi = 1 (166)

Continuity equation mole based:

Equation G.30 is used

Mass averaged
velocity(A.35):

v∗ =

N∑
i=1

J∗iMi

c∗iM
+ u∗ (167)

Concentration, dimensionless:

c∗ =
ppref
RTcref

(168)

Darcy’s law:

v∗µDref

Bpref
+
∂p∗

∂ξ∗
= 0 (169)

Boundary conditions in the symme-
try point ξ∗ = 0

Boundary conditions at the surface ξ∗ =
ξ∗p with transfer limitations

Ji = 0 (170)

q = 0 (171)

u = 0 (172)

qr + cCp′gTv = −h(T b − T ) (173)

−ki(cbi − xic) = Ji + ucxi (174)

p = pb (175)

Initial conditions at t=0, ∀ξ:

q = 0 T = T b Ji = 0 xi = xbi uξ = 0 p = pb c = cb

(176)
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8.2 Results and discussion - The transient models

Investigating the Maxwell-Stefan diffusion model, it can be seen in the figures (25,
26, 27 and 28) that the models are identical for the numerical methods and on the
different formulations. Some insignificant differences can be seen for the numerical
methods in the peaks, but this occurs due to the different amount of collocation
points in each element for each method.

Examining the results further shows that the models reach steady state. This
is shown for the mass based models for both numerical methods in appendix G,
figure G.7 and G.8 for the Maxwell-Stefan and dusty gas diffusion model respec-
tively. The exact same behavior is seen for the mole based formulations, allthough
this is not shown. Also the developent of the components all seem reasonable, ex-
cept for the spikes seen for the hydrogen and nitrogen mole fractions. However the
spikes seen appear because of diffusion limitations in the pellet. As the reaction
starts a dramatic production of hydrogen will occur, resulting in a massive mole
production in the pellet causing the nitrogen concentration to plummet. During
this initial phase a pressure increase is also seen due to the sudden increase in
moles. When the reaction progresses the produced hydrogen can easily diffuse out
of the pellet preventing pressure increase and cause the total reaction to appear
mole consuming. The bigger nitrogen molecule is unable to diffuse out of the pellet
at a comparable rate and experiences a slight increase in mole fraction. This is
easy to see from the steady state figures.

The same can be said for the dusty gas diffusion model. The model behaves
similarly and the only difference is the addition of Knudsen diffusion, this can be
seen from the figures (G.3, G.4, G.5 and G.6). The steady state data obtained
from the transient models are as for the Maxwell-Stefan diffusion model identical
to the data obtained from the steady state models.

The results are obtained using spectral element methods using a time step
variying between 5 × 10−3 and 0.1 seconds. The under-relaxation value has to be
adjusted accordincly since a higher timestep will require a lower under-relaxation
value.
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Figure 25: Rigorous Transient mass based model using the Maxwell-Stefan diffusion
model simulated with the orhogonal collocation method.
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Figure 26: Rigorous Transient mole based model using the Maxwell-Stefan diffusion
model simulated with the orhogonal collocation method.
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Figure 27: Rigorous Transient mass based model using the Maxwell-Stefan diffusion
model simulated with the least squares method.
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Figure 28: Rigorous Transient mole based model using the Maxwell-Stefan diffusion
model simulated with the least squares method.
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9 Comparing the numerical methods

So far the focus has been on the diffusion dominated pellet equations for both of
the numerical methods presented in this thesis and both methods have produced
satisfactory results. We will now look into convection-dominated problems to see
if any weaknesses in the numerical methods can be found. It is known that the
method of orthogonal collocation should have greater difficulty solving convection
dominated problems than the least squares methods[3]. This claim will be tested
by solving the equations for a pseudo-homogeneous reactor and the advection equa-
tion.

Solving the advection equation will serve the purpose as an extreme test, where
only convection is present. This is meant to give good insight in how the methods
behave in convective dominated problems. Here a discontinuity will be introduced
in the model to see how the different numerical methods behaves during the trans-
port throughout the reactor.

By looking into the more practical application of a pseudo-homogeneous reactor
model using the steam methane reforming reaction, a good comparison for both
numerical methods will be achieved when a very fast reaction is used in order
to create a steep gradient in a reactor dominated by convective flow. The already
existing diffusion in the problem will also be reduced by a factor in order to provoke
the differences in the numerical methods. Also a discontinuity will be introduced in
the simulation to see how the methods cope during a sudden change in the reactor
feed.

9.1 Simulation of the advection equation

9.1.1 Derivation of the model equation

Starting out from the advection equation:

∂ρ

∂t
+ v

∂ρ

∂z
= 0 (177)

The equation is made dimensionless according to correlations given in A.9:

∂ρ∗

∂t∗
+ v∗

∂ρ∗

∂z∗
= 0 (178)

The transient term is discretisized using the theta model presented in chapter
2.5.

ρ∗(t+1) + ∆tθv∗
∂ρ∗(t+1)

∂z∗
= ∆t(1− θ)(−v∗ ∂ρ

∗(t)

∂z∗
) + ρ∗(t) (179)

9.1.2 Solution strategy of the advection equation

The equation is solved in the traditional matrix setup as shown for the pellet
equations: [

1 •+∆tθv∗ ∂
∂z∗

] [
ρ∗(t+1)

]
=
[
∆t(1− θ)(−v∗ ∂ρ

∗(t)

∂z∗ ) + ρ∗(t)
]

(180)
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With the boundary condition ρ∗z=0 = 0.1 and the initial condition ρ∗∀z = 1. The
dimensionless constant velocity is set to 1.

9.2 Results and discussion - Advection equation

When simulating a front moving through the reactor with the advective equation it
can be seen that both methods struggles with high oscillations. This is however an
extreme test as there are no diffusive forces in the equation and the discontinuity
introduced will not smoothen out over time. The time dependent variables are
discretized using the method of Crank-Nicholson which is a second order method
giving a high accuracy.

The least squares and the orthogonal collocation methods are compared using
both high order polynomials and low order polynomials. A high order polynomial
is obtained when using a high amount of collocation points, whereas a low order
polynomials are obtained using a few collocation points in each element. As it can
be seen from figure 29, when low order polynomials are introduced the small os-
cillations far from the discontinuity are removed and a better solution is achieved.
However the oscillations near the discontinuity are still to high to prove acceptable.
The opposite can be seen for the orthogonal collocation method where the solution
suffers when low order polynomials are introduced to the solving method. In all
cases the error near the discontinuity will be in the order of 20%.

Both methods yield unacceptable results and in order to remove the oscilla-
tions numerical diffusion has to be introduced. This would defeat the purpose of
comparing the methods for simulation of a purely convective problem.
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Figure 29: Comparing the different numerical methods(blue (—)) for solving the
advection equation using both a non-element and an element method against the
analytical solution(red (—)).
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9.3 Simulation of a SMR reactor

The model for a SMR reactor is somewhat similar to the fully rigorous pellet equa-
tions, however here we will take basis in a cylindrical reactor rather than a sphere.
This model will aslo be reduced to a one dimensional problem where symmetry is
assumed around the axial direction, giving that there are no changes in the radial
direction or with the azimuth angle.

The reactor is assumed to be pseudo homogeneous and will thereby not ac-
count for any limitations introduced by the catalyst particle. To include this effect
some efficiency factors will need to be introduced to compensate for the diffusion
resistances within the catalyst particle. These factors will effectively reduce the
reaction rate to simulate the catalyst behavior. The efficiency factors presented by
Solsvik et al.[2] are used in this thesis.

The initial conditions in the reactor will mainly be the boundary conditions in
the whole system except for the mass fractions. For the mass fractions the initial
conditions will mainly contain steam with some methane present, this is done to
see how the numerical methods cope with a discontinuity traveling through the
reactor system.

9.3.1 Model derivation

As for the other models the derivation of the model equations for the pseudo homo-
geneous SMR reactor will be derived in detail in appendix H along with a solution
strategy and a visualization of the implementation. The focus in this chapter will
be on a short explanatory approach with a summary of the equations derived in
the appendix presented in table 16 along with the boundary and initial conditions.

The temperature equation 4 will as for the pellet models be solved in combina-
tion with Fourier’s law to acquire a set of first order partial differential equations.
The temperature is obtained from Fourier’s law while the heat flux and the tem-
perature change with time are obtained from the temperature equation. In the
reactor model, heat transfer from the walls will also be included.

The species balance 8 is now used to calculate the dispersion fluxes and the
change in mass fractions with time in the reactor for N-1 components. The last
component is solved using the constitutive law 13. The mass fractions are obtained
from the dispersion equation H.14 again for N-1 components with the last being
solved from the constitutive law 14.

The continuity equation 30 is used to obtain the mass averaged velocity, which
then can be used to solve the pressure with Ergun’s equation H.15. The density is
obtained from the modified ideal gas law equation A.37.

Both models are solved completely similar for both the orthogonal collocation
and the least squares method.
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Table 16: Mass based equations, constitutive laws and boundary conditions

Equations: Constitutive Laws:
Temperature equation:

Equation H.4 is used

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (181)

Species mass balance for N-1 components:

Equation H.13 is used

Definition:

n∑
i=1

j∗i = 0 (182)

Dispersion equation for N-1 components:

j∗ = − Ddisp

vrefzref
ρ∗
∂ωi
∂z∗

(183)

Definition:

n∑
i=1

ωi = 1 (184)

Mass based continuity equation:

Equation H.8 is used

Ergun’s equation

∂p∗

∂z∗
= −fρ

∗v∗2z
dp

ρrefv
∗2
refzref

pref
(185)

Ideal gas law modified for density:

pM

RT
= ρ (186)

Boundary conditions at the inlet
z = 0

Boundary conditions at the outlet z =
zout with transfer limitations:

T = T b (187)

ωi = ωbi (188)

vz = vbz (189)

q = 0 (190)

ji = 0 (191)

p = pb (192)

Initial conditions at t=0, ∀ξ:

q = 0 T = T b ji = 0 ωi = ω 6=bi vξ = 0 p = pb ρ = ρb

(193)
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9.4 Results and discussion - Simulation of a SMR reactor

The focus of the comparison will be on the development of steady state in the
model, rather than just comparing the steady state results. To examine how the
methods tackle steep gradients in the progress to steady state a plug will travel
through the system in the initiating phase. Looking at the initial and boundary
condition plot in figure 30, it can be seen how much the initial conditions differ
from the boundary conditions. The boundary conditions are here stipulated over
the whole of the reactor to make it more easy to compare it to the initial conditions.
As the simulation starts the initial conditions will travel out of the reactor as a plug.

Looking at the system in figure 31 when two seconds have passed, it can be seen
that both methods behaves similarly with some oscillations near the discontinuity
introduced as initial conditions. The methods are simulated using 60 collocation
points with a time-step of 0.1 seconds. The least squares method behaves more
stable and can run with a relative high under-relaxation value compared to the
orthogonal collocation method. This makes the least squares method the fastest
and uses only 25% of the simulation time the orthogonal collocation method uses.
Although the orthogonal method requires a much lower under-relaxation parame-
ter to obtain results, it is much more versatile when it comes to the time step size.
It will have no problem with any time step size, whereas the least squares method
will have trouble if the time-step is reduced further.

Since the methods are supposed to behave different for a convective dominated
problem, the dispersion rate is artificially reduced by a factor of 100. As it can
be seen from the results in figure 32, these methods are still identical. But, this is
also as expected since they behaved similar for the advection equation. However,
the time spent on simulating is further increased for the orthogonal collocation
method, since a lower under-relaxation value are required to obtain the solution.
The least squares method does not need this and use the same amount of time,
resulting in that it only needs 15% of the time to obtain the same results.

Introducing elements to the problem is expected to cause the orthogonal col-
location method to oscillate, while the least squares method remains more or less
the same as it has been seen for the advection equation. For the next simulation
there will be used 30 elements, evenly distributed with 3 collocation points in each.
As expected this doesn’t significantly affect the least squares method, however the
orthogonal collocation method is now unable to produce the results due to oscilla-
tions. The results for this is not shown since a comparison cant be made, but the
least squares method is compared against the method using 60 collocation points
in figure 33. From the figure it is easy to see that the effect of introducing elements
reduces the amount of oscillations near the discontinuity. However new oscillations
will occur at the entry of the reactor.
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Figure 30: Visualization of the initial(blue (—)) and boundary(red (-.-.-)) condi-
tions used in the simulation, the boundary conditions are stipulated through the
reactor for convenience.
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Figure 31: Comparison of the least squares method(red (- - -)) and the orthogonal
collocation method(blue (—)) using 60 collocation points and a time step of 0.1
seconds. This is the simulated behavior two seconds after reaction initialization.
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Figure 32: Comparison of the least squares method(red (- - -)) and the orthogonal
collocation method(blue (—)) using 60 collocation points and a time step of 0.1
seconds. The dispersion rate are artificially reduced by a factor of 100. This is the
simulated behavior two seconds after reaction initialization.
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Figure 33: Comparison of the least squares method using 60 collocation points(blue
(—)) vs 30 elements and 3 points(red (- - -)) in each with a time-step of 0.1 seconds.
The dispersion rate are artificially reduced by a factor of 100. This is the simulated
behavior two seconds after reaction initialization.
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10 Conclusions and closing remarks

10.1 Steam methane reforming - pellet models

10.1.1 Wilke and Wilke-Bosanquet models

The Wilke and Wilke-Bosanquet diffusion models are simplified versions of the
Maxwell-Stefan and dusty gas diffusion models, respectively. Based on the ob-
tained results they are unable to yield identical results even when the models are
fully comprehensive.

The Wilke diffusion model on both formulations, were however able to obtain
comparable results to the Maxwell-Stefan diffusion model if the scaled results from
the alternative Wilke method was used. The reliability and use of these scaled
results are however questionable and is not recommended. The Wilke-Bosanquet
model were not compared to the dusty gas model in the same manner.

Furthermore the Wilke diffusion model was only seen to be 5% faster than the
Maxwell-Stefan diffusion model, meaning that the speed difference between these
models are insignificant.

10.1.2 Maxwell-Stefan and dusty gas models

When using the more rigorous Maxwell-Stefan and dusty gas diffusion models iden-
tical results were obtained. However, this was only possible if the convective terms
were included for the mole based formulation. Based on the results in the thesis it
is important to differentiate between the convective terms on the different formu-
lations, since they are proven not to be comparable. The mass based convective
terms are negligible, but the mole based convective terms are not.

If convective flow was to be assumed negligible on both formulations, it would
be possible to counteract most of the accuracy loss by replacing most of the convec-
tive terms in the species mole balance with the LHS of the mole based continuity
equation. The last neglected convective term in the species mole balance would still
yield some accuracy loss. The use of the continuity equation in the species balance
are however optional if the convective terms are included and no performance gain
nor accuracy loss was seen for either of the implementation methods.

The same problem arises for the dusty gas diffusion model since a convective
term is included in the diffusion model. As for the species balance this term will
be negligible on mass basis but not on mole basis.

For the Maxwell-Stefan model the method of transforming the model equations
to a dimensionless form was also investigated. The chosen method was proven to
be optional, but the traditional method using constant reference values is recom-
mended, since it yields less troublesome implementations of the equations.
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10.2 Numerical methods and performance

10.2.1 Diffusion dominated problems - Pellet model

The orthogonal collocation method is superior to the least squares method when
considering a diffusion dominated problem. Both methods yields accurate and
identical results apart from some insignificant numerical differences. However, the
orthogonal collocation method uses only 33% of the simulation time compared to
the least squares method under optimized circumstances for both methods. The
orthogonal collocation method is also more robust since it is unaffected by the
variable sequence in the problem matrix.

The diffusion dominated problems were also further improved performance-wise
by the use of pulse iteration, and a decrease in simulation time by up to 76% was
obtained.

10.2.2 Convective dominated problems

For the convective dominated problems the methods continue to yield accurate and
identical results as proven in the reactor model. However here the least squares
method will prove to be superior in the terms of performance as it only uses 25%
of the simulation time to obtain the same results. By artificial reduction of the
diffusion these performance differences continue to grow.

Identical results are also seen for the advection equation when the numerical
methods are implemented as spectral methods. However, if the methods where to
be optimized by the use of elements, it would become a requirement to use the least
squares method, as the orthogonal collocation method would oscillate and under
some circumstances be unable to converge properly.

10.3 General recommendations for building a pellet model

When building a steam methane reforming pellet model it is recommended to use
a rigorous diffusion model, i.e. Maxwell-Stefan or the dusty gas diffusion model.
Also the mass based formulation is recommended since the model is easier to im-
plement and overall faster than the mole based formulation. Based on the results
obtained in the thesis it is safe to assume no mass averaged velocity and pressure
changes.

To solve the problem the numerical method of orthogonal collocation is recom-
mended since it is the fastest method for diffusion dominated problems.
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A 2 Theory - Derivation of governing equations

The basic governing equations used in this thesis are to be derived from general
governing equations. This is done to make the derivation for each case shorter
and more specific. During the deduction of these basic equations the different
terms are also explained. For all equations the divergence needs to be specified
in spherical coordinates for both a vector and a scalar. These equations can be
defined respectively as:

∇ · ~v =
1

ξ2

∂

∂ξ
(ξ2vξ) +

1

ξ2 sin θ

∂

∂θ
(vθ sin θ) +

1

ξ2 sin θ

∂vφ
∂φ

(A.1)

∇ · s =
∂s

∂ξ
êi +

1

ξ

∂s

∂θ
êj +

1

ξ sin θ

∂s

∂φ
êk (A.2)

These equations can be further simplified for this thesis. The catalyst particle
is assumed to be spherical, so it is reasonable to assume symmetry around the
center of the particle - i.e., no change when changing the inclination angle θ or the
azimuth angle φ. Hence the derivatives in θ and φ may be dis-considered. As a
result the divergence of a vector and scalar in this thesis will be given respectively
as:

∇ · ~v =
1

ξ2

∂

∂ξ
(ξ2vξ) (A.3)

∇ · s =
∂s

∂ξ
êi (A.4)
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A.1 Mass based basic governing equations

A.1.1 Species mass balance

Differential equations describing the change in mass fractions for the different com-
ponents in radial direction within the catalyst pellets are to be derived. The dif-
ferent terms are explained in table A.1, and general species mass balance for a
component i is given as:

∂

∂t
(ρωi) +∇ · (ρωiv) = −∇ · (ji) +Ri (A.5)

Table A.1: Explanation of the different terms in the species mass balance

∂

∂t
(ρωi)

Represents the change in density for each
species i with time

∇ · (ρωiv) Represents the convective transport

∇ · (ji) Represents the diffusional transport

Ri Represents the reaction rate

Introducing the divergence of a vector (A.3) for both the diffusional and con-
vective term gives the simplified species mass balance:

∂

∂t
(ρωi) +

1

ξ2

∂

∂ξ
(ξ2ρωivξ) = − 1

ξ2

∂

∂ξ
(ξ2ji) +Ri (A.6)
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A.1.2 The continuity equation

A simplified equation for the continuity equation is to be derived. The terms are
explained in table A.2. The governing continuity equation on mass basis can be
defined as:

∂ρ

∂t
+∇ · (ρv) = 0 (A.7)

Table A.2: Explanation of the terms in the general continutity equation

∂ρ

∂t
Represents the change of density with time

∇ · (ρv)
Represents the change of mass or moles in the
control volume

Introducing the divergence of a vector (A.3) for the second term gives the
simplified mass based continuity equation:

∂ρ

∂t
+

1

ξ2

∂

∂ξ
(ξ2ρvξ) = 0 (A.8)

67



2 Theory - Derivation of governing equations
Mass based basic governing equations

A.1.3 Temperature equation

A differential equation describing the radial temperature profile within the catalyst
particles is to be derived. The contributions from the different terms in the general
energy equation are explained in table A.3. The general governing energy equation
can be given as:

((1− ε)ρpCpp + ερ

n∑
i=1

ωiCpi)
∂T

∂t
+ ρ

n∑
i=1

ωiCpiv∇ · T = −∇ · q + (−4HR)R+Q

(A.9)

Table A.3: Explanation of the terms in the general energy equation

((1− ε)ρpCpp + ερ

n∑
i=1

ωiCpi)
∂T

∂t

Represents the change of heat content with
time

ρ

n∑
i=1

ωiCpiv∇ · T Represents the advective transport

∇ · q Represents the heat transport by conduction

(−4HR)R Represents the heat from chemical reactions

Q Represents the radiation heat flux

The radiation heat flux is not considered in the next parts of deriving a simpli-
fied energy equation. Introducing the divergence of a scalar (A.4) for the advective
term and the divergence of a vector (A.3) for the conduction term gives the sim-
plified energy equation on mass form:

((1− ε)ρpCpp + ερ

n∑
i=1

ωiCpi)
∂T

∂t
+ ρ

n∑
i=1

ωiCpiv
∂T

∂ξ
= − 1

ξ2

∂

∂ξ
(ξ2q) + (−4HR)R

(A.10)
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A.2 Mass based diffusion models

The general diffusion models are only modified from their original state given in
table A.4 by introducing the simplified divergence for the pellet and introducing
the effective binary and Knudsen diffusitivies as shown in the theory chapter 2.2.2.
This is however not shown, but the diffusion models are represented with the
simplified divergences and effective diffusivities included on a dimensionless form
in table A.10.

Table A.4: Mass based diffusion models, standard form

Wilke

ji = −ρDim∇ωi Dim =
1− ωi

M
∑n
j=1
j 6=i

ωj

MjDij

(A.11)

Wilke–Bosanquet

ji = −ρDi,eff∇ωi
1

Di,eff
=

1

Dim
+

1

DiK
(A.12)

Maxwell-Stefan

ji =

−ρωi∇ln(M)− ρ∇ωi +Mωi
∑n
j=1
j 6=i

jj
MjDij

M
∑i
j=1
j 6=i

ωj

MjDij

(A.13)

Dusty gas

ji =

M2
∑n
j=1
j 6=i

ωijj
MjDij

− vρiM
DiK

− ρ(ωi∇M +M∇ωi)

M2
∑n
j=1
j 6=i

ωj

MjDij
+ M

DiK

(A.14)
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A.3 Mole based basic governing equations

A.3.1 Species mole balance

Differential equations describing the change in mole fractions for the different com-
ponents in radial direction within the catalyst pellets are to be derived. The dif-
ferent terms are explained in table A.5, and general species mole balance for a
component i is given as:

∂

∂t
(cxi) +∇ · (cxiu) = −∇ · (Ji) +R′i (A.15)

Table A.5: Explanation of the different terms in the species mass balance

∂

∂t
(cxi)

Represents the change in concentration for
the different species i with time

∇ · (cxiu) Represents the convective transport

∇ · (Ji) Represents the diffusional transport

R′i Represents the reaction rate

Introducing the divergence of a vector (A.3) for both the diffusional and con-
vective term gives the simplified species mole balance:

∂

∂t
(cxi) +

1

ξ2

∂

∂ξ
(ξ2cxiuξ) = − 1

ξ2

∂

∂ξ
(ξ2Ji) +R′i (A.16)
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A.3.2 The continuity equation

A simplified equation for the continuity equation is to be derived. The terms are
explained in table A.6. The governing continuity equation on mole basis can be
defined as:

∂c

∂t
+∇ · (cu) =

n∑
i=1

R′i (A.17)

Table A.6: Explanation of the terms in the general continutity equation

∂c

∂t

Represents the change of concentration with
time

∇ · (cu)
Represents the change of moles in the control
volume

n∑
i=1

R′i
Represents the sum of the reactions(mole gen-
eration rate)

Introducing the divergence of a vector (A.3) for the second term gives the
simplified mole based continuity equation:

∂c

∂t
+

1

ξ2

∂

∂ξ
(ξ2cuξ) =

n∑
i=1

R′i (A.18)
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A.3.3 Temperature equation

A differential equation describing the radial temperature profile within the catalyst
particles is to be derived. The contributions from the different terms in the general
energy equation are explained in table A.7. The general governing energy equation
can be given as:

((1− ε)ρpCpp + ερ

n∑
i=1

xiCp
′
i)
∂T

∂t
+ c

n∑
i=1

xiCp
′
iv∇T = −∇ · q + (−4HR)R+Q

(A.19)

Table A.7: Explanation of the terms in the general energy equation

((1− ε)ρpCpp + ερ

n∑
i=1

xiCp
′
i)
∂T

∂t

Represents the change of heat content with
time

c

n∑
i=1

xiCp
′
iv∇T Represents the advective transport

∇q Represents the heat transport by conduction

(−4HR)R Represents the heat from chemical reactions

Q Represents the radiation heat flux

The radiation heat flux is not considered further as it is not needed. Introducing
the divergence of a scalar (A.4) for the advective term and the divergence of a vector
(A.3) for the conduction term gives the simplified energy equation on mole basis:

((1− ε)ρpCpp + εc

n∑
i=1

xiCp
′
i)
∂T

∂t
+ c

n∑
i=1

xiCp
′
iv
∂T

∂ξ
= − 1

ξ2

∂

∂ξ
(ξ2q) + (−4HR)R

(A.20)
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A.4 Mole based diffusion models

The general diffusion models are only modified from their original state given in
table A.8 by introducing the simplified divergence for the pellet and introducing
the effective binary and Knudsen diffusitivies as shown in the theory chapter 2.2.2.
This is however not shown, but the diffusion models are represented with the
simplified divergences and effective diffusivities included on a dimensionless form
in table A.11.

Table A.8: Mole based diffusion models, standard form

Wilke

ji = −cD′im∇ · xi D′im =
1− xi∑n
j=1
j 6=i

xj

Dij

(A.21)

Wilke–Bosanquet

ji = −cD′i,eff∇ · xii
1

D′i,eff
=

1

D′im
+

1

DiK
(A.22)

Maxwell-Stefan

ji =

−cxi +
∑n
j=1
j 6=i

jjxi

Dij∑i
j=1
j 6=i

xj

Dij

(A.23)

Dusty gas

ji =

∑n
j=1
j 6=i

jjxi

Dij
− ciu

DiK
− c∇xi∑i

j=1
j 6=i

xj

Dij
+ 1

DiK

(A.24)
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A.5 Supportive equations

The equations needed to complete the model equations are presented here.

A.5.1 Mass based flux-velocity conversion[14]

Optional equation, only included for comparing the obtained velocities from the
continuity equations.

ji = ρi(ui − v) (A.25)

u− v =

N∑
i=1

xi(ui − v) (A.26)

ωi =
xiMi

M
(A.27)

Inserting the first into the second:

u− v =

N∑
i=1

xiji
ρi

(A.28)

writing out ρi as ωiρ and using equation A.27, gives the conversion equation:

u− v =

N∑
i=1

jiM

ρMi
(A.29)

A.5.2 Mole based flux-velocity conversion[14]

This is an important equation for the mole based models as the mass averaged
velocity is needed for the temperature equation and Darcy’s Law.

Ji = ci(ui − u) (A.30)

v − u =

N∑
i=1

ωi(ui − u) (A.31)

xi =
ωiM

Mi
(A.32)

Inserting the first into the second:

v − u =

N∑
i=1

ωi
Ji
ci

(A.33)

(A.34)

writing out ci as xic and using equation A.32 gives the conversion equation:

v − u =

N∑
i=1

JiMi

ciM
(A.35)
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A.5.3 Ideal gas law

Different versions of the ideal gas law is used for the different cases. The standard
is used for concentration:

pV = nRT
p

RT
= c (A.36)

multiplied with moleweight gives the density equation used:

pM

RT
= ρ (A.37)

A.5.4 Darcy’s law[15]

v = −B
µ

∂p

∂ξ
B =

ε

τ

d2
0

32
(A.38)

A.5.5 Constitutive laws[14]

for mass based models:

n∑
i=1

ji = 0 (A.39)

n∑
i=1

ωi = 1 (A.40)

for mole based models:

n∑
i=1

Ji = 0 (A.41)

n∑
i=1

xi = 1 (A.42)

A.5.6 Viscosity and heat capacities

These variables are obtained from the equations given in the properties of liquids
and gases[11]. However these equations are considered less important in the thesis
as the same equations are used for both the mass and mole based models, and will
not yield any difference for the models.
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A.6 Transforming the simplified equations to the dimension-
less form

The simplified general equations are made dimensionless using the correlations in
table A.9. By using these correlations in the simplified equations we will acquire
the basic dimensionless equations used in this thesis.

Table A.9: Correlations used to make the equations dimensionless

ξ∗ =
ξ

ξref
(A.43) u∗ =

u

uref
(A.44) q∗ =

qξξref
λTref

(A.45)

uref =
Dref

ξref
(A.46) p∗ =

p

pref
(A.47) ρ∗ =

ρ

ρref
(A.48)

c∗ =
c

cref
(A.49) j∗ =

j
Drefρref
ξref

(A.50) J∗ =
J

Dref cref
ξref

(A.51)

t∗ =
t

ξ2ref
Dref

(A.52) M∗w =
Mw

Mref
(A.53) T ∗ =

T

Tref
(A.54)

A.7 Summary of the dimensionless equations on mole and
mass basis

The general dimensionless basis equations used for all the pellet models are given
in table A.10 for the mass based models and table A.11 for the mole based models.
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Table A.10: Mass based model equations on dimensionless form

Species mass balance:

∂

∂t∗
(ρ∗ωi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗ωiv

∗
ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2
ref

Drefρref
(A.55)

The basic dimensionless temperature equation:

((1− ε)ρpCpp + ερ∗ρref

n∑
i=1

ωiCpi)
∂T ∗

∂t∗
=

−ρ∗ρrefv∗r
n∑
i=1

ωiCpi
∂T ∗

∂ξ∗
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref

(A.56)

The basic dimensionless continuity equation:

∂ρ∗

∂t∗
+

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗v∗) = 0 (A.57)

Wilke diffusion model:

j∗i = −ρ∗ Dim

Dref

∂ωi
∂ξ∗

Dim =
1− ωi

M
∑n
j=1
j 6=i

ωj

MjDe
ij

(A.58)

Wilke–Bosanquet diffusion model:

j∗i = −ρ∗Di,eff

Dref

∂ωi
∂ξ∗

1

Di,eff
=

1

Dim
+

1

DiK
(A.59)

Maxwell-Stefan diffusion model:

j∗i =

−ρ∗ωi

Dref

1
M

∂M
∂ξ∗ −

ρ∗

Dref

∂ωi

∂ξ∗ +Mωi
∑n
j=1
j 6=i

j∗j
MjDe

ij

M
∑i
j=1
j 6=i

ωj

MjDe
ij

(A.60)

Dusty gas diffusion model:

j∗i =

M
2∑n

j=1
j 6=i

ωij
∗
j

MjDe
ij
− v∗ωiM

De
iK
− ωiρ

∗

Dref

∂M
∂ξ∗ −

ρ∗M
Dref

∂ωi

∂ξ∗

M
2∑n

j=1
j 6=i

ωj

MjDe
ij

+ M
De

iK

(A.61)
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Table A.11: Mole based model equations on dimensionless form

Species mole balance:

∂

∂t∗
(c∗xi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗xiu

∗
ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +R′i

ξ2
ref

Drefcref
(A.62)

The basic dimensionless temperature equation:

((1− ε)ρpCpp + εc∗cref

n∑
i=1

xiCp
′
i)
∂T ∗

∂t∗
=

−c∗crefv∗r
n∑
i=1

xiCp
′
i

∂T ∗

∂ξ∗
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref

(A.63)

The basic dimensionless continuity equation:

∂c∗

∂t∗
+

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗u∗ξ) = (

ξ2
ref

crefDref
)

n∑
i=1

R′i (A.64)

Wilke diffusion model:

J∗i = −c∗ D
′
im

Dref

∂xi
∂ξ∗

D′im =
1− xi∑n
j=1
j 6=i

xj

De
ij

(A.65)

Wilke–Bosanquet diffusion model:

J∗i = −c∗
D′i,eff
Dref

∂xi
∂ξ∗

1

D′i,eff
=

1

D′im
+

1

De
iK

(A.66)

Maxwell-Stefan diffusion model:

J∗i =

− c∗

Dref

∂xi

∂ξ∗ +
∑n
j=1
j 6=i

J∗j xi

De
ij∑i

j=1
j 6=i

xj

De
ij

(A.67)

Dusty gas diffusion model:

J∗i =

− c∗

Dref

∂xi

∂ξ∗ +
∑n
j=1
j 6=i

J∗j xi

De
ij
− c∗xiu

∗

De
iK∑i

j=1
j 6=i

xj

De
ij

+ 1
De

iK

(A.68)
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B 3 Models on their simplest forms

In this appendix the equations needed for the pellet model on its simplest form will
be derived on both mass and mole basis. Also some additional results are presented
here to give a complete overview of the simulation.

B.1 Mass based model derivation

As this is the simplest model, it will only be necessary to derive an equation for
the temperature balance and the species mass balance. The respective fluxes will
be calculated with the Fourier’s law and the diffusion models.

B.1.1 The temperature balance

The general temperature balance derived earlier (A.56):

((1− ε)ρpCpp + ερ∗ρref

n∑
i=1

ωiCpi)
∂T ∗

∂t∗
=

−ρ∗ρrefv∗r
n∑
i=1

ωiCpi
∂T ∗

∂ξ∗
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref

(B.1)

Steady state is assumed:

0 = −ρ∗ρrefv∗r
n∑
i=1

ωiCpi
∂T ∗

∂ξ∗
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref
(B.2)

no convective transport is assumed:

0 = −
( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref
(B.3)

The equation is rearranged and the used equation is given as:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2
ref (−4HR)R

Trefλ
(B.4)

B.1.2 Species mass balance

The mass based fluxes are obtained from the species mass balance. The general
dimensionless equation is given as derived earlier (A.55):

∂

∂t∗
(ρ∗ωi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗ωiv

∗
ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2
ref

Drefρref
(B.5)

Steady state is assumed.

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗ωiv

∗
ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2
ref

Drefρref
(B.6)
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The first term is written out to identify the continuity equation.

1

ξ∗2
∂ωi
∂ξ∗

(ξ∗2ρ∗v∗ξ ) + ωi
1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗v∗ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2
ref

Drefρref
(B.7)

The second term is identified as the LHS of the mass based continuity equation
(A.57) when steady state is assumed, swapped for the RHS of the mass based
continuity equation gives:

1

ξ∗2
∂ωi
∂ξ∗

(ξ∗2ρ∗v∗ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2
ref

Drefρref
(B.8)

No convective transport is assumed, and the equation is rearranged:

1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) = Ri

ξ2
ref

Drefρref
(B.9)

The first term is expanded to reflect the implemented equation:

2j∗i
ξ∗

+
∂j∗i
∂ξ∗

= Ri
ξ2
ref

Drefρref
(B.10)

B.1.3 Wilke diffusion model

The general Wilke diffusion model as given in (A.58):

j∗i = −ρ∗ Dim

Dref

∂ωi
∂ξ∗

Dim =
1− ωi

M
∑n
j=1
j 6=i

ωj

MjDe
ij

(B.11)

Rearranged to the implemented form:

j∗i
Dref

Dimρ∗
+

∂ωi
∂ξ∗

= 0 Dim =
1− ωi

M
∑n
j=1
j 6=i

ωj

MjDe
ij

(B.12)

B.1.4 Wilke-Bosanquet diffusion model

j∗i = −ρ∗Di,eff

Dref

∂ωi
∂ξ∗

1

Di,eff
=

1

Dim
+

1

De
iK

(B.13)

Rearranged to the implemented form:

j∗i
Dref

D′i,effρ
∗ +

∂ωi
∂ξ∗

= 0
1

D′i,eff
=

1
1−ωi

M
∑n
j=1
j 6=i

ωj
MjD

e
ij

+
1

De
iK

(B.14)
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B.1.5 Maxwell-Stefan diffusion model

The general Maxwell-Stefan model as given in (A.60):

j∗i =

−ρ∗ωi

Dref

1
M

∂
∂ξ∗ (M)− ρ∗

Dref

∂ωi

∂ξ∗ +Mωi
∑n
j=1
j 6=i

j∗j
MjDe

ij

M
∑i
j=1
j 6=i

ωj

MjDe
ij

(B.15)

Rearranged to the implemented form:

j∗i
MDref

ρ∗

i∑
j=1
j 6=i

ωj
MjDe

ij

+
∂ωi
∂ξ∗

=
−ωi
M

∂M

∂ξ∗
+
MDref

ρ∗
ωi

n∑
j=1
j 6=i

j∗j
MjDe

ij

(B.16)

B.1.6 Dusty gas diffusion model

The general Maxwell-Stefan model as given in (A.61):

j∗i =

M
2∑n

j=1
j 6=i

ωij
∗
j

MjDe
ij
− v∗ωiM

De
iK
− ωiρ

∗

Dref

∂M
∂ξ∗ −

ρ∗M
Dref

∂ωi

∂ξ∗

M
2∑n

j=1
j 6=i

ωj

MjDe
ij

+ M
De

iK

(B.17)

Rearranged to the implemented form:

j∗i
Dref

ρ∗
(M

n∑
j=1
j 6=i

ωj
MjDe

ij

+
1

De
iK

) +
∂ωi
∂ξ∗

=
MDref

ρ∗

n∑
j=1
j 6=i

ωij
∗
j

MjDe
ij

− v∗ωiDref

De
iKρ
∗ −

ωi

M

∂M

∂ξ∗

(B.18)

Assuming no convective transport:

j∗i
Dref

ρ∗
(M

n∑
j=1
j 6=i

ωj
MjDe

ij

+
1

De
iK

) +
∂ωi
∂ξ∗

=
MDref

ρ∗

n∑
j=1
j 6=i

ωij
∗
j

MjDe
ij

− ωi

M

∂M

∂ξ∗
(B.19)

B.1.7 Density equation

The density is obtained from modified ideal gas law given earlier A.37

pM

RT
= ρ (B.20)
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B.2 Mass based solution strategy

The different equations are discussed in short and the main summary of the solution
strategy is given in table B.1. In the table the used equations combined with
boundary conditions are shown. The solution strategy is also visualized in the
form on how it would be implemented by the use of orthogonal collocation, shown
in figure B.1.

B.2.1 Temperature equation

The temperature equation is solved in combination with Fourier’s law in order to
obtain two first order partial differential equations. Here the heat flux is obtained
from the temperature equation and the temperature is obtained from Fourier’s law.
The temperature is specified at the surface for the Fourier’s law, while the flux is
specified at the center of the particle for the temperature equation.

B.2.2 Species mass balance and diffusion models

The species mass balance is solved to obtain the mass based fluxes. The mass based
fluxes are then used to obtain the mass fractions throughout the catalyst particle
using the different diffusion models. This is done for N-1 components for both the
transport fluxes and the mass fractions, the last component is solved with a fitting
constitutive law as seen in the solution strategy table. As boundary conditions the
mass fractions are specified at the surface for the diffusion model, while the fluxes
are specified at the center for the species mass balence.

B.2.3 Density

The density is obtained by the ideal gas law multiplied with averaged molecular
weight. These values are obtained using previous iterative values and is solved
outside of the matrix system.
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Table B.1: Summary of the solution strategy

Equations, LHS represents terms in the problem ma-
trix and the RHS represents the terms in the source
vector:

Boundary conditions:

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (B.21)

Boundary condition at
ξ = ξp

T = T b (B.22)

Temperature equation:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2
ref (−4HR)R

Trefλ
(B.23)

Boundary condition at
ξ = 0

q = 0 (B.24)

Species mass balance, used for N-1 components:

2j∗i
ξ∗

+
∂j∗i
∂ξ∗

= Ri
ξ2
ref

Drefρref
(B.25)

Boundary condition at
ξ = 0

ji = 0 (B.26)

Last flux(H2O) in the species balance is solved by:

n∑
i=1

j∗i = 0 (B.27)

No boundary condition

−

A diffusion model is used for N-1 components:

One of the four diffusion models in table B.2 is used

Boundary condition at
ξ = ξp :

ωi = ωbi (B.28)

Last massfraction(H2O) in the species balance is
solved by:

n∑
i=1

ωi = 1 (B.29)

No boundary condition

−

Ideal gas law modified for density*:

pM

RT
= ρ (B.30)

No boundary condition

−

*Solved outside of the numerical collocation system and calculated from previous
iteration values
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Table B.2: Diffusion models on their implemented form

LHS is implemented in the collocation matrix, and the RHS is implemented in
the source vector

Wilke:

j∗i
Dref

Dimρ∗
+

∂ωi
∂ξ∗

= 0 Dim =
1− ωi

M
∑n
j=1
j 6=i

ωj

MjDe
ij

(B.31)

Wilke-Bosanquet:

j∗i
Dref

Di,effρ∗
+

∂ωi
∂ξ∗

= 0
1

Di,eff
=

1
1−ωi

M
∑n
j=1
j 6=i

ωj
MjD

e
ij

+
1

De
i,K

(B.32)

Maxwell-Stefan:

j∗i
MDref

ρ∗

i∑
j=1
j 6=i

ωj
MjDe

ij

+
∂ωi
∂ξ∗

=
−ωi
M

∂M

∂ξ∗
+
MDref

ρ∗
ωi

n∑
j=1
j 6=i

j∗j
MjDe

ij

(B.33)

Dusty gas:

j∗i
Dref

ρ∗
(M

n∑
j=1
j 6=i

ωj
MjDe

ij

+
1

De
iK

) +
∂ωi
∂ξ∗

=
MDref

ρ∗

n∑
j=1
j 6=i

ωij
∗
j

MjDe
ij

− ωi

M

∂M

∂ξ∗

(B.34)
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Table B.3: Terms in the collocation matrix

Label in matrix Collocation matrix terms: multiplied with:

DM1

Wilke:

Dref

Dimρ∗
j∗i

DM1

Wilke-Bosanquet:

Dref

Di,effρ∗
j∗i

DM1

Maxwell-Stefan:

MDref

ρ∗

i∑
j=1
j 6=i

ωj
MjDe

ij

j∗i

DM1

Dusty gas:

Dref

ρ∗
(M

n∑
j=1
j 6=i

ωj
MjDe

ij

+
1

De
iK

)
j∗i
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Table B.4: Terms in the source vector

Label in source vector Source vector

DM2

Wilke:

0

DM2

Wilke-Bosanquet:

0

DM2

Maxwell-Stefan:

−ωi
M

∂M

∂ξ∗
+
MDref

ρ∗
ωi

n∑
j=1
j 6=i

j∗j
MjDe

ij

DM2

Dusty gas:

MDref

ρ∗

n∑
j=1
j 6=i

ωij
∗
j

MjDe
ij

− ωi

M

∂M

∂ξ∗

SB1

Source term species balance:

Ri
ξ2
ref

Drefρref
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B.3 Mole based model derivation

The mole based model will be derived similar to the mass based model.

B.3.1 The temperature balance

The general temperature balance derived earlier (A.63):

((1− ε)ρpCpp + εc∗cref

n∑
i=1

xiCp
′
i)
∂T ∗

∂t∗
=

−c∗crefv∗r
n∑
i=1

xiCp
′
i

∂T ∗

∂ξ∗
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref

(B.35)

Steady state is assumed:

0 = −c∗crefv∗r
n∑
i=1

xiCp
′
i

∂T ∗

∂ξ∗
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref
(B.36)

no convective transport is assumed:

0 = −
( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref
(B.37)

The equation is rearranged and the used equation is given as:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2
ref (−4Hr)R

Trefλ
(B.38)

B.3.2 Species mole balance

The mole based fluxes are obtained from the species mole balance. The general
dimensionless equation is given as derived earlier (A.62):

∂

∂t∗
(c∗xi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗xiu

∗
ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +R′i

ξ2
ref

Drefcref
(B.39)

Steady state is assumed.

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗xiu

∗
ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +R′i

ξ2
ref

Drefcref
(B.40)

The first term is written out to identify the continuity equation.

1

ξ∗2
∂xi
∂ξ∗

(ξ∗2c∗u∗ξ) + xi
1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗u∗ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +R′i

ξ2
ref

Drefcref
(B.41)

The second term is identified as the LHS of the mole based continuity equation
(A.64) when steady state is assumed, swapped for the RHS of the mole based
continuity equation gives:

1

ξ∗2
∂xi
∂ξ∗

(ξ∗2c∗u∗ξ) + xi(
ξ2
ref

crefDref
)

n∑
i=1

R′i = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +R′i

ξ2
ref

Drefcref

(B.42)
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No convective transport is assumed and the equation is rearranged:

1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) = (R′i − xi

n∑
i=1

R′i)
ξ2
ref

Drefcref
(B.43)

Expanding the first terms to reflect the equation used in the model:

2J∗i
ξ∗2

+
∂J∗i
∂ξ∗

= (R′i − xi
n∑
i=1

R′i)
ξ2
ref

Drefcref
(B.44)

B.3.3 Wilke diffusion model

The general Wilke diffusion model on mole basis as given in A.65:

J∗i = −c∗D′im
∂xi
∂ξ∗

D′im =
1− xi∑n
j=1
j 6=i

xj

De
ij

(B.45)

Rearranged to the implemented form:

J∗i
Dref

c∗D′im
+
∂xi
∂ξ∗

= 0 D′im =
1− xi∑n
j=1
j 6=i

xj

De
ij

(B.46)

B.3.4 Wilke-Bosanquet diffusion model

j∗i = −c∗
D′i,eff
Dref

∂xi
∂ξ∗

1

D′i,eff
=

1

D′im
+

1

De
i,K

(B.47)

Rearranged to the implemented form:

j∗i
Dref

D′i,effc
∗ +

∂xi
∂ξ∗

= 0
1

D′i,eff
=

1
1−xi∑n
j=1
j 6=i

xj
De

ij

+
1

De
i,K

(B.48)

B.3.5 Maxwell-Stefan diffusion model

The general Maxwell-Stefan model on mole basis as given in A.67:

j∗i =

−c∗ ∂xi

∂ξ∗ +
∑n
j=1
j 6=i

j∗j xi

De
ij∑i

j=1
j 6=i

xj

De
ij

(B.49)

Rearranged to the implemented form:

j∗iDref

c∗

i∑
j=1
j 6=i

xj
De
ij

+
∂xi
∂ξ∗

=
Dref

c∗

n∑
j=1
j 6=i

j∗j xi

De
ij

(B.50)
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B.3.6 Dusty gas diffusion model

The general Maxwell-Stefan model on mole basis as given in A.68:

J∗i =

− c∗

Dref

∂xi

∂ξ∗ +
∑n
j=1
j 6=i

J∗j xi

De
ij
− c∗xiu

∗

De
iK∑i

j=1
j 6=i

xj

De
ij

+ 1
De

iK

(B.51)

Rearranged to the implemented form:

J∗i
Dref

c∗
(

i∑
j=1
j 6=i

xj
De
ij

+
1

De
iK

) = −∂xi
∂ξ∗

+
Dref

c∗

n∑
j=1
j 6=i

J∗j xi

De
ij

− Drefxiu
∗

De
iK

(B.52)

B.3.7 Concentration equation

The concentration is obtained from the ideal gas law.

p

RT
= c (B.53)
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B.4 Mole based solution strategy

The different equations are first discussed in short and the main summary of the
solution strategy is given in table B.5. In the table the used equations combined
with boundary conditions are shown. The solution strategy is also visualized in the
form on how it would be implemented by the use of orthogonal collocation, shown
in figure B.2.

B.4.1 Temperature equation

The temperature equation combined with the Fourier’s law is solved separately
to obtain the temperature. Similar to the mass based model the temperature is
obtained from Fourier’s law while the heat flux is obtained from the temperature
equation. The same boundary conditions are also used where the temperature is
specified at the surface for the Fourier’s law, while the flux is specified at the center
for the species mass balance.

B.4.2 Species Mole balance and Maxwell-Stefan diffusion

The species mole balance is solved to obtain the mole based fluxes. The mole based
fluxes are then used to obtain the mole fractions throughout the catalyst particle
using the different diffusion models given in table B.6. As for the mass based model
this is also done for N-1 components for both the fluxes and the mole fractions,
the last component is solved with a fitting constitutive law. The mole fractions are
specified at the surface for the diffusion models, while the transport flux is specified
at the center for the species mole balance.

B.4.3 Concentration

The concentration is solved outside the matrix system and is solved using the
previous iterative values.
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Table B.5: Summary of the solution strategy

Equations, LHS represents terms in the problem ma-
trix and the RHS represents the terms in the source
vector:

Boundary conditions:

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (B.54)

Boundary condition at
ξ = ξp

T = T b (B.55)

Temperature equation:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2
ref (−4HR)R

Trefλ
(B.56)

Boundary condition at
ξ = 0

q = 0 (B.57)

Species mole balance, used for N-1 components:

2J∗i
ξ∗2

+
∂J∗i
∂ξ∗

= (R′i − xi
n∑
i=1

R′i)
ξ2
ref

Drefcref
(B.58)

Boundary condition at
ξ = 0

Ji = 0 (B.59)

Last flux(H2O) in the species balance is solved by:

n∑
i=1

J∗i = 0 (B.60)

No boundary condition

−

A diffusion model is used for N-1 components:

One of the four diffusion models in table B.6 is used

Boundary condition at
ξ = ξp :

xi = xbi (B.61)

Last mass fraction(H2O) in the species balance is
solved by:

n∑
i=1

xi = 1 (B.62)

No boundary condition

−

Ideal gas law modified for concentration*:

p

RT
= c (B.63)

No boundary condition

−

*Solved outside of the numerical collocation system and calculated from previous
iteration values
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Table B.6: Diffusion models on their implemented form

LHS is implemented in the collocation matrix, and the RHS is implemented in
the source vector

Wilke:

J∗i
Dref

c∗D′im
+
∂xi
∂ξ∗

= 0 D′im =
1− xi∑n
j=1
j 6=i

xj

De
ij

(B.64)

Wilke-Bosanquet:

j∗i
Dref

D′i,effc
∗ +

∂xi
∂ξ∗

= 0
1

D′i,eff
=

1
1−xi∑n
j=1
j 6=i

xj
De

ij

+
1

De
i,K

(B.65)

Maxwell-Stefan:

j∗iDref

c∗

i∑
j=1
j 6=i

xj
De
ij

+
∂xi
∂ξ∗

=
Dref

c∗

n∑
j=1
j 6=i

j∗j xi

De
ij

(B.66)

Dusty gas:

J∗i
Dref

c∗
(

i∑
j=1
j 6=i

xj
De
ij

+
1

De
iK

) +
∂xi
∂ξ∗

=
Dref

c∗

n∑
j=1
j 6=i

J∗j xi

De
ij

− Drefxiu
∗

De
iK

(B.67)
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Table B.7: Terms in the collocation matrix

Label in ma-
trix

Collocation matrix terms: multiplied
with:

DM1

Wilke:

Dref

D′imc
∗ , D′im =

1− xi∑n
j=1
j 6=i

xj

De
ij

J∗i

DM1

Wilke-Bosanquet:

Dref

D′i,effc
∗ ,

1

D′i,eff
=

1
1−xi∑n
j=1
j 6=i

xj
De

ij

+
1

De
iK

J∗i

DM1

Maxwell-Stefan:

Dref

c∗

i∑
j=1
j 6=i

xj
De
ij

J∗i

DM1

Dusty gas:

Dref

c∗
(

i∑
j=1
j 6=i

xj
De
ij

+
1

De
iK

)
J∗i

95



3 Models on their simplest forms
Mole based solution strategy

Table B.8: Terms in the source vector

Label in source vector Source vector

DM2

Wilke:

0

DM2

Wilke-Bosanquet:

0

DM2

Maxwell-Stefan:

Dref

c∗

n∑
j=1
j 6=i

J∗j xi

De
ij

DM2

Dusty gas:

Dref

c∗

n∑
j=1
j 6=i

J∗j xi

De
ij

− Drefxiu
∗

De
iK

SB1

Source term species balance:

(R′i − xi
n∑
i=1

R′i)
ξ2
ref

Drefcref
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B.5 Additional result plots

Wilke
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Figure B.3: Mole(—) and mass(+++) based diffusive transport fluxes using the
Wilke diffusion model.

Wilke-Bosanquet
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Figure B.4: Mole(—) and mass(+++) based diffusive transport fluxes using the
Wilke-Bosanquet diffusion model.
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Maxwell-Stefan
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Figure B.5: Mole(—) and mass(+++) based diffusive transport fluxes using the
Maxwell-Stefan diffusion model.
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Figure B.6: Mole(—) and mass(+++) based diffusive transport fluxes using the
dusty gas diffusion model.
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C 4 Alternative methods for solving the simple
models

In this appendix the equations needed for the alternative pellet model formulations
will be derived.

C.1 Mass based model - Alternative dimensionless method

The model equations will be derived for the mass based formulation using Maxwell-
Stefan diffusion.

C.1.1 The temperature balance

The general temperature balance derived earlier (A.56):

((1− ε)ρpCpp + ερ∗ρref

n∑
i=1

ωiCpi)
∂T ∗

∂t∗
=

−ρ∗ρrefv∗r
n∑
i=1

ωiCpi
∂T ∗

∂ξ∗
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref

(C.1)

Steady state is assumed:

0 = −ρ∗ρrefv∗r
n∑
i=1

ωiCpi
∂T ∗

∂ξ∗
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref
(C.2)

No convective transport is assumed:

0 = −
( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref
(C.3)

The equation is rearranged and the used equation is given as:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2
ref (−4HR)R

Trefλ
(C.4)

C.1.2 Species mass balance

The mass based fluxes are obtained from the species mass balance. To account for
the alternative method of making the flux dimensionless, we will start out from
the general species mass balance with dimensions. The general equation is given
as noted earlier (A.6):

∂

∂t
(ρωi) +

1

ξ2

∂

∂ξ
(ξ2ρωivξ) = − 1

ξ2

∂

∂ξ
(ξ2ji) +Ri (C.5)

Steady state is assumed.

1

ξ2

∂

∂ξ
(ξ2ρωivξ) = − 1

ξ2

∂

∂ξ
(ξ2ji) +Ri (C.6)
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The first term is written out to identify the continuity equation.

∂ωi
∂ξ

(ρvξ) + ωi
1

ξ2

∂

∂ξ
(ξ2ρvξ) = − 1

ξ2

∂

∂ξ
(ξ2ji) +Ri (C.7)

The second term is identified as the LHS of the mass based continuity equation
(A.8) when steady state is assumed, swapped for the RHS of the mass based con-
tinuity equation gives:

∂ωi
∂ξ

(ρvξ) = − 1

ξ2

∂

∂ξ
(ξ2ji) +Ri (C.8)

No convective transport is assumed, and the equation is rearranged:

1

ξ2

∂

∂ξ
(ξ2ji) = Ri (C.9)

The first term is expanded to reflect the implemented equation:

2ji
ξ

+
∂ji
∂ξ

= Ri (C.10)

Alternative method for making the fluxes dimensionless:

j∗i =
jξref
Dsρ

(C.11)

where ρ can be written out to:

j∗i =
jξref

Dsc∗crefM
(C.12)

Introducing the last equation into the species mass balance to transform it to a
dimensionless form:

2j∗iDsc
∗crefM

ξ∗ξ2
ref

+
cref

ξref2

∂

∂ξ∗
(j∗iDsc

∗M) = Ri (C.13)

Rearranging and writing out the differential:

2j∗iDsc
∗M

ξ∗
+Dsc

∗M
∂j∗i
∂ξ∗

+ j∗i c
∗M

∂Ds

∂ξ∗
+

j∗iDsM
∂c∗

∂ξ∗
+ j∗iDsc

∗ ∂M

∂ξ∗
= Ri

ξ2
ref

cref

(C.14)

Cleaning up the equation:

2j∗i
ξ∗

+
∂j∗i
∂ξ∗

+
j∗i
Ds

∂Ds

∂ξ∗
+
j∗i
c∗
∂c∗

∂ξ∗
+
j∗i
M

∂M

∂ξ∗
= Ri

ξ2
ref

ρDs
(C.15)

C.1.3 Constitutive law for the species balance

a modified constitutive law is needed as now the dimensionless fluxes will not sum
to 0.

n∑
i=1

j∗iDsc
∗M = 0 (C.16)
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C.1.4 Maxwell-Stefan diffusion model

The general Maxwell-Stefan model with dimension as given in (A.13):

ji =

−ρωi∇ln(M)− ρ∇ωi +Mωi
∑n
j=1
j 6=i

jj
MjDe

ij

M
∑i
j=1
j 6=i

ωj

MjDe
ij

(C.17)

Specifies that:

D−1
s = M

i∑
j=1
j 6=i

ωj
MjDe

ij

(C.18)

Transforming to dimensionless form:

j∗i = ξref

−ρωi 1
M

∂M
∂ξ∗ξref

− ρ ∂ωi

∂ξ∗ξref
+Mωi

∑n
j=1
j 6=i

j∗jDsc
∗crefM

MjDe
ijξref

c∗crefM
(C.19)

Cleaning the equation:

j∗i = −ωi
1

M

∂M

∂ξ∗
− ∂ωi
∂ξ∗

+ ωi

n∑
j=1
j 6=i

j∗jDsM

MjDe
ij

(C.20)

C.1.5 Concentration equation

The concentration is obtained from the ideal gas law:

p

RT
= c (C.21)
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C.2 Solution strategy

The different equations are first discussed in short and the main summary of the
solution strategy is given in table C.1. In the table the used equations combined
with boundary conditions are shown. The solution strategy is also visualized in the
form on how it would be implemented by the use of orthogonal collocation, shown
in figure C.1.

C.2.1 Temperature equation

The temperature equation combined with the Fourier’s law are solved separately
to obtain the temperature. Here the temperature is obtained from Fourier’s law
and the heat flux is obtained from the temperature equation. The temperature is
specified at the surface for the Fourier’s law and the flux is specified at the center
for the temperature equations.

C.2.2 Species Mass balance and Maxwell-Stefan diffusion

The species mass balance is solved for N-1 components to obtain the mass based
fluxes. The mass based fluxes are then used to obtain the mass fractions throughout
the catalyst particle using the Maxwell-Stefan diffusion model also here for N-1
components. The last flux and mass fractions are solved using their respective
constitutive law given in the solution strategy. The mass fraction is specified at
the surface for the diffusion model, while the flux is specified at the center for the
species mass balance.

C.2.3 Concentration

The ideal gas law is solved outside the numerical problem and is solved using the
previous iterative values.
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Table C.1: Summary of the solution strategy

Equations, LHS represents terms in the problem
matrix and the RHS represents the terms in the
source vector:

Boundary conditions:

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (C.22)

Boundary condtion at ξ =
ξp

T = T b (C.23)

Temperature equation:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2
ref (−4HR)R

Trefλ
(C.24)

Boundary condition at ξ =
0

q = 0 (C.25)

Species mass balance, used for N-1 components:

2j∗i
ξ∗

+
∂j∗i
∂ξ∗

= Ri
ξ2
ref

ρDs
− j∗i
Ds

∂Ds

∂ξ∗
− j∗i
c∗
∂c∗

∂ξ∗
− j∗i
M

∂M

∂ξ∗

(C.26)

Boundary condition at ξ =
0

ji = 0 (C.27)

Last flux(H2O) in the species balance is solved by:

n∑
i=1

j∗iDsρ = 0 (C.28)

No boundary condition

−

Maxwell-Stefan diffusion model for N-1 compo-
nents:

j∗i +
∂ωi
∂ξ∗

= −ωi
1

M

∂M

∂ξ∗
+ ωi

n∑
j=1
j 6=i

j∗jDsM

MjDe
ij

(C.29)

Boundary condition at ξ =
ξp :

ωi = ωbi (C.30)

Last mass fraction(H2O) in the species balance is
solved by:

n∑
i=1

ωi = 1 (C.31)

No boundary condition

−

Ideal gas law, concentration and density*:

p

RT
= c

pM

RT
= ρ (C.32)

No boundary condition

−

*Solved outside of the numerical collocation system and calculated from previous
iteration values
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C.3 Mole based model not including the continuity equation

The model equations for the steady state, non-convective mole based model not
using the continuity equation to simplify the species balance will be derived.

C.3.1 The temperature balance

The general temperature balance derived earlier (A.63):

((1− ε)ρpCpp + εc∗cref

n∑
i=1

xiCp
′
i)
∂T ∗

∂t∗
=

−c∗crefv∗r
n∑
i=1

xiCp
′
i

∂T ∗

∂ξ∗
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref

(C.33)

Steady state is assumed:

0 = −c∗crefv∗r
n∑
i=1

xiCp
′
i

∂T ∗

∂ξ∗
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref
(C.34)

no convective transport is assumed:

0 = −
( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref
(C.35)

The equation is rearranged and the used equation is given as:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2
ref (−4Hr)R

Trefλ
(C.36)

C.3.2 Species mole balance

The mole based fluxes are obtained from the species mole balance. The general
dimensionless equation is given as derived earlier (A.62):

∂

∂t∗
(c∗xi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗xiu

∗
ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +R′i

ξ2
ref

Drefcref
(C.37)

Steady state is assumed.

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗xiu

∗
ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +R′i

ξ2
ref

Drefcref
(C.38)

No convective transport is assumed and the equation is rearranged:

0 = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +R′i

ξ2
ref

Drefcref
(C.39)

Expanding the first terms to reflect the equation used in the model:

2J∗i
ξ∗2

+
∂J∗i
∂ξ∗

= R′i
ξ2
ref

Drefcref
(C.40)
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C.3.3 Maxwell-Stefan diffusion model

The general Maxwell-Stefan model on mole basis as given in A.67:

j∗i =

−c∗ ∂xi

∂ξ∗ +
∑n
j=1
j 6=i

j∗j xi

De
ij∑i

j=1
j 6=i

xj

De
ij

(C.41)

Rearranged to the implemented form:

j∗iDref

c∗

i∑
j=1
j 6=i

xj
De
ij

+
∂xi
∂ξ∗

=
Dref

c∗

n∑
j=1
j 6=i

j∗j xi

De
ij

(C.42)

C.3.4 Concentration equation

The concentration is obtained from the ideal gas law.

p

RT
= c (C.43)
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C.4 Solution strategy

The different equations are first discussed in short and the main summary of the
solution strategy is given in table C.2. In the table the used equations combined
with boundary conditions are shown. The solution strategy is also visualized in the
form on how it would be implemented by the use of orthogonal collocation, shown
in figure C.2.

C.4.1 Temperature equation

The temperature equation combined with the Fourier’s law is solved separately
to obtain the temperature. Here the temperature is obtained from Fourier’s law
and the heat flux is obtained from the temperature equation. The temperature is
specified at the surface of the pellet for the Fourier’s law, while the heat flux is
specified at the center for the temperature balance.

C.4.2 Species mole balance and Maxwell-Stefan diffusion

The species mole balance is solved for N-1 components to obtain the mole based
transport fluxes. The mole based fluxes are then used to obtain the mole fractions
throughout the catalyst particle by using the Maxwell-Stefan diffusion model also
here for N-1 components. The last flux and mole fractions are solved using their
respective constitutive law given in the solution strategy. The mole fraction is
specified at the surface of the catalyst particle, while the flux is specified at the
center for the species mole balance.

C.4.3 Concentration

The ideal gas law is solved outside the numerical problem and is solved using the
previous iterative values.
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Table C.2: Summary of the solution strategy

Equations, LHS represents terms in the problem
matrix and the RHS represents the terms in the
source vector:

Boundary conditions:

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (C.44)

Boundary condition at ξ =
ξp

T = T b (C.45)

Temperature equation:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2
ref (−4HR)R

Trefλ
(C.46)

Boundary condition at ξ =
0

q = 0 (C.47)

Species mole balance, used for N-1 components:

2J∗i
ξ∗2

+
∂J∗i
∂ξ∗

= R′i
ξ2
ref

Drefcref
(C.48)

Boundary condition at ξ =
0

Ji = 0 (C.49)

Last flux(H2O) in the species balance is solved by:

n∑
i=1

Ji = 0 (C.50)

No boundary condition

−

Maxwell-Stefan diffusion model for N-1 compo-
nents:

j∗iDref

c∗

i∑
j=1
j 6=i

xj
De
ij

+
∂xi
∂ξ∗

=
Dref

c∗

n∑
j=1
j 6=i

j∗j xi

De
ij

(C.51)

Boundary condition at ξ =
ξp :

xi = xbi (C.52)

Last mass fraction(H2O) in the species balance is
solved by:

n∑
i=1

xi = 1 (C.53)

No boundary condition

−

Ideal gas law modified for concentration*:

p

RT
= c (C.54)

No boundary condition

−

*Solved outside of the numerical collocation system and calculated from previous
iteration values
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C.5 Effect of continuity, rigorous models

Due to the small changes in the models and the results given by including the
continuity equation in the more rigorous models the alternative species balance
equations are only derived. These equations can be replaced in the rigorous model
derived in chapter 5 for a complete walk-through and a solution strategy.

C.5.1 Species mass balance

The mass based fluxes are obtained from the species mass balance. The general
dimensionless equation is given as derived earlier (A.55):

∂

∂t∗
(ρ∗ωi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗ωiv

∗
ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2
ref

Drefρref
(C.55)

Steady state is assumed and the equation is rearranged.

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗ωiv

∗
ξ ) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) = Ri

ξ2
ref

Drefρref
(C.56)

The first and second term is written out:

2ρ∗ωiv
∗
ξ

ξ∗
+
∂ρ∗

∂ξ∗
ωiv
∗
ξ +

∂ωi
∂ξ∗

ρ∗v∗ξ +
∂v∗ξ
∂ξ∗

ωiρ
∗ +

2j∗i
ξ∗

+
∂j∗i
∂ξ∗

= Ri
ξ2
ref

Drefρref
(C.57)

The equation is rearranged to show how it is implemented. The LHS is implemented
in the collocation matrix and the RHS in the source vector:

2ρ∗ωiv
∗
ξ

ξ∗
+
∂ωi
∂ξ∗

ρ∗v∗ξ +
∂v∗ξ
∂ξ∗

ωiρ
∗ +

2j∗i
ξ∗

+
∂j∗i
∂ξ∗

= Ri
ξ2
ref

Drefρref
− ∂ρ∗

∂ξ∗
ωiv
∗
ξ (C.58)

This equation can be swapped out for eq 115 in chapter 5 for a complete solution
strategy.

C.5.2 Species mole balance

The mole based fluxes are obtained from the species mole balance. The general
dimensionless equation is given as derived earlier (A.62):

∂

∂t∗
(c∗xi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗xiu

∗
ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +R′i

ξ2
ref

Drefcref
(C.59)

Steady state is assumed and the equation is rearranged.

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗xiu

∗
ξ) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) = R′i

ξ2
ref

Drefcref
(C.60)

The first and second term is written out:

2c∗xiu
∗
ξ

ξ∗
+
∂xi
∂ξ∗

c∗u∗ξ +
∂c∗

∂ξ∗
xiu
∗
ξ +

∂u∗ξ
∂ξ∗

xic
∗ +

2J∗i
ξ∗

+
∂J∗i
∂ξ∗

= R′i
ξ2
ref

Drefcref
(C.61)

This equation can be swapped out for eq 133 in chapter 5 for a complete solution
strategy.
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C.6 additional results - Effect of continuity equation

0 0.002 0.004 0.006 0.008 0.01
799.85

799.9

799.95

800
Temperature

Position in particle[m]

T
em

pe
ra

tu
re

[K
]

0 0.002 0.004 0.006 0.008 0.01

0.16

0.18

0.2

0.22

0.24

CH4

Position in particle[m]

M
ol

ef
ra

ct
io

n[
−

]

0 0.002 0.004 0.006 0.008 0.01
0

2

4
x 10

−3 CO

Position in particle[m]

M
ol

ef
ra

ct
io

n[
−

]

0 0.002 0.004 0.006 0.008 0.01
0

0.05

0.1
CO2

Position in particle[m]

M
ol

ef
ra

ct
io

n[
−

]

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2
H2

Position in particle[m]

M
ol

ef
ra

ct
io

n[
−

]

0 0.002 0.004 0.006 0.008 0.01
0.0405

0.041

0.0415

0.042
N2

Position in particle[m]

M
ol

ef
ra

ct
io

n[
−

]
0 0.002 0.004 0.006 0.008 0.01

0.65

0.7

0.75

0.8
H2O

Position in particle[m]

M
ol

ef
ra

ct
io

n[
−

]

0 0.002 0.004 0.006 0.008 0.01
−1

0

1
Mass av. velocity

Position in particle[m]

V
el

oc
ity

[m
/s

]

0 0.002 0.004 0.006 0.008 0.01
−5

0

5

10
x 10

−4 Mole av. velocity

Position in particle[m]

V
el

oc
ity

[m
/s

]

Figure C.3: Mass: Comparison of replacing the convective terms in the species
mass balance with the LHS of the continuity equation or not. Replaced(—), not
replaced(+++), basic boundary condtions are used, 60 collocation points.
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Figure C.4: Mole: Comparison of replacing the convective terms in the species
mole balance with the LHS of the continuity equation or not. Replaced(—), not
replaced(+++), basic boundary conditions are used, 60 collocation points.
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D 5 Rigorous steady state models

D.1 Mass based model

D.1.1 The temperature balance

The general temperature balance derived earlier (A.56):

((1− ε)ρpCpp + ερ∗ρref

n∑
i=1

ωiCpi)
∂T ∗

∂t∗
=

−ρ∗ρrefv∗ξ
n∑
i=1

ωiCpi
∂T ∗

∂ξ∗
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref

(D.1)

Steady state is assumed:

0 = −ρ∗ρrefv∗ξ
n∑
i=1

ωiCpi
∂T ∗

∂ξ∗
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref
(D.2)

The equation is rearranged and the used equation is given as:

Dref

λ
ρ∗ρrefv

∗
ξ

n∑
i=1

ωiCpi
∂T ∗

∂ξ∗
= −(

2q∗

ξ∗
+
∂q∗

∂ξ∗
) +

ξ2
ref (−4HR)R

Trefλ
(D.3)

D.1.2 Species mass balance

The mass based fluxes are obtained from the species mass balance. The general
dimensionless equation is given as derived earlier (A.55):

∂

∂t∗
(ρ∗ωi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗ωiv

∗
ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2
ref

Drefρref
(D.4)

Steady state is assumed.

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗ωiv

∗
ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2
ref

Drefρref
(D.5)

The first term is written out to identify the continuity equation.

1

ξ∗2
∂ωi
∂ξ∗

(ξ∗2ρ∗v∗ξ ) + ωi
1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗v∗ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2
ref

Drefρref
(D.6)

The second term is identified as the LHS of the mass based continuity equation
(A.57) when steady state is assumed, swapped for the RHS of the mass based
continuity equation gives:

1

ξ∗2
∂ωi
∂ξ∗

(ξ∗2ρ∗v∗ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2
ref

Drefρref
(D.7)

The second term is expanded and the equation is rearranged to reflect the imple-
mented equation:

∂ωi
∂ξ∗

(ρ∗v∗ξ ) + (
2j∗i
ξ∗

+
∂j∗i
∂ξ∗

) = Ri
ξ2
ref

Drefρref
(D.8)
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D.1.3 Mass based continuity equation

Velocity is obtained from the mass based continuity equation, starting out from
the general equation (A.57)

∂ρ∗

∂t∗
+

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗v∗) = 0 (D.9)

Steady state is assumed:

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗v∗) = 0 (D.10)

The derivative term is expanded to reflect the used equation:

2

ξ∗
v∗ρ∗ +

∂ρ∗

∂ξ∗
v∗ +

∂v∗

∂ξ∗
ρ∗ = 0 (D.11)

D.1.4 Wilke diffusion model

The general Wilke diffusion model as given in (A.58):

j∗i = −ρ∗ Dim

Dref

∂ωi
∂ξ∗

Dim =
1− ωi

M
∑n
j=1
j 6=i

ωj

MjDe
ij

(D.12)

Rearranged to the implemented form:

j∗i
Dref

Dimρ∗
+

∂ωi
∂ξ∗

= 0 Dim =
1− ωi

M
∑n
j=1
j 6=i

ωj

MjDe
ij

(D.13)

D.1.5 Wilke-Bosanquet diffusion model

j∗i = −ρ∗Di,eff

Dref

∂ωi
∂ξ∗

1

Di,eff
=

1

Dim
+

1

De
iK

(D.14)

Rearranged to the implemented form:

j∗i
Dref

D′i,effρ
∗ +

∂ωi
∂ξ∗

= 0
1

D′i,eff
=

1
1−ωi

M
∑n
j=1
j 6=i

ωj
MjD

e
ij

+
1

De
iK

(D.15)

D.1.6 Maxwell-Stefan diffusion model

The general Maxwell-Stefan model as given in (A.60):

j∗i =

−ρ∗ωi

Dref

1
M

∂
∂ξ∗ (M)− ρ∗

Dref

∂ωi

∂ξ∗ +Mωi
∑n
j=1
j 6=i

j∗j
MjDe

ij

M
∑i
j=1
j 6=i

ωj

MjDe
ij

(D.16)

Rearranged to the implemented form:

j∗i
MDref

ρ∗

i∑
j=1
j 6=i

ωj
MjDe

ij

+
∂ωi
∂ξ∗

=
−ωi
M

∂M

∂ξ∗
+
MDref

ρ∗
ωi

n∑
j=1
j 6=i

j∗j
MjDe

ij

(D.17)
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D.1.7 Dusty gas diffusion model

The general Maxwell-Stefan model as given in (A.61):

j∗i =

M
2∑n

j=1
j 6=i

ωij
∗
j

MjDe
ij
− v∗ωiM

De
iK
− ωiρ

∗

Dref

∂M
∂ξ∗ −

ρ∗M
Dref

∂ωi

∂ξ∗

M
2∑n

j=1
j 6=i

ωj

MjDe
ij

+ M
De

iK

(D.18)

Rearranged to the implemented form:

j∗i
Dref

ρ∗
(M

n∑
j=1
j 6=i

ωj
MjDe

ij

+
1

De
iK

) +
∂ωi
∂ξ∗

=
MDref

ρ∗

n∑
j=1
j 6=i

ωij
∗
j

MjDe
ij

− v∗ωiDref

De
iKρ
∗ −

ωi

M

∂M

∂ξ∗

(D.19)

D.1.8 Darcy’s law

Darcy’s law is used to obtain the pressure(A.38).

v∗µDref

Bpref
+
∂p∗

∂ξ∗
= 0 (D.20)

D.1.9 Density equation

The density is obtained from modified ideal gas law:

pM

RT
= ρ (D.21)
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D.2 Mass based solution strategy

The different equations are first discussed in short and the main summary of the so-
lution strategy is given in table D.1. In the table the used equations combined with
rigorous boundary conditions are shown. The solution strategy is also visualized
in the form on how it would be implemented by the use of orthogonal collocation,
shown in figure D.1.

D.2.1 Temperature equation

The temperature equation is solved in combination with Fourier’s law in order to
obtain two first order partial differential equations. Here the heat flux is obtained
from the temperature equation and the temperature is obtained from Fourier’s law.
The temperature is specified at the surface for the Fourier’s law with the included
transfer limitation, while the flux is specified at the center of the particle for the
temperature equation.The temperature can also be specified directly at the surface
for the simple version of the boundary condition.

D.2.2 Species Mass balance and diffusion models

The species mass balance is solved to obtain the mass based fluxes. The mass
based fluxes are then used to obtain the mass fractions throughout the catalyst
particle using the different diffusion models. This is done for N-1 components for
both the transport fluxes and the mass fractions, the last components is solved
with a fitting constitutive law as seen in the solution strategy table. As boundary
conditions the mass fractions are specified at the surface for the diffusion model
with transfer limitations, while the fluxes are specified at the center for the species
mass balance. As for the Fourier’s law the mass fractions can be specified directly
at the surface for a simple version of the boundary condition.

D.2.3 Mass averaged velocity

The mass averaged velocity is obtained from the mass based continuity equation,
and the velocity is specified as a boundary condition at the center of the particle.

D.2.4 Pressure

The pressure is obtained from Darcy’s law by the use of mass averaged velocity,
and here the pressure is specified at the surface as a boundary condition.

D.2.5 Density

The density is obtained by the ideal gas law multiplied with averaged molecular
weight. These values are obtained using previous iterative values and is solved
outside of the matrix system.
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Table D.1: Summary of the solution strategy

Equations, LHS represents terms in the problem matrix
and the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (D.22)

Boundary condition at ξ = ξp

hT ∗ =
q∗λ

ξref
+ ρCpgT

∗v∗
Dref

ξref
+ h

(D.23)

Temperature equation:

Dref

λ
ρ∗ρrefv

∗
ξ

n∑
i=1

ωiCpi
∂T ∗

∂ξ∗
+ (

2q∗

ξ∗
+
∂q∗

∂ξ∗
) =

ξ2ref (−4HR)R

Trefλ

(D.24)

Boundary condition at ξ = 0

q = 0 (D.25)

Species mass balance, used for N-1 components:

∂ωi

∂ξ∗
(ρ∗v∗ξ ) + (

2j∗i
ξ∗

+
∂j∗i
∂ξ∗

) = Ri
ξ2ref

Drefρref
(D.26)

Boundary condition at ξ = 0

ji = 0 (D.27)

Last flux(H2O) in the species balance is solved by:

n∑
i=1

j∗i = 0 (D.28)

No boundary condition

−

Diffusion model:

One of the four diffusion models in table D.2 is used

Boundary condition at ξ = ξp :

ωi =
(j∗i

Dref

ξref
+ v∗

Dref

ξref
ρ∗ωi)

kiρ∗
+
ωi

ρ∗

(D.29)

Last fraction(H2O) in the diffusion model is solved by:

n∑
i=1

ωi = 1 (D.30)

No boundary condition

−

Mass based continuity equation:

2

ξ∗
v∗ +

∂v∗

∂ξ∗
= −

∂ρ∗

∂ξ∗
v∗

ρ∗
(D.31)

Boundary condition at ξ = 0

v∗ = 0 (D.32)

Darcy’s law:

v∗µ

Bpref
+
∂p∗

∂ξ∗
= 0 (D.33)

Boundary condition at ξ = ξp

p = pb (D.34)

Ideal gas law modified for density*:

pM

RT
= ρ (D.35)

No boundary condition

−

Mole averaged velocity * **

u− v =
N∑
i=1

jiM

ρMi
(D.36)

No boundary condition

−

*solved outside of the collocation matrix, i.e. purely based on previous iterative values ** Solved
for comparison with the mole based model.
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Table D.2: Diffusion models on their implemented form

LHS is implemented in the collocation matrix, and the RHS is implemented in the
source vector

Wilke:

j∗i
Dref

Dimρ∗
+

∂ωi
∂ξ∗

= 0 Dim =
1− ωi

M
∑n
j=1
j 6=i

ωj

MjDe
ij

(D.37)

Wilke-Bosanquet:

j∗i
Dref

Di,effρ∗
+

∂ωi
∂ξ∗

= 0
1

Di,eff
=

1
1−ωi

M
∑n
j=1
j 6=i

ωj
MjD

e
ij

+
1

De
iK

(D.38)

Maxwell-Stefan:

j∗i
MDref

ρ∗

i∑
j=1
j 6=i

ωj
MjDe

ij

+
∂ωi
∂ξ∗

=
−ωi
M

∂M

∂ξ∗
+
MDref

ρ∗
ωi

n∑
j=1
j 6=i

j∗j
MjDe

ij

(D.39)

Dusty gas:

j∗i
Dref

ρ∗
(M

n∑
j=1
j 6=i

ωj
MjDe

ij

+
1

De
iK

) +
∂ωi
∂ξ∗

=
MDref

ρ∗

n∑
j=1
j 6=i

ωij
∗
j

MjDe
ij

− ωi

M

∂M

∂ξ∗
(D.40)
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Table D.3: Terms in the collocation matrix

Label in matrix Collocation matrix terms: multiplied with:

X1
2

ξ∗
+

∂

∂ξ∗
q∗, ωi, v

∗

T1 Dref

λ
ρ∗ρrefv

∗
ξ

n∑
i=1

ωiCpi
∂

∂ξ∗
T ∗

DM1

Wilke:

Dref

Dimρ∗
j∗i

DM1

Wilke-Bosanquet:

Dref

Di,effρ∗
j∗i

DM1

Maxwell-Stefan:

MDref

ρ∗

i∑
j=1
j 6=i

ωj
MjDe

ij

j∗i

DM1

Dusty gas:

Dref

ρ∗
(M

n∑
j=1
j 6=i

ωj
MjDe

ij

+
1

De
iK

)
j∗i

SB1 ρ∗v∗ξ
∂

∂ξ∗
ωi

Dl1
µ

Bpref
v∗
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Table D.4: Terms in the source vector

Label in source vector Source vector

T2

Source term temperature equation:

−4Hrξ
2
ref

Trefλ

DM2

Wilke:

0

DM2

Wilke-Bosanquet:

0

DM2

Maxwell-Stefan:

−ωi
M

∂M

∂ξ∗
+
MDref

ρ∗
ωi

n∑
j=1
j 6=i

j∗j
MjDe

ij

DM2

Dusty gas:

MDref

ρ∗

n∑
j=1
j 6=i

ωij
∗
j

MjDe
ij

− ωi

M

∂M

∂ξ∗

SB2

Source term species balance:

Ri
ξ2
ref

Drefρref

MC1

Source term continuity equation:

−∂ρ
∗

∂ξ∗
v∗

ρ∗
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D.3 Mole based model

D.3.1 The temperature balance

The general temperature balance derived earlier (A.63):

((1− ε)ρpCpp + εc∗cref

n∑
i=1

xiCp
′
i)
∂T ∗

∂t∗
=

−c∗crefv∗ξ
n∑
i=1

xiCp
′
i

∂T ∗

∂ξ∗
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref

(D.41)

Steady state is assumed:

0 = −c∗crefv∗ξ
n∑
i=1

xiCp
′
i

∂T ∗

∂ξ∗
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

Dref
+
ξ2
ref (−4HR)R

DrefTref
(D.42)

The equation is rearranged and the used equation is given as:

Dref

λ
c∗crefv

∗
ξ

n∑
i=1

xiCp
′
i

∂T ∗

∂ξ∗
+ (

2q∗

ξ∗
+
∂q∗

∂ξ∗
) =

ξ2
ref (−4HR)R

Trefλ
(D.43)

D.3.2 Species mole balance

The mole based fluxes are obtained from the species mole balance. The general
dimensionless equation is given as derived earlier (A.62):

∂

∂t∗
(c∗xi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗xiu

∗
ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +R′i

ξ2
ref

Drefcref
(D.44)

Steady state is assumed.

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗xiu

∗
ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +R′i

ξ2
ref

Drefcref
(D.45)

The first term is written out to identify the continuity equation.

1

ξ∗2
∂xi
∂ξ∗

(ξ∗2c∗u∗ξ) + xi
1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗u∗ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +R′i

ξ2
ref

Drefcref
(D.46)

The second term is identified as the LHS of the mole based continuity equation
(A.64) when steady state is assumed, swapped for the RHS of the mole based
continuity equation gives:

1

ξ∗2
∂xi
∂ξ∗

(ξ∗2c∗u∗ξ) + xi(
ξ2
ref

crefDref
)

n∑
i=1

R′i = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +R′i

ξ2
ref

Drefcref

(D.47)

Expanding the third term and rearranging the equation to reflect the equation used
in the model:

∂xi
∂ξ∗

(c∗u∗ξ) + (
2J∗i
ξ∗

+
∂J∗i
∂ξ∗

) = (R′i − xi
n∑
i=1

R′i)
ξ2
ref

Drefcref
(D.48)
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D.3.3 Continuity equation - Mole based

∂c∗

∂t∗
+

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗u∗ξ) = (

ξ2
ref

crefDref
)

n∑
i=1

R′i (D.49)

Steady state is assumed:

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗u∗ξ) = (

ξ2
ref

crefDref
)

n∑
i=1

R′i (D.50)

The derivative is expanded which gives the used equation:

2

ξ∗
c∗u∗ +

∂c∗

∂ξ∗
u∗ +

∂u∗

∂ξ∗
c∗ = (

ξ2
ref

crefDref
)

n∑
i=1

R′i (D.51)

D.3.4 Darcy’s law

Darcy’s law is used to obtain the pressure(A.38).

v∗µDref

Bpref
+
∂p∗

∂ξ∗
= 0 (D.52)

D.3.5 Wilke diffusion model

The general Wilke diffusion model on mole basis as given in A.65:

J∗i = −c∗D′im
∂xi
∂ξ∗

D′im =
1− xi∑n
j=1
j 6=i

xj

De
ij

(D.53)

Rearranged to the implemented form:

J∗i
Dref

c∗D′im
+
∂xi
∂ξ∗

= 0 D′im =
1− xi∑n
j=1
j 6=i

xj

De
ij

(D.54)

D.3.6 Wilke-Bosanquet diffusion model

J∗i = −c∗
D′i,eff
Dref

∂xi
∂ξ∗

1

D′i,eff
=

1

D′im
+

1

De
iK

(D.55)

Rearranged to the implemented form:

J∗i
Dref

D′i,effc
∗ +

∂xi
∂ξ∗

= 0
1

D′i,eff
=

1
1−xi∑n
j=1
j 6=i

xj
De

ij

+
1

De
iK

(D.56)
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D.3.7 Maxwell-Stefan diffusion model

The general Maxwell-Stefan model on mole basis as given in A.67:

j∗i =

−c∗ ∂xi

∂ξ∗ +
∑n
j=1
j 6=i

j∗j xi

De
ij∑i

j=1
j 6=i

xj

De
ij

(D.57)

Rearranged to the implemented form:

j∗iDref

c∗

i∑
j=1
j 6=i

xj
De
ij

+
∂xi
∂ξ∗

=
Dref

c∗

n∑
j=1
j 6=i

j∗j xi

De
ij

(D.58)

D.3.8 Dusty gas diffusion model

The general dusty gas model on mole basis as given in A.68:

J∗i =

− c∗

Dref

∂xi

∂ξ∗ +
∑n
j=1
j 6=i

J∗j xi

De
ij
− c∗xiu

∗

De
iK∑i

j=1
j 6=i

xj

De
ij

+ 1
De

iK

(D.59)

Rearranged to the implemented form:

J∗i
Dref

c∗
(

i∑
j=1
j 6=i

xj
De
ij

+
1

De
iK

) = −∂xi
∂ξ∗

+
Dref

c∗

n∑
j=1
j 6=i

J∗j xi

De
ij

− Drefxiu
∗

De
iK

(D.60)

D.3.9 Concentration equation

The concentration is obtained from the ideal gas law.

p

RT
= c (D.61)
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D.4 Mole based solution strategy

The different equations are first discussed in short and the main summary of the so-
lution strategy is given in table D.5. In the table the used equations combined with
rigorous boundary conditions are shown. The solution strategy is also visualized
in the form on how it would be implemented by the use of orthogonal collocation,
shown in figure D.2.

D.4.1 Temperature equation

The temperature equation is solved in combination with Fourier’s law in order to
obtain two first order partial differential equations. Here the heat flux is obtained
from the temperature equation and the temperature is obtained from Fourier’s law.
The temperature is specified at the surface for the Fourier’s law with the included
transfer limitation, while the flux is specified at the center of the particle for the
temperature equation.The temperature can also be specified directly at the surface
for the simple version of the boundary condition.

D.4.2 Species Mole balance and diffusion models

The species mole balance is solved to obtain the mole based fluxes. The mole based
fluxes are then used to obtain the mole fractions throughout the catalyst particle
using the different diffusion models. This is done for N-1 components for both the
transport fluxes and the mole fractions, the last components is solved with a fitting
constitutive law as seen in the solution strategy table. As boundary conditions the
mole fractions are specified at the surface for the diffusion model with transfer
limitations, while the fluxes are specified at the center for the species mole balance.
As for the Fourier’s law the mole fractions can be specified directly at the surface
for a simple version of the boundary condition.

D.4.3 Mole and mass averaged velocity

The mole averaged velocity is obtained from the mole based continuity equation,
and the velocity is specified as a boundary condition at the center of the particle.
The averaged mass based velocity needed for the temperature and pressure equation
is obtained from the mole based transport fluxes.

D.4.4 Pressure

The pressure is obtained from Darcy’s law by the use of mass averaged velocity,
and here the pressure is specified at the surface as a boundary condition.

D.4.5 Concentration

The total concentration is obtained from the ideal gas law.
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Table D.5: Summary of the solution strategy

Equations, LHS represents terms in the problem matrix
and the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (D.62)

Boundary condtion at ξ = ξp

hT ∗ =
q∗λ

ξref
+ cCp′gT

∗v∗
Dref

ξref
+ h

(D.63)

Temperature equation:

Dref

λ
c∗crefv

∗
ξ

n∑
i=1

xiCp
′
i

∂T ∗

∂ξ∗
+ (

2q∗

ξ∗
+
∂q∗

∂ξ∗
) =

ξ2ref (−4HR)R

Trefλ

(D.64)

Boundary condtition at ξ = 0

q = 0 (D.65)

Species mole balance, solved for N-1 components:

∂xi

∂ξ∗
(c∗u∗ξ) + (

2J∗i
ξ∗

+
∂J∗i
∂ξ∗

) = (R′i − xi
n∑
i=1

R′i)
ξ2ref

Dref cref

(D.66)

Boundary condition at ξ = 0

Ji = 0 (D.67)

Last flux(H2O) in the species balance is solved by:

n∑
i=1

J∗i = 0 (D.68)

No boundary condition

−

Diffusion mode, solved for N-1 componentsl:

One of the four diffusion models in table D.6 is used

Boundary condition at ξ = ξp :

xi =
(J∗i

Dref

ξref
+ u∗

Dref

ξref
c∗xi)

kic∗
+
ωi

c∗

(D.69)

Last fraction(H2O) in the diffusion model is solved by:

n∑
i=1

xi = 1 (D.70)

No boundary condition

−

Continuity equation mole based:

2

ξ∗
c∗u∗ +

∂c∗

∂ξ∗
u∗ +

∂u∗

∂ξ∗
c∗ = (

ξ2ref

crefDref
)
n∑
i=1

R′i (D.71)

Boundary condition at ξ = 0

u = 0 (D.72)

Mass averaged velocity*:

v∗ =
N∑
i=1

J∗iMi

c∗iM
+ u∗ (D.73)

No boundary condition

−

Ideal gas law , algebraic:

c =
p

RT
(D.74)

No boundary condition

−

Pressure, Darcy’s law

∂p∗

∂ξ∗
= −

v∗µDref

Bpref
(D.75)

Boundary condition at ξ = ξp :

p = pb (D.76)

*Solved outside of the collocation matrix
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Table D.6: Diffusion models on their implemented form

LHS is implemented in the collocation matrix, and the RHS is implemented in
the source vector

Wilke:

J∗i
Dref

c∗D′im
+
∂xi
∂ξ∗

= 0 D′im =
1− xi∑n
j=1
j 6=i

xj

De
ij

(D.77)

Wilke-Bosanquet:

j∗i
Dref

D′i,effc
∗ +

∂xi
∂ξ∗

= 0
1

D′i,eff
=

1
1−xi∑n
j=1
j 6=i

xj
De

ij

+
1

De
iK

(D.78)

Maxwell-Stefan:

j∗iDref

c∗

i∑
j=1
j 6=i

xj
De
ij

+
∂xi
∂ξ∗

=
Dref

c∗

n∑
j=1
j 6=i

j∗j xi

De
ij

(D.79)

Dusty gas:

J∗i
Dref

c∗
(

i∑
j=1
j 6=i

xj
De
ij

+
1

De
iK

) +
∂xi
∂ξ∗

=
Dref

c∗

n∑
j=1
j 6=i

J∗j xi

De
ij

− Drefxiu
∗

De
iK

(D.80)
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Table D.7: Terms in the collocation matrix

Label in matrix Collocation matrix terms: multiplied with:

X1
2

ξ∗
+

∂

∂ξ∗
q∗, xi, u

∗

T1 Dref

λ
ρ∗ρrefv

∗
ξ

n∑
i=1

ωiCpi
∂

∂ξ∗
T ∗

DM1

Wilke:

Dref

D′imc
∗ , Dim =

1− xi∑n
j=1
j 6=i

xj

De
ij

J∗i

DM1

Wilke-Bosanquet:

Dref

D′i,effc
∗ ,

1

D′i,eff
=

1
1−xi∑n
j=1
j 6=i

xj
De

ij

+
1

De
iK

J∗i

DM1

Maxwell-Stefan:

Dref

c∗

i∑
j=1
j 6=i

xj
De
ij

J∗i

DM1

Dusty gas:

Dref

c∗
(

i∑
j=1
j 6=i

xj
De
ij

+
1

De
iK

)
J∗i

SB1 c∗u∗ξ
∂

∂ξ∗
xi

MC1 u∗
∂

∂ξ∗
c∗
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Table D.8: Terms in the source vector

Label in source vector Source vector

T2

Source term temperature equation:

−4Hrξ
2
ref

Trefλ

DM2

Wilke:

0

DM2

Wilke-Bosanquet:

0

DM2

Maxwell-Stefan:

Dref

c∗

n∑
j=1
j 6=i

J∗j xi

De
ij

DM2

Dusty gas:

Dref

c∗

n∑
j=1
j 6=i

J∗j xi

De
ij

− Drefxiu
∗

De
iK

SB2

Source term species balance:

(R′i − xi
n∑
i=1

R′i)
ξ2
ref

Drefcref

MC2

Source term continuity equation:

(
ξ2
ref

crefDref
)

n∑
i=1

R′i

Dl1

Source term Darcy’s law:

−v
∗µDref

Bpref
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D.5 Additional results

D.5.1 Wilke - No transfer limitations
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Figure D.3: Comparison of the transport fluxes, mole based(—) and mass
based(+++).

D.5.2 Wilke - Rigorous
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Figure D.4: Comparison of the transport fluxes, mole based(—) and mass
based(+++).
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D.5.3 Wilke-Bosanquet - No transfer limitations
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Figure D.5: Comparison of the transport fluxes, mole based(—) and mass
based(+++).

D.5.4 Wilke-Bosanquet - Rigorous
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Figure D.6: Comparison of the transport fluxes, mole based(—) and mass
based(+++).
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D.5.5 Maxwell-Stefan - No transfer limitations
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Figure D.7: Comparison of the transport fluxes, mole based(—) and mass
based(+++).

D.5.6 Maxwell-Stefan - Rigorous
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Figure D.8: Comparison of the transport fluxes, mole based(—) and mass
based(+++).
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D.5.7 Dusty gas - No transfer limitations
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Figure D.9: Comparison of the transport fluxes, mole based(—) and mass
based(+++).

D.5.8 Dusty gas - Rigorous
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Figure D.10: Comparison of the transport fluxes, mole based(—) and mass
based(+++).
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D.5.9 Pressure plots - No transfer limitations
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Figure D.11: Comparison of the pressure development for the different diffusion
models, mole based(—) and mass based(-.-.-).

D.5.10 Pressure plots - Rigorous
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Figure D.12: Comparison of the pressure development for the different diffusion
models, mole based(—) and mass based(-.-.-).
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6 Alternative rigorous steady state Wilke model

E 6 Alternative rigorous steady state Wilke model

Here the alternative species balance equations used in the alternative Wilke models
be derived. The model is quite similar to the rigorous steady state cases. However
the affected equations are derived and a swappable solution strategy is presented.
The mass and mole based rigorous steady state solution strategy in table D.1 and
D.5 can be swapped with the model considering corrective fluxes in table E.2 and
E.1 respectively.

E.1 Mass based alternative Wilke model using corrective ve-
locities

E.1.1 The species mass balance

The difference from the already used equation is that the species balance is to be
corrected an additional corrective convective term vc. with:

vc =
∑
i

Dim∇ωi (E.1)

Introducing the new term,vcor = vξ+vc and inserting the correction gives the same
species balance and continuity equation as obtained in the model derivation for the
rigorous models in appendix D, but now with a corrected velocity instead:

Species balance with corrected velocity:

∂ωi
∂ξ∗

(ρ∗v∗cor) + (
2j∗i
ξ∗

+
∂j∗i
∂ξ∗

) = Ri
ξ2
ref

Drefρref
(E.2)

E.1.2 Continuity eqution with corrected velocity

As for the species mass balance, the velocity term is replaced with the new corrected
velocity term:

2

ξ∗
v∗corρ

∗ +
∂ρ∗

∂ξ∗
v∗cor +

∂v∗cor
∂ξ∗

ρ∗ = 0 (E.3)

E.1.3 Temperature equation and Darcy’s law

In order to only include the correction for the species balance and the continuity
equation, it is needed to subtract the corrective term for the temperature equation
and Darcy’s law. The used velocity in the temperature equation and Darcy’s law
will be defined as v∗ = v∗cor − v∗c .

Temperature equation:

Dref

λ
ρ∗ρref (v∗cor − v∗c )

n∑
i=1

ωiCpi
∂T ∗

∂ξ∗
= −(

2q∗

ξ∗
+
∂q∗

∂ξ∗
) +

ξ2
ref (−4HR)R

Trefλ
(E.4)

Darcy’s law:

(v∗cor − v∗c )µDref

Bpref
+
∂p∗

∂ξ∗
= 0 (E.5)

135



6 Alternative rigorous steady state Wilke model
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Table E.1: Summary of the mass based solution strategy

Equations, LHS represents terms in the problem matrix
and the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (E.6)

Boundary condition at ξ = ξp

T = T b (E.7)

Temperature equation:

Dref

λ
ρ∗ρref (v∗cor − v∗c )

n∑
i=1

ωiCpi
∂T ∗

∂ξ∗
+ (

2q∗

ξ∗
+
∂q∗

∂ξ∗
) =

ξ2ref (−4HR)R

Trefλ

(E.8)

Boundary condition at ξ = 0

q = 0 (E.9)

Species mass balance, used for N components:

∂ωi

∂ξ∗
(ρ∗v∗cor) + (

2j∗i
ξ∗

+
∂j∗i
∂ξ∗

) = Ri
ξ2ref

Drefρref
(E.10)

Boundary condition at ξ = 0

ji = 0 (E.11)

Diffusion model, solved for N components:

Wilke diffusion in table D.2 is used

Boundary condition at ξ = ξp :

ωi = ωbi (E.12)

Mass based continuity equation:

2

ξ∗
v∗cor +

∂v∗cor
∂ξ∗

= −
∂ρ∗

∂ξ∗
v∗cor
ρ∗

(E.13)

Boundary condition at ξ = 0

v∗cor = 0 (E.14)

Darcy’s law:

(v∗cor − v∗c )µ

Bpref
+
∂p∗

∂ξ∗
= 0 (E.15)

Boundary condition at ξ = ξp

p = pb (E.16)

Ideal gas law modified for density*:

pM

RT
= ρ (E.17)

No boundary condition

−

Mole averaged velocity * **

u− v =

N∑
i=1

jiM

ρMi
(E.18)

No boundary condition

−

*solved outside of the collocation matrix, i.e. purely based on previous iterative values ** Solved
for comparison with the mole based model.
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E.2 Mole based alternative Wilke model using corrective ve-
locities

E.2.1 The species mass balance

The difference from the already used equation is that the species balance is to be
corrected with an additional corrective velocity term uc:

uc =
∑
i

D′im∇ωi (E.19)

Introducing the new term,ucor = uξ + uc and inserting the correction gives the
same species balance and continuity equation as obtained in the model derivation
for the rigorous models in appendix D, but now with a corrected velocity instead:

Species balance with corrected velocity:

∂xi
∂ξ∗

(c∗u∗cor) + (
2J∗i
ξ∗

+
∂J∗i
∂ξ∗

) = (R′i − xi
n∑
i=1

R′i)
ξ2
ref

Drefcref
(E.20)

E.2.2 Continuity equation with corrected velocity

As for the species mass balance, the velocity term is replaced with the new corrected
velocity term:

2

ξ∗
c∗u∗cor +

∂c∗

∂ξ∗
u∗cor +

∂u∗cor
∂ξ∗

c∗ = (
ξ2
ref

crefDref
)

n∑
i=1

R′i (E.21)

E.2.3 Temperature equation and Darcy’s law

The temperature and Darcy’s law are calculated in the same manner as before.
However the mass based velocity is now obtained from the modified equation:

v∗ =

N∑
i=1

J∗iMi

c∗iM
+ (u∗cor − u∗c) (E.22)
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Table E.2: Summary of the mole based solution strategy

Equations, LHS represents terms in the problem matrix
and the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (E.23)

Boundary condition at ξ = ξp

T = T b (E.24)

Temperature equation:

Dref

λ
c∗crefv

∗
ξ

n∑
i=1

xiCp
′
i

∂T ∗

∂ξ∗
+ (

2q∗

ξ∗
+
∂q∗

∂ξ∗
) =

ξ2ref (−4HR)R

Trefλ

(E.25)

Boundary condition at ξ = 0

q = 0 (E.26)

Species mole balance, solved for N components:

∂xi

∂ξ∗
(c∗u∗cor) + (

2J∗i
ξ∗

+
∂J∗i
∂ξ∗

) = (R′i − xi
n∑
i=1

R′i)
ξ2ref

Dref cref

(E.27)

Boundary condition at ξ = 0

Ji = 0 (E.28)

Last flux(H2O) in the species balance is solved by:

n∑
i=1

Ji = 0 (E.29)

No boundary condition

−

Diffusion mode, solved for N componentsl:

Wilke diffusion from table D.6 is used

Boundary condition at ξ = ξp :

xi = xbi (E.30)

Last fraction(H2O) in the diffusion model is solved by:

n∑
i=1

xi = 1 (E.31)

No boundary condition

−

Continuity equation mole based:

2

ξ∗
c∗u∗cor +

∂c∗

∂ξ∗
u∗cor +

∂u∗cor
∂ξ∗

c∗ = (
ξ2ref

crefDref
)
n∑
i=1

R′i

(E.32)

Boundary condition at ξ = 0

u = 0 (E.33)

Mass averaged velocity*:

v∗ =
N∑
i=1

J∗iMi

c∗iM
+ (u∗cor − u∗c) (E.34)

No boundary condition

−

Ideal gas law , algebraic:

c =
p

RT
(E.35)

No boundary condition

−

Pressure, Darcy’s law

∂p∗

∂ξ∗
= −

v∗µDref

Bpref
(E.36)

Boundary condtition at ξ = ξp :

p = pb (E.37)

*Solved outside of the collocation matrix
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7 Alternative numerical methods for solving the rigorous steady state models

F 7 Alternative numerical methods for solving the
rigorous steady state models

To solve the presented problem using the least squares method rather than or-
thogonal collocation, some small changes needs to be introduced: In the solution
method the variable T and q has changed places also the ωi, xi and Ji, ji. This was
needed in order to obtain a stable matrix.
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Table F.1: Terms in the collocation matrix

Label in matrix Collocation matrix terms: multiplied with:

X1
2

ξ∗
+

∂

∂ξ∗
q∗, ωi, v

∗

T1 Dref

λ
ρ∗ρrefv

∗
r

n∑
i=1

ωiCpi
∂

∂ξ∗
T ∗

DM1

Wilke:

Dref

Dimρ∗
j∗i

DM1

Wilke-Bosanquet:

Dref

Di,effρ∗
j∗i

DM1

Maxwell-Stefan:

MDref

ρ∗

i∑
j=1
j 6=i

ωj
MjDe

ij

j∗i

DM1

Dusty gas:

Dref

ρ∗
(M

n∑
j=1
j 6=i

ωj
MjDe

ij

+
1

De
iK

)
j∗i

SB1 ρ∗v∗ξ
∂

∂ξ∗
ωi

Dl1
µ

Bpref
v∗
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Table F.2: Terms in the source vector

Label in source vector Source vector

T2

Source term temperature equation:

−4Hrξ
2
ref

Trefλ

DM2

Wilke:

0

DM2

Wilke-Bosanquet:

0

DM2

Maxwell-Stefan:

−ωi
M

∂M

∂ξ∗
+
MDref

ρ∗
ωi

n∑
j=1
j 6=i

j∗j
MjDe

ij

DM2

Dusty gas:

MDref

ρ∗

n∑
j=1
j 6=i

ωij
∗
j

MjDe
ij

− ωi

M

∂M

∂ξ∗

SB2

Source term species balance:

Ri
ξ2
ref

Drefρref

MC1

Source term continuity equation:

−∂ρ
∗

∂ξ∗
v∗

ρ∗
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7 Alternative numerical methods for solving the rigorous steady state models
Mole based model

Table F.3: Terms in the collocation matrix

Label in ma-
trix

Collocation matrix terms: multiplied with:

X1
2

ξ∗
+

∂

∂ξ∗
q∗, xi, u

∗

T1 Dref

λ
ρ∗ρrefv

∗
r

n∑
i=1

ωiCpi
∂

∂ξ∗
T ∗

DM1

Wilke:

Dref

D′imc
∗ , D′im =

1− xi∑n
j=1
j 6=i

xj

De
ij

J∗i

DM1

Wilke-Bosanquet:

Dref

D′i,effc
∗ ,

1

D′i,eff
=

1
1−xi∑n
j=1
j 6=i

xj
Dij

+
1

De
i,K

J∗i

DM1

Maxwell-Stefan:

Dref

c∗

i∑
j=1
j 6=i

xj
De
ij

J∗i

DM1

Dusty gas:

Dref

c∗
(

i∑
j=1
j 6=i

xj
De
ij

J∗i

SB1 c∗u∗ξ
∂

∂ξ∗
xi

MC1 u∗
∂

∂ξ∗
c∗
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7 Alternative numerical methods for solving the rigorous steady state models
Mole based model

Table F.4: Terms in the source vector

Label in source vector Source vector

T2

Source term temperature equation:

−4Hrξ
2
ref

Trefλ

DM2

Wilke:

0

DM2

Wilke-Bosanquet:

0

DM2

Maxwell-Stefan:

Dref

c∗

n∑
j=1
j 6=i

J∗j xi

De
ij

DM2

Dusty gas:

Dref

c∗

n∑
j=1
j 6=i

J∗j xi

De
ij

− Drefxiu
∗

De
iK

SB2

Source term species balance:

(R′i − xi
n∑
i=1

R′i)
ξ2
ref

Drefcref

MC2

Source term continuity equation:

(
ξ2
ref

crefDref
)

n∑
i=1

R′i

Dl1

Source term Darcy’s law:

−v
∗µDref

Bpref
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8 Rigorous transient models

G 8 Rigorous transient models

This appendix consists of the model derivations for the transient models on both
mass and mole basis. Some additional results using the dusty gas diffusion method
is also presented here.

The fully rigorous one dimensional model for simulating the SMR reaction in
a catalyst particle will be derived. The derivation consists mainly of discretisizing
the transient term and rearranging the equations to the implemented form.

The transient terms are discretisized using the theta method derived in the
theory chapter 2.5, the equation 70, that is rearranged to the implementing form
is represented here for convinience:

f t+1 + ∆tθLf t+1 = ∆tθgt+1 + ∆t(1− θ)(gt − Lf t) + f t (G.1)

G.1 Mass based model derivation

G.1.1 Temperature equation

The temperature equation are derived from the general dimensionless temperature
equation A.56 derived in the theory:

((1− ε)ρpCpp + ερ∗ρref

n∑
i=1

ωiCpi)
Dref

λ

∂T ∗

∂t∗
=

−ρ∗ρrefv∗r
Dref

λ

n∑
i=1

ωiCpi
∂T ∗

∂ξ∗
− (

2q∗

ξ∗
+
∂q∗

∂ξ∗
) +

ξ2
ref (−4HR)R

λTref

(G.2)

Rearrange to free the transient term:

∂T ∗

∂t∗
+
ρ∗ρrefv

∗
r

∑n
i=1 ωiCpi

∂T∗

∂ξ∗ + λ
Dref

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 ωiCpi)

=

ξ2
ref (−4HR)R

DrefTref

1

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 ωiCpi)

(G.3)

Inserted in transient discretizing equation G.1 and reflecting the implemented
form:

T ∗(t+1) + ∆tθ
ρ∗(t+1)ρrefv

∗(t+1)
r

∑n
i=1 ωiCpi

∂T∗(t+1)

∂ξ∗ + λ
Dref

( 2q∗(t+1)

ξ∗ + ∂q∗(t+1)

∂ξ∗ )

((1− ε)ρpCpp + ερ∗(t+1)ρref
∑n
i=1 ω

(t+1)
i Cpi)

=

∆tθ
ξ2ref (−4HR)R(t+1)

DrefTref

1

((1− ε)ρpCpp + ερ∗(t+1)ρref
∑n
i=1 ω

(t+1)
i Cpi)

+∆t(1− θ)
(
ξ2ref (−4HR)R(t)

DrefTref
− (ρ∗(t)ρrefv

∗(t+1)
r

∑n
i=1 ωiCpi

∂T∗(t)

∂ξ∗ + λ
Dref

( 2q∗(t)

ξ∗ + ∂q∗(t)

∂ξ∗ ))

((1− ε)ρpCpp + ερ∗(t)ρref
∑n
i=1 ω

(t)
i Cpi)

+T
∗(t))

(G.4)
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8 Rigorous transient models
Mass based model derivation

G.1.2 continuity

The general dimensionless continuity equation A.57 derived in the theory:

∂ρ∗

∂t∗
+

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗v∗) = 0 (G.5)

Expand the terms:

∂ρ∗

∂t∗
+

2ρ∗v∗

ξ∗
+
∂ρ∗

∂ξ∗
v∗ +

∂v∗

∂ξ∗
ρ∗ = 0 (G.6)

Discretisizing the transient term with the theta method equation G.1:

ρ∗(t+1) + ∆tθ(
2ρ∗(t+1)v∗(t+1)

ξ∗
+
∂v∗(t+1)

∂ξ∗
ρ∗(t+1) +

∂ρ∗(t+1)

∂ξ∗
v∗(t+1)) =

+∆t(1− θ)(−2ρ∗(t)v∗(t)

ξ∗
− ∂v∗(t)

∂ξ∗
ρ∗(t) − ∂ρ∗(t)

∂ξ∗
v∗(t)) + ρ∗(t)

(G.7)

G.1.3 Species balance

The general dimensionless species mass balance equation A.55 derived in the theory:

∂

∂t∗
(ρ∗ωi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗ωiv

∗
ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2
ref

Drefρref
(G.8)

Expanding the terms to identify continuity equation:

∂ρ∗

∂t∗
ωi +

∂ωi
∂t∗

ρ+
∂ωi
∂ξ∗

ρ∗v∗ξ + ωi
1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗v∗ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2
ref

Drefρref
(G.9)

The first and the fourth term identified as the RHS of the continuity equation
multiplied with ωi, swapping with the LHS gives:

∂ωi
∂t∗

ρ∗ +
∂ωi
∂ξ∗

ρ∗v∗ξ = −(
2j∗i
ξ∗

+
∂j∗i
∂ξ∗

) +Ri
ξ2
ref

Drefρref
(G.10)

Rearranging to free the transient term from other variables:

∂ωi
∂t∗

+
∂ωi
∂ξ∗

v∗ξ + (
2j∗i
ρ∗ξ∗

+
1

ρ∗
∂j∗i
∂ξ∗

) = Ri
ξ2
ref

Drefρrefρ∗
(G.11)

Discretisizing the transient term with the theta method equation G.1:

ω
(t+1)
i + ∆tθ(

∂ω
(t+1)
i

∂ξ∗
v∗ξ +

2j
∗(t+1)
i

ρ∗(t+1)ξ∗
+

1

ρ∗(t+1)

∂j
∗(t+1)
i

∂ξ∗
) =

∆tθR
(t+1)
i

ξ2
ref

Drefρrefρ∗(t+1)
∆t(1− θ)(R(t)

i

ξ2
ref

Drefρrefρ∗(t)

−(
∂ω

(t)
i

∂ξ∗
v∗ξ +

2j
∗(t)
i

ρ∗(t)ξ∗
+

1

ρ∗(t)
∂j
∗(t)
i

∂ξ∗
)) + ωti

(G.12)
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8 Rigorous transient models
Solution strategy

G.1.4 Diffusion models

The diffusion models used are identical to the ones used in the rigorous steady
state model, the derivation can be found in appendix D. Only the Maxwell-Stefan
and the dusty gas diffusion models are considered in the transient models.

G.1.5 Supportive equations

The remaining equations needed to simulate the problem does not require any
changes from the given form in the theory. However they are included in the
solution strategy.

G.2 Solution strategy

The different equations are discussed in short and the main summary of the solution
strategy is given in table G.1. In the table the used equations combined with a
fitting boundary condition are shown. The solution strategy is also visualized in
the form on how it would be implemented by the use of orthogonal collocation,
shown in figure G.1.

G.2.1 Temperature equation

The transient temperature equation is used to calculate the change of temperature
with time and the heat flux. The already solved heat flux are then used to calculate
the temperature from Fourier’s law.

G.2.2 Species Mass balance and diffusion model

From the species mass balance, the change in mass fractions with time and the mass
based fluxes for N-1 components are obtained. The last component is obtained from
the constitutive law A.39. The mass based fluxes are used with the diffusion models
to obtain the mass fractions again for N-1 components with the last being solved
from the constitutive law A.40.

G.2.3 Continuity equation

From the continuity equation, the mass averaged velocity and the change of density
with time are obtained.

G.2.4 Darcy’s Law

The pressure is obtained from Darcy’s Law.

G.2.5 Density

The density is obtained from the modified version of the ideal gas law. This equa-
tion are now implemented in the problem matrix in order to stabilize the iteration
process.
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8 Rigorous transient models
Solution strategy

Table G.1: Summary of the solution strategy

Equations, LHS represents terms in the problem matrix
and the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (G.13)

Boundary condition at ξ = ξp

hT ∗ =
q∗λ

ξref
+ ρCpgT

∗v∗
Dref

ξref
+ h

(G.14)

Temperature equation:

Equation G.4

Boundary condition at ξ = 0

q = 0 (G.15)

Species mass balance, used for N-1 components:

Equation G.12

Boundary condition at ξ = 0

ji = 0 (G.16)

Last flux(H2O) in the species balance is solved by:

n∑
i=1

j∗i = 0 (G.17)

No boundary condition

−

Diffusion model:

One of the four diffusion models in table D.2 is used

Boundary condition at ξ = ξp :

ωi =
(j∗i

Dref

ξref
+ v∗

Dref

ξref
ρ∗ωi)

kiρ∗
+
ωi

ρ∗

(G.18)

Last mass fraction(H2O) in the species balance is solved
by:

n∑
i=1

ωi = 1 (G.19)

No boundary condition

−

Mass based continuity equation:

Equation G.7

Boundary condition at ξ = 0

v∗ = 0 (G.20)

Darcy’s law:

v∗µ

Bpref
+
∂p∗

∂ξ∗
= 0 (G.21)

Boundary condition at ξ = ξp

p = pb (G.22)

Density, dimensionless:

pprefM

RTρref
= ρ∗ (G.23)

No boundary condition

−

Mole averaged velocity*

u− v =
N∑
i=1

jiM

ρMi
(G.24)

No boundary condition

−

*Solved outside of the solver system, based on previous iteration values.
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8 Rigorous transient models
Solution strategy

Table G.2: Labeled terms in the collocation matrix

Label in
matrix

Collocation matrix terms: multiplied
with:

X1
∆tθ λ

Dref
( 2
ξ∗ + ∂

∂ξ∗ )

((1− ε)ρpCpp + ερ∗(t+1)ρref
∑n
i=1 ω

(t+1)
i Cpi)

q∗

T1
1 •+

∆tθρ∗(t+1)ρrefv
∗(t+1)
r

∑n
i=1 ωiCpi

∂
∂ξ∗

((1− ε)ρpCpp + ερ∗(t+1)ρref
∑n
i=1 ω

(t+1)
i Cpi)

T ∗

DM1

Maxwell-Stefan:

MDref

ρ∗

i∑
j=1
j 6=i

ωj
MjDe

ij

j∗i

DM1

Dusty gas:

Dref

ρ∗
(M

n∑
j=1
j 6=i

ωj
MjDe

ij

+
1

De
iK

)
j∗i

X2 ∆tθ
1

ρ∗(t+1)
(

2

ξ∗
+

∂

∂ξ∗
) j∗i

SB1 1 •+∆tθv∗ξ
∂

∂ξ∗
ωi, ρ

∗

X3 ∆tθρ∗(t+1)(
2

ξ∗
+

∂

∂ξ∗
) v∗ξ

Dl1
µ

Bpref
v∗ξ
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Solution strategy

Table G.3: Labeled terms in the source vector

Label in source vector Source vector

T2

Source term temperature equation:

LHS of equation G.4

DM2

Maxwell-Stefan:

−ωi
M

∂M

∂ξ∗
+
MDref

ρ∗
ωi

n∑
j=1
j 6=i

j∗j
MjDe

ij

DM2

Dusty gas:

MDref

ρ∗

n∑
j=1
j 6=i

ωij
∗
j

MjDe
ij

− ωi

M

∂M

∂ξ∗

SB2

Source term species balance:

LHS of equation G.12

MC1

Source term continuity equation:

LHS of equation G.7
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8 Rigorous transient models
Mole based transient model

G.3 Mole based transient model

G.3.1 Temperature equation

The temperature equation are derived from the general dimensionless temperature
equation A.63 derived in the theory:

((1− ε)ρpCpp + ερ∗cref

n∑
i=1

ωiCpi)
Dref

λ

∂T ∗

∂t∗
=

−c∗crefv∗r
Dref

λ

n∑
i=1

xiCp
′
i

∂T ∗

∂ξ∗
− (

2q∗

ξ∗
+
∂q∗

∂ξ∗
) +

ξ2
ref (−4HR)R

λTref

(G.25)

Rearrange to free the transient term:

∂T ∗

∂t∗
+
c∗crefv

∗
r

∑n
i=1 xiCp

′
i
∂T∗

∂ξ∗ + λ
Dref

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)

=

ξ2
ref (−4HR)R

DrefTref

1

((1− ε)ρpCpp + εc∗cref
∑n
i=1 ωiCpi)

(G.26)

Inserted in transient discretized equation G.1 and reflecting the implemented
form:

T ∗(t+1) + ∆tθ
c∗(t+1)crefv

∗(t+1)
r

∑n
i=1 xiCp

′
i
∂T∗(t+1)

∂ξ∗ + λ
Dref

( 2q∗(t+1)

ξ∗ + ∂q∗(t+1)

∂ξ∗ )

((1− ε)ρpCpp + εc∗(t+1)cref
∑n
i=1 x

(t+1)
i Cp′i)

=

∆tθ
ξ2ref (−4HR)R(t+1)

DrefTref

1

((1− ε)ρpCpp + εc∗(t+1)cref
∑n
i=1 x

(t+1)
i Cp′i)

+∆t(1− θ)
(
ξ2ref (−4HR)R(t)

DrefTref
− (c∗(t)crefv

∗(t+1)
r

∑n
i=1 xiCp

′
i
∂T∗(t)

∂ξ∗ + λ
Dref

( 2q∗(t)

ξ∗ + ∂q∗(t)

∂ξ∗ ))

((1− ε)ρpCpp + ερ∗(t)ρref
∑n
i=1 x

(t)
i Cp′i)

+T
∗(t))

(G.27)

G.3.2 continuity

The general dimensionless continuity equation A.64 derived in the theory:

∂c∗

∂t∗
+

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗u∗ξ) =

ξ2
ref

crefDref

n∑
i=1

R′i (G.28)

Expand the terms:

∂c∗

∂t∗
+

2c∗u∗ξ
ξ∗

+
∂c∗

∂ξ∗
u∗ξ∗ +

∂uξ∗

∂ξ∗
c∗ =

ξ2
ref

crefDref

n∑
i=1

R′i (G.29)

153



8 Rigorous transient models
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Discretising the transient term with the theta method equation G.1:

c∗(t+1) + ∆tθ(
2c∗(t+1)u

∗(t+1)
ξ

ξ∗
+
∂c∗(t+1)

∂ξ∗
u
∗(t+1)
ξ∗ +

∂u
∗(t+1)
ξ

∂ξ∗
c∗(t+1)) =

∆tθ
ξ2
ref

crefDref

n∑
i=1

R
′∗(t+1)
i + ∆t(1− θ)(

ξ2
ref

crefDref

n∑
i=1

R
′∗(t)
i −

(
2c∗(t)u

∗(t)
ξ

ξ∗
+
∂c∗(t)

∂ξ∗
u
∗(t)
ξ +

∂u
∗(t)
ξ

∂ξ∗
c∗(t))) + c∗(t)

(G.30)

G.3.3 Species balance

The general dimensionless species mass balance equation A.62 derived in the theory:

∂

∂t∗
(c∗xi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗xiu

∗
ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +R′i

ξ2
ref

Drefcref
(G.31)

Expanding the terms to identify continuity equation:

∂c∗

∂t∗
xi +

∂xi
∂t

c∗ +
∂xi
∂ξ∗

c∗u∗ξ + xi
1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗u∗ξ) +

2J∗i
ξ∗

+
∂J∗i
∂ξ∗

= R′i
ξ2
ref

Drefcref
(G.32)

The first and the fourth term identified as the RHS of the continuity equation
multiplied with xi, swapping with the LHS gives:

∂xi
∂t∗

c∗ +
∂xi
∂ξ∗

c∗u∗ξ +
2J∗i
ξ∗

+
∂J∗i
∂ξ∗

= (R′i − xi
n∑
i=1

R′i)
ξ2
ref

Drefcref
(G.33)

Rearranging to free the transient term from other variables:

∂xi
∂t∗

+
∂xi
∂ξ∗

u∗ξ +
2J∗i
c∗ξ∗

+
1

c∗
∂J∗i
∂ξ∗

= (R′i − xi
n∑
i=1

R′i)
ξ2
ref

Drefcrefc∗
(G.34)

Discretisizing the transient term with the theta method equation G.1:

x
(t+1)
i + ∆tθ(

∂x
(t+1)
i

∂ξ∗
u
∗(t+1)
ξ +

2J
∗(t+1)
i

c∗(t+1)ξ∗
+

1

c∗(t+1)

∂J
∗(t+1)
i

∂ξ∗
) =

∆tθ(R
′(t+1)
i − xi

n∑
i=1

R
′(t+1)
i )

ξ2
ref

Drefcrefc∗(t+1)
∆t(1− θ)

((R
′(t)
i − xi

n∑
i=1

R
′(t)
i )

ξ2
ref

Drefcrefc∗(t)
− (

∂x
(t)
i

∂ξ∗
u
∗(t)
ξ +

2J
∗(t)
i

c∗(t)ξ∗
+

1

c∗(t)
∂J
∗(t)
i

∂ξ∗
)) + xti

(G.35)
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G.3.4 Diffusion models

The diffusion models used are identical to the ones used in the rigorous steady
state model, the derivation can be found in appendix D. Only the Maxwell-Stefan
and the dusty gas diffusion models are considered in the transient models.

G.3.5 Supportive equations

The remaining equations needed to simulate the problem does not require any
changes from the given form in the theory. However they are included in the
solution strategy.

G.4 Solution strategy

The different equations are first discussed in short and the main summary of the
solution strategy is given in table G.4. In the table the used equations combined
with a fitting boundary condition are shown. The solution strategy is also visualized
in the form on how it would be implemented by the use of orthogonal collocation,
shown in figure G.2.

G.4.1 Temperature equation

The transient temperature equation is used to calculate the change of temperature
with time and the heat flux. The already solved heat flux are then used to calculate
the temperature from Fourier’s law.

G.4.2 Species mole balance and diffusion model

From the species mole balance, the change in mole fractions with time and the mole
based fluxes for N-1 components are obtained. The last component is obtained from
the constitutive law A.41. The mole based fluxes are used with the diffusion models
to obtain the mole fractions again for N-1 components with the last being solved
from the constitutive law A.42.

G.4.3 Continuity equation

From the continuity equation, the mole averaged velocity and the change of con-
centration with time are obtained.

G.4.4 Darcy’s Law

The pressure is obtained from Darcy’s Law. Here the needed mass averaged velocity
is obtained from the mole based fluxes.

G.4.5 Concentration

The concentration is obtained from the ideal gas law. This equation is now conve-
nient to have in the problem matrix as it stabilizes the iteration.
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Table G.4: Summary of the solution strategy

Equations, LHS represents terms in the problem ma-
trix and the RHS represents the terms in the source
vector:

Boundary conditions:

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (G.36)

Boundary condition at ξ = ξp

hT ∗ =
q∗λ

ξref
+ cCp′gT

∗v∗
Dref

ξref
+ h

(G.37)

Temperature equation:

Equation G.27

Boundary condition at ξ = 0

q = 0 (G.38)

Species mass balance, solved for N-1 components:

Equation G.35

Boundary condition at ξ = 0

Ji = 0 (G.39)

Last flux(H2O) in the species balance is solved by:

n∑
i=1

J∗i = 0 (G.40)

No boundary condition

−

Diffusion model, solved for N-1 components:

One of the four diffusion models in table D.2 is used

Boundary condition at ξ = ξp :

xi =
(J∗i

Dref

ξref
+ u∗

Dref

ξref
c∗xi)

kic∗
+
ωi

c∗

(G.41)

Last mole fraction(H2O) in the species balance is
solved by:

n∑
i=1

xi = 1 (G.42)

No boundary condition

−

Mass based continuity equation:

Equation G.30

Boundary condition at ξ = 0

u∗ξ = 0 (G.43)

Darcy’s law:

v∗µ

Bpref
+
∂p∗

∂ξ∗
= 0 (G.44)

Boundary condition at ξ = ξp

p = pb (G.45)

Concentration, dimensionless:

ppref

RTcref
= c∗ (G.46)

No boundary condition

−

Mass averaged velocity*:

v∗ =

N∑
i=1

J∗iMi

c∗iM
+ u∗ (G.47)

No boundary condition

−

*solved outside of the collocation matrix, i.e. purely based on previous iterative values.
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Table G.5: Terms in the collocation matrix

Label in
matrix

Collocation matrix terms: multiplied
with:

X1
∆tθ λ

Dref
( 2
ξ∗ + ∂

∂ξ∗ )

((1− ε)ρpCpp + εc∗(t+1)cref
∑n
i=1 x

(t+1)
i Cp′i)

q∗

T1
1 •+

∆tθρ∗(t+1)crefv
∗(t+1)
r

∑n
i=1 xiCp

′
i
∂
∂ξ∗

((1− ε)ρpCpp + εc∗(t+1)cref
∑n
i=1 x

(t+1)
i Cp′i)

T ∗

DM1

Maxwell-Stefan:

Dref

c∗

i∑
j=1
j 6=i

xj
De
ij

J∗i

DM1

Dusty gas:

Dref

c∗
(

i∑
j=1
j 6=i

xj
De
ij

J∗i

X2 ∆tθ
1

c∗(t+1)
(

2

ξ∗
+

∂

∂ξ∗
) J∗i

SB1 1 •+∆tθu∗ξ
∂

∂ξ∗
xi, c

∗

X3 ∆tθc∗(t+1)(
2

ξ∗
+

∂

∂ξ∗
) u∗ξ
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Table G.6: Terms in the source vector

Label in source vector Source vector

T2

Source term temperature equation:

LHS of equation G.27

DM2

Maxwell-Stefan:

Dref

c∗

n∑
j=1
j 6=i

J∗j xi

De
ij

DM2

Dusty gas:

Dref

c∗

n∑
j=1
j 6=i

J∗j xi

De
ij

− Drefxiu
∗

De
iK

SB2

Source term species balance:

LHS of equation G.35

MC1

Source term continuity equation:

LHS of equation G.30

Dl1

Source term Darcy’s law:

−v
∗µDref

Bpref
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G.5 Additional results
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Figure G.3: Rigorous Transient mass based model using the dusty gas diffusion
model simulated with the orhogonal collocation method.
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Figure G.4: Rigorous Transient mole based model using the dusty gas diffusion
model simulated with the orhogonal collocation method.
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Figure G.5: Rigorous Transient mass based model using the dusty gas diffusion
model simulated with the least squares method.
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Figure G.6: Rigorous Transient mole based model using the dusty gas diffusion
model simulated with the least squares method.
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Figure G.7: Steady state comparison of the transient mass based Maxwell-Stefan
models. Orthogonal collocation(ooo), least squares (+++) and the original steady
state orthogonal non-element results(—).
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Figure G.8: Steady state comparison of the transient mass based dusty gas models.
Orthogonal collocation(ooo), least squares (+++) and the original steady state
orthogonal non-element results(—).
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H 9 Comparing the numerical methods - Reactor
model

The temperature equation will be derived for the reactor model in one dimension.
Starting out from the general equation 4, considering cylindrical coordinates and
applying a cross sectional average:

((1− ε)ρpCpp + ερ

n∑
i=1

ωiCpi)
∂T

∂t
+ ρ

n∑
i=1

ωiCpiv
∂T

∂z
= −∂q

∂z
+ (−4HR)R+Q

(H.1)

Transforming the equation to the dimensionless form using the correlations
given in table A.9 and inserting for the external heat Q = 4U

dt
(Tw − T ) from the

walls of the reactor:

((1− ε)ρpCpp + ερ

n∑
i=1

ωiCpi)
∂T ∗

∂t∗
Trefvref
zref

+ ρ

n∑
i=1

ωiCpiv
∗ ∂T

∗

∂z∗
Trefvref
zref

=

−∂q
∗

∂z∗
λTref
z2
ref

+ (−4HR)R+
4U

dt
(Tw − T )

(H.2)

Rearranging the equation:

∂T ∗

∂t∗
+
ρ
∑n
i=1 ωiCpiv

∗ ∂T∗
∂z∗ + ∂q∗

∂z∗
λ

vrefzref

((1− ε)ρpCpp + ερ
∑n
i=1 ωiCpi)

=
((−4HR)R+ 4U

dt
(Tw − T ))

zref
Trefvref

((1− ε)ρpCpp + ερ
∑n
i=1 ωiCpi)

(H.3)

Using the theta method described in chapter 2.5 to discretize the transient term
gives:

T ∗(t+1) + ∆t∗θ(
ρ
∑n
i=1 ω

∗(t+1)
i Cpiv

∗ ∂T∗(t+1)

∂z∗ + ∂q∗(t+1)

∂z∗
λ∗(t+1)

vrefzref

((1− ε)ρpCpp + ερ∗(t+1)
∑n
i=1 ω

∗(t+1)
i Cpi)

) =

∆t∗θ(
((−4H∗(t+1)

R )R+ 4U
dt

(Tw − T ∗(t+1)))
zref

Trefvref

((1− ε)ρpCpp + ερ∗(t+1)
∑n
i=1 ω

∗(t+1)
i Cpi)

)+

∆t∗(1− θ)(
((−4HR)R∗(t) + 4U

dt
(Tw − T ∗(t))) zref

Trefvref

((1− ε)ρpCpp + ερ∗(t)
∑n
i=1 ω

∗(t)
i Cpi)

−

ρ∗(t)
∑n
i=1 ω

∗(t)
i Cpiv

∗ ∂T∗(t)
∂z∗ + ∂q∗(t)

∂z∗
λ∗(t)

vrefzref

((1− ε)ρpCpp + ερ
∑n
i=1 ω

∗(t)
i Cpi)

) + T ∗(t)

(H.4)
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Continuity equation

H.1 Continuity equation

Starting out from the general continuity equation 30, cylindrical coordinates are
assumed and a cross sectional average is applied:

∂ρ

∂t
+

∂

∂z
(ρv) = 0 (H.5)

Using the correlations given in A.9 to transform the equation to a dimensionless
form:

∂ρ∗

∂t∗
+

∂

∂z∗
(ρ∗v∗) = 0 (H.6)

Expanding the terms:

∂ρ∗

∂t∗
+
∂ρ∗

∂z∗
v∗ +

∂v∗

∂z∗
ρ∗ = 0 (H.7)

Using the theta method described in chapter 2.5 to discretize the transient term:

ρ∗(t+1) + ∆tθ(
∂ρ∗(t+1)

∂z∗
v∗(t+1) +

∂v∗(t+1)

∂z∗
ρ∗(t+1)) =

∆t(1− θ)(−(
∂ρ∗(t)

∂z∗
v∗(t) +

∂v∗(t)

∂z∗
ρ∗(t))) + ρ∗(t)

(H.8)

H.2 Species balance equation

Starting out from the general species mass balance equation 8, cylindrical coordi-
nates are assumed, a cross sectional average is applied and the equation is trans-
formed to a dimensionless form using the correlations in table A.9:

∂

∂t∗
(ρ∗ωi) +

∂

∂z∗
(ρ∗ωiv

∗
z) = − ∂

∂z∗
(j∗i ) +Ri

z2
ref

Drefρref
(H.9)

Expanding the equation to identify continuity equation:

∂ρ∗

∂t∗
ωi +

∂ωi
∂t∗

ρ+
∂ωi
∂z∗

ρ∗v∗ξ + ωi
∂

∂z∗
(ρ∗v∗ξ ) = − ∂

∂z∗
(j∗i ) +Ri

z2
ref

Drefρref
(H.10)

The first and fourth term is identified as the RHS of the continuity equation
H.6 multiplied with ωi, swapping for the LHS:

∂ωi
∂t∗

ρ∗ +
∂ωi
∂z∗

ρ∗v∗ξ = −∂j
∗
i

∂z∗
+Ri

z2
ref

Drefρref
(H.11)

Rearranging to the implemented form:

∂ωi
∂t∗

+
∂ωi
∂z∗

v∗ξ +
1

ρ∗
∂j∗i
∂z∗

= Ri
z2
ref

Drefρrefρ∗
(H.12)

Using the theta method described in chapter 2.5 to discretize the transient term:

ω
(t+1)
i + ∆tθ(

∂ω
(t+1)
i

∂ξ∗
v∗z +

1

ρ∗(t+1)

∂j
∗(t+1)
i

∂z∗
) = ∆tθR

(t+1)
i

z2
ref

Drefρrefρ∗(t+1)

∆t(1− θ)(R(t)
i

z2
ref

Drefρrefρ∗(t)
− (

∂ω
(t)
i

∂ξ∗
v∗z +

1

ρ∗(t)
∂j
∗(t)
i

∂z∗
)) + ωti

(H.13)
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H.3 Additional equations

The mass fractions are calculated from the dispersion equation:

j∗ = − Ddisp

vrefzref
ρ∗
∂ωi
∂z∗

(H.14)

The pressure is calculated from the Ergun’s equation:

∂p∗

∂z∗
= −fρ

∗v∗2z
dp

ρrefv
∗2
refzref

pref
(H.15)

where:

f =
1− ε
ε3

(a+ b
1− ε
Rep

) (H.16)

a = 1.75 (H.17)

b = 4.2Re
5
6
p (H.18)

Rep =
ρgvzdp
µ

(H.19)
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H.4 Solution strategy

The solution strategy used to obtain the results are presented here. The main
summary of the solution strategy can be seen in table H.1, where the used equa-
tions are combined with a fitting boundary condition. The solution strategy is
also visualized in figure H.1. The same setup was used for both of the numerical
methods.

H.4.1 Temperature equation

As for the pellet models the temperature equation is used to calculate the heat flux
and the change of temperature with time. The heat flux is then used in combina-
tion with Fourier’s law to obtain the temperature. The temperature is specified at
the inlet as a boundary condition for the Fourier’s law, while we set that there are
no change in the heat flux for the temperature equation at the outlet of the reactor.

H.4.2 Species mass balance and dispersion

The species mass balance is solved to obtain the mass based fluxes and the change
of mass fractions with time. The mass fractions is obtained from the dispersion
equation with the mass based fluxes. As for the temperature equation we set the
boundary condition for the species balance to have no change in flux at the outlet,
while we specify the mass fractions at the inlet for the dispersion equation.

H.4.3 Continuity and Ergun’s equation

The continuity equation is used to obtain the mass averaged velocity and specify
the velocity at the inlet. The velocity can then be used to calculate the pressure
change throughout the reactor with the Ergun’s equation. The pressure is specified
at the outlet for the Ergun’s equation.

H.4.4 Density equation

As this is a transient model it is convenient to include the algebraic version of the
modified ideal gas law in the problem matrix as this stabilizes the system. Since it
is a algebraic equation no boundary condition is needed.
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Table H.1: Summary of the solution strategy

Equations, LHS represents terms in the problem matrix
and the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

q∗ +
∂T ∗

∂ξ∗
= 0 (H.20)

Boundary condition at z =
0

T = T b (H.21)

Temperature equation:

Equation H.4 is used (H.22)

Boundary condition at z =
zend

q = 0 (H.23)

Species mole balance, used for N-1 components:

Equation H.13 is used (H.24)

Boundary condition at z =
zend

ji = 0 (H.25)

Last flux(H2O) in the species balance is solved by:

n∑
i=1

ji = 0 (H.26)

No boundary condition

−

Dispersion equation:

j∗
vrefzref
Ddispρ∗

+
∂ωi
∂z∗

= 0 (H.27)

Boundary condition at z =
0

ωi = ωbi (H.28)

Last molefraction(H2O) in the species balance is solved
by:

n∑
i=1

ωi = 1 (H.29)

No boundary condition

−

Continuity equation mass based:

Equation H.8 is used (H.30)

Boundary condition at z =
0

v = vin (H.31)

Modified ideal gas law , algebraic:

ρ∗ − pM

RTρref
= 0 (H.32)

No boundary condition

−

Ergun’s equation

∂p∗

∂z∗
+
fρ∗v∗2z
dp

ρrefv
∗2
refzref

pref
= 0 (H.33)

Boundary condition at z =
zend

p = pb (H.34)
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Table H.2: Terms in the collocation matrix

Label in ma-
trix

Collocation matrix terms: multiplied
with:

X1 ∆tθ λ
Dref

∂
∂z∗

((1− ε)ρpCpp + ερ∗(t+1)ρref
∑n
i=1 ω

(t+1)
i Cpi)

q∗

T1
1 •+

∆tθρ∗(t+1)ρrefv
∗(t+1)
r

∑n
i=1 ωiCpi

∂
∂z∗

((1− ε)ρpCpp + ερ∗(t+1)ρref
∑n
i=1 ω

(t+1)
i Cpi)

T ∗

Dp1
vref zref

Ddispρ∗
j∗i

X2 ∆tθ
1

ρ∗(t+1)

∂

∂z∗
j∗i

SB1 1 •+∆tθv∗ξ
∂

∂z∗
ωi, ρ

∗

X3 ∆tθρ∗(t+1) ∂

∂z∗
v∗z

E1 fρ∗v∗z
dp

ρrefv
∗2
ref zref

pref

v∗z

Label in source vector Source vector

T2

Source term temperature equation:

LHS of equation H.4

SB2

Source term species balance:

LHS of equation H.13

MC1

Source term continuity equation:

LHS of equation H.8
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Pulse iteration

I Pulse iteration

During the thesis a method was developed to reduce the simulation times. The
method seems to work very well for heavy under-relaxed models, but the method
has not been fully investigated as it was not the purpose of the thesis. The method
is a modification to the basic under-relaxation method used:

f = αfnew + (1− α)fold (I.1)

Here the purpose is to only introduce a fraction of the new solution for each itera-
tion during the Picard iteration, with α being the under relaxation parameter.

Since this is a very basic under-relaxation method it is a high probability of dif-
ferent convergence rates for short and long wavelength components of the residual.
The method presented here increases the under-relaxation parameter in pulses in
order to speed up the convergence of the long wavelength components in the sim-
ulation system, as seen in figure I.1.

The improvements by using this method will be examined for the fully rigor-
ous pellet model using Maxwell-Stefan diffusion. Here a heavy under-relaxation
parameter of 2 ∗ 10−4 is needed for the mass fractions to obtain a solution, by
increasing this parameter to 0.02 for every 100th iteration a significant reduction
in the amount of iterations and simulation time is obtained. This can be seen in
figure I.1 where each time a pulse in the under relaxation parameter is introduced,
a drastic reduction the residual happens at the same time. However setting the
amplitude of the pulse too high or the interval between the pulses to short will re-
sult in the system going unstable. This will require some trial and error, but good
results have been seen when setting the pulse interval between 80-100 and the pulse
amplitude approximately 100 times the original under relaxation parameter.
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Figure I.1: Comparison the regular iteration(- - -) method versus the pulse iteration
method(—).

The use of this method resulted in a reduction in simulation times of approx-
imately 75% for the pellet equations as seen in table 13. This was acquired for a
rigorous steady state Maxwell-Stefan model with the use of elements. A suggested
code is presented in the following chapter.
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Pulse iteration
Suggested implementation code for the pulse iteration method

I.1 Suggested implementation code for the pulse iteration
method

i t c ount=i t count+1
Pulse=Pulse +1;
i f Pulse>100 && itcount >2000
alpha =0.02;
Pulse =1;
e l s e
alpha =0.0002;
end
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