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1 Theory - Derivation of governing equations

Differential equations describing the change in mass fractions for the different components in
radial direction within the catalyst pellets are to be derived. General species mass and mole
balance for a component i is given respectively as:

∂

∂t
(ρωi) +∇ · (ρωiv) = −∇ · (ji) +Ri (1)

∂

∂t
(cxi) +∇ · (cxiu) = −∇ · (Ji) +Ri (2)

Where:

∂

∂t
(ρωi) ,

∂

∂t
(cxi)

Represents the change in mole or mass concentration with
time

∇ · (ρωiv , ∇ · (cxiu) Represents the convective transport

∇ · (ji) , ∇ · (Ji) Represents the diffusional transport

Ri Represents the reaction rate

The catalyst particle is assumed to be spherical. The divergence of a vector and a scalar in
spherical coordinates can be defined respectively as:

∇ · ~v =
1

ξ2
∂

∂ξ
(ξ2vξ) +

1

ξ2 sin θ

∂

∂θ
(vθ sin θ) +

1

ξ2 sin θ

∂vφ
∂φ

(3)
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∇s =
∂s

∂ξ
êi +

1

ξ

∂s

∂θ
êj +

1

ξ sin θ

∂s

∂φ
êk (4)

Since the catalyst particle is assumed to be spherical it is resonable to assume symmetry
around the centre of the particle - i.e., no change when changing the inclination angle θ or the
azimuth angle φ. Hence the derivatives in θ and φ may be disconsidered. as a result the diffusive
and the convective term may be written respectively as:

∇ · (Ji) =
1

ξ2
∂

∂ξ
(ξ2Ji) (5)

∇ · (ρωi~uξ) =
1

ξ2
∂

∂ξ
(ξ2ρωiuξ) (6)

As a result, the radial mass and mole fraction profile for a spherical catalyst particle can be
written respectively as:

∂

∂t
(ρωi) +

1

ξ2
∂

∂ξ
(ξ2ρωivξ) = − 1

ξ2
∂

∂ξ
(ξ2ji) +Ri (7)

∂

∂t
(cxi) +

1

ξ2
∂

∂ξ
(ξ2cxiuξ) = − 1

ξ2
∂

∂ξ
(ξ2Ji) +Ri (8)

1.1 Radial temperature profile within the catalyst particle

A stationary differential equation describing the radial temperature profile within the catalyst
particles is to be derived. The contributions from the different terms in the general energy
equation are explained in tabla X.

The general energy equation given on mass and mole form respectively:

((1− ε)ρpCpp + ερ

n∑
i=1

ωiCpi)
∂T

∂t
+ ρ

n∑
i=1

ωiCpiv∇ · T = −∇ · q + (−4HR)R+Q (9)

((1− ε)ρpCpp + ερ

n∑
i=1

ωiCpi)
∂T

∂t
+ c

n∑
i=1

xiCpiv∇ · T = −∇ · q + (−4HR)R+Q (10)

The radiation heat flux is not considered in the next parts of deriving a simplifyed energy
equation. Assuming symmetry around the centre of the particles as for the composition in the
particles - i.e., no change in temperature when chaning the inclination angleθ or azimuth angleφ.
The energy equation can then be written for the mass and mole based models respectively as:

((1− ε)ρpCpp + ερ

n∑
i=1

ωiCpi)
∂T

∂t
+ ρ

n∑
i=1

ωiCpiv
∂T

∂ξ
= − 1

ξ2
∂

∂ξ
(ξ2q) + (−4HR)R (11)

((1− ε)ρpCpp + ερ

n∑
i=1

ωiCpi)
∂T

∂t
+ c

n∑
i=1

xiCpiv
∂T

∂ξ
= − 1

ξ2
∂

∂ξ
(ξ2q) + (−4HR)R (12)
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Table 1: Explanation of the terms in the general energy equation

((1− ε)ρpCpp + ερ

n∑
i=1

ωiCpi)
∂T

∂t
Represents the change of heat content with time

ρ

n∑
i=1

ωiCpiv∇ · T Represents the advective transport

∇ · q Represents the heat transport by conduction

(−4HR)R Represents the heat from chemical reactions

Q Represents the radiation heat flux

1.2 The continuity equation

A simplified stationary equation for the continuity equation is to be derived. The terms are
explained in table X. The governing continuity equation on mass and mole basis can be defined
respectively as:

∂ρ

∂t
+∇ · (ρv) = 0 (13)

∂c

∂t
+∇ · (cu) =

n∑
i=1

ri (14)

Assuming symmetry around the centre of the particles as for the other composition in the
particles- i.e., no change when changing the inclination angle θ or the azimuth angle φ - the
equations on mass and mole form respectively may then be written as:

∂ρ

∂t
+

1

ξ2
∂

∂ξ
(ξ2ρvξ) = 0 (15)

∂c

∂t
+

1

ξ2
∂

∂ξ
· (ξ2cuξ) =

n∑
i=1

ri (16)
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Table 2: Explanation of the terms in the general continutity equation

∂ρ

∂t
,
∂c

∂t

Represents the change of denisty and concentration with
time

∇ · (ρv) , ∇ · (cu)
Represents the change of mass or moles in the control
volume

n∑
i=1

ri Represents the sum of the reactions(mole generation rate)

1.3 The diffusional models on mass basis

1.3.1 Wilke

ji = −ρD′sm∇ · ωi D′sm =
1− ωi

M
∑n
j=1
j 6=i

ωj

MjDij

(17)

1.3.2 Maxwell-Stefan

ji =

−ρωi∇ln(M)− ρ∇ωi +Mωi
∑n
j=1
j 6=i

jj
MjDij

M
∑i
j=1
j 6=i

ωj

MjDij

(18)

1.3.3 Dusty gas

ji =

M2
∑n
j=1
j 6=i

ωijj
MjD̃ij

− vρiM

MjD̃iK
− ρ(ωi∇M +M∇ωi)

M2
∑n
j=1
j 6=i

ωj

MjD̃Dij
+ M

DiK

(19)

1.4 The diffusional models on mole basis

1.4.1 Wilke

ji = −cDsm∇ · xi D′sm =
1− xi∑n
j=1
j 6=i

xj

Dij

(20)
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1.4.2 Maxwell-Stefan

ji =

−cxi +
∑n
j=1
j 6=i

jjxi

Dij∑i
j=1
j 6=i

xj

Dij

(21)

1.4.3 Dusty gas

ji =

∑n
j=1
j 6=i

jjxi

Dij
− ciu

DiK
− c∇xi∑i

j=1
j 6=i

xj

Dij
+ 1

DiK

(22)

1.5 Transforming the simplified equations to the simplified form

The simplified general equations are made dimensionless using the correlations in table X.

Table 3: Correlations used to make the equations dimensionless

ξ∗ =
ξ

ξref
(23) u∗ =

u

uref
(24) q∗ =

qξξref
λTref

(25)

uref =
Dref

ξref
(26) p∗ =

p

pref
(27) ρ∗ =

ρ

ρref
(28)

c∗ =
c

cref
(29) j∗ =

j
Drefρref
ξref

(30) J∗ =
J

Dref cref
ξref

(31)

t∗ =
t

ξ2ref
Dref

(32) M∗w =
Mw

Mref
(33) T ∗ =

T

Tref
(34)

Using these correlations in the simplified equations gives the basic dimensionless equations
used in this thesis.

1.6 Dimensionless simplified governing equations

1.6.1 The basic dimensionless mass and mole balance equation

Mass:

∂

∂t∗
(ρ∗ωi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗ωiv

∗
ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2ref
Drefρref

(35)
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Mole:

∂

∂t∗
(c∗xi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗xiu

∗
ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +Ri

ξ2ref
Drefcref

(36)

1.6.2 The basic dimensionless temperature equation

Mass:

∂T ∗

∂t∗
=−

ρ∗ρrefv
∗
r

∑n
i=1 ωiCpi

∂T∗

∂ξ∗

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 ωiCpi)

−
( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 xiCpi)Dref

+
ξ2ref (−4HR)R

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 xiCpi)DrefTref

(37)

Mole:

∂T ∗

∂t∗
=−

c∗crefv
∗
r

∑n
i=1 xiCp

′
i
∂T∗

∂ξ∗

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)Dref

+
ξ2ref (−4HR)R

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)DrefTref

(38)

1.6.3 The basic dimensionless continuity equation

Mass:

∂ρ∗

∂t∗
+

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗v∗) = 0 (39)

Mole:

∂c∗

∂t∗
+

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗u∗ξ) = (

ξ2ref
crefDref

)

n∑
i=1

ri (40)

1.7 The dimensionless mass diffusion models

1.7.1 Wilke

j∗i = −ρ∗D
′
sm

Dref

∂ωi
∂ξ∗

D′sm =
1− ωi

M
∑n
j=1
j 6=i

ωj

MjDij

(41)

1.7.2 Maxwell-Stefan

j∗i =

−ρ∗ωi

Dref

1
M

∂
∂ξ∗ (M)− ρ∗

Dref

∂ωi

∂ξ∗ +Mωi
∑n
j=1
j 6=i

j∗j
MjDij

M
∑i
j=1
j 6=i

ωj

MjDij

(42)

6



1.8 The diffusional models on mole basis

1.8.1 Wilke

j∗i = −c∗Dsm∇ · xi D′sm =
1− xi∑n
j=1
j 6=i

xj

Dij

(43)

1.8.2 Maxwell-Stefan

j∗i =

−c∗ ∂xi

∂ξ∗ +
∑n
j=1
j 6=i

j∗j xi

Dij∑i
j=1
j 6=i

xj

Dij

(44)

2 Table of the generalised and dimensionless mased based equations

3 Table of the generalised and dimensionless mole based equations
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4 Case number 1 - Maxwell-Stefan

General about the case, SMR etc

4.1 Derivation of the equations to use in the model.

This is a simplifyed model assuming steady state and no convective transport in the pellet, also
basic boundary conditions are used, where the transfer resistances are disconsidered. A model
on both mass and mole basis is to be derived. Also the method of implementation is shown to
indicate how the problem is solved using orthogonal collocation.

4.1.1 General for the derivation of both the mass and mole based models

The temperature equation eqX is solved in combination with fouriers law eqX. The temperature
equation is only modified by introducing the assumptions assumed for this case.

The Species balance for respectively the mass and mole model eqX and eqX, is used to
calulate the fluxes. This is done by solving the species balance for N-1 components and the last
component by the constitutive law’s eqX and eqX. In the species balance the continuity equation
eqX and eqX is identifiyed for the respective model and inserted giving the species balance used
in the model.

The mass fractions is solved by using the Maxwell-Stefan diffusion model for N-1 components,
the last component is solved by the constitutive law’s eqX and eqX for respectively the mass and
mole based model. This model is only simplified and reformulated to the implemented form.

A summary of the equations derivated in detail in the next sections are shown in table X for
the mass based model and table X for the mole based.

4.2 Mass based model

4.2.1 The temperature balance

The general temperature balance derived earlier (37):

∂T ∗

∂t∗
=−

ρ∗ρrefv
∗
r

∑n
i=1 ωiCpi

∂T∗

∂ξ∗

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 ωiCpi)

−
( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 xiCpi)Dref

+
ξ2ref (−4HR)R

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 xiCpi)DrefTref

(45)

Steady state is assumed:

0 =−
ρ∗ρrefv

∗
r

∑n
i=1 ωiCpi

∂T∗

∂ξ∗

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 ωiCpi)

−
( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 xiCpi)Dref

+
ξ2ref (−4HR)R

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 xiCpi)DrefTref

(46)

no convective transport is assumed:

0 =−
( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 xiCpi)Dref

+
ξ2ref (−4HR)R

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 xiCpi)DrefTref

(47)
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The equation is rearranged and the used equation is given as:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2ref (−4HR)R

Trefλ
(48)

4.2.2 Species mass balance

The mass based fluxes are obtained from the species mass balance. The general dimensionless
equation is given as derived earlier (35):

∂

∂t∗
(ρ∗ωi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗ωiv

∗
ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2ref
Drefρref

(49)

Steady state is assumed.

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗ωiv

∗
ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2ref
Drefρref

(50)

The first term is written out to identify the continuity equation.

1

ξ∗2
∂ωi
∂ξ∗

(ξ∗2ρ∗v∗ξ ) + ωi
1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗v∗ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2ref
Drefρref

(51)

The second term is identified as the LHS of the mass based continuity equation (39) when steady
state is assumed, swapped for the RHS of the mass based continuity equation gives:

1

ξ∗2
∂ωi
∂ξ∗

(ξ∗2ρ∗v∗ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2ref
Drefρref

(52)

No convective transport is assumed, and the equation is rearranged:

1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) = Ri

ξ2ref
Drefρref

(53)

The first term is expanded to reflect the implemented equation:

2j∗i
ξ∗

+
∂j∗i
∂ξ∗

= Ri
ξ2ref

Drefρref
(54)

4.2.3 Maxwell-Stefan diffusion model

The general Maxwell-Stefan model as given in (42):

j∗i =

−ρ∗ωi

Dref

1
M

∂
∂ξ∗ (M)− ρ∗

Dref

∂ωi

∂ξ∗ +Mωi
∑n
j=1
j 6=i

j∗j
MjDij

M
∑i
j=1
j 6=i

ωj

MjDij

(55)

Rearranged to the implemented form:

j∗i
MDref

ρ∗

i∑
j=1
j 6=i

ωj
MjDij

+
∂ωi
∂ξ∗

=
−ωi
M

∂M

∂ξ∗
+
MDref

ρ∗
ωi

n∑
j=1
j 6=i

j∗j
MjDij

(56)
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4.2.4 Density equation

The density is obtained from ideal gas law multiplied with average molecular weight.

pV = NRT | ·M (57)

pM

RT
= ρ (58)

4.2.5 Summary of the mass based model, including boundary conditions

The derived equations are gathered in table 8. In the table the consitutive laws, initial and
boundary conditions used for solving the model are given.

Table 4: Mass based equations, constitutive laws and boundary conditions

Equations: Constitutive Laws:
Temperature equation:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2ref (−4HR)R

Trefλ
(59)

Fourier’s law

q +
∂T

∂ξ∗
= 0 (60)

Mass balance:

2j∗i
ξ∗

+
∂j∗i
∂ξ∗

= Ri
ξ2ref

Drefρref
(61)

Definition:

n∑
i=1

ji = 0 (62)

Diffusion, Maxwell-Stefan:

j∗i
MDref

ρ∗

i∑
j=1
j 6=i

ωj
MjDij

+
∂ωi
∂ξ∗

=
−ωi
M

∂M

∂ξ∗
+
MDref

ρ∗
ωi

n∑
j=1
j 6=i

j∗j
MjDij

(63)

Definition:

n∑
i=1

ωi = 1 (64)

Ideal gas law modified for density:

pM

RT
= ρ (65)

Boundary conditions in the symmetry point
ξ∗ = 0

Boundary conditions at the surface ξ∗ = ξ∗p

ji = 0 (66)

q = 0 (67)

T = T b (68)

ωi = ωbi (69)

10



4.3 Solution strategy

The different equations are first discussed in short with text and the main summary of the
solution strategy is given in table 9. In the table the used equations combined with boundary
conditions are shown. The solution strategy is also visualised in the form on how it would be
implemeted by the use of orthogonal collocation, shown in figure 7.

4.3.1 Temperature equtation

The temperature equation combined with the fouriers law is solved separately to obtain the
temperature. The method of implementation is shown in figure 7.

4.3.2 Species Mass balance and Maxwell-Stefan diffusion

The species mass balance is solved to obtain the mass based fluxes. The mass based fluxes are
then used to obtain the mass fractions throughout the catalyst particle using the maxwell stefan
diffusion model.

4.3.3 Density

The density equation is solved outside the numerical problem and is solved using the previous
iterative values.
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Table 5: Summary of the solution strategy

Equations, LHS represents terms in the problem matrix and
the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

q +
∂T

∂ξ∗
= 0 (70)

Boundary condtion at ξ = ξp

T = T b (71)

Temperature equation:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2ref (−4HR)R

Trefλ
(72)

Boundary condtition at ξ = 0

q = 0 (73)

Species mass balance, used for N-1 components:

2j∗i
ξ∗

+
∂j∗i
∂ξ∗

= Ri
ξ2ref

Drefρref
(74)

Boundary condition at ξ = 0

ji = 0 (75)

Last flux(H2O) in the species balance is solved by:

n∑
i=1

ji = 0 (76)

No boundary condtion

−

Maxwell-Stefan diffusion model for N-1 components:

j∗i
MDref

ρ∗

i∑
j=1
j 6=i

ωj
MjDij

+
∂ωi
∂ξ∗

=
−ωi
M

∂M

∂ξ∗
+
MDref

ρ∗
ωi

n∑
j=1
j 6=i

j∗j
MjDij

(77)

Boundary condtition at ξ = ξp :

ωi = ωbi (78)

Last massfraction(H2O) in the species balance is solved by:

n∑
i=1

ωi = 1 (79)

No boundary condtion

−

Ideal gas law modified for density*:

pM

RT
= ρ (80)

No boundary condtion

−

*Solved outside of the numerical collocation system and calculated from previous iteration
values

12



                          

1•
∂
∂
ξ
∗

0
0

0
0

0
0

0
0

0
0

0
0

2 ξ
∗
•

+
∂
∂
ξ
∗

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

M
S
1
•

0
0

0
0

0
∂
∂
ξ
∗

0
0

0
0

0

0
0

0
M
S
1
•

0
0

0
0

0
∂
∂
ξ
∗

0
0

0
0

0
0

0
0

M
S
1
•

0
0

0
0

0
∂
∂
ξ
∗

0
0

0

0
0

0
0

0
M
S
1
•

0
0

0
0

0
∂
∂
ξ
∗

0
0

0
0

0
0

0
0

M
S
1
•

0
0

0
0

0
∂
∂
ξ
∗

0

0
0

1
•

1
•

1•
1•

1•
1•

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2 ξ
∗
•

+
∂
∂
ξ
∗

0
0

0
0

0

0
0

0
0

0
0

0
0

0
2 ξ
∗
•

+
∂
∂
ξ
∗

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2 ξ
∗
•

+
∂
∂
ξ
∗

0
0

0

0
0

0
0

0
0

0
0

0
0

0
2 ξ
∗
•

+
∂
∂
ξ
∗

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2 ξ
∗
•

+
∂
∂
ξ
∗

0

0
0

0
0

0
0

0
0

1•
1•

1•
1
•

1
•

1
•

                                                    q T

j C
H

4

j C
O

j C
O

2

j H
2

j N
2

j H
2
O

ω
C
H

4

ω
C
O

ω
C
O

2

ω
H

2

ω
N

2

ω
H

2
O

                          =

                          

0
−
4
H

r
ξ
∗
2

T
r
e
f
λ

M
S
2

M
S
2

M
S
2

M
S
2

M
S
2

0
S
B

1

S
B

1

S
B

1

S
B

1

S
B

1

1

                          

F
ig

u
re

1
:

d
ef

a
u

lt

M
S
1

=
M
D
r
e
f

ρ
∗

i ∑ j
=
1

j
6=
i

ω
j

M
j
D
ij

M
S
2

=
−
ω
i

M

∂
M

∂
ξ∗

+
M
D
r
e
f

ρ
∗

ω
i

n ∑ j
=
1

j
6=
i

j∗ j
M
j
D
ij

S
B

1
=
R
i

ξ2 r
e
f

D
r
e
f
ρ
r
e
f

13



4.4 Mole based model

4.4.1 The temperature balance

The general temperature balance derived earlier (38):

∂T ∗

∂t∗
=−

c∗ crefv
∗
r

∑n
i=1 xiCp

′
i
∂T∗

∂ξ∗

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)Dref

+
ξ2ref (−4Hr)R

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)DrefTref

(81)

Steady state is assumed:

0 =−
c∗ crefv

∗
r

∑n
i=1 xiCp

′
i
∂T∗

∂ξ∗

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)Dref

+
ξ2ref (−4HR)R

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)DrefTref

(82)

no convective transport is assumed:

0 =−
( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)Dref

+
ξ2ref (−4Hr)R

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)DrefTref

(83)

The equation is rearranged and the used equation is given as:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2ref (−4Hr)R

Trefλ
(84)

4.4.2 Species mole balance

The mole based fluxes are obtained from the species mole balance. The general dimensionless
equation is given as derived earlier (36):

∂

∂t∗
(c∗xi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗xiu

∗
ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +Ri

ξ2ref
Drefcref

(85)

Steady state is assumed.

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗xiu

∗
ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +Ri

ξ2ref
Drefcref

(86)

The first term is written out to identify the continuity equation.

1

ξ∗2
∂xi
∂ξ∗

(ξ∗2c∗u∗ξ) + xi
1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗u∗ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +Ri

ξ2ref
Drefcref

(87)

The second term is identified as the LHS of the mole based continuity equation (40) when steady
state is assumed, swapped for the RHS of the mole based continuity equation gives:

1

ξ∗2
∂xi
∂ξ∗

(ξ∗2c∗u∗ξ) + xi(
ξ2ref

crefDref
)

n∑
i=1

ri = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +Ri

ξ2ref
Drefcref

(88)
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No convective transport is assumed and the equation is rearranged:

1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) = (Ri − xi

n∑
i=1

ri)
ξ2ref

Drefcref
(89)

Expanding the first terms to reflect the equation used in the model:

2J∗i
ξ∗2

+
∂J∗i
∂ξ∗

= (Ri − xi
n∑
i=1

ri)
ξ2ref

Drefcref
(90)

4.4.3 Maxwell-Stefan diffusion model

The general Maxwell-Stefan model on mole basis as given in 44:

j∗i =

−c∗ ∂xi

∂ξ∗ +
∑n
j=1
j 6=i

j∗j xi

Dij∑i
j=1
j 6=i

xj

Dij

(91)

Rearranged to the implemented form:

j∗i
c∗

i∑
j=1
j 6=i

xj
Dij

+
∂xi
∂ξ∗

=
1

c∗

n∑
j=1
j 6=i

j∗j xi

Dij
(92)

4.4.4 Density equation

The concentration is obtained from the ideal gas law rearraged.

pV = NRT (93)

p

RT
= c (94)

4.4.5 Summary of the mole based model, including boundary conditions

The derived equations are gathered in table 10. In the table the consitutive laws, initial and
boundary conditions used for solving the model are given.

4.5 Solution strategy

The different equations are first discussed in short with text and the main summary of the
solution strategy is given in table 11. In the table the used equations combined with boundary
conditions are shown. The solution strategy is also visualised in the form on how it would be
implemeted by the use of orthogonal collocation, shown in figure ??.

4.5.1 Temperature equtation

The temperature equation combined with the fouriers law is solved separately to obtain the
temperature. The method of implementation is shown in figure ??.
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Table 6: Mole based equations, constitutive laws and boundary conditions

Equations: Constitutive Laws:
Temperature equation:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2ref (−4HR)R

Trefλ
(95)

Fourier’s law

q +
∂T

∂ξ∗
= 0 (96)

Species mole balance:

2J∗i
ξ∗2

+
∂J∗i
∂ξ∗

= (Ri − xi
n∑
i=1

ri)
ξ2ref

Drefcref
(97)

Definition:

n∑
i=1

Ji = 0 (98)

Diffusion, Maxwell-Stefan:

j∗i
c∗

i∑
j=1
j 6=i

xj
Dij

+
∂xi
∂ξ∗

=
1

c∗

n∑
j=1
j 6=i

j∗j xi

Dij
(99)

Definition:

n∑
i=1

xi = 1 (100)

Ideal gas law rearranged for concentration:

p

RT
= c (101)

Boundary conditions in the symmetry point
ξ∗ = 0

Boundary conditions at the surface ξ∗ = ξ∗p

Ji = 0 (102)

q = 0 (103)

T = T b (104)

xi = xbi (105)

4.5.2 Species Mole balance and Maxwell-Stefan diffusion

The species mass balance is solved to obtain the mole based fluxes. The mole based fluxes are
then used to obtain the mole fractions throughout the catalyst particle using the maxwell stefan
diffusion model.

4.5.3 Concentration

The concentration equation is solved outside the numerical problem and is solved using the
previous iterative values.
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Table 7: Summary of the solution strategy

Equations, LHS represents terms in the problem matrix and
the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

q +
∂T

∂ξ∗
= 0 (106)

Boundary condtion at ξ = ξp

T = T b (107)

Temperature equation:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2ref (−4HR)R

Trefλ
(108)

Boundary condtition at ξ = 0

q = 0 (109)

Species mole balance, used for N-1 components:

2J∗i
ξ∗2

+
∂J∗i
∂ξ∗

= (Ri − xi
n∑
i=1

ri)
ξ2ref

Drefcref
(110)

Boundary condition at ξ = 0

Ji = 0 (111)

Last flux(H2O) in the species balance is solved by:

n∑
i=1

Ji = 0 (112)

No boundary condtion

−

Maxwell-Stefan diffusion model for N-1 components:

j∗i
c∗

i∑
j=1
j 6=i

xj
Dij

+
∂xi
∂ξ∗

=
1

c∗

n∑
j=1
j 6=i

j∗j xi

Dij
(113)

Boundary condtition at ξ = ξp :

xi = xbi (114)

Last massfraction(H2O) in the species balance is solved by:

n∑
i=1

xi = 1 (115)

No boundary condtion

−

Ideal gas law modified for concentration*:

p

RT
= c (116)

No boundary condtion

−

*Solved outside of the numerical collocation system and calculated from previous iteration
values
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4.6 Results and discussion
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Figure 3: Comparison

0 0.002 0.004 0.006 0.008 0.01
−8

−6

−4

−2

0

2
x 10

−3 CH4

Position in particle[m]

F
lu

x[
kg

/s
 m

2]

0 0.002 0.004 0.006 0.008 0.01
−5

0

5

10

15
x 10

−4 CO

Position in particle[m]

F
lu

x[
kg

/s
 m

2]

0 0.002 0.004 0.006 0.008 0.01
−5

0

5

10

15

20
x 10

−3 CO2

Position in particle[m]

F
lu

x[
kg

/s
 m

2]

0 0.002 0.004 0.006 0.008 0.01
−1

0

1

2

3

4
x 10

−3 H2

Position in particle[m]

F
lu

x[
kg

/s
 m

2]

0 0.002 0.004 0.006 0.008 0.01
−8

−6

−4

−2

0

2
x 10

−36 N2

Position in particle[m]

F
lu

x[
kg

/s
 m

2]

0 0.002 0.004 0.006 0.008 0.01
−15

−10

−5

0

5
x 10

−3 H2O

Position in particle[m]

F
lu

x[
kg

/s
 m

2]

Figure 4: Mass based fluxes
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Figure 5: Mole based fluxes
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5 Case number 2 - Wilke diffusion

General about the case, SMR etc

5.1 Derivation of the equations to use in the model.

This is a simplifyed model assuming steady state and no convective transport in the pellet, also
basic boundary conditions are used, where the transfer resistances are disconsidered. A model
on both mass and mole basis is to be derived. Also the method of implementation is shown to
indicate how the problem is solved using orthogonal collocation.

5.1.1 General for the derivation of both the mass and mole based models

The temperature equation eqX is solved in combination with fouriers law eqX. The temperature
equation is only modified by introducing the assumptions assumed for this case.

The Species balance for respectively the mass and mole model eqX and eqX, is used to
calulate the fluxes. This is done by solving the species balance for N-1 components and the last
component by the constitutive law’s eqX and eqX. In the species balance the continuity equation
eqX and eqX is identifiyed for the respective model and inserted giving the species balance used
in the model.

The mass fractions is solved by using the Maxwell-Stefan diffusion model for N-1 components,
the last component is solved by the constitutive law’s eqX and eqX for respectively the mass and
mole based model. This model is only simplified and reformulated to the implemented form.

A summary of the equations derivated in detail in the next sections are shown in table X for
the mass based model and table X for the mole based.

5.2 Mass based model

5.2.1 The temperature balance

The general temperature balance derived earlier (37):

∂T ∗

∂t∗
=−

ρ∗ρrefv
∗
r

∑n
i=1 ωiCpi

∂T∗

∂ξ∗

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 ωiCpi)

−
( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 xiCpi)Dref

+
ξ2ref (−4HR)R

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 xiCpi)DrefTref

(117)

Steady state is assumed:

0 =−
ρ∗ρrefv

∗
r

∑n
i=1 ωiCpi

∂T∗

∂ξ∗

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 ωiCpi)

−
( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 xiCpi)Dref

+
ξ2ref (−4HR)R

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 xiCpi)DrefTref

(118)

no convective transport is assumed:

0 =−
( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 xiCpi)Dref

+
ξ2ref (−4HR)R

((1− ε)ρpCpp + ερ∗ρref
∑n
i=1 xiCpi)DrefTref

(119)

21



The equation is rearranged and the used equation is given as:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2ref (−4HR)R

Trefλ
(120)

5.2.2 Species mass balance

The mass based fluxes are obtained from the species mass balance. The general dimensionless
equation is given as derived earlier (35):

∂

∂t∗
(ρ∗ωi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗ωiv

∗
ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2ref
Drefρref

(121)

Steady state is assumed.

1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗ωiv

∗
ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2ref
Drefρref

(122)

The first term is written out to identify the continuity equation.

1

ξ∗2
∂ωi
∂ξ∗

(ξ∗2ρ∗v∗ξ ) + ωi
1

ξ∗2
∂

∂ξ∗
(ξ∗2ρ∗v∗ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2ref
Drefρref

(123)

The second term is identified as the LHS of the mass based continuity equation (39) when steady
state is assumed, swapped for the RHS of the mass based continuity equation gives:

1

ξ∗2
∂ωi
∂ξ∗

(ξ∗2ρ∗v∗ξ ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) +Ri

ξ2ref
Drefρref

(124)

No convective transport is assumed, and the equation is rearranged:

1

ξ∗2
∂

∂ξ∗
(ξ∗2j∗i ) = Ri

ξ2ref
Drefρref

(125)

The first term is expanded to reflect the implemented equation:

2j∗i
ξ∗

+
∂j∗i
∂ξ∗

= Ri
ξ2ref

Drefρref
(126)

5.2.3 Wilke diffusion model

The general Wilke diffusion model as given in (41):

j∗i = −ρ∗D
′
sm

Dref

∂ωi
∂ξ∗

D′sm =
1− ωi

M
∑n
j=1
j 6=i

ωj

MjDij

(127)

Rearranged to the implemented form:

j∗i
Dref

D′smρ
∗ +

∂ωi
∂ξ∗

= 0 D′sm =
1− ωi

M
∑n
j=1
j 6=i

ωj

MjDij

(128)
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5.2.4 Density equation

The density is obtained from ideal gas law multiplied with average molecular weight.

pV = NRT | ·M (129)

pM

RT
= ρ (130)

5.2.5 Summary of the mass based model, including boundary conditions

The derived equations are gathered in table 8. In the table the consitutive laws, initial and
boundary conditions used for solving the model are given.

Table 8: Mass based equations, constitutive laws and boundary conditions

Equations: Constitutive Laws:
Temperature equation:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2ref (−4HR)R

Trefλ
(131)

Fourier’s law

q +
∂T

∂ξ∗
= 0 (132)

Mass balance:

2j∗i
ξ∗

+
∂j∗i
∂ξ∗

= Ri
ξ2ref

Drefρref
(133)

Definition:

n∑
i=1

ji = 0 (134)

Diffusion, Wilke:

j∗i
Dref

D′smρ
∗ +

∂ωi
∂ξ∗

= 0 D′sm =
1− ωi

M
∑n
j=1
j 6=i

ωj

MjDij

(135)

Definition:

n∑
i=1

ωi = 1 (136)

Ideal gas law modified for density:

pM

RT
= ρ (137)

Boundary conditions in the symmetry point
ξ∗ = 0

Boundary conditions at the surface ξ∗ = ξ∗p

ji = 0 (138)

q = 0 (139)

T = T b (140)

ωi = ωbi (141)
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5.3 Solution strategy

The different equations are first discussed in short with text and the main summary of the
solution strategy is given in table 9. In the table the used equations combined with boundary
conditions are shown. The solution strategy is also visualised in the form on how it would be
implemeted by the use of orthogonal collocation, shown in figure 7.

5.3.1 Temperature equtation

The temperature equation combined with the fouriers law is solved separately to obtain the
temperature. The method of implementation is shown in figure 7.

5.3.2 Species Mass balance and Wilke diffusion

The species mass balance is solved to obtain the mass based fluxes. The mass based fluxes are
then used to obtain the mass fractions throughout the catalyst particle using the Wilke diffusion
model.

5.3.3 Density

The density equation is solved outside the numerical problem and is solved using the previous
iterative values.
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Table 9: Summary of the solution strategy

Equations, LHS represents terms in the problem matrix and
the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

q +
∂T

∂ξ∗
= 0 (142)

Boundary condtion at ξ = ξp

T = T b (143)

Temperature equation:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2ref (−4HR)R

Trefλ
(144)

Boundary condtition at ξ = 0

q = 0 (145)

Species mass balance, used for N-1 components:

2j∗i
ξ∗

+
∂j∗i
∂ξ∗

= Ri
ξ2ref

Drefρref
(146)

Boundary condition at ξ = 0

ji = 0 (147)

Last flux(H2O) in the species balance is solved by:

n∑
i=1

ji = 0 (148)

No boundary condtion

−

Wilke diffusion model for N-1 components:

j∗i
Dref

D′smρ
∗ +

∂ωi
∂ξ∗

= 0 D′sm =
1− ωi

M
∑n
j=1
j 6=i

ωj

MjDij

(149)

Boundary condtition at ξ = ξp :

ωi = ωbi (150)

Last massfraction(H2O) in the species balance is solved by:

n∑
i=1

ωi = 1 (151)

No boundary condtion

−

Ideal gas law modified for density*:

pM

RT
= ρ (152)

No boundary condtion

−

*Solved outside of the numerical collocation system and calculated from previous iteration
values
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5.4 Mole based model

5.4.1 The temperature balance

The general temperature balance derived earlier (38):

∂T ∗

∂t∗
=−

c∗ crefv
∗
r

∑n
i=1 xiCp

′
i
∂T∗

∂ξ∗

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)Dref

+
ξ2ref (−4Hr)R

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)DrefTref

(153)

Steady state is assumed:

0 =−
c∗ crefv

∗
r

∑n
i=1 xiCp

′
i
∂T∗

∂ξ∗

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)
−

( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)Dref

+
ξ2ref (−4HR)R

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)DrefTref

(154)

no convective transport is assumed:

0 =−
( 2q∗

ξ∗ + ∂q∗

∂ξ∗ )λ

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)Dref

+
ξ2ref (−4Hr)R

((1− ε)ρpCpp + εc∗cref
∑n
i=1 xiCp

′
i)DrefTref

(155)

The equation is rearranged and the used equation is given as:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2ref (−4Hr)R

Trefλ
(156)

5.4.2 Species mole balance

The mole based fluxes are obtained from the species mole balance. The general dimensionless
equation is given as derived earlier (36):

∂

∂t∗
(c∗xi) +

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗xiu

∗
ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +Ri

ξ2ref
Drefcref

(157)

Steady state is assumed.

1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗xiu

∗
ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +Ri

ξ2ref
Drefcref

(158)

The first term is written out to identify the continuity equation.

1

ξ∗2
∂xi
∂ξ∗

(ξ∗2c∗u∗ξ) + xi
1

ξ∗2
∂

∂ξ∗
(ξ∗2c∗u∗ξ) = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +Ri

ξ2ref
Drefcref

(159)

The second term is identified as the LHS of the mole based continuity equation (40) when steady
state is assumed, swapped for the RHS of the mole based continuity equation gives:

1

ξ∗2
∂xi
∂ξ∗

(ξ∗2c∗u∗ξ) + xi(
ξ2ref

crefDref
)

n∑
i=1

ri = − 1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) +Ri

ξ2ref
Drefcref

(160)
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No convective transport is assumed and the equation is rearranged:

1

ξ∗2
∂

∂ξ∗
(ξ∗2J∗i ) = (Ri − xi

n∑
i=1

ri)
ξ2ref

Drefcref
(161)

Expanding the first terms to reflect the equation used in the model:

2J∗i
ξ∗2

+
∂J∗i
∂ξ∗

= (Ri − xi
n∑
i=1

ri)
ξ2ref

Drefcref
(162)

5.4.3 Maxwell-Stefan diffusion model

The general Maxwell-Stefan model on mole basis as given in 44:

j∗i =

−c∗ ∂xi

∂ξ∗ +
∑n
j=1
j 6=i

j∗j xi

Dij∑i
j=1
j 6=i

xj

Dij

(163)

Rearranged to the implemented form:

j∗i
c∗

i∑
j=1
j 6=i

xj
Dij

+
∂xi
∂ξ∗

=
1

c∗

n∑
j=1
j 6=i

j∗j xi

Dij
(164)

5.4.4 Density equation

The concentration is obtained from the ideal gas law rearraged.

pV = NRT (165)

p

RT
= c (166)

5.4.5 Summary of the mole based model, including boundary conditions

The derived equations are gathered in table 10. In the table the consitutive laws, initial and
boundary conditions used for solving the model are given.

5.5 Solution strategy

The different equations are first discussed in short with text and the main summary of the
solution strategy is given in table 11. In the table the used equations combined with boundary
conditions are shown. The solution strategy is also visualised in the form on how it would be
implemeted by the use of orthogonal collocation, shown in figure ??.

5.5.1 Temperature equtation

The temperature equation combined with the fouriers law is solved separately to obtain the
temperature. The method of implementation is shown in figure ??.
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Table 10: Mole based equations, constitutive laws and boundary conditions

Equations: Constitutive Laws:
Temperature equation:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2ref (−4HR)R

Trefλ
(167)

Fourier’s law

q +
∂T

∂ξ∗
= 0 (168)

Species mole balance:

2J∗i
ξ∗2

+
∂J∗i
∂ξ∗

= (Ri − xi
n∑
i=1

ri)
ξ2ref

Drefcref
(169)

Definition:

n∑
i=1

Ji = 0 (170)

Diffusion, Maxwell-Stefan:

j∗i
c∗

i∑
j=1
j 6=i

xj
Dij

+
∂xi
∂ξ∗

=
1

c∗

n∑
j=1
j 6=i

j∗j xi

Dij
(171)

Definition:

n∑
i=1

xi = 1 (172)

Ideal gas law rearranged for concentration:

p

RT
= c (173)

Boundary conditions in the symmetry point
ξ∗ = 0

Boundary conditions at the surface ξ∗ = ξ∗p

Ji = 0 (174)

q = 0 (175)

T = T b (176)

xi = xbi (177)

5.5.2 Species Mole balance and Maxwell-Stefan diffusion

The species mass balance is solved to obtain the mole based fluxes. The mole based fluxes are
then used to obtain the mole fractions throughout the catalyst particle using the maxwell stefan
diffusion model.

5.5.3 Concentration

The concentration equation is solved outside the numerical problem and is solved using the
previous iterative values.
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Table 11: Summary of the solution strategy

Equations, LHS represents terms in the problem matrix and
the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

q +
∂T

∂ξ∗
= 0 (178)

Boundary condtion at ξ = ξp

T = T b (179)

Temperature equation:

2q∗

ξ∗
+
∂q∗

∂ξ∗
=
ξ2ref (−4HR)R

Trefλ
(180)

Boundary condtition at ξ = 0

q = 0 (181)

Species mole balance, used for N-1 components:

2J∗i
ξ∗2

+
∂J∗i
∂ξ∗

= (Ri − xi
n∑
i=1

ri)
ξ2ref

Drefcref
(182)

Boundary condition at ξ = 0

Ji = 0 (183)

Last flux(H2O) in the species balance is solved by:

n∑
i=1

Ji = 0 (184)

No boundary condtion

−

Maxwell-Stefan diffusion model for N-1 components:

j∗i
c∗

i∑
j=1
j 6=i

xj
Dij

+
∂xi
∂ξ∗

=
1

c∗

n∑
j=1
j 6=i

j∗j xi

Dij
(185)

Boundary condtition at ξ = ξp :

xi = xbi (186)

Last massfraction(H2O) in the species balance is solved by:

n∑
i=1

xi = 1 (187)

No boundary condtion

−

Ideal gas law modified for concentration*:

p

RT
= c (188)

No boundary condtion

−

*Solved outside of the numerical collocation system and calculated from previous iteration
values
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5.6 Results and discussion
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Figure 8: Comparison
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Figure 9: Mass based fluxes
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Figure 10: Mole based fluxes
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