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1 Theory - Derivation of governing equations

Differential equations describing the change in mass fractions for the different components in
radial direction within the catalyst pellets are to be derived. General species mass and mole
balance for a component i is given respectively as:

0 .
W) +V - (pwiw) = =V (ji) + R (1)
0
a(cxi) + V- (cxu) ==V - (J;)+ R; (2)
Where:
0 0 Represents the change in mole or mass concentration with
o), () e
V- (pwiv, V - (cz;u) Represents the convective transport
V-(4:), V- (J) Represents the diffusional transport
R; Represents the reaction rate

The catalyst particle is assumed to be spherical. The divergence of a vector and a scalar in
spherical coordinates can be defined respectively as:
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Since the catalyst particle is assumed to be spherical it is resonable to assume symmetry
around the centre of the particle - i.e., no change when changing the inclination angle 6 or the
azimuth angle ¢. Hence the derivatives in 6 and ¢ may be disconsidered. as a result the diffusive
and the convective term may be written respectively as:

V) = g€ )
\E (pwluf) 52 85 (f szus) (6)

As a result, the radial mass and mole fraction profile for a spherical catalyst particle can be
written respectively as:

0 1 0 .

&(sz) + ?55(5 pwive) = —?28*5(52]1') + R; (7)
0 10 10

a(“i) + ?8*5(520%%) = —?28*5(52%) + R; (8)

1.1 Radial temperature profile within the catalyst particle

A stationary differential equation describing the radial temperature profile within the catalyst
particles is to be derived. The contributions from the different terms in the general energy
equation are explained in tabla X.

The general energy equation given on mass and mole form respectively:

(1= €)ppCpp + GP;%C}?U@ + P;wicpivv ‘T=-V-q+(-AHR)R+Q  (9)

(1 = €)p,Cpyp + epriCpi)E +e> 2CpwV-T=-V-q+ (~AHp)R+Q (10)
=1

i=1

The radiation heat flux is not considered in the next parts of deriving a simplifyed energy
equation. Assuming symmetry around the centre of the particles as for the composition in the
particles - i.e., no change in temperature when chaning the inclination anglef or azimuth angle¢.
The energy equation can then be written for the mass and mole based models respectively as:

" oT - oT

(1= €)ppCpyp + ep;wicm)a + p;MC’pw 5 = 7?8?(52 Q)+ (-AHR)R  (11)
" oT " oT

((1 - E)PpCpp + GP;(WC]%)E + c;xiCpiv 875 52 8€ (52 ) ( AHR)R (12)



Table 1: Explanation of the terms in the general energy equation

n
(1 — €)ppCpp + € pz wiCpi) O;)T Represents the change of heat content with time
t
i=1
n
p Z wiCp;vV - T Represents the advective transport
i=1
V-q Represents the heat transport by conduction
(-AHR)R Represents the heat from chemical reactions
Q Represents the radiation heat flux

1.2 The continuity equation

A simplified stationary equation for the continuity equation is to be derived. The terms are

explained in table X. The governing continuity equation on mass and mole basis can be defined
respectively as:

%—Fv-(pv)zo (13)
Oc -
a—kV-(cu)zlz:;n (14)

Assuming symmetry around the centre of the particles as for the other composition in the
particles- i.e., no change when changing the inclination angle 6 or the azimuth angle ¢ - the
equations on mass and mole form respectively may then be written as:

op 1 0

E-F?afg(éapvg) =0 (15)
de 10 -
5+ e (Eoue) = ;r (16)



Table 2: Explanation of the terms in the general continutity equation

8p Jc Represents the change of denisty and concentration with
ot ot time

Represents the change of mass or moles in the control
volume

V- (pv), V- (cu)

n
Z i Represents the sum of the reactions(mole generation rate)

i=1

1.3 The diffusional models on mass basis

1.3.1 Wilke
1-— w;
ji=-pD.,V-w, D, = (17)
MZ] 1 MJDLJ
1.3.2  Maxwell-Stefan
—pw; VIn(M) — pVw; + Mw; Zg S Inor D”
Ji= (18)
MZJ; M, D;; DU
1.3.3 Dusty gas
Ji = : M2S wj M (19)
Egz M, Dpij + Dix
1.4 The diffusional models on mole basis
1.4.1 Wilke
1—ua;
Zj_: Di;
JFi



1.4.2 Maxwell-Stefan

—cxi + 5= %
ji = 7 (21)

1.4.3 Dusty gas

1.5 Transforming the simplified equations to the simplified form

The simplified general equations are made dimensionless using the correlations in table X.

Table 3: Correlations used to make the equations dimensionless

f * u quref
E gref ( ) Uref )\Tref
Dref % p % P
Upef = 26 pr = 27 pr =
< gref ( ) Pref ( ) Pref
«_ C w1 . J
¢ = Cref (29) J Drefpref (30) J D'rcfcref
gref Eref
e (32) = M 33 o= L
Zes w = m (33) = Tres
Dref

(25)

(34)

Using these correlations in the simplified equations gives the basic dimensionless equations
used in this thesis.

1.6 Dimensionless simplified governing equations

1.6.1 The basic dimensionless mass and mole balance equation

Mass:
a * 1 8 *2 sk x\ L 6 *2 ox . gef
ot* (p UJZ) + 5*2 ag* (§ P (.Uz'Ug) - 5*2 aé-* (g jl) + R’L D')"efp'r‘ef (35)



Mole:

B 10 . 10 . 2ot
*i * *i*:_i *J* Rii 36
ot* (C T ) + 5*2 af* (5 cT ug) 5*2 85* (f 2 ) + Drefcref ( )
1.6.2 The basic dimensionless temperature equation
Mass:
or P presv iy wiCpi G - (3 + 55
ot (- E)ppCpp + €p*Pres Z?:1 wiCp;) ((1- e)ppCpp + €P* Pref Z?:l xiCpi)Dref
+ zef(_AHR)R
((1 - €)pp0pp + €0 Prey 2?21 xicpi)DrefTref
(37)
Mole:
or  Cegu YL wnChSE (& + 58
ot (L= €)ppCpp +ec*cres 3o 2iCP;) (1= €)ppCpp + ec*cres 31—y 2iCP;) Dyey
+ gef(_AHR)R
((1 - 6)ppcpp + 6C)kCrref 2?21 xicpg)DrefTref
(38)
1.6.3 The basic dimensionless continuity equation
Mass:
dp* 1 0, .9
ot E e € (39)
Mole:
a1 D, ., RS
+ * C*U* — 7 40
o+ g € = (TE Y (40)
1.7 The dimensionless mass diffusion models
1.7.1 Wilke
D' i 1-—- i
ji= g DO e (a1)
Dref 8£ MZj_*l Mjblj
J
1.7.2 Maxwell-Stefan
—pwi 1l 0 (A1 Ow; AT n J;
Dpref M O&* (M) o Dpref o™ + Mw; 25,21 M;D;;
i = — : (42)
MYt b;



1.8 The diffusional models on mole basis

1.8.1 Wilke

1.8.2 Maxwell-Stefan

i=1D;;
J#i

_ o 0x; n JjTi
oer T 2i=1
e J#i
Ji = 7

(44)

2 Table of the generalised and dimensionless mased based equations

3 Table of the generalised and dimensionless mole based equations



4 Case number 1 - Maxwell-Stefan

General about the case, SMR etc

4.1 Derivation of the equations to use in the model.

This is a simplifyed model assuming steady state and no convective transport in the pellet, also
basic boundary conditions are used, where the transfer resistances are disconsidered. A model
on both mass and mole basis is to be derived. Also the method of implementation is shown to
indicate how the problem is solved using orthogonal collocation.

4.1.1 General for the derivation of both the mass and mole based models

The temperature equation eqX is solved in combination with fouriers law eqX. The temperature
equation is only modified by introducing the assumptions assumed for this case.

The Species balance for respectively the mass and mole model eqX and eqX, is used to
calulate the fluxes. This is done by solving the species balance for N-1 components and the last
component by the constitutive law’s eqX and eqX. In the species balance the continuity equation
eqX and egX is identifiyed for the respective model and inserted giving the species balance used
in the model.

The mass fractions is solved by using the Maxwell-Stefan diffusion model for N-1 components,
the last component is solved by the constitutive law’s eqX and eqX for respectively the mass and
mole based model. This model is only simplified and reformulated to the implemented form.

A summary of the equations derivated in detail in the next sections are shown in table X for
the mass based model and table X for the mole based.

4.2 Mass based model
4.2.1 The temperature balance

The general temperature balance derived earlier (37):

. J— 2q* aq*
o P bt Sl wiCpils (e + 58

ot (1 = €)ppCpp + €p*pres Z;L:l wiCpi) (1 = €)ppCpp + €p* pres Z?:l 2;Cpi)Dyey
gef(_AHR)R
(1 = €)ppCpp + €p*pres 3oi—q iCPi) DyesTrey

+
(45)

Steady state is assumed:

0—_ P Prefvi iy wﬂpz‘% B (& + Sg* )A
(1 - 6)/’pCpp + € Pref Z?:l wiCpi)  ((1 - G)ppCpp + €P*Pref 22;1 xiCpi)Dref
9 (46)
+ 'r‘ef(_AHR)R
(1 = €)ppCpp + €p* pref Y1y TiCpi) DyeyTrey

no convective transport is assumed:

2q* aq*
((1 - e)ppcpp + ep*pref Z?:l xicpi>Dref ((1 - 5)ppcpp + Ep*pref Z?:l xicpi)DTefTref

(47)



The equation is rearranged and the used equation is given as:

2" 0" _ &ef(~AHR)R
5* ag* N T‘TefA

4.2.2 Species mass balance

The mass based fluxes are obtained from the species mass balance. The general dimensionless
equation is given as derived earlier (35):

1 9 :
* *2 * *2 % ref
= R, — 49
g 070) + o e (€)=~ e (€7400) + Rugy— (49)
Steady state is assumed.
1 1 0 7%ef
70 wivE) = — g 5er (€757 + Rigy i — 50
5*2 af* ( ) 5*2 85* ( ) Drefpref ( )
The first term is written out to identify the continuity equation.
1 Bwi 0 0 gef
- 5*2 * ok +w1 v 5*2 *’U* _ £*2j>_k +R17 51
Fage € ) g € = e D R )

The second term is identified as the LHS of the mass based continuity equation (39) when steady
state is assumed, swapped for the RHS of the mass based continuity equation gives:

1 Ow; 1 9 res
i 2 5*29*7)* — 5*2]: + Rii, 52)
5*2 ag* ( €> 5*2 55* ( ) Dmfpmf (
No convective transport is assumed, and the equation is rearranged:
1 0 gef
(&%) = Ri=—"2— (53)
5*2 86* Drefpref
The first term is expanded to reflect the implemented equation:
2j7 . 0if res
t L =Ri——— 54)
f* af* -Drefpref (
4.2.3 Maxwell-Stefan diffusion model
The general Maxwell-Stefan model as given in (42):
—prwi 1 AT * Qw;
Bt droe (M) — g2 ¢+ Mwi it 27
. i
Ji = — (55)
MYt
Rearranged to the implemented form:
AMDrofx~ w; 0w, —w;OM  MDyy ~ i
* —_— = = W 56
5 P S
J#i J#i



4.2.4 Density equation

The density is obtained from ideal gas law multiplied with average molecular weight.

pV = NRT)|
pM _
rT °

T (57)

4.2.5 Summary of the mass based model, including boundary conditions

The derived equations are gathered in table 8. In the table the consitutive laws, initial and

boundary conditions used for solving the model are

given.

Table 4: Mass based equations, constitutive laws and boundary conditions

Equations:

Constitutive Laws:

Temperature equation:

20" 00" _ & (~AHR)R
5* ag* B Tref)\

Mass balance:

2 0 _ &
g* ag* ’LDrefpref

Diffusion, Maxwell-Stefan:

_*MDref 27: Wy + 6(.01' —W; GM MDTef
j=1 =

i

Ideal gas law modified for density:

pM _

rT "

Fourier’s law

LT
(59) 7 fex ~

Definition:

(61) > Ji=0
i=1
Definition:
n 3 n
Jj Zw- =1
Wy r g
= M;D; i=1
JFi
(63)
(65)

(60)

(62)

(64)

Boundary conditions in the symmetry point
=0

Ji = (66)
g=0 (67)

Boundary conditions at the surface £* = ¢

T=T>"

Wy Zwib

10




4.3 Solution strategy

The different equations are first discussed in short with text and the main summary of the
solution strategy is given in table 9. In the table the used equations combined with boundary
conditions are shown. The solution strategy is also visualised in the form on how it would be
implemeted by the use of orthogonal collocation, shown in figure 7.

4.3.1 Temperature equtation

The temperature equation combined with the fouriers law is solved separately to obtain the
temperature. The method of implementation is shown in figure 7.

4.3.2 Species Mass balance and Maxwell-Stefan diffusion

The species mass balance is solved to obtain the mass based fluxes. The mass based fluxes are
then used to obtain the mass fractions throughout the catalyst particle using the maxwell stefan
diffusion model.

4.3.3 Density

The density equation is solved outside the numerical problem and is solved using the previous
iterative values.

11



Table 5: Summary of the solution strategy

Equations, LHS represents terms in the problem matrix and
the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

oT
=0 70
e (70)
Temperature equation:
2q¢*  Oq* fgef(*AHR)R (72)
6* af* - T’refA
Species mass balance, used for N-1 components:
2j; 04} re
i 00 e (74)
5 66 D’refp’ref
Last flux(H20) in the species balance is solved by:
> Gi=0 (76)
i=1

Maxwell-Stefan diffusion model for N-1 components:

,*MDM : Wi Ow; —
Pt MjDi o 9¢

J#i

Last massfraction(H20) in the species balance is solved by:

dwi=1 (79)
i=1
Ideal gas law modified for density*:
pM _
7T =P (80)

Boundary condtion at £ = &P

T=T" (71)

Boundary condtition at £ =0

qg=0 (73)
Boundary condition at £ =0
Ji=0 (75)

No boundary condtion

Boundary condtition at & = &P :

wi = w? (78)

No boundary condtion

No boundary condtion

*Solved outside of the numerical collocation system and calculated from previous iteration

values

12
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4.4 Mole based model
4.4.1 The temperature balance

The general temperature balance derived earlier (38):

or ¢ Crefvr Yoy 2CP; %ZI _ (2§q* gg* )A
ot* (1= €)ppCpp + eccrer 22y 2iCp;) (L= €)ppCpp + €c*crep 3251 @iCp;) Drey
7%ef(_AHT)R
+ n S
((1 - E)ppcpp + 6C*Cref 21'21 xicpi)DrefTref
(81)
Steady state is assumed:
* * n * 2q* oq*
0= _ C CrefU, Zizl xicpli%% B ( gq* Bg* )>\
(1 = €)ppCpp +ec*crey Doy w:CP;) (1= €)ppCpp + €c*Crey 325y iCP;) Dryey (82)
zef(iAHR)R
+ D ;
((1 - €)ppcpp + €C*Cref Zizl micpi)DrefTref
no convective transport is assumed:
2q™ g™
0 (F+ &)X . 2 (=AH,)R
(1= €)ppCpp +ec*crer Doy 2iCP)) Dy (1 — €)ppCpp + €c*crep 21—y TiCP;) DyesTiey
(83)
The equation is rearranged and the used equation is given as:
* * 2 (-AH)R
2q =+ 8(] = M (84)

g* 85* T’refA

4.4.2 Species mole balance

The mole based fluxes are obtained from the species mole balance. The general dimensionless
equation is given as derived earlier (36):

6 * 1 8 *2 _* kY 1 8 *2 Tk Zef
ot* (C 'r't) + 6*2 85* ({ ¢ xlug) - _5*2 ag* (§ Ji ) + R’l D')"efC',’ef (85)
Steady state is assumed.
1 9 2 1 0 2 7%ef

— “otrul) = —— I+ R ——— 86
5*2 85* (6 ¢ xbuf) 6*2 ag* (5 i ) + Ly Drefcref ( )

The first term is written out to identify the continuity equation.

1 axi *2 %k 1 0 *2 sk k) 1 0 *2 7% 7%€f

&2 D¢ (£ ug) + 3315*2 oe- (§5c ug) = T2 o6 (=I5 + R Dyeerer (87)

The second term is identified as the LHS of the mole based continuity equation (40) when steady
state is assumed, swapped for the RHS of the mole based continuity equation gives:
< 1 9

2 2
6*20*,“* + _ Sref ;= — €*2Ji* + Rngf S8
( 5) (CrefDref); 5*2 85*( ) Drefcref ( )

1 6.131
5*2 85*

14



No convective transport is assumed and the equation is rearranged:

1 0

*2 7% TEf
(2T =(Ri—zi Y ™) (89)
§*2 ag* Z Tefcref
Expanding the first terms to reflect the equation used in the model:
2J5  9J; - ref
‘ + L= RZ — X ry)—/——/ 90
5*2 85* ( ; )Drefcref ( )
4.4.3 Maxwell-Stefan diffusion model
The general Maxwell-Stefan model on mole basis as given in 44:
*ggi +Z] 1 ]JM
Ji = (91)
2721 Dij
J#i
Rearranged to the implemented form:
P* i . ) 1 n i x;
— Dij 98" i Dy
J#i J#i
4.4.4 Density equation
The concentration is obtained from the ideal gas law rearraged.
pV = NRT (93)
p
B 4
RT ~ € (54)

445 Summary of the mole based model, including boundary conditions

The derived equations are gathered in table 10. In the table the consitutive laws, initial and
boundary conditions used for solving the model are given.

4.5 Solution strategy

The different equations are first discussed in short with text and the main summary of the
solution strategy is given in table 11. In the table the used equations combined with boundary
conditions are shown. The solution strategy is also visualised in the form on how it would be
implemeted by the use of orthogonal collocation, shown in figure 77.

4.5.1 Temperature equtation

The temperature equation combined with the fouriers law is solved separately to obtain the
temperature. The method of implementation is shown in figure ?7.
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Table 6: Mole based equations, constitutive laws and boundary conditions

Equations:

Temperature equation:

2q¢*  0q*
& ogr

gEef(iA‘H‘R)‘R
Trorh

Species mole balance:

§*2 85*

Diffusion, Maxwell-Stefan:
Ji ! z;  O0m 1 =T
c* =1 Dij 85* c* =1 Dij
J#i J#i

Ideal gas law rearranged for concentration:

p

RT~°

* n 2
+ 0T _ (Ri — Zﬁ)igref
i=1

Dref Cref

Constitutive Laws:
Fourier’s law
(95) q+ gg; =0 (96)
Definition:
(97) zn: Ji=0 (98)
i=1
Definition:
(99) En:xl =1 (100)
i=1
(101)

Boundary conditions in the symmetry point
=0

(102)
(103)

Boundary conditions at the surface £* = ¢

T=T1" (104)
x; = xb (105)

4.5.2 Species Mole balance and Maxwell-Stefan diffusion

The species mass balance is solved to obtain the mole based fluxes. The mole based fluxes are
then used to obtain the mole fractions throughout the catalyst particle using the maxwell stefan

diffusion model.

4.5.3 Concentration

The concentration equation is solved outside the numerical problem and is solved using the

previous iterative values.
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Table 7: Summary of the solution strategy

Equations, LHS represents terms in the problem matrix and
the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

oT
=0 106
9+ g6 (106)
Temperature equation:
20  9q* & ;(—AHR)R
q 7 Eres( R) (108)
f* af* T’refA
Species mole balance, used for N-1 components:
2JF  9J; = et
: L= (R; —x; i) ——— 110
g toe ~(Rmm g s (0
=1
Last flux(H20) in the species balance is solved by:
> Ji=0 (112)
i=1
Maxwell-Stefan diffusion model for N-1 components:
Ji = — 11
Jj=1 j=1

i i

Last massfraction(H20) in the species balance is solved by:

S oai=1 (115)
i=1
Ideal gas law modified for concentration*:
r _
AT = (116)

Boundary condtion at £ = &P

T=T" (107)

Boundary condtition at £ =0
q=0 (109)
Boundary condition at £ =0
Ji =0 (111)

No boundary condtion

Boundary condtition at £ = &P :

x; = al (114)

No boundary condtion

No boundary condtion

*Solved outside of the numerical collocation system and calculated from previous iteration

values

17
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4.6

Results and discussion
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Figure 4: Mass based fluxes
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5 Case number 2 - Wilke diffusion

General about the case, SMR etc

5.1 Derivation of the equations to use in the model.

This is a simplifyed model assuming steady state and no convective transport in the pellet, also
basic boundary conditions are used, where the transfer resistances are disconsidered. A model
on both mass and mole basis is to be derived. Also the method of implementation is shown to
indicate how the problem is solved using orthogonal collocation.

5.1.1 General for the derivation of both the mass and mole based models

The temperature equation eqX is solved in combination with fouriers law eqX. The temperature
equation is only modified by introducing the assumptions assumed for this case.

The Species balance for respectively the mass and mole model eqX and eqX, is used to
calulate the fluxes. This is done by solving the species balance for N-1 components and the last
component by the constitutive law’s eqX and eqX. In the species balance the continuity equation
eqX and egX is identifiyed for the respective model and inserted giving the species balance used
in the model.

The mass fractions is solved by using the Maxwell-Stefan diffusion model for N-1 components,
the last component is solved by the constitutive law’s eqX and eqX for respectively the mass and
mole based model. This model is only simplified and reformulated to the implemented form.

A summary of the equations derivated in detail in the next sections are shown in table X for
the mass based model and table X for the mole based.

5.2 Mass based model
5.2.1 The temperature balance

The general temperature balance derived earlier (37):

oT* 2q* aq*
or- oot Sy O GE + 500

ot (1 = €)ppCpp + €p*prey 22;1 w;Cp;) (1 = €)ppCpp + €p*pres Z?:l 2;Cp;)Dyey
Eef(_AHR)R
+ )
((1 - E)ppcpp + €P* Prey Zizl xicpi)DrefTref

(117)

Steady state is assumed:

0= P PrefVy Dy wiCpi% (25(1* * gg* A
(1 = €)ppCrp +ep*pref 3i—g wiCpi) (1 = €)ppCpp + €p*pres Y i—y ©iCpi) Drey

?ef(_AHR)R

+ D
(1 = €)ppCrp + €p*pres 3oi—q TiCpi) DrefTrey
(118)
no convective transport is assumed:
0o (3 + 55 . 2 (~AHR)R
((1 - 6)ppCPp + €0*Pref 21;1 xiCpi>Dref ((1 - 5)Pp0pp + €0™ Prey 2?21 IiCpi)DTefTref
(119)
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The equation is rearranged and the used equation is given as:

<o E(-AHR)R
5* 65* Tref>\

5.2.2  Species mass balance
The mass based fluxes are obtained from the species mass balance. The general dimensionless

equation is given as derived earlier (35):

0 1 0 9 1 0 2. ?ef
*wi) + — *20*wul) = —— *2 % ——e) 121
8t* (p w ) + 5*2 85* (5 pw UE) 5*2 85* (5 1) + R Drefpref ( )
Steady state is assumed.
10 10 vef
E2p*wivt) = —— %) + Ry =—" 122
( 5) 5*2 85* ( ) Drefpref ( )

The first term is written out to identify the continuity equation.

2
. bref (123)
Drefpref

]. Bwi 2 ]. 8 2 ]. 8 2.
* * % i — *2 sk, R\ *2 ok R
5*2 8&* (5 P Ug) +w 5*2 8&* (g 4 U{) 5*2 85* (E jz) +
The second term is identified as the LHS of the mass based continuity equation (39) when steady
state is assumed, swapped for the RHS of the mass based continuity equation gives:

1 awi *2 ko k\ 1 a *2 % gef
€2 9¢* 3 vg) = 7§*2 aer (§%%57) + Rzm (124)

No convective transport is assumed, and the equation is rearranged:

290 (&2 = RSt (125)
5*2 85* ! lDrefpref
The first term is expanded to reflect the implemented equation:
257 | 0if ref
Lo to— ' (126)
6* 35* Drefpref
5.2.3  Wilke diffusion model
The general Wilke diffusion model as given in (41):
= R e B (127)
D'r‘ef ag MZj:l ijjij
J#i
Rearranged to the implemented form:
% D,«ef 8wi ’ 1-— 3
iy * P 0 Dsm = =5 n w; (128)
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5.2.4 Density equation

The density is obtained from ideal gas law multiplied with average molecular weight.

pV = NRT|-M

pM
RT

5.2.5  Summary of the mass based model, including boundary conditions

(129)

(130)

The derived equations are gathered in table 8. In the table the consitutive laws, initial and

boundary conditions used for solving the model are given.

Table 8: Mass based equations, constitutive laws and boundary conditions

Equations:

Constitutive Laws:

Temperature equation:

2¢* | 9¢*  &ep(~AHR)R
Mass balance:
25, O3 _ G
5* 65* Zl)refpref
Diffusion, Wilke:
% Dref Bwi ’ 1 — W
.]i D/smp* 86‘* = O sm T MZT‘L—
J#
Ideal gas law modified for density:
pM _
rT "

(131)

(133)

(137)

Fourier’s law

orT
o¢*

q+ =0

Definition:
> _Ji=0
i=1

Definition:

zn:wi =1
i=1

(132)

(134)

(136)

=0

Ji=0
q:

Boundary conditions in the symmetry point

(138)
(139)

T=T>"

W Zw?

Boundary conditions at the surface £* = ¢

(140)
(141)
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5.3 Solution strategy

The different equations are first discussed in short with text and the main summary of the
solution strategy is given in table 9. In the table the used equations combined with boundary
conditions are shown. The solution strategy is also visualised in the form on how it would be
implemeted by the use of orthogonal collocation, shown in figure 7.

5.3.1 Temperature equtation

The temperature equation combined with the fouriers law is solved separately to obtain the
temperature. The method of implementation is shown in figure 7.

5.3.2  Species Mass balance and Wilke diffusion

The species mass balance is solved to obtain the mass based fluxes. The mass based fluxes are
then used to obtain the mass fractions throughout the catalyst particle using the Wilke diffusion
model.

5.3.3 Density

The density equation is solved outside the numerical problem and is solved using the previous
iterative values.
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Table 9: Summary of the solution strategy

Equations, LHS represents terms in the problem matrix and
the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

or

=0 142
9+ g6 (142)
Temperature equation:
20 9t & (—AHgp)R
¢ 00 _ S (CAHRIR (144)
g* af* Tref/\
Species mass balance, used for N-1 components:
2j; | 95 &es
L4 2L =R 146
f* 86* Drefpref ( )
Last flux(H20) in the species balance is solved by:
> ji=0 (148)
i=1
Wilke diffusion model for N-1 components:
D»,‘ef awi 1-— W
DL o Ty Y
g Y

Last massfraction(H20) in the species balance is solved by:

> wi=1 (151)
i=1
Ideal gas law modified for density*:
pM
= 152
7T =P (152)

Boundary condtion at £ = &P

T=1>° (143)

Boundary condtition at £ =0

q=0 (145)

Boundary condition at £ =0

Ji=0 (147)

No boundary condtion

Boundary condtition at £ = &P :

(150)

Wy :wf-’

No boundary condtion

No boundary condtion

*Solved outside of the numerical collocation system and calculated from previous iteration

values
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5.4 Mole based model
5.4.1 The temperature balance

The general temperature balance derived earlier (38):

* * n * " aq”
oT* _ C CrefU, Zizl xch; %’15"* B (2§q* ag* ))\
ot* (1= €)ppCpp + ec*Crer Y iy xiCp) (1= €)ppCpp + €c*Cref > ory 2;CPL) Dyey
2 (“AH)R
+ ref(

(1 = €)ppCpp + €c*crey Z?:l 2;CP;)DyefTres
(153)

Steady state is assumed:

* % N\ . . .
O _ C CT‘err 21:1 l‘ch;%% 3 (2£q* 82* )A
((1 — f)ppcpp + €c*Crey Z?:l xicp;) ((1 — E)Ppcpp + ec*Crey Z:.L:l xicp;)Dref
(154)
res(AHR)R
+ T
((1 — e)pPCpp + GC*Cref Eizl xiCp;)DTEfTTef

no convective transport is assumed:

-
0 (& + 35)A . 2 (~AH)R
(1= €)ppCpp + ec*crep 3211 2iCP;) Drey (1= €)ppCpp + €c*crey 325y iCP;) DreyTrey
(155)
The equation is rearranged and the used equation is given as:
* * 2 (-AH)R

g* 85* T’refA

5.4.2 Species mole balance

The mole based fluxes are obtained from the species mole balance. The general dimensionless
equation is given as derived earlier (36):

0 1 0 2 1 0 2 7%ef
*, * * ok —— * * . 1
e (c*z;) + &7 e (§"c zug) &% 9 (&=JnH + RliDrefcref (157)
Steady state is assumed.
1 9 2 1 0 2 7%ef
5*2 85* (6 ¢ xbuf) 6*2 ag* (5 i ) + Ly Drefcref ( )
The first term is written out to identify the continuity equation.
1 0z, 1 0 .. 19 . s
*2 k% LT T (g2 gk Ry T * * A 1
5*2 85* (6 c uf) + 5*2 8{* (g c Ug) 6*2 86* (6 ‘]z ) + Rz Drefcref ( 59)

The second term is identified as the LHS of the mole based continuity equation (40) when steady
state is assumed, swapped for the RHS of the mole based continuity equation gives:
< 1 9

2 2
*2 ok % ref *2 % ref
§Pug) tai(—5—) ) mi = )+ Ris—— 160
( 5) (C'refD'r‘ef) P 5*2 85*( ) Drefcref ( )

1 6.131
5*2 85*
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No convective transport is assumed and the equation is rearranged:

1 0

*2 7% TEf
(g 2J1 = — Xy 7'1 (161)
§*2 ag* Z Tefcref
Expanding the first terms to reflect the equation used in the model:
2J;  OJ; & ref
1"‘ l:Ri—.’bZ‘ ry)—/——/ 162
5*2 85* ( ; )Drefcref ( )
5.4.3 Maxwell-Stefan diffusion model
The general Maxwell-Stefan model on mole basis as given in 44:
c* ggi + Z] 1 ]J -
Ji = (163)
2721 Dij
J#i
Rearranged to the implemented form:
oz Omi 1 s i
Ji D] a::? él (164)
— Di; § ¢t = Dij
J#i J#i
5.4.4 Density equation
The concentration is obtained from the ideal gas law rearraged.
pV = NRT (165)
p
B 1
7T = ¢ (166)

5.4.5 Summary of the mole based model, including boundary conditions

The derived equations are gathered in table 10. In the table the consitutive laws, initial and
boundary conditions used for solving the model are given.

5.5 Solution strategy

The different equations are first discussed in short with text and the main summary of the
solution strategy is given in table 11. In the table the used equations combined with boundary
conditions are shown. The solution strategy is also visualised in the form on how it would be
implemeted by the use of orthogonal collocation, shown in figure 77.

5.5.1 Temperature equtation

The temperature equation combined with the fouriers law is solved separately to obtain the
temperature. The method of implementation is shown in figure ?77.
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Table 10: Mole based equations, constitutive laws and boundary conditions

Equations:

Temperature equation:

2" 00" _ &ef(~AHR)R
6* af* T’refA
Species mole balance:
207 OJ; & §rer
: ~=(Ri—x; ) 1)
§*2 85* ; Dre‘fcref
Diffusion, Maxwell-Stefan:
Ji ! z;  O0m 1 =T
c* =1 Dij 85* c* =1 Dij
J#i J#i

Ideal gas law rearranged for concentration:

p

RT~°

Constitutive Laws:
Fourier’s law
oT
Definition:
(169) > Ji=0 (170)
i=1
Definition:
(171) Y ai=1 (172)
i=1
(173)

Boundary conditions in the symmetry point
=0

(174)
(175)

Boundary conditions at the surface £* = ¢

T="1° (176)
x; = xb (177)

5.5.2 Species Mole balance and Maxwell-Stefan diffusion

The species mass balance is solved to obtain the mole based fluxes. The mole based fluxes are
then used to obtain the mole fractions throughout the catalyst particle using the maxwell stefan

diffusion model.

5.5.3 Concentration

The concentration equation is solved outside the numerical problem and is solved using the

previous iterative values.
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Table 11: Summary of the solution strategy

Equations, LHS represents terms in the problem matrix and
the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

oT
=0 178
9+ g6 (178)
Temperature equation:
20  9q* & ;(—AHR)R
q ¢ _ & #( R) (150)
f* af* T’refA
Species mole balance, used for N-1 components:
2JF  9J; = et
: L= (R; —x; i) ——— 182
g toe ~(Rmm g s 08
=1
Last flux(H20) in the species balance is solved by:
> Ji=0 (184)
i=1
Maxwell-Stefan diffusion model for N-1 components:
Ji S 1
c* Z Dij + 66* c* Z Dij ( 85)
Jj=1 j=1

i i

Last massfraction(H20) in the species balance is solved by:

S oai=1 (187)
i=1
Ideal gas law modified for concentration*:
r _
7T = C (188)

Boundary condtion at £ = &P

T=T" (179)

Boundary condtition at £ =0

q=0 (181)

Boundary condition at £ =0

J;=0 (183)

No boundary condtion

Boundary condtition at £ = &P :

x; = al (186)

No boundary condtion

No boundary condtion

*Solved outside of the numerical collocation system and calculated from previous iteration

values
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5.6

Results and discussion
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