INNHOLD

Innhold

1 Theory - Derivation of governing equations

1.1 Mass based basic governing equations . . . . . . .. ... ..o Lo
1.1.1 Speciesmass balance . . . . . . . ... ...
1.1.2 Temperature equation . . . . . . . ... .. Lo
1.1.3 The continuity equation . . . . . . ... ... L oo

1.2 Mass based diffusion models . . . . . . .. ... . L
121 Wilke . . . o e
1.2.2 Wilke-Bosanquet . . . . . . . ... .o
1.2.3 Maxwell-Stefan . . . . . . .. ..
1.24 Dustygas . . . . . . ..o

1.3 Mole based basic governing equations . . . . . . .. ... L oL
1.3.1 Species mole balance . . . . . . . . ... o
1.3.2 Temperature equation . . . . . . . . . ... e
1.3.3 The continuity equation . . . . . .. ... L oL o

1.4 Mole based diffusion models . . . . . . . . ... Lo
141 Wilke . . . . . e
1.4.2 Wilke-Bosanquet . . . . . . . .. .. L
1.4.3 Maxwell-Stefan . . . . . . ... o
1.44 Dustygas . . . . . . oL

1.5 ideal gas law, conversion of velocitiesetc . . . . . . . . . ... .o
1.5.1 mass based flux-velocity conversion . . . . . .. .. ... ..
1.5.2  mole based flux-velocity conversion . . . . . . . .. ... ... ... ..
153 Idealgaslaw . . . . . . .. . .. L
1.5.4 Darcy’slaw . . . . . . .. L
1.5.5 Constitutive laws . . . . . . . . ..

1.6 Transforming the simplified equations to the dimensionless form . . . .. .. ..

1.7 Summary of the dimensionless equations on mass basis . . . . . . . .. ... ...

1.8 Summary of the dimensionless equations on mole basis . . . . . . ... ... ...

Models on their simplest forms

2.1 Derivation of the equations to use in the model. . . . . . . . . ... ... .....
2.1.1  General for the derivation of both the mass and mole based models . . . .

2.2 Mass based model . . . . . . ... e

2.2.1 The temperature balance . . . . . .. ... ... .. ... ...
2.2.2 Speciesmass balance . . . . .. ..o Lo o
2.2.3 Wilke diffusion model . . . . .. .. .o oo
2.2.4  Wilke-bosanquet diffusion model . . . . . . ... ...
2.2.5 Maxwell-Stefan diffusion model . . . . . . ... ... oo
2.2.6 Dusty gas diffusion model . . . . . ... .o oL oL
2.2.7 Density equation . . . . .. ..o Lo

2.2.8 Summary of the mass based model, including boundary conditions . . . .
2.3 Solution strategy . . . . . . . ...

2.3.1 Temperature equtation . . . . . . . ... L oL L oo
2.3.2 Species Mass balance and Maxwell-Stefan diffusion . . . . . . .. .. ...
2.3.3 Density . . . . ..
2.4 Mole based model . . . . . . ...

2.4.1 The temperature balance . . . . .. .. . .. ... ... ...

© © © © 00 OO UL Ut OO U i W NN =



INNHOLD

2.5

2.6

2.4.2 Speciesmole balance . . . . . . ... L0
2.4.3 Wilke diffusion model . . . . .. .. ... ...
2.4.4 Wilke-bosanquet diffusion model . . . . . .. ... ...
2.4.5 Maxwell-Stefan diffusion model . . . . . . .. ..o
2.4.6 Dusty gas diffusion model . . . . . . ... o oL
2.4.7 Concentration equation . . . . . . . . ... ...
2.4.8 Summary of the mole based model, including boundary conditions . . . .
Solution strategy . . . . . . . . . L e
2.5.1 Temperature equtation . . . . . . . . ... Lo
2.5.2  Species Mole balance and Maxwell-Stefan diffusion . . . . ... ... ...
2.5.3 Concentration . . . . . . . . ... Lo
Results and discussion . . . . . . . ... Lo Lo
2.6.1 General for all diffusion models . . . . . . ... ... ... ..
2.6.2 Wilke and Wilke-Bosanquet models . . . . . .. ... ... ... .....
2.6.3 Maxwell-Stefan and Dusty gas models . . . . . . .. ... .. ... ...
2.6.4 Wilkeplots . . . . . . .
2.6.5 Wilke-Bosanquet . . . . . . .. ... Lo oo
2.6.6 Maxwell-Stefan . . . . . . . ... ..
2.6.7 Dusty-gas . . . . . ..

3 Case number 1b Alternative dimensionless method

3.1

3.2

3.3

3.4

Derivation of the equations to use in the model. . . . . . . . . ... ... .....
3.1.1 General for the derivation of the mass based model . . . . . . .. ... ..
Mass based model . . . . . . ...
3.2.1 The temperature balance . . . . . .. ... . L oL
3.2.2 Speciesmass balance . . . . . ... .. L Lo
3.2.3 Constitutive law for the species balance . . .. .. ... ... .......
3.2.4 Maxwell-Stefan diffusion model . . . . . . ... ... ... L.
3.2.5 Concentration equation . . . . .. ... L Lo
3.2.6  Summary of the mass based model, including boundary conditions . . . .
Solution strategy . . . . . . . . . ...
3.3.1 Temperature equtation . . . . . . . .. .. L L L Lo
3.3.2 Species Mass balance and Maxwell-Stefan diffusion . . . . . ... ... ..
3.3.3 Concentration . . . . . . . . . . . . e e e
Results and discussion . . . . . . . . ...

4 Effect of continuity equation in the species balance

4.1

4.2

Mole based model not including the continuity equation . . . . .. ... ... ..
4.1.1 The temperature balance . . . . . . . .. ... .. ... ...
4.1.2 Species mole balance . . . . . . .. ... L
4.1.3 Maxwell-Stefan diffusion model . . . . . . . . ... ...
4.1.4 Concentration equation . . . . . . ... ... Lo
4.1.5 Summary of the mole based model, including boundary conditions . . . .
Solution strategy . . . . . . . . . . L
4.2.1 Temperature equtation. . . . . . . . . ... L Lo
4.2.2  Species Mole balance and Maxwell-Stefan diffusion . . . . . ... ... ..
4.2.3 Concentration . . . . . . . . ...
4.2.4 Effect of continuity, rigorous models . . . . . . .. .. ... L0
4.2.5 Speciesmass balance . . . . . ... Lo Lo 0o

ii

24
25
25
25
25
26
26
26
27
27
27
31
31
31
31
33
34
35
36

37
37
37
37
37
38
39
39
39
39
39
40
40
40
43



INNHOLD

4.3

4.2.6 Species mole balance . . . . . ... ...
Results and discussion . . . . . . . . . ..o

5 Rigorous steady state models

5.1

5.2

5.3

5.4

5.5

5.6
5.7

Derivation of the equations to use in the model. . . . . . . ... ... ... ....
5.1.1 General for the derivation of both the mass and mole based models . . . .
Mass based model . . . . . ...
5.2.1 The temperature balance . . . . . ... ... ... oo,
5.2.2 Species mass balance . . . . .. ... Lo Lo
5.2.3 Mass based continuity equation . . . . . .. ..o L0000 oL
5.2.4 Wilke diffusion model . . . . .. .. ... ... ... ..
5.2.5 Wilke-bosanquet diffusion model . . . . . . ... ... ... ... .....
52.6 Darcy’slaw . . . . ... L
5.2.7  Maxwell-Stefan diffusion model . . . . . . ... ... 0oL
5.2.8 Dusty gas diffusion model . . . . . . . ... ... L.
5.2.9 Density equation . . . . .. ..o Lo
5.2.10 Summary of the mass based model, including boundary conditions . . . .
Solution strategy . . . . . . . . . ..
5.3.1 Temperature equtation . . . . . . . . ... Lo oo
5.3.2 Species Mass balance and Maxwell-Stefan diffusion . . . . . . . ... ...
5.3.3 Density . . . . ..
Mole based model . . . . . ...
5.4.1 The temperature balance . . . . . ... ... .. ... 0.
5.4.2 Speciesmole balance . . . . .. ... L oo Lo
5.4.3 Continuity equation - Mole based . . . . . . . .. ... ... ... .. ...
5.4.4 Darcy’slaw . . . . ..o
5.4.5 Wilke diffusion model . . . . .. .. ... ... ...
5.4.6 Wilke-bosanquet diffusion model . . . . . .. .. ... ... ... .....
5.4.7 Maxwell-Stefan diffusion model . . . . . . .. ...
5.4.8 Dusty gas diffusion model . . . . . . ... oL oo
5.4.9 Concentration equation . . . . . . . . ... ...
5.4.10 Summary of the mole based model, including boundary conditions . . . .
Solution strategy . . . . . . . . . L
5.5.1 Temperature equtation . . . . . . . . ... Lo L Lo
5.5.2  Species Mole balance and Maxwell-Stefan diffusion . . . . . ... ... ..
5.5.3 Concentration . . . . . . . . .. Lo e
Results and discussion no transfer limitations . . . . . .. ... ... ... ....
Results and discussion rigorous steady state model . . . . . . ... ... ... ..
5.7.1 Wilke - No transfer limitations . . . . . ... ... ... ... .. .....
5.7.2 Wilke - Rigorous . . . . . . .. ..
5.7.3 Wilke-Bosanquet - No transfer limitations . . . . . . ... ... ... ...
5.7.4 Wilke-Bosanquet - Rigorous . . . . . . . . .. ... ... ... ..
5.7.5 Maxwell-Stefan - No transfer limitations . . . . . . . . ... ... .. ...
5.7.6  Maxwell-Stefan - Rigorous . . . . . . . . . ... . L oL
5.7.7 Dusty-gas - No transfer limitations . . . . . . .. .. ... ... ... ...
5.7.8 Dusty-gas- Rigorous . . . . . . . .. . o o
5.7.9 Effect of component solved witheqX . . . . . . .. . ... ... ......

iii

49
50

52



INNHOLD iv

6 Alternative numerical method - Least squares 83
6.1 Derivation of the equations to use in the model. . . . . . . . . .. ... ...... 83
6.2 Mole based model . . . . . . . ... 87
6.3 Results and discussion . . . . . . . . . ... 91

6.3.1 Results and discussion mass based models . . . . . ... ... ... .... 91
6.3.2 Results and discussion mole based models . . . . . ... .. ... ..... 91
6.3.3 Maxwell-Stefan . . . . . . . .. 92

6.3.4 Maxwell-Stefan . . . . . . . . .. 93



1 THEORY - DERIVATION OF GOVERNING EQUATIONS 1

1 Theory - Derivation of governing equations

The basic governing equations used in this thesis are to be derived from general governing
equations. This is done to make the derivation for each case shorter and more spesific. During
the deduction of these basic equations the different terms are also explained. For all equations
the divergence needs to be specified in spherical coordinates for both a vector and a scalar. These
equations can be defined respectively as:

I DV S DR B

Vo= £2 06 (§ve) + £2sin 6 00 (vosinf) + &2sinf 0¢ (1)
1 1

VSZ@A Os . Os . @)

85% + E%ei + fsinf)ﬁTﬁek

These equations can be further simplified for this thesis. The catalyst particle is assumed to
be spherical it is resonable to assume symmetry around the centre of the particle - i.e., no change
when changing the inclination angle 6 or the azimuth angle ¢. Hence the derivatives in 8 and
¢ may be disconsidered. As a result the divergence of a vector and scalar in this thesis will be
given respectively as:

VU= oo (Ee) 3)
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1.1 Mass based basic governing equations
1.1.1 Species mass balance

Differential equations describing the change in mass fractions for the different components in
radial direction within the catalyst pellets are to be derived. The different terms are explained
in table 1, and general species mass balance for a component i is given as:

L (o) 4+ V- (o) = V- (i) + R (5)

Tabell 1: Explanation of the different terms in the species mass balance

0 Represents the change in density for each species i with
ot (i) time
V- (pwiv) Represents the convective transport
V- (Ji) Represents the diffusional transport
R; Represents the reaction rate

Introducing the divergence of a vector (3) for both the diffusional and convective term gives
the simplified species mass balance:

0 10 10
a(ﬂwi) + = = (Epwive) = —— = (£%);) + Ri (6)
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1.1.2 Temperature equation

A differential equation describing the radial temperature profile within the catalyst particles is
to be derived. The contributions from the different terms in the general energy equation are
explained in table 2. The general governing energy equation can be given as:

(1= €)ppCpp + szwicpi)a + P;%CPWV ‘T'=-V-q+(-AHR)R+Q  (7)

i=1

Tabell 2: Explanation of the terms in the general energy equation

or
ot

n
(1 = €)p,Cp, + epz wiCpi) Represents the change of heat content with time

i=1

n
p Z wiCpivV - T Represents the advective transport
i=1
V-q Represents the heat transport by conduction
(-AHR)R Represents the heat from chemical reactions
Q Represents the radiation heat flux

The radiation heat flux is not considered in the next parts of deriving a simplifyed energy
equation. Introducing the divergence of a scalar (4) for the advective term and the divergence of
a vector (3) for the conduction term gives the simplified energy equation on mass form:

- or - or 19
(1= €)ppCpp + GPZWiCpi)E + PZMCPW € " _572675(52@ +(=AHg)R  (8)
i=1 i=1
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1.1.3 The continuity equation

A simplified equation for the continuity equation is to be derived. The terms are explained in
table 3. The governing continuity equation on mass basis can be defined as:
dp
— +V-(pw)=0 9
L9 () )

Tabell 3: Explanation of the terms in the general continutity equation

% Represents the change of density with time

Represents the change of mass or moles in the control
volume

V- (pv)

Introducing the divergence of a vector (3) for the second term gives the simplified mass based

continuity equation:

dp 1 0

E—F?a—f(&zpvg) =0 (10)
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1.2 Mass based diffusion models

The general diffusion models are not simplifyed and are given on explecit form:

1.2.1 Wilke
. 1—w;
ji=—pDiVwi  Dipy = ——7——
M2 wbs;
1.2.2 Wilke—Bosanquet
1 1 1
ji = —pD; ;s Vw; = +
' bedt ' ‘D: eff D;'m DiK

1.2.3 Maxwell-Stefan
—puiVIn(M) — pVw; + Muw; Y- 7755~
J?f’b jig

M 1
Z?#z b,

Ji

1.2.4 Dusty gas
M2, ]\;lg - % — p(wiVM + MVuw;)
J# ‘

2 M
M ZJ 1MDD7,] +DiK

Ji =

(11)

(13)
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1.3 Mole based basic governing equations
1.3.1 Species mole balance

Differential equations describing the change in mole fractions for the different components in
radial direction within the catalyst pellets are to be derived. The different terms are explained
in table 4, and general species mole balance for a component i is given as:

0
a(cxl) + V- (cxiu) = =V - (J;) + R; (15)

Tabell 4: Explanation of the different terms in the species mass balance

0 Represents the change in concentration for the different
a(cxi) species i with time
V- (cxiu) Represents the convective transport
V- (J) Represents the diffusional transport
R; Represents the reaction rate

Introducing the divergence of a vector (3) for both the diffusional and convective term gives
the simplified species mole balance:

e+ 22 (@erue) == (@5 + R, (16)
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1.3.2 Temperature equation

A differential equation describing the radial temperature profile within the catalyst particles is
to be derived. The contributions from the different terms in the general energy equation are
explained in table 5. The general governing energy equation can be given as:

(1 —€)ppCpp + ep; xiCpé)a + c;xiC’pgvVT =—-Vq+ (-AHR)R+Q (17)

Tabell 5: Explanation of the terms in the general energy equation

n
(1 = €)pp,Cpp + €p Z l‘icp;)aaj Represents the change of heat content with time
t
i=1
n
CZ z;CpjoVT Represents the advective transport
i=1
Vq Represents the heat transport by conduction
(-AHR)R Represents the heat from chemical reactions
Q Represents the radiation heat flux

The radiation heat flux is not considered further as it is not needed. Introducing the divergence
of a scalar (4) for the advective term and the divergence of a vector (3) for the conduction term
gives the simplified energy equation on mole basis:

- oT - or 190
/ / _ 2
(1= €)ppCpp +ec> xiCpi)E +e> xiCpanfg = _572875(5 q) + (—AHR)R (18)

i=1 i=1
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1.3.3 The continuity equation

A simplified equation for the continuity equation is to be derived. The terms are explained in
table 6. The governing continuity equation on mole basis can be defined as:

de n
E"FV'(CU)—;M (19)

Tabell 6: Explanation of the terms in the general continutity equation

% Represents the change of concentration with time
V- (cu) Represents the change of moles in the control volume
n
Z r; Represents the sum of the reactions(mole generation rate)
i=1

Introducing the divergence of a vector (3) for the second term gives the simplified mole based

continuity equation:

dc 1 0 -
" 2 (E%cug) = i:eri (20)
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1.4 Mole based diffusion models

The general diffusion models are not simplifyed and are given on explecit form:

1.4.1 Wilke

1—ux;
ji = _CDsmV * T D;m = Zn L ;:J
i
1.4.2 Wilke—Bosanquet
1 1 1
Ji = —CDjepsV - x40 = +
' belt ' Dg,eff D;m Dir
1.4.3 Maxwell-Stefan
—cx; + n:l M
ji = ' Z?‘#z‘ Dis
v 7 Ij
=1 -
ijsﬁi Dis

1.4.4 Dusty gas

no % ciu vy
Y=l — by — oV
_ i ij iK

Ji

Yi-1 5 !
J="> Dy D;
gt o
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1.5 ideal gas law, conversion of velocities etc

1.5.1 mass based flux-velocity conversion

Ji = pi(ui —v) (25)
N
ufv:Z:vi(uifv) (26)
i=1
wi == (27)
Inserting the first into the second:
N x -4
up =y (28)
i1 Pi

writing out p; as w;p and using equation 27, gives the conversion equation:

N .=
JiM
—y = 29
uU—v ; I, (29)
1.5.2 mole based flux-velocity conversion
Ji = C; (ui — u) (30)
N
vou=Y wilu —u) (31)
i=1
OJZ‘M
;= 32
v= 7 (52)
Inserting the first into the second:
N
Ji
v—u= Z wic—i (33)
i=1
(34)
writing out ¢; as x;c and using equation 32 gives the conversion equation:
N
Ji M,
v—u= Z — (35)

1.5.3 Ideal gas law

Different versions of the ideal gas law is used for the different cases. The standard is used for
concentration:

pV =nRT

P _
7T ¢ (36)
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multiplied with moleweight gives the density equation used:

pM _

rT "

11

(37)

The derivative of both the concentration and the density equation with respect to the radial

position are given respectively as:

dc  Op 1 oT p

8¢ OERT  O¢ RT?
%_6}?M oT pM

9~ OERT  O€ RI2

1.5.4 Darcy’s law

B op
w08

1.5.5 Constitutive laws

for mass based models:

for mole based models:

oM p
¢ RT

(40)
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1.6 Transforming the simplified equations to the dimensionless form

The simplified general equations are made dimensionless using the correlations in table 7. By
using these correlations in the simplified equations we will aquire the basic dimensionless equa-
tions used in this thesis.

Tabell 7: Correlations used to make the equations dimensionless

§

&= £ (45) ut = e (46) = Mo

Upef = Dgch (48) f= pif (49) pr = p:)ef
R B -~ S B =

Eref Eref

- O

Dref

* qgfref

(50)

(53)
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1.7 Summary of the dimensionless equations on mass basis

Tabell 8: Mass based model equations on dimensionless form

13

Species mass balance:

O (o) + 2y L€ prung) = D)+ R (57)
ot* 6*2 af* v 5*2 85* ' Drefpref
The basic dimensionless temperature equation:
n 2q” 2
or* * * oT* ( + 85* )>\ ref(_AHR)R
((1 - E)ppcpp + ep Pref szcpl 8t* TP et ;wlcplaig* B Dref D7'efT7'ef
(58)
The basic dimensionless continuity equation:
o T e e ETP) =0 (59)
Wilke diffusion model:
L DL 0w, 1—w;
Ji=—p" 8w* D, = % (60)
Dres 05 M2ty
Wilke-Bosanquet diffusion model:
- Dé e awi 1 ]. 1
= pet e BT DD (61)
ref 0 ieff im iK
Maxwell-Stefan diffusion model:
—p*w; 1 OM * Ow;y
Bt aroer — Doy ot T Mwi Zﬂ ! TP
Ji = —= (62)
M Zi?l MjDI-J
J#i
Dusty gas diffusion model:
2 n wij; v'wiM _ wip*® M _ p*M dw;
. M Eéz M, D, Dix ref OE*  Dyey O&*
Ji = 3] (63)
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1.8 Summary of the dimensionless equations on mole basis
Tabell 9: Mole based model equations on dimensionless form
Species mole balance:
10, . 10, . s
*i - * *i*zfi *Jfk Ri% 64
at* (C € ) + 6*2 86* (5 c xuf) 5*2 ag* (g (2 ) + lD'refCTef ( )
The basic dimensionless temperature equation:
n 2¢" 2
. or* ors (G + SN €, (~AHR)R
((1 B E)ppcpp + « CTE’f ;xchl at* C Crefv Z ‘T'LCp’l af* D7-€f D'r-EfTT-(if
(65)
The basic dimensionless continuity equation:
a1 D, ., RS
— 4+ = “tup) = (——=— T4 66
ot* 5*2 85* (5 5) (CrefDT'ef ) ; ( )
Wilke diffusion model:
Dy, Ox; 1—
Jf =t Dy, = . 67
D'r'ef 85* Z] 1 D” ( )
Wilke—Bosanquet diffusion model:
D; .ty Oz 1 1 1
* * i,eff ?
JP == + 68
DT@f 35* ‘D: eff D;m DiK ( )
Maxwell-Stefan diffusion model:
im‘ 95*
Ji = 7 m] (69)
Zz—z
Dusty gas diffusion model:
c* ox; + Z _ cfziut
Dy 0* Dk
Jr = N (70)
ZJ 1 DJ_ + DzK

] 7
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all steady state models are simulated using 60 collocation points

and is run to a convergence of 1% 10710

More info...

Plots not shown, reason pressure concentration average molecular weight
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2 MODELS ON THEIR SIMPLEST FORMS 16

2 Models on their simplest forms

General about the case, SMR etc

2.1 Derivation of the equations to use in the model.

This is the models on their simplest forms assuming steady state and no convective transport
in the pellet, also basic boundary conditions are used. The use of basic boundary conditions
elimitates the effect of transfer resistances. A model on both mass and mole basis is to be
derived. Also the method of implementation is shown to indicate how the problem is solved
using orthogonal collocation.

2.1.1 General for the derivation of both the mass and mole based models

The temperature equation (58)(65) is solved in combination with fouriers law. The temperature
equation is only modified by introducing the assumptions assumed for this case.

The Species balance for respectively the mass and mole model (57) and (64), is used to
calulate the fluxes. This is done by solving the species balance for N-1 components and the last
component by the constitutive law’s (41) and (43). In the species balance the continuity equation
(59) and (66) is identifiyed for the respective model and inserted giving the species balance used
in the model.

The species fractions is solved by using the different diffusion models in table XXX for N-1
components, the last component is solved by the constitutive law’s (42) and (44) for respectively
the mass and mole based model. The diffusion models are only reformulated from their general
form shown in the theory to reflect their implemented form.

A summary of the equations derivated in detail in the next sections are shown in table 10 for
the mass based model and table 20 for the mole based.

2.2 Mass based model
2.2.1 The temperature balance

The general temperature balance derived earlier (58):

n n 2¢" | 9q” 2
oT* oT* ( £+ =+ Tg)A ref(_AHR)R
1-— C; *'I"(’ iciizf*re . iciif
(1= 0erCp + €0 pres ;“’ D) g = O Pres ;‘” s D DrefTres
(71)
Steady state is assumed:
n 2¢" | 9¢" 2
* * orT™* ( * oE* ))\ re (7AHR)R
0= —p"preso, ZwiCpi a6 ¢ D : ;) T (72)
i=1 ref reflref
no convective transport is assumed:
. (L + 55N & ,(~AHR)R 73
B Dref DrefTTef
The equation is rearranged and the used equation is given as:
2 0 _ Sy(—AHRR -

5* af* B Tref)\
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2.2.2 Species mass balance

The mass based fluxes are obtained from the species mass balance. The general dimensionless
equation is given as derived earlier (57):

1 9 ;
* *2 % 'U* _ *2 % + Rz ref 75
ot* (p ) 5*2 85* (5 §) 5*2 af* (6 Ji ) D'r‘efp'r‘ef ( )
Steady state is assumed.
10 10 ver

- 6*2p*w7 * = £*2jf~< + R1 76
5*2 85* ( 5) 6*2 af* ( ! ) Drefpref ( )

The first term is written out to identify the continuity equation.

1 Ows d 1 9 2

_ §*2 * ok + W — —— é—*Qp*,U* - = é—*2j:< + Ri 77
£%2 g+ ( ) 5*2 o+ ( 5) £¥2 ¢+ ( ) Drefp'ref ( )

The second term is identified as the LHS of the mass based continuity equation (59) when steady
state is assumed, swapped for the RHS of the mass based continuity equation gives:

L g2 prag) O (€252) + Rors Tl (78)
o2 ger S P V) T T ea e S i i
€ 2 ag J 5 €2 86 Drefpref
No convective transport is assumed, and the equation is rearranged:
1 9 25
(€2%);) = Rim5——— (79)
5*2 35* Drefpref
The first term is expanded to reflect the implemented equation:
2j5  9jr 7

f* 85* 7ll)refpref

2.2.3 Wilke diffusion model

The general Wilke diffusion model as given in (60):

D/m Ow; ;o 1 —w;

Ji =—p" y Dim==—n o (81)
D'r‘ef ag M Zj:l ﬁ
JF#i
Rearranged to the implemented form:
. Dref &ui ’ 1-— Wy
]; *+ * =0 Dimzﬁ (82)
Dipr 0 M3 5= 55,5
J#i
2.2.4 Wilke-bosanquet diffusion model
/
Dref ag* Dg,eff D;m Di,K
Rearranged to the implemented form:
i = _ Dref 85: =0 o] = = + o, (84)
zeffp ieff MZ;:I Mjg)ib i, K
it
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2.2.5 Maxwell-Stefan diffusion model

The general Maxwell-Stefan model as given in (62):

Dlef Mai* ref 85*

MYy 55—
Jj=1 M,-Dl-»
g#i 0T

—p wi (M) p* Ow; 4 Muw; 23 1 M D”

Ji =

Rearranged to the implemented form:

MDmf Z L 0w OM  MD,. i S
85* M o&* p* = M;D;;
J#l J#i
2.2.6 Dusty gas diffusion model
The general Maxwell-Stefan model as given in (63):
wij; * 7M wip® OM *M O i
. ar ZJ VM,D; " Dux | Dreg 06 T Doy 06
Ji = v
wj M
ng;z M;Dpij Dk
Rearranged to the implemented form:
v Drey (Mzn: wj 1 ) % MDTef Z wij; _ V'wiDpey &(C)M
Lot o1 M;jDi; og* M;D;; Digp* M 9
i J#%
Assuming no convenctive transport:
jkaref(Mzn: OJ{ 1 )—I—%—MDTEJCZ L.]; _28M
Copr = M;Dy; o&* M;D;; M 9¢*
J#i J#Z

2.2.7 Density equation

The density is obtained from modified ideal gas law given earlier eqX
pM _
rT "

2.2.8 Summary of the mass based model, including boundary conditions

18

(88)

(90)

The derived equations are gathered in table 10. In the table the consitutive laws, initial and

boundary conditions used for solving the model are given.

2.3 Solution strategy

The different equations are first discussed in short with text and the main summary of the
solution strategy is given in table 12. In the table the used equations combined with boundary
conditions are shown. The solution strategy is also visualised in the form on how it would be

implemeted by the use of orthogonal collocation, shown in figure 36.



2 MODELS ON THEIR SIMPLEST FORMS 19
Tabell 10: Mass based equations, constitutive laws and boundary conditions
Equations: Constitutive Laws:
Temperature equation: Fourier’s law
2 9" _ &es(“AHR)R (o1) L0 (92
£ g ) 29
Mass balance: Definition:
2 Oj; ey o3
5* af* Drepref ( ) ; ( )
Diffusion model: Definition:
One of the four diffusionmodels in table 23 is used Zwi 1 (95)
i=1
Ideal gas law modified for density:
pM _
77 = P (96)

Boundary conditions in the symmetry point

£ =0

Ji=0
q=0

T=T>"

Wy :wf

Boundary conditions at the surface £* = ¢

(99)
(100)

2.3.1 Temperature equtation

The temperature equation combined with the fouriers law is solved separately to obtain the
temperature. The method of implementation is shown in figure 36.

2.3.2 Species Mass balance and Maxwell-Stefan diffusion

The species mass balance is solved to obtain the mass based fluxes. The mass based fluxes are
then used to obtain the mass fractions throughout the catalyst particle using the maxwell stefan

diffusion model.

2.3.3 Density

The density equation is solved outside the numerical problem and is solved using the previous

iterative values.
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Tabell 11: Diffusion models on their implemented form

LHS is implemented in the collocation matrix, and the RHS is implemented in the source vector

Wilke:

S Dref awi

Wilke-Bosanquet:

=0 D;

= T (101)

J#i

» Dref Ow; 1 1 1
i - =0 - = = + = (102)
Dlasst” 08 Pt wropsy D
i
Maxwell-Stefan:
MDM (?w,; —w; OM MDM = j;*
= — —w; 103
J#l J#i
Dusty gas:
wDref v~ wj 1 8wi MDref wifj  w; OM
* Tl (M J _|_ i — = J —_— 104

J#l




2 MODELS ON THEIR SIMPLEST FORMS

21

Tabell 12: Summary of the solution strategy

Equations, LHS represents terms in the problem matrix and
the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

q+ g—; =0 (105)
Temperature equation:
ng* gz: _ 536]«(7;21;\13)1% (107)
Species mass balance, used for N-1 components:
Last flux(H20) in the species balance is solved by:
S =0 (1)

A diffusion model is used for N-1 components:

One of the four diffusionmodels in table 23 is used

Last massfraction(H20) in the species balance is solved by:

> wi=1 (113)
i=1
Ideal gas law modified for density*:
pM
= 114
7T =" (114)

Boundary condtion at £ = &P

T=T1" (106)

Boundary condtition at £ =0

q=0 (108)

Boundary condition at ¢ =0

ji=0 (110)

No boundary condtion

Boundary condtition at & = &P :

(112)

ws :w?

No boundary condtion

No boundary condtion

*Solved outside of the numerical collocation system and calculated from previous iteration

values
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Tabell 13: Terms in the collocation matrix and source vector

23

Label in matrix

Collocation matrix terms:

multiplied with:

DM,

DM,

DM,

DM,

Wilke:
Drey
Dipp®
Wilke-Bosanquet:
D'r‘ef
/ *
Dicssp

Maxwell-Stefan:

MDref i Wy
pr i M;Di

i

Dusty gas:

n

1

Dre SV j
*f<MZ “i
P j=1 M;Di;

J#i

* DiK)

Ji

Label in source vector

Source vector

DM,

DM,

DM,

DM,

SB

Wilke:

Wilke-Bosanquet:

Maxwell-Stefan:

Dusty gas:

MDref ) = j;

MDrefZ wijj _ wi 0M
p* = M;D;; M O¢
J#i

Source term species balance:

2
ref

R.
’ Drefpref
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2.4 Mole based model
2.4.1 The temperature balance

The general temperature balance derived earlier (65):

n n 29"
. oT* .. o (3 + 55N €. (-AHR)R
(115)
Steady state is assumed:
n 2q”
oT* ( =+ 85* )A ref( AHR)
0= —c"cresuy inCp; - - + (116)
i=1 8§ Dref DrefTref
no convective transport is assumed:
2q* g~
L+ SN AHR)R
0= _(§ o€ ) ref( R) (117)
Dref DrefTref
The equation is rearranged and the used equation is given as:
2 9q¢* & ;(—AH.)R
q qa 3 f( ) (118)

g* 85* - T‘refA

2.4.2 Species mole balance

The mole based fluxes are obtained from the species mole balance. The general dimensionless
equation is given as derived earlier (64):

1 2 1 0 2 ?ef
x4 — Lotrul) = —— 2Jr R,————— 119
ot (c*w;) + €2 9¢+ (§c xt“&) €2 9¢+ (§2J7) + ZDrefcref (119)
Steady state is assumed.
1 9 1 9 vef

5o (P mul) = — 5 5 (€2T) + Ryl — 120
5*2 8£* ( 5) 5*2 af* ( ) Drefcref ( )

The first term is written out to identify the continuity equation.

1 02i, .0 1 8, . 1 0, . or

— “cfuf) + 1 — — (£ ul) = —— I+ R ———— 121
5*2 ag* (f ) 6*2 6§* (6 5) 5*2 35* (E ) DrefCTef ( )

The second term is identified as the LHS of the mole based continuity equation (66) when steady
state is assumed, swapped for the RHS of the mole based continuity equation gives:

L0 o)+ ) Yo r =~ e e R (2
A ur———— Ty = — i i
5*2 85* CrefDref i—1 5*2 85* Drefcref
No convective transport is assumed and the equation is rearranged:
1 0 'ref
E2T) = (Ri —x;i Y 73) 123
£*2 06~ ( Z DyegCref ( )
Expanding the first terms to reflect the equation used in the model:
20 0T & ref
L L= (Rl — X; 7“,‘)7 (124)
5*2 af* z:zl Drefcref



2 MODELS ON THEIR SIMPLEST FORMS

2.4.3 Wilke diffusion model

The general Wilke diffusion model on mole basis as given in 67:

% % 8%‘1 1-— Z;
J;i=—c Dsmaif* D = W
gAY
Rearranged to the implemented form:

D ox; 1—x;
Jy et =0  Dyn=cn—ar
{ Dy | 08 TS
FE

2.4.4 Wilke-bosanquet diffusion model

ko *

T Dy 0 D, D, Dix

Rearranged to the implemented form:

o Drey ox; 1 1 1
z*D/ OE* =0 D’ = l1—x; + D
ef fC f ieff m i, K
it
2.4.5 Maxwell-Stefan diffusion model
The general Maxwell-Stefan model on mole basis as given in 69:
* O0x; n J]*a:l
—C o¢* +Z]:1 D”'
ji =
Z] 1
A D”
Rearranged to the implemented form:
ref CL'j 51‘1' . Dref ]j X
S gty
375% J#Z
2.4.6 Dusty gas diffusion model
The general Maxwell-Stefan model on mole basis as given in 70:
Cﬂ”ef df* CDI;I’?
J,L'* == 7
ZJ,_l. Djj + DiK
J#i
Rearranged to the implemented form:
D,. L 1 0x; Dre Jiz;  Dyepaiu*
I Tf (Z B )=— : f Z _ f
c DZJ DiK 3§ DiK

j=1
i

25

(125)

(126)

(127)

(128)

(129)

(130)

(131)

(132)
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2.4.7 Concentration equation

26

The concentration is obtained from the ideal gas law eqX.

L _
RT

c

(133)

2.4.8 Summary of the mole based model, including boundary conditions

The derived equations are gathered in table 20. In the table the consitutive laws, initial and
boundary conditions used for solving the model are given.

Tabell 14: Mole based equations, constitutive laws and boundary conditions

Equations:

Temperature equation:

i=1

Diffusion model:

Ideal gas law rearranged for concentration:

p

RT°

2¢" | 0q" _ &ef(~AHR)R
§* 65* Tref/\
Species mole balance:
205 AJ; “ ef
i i — (R — 2 N__rel
5*2 35* ( i — i Z 7‘7,) Drefcref

One of the four diffusionmodels in table 28 is used

Constitutive Laws:
Fourier’s law
oT
(134) q -+ o =0 (135)
Definition:
(136) > Ji=0 (137)
i=1
Definition:
> omi=1 (138)
i=1
(139)

Boundary conditions in the symmetry point
& =0

(140)
(141)

Boundary conditions at the surface £* = &7

T="T1"

(142)
(143)

2.5 Solution strategy

The different equations are first discussed in short with text and the main summary of the
solution strategy is given in table 21. In the table the used equations combined with boundary
conditions are shown. The solution strategy is also visualised in the form on how it would be
implemeted by the use of orthogonal collocation, shown in figure 37.
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Tabell 15: Diffusion models on their implemented form

LHS is implemented in the collocation matrix, and the RHS is implemented in the source vector
Wilke:
Dref axz 1-— ZT;
i =0 Dem = == 144
c*Dgm O > i=1 Di; (144)
gAY
Wilke-Bosanquet:
Dref a.’L’rL 1 1 1
Jimr o . =0 =t (145)
Di eppct 06 D} .ty :711 D; i
j=1 Dy
J#i
Maxwell-Stefan:
ref L O _ Diey 5 (
= 146)
Dw 55* c* ; D;;
J;ﬁz J#i
Dusty gas:
-D'ref ! €y 1 axz Dref ‘] T4 refxz *
T=—Q 5+ =- —~ 147
c* (Jz_:l DZ] DzK) 85* Z zK ( )
J#i

2.5.1 Temperature equtation

The temperature equation combined with the fouriers law is solved separately to obtain the
temperature. The method of implementation is shown in figure 37.

2.5.2 Species Mole balance and Maxwell-Stefan diffusion

The species mass balance is solved to obtain the mole based fluxes. The mole based fluxes are
then used to obtain the mole fractions throughout the catalyst particle using the maxwell stefan
diffusion model.

2.5.3 Concentration

The concentration equation is solved outside the numerical problem and is solved using the
previous iterative values.
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Tabell 16: Summary of the solution strategy

Equations, LHS represents terms in the problem matrix and
the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

or

0 (148)

Temperature equation:

2;: + gz: _ 53#(7;31;[1?)3 (150)
Species mole balance, used for N-1 components:
2‘§{§ + ggg = (R; — x; grl)mffe;q (152)
Last flux(H20) in the species balance is solved by:
. Ji =0 (154)

i=1

A diffusion model is used for N-1 components:

One of the four diffusionmodels in table 23 is used

Last massfraction(H20) in the species balance is solved by:

n
dai=1 (156)
i=1
Ideal gas law modified for concentration*:
p
£ _ 1
T =€ (157)

Boundary condtion at £ = &P

T=T1" (149)

Boundary condtition at £ =0
q=0 (151)
Boundary condition at £ =0
J; =0 (153)

No boundary condtion

Boundary condtition at £ = &P :

x; = a? (155)

No boundary condtion

No boundary condtion

*Solved outside of the numerical collocation system and calculated from previous iteration

values
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29



2 MODELS ON THEIR SIMPLEST FORMS

Tabell 17: Terms in the collocation matrix and source vector

30

Label in matrix Collocation matrix terms: multiplied with:
Wilke:
DM, _ref D, — i J;
7 PR im — n z;
Dimc Z-J]; D;;
Wilke-Bosanquet:
DMl Dref 1 — 1 + 1 ‘]1*
D} pct Di ¢y :7%1 D; k
j=1 Dy
J#i
Maxwell-Stefan:
DMl -Dref d ‘fL‘ij ‘]1*
c* = DLJ
J#i
Dusty gas:
DM, Dmf( i z; J
c* = Dij
J#i
Label in source vector Source vector
Wilke:
DM, 0
Wilke-Bosanquet:
DM, 0
Maxwell-Stefan:
DM, Dy Z j i
c* - -Dij
j=1
i
Dusty gas:
DM, Dyey s~ Jj % Dyeguiu*
c* = Dzy DiK
J#i
Source term species balance:
S B v 2
R — r ref
( ’ Zi:Zl Z)Drefcref
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2.6 Results and discussion
2.6.1 General for all diffusion models

As stated this is the models on their simplest forms with the assumption of steady state, no
convective flow and simple boundary conditions. The Steam methane reforming reaction is simu-
lated. The mole fractions of the reactants HoOandC H, are expected to decrease from the surface
to the center of the particle, and increase for the products COy, CO, Hy. The mole fraction of
the inert gas N is expected to change some with the change in motive power for the diffusion
of nitrogen, also there is some effect from the reaction due to mole generation.

The simulation of the SMR reaction requires heavy under-relaxation of the diffusion model in
order to converge. The Wilke-Bosanquet diffusion model tend to be the most sensitive whereas
the Maxwell-Stefan model the most robust. These simulations are underrelaxed by a factor of
1-2 in the order of 10~* depending on the diffusion model. For each model the highest possible
under relaxation value is used to reduce the amount of iterations and total calculation time.

2.6.2 Wilke and Wilke-Bosanquet models

Starting out with the Wilke diffusion mode on its simplest form, one can immidiately see from
the result plots in figure 3 and 4 that the mole and mass based model does not yield the same
results. The differences here is due to the inconsitensy in the wilke model. This can best be explai-
ned by looking at the molefraction plot for nitrogen and comparing it with the wilke equation
on the different forms.

The wilke equation on mass basis is only depented on the component which it is solving for,
this means that for nitrogen since it does not react will have a flat profile in massfractions, and
the increase seen in molefractions is only due to the increase in molarweight. One would then
expect flat mole fraction profile for nitrogen using the mole based wilke model, but in the mole
based species balance it is accounted for mole generation rate which give the rather great change
in the composition. this effect can easily be spotted in the comparison of the fluxes

The differences in the the temperature equation is due to the different reaction rates because
of the inconsistent wilke model. The differences in the flux equations is the effect of not consi-
dering convective flow. Not considering convective flow is mainly causing the mole based model
to deviate as the convective flow is neglectable on mass basis, this means that only the diffusive
fluxes are compared.

Adding the effect of knudsen diffusivities in the Wilke-Bosanquet model does not give any
significant change from the standard Wilke model as it can be seen from the figures 5 and 6

2.6.3 Maxwell-Stefan and Dusty gas models

A quick look at the results for the Maxwell-Stefan model in figure 7 and 8 one can immidately
see that this model gives much more comparable results between mass and mole based models
compared to the Wilke diffusion models. One would also expect this since the Maxwell-Stefan
model is a more rigorous diffusion model which consideres the other components not just itself.
This is easily spotted comparing the diffusion equations in table XXX.

The results for simplest form considering the dusty gas diffusion model is abit different, the
differences can be seen in figure 9. This is also a rigorous diffusion model along with the Maxwell-
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Stefan diffusion model. However with the addition of knudsen diffusivites the dusty gas diffusion
model also have a convective term which is not considered on this level. When the models are com-
pared in the chapter with convective flow one can see that the convective terms on mass basis are
neglectable but on mole basis it has a significant value, This is further discussed in chapter XXX.

The temperature equation for both models are more similar than for the wilke model due to
the more similar reaction rates. The flux comparisons on mole and mass basis for all models in
figure 4,6,8 and 10 all show great similarity between the diffusion models because of the very
rapid reaction. The reaction is so rapid that the diffusion equations will yield almost no effect
back to the species balances equations which is used to calculate the fluxes.
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2.6.4

Wilke plots
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2.6.5

Wilke-Bosanquet
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2.6.6 Maxwell-Stefan
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3 Case number 1b Alternative dimensionless method

The fluxes are made dimensionless using non constant values
General about the case, SMR etc

3.1 Derivation of the equations to use in the model.

This model only differs from the case 1 by not assuming constant values when making the fluxes
dimensionless. The mass based model from the previous case will be compared to an alternative
method of making the mass fluxes dimensionless. This is done to validate that it is resonable to
assume constant values.

3.1.1 General for the derivation of the mass based model

The temperature equation (58) is solved in combination with fouriers law. The temperature
equation is only modified by introducing the assumptions assumed for this case.

The Species balance for the mass model (171), is used to calulate the fluxes. This is done by
solving the species balance for N-1 components and the last component by the constitutive law
(173). In the species balance the continuity equation (59) is identifiyed and inserted giving the
species balance used in the model.

The mass fractions is solved by using the Maxwell-Stefan diffusion model for N-1 components,
the last component is solved by the constitutive law (42).

A summary of the equations derivated in detail in the next sections are shown in table 18 for
the mass based model.

3.2 Mass based model
3.2.1 The temperature balance

The general temperature balance derived earlier (58):

" or* " or* (& + 5N & (-AHR)R
1—c¢ C +€*re wiC’i—:—*re ’U: OJZ'C i — + re
(1= €)ppCpp + €p* prey ;:1 Di) T P Pref ;:1 Pi e Dros DroiToos
(158)

Steady state is assumed:

R
. or (L +355)N &, (-AHR)R

0= —p*presvl Y wiCpime — re 159

r fUT;w og Dry ' Dresrey 159

no convective transport is assumed:

L+ 55N &, (-AHR)R

g*
0=-— 160
Dref DrefTref ( )
The equation is rearranged and the used equation is given as:
2¢*  0q*  &ef(-AHR)R (161)

5* 85* B Tref)\
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3.2.2 Species mass balance

The mass based fluxes are obtained from the species mass balance. To account for the alternative
method of making the flux dimensionless, we will start out from the general species mass balance
with dimensions. The general equation is given as noted earlier (6):

8

190
Steady state is assumed.
10
The first term is written out to identify the continuity equation.
W 10 0
o€ (pve) + Wi?aig(gaovf) = 52 ot (5231) + R; (164)

The second term is identified as the LHS of the mass based continuity equation (10) when steady
state is assumed, swapped for the RHS of the mass based continuity equation gives:

80.)1' 10 2.
- )+ R; 165
o) = — g5 e (€270 + (165)
No convective transport is assumed, and the equation is rearranged:
i) =Ry 166
The first term is expanded to reflect the implemented equation:
2ji 07
— + = R; 167
¢ T o (167)
Alternative method for making the fluxes dimensionless:
-k jgref
¥ — Jore) 168
=" (168)
where p can be written out to:
-k ng’e
= (169)
DSC CrefM

Introducing the last equation into the species mass balance to transform it to a dimensionless
form:

2j¥Ds c*crefﬂ Cref O
5 E7‘6]" §T6f2 85*

Rearranging and writing out the differential:

(ji Dsc"M) = R; (170)

2

2j*Dsc* M —0jf oD, ., . —0c oM vef
- + Dsc*M M + j¥DsM— + j¥ Dsc* =R; 171
g DM g T M Ge T DM gt i D =i o (4T
Clean up equation:
2jF  0j; oD, | jroct  jr OM v
jz jz + ]71 jﬁl c ]Z — . f (172)

& 1 0¢ Dy og T o MOE T pD,
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3.2.3 Constitutive law for the species balance

a modified constitutive law is needed as now the dimensionless fluxes will not sum to 0.
n
> JiDyc =0
i=1

3.2.4 Maxwell-Stefan diffusion model

The general Maxwell-Stefan model with dimension as given in (13):
—pw;VIn(M) — pVw; + Mw; > 71— ﬁ
g#i 7Y

M S wj
Z]}:l_ M, Di;
J#i

Ji =

Specifies that:

i
D'=M 1
8 Z M;D;;
Jj=1
J#i
Transforming to dimensionless form:

1M dw; 7, . ~=n  JjDsc'cresM
pOJzM 8§*Eref Pag*gmf + MOJZ 22;1 7MjDij§'ref

j: = é-ref C*Crefﬂ

Cleaning the equation:

-

1 8M 8&]7; i j*DéM

Wij——— — W
Mog og Y MDy
J#i

3.2.5 Concentration equation
The concentration is obtained from the ideal gas law given earlier eqX

p

RT

3.2.6 Summary of the mass based model, including boundary conditions

39

(173)

(174)

(175)

(176)

(177)

(178)

The derived equations are gathered in table 18. In the table the consitutive laws, initial and

boundary conditions used for solving the model are given.

3.3 Solution strategy

The different equations are first discussed in short with text and the main summary of the
solution strategy is given in table 19. In the table the used equations combined with boundary
conditions are shown. The solution strategy is also visualised in the form on how it would be

implemeted by the use of orthogonal collocation, shown in figure 11.
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Tabell 18: Mass based equations, constitutive laws and boundary conditions

Equations: Constitutive Laws:
Temperature equation: Fourier’s law
2 | 9 _ & (~AHR)R (179) q+ 31; =0 (180)
& ogr TrefA 3
Mass balance: Definition:
2jf | 03i | 37 ODs | jioct | g OM _ o &y -~
=+ + — + = =R; 181 TDsp=10 182
& "ot Doe T eoe Taroe ~ Mp, 18V ;J P (182)
Diffusion, Maxwell-Stefan: Definition:
. 1 OM  Ow; 2 J; DM -
Ji=wi= e — + w; 183 wi =1 (184)
M ag* 85* = MjDij ( ) ;
J#i
Ideal gas law, concentration and density:
P pM
-— = — = 185
rT - Rr ' (185)

Boundary conditions in the symmetry point | Boundary conditions at the surface £* = &7
=0

ji=0 (186) T=T° (188)
q=0 (187) w; = w? (189)

K3

3.3.1 Temperature equtation

The temperature equation combined with the fouriers law is solved separately to obtain the
temperature. The method of implementation is shown in figure 11.

3.3.2 Species Mass balance and Maxwell-Stefan diffusion

The species mass balance is solved to obtain the mass based fluxes. The mass based fluxes are
then used to obtain the mass fractions throughout the catalyst particle using the maxwell stefan
diffusion model.

3.3.3 Concentration

The ideal gas law is solved outside the numerical problem and is solved using the previous
iterative values.
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Tabell 19: Summary of the solution strategy

Equations, LHS represents terms in the problem matrix and
the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

oT
=0 190
9+ g6 (190)
Temperature equation:
2 9q* & ;(—AHR)R
24 _ bref(COHR)R (192)
6* 05* T’refA
Species mass balance, used for N-1 components:
2jr  9jr v JfoDs  jroct g oM
Ji | O3F _ p Srer _ JP 0D gocr i OM (194)
& 8™ pDs D, 0¢* c* 0g* M O¢*
Last flux(H20) in the species balance is solved by:
> iiDp =0 (196)
i=1
Maxwell-Stefan diffusion model for N-1 components:
_ 1 OM  Ow; . j;DsM
== — ; 197
T Tegtee Toe T g,
J#i

Last massfraction(H20) in the species balance is solved by:

dwi=1 (199)
i=1
Ideal gas law, concentration and density*:
p pM
_— _— = 2
rT~° Rr ' (200

Boundary condtion at £ = &P

T=T" (191)

Boundary condtition at £ =0
g=0 (193)

Boundary condition at £ =0

Ji=0 (195)

No boundary condtion

Boundary condtition at £ = &P :

wi = w? (198)

No boundary condtion

No boundary condtion

*Solved outside of the numerical collocation system and calculated from previous iteration

values
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3.4 Results and discussion

The effect of using constant vs variable values when making the diffusion fluxes dimensionless
are compared for the mass based model in the figure XXX. As it can be seen from the figure this
has no effect. However it is recommended to use constant values as this will yield a much simpler
model, using variable values will cause a more troublesome implementation due to the fact that
the fluxes will no longer be directly in scale.
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4 Effect of continuity equation in the species balance

For the simple models not considering convective flow the inclusion of the continuity equation
only has an effect on the mole based model.This is because the continuity equation on mass
basis equals to zero and does not contribute with any new terms. For the more rigorous models
icluding the convective terms the use of the continuity equation should not have any effect.

A model for the most crucial case mole based case is to be derived.

4.1 Mole based model not including the continuity equation
4.1.1 The temperature balance

The general temperature balance derived earlier (65):

n n 29" | 9q” 2
oT* or*  (F=+5E)) & (-AHR)R
1—6)p,Cp, + ec*cre x;Cp); = —c*crepvi Y ;0P -8 +
(( )pp P f ; ) 6t* f ; 85* DTef DrefTref
(201)
Steady state is assumed:
n 29" | 9q” 2
oT* ( -+ 87*))\ -(—AHR)R
0=~ crepvl Y a,Opl o — 20 rel 202
e fvr-zx b 85* Dref DrefTref ( )
=1 . J
no convective transport is assumed:
2¢" | 99" 2
L+ 55 )A —AHR)R
0= _( £ o€ ) ref( R) (203)
Dref DrefTref
The equation is rearranged and the used equation is given as:
2q* * 2 (-~AH)R

f* 85* B Tref)\

4.1.2 Species mole balance

The mole based fluxes are obtained from the species mole balance. The general dimensionless
equation is given as derived earlier (64):

(c*z;) + 19 (€2t zug) = _ 19 (&2JF) + R-ﬁ (205)
8t* ? 6*2 86* te) 5*2 ag* % ZD'refCTef
Steady state is assumed.
10, . 10, . s
#2 K ¥ 2+ R —r 206
6*2 8&'* (§ ¢ xiuﬁ) 6*2 ag* (g ) ) + Qg Drefcref ( )
No convective transport is assumed and the equation is rearranged:
1 9 :
0=——s 2JE) 4 Ryt 207
g g (€0 + i (207)
Expanding the first terms to reflect the equation used in the model:
2J;  dJ} ;
i L= R (208)

5*2 86* B iDrefCref
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4.1.3 Maxwell-Stefan diffusion model

The general Maxwell-Stefan model on mole basis as given in 69:

= (200)
-
i D
Rearranged to the implemented form:
j*D L 0x; D "L gl
7 ref 7 i ref jvi
- tam = (210)
C 32::1 Dz’j 8€ C ; Dij
J#i J#i
4.1.4 Concentration equation
The concentration is obtained from the ideal gas law eqX.
p
== 211

4.1.5 Summary of the mole based model, including boundary conditions

The derived equations are gathered in table 20. In the table the consitutive laws, initial and
boundary conditions used for solving the model are given.

4.2 Solution strategy

The different equations are first discussed in short with text and the main summary of the
solution strategy is given in table 21. In the table the used equations combined with boundary
conditions are shown. The solution strategy is also visualised in the form on how it would be
implemeted by the use of orthogonal collocation, shown in figure 37.

4.2.1 Temperature equtation
The temperature equation combined with the fouriers law is solved separately to obtain the
temperature. The method of implementation is shown in figure 37.

4.2.2 Species Mole balance and Maxwell-Stefan diffusion

The species mass balance is solved to obtain the mole based fluxes. The mole based fluxes are
then used to obtain the mole fractions throughout the catalyst particle using the maxwell stefan
diffusion model.

4.2.3 Concentration

The concentration equation is solved outside the numerical problem and is solved using the
previous iterative values.
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Tabell 20: Mole based equations, constitutive laws and boundary conditions

Equations:

Temperature equation:

Qq* + 661* _ ggef(_AHR)R
’S* 35* B :rrefA
Species mole balance:
* * 2
2J; 0J; _ o Sref
5*2 86* Drefcref

Diffusion, Maxwell-Stefan:

oE* c*
J#i

. 7 nox
j;-kDref T; ox; . D,-ef J5 i
c* E: * B E:
j=1 j=1

J#i
Ideal gas law rearranged for concentration:

P
RT

c

Constitutive Laws:
Fourier’s law
oT
Definition:
(214) > Ji=0 (215)
i=1
Definition:
(216) da=1 (217)
i=1
(218)

Boundary conditions in the symmetry point
=0

(219)
(220)

Boundary conditions at the surface £* = &5

T=T1"° (221)
r; = a? (222)

?
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Tabell 21: Summary of the solution strategy

Equations, LHS represents terms in the problem matrix and
the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

oT

0 (223)

Temperature equation:

2¢* « & (-AHgp)R
¢ 0 _ & #( R) (225)
5* 85* Tref)\
Species mole balance, used for N-1 components:
2JF AT ot
L L =Ri———"— 227
§*2 * af* Z-D'r’efcref ( )
Last flux(H20) in the species balance is solved by:
Ji=0 (229)
i=1
Maxwell-Stefan diffusion model for N-1 components:
JiDref N~ @5, 0w _ Dyey X~ Jj%i
= 230

JFi i

Last massfraction(H20) in the species balance is solved by:

dai=1 (232)
i=1
Ideal gas law modified for concentration*:
p _
7T = C (233)

Boundary condtion at £ = &P

T=1° (224)

Boundary condtition at £ =0
q=0 (226)
Boundary condition at £ =0

Ji =0 (228)

No boundary condtion

Boundary condtition at & = &P :

T; = ab (231)

No boundary condtion

No boundary condtion

*Solved outside of the numerical collocation system and calculated from previous iteration

values
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4.2.4 Effect of continuity, rigorous models

Due to the small changes in the models and the results given by including the continuity equation
in the more rigorous models the alternative species balance equations are only derived. These
equations can be replaced in the semi rigorous model derived in chapter XXX.

4.2.5 Species mass balance

The mass based fluxes are obtained from the species mass balance. The general dimensionless
equation is given as derived earlier (57):

9, . 1 *2 x L 0 . 7%6f
%(P wi) + &2 g (5 pwiv 5) 57235* (§757) + Rim (234)
Steady state is assumed and the equation is rearranged.
1 2 1 9 *2 ok zef
5*2 P (f ) §T26§* (§557) = Rim (235)
The first and second term is written out:
- . . 2
e G i o e enpi o

The equation is rearranged to show how it is implemented. The LHS is implemented in the
collocation matrix and the RHS in the source vector:
2p*wi'[}; 8@)1 * * 87}2‘ 2-71 8.7: B ‘ g?‘ef ap*

+ wip* + + =Ri—— — Wi Vg
g* 85* af* f* 85* Drefpref 35* ¢

(237)
This equation can be swapped out for eq X in chapter XXX for a complete solution strategy.

4.2.6 Species mole balance

The mole based fluxes are obtained from the species mole balance. The general dimensionless
equation is given as derived earlier (64):

2
5= € + 3 6‘2* (€)=~ 8?* (€200 + gyl (238)
Steady state is assumed and the equation is rearranged.
1 v 1 0 0 7%ef
€2 g+ (5 c xz“g) €42 ger (f J; ) = Rim (239)
The first and second term is written out:
20*331‘”5 oz; , it Lo (’M* o 20T 2o

+ (240)

—xup + —x;¢" + =y
* ¢ 85* 5* 86* Drefcref

R TR T

This equation can be swapped out for eq X in chapter XXX for a complete solution strategy.
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4.3 Results and discussion

The big difference by not including the sum of reactions(LHS of the continuity equation) can be
seen in figure XXX. Comparing these results with figure XXX from chapter XXX one can see
how great effect this has. The inclusion of the LHS of the continuity equation in the models not
considering convective flow will compensate for much of the loss where the convective terms have
a significant value. The inclusion of the convective is especially imporant for the mole base SMR
simulation as they have a significant value which easily can be spottet from the figures by the
effect the given by the LHS of the continuity equation. However if the convective terms where to
be included it does not make any difference wheter the convective terms are used or if they are
replaced with the LHS of the continuity equation.

, including this will give a much grater similarity with the mass based model. however this
will be as expected as the models including convective flow are identical, and including the non
convective term in the continuity equation makes up for much of the lossfrom not considering
convectiveflow.
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Figur 14: No transferlimitations and no convective flow assumed
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5 Rigorous steady state models

General about the case, SMR etc

5.1 Derivation of the equations to use in the model.

This is the rigorous steady state models where only steady state is assumed. The results are
also considering the rigorous steady state models assuming no transfer limitations. Models on
both mass and mole basis is to be derived. The method of implementation is presented using
orthogonal collocation.

5.1.1 General for the derivation of both the mass and mole based models

The temperature equation (58)(65) is solved in combination with fouriers law. The temperature
equation is only modified by introducing the assumptions assumed for this case.

The Species balance for respectively the mass and mole model (57) and (64), is used to
calulate the fluxes. This is done by solving the species balance for N-1 components and the last
component by the constitutive law’s (41) and (43). In the species balance the continuity equation
(59) and (66) is identifiyed for the respective model and inserted giving the species balance used
in the model.

The species fractions is solved by using the different diffusion models in table XXX for N-1
components, the last component is solved by the constitutive law’s (42) and (44) for respectively
the mass and mole based model. The diffusion models are only reformulated from their general
form shown in the theory to reflect their implemented form.

A summary of the equations derivated in detail in the next sections are shown in table 10 for
the mass based model and table 20 for the mole based.

5.2 Mass based model
5.2.1 The temperature balance

The general temperature balance derived earlier (58):

n n 2¢" | 9q” 2
or* oT* (= + 38N & (—AHR)R
1- C *re iCiiz_*Te ; icii_
(( €)ppCpp + €p"p f;w D;) gy P Prefy ;w D e Dres + DyefTres
(241)
Steady state is assumed:
n 2¢" | 99" 2
oT* Ct ge)A —AHg)R
0=—p"presvy Y wiCp; (e o)A | Sregl ) (242)

ag* - Dref DrefTref

i=1
The equation is rearranged and the used equation is given as:

Dref o+ . oT* 2¢*  dq*,  &rep(AHR)R
ref Vs Y wiCpya = — oreft T 24
N P et L iChiger = e Y et T (243)
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5.2.2 Species mass balance

The mass based fluxes are obtained from the species mass balance. The general dimensionless
equation is given as derived earlier (57):

o+ (i) = — L€y R (214)
ot* p Wi 5*2 af* p Wwite) = 5*2 8&'* Ji lDrefpref
Steady state is assumed.
10 10 .. ref
§2p'wivg) = =5 5 (€27) + Rig—l— 245
e L 24
The first term is written out to identify the continuity equation.
- 5*2 *’U* +wi77 5*2 *U* - 6*2‘71* + R27 246
5*2 o+ ( P E) 5*2 o+ ( p E) 5*2 o+ ( ) Drefpref ( )

The second term is identified as the LHS of the mass based continuity equation (59) when steady
state is assumed, swapped for the RHS of the mass based continuity equation gives:

1 ow; 19 res
€*2p*v* —- 5*2j?< +R7 c 247
5*2 65*( f) 5*2 85*( Z) Drefpref ( )
The second term is expanded and the equation is rearranged to reflect the implemented equation:
dw; 2 | 0j; £,
P )+ (G ) = R 248
6§ ( E) ( f 8§ ) Drefpref ( )

5.2.3 Mass based continuity equation

Velocity is obtained from the mass based continuty equation, starting out from the general
equation (59)
op* 1 0

*2 ko k\
%4-67286*(5 pv*) =0 (249)

Steady state is assumed:

1 0

*2 ok ok
_ =0 250
The derivative term is expanded to reflect the used equation:
2 ap* ov*
—v*p" + v+ p* =0 251
e T ag Yo 250

5.2.4 Wilke diffusion model

The general Wilke diffusion model as given in (60):

. D! Ow; ’ 1 —wy
R ey Dy, = T~—n @ (252)
Dref 8£ M Z‘;;}L W
Rearranged to the implemented form:
Dre i 1- i
s Dres 0w g g T (253)

"Dt 08



54

5 RIGOROUS STEADY STATE MODELS

5.2.5 Wilke-bosanquet diffusion model

» LDi s Ow; 1 1 1
Ji = —P D%icﬁa : D’ D/ + D (254)
ref g ieff im i, K
Rearranged to the implemented form:
. D,ef 60.11‘ 1 1 1
jF = =0 = — + (255)
bert? % O =l
i
5.2.6 Darcy’s law
Darcy’s law is used to obtain the pressure(40)
* Drp on*
U i ref p* -0 (256)
Bpref ag
5.2.7 Maxwell-Stefan diffusion model
The general Maxwell-Stefan model as given in (62)
—pwi 1 0 (A5 * Ow;y
Doy 06 (M) = .5 o¢t + Mw EJ ! M D,
Ji = (257)
ZJ 1 M D17
Rearranged to the implemented form:
SV Ewa n -k
MD,«ef Z (90.1: _ —7(,% 8]\{ Ml)*ref ; ]j (258)
M, D” M VT p =MDy
#1 VE
5.2.8 Dusty gas diffusion model
The general Maxwell-Stefan model as given in (63)
T2 wij; ;M wip* OM _ p*M dw;
% M Z‘;;i AI7E1] DzK Dref 85* Dm—:f 85*
ji = i (259)
M 3i=1 305 D;
]75 D) iK
Rearranged to the implemented form:
Dyer — <~ w; 1 Ow;  MDyer e~ wijs v*w; D, w; OM
jji:f(MZ = +D )+a*: *efz - = :f_za* (260)
14 =1 MjDij iK g P j=1 MjDij D7,Kp M 5
J#i

J#i
5.2.9 Density equation
The density is obtained from modified ideal gas law given earlier eqX
pM
RT

=0 (261)
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5.2.10 Summary of the mass based model, including boundary conditions

The derived equations are gathered in table 22. In the table the consitutive laws, initial and
boundary conditions used for solving the model are given.

5.3 Solution strategy

The different equations are first discussed in short with text and the main summary of the
solution strategy is given in table 12. In the table the used equations combined with boundary
conditions are shown. The solution strategy is also visualised in the form on how it would be
implemeted by the use of orthogonal collocation, shown in figure 36.

5.3.1 Temperature equtation
The temperature equation combined with the fouriers law is solved separately to obtain the
temperature. The method of implementation is shown in figure 36.

5.3.2 Species Mass balance and Maxwell-Stefan diffusion

The species mass balance is solved to obtain the mass based fluxes. The mass based fluxes are
then used to obtain the mass fractions throughout the catalyst particle using the maxwell stefan
diffusion model.

5.3.3 Density

The density equation is solved outside the numerical problem and is solved using the previous
iterative values.
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Tabell 22: Mass based equations, constitutive laws and boundary conditions
Equations: Constitutive Laws:
Temperature equation: Fourier’s law
n oT
Dref oT™ 2(]* 8(]* Ezef(_AHR)R —+ =0 (263)
" Prefuy iCpiar = — — a4 *
el fvr;w Pige = (T T T T o€
(262)
Mass balance: Definition:
Ow; 2jr 05 . =
prug) + (= ‘)Y=Ri——— 264 ;=0 265
Diffusion model: Definition:
One of the four diffusionmodels in table 23 is used Zwi 1 (266)
i=1
Mass based continuity equation: Darcy’s law:
2 ap* ov* v*uDyey ~ Op*
—v*p" + v+ =0 267 —_— =0 268
T e " (267) Brey 06 (268)
Ideal gas law modified for density:
pM
— = 269
RT =P (269)
Boundary conditions in the symmetry point | Boundary conditions at the surface {* = £; with
& =0 transfer limitations:
ji=0 (270) gr + pCpyTv = —h(T® - T) (273)
=0 (271) —ki(p} — wip) = ji + vpu; (274)
=0 (272) p=p° (275)
Boundary conditions at the surface {* = &, wit-
hout transfer limitations:
T=T1" (276)
w; = w) (277)
p=7 (278)
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Tabell 23: Diffusion models on their implemented form

o7

LHS is implemented in the collocation matrix, and the RHS is implemented in the source vector

Wilke:

L Dref (%Ji

Wilke-Bosanquet:

=0 D!

J#i

% Dref &ui 1 1 1
Jipr o p* 35*:0 D! :—1_7M'+D'K
ieff ieff i Z;:1 M;J'Z)ij i,
J#i
Maxwell-Stefan:
i 2Dt Z 2o o OO, MDrey i
MD” 85* M ¢ p* j=1 M;Di;
J?ﬁl i
Dusty gas:
ji ey - )+ L Owi _ MDref Z wif] _ wi oM
N =1 M;Di; Sy M;D;; M 0¢*

J#l

(279)

(280)

(281)

(282)
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Tabell 24: Summary of the solution strategy

Equations, LHS represents terms in the problem matrix and
the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

aT*
* =0 283
e (283)
Temperature equation:
Dref =~ 3T* 2q* 8q* g?ef(_AHR)R
* re . 10 % =
N PP f’Ur;w pa€*+(£* +8§*) T
(285)
Species mass balance, used for N-1 components:
Ow; 2jr  Ojr Erer
o)+ (- 4+ ) =Ri—— 287
af* (p {) ( g* af* ) Drefpref ( )
Last flux(H20) in the species balance is solved by:
n
Zji =0 (289)
i=1

Diffusion model:

One of the four diffusionmodels in table 23 is used

Last massfraction(H20) in the species balance is solved by:

> wi=1 (291)
i=1
Mass based continuity equation:
ov* ap* v*
ot 4+ = 292
& T ae T oy 292
Darcy’s law:
U*/.l/ 8p*
=0 294
Bpref 05* ( )
Ideal gas law modified for density*:
pM
— = 2
7T =P (296)
Mole averaged velocity * **
N .=
7iM
u—v= 297
2 o =

Boundary condtion at £ = &P

*

q*A

_ Drey
gref

&ref
(284)

hT* +h

+ pCpyT*v*

Boundary condtition at £ =0

q=0 (286)

Boundary condition at £ =0

Ji=0 (288)

No boundary condtion

Boundary condtition at £ = &P :
x Dipe Dy
U g tvg W) w
kip* p*
(290)

w; =

No boundary condtion

Boundary condition at £ =0

v* =0 (293)

Boundary condition at & = &P

p=7p’ (295)

No boundary condtion

No boundary condtion

*sovled outside of the collocation matrix, i.e. purely based on previous iterative values ** Solved

for comparison with the mole based model.
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q
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0 0 0 0
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0

0

Figur 16: Collocation matrix, mass based. Explanation on the labeled terms can be seen in table 35
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Tabell 25: Terms in the collocation matrix

60

Label in matrix

Collocation matrix terms:

multiplied with:

X1

DM,

DM,

DM,

DM,

SB;

Dl

2 0

Diyes - d
* re ; iCi
x P fvr;w P oe

Wilke:
Dref
Dipp*
Wilke-Bosanquet:
Dref
Di epsr*

Maxwell-Stefan:

MDTef zz: Wy
Pt M;Di

JFi

Dusty gas:

Dref . Wi 1

=L (M L+ )

P %MJD” DiK
VE

0

*,

P Uf af*

Bpref

* *
q ,wi,v

T*

Ji

ws
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Tabell 26: Terms in the source vector

Label in source vector Source vector

Source term temperature equation:

T2 _AHrgzef

TrefA
Wilke:

DM, 0

Wilke-Bosanquet:

DM, 0

Maxwell-Stefan:

DM, —Wwj oM MD,«ef ‘ - ]]*

Dusty gas:
DM, MD,.y 2": wijj  w; OM
p* J=1 MJDU M 85*
J#i
Source term species balance:
SBQ R 72'ef
' Drefpref

Source term continuity equation:

MC, Ip* v*
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5.4 Mole based model
5.4.1 The temperature balance

The general temperature balance derived earlier (65):

< aT* u or (34 4+ 97\ 2 (~AHR)R
1 —€)p,Cp, + ec*cre x;Cp); = —c*crepvi Y x,0p) -8 ¢ 4 2red
(( )pp by ! ; b ) ot ! ; b 85* Dref DrefTref
(298)
Steady state is assumed:
u or (3L + 20\ ¢ (-AHR)R
0=—ccrepv’ Y ;Cp,— — —* 4 ref 299
! ; P 3 Dyey DyefThrey ( )
The equation is rearranged and the used equation is given as:
D"'ef - / oT* 2q* 3(1* ggef(_AHR)R
* Te . zC i = s
)\ cC fv’r‘ zz:; x pl af* + ( é‘* 85*) Tref>\ (300)

5.4.2 Species mole balance

The mole based fluxes are obtained from the species mole balance. The general dimensionless
equation is given as derived earlier (64):

0 10 . 19 . vet
o 2erput) = — I+ Ry —— 301
ot* (C 'I’L) + 6*2 oE* (5 ¢ xiuf) 5*2 o (§ i ) + lDrefcref ( )
Steady state is assumed.
19 (€2 e zug) = _ 19 (£2J7) +R-7£€f (302)
5*2 85* v §*2 8§* ! ! Drefcref
The first term is written out to identify the continuity equation.
1 0%, 0 1 0 .., 1 0 . 2ot
— Cug) + v =— (M ctup) = —— I+ R ———— 303
5*2 ag* (6 f) 6*2 af* (é- 5) 6*2 aé'* (6 ) Drefcref ( )

The second term is identified as the LHS of the mole based continuity equation (66) when steady
state is assumed, swapped for the RHS of the mole based continuity equation gives:

1 0%, .0 vet - L 0 et
*Lefug i(———— E = —— I+ Ri———— 304
5*2 85* (5 c UE) +T (c’r'efDref) v r 5*2 85* (5 i ) + Drefc'r'ef ( )
Expanding the third term and rearranging the equation to reflect the equation used in the model:
o, 200F  DJF - vet
cug) + (—+ =) = (R; — =, E ri) ——— 305

i=1
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5.4.3 Continuity equation - Mole based

9 1D s s
ot* + 5*2 66* (5 c ui) - (m) — T

Steady state is assumed:

L0 (errgmygy = (1 )3,
5*2 af* Cug B CrefDref ; i

The derivative is expaned wich gives the used equation:

2 e ou* 2 -
7C*u*+ C ’LL*+ (Y C* :(Lf)zrl

6* ag* ag* crefDTef =1
5.4.4 Darcy’s law
Darcy’s law is used to obtain the pressure(40).
U*I‘LDTEf ap* -0

Bpref 85*

5.4.5 Wilke diffusion model

The general Wilke diffusion model on mole basis as given in 67:

ox; 1—ux
Jf = —c*Dyyp—ov Dy = .
i C sm 86* sm Z] L Dl
g
Rearranged to the implemented form:
= D'r8f 537: _0 D, — 1— :El
c¢*Dgpm af Z] 1 D”

5.4.6 Wilke-bosanquet diffusion model

o _ e Diess O 1 1 1
Ji D,y 06¢ D]

Rearranged to the implemented form:

Dy . Oz 1 1
- = +

-*

Ji D/ effc 86* D;,eff 1_mim

63

(306)

(307)

(308)

(309)

(310)

(311)

(312)

(313)
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5.4.7 Maxwell-Stefan diffusion model

The general Maxwell-Stefan model on mole basis as given in 69:

*3t ]jmi
Bﬁ”l‘ +Z] 1 Dij

Ji = (314)
=1 i
i D
Rearranged to the implemented form:
D, Z;j ami D,. Jims
LDt S o bt - Dt 34 o1
J#% J#l
5.4.8 Dusty gas diffusion model
The general Maxwell-Stefan model on mole basis as given in 70:
cyef 86* D;K
JI = 7 % T (316)
Rearranged to the implemented form SJEKKKONVETIVE!:
geDrer s~ L O Drep g Ji@ | Dregriu” (317)
’ c* =1 Dij DlK 85* c* =1 Dij DzK
J#i i
5.4.9 Concentration equation
The concentration is obtained from the ideal gas law eqX.
% =c (318)

5.4.10 Summary of the mole based model, including boundary conditions

The derived equations are gathered in table 27. In the table the consitutive laws, initial and
boundary conditions used for solving the model are given.

5.5 Solution strategy

The different equations are first discussed in short with text and the main summary of the
solution strategy is given in table 21. In the table the used equations combined with boundary
conditions are shown. The solution strategy is also visualised in the form on how it would be
implemeted by the use of orthogonal collocation, shown in figure 37.

5.5.1 Temperature equtation

The temperature equation combined with the fouriers law is solved separately to obtain the
temperature. The method of implementation is shown in figure 37.
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5.5.2 Species Mole balance and Maxwell-Stefan diffusion

The species mass balance is solved to obtain the mole based fluxes. The mole based fluxes are
then used to obtain the mole fractions throughout the catalyst particle using the maxwell stefan
diffusion model.

5.5.3 Concentration

The concentration equation is solved outside the numerical problem and is solved using the
previous iterative values.
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Tabell 27: Mole based equations, constitutive laws and boundary conditions

Equations: Constitutive Laws:
Temperature equation: Fourier’s law
n oT
Doy or*  2¢*  Og* §.;(~AHR)R + 2= (320)
—c" re . zC : — . N q *
/\ cc fvr ; z Db; 8£* ( g* + 65*) TrefA 85
(319)
Species mole balance: Definition:
Oz, 2F  OJF . &5 -
) (e ) = (R — Y 1) — (321 Ji=0 (322)
g (1) + g+ gg) = (Rimwm D) (520) 2
Diffusion model: Definition:
One of the four diffusionmodels in table 28 is used Z% 1 (323)
=1
Continuity equation mole based: Mass averaged velocity(35):
2 oc* ou* 2 ¥ - N M,
—cut ot = (—— T 324 ot = L
e e ae T p a B e =R @)
Concentration FIXDIML®S: Darcy’s law:
P * *
c=—— (326) V" pDrey | Op
T —_— =0 327
R Bpref af* ( )

Boundary conditions in the symmetry point | Boundary conditions at the surface {* = £ with

& =0 transfer limitations
Ji=0 (328) @ + cCpl,Tv = —h(T" - T) (331)
q=0 (329) —ki(cb — wic) = J; + uca; (332)

Boundary conditions at the surface £* = £ wit-
hout transfer limitations

T=T1° (334)
z; = a? (335)

p=p (336)
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Tabell 28: Diffusion models on their implemented form

LHS is implemented in the collocation matrix, and the RHS is implemented in the source vector

Wilke:
D,y ox; 1—x;
hy =0 Dsm = == 337
*Dgp - O >i=1 Do (337)
g# Y
Wilke-Bosanquet:
Dref axz 1 1 1
R =0 =—+ 338
D] ;e 0€ D, <t Dix (338)
j=1 Dy,
J#i
Maxwell-Stefan:
]:Dref Z; (9581 Dref jj ZT;
—_— — + = (339)
c* —1 D” 85* c* ; Dij
J#i J#i
Dusty gas:
Dre - 1 0 i Dre - J T4 Dre i
=S )= g+ Ly S (340)
c* DU D,k o&* c* DU D,k
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Tabell 29: Summary of the solution strategy

Equations, LHS represents terms in the problem matrix and
the RHS represents the terms in the source vector:

Boundary conditions:

Fourier’s law

oT
=0 341
T (341)
Temperature equation:
Dref % * - /aT* 2(]* aq* Egef(_AHR)R
C Cre sy, viCpimr (-t ) =+t———F—
) 4 ; ae e T o) Tres
(343)
Species mole balance, used for N-1 components:
Ox; (c*ul) + (2Ji* n aJi*) = (R, — zn:r)gfief (345)
8{* 3 & 65* i i 2 i Drefcref
Last flux(H20) in the species balance is solved by:
> Ji=0 (347)

i=1
Diffusion model:

One of the four diffusionmodels in table 28 is used

Last massfraction(H20) in the species balance is solved by:

doai=1 (349)
i=1
Continuity equation mole based:
2, *+ac* *+au* “ 3ef ) - (350)
—c*u U cF=(———m— T
E* 85* 85* CrefDref i—1
Mass averaged velocity™:
N
JIM;
vt = — - u” 352
2 o -
Ideal gas law , algebraic:
p
== 353
Pressure, Darcy’s law
ap* ’U*MDref
=—— 354
af* Bpref ( )

Boundary condtion at £ = &P

*

q*A

_ Drey
gref

gref
(342)

hT* +h

+ cCpy T v*

Boundary condtition at £ =0

q=0 (344)

Boundary condition at £ =0

Ji =0 (346)

No boundary condtion

Boundary condtition at & = &P :

% Dre % Dre *
g gt oy,
€Ty = —
k;c* c*
(348)
No boundary condtion

Boundary condtition at £ =0

u=20 (351)

No boundary condition

No boundary condition

Boundary condtition at £ = &P :

p=7p (355)

*Solved outside of the collocation matrix
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Figur 17: Collocation matrix - Maxwell-Stefan, mole based
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Tabell 30: Terms in the collocation matrix

70

Label in matrix

Collocation matrix terms:

multiplied with:

X1

DM,

DM,

DM,

DM,

S B

MCy

2 0

Diyes - d
* re ; iCi
x P fvr;w P oe

Wilke:
D 1—ux;
D/mi*v Dim = ana@
im j];i Di;

Wilke-Bosanquet:

Doy 1 L1
—ref =—
D;,effc* Dé,eff IS Dix
J=1 Dyj
J#i

Maxwell-Stefan:

Dusty gas:

* *
q ,TiU

T*

Ly
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Tabell 31: Terms in the source vector

Label in source vector Source vector

Source term temperature equation:

T2 _AHrgzef
TrefA
Wilke:
DM, 0

Wilke-Bosanquet:

DM, 0

Maxwell-Stefan:

DM2 D'ref i j*xl
c* = Dij
J#
Dusty gas:
DM, Doy - J;mi _ Dyeyriu®
c* = Dij DzK
J#i

Source term species balance:

SBQ n g?ef
(Ri — Xy Z Tz)Di

i—1 refCref

Source term continuity equation:

2 n
MC, ( ref ) Z r
K3
CrefDref P
Source term Darcy’s law:
Dll _ U*NDref

Bpref
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5.6 Results and discussion no transfer limitations

Moving on towards a fully rigorous steady state model gives us the model where all terms are
included expect the transfer limitations in the boundary conditions. Without the transfer limi-
tations the simple versions is used where 7' = T? and w; = w? at the surface. The difference from
the previous models is then the addition of the convective terms. This does have a positive effect
for all the mole based models, but does not yield any change for the mass based models since
the mass averaged velocity is supposed to be zero.

However since most of the convective terms in the species balance is replaced by the LHS of
the continuity equation, the change of adding the remaining convective terms is very small. The
addition of these terms does not improve the differences from the mole and mass based models
for the wilke and wilke-bosanquet models figure XXX and XXX enough to make this change
noticeable. However the mole based Maxwell-Stefan and dusty gas models profits greatly by the
addition of these terms as we can see from the figures XXX and XXX that these models are now
completely similar. Specifically for the dusty gas model the convective terms are imporant as the
diffusion model also relies on a convective term, with this term included it now corresponds well
with the mass based model.

In general for all the models there are som problems with numerical error for the mole based
models calculating the flux of nitrogen and some small oscillations are seen. These ocsillations
transfer to the mass averaged velocity. The numerical error here are however so small that it
does not affect the other components. It gives for example an icrease in pressure by 3 x 1072%.
The pressure plots for the models are by that reason not shown as the pressure does not change
significantly from the bulk pressure.

Concentration and average molecular weight plots are also not shown as the molecular weight
is directly linked with the molefraction. And the concentration plot will only be a function of
the temperature since the pressure is constant.

Looking at the effect of which component that is solved with the equation XXX we can see
that this has no effect when using the simple boundary conditions, this is shown for three of
the components in figure XXX. However it is worth mentioning that it will be easier to get
the model to converge using a component that has some precense. There wasnt seen any major
differences when simulating with the different components as the last in convergeability, but the
more sensitive wilke and wilke-bosanquet models did not converge when hydrogen was solved as
a sum of the rest.
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5.7 Results and discussion rigorous steady state model

Adding the transfer limitations in the boundary conditions for the temperature and the diffusion
models now gives a fully rigorous steady state model where all terms are considered. This ad-
dition does have an effect on the temperature and the molefractions as we can see from the figures
XXX for the different diffusion models, the changes are significant and can be easily spotted in
the temperature plots.

These models does not have any great differences from the models using the simple boundary
conditions, and the same discussion applies here.The main difference are however when we look
at the last component that is solved by the equation XXX. Here the models will not give the
same results changing the last component. They are however still similar on mass and mole basis,
but this is not shown in a figure.

The difference introduced is caused by the transfer limitations for the components since they
are calculated from binary transfer coefficients. This gives non coherent mass transfer coefficients
for the six components in this case. The effect of this non coherence is easy to spot when the
last component is solved as the sum of the rest are changed as we can see from the figure XXX.
REF fra bok +++XXX.
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5.7.1 Wilke - No transfer limitations
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5.7.2 Wilke - Rigorous
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Figur 21: Mole based total fluxes
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5.7.3
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5.7.4 Wilke-Bosanquet - Rigorous
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Figur 25: Mole based total fluxes
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5.7.5 Maxwell-Stefan
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Figur 27: Mole based total fluxes
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5.7.6 Maxwell-Stefan - Rigorous
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Figur 29: Mole based total fluxes
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5.7.7 Dusty-gas - No transfer limitations
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Figur 31: Mole based total fluxes
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5.7.8 Dusty-gas - Rigorous
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5.7.9 Effect of component solved with eqX
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6 Alternative numerical method - Least squares

There are a numerous different numerical methods, so far only the method of orthogonal collo-
cation has been used, in this part we will compare that method to the least squares method. The
methods will be evaluated on the factor of robustness, speed and convergence.

6.1 Derivation of the equations to use in the model.

The LSQ model is to be solved identically with the fully rigorous steady state model solved
with orthogonal collocation method in chapter XXX, and the model derivation can be seen the-
re. However since the LSQ model appears to be more sensitive to the variable sequence in the
solving matrix both the matrices for both the mass and mole based model will be showed to
illustrate a working solution method.

In the solution method the variable T and q has changed places also the w;, z; and J;, j;. This
was needed to be done in order to obtain a stable matrix.
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Figur 36: Collocation matrix, mass based. Explanation on the labeled terms can be seen in table 35
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Tabell 32: Terms in the collocation matrix

85

Label in matrix

Collocation matrix terms:

multiplied with:

X1

DM,

DM,

DM,

DM,

SB;

Dl

2 0

Diyes - d
* re ; iCi
x P fvr;w P oe

Wilke:
Dref
Dipp*
Wilke-Bosanquet:
Dref
Di epsr*

Maxwell-Stefan:

MDTef zz: Wy
Pt M;Di

JFi

Dusty gas:

Dref . Wi 1
M L+
P* ( ; MjDij DiK)

* *
q ,wi,v

T*

Ji

ws
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Tabell 33: Terms in the source vector

Label in source vector Source vector

Source term temperature equation:

T2 _AHrgzef

TrefA
Wilke:

DM, 0

Wilke-Bosanquet:

DM, 0

Maxwell-Stefan:

DM, —Wj oM MDref ] . J]*

Dusty gas:
DM, MD,.y 2": wijj  w; OM
p* J=1 MJDU M 85*
J#i
Source term species balance:
SBQ R 72'ef
' Drefpref

Source term continuity equation:

MC, Ip* v*
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6.2 Mole based model

87
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Tabell 34: Terms in the collocation matrix
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Label in matrix

Collocation matrix terms:

multiplied with:

X1

DM,

DM,

DM,

DM,

S B

MCy

2

Dref

0

- 0
—p" re ; ’LC [y
e fvrgw Pige

Wilke:
Drcf D, — 1- X
o) m T 5
Dl S o
Wilke-Bosanquet:
Dyes 1 1 . 1
’ - 1—x; )
Daeffc* D;Eff ;LT””;? D; k
A
Maxwell-Stefan:
i
Drgf Ij
c* -1 Dij
i
Dusty gas:
Dyef o
c* (Z D;;
Jj=1
Jj#i
* ok a
¢ uf ag*
0

* *
q ,TiU

T*

Ly
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Tabell 35: Terms in the source vector

Label in source vector

Source vector

T

DM,

DM,

DM,

DM,

SBy

MC,

Dl

Source term temperature equation:

—AH, &2, 7
TrefA
Wilke:
0
Wilke-Bosanquet:
0

Maxwell-Stefan:
Dref i ;1'1
c* = Dij
J#i
Dusty gas:
Dy < J;mi _ Dyeyriu®
c* Dij DzK

j=1
i

Source term species balance:

- g?ef
(Ri — Xy Z Tz)Di

i—1 refCref

Source term continuity equation:

(=)D

CrefDref P

Source term Darcy’s law:

_ U*/J'Dref
Bpref
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6.3 Results and discussion

It has been looked into the differences when using a different numerical method for solving the
pellet equations using the maxwell-stefan diffusion model. To make the methods comparable they
are solved in a similar manner using four elements with three points in the first three elements
and 20 points in the last element closest to the surface, bringing the total up to 26 points. Both
models are run to a convergence residual of 10710 with similar under-relaxation parameters.
It is worth mentioning that both models behaves similarly when changing the under-relaxation
parameter, i.e. one of the models cant run with a higher underrelaxation value than the other.

The Least squares method is computationally costly compared to the orthogonal collocation
method and more sensitive to the setup of the problem matrix. The method does however seem
to give more stable results than orthogonal collocation using fewer calculation points, this is
further explained in the next parts.

6.3.1 Results and discussion mass based models

By looking at the figure XXX and XXX, we can see that both numerical methods yield the same
result for the mass based models with only some numerical differences for the LSQ model in the
mass averaged velocity and the flux of nitrogen. The differences are however insignificant as the
values are so small.

Comparing the pure numbers the LSQ model can obtain a total residual of 510711 while the
orthogonal collocation method obtains 4107 12. In the matter of speed the methods were run to
a residual of 1x107 10, the orthogonal collocation methods was the fastest with a simulation time
of 16.5 minutes™* vs 49.2 minutes* for the 1sq model. Making the orthogonal collocation method a
far better choice where speed is essential. In the terms of the amount of iterations neccessary to
achieve convergence the least squares methods is slightly better than the orthogonal collocation
method needing approximately 2.5% less iterations.

6.3.2 Results and discussion mole based models

Looking into the more sensitive mole based model in figure XXX and XXX one can immediately
see that the 1sq model performs far better with the amount of points used in the simulation. The
Lsq model yields a comparable result with the non-element version and the mass based element
models, though this is not shown in a figure. This is especially noticable in the temperature plot
and the nitrogen molefraction plot where the collocation method is noticably different from the
Lsq method. The differences seen here will dissapear with additional collocation points for the
orthogonal collocation method. Though it is aparant that LSQ performs better with fever points.

COMPARE to colloc in chapter XXX element method.

Comparing the different numerical methods for the mole based models the simulation time is
16 vs 58 minutes™ for respectively the Orthogonal collocation and the least squares methods. The
Isq model is only able to obain a convergene of 4 x 1079 while the collocation method manages
5% 10712,

* Time obtained by the use of pulse iteration, described in tips chapter.
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6.3.3 Maxwell-Stefan
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6.3.4 Maxwell-Stefan
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