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Figure 5.3.6: Loss when controlling a tray temperature and varying the feed concen-
tration of component A at the expense of component B. The white area
outside the "red line" is infeasible[$/s].

5.3.4 Discussion of global evaluation of loss

The global direct evaluation of loss reveals that for disturbances in the feed flow

it is less important which tray temperature being controlled (figure 5.3.5). Tray

10 gives the smallest loss, but its value is not significantly worse than the loss

when controlling the least optimal tray temperature. To respond correctly to a

disturbance in feed composition, on the other hand, the tray should be selected

with care. For a disturbance in feed concentration of component A at the expense

of component B, controlling the temperature around tray 9, would give close to

zero loss. All other tray temperatures lead to significant loss and quickly brings

the system into the infeasible region when the disturbance increases. Disturbance
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Figure 5.3.7: Loss when controlling a tray temperature and varying the feed concen-
tration of component B at the expense of component C. The white area
outside the "red line" is infeasible. The solver had convergence problems
at the right side of the plot [$/s].

in the feed concentration of component B at the expense of component C behaves

similarly. To get the smallest loss in this case, the temperature of tray 20 or below

should be controlled. As there are no tray that would give a small loss for these

three disturbances, a combination of measurements might be necessary.

5.3.5 Global direct evaluation of loss controlling selected variables
from both columns

The loss when controlling the variable candidates from table 5.3.2 was plotted

over a wide range of the feed flow disturbance. This provides a more visual
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picture of which controlled variables that give a small loss. The loss following

disturbance in feed flow for column 1 and column 2, respectively, is plotted in

figure 5.3.8 and figure 5.3.9.
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Figure 5.3.8: The loss as a function of the feed flow when controlling a variable in
column 1 at its nominal optimum. The nominal feed value is 1.4 mol/s
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Figure 5.3.9: The loss as a function of the feed flow when controlling a variable in
column 2 at its nominal optimum. The nominal feed value is 1.4 mol/s.

5.3.6 Gain and optimal sensitivity in constraint region VI

Controlling tray temperature is a common way of controlling a distillation col-

umn. According to Skogestad [1] the gain should be large and the optimal sen-

sitivity to disturbances small. The gain and the sensitivity in constraint region

VI have been calculated when the feed is at 1.4 mol/s and the steam price is

0.01 $/mol, using finite differences. The reflux in column 1, L1, was used as

the manipulated variable, assessing disturbances in feed and feed composition

according to table 5.2.1. The temperature process gain with respect to the input

variables and the disturbances is shown in figure 5.3.10. The optimal sensitivity,

F , was found for the same nominal point and is shown in figure 5.3.11.
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Figure 5.3.10: Process and disturbance gain in the point when feed= 1.4 mol/s and
steam price= 0.01 $/mol. The top figures show the process gain with
respect to tray temperature for column 1 (left) and column 2 (right). The
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Figure 5.3.11: The optimal sensitivity in the nominal point, feed= 1.4 mol/s and steam
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5.3.7 The "Exact local method" with single measurement as con-
trolled variable

The model was linearized using finite differences (Appendix A) and the "exact

local method" 2.4.2 was used to find the single tray temperature that, when ex-

posed to disturbance, would give ether the smallest average loss or worst case

loss. Measurement and implementation errors have been included. To speed up

the process a "branch and bound" algorithm developed by Kariwala and Cao [10],

was used to search for the optimal tray temperature. The magnitude of the ex-

pected disturbance and the noise in the measured variables used in the optimiza-

tion, are given in table 5.3.3.

Table 5.3.3: Magnitude of expected disturbance and noise

Expected disturbance

Feed 0.01 mol/s
zFA at the expense of zFB 0.01
zFA at the expense of zFC 0.01

Noise in measured variable

Tray temperature 0.5◦C
Tray concentration 0.01◦C

When a single controlled variable is to be selected, the matrix, M, in the defini-

tions of worst case as well as average loss (equation 2.4.5 and 2.4.6), would be

reduced to a vector. For a vector, the maximum singular value and the Frobenius

norm have the same value. Thus, the worst case loss and the average loss would

be the same.

The "exact local method" was used to find the single tray temperature that, when

controlled, would give the minimum worst case loss. The predominating distur-

bances are assumed to be changes in feed flow or feed composition. Changes

in the feed concentration ratio between either component A and B or B and C,
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were considered. The loss from the "exact local method", when controlling a

temperature in column 1 or column 2, are presented in figure 5.3.12 and 5.3.13,

respectively.
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Figure 5.3.12: Loss when controlling a tray temperature in column 1, based on "exact
local method".

The optimal tray temperature to control in column 1 or column 2, based on the

"exact local method", are presented in table 5.3.4.

Table 5.3.4: Optimally controlled tray when calculating average- and worst case loss

Optimal loss Controlled tray Average-/worst case loss [$/s]

Tray from column 1 13 1.17 ·10−3

Tray from column 2, 29 9.35 ·10−4
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Figure 5.3.13: Loss when controlling a tray temperature in column 2, based on "exact
local method".

5.3.8 Combinations of tray temperature measurements

In many cases combinations of measurements to control a variable might lead to

smaller loss than using a single measurement. The "branch and bound" algorithm

from Kariwala and Cao [10], was used to find the optimal combination of tray

temperatures selected from either of the two columns separately. The algorithm

calculates the optimal subset of measurements based on either the worst case or

the average loss criteria. As only a single controlled variable is to be found, the

worst case and the average loss would be the same (see section 5.3.7). Figure

5.3.14 shows the lowest possible loss when controlling a specified number of

tray temperatures. The corresponding optimal tray and the respective value of
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loss are presented in table 5.3.5, when only trays from column 1 are selected,

and in table 5.3.5, when only trays from column 2 are selected.
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Figure 5.3.14: Lowest loss when controlling a specified numbers of tray temperatures
for either column 1 or column 2, respectively.

5.3.9 Discussion measurement combinations

The "exact local method" shows that the use of combination of measurements

would give a substantial reduction of loss in the case when only temperatures

from the first column were selected. Controlling a combination of the three best

tray temperatures would reduce the loss by approximately 50% of the loss when

controlling the temperature in the single best tray. However, even with a com-

bination of 10 measurements, using a single tray in the top part of the second

column would be substantially better.
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Table 5.3.5: Optimal tray combinations selected from column 1, based on exact local
method

ny Optimal trays to control Worst case-/
average loss

[10−3$/s]

1 13 1.1775
2 12 13 0.7817
3 10 11 31 0.5964
4 10 11 12 32 0.5059
5 9 10 11 12 31 0.4577
6 8 9 10 11 31 32 0.4155
7 8 9 10 11 31 32 33 0.3894
8 7 8 9 10 11 31 32 33 0.3660
9 6 7 8 9 10 11 31 32 33 0.3498
10 6 7 8 9 10 11 31 32 33 34 0.3343

Table 5.3.6: Optimal tray combinations selected from column 2, based on exact local
method

ny Optimal trays to control Worst case-/
average loss

[10−3$/s]

1 29 0.0938
2 29 30 0.0624
3 29 30 31 0.0515
4 29 30 31 32 0.0461
5 29 30 31 32 33 0.0432
6 28 29 30 31 32 33 0.0408
7 28 29 30 31 32 33 34 0.0394
8 10 28 29 30 31 32 33 34 0.0385
9 11 21 28 29 30 31 32 33 34 0.0372
10 10 11 21 28 29 30 31 32 33 34 0.0362

5.3.10 Direct evaluations of loss for combinations of tray tempera-
tures

The loss was calculated when controlling the optimal combination of tray tem-

peratures from table 5.3.5 and table 5.3.6, and exposing the system to the three
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disturbances in table 5.2.1 individuality. The results for either column 1 or col-

umn 2, are presented in table 5.3.7 and table 5.3.8, respectively.

Table 5.3.7: Table of loss when controlling the optimal combination of tray tempera-
tures from table 5.3.5

ny F = 1.41 F = 1.39 zF = zF = zF = zF = Average
0.39] 0.41] 0.40] 0.40] [10−3$/s]
0.21, 0.19, 0.19, 0.21,
0.40] 0.40] 0.41] 0.39]

1 0.0435 0.0323 0.2770 0.1568 0.1520 0.1338 0.1326
2 0.0419 0.0312 0.2210 0.1282 0.1899 0.1600 0.1287
3 0.0813 0.0564 0.1926 0.1156 0.0308 0.0246 0.0836
4 0.0743 0.0521 0.1907 0.1146 0.0466 0.0384 0.0861
5 0.0748 0.0525 0.1683 0.1011 0.0596 0.0486 0.0842
6 0.0928 0.0634 0.1371 0.0831 0.0377 0.0277 0.0736
7 0.0882 0.0606 0.1397 0.0852 0.0440 0.0330 0.0751
8 0.1029 0.0693 0.1154 0.0700 0.0341 0.0234 0.0692
9 0.1086 0.0727 0.0976 0.0586 0.0382 0.0256 0.0669
10 0.1128 0.0751 0.0951 0.0573 0.0323 0.0207 0.0655

Table 5.3.8: Table of loss when controlling the optimal combination of tray tempera-
tures from from table 5.3.6

ny F = 1.41 F = 1.39 zF = zF = zF = zF = Average
0.39] 0.41] 0.40] 0.40] [10−3$/s]
0.21, 0.19, 0.19, 0.21,
0.40] 0.40] 0.41] 0.39]

1 0.0002 0.0001 0.0194 0.0100 0.2824 0.3405 0.1088
2 0.0002 0.0002 0.0328 0.0182 0.2475 0.2977 0.0994
3 0.0003 0.0002 0.0473 0.0273 0.2192 0.2629 0.0929
4 0.0003 0.0003 0.0611 0.0361 0.1973 0.2361 0.0885
5 0.0004 0.0003 0.0730 0.0437 0.1812 0.2163 0.0858
6 0.0003 0.0003 0.0560 0.0326 0.2055 0.2456 0.0900
7 0.0004 0.0003 0.0645 0.0380 0.1930 0.2301 0.0877
8 0.0000 0.0000 0.0413 0.0248 0.2001 0.2377 0.0840
9 0.0000 0.0000 0.0557 0.0357 0.1623 0.1920 0.0743
10 0.0000 0.0000 0.0422 0.0282 0.1584 0.1866 0.0692
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Table 5.3.7 and table 5.3.8 present the loss when exposing the system to the

disturbances individually and controlling a tray temperature combination. This

shows how much the loss is reduced, for the individual disturbances, when

adding extra measurements. In addition it can be seen that a disturbance in zFA

at the expense of zFB, is the major source of loss, when controlling a combina-

tion of temperatures from the first column. Disturbance in zFB at the expense of

zFC is the major source of loss when controlling a combination of trays from the

second column.
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5.4 Case 2: Selection of controlled variables in constraint
region I

In active constraint region I, only the concentration constraint of the valuable

product is active. Thus, there are 3 degrees of freedom that must be controlled.

The input gain, the disturbance gain and the optimal sensitivity, F,were all de-

termined for the nominal point when feed were set to 1.35 mol/s and the steam

price were 0.03 $/mol. The gain is shown in figure 5.4.1 and the sensitivity

in figure 5.4.2. Reflux to column 1, L1, and the two boil-ups, V1 and V2, were

chosen as manipulated variables.

5.4.1 Optimal control using single temperature measurements

The "exact local method" implemented in a "branch and bound" algorithm, de-

scribed in section 2.7 was used to search for the temperature measurements that

would give the least loss when exposed to a disturbance in the feed flow of 0.01

mol/s and a disturbance in the feed composition of 0.01 mol f raction. The mea-

surement error for the tray temperatures was assumed to be ± 0.5◦C. The input

values were presented previously in table 5.3.3. The set of tray temperatures that

in this case gives the smallest loss is presented in table 5.4.1.

Table 5.4.1: Tray numbers for optimal control of the system in region I according to
average loss and worst case loss calculations

Optimal temperature control Column 1 Column 2 Loss

Average loss 32 12, 30 1.10 ·10−3

Worst case loss 33 8, 27 2.77 ·10−4
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Figure 5.4.1: Process and disturbance gain in the point when feed= 1.35 mol/s and
the steam price= 0.03 $/mol. The top figures shows the process gain
with respect to tray temperature for either column 1 (left) and column 2
(right). The bottom figures show the disturbance gain with respect tray
temperature in column 1 (left) and column 2 (right)

5.4.2 Discussion optimal control in constraint region I

In section I it was found to be optimal to control one tray in the top part of

the first column and simultaneously two trays in the section column. The trays

found were all located approximately halfway between the feed tray and the top

or bottom of the column, respectively. By comparing the location of the trays

in figure 5.4.1 and figure 5.4.2, the optimal tray seem to be located in areas

that has a good trade-off between high gain and low optimal sensitivity. This is
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Figure 5.4.2: The optimal sensitivity with respect all temperature for either of the two
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position change between component A and B and iii) feed composition
change between composition B and C

.

accordance with Skogestad [1], suggesting that the gain of the optimal controlled

variable should be high and the optimal sensitivity small.



Chapter 6

Discussion

In this section the results described chapter 3, chapter 4 and chapter 5 are ex-

plained and discussed. The discussion follows the natural progression of the

work , starting with the systematic procedure used to find the primary controlled

variables (chapter 3). This is followed by a discussion of the active constraint

region (chapter 4) map and two case studies (5).

6.1 Systematic procedure

The systematic procedure outlined in chapter 3, presents the major steps in the

process of finding the optimal control structure. I should be possible to imple-

ment the procedure in an atomized computer program. The scripts developed in

this project cover the core part of such a program, although some of the scripts

are case specific. The scrips are presented in appendix C. The code developed

to find the active constraint region map and the code concerning the "exact lo-

cal model" can handle any model, but the script used to linearize the model is

unfortunately limited to the three disturbances presented in table 5.2.1.

59
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6.2 Active constraint regions

The active constraint region map was found by optimizing the system over a grid

covering the whole disturbance space. As previously stated, this is very com-

putationally demanding. A major advantage is that it is independent of human

intervention. In addition the algorithm can run of the problem in parallel, thus

take advantage of an increasing number of cores in modern CPU’s.

Jacobsen proposed a method for finding a constraint region map but required

manual considerations to reduce the number of optimization calculations. For

example, he argues that if the region border (which is part of the constraint curve)

is independent of one of the disturbances considered, that part of the line would

be straight, and can be defined by two points only. Such assumptions reduce the

number of optimization calculations, but requires substantial human intervention

and is vulnerable to human error.

The active constrain region map found in the present project, figure 4.2.1, was

compared to the map found by Jacobsen. The two maps are identical except for

the border between region V and VII, and between II and V. Jacobsen approx-

imates these borders with straight lines, while the analyses done in the present

project has found the borders to be curved. The constraint map found by Ja-

cobsen are presented in figure 6.2.1. The colors on the border lines refer to the

different constraints.

It should be noted that the system considered in the present thesis is fairy simple.

For larger systems the number of constraints and the computational time for each

optimizations would be substantially higher. As previously mentioned, the grid

algorithm used in this thesis would be to slow to be used in practice for more

complex systems. This calls for the development of faster algorithms.



6.3. Case studies 61

Figure 6.2.1: Active constraint region map for two columns found by Jacobsen [3]. The
colors of the border lines refer to the different constraints.

6.3 Case studies

Constraint region VI was studied in detail to find good self-optimizing variables

to control the remaining degrees of freedom. The two main approaches were

the "direct evaluation of loss" and the "exact local method". The system was in

some cases also studied over a selected segment in the disturbance space ("global

direct evaluation"). All approaches indicate that the best alternative would be to

control a single tray temperature in the top part of the second column. This would

keep the system close to optimum and the loss would be insignificant. From

figure 5.3.10 and figure 5.3.11 it can be seen that optimal sensitivity is small

while the the steady state gain is large. This is in accordance with Skogestad [1],

stating that the optimal sensitivity should be small and that the gain from the

manipulated to the controlled variables should be large.

In section VI, only reflux, L1, and distillate flow, D2, in the first column, are



62 6.3. Case studies

in practice the only variables amenable to manipulation. The substantial physi-

cal distance between the manipulated variables and the location of the possible

controlled variable would make the response slow and control difficult. Thus, if

a tray in the top of the second column should be used a direct coupling would

make the control slow and hard to use in practice. However, this problem could

be overcome using a cascade. Figure 6.3.1 show a outline of how this could be

implemented.

Figure 6.3.1: Proposed control structure for controlling a tray temperature in the top
part of the second column by manipulating the reflux in column 1. The
temperature in the second column is arranged in cascade with a local tem-
perature loop in column 1.

Furthermore, the direct evaluation of loss indicated that also the concentration

of component A in the bottom of the first column would be a good controlled

variable.

As both steam flows are controlled at their maximum value, the steam cost would

be constant. Thus the cost function can be reduced too the income from the three

product flows. The price of the flows D1 and B1, are both 1 $/mol, and the price

of the valuable product D2 is 2 $/mol. When the product specification of the

valuable product is fixed, and the price of D1 and B1 is identical, the optimum
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would be when the flow D2 is at its maximum value. D2 would be at maximum

when the ratio between component A and C in top of the second column are

constant. This ratio is highly dependent on the temperature in the top part of the

second column as well as on the concentration of A leaving the first column. This

wold would explain way these two variables were found to be good controlled

variables.

6.3.1 Use of combination measurements

The "exact local method" shows that the use of combination of measurements

would give a substantial reduction of loss in the case where only temperatures

from the first column were selected. Controlling a combination of the three best

tray temperatures would reduce the loss by 50 % as compared to controlling the

temperature in the single best tray. However, even when a combination of 10

measurements in the first column, a single tray measurement in the top part of

the second column would be substantially better.
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Chapter 7

Conclusion

Two distillation columns in sequence were studied in order to identify the op-

timal control structure. A map of how the active constraint regions changes to

variations in the steam price and the feed flow was found. The resulting map was

close to the map found by Jacobsen [3], but showed some differences associated

with constraint region borders.

Two of the regions were studied further in order to find self-optimizing variables.

Both "direct evaluation of loss" and the "exact local method" were used to search

for the controlled variables the would give the least loss. In the region with low

energy cost, region VI, both methods found that controlling a tray in the top

part of the second column would be the best choice if a single tray temperature

should be controlled. Alternatively, the "direct evaluation of loss" indicated that

the bottom concentration of component A would would be a good controlled

variable.

In the other region considered (region I), the "exact local method" was used to

find the best set of three tray temperatures, selected from both columns, with

respect to loss. The tray temperatures seemed to be located in areas with a good
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trade-off between high gain and low optimal sensitivity, figure 5.4.1 and 5.4.2.

A systematic procedure to find the optimal control structure is outlined in the

thesis. The procedure is designed to illustrate the main steps needed to develop

a automated computer program for this part to column optimization.

7.1 Suggestions for future work

The present thesis address two topics. One concerns the optimization of two dis-

tillation columns in sequence and the other how to design a systematic procedure

to find the optimal control structure.

The study of two distillation column has been limited to certain aspect of the

problem. First, the active constraint region map has been found for only two dis-

turbances. For a full understanding of the system, the active constraint regions

should be found in all disturbance dimensions. Second, only three disturbances

have been considered in the search for primary controlled variables. More distur-

bances should be considered. It should also be explored how the optimal primary

controlled variables change within a constraint region and identify the optimal

structure in other constraint regions.

In the thesis the active constraint regions are found by optimizing over a grid

in the disturbance space. This approach needs substantial computational power.

More efficient algorithms have to be developed before the active constraint re-

gion map can be found for a more complex system. An effort should also be

made to develop algorithms for finding the primary controlled variables that

gives the least loss within the boundaries of acceptable controllability.

In an active constraint region it is optimal to control the active constraints. To

achieve this, the control structure needs to be changed when moving into another

region. Further study should be conducted to develop methods for detecting

when the system has made such change.
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It is desirable to have as simple control structure as possible. It might be possible

to find a control structure that give acceptable loss over several disturbance re-

gions. This could be studied using any of the methods to calculate loss addressed

in this thesis.
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Appendix A

Linearizion of the model using fi-
nite differences

The model was linearized around a nominal point. The linear relationship be-

tween the input, u, and output, y, is given by the matrix:

G =
dy
du

=

∣∣∣∣∣∣∣∣∣∣

∂y1
∂u1

∂y1
∂u2

· · · ∂y1
∂un

∂y2
∂u2

∂y2
∂u2

· · · ∂y2
∂un

...
...

. . .
...

∂ym
∂u1

∂ym
∂u2

· · · ∂ym
∂un

∣∣∣∣∣∣∣∣∣∣
(A.0.1)

Similarly, the linear relationship between the disturbance, d, and the output, y, is

given by the matrix:
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Gd =
dy
dd

=

∣∣∣∣∣∣∣∣∣∣

∂y1
∂d1

∂y1
∂d2

· · · ∂y1
∂dn

∂y2
∂d2

∂y2
∂d2

· · · ∂y2
∂dn

...
...

. . .
...

∂ym
∂d1

∂ym
∂d2

· · · ∂ym
∂dn

∣∣∣∣∣∣∣∣∣∣
(A.0.2)

The second derivative of the cost function with respect to inputs ,Juu (given by

equation A.0.3) and the second derivative of the cost function with respect to

input and disturbance, Jud (given by A.0.4) where found by calculating either

forward or backward differences. The general expressions for approximating the

second derivative using forward and backward differences are given in equation

A.0.5 and equation A.0.6, respectively [14].

Juu =
∂ 2J

∂u∂u
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ 2J
∂u1∂u2

∂ 2J
∂u1∂u2

· · · ∂ 2J
∂u1∂un

∂ 2J
∂u2∂u2

∂ 2J
∂u2∂u2

· · · ∂ 2J
∂u2∂un

...
...

. . .
...

∂ 2J
∂un∂u2

∂ 2J
∂un∂u2

· · · ∂ 2J
∂um∂un

∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.0.3)

Jud =
∂ 2J

∂u∂d
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ 2J
∂u1∂d2

∂ 2J
∂u1∂d2

· · · ∂ 2J
∂u1∂dn

∂ 2J
∂u2∂d2

∂ 2J
∂u2∂d2

· · · ∂ 2J
∂u2∂dn

...
...

. . .
...

∂ 2J
∂un∂d2

∂ 2J
∂un∂d2

· · · ∂ 2J
∂um∂dn

∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.0.4)

∂ 2 f
∂xi∂x j

=
f (x+hiei +h je j)− f (x+hiei)− f (x+h je j)+ f (x)

hih j
(A.0.5)
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∂ 2 f
∂xi∂x j

=
f (x−hiei−h je j)− f (x−hiei)− f (x−h je j)+ f (x)

hih j
(A.0.6)

It turned out to difficult to find accurate values for the second derivatives Juu and

Jud , see section B.2.
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Validation of the linearizion

B.1 Optimal sensitivity

The optimal sensitivity of the output with respect to the disturbance, F , may be

found directly by perturbing the disturbance or using equation B.1.1.

F =−FyJ−1
uu Jud +Gy

d (B.1.1)

The optimal sensitivity found by linearizing the model by finite differences and

using equation B.1.1, was compared to the optimal sensitivity found by perturb-

ing the system directly. The comparison was done in order to validate the nu-

merical accuracy of the linearizion. The optimal sensitivity in the nominal point

studied in region VI and I are given in figure B.1.1 and B.1.2, respectively. The

individual points marked by dots were calculated using equation B.1.1, and the

solid lines were calculated directly by perturbing the disturbances.
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Figure B.1.1: The optimal sensitivity of the temperature with respect to three distur-
bances in contraint region IV. The individual points marked by dots were
calculated using equation B.1.1, and the solid lines were calculated di-
rectly by perturbing the disturbances
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Figure B.1.2: The optimal sensitivity of the temperature with respect to three distur-
bances in contraint region I. The individual points marked by dots were
calculated using equation B.1.1, and the solid lines were calculated di-
rectly by perturbing the disturbances

B.2 Validating Juu and Jud in region I

Numerical values for the derivatives Juu and Jud turned out to be difficult. For-

ward and backward differences were compared to validate the values. Numeric
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values for Juu and Jud calculated using forward and backward differences, in the

nominal point in region I, are given below.

Juu f orward =

 251.4575 −256.9479 −4.0768

−256.9479 262.6072 4.1746

−4.0768 4.1746 0.1630

 (B.2.1)

Juubackwards =

 248.8970 −256.9845 −4.0602

−256.9845 265.3887 4.1928

−4.0602 4.1928 0.1630

 (B.2.2)

Jud f orward =

 128.9938 332.2961 33.8723

−131.9673 −339.4311 −34.8896

−2.2638 −4.8811 −0.7721

 (B.2.3)

Judbackwards =

 128.0086 328.2654 33.6873

−132.3138 −338.8721 −35.0375

−2.2594 −4.8522 −0.7717

 (B.2.4)
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Appendix C

Matlab scripts

This chapter present the most relevant Matlab scripts used in the project. An

overview of the scripts used in the thesis shown in table C.0.1. All scripts pre-

sented in the table are given in the subsequent sections except "linerize.m" and

"Fmat.m"
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Table C.0.1: Overview of the scripts used in the thesis

Script name Description

Active constraint region map
constraintplot.m Finds the active constraint region maps
binary.m Marks the active set as a binary number
Direct evaluation
brute_force.m Direct evaluation of loss
global_direct_evaluation.m Global direct evaluation of loss
Exact local method
Run_exact_local_metod.m Uses the "exact local method" to find the optimal

combination of measurements
exact_local_method.m Calculates the matrix H based on the

analytical expression of the "exact local
method".

Model
multiCP_ColumnA_ext.m Steady state model of column A
Temp.m Approximates temperature based on composition
nonlcon.m Nonlinear constraints in the system
init_nominal.m Initial condition to the model and optimization
Gain and optimal sensitivity
linerize.m Calculates Gy, Gy

d , Juu and Jud

Fmat.m Calculates the optimal sensitivity by direct pertur-
bation

C.1 Search for the active constraint region active con-
straint region

The script "constraintplot.m" attempts to find the active constraint region map

by optimizing in a grid over the specified disturbance space. The function "bi-

nary.m" mark the active set as a binary number.
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constraintplot.m

1 %% constraintplot.m

2 % Summary: Finds the active contraint regions in a

3 % userspesified disturbance space. Defalt is

4 % Feed vs price of steam.

5 %

6 % The disturbance space is found by optimise

7 % in all point i a grid of the disturace space.

8 % The active set each point is marked by a

9 % binary number.

10 %

11 % author: Tor Anders Marvik

12 % organization: Department of Chemical Engineering, NTNU, Norway

13 % contact: torandma@stud.ntnu.no

14 % started Oktober 2012

15

16 clc

17 clear all

18

19 %Intial values

20 init_nominal % Initial values

21 load('xopt_F14_pV001') % Load nominal optimum

22 x0=xopt; % Initial guess

23

24 %Nominal point

25 par.F=1.4;

26 price.steam=0.01;

27

28 % Calculating optimal point

29 par.flag=0; % No control

30 par.actset=[]; % No active constraints

31

32 [x_opt,fval_opt,exitflag]=fmincon(@(x) costfunction(...

33 x,price,par),x0,[],[],[],[],lb,ub,@(X)nonlcon(...

34 X, par),options);
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35 [Toptcol1,Toptcol2] = Temp(x_opt,par);

36 Topt=[Toptcol1;Toptcol2]; % Optimal temperatures

37

38 % Solver options

39 options = optimset('TolFun',10e−6,'TolCon',10e−6,...
40 'MaxFunEvals',5e3,'Display','off','Algorithm',...

41 'sqp','Diagnostics','off');

42

43 %constraints

44 tol=1e−6; % Tolerance from constraint

45

46 % Resolution on x and y axis

47 n_x=20; % Resolution on the x axsis

48 n_y=20; % Resolution on the y axsis

49

50 % Choose disturbance space

51 x_grid=linspace(1.35,1.495,n_x);% Grid disturbance on x axis

52 y_grid=linspace(0.01,0.19,n_y); % Grid disturbance on y axis

53

54 %Solver conditions

55 par.flag=0; % No control=0, Xcont=1,...

56 par.actset=[]; % No controlled active const.

57

58 %Init matrices

59 val=zeros(n_x*n_y,9); % Init [bin exitflag fval,x,y]

60 fval_mat=zeros(n_x*n_y,2); % Init const value matrix

61 x_mat=zeros(n_x*n_y,2*par.NV+8);% init x data matrix

62

63 exitflag=1; % Convergence flag

64 k=0; % Count progression

65 time=0; % Monitor time

66

67 for i=1:n_x % Loop x axis

68 par.F=x_grid(i); % Variable x axis

69

70 for j=1:n_y % Loop Y axis

71 tic % start time
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72 k=k+1; % point number

73

74 price.steam=y_grid(j); % Variable X axis

75

76 %run fmincon

77 [x,fval,exitflag]=fmincon(@(x)costfunction(...

78 x,price,par),x0,[],[],[],[],lb,ub,...

79 @(X)nonlcon(X,par),options);

80

81 % Constraint valus at optimum

82 c=[x(par.NV+2),x(2*par.NV+6),x(par.NT),...

83 x(par.NV+4+2*par.NT),x(par.NV+4+2*par.NT+1)];

84

85 if exitflag == 1 % Warm start

86 x0=x;

87 end

88

89 bin= binary(c,c_s,tol); % Marke active set as bin num

90

91 val(k,:)=[bin,exitflag,fval,y_grid(1,j),x_grid(i)];

92

93 % Monitor progression

94 disp([k , val(k,:),toc])

95 time=time+toc;

96

97 %save date for other functions

98 x_mat(k,:)=x';

99 fval_mat(k,:)=fval;

100 points(i,j,:)=[x;fval;x_grid(i);y_grid(j);exitflag];

101

102 end

103 end

104

105 % save data for other funtions

106 data.n_x=n_x;

107 data.n_y=n_y;

108 data.val=val;
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109 data.x_mat=x_mat;

110 data.fval_mat=x_mat;

111

112 time; % Total time

113

114 % Plot contourplot

115 figure(1)

116 hold on

117

118 contour(x_grid,y_grid(1,:),reshape(val(:,1),n_x,n_y),[1],...

119 'Color', rbg('Orange'),'LineWidth',2);

120 contour(x_grid,y_grid(1,:),reshape(val(:,2),n_x,n_y),[1],...

121 'Color', rbg('Blue'),'LineWidth',1);

122 contour(x_grid,y_grid(1,:),reshape(val(:,3),n_x,n_y),[1],...

123 'Color', rbg('Red'),'LineWidth',2);

124 contour(x_grid,y_grid(1,:),reshape(val(:,4),n_x,n_y),[1],...

125 'Color', rbg('Purple'),'LineWidth',2);

126 contour(x_grid,y_grid(1,:),reshape(val(:,5),n_x,n_y),[1],...

127 'Color', rbg('Green'),'LineWidth',2);

binary.m

1 function [bin] = binary (c,c_s,tol)

2 %% binary.m

3 % Summary: Compare the state of the system with the

4 % constraints c_s and mark the active set a

5 % binary number.

6 % author: Tor Anders Marvik

7 % organization: Department of Chemical Engineering, NTNU,

8 % contact: torandma@stud.ntnu.no

9 % Input c : constrait variable at optimal poit

10 % c_s : constraint values

11 % tol : Toleranse, active constr. if c−c_s <tol

12 % Output bin : Binary number that marks the active set
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13

14

15 bin=zeros(1,5);

16

17 for i=1:5

18 if abs(c(i)−c_s(i))<tol
19 bin(i)=1;

20 end

21 end

22

23 end

C.2 Self optimizing variables

C.2.1 Direct evaluation

brute_force.m

1 %% brute_force.m

2 % Summary: Direct evalutaion of loss for a selection of

3 % variables held

4 % constant

5 % author: Tor Anders Marvik

6 % organization: Department of Chemical Engineering, NTNU, Norway

7 % contact: torandma@stud.ntnu.no

8 % requires: matlab

9 % version: 1.0

10 % todo 1.0: Debugging "There is allways a second bug"

11 % started Oktober 2013

12 %%

13

14
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15 init_nominal % initial values for the optimization

16 load('xopt_F14_pV001')

17 % −−−−−−−−−−−−−−−− Optimize in nominal point −−−−−−−−−−−−−−−−−
18 par.actset=[]; % No active constraints

19 par.flag=0; % No control

20 [x_opt,fval_opt,exitflag]=fmincon(@(x) ...

21 costfunction(x,price,par),x0,[],[],[],[],...

22 lb,ub,@(X)nonlcon(X,par),options);

23 [Toptcol1,Toptcol2] = Temp(x_opt,par);

24 T_opt=[Toptcol1;Toptcol2];

25 x0=x_opt;

26

27 % −−−−−−−−−−−−− Initial loss vectors −−−−−−−−−−−−−−−−−−−−−−−−
28 Loss_T=zeros(1,41); % Loss vektor, temp from col1 const.

29 Loss_T_col2=zeros(1,41);% Loss vektor, temp from col2 const.

30 Loss_x=zeros(1,4); % Loss vektor, a variable in x const.

31 Loss_F=zeros(1,2); % Loss vektor when a ratio with F const.

32 Loss_comb=zeros(1,1); % Loss when L1/D1 constant

33

34 %−−−−−−−−−−−−−−− Insert the disturbance−−−−−−−−−−−−−−−−−−−−−−−
35 k=1; % For global direct evaluation

36 par.F=1.4;

37 par.zF=[0.4 0.2 4]';

38 par.qF=1.0;

39 price.pD1=1.0;

40

41 %−−−−−−−−−−−−−−−− Reoptimize−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 par.actset=[]; % no active constraints

43 par.flag=0;

44 [x_reopt,fval_reopt,exitflag]=fmincon(@(x)...

45 costfunction(x,price,par),x0,[],[],[],[],...

46 lb,ub,@(X)nonlcon(X,par),options);

47

48 [Treoptcol1,Treoptcol2] = Temp(x_reopt,par);

49

50 % −−−−−−−−− Calculation the loss −−−−−−−−−−−−−−−−−−−−−−−−−−−−
51 % Flag = 1: x() controlled
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52 % Flag = 2: A temperature in column 1 controlled

53 % Flag = 3 x1()/x2() controlled

54 % Flag = 4 x()/F() controlled

55

56 par.flag=1; %Keeping variable in x constant

57 par.actset=[]; % No active constraints

58

59 index_x=[ par.NV+1;... % L1 % coordinate in x for CV used

60 par.NV+3;... % D1

61 1;... % xb_A

62 41]; % xd_A

63

64 for i=1:length(index_x)

65 par.index_u=index_x(i);

66 par.dof=x_opt(par.index_u); % s.p. for the CV

67 [x,fval,exitflag]=fmincon(@(x)costfunction(x,price,par),...

68 x0,[],[],[],[],lb,ub,@(X)nonlcon(X,par),options);

69 if exitflag<0 % no solutions found?

70 Loss_x(k,i)=inf

71 else

72 Loss_x(k,i)=fval−fval_reopt(k,:) % The loss

73 end

74 end

75

76 par.flag=2; % Keeping variable in T constant

77 par.actset=[]; % No active constraints

78

79 index_T=1:41;

80 for i=[1,10,20,30,41]

81 par.index_u=index_T(i);

82 par.dof=T_opt(par.index_u); % s.p. for the CV

83 [x,fval,exitflag]=fmincon(@(x)costfunction(x,price,par),...

84 x0,[],[],[],[],lb,ub,@(X)nonlcon(X,par),options);

85 if exitflag<0 % no solutions found

86 Loss_T(k,i)=inf

87 else

88 Loss_T(k,i)=fval−fval_reopt(k,:) % The loss
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89 end

90 end

91

92 par.flag=3; % Keeping variable in T constant

93 par.actset=[]; % No active constraints

94 index_comb=[ par.NV+1,par.NV+3 ]; % [L1 D1]

95

96 for i=1:size(index_comb,1)

97 par.index_u=index_comb(i,:);

98 par.dof=x_opt(par.index_u(1))/x_opt(par.index_u(2));

99 [x,fval,exitflag]=fmincon(@(x)costfunction(x,price,par),...

100 x0,[],[],[],[],lb,ub,@(X)nonlcon(X,par),options);

101 if exitflag<0 % no solutions found?

102 Loss_comb(k,i)=inf

103 else

104 Loss_comb(k,i)=fval−fval_reopt(k,:) % The loss

105 end

106 end

107

108 par.flag=4; %Keeping variable in T constant

109 par.actset=[]; % no active constraints

110 index_F= [par.NV+3;... % D1/F

111 par.NV+1]; % L1/F

112

113 for i=1:length(index_F)

114 par.index_u=index_F(i);

115 par.dof=x_opt(par.index_u)/par.F; % s.p. for the CV

116 [x,fval,exitflag]=fmincon(@(x)costfunction(x,price,par),...

117 x0,[],[],[],[],lb,ub,@(X)nonlcon(X,par),options);

118 if exitflag<0 % no solutions found, infeasible?

119 Loss_F(k,i)=inf

120 else

121 Loss_F(k,i)=fval−fval_reopt(k,:) % The loss

122 end

123 end

124

125 % Temperature column 2
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126 par.flag=2; % Keeping variable in T constant

127 par.actset=[]; % No active constraints

128

129 index_T=1:41;

130 for i=1:41

131 par.index_u=index_T(i)+41;

132 par.dof=T_opt(par.index_u);

133 [x,fval,exitflag]=fmincon(@(x)costfunction(x,price,par),...

134 x0,[],[],[],[],lb,ub,@(X)nonlcon(X,par),options);

135 if exitflag<0 % no solutions found

136 Loss_T_col2(k,i)=inf

137 else

138 Loss_T_col2(k,i)=fval−fval_reopt(k,:) % The loss

139 end

140 end

141

142

143 % Selected loss velues [Loss*1000]

144 Loss_selction=[Loss_x(1,:)';Loss_T([1,10,20,30,41])';...

145 Loss_F';Loss_comb';Loss_T_col2([1,10,20,30,41])']*1000

146

147 %Reoptimised cv values

148 CV_opt=[x_reopt(index_x);Treoptcol1([1,10,20,30,41]);...

149 x_reopt(par.NV+3)/par.F;x_reopt(par.NV+1)/par.F;...

150 x_reopt(par.NV+1)/x_reopt(par.NV+3);...

151 Treoptcol2([1,10,20,30,41])]

C.2.2 Global direct evaluation of loss

controlled_line.m

1 %% controlled_line.m

2 % Summary: The script calcualtes a loss when controlling

3 % the system and increasing and decreasing a
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4 % disturbance from nominal

5 % author: Tor Anders Marvik

6 % organization: Department of Chemical Engineering, NTNU, Norway

7 % contact: torandma@stud.ntnu.no

8

9 clc

10 clear all

11

12 init_nominal % initial values

13

14 %Nominal point

15 par.F=1.4;

16 price.steam=0.01;

17

18 %calculating nominal optimum

19 par.flag=0; % No control

20 par.actset=[]; % No active constraints

21

22 [x_opt,fval_opt,exitflag]=fmincon(@(x) costfunction(...

23 x,price,par),x0,[],[],[],[],lb,ub,@(...

24 X)nonlcon(X, par),options);

25 [Toptcol1,Toptcol2] = Temp(x_opt,par);

26 T_opt=[Toptcol1;Toptcol2]; % Temperature at optimum

27

28 zF=[]; % Initiate compostition vector

29 F=[]; % Initiate feed vektor

30

31

32 par.flag=2; %0= no cont., 1 = cont. varaible in x, 2 = cont. T

33 par.actset=[1;2;4]; % Index of active constraints

34 par.index_u=41+41; % Index controlled varaible

35 par.dof=T_opt(par.index_u);

36

37 i=1;

38 exitflag=1;

39 while par.F>1.35 && exitflag>=0

40 par.F=par.F−0.001; % disturbance step
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41

42 %calculate optimum

43 par.actset=[];

44 par.flag=0; % No control

45 [x_reopt(:,i),fval_reopt(i),exitflag]=fmincon(@(x)...

46 costfunction(x,price,par), x0,[],[],[],[],...

47 lb,ub,@(X)nonlcon(X, par),options);

48

49 %calculate controlled

50 par.actset=[1;2;4]; % index of active constraints

51 par.flag=2;

52 [x(:,i),fval(i),exitflag]=fmincon(@(x) ...

53 costfunction(x,price,par),x0,[],[],[],[],...

54 lb,ub,@(X)nonlcon(X, par),options);

55 exitflag

56

57 zF(:,i)=par.zF;

58 F(i)=par.F

59 steam(i)=price.steam;

60 x0=x(:,i);

61 i=i+1;

62 end

63

64 F=fliplr(F);

65 zF=fliplr(zF);

66 x=fliplr(x);

67 fval=fliplr(fval);

68 steam=fliplr(steam);

69 x_reopt=fliplr(x_reopt);

70 fval_reopt=fliplr(fval_reopt);

71

72 %reset initial conditoins

73 par.dof=T_opt(par.index_u);

74 exitflag=1;

75 par.F=1.4;

76 par.zF=[0.4,0.2,0.4]';

77 price.steam=0.01;
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78

79 while par.F<1.5 && exitflag>=0

80 par.F=par.F+0.001; % disturbance step

81

82 %calculate optimum

83 par.flag=0; % no control

84 par.actset=[];

85 [x_reopt(:,i),fval_reopt(i),exitflag]=fmincon(@(x)...

86 costfunction(x,price,par),x0,[],[],[],[],...

87 lb,ub,@(X)nonlcon(X, par),options);

88

89 %calculate controlled

90 par.flag=2;

91 par.actset=[1;2;4]; % index of active constraints

92 [x(:,i),fval(i),exitflag]=fmincon(@(x)...

93 costfunction(x,price,par), x0,[],[],[],[],...

94 lb,ub,@(X)nonlcon(X, par),options);

95

96 zF(:,i)=par.zF;

97 F(i)=par.F

98 steam(i)=price.steam;

99 x0=x(:,i);

100 i=i+1;

101 end

102

103

104 F=F(2:end−1); %first and last element is infeasible

105 zF=zF(:,2:end−1); %first and last element is infeasible

106 x=x(:,2:end−1); %first and last element is infeasible

107 fval=fval(2:end−1);
108 x_reopt=x_reopt(:,2:end−1);
109 fval_reopt=fval_reopt(2:end−1);
110 steam=steam(2:end−1);
111 Loss=fval−fval_reopt;
112

113

114 %save()
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C.2.3 The "exact local method"

Run_exact_local_metod.m

1

2 % Summary: Linerize the model and find the optimal

3 % control variables base on exact local methode.

4 % author: Tor Anders Marvik

5 % organization: Department of Chemical Engineering, NTNU,

6 % contact: torandma@stud.ntnu.no

7

8 init_nominal; % Initialize nominal conditoions

9

10 % Initial point

11 Feed=1.35; % Nominal feed

12 steam=0.03; % Nominal steam price

13

14 % Active set

15 actset=[4]; % set of active constraints [V1,V2, x_A, x_B, X_C]

16 index_u=[par.NV+1;par.NV+2;2*par.NV+6]; % Index of MV's in x

17

18 du=[0.00001]; % Pertubation step in manipulated variables

19 dd=[0.00001]; % Pertubation step in disturbances

20

21 % Linerize model

22 [G1,Gd,Juu,Jud,exitflag]=linerize(...

23 index_u,actset,du,dd,Feed,steam);

24

25 % Measurement and implementation error

26 Wd=diag([0.01,;0.01;0.01]);% Magnitude of expected disturbance

27 Wn=diag(ones(82,1)*0.5); % Meassurement error ny*ny

28

29 % Run a version of the brance and bound:

30 % − Single meassurements: b3av or b3wc

31 % − Combinations of meassurements: pb3av or pb3av
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32

33 % Running b3av and b3wc

34 G_comb=[G1.dTcol1du;G1.dTcol2du]; % Process model

35 Gd1=[Gd.dTcol1dd;Gd.dTcol2dd]; % Disturbance model

36

37 [B,sset,ops,ctime,flag]=b3av(G_comb,Gd1,Wd,Wn,...

38 Juu.av,Jud.av,inf,200);

39 % An error in the algotithm causes infeasible

40 % values with loss −inf to be sorted fist in B

41 % and sset: Fist feasible values given by:

42 k=1;

43 while B(k)<0

44 k=k+1;

45 end

46 B=B(k:end,:);

47 sset=sset(k:end,:);

48

49 % Use exact local methode directly −−−−−−−−−−−−−−−−−−−−
50

51 [H,loss_av,loss_wc,loss_av_cao,loss_wc_cao]=...

52 exact_local_method(sset(1,:),G_comb,Gd1,Wd,Wn,Juu.av,Jud.av);

exact_local_method.m

1 %% exact_local_methode.m

2 % Summary: The script calculate H matrix and loss using

3 % the analytic soultion to the exact local methode.

4 % The H matrixgives the optimal combinations of

5 % mesurement to be controlled with the measurement

6 % and implementation error considered.

7 %

8 % author: Tor Anders Marvik

9 % org.: Department of Chemical Engineering, NTNU, Norway

10 % contact: torandma@stud.ntnu.no
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11 % started Oktober 2012

12

13

14 function [H,loss_av,loss_wc,loss_av_cao,loss_wc_cao]=...

15 exact_local_method(sset,G_comb,Gd1,Wd,Wn,Juu,Jud)

16

17 %select a subset of G1,Gd,Juu,Jud

18 G1_ss=G_comb(sset(1,:),:);

19 Gd_ss=Gd1(sset(1,:),:);

20 Wd_ss=Wd; % Magnitude disturbance

21 Wn_ss=Wn(sset(1,:),sset(1,:)); % Weighting of the noise

22

23 ny=length(sset); % Number of meassurements

24 nd=3; % Number of disturbances

25 F_ss=−G1_ss*(Juu)^−1*Jud+Gd_ss;
26 Y=[F_ss*Wd_ss' Wn_ss];

27

28 H=(inv(Y*Y')*G1_ss*inv(G1_ss'*inv(Y*Y')*G1_ss)*sqrtm(Juu))';

29

30 %Loss

31 M=sqrtm(Juu)*inv(H*G1_ss)*H*Y;

32 loss_wc=0.5*svds(M,1)^2 ;

33 loss_av=0.5*norm(M,'fro')^2;

34

35 %worst case loss alternative

36 G=G1_ss*inv(sqrtm(Juu));

37 Y2=Y*Y';

38 X=chol(Y2)'\G;

39 lambda=eig(X'*X);

40 Loss_wc2=0.5./min(lambda);

41

42 %average loss alternative, uniform distribution

43 G=G1_ss*inv(sqrtm(Juu));

44 Y2=Y*Y';

45 X=chol(Y2)'\G;

46 lambda=eig(X'*X);

47 loss_wc_cao=0.5./min(lambda);
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48

49 G2=G*G';

50 [R,f]=chol(G2);

51 X=R'\Y;

52 lambda=sum(sum(X.*X));

53 loss_av_cao=sort(lambda/(6*(size(Wd,2)+1)));

54

55 end

C.3 The model

The model is a steady state version of column A [15], handling multiple compo-

nents.

The script multiCP_ColumnA_ext.m is a model of a single column. The model

is implemented in the optimization problem as nonlinear equality constraints in

the script nonlcon.m. The tray temperatures are given by the function Temp.m

and the initial condition is provided by init_nominal.m

C.3.1 Steady state model of column A

multiCP_ColumnA_ext.m

1 function [ residue] = multiCP_ColumnA_ext( X,par )

2 %

3 % This is a nonlinear steady state model of a

4 % multicomponent distillation column with

5 % NT−1 theoretical stages including a reboiler

6 % (stage 1) plus a total condenser ("stage" NT).

7 %

8 % Model assumptions:
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9 %

10 % Two components (binary separation);

11 % Constant relative volatility;

12 % No vapor holdup;

13 % One feed and two products;

14 % Constant molar flows (same vapor flow on all

15 % stages);

16 % Total condenser

17 %

18 % The model is based on column A in Skogestad and

19 % Postlethwaite (1996). The model has NT*NC states.

20 %

21 % Inputs: x − states, the NT*NC compositions

22 % reboiler/bottom stage as x(1,i) and condenser

23 % as x(NT,i).

24 % par.LT − reflux L,

25 % par.VB − boilup V,

26 % par.D − top or distillate product flow D,

27 % par.B − bottom product flow B,

28 % par.F − feed rate F,

29 % par.zF − feed composition, zF.

30 % par.qF − feed liquid fraction, qF.

31 % par.NT − number of stages, NT.

32 % par.NF − location of feed stage, NF.

33 % par.alpha − relative volatilities, alpha.

34 % par.NC − number of components,NC.

35 %

36 % Outputs: [residue] = f(x), residue=0 if x is a solution of

37 % the system of nonlinear equations

38

39 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40

41 % Inputs and disturbances

42 LT = par.LT; % Reflux

43 VB = par.VB; % Boilup

44 D = par.D; % Distillate

45 B = par.B; % Bottoms
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46

47 F = par.F; % Feedrate

48 zF = par.zF; % Feed composition

49 qF = par.qF; % Feed liquid fraction

50

51 NT = par.NT; % Number of stages

52 NF = par.NF; % Location of feed stage

53 alpha = par.alpha; % Relative volatility

54 NC = par.NC; % Number of components

55

56 %Preallocation

57 %y=ones(NT−1,NC−1);
58 dMxdt = ones(NT,NC−1);
59 dMdt = ones(2,1);

60 x=X(1:NT*(NC−1));
61 x=reshape(x,NT,NC−1);
62 % THE MODEL

63

64 % Vapor−liquid equilibria

65 y = (x*diag(alpha(1:NC−1)))./((x*(alpha(1:NC−1) − 1) + 1)*...

66 ones(1,NC−1));
67 % −−−−−−−−−−−−−−−−−−−−Column−−−−−−−−−−−−−−−−−−−−−−−−−−
68 %

69 % Component balances

70 % =============================================

71 % Reboiler (assumed to be an equilibrium stage)

72 i = 1:NC−1;
73 dMxdt(1,i)= (LT+qF*F)*x(2,i) − VB*y(1,i) − B*x(1,i);

74 % Stripping section trays

75 j=2:NF−1;
76 dMxdt(j,i)= (LT+qF*F)*x(j+1,i) − (LT+qF*F)*x(j,i) +...

77 VB*y(j−1,i) − VB*y(j,i);

78 % Feed tray

79 dMxdt(NF,i)= LT*x(NF+1,i) − (LT+qF*F)*x(NF,i) + ...

80 VB*y(NF−1,i) − (VB+(1−qF)*F)*y(NF,i) + F*zF(i)';

81 % Enrichment section trays

82 j=NF+1:NT−1;
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83 dMxdt(j,i)= (LT)*x(j+1,i) − LT*x(j,i) + (VB+(1−qF)*F)*y(j−1,i)...
84 −(VB+(1−qF)*F)*y(j,i);
85 % Total condenser (no equilibrium stage)

86 dMxdt(NT,i)= (VB+(1−qF)*F)*y(NT−1,i) − LT*x(NT,i) − D*x(NT,i);

87 %===============================================

88 % Mass balances

89 %===============================================

90 % Reboiler

91 dMdt(1) = LT+qF*F − VB − B;

92 % Condenser

93 dMdt(2) = VB+(1−qF)*F − LT − D;

94 % ==============================================

95 % Summation Balances

96 % ==============================================

97 Xs=reshape(X,NT,NC);

98 sumXs=1−Xs*ones(NC,1);
99 %

100 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
101 %

102 %

103 % Output

104 residue=[dMxdt(:); dMdt; sumXs(:)];

C.3.2 Temperature estimator

1 function [Tcol1,Tcol2] = Temp(x,par)

2 %% Temp.m

3 % Summary:

4 % Tray temperature estimator for column 1 and column 2

5 % The temperature is based on a linear relation between the

6 % boiling points of the pure components.

7 %

8 % Boiling point assumtions

9 % Tb_A=30 *C
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10 % Tb_B=70 *C

11 % Tb_C=100 *C

12 %

13 % author: Tor Anders Marvik

14 % organization: Department of Chemical Engineering, NTNU

15 % contact: torandma@stud.ntnu.no

16 % input x : condition vektor

17 % par : Parameter struct

18 % Output Tcol1 : Tray temperature vektor column 1

19 % Tcol2 : Tray temperature vektor column 2

20

21 % Temperature function

22 T=@(x)100−x(:,2)*(100−70)−x(:,1)*(100−30);
23

24 % Tray compositoin matrices

25 xcol1=[x(1:par.NT),...

26 x(par.NT+1:2*par.NT),...

27 x(2*par.NT+1:3*par.NT)];

28 xcol2=[x(par.NV+5:par.NV+4+par.NT),...

29 x(par.NV+5+par.NT:par.NV+4+2*par.NT),...

30 x(par.NV+5+2*par.NT:par.NV+4+3*par.NT)];

31

32 Tcol1=T(xcol1); % Tray temperatures column 1

33 Tcol2=T(xcol2); % Tray temperatures column 2

34

35

36 end

C.3.3 The nonlinear constraints

1 function [ c, ceq ] = nonlcon( x, par )

2

3 c=[]; %inequality constraints

4
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5 par1=par; %reseting struct parameters for col1

6 par2=par; %reseting struct parameters for col1

7

8 %column 1

9 par1.F=par.F;

10 par1.zF=par.zF;

11 par1.LT=x(par.NV+1);

12 par1.VB=x(par.NV+2);

13 par1.D=x(par.NV+3);

14 par1.B=x(par.NV+4);

15 ceq_col1=multiCP_ColumnA_ext(x(1:par.NV),par1);

16

17 %column 2

18 par2.F=x(par.NV+4);

19 par2.zF=x([1,par.NT+1,2*par.NT+1]);

20 par2.LT=x(par.NV*2+4+1);

21 par2.VB=x(par.NV*2+4+2);

22 par2.D= x(par.NV*2+4+3);

23 par2.B= x(par.NV*2+4+4);

24 ceq_col2=multiCP_ColumnA_ext(x(par.NV+5:par.NV*2+4),par2);

25

26 %active constraints

27 act(1)=x(par.NV+2)−4.008;% % Max vapour flow col1

28 act(2)=x(2*par.NV+6)−2.405; % Max vapour flow col2

29 act(3)=x(par.NT)−0.95; % Min comp A top col1

30 act(4)=x(par.NV+4+2*par.NT)−0.95; % Min comp B top col2

31 act(5)=x(par.NV+4+2*par.NT+1)−0.95; % Min comp C btm col2

32 active=act(par.actset)'; % Set of acitive const.

33

34

35 if par.flag==0; % No control

36 ceq=[ceq_col1;ceq_col2;active];

37 else % With control

38

39

40 dof=par.dof; % Setpoint contr. var.

41
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42 %value in x vektor controlled

43 if par.flag==1

44 res_dof=x(par.index_u)−dof;
45 ceq=[ceq_col1;ceq_col2;active;res_dof];

46 end

47

48 %Tray temp controlled controlled

49 if par.flag==2

50 [Tcol1,Tcol2] = Temp(x,par);

51 T=[Tcol1;Tcol2];

52 res_dof=T(par.index_u)−dof;
53 ceq=[ceq_col1;ceq_col2;active;res_dof];

54 end

55

56 %x()/x() controlled

57 if par.flag==3

58 res_dof=x(par.index_u(1, 1))/x(par.index_u(1,2))−dof;
59 ceq=[ceq_col1;ceq_col2;active;res_dof];

60 end

61

62 %x()/F() controlled

63 if par.flag==4

64 res_dof=(x(par.index_u)/par.F)−dof;
65 ceq=[ceq_col1;ceq_col2;active;res_dof];

66 end

67

68 %c= H * T controlled

69 if par.flag==5;

70 [Tcol1,Tcol2] = Temp(x,par);

71 T=[Tcol1;Tcol2];

72 res_dof=par.H*T(par.index_u)−dof;
73 ceq=[ceq_col1;ceq_col2;active;res_dof];

74 end

75

76 end

77 end
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C.3.4 Initial condition for a nominal point

1 % Initial conditions for the optimization problem

2 % defalt nominal point is F=1.4 and steam 0.01

3

4 %This script contains inital values

5

6 %intial values

7 par.F=1.4; % Feed flow rate

8 par.zF=[0.4 0.2 0.4]'; % Feed composition

9 par.qF=1.0; % Feed liquid fraction

10 par.NC=3; % Number of components

11 par.NT=41; % Number of trays

12 par.NF=21; % Feed tray number

13 par.alpha=[2 1.5 1]'; % Relative volatility

14

15 %Prices for the cost funciton

16 price.pF1=1; % Feed price col. 1

17 price.pD1=1; % Top product price col. 1

18 price.pD2=2; % Top product price col. 2

19 price.pB2=1; % Btm product price col. 2

20 price.steam=0.01; % vapour cost

21

22 %Number of decision variables

23 par.NV=par.NT*par.NC; % Number cons. decition var

24

25 %Define the constraint limits

26 V1max=4.008; % Max vapour flow col1

27 V2max=2.405; % Max vapour flow col2

28 Xd1Amin=0.95; % Min comp A top col1

29 Xd2Bmin=0.95; % Min comp B top col2

30 Xb2Cmin=0.95; % Max vapour flow col2

31

32

33 c_s=[V1max V2max Xd1Amin Xd2Bmin Xb2Cmin]; %constraints

34
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35 %Initial Values

36 x0_col1=[ linspace(0.01,0.99,par.NT)';

37 linspace(0.39,0.005,par.NT)';

38 linspace(0.6,0.005,par.NT)';

39 par.F/2;

40 par.F/2;

41 par.F/2;

42 par.F/2] ;

43 x0_col2=[ linspace(0.00,0.00,par.NT)';

44 linspace(0.01,0.99,par.NT)';

45 linspace(0.99,0.01,par.NT)';

46 par.F/4;

47 par.F/4;

48 par.F/4;

49 par.F/4] ;

50

51 x0=[x0_col1;x0_col2];

52

53

54 %Define the lower and upper bounds

55 lb_col1=zeros((par.NV+4),1);

56 ub_col1=[ones(par.NV,1); [20 20 20 20]'];

57 lb_col2=zeros((par.NV+4),1);

58 ub_col2=[ones(par.NV,1); [20 20 20 20]'];

59

60

61 %Define constraints through lower and upper bounds

62 lb_col1(par.NT)=Xd1Amin; % Min comp A top col1

63 lb_col2(2*par.NT)=Xd2Bmin; % Min comp B top col2

64 lb_col2(2*par.NT+1)=Xb2Cmin; % Min comp C btm col2

65 ub_col1(par.NV+2)=V1max; % Max vapour flow col1

66 ub_col2(par.NV+2)=V2max; % Max vapour flow col2

67

68 lb=[lb_col1;lb_col2 ]; % Lower bounds

69 ub=[ub_col1;ub_col2 ]; % Upper bounds

70

71
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72 %fmincon options

73 options = optimset('TolFun',10e−8,'TolCon',10e−8,...
74 'MaxFunEvals',1e4,'Display','off','Algorithm',...

75 'sqp','Diagnostics','off');

76

77

78 T=@(x)100−x(:,2)*(100−70)−x(:,1)*(100−30); % Temp. estimator


