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Abstract

It is desired to make the Economic Plantwide Control design procedure
proposed by Skogestad (2000, 2004, 2012) available for engineers without
deep knowledge of process control or optimization. The integration of the
use of commercial process simulators to obtain the process model could
be a useful tool for the automation of the economic plantwide design
procedure. However, process simulators are set up in "design mode"
and often work poorly in "operation mode". In this thesis, the use of
commercial process simulators to generate process models suitable for
an automated economic plantwide control procedure is explored. The
analyzed process is methanol production, as it consists of: a reactor, a
separator, and a recycle stream with purge. Simulations were made in
UniSim R400 Design Suite.

The optimization for nominal conditions and disturbed process was
done using a gradient-free algorithm, implemented in Python. As the
active constraint area was scanned using different tolerances, more than
1000 optimization procedures and 60000 function evaluations (simulations)
were performed. Four active constraint regions were found and a self-
optimizing control structure was designed for one of them. The results of
the resulting control structure were satisfying, with a consistently small
loss.

It was shown that the tolerance for the optimizer is an important
parameter in terms of finding consistent solutions. As a matter of com-
parison, the optimization at nominal conditions was also performed using
Matlab gradient-based NLP fmincon algorithm. It was demonstrated
that the gradient-free solver required less function evaluations than the
gradient-based algorithm. This has a positive effect on reducing the
time for evaluation and for performing step 2 in the plantwide design
procedure.
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Chapter1Introduction

Plantwide control refers to a control structure design for complete chemical plants.
Each chemical plant is unique and there are multiple control layers and potentially
an enormous number of variables involved. Moreover, it is of the interest of the
industry to operate chemical plants with the best possible economical performance.
Therefore, it is a challenge to develop a systematic procedure for designing control
structures that achieve safe and close to optimal economic performance.

A systematic procedure for the design of an economic plantwide control system
was proposed by Skogestad (2000). The main goal of this procedure is to design
an optimal control structure for a complete chemical plant based on steady state
plant economics. It is a stepwise procedure clearly separated into a top-down part,
concerned with the steady-state economics, and a bottom-up part, mainly concerned
with stabilization and pairing of loops (Skogestad, 2012).

1.1 Motivation

Downs and Skogestad (2011) mention that techniques for plantwide process control
require some characteristics in order to be accepted by process engineers in the
industry. These techniques must result in processes with near optimal operation
but at the same time should not employ complex control technology. Moreover,
the control structure design procedure should not require "the care and feeding of
control experts". Minasidis et al. (2013) observed that an important step would be
to develop an automated procedure, hiding unnecessary complexities.

Commercial process simulators are a standard tool for process engineers in industry.
They are convenient in terms of generating the process model because the engineer
can set it in a rather intuitive manner, without the express mathematical model.
Besides, this type of software includes a considerable amount of useful information
such as kinetic and thermodynamic data. Previously, process simulators have been
used to generate the steady state process model for the plantwide control procedure,
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2 1. INTRODUCTION

obtaining good results and insight (Brandao de Araujo, 2007; Panahi, 2011; Jacobsen,
2011).

However, the use of process simulators to generate the process model still has
some pending issues regarding the implementation of the plantwide process control
procedure. One drawback is that process simulators are set up in "design mode",
and are used extensively for these purposes (Steimel et al., 2013). However, they
often work poorly in "operation mode". Another disadvantage is that the model
usually results in a large non-linear equation set with poor numerical properties for
optimization (Skogestad, 2012). Furthermore, the way that the model is commonly set
and optimized ends up being useful to analyze a specific case for which it was designed,
and makes it difficult to extend the analysis to other models or other optimization
methods. This said, the implementation of a plantwide control procedure could be
simpler with the integration of the automatic design in the major process simulators
(Minasidis et al., 2013).

1.2 Objective

The overall objective is to investigate if commercial process simulators could be effec-
tively used for the automation of the plantwide control procedure. The application
of this analysis is mainly on the top-down part of the plantwide control procedure.

For the case study, the methanol plant is considered to incorporate the basic
structure of most chemical plants: a reactor, a separator, and a recycle stream with
purge.

1.3 Previous work

For the Specialization Project, the possibility of using commercial process simulators
as a tool for Skogestad’s procedure was explored. A stable model for a methanol
production plant was developed in UniSim Design R400, a commercial process
simulator. This model has the features the elements of a typical chemical plant,
consisting of a reactor, a separator and a recycle stream with purge. The first two
steps of Skogestad’s procedure were applied.

The optimization at nominal conditions and with disturbances to find active
constraint regions was done using the Matlab gradient-based (NLP) algorithm
fmincon. Using a central differences gradient based optimization method can prove
to be costly, as the number of evaluations required to estimate the gradient is 2n+ 1.
When using a commercial process simulator this means running the simulation 2n+ 1
times and if the simulation itself needs to converge on recirculations and equilibria,
the overall convergence time grows. Further analysis can still be done regarding
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the use of different optimization methods to improve reliability, and performance in
terms of calculation cost.

Derivative free optimizers have the potential to reduce computation cost. They
are designed to solve problems in which the derivatives are not available or costly to
calculate. However, derivative free optimization methods have some issues that need
to be addressed during this work, such as effective handling of constraints, which is
relevant when using process simulators.

1.4 Thesis structure

This thesis is divided in 10 chapters. Chapter 1 gives a brief introduction to the
motivation and objectives of the thesis and gives a brief summary of the work done
during the specialization project.

Chapter 2 includes a summary of Skogestad’s plantwide control procedure, with
main focus on the first three steps, which are applied in the thesis.

Chapter 3 gives an introduction of derivative-free optimization methods, focusing
on (local) trust-region methods. A summary of the limitations and options to
overcome them is also given.

The description of the methanol plant is included in Chapter 4. The process flow
diagram, reaction scheme, and information regarding the kinetic and thermodynamic
models are also included in this chapter. The second part of Chapter 4 is the
description of the UniSim process simulation.

Chapter 5 describes the definition of the optimization problem, including the
objective function terms and costs, the input constraints and the output constraints.

Chapter 6 describes the use of the optimization method described in Chapter 3
to optimize the simulation described in Chapter 4, based on the problem defined in
Chapter 5.

Chapter 7 describes the first three steps of the plantwide control structure, using
the results of the previous chapter.

In Chapter 8, the performance of the gradient-free solver used for the optimization
is briefly evaluated and compared to the performance of the gradient-based solver.

Chapter 9 includes a final discussion of the main findings of this thesis.

Conclusions and recommendations for further work are given in Chapter 10.





Chapter2Overview of Plantwide Control

This section describes briefly the plantwide control procedure proposed by Skogestad
(2000), as presented in Skogestad (2004) and Skogestad (2012). As short overview
of the complete procedure is included, but the description will be focused on the first
steps, in which is the main application of the analysis in this work.

2.1 Basic concepts

Plantwide control refers to a control structure design applied to chemical plants;
specifically, to the control philosophy for the whole plant. It might be thinkable to
try to formulate the mathematical problem to describe and control the whole plant.
However, it would be expensive and unpractical for normal-sized chemical plants, as
an acceptable control can be achieved with simpler structures.

Figure 2.1 shows the typical control hierarchy in a chemical plant. It decomposes
the overall control problem on a time scale basis. The upper layers are explicitly
related to economic optimization. The presented procedure deals with the two lower
layers.

Basically, the control system should: stabilize the plant and implement a near-
optimal operation. Stabilization occurs in the regulatory control layer, in a fast
time scale and is usually done with PID controllers. It does not use degrees of
freedom because its setpoints come from the supervisory (upper) layer. Supervisory
control, which sends the set points to the regulatory control can be achieved with
PID controllers, but MPC is currently a widespread tool. The setpoints for the
supervisory control come from the optimization layer.

In the end, after the plantwide control procedure has been followed, the following
decisions will be made:

5



6 2. OVERVIEW OF PLANTWIDE CONTROL

Figure 2.1: Typical control hierarchy in a chemical plant (Skogestad, 2004).

– Decision 1: selection of primary controlled variables (CV1).

– Decision 2: selection of secondary controlled variables (CV2).

– Decision 3: location of the throughput manipulator (TPM).

– Decision 4: pair valves to controlled variables (CV2).

Primary controlled variables are also called economic variables; while secondary
controlled variables are also called stabilizing variables. These are sub-sets or
combinations of the measured variables. The selection or combination is done using
matrices H and H2.

As Skogestad (2004) explains, to achieve a truly optimal operation, the model
would need to be perfect and all the measurements should be available and reliable;
which is unrealistic. Then, the concept of loss (L) is introduced as "the difference
between the actual value of the cost function obtained with a specific control strategy,
and the truly optimal value of the cost function". This concept brings the idea to
find controlled variables such that, when keeping the setpoints constant we get an
acceptable loss; even with disturbances.
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This way, we would not need to be constantly reoptimizing every time that
disturbances occur. This is called "self-optimizing control".

Figure 2.2: Loss imposed by keeping constant setpoint for the controlled vari-
able (Skogestad, 2004).

Figure 2.2 illustrates the concept of loss. It can be seen that when disturbances
occur, the optimum cost is also modified and if we wanted to stay at the optimum we
clearly would need to reoptimize. It can also be seen that by keeping the setpoints
of the controlled variables constant, there is a loss. In the figure, by keeping the
setpoints of CV1 constant, it is possible to achieve a smaller loss than by keeping
constant the setpoints of CV2.

Another factor that affects the optimum is the measurement error. The most
convenient variables to keep constant are those that are active constraints or those
controlled variables for which the cost is insensitive; case (a) and (b) in Figure 2.3.
If the cost is very sensitive to the value of the controlled variable, implementation is
harder and it may not work with a large measurement error.

2.2 Plantwide control procedure

The procedure is separated in two main parts: top-down and bottom-up. The top-
down part focuses on steady-state optimal operation and economics. The bottom-up
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Figure 2.3: Implementing the controlled variable (Skogestad, 2004).

part focuses on the control layer structure and, while the steady-state considerations
are still relevant, a dynamic model is required.

The procedure is as follows:

1. Top-down

– Step 1: Define operational objectives (economics) and constraints.

– Step 2: Identify steady state degrees of freedom and determine steady
state operation conditions.

– Step 3: Identify candidate measurements y and select CV1 =H y .

– Step 4: Select the location of the throughput manipulator.

2. Bottom-up

– Step 5: Select the structure of the regulatory control layer: CV2 =H2y
and pairings for CV2.

– Step 6: Select the structure of the supervisory control layer.

– Step 7: Select the structure for the optimization layer (RTO) - if required.
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2.2.1 Procedure steps

Step 1: Define operational objectives

The operational objective is defined as a scalar cost function J ($/s) that should be
minimized. Typically:

J = cost of feed + cost of utilities− value of products (2.1)

Constraints are operational constraints such as minimum and maximum flows,
temperatures and pressures. Quality specifications, safety and environmental re-
quirements should also be included here. Then, the optimization problem looks
like:

min
u

J(u, x, d) (2.2)

s.t.
model equations f(u, x, d) = 0
operational constraints g(u, x, d) ≤ 0

Where u are the degrees of freedom for operation; they are "for operation" because
the equipment is fixed. It is the number of u’s that is important because it does not
really matter which variables we include in u as long as they make up an independent
set. The disturbances d could be changes in feed rate and composition, changes in
specifications, changes in prices, among others. The internal variables (states) are
denoted by x.

Step 2: Determine steady-state optimal operation

The steady-state optimization problem was defined in Step 1. The process model can
be developed explicitly or it could be indirectly provided by some process simulator.
The challenge of using process simulators is that the resulting model is a non-linear
equation set with poor numerical properties for optimization (Skogestad, 2012).

The operational mode is chosen in this step. It can be either:

– Mode 1: Maximize efficiency given throughput - this results in a trade-off
between valuable product recovery and energy usage.

– Mode 2: Maximize production - when product prices are high compared to
energy and raw material’s prices. In this case, the feed rate is a degree of
freedom.
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In order to determine the steady-state optimal operation: the degrees of freedom
must be identified, the important disturbances should be identified, and the operation
should be optimized, also for the disturbances. In the end, constraint regions (regions
of operation with the same active constraints) should be found. In summary, in Step
2 the following should be done:

– Identify steady state degrees of freedom
Here is important to differentiate between the physical degrees of freedom and
the steady state degrees of freedom u. Physical degrees of freedom correspond
to valves while steady state degrees of freedom are those that affect the cost
function J. The former are the ones that are required for the optimization.
They can be identified either by valve counting or using the potential degrees
of freedom method, as described in Skogestad (2012).

– Identify important disturbances and their expected range
The "importance" of a disturbance is proportional to the sensitivity of the
cost function to that disturbance. Common important disturbances are the
feed rate and feed composition. Other disturbances could be changes in
product specification and active constraints, changes in parameters (equilibrium
constants, efficiencies), and price variations.

– Identify active constraints regions
Once that the disturbances and their range is specified, the function is optimized
along the disturbance space. Finally, the active constraints regions are found.

Step 3: Select primary (economic) controlled variables

Each steady state degree of freedom needs to be paired with a primary controlled
variable. Skogestad (2012) names two rules to select primary controlled variables:

1. Rule 1: control active constraints.

2. Rule 2: for the remaining unconstrained degrees of freedom control self-
optimizing variables.

In other words, for each active constraint region, active constraints could be
seen as self-optimizing variables because at the optimum they are constant. They
can either be inputs or outputs. Active input constraints would mean to fully close
or open a valve. Active output constraints would require a controller. As the
controller would require some time to adjust after a disturbance and there will be
some measurement error, the setpoint should not be exactly at the constrained value;
a back-off is required.
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After pairing the active constraints, self-optimizing controlled variables for the
remaining degrees of freedom should be identified. First, candidate measurements (y)
and their expected error should be identified. Then, the primary controlled variables
are selected. What is desired is to find variables for which constant setpoints give
small (economic) loss when disturbances occur, and despite implementation errors.
The selection of primary CVs (c) is done using a selection or combination matrix H,
where H=c y. Some qualitative requirements mentined by Skogestad (2000) for the
selection of variables are:

– The optimal value of the CV should be insensitive to disturbances.

– The CV should be easy to measure and control.

– The CV should be insensitive to manipulated variable variations.

– If there are two or more CVs, they should not be closely related.

Downs and Skogestad (2011); Skogestad (2012); Minasidis et al. (2013) discuss
some quantitative approaches to define this variables; broadly classified as the "brute
force approach", and "local approaches". A simple local approach is the null space
method, explained by Alstad and Skogestad (2007). This method assumes that there
is no noise, and the optimal constant set point can be defined as in equation 2.3.

∆copt = H∆yopt (2.3)

The sensitivity F matrix can be defined as in equation 2.4.

∆yopt = F ∆d (2.4)

By combining equations 2.3 and 2.4, we get that:

∆copt = HF ∆d (2.5)

If the number of measurements (ny) is equal or larger than the sum of the number of
inputs (nu) and the number of disturbances (nd), and F is evaluated with a constant
active constraint set, meaning in an active constraint region, then H can be selected
in the left null space of F; H ∈ N (FT ). Then we get equation 2.6. In other words,
if we have enough measurements, we have enough information to define H as the
null space of F, for an active constraint region and assuming that there is no noise.

HF = 0 (2.6)

If we look at equation 2.5, it becomes evident that if HF is always zero, regardless
the disturbances (∆d), ∆copt will always be zero, meaning that the optimum value
of the controlled variables will remain constant.
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After the self-optimizing control structure is defined, it is possible to estimate the
Loss, illustrated in Figure 2.2, using equation 2.7). As explained earlier, it could be
seen as a penalty on the profit, when not optimizing every time that a disturbance
occurs and using constant setpoints for the self-optimizing variables instead.

Loss = J(u; d)− Jopt(d) (2.7)

Step 4: Select the location of throughput manipulator

One degree of freedom is specified as the throughput manipulator (TPM); it defines
the mass moved through the plant. It could be situated anywhere in the plant, but
the location will affect the economics and the structure of the regulatory system.
This is the decision that links the top-down and the bottom-up part of the procedure.
The TPM is further discussed by Aske and Skogestad (2009) and Skogestad (2012).

Step 5: Select the structure of the regulatory control layer

In this step the regulatory control variables CV2=H2y are selected; then, inputs
and pairings for the CV2 are selected. No degrees of freedom are actually used here
because the setpoints for CV2 are actually the the manipulated variables of the
supervisory control layer. The selection should be done taking into account that by
controlling CV2, the effect of disturbances on CV1 should be small (local disturbance
rejection) and that the effect of disturbances on internal variables x should also be
small.

Step 6: Select the structure of the supervisory control layer

There are two alternatives for this layer: advanced single loop control (PID control
with some additions) or MPC. This layer must not only control the primary controlled
variables CV1 but also supervise the performance of the regulatory layer and switch
the controlled variables if necessary.

Step 7: Select the structure of the optimization layer

The real time optimization layer sends the setpoints for the primary controlled
variables and updates them if there are changes of the active constraint region. If
self-optimizing variables are chosen, it is probable that the benefit of RTO is not so
high.



Chapter3Overview of Derivative-Free
Optimization

As the first order necessary conditions establish that for continuously differentiable
functions, at a local minimum the first-order derivatives are zero, derivative informa-
tion is useful information when optimizing (Nocedal and Wright, 2006). However, a
very common case is that derivative information is not available, it is noisy, hence,
unreliable or it is too expensive to estimate. This can be the case when the model
is not a set of explicit functions, but a black-box simulation, a noisy process, or a
process defined by a set of very complex equations expensive to differentiate (Conn
et al., 2009). Despite these inconveniences, for a number of purposes, including the
design of process control structures it is still required to carry out optimization and
it is desired to do it in the most efficient manner.

As stated before, when using process simulators to build the process model, there
is no set of equations to algebraically get the derivative. If used for optimizing a
model without explicit equations, derivative-based algorithms require 2n+ 1 function
evaluations at each iteration step to approximate the derivative. When using process
simulators, each function evaluation implies running the simulation. This requirement
makes the optimization in step 2 of the Plantwide Control Procedure proposed by
Skogestad (2000) expensive, when using process simulators.

If he model is available in the form of a simulation, it is a "black box" that returns
the value of the objective function for any feasible set of inputs. For this reason,
derivative-free optimization algorithms become an interesting option to try to reduce
the number of function evaluations and consequently the cost of finding constraint
regions.

As their name states, derivative-free algorithms do not rely on derivative infor-
mation of the objective function or constraints, but exploit sample function values
to build a model that is useful for the purpose. Derivative-free algorithms may or
may not involve the computation of derivatives for functions other than the objective
function (Ríos and Sahinidis, 2013).

13
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3.1 Classification of derivative free optimization-algorithms

On their review of algorithms and comparison of software implementations, Ríos and
Sahinidis (2013) classify this type of algorithms as:

– Direct: determine search directions by computing values of the objective
function.

– Model-based: construct and utilize a surrogate model of the objective function
to guide the search process.

Ríos and Sahinidis (2013) and Johnson (2008) also classify algorithms as:

– Local: find the local minimum, considering nearby feasible points.

– Global: minimize the objective over the entire feasible region; with the ability
to refine the search domain arbitrarily.

A third classification given by Ríos and Sahinidis (2013) is:

– Stochastic: requiring random search steps.

– Deterministic: not requiring random search steps.

The well-known Nelder-Mead simplex algorithm is a direct local search algorithm,
which remains popular due to its simplicity, flexibility and reliability (Ríos and
Sahinidis, 2013). Trust-region methods, which are described in the next section, are
local model-based search algorithms.

3.2 Trust-region methods

The main idea of trust-region methods is to use a model for the objective function
which can be trusted in the neighborhood of the current point. This neighborhood is
called the trust region and ∆ represents the trust region radius. Typically, the model
is quadratic, written as in equation 3.1 because it captures the curvature of functions
better than linear models, as shown in Figure 3.1, and is still convenient for solving.
Solving the model must be easier than solving the original problem.

mk(p) = f(xk) + pT gk + 1
2p

TBkp (3.1)
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At each iteration point xk, p is the step, ‖p‖ ≤ ∆k The objective function f

is approximated by a quadratic model (mk) obtained by a second order Taylor
approximation around xk and gk = ∇f(xk). Bk is a symmetric approximation to
the Hessian ∇2f(xk). Therefore, to obtain each step, the subproblem in equation
3.2 should be solved.

min
p∈Rn

mk(p) = f(xk) + pT gk + 1
2p

TBkp

s.t. ‖p‖ ≤ ∆k

(3.2)

Figure 3.1: Contours of a linear model (left) and a quadratic model (right) of a
nonlinear function in a trust region (Conn et al., 2009).

While line-search methods use the model to generate a search direction and
then find a suitable step length, trust-region methods define a region around the
current iterate within the model is trusted to be good enough and then choose
a step (direction and length) to approximate the minimizer of the model in this
region, as shown in Figure 3.2. In general, trust-region methods are available for
derivative-based and derivative-free optimization.

Nocedal and Wright (2006) outline some advantages of trust region methods:

– These methods limit the step to a region within which the model is considered
reliable.

– SQP methods do not require the Hessian matrix to be positive definite. This
can be extended to methods using quadratic approximations, as in some
derivative-free algorithms.

– By controlling the quality of the steps even with Hessian and Jacobian singu-
larities, they provide a mechanism for global convergence.
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Figure 3.2: Trust-region and line search steps mk (Nocedal and Wright, 2006).

The size of the trust region can vary, as shown in Figure 3.3. In most algorithms
it is updated at each step, beginning with a bigger trust region and reducing it as
the algorithm approaches the solution.

Figure 3.3: Two possible trust regions (circles) and their corresponding steps pk .
The solid lines are contours of the model function mk (Nocedal and Wright, 2006).

As these methods add an additional constraint to the problem, the subproblems
might become unfeasible and additional procedures to handle this situation need to
be considered (Nocedal and Wright, 2006).
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3.2.1 Derivative-free trust-region methods

Trust-region algorithms are local model-based methods. In this type of algorithms,
properties such as Jacobian and Hessian information of the surrogate model are
used. Typically, a high fidelity surrogate model is not initially available; therefore,
these methods start by sampling the search space and building a surrogate model.
Then, iteratively, the model is optimized (minimized to obtain a new trial point),
the objective function is evaluated to find a solution, and the surrogate model is
updated (Ríos and Sahinidis, 2013). A useful feature of some of these algorithms, in
the sense of reducing function evaluations is that each iteration changes only one of
the interpolation points.

If f is smooth, algorithms for unconstrained optimization are hardly ever efficient
unless some attention is given to the curvature of f (Powell, 2007a). For this reason
it is useful to use a quadratic approximation instead of a linear approximation, as has
also been shown in 3.1. In any case, the parameters of the quadratic approximation
are still obtained by interpolation.

When using a quadratic approximation the number of degrees of freedom increases
to 1

2 (n+1)(n+2). This would imply an important increase in the number of required
function evaluations, at least to initialize the optimization. Therefore, among others,
Powell (2007a, 2009) has worked on the idea of reducing the required interpolation
points to 2n + 1. According to Powell (2009), this idea has given very promising
results because, even with a reduced number of function evaluations, the result is
not affected drastically.

Derivative-free trust-region algorithm

The algorithm that was used for this thesis is the BOBYQA (Bound Optimization
BY Quadratic Approximation) algorithm proposed by Powell (2009), which is an
extension of a previous algorithm, NEWUOA, to include bounds on inputs (Powell,
2003, 2007a, 2008).

This algorithm has been used previously to analyze the conceptual design and
optimization of chemical processes under uncertainty (Steimel et al., 2013) and for
the analysis of optimization of production of oil fields (Asadollahi et al., 2014) to try
to reduce function evaluations.

BOBYQA is a model-based derivative-free algorithm that seeks the minimum of
an objective function f(x) with n variables as in equation 3.3.

min
x∈Rn

f(x)

s.t. ai ≤ xi ≤ bi, i = 1, 2, . . . , n
(3.3)
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To achieve this, it requires m iteration points to construct the quadratic surrogate
model. The number of iteration points is an integer in the range [n+2, 1

2 (n+1)(n+2),
being 2n+ 1 a typical value.

In general, Arouxét et al. (2011) summarize the algorithm in the following steps:

Step 0: Initialization. Set the number of interpolation points, evaluate the func-
tion in these points and build an initial quadratic model.

Step 1: Solve the quadratic trust-region problem. Minimize the quadratic model,
subject to the bounds, within the trust region. The solution is expected to be
in the intersection of the trust-region with the bound constraints.

Step 2: Acceptance test. Update the trust region radius.

Step 3: Alternative iteration. If required, recalculate the step in order to im-
prove the geometry of the interpolation set.

Step 4: Update the interpolation set and the quadratic model. Evaluate a
new point and update model by eliminating one point and introducing the new
one. The least Frobenius norm is used to update the interpolation model (Pow-
ell, 2003, 2009).

Step 5: Update the approximation. Update iteration number and return to
step 1.

Step 6: Stopping criterion. Criterion can be number of iterations, or decrease
of solution.

The complete algorithm and details can be consulted in the report by Powell
(2009).

Besides solving bound constrained optimization problems, Powell (2009) and
Arouxét et al. (2011) describe some features of this algorithm:

– Considers bounds when calculating the trust region step.

– Obtains an approximate solution for the approximation mk(xk + s).

– The solution is in the intersection of the trust-region with the bound constraints.

– In each iteration, only one interpolation point is replaced. This means that the
objective function is evaluated once per iteration.
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As mentioned above, the evaluation of all the interpolation points, typically 2n+1,
is only required for initialization and afterwards only one point is updated at each
iteration. Moreover, Powell (2009) suggests that for some problems this number can
be decreased to n+ 2. The model is updated by minimizing the Frobenius norm of
the second derivative matrix.

Ríos and Sahinidis (2013) evaluated and compared several derivative-free opti-
mization algorithms. Among the algorithms that were tested, BOBYQA and its
unbounded version NEWUOA were the only local solvers that performed well for
convex smooth problems, as global approaches performed generally better than local
algorithms. Ríos and Sahinidis (2013) also found that BOBYQA could solve more
than 90% of the test cases within the optimality tolerance, when the problem had
up to nine variables. With more than 31 variables, this dropped to about 40%.
However, a similar tendency was observed for all the tested algorithms. On the
other hand, regardless the size of the problem, it solved more of 90% of non-convex
smooth problems, performing better than most of the tested algorithms. In the case
of non-convex non-smooth problems, it solved at least 90% of all problems when the
size was nine or smaller, and performed similar or better than other algorithms with
bigger sizes.

BOBYQA is a relatively young algorithm and there is ongoing work on improving
its robustness and efficiency. For example, Arouxét et al. (2011) have modified
Powell’s algorithm to use an active set strategy to reduce function evaluations. On
the other hand, some analysis of the geometry of the interpolation points of the
NEWUOA algorithm were done by Fasano et al. (2009), who concluded that at
some steps, the system could become ill conditioned, but overall, it performed better
than methods without a geometry phase.

3.3 Limitations of derivative-free methods

Despite this type of methods has a long story, with algorithms such as the Neadler-
Mead method available in 1965, most of the development has been in the last years
and it is still not mature. Development of derivative-free methods is still ongoing
and there are still some issues to solve. Nocedal and Wright (2006), Conn et al.
(2009), and Ríos and Sahinidis (2013) mention the following areas of opportunity for
derivative-free methods:

– Most algorithms can only handle "a few tens" of variables. The fraction of
problems solved is reduced when the size of the problem increases.

– Accuracy of solutions is not as good as for derivative-based methods.

– Convergence is not always fast.
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– There is still work to be done for the constrained problems.

– Stopping criteria is not always well-defined (if there is no derivative information,
KKT conditions cannot be evaluated).

– Some algorithms have scaling problems.

After analyzing 22 derivative-free software implementations, Ríos and Sahinidis
(2013) concluded that there is no single software whose performance dominates over
the others. When derivative information is available and inexpensive, derivative-based
methods still are preferred.

On the other hand, recent works have led to significant progress for derivative-free
algorithms (Ríos and Sahinidis, 2013). For example, regarding convergence, Powell
(2004, 2007b, 2009) has worked on developing algorithms to reduce the number of
interpolation conditions to values as low as n+ 2.

3.4 Constraint handling using penalty methods

Constraint handling may become an issue, not only for derivative-free optimization,
but also for derivative based-optimization. One approach is to replace the original
constrained problem by an unconstrained problem or a sequence of subproblems in
which the constraints are represented by terms added to the objective (Nocedal and
Wright, 2006).

Nocedal and Wright (2006) explain this type of methods and name the following
approaches:

– Quadratic penalty function: adds a multiple of the square of the violation of
each constraint to the objective.

– Nonsmooth exact penalty methods: the problem is replaced by a single uncon-
strained problem. The augmented Lagrangian method is one approach.

– Log-barrier method: logarithmic terms prevent feasible iterates from moving
too close to the boundary of the feasible region. This approach is applied in
interior-point methods.

As explained above, in the quadratic penalty function the penalty terms are the
weighted squares of the constraint violations. As for any penalty function method,
the weight given to each constraint violation is important in the sense that if it is
too high, it might turn the problem an unbounded problem because the weight given
to the penalty is to high compared to the objective function. On the other hand,
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the penalty must be large enough to avoid the iterates from going from the feasible
region.

If there is a feasible solution, at the solution, equality constraints will be satisfied
(equal to 0) and will not affect the value of the objective function. A more general
case, considering also inequality constraints is:

Q(x;µ) = f(x) + µ

2
∑
i∈E

c2
i (x) + µ

2
∑
i∈I

([ci(x)]−)2 (3.4)

Where [ci(x)]− denotes max(−ci(x), 0).

When introducing equality constraints this way, smooth problems remain smooth;
and convergence is usually reached within few iterations. This allows to use uncon-
strained optimization methods and start with a low value for µk and increase it
at each step. However, when introducing the term for inequality constraints, the
function looses smoothness, as it has a discontinuous second derivative. In the case
of derivative-free optimization, this might not be an important issue, depending on
the specific algorithm.

The `1 penalty function a non-smooth penalty function also for equality constraints
and the penalty term is µ times the `1 norm of the constraint violation.

Q(x;µ) = f(x) +
∑
i∈E
|ci|+

∑
i∈I

([ci(x)]−) (3.5)

Other norms such as the `∞ norm or the `2 norm can be used instead of the `1 norm.
When using derivative-free algorithms, the performance is not necessarily dependent
of the smoothness of the problem (Ríos and Sahinidis, 2013); which makes sense if we
think that derivatives are not calculated directly. Therefore, preserving smoothness
could not be as important as it is when using derivative-based methods. Then, using
non-smooth penalty functions can be a simple alternative to introduce constraints.

The augmented Lagrangian method estimates the Lagrangian multipliers λ to
weight each constraint violation and it helps to preserve smoothness, and avoids
ill conditioning (Nocedal and Wright, 2006). It can have very good convergence
properties when the derivative matrices are available (Birgin and Martínez, 2007).
However, it was decided to not use this method for this thesis because it was not
desired to require additional calculations of derivatives during the optimization phase.
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As a typical chemical plant, we consider a process consisting of a reactor, a separator
and a recycle stream with purge. The methanol plant was selected because it
incorporates this basic structure. In this section, the main elements of the plant as
well as the simulation in UniSim are described.

4.1 Methanol Process Description

Synthesis gas (syngas) composed by hydrogen and carbon monoxide is the raw
material for methanol production. Typically, syngas is produced onsite from natural
gas, as shown in Figure 4.1. Syngas with some carbon dioxide is fed to the methanol
production section. Crude methanol (containing water) is sent to a purifying section
to produce high purity methanol (≥ 99.5%) (Zhang et al., 2013).

For the purpose of this analysis, syngas production and methanol purification
are not included and only the delimited section in Figure 4.1 will be considered.
Syngas is considered as the feed (and disturbance) to the process and crude methanol
is considered to be the product. Typical plant capacities range from 150 to 6000
t/d (Moulijn et al., 2013).

From ca. 1830 - 1923, methanol was produced by dry distillation of wood. It was
first synthesized industrially in 1923 from syngas. To reach acceptable conversions,
high pressure (250-350 bar) and temperatures of 320-450 ◦C were required. In the
1960’s, the ability to produce sulfur-free syngas and new catalysts (Cu/ZnO) allowed
the production of methanol at milder conditions, especially regarding pressure. "Low-
pressure plants" operate at 50-100 bar and 200-300 ◦C. The upper temperature
bound is because at higher temperatures sintering occurs (Lange, 2001; Speight, 2002;
Fiedler et al., 2005; Moulijn et al., 2013).

23
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Figure 4.1: Conventional methanol process scheme, modified from Braunschweig
et al. (2008).

4.1.1 Process flow diagram

Process flow diagrams for the industrial production of methanol are similar and the
most important difference is the reactor. A general scheme is presented in Figure
4.2. Fresh syngas is mixed with recycled syngas and the mixture is pre-heated before
entering the reactor. There is some kind of temperature control in the reactor, either
by quenching or water cooling. When quenching is used as a means of cooling, as in
the ICI process, the quenching flows are not pre-heated.

The reactor outlet is cooled by heat exchange with the feed and cooled further
to separate methanol and water from the unreacted gas. The gas is recycled after
purging a small part to keep the concentration of inert components within limits.
The product of this section is called crude methanol. Crude methanol is purified in a
distillation section, which is not considered in this analysis.

Figure 4.2: Methanol synthesis: a) reactor; b) heat exchanger; c) cooler; d)
separator; e) recycle compressor; f) fresh gas compressor (Fiedler et al., 2005).
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4.1.2 Reaction scheme

The main reactions for the formation of methanol are presented in equation set
(4.1). Actually, only two of these three reactions are independent, and the reverse
water-gas-shift reaction (4.1c) can be obtained by coupling reactions (4.1a) and
(4.1b).

CO + 2H2 � CH3OH ∆H298K = −91 kJ/mol (4.1a)
CO2 + 3H2 � CH3OH +H2O ∆H298K = −50 kJ/mol (4.1b)
CO2 +H2 � CO +H2O ∆H298K = +41 kJ/mol (4.1c)

The ideal syngas for methanol production has a stochiometric number (SN) of 2.05.
By looking only at reaction (4.1a), a required H2/CO ratio of 2 mol/mol can be
deduced. However, the concept of stochiometric number is required because methanol
is also produced through reaction (4.1b). A lower stochiometric number increases
the formation of side products such as higher boiling alcohols and dimethyl ether; a
lower ratio implies unreacting hydrogen.

Moreover, a small concentration of CO2 (about 5%) increases catalyst activity
(Løvik, 2001; Moulijn et al., 2013). Klier et al. (1982) found that at lower concentration
of CO2 the catalyst is deactivated by overreduction and at higher concentrations of
CO2, the synthesis is retarded by a strong adsorption of this gas. The low reaction
temperatures possible with Cu/ZnO catalysts allow the high selectivity of current
processes (Lange, 2001).

SN = H2 − CO2

CO + CO2
(4.2)

Kinetics

A number of kinetic rate equations have been proposed in literature. Riaz et al.
(2013) presented an updated summary of kinetic models for methanol synthesis. Most
of the models are based on Langmuir-Hinshelwood kinetics or power law kinetics.
Many models are also based on different variations of a Cu/ZnO/Al2O3 catalyst. A
model that has been referred on several studies is the one proposed by Graaf et al.
(1988) because it considered the three main reactions. Vanden Bussche and Froment
(1996) presented a steady state kinetic model considering also the three reactions,
and providing information about the catalyst.

A drawback of most published models is that the experiments on which they are
based, in other words the range of validity, is up to about 50 bar (Graaf et al., 1988;
Vanden Bussche and Froment, 1996; Lim et al., 2009; Riaz et al., 2013), while the
operating pressure of industrial reactors is commonly around 80 bar.
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4.1.3 Types of reactor

Commercial processes use a reactor with a circulation loop. Recirculation is standard
because of the low single-pass conversion1. As the overall reaction is exothermic,
quench reactors and cooled multitubular reactors, depicted in Figure 4.3, are applied.

Figure 4.3: Methanol reactor types: quench (left) and multitubular
(right) (Hamelinck and Faaij, 2002).

The ICI process is the most representative for the quench scheme. An adiabatic
reactor is used; the reactor is a single catalyst bed and cold reactant gas at different
heights of the bed is used to quench the reactor. The Lurgi process is the most
representative for the multitubular scheme. Catalyst particles are located in the tubes
and boiler feed water (BFW) cools the reaction, which is nearly isothermal. Although
most commercial processes are two-phase processes, recently a slurry process has
been developed (Lange, 2001; Moulijn et al., 2013).

4.1.4 Thermodynamic model

Modifications of Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR) are widely
used to calculate thermodynamic properties of hydrocarbon mixtures. SRK equation
of state is reported to have a good fit for the methanol-water-carbon monoxide
system. SRK or some modified version has been used for several previous studies
(Løvik, 2001; Arthur, 2010; Van-Dal and Bouallou, 2013).

1There are some papers that discuss single pass configurations (Hamelinck and Faaij, 2002;
Pellegrini et al., 2011).
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While SRK is recommended for the methanol-water system, the rigorous SRK
model does not predict phase equilibrium accurately enough due to the presence of
the methanol-carbon dioxide system and due to the presence of hydrogen. The three
compounds interact and the addition of water to methanol reduces the solubility
of carbon dioxide. An extended SRK equation of state, such as the Mathias’ polar
correction factor, gives better results than the original SRK equation of state (Chang
and Rousseau, 1985; Graaf et al., 1986; Løvik, 2001; Rostrup-Nielsen and Christiansen,
2011).

Peng-Robinson intends to improve SRK ability to predict hydrocarbons properties
in the vicinity of the critical region (Ahmed, 1989). It has been proven to fit systems
where low molecular weight alcohols, water and CO2 are present (Breman and
Beenackers, 1996; Joung et al., 2001; Shahrokhi and Baghmisheh, 2005; Zhang et al.,
2013; Kim et al., 2013). PRSV gives a good description of nonideal systems by
both enhancing pure compound vapor pressure prediction, specifically water-alcohol
systems (Pellegrini et al., 2011).

Due to the non-linear increase in the solubility of carbon dioxide, most models
report some deviations when approaching the critical point, as reported by Yoon
et al. (1993) and Chang et al. (1997). The critical point of methanol is very close
to the process conditions2. Chang et al. (1998) and Joung et al. (2001) analyzed the
performance of Peng-Robinson to model the methanol-CO2 system in the vicinity of
the critical region for CO2-H2O system and concluded that performed well.

4.1.5 Circulation compressor

The circulation compressor in a methanol plant is a single-stage centrifugal compressor,
with a low pressure ratio, commonly driven by a steam turbine (Lüdtke, 2004; Ohsaki
et al., 2004), as depicted in the compressor in Figure 4.4. In the case of the simulation,
the energy for the compressor is considered to be electrical energy.

A limitation on plant capacity (recirculated mass) is the compressor capacity. A
minimum flow is required to avoid surge; a high flow would imply loss of compression
capacity and probably undesired peaks in power consumption3. It is common that
recirculation compressors in the methanol process have IGVs (inlet guide vanes),
which allow a wider operating window and allow power savings (Bloch, 2006; Atlas
Copco, 2011; Hitachi Plant Systems, 2012).

2The critical point is at 239.45◦C and 80.9 bar (Chang et al., 1997).
3A high load might cause the compressor to trip
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4.2 Process Simulation

The "operation mode" process simulation is the model. It was mostly developed during
the Specialization Project, but it was modified during this thesis. The simulation
was done in UniSim R400. It is important to keep in mind that when using this
type of model the interactions among the variables are not explicit because we do
not have equations to describe our model. Therefore, some process intuition and
knowledge becomes important for the analysis of the interactions.

4.2.1 Process flow diagram

This analysis considers the methanol production section, with syngas as the raw
material and crude methanol as the main product. After an initial analysis, the
simplified process flowsheet proposed by Løvik (2001) and shown in Figure 4.4 was
considered to best serve the purpose of the present study. This process considers
a Lurgi reactor, in which the reaction heat is transferred to boiling water and the
reactor temperature is actually controlled by the pressure of the boiling water to
produce medium pressure steam. Fresh syngas is considered to have the required
conditions to enter the loop.

Figure 4.4: Methanol synthesis loop with Lurgi reactor (Løvik, 2001).

The simulation flow diagram is shown in Figure 4.5 and is based in Figure 4.4.
Fresh syngas is fed to the loop at 140◦C and the same pressure as the output of
the recirculation compressor (Arthur, 2010). As the electrical energy consumption
to compress the inlet (make-up) is constant and would therefore not affect the
optimization, it was decided to leave it out of the simulation.
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The inlet stream is mixed with the outlet of the recirculation compressor and the
mixed stream is pre-heated before entering the reactor. Pressure is set upstream
the reactor. The outlet stream of the reactor serves as pre-heating medium for the
inlet. The outlet is further cooled to allow the separation of unreacted gas and crude
methanol (methanol and water). A fraction of the gaseous stream is purged. The
recirculated gas is then compressed.

Figure 4.5: UniSim process flow diagram.

Typical operating temperature and pressure reported by Løvik (2001) and Arthur
(2010) for Lurgi reactors are shown in Table 4.1. Fresh syngas make-up flow was
set to 6000 t/d. The nominal composition of fresh syngas is shown in Table 4.2.
Methane is considered to be inert.

Table 4.1: Typical operating conditions.

Parameter Value
Reactor temperature 250 ◦C
Reactor pressure 80 bar
Separator temperature 45 ◦C

4.2.2 Reactor

In order to consider the effect of the size of the reactor on the operation a PFR
model was used. Heterogeneous catalytic reactions for the hydrogenation of carbon
dioxide and for the reverse water-gas-shift reaction were used to model the reactor.
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Table 4.2: Nominal composition of syngas.

Component mol fraction
Hydrogen 0.63
Carbon monoxide 0.31
Carbon dioxide 0.05
Methane 0.01

The kinetic model is the one proposed by Vanden Bussche and Froment (1996) as
implemented by Arthur (2010). Besides the kinetic constants, Vanden Bussche
and Froment (1996) give the information for the Cu/ZnO/Al2O3 catalyst particle,
while Arthur (2010) develops the model to introduce it to the process simulator and
provides the sizing of the reactor. The pressure drop through the reactor is calculated
as per the Ergun equation.

Temperature control and steam generation

Temperature control is achieved by means of the production of steam, by controlling
the steam pressure. For the purpose of the simulation, the temperature of the reactor
is set for the outlet of the reactor (flow F5 in Figure 4.5). The temperature of
the boiler feed water (BFW) is set 10◦C below the reactor temperature, to have a
∆T of 10◦C in the steam generator. The outlet of the steam generator is set to be
steam at the saturation point. The pressure and mass flow of steam are calculated
given temperature, saturation (saturation = 1), and the available energy, which
corresponds to the heat that is removed from the reactor.

4.2.3 Heat exchangers

Disregarding the heat exchange in the reactor, there are two heat exchangers in the
process: the pre-heater and the cooler. The pre-heater uses part of the energy in the
reactor outlet stream to pre-heat the inlet stream and, at the same time, as a first
cooling of the outlet of the reactor. The cooler adjusts the temperature of the outlet
to allow the separation of crude methanol from the gases. The cooler uses cooling
water (CWS) as cooling medium.

Given that the intention the plantwide control procedure is to design a control
structure, the heat exchange area should be fixed and the heat exchange capacity
should be limited within a certain range. The value of UA of the pre-heater at the
nominal point was calculated and then set as constant in the Specs tab of the unit in
the simulation.
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In the specialization project it was noted that the most difficult issue for conver-
gence of this heat exchanger was the possibility of temperature crossing on the hot
side (F3 - F5). For the specialization project, this situation was solved by adding
an additional slack variable to represent the temperature difference and adding a
constraint to keep it feasible.

For the thesis, this situation was solved differently, without the requirement
of additional variables and constraints. In order to facilitate convergence, the
temperature difference on the hot side was added as an additional Spec for the
heat exchanger. By adding an "estimated" negative value, the calculations start
approaching far from the temperature crossing and eventually converge. A screenshot
of this set-up is found in figure A.4, in appendix ??.

The Cooler is modeled as a simple cooler, without information of the cooling
media in the simulation. However, the "real" heat exchanger has a maximum cooling
capacity given by the maximum flow of cooling water and a minimum capacity. These
two bounds are implemented as inequality constraints.

4.2.4 Separator

The gas-liquid separator is modeled as a two-phase separator without pressure drop
or change of temperature. The cooling is done in the cooler described in section 4.2.3.
The separator has one inlet, a liquid outlet and a vapor outlet. The vapor phase
carries most of the non-condensable gas, while the liquid phase is crude methanol
and contains most of the methanol and the produced water.

4.2.5 Purge

The purge is separated through a purge TEE. The recycle ratio is set as the recycled
flow to the purged flow; when the recycle ratio increases, the flow in the recirculation
increases. As the purge has some value, it is considered that it can be "sold" to
produce some energy. This will be further explained in Chapter 5.

The calculation of the price [USD/kg] of the purge is made in the "Objective"
spreadsheet, considering the cost, density, and LHV of the fresh syngas and the
density and LHV of the purge. As the composition and LHV of the purge vary
among simulations, this value is calculated for each simulation as per equation 4.3.

Costpurge [$/kg] = Costsyngas [$/kg]ρsyngas[kg/m3]LHVpurge[MJ/m3]
ρpurge[kg/m3]LHVsyngas[MJ/m3] (4.3)

LHV and density values are all at 15◦C. The cost of the syngas is constant.
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4.2.6 Circulation compressor

For the sake of simplicity in the simulation, the recirculation compressor is considered
to be a unit that increases pressure and no IGVs or curves were implemented. It is
considered that it is driven by electricity.

In order to introduce consistency in the costs, a cost for the electricity is calculated,
assuming that there is a power generation plant with 50% efficiency that uses a fuel
with the same characteristics of the purge. The cost of the electricity that drives the
compressor is calculated as per equation 4.4.

Costelectricity [$/kWh] = Costpurge[$/kg] ρpurge[kg/m3]3600[s/h]
0.5LHVpurge[MJ/m3]1000[kJ/MJ] (4.4)

As the cost of the purge is variable, the cost of the electricity is also variable.
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The problem can be seen as an optimization problem, formulated as:

min
u

J(u, x, d) (5.1)

s.t. lb ≤ u ≤ ub

g(u, x, d) ≤ 0
c(u, x, d) = 0

Where u refers to inputs or decision variables, d are the disturbances, and x refers
to internal variables such as the thermodynamic model or the kinetic model.

When not using simulators, model equations are set as constraints; however, when
using process simulators, model equations are not required to be defined explicitly.
Then, the constraints are operational or quality constraints. The operational mode
is Mode I ; the throughput is given and variations of the feed rate are considered to
be disturbances.

5.1 Objective function

The operational objective to be maximized is given by the profit, defined in equa-
tion 5.2. As the optimization problem is set as a minimization problem, the objective
function considers as positive the cost of cooling water, electricity, syngas, while the
cost of crude methanol (product), the sold purge, and produced steam are set as
negative.

J = Csynṁsyn+CCW SḢCW S+CeḢe−Csteamṁsteam−Cpurgeṁpurge−CMeOHṁMeOH

(5.2)
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Costs for the objective function

The cost of raw material and the price of crude methanol used for the optimization
are shown in Table 5.1. Pellegrini et al. (2011) report the price of crude methanol,
which, as expected, is lower than the price of high purity methanol reported by Zhang
et al. (2013) and Methanex (2013).

Table 5.1: Costs of methanol and syngas. Source: (Pellegrini et al., 2011; Noureldin
et al., 2013)

Symbol Variable Cost Unit
CMeOH Crude methanol 0.204 $/kg
Csyngas Syngas (2:1) 0.150 $/kg

The purge is required to keep the inert methane concentration within acceptable
limits, considering that the size of the equipment is given. As the purge has some
energy content, the cost of the purge is calculated in the simulation, as explained in
section 4.2.5, using equation 4.3, which considers the LHV15◦C of the purge relative to
the LHV15◦C of the syngas and the price of syngas. At nominal operating conditions,
the price of the purge is 0.10 $/kg1.

The cost for cooling water and steam is shown in Table 5.2. Cooling water
is considered to be an inexpensive service2. Steam is produced using the heat of
reaction. The price of steam is reported by Noureldin et al. (2013) as 0.008 $/kg.

Table 5.2: Costs of cooling water and steam. Sources:(Pellegrini et al., 2011; Zhang
et al., 2013; Noureldin et al., 2013)

Symbol Variable Cost Unit
CCW S Cooling Water (CWS) 0.1000 $/GJ
Csteam Steam 0.0008 $/kg

The cost of electric energy is calculated in the simulation, as explained in sec-
tion 4.2.6, using equation 4.4. At nominal conditions, the price is 0.054 $/kWh 3.

1Noureldin et al. (2013) used a similar method to calculate the cost of (1:1) syngas, which has a
similar composition as the purge, and reported 0.080 $/kg.

2The cost of using demineralized water (DMW) instead of cooling water supply (CWS) would
be in the range of 0.5 $/GJ, considering 0.021 $/treported by Pellegrini et al. (2011) and a ∆T of
10◦C.

3The cost for the Norwegian industry is in the range of 0.05 $/kWh (Statistics Norway, 2013).
Pellegrini et al. (2011) report a cost of 0.032 $/kWh for Saudi Arabia.
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5.2 Constraints

Constraints were set accordingly to a physical plant. UniSim is a design program. If
physical constraints are not set, every simulation it will size the equipment accordingly
to mass and energy flows. The idea of this work is not to design an optimal plant
in terms of sizing, but to analyze the behavior of a given plant when designing a
plantwide control structure. Therefore, there are two main sources for the constraints:
those coming from operating values typical for the (methanol) process and those
coming from the capacity and limitations of the specific plant.

To exemplify this, any methanol reactor has a similar maximum operating
temperature, which is between 240-260◦C according to Aasberg Petersen et al.
(2011). This is because every methanol reactor uses a similar type of catalyst that
will sinter above a certain temperature (about 280-300 ◦C). However, the areas of
the heat exchangers of each methanol plant are not necessarily the same among
plants and will limit the operating window of each specific plant.

The sizing of the equipment physical characteristics of the plant as a source for
constraints can be observed in:

– Compressor and recirculation loop capacity: Constraints have to be set
to define lower and upper bounds on the compressing capacity; either ∆p, or
flow. These should be treated as hard constraints because they must be always
satisfied in order to assure convergence on the process simulator. Also related
to the recirculating capacity and the size of the pipeline, valves, and compressor,
there is a minimum and a maximum recirculation ratio and therefore, the purge
flow is also bounded.

– Cooler: It is simulated as a simple heat exchanger that withdraws energy, and
the cooling water is not explicitly defined. The outlet temperature is varied
within a lower and an upper bound. The range of variation is small and should
be possible with a real heat exchanger. Additionally, a range for the retired
energy was set as a soft constraint. The result is physically feasible because
given a ∆ T in the cooling water and assuming a constant UA, there is a
maximum and a minimum flow of water through the pipeline. Therefore, there
is a maximum and minimum heat removal capacity.

– Pre-cooler heat exchanger: Considering UA as constant, and given the
heat capacities, inlet temperature, and the flows of both streams, there are no
actual degrees of freedom. UA could be set as an equality constraint. For this
thesis it was set as constant in the simulation, as explained in section 4.2.3.
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In the case of the reactor, the size is given and no additional explicit constraints
are required to be defined for the optimization model. Implicitly, the kinetic model
and the sizing are set, as explained in section 4.2.2.

Supposing that the design and sizing of a plant is given, the operating variables can
be seen as inputs (decision variables) for the optimization. These can be varied within
certain bounds, given in Table 5.3. These are constraints in the form lb ≤ u ≤ ub.

Table 5.3: Lower and upper bounds for inputs.

Input Unit Lower bound Upper bound
Reactor temperature ◦C 240 260
Reactor pressure bar 75 81
Separator temperature ◦C 40 50
Recirculation ratio - 0.90 0.99

There are four degrees of freedom.

For some inputs, such as the temperature of the reactor, the lower and upper
bounds can be easily defined based on process knowledge. However, as the behavior
of the process is not linear, it can be the case that the bounds for some inputs are not
so evident. If the input bounds are not defined correctly, some input combinations
might violate physical principles.

The optimization algorithms that were used vary the inputs only within the lower
and upper bounds. Therefore, if there is a hard constraint, in the sense that it
requires to be satisfied to assure the convergence of the process simulator, it must be
included as an input along with those in Table 5.3.

Once that combinations that would lead to an error in the process simulator
have been handled as inputs, there are solutions that will not stop the process
simulator from converging but would be unfeasible in a real plant or undesired. The
"non-desired" solutions are discarded by introducing inequality constraints in the
form g(u, x, d) ≤ 0. From the point of view of the set-up, these are treated as soft
constraints, because they are outputs and the optimization algorithm might violate
them at some point. If the optimization problem is well posed and the optimization
algorithm works correctly, the solution will not violate these constraints.

For example, UniSim allows valves to increase pressure and coolers to increase
temperature; a constraint on ∆p can be set. In the same line, another source of soft
constraints is related to the quality of the product. Having a low quality will not avoid
the process simulator to converge. In this case, a lower limit on the concentration of
methanol in the product is set.
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The inequality constraints (g(u, x, d) ≤ 0) for the problem are:

0.80− xMeOH ≤ 0 (5.3a)
xCH4 − 0.10 ≤ 0 (5.3b)

0.75 ∗ Ḣ∗cooler − Ḣcooler ≤ 0 (5.3c)
−1.25 ∗ Ḣ∗cooler + Ḣcooler ≤ 0 (5.3d)

Where:

– xMeOH : mol fraction of methanol in crude methanol stream.

– xCH4 : mol fraction of methane (inert) in recycle stream.

– Ḣ∗cooler: nominal heat flow removed from the cooler.

– Ḣcooler: actual heat flow removed from the cooler.

It should be difficult to violate constraints (5.3c) and (5.3d), due to the bounds
on the outlet temperature of the cooler.

There are no explicit equality constraints (c(u, x, d) = 0) in the model. Implicitly,
pre-cooler’s UA is set constant, but this is done in the simulation.
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Once that the simulation (model) was set in UniSim and the optimization problem
was defined, the objective function and the constraints were introduced in spreadsheets
so that the values could be read and modified by an external program by means of the
Component Object Model (COM) interface. Additionally, inputs and disturbances
were exposed also through spreadsheets. This way, only the external program handles
the optimization while the process is completely simulated by UniSim.

The Component Object Model (COM) interface allows the use of a code in an
automation client to interact with UniSim. The code can access exposed objects,
making possible to send and receive information to and from UniSim (Oli Systems,
2007). It is important to outline that not every UniSim property is exposed through
the COM interface. However, this was overcome using UniSim spreadsheets to
access the values. This way, even properties that are not available through the COM
interface become accessible as they become "values" in the spreadsheets. This gives
valuable flexibility for the definition of a robust optimization problem and allows a
cleaner communication.

It is important to stress that the way that the model and solvers were set, they
are formulated independently. UniSim and the external program communicate in a
very clean way. For the solver, the simulation variables are mere numeric values. On
the other hand, if the process simulation is seen as the NLP problem, the inputs are
only modified at specific pre-defined locations of the spreadsheets.

6.1 Setting UniSim for optimization

The values for the optimization problem described in chapter 5 were added to four
dedicated spreadsheets. The values that are required for the optimization problem,
such as the objective function, the inputs, the constraints, the parameters (dis-
turbances), and the measurements are written in specific cells, which are defined
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in the external code. The layout of the spreadsheets can be consulted in Appendix A.

The spreadsheets are:

– Objective: contains the objective function in cell A2, which is the only cell
in this spreadsheet that interacts with the external program. The rest of the
spreadsheet is used to get the values from the simulation, introduce the costs
and perform any other calculation that is required to to calculate the objective
function.

– Inputs: columns A-E are read by Matlab. Decision variables set as constraints
in the form lb ≤ u ≤ ub are set here. Columns A through E contain: the actual
value of the input, the lower bound, the upper bound, the initial value for the
optimization, and the units of measurement. Column F is not read or modified
by the external program, but is used to describe the decision variable.

– Constraints: inequality constraints are specified in column A. Equality con-
straints are specified in column B. The rest of the columns are used to get the
values and perform the required calculations.

– Parameters: the disturbances are exposed in column A. This allows the exter-
nal program to modify their values and test the model response to disturbances.

– Measurements: measurements candidate to be controlled variables are ex-
posed in this spreadsheet, giving flexibility to save the results and perform the
analysis.

Posing the optimization problem in a way that assures convergence is a very
important step before using the external program to optimize the problem with and
without disturbances. This has been described in section 4.2. In order to assure that
the optimization result is consistent and constant among runs, the recycle sensitivities
were increased1. The maximum number of iterations was also increased to assure
convergence.

6.2 Gradient-based solver

NLP methods have been used previously for the methanol process with Lurgi reactors
to analyze the effect of varying operating conditions on a process plant. Kralj and
Glavič (2009) used a gradient method for a methanol process because, despite a
global optimal solution is not guaranteed, it gives good results for complex processes.

1As explained in UniSim manual, the entered sensitivities values serve as a multiplier for UniSim
internal convergence tolerances (Unisim, 2007).
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For the specialization project and this thesis, the gradient-based optimization was
done using the NLP solver fmincon in Matlab. The interior-point algorithm was
used and gradients are estimated using finite differences. The interior point algorithm
assures that the input constraints are always satisfied, reducing the possibility of
unwittingly evaluating unfeasible points.

Process variables such as compositions, temperatures, and flows are in different
orders of magnitude. To facilitate convergence, two scaling functions were written.
One function scales from zero to one the input values read from UniSim and these
scaled values are used in fmincom; the other function "de-scales" the variables to
send them back to Unisim.

A feature of the Matlab code (appendix B.2.1) is that it reads the number of
bounded inputs, equality and inequality constraints. With this information, the NLP
code (Appendix B.2.2) is generated. This way, there is no need to re-write the code
for optimization.

6.3 Gradient-free solver

In the specialization project it was noted that the gradient-based optimization
algorithm required many iterations to find the solution. This was explained with
the fact that the model is not explicit, not linear, and noisy. For this reason, it was
decided to explore the possibility of using a gradient-free optimization algorithm to
perform the optimization.

The gradient-free algorithm that was implemented is BOBYQA (Bound Optimiza-
tion BY Quadratic Approximation), developed by Powell (2009). A very simplified
version of the building interpolation step was developed initially, but afterwards it
was decided to use the code available in the NLopt open-source library for nonlinear
optimization (Johnson, 2008). NLopt is written in C but is callable from other
programming languages. For this thesis, the interface was Python 2.7.

Similar to gradient-based optimization case, a code was written to interact with
the simulation and the optimization algorithm. This program reads the number of
inputs and their bounds, normalizes them, and varies their values to evaluate the
objective function at different points. The code is included in appendix B.1.1 and
B.1.2. If required it can also read and set the values of the disturbances, as shown in
Figure 6.1.

An important difference between the gradient-based and the gradient-free op-
timization programs is that while fmincon is set to handle input and output
constraints, BOBYQA only handles input constraints. In order to handle output
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Figure 6.1: Interactions between optimization algorithm and simulation.

constraints, the objective function was modified in the simulation by adding a penalty
function, as described in section 3.4.

The values for the penalties were established according to the order of magnitude
of the variable and the order of magnitude of the objective function. The absolute
value of the maximum mole fraction of methane in the recirculation and the minimum
mole fraction of methanol in the product, will always be lower than 1. Therefore, in
order to be relevant, the penalty was in the order of 106- 109. In the other hand,
the heat removed from the cooler is in the order of magnitude of 108. Therefore, the
penalty was set in the order of 103. These values worked correctly for this particular
problem and the solutions that the optimizer found did not violate the constraints.

The `1 penalty function (equation 3.5) and the quadratic penalty function (equa-
tion 3.4) were tested. Both worked fine for the purpose of the problem, as long as
the problem was initially feasible. If the optimization had been started in a feasible
point and the optimization algorithm evaluated an unfeasible point in which the
output constraints were violated, the algorithm returned to the feasible region in
the next iteration. However, if the optimization started in an infeasible point, the
algorithm had problems finding the feasible region.
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In this section the first three steps of the plantwide control procedure are performed
systematically using the tools developed in the previous chapters.

The goal of this analysis is to establish the basis to use a process simulator such as
UniSim to systematically apply the plantwide control procedure. The first three steps
of the plantwide procedure presented in Skogestad (2012) were applied: the definition
of the operational objectives, the steady state optimization, and the identification
of candidate measurements. In order to perform the steady state optimization in
Step 2, a reliable steady state model must be available. The simulation described in
section 4.2 and the code and modifications described in chapter 6 were used to solve
the optimization problem in chapter 5.

7.1 Step 1: Define operational objectives

Chapter 5 describes the definition of the optimization problem. Equation 5.2 defines
the objective function, equation set 5.3 defines the inequality constraints for the
outputs and Table 5.3 details the lower and upper bounds for the inputs. The goal is
to minimize the cost (maximize profit) satisfying operational constraints.

7.2 Step 2: Determine steady state optimal operation

This step is usually very time consuming (Skogestad, 2012), and this work is done
with the intention of helping to automatize it.

7.2.1 Identification of steady-state degrees of freedom

There are five physical degrees of freedom (valves), as shown in Figure 7.1; but there
are only four steady-state degrees of freedom.
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In Figure 7.1 there is a valve to control the level in the separator. This adds a
physical degree of freedom, but would not have any steady state effect. Therefore,
there are four steady-state degrees of freedom. The valve to control the level in the
separator was not included in the simulation (Figure 4.5).

In this case, the "evident" physical degrees of freedom in the simulation correspond
to the steady state degrees of freedom. This could be seen as a result of the fact that
the simulation was set for a steady-state analysis.

Syngas

Cooler
Pre-cooler

Compressor

Separator

ReactorVLV-101

VLV-102

VLV-103

VLV-104

BFW

Steam

CWRCWS

F1

F3

F5 F6 F7

F8

Purge

F9F10

Figure 7.1: Process flow diagram.

Using the potential steady-state degrees of freedom method (Skogestad, 2012),
we obtain the same result:

– splitter: 1 (TEE-Purge; n=2; n-1=1 )

– heat exchanger: 2 (Cooler and the generation of steam in the reactor)

– pressure: 1 (Compressor)

Figure 7.1 shows how the actual manipulation of the process parameters would be
done (there is a valve/compressor for each degree of freedom). The reactor is in gas
phase, and it is not a degree of freedom. The pre-cooler does not add a degree of
freedom because both flows and the size are given and there is no bypass.

7.2.2 Identification of important disturbances

Two important disturbances are in the feed: the flow and the composition of fresh
syngas. It was defined that the H2:CO:CO2 ratio in the syngas would be kept
constant and that the mole fraction of the inert component (methane) would be the
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disturbance.
d = [ṁsyn, xCH4 ] (7.1)

7.2.3 Optimization

The process was optimized using the NLP solver and simulation as explained in
chapter 6. The nominal syngas make-up flow is 24 000 kmol/h (about 6000 t/dor
250 000 kg/h) and the nominal composition is the one in Table 4.2. It was defined
that syngas flow could vary ±10%. Keeping the H2:CO:CO2 ratio constant. The
composition of CH4 was varied ±10%. The optimum values are shown in Figure 7.2.
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Figure 7.2: Effect of disturbances (xCH4 and fresh syngas make-up) on solution.

From the contour plot in figure 7.3 and the 3D plot in figure 7.4 the same trends
as described above can be observed.

7.2.4 Operating regions

Constraints are defined in section 5.2. Input constraints are identified in Table 7.1,
while output constraints are identified in Table 7.2. Optimization was performed
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Figure 7.3: Contour plot for the different optimum values as function of distur-
bances.

varying 1% from -10% to +10% of nominal flow and methane composition. It can be
pinpointed that along these optimization procedures, the simulation worked fine.

Table 7.1: Input inequality constraints identification

Constraint Variable Description

c1 F5 temperature Reactor temperature
c2 F4 pressure Reactor pressure
c3 F7 temperature Cooler outlet and separator temperature
c4 TEE-Purge ratio Recycle ratio (relative to purge)

Table 7.3 shows the active constraints in each of the identified regions depicted in
Figure 7.5. For input constraints, that have a lower and upper bound, the subscript
indicates whether it is the upper or the lower bound that is active.

Some observations regarding the constraint regions are:

– c5 is active all over the area.

– c2 (operating pressure) activates on its upper bound frequently.

– c3 (cooler temperature) activates on its lower bound frequently.
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Figure 7.4: Effect of disturbances on optimum.

Table 7.2: Output inequality constraints identification

Constraint Variable

c5 MeOH minimum mole concentration in crude methanol
c6 Methane maximum mole concentration in recycle
c7 Cooler low capacity
c8 Cooler high capacity

Table 7.3: Identification of active constraint regions.

I c5
II c3lower, c5
III c2upper,c5
IV c2upper, c3lower, c5

– In region I, where only c5 is active, the values of c2 and c3 are actually very
close to their bounds.

As it will be discussed in chapter 9, this constraint area map was made over a
rather small disturbance span. However, it serves as a "close-up" for the performance
of the gradient-free optimizer and the results that can be obtained. In the case of
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Figure 7.5: Active constraint regions.

this particular problem, figures 7.3 and 7.4 show that in this area, despite the model
is not linear, the optimum was rather flat. Given the constraints, the optimum all
over the analyzed span was close to the bounds of three of the four inputs (reactor
temperature upper bound, operating pressure upper bound, cooler temperature lower
bound. This situation made the optimization harder for the algorithm, as it was
constantly limited. It is fair to mention that for this active constraint map, 600
optimization procedures and 49887 function evaluations were performed.

7.3 Step 3: Select primary (economic) controlled variables

It is noteworthy to remember the requirements that Skogestad (2000) outlines to
select the controlled variables. The optimal value of c should be insensitive to
disturbances:

– The optimal value of c should be insensitive to disturbances.

– c should be easy to measure and control (so that the implementation error is
acceptable).

– The value of c should be sensitive to changes in the manipulated variables.
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– For cases with more than one unconstrained degrees of freedom, the selected
controlled variables should be independent.

Original input variables are:
uT = [u1, u2, u3, u4] = [Treactor, Preactor, Tcooler, recirculation ratio]

The control structure is designed for region III, with one output and one input
constraint active. Active constraints are:

– Reactor pressure is bounded at its upper value (input constraint).

– The concentration of methane in the recirculation is at its maximum value
(output constraint).

7.3.1 Pairing of constrained variables

As mentioned in section 2.2.1, active input constraints would mean to fully close or
open a valve. Active output constraints would require a controller.

As the reactor pressure is an active constraint at the upper bound and an input,
it means that the compressor should be operated at its maximum capacity from the
point of view of pressure. It should be noted that for this decision, no considerations
regarding the possible time delay between the reactor pressure and the compressor
or pressure losses in the pipeline were taken into account.

The concentration of methane in the recirculation, which is an output constraint,
requires a controller, that could be a feedback controller. Based on the "pair close"
rule, we chose to use the recirculation ratio to control the concentration of methane.
In this analysis, we are not considering the implementation error or noise. If that
was the case, back-off would be required as a safety margin. The resulting process
flow diagram is shown in figure 7.6.

7.3.2 Selection of self-optimizing controlled variables for the
remaining degrees of freedom

At this point, from the initial four degrees of freedom, there are two remaining
degrees of freedom, represented by Treactor and Tcooler. It is noteworthy to say that
in the analyzed region, the optimum value of the temperature of the reactor is very
close to the upper bound (260◦C), and that the optimum value of the temperature
of the cooler is also close to the lower bound (30◦C).

During the optimization in step 2, several measurements (y) were saved and
were available to calculate ∆yopt and F. For the purpose of this analysis, it is
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Figure 7.6: Process flow diagram with pairings for constrained variables.

considered that there is no noise. Alstad and Skogestad (2007) mention that "in the
measurement vector y, input vector u is generally included, including the inputs that
have been selected to the control active constraints. They add that the measurements
of the active constraints should not be included in y, because they are constant and,
provide no information about the operation".

As we require ny ≥ nu + nd to be satisfied we need at least 2 + 2 measured
variables. We have 11 > 2 + 2. Then, we can take decision 1 of the plantwide control
procedure, which is to select the primary controlled variables CV1 = Hy. This
requires finding H, which can be full or not. The null space method, as described in
section 2.2.1, is used in this case. Selected candidate measurements are:

yT
candidate = [Psteam(bar), Tcooler(◦C), F lowpurge(t/h), Freactor(t/h)] (7.2)

The dimension of F is ny × nd= 4 x 2, and defined as:

F =


∂yopt

1
∂d1

∂yopt
1

∂d2
∂yopt

2
∂d1

∂yopt
2

∂d2
∂yopt

3
∂d1

∂yopt
3

∂d2
∂yopt

4
∂d1

∂yopt
4

∂d2



Commonly, the elements in F are approximated linearly as in equation 7.3, where h
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is the step size.
f ′(x) ≈ f(x+ h)− f(x− h)

2h (7.3)

As the measurements are available, instead of using one direction for the disturbance,
the elements in F will be calculated using central differences centered formula of
order O(h4), as in equation 7.4.

f ′(x) ≈ −f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)
12h (7.4)

The point d = [18414kmol/h, 0.0105] is established as the initial (nominal) oper-
ating condition for this analysis. The other evaluation points that will be used are
based on ∆d = [±0.207tmol/h,±0.01%mol] and ∆d = [±0.414tmol/h,±0.02%mol].
The units of measurement were adjusted to have both in the same order of magnitude.
It is understood that this is a rather small disturbance; however, this analysis is done
as a mere demonstration. With this information the numerical values of F are:

F =


−2.8094 −89.5144
0.9365 −17.5066
1.2831 20.4067
15.1951 −135.1277



The dimension of H is nu×ny= 2 x 4. It the null space of F and numerically is1:

H =
(

0.299 −0.3061 0.9038 −0.0022
0.2721 0.9349 0.2265 −0.0264

)

With this information, the self-optimizing control was implemented in UniSim,
by adding an "Adjust" operation to "control" the active constraint and another two
"Adjust" operations to use the two remaining degrees of freedom to control the
self-optimizing control variables. This is shown in figures A.7 and A.8 in appendix A.

Figure 7.7 depicts the optimized profit (objective function) and the profit result-
ing of the self-optimizing control, both as function of the magnitude of the total
disturbance (

√
d2

1 + d2
2). This could be seen as a "worst-case scenario" because it

would mean that both disturbances occur at the same time. The figure does not
show the section in which the self-optimizing control and the re-optimized profit
are equal, but it shows that the self-optimizing control-structure follows closely the
re-optimized result. Figure 7.8 depicts the Loss, which, as expected, is relatively
small in terms of the magnitude of the optimum values.
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Figure 7.7: Optimized profit and self-optimizing control profit
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Figure 7.8: Loss from self-optimizing control

An observation that needs to be mentioned is that, given the set-up of this
control structure, when using the self optimizing control, at the highest disturbance
the self-optimizing control structure became unfeasible, as both degrees of freedom
(reactor temperature and cooler temperature) reached their bounds without finding
a solution. This could be effect of the fact that even if the inputs where not strictly
constrained, their values at the solution were very close to their upper or lower
bounds.

1H was calculated in Matlab using H=null(F.’)’



Chapter8Performance of the Gradient-Free
Solver

In this thesis the use gradient-free solvers to perform the optimization of models
created in process simulators is analyzed. In order to get a picture of the performance
of this type of solver, some basic statistics are presented. Additionally, it is compared
with the gradient-based solver used for the specialization project.

8.1 Gradient-free solver overall performance

Standard convergence analysis methods are not commonly applied to gradient-free
optimizers. Therefore, the performance of the used solver will be analyzed from the
point of view of number of function evaluations, time to solve the optimization, and
ability to find the solution.

8.1.1 Number of function evaluations and time to solve
optimization

In general function evaluations depend on the type of processor and, as can be seen
in figure 8.1, on the tolerance. Initially, the simulations were run with tolerance
10−6. However, it was observed that results were not consistent because there were
several "constraint areas" with only one or two elements. Afterwards, it was decided
to decrease the tolerance to 10−8 and use the results of these simulations for the
design of the control structure.

Just as a point of comparison, the time to solve the optimization is shown in
figure 8.2. As it has already been mentioned, it depends on the processor, other
processes carried out with the computer at the same time, and even programming.
However, it is included to give a reference of the time that it was required to solve
this particular problem and the time that would be required to solve other problems.
There were three outliers that took more than 10000 seconds to find a solution that
are not depicted. Similar to the number of evaluations, it is observed that it is not a
normal distribution, as it is skewed to the right. Moreover, there is a bound on the
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Figure 8.1: Number of function evaluations, with tolerance 10−6 and 10−8.

minimum, meaning that, even for simple optimizations or those that start close to
the optimum, the number of evaluations and time for optimization do not decrease
substantially.
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Figure 8.2: Time [s] to solve the optimization with tolerance 1× 10−8.
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8.2 Finding the solution

As mentioned earlier, initially the scan for the constraint areas was done using a
tolerance of 1× 10−6. However, this resulted in several regions with very dispersed
elements and very few elements in each region, as can be observed in figure 8.3, in
which there are two elements in "region VII". Moreover, the contour plot, shown
in figure 8.4, was rather uneven. For this reason, it was decided to re-run the
optimizations with a lower tolerance (1× 10−8).

0.0090 0.0095 0.0100 0.0105 0.0110 0.0115
CH4  mol composition

18000

18500

19000

19500

20000

20500

21000

21500

S
y
n
g
a
s 

m
a
ke

-u
p
 f
lo

w
 [
km

o
l/
h
]

Regions
1 2 3 4 5 6 7 8

Figure 8.3: Constraint areas found with tolerance 10−6. These areas were not used
for the design of the control structure.
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Figure 8.4: Contour plot found with tolerance 10−6.
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8.3 Comparison of optimization strategies

In order to evaluate the convenience of using a derivative-free algorithm against
using a derivative-based algorithm, both algorithms (BOBYQA and fmincon)
were tested. Both algorithms were tested with the same simulation. The only
difference was that, fmincon has the option of reading and considering inequality
constraints (g(u, x, d) ≤ 0) and the gradient-free algorithm does not. Therefore,
when the optimization was performed by fmincon, the optimization function was
not modified and equation 5.2 was used. When the gradient-free algorithm was used,
a penalty term was added to the objective function, as described in section 6.3.

It should be reminded that:

– both algorithms are local optimization algorithms and that none claims to be
a global optimizer;

– for each iteration step, the derivative based algorithm requires 2n+ 1 function
evaluations.
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Figure 8.5: Comparison of performance of gradient-free and gradient-based algo-
rithms at nominal conditions, with different initial points.

Figure 8.5 shows that if it is initialized far from the solution, the derivative-based
method has a better initial step than the derivative-based because the second value
is very close to the optimum. It then moves away remains almost 50 evaluations in
the same values (around 13000$/h). As it has the information of better results, it
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keeps iterating and does many more iterations before going back to values close to
the ones it had found initially, and find the optimum at around 13200$/h

On the other hand, the derivative-based algorithm advances more slowly towards
the optimum stops at fewer evaluations, and never "gets the information" about the
existence of a "better" optimum. Therefore, after "falling into" the valley around
3000 $/hit stops at that local optimum, after 89 iterations.

The test described above was done with a tolerance of 10−6. To analyze if this
had happened because the tolerance was not low enough, the tolerance was reduced
to 10−8. It can be observed that for this particular case, the algorithm followed the
same path and stayed at the same result, only with more iterations, as shown in
Table 8.1.

If initialized closer to the optimum, the derivative based algorithm does not "loose
track" and finds the "better" optimum in 61 iterations, fewer than the derivative-based
algorithm. In the figure it can also be observed that the algorithm evaluated values
that were unfeasible, and the penalty function penalized those results. It can also be
observed that when this happened, the algorithm returned to the feasible region.

Table 8.1: Performance of derivative-based and derivative-free algorithms on the
analyzed problem.

Type Initial Tolerance # steps # eval Time [s] Time [s]/ eval

Derivative-based far 1.0E-08 39 351 2260 6.4
Derivative-free far 1.0E-08 111 111 467 4.2
Derivative-free far 1.0E-06 89 89 396 4.4
Derivative-free close 1.0E-06 61 61 200 3.3





Chapter9Discussion

Together with obtaining the model, the optimization step is often the most time
consuming in the plantwide control procedure (Skogestad, 2012). The work presented
in this report seeks to facilitate the integration of process simulators in the automatic
design of the economic plantwide control procedure. Some insight about what is
required from the process model for optimization, mainly applicable to the first three
steps of the procedure, was obtained.

9.1 On the setting of the optimization model

The optimization model was initially developed for the specialization project; it was
developed to be used for optimization with Matlab fmincon NLP solver. Initially
during the specialization project, it was intended to handle operating constraints solely
by adding inequality constraints (equation set 5.3). However, NLP solvers evaluate
and vary input parameters in the process simulator and then verifies whether the
output constraints are satisfied or not. It was then noted that when some constraints
are violated, the process simulator still converges. For example, when the inequality
constraint that assures that the methanol quality is satisfied, the simulation still
works; the "only" issue is that the solution does not serve the purpose of the analysis.
However, in the case of other variables, if an unfeasible value is set in the simulator
it will not converge and fail. The problems should be formulated such that variables
are be set as inputs.

Knowledge and insight of the process is a very powerful tool and well selected
boundaries are very important to assure convergence of the simulator. From the
point of view of the definition of the optimization problem, it is important to assure
that the boundaries of the inputs give results that will converge. For this reason, it
is recommended to set the hard constraints as inputs u or decision variables (Inputs
spreadsheet), because they need to be satisfied at every moment to assure convergence
in the simulator. Then, the soft constraints, which are not absolutely necessary for
the convergence of the simulator should be set as equality and inequality constraints
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(Constraints spreadsheet). This way, these will help to discern between the solutions
that satisfy requirements such as product quality or some equipment sizing.

From the procedure point of view, the number of degrees of freedom is what
matters, and which variables we include in u is not really important Skogestad
(2012). However, from the simulation point of view, an appropriate selection of
variables, significantly improves robustness. In the end, the manipulated variables in
control might be different from the inputs required in the process simulator. Using
spreadsheets as means of communication with the optimization solver facilitates the
clear distinction of inputs and outputs and eliminates possible errors.

9.1.1 Unit operations in the simulation

The reactor is a plug-flow reactor with a defined size, giving implicit limitations to
the model. In general, it converged easily and behaved as expected. When the model
was optimized the temperature of the reactor was in the high range and close to the
upper bound.

The pre-cooler does not give a degree of freedom because it does not have a
bypass. For this same reason, it is a unit operation that is difficult to converge. In
the specialization project, a decision variable was used to adjust the temperatures so
that the heat transfer area (UA) was kept constant. Despite setting a constraint for
LMDT that would assure a feasible heat exchanger, the optimization procedure did
not avoid the process simulator to "try" solutions with temperature crossings. In those
cases, the process simulator failed to converge and stopped. This was solved by using
the temperature difference between the hot inlet and the cold outlet instead of the
temperature of the hot variable as a decision variable to find the temperatures in the
pre-cooler. This was implemented by calculating the cold outlet temperature based
on a given ∆T and the temperature of the hot inlet in an additional spreadsheet.

As the addition of variables implies a bigger optimization problem, an alternative
solution was explored for the thesis. It was found that by setting the value of UA
in the simulation and giving an appropriate estimate for the initial temperature
approach, the simulation was also robust enough for the purposes of simulation,
and the requirement of extra variables was eliminated. If the number of variables is
reduced, the number of function evaluations that the optimization problem requires is
reduced. However, a matter of further analysis would be if the time for the simulation
does not increase with this modification.

On the other hand, the cooler was modeled as a simple heat exchanger, and the
size is limited with output constraints in terms of cooling capacity. As the cooling
water circuit is not included in the main simulation, this approach is quite efficient
and converges easily, making it a very appropriate option.
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9.2 On the simulation results

The objective of this analysis was to explore the use of a commercial process simulator
such as UniSim to design the control structure for a chemical plant. This procedure
involves optimization and most of the identified challenges are related to the stability
of the simulation when varying the inputs and disturbing the process. In the end, the
objective was reached because the simulation ran smoothly enough when disturbed
and optimized. During the optimization phase of the plantwide control procedure,
more than 1000 optimization results were obtained. Considering that the average
number of function evaluations was between 60 and 80 (depending on the tolerance),
the simulation was run and converged more than 60 000 times.

The level of detail of the simulation was set trying to approximate the limitations
of a real plant. As discussed earlier, in general, the behavior of the equipment and
results were accordingly to the expected. If the simulation was used to design a
plant, most probably the simulation results would be different. For a deeper analysis,
the level of detail would require to be increased. For example, despite the kinetic
model that was implemented, proposed by Vanden Bussche and Froment (1996),
behaved as expected in the sense that the optimum temperature and pressure of the
reactor were consistently either at the upper bound or close to it, it was developed
for pressures between 15 and 51 bar(as many other models), while the simulation
is run at pressures in the range of 80 bar. Other aspects that could be modeled
with more detail are: heat exchangers’ pressure drops (which were set constant at 10
mbar) and heat transfer coefficients, as well as the compressor curves.

An effort was put on setting the costs for the objective function at real values.
For this reason, the costs for purge and electricity are updated at each simulation,
considering the LHV (lower heating value) and energy ratio with respect to natural
gas. This way, it can be assured that the costs are within a reasonable magnitude.
Additionally, these costs were compared to commercial values to assure that the
value was reasonable.

9.3 On the optimization methods

By using the process simulator, there are no explicit equations that model the
behavior of the process. This simplifies the modeling step of the optimization
procedure. However, in a standard optimization problem, when the equations for the
behavior of the parameters of the problem are given, before starting to actually solve
the problem it should be defined whether it is convex or not in the area of interest.
Chemical processes are mostly non-linear and it is possible that operating conditions
are in a non-convex area.

It has to be mentioned that both optimization methods are local optimization
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methods, meaning that there is no complete scan of the optimization function.
Therefore, there is no obvious way to find out if the result is a global minimum; it
can only be assured that it is a local minimum. Moreover, it is possible that the
solution is highly dependent on the initial inputs.

In the specialization project and this thesis, (fmincon) was the gradient-based
NLP solver used to optimize the problem. The results were good in the sense that
convergence was reached and the optimization results were consistent. However, it
has to be reminded that for each evaluation the gradient has to be calculated. To
do this, the simulation needs to be run 2n + 1 times. As the simulation does not
converge immediately in some regions, this makes the algorithm quite slow. The time
to converge for fmincon varies between 5-15 minutes (at least about 300 seconds
and up to 900 seconds). It has to be mentioned that tolerances were small, to assure
that the results were consistent given the high non-linearity of the process. The time
to converge should not be a significant problem if a limited number of conditions is
to be tested and if the analysis is to be done offline. However, in the specialization
project this area of opportunity was found.

For the reasons mentioned above, the approach to use derivative-free optimization
methods was analyzed during this thesis. These methods have the advantage that
are designed to solve problems in which the derivatives are not available or costly to
calculate, which is actually the case when using a process simulator. In the other
hand, many current algorithms are effective only for relatively small problems and the
effective handling of constraints is still under investigation, as explained in section 3.3.
As the process simulator convergence is affected by the appropriate handling of the
constraints, especially the bounds for the inputs, this was an issue to be solved during
this thesis.

The gradient-free algorithm BOBYQA (Powell, 2009), as implemented by NLopt
open-source library for nonlinear optimization (Johnson, 2008), was used. As men-
tioned in chapter 8, this gradient-free algorithm performed well. However, as men-
tioned in the same chapter, the repetibility of the results is still a matter that requires
attention. In some cases, the optimization had to be re-run to obtain a consistent
result. Moreover, it was required to set a very low tolerance to get relatively good re-
sults. However, even with the used tolerance, the appearance of the active constraint
area is not very uniform and could still be a matter of the capacity of the optimizer.
This is consistent with the results of the analysis made by Ríos and Sahinidis (2013).
They mention that despite BOBYQA and its non bounded version NEWUOA are
among the local derivative-free algorithms that perform better, sometimes they do
not find the optimum and do not have an excellent refinement ability.

In general, the gradient-free solver required less evaluations than the gradient-
based solver, confirming the potential of this type of solvers to speed-up the opti-
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mization phase of the plantwide control procedure. While the gradient-based solver
frequently required more than 100 evaluations (in the specialization project), and
it was not rare that it required more than 400 evaluations, as shown in section 8.3,
the gradient-free solver rarely required more than 150 evaluations, even with low
tolerances.

Despite this potential, big area of opportunity for this optimization algorithm
would be a "warm-start" routine. It was noted that, despite starting at the optimum
value, the optimization algorithm required more than 2n+ 1 function evaluations to
"realize" that it was at the optimum. The lowest numbers of function evaluations
were in the range of 30, while in the case of the analyzed problem 2n+ 1 would be 9
evaluations.

However, considering the issues on the reliability of the results, there is still work
to be done. The results must be reliable because important decisions for the design
of the control structure are based on them.

9.4 On the optimization, active constraints, and self
optimizing control

The constraint that limits the concentration of the inert in the recirculation (not
of the product) remains active in all the evaluated regions. This might seem as
"not-optimal" because it is a constraint fixed by the user and the appropriate correct
number could be a matter of discussion. However, as this procedure is intended to be
applied in an existing plant, it is feasible that physical limitations are in place. For
example, that some mechanical elements would not stand a maximum concentration
of one component. Another explanation would be that the used models, for example
the kinetic models, loose reliability at certain conditions. It is accepted that it could
be a matter of analysis to release this constraint and study the effect of this action
on the active constraint regions.

On the other hand, three out of the four input constraints, namely the temperature
of the reactor, operating pressure, and temperature of the cooler, were consistently
close to the optimum. Reactor pressure reached its bound frequently and was the
second most common constrained situation.

The optimization phase gave enough information for the design of the control
structure, based on self-optimizing variables selected by using the null-space method.
The step-wise procedure was followed and the control structure was designed and
tested in one constraint region. The test was done in the "worst-case scenario",
meaning that both disturbances occurred at the same time (both d1 and d2 decreased
or increased). The designed self-optimizing control was good in the sense that the
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Loss was small and more or less constant and that Jsoc followed Jopt without requiring
additional optimization, and, thus, allowing an acceptable operation of the plant,
even with disturbances.

An improvement that was made regarding the standard way to perform the null
space method was the estimation of the elements in F. During the optimization
step it was cheap to obtain information of the measurements. Therefore, afterwards,
all this information was available to estimate the sensibility matrix. As the values
of the optimized measurements at several steps were available, instead of a linear
approximation, the central differences centered formula of order O(h4) was used to
estimate ∂yopt/∂di.

It has to be noted that, given the shape of the constraint areas, the designed
control structure only works for a very small range of disturbances, which might
not be practical in many industrial cases. This example justifies the requirement to
continue working on the design of control structures that work in wider areas.
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The use of commercial process simulators could be an important step to develop
an automated procedure for designing control structures that achieve safe and close
to optimal economic performance. Hiding unnecessary complexities would ease the
acceptance of the plantwide control procedure by process engineers in the industry.
However, the use of process simulators to generate the model still has unresolved
issues. The plantwide control procedure intends to design the control structure of
a given chemical plant, not to design the plant. Commercial simulators are set up
in "design mode" and often work poorly in "operation mode". Also, there is no
standardized way to set up the simulators for the optimization in Step 2 - and to be
used for the rest of the steps.

In this thesis, the use of UniSim, one of the most popular commercial simulators,
was explored. The analyzed process was a methanol plant, that includes the basic
features of a typical chemical plant: a reactor, a separator, and a recycle stream
with purge. This way, relevant issues of this configuration were analyzed. The model
included sizing of equipment such as the reactor and heat exchangers. This way, the
simulation could be run in "operation mode".

As capacity constraints were introduced, special attention was put on the con-
vergence of an integrated heat exchanger. Quality constraints such as minimum
methanol concentration in the product or maximum inert concentration were also
introduced. In the end, a robust simulation was obtained. With the simulation and
optimization algorithm, active constraint regions were identified.

It became evident that a clear definition of input and output constraints is
important to achieve a robust simulation. The simulation needs to be robust to avoid
it from crashing during the optimization procedure. The optimization algorithm
varies the inputs, and cannot "predict" the outputs before running the simulation.
Therefore, the choice of input and output constraints becomes important for the
convergence of the simulator.

65



66 10. CONCLUSION

The way that the simulation and the optimization were set up allows the NLP
problem to be generated independently of the NLP solver and vice versa. The
problem (model) is managed by the process simulator while the solver was managed
by Python or Matlab. For the specialization project it was done using only Matlab;
for this thesis it was mainly done using a gradient-free solver in NLOpt in Python.
In the future, the optimization could be done with a different algorithm or program,
just by reading and modifying the input values in the simulation spreadsheets via
COM interface.

The active constraint regions were found using the gradient-free solver. It was
confirmed that it requires less function evaluations than the gradient-based solver.
However, there is still some work to be done regarding the quality of the results,
which were not completely consistent when performing the optimizations with a
tolerance of 1 × 10−8 compared to the results when performing the optimizations
with a tolerance of 1× 10−6 . The control structure was designed using the results
obtained with the lower tolerance.

As the gradient-free solver does not handle output constraints, a penalty function
had to be implemented. The magnitude of the penalties was defined according to the
magnitude of the constraint variables with respect to the penalty functions. However,
there is still an area of opportunity in the systematic definition of the penalties. This
problem is not strictly related to the plantwide control procedure, but it would help
to ease the use of gradient-free solvers.

Finally, a control structure using self-optimizing variables was designed. As
expected, the self-optimizing profit followed closely the optimized profit and the loss
was consistently small. This supports the use of self-optimizing control as a very
good alternative to continuous optimization.

10.1 Further Work

In order to apply the remaining steps of the plantwide control procedure, some work
that can be done from the simulation point of view:

– Generate a dynamic simulation and analyze the use of the process simulator to
perform the controllability analysis for the bottom-up design. This should also
be done in a consistent and systematic way.

– Make a more detailed analysis of the operating regions (even a finer mesh).

– Develop a more detailed simulation:

◦ Compare effect on different types of reactor. The reactor model has been
analyzed previously (Løvik, 2001; Kim et al., 2013).
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◦ Include the power plant in the simulation.
◦ Add variable speed curves or IGVs to the compressor.

– Explore the use of "user variables" in UniSim to make more flexible the possible
inputs for the simulation.

From the coding point of view, some improvements could be:

– Implement a "warm start" strategy for the gradient-free algorithm to reduce the
number of function evaluations when the initial values are close to the solution.

– In the loop that is used to generate the operating regions and optimize with
different disturbances:

◦ If there is an "exception", close and re-open the simulation without saving
the last simulation. Otherwise, if the exception was caused by an error in
the simulation, the optimization algorithm cannot be re-started.

◦ Use the solution of the previous optimization as the initial values for the
next optimization, as a "warm start".

These actions would allow not only to generate a finer mesh for the operating
regions more efficiently but also to evaluate the effects of inputs and disturbances on
measurements also in a more efficient manner.
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AppendixAUniSim Setting

The layout of the spreadsheets used to modify values in the simulation is shown in
this Appendix. COM works in the Objective, Input, Parameters, Measurements, and
Constraints spreadsheets.

Figure A.1: Layout of Objective spreadsheet.
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Figure A.2: Layout of Inputs spreadsheet.

Figure A.3: Layout of Constraints spreadsheet.
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Figure A.4: Set-up of pre-cooler to adjust UA.

Figure A.5: Layout of spreadsheet for setting and reading parameters (distur-
bances).
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Figure A.6: Layout of spreadsheet for reading measurements.

Figure A.7: Layout of simulation for self-optimizing-control. Active constraint is
adjusted with "Adjust". The two remaining degrees of freedom are used through two
"adjust", to keep c1 and c2 constant.
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Figure A.8: Spreadsheet that was added to calculate and adjust c1 and c2.





AppendixBCode

B.1 Python Code

B.1.1 Optimize Unisim Loop

Using Unisim1 (section B.1.2) interacts with UniSim spreadsheet to disturb the
process, evaluate, optimize, and save results.

1 '''
2 Created on Apr 23, 2014
3

4 @author: vladimim
5 '''
6 #Modified by Adriana Reyes to:
7 #Read and set parameters - disturbances (using Unisim2py)
8 #Read measurements
9 #Iterate over parameters

10 #SOME FUNCTIONS THAT ARE ON THE ORIGINAL CODE BY VLADIMIM
11 #HAVE BEEN REMOVED BECAUSE THEY WERE NOT USED FOR THE THESIS
12

13 import nlopt
14 import time
15 import numpy as np
16 from Unisim1 import Unisim2py
17 import csv
18

19 def objFunc(x, grad):
20 global counter
21 global beginIter
22

23 Jterms = unisim1.getObjectiveFunctionTerms
24 J = lambda x: sum(Jterms(x))
25 if grad.size > 0:
26 getGradient(J, x, grad)
27 counter += 1
28
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29 return J(x)
30

31

32 def optimizationBOBYQA():
33

34 # import information from the Unisim
35 lb = np.array(unisim1.getLowerBounds(scaled=True))
36 print "scaled lb:", lb
37 ub = np.array(unisim1.getUpperBounds(scaled=True))
38 print "scaled ub:",ub
39 x0 = np.array(unisim1.getInitialInputValues(scaled=True))
40 print "x0", x0
41

42

43 # Construct nlopt opt object
44 opt = nlopt.opt(nlopt.LN_BOBYQA, unisim1.numberOfInputs)
45 # Set the bounds
46 opt.set_lower_bounds(lb)
47 opt.set_upper_bounds(ub)
48 # Specify the objective function
49 opt.set_min_objective(objFunc)
50 # Maximum number of evaluations
51 opt.set_maxeval(2000)
52 # Tolerance
53 opt.set_xtol_rel(1e-8)
54

55 start = time.time()
56

57 x = opt.optimize(x0)
58

59 end = time.time()
60

61 print "The assignment took", end-start, "seconds."
62

63 print "Algorithm: ", opt.get_algorithm_name()
64 print "Optimum at ", x
65 print "Output inequality constraints:", unisim1.

getInequalityConstraintValues()
66 print "Output equality constraints:", unisim1.

getEqualityConstraintValues()
67 print "Disturbances: ", unisim1.getParametersValues()
68 print "Minimum value = ", opt.last_optimum_value()
69 print "Result code = ", opt.last_optimize_result()
70 if opt.last_optimize_result()>0:
71 print "nlopt Successful termination"
72 else:
73 print "Check: http://ab-initio.mit.edu/wiki/index.php/

NLopt_Reference#Return_values"
74 print "Function evaluations = ", counter
75 print "\n"
76

77 soln.append(opt.last_optimum_value())
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78 runTime.append(end-start)
79 resultCode.append(opt.last_optimize_result())
80 evaluations.append(counter)
81 inputConstr.append(x)
82 outputConstr.append(unisim1.getInequalityConstraintValues())
83

84

85 if __name__ == '__main__':
86

87 unisim1 = Unisim2py()
88

89 global soln
90 global runTime
91 global resultCode
92 global evaluations
93 global inputConstr
94 global outputConstr
95

96 #global solni
97 #global runTimei
98 #global resultCodei
99 #global evaluationsi

100 #global inputConstri
101 #global outputConstri
102

103 global writer
104 global i
105 global j
106

107 #Definition of number of steps
108 step=0.01
109 #For i (flow)
110 resinit=0.983333333
111 resfin=1.2
112 #for j (composition)
113 res1init=0.9
114 res1fin=1.0
115

116 #if you want to read the values for iteration from a file
117 flow = genfromtxt('Flows.csv', delimiter=',')
118 res=np.linspace(resinit,resfin,(resfin-resinit)/step+1)
119 res1=np.linspace(res1init,res1fin,(res1fin-res1init)/step+1)
120

121 soln=[]
122 runTime=[]
123 resultCode=[]
124 evaluations=[]
125 inputConstr=[]
126 outputConstr=[]
127

128 point= 0
129
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130 f = open('Results_lowtol_lowconc.csv', 'wb')
131 fieldnames = ('Flow_j', 'Comp_j','Flow', 'Comp', 'Soln', 'Time','Code',

'Evaluations','Input1','Input2','Input3','Input4','Input1sc','
Input2sc','Input3sc','Input4sc','Output1','Output2','Output3','
Output4','Meas1','Meas2','Meas3','Meas4','Meas5','Meas6','Meas7','
Meas8','Meas9','Meas10','Meas11')

132 writer = csv.DictWriter(f,fieldnames=fieldnames, restval='missing')
133

134 for i in flow:
135 for j in res1:
136

137 counter = 0
138

139 lb = np.array(unisim1.getLowerBounds(scaled=True))
140 print lb
141 ub = np.array(unisim1.getUpperBounds(scaled=True))
142 print ub
143 x0 = np.array(unisim1.getInitialInputValues(scaled=True))
144 print x0
145

146 #set disturbances
147 #dnom=np.array([2.e4, 0.01])
148 dnom=np.array([1, 0.01])
149 var=np.array([i, j])
150 d=var*dnom
151 print "d=",d
152 unisim1.setParametersValues(d)
153

154 print unisim1.hyFlowsheet.Operations.Item("Objective").Cell("A
{0}".format(3)).CellVariable.Value

155 print unisim1.hyFlowsheet.Operations.Item("Objective").Cell("A
{0}".format(3)).CellVariable.IsKnown

156 print unisim1.hyFlowsheet.Operations.Item("Objective").Cell("A
{0}".format(3)).CellVariable.IsValid

157

158 unisim1.isObjectiveMultiTerm = False
159 unisim1.printNLP()
160

161 try:
162 optimizationBOBYQA()
163

164 inputConstr2=np.asarray(inputConstr)
165 outputConstr2=np.asarray(outputConstr)
166

167 x=unisim1.getInputsValues(scaled=False)
168 print "Inputs", x
169

170 y= unisim1.getMeasurementsValues()
171

172 writer.writerow({ 'Flow_j':i,
173 'Comp_j':j,
174 'Flow':d[0],
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175 'Comp':d[1],
176 'Soln':soln[point],
177 'Time':runTime[point],
178 'Code':resultCode[point],
179 'Evaluations':evaluations[point],
180 'Input1':x[0],
181 'Input2':x[1],
182 'Input3':x[2],
183 'Input4':x[3],
184 'Input1sc':inputConstr2.item((point,

0)),
185 'Input2sc':inputConstr2.item((point,

1)),
186 'Input3sc':inputConstr2.item((point,

2)),
187 'Input4sc':inputConstr2.item((point,

3)),
188 'Output1':outputConstr2.item((point,

0)),
189 'Output2':outputConstr2.item((point,

1)),
190 'Output3':outputConstr2.item((point,

2)),
191 'Output4':outputConstr2.item((point,

3)),
192 'Meas1':y[0],
193 'Meas2':y[1],
194 'Meas3':y[2],
195 'Meas4':y[3],
196 'Meas5':y[4],
197 'Meas6':y[5],
198 'Meas7':y[6],
199 'Meas8':y[7],
200 'Meas9':y[8],
201 'Meas10':y[9],
202 'Meas11':y[10],
203 })
204

205

206 except nlopt.roundoff_limited as e:
207 print e
208 point += 1
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B.1.2 Optimize Unisim

Interacts directly with UniSim spreadsheets.

1 '''
2 Created on Apr 7, 2014
3

4 @author: vladimim
5 '''
6 #Modified by Adriana Reyes to read measurements from spreadsheet
7 #import comtypes.client as comClient
8 #import comtypes.gen.UniSimDesign as UD
9 import sys

10 import win32com.client as w32c
11 from win32com.client import gencache
12 gencache.EnsureModule('{707BF17F-353C-40B2-A5D2-26B20CE7DCFF}', 0, 1, 1)
13 # import UnisimLib as UD
14 # import numpy as np
15 import logging
16

17

18 class Hysys2py:
19 def __init__(self, cell):
20 self.currentValue = cell
21

22 class Unisim2py:
23 """A class that load/connects to an open Hysys document through COM and

attempts to convert it to NLP format
24 min f(x) s.t. lb<=x<=ub h(x)=0 g(x)<=0 """
25 def __init__(self):
26 try:
27 # Start a logger
28 logging.basicConfig(level=logging.DEBUG)
29 self.logger = logging.getLogger(type(self).__name__)
30 self.lastFeasibleObjectiveTerms = []
31 self.lastFeasibleInputs = []
32 self.isObjectiveMultiTerm = False
33 # Attempt to load/connect to Hysys/Unisim
34 # gencache.EnsureModule('{707BF17F-353C-40B2-A5D2-26B20CE7DCFF

}', 0, 1, 1)
35 self.hyApp = w32c.Dispatch("UnisimDesign.Application")
36 self.logger.debug("...Object initialized "+ repr(self.hyApp))
37 self.hyCase = self.hyApp.ActiveDocument
38 self.hyCase.Solver.CanSolve = True
39 self.logger.debug("...Simulation loaded and running" + repr(

self.hyCase))
40 self.hyFlowsheet = self.hyCase.Flowsheet
41 self.logger.debug("...Flowsheet loaded " + repr(self.

hyFlowsheet))
42 self._loadInputsAnsUnits()
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43 self.logger.debug("...Inputs references and their corresponding
measurement units loaded. ")

44 self._loadInitialValues()
45 self.logger.debug("...References for the initial input values

loaded. ")
46 self._loadInputsBounds()
47 self.logger.debug("...Inputs bounds references loaded. ")
48 self._loadInequalityConstraints()
49 self.logger.debug("...Inequality constraints references loaded"

)
50 self._loadEqualityConstraints()
51 self.logger.debug("...Equality constraints references loaded")
52 self._loadObjectiveFunctionTerms()
53 self.logger.debug("...Objective function reference loaded")
54 self._loadParametersAndUnits()
55 self.logger.debug("...Parameter references loaded")
56 self._loadMeasurementsAndUnits()
57 self.logger.debug("...Measurements references loaded")
58 print "MAKE SURE THAT THE FLOWSHEET HAS CONVERGED BEFORE

RUNNING THE PROGRAM!"
59 print "PRINT THE NLP FORMULATION AND CHECK THAT EVERYTHING IS

CORRECT"
60 except Exception:
61 self.logger.exception("Failed to initialize the Hysys2Py ",

exc_info=True)
62 sys.exit(1)
63

64 def getLoadedSimulationName(self):
65 return self.hyCase.FullName
66

67 def _testFunction(self):
68 print repr(self.hyFlowsheet.Operations)
69 print repr(self.hyFlowsheet.Operations.Item("Inputs"))
70 print self.hyFlowsheet.Operations.Item("Inputs").Cell("A2")
71 print self.hyFlowsheet.Operations.Item("Inputs").Cell("A2").

AttachmentType
72 print self.hyFlowsheet.Operations.Item("Inputs").Cell("A2").Units
73 print self.hyFlowsheet.Operations.Item("Inputs").Cell("A2").

VariableName
74 print self.hyFlowsheet.Operations.Item("Inputs").Cell("A2").

VariableType
75 print repr(self.hyFlowsheet.Operations.Item("Inputs").Cell("A2").

CellVariable)
76 print self.hyFlowsheet.Operations.Item("Inputs").Cell("A2").

CellVariable
77 print self.hyFlowsheet.Operations.Item("Inputs").Cell("A2").

CellValue
78 print self.hyFlowsheet.Operations.Item("Inputs").Cell("A2").

CellText
79 print self.hyFlowsheet.Operations.Item("Inputs").Cell("A2").

AttachedObjectName
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80 test1 = self.hyFlowsheet.Operations.Item("Inputs").Cell("A2").
CellValue

81 print test1
82 self.hyFlowsheet.Operations.Item("Inputs").Cell("A2").CellVariable.

Value = 258.5
83 test1 = 295
84 print test1, self.hyFlowsheet.Operations.Item("Inputs").Cell("A2").

CellValue
85

86 inputDict = {'input1': self.hyFlowsheet.Operations.Item("Inputs").
Cell("A2").CellVariable}

87

88 print inputDict["input1"]
89 inputDict["input1"].Value = 260
90 print inputDict["input1"]
91 self.hyFlowsheet.Operations.Item("Inputs").Cell("A2").CellVariable.

Value = 259
92 print inputDict["input1"]
93 inputDict["input1"].Value = 261
94 print inputDict["input1"]
95 test2 = self.hyFlowsheet.Operations.Item("Inputs").Cell("A2").

CellVariable
96 print test2.Value
97 test2.Value = 262
98 print self.hyFlowsheet.Operations.Item("Inputs").Cell("A2").

CellVariable, inputDict["input1"]
99

100 def _loadInputsAnsUnits(self):
101 self.inputsList = list()
102 self.unitsList = list()
103 index = 1
104 # Store references to Input cells
105 while self.hyFlowsheet.Operations.Item("Inputs").Cell("A{0}".format

(index+1)).CellVariable.IsKnown:
106 # Create lists
107 self.inputsList.append(self.hyFlowsheet.Operations.Item("Inputs

").Cell("A{0}".format(index+1)).CellVariable)
108 self.unitsList.append(str(self.hyFlowsheet.Operations.Item("

Inputs").Cell("E{0}".format(index+1)).CellText))
109 index += 1
110 # Save the number of inputs
111 self.numberOfInputs = index-1
112 if self.numberOfInputs<1:
113 self.logger.debug("Can't find any inputs !")
114 raise
115

116 def _loadParametersAndUnits(self):
117 self.parameterList = list()
118 self.parameterUnitsList = list()
119 index = 1
120 # Store references to Input cells



B.1. PYTHON CODE 89

121 while self.hyFlowsheet.Operations.Item("Parameters").Cell("A{0}".
format(index+1)).CellVariable.IsKnown:

122 # Create lists
123 self.parameterList.append(self.hyFlowsheet.Operations.Item("

Parameters").Cell("A{0}".format(index+1)).CellVariable)
124 self.parameterUnitsList.append(str(self.hyFlowsheet.Operations.

Item("Parameters").Cell("E{0}".format(index+1)).CellText))
125 index += 1
126 # Save the number of inputs
127 self.numberOfParameters = index-1
128

129 def _loadInputsBounds(self):
130 self.upperBoundsList = list()
131 self.lowerBoundsList = list()
132 index = 1
133 # Store references to Input cells
134 while self.hyFlowsheet.Operations.Item("Inputs").Cell("A{0}".format

(index+1)).CellVariable.IsKnown:
135 # Create lists
136 self.lowerBoundsList.append(self.hyFlowsheet.Operations.Item("

Inputs").Cell("B{0}".format(index+1)).CellVariable)
137 self.upperBoundsList.append(self.hyFlowsheet.Operations.Item("

Inputs").Cell("C{0}".format(index+1)).CellVariable)
138 index += 1
139

140 def _loadInitialValues(self):
141 self.initialValuesList = list()
142 index = 1
143 # Store references to Input cells
144 while self.hyFlowsheet.Operations.Item("Inputs").Cell("A{0}".format

(index+1)).CellVariable.IsKnown:
145 self.initialValuesList.append(self.hyFlowsheet.Operations.Item(

"Inputs").Cell("D{0}".format(index+1)).CellVariable)
146 index += 1
147

148 def _loadObjectiveFunctionTerms(self):
149 self.objectiveFunctionTerms = list()
150 index = 1
151 try:
152 # Load Objective
153 while self.hyFlowsheet.Operations.Item("Objective").Cell("A{0}"

.format(index+1)).CellVariable.IsKnown:
154 self.objectiveFunctionTerms.append(self.hyFlowsheet.

Operations.Item("Objective").Cell("A{0}".format(index
+1)).CellVariable)

155 index += 1
156 self.numberOfObjectiveTerms = index-1
157 if self.numberOfObjectiveTerm == 0:
158 print "NO KNOWN OBJECTIVE FUNCTION TERMS !"
159 raise
160 except Exception:
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161 self.logger.exception("Failed to load objective function terms"
, exc_info=True)

162

163 def _loadInequalityConstraints(self):
164 self.inequalityConstraintsList = list()
165 index = 1
166 # Inequality Constraints
167 try:
168 while self.hyFlowsheet.Operations.Item("Constraints").Cell("A

{0}".format(index+1)).CellVariable.IsKnown:
169 self.inequalityConstraintsList.append(self.hyFlowsheet.

Operations.Item("Constraints").Cell("A{0}".format(index
+1)).CellVariable)

170 index += 1
171 self.numberOfInequalityConstraints = index - 1
172 except Exception:
173 self.logger.exception("Failed to load the inequality

constraints", exc_info=True)
174

175

176 def _loadEqualityConstraints(self):
177 self.equalityConstraintsList = list()
178 index = 1
179 # Inequality Constraints
180 try:
181 while self.hyFlowsheet.Operations.Item("Constraints").Cell("B

{0}".format(index+1)).CellVariable.IsKnown:
182 self.equalityConstraintsList.append(self.hyFlowsheet.

Operations.Item("Constraints").Cell("B{0}".format(index
+1)).CellVariable)

183 index += 1
184 self.numberOfEqualityConstraints = index - 1
185 except Exception:
186 self.logger.exception("Failed to load the equality constraints"

, exc_info=True)
187

188

189 def _loadMeasurementsAndUnits(self):
190 self.measurementsList = list()
191 self.measurementUnitsList = list()
192 index = 1
193 # Store references to Input cells
194 while self.hyFlowsheet.Operations.Item("Measurements").Cell("A{0}".

format(index+1)).CellVariable.IsKnown:
195 # Create lists
196 self.measurementsList.append(self.hyFlowsheet.Operations.Item("

Measurements").Cell("A{0}".format(index+1)).CellVariable)
197 self.measurementUnitsList.append(str(self.hyFlowsheet.

Operations.Item("Measurements").Cell("B{0}".format(index+1)
).CellText))

198 index += 1
199 # Save the number of inputs
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200 self.numberOfMeasurements = index-1
201

202 def getInputsValues(self, scaled=True):
203 x = list()
204 index = 0
205 if not scaled:
206 for cellVariable in self.inputsList:
207 x.append(cellVariable.GetValue(self.unitsList[index]))
208 index += 1
209 else:
210 for cellVariable in self.inputsList:
211 x.append(self.scaleInputs(cellVariable.GetValue(self.

unitsList[index]),index))
212 index += 1
213 return x
214 for cellVariable in self.inputsList:
215 x.append(cellVariable.GetValue(self.unitsList[index]))
216 index += 1
217 return x
218

219 def setInputListValues(self,x):
220 index = 0
221 self.hyCase.Solver.CanSolve=False
222 for cellVariable in self.inputsList:
223 if (x[index]>=0 and x[index]<=1):
224 cellVariable.SetValue(self.descaleInputs(x[index], index),

self.unitsList[index])
225 else:
226 print "...Invalid inputs:", x
227 sys.exit(1)
228 index += 1
229 self.hyCase.Solver.CanSolve=True
230 print "x = ", x
231

232 def setParametersValues(self,x):
233 index = 0
234 self.hyCase.Solver.CanSolve=False
235 for cellVariable in self.parameterList:
236 cellVariable.SetValue(x[index],self.parameterUnitsList[index])
237 index += 1
238 self.hyCase.Solver.CanSolve=True
239

240 def getMeasurementsValues(self):
241 x = list()
242 index = 0
243 for cellVariable in self.measurementsList:
244 x.append(cellVariable.GetValue(self.measurementUnitsList[index

]))
245 index += 1
246 return x
247

248 def getParametersValues(self):
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249 x = list()
250 index = 0
251 for cellVariable in self.parameterList:
252 x.append(cellVariable.GetValue(self.parameterUnitsList[index]))
253 index += 1
254 return x
255

256 def getLowerBounds(self, scaled=True):
257 x = list()
258 index = 0
259 if not scaled:
260 for cellVariable in self.lowerBoundsList:
261 x.append(cellVariable.GetValue())
262 index += 1
263 else:
264 for cellVariable in self.lowerBoundsList:
265 x.append(0)
266 index += 1
267 return x
268

269 def getUpperBounds(self, scaled=True):
270 x = list()
271 index = 0
272 if not scaled:
273 for cellVariable in self.upperBoundsList:
274 x.append(cellVariable.GetValue())
275 index += 1
276 else:
277 for cellVariable in self.upperBoundsList:
278 x.append(1)
279 index += 1
280 return x
281

282 def getInitialInputValues(self, scaled=True):
283 x = list()
284 index = 0
285 if not scaled:
286 for cellVariable in self.initialValuesList:
287 x.append(cellVariable.GetValue(self.unitsList[index]))
288 index += 1
289 else:
290 for cellVariable in self.initialValuesList:
291 x.append(self.scaleInputs(cellVariable.GetValue(self.

unitsList[index]),index))
292 index += 1
293 return x
294

295 def getInequalityConstraintValues(self):
296 x = list()
297 index = 0
298 for cellVariable in self.inequalityConstraintsList:
299 x.append(cellVariable.GetValue())
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300 index += 1
301 return x
302

303 def getEqualityConstraintValues(self):
304 x = list()
305 index = 0
306 for cellVariable in self.equalityConstraintsList:
307 x.append(cellVariable.GetValue())
308 index += 1
309 return x
310

311 def getObjectiveFunctionTerms(self, inputs, isMultiTerm=False):
312 self.setInputListValues(inputs)
313 Jterms=list()
314 if self.isObjectiveMultiTerm:
315 feasibleSolution = True
316 for index in range(self.numberOfObjectiveTerms):
317 if self.objectiveFunctionTerms[index].IsKnown:
318 Jterms.append(self.objectiveFunctionTerms[index].Value)
319 print "Known term", self.objectiveFunctionTerms[index].

Value
320 else:
321 Jf = self.lastFeasibleObjectiveTerms[index]
322 xf = self.lastFeasibleInputs
323 Jc = Jf**(1+sum(abs(abs(xf)-abs(inputs))))
324 Jterms.append(Jc)
325 print "J{0} term of the objective function is unknown (

probably simulation didn't converge)!".format(index
)

326 print "Adding a penalty J{0}**(1+sum||xc|-|xf||)"
327 print "last known value of J{0} = {1}, current value of

J{0} = {2} )".format(index,Jf,Jc)
328 feasibleSolution = False
329 if feasibleSolution:
330 self.lastFeasibleObjectiveTerms=Jterms
331 self.lastFeasibleInputs = inputs
332 else:
333 Jterms.append(self.objectiveFunctionTerms[0].Value)
334 print "J = sum({0}) = {1}".format(Jterms,sum(Jterms))
335 return Jterms
336

337 def scaleInputs(self, inputValue, inputIndex):
338 return (inputValue - self.lowerBoundsList[inputIndex].Value)/(self.

upperBoundsList[inputIndex].Value-self.lowerBoundsList[
inputIndex].Value)

339

340 def descaleInputsAll(self, inputValues):
341 u_descaled = list()
342 for inputIndex in xrange(0,len(inputValues)):
343 u_descaled.append(self.lowerBoundsList[inputIndex].Value +

inputValues[inputIndex] * (self.upperBoundsList[inputIndex
].Value-self.lowerBoundsList[inputIndex].Value))
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344 return u_descaled
345

346 def descaleInputs(self, inputValue, inputIndex):
347 return self.lowerBoundsList[inputIndex].Value + inputValue * (self.

upperBoundsList[inputIndex].Value-self.lowerBoundsList[
inputIndex].Value)

348

349 def printNLP(self):
350

351 x = self.getInputsValues(scaled=False)
352 x_scaled = self.getInputsValues()
353 x0 = self.getInitialInputValues(scaled=False)
354 x0_scaled = self.getInitialInputValues(scaled=True)
355 lb = self.getLowerBounds(scaled=False)
356 lb_scaled = self.getLowerBounds()
357 ub = self.getUpperBounds(scaled=False)
358 ub_scaled = self.getUpperBounds()
359 param = self.getParametersValues()
360 Jterms = self.getObjectiveFunctionTerms(x0_scaled)
361 J = sum(Jterms)
362 hx = self.getEqualityConstraintValues()
363 gx = self.getInequalityConstraintValues()
364

365 print "\npNLP format:\n"
366 print "min f(x,p) starting from x0,p"
367 print "x belong to R^{0}".format(self.numberOfInputs)
368 print "subject to: lb <= x <= ub"
369 print " h(x,p) = 0"
370 print " g(x,p) <= 0\n"
371 print "current values:"
372 print "f(x) = sum({0}) = {1}".format(Jterms,J)
373 print "x0 (scaled) = {0}".format(x0_scaled)
374 print "x0 = {0}".format(x0)
375 print "x (scaled) = {0}".format(x_scaled)
376 print "x = {0}\n".format(x)
377 print "parameter values"
378 print "p = {0}\n".format(param)
379 print "lb <= x <= ub (scaled) {0} <= x_scaled <= {1}\n".format(

lb_scaled[0],ub_scaled[0])
380

381 for index in xrange(0,self.numberOfInputs):
382 print "{index}: {lb} <= {x}[{unit}] <= {ub}".format(index=index

, lb=lb[index], x=x[index], unit=self.unitsList[index], ub=
ub[index])

383

384 print "h(x) = {0}".format(hx)
385 print "g(x) = {0}".format(gx)
386

387 def main():
388 unisimDesignSimulation = Unisim2py()
389 print "Loaded ! " + unisimDesignSimulation.getLoadedSimulationName()
390 unisimDesignSimulation.printNLP()
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391

392 if __name__ == '__main__':
393 main()
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B.1.3 Analyze Results and Plotting

Reads data from results *.cvs file, evaluates number of constraint areas, plots
constraint area map, calculates number of function evaluations, creates plots, saves
plots.

1 '''
2 Created on 09/06/2014
3

4 @author: Adriana
5 '''
6

7 import matplotlib.pyplot as plt
8 import numpy as np
9 import sys

10 import csv
11 from numpy import genfromtxt
12 import os
13 import math
14 import scipy as sp
15 from scipy import interpolate
16 from scipy.interpolate import griddata
17 from matplotlib import cm
18

19

20 class getOptimumValues():
21 def handy(self,results):
22 #This creates a dictionary in which the keys are the flows
23 #and the data related to each key is an array
24 #that contains all the results (optimum values) obtained with that

flow
25 #with different methane compositions
26 d1= np.unique(results[:,2])
27 d2= np.unique(results[:,3])
28 #print "d1", d1
29 num1=np.size(d1)
30 num2=np.size(d2)
31 print "num1, size d1- flow", num1
32 print "num2, size d2- composition", num2
33 for i in range (num1):
34 if np.isnan(d1[i]):
35 np.delete(d1,i)
36

37 d1Optimum = { "%.0f" % d1[i] : self.do_something(i) for i in range
(0,int(num1)) }

38 keys = d1Optimum.keys()
39 keys.sort()
40 # for x in keys:
41 # print x, '=', d1Optimum[x]
42

43 return d1Optimum
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44

45 def do_something(self, i):
46

47 d1= np.unique(results[:,2])
48 rowsResults=len(results)
49 #print "rowsResults", rowsResults
50 optimum=[]
51 for j in range (0,rowsResults):
52 #if the flow is the flow that we want to get
53 if results[j, 2]== d1[i]:
54 optimum= np.hstack((optimum,results[j, 4]))
55

56 return optimum
57

58 def handy_d2(self,results):
59 #This creates a dictionary in which the keys are the flows
60 #and the data related to each key is an array
61 #that contains all the results (optimum values) obtained with that

flow
62 #with different methane compositions
63 d1= np.unique(results[:,2])
64 d2= np.unique(results[:,3])
65 #print "d1", d1
66 num1=np.size(d1)
67 num2=np.size(d2)
68 print "num1, size d1- flow", num1
69 print "num2, size d2- composition", num2
70 for i in range (num1):
71 if np.isnan(d1[i]):
72 np.delete(d1,i)
73

74 d2_2plot = { "%.0f" % d1[i] : self.do_something_d2(i) for i in
range(0,int(num1)) }

75 keys2 = d2_2plot.keys()
76 keys2.sort()
77 for x in keys2:
78 print x, '=', d2_2plot[x]
79

80 return d2_2plot
81

82 def do_something_d2(self, i):
83

84 d1= np.unique(results[:,2])
85 rowsResults=len(results)
86 #print "rowsResults", rowsResults
87 d2plot=[]
88 for j in range (0,rowsResults):
89 #if the flow is the flow that we want to get
90 if results[j, 2]== d1[i]:
91 d2plot= np.hstack((d2plot,results[j, 3]))
92

93 return d2plot
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94

95 def unique_rows(data):
96 uniq = np.unique(data.view(data.dtype.descr * data.shape[1]))
97 return uniq.view(data.dtype).reshape(-1, data.shape[1])
98

99 if __name__ == '__main__':
100

101 results = genfromtxt('aResultsforconstraintareas.csv', delimiter=',')
102 results2 = genfromtxt('Results463manipaddedmodified.csv', delimiter=','

)
103 results3 = genfromtxt('Results_re_run2nd_part.csv', delimiter=',')
104

105 for i in range (len(results)):
106 if np.isnan(results[i,0]):
107 np.delete(results,i,0)
108

109 d1init=0.9
110 d1fin=1.05
111 d2init=0.9
112 d2fin=1.1
113

114 d1= np.unique(results[:,2])
115 d2= np.unique(results[:,3])
116 print "d2.size", np.size(d2)
117

118

119 sizeResults=np.size(results)
120 rowsResults=np.size(results,0)
121 columnsResults=np.size(results,1)
122

123 num=np.size(d1)
124

125 d1Optimum=getOptimumValues().handy(results)
126 d2PlotOptimum=getOptimumValues().handy_d2(results)
127

128 d1OptimumKeys=sorted(d1Optimum)
129 d2PlotOptimumKeys=sorted(d2PlotOptimum)
130

131 plt.figure(1)
132 ax = plt.subplot(111)
133

134 for i in xrange(num-1):
135 ax.plot(d2PlotOptimum[d2PlotOptimumKeys[i]], -1*d1Optimum[

d1OptimumKeys[i]], label=d1OptimumKeys[i], marker='o')
136

137 plt.xlabel('$CH_4$ mol composition')
138 plt.ylabel('Profit [$/h]')
139 plt.axis([np.min(d2)-(d2[1]-d2[0]), np.max(d2)+(d2[1]-d2[0]),-1*(np.max

(results[:,4])+0.1*(np.max(results[:,4])-np.min(results[:,4]))),
-1*(np.min(results[:,4])-0.1*(np.max(results[:,4])-np.min(results
[:,4])))])

140 plt.grid(True)
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141

142 box = ax.get_position()
143 ax.set_position([box.x0, box.y0 + box.height * 0.1,
144 box.width, box.height * 0.9])
145 # Put a legend below current axis
146 leg=ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.1),
147 fancybox=True, shadow=True, ncol=12,title="make-up flow [kmol/h]",

fontsize=8)
148

149 leg.get_frame().set_alpha(0.5)
150 plt.savefig('optimumvsdisturbances.eps', format='eps', dpi=1000,

transparent=True)
151

152

153 #Identify active constraint regions
154 boundedMax=0.999
155 boundedMin=0.001
156 boundIneq=-0.001
157 activeConstr=np.zeros((int(rowsResults),12))
158

159 for i in range (0,int(rowsResults)):
160 if results[i,12]>boundedMax:
161 activeConstr[i,0]=1
162 elif results[i,12]<boundedMin:
163 activeConstr[i,1]=1
164 if results[i,13]>boundedMax:
165 activeConstr[i,2]=1
166 elif results[i,13]<boundedMin:
167 activeConstr[i,3]=1
168 if results[i,14]>boundedMax:
169 activeConstr[i,4]=1
170 elif results[i,14]<boundedMin:
171 activeConstr[i,5]=1
172 if results[i,15]>boundedMax:
173 activeConstr[i,6]=1
174 elif results[i,15]<boundedMin:
175 activeConstr[i,7]=1
176 if results[i,16]> boundIneq:
177 activeConstr[i,8]=1
178 if results[i,17]> boundIneq:
179 activeConstr[i,9]=1
180 if results[i,18]> boundIneq:
181 activeConstr[i,10]=1
182 if results[i,19]> boundIneq:
183 activeConstr[i,11]=1
184

185

186 #print"activeConstr", activeConstr
187 constrRegions = unique_rows(activeConstr)
188 print "constraint regions=", constrRegions
189

190 #number of constraint regions
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191 numConstrRegions=np.size(constrRegions,0)
192 print "number of constraint regions", numConstrRegions
193

194 #Construct an array with three columns: flow, composition, active
constraint

195 plotConstrRegions=np.zeros((int(rowsResults),3))
196 for i in range (0,int(rowsResults)):
197 plotConstrRegions[i,0]=results[i,2]
198 plotConstrRegions[i,1]=results[i,3]
199 for j in range (0,int(numConstrRegions)):
200 if np.array_equal(activeConstr[i,:],constrRegions[j,:]):
201 plotConstrRegions[i,2]=j+1
202

203 #Associate regions with colors; five constraint regions
204 #Color palette taken from http://colorbrewer2.org/#
205

206

207 rgbColors2=list()
208 #This variable should be called hexColors; hexadecimal color notation

was used :)
209 #Possible improvement for code: create array with color coding;
210 #something like colors=['#e41a1c', '#4daf4a',...]
211 #for easier manipulation; and to eliminate requirement of re-writing

colors.
212

213 elementsRegions=np.zeros(numConstrRegions)
214

215 region1=[]
216 region2=[]
217 region3=[]
218 region4=[]
219 region5=[]
220 region6=[]
221 region7=[]
222 region8=[]
223

224 for i in range (0,int(rowsResults)):
225 if plotConstrRegions[i,2]==1:
226 rgbColors2.append('#e41a1c')
227 elementsRegions[0]+=1
228 region1= np.hstack((region1,i))
229 elif plotConstrRegions[i,2]==2:
230 rgbColors2.append('#4daf4a')
231 elementsRegions[1]+=1
232 region2= np.hstack((region2,i))
233 elif plotConstrRegions[i,2]==3:
234 rgbColors2.append('#377eb8')
235 elementsRegions[2]+=1
236 region3= np.hstack((region3,i))
237 elif plotConstrRegions[i,2]==4:
238 rgbColors2.append('#984ea3')
239 elementsRegions[3]+=1
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240 region4= np.hstack((region4,i))
241 elif plotConstrRegions[i,2]==5:
242 rgbColors2.append('#ff7f00')
243 elementsRegions[4]+=1
244 region5= np.hstack((region5,i))
245 elif plotConstrRegions[i,2]==6:
246 rgbColors2.append('#ffff33')
247 elementsRegions[5]+=1
248 region6= np.hstack((region6,i))
249 elif plotConstrRegions[i,2]==7:
250 rgbColors2.append('#a65628')
251 elementsRegions[6]+=1
252 region7= np.hstack((region7,i))
253 elif plotConstrRegions[i,2]==8:
254 rgbColors2.append('#f781bf')
255 elementsRegions[7]+=1
256 region8= np.hstack((region8,i))
257 elif plotConstrRegions[i,2]==9:
258 rgbColors2.append('#999999')
259 elementsRegions[8]+=1
260

261 print "elementsRegions", elementsRegions
262 print "region1:", region1
263 print "region2:", region2
264 print "region3:", region3
265 print "region4:", region4
266 print "region5:", region5
267 print "region6:", region6
268 print "region7:", region7
269 print "region8:", region8
270

271 regionNames= []
272 for i in range(numConstrRegions):
273 regionNames=np.hstack((regionNames,str(i+1)))
274

275 p1 = plt.Rectangle((0, 0), 1, 1, fc="#e41a1c")
276 p2 = plt.Rectangle((0, 0), 1, 1, fc="#4daf4a")
277 p3 = plt.Rectangle((0, 0), 1, 1, fc="#377eb8")
278 p4 = plt.Rectangle((0, 0), 1, 1, fc="#984ea3")
279 p5 = plt.Rectangle((0, 0), 1, 1, fc="#ff7f00")
280 p6 = plt.Rectangle((0, 0), 1, 1, fc="#ffff33")
281 p7 = plt.Rectangle((0, 0), 1, 1, fc="#a65628")
282 p8 = plt.Rectangle((0, 0), 1, 1, fc="#f781bf")
283

284 p=[p1,p2,p3,p4,p5,p6,p7,p8]
285

286 plt.figure(2)
287 ax = plt.subplot(111)
288 plt.scatter(plotConstrRegions[:,1], plotConstrRegions[:,0], s=20*np.pi*

np.ones(rowsResults), color=rgbColors2, alpha=0.8, marker="s")
289 plt.xlabel('$CH_4$ mol composition')
290 plt.ylabel('Syngas make-up flow [kmol/h]')
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291 plt.axis([np.min(d2)-(d2[1]-d2[0]), np.max(d2)+(d2[1]-d2[0]),np.min(d1)
-(d1[1]-d1[0]), np.max(d1)+(d1[1]-d1[0])])

292

293 box = ax.get_position()
294 ax.set_position([box.x0, box.y0 + box.height * 0.1,
295 box.width, box.height * 0.9])
296

297 # Put a legend below current axis
298 leg=ax.legend(p,regionNames, loc='upper center', bbox_to_anchor=(0.5,

-0.1),
299 fancybox=True, shadow=True, ncol=10,title="Regions", fontsize=8)
300

301 leg.get_frame().set_alpha(0.5)
302

303 plt.savefig('constraintRegions.eps', format='eps', dpi=1000,
transparent=True)

304

305

306 plt.figure(3)
307 #time for optimization
308 timeRun= results[:,5]
309 plt.hist(timeRun, bins=20)
310 plt.xlabel("Time to solve optimization [s]")
311 plt.ylabel("Frequency")
312 plt.savefig('runningTime.eps', format='eps', dpi=1000, transparent=True

)
313

314 plt.figure(4)
315 #function evaluations
316 fnEvaluations= results[:,7]
317 plt.hist(fnEvaluations, bins=15, normed=False)
318 plt.xlabel("Number of function evaluations")
319 plt.ylabel("Frequency")
320 plt.savefig('numEvaluations.eps', format='eps', dpi=1000, transparent=

True)
321

322 plt.figure(5)
323 #needs two results to compare
324 fneval1=results2[:,7]
325 fneval2=results3[:,7]
326 plt.hist([fneval1, fneval2], bins=40, normed=False, label=['$10^{-6}$',

'$10^{-8}$'])
327 plt.axvline(fneval1.mean(), color='c', linestyle='dashed', linewidth=2)
328 plt.axvline(fneval2.mean(), color='y', linestyle='dashed', linewidth=2)
329 plt.legend(fancybox=True, shadow=True, ncol=10,title="Tolerance")
330 plt.xlabel("Number of function evaluations")
331 plt.ylabel("Frequency")
332

333 plt.show()
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B.1.4 Contour Plots

Creates contour plots from results and saves figures.

1 '''
2 Created on 13/06/2014
3

4 @author: Adriana
5 '''
6

7 if __name__ == '__main__':
8 from mpl_toolkits.mplot3d import axes3d
9 import matplotlib.pyplot as plt

10 import numpy as np
11

12 from matplotlib import cm
13 from numpy import genfromtxt
14

15 #read file
16 results = genfromtxt('Resultsforconstraintareas.csv', delimiter=',')
17 #read flows and extract unique values
18 d1= np.unique(results[:,2])
19 #read concentrations and extract unique values
20 d2= np.unique(results[:,3])
21

22 #re arrange data
23 lats = results[:,2]
24 lons = results[:,3]
25 values = -1*results[:,4]
26 lat_uniq = list(set(lats.tolist()))
27 nlats = len(lat_uniq)
28 lon_uniq = list(set(lons.tolist()))
29 nlons = len(lon_uniq)
30 color_map = cm.spectral
31 print lats.shape, nlats, nlons
32 yre = lats.reshape(nlats,nlons)
33 xre = lons.reshape(nlats,nlons)
34 zre = values.reshape(nlats,nlons)
35

36 #Generate 2D contour plot
37 plt.figure(1)
38 CS = plt.contour(xre, yre, zre, cmap=color_map)
39 plt.clabel(CS, inline=1, fontsize=10, fmt='%1.0f')
40 plt.xlabel("$CH_4$ mole concentration")
41 plt.ylabel("Syngas make-up flow [kmol/h]")
42 plt.savefig('contourPlot.eps', format='eps', dpi=1000, transparent=True

)
43

44 #Generate 3D plot
45 fig=plt.figure(2)
46 ax = fig.gca(projection='3d')
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47

48 ax.plot_surface(xre, yre, zre, rstride=8, cstride=8, alpha=0.3)
49 cset = ax.contourf(xre, yre, zre, zdir='z', offset=-100, cmap=plt.cm.

prism)
50 cset = ax.contourf(xre, yre, zre, zdir='x', offset=-40, cmap=plt.cm.

prism)
51 cset = ax.contourf(xre, yre, zre, zdir='y', offset=40, cmap=plt.cm.

prism)
52 ax.set_xlabel('$CH_4$ mole concentration')
53 ax.set_ylabel('Syngas make-up flow [kmol/h]')
54 ax.set_zlabel('Profit [$/h]')
55 plt.savefig('contourPlot3D.eps', format='eps', dpi=1000, transparent=

True)
56

57 plt.show()
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B.1.5 Compare Optimization Approaches

Compares number of evaluations and running time of gradient-free and gradient-based
optimization codes.

1 '''
2 Created on 11/06/2014
3

4 @author: Adriana
5 '''
6

7 import matplotlib.pyplot as plt
8 import numpy as np
9 import sys

10 import csv
11 from numpy import genfromtxt
12 import os
13 import math
14

15 def extractData(data):
16

17 extracted=[]
18

19 for i in range(1,len(data)):
20 # if it is a not even position
21 #save it
22 #values were saved in even positions
23 if i%2!=0:
24 extracted= np.hstack((extracted,data[i]))
25 return extracted
26

27 if __name__ == '__main__':
28 pass
29 matlabData = genfromtxt('MatlabNominalSteps.csv', delimiter=',')
30 dataGoodStart = genfromtxt('CH4nominal_goodStart.csv', delimiter=',')
31 dataFarStart = genfromtxt('CH4nominal_farStart.csv', delimiter=',')
32 dataFarStartLowTol = genfromtxt('CH4nominal_farStart_lowTol.csv',

delimiter=',')
33

34 dataGoodStart1=extractData(dataGoodStart)
35 dataFarStart1=extractData(dataFarStart)
36 dataFarStartLowTol1=extractData(dataFarStartLowTol)
37

38 plt.figure(1)
39 ax = plt.subplot(111)
40 ax.plot(np.arange(len(dataGoodStart1)), -1*dataGoodStart1, 'r--', np.

arange(len(dataFarStart1)), -1*dataFarStart1, 'ms', np.arange(len(
dataFarStartLowTol1)), -1*dataFarStartLowTol1, 'c+', 9*np.arange(
len(matlabData)), -1*matlabData, 'y*')

41 plt.axis([0,350,11500,13500])
42 plt.grid(True)
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43

44 box = ax.get_position()
45 ax.set_position([box.x0, box.y0 + box.height * 0.1,
46 box.width, box.height * 0.9])
47 leg=ax.legend(('gradient-free; close', 'gradient-free; far', 'gradient-

free; far initial, low tolerance', 'gradient-based; far'),loc='
upper center', bbox_to_anchor=(0.5, -0.1),

48 fancybox=True, shadow=True, ncol=4,title="Algorithm type/Initial
values", fontsize=10)

49

50 leg.get_frame().set_alpha(0.5)
51

52 plt.xlabel('Function evaluations')
53 plt.ylabel('Profit [$/h]')
54 plt.show()
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B.1.6 Plot Self Optimizing Control Results

Plots results of self optimizing control and compares them to the optimum when
re-optimizing.

1 '''
2 Created on 16/06/2014
3

4 @author: Adriana
5 '''
6 #Plot J vs J* and Loss
7 import matplotlib.pyplot as plt
8 import numpy as np
9 #import sys

10 #import csv
11 #from numpy import genfromtxt
12 #import os
13 #import math
14 #import scipy as sp
15 #from scipy import interpolate
16 #from scipy.interpolate import griddata
17 #from matplotlib import cm
18

19 if __name__ == '__main__':
20

21 d_opt=[18.859,18.755,18.651,18.548,18.444,18.340,18.237,18.133,18.030]
22 d_soc=[18.859,18.755,18.651,18.548,18.444,18.340,18.237,18.133]
23

24 J_soc
=[12406.8746,12343.06349,12277.85196,12211.31132,12142.23406,12074.26847,12003.75391,11934.21428]

25 J_opt
=[12540.4105,12483.99881,12428.54605,12373.3966,12317.42806,12262.18033,12206.87747,12151.73246,12094.10439]

26

27 L
=[133.5358971,140.9353166,150.6940922,162.0852808,175.1939981,187.9118596,203.1235659,217.5181812]

28

29 plt.figure(1)
30 ax = plt.subplot(111)
31 ax.plot(d_opt, J_opt, 'ro', d_soc, J_soc, 'ms')
32 plt.axis([17.8,19,11900,12600])
33 plt.grid(True)
34 #plt.label=['free;close initial', 'free,far initial', 'free,far initial

, low tol', 'gradient,far initial']
35 box = ax.get_position()
36 ax.set_position([box.x0, box.y0 + box.height * 0.1,
37 box.width, box.height * 0.9])
38 leg=ax.legend(('J*', 'self-optimizing control'),loc='upper center',

bbox_to_anchor=(0.5, -0.1),
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39 fancybox=True, shadow=True, ncol=2, fontsize=12)
40

41 leg.get_frame().set_alpha(0.5)
42 #plt.legend()
43 plt.xlabel('|d|[flow, concentration]')
44 plt.ylabel('Profit [$/h]')
45 plt.show()
46

47 plt.figure(1)
48 ax = plt.subplot(111)
49 ax.plot( d_soc, L, color='cyan',marker='o')
50 plt.axis([17.8,19,120,220])
51 plt.grid(True)
52 #plt.label=['free;close initial', 'free,far initial', 'free,far initial

, low tol', 'gradient,far initial']
53 box = ax.get_position()
54 ax.set_position([box.x0, box.y0 + box.height * 0.1,
55 box.width, box.height * 0.9])
56 leg=ax.legend(('Loss'),loc='upper center', bbox_to_anchor=(0.5, -0.1),
57 fancybox=True, shadow=True, ncol=1, fontsize=12)
58

59 leg.get_frame().set_alpha(0.5)
60 #plt.legend()
61 plt.xlabel('|d|[flow, concentration]')
62 plt.ylabel('Profit [$/h]')
63 plt.show()
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B.2 Matlab Code

B.2.1 Matlab NLP-Generator

1 clc
2 clear all
3 close all
4

5 %Declare global variables
6 global h;
7 global hyCase;
8 global f;
9

10 h = actxserver('UnisimDesign.Application');
11 hyCase = h.Activedocument;
12 f = hyCase.Flowsheet;
13

14 %%
15 % Count the inputs
16 i=0;
17 while f.Operations.Item('Inputs').Cell(strcat(['A' int2str(i+2)])).

CellVariable.IsKnown
18 i=i+1;
19 end
20

21 numberOfInputs=i;
22

23 if numberOfInputs<1
24 error('Warning, no inputs');
25 end
26

27 inputIndices= [ 2:1:numberOfInputs+1;
28 2:1:numberOfInputs+1];
29 inputIndices2= [ 1:1:numberOfInputs;
30 2:1:numberOfInputs+1];
31 inputIndices3=[ 2:1:numberOfInputs+1;
32 1:1:numberOfInputs;
33 2:1:numberOfInputs+1];
34 inputIndices4= [ 1:1:numberOfInputs;
35 2:1:numberOfInputs+1;
36 1:1:numberOfInputs];
37

38 % Read the upper and lower bounds plus the initial values
39 inputLB=zeros(numberOfInputs,1);
40 inputUB=zeros(numberOfInputs,1);
41 initialUs=zeros(numberOfInputs,1);
42

43 parameter.inputUnits=cell(numberOfInputs,1);
44

45 for i=1:1:numberOfInputs
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46 inputLB(i)=f.Operations.Item('Inputs').Cell(strcat(['B' int2str(i+1)]))
.CellVariable.Value;

47 inputUB(i)=f.Operations.Item('Inputs').Cell(strcat(['C' int2str(i+1)]))
.CellVariable.Value;

48 initialUs(i)=f.Operations.Item('Inputs').Cell(strcat(['D' int2str(i+1)
])).CellVariable.Value;

49 parameter.inputUnits(i,1)=cellstr(f.Operations.Item('Inputs').Cell(
strcat(['E' int2str(i+1)])).CellText);

50 end
51

52 lb=strcat('lb = [',num2str(inputLB'),']'';\n');
53 ub=strcat('ub = [',num2str(inputUB'),']'';\n');
54 u0=strcat('u0 = [',num2str(initialUs'),']'';\n');
55 %%
56 fName = 'NLP4MATLAB.m'; %# A file name
57 fid = fopen(fName,'w'); %# Open the file
58

59 %Create the opt
60 if fid ~= -1
61 fprintf(fid,...
62 strcat(...
63 'function [u_opt,fval,exitflag] = NLP4MATLAB()\n\n',...
64 'clc\n',...
65 'clear all\n',...
66 'close all\n\n',...
67 'global h;\n',...
68 'global f;\n',...
69 'global hyCase;\n',...
70 'h = actxserver(''UnisimDesign.Application'');\n',...
71 'hyCase = h.Activedocument;\n',...
72 'f = hyCase.Flowsheet;\n\n',...
73 'par=[];\n'));
74 % fprintf(fid,'lb(%d) = f.Operations.Item(''Inputs'').Cell(''B%d'').

CellVariable.Value;\n',inputIndices2);
75 % fprintf(fid,'ub(%d) = f.Operations.Item(''Inputs'').Cell(''C%d'').

CellVariable.Value;\n',inputIndices2);
76 fprintf(fid,'lb=zeros(1,%d);\nub=ones(1,%d);\n',numberOfInputs,

numberOfInputs);
77 fprintf(fid,'u0(%d) = scaleInputs(f.Operations.Item(''Inputs'').Cell(''

D%d'').CellVariable.Value,lb,ub,1);\n',inputIndices2);
78 fprintf(fid,...
79 strcat(...
80 'options = optimset(''TolFun'',10e-8,''TolCon'',1e-4,''Display'',''

iter'',''Algorithm'',''interior-point'',''Diagnostics'',''on'',
''FinDiffType'',''central'',''ScaleProblem'',''obj-and-constr'
',''FinDiffRelStep'',1e-2);\n',...

81 'tic\n',...
82 '[u_opt,fval,exitflag]=fmincon(@(u)objFun(u,par),u0,[],[],[],[],lb,

ub,@(u)nonLinConFun(u,par),options);\n',...
83 'toc\n',...
84 'end\n\n'...
85 ));
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86 end
87 %%
88 if fid ~= -1
89 fprintf(fid,...
90 strcat(...
91 'function y = objFun(u,par)\n',...
92 'global f;\n',...
93 'global hyCase;\n',...
94 'hyCase.Solver.CanSolve=0;\n'...
95 ));
96 fprintf(fid,'lb(%d) = f.Operations.Item(''Inputs'').Cell(''B%d'').

CellVariable.Value;\n',inputIndices2);
97 fprintf(fid,'ub(%d) = f.Operations.Item(''Inputs'').Cell(''C%d'').

CellVariable.Value;\n',inputIndices2);
98 fprintf(fid,'input%dUnits = f.Operations.Item(''Inputs'').Cell(''E%d'')

.CellText;\n',inputIndices);
99 fprintf(fid,'f.Operations.Item(''Inputs'').Cell(''A%d'').CellVariable.

SetValue(deScaleInputs(u,lb,ub,%d),input%dUnits);\n',inputIndices3)
;

100

101 fprintf(fid,...
102 strcat(...
103 'hyCase.Solver.CanSolve=1;\n',...
104 'y = f.Operations.Item(''Objective'').Cell(''A2'').CellValue;\n'

,...
105 'end\n\n'...
106 ));
107 end
108 %%
109 % Count the constraints
110 i=0;
111 while f.Operations.Item('Constraints').Cell(strcat(['A' int2str(i+2)])).

CellVariable.IsKnown
112 i=i+1;
113 end
114 numberOfInequalityConstraints=i;
115

116 i=0;
117 while f.Operations.Item('Constraints').Cell(strcat(['B' int2str(i+2)])).

CellVariable.IsKnown
118 i=i+1;
119 end
120 numberOfEqualityConstraints=i;
121

122 ineqConIndices=[2:1:numberOfInequalityConstraints+1;2:1:
numberOfInequalityConstraints+1];

123 eqConIndices=[2:1:numberOfEqualityConstraints+1;2:1:
numberOfEqualityConstraints+1];

124

125 if fid ~= -1
126 fprintf(fid,...
127 strcat(...
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128 'function [c,ceq] = nonLinConFun(u,par)\n',...
129 'global f;\n',...
130 'global hyCase;\n',...
131 'hyCase.Solver.CanSolve=0;\n'...
132 ));
133 fprintf(fid,'lb(%d) = f.Operations.Item(''Inputs'').Cell(''B%d'').

CellVariable.Value;\n',inputIndices2);
134 fprintf(fid,'ub(%d) = f.Operations.Item(''Inputs'').Cell(''C%d'').

CellVariable.Value;\n',inputIndices2);
135 fprintf(fid,'input%dUnits = f.Operations.Item(''Inputs'').Cell(''E%d'')

.CellText;\n',inputIndices);
136 fprintf(fid,'f.Operations.Item(''Inputs'').Cell(''A%d'').CellVariable.

SetValue(deScaleInputs(u,lb,ub,%d),input%dUnits);\n',inputIndices3)
;

137

138 fprintf(fid,'hyCase.Solver.CanSolve=1;\n');
139

140 if numberOfInequalityConstraints>0
141 fprintf(fid,'c(%d)=f.Operations.Item(''Constraints'').Cell(''A%d'')

.CellValue;\n',ineqConIndices);
142 else
143 fprintf(fid,'c=[];\n');
144 end
145 if numberOfEqualityConstraints>0
146 fprintf(fid,'ceq(%d)=f.Operations.Item(''Constraints'').Cell(''B%d'

').CellValue;\n',eqConIndices);
147 else
148 fprintf(fid,'ceq=[];\n');
149 end
150 fprintf(fid,'end\n\n');
151 end
152 %%
153 if fid ~= -1
154 fprintf(fid,...
155 strcat(...
156 'function y = scaleInputs(u,lb,ub,index)\n',...
157 'y=(u(index)-lb(index))/(ub(index)-lb(index));\n',...
158 'end\n\n'...
159 ));
160 end
161

162 %%
163 if fid ~= -1
164 fprintf(fid,...
165 strcat(...
166 'function y = deScaleInputs(u,lb,ub,index)\n',...
167 'y=lb(index)+u(index)*(ub(index)-lb(index));\n',...
168 'end\n\n'...
169 ));
170 end
171

172 fclose(fid);
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B.2.2 NLP Example code

1 function [u_opt,fval,exitflag] = NLP4MATLAB()
2

3 clc
4 clear all
5 close all
6

7 global h;
8 global f;
9 global hyCase;

10 h = actxserver('UnisimDesign.Application');
11 hyCase = h.Activedocument;
12 f = hyCase.Flowsheet;
13

14 par=[];
15 lb=zeros(1,4);
16 ub=ones(1,4);
17 u0(1) = scaleInputs(f.Operations.Item('Inputs').Cell('D2').CellVariable.

Value,lb,ub,1);
18 u0(2) = scaleInputs(f.Operations.Item('Inputs').Cell('D3').CellVariable.

Value,lb,ub,1);
19 u0(3) = scaleInputs(f.Operations.Item('Inputs').Cell('D4').CellVariable.

Value,lb,ub,1);
20 u0(4) = scaleInputs(f.Operations.Item('Inputs').Cell('D5').CellVariable.

Value,lb,ub,1);
21 options = optimset('TolFun',10e-8,'TolCon',1e-4,'Display','iter','Algorithm

','interior-point','Diagnostics','on', 'FinDiffType','central','
ScaleProblem','obj-and-constr','FinDiffRelStep',1e-2);

22 tic
23 [u_opt,fval,exitflag]=fmincon(@(u)objFun(u,par),u0,[],[],[],[],lb,ub,@(u)

nonLinConFun(u,par),options);
24 toc
25 end
26

27 function y = objFun(u,par)
28 global f;
29 global hyCase;
30 hyCase.Solver.CanSolve=0;
31 lb(1) = f.Operations.Item('Inputs').Cell('B2').CellVariable.Value;
32 lb(2) = f.Operations.Item('Inputs').Cell('B3').CellVariable.Value;
33 lb(3) = f.Operations.Item('Inputs').Cell('B4').CellVariable.Value;
34 lb(4) = f.Operations.Item('Inputs').Cell('B5').CellVariable.Value;
35 ub(1) = f.Operations.Item('Inputs').Cell('C2').CellVariable.Value;
36 ub(2) = f.Operations.Item('Inputs').Cell('C3').CellVariable.Value;
37 ub(3) = f.Operations.Item('Inputs').Cell('C4').CellVariable.Value;
38 ub(4) = f.Operations.Item('Inputs').Cell('C5').CellVariable.Value;
39 input2Units = f.Operations.Item('Inputs').Cell('E2').CellText;
40 input3Units = f.Operations.Item('Inputs').Cell('E3').CellText;
41 input4Units = f.Operations.Item('Inputs').Cell('E4').CellText;
42 input5Units = f.Operations.Item('Inputs').Cell('E5').CellText;
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43 f.Operations.Item('Inputs').Cell('A2').CellVariable.SetValue(deScaleInputs(
u,lb,ub,1),input2Units);

44 f.Operations.Item('Inputs').Cell('A3').CellVariable.SetValue(deScaleInputs(
u,lb,ub,2),input3Units);

45 f.Operations.Item('Inputs').Cell('A4').CellVariable.SetValue(deScaleInputs(
u,lb,ub,3),input4Units);

46 f.Operations.Item('Inputs').Cell('A5').CellVariable.SetValue(deScaleInputs(
u,lb,ub,4),input5Units);

47 hyCase.Solver.CanSolve=1;
48 y = f.Operations.Item('Objective').Cell('A2').CellValue;
49 end
50

51 function [c,ceq] = nonLinConFun(u,par)
52 global f;
53 global hyCase;
54 hyCase.Solver.CanSolve=0;
55 lb(1) = f.Operations.Item('Inputs').Cell('B2').CellVariable.Value;
56 lb(2) = f.Operations.Item('Inputs').Cell('B3').CellVariable.Value;
57 lb(3) = f.Operations.Item('Inputs').Cell('B4').CellVariable.Value;
58 lb(4) = f.Operations.Item('Inputs').Cell('B5').CellVariable.Value;
59 ub(1) = f.Operations.Item('Inputs').Cell('C2').CellVariable.Value;
60 ub(2) = f.Operations.Item('Inputs').Cell('C3').CellVariable.Value;
61 ub(3) = f.Operations.Item('Inputs').Cell('C4').CellVariable.Value;
62 ub(4) = f.Operations.Item('Inputs').Cell('C5').CellVariable.Value;
63 input2Units = f.Operations.Item('Inputs').Cell('E2').CellText;
64 input3Units = f.Operations.Item('Inputs').Cell('E3').CellText;
65 input4Units = f.Operations.Item('Inputs').Cell('E4').CellText;
66 input5Units = f.Operations.Item('Inputs').Cell('E5').CellText;
67 f.Operations.Item('Inputs').Cell('A2').CellVariable.SetValue(deScaleInputs(

u,lb,ub,1),input2Units);
68 f.Operations.Item('Inputs').Cell('A3').CellVariable.SetValue(deScaleInputs(

u,lb,ub,2),input3Units);
69 f.Operations.Item('Inputs').Cell('A4').CellVariable.SetValue(deScaleInputs(

u,lb,ub,3),input4Units);
70 f.Operations.Item('Inputs').Cell('A5').CellVariable.SetValue(deScaleInputs(

u,lb,ub,4),input5Units);
71 hyCase.Solver.CanSolve=1;
72 c(2)=f.Operations.Item('Constraints').Cell('A2').CellValue;
73 c(3)=f.Operations.Item('Constraints').Cell('A3').CellValue;
74 c(4)=f.Operations.Item('Constraints').Cell('A4').CellValue;
75 c(5)=f.Operations.Item('Constraints').Cell('A5').CellValue;
76 ceq=[];
77 end
78

79 function y = scaleInputs(u,lb,ub,index)
80 y=(u(index)-lb(index))/(ub(index)-lb(index));
81 end
82

83 function y = deScaleInputs(u,lb,ub,index)
84 y=lb(index)+u(index)*(ub(index)-lb(index));
85 end
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