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Abstract 

 

Metal dusting is a disintegration phenomenon of metals and alloys into fine, dust-like 

particles. Metal dusting can be found in different reforming units in the petrochemical 

industry. As well as in reforming units, it can be found at high-temperature fuel cells. 

 

The metal dusting corrosion phenomenon is initiated by unwanted carbon formation on the 

inner surface of process equipment. It occurs under a synthesis gaseous atmosphere (carbon 

activity >> 1) at high temperature with low oxygen/steam partial pressure. Since the gas 

contains carbon monoxide and hydrogen at high temperature, carbon is formed by CO 

reduction reaction and Boudouard reaction. 

 

Carbon formation is kinetically controlled which means it is influenced by the catalytic 

properties and the local conditions like temperature and partial pressure. An oxide layer 

formed on the surface of alloys is protecting the alloy matrix from corrosion. Thickness of 

this oxide layer should be moderate. If the oxide layer is too thick, the metal alloys will have 

problems with thermal expansion and heat transfer. If it is too thin, however, the metal alloys 

cannot be protected from the corrosion. 

 

To find the effects of oxidation temperature, CO exposure temperature and CO exposure time 

on carbon formation, oxidation treatments and CO exposure treatments were conducted. 

Samples were oxidized with 10% steam-Ar gas for 6 h at 540 °C or 760 °C. Subsequently, 

samples were exposed to 10% CO-Ar gas at 1 bar at 650 °C or 750 °C. Length of exposure 

time was different for each sample from 1 h to 20 h. After the experiments, surface of metal 

alloys was characterized by optical microscopy and scanning electron microscopy. 

 

As a result of all experiments, the effect of CO exposure time can be summarized as follows. 

Regardless of sample exposure conditions, all samples have more carbon when they are 

exposed to CO gas for longer time. The effect of pre-treatment temperature is that lower 

temperature forms more carbon filaments. Finally, the effect of CO exposure treatment 

temperature is that lower temperature (650 °C) forms more carbon filaments than higher 

temperature (750 °C).  
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1. Introduction 

  

1.1 Introduction of metal dusting 

 

Metal dusting is a corrosion phenomenon which is a disintegration of metals and alloys into 

fine, dust-like particles. This phenomenon occurs under carburizing gas atmosphere having 

high carbon formation potential at high temperature with low oxygen/steam partial pressure. 

It is initiated by unwanted carbon formation on the inner surface of process equipment. 

 

Metal dusting have been commonly observed in petrochemical production plants, coal 

gasification plants, natural gas processing, heat-treating and direct iron ore reduction [1, 2]. 

Metal dusting corrosion is also possible to be found at high-temperature fuel cells i.e. solid 

oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) [3]. In synthesis gas 

production, the heat transfer and recovery sections after the reformer units are where the metal 

dusting mainly takes place. This is because of thermodynamics and kinetics of metal dusting. 

When the gas stream is passing through reforming units, it undergoes a temperature drop and 

eventually it reaches the temperature range from 400 °C to 800 °C, which metal dusting 

corrosion occurs. Figure 1.1 shows the possibility of metal dusting in various types of 

reforming units in different petrochemical plants [4]. 

 

Metal dusting causes pits and holes on high alloy steels, general metal wastage on low alloy 

steels respectively [5]. Carbon (coke) with metal particles grows out from the metal surface as 

a result of metal dusting. The coke powder is easily carried away by the gases flowing at the 

high velocity in the industrial facilities, but the outgrowing protrusion form of coke powder is 

observed in laboratory scale [6]. Figure 1.2 shows metal dusting corrosion attack on the super 

heater tube bundle at Statoil Tjeldbergodden methanol plant [7, 8]. 
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1.2 Scope of the present work 

 

Metal dusting corrosion was first found in 1945 by E. Camp and co-workers [3] and the 

progress of metal dusting has been widely described throughout the years. However, the 

initial stage of metal dusting has been less studied. 

 

Metal dusting is initiated by unwanted carbon formation on the metal surface and carbon 

formation especially on Fe, Ni and their alloys and it is kinetically controlled. In other words, 

it is strongly influenced by temperature, partial pressure of gases, alloy composition and 

nanostructure of alloy. For example, carbon formation tendency is different when the 

composition of a synthesis gas is changing, since the tendency of carbon formation is a 

function of partial pressure and temperature. Under the synthesis gas atmosphere, CO 

reduction, Boudouard reaction and alkane cracking reactions are participating in carbon 

formation. In case of alloy composition, Cr and Al, often included into Fe- or Ni-base alloys 

to produce a protecting oxide layer on the metal surface against carburization reactions. When 

it comes to nanostructure of alloy, grain size and surface finishing are the factors affecting 

carbon formation. These will be further discussed in Chapter 2. 

 

The goal of this paper is to study the temperature effects on the initial stage of metal dusting 

corrosion. The effects of pre-treatment and CO exposure temperature on surface carbon 

formation will be explained by experimental investigation. The effect of the different time 

scale of CO exposure is also studied. After the experiments, the surface of samples will be 

further characterized by optical microscopy and scanning electron microscopy (SEM). 
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2. Theory and Literature review 

  

2.1 Thermodynamics 

 

Metal dusting is the result of unwanted carbon formation on the inner surface of equipment 

under a synthesis gaseous atmosphere at high temperature (400-800 °C) with low oxygen/ 

steam partial pressure. It can be found in synthesis gas production plant, especially inner 

surface of reformer equipment. Synthesis gas consists with CO, CO2, H2, H2O and trace of 

CH4. Under this gaseous atmosphere at high temperature, unwanted carbon is produced by 

CO reduction reaction (water-gas reaction) and Boudouard reaction. Tendency of carbon 

formation can be presented by a thermodynamic parameter, carbon activity (ac). It is a 

function of temperature and partial pressure of gas components. A number of researches have 

reported that metal dusting starts when the gas phase carbon activity is greater than unity   

(ac >> 1) [1, 3, 10]. 

 

 

- CO reduction reaction (Water-gas reaction) 

 

CO (g) + H2 (g) ↔ C (s) + H2O (g)  ∆H° = -131.3 kJ/mol  (2.1) 

 

        (2.2) 

 

where Ki = equilibrium constant of the reaction 

Pi = partial pressure of gas component i 
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- Boudouard reaction 

 

2CO (g) ↔ C (s) + CO2 (g)   ∆H° = -172.4 kJ/mol  (2.3) 

 

        (2.4) 

 

Since the synthesis gas includes CO, CO2, H2 and H2O, water-gas shift reaction can also occur. 

Water-gas shift reaction does not make any carbon on the surface, but it changes gas 

composition. 

 

 

- Water-gas shift reaction 

 

CO (g) + H2O (g) ↔ CO2 (g) + H2 (g) ∆H° = -41.2 kJ/mol  (2.5) 

 

Sometimes hydrocarbons are present in the gas mixture. Then, alkane cracking reactions may 

happen. 

 

 

- Alkane cracking 

 

CnH2n+2 (g) ↔ nC (s) + (n+1)H2 (g)  ∆H > 0    (2.6) 

 

Where n=1, methane decomposition reaction can be obtained. 

 

 

- CH4 decomposition 

 

CH4 (g) ↔ C (s) + 2H2 (g)   ∆H° = 75.6 kJ/mol  (2.7) 

 

        (2.8) 
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CO reduction (2.1) and Boudouard (2.3) reactions are exothermic. Thus, low temperature   

(T < 400 °C) is favored by thermodynamics. At the high temperature (T > 800 °C), however, 

reaction kinetics are faster. Hence, temperature for reaction (2.1) and (2.3) is optimum in 

between 400-800 °C. 

 

On the other hand, CH4 decomposition reaction (2.7) is endothermic which means high 

temperature is favored by thermodynamics. Reaction kinetics is slow when the temperature is 

less than 1000 °C [11]. 

 

There are other reactions which may form carbon during the metal dusting. 

 

 

CO (g) +Me (s) ↔ C (s) + MeO (s)      (2.9) 

 

CO2 (g) +2Me (s) ↔ C (s) + 2MeO (s)     (2.10) 

 

where Me = metal particle, especially Fe and Ni 

  MeO = metal oxide 
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2.2 Kinetics 

 

As already mentioned in Chapter 1, surface carbon formation is kinetically controlled. 

Kinetics is influenced by the local conditions like temperature and partial pressure. Local 

conditions, concentration (partial pressure) and temperature, at the surface of alloy might be 

different from the overall conditions because of the mass and heat transfer limitations. 

Kinetics is also influenced by the catalytic properties such as composition and nanostructure 

of alloy. 

 

 

2.2.1 Effects of different elements in alloys 

 

The metal dusting corrosion phenomenon is governed by oxidation and carburization. An 

oxide layer is important because of its function that suppresses carburization and later metal 

dusting. If the oxide layer is too thick, the metal alloys will have problems with thermal 

expansion and heat transfer. If it is too thin, however, the metal alloys cannot be protected 

from the corrosion. Therefore, the thickness of the oxide layer should be moderate. High Cr 

content increases the thickness of oxide layers. Carbon diffusion in oxides is less than in pure 

metals, and hence suppresses metal dusting. 

 

On the other hand, an increase of Ni-content in Fe-base alloys decreases the carbon solubility. 

It will result in a decrease of carburization rate and forming less carbon [12]. Si and Al have 

positive effect to prevent metal dusting corrosion by forming a protective oxide layer (SiO2 

and Al2O3). Also, they help Cr to develop a protective oxide layer by increasing Cr diffusivity 

from the bulk to the alloy surface [6]. Meanwhile, sulfur is strongly adsorbed on the surface 

of alloys and disturbs the surface reactions [6]. 
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2.2.2 Effects nanostructure of alloy 

 

In the temperature window (400-800 °C) where metal dusting is dominant, Cr-oxide 

formation is not guaranteed. It depends on the microstructure of the alloy material; i.e. grain 

size and surface deformation (grinding and polishing) [13]. 

 

 Grain size 

 

Oxide formation is favored by a fine grained microstructure [14]. A research from Grabke, H. 

et al. demonstrates that smaller grain size transfer Cr rapidly from the bulk to the surface 

along by short diffusion paths. 

 

 Surface deformation 

 

Dislocations and grain boundaries from surface deformation act as fast diffusion paths which 

supply Cr to the surface and form a protective oxide layer [6]. According to Grabke et al., 

there are more grain boundaries and dislocations in the ground specimens than in as-receive 

or electro-polished surfaces [6]. To prove this statement, Grabke carried out a laboratory 

exposure experiment. Three different types of surface deformations were exposed in CO(2%)-

H2(24%)-H2O mixture at 650 °C for 3000 h: (1) as-receive (black); (2) electro-polishing; (3) 

grinding. From the result (Figure 2.1), it is turned out that ground materials perform better 

than the others [6]. 
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2.3 Mechanism 

 

Several mechanisms of the metal dusting on Fe, Ni and their alloys were suggested. The most 

widely accepted mechanism was proposed by Grabke et al. [15]. A schematic explanation is 

given in Figure 2.2. 

 

(i) Carbon is transferred from gas phase (ac>1) to solid surface of material. 

 

CO + H2 → C (dissolved) + H2O      (2.11) 

 

(ii) Forming carbide on the material surface when the material is supersaturated with 

solid solution of carbon. 

 

3Fe (s) + C (dissolved) → Fe3C (s)      (2.12) 

 

(iii) Graphite nucleates on the carbide surface and ac decreases at graphite-carbide 

interface because carbon transfer is retarded by carbide and carbon accumulate on 

the surface. 

 

CO + H2 → C (graphite) + H2O       (2.13) 

 

(iv) Carbide at interface of graphite-carbide decomposes into fine metal particles and 

graphite under low ac ( , < , ). 

 

Fe3C (s) → 3Fe (s) + C (graphite)      (2.14) 

 

(v) Fine metal particles diffuse to gas phase and catalyze the formation of solid carbon. 
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Possible steps for the carbon transfer from the gas phase to solid surface of material (2.11) are 

reported in literatures and it is listed in Table 2.1. * indicates vacant site and A* represents 

adsorbed species on the surface. Underlined reactions are the rate determining steps (RDS). 

 

 

Table 2.1 Mechanistic steps for carbon formation via CO reduction, Boudouard and 

CH4 decomposition reactions [1]. 

 

CO reduction reaction 
 

 

Boudouard reaction 

 

CH4 decomposition reaction 

 

CO (g) + * ↔ CO* 

CO* + * ↔ C* + O* 

H2 (g) + 2* ↔ 2H* 

H2 (g) + O* ↔ H2O (g) + * 

H2O (g) + * ↔ H2O* 

H2O* + * ↔ OH* + H* 

OH* + * ↔ O* + H* 

2OH* ↔ H2O* + O* 

nC* ↔ nC (s) + n* 

C* ↔ C (dissolved) + * 

 

CO (g) + * ↔ CO* 

CO* + * ↔ C* + O* 

CO* + O* ↔ CO2* + * 

CO2* ↔ CO2 (g) + * 

CO (g) + O* ↔ CO2 (g) + * 

nC* ↔ nC (s) + n* 

C* ↔ C (dissolved) + * 

 

CH4 (g) + * ↔ CH4* 

CH4* + * ↔ CH3* + H* 

CH3* + * ↔ CH2* + H* 

CH2* + * ↔ CH* + H* 

CH* + * ↔ C* + H* 

nC* ↔ nC (s) + n* 

C* ↔ C (dissolved) + * 
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2.4 Metal dusting corrosion of different materials 

 

The mechanism for Fe-base alloy and Ni-base alloys was explained in Chapter 2.3. It is 

widely accepted, however, degradation mechanisms change when composition of alloys 

changes. 

 

 

2.4.1 Metal dusting of Ni-base alloys 

 

As already illustrated in Figure 2.2, Fe-base alloys and Ni-base alloys form a carbide,      

(Fe, Ni)3C, as an intermediate. However, Grabke suggested that Ni-base materials with more 

than 40% of Ni decompose directly, not via a carbide [6, 16]. Metal dusting mechanism of Ni-

base alloys is shown in Figure 2.3. 

 

Metal particles escaped from metal dusting of Ni and Ni-base alloys are relatively larger than 

the particles released from metal dusting of Fe and low-alloy steels[10]. Bigger particles have 

lower catalytic activity for graphite deposition and this result in slower metal dusting rate. 

Thus, the metal dusting rate are declining with increasing Ni content of alloy [1]. 

 

 

2.4.2 Metal dusting of Fe and low-alloy steels 

 

Low-alloy steels which contain low contents of Cr are attacked by general metal wastage 

unlike high-alloy steels having pitting and formation of holes [1, 5]. Figure 2.3 shows 

degradation mechanism of Fe, low-alloy steels and Ni. 
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3. Material and Methods 

  

3.1 Material 

 

Inconel 601 is an industrial alloy mostly consisted of nickel, chromium and iron. It has 

outstanding resistance to oxidation and high-temperature corrosion. As well as resistance to 

oxidation and corrosion, it also has good mechanical properties. Table 3.1 shows properties of 

Inconel 601. 

 

 

Table 3.1 Properties of Inconel 601 [17]. 

LIMITING 

CHEMICAL 

COMPOSITION (%) 

 

Ni......58.0 – 63.0      Fe......Remainder      Si.........0.50 max. 

Cr......21.0 – 25.0      C..........0.10 max.      S....... 0.015 max. 

Al .........1.0 – 1.7      Mn......... 1.0 max.     Cu......... 1.0 max. 

 

PHYSICAL 

CONSTANTS 

AND THERMAL 

PROPERTIES 

 

Density 

Melting Range 

Specific Heat 

Coefficient of Expansion 

Thermal Conductivity  

Electrical Resistivity 

 

 

g/cm3 

°C 

J/kg•°C 

20–100 °C, µm/m •°C 

W/m •°C 

µΩ•m 

 

 

8.11 

1360-1411 

448 

13.75 

11.2 

1.19 
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The bulk composition of Inconel 601 alloy is confirmed by Gunawardana via EPMA/WDS. 

The result agrees with the specifications of Inconel 601 (Table 3.2). The alloy is a Ni-base 

material (61 wt. %) with Cr (23 wt. %) and Fe (13 wt. %). 1 wt. % of Al, 0.6 wt. % of Mn and 

Ti, Si and C also exist. 

 

 

Table 3.2 Bulk composition of Inconel 601 alloy, determined by EPMA/WDS [1]. 

Composition 

basis 

Element percentage (%) 

Ni Cr Fe Al Mn Ti Si Cu C 

Avg. atomic 57.65 24.31 13.33 2.64 0.60 0.36 0.15 0.17 0.77 

Avg. weight 60.82 22.71 13.38 1.28 0.60 0.31 0.08 0.19 0.17 
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3.2 Sample preparation 

 

First, Inconel 601 sheet (0.5mm thickness) was cut into 15 8mm2 size samples. Cut samples 

one by one stick to a plastic cube by using double side tape and then proceed the grinding step 

to remove surface defect and/or unevenness. After the grinding step, the surface of the alloy 

will be flat and have a more controlled composition. The samples were ground with P320  

(45 µm), P800 (20 µm) and P2000 (10 µm) grit SiC papers. 

 

After removing the damage by grinding, a polishing process has been conducted. Polishing 

consists of steps of continuous abrasion by fine particles. As an abrasive material, diamond 

dust is used, which works very effectively because of its hardness. The samples were polished 

with 6 µm, 3 µm and 1 µm sized diamond dust. 

 

Thereafter the samples were cleaned with ethanol and water and investigated by optical 

microscope. In the case of serious scratches, the grinding and polishing steps should be 

repeated. 

 

Finally, the samples were cleaned ultrasonically in hexane (99%) and dried overnight. 
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3.4 Sample exposures 

 

3.4.1 Oxidation treatments 

 

Oxidation treatments were conducted while keeping pressure at 1 bar and increasing the 

temperature from room condition to the desired temperature (540 °C or 760 °C). These 

temperatures are selected to cover the temperature window of ‘low-medium-high’. 540 °C is 

considered as low temperature oxidation, and 980 °C is taken as high temperature oxidation. 

For safety reasons, however, high temperature oxidation treatments have not been performed. 

Total gas flow rate was 100 Nml/min, and the composition of the gas mixture was 10% steam 

in Ar. The ramping rate was 10 °C/min. Once it reached the desired temperature, the sample 

was dwelled for 6 h. After 6 h, CO exposure treatment was carried out immediately. 

 

 

3.4.2 CO exposure treatments 

 

After the oxidation treatments, the sample was ramped up/down to a certain temperature 

(650 °C or 750 °C) at 1 bar. Total gas flow rate was at 100 Nml/min with 100% Ar and the 

ramping rate was 10 °C/min. When it reached desired temperature, the sample was dwelled 

for 20 minutes or longer to stabilize the temperature in the system. CO exposure treatment is 

very sensitive to temperature, so keeping exact temperature is important. Once the measured 

temperature equaled to the set value, CO was induced with 10 Nml/min. Total flow rate is 100 

Nml/min and the composition is 10% CO and 90% Ar. CO exposure treatment was carried out 

with different dwelling time; 1 h, 2 h, 5 h and 20 h. Figure 3.4 shows the temperature control 

profile of exposure treatments and the test matrix is in Table 3.3. All the results (figures) will 

be shown and explained in Chapter 4. 
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Table 3.3 Test matrix 

Case 

Oxidation 

exposure 

temperature 

CO 

exposure 

temperature 

Oxidation 

exposure 

time 

CO 

exposure 

time 

Result 

 

1 - 1 

540 °C 760 °C 6 h 

1 h Figure 4.1 (a), Figure 4.2 (a) 

1 - 2 2 h Figure 4.1 (b), Figure 4.2 (b) 

1 - 3 5 h Figure 4.1 (c), Figure 4.2 (c) 

1 - 4 20 h Figure 4.1 (d), Figure 4.2 (d) 
 

2 - 1 

540 °C 650 °C 6 h 

1 h Figure 4.4 (a), Figure 4.5 (a) 

2 - 2 2 h Figure 4.4 (b), Figure 4.5 (b) 

2 - 3 5 h Figure 4.4 (c), Figure 4.5 (c) 

2 - 4 20 h Figure 4.4 (d), Figure 4.5 (d) 
 

3 - 1 

760 °C 650 °C 6 h 

1 h Figure 4.6 (a), Figure 4.7 (a) 

3 - 2 2 h Figure 4.6 (b), Figure 4.7 (b) 

3 - 3 5 h Figure 4.6 (c), Figure 4.7 (c) 

3 - 4 20 h Figure 4.6 (d), Figure 4.7 (d) 
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3.5 Characterization techniques 

 

3.5.1 Optical microscopy 

 

The samples were characterized with optical microscopy and scanning electron microscopy 

(SEM). Overall tendency of carbon formation on the alloy surface can be observed through 

optical microscope, Leica DC 300. 

 

 

3.5.2 Scanning electron microscopy (SEM) 

 

Samples after CO exposure were investigated by using Hitachi SU-6600, field emission 

scanning electron microscope. Topographical information on the surface can be obtained as a 

visual image by the SEM. In SEM, a finely focused electron beam is used for the imaging 

while the optical microscope is using light. Figure 3.5 illustrates the differences between an 

optical microscope (light microscope) and a scanning electron microscope. 

 

Figure 3.6 shows a schematic diagram of the SEM. The electron beam is generated from the 

filament by two types of beam emission: Thermal emission and Field emission [19]. Thermal 

emission uses heat to release the electrons from the filament. Filaments for thermal emission 

(Tungsten, LaB6) are relatively cheap, however, they last short. In field emission, the 

electrons are excited magnetically. The filament acts as a cathode, which is negatively 

charged, while the anode is positively charged. The potential difference between the cathode 

and the anode releases the electrons off. This type of emission is cool, so filament lasts longer. 
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The results of all these samples show that more carbon filaments are produced when they are 

exposed to CO gas mixture for longer time scale for the studied exposure conditions. The 

effect of CO exposure time has been shown in many studies and explained by kinetics of 

metal wastage. According to Grabke metal wastage rate could be calculated via reaction (2.14) 

[5, 15]. 

 

 

rM = 
dmM

Adt

mg

cm2h
        (4.1) 

 

where rM = metal wastage rate 

mM = mass of alloy converted into the corrosion product 

  A = area 

  t = time 

 

From the exposure experiments under various atmospheres, he found that the rate of metal 

wastage is virtually independent of time. 

 

 

rM = 
dmM

Adt
 = k1        (4.2) 

 

 
mM

A
 = k1 t        (4.3) 

 

where k1 = a rate constant of metal wastage 

 

Carbon deposition determined by thermogravimetry. Fine metal particles catalyze the CO 

reduction reaction (2.1), so it is assumed that the rate of carbon deposition is proportional to 

the mass of the particles [5]. 
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rC = 
dmC

Adt
 = k2 

mM

A
       (4.4) 

    

  = k1 k2 t        (4.5) 

 

where rC = carbon deposition rate  

mC = mass of carbon deposition 

k2 = a rate constant of carbon deposition 

   

As shown in the Figure 4.9, carbon deposition is proportional to the partial pressure of carbon 

monoxide and hydrogen and inversely proportional to the partial pressure of steam. Thus, k2 

can be expressed as below. 

 

 

k2 ∝         (4.6) 

 

 k2 = k         (4.7) 

 

rC = 
dmC

Adt
 = k1 k  t      (4.8) 

 

 
A

 = k3  t2       (4.9) 

 

where k3 = k1 k = a rate coefficient 

 

From the equation (4.3) and (4.9), it is clear that the amount of carbon deposition on the 

surface is increasing when CO exposure time increases. 
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slower kinetics than the CO reduction reaction (2.1) [6]. Similar trends has been reported by 

Chun et al. that the rate of pitting is higher at 650 °C than 750 °C [21]. However, they used a 

different gas composition (50% CO – 50% H2), so it is not correct to compare directly. 
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5. Conclusion and Further work 

  

5.1 Conclusion 

 

The effects of CO exposure time, pre-treatment temperature and CO exposure treatment 

temperature on carbon formation were studied in this paper. 

 

Oxidation treatments with polished samples were conducted for 6 h at 540 °C or 760 °C, at  

1 bar under 10% steam-Ar gas mixture flowing at a rate of 100 Nml/min. Next, CO exposure 

treatments with the pre-oxidized sample were carried out at 650 °C or 750 °C, at 1 bar in 100 

Nml/min with 10% CO-Ar gas (carbon activity: ac >> 1) for 1 h to 20 h. 

 

Two characterization methods, optical microscopy and scanning electron microscopy, were 

used to observe the carbon formation trends on the sample surfaces. 

 

First, the effect of CO exposure time can be summarized by saying that regardless of sample 

exposure conditions, all samples have more carbon when they are exposed to CO gas for 

longer time. It becomes more obvious that longer exposure time will produce more carbon 

filaments by checking SEM micrographs. This can be explained by not only experimental 

investigations but also the rate expressions (4.1) – (4.8). To study the initial stage of metal 

dusting, samples from when the carbon starts to form on the surface play a key role, because 

they provide an opportunity to know how the first carbon forms. By checking the oxide layer, 

whether there are Ni and/or Fe particles or not, the first step of metal dusting can be suggested. 

Components analysis of the samples is necessary to explain the initial stage of metal dusting. 

 

Second, pre-treatment temperature has an effect in that lower temperature forms more carbon 

filaments. It is already known from the work by Gunawardana that Cr in bulk can diffuse to 

the surface at high temperature, and it is also likely that the grain boundaries have provided an 
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easy diffusion path for Cr. 

 

Third, the effect of CO exposure treatment temperature is that lower temperature (650 °C) 

forms more carbon filaments than higher temperature (750 °C). However, this trend is not the 

same as in previous literature where the metal dusting is known as strongly controlled by 

kinetics. The effect of kinetics on carbon formation might be changed under different 

conditions (gas composition, temperature, etc.). The Boudouard reaction (2.3) is reported to 

have slower kinetics than the CO reduction reaction (2.1) [6]. Therefore, when the gas 

mixture does not contain H2, the metal dusting is less affected by kinetics than when the gas 

mixture contains H2. 
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5.2 Further work 

 

 Characterization by EDS or by other methods 

 

In Chapter 4.1, there were unique features which need to be analyzed further. By 

analyzing the sample with EDS, composition of the feature will be proved. Also, the 

samples with very little carbon need to be analyzed to check whether there are Ni 

and/or Fe particles in the oxide or not. This will help to study initial stage of metal 

dusting corrosion. 

 

 

 Analysis of corrosion products 

 

By measuring the weight of corrosion products, the relationship between time and 

amount of coke can be obtained graphically and quantitatively. It will help to explain 

the effects of CO exposure time on surface carbon formation.  

 

 

 Experiments with industrially relevant conditions 

 

Many of industrial plants operate at higher pressure than atmospheric pressure. In 

addition, various gas mixtures which include hydrogen and oxygen are used. To apply 

metal dusting corrosion phenomena from the laboratory scale to the industrial scale, 

experiments under high pressure and relevant gas mixture are needed. 
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Value

1 E
Very
critical

2 D Critical

3 C Dangerous

4 B
Relatively
safe

5 A Safe

MATRIX FOR RISK ASSESSMENT
Very
critical E1 E2 E3 E4 E5

Critical D1 D2 D3 D4 D5

Dangerous C1 C2 C3 C4 C5

Relatively
safe B1 B2 B3 B4 B5

Safe A1 A2 A3 A4 A5

Minimal Low Medium High Very high

Explanation of the colors used in the risk matrix.

Color Description

Red

Yellow

Green

Criteria Human

Permanent injury, may
produce serious  health
damage/sickness

May produce fatality/ies

Likelihood

Very prolonged, non-reversible
damage

Minor damage. Short recovery
time

Medium: Once a year or less

Very high: Once a week

Economy/material

Prolonged damage. Long
recovery time.

Minor damage. Long recovery
time

Shutdown of work >1
year.

Environment

Minimal: Once every 50 year or
less

Low: Once every 10 years or less

Shutdown of work < 1
month

Shutdown of work <
1week

Insignificant damage. Short
recovery time

High: Once a month or less

Grading

Injury that requires
medical treatment

Unacceptable risk. Safety measures must be implemented.

Measures to reduce risk shall be considered.

Acceptabel risk.

Risk value = Likelihood (1, 2 ...) x consequence (A, B ...). Risk value A1 means very low risk. Risk value E5 means very large and serious risk

Consequence

Shutdown of work 0.5-1
year.

C
O

N
S

E
Q

U
E

N
C

E

LIKELIHOOD

Serious personal injury

Shutdown of work <
1day

Injury that requires first
aid
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Appendix B: Flowmeter calibration 

 

Calibration of MFC-1 (H2) 

 

Date 2014-06-30

Inlet P 26.00 bar

Percent. (%) 9.20 16.20 28.20 40.20 53.20 65.40 79.10 90.50

Flow range (ml) (0-1) (0-1) (1-10) (1-10) (1-10) (10-100) (10-100) (10-100)

Volume flowed 1.00 1.00 9.00 9.00 9.00 90.00 90.00 90.00

Readings 2.37 1.28 6.96 4.97 3.78 29.85 24.65 21.44

2.34 1.34 7.03 5.00 3.75 29.87 24.72 21.41

2.31 1.31 7.06 5.03 3.75 29.87 24.62 21.44

2.32 1.32 7.00 4.93 3.79 29.81 24.68 21.47

2.38 1.28 7.03 4.97 3.78 29.85 24.63 21.38

1.25 6.97

Avg. time (s) 2.34 1.30 7.01 4.98 3.77 29.85 24.66 21.43

Avg. time (min) 0.04 0.02 0.12 0.08 0.06 0.50 0.41 0.36

Flowrate (ml/min H2) 25.60 46.27 77.05 108.43 143.24 180.90 218.98 252.01

y = 2.7733x ‐ 0.8634
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Calibration of MFC-2 (CO2) 

 

 

  

Date 2014-06-26

Inlet P 26.00 bar

Percent. (%) 5.60 16.00 25.90 36.10 46.80 55.70 66.40 76.70 84.30 93.30

Flow range (ml) (0-1) (0-1) (0-1) (0-1) (1-10) (1-10) (1-10) (1-10) (1-10) (1-10)

Volume flowed 1.00 1.00 1.00 1.00 9.00 9.00 9.00 9.00 9.00 9.00

Readings 12.06 3.87 2.47 1.78 12.25 10.37 8.50 7.25 6.38 5.59

11.97 3.84 2.46 1.71 12.25 10.34 8.56 7.22 6.32 5.50

12.03 3.88 2.50 1.75 12.22 10.41 8.56 7.25 6.41 5.54

12.03 3.84 2.44 1.79 12.19 10.41 8.53 7.29 6.35 5.56

11.97 3.84 2.44 1.72 12.25 10.35 8.56 7.28 6.34 5.56

Avg. time (s) 12.01 3.85 2.46 1.75 12.23 10.38 8.54 7.26 6.36 5.55

Avg. time (min) 0.20 0.06 0.04 0.03 0.20 0.17 0.14 0.12 0.11 0.09

Flowrate (ml/min CO2) 5.00 15.57 24.37 34.29 44.15 52.04 63.22 74.40 84.91 97.30

y = 1.0225x ‐ 2.2974
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Calibration of MFC-2 (0.5%O2/Ar synthesizes gas) 

 

  

Date 2014-06-26

Inlet P 26.00 bar

Percent. (%) 5.70 14.60 24.10 34.60 42.50 54.50 64.20 75.20 84.50 93.10

Flow range (ml) (0-1) (0-1) (1-10) (1-10) (1-10) (1-10) (1-10) (10-100) (10-100) (10-100)

Volume flowed 1.00 1.00 9.00 9.00 9.00 9.00 9.00 90.00 90.00 90.00

Readings 5.30 2.00 10.75 7.72 6.31 5.03 4.25 35.81 31.66 28.66

4.97 1.97 10.75 7.69 6.35 5.06 4.25 35.78 31.69 28.62

5.00 2.03 10.72 7.71 6.35 5.04 4.25 35.78 31.69 28.59

4.97 2.03 10.78 7.75 6.34 5.06 4.32 35.84 31.69 28.66

4.97 2.03 10.78 7.69 6.34 5.04 4.28 35.81 31.72 28.63

Avg. time (s) 5.04 2.01 10.76 7.71 6.34 5.05 4.27 35.80 31.69 28.63

Avg. time (min) 0.08 0.03 0.18 0.13 0.11 0.08 0.07 0.60 0.53 0.48

Flowrate (ml/min 0.5%O2) 11.90 29.82 50.20 70.02 85.20 107.02 126.46 150.82 170.40 188.60

y = 2.0023x + 0.3296
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Calibration of MFC-3 (CO) 

 

  

Date 2014-06-30

Inlet P 26.00 bar

Percent. (%) 5.50 14.70 24.50 34.30 44.20 53.20 64.70 74.10 82.80 92.30

Flow range (ml) (0-1) (1-10) (1-10) (1-10) (1-10) (10-100) (10-100) (10-100) (10-100) (10-100)

Volume flowed 1.00 9.00 9.00 9.00 9.00 90.00 90.00 90.00 90.00 90.00

Readings 3.38 12.44 7.69 5.65 4.44 35.97 29.78 26.07 23.28 20.88

3.40 12.41 7.69 5.59 4.38 36.09 29.72 26.07 23.31 20.75

3.34 12.47 7.69 5.66 4.41 36.03 29.75 26.09 23.34 20.88

3.40 12.41 7.72 5.66 4.46 35.97 29.78 26.04 23.34 20.87

3.34 12.44 7.72 5.69 4.37 35.96 29.72 26.00 23.35 20.85

3.37 7.75 5.56 4.47 35.94 20.88

7.75 5.69

7.75

Avg. time (s) 3.37 12.43 7.72 5.64 4.42 35.99 29.75 26.05 23.32 20.85

Avg. time (min) 0.06 0.21 0.13 0.09 0.07 0.60 0.50 0.43 0.39 0.35

Flowrate (ml/min CO) 17.80 43.43 69.95 95.70 122.13 150.03 181.51 207.26 231.52 258.97

y = 2.7763x + 1.7083
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Calibration of MFC-3 (O2) 

 

  

Date 2014-06-30

Inlet P 26.00 bar

Percent. (%) 4.60 13.90 24.50 34.00 43.90 54.00 64.10 73.80 84.40 92.80

Flow range (ml) (0-1) (0-1) (1-10) (1-10) (1-10) (10-100) (10-100) (10-100) (10-100) (10-100)

Volume flowed 1.00 1.00 9.00 9.00 9.00 90.00 90.00 90.00 90.00 90.00

Readings 3.90 1.47 7.72 5.72 4.41 35.78 30.37 26.56 23.18 21.07

3.91 1.50 7.75 5.72 4.43 35.84 30.38 26.53 23.22 21.06

3.94 1.44 7.72 5.65 4.47 35.84 30.44 26.53 23.18 21.00

3.93 1.43 7.78 5.68 4.47 35.87 30.37 26.50 23.16 21.03

3.94 1.43 7.78 5.69 4.44 35.78 30.41 26.47 23.16 21.06

4.00 1.44 7.85 5.62 30.38

4.00 1.50 5.62

Avg. time (s) 3.95 1.46 7.77 5.67 4.44 35.82 30.39 26.52 23.18 21.04

Avg. time (min) 0.07 0.02 0.13 0.09 0.07 0.60 0.51 0.44 0.39 0.35

Flowrate (ml/min O2) 15.21 41.14 69.53 95.21 121.51 150.75 177.68 203.64 232.96 256.61

y = 2.7306x + 2.6211
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Calibration of MFC-5 (Ar) 

  

Date 2014-06-25

Inlet P 26.00 bar

Percent. (%) 6.80 15.60 24.80 35.40 45.20 54.20 68.70 82.30 91.30

Flow range (ml) (0-1) (0-1) (0-1) (1-10) (1-10) (10-100) (10-100) (10-100) (10-100)

Volume flowed 1.00 1.00 1.00 9.00 9.00 90.00 90.00 90.00 90.00

Readings 3.44 1.75 1.12 7.19 5.66 46.31 37.00 30.75 27.40

3.41 1.75 1.06 7.10 5.63 46.28 37.09 30.75 27.50

3.44 1.75 1.09 7.16 5.69 46.18 36.96 30.63 27.50

3.40 1.72 1.12 7.19 5.65 46.22 36.90 30.72 27.47

3.43 1.72 1.09 7.13 5.63 46.22 36.96 30.72 27.41

Avg. time (s) 3.42 1.74 1.10 7.15 5.65 46.24 36.98 30.71 27.46

Avg. time (min) 0.06 0.03 0.02 0.12 0.09 0.77 0.62 0.51 0.46

Flowrate (ml/min Ar) 17.52 34.52 54.74 75.48 95.54 116.78 146.02 175.82 196.68

y = 2.1174x + 1.6308
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