
ISBN 978-82-471-xxxx-x (printed version)
ISBN 978-82-471-xxxx-x (electronic version)

ISSN 1503-8181

Doctoral theses at NTNU, 2010:XX

Fornavn Etternavn

Doctoral theses at NTNU, 2010:23

Fornavn Etternavn

NTNU
Norwegian University of Science and Technology

Thesis for the degree of philosophiae doctor
Faculty of Engineering Science and Technology

Department of Marine Technology

Tittel på avhandlingen

Undertittel på avhandlingen

Doctoral theses at NTNU, 2013:214

Karl Yngve Lervåg

Calculation of interface curvatures
with the level-set method for
two-phase flow simulations and
a second-order diffuse-domain
method for elliptic problems in
complex geometries

ISBN 978-82-471-4544-9 (printed version)
ISBN 978-82-471-4545-6 (electronic version)

ISSN 1503-8181

D
octoral theses at N

TN
U

, 2013:214
K

arl Yngve Lervåg

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r

th
e

de
gr

ee
 o

f P
hi

lo
so

ph
ia

e
D

oc
to

r
Fa

cu
lt

y
of

 E
ng

in
ee

ri
ng

 S
ci

en
ce

 &
 T

ec
hn

ol
og

y
D

ep
ar

tm
en

t o
f E

ne
rg

y
an

d
P

ro
ce

ss
 E

ng
in

ee
ri

ng

Thesis for the degree of philosophiae doctor

Trondheim, xxxx 2010

Norwegian University of Science and Technology
Faculty of Engineering Science and Technology
Department of Marine Technology

Fornavn Etternavn

Tittel på avhandlingen
Undertittel på avhandlingen

Department of Marine Technology

Karl Yngve Lervåg

Calculation of interface curvatures
with the level-set method for
two-phase flow simulations and
a second-order diffuse-domain
method for elliptic problems
in complex geometries

Thesis for the degree of Philosophiae Doctor

Trondheim, July 2013

Norwegian University of Science and Technology
Faculty of Engineering Science & Technology
Department of Energy and Process Engineering

NTNU
Norwegian University of Science and Technology

©

ISSN 1503-8181

IMT Report 2010-xx

Doctoral Theses at NTNU, 2010:xx

Printed by Skipnes Kommunikasjon as

Thesis for the degree of philosophiae doctor

Faculty of Engineering Science and Technology
Department of Marine Technology

Fornavn Etternavn

ISBN 82-471-xxxx-x (printed ver.)
ISBN 82-471-xxxx-x (electronic ver.)

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Engineering Science & Technology
Department of Energy and Process Engineering

© Karl Yngve Lervåg

ISBN 978-82-471-4544-9 (printed version)
ISBN 978-82-471-4545-6 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2013:214

Printed by Skipnes Kommunikasjon as

Dedicated to Jon Vegard Lervåg (1979–2011)

Abstract

This thesis considers in the first part the mathematical modelling of
incompressible two-phase flow, in particular the calculation of interface
curvatures and normal vectors with the level-set method. The main
contribution is the development of two new numerical methods that
enable a more robust calculation of the curvature and normal vectors in
areas where the gradient of the level-set method is discontinuous.

Incompressible two-phase flow is in this thesis modelled by the Navier-
Stokes equations with a singular source term at the interface between
the phases. The singular source term leads to a set of interface jump
conditions. These jump conditions are used in the ghost-fluid method
to solve two-phase flow in a sharp manner. The interface position is
captured and evolved in time with the level-set method. The Navier-
Stokes equations for two-phase flow are solved with projection methods
and discretized by finite differences in space and Runge-Kutta methods
in time. The advective terms in the governing equations are discretized
by a weighted essentially non-oscillatory scheme.

In the second part, the thesis considers the more general problem of
solving partial-differential equations (PDEs) in complex geometries. An
extension of a diffuse-domain method is presented, where the accuracy
is improved by adding a correction term. The extension is derived for
elliptic problems with Neumann and Robin boundary conditions. One
of the advantages of the diffuse-domain methods is that they allow the
use of standard tools and methods because they are based on solving
PDEs reformulated in larger and regular domains.

v

Preface

This thesis is submitted to the Norwegian University of Science and
Technology (NTNU) for partial fulfilment of the requirements for the
degree of philosophiae doctor. The doctoral work has been performed at
the Department of Energy and Process Engineering, NTNU, Trondheim,
with Professor Bernhard Müller as main supervisor and with Svend
Tollak Munkejord, chief scientist at SINTEF Energy Research, as co-
supervisor. The work was carried out in the period from September 2010
to June 2013.

The project was financed through the research project “Enabling low
emission LNG systems”, performed under the Petromaks program and
coordinated by SINTEF Energy Research. I gratefully acknowledge the
support from the project partners: Statoil, GDF SUEZ, and the Research
Council of Norway (contract number 193062/S60).

I am very thankful to both of my supervisors, Bernhard Müller and
Svend Tollak Munkejord. In the regular meetings throughout the PhD
project they have given me very helpful and encouraging comments and
feedback on my work. They have allowed me freedom to pursue my
own ideas, but at the same time they have ensured that I was on track so
that I finished my PhD work on time.

I am also indebted to Professor John Lowengrub for inviting me to
stay at the University of Irvine, California. My stay at UC Irvine was a
very enlightening and enjoyable experience, both on a personal and a
professional level. I also want to thank Esteban Meca at Lowengrub’s lab
for many helpful and inspiring discussions.

I am very grateful to the Fulbright Foundation, both for the financial
support for the stay in Irvine and for the invaluable aid in the practical
matters of living abroad. I am particularly grateful to Ann Kerr for
organising several very interesting seminars and events in the Los Ange-
les area that allowed both me and my wife to meet a lot of wonderful
people.

vii

viii

I would like to thank all my colleagues and friends from the Depart-
ment of Energy and Process Engineering, NTNU. In particular, I would
like to thank Claudio Walker for helpful discussions about the modelling
of two-phase flow with the level-set method. Further, I would like to
thank Åsmund Ervik for many fruitful meetings and discussions, both
with regard to our paper about the LOLEX method, and about the intri-
cacies and complications with our numerical code. Last, but not least, I
thank my office mate Halvor Lund. It has been a great pleasure to share
the office with him these last three years.

I also want to thank Halvor Lund, Frode Bjørdal, and Lars Eivind
Lervåg for proofreading my manuscript.

Finally, I extend my deepest gratitude to my wife for her unconditional
love and support.

Trondheim, June 2013
Karl Yngve Lervåg

Contents

Abstract v

Preface vii

1. Introduction 1
1.1. Background and motivation 1
1.2. Overview of methods for two-phase flow simulations . . . 3
1.3. Goal and contribution of the present thesis 6
1.4. Outline of the thesis . 7

2. Governing equations for two-phase flow 9
2.1. The Navier-Stokes equations for single-phase flow 9
2.2. The Navier-Stokes equations for two-phase flow 10
2.3. Fluid-fluid interface conditions 11
2.4. Interface conditions for the pressure and the viscous term 14
2.5. Summary . 15

3. Numerical methods 17
3.1. The level-set method . 17
3.2. Projection methods . 19

3.2.1. The direct projection scheme 1 19
3.2.2. The Chorin projection method 20

3.3. Spatial discretization . 21
3.3.1. Advective terms . 22
3.3.2. The viscous term . 24
3.3.3. Pressure Poisson equation 26

3.4. Temporal discretization . 27
3.5. Time step restriction . 29
3.6. Axisymmetry . 30

ix

x Contents

3.7. Discretization of the curvature and the normal vector . . . 30
3.7.1. Direction-difference scheme 32
3.7.2. Curve-fitting discretization method 33
3.7.3. Local level-set extraction method 34

3.8. Summary . 36

4. The diffuse-domain approach 39
4.1. Introduction . 40
4.2. The DDM for a Neumann problem 41
4.3. The method of matched asymptotic expansions 42
4.4. Asymptotic analysis of the DDM1 and the DDM2 45
4.5. Summary . 49

5. Summary of contributions 51
5.1. Paper A . 51
5.2. Paper B . 53
5.3. Paper C . 54
5.4. Paper D . 59
5.5. Paper E . 64

6. Conclusions and outlook 67

Bibliography 78

A. Calculation of interface curvature with the level-set method 79

B. Curvature calculations for the level-set method 99

C. Calculation of the interface curvature and normal vector
with the level-set method 111

D. A robust method for calculating interface curvature and nor-
mal vectors using an extracted local level set 149

E. Towards a second-order diffuse-domain approach for solv-
ing PDEs in complex geometries 179

“The scientific man does not aim at an immediate result. He does
not expect that his advanced ideas will be readily taken up. His
work is like that of the planter – for the future. His duty is to lay
the foundation for those who are to come, and point the way.”

— Nikola Tesla (1856–1943)

1
Introduction

This thesis considers the mathematical modelling and numerical com-
putation of two-phase flows. It focuses on developing more robust
numerical methods to calculate the curvature and the normal vector of
the interface between the two phases. In addition it considers a diffuse-
domain method for solving partial differential equations in complex
geometries, and it derives an asymptotically second-order method for
elliptic problems.

1.1. Background and motivation

Two-phase flows are particular examples of multiphase flows of gas and
liquid with an interface that separates the two phases. In the pedantic
sense, two-phase flow is flow of a single fluid that occurs as two different
phases, for example steam and water. However, it is common to be
more general, and in this thesis we use the term two-phase flow also for
immiscible mixtures of different fluids, such as water and oil.

Two-phase flows are crucial to a large amount of processes, both in
nature and in industry. Examples range from weather phenomena, such
as rain drops falling through air, to industrial processes, for instance the
separation of water from oil. In general, multiphase flow phenomena

1

2 1. Introduction

influence any process where liquids and gases are involved. In the
oil and gas industry, most processes are two-phase or multiphase flow
processes. Needless to say, the understanding of these phenomena is
fundamental in the development of new or improved processes.

Consider the international trade of liquefied natural gas (LNG), which
is a particular branch of the oil and gas industry that has undergone an
exceptional growth in the last decades. There is a strong focus both in
Norway and internationally on producing LNG on large floaters (FLNG)*.
There are a number of both environmental and economic advantages
of such FLNG facilities. In particular, FLNG facilities would remove
the need of long pipelines from the gas fields to the shore, there would
be no requirement for compression units to pump the gas to the shore,
and one would not need to construct onshore production facilities. This
would significantly reduce the environmental footprint, and would help
preserve marine and coastal environments. Since an FLNG facility can
be moved to a new location when a field has been depleted, it would
make it economically viable to open up new business opportunities to
develop offshore gas fields that would otherwise remain stranded.

Moving the LNG production to an offshore facility presents a demand-
ing set of challenges. A particular challenge is that the elements of a
conventional LNG facility need to fit into an area roughly one quarter
the original size. Heat exchangers are among the main challenges in the
design and operation of LNG plants [24]. Compact and efficient heat
exchangers are needed to obtain an energy efficient plant with low emis-
sions. More optimized designs require more accurate tools for design
and operation. Such tools can only come as a result of an improved
physical understanding of the complex two-phase flows occurring in the
heat exchangers. This can be achieved by more detailed mathematical
modelling, together with dedicated laboratory observations, cf. [49].

*FLNG facilities do not yet exist, although a facility is under development by Royal
Dutch Shell [68]. The construction of this facility was started in 2012, and the first
drilling is stated to commence in 2013 [60].

1.2. Overview of methods for two-phase flow simulations 3

1.2. Overview of methods for two-phase flow simulations

In the following, a brief overview is given of different methods for
modelling two-phase flows where the interface location is known. In
particular, we focus on methods that handle the interface evolution. For
more in-depth reviews, see for instance [14, 57, 59].

Interface propagation methods comprise a range of methods that are of-
ten categorised as either front tracking or front capturing. Front-tracking
methods use Lagrangian particles to track the interface explicitly [69],
while front-capturing methods use an Eulerian approach to capture the
interface implicitly. Examples of the latter are volume-of-fluid meth-
ods [57, 70], phase-field methods [4, 26, 42], and level-set methods [53].

The main advantages of front-tracking methods are their inherent
accuracy and that topological changes do not occur without explicit
action. Hence, unphysical numerical reconnection does not occur. This
means that if front tracking is used for the simulations of two drops that
collide, these drops will not coalesce due to numerical reconnection or
merging. However, the handling of topological changes are challenging,
in particular in three dimensions [61]. Also, there are some issues of
numerical instabilities, as discussed by Sethian [58] and Osher and
Sethian [52].

The volume-of-fluid method utilizes a volume-fraction function whose
values represent the characteristic function of one of the fluid domains.
Its values are zero or one, except in those cells cut by the interface. A
considerable advantage of the volume-of-fluid method is that it conserves
the mass of both fluids well. However, the reconstruction of the interface
from volume fractions is not simple, and computation of geometric
quantities such as the interface curvature is not straightforward. Also,
spurious bubbles and drops may be created, cf. [36].

The phase-field methods treat the interface in a diffuse manner, where
the fluid properties, such as density and viscosity, change rapidly but
smoothly across the interface. These methods typically solve the coupled
Cahn-Hilliard/Navier-Stokes equations, where the Cahn-Hilliard equa-
tion is based on the free energy of an interface [10]. Through this energy
formulation, one can model more advanced interface physics such as
van der Waals interactions, electrostatic forces, and fluids with varying
miscibilities. However, the phase-field methods require that one resolves

4 1. Introduction

very small length scales at the interfaces. This poses a severe restriction
on the applicability of phase-field methods for two-phase flow, where
the length scales of the flow are generally much larger than those of the
interface.

In this thesis, we have used the level-set method [52], which implicitly
captures the interface as an isocontour of a function defined in the entire
domain. The main motivation of this choice is both that the level-set
method handles topological changes of evolving interfaces automatically,
cf. Sethian and Smereka [59], and that it is relatively straightforward to
implement.

It should be noted that the automatic handling of topological changes
is not based on physical principles. For instance, when two interfaces
approach each other and their distance becomes less than the spacing of
the grid, the level-set method can no longer resolve both interfaces and so
they are merged. An important consequence is that the level-set method
does not model the physics involved in the coalescence process, and in
particular in the smaller scales of the film-drainage process. This process
involves a wide range of length scales, varying from the nanometer scale
where van der Waals force are active to the length scales of the external
flow. Some effort has been made to include the effects of the smaller
scales in front-capturing methods, cf. [48, 71]. Recently, Kwakkel et al.
[35] presented a level-set/volume-of-fluid method that is coupled with
a film-drainage model that predicts if and when two colliding droplets
will coalesce. To prevent the numerical coalescence, each droplet has its
own locally defined level-set function.

The level-set method has been used to model several diverse phe-
nomena, such as tumour growth [43, 44, 45], propagation of wildland
fire [46], and computer RAM production [47]. For a good and thorough
introduction to the level-set method, see [53].

A weakness of the level-set method is that it does not conserve the
mass of the two fluids, in particular in areas of low resolution and/or
high curvature. Different approaches have been developed to overcome
this disadvantage, for example the conservative level-set method [50, 51],
the particle level-set method [16], or the coupled level-set/volume-of-
fluid method [65].

When we use the level-set method to capture the interface for immisci-
ble and incompressible two-phase flow simulations, there will be a sharp

1.2. Overview of methods for two-phase flow simulations 5

change in the density and viscosity across the interface. In this thesis
we use the ghost-fluid method [17], which is a sharp-interface method
where the jumps are included in the spatial discretizations in a sharp
manner. An alternative method is the continuous surface-force method
introduced by Brackbill et al. [8], where the density and the viscosity are
smeared out across the interface through a smoothed Heaviside function.

6 1. Introduction

φ(x)

(a) Drops in near contact

ϕ(x)

x

0

(b) Slice of the level-set function

Figure 1.1.: (a) Two drops in near contact. The dotted line marks a region
where the derivative of the level-set function, ϕ(x), is not de-
fined. (b) A one-dimensional slice of the level-set function. The
dots mark points where the derivative of ϕ(x) is discontinuous.

1.3. Goal and contribution of the present thesis

The main goal of the PhD project has been to develop fundamental
knowledge of two-phase flow phenomenon that are relevant for compact
heat exchangers.

In order to do detailed theoretical studies of phenomena that are
relevant for compact heat exchangers, we need to consider two-phase
flows with mass and heat transfer in confined and complex geometries.
One such relevant phenomenon is the drop-film collision process [76].
Even when restricted to isothermal and immiscible flows, this simple
phenomenon remains a challenge. When the level-set method is used
to capture the interface, one must be particularly careful about how one
calculates the interface curvature and normal vector. For instance, when
two drops are in near collision there is a kink region in the level-set
function between the drops, where the gradient is discontinuous, see
Figure 1.1. This discontinuity may lead to large errors in the curvature
and the normal vector if it is not taken into account in the discretization
stencils.

As a step towards computing two-phase flow simulations in confined
geometries, the thesis has considered the diffuse-domain method [40].
This is a method where partial-differential equations in complex domains
are extended into larger, regular domains with the use of diffuse ap-
proximations of the physical boundaries. The approximations converge
asymptotically to the original problem when the width of the diffuse

1.4. Outline of the thesis 7

boundary is reduced. With this method one can use standard numerical
methods to solve equations that incorporate complex boundaries.

The main contributions of the present thesis are two new methods
to calculate the curvature and normal vector in a robust manner with
the level-set method. These methods are shown to yield more accurate
calculations of drop-film and drop-drop collisions. The methods are
compared with standard methods and with other methods from the
literature.

In addition, the thesis presents an extension of a diffuse-domain
method by a high-order correction term for the solution of elliptic prob-
lems in complex geometries. New analysis provided in the thesis im-
proves the understanding of the diffuse-domain method, and the derived
method is shown to be more accurate than the existing diffuse-domain
method.

1.4. Outline of the thesis

The thesis is organised as follows: Chapter 2 gives a brief overview of
the derivation of the governing equations for two-phase flow. It includes
a consideration of the fluid-fluid interface conditions and the derivation
of a simplified jump tensor for the viscous term at the interface.

Chapter 3 gives a detailed description of the numerical methods that
are used to solve the two-phase flow equations. In particular, it describes
the level-set method, which is used to capture the interfaces, projection
methods that are used to solve the Navier-Stokes equations, and the
spatial and temporal discretization schemes. At the end of the chapter,
an overview of the novel discretization methods for the curvature and
the normal vector is given.

Chapter 4 gives a short introduction to the diffuse-domain method for
an elliptic problem with Neumann boundary conditions. It introduces
the high-order correction term, and shows that the new method con-
verges asymptotically with second-order to the original problem. The
chapter presents new analysis that shows that the correction term is not
necessary for second-order convergence.

In Chapter 5 the main results of the contributed papers A–E are
summarized, and the author’s contributions are highlighted. Finally,

8 1. Introduction

Chapter 6 gives concluding remarks and provides an outlook for future
work.

Full-text versions of the research papers A–E are provided in the
Appendices at the end of the thesis.

“But it is just this characteristic of simplicity in the laws of nature
hitherto discovered which it would be fallacious to generalize, for it
is obvious that simplicity has been a part cause of their discovery,
and can, therefore, give no ground for the supposition that other
undiscovered laws are equally simple.”

— Bertrand Russel (1872–1970)

2
Governing equations for

two-phase flow

In this chapter we will give a brief overview of the derivation of the
governing equations for two-phase flow. We begin with a consideration
of the Navier-Stokes equations for single-phase flow. We then introduce
a singular surface-force term and derive the Navier-Stokes equations
for two-phase flow. Finally, we use the Navier-Stokes equations for
two-phase flow to derive jump conditions at the interface between the
phases.

2.1. The Navier-Stokes equations for single-phase flow

The following is a brief derivation of the Navier-Stokes equations for
single-phase flows. For a more thorough derivation of these equations,
see for instance Aris [5, §4 and §5] or White [73, Chapter 4].

We consider a single-phase, viscous flow in some domain Ω with
boundary ∂Ω. When temperature effects are neglected the flow is de-
scribed by the Cauchy equation

ρ

(
∂u
∂t

+ u ·∇u
)
= ∇ · T + ρ f , (2.1)

9

10 2. Governing equations for two-phase flow

and the mass conservation equation,

∂ρ

∂t
+∇ · (ρu) = 0. (2.2)

Here ρ is the fluid density, u is the flow velocity, t is time, T is the stress
tensor, f denotes body forces, and ∇ is used to denote the gradient and
divergence operators. The stress tensor for Newtonian fluids with zero
bulk viscosity is

T = −pI + 2µD− 2
3

µ(tr D)I, (2.3)

where p is the pressure, I is the identity tensor, µ is the dynamic viscosity,
and tr D denotes the trace of the strain-rate tensor D,

D =
1
2

(
∇u + (∇u)T

)
. (2.4)

For incompressible flow, the mass-conservation equation reduces to

∇ · u = 0, (2.5)

that is, the velocity field must be divergence free. If we further assume
that the viscosity is constant, then it follows that the divergence of the
stress tensor reduces to

∇ · T = −∇p + µ∆u, (2.6)

and so the Cauchy equation (2.1) becomes

ρ

(
∂u
∂t

+ u ·∇u
)
= −∇p + µ∆u + ρ f . (2.7)

Equations (2.5) and (2.7) are the incompressible Navier-Stokes equations
for single-phase flow with constant viscosity.

2.2. The Navier-Stokes equations for two-phase flow

We now consider an immiscible two-phase flow of two Newtonian fluids,
each with its own viscosity and density. We let Ω1 and Ω2 denote
the domains occupied by fluid 1 and fluid 2, respectively, and let the

2.3. Fluid-fluid interface conditions 11

ΓΩ2

Ω1

Figure 2.1.: An illustration of a two-phase flow domain. The interface Γ
separates the two phases Ω1 and Ω2.

interface between the fluids be denoted by Γ. Then Ω = Ω1 ∪ Ω2
and ∂Ω = (∂Ω1 ∪ ∂Ω2) \ Γ are the fluid domain and its boundary,
respectively. See Figure 2.1 for an illustration of a two-phase flow domain.

The extension of the single-phase model to account for two fluids can
be made by adding a singular surface-force term to represent the effects
of surface tension between the fluids. We assume that the surface tension
is constant, in which case the singular surface force can be defined as

fs(x, t) =
∫

Γ
σκnδ(x− xI(s))ds, (2.8)

where σ is the surface tension, κ is the local curvature, n is the normal
vector, δ is the Dirac delta function, and xI(s) is a parametrisation of
the interface. Thus the Navier-Stokes equations for immiscible and
incompressible two-phase flow are

∇ · u = 0, (2.9)

ρ

(
∂u
∂t

+ u ·∇u
)
= −∇p + µ∆u + ρ f + fs. (2.10)

2.3. Fluid-fluid interface conditions

The surface-tension force and the jump in viscosity and density across
the interface Γ lead to a set of interface conditions that must be satis-

12 2. Governing equations for two-phase flow

fied along the interface Γ. The following is a brief derivation of these
conditions.

First, we only consider flows where there is no mass transfer, which
implies that

[[u]] · n = 0, (2.11)

where [[·]] denotes the jump at the interface, for instance [[µ]] = µ2 − µ1.
Further, for viscous flows there is no slip at the interface, and thus the
tangential velocity component of the two fluids must be equal at the
interface,

[[u]] · t = 0. (2.12)

It follows that

[[u]] = 0, (2.13)
[[∇u]] · t = 0. (2.14)

The latter is a direct consequence of the former. Both fluids are incom-
pressible, which gives the trivial identity [[∇ · u]] = 0. If we use the
identity

∇ · u = n ·∇u · n + t ·∇u · t (2.15)

together with (2.14) we get

n · [[∇u]] · n = 0, (2.16)

which means that the normal component of the normal derivative of the
velocity field is continuous across the interface. Note that in (2.15) and in
similar expressions in the following, the nabla operator is only applied
to u, not the normal and tangential vectors that follow.

Next, we consider the conservation of momentum. We define a control
volume

Ωε =

{
x ∈ Ω : min

xI∈Γ
|x− xI | ≤ ε

}
, (2.17)

where ε > 0, see Figure 2.2. We then integrate the Cauchy equation (2.1)
with the added singular surface-force term over the domain Ωε,
∫

Ωε

ρ
Du
Dt

dx =
∫

Ωε

∇ · T dx +
∫

Ωε

ρ f dx

+
∫

Ωε

∫

Γ
σκnδ(x− xI(s))ds dx. (2.18)

2.3. Fluid-fluid interface conditions 13

Ω2

Ω1

Γ

ε

Ωε

Figure 2.2.: A sketch of the control volume Ωε that covers the interface, Γ.

Here Du/Dt = ∂u/∂t + u ·∇u denotes the convective derivative. Now
we apply the Gauss theorem and change the order of integration in the
last term to obtain

∫

Ωε

ρ
Du
Dt

dx =
∫

∂Ωε

T · n ds +
∫

Ωε

ρ f dx +
∫

Γ
σκn ds. (2.19)

If we let ε go to zero, the left-hand side and the second term on the
right-hand side vanish, and we get

0 =
∫

Γ
([[T]] · n + σκn)ds. (2.20)

Since the derivation above is also valid for any subset of Ωε containing a
part of Γ, (2.20) must hold for any part of Γ. Therefore

0 = [[T]] · n + σκn. (2.21)

With T = −pI + 2µD we finally get the interface condition for the
stresses,

[[p]]n− [[2µD]] · n = σκn. (2.22)

The surface tension force is seen to introduce a discontinuity in the nor-
mal stresses across the interface. The tangential stresses are continuous.

14 2. Governing equations for two-phase flow

2.4. Interface conditions for the pressure and the viscous
term

The previous section gave a brief derivation of the interface conditions for
immiscible and incompressible two-phase flow without mass transfer. In
order to use these conditions for the discretization of the Navier-Stokes
equations (2.9) and (2.10), we need to rewrite them into a more suitable
form. In particular, we want to find explicit expressions for the jump in
the pressure [[p]] and the viscous term [[µ∇u]]. The following derivation
is based on [22] and [30].

First, a jump condition for the pressure is obtained by taking the inner
product of (2.22) with the normal vector n,

[[p]] = n · [[2µD]] · n + σκ = 2[[µ]]n ·∇u · n + σκ, (2.23)

where (2.16) was used for the second equality.
To find the jump in the viscous term, it is first decomposed into an

interface normal coordinate system as

[[µ∇u]] = (n · [[µ∇u]] · n) n⊗ n + (t · [[µ∇u]] · t) t⊗ t
+ (n · [[µ∇u]] · t) n⊗ t + (t · [[µ∇u]] · n) t⊗ n,

(2.24)

where ⊗ denotes the dyadic product. We already showed that [[∇u]] · t =
0 and n · [[∇u]] · n = 0, cf. (2.14) and (2.16), which gives

n · [[µ∇u]] · n = [[µ]] n ·∇u · n, (2.25)
t · [[µ∇u]] · t = [[µ]] t ·∇u · t, (2.26)
n · [[µ∇u]] · t = [[µ]] n ·∇u · t. (2.27)

We then take the inner product of (2.22) with t, which gives

t ·
[[

µ
(∇u + (∇u)T)]] · n = t · [[µ∇u]] · n + [[µ]]n ·∇u · t = 0, (2.28)

or
t · [[µ∇u]] · n = −[[µ]]n ·∇u · t. (2.29)

The jump in the viscous term becomes

[[µ∇u]] = [[µ]]
(
(n ·∇u · n)n⊗ n + (n ·∇u · t)n⊗ t

− (n ·∇u · t)t⊗ n + (t ·∇u · t)t⊗ t
)

. (2.30)

2.5. Summary 15

This can be simplified further by noting that

(∇u · t)⊗ t = (n ·∇u · t)n⊗ t + (t ·∇u · t)t⊗ t. (2.31)

Thus we obtain the expression for the jump in the viscous term that has
been used in the present work,

[[µ∇u]] = [[µ]]
(
(n ·∇u · n)n⊗ n− (n ·∇u · t)t⊗ n

+ (∇u · t)⊗ t
)

. (2.32)

2.5. Summary

This chapter has given a brief derivation of the immiscible and incom-
pressible Navier-Stokes equations for two-phase flow (2.9) and (2.10),
where the viscosity is assumed constant in each phase. The effect of
surface tension is included as a singular source term.

Fluid-fluid interface conditions have been discussed, and it has been
shown how the singular source term and a jump in viscosity lead to a
set of interface jump conditions for the pressure (2.23) and the viscous
term (2.32).

“As long as you recognize your sinful ways, correct your
behaviour and adopt the right method and the right step
size, your misdemeanours will be forgiven and your
solution will prosper.”

— Arieh Iserles (1947)

3
Numerical methods

This chapter describes the numerical methods that have been used in
this thesis to solve the Navier-Stokes equations for two-phase flow. First,
a brief introduction to the level-set method is given, which is followed
by an outline of the two projection methods that have been used to solve
the Navier-Stokes equations. The spatial and temporal discretization
methods are then summarized, and at the end of the chapter the new
methods to calculate the curvature and the normal vectors are presented.

3.1. The level-set method

In order to solve the Navier-Stokes equations for two-phase flow, we need
to know the location of the interface. The level-set method proposed by
Osher and Sethian [52] allows us to capture the interface location as the
zero level set of the level-set function ϕ(x, t). The level-set function is
typically defined as a signed-distance function,

ϕ(x, t) =

{
d(x, t) if x ∈ Ω2,
−d(x, t) if x ∈ Ω1,

(3.1)

17

18 3. Numerical methods

where d(x, t) is the shortest distance to the interface Γ,

d(x, t) = min
xI∈Γ
|x− xI |. (3.2)

Thus the interface can be defined implicitly as

Γ(t) = {x ∈ Ω : ϕ(x, t) = 0} , t ∈ R+. (3.3)

The position of the interface is updated by solving an advection equa-
tion for ϕ,

∂ϕ

∂t
+ û ·∇ϕ = 0, (3.4)

where û is the velocity at the interface extended to the entire domain.
We extend the interface velocity through solving a velocity-extrapolation
equation,

∂û
∂τ

+ S(ϕ)n ·∇û = 0, ûτ=0 = u, (3.5)

to steady state, cf. [2, 78]. Here τ is a pseudo-time and S is a smeared
sign function which is equal to zero at the interface,

S(ϕ) =
ϕ√

ϕ2 + 2∆x2
. (3.6)

When we solve the level-set equation (3.4), the non-uniform advection
will distort the signed-distance property of the level-set function, and
numerical dissipation error adds to this distortion. The level-set function
is therefore reinitialized regularly by solving

∂ϕ

∂τ
+ S(ϕ0)(|∇ϕ| − 1) = 0,

ϕ(x, 0) = ϕ0(x),
(3.7)

to steady state as proposed by Sussman et al. [64]. The level-set function
just before initialization is used as the initial condition ϕ0.

The level-set equations (3.4), (3.5), and (3.7) are discretized in time
and space as described in the following sections. The method presented
by Adalsteinsson and Sethian [1] is used to improve the computational
speed. The method is often called the narrow-band method, since the

3.2. Projection methods 19

level-set function is only updated in a narrow band across the interface
at each time step.

One of the advantages of the level-set method is that normal vectors
and curvatures can be readily calculated from the level-set function, that
is,

n =
∇ϕ

|∇ϕ| , (3.8)

κ = ∇ ·
(∇ϕ

|∇ϕ|

)
. (3.9)

3.2. Projection methods

We have employed two different projection methods in this thesis to solve
the incompressible Navier-Stokes equations for two-phase flow (2.9) and
(2.10). Papers A, B, and C used the direct projection scheme 1 (DP1) [22],
and Paper D used the more standard Chorin projection method [12].

The projection methods are a family of methods for the solution of the
incompressible Navier-Stokes equations that are based on the Helmholtz-
Hodge theorem. This theorem states that an arbitrary vector field can be
decomposed into a divergence-free part and a rotation-free part. That is,
any vector field a can be written as

a = a′ +∇ψ, (3.10)

where a′ is a vector with ∇ · a′ = 0 and ψ is a scalar potential. The proof
of this theorem can be found in for instance [5, §3.44] or [11].

3.2.1. The direct projection scheme 1

The DP1 was developed by Hansen [22] and is based on a direct applica-
tion of the Helmholtz-Hodge theorem. We assume that the velocity u is
sufficiently smooth, and then rewrite (2.7) to get

∂u
∂t

= w− ∇p
ρ

, (3.11)

where
w = −(u ·∇)u + ν∇2u + f . (3.12)

20 3. Numerical methods

The divergence of (3.11) yields a Poisson equation for the pressure,

∇ ·
(∇p

ρ

)
= ∇ ·w. (3.13)

The DP1 scheme follows from a direct numerical discretization of the
above equations. First, w is calculated with (3.12). Then the pressure is
found by solving the Poisson equation (3.13). Finally, an Euler step is
used to solve (3.11), that is,

un+1 = un + ∆t
(

w− ∇p
ρ

)
. (3.14)

3.2.2. The Chorin projection method

The Chorin projection method was presented by Chorin [12], and is today
one of the standard methods for solving the Navier-Stokes equations,
e.g. [72]. The method is briefly presented in the following.

Let ∆t be the time step, and consider the discretization of the momen-
tum equation (2.7) with the forward Euler method,

un+1 − un

∆t
= −un ·∇un − ∇pn+1

ρ
+

µ

ρ
∆un + f , (3.15)

where un ≡ u(x, n∆t) and pn ≡ p(x, n∆t) are assumed known at time
level n. Note that the pressure gradient is evaluated at time level n + 1.
Next, to solve (3.15) in two steps, we introduce the intermediate velocity
field u?,

un+1 − u? + u? − un

∆t
= −un ·∇un − ∇pn+1

ρ
+

µ

ρ
∆un + f , (3.16)

which is chosen such that

u? − un

∆t
= −un ·∇un +

µ

ρ
∆un + f , (3.17)

un+1 − u?

∆t
= −∇pn+1

ρ
. (3.18)

3.3. Spatial discretization 21

From (3.17) we get an explicit expression for u?,

u? = un + ∆t
(
−un ·∇un +

µ

ρ
∆un + f

)
. (3.19)

Next, the divergence of (3.18) and ∇ · un+1 = 0 yields a Poisson equation
for the pressure,

∇ ·
(∇pn+1

ρ

)
=

∇ · u?
∆t

. (3.20)

Finally, we obtain for (3.18)

un+1 = u? −∆t
∇pn+1

ρ
. (3.21)

3.3. Spatial discretization

The governing equations (2.9), (2.10), (3.4), (3.5), and (3.7) are discretized
on a staggered grid [23], where the scalar values are located at the cell
centres and the vector values are located at the cell edges, see Figure 3.1.
The domain boundary coincides with cell edges, and the fixed grid
spacing is ∆x in the x direction and ∆y in the y direction.

The x- and y-derivatives, divergence, and Laplacian operators are
discretized by the second-order central-difference scheme,

Gx p|i+ 1
2 ,j =

pi+1,j − pi,j

∆x
, (3.22)

Gy p
∣∣
i,j+ 1

2
=

pi,j+1 − pi,j

∆y
, (3.23)

D · u|i,j =
ui+1/2,j − ui−1/2,j

∆x
+

vi,j+1/2 − vi,j−1/2

∆y
, (3.24)

Lp|i,j =
pi+1,j − 2pi,j + pi−1,j

(∆x)2 +
pi,j+1 − 2pi,j + pi,j−1

(∆y)2 , (3.25)

respectively. Here u = (u, v) is a vector and p is a scalar. Note that
the gradient of a scalar is a vector and has values located at the cell
edges. These definitions are consistent with the staggered grid, since
the gradient returns a vector with components defined on the cell faces,
while the divergence and the Laplacian returns a scalar defined at the
cell centres.

22 3. Numerical methods

i− 1 i i + 1

j− 1

j

j + 1

∆y

∆x

Figure 3.1.: An illustration of a small part of a uniform staggered grid,
where the fixed grid spacings ∆x and ∆y are indicated. The
scalar values are stored at the cell centres (filled circles), the
x-component of the vector values is stored at the cell edges
(i + 1

2 , j) (filled squares), and the y-component of the vector
values is stored at the cell edges (i, j + 1

2) (open squares).

3.3.1. Advective terms

The advective terms, u ·∇u in the momentum equation (2.10) and û ·∇ϕ
in the level-set equation (3.4), and the normal derivative n ·∇û in the
velocity-extrapolation equation (3.5) are discretized with the weighted
essentially non-oscillatory (WENO) scheme, cf. [17] and [28]. The WENO
scheme is a high-order upwind scheme that is fifth-order accurate in
smooth regions. In nonsmooth regions the accuracy is reduced to a
minimum of third order. The following is a brief outline of the WENO
scheme.

First, when we calculate the advective term for the velocity, the vector
components are required on all cell edges. That is, we must interpolate
the x-component of the velocity to the location of the y-component of

3.3. Spatial discretization 23

the velocity and vice versa. To do this we use a linear interpolation,

ui,j+ 1
2
=

1
4

(
ui− 1

2 ,j + ui− 1
2 ,j+1 + ui+ 1

2 ,j+1 + ui+ 1
2 ,j

)
, (3.26)

vi+ 1
2 ,j =

1
4

(
vi,j− 1

2
+ vi+1,j− 1

2
+ vi+1,j+ 1

2
+ vi,j+ 1

2

)
. (3.27)

Similarly, when we calculate the advective term for the level-set func-
tion ϕ, we first interpolate the velocity to the scalar grid,

ui,j =
1
2

(
ui+ 1

2 ,j + ui− 1
2 ,j

)
, (3.28)

vi,j =
1
2

(
vi,j+ 1

2
+ vi,j− 1

2

)
. (3.29)

We now consider the WENO scheme for the advective operator in 1D
at the point xi+ 1

2
. The scheme extends naturally to higher dimensions.

First, if ui+ 1
2
= 0, then

u
∂u
∂x

∣∣∣∣
i+ 1

2

= 0. (3.30)

Otherwise we need to calculate a set of five differences that depend on
the upwind direction. The differences are denoted ∆vk for k = 1, . . . , 5.
If ui+ 1

2
> 0, then we calculate

∆vk =
ui+ 2k−5

2
− ui+ 2k−7

2

∆x
. (3.31)

Otherwise if ui+ 1
2
< 0, we calculate

∆vk =
ui− 2k−9

2
− ui− 2k−7

2

∆x
. (3.32)

Next we calculate expressions for the smoothness of three substencils,

S1 =
13
12

(∆v1 − 2∆v2 + ∆v3)
2 +

1
4
(∆v1 − 4∆v2 + 3∆v3)

2, (3.33)

S2 =
13
12

(∆v2 − 2∆v3 + ∆v4)
2 +

1
4
(∆v2 −∆v4)

2, (3.34)

S3 =
13
12

(∆v3 − 2∆v4 + ∆v5)
2 +

1
4
(3∆v3 − 4∆v4 + ∆v5)

2, (3.35)

24 3. Numerical methods

where a small S indicates a smooth substencil. These smoothness factors
are then used to compute weights for the substencils,

wk =
bk

b1 + b2 + b3
, (3.36)

for k = 1, 2, 3, where

b1 =
1

10
1

(ε + S1)2 , b2 =
6
10

1
(ε + S2)2 , b3 =

3
10

1
(ε + S3)2 . (3.37)

Here ε is a regularization parameter that is used to avoid division by
zero. We have used ε = 10−6 in this work. Finally, the WENO scheme
for the gradient becomes

∂u
∂x

∣∣∣∣
i+ 1

2

' w1

(
1
3

∆v1 −
7
6

∆v2 +
11
6

∆v3

)

+ w2

(
−1

6
∆v2 +

5
6

∆v3 +
1
3

∆v4

)

+ w3

(
1
3

∆v3 +
5
6

∆v4 −
1
6

∆v5

)
. (3.38)

3.3.2. The viscous term

The viscous term µ∆u in the Navier-Stokes equations is discretized by
standard second-order central differences using the ghost-fluid method
(GFM) [17, 30, 41]. This method includes the jump in the viscous term at
the interface (2.32) in the discretization stencil in a sharp manner.

In the following we present the GFM scheme in the one-dimensional
case. The extension to higher dimensions is straightforward. In order to
simplify the notation, we omit the half indices and let k ≡ i + 1

2 . Further,
we consider a general case where

[[u]] = aΓ,
[[

µ ∂u
∂x

]]
= bΓ. (3.39)

For the viscous term, aΓ = 0, cf. (2.13), and bΓ is given by the jump
tensor (2.32). The jump tensor is calculated at the cell centres near the
interface with the second-order central-difference scheme. It is then

3.3. Spatial discretization 25

interpolated linearly to the cell edges, from where it is again interpolated
linearly to the interface when needed.

If the interface does not cross the stencil, then the GFM scheme reduces
to the standard second-order central-difference stencil. Else there are four
stencils, depending on the location of the interface. One such interface
configuration is sketched in Figure 3.2. In all the stencils, θ is defined
as the relative distance from the interface to the node on the left, for
instance

θ =
|ϕk|

|ϕk|+ |ϕk+1|
, (3.40)

where ϕk and ϕk+1 are the level-set function values linearly interpolated
to the vector grid. The four stencils are given below, where h ≡ ∆x.

1. Phase 1 is to the left and interface lies between k and k + 1:

∂

∂x

(
µ

∂u
∂x

)∣∣∣∣
xk

=
µ̂ (uk+1 − uk)− µ1 (uk − uk−1)

h2

− µ̂aΓ

h2 −
µ̂bΓ(1− θ)

µ2h
,

(3.41)

µ̂ =
µ1µ2

θµ2 + (1− θ)µ1
. (3.42)

2. Phase 1 is to the left and interface lies between k− 1 and k:

∂

∂x

(
µ

∂u
∂x

)∣∣∣∣
xk

=
µ2 (uk+1 − uk)− µ̂ (uk − uk−1)

h2

+
µ̂aΓ

h2 −
µ̂bΓθ

µ1h
,

(3.43)

µ̂ =
µ1µ2

θµ2 + (1− θ)µ1
. (3.44)

3. Phase 2 is to the left and interface lies between k and k + 1:

∂

∂x

(
µ

∂u
∂x

)∣∣∣∣
xk

=
µ̂ (uk+1 − uk)− µ2 (uk − uk−1)

h2

+
µ̂aΓ

h2 +
µ̂bΓ(1− θ)

µ1h
,

(3.45)

µ̂ =
µ1µ2

θµ1 + (1− θ)µ2
. (3.46)

26 3. Numerical methods

Γ

k− 1 k k + 1

Figure 3.2.: One-dimensional case where the interface Γ separates fluid 1
on the left from fluid 2 on the right.

4. Phase 2 is to the left and interface lies between k− 1 and k:

∂

∂x

(
µ

∂u
∂x

)∣∣∣∣
xk

=
µ1 (uk+1 − uk)− µ̂ (uk − uk−1)

h2

− µ̂aΓ

h2 +
µ̂bΓθ

µ2h
,

(3.47)

µ̂ =
µ1µ2

θµ1 + (1− θ)µ2
. (3.48)

3.3.3. Pressure Poisson equation

The Laplace operator in the Poisson equations (3.13) and (3.20) is also dis-
cretized by standard second-order central differences using the GFM [30,
41]. The GFM was discussed in the previous section, where stencils were
given for the viscous term in the one-dimensional case. For the pressure,
the stencils are the same except we use p instead of u, and 1/ρ and 1/ρ̂
instead of µ and µ̂. To find the jump in the pressure at the interface,
[[p]] = aΓ, the jump condition (2.23) is calculated at the cell centres and
then interpolated to the interface. In addition, we use that bΓ = 0, which
is justified by Kang et al. [30, Section 3.7].

The resulting linear system for the pressure is solved with a solver from
the Portable, Extensible Toolkit for Scientific Computation (PETSc) [6].
PETSc makes available a large selection of solvers. In most cases, we used
the direct solver based on LU factorisation or the conjugate gradient
method with incomplete Cholesky factorisation. In some cases, we
used the GMRES solver with a preconditioner, either incomplete LU
factorisation or an algebraic multigrid method. See [6] for more details

3.4. Temporal discretization 27

and a list of available methods, and see for example [25] or [55] for an
introduction to linear solvers.

Finally, the gradient of the pressure, used in (3.11) and (3.21), is also
calculated with the GFM. In one dimension, the stencil is

1
ρ

∂p
∂x

∣∣∣∣
i+ 1

2

=
1
ρ̂

(pi+1 − aΓ)− pi

h
, (3.49)

ρ̂ = θρ1 + (1− θ)ρ2, (3.50)

if φi ≤ 0 and φi+1 > 0, or else

1
ρ

∂p
∂x

∣∣∣∣
i+ 1

2

=
1
ρ̂

(pi+1 + aΓ)− pi

h
, (3.51)

ρ̂ = θρ2 + (1− θ)ρ1, (3.52)

where

θ =
|ϕi|

|ϕi|+ |ϕi+1|
. (3.53)

3.4. Temporal discretization

The temporal discretization is done with the explicit strong stability-
preserving Runge-Kutta (SSP-RK) schemes, see [31, 62]. The idea behind
the SSP-RK schemes is to preserve the stability of a low-order method
when it is extended to higher order. It is argued in [21] that if one extends
the forward Euler method, which is total variation diminishing (TVD)
for a suitable discretization of a scalar conservation law, to a non-SSP
higher-order method, then overshoots may occur at discontinuities.

An SSP-RK method can be written as a convex sum of explicit Euler
steps with time step ∆t,

E (xn) = xn + ∆tF (xn, tn). (3.54)

where F is the residual of the PDE to be solved. In this thesis we have

28 3. Numerical methods

used two methods: The third-order three-stage SSP-RK method [62],

x(1) = E (xn) ,

x(2) =
3
4

xn +
1
4
E
(

x(1)
)

,

xn+1 =
1
3

xn +
2
3
E
(

x(2)
)

,

(3.55)

and the third-order four-stage SSP-RK method [33],

x(1) =
1
2

xn +
1
2
E (xn) ,

x(2) =
1
2

x(1) +
1
2
E
(

x(1)
)

,

x(3) =
2
3

xn +
1
6

x(2) +
1
6
E
(

x(2)
)

,

xn+1 =
1
2

x(3) +
1
2
E
(

x(3)
)

.

(3.56)

The semi-discretized velocity-extrapolation equation (3.5) and level-
set reinitialization equation (3.7) can be written as systems of ordinary
differential equations (ODEs) of the form

dψ

dτ
= F(ψ, τ), (3.57)

where ψ is a vector containing the discrete variables and F contains the
spatially discretized terms. The explicit Euler step becomes

E(ψn) = ψn + ∆τF(ψn, τn). (3.58)

In this thesis, these equations are solved with the third-order four-stage
SSP-RK method (3.56). The four-stage method is used because it is more
accurate than the three-stage method. We wanted to make sure that the
error is mainly dominated by the spatial discretization.

The semi-discretized Navier-Stokes equations (2.5) and (2.7) are solved
together with the level-set advection equation (3.4) with the third-order
three-stage SSP-RK method (3.55). Here an explicit Euler step E(un, ϕn)
consists of the following steps:

3.5. Time step restriction 29

1. Calculate the curvature and the normal vectors from ϕn with one
of the methods described in Section 3.7.

2. Calculate the intermediate velocity field, either w (3.12) or u? (3.17).

3. Solve the Poisson equation (3.13) or (3.20) for the pressure as
described in Section 3.3.3.

4. Correct the velocity field with either (3.14) or (3.21).

5. Advect the level-set function ϕn with (3.4).

3.5. Time step restriction

We employ the Courant-Friedrich-Lewy (CFL) condition to allow adap-
tive time stepping and to enforce stability. The CFL condition that is
used in this thesis is

∆t =
C

Cc+Cv
2 +

√
(Cc + Cv)2 + 4C2

g + 4C2
s

, (3.59)

where the CFL restriction C < 1, and Cc, Cv, Cs, and Cg represent the
contributions from the convective term, the viscous stresses, the surface
tension, and the gravity, respectively,

Cc =
maxi,j |ui,j|

∆x
+

maxi,j |vi,j|
∆y

, (3.60)

Cv = 2 max
(

µ1

ρ1
,

µ2

ρ2

)(
1

∆x2 +
1

∆y2

)
, (3.61)

Cs =

√
σ maxi,j |κi,j|

max(ρ1, ρ2)min(∆x2, ∆y2)
, (3.62)

Cg =

√
|gx|
∆x

+
|gy|
∆y

. (3.63)

This CFL condition is discussed in more detail by Lervåg [38], and it is
based on the condition by Kang et al. [30].

30 3. Numerical methods

3.6. Axisymmetry

For axisymmetric flow, the governing equations (2.9) and (2.10) become

1
r

∂

∂r
(ru) +

∂v
∂z

= 0, (3.64)

ρ

(
∂u
∂t

+ u
∂u
∂r

+ v
∂u
∂z

)
= −∂p

∂r

+ µ

(
1
r

∂

∂r

(
r

∂u
∂r

)
+

∂2u
∂z2 −

u
r2

)
+ ρ fr + fsr, (3.65)

and

ρ

(
∂v
∂t

+ u
∂v
∂r

+ v
∂v
∂z

)
= −∂p

∂z

+ µ

(
1
r

∂

∂r

(
r

∂v
∂r

)
+

∂2v
∂z2

)
+ ρ fz + fsz. (3.66)

Here u and v are the radial and axial velocity components, fr and fz
are the radial and axial body-force components, and fsr and fsz are the
radial and axial components of the singular surface force, respectively.
The equations are solved as explained in the previous sections.

3.7. Discretization of the curvature and the normal vector

As stated in Section 3.1, the normal vector (3.8) and the curvature (3.9)
can be calculated from the level-set function as

n =
∇ϕ

|∇ϕ| ,

κ = ∇ ·
(∇ϕ

|∇ϕ|

)
.

They are typically discretized with the standard second-order central-
difference scheme, cf. [30, 59, 75]. The normal vector is calculated at
the cell edges, and the curvature is calculated at the grid nodes. The

3.7. Discretization of the curvature and the normal vector 31

ϕ > 0

ϕ < 0

ϕ = 0 xi
x

Figure 3.3.: A level-set function with a gradient that is discontinuous at xi.

curvature is then interpolated to the interface where needed with linear
interpolation, for instance with

κΓ =
|ϕi,j|κi+1,j + |ϕi+1,k|κi,j

|ϕi,j|+ |ϕi+1,j|
. (3.67)

If the level-set method is used to capture non-trivial geometries, then it
will contain kink regions, that is, areas where the gradient of the level-set
function is discontinuous. Figure 3.3 shows a simple example of such
a kink region for a level-set function in a one-dimensional domain that
captures two interfaces, one on each side of xi. The kink at xi may lead
to large errors both for the curvature and the normal vector if one is
not careful. Errors in the curvature lead to errors in the surface tension
force and in the pressure, which in turn lead to errors in the interface
evolution and in the two-phase flow. Errors in the normal vector affect
both the calculation of the viscous jump condition and the advection
of the interface. If the level-set method is used to study for example
coalescence and breakup of drops, these errors may severely affect the
simulations.

This problem was to our knowledge first described by Smereka [63],
who increase the numerical smoothing in the curvature discretization to
lessen the effect. Several non-smearing approaches have subsequently
been developed. Macklin and Lowengrub [44] used the level-set method
to study tumor growth, and they present a one-sided direction-difference
scheme for the discretization of the normal vector and the curvature.
Later, Macklin and Lowengrub [43] presented an improved geometry-

32 3. Numerical methods

aware curvature discretization, where the curvature is calculated based
on a local least-squares parametrisation of the interface.

A different approach to avoid the kinks was presented by Salac and
Lu [56]. They used a level-set extraction technique, where an extraction
algorithm was used to reconstruct separate level-set functions for each
distinct body. The term body is used here to denote a subset of a given
phase or fluid. For example, in the case of two drops of water colliding in
air, the water drops would make two distinct bodies. One can also avoid
the extraction algorithm altogether by use of multiple marker functions
for different bodies, see for instance [13, 34]. Note, however, that the
latter approach means that the different bodies will not coalesce unless
explicit action is made, cf. [35]. Also, both of the approaches mentioned
here fails to handle the problem of kinks from a single body. That is,
there may still be kink areas due to deformed bodies, for instance bodies
with thin filaments or tails, or bodies shaped like horse shoes.

In the following, we first present the direction-difference scheme [44].
We then describe the curve-fitting discretization method and the local
level-set extraction method.

3.7.1. Direction-difference scheme

The direction-difference scheme (DDS) was introduced by Macklin and
Lowengrub [44]. It uses a quality function to ensure that the difference
stencils never cross any kink regions. The DDS is used in Papers A–C
to calculate the normal vectors. However, in Paper C it is shown that
the DDS does not always yield an accurate approximation of the normal
vector.

The basic strategy is to use a combination of central differences and
one-sided differences based on the values of a quality function,

Q(x) = |1− |∇ϕ(x)|| . (3.68)

The quality function is approximated with central differences, and is
used to detect the areas where the level-set function differs from the
signed-distance function. In the following, let Qi,j ≡ Q(xi,j) and define a
parameter η > 0. This threshold parameter is tuned such that the quality
function will detect all the kinks.

3.7. Discretization of the curvature and the normal vector 33

The quality function is used to define a direction function,

D(xi,j) = (Dx(xi,j), Dy(xi,j)), (3.69)

where

Dx(xi,j) =

−1 if Qi−1,j < η and Qi+1,j ≥ η,
1 if Qi−1,j ≥ η and Qi+1,j < η,
0 if Qi−1,j < η and Qi,j < η and Qi+1,j < η,
0 if Qi−1,j ≥ η and Qi,j ≥ η and Qi+1,j ≥ η,
4 otherwise.

(3.70)

Dy(xi,j) is defined in a similar manner. If Dx(xi,j) + Dy(xi,j) > 2, then
D(xi,j) is chosen as the vector normal to ∇ϕ(xi,j). It is normalized, and
the sign is chosen such that it points in the direction of the best quality.
See [44] for more details.

The DDS is then defined as

∂x fi,j =

fi,j− fi−1,j
∆x if Dx(xi, yj) = −1,

fi+1,j− fi,j
∆x if Dx(xi, yj) = 1,

fi+1,j− fi−1,j
2∆x if Dx(xi, yj) = 0,

(3.71)

and similarly for ∂y fi,j, where fi,j is a piecewise smooth function. The
DDS is equivalent to using central differences in smooth areas and
one-sided differences in areas close to the kinks.

3.7.2. Curve-fitting discretization method

The curve-fitting discretization method (CFDM) was first presented
in [37] and is based on the method by Macklin and Lowengrub [43]. The
main idea is to identify kink regions with the quality function (3.68),
and to use a curve parametrisation of the closest interface to calculate
the curvature in regions where the quality function is larger than the
threshold parameter, η.

The CFDM applied to the curvature or the normal vector at the grid
point xi,j can be summarized as follows. See also Figure 3.4, which shows
an example of the CFDM used at xi,j.

34 3. Numerical methods

1. If the quality of the level-set function in the neighbourhood of xi,j
is good, that is

Q(xn,m) ≤ η ∀(n, m) ∈ [i− 1, i + 1]× [j− 1, j + 1],

then we use a standard discretization. Otherwise continue to the
next step.

2. Locate the closest interface, Γ.

3. Find a set of points on the located interface, x1, . . . , xn ∈ Γ.

4. Create a parametrisation γ(s) of the points x1, . . . , xn.

5. Use the parametrisation γ(s) to calculate a local level-set function.

6. Use a standard discretization of the local level-set function to
calculate the curvature or the normal vector.

3.7.3. Local level-set extraction method

The local level-set extraction (LOLEX) method is based on the method
presented by Salac and Lu [56], here called the SLM. It was found that
the latter method was insufficient, because it did not treat all the kink
problems. The LOLEX method is therefore a further development of the
SLM, in that it handles the kink regions in a more general manner.

The LOLEX method applied to the curvature or the normal vector at a
grid point xi,j is summarized by the following algorithm. The algorithm
is presented with 2D notation for clarity, and extends easily to 3D. See
also Figure 3.5, which gives a simple example of the procedure.

1. If the quality in the neighbourhood of xi,j is good, that is

Q(xn,m) ≤ η ∀(n, m) ∈ [i− 1, i + 1]× [j− 1, j + 1],

then we use a standard discretization. Otherwise continue to the
next step.

2. Copy a small, local square centred around xi,j from the level-set
function ϕ into a local array ϕloc.

3.7. Discretization of the curvature and the normal vector 35

xi,j

x3

(a) First locate the closest inter-
face, here represented with x3.

xi,j

x1

x2

x3

x4

x5

(b) Then find a set of points along
the closest interface.

xi,j

(c) Construct a curve parametrisa-
tion from the points x1, . . . , x5.

xi,j

(d) Calculate a new local level-
set function at the grid points
around and including xi,j.

Figure 3.4.: Example of the CFDM at a grid point xi,j. First five points are
found on the interface closest to xi,j. Then a curve parametrisa-
tion (dashed line) is calculated, and the parametrisation is used
to calculate a new local level-set function at the grid points
surrounding and including xi,j.

36 3. Numerical methods

3. Identify and enumerate all the bodies in the local array ϕloc. A body
is here defined as a set of neighbouring points where ϕloc < 0, see
Figure 3.5. There will be n ≥ 0 bodies in any given ϕloc array.

4. If no body is identified, that is, if n = 0, then use a standard dis-
cretization with the global level-set function ϕ. Otherwise continue
to the next step.

5. For each body n, extract the relevant parts of ϕloc into an array ϕn
loc.

If necessary, extrapolate values to ghost cells.

6. For each body, n, reinitialize ϕn
loc.

7. At this step, all the bodies in the local grid have their own local
level-set functions that have been reinitialized to proper signed-
distance functions. Due to the separation of the bodies, there are
no longer any kinks.

8. Use the standard discretization of the curvature and the normal
vector at the local level-set function that represents the body that is
closest to xi,j.

3.8. Summary

In this chapter we have described the numerical methods that have
been used to solve the Navier-Stokes equations for two-phase flow (2.9)
and (2.10).

We first gave a brief introduction to the level-set method, which is used
to capture the interface. We then presented the spatial and temporal
discretization methods, including a brief overview of the projection
methods that were used to decouple the pressure from the Navier-Stokes
equations. In the final section, we presented the new methods for
calculating the curvature and normal vector. These are the curve-fitting
discretization scheme (CFDM) and the local level-set extraction (LOLEX)
method.

3.8. Summary 37

xi,j

1

2

(a) First enumerate the bodies. In
this case there are n = 2 bod-
ies. Then the bodies are ex-
tracted into separate level-set
functions.

xi,j

(b) Reinitialize the separated level-
set functions, then use the
function that represents the
closest interface.

Figure 3.5.: An example of the LOLEX method at a grid point xi,j. First the
bodies are identified and enumerated. Then they are extracted
into separate level-set functions, which are reinitialized. Finally,
the curvature or normal vector is calculated based on the level-
set function for the closest body.

“If we want to solve a problem that we have
never solved before, we must leave the door to
the unknown ajar.”

— Richard P. Feynman (1918–1988)

4
The diffuse-domain approach

In the previous chapters, we have considered the modelling of two-
phase flows, and in particular methods for calculating the curvature
and normal vector with the level-set method in a reliable manner. In
this chapter, we consider a different problem of a more general nature:
How to solve partial differential equations (PDEs) in complex domains.
In particular, we consider an extension of a diffuse-domain method
(DDM) by a high-order correction term that gives increased accuracy
with respect to interface-width refinements.

We begin with a short introduction to the diffuse-domain approach.
We then outline how it can be used to derive a DDM for the steady
reaction-diffusion equation with Neumann boundary conditions. Next,
we continue with a brief introduction to the method of matched asymp-
totic expansions. Finally, we introduce the high-order correction term
derived in Paper E and show that the resulting DDM converge with
second order in the diffuse-interface width to the original problem. The
analysis also shows that the correction term is not necessary for second-
order convergence.

39

40 4. The diffuse-domain approach

4.1. Introduction

There exist several methods for solving PDEs in complex domains. Most
of them have in common that they require tools or methods that are
not frequently available in standard finite-element or finite-difference
software packages. Examples of such methods include the immersed-
interface method [39], the matched interface and boundary method
[79], the extended and composite finite-element method [15], embedded
boundary methods [29], cut-cell methods [27], and ghost-fluid methods
[17]. A different approach, known as the fictitious domain method [19,
20] or the domain imbedding method [9], either augments the original
system with equations for Lagrange multipliers to enforce the boundary
conditions, or use the penalty method to enforce the boundary conditions
weakly. For a more complete list of references, see Paper E.

The DDM is an alternative method for solving PDEs in complex
domains. The main idea is to use an implicit representation of the
boundary, where the sharp boundary is replaced by a diffuse layer.
The PDEs are then reformulated on a larger, regular domain, and the
boundary conditions are incorporated via source terms in the diffuse
layer. When the thickness of the diffuse layer is reduced, these source
terms tend towards singular source terms. The resulting PDEs can then
be solved with the use of standard tools and methods.

The diffuse-domain approach was first introduced by Kockelkoren
et al. [32] to study diffusion inside a cell with homogeneous Neumann
boundary conditions at the cell boundary. It was later used by Li et al.
[40] to develop a DDM for solving PDEs in complex evolving domains
with Dirichlet, Neumann and Robin boundary conditions, which is
hereafter called the DDM1. The DDM1 has been used by Teigen et al.
[66], who modelled bulk-surface coupling of material quantities on a
deformable interface. It was also used by Aland et al. [3] to simulate
incompressible two-phase flows in complex domains in 2D and 3D, and
by Teigen et al. [67] to study two-phase flows with soluble surfactants.

An analysis of the error behaviour of the diffuse-domain approach
was done by Franz et al. [18] for a diffuse-domain approximation of an
elliptic problem with Dirichlet boundary conditions. They considered
the infinity norm of the difference of the approximated solution and the
exact solution, and their analysis shows that the approximation quality

4.2. The DDM for a Neumann problem 41

is of order one in the interface width.
In Paper E, we present the DDM2, which is an extension of the DDM1

by a high-order correction term. The DDM2 is derived for elliptic
problems with Neumann and Robin boundary conditions, and it is
shown to be asymptotically second-order accurate in the interface width.
However, the analysis in Paper E is somewhat lacking in that it assumes
that the DDM1 is only first-order accurate. In the following sections, we
extend the analysis of Paper E and show that the DDM1 is also second-
order accurate. The analysis is shown for the steady reaction-diffusion
equation with Neumann boundary conditions, but the same technique
also applies for the corresponding Robin problem.

4.2. The DDM for a Neumann problem

Consider the steady reaction-diffusion equation with Neumann bound-
ary conditions,

∆u− u = f in D,
n ·∇u = g on ∂D,

(4.1)

where f and g are given. Let χD be the characteristic function of D,

χD =

{
1 if x ∈ D,
0 if x /∈ D.

(4.2)

The main idea with the diffuse-domain approach is to extend the original
equation (4.1) into a larger and regular domain Ω ⊃ D, as depicted in
Figure 4.1. The extension can be written as

∇ · (χD∇u)− χDu + BC = χD f , (4.3)

where BC is a singular source term that represents the physical boundary
condition on ∂Ω.

The characteristic function is typically approximated by the phase-field
function,

χD ' φ(x, t) =
1
2

(
1− tanh

(
3r(x, t)

ε

))
, (4.4)

where ε is the interface width and r(x, t) is the signed-distance function
with respect to the boundary ∂D, which is taken to be negative inside D.

42 4. The diffuse-domain approach

∂D

D

Ω

χD = 1

χD = 0

Figure 4.1.: A regular domain Ω that contains a complex domain D.

The main difficulty with the diffuse-domain approach is the derivation
of approximations for the boundary condition term BC. Li et al. [40] give
four approximations that are shown to converge asymptotically with first
order in ε to the original equation when ε is decreased. In the following
we consider the approximation

BC ' |∇φ|g. (4.5)

If we combine the above approximations (4.4) and (4.5), we get a DDM1
equation for (4.1),

∇ · (φ∇u)− φu + |∇φ|g = φ f . (4.6)

4.3. The method of matched asymptotic expansions

The following is a brief introduction to the method of matched asymp-
totic expansions, which is used to show that a given diffuse-domain
approximation converges to the original problem when the interface
width is decreased. More details can be found in Paper E and in [54].

Let u be some diffuse-domain variable. The asymptotic convergence of
a given diffuse-domain approximation can be shown through expansions
of the diffuse-domain variables in powers of the interface thickness ε in
regions close to and far from the interface. For example, the expansions

4.3. The method of matched asymptotic expansions 43

of u are

u(x) =
∞

∑
k=0

εku(k)(x), (4.7)

û(z, s) =
∞

∑
k=0

εkû(k)(z, s), (4.8)

where u(x) and û(s, z) denote the outer and inner expansions, respec-
tively. Here z is a stretched variable,

z =
r(x)

ε
, (4.9)

where r is the signed distance from the point x to ∂D and is taken to be
negative inside D. Further, z and s form a local coordinate system such
that

x(s, z) = X(s) + εzn(s), (4.10)

where X(s) is a parametrisation of the interface, n(s) is the interface
normal vector, and z is a stretched variable.

When the inner and outer expansions are found, they are matched
in a region where both solutions are valid and where εz = O (1), see
Figure 4.2. The outer solution is then evaluated in the inner coordinates,
which leads to a set of matching conditions that must hold when ε→ 0.
If we consider ε to be fixed and let z → ±∞, we get the following
asymptotic matching conditions:

lim
z→±∞

û(0)(z, s) = u(0)(s), (4.11)

and as z→ ±∞,

û(1)(z, s) = u(1)(s) + zn ·∇u(0)(s) + o (1) , (4.12)

û(2)(z, s) = u(2)(s) + zn ·∇u(1)(s)

+
z2

2
(n ·∇)∇u(0)(s) · n + o (1) .

(4.13)

We remark that the inner expansion is used to obtain the boundary
condition on ∂D, and that the outer solution is used to obtain the sharp-
interface equation inside the physical domain D.

44 4. The diffuse-domain approach

To show that a given DDM approximation converges with second
order, one must show that the order-one term of the outer solution of
the DDM equation is zero in D. As an example, we consider the outer
solution of the DDM1 equation (4.6), which is

∆u(0) − u(0) = f ,

∆u(1) − u(1) = 0,

∆u(k) − u(k) = 0, k = 2, 3,

(4.14)

For the solution to be asymptotically second order, that is u = u(0) +
O
(
ε2), we must have that u(0) satisfies the original problem (4.1) and

that u(1) = 0. Thus the inner expansion must yield a boundary condition
for u(1) to enforce u(1) = 0.

Ω

D

Outer region

Overlapping region

Inner region

D

Ω

∂D

Figure 4.2.: A sketch of the regions used for the matched asymptotic ex-
pansions. The inner region is marked with a light gray color
and the outer region with a slightly darker gray color. The
overlapping region is marked with the darkest gray color.

4.4. Asymptotic analysis of the DDM1 and the DDM2 45

4.4. Asymptotic analysis of the DDM1 and the DDM2

In Paper E we present the DDM2, which extends the DDM1 (4.6) with a
high-order correction term,

∇ · (φ∇u)− φu + |∇φ|g + r|∇φ| (f − κg−∆su + u) = φ f . (4.15)

Here r|∇φ| (f − κg−∆su + u) is the correction term, κ is the curvature
of the boundary ∂D, and ∆su is the surface Laplacian of u, which can be
defined as

∆su ≡ (I − n⊗ n)∇ · (I − n⊗ n)∇u, (4.16)

where I is the identity matrix and n is the normal vector. The curvature
can be calculated from the phase-field function (4.4) as

κ = −∇ · ∇φ

|∇φ| . (4.17)

In the following, we use the method of matched asymptotic expansions
to show that the DDM1 (4.6) and the DDM2 (4.15) are both second-
order approximations of (4.1) in ε. First, it is easy to see that the outer
expansions of both approximations are given by (4.14).

Next, we consider the inner expansion of the DDM2 (4.15), which is

1
ε2 (φûz)z +

κ

ε
φûz + φ∆sû− φû

− 1
ε

φzg− zφz

(
û + f̂ − κg−∆sû

)
= φ f̂ . (4.18)

We expand û(z, s) in powers of ε and collect the lowest order terms,
(

φû(0)
z

)
z
= 0. (4.19)

If we integrate over all z, we get that û(0)
z = 0. The next order terms

of (4.18) then give (
φû(1)

z

)
z
= φzg, (4.20)

and again we integrate, which gives that

φû(1)
z = φg + C (4.21)

46 4. The diffuse-domain approach

where the constant C must be zero, since limz→∞ φ(z) = 0. Now consider
the limit z→ −∞ and use the matching condition (4.12) to get

n ·∇u(0) = g. (4.22)

Thus u(0) satisfies the original problem at least to first order in ε. This
shows that both DDM1 and DDM2 are first-order approximations of the
sharp-interface problem.

To obtain the result for the next order, we need to apply the derivative
of the matching condition (4.13),

û(2)
z = n ·∇u(1) + z(n ·∇)∇u(0) · n. (4.23)

Further, we use that u(0) satisfies

∆u(0) − u(0) = f (0), (4.24)

and that the Laplacian may be decomposed as

∆u = (n ·∇)∇u · n + κn ·∇u + ∆su, (4.25)

to get
(n ·∇)∇u(0) · n = u(0) + f (0) − κg−∆su(0). (4.26)

Now insert (4.26) into (4.23) and use the matching condition (4.11) to
obtain a modified matching condition,

û(2)
z − z

(
û(0) + f̂ (0) − κg−∆sû(0)

)
= n ·∇u(1). (4.27)

We are now ready to consider the zeroth order terms,

(
φû(2)

z

)
z
+ φκû(1)

z + φ∆sû(0) − φû(0)

− zφz

(
û(0) + f̂ (0) − κg−∆sû(0)

)
= φ f̂ (0). (4.28)

The modified matching condition (4.27) motivates that we subtract and
add the term (

zφ
(

û(0) + f̂ (0) − κg−∆sû(0)
))

z

4.4. Asymptotic analysis of the DDM1 and the DDM2 47

to (4.28), which gives

(
φû(2)

z − zφ
(

û(0) + f̂ (0) − κg−∆sû(0)
))

z

+

(
zφ
(

û(0) + f̂ (0) − κg−∆sû(0)
))

z

+ φκû(1)
z + φ∆sû(0) − φû(0)

− zφz

(
û(0) + f̂ (0) − κg−∆sû(0)

)
= φ f̂ (0). (4.29)

We expand the terms and use (4.21),

(
φû(2)

z − zφ
(

û(0) + f̂ (0) − κg−∆sû(0)
))

z

+
((((

(((
((((

((((

φ
(

û(0) + f̂ (0) − κg−∆sû(0)
)

+ zφ
(

û(0) + f̂ (0) − κg−∆sû(0)
)

z

+
(((

((((
((((

φκg + φ∆sû(0) − φû(0) =��
�φ f̂ (0), (4.30)

or

(
φû(2)

z − zφ
(

û(0) + f̂ (0) − κg−∆sû(0)
))

z

+ zφ
(
�
�û(0)

z + f̂ (0)z −���(κg)z −��
��

∆sû(0)
z

)
= 0. (4.31)

If we assume that f̂ (0)z , we get

(
φû(2)

z − zφ
(

û(0) + f̂ (0) − κg−∆sû(0)
))

z
= 0. (4.32)

48 4. The diffuse-domain approach

Finally, we integrate the left-hand side and take the limit,
∫ ∞

−∞

(
φû(2)

z − zφ
(

û(0) + f̂ (0) − κg−∆sû(0)
))

z
dz

=
[
φû(2)

z − zφ
(

û(0) + f̂ (0) − κg−∆sû(0)
)]∞

−∞

= − lim
z→−∞

(
û(2)

z − z
(

û(0) + f̂ (0) − κg−∆sû(0)
))

= −n ·∇u(1), (4.33)

thus
n ·∇u(1) = 0. (4.34)

Combined with (4.14), this shows that u(1) = 0, and so DDM2 converges
asymptotically with second order to the original problem.

The analysis above also holds for DDM1, except instead of (4.32) we
get

(
φû(2)

z − zφ
(

û(0) + f̂ (0) − κg−∆sû(0)
))

z

= −zφz

(
û(0) + f̂ (0) − κg−∆sû(0)

)
= −zφzD, (4.35)

where D is independent of z. Now we use that

φz = −(3 sech2 3z)/2, (4.36)

which follows from the definition of the phase-field function (4.4). We
integrate the right-hand side, which gives

D
∫ ∞

−∞
zφz dz = −D

3
2

∫ ∞

−∞
z sech2 3z dz = 0. (4.37)

Thus DDM1 is also second order in ε.
The difference between the DDM1 and the DDM2 is therefore that

the correction term with the DDM2 directly cancels the term on the
right-hand side in (4.35). This should give an increase of accuracy, but
the convergence order remains the same.

The analysis for the corresponding Robin problem is essentially the
same as the above. In Paper E, the DDM1 and DDM2 are compared

4.5. Summary 49

for several elliptic problems with both Neumann and Robin boundary
conditions. The results of Paper E show that the correction term in the
DDM2 leads to an increase of accuracy and that both DDM1 and DDM2
converge with second-order accuracy.

4.5. Summary

In this chapter, we have given a brief introduction to the diffuse-domain
method (DDM). We considered a steady reaction-diffusion equation with
Neumann boundary conditions (4.1) and two DDM approximations:
DDM1 (4.6) and DDM2 (4.15). The DDM2 is an extension of DDM1 by a
high-order correction term, and was first derived in Paper E.

Next, we gave an outline of the method of matched asymptotic ex-
pansions, and we used it to show that both the DDM1 and the DDM2
converged asymptotically with second order in the diffuse-interface
width to the original equation (4.1). The analysis shows that the cor-
rection term in the DDM2 leads to a cancellation in the asymptotic
expansions. By doing the integration, we see that this cancellation is not
necessary for obtaining the second order convergence.

“Count what is countable, measure what is measurable,
and what is not measurable, make measurable.”

— Galileo Galilei (1564–1642)

5
Summary of contributions

This chapter presents summaries of the papers that constitute parts of
this thesis. Each summary gives a brief discussion of the results of each
paper, and the contribution of the author is highlighted for each paper.

5.1. Paper A: Calculation of interface curvature with the
level-set method

Karl Yngve Lervåg. Published in MekIT’11 - 6th National Conference on
Computational Mechanics, Trondheim, 2011. ISBN: 978-82-519-2798-7.

In this paper I address a problem with the calculation of the interface
curvature with the level-set method, cf. Section 3.7. The curvature can
be calculated from the level-set function, φ, as

κ = ∇ · n = ∇ · ∇φ

|∇φ| . (5.1)

It is typically discretized by standard methods such as the second-order
central-difference scheme (CD-2), and interpolated to the interface where
needed [52, 30, 53]. However, the level-set function as a signed-distance
function will tend to have kinks where its gradient is discontinuous. The

51

52 5. Summary of contributions

(a) CD-2 (b) CFDM

Figure 5.1.: A comparison of curvature calculations between standard dis-
cretization (CD-2) and the improved method (CFDM). The
standard discretization leads to large errors in the curvatures
in areas that are close to two interfaces.

standard methods may lead to large errors in the curvature close to these
regions, which in turn may lead to errors in the surface tension force.

The main contribution of this paper is a new curve-fitting discretization
method (CFDM) for the curvature (see Section 3.7.2). The method is
based on the approach developed by Macklin and Lowengrub [43]. It
differs in that it uses a cubic Hermite spline parametrisation of the
interface, and that the curvature values are calculated on the grid and
then interpolated to the interface as opposed to using a localised grid
centred at the interface as in [43].

The CFDM is tested and compared with the CD-2 for two test cases,
and it is shown to yield better results in both cases. Figure 5.1 shows
one of these results, where the calculated curvature values are compared.
In the example, a cylindrical drop impacts on a liquid film. The figure
shows that the CD-2 leads to large errors in the curvature calculations
in the kink regions, that is, the red and dark blue regions in Figure 5.1a
near the liquid film. These errors are not present with the new method,
cf. Figure 5.1b.

5.2. Paper B 53

My contribution: I developed the method and implemented it into our
in-house finite-difference code for two-phase flow based on the methods
of Sections 3.2 to 3.5 and 3.7. I ran the numerical simulations. I wrote
the paper and presented the work at the conference.

5.2. Paper B: Curvature calculations for the level-set
method

Karl Yngve Lervåg and Åsmund Ervik. Published in ENUMATH 2011
proceedings volume, Springer, 2013. ISBN: 978-3642331336.

This paper is a continuation of Paper A. The main contribution in this
paper is a comparison of different methods for calculating the curvature
in a robust manner with the level-set method in the kink regions. In
particular, the CFDM* that was presented in Paper A is compared with
Macklin and Lowengrub’s method (MLM) [43]. In addition, the method
is compared with the second-order central-difference scheme (CD-2) and
the more recent method presented by Salac and Lu [56], here called Salac
and Lu’s method (SLM).

The main result in the paper is shown in Figure 5.2, which shows
a comparison of the methods for a case where two drops collide in a
2D shear flow. In particular, it shows snapshots of the evolution of the
interfaces and the curvature at times t = 2.30 s, t = 2.75 s, and t = 3.10 s.
The results show that all of the improved methods, that is MLM, CFDM,
and SLM, handle the kink region in a more reliable manner than CD-2.
The reason that the result with MLM differs from those with CFDM
and SLM might be that it uses a localised grid centred at the interface
to calculate the curvature, which means that it does not need to use
interpolation of the curvature from the grid to the interface. Note that the
difference is mainly that the MLM results in slightly earlier coalescence
in the given case.

My contribution: I wrote the manuscript, implemented CFDM and
MLM, and produced the results with CD-2, CFDM, and MLM. Åsmund
Ervik implemented the SLM and ran the simulations that used the SLM.

*The method is called LM in the paper. Here CFDM is used, in order to be consistent
with the rest of the thesis.

54 5. Summary of contributions

t = 2.30 s

t = 2.75 s

t = 3.10 s

(a) CD-2 (b) MLM (c) CFDM (d) SLM

κ [m−1]

Figure 5.2.: A comparison between the different discretization schemes of
the interface evolution and the curvature κ of drop collision in
shear flow.

He also gave feedback on the manuscript. I presented the work at the
conference.

5.3. Paper C: Calculation of the interface curvature and
normal vector with the level-set method

Karl Yngve Lervåg, Bernhard Müller, and Svend Tollak Munkejord.
Published in Computers and Fluids, volume 84 (2013), 218–230.

Paper A presented the curve-fitting discretization method (CFDM) for
the calculation of the curvature with the level-set method. The method
was designed to be robust in the calculation of the curvature in kink

5.3. Paper C 55

regions, that is regions where the gradient of the level-set function is not
smooth. This paper presents the details of the CFDM and applies it to
the calculation of both the curvature and the normal vector.

In the paper we compare the CFDM with the second-order central-
difference scheme (CD-2) for several test cases. In the first case, we
consider the curvature calculations for a nontrivial geometry that in-
cludes some kink regions. This is a static test case with no flow, and
the results show that the CD-2 leads to large errors for the curvature
calculations in areas close to kink regions and that these errors are not
present with the CFDM.

In the following two cases, we consider the collision of two drops in a
2D shear flow and in an axisymmetric flow. These cases show that the
errors in the curvature calculations in the kink regions with the CD-2
lead to errors in the pressure that prevents coalescence. These errors
are prevented with the CFDM. The curvature and the evolution of the
interfaces for the axisymmetric case are shown in Figures 5.3 and 5.4. As
in the earlier results of Papers A and B, the figures show that the errors
in the curvature calculation with CD-2 prevent coalescence, in this case
leading to a slower coalescence process.

In the final test case, we consider the calculation of the normal vector,
and we compare the CD-2, the CFDM, and the direction-difference
scheme (DDS) presented by Macklin and Lowengrub [44], cf. Section 3.7.1.
The results show that both the CFDM and the DDS generally lead to
good results, see Figure 5.5. Here the red and green vectors depict the
DDS and CFDM results, respectively. The red vectors are plotted below
the green vectors, and since the results agree well at most points, the
red vector is often covered by its corresponding green vector. However,
at the point in the middle between the drops, the DDS completely fails
to calculate the normal vector. Here the CFDM still gives a reasonable
result.

My contribution: I designed the new method, implemented it into
our in-house finite-difference code, ran the simulations, and wrote the
paper manuscript. The co-authors contributed with feedback on the
manuscript and discussions of the results.

56 5. Summary of contributions

r

z

-0.5

0.0

0.5

r

z

r

z

r

z

-0.5

0.0

0.5

0.5 1.0
r

z

0.5 1.0
r

z

0.5 1.0

κ

t = 0.30 s t = 0.42 s t = 0.43 s

t = 0.48 s t = 0.49 s t = 0.60 s

Figure 5.3.: Drop collision in axisymmetric flow calculated with the CD-2.
The legend for the colour contours of the curvature κ is shown
in the last image. The velocity vectors are displayed to show
the evolution of the flow during the collision.

5.3. Paper C 57

r

z

-0.5

0.0

0.5

r

z

r

z

r

z

-0.5

0.0

0.5

0.5 1.0
r

z

0.5 1.0
r

z

0.5 1.0

κ

t = 0.30 s t = 0.42 s t = 0.43 s

t = 0.48 s t = 0.49 s t = 0.60 s

Figure 5.4.: Drop collision in axisymmetric flow calculated with the CFDM.
The legend for the colour contours of the curvature κ is shown
in the last image. The velocity vectors are displayed to show
the evolution of the flow during the collision.

58 5. Summary of contributions

Figure 5.5.: A comparison of the DDS and the CFDM for calculating normal
vectors. The thick black lines depict the interfaces, the green
vectors are the results with the CFDM, and the red vectors are
the results with the DDS. The red vectors are covered by the
green vectors at most points, because the results agree well at
those points.

5.4. Paper D 59

5.4. Paper D: A robust method for calculating interface
curvature and normal vectors using an extracted local
level set

Åsmund Ervik, Karl Yngve Lervåg, and Svend Tollak Munkejord. Sub-
mitted to Journal of Computational Physics, 2013.

In this paper we present an alternative method for the calculation of
the curvature and the normal vector of an interface with the level-set
method in kink regions, hereafter called the local level-set extraction
(LOLEX) method. The method is based on a method presented by Salac
and Lu [56] (SLM), who handle the kink region by extracting different
bodies of a domain into separate level-set functions. This procedure
removes most of the kink regions, but it does not handle kink regions that
are due to complex interfaces of single bodies. Our method extends the
SLM by making it local. That is, we only consider the local area around
the point for which we are calculating the curvature or the normal vector.
This leads to a method that is more generally applicable, as shown in
Figure 5.6. The figure shows a comparison between the LOLEX method,
the SLM, and the standard central differences (CD-2). CD-2 leads to
curvature spikes at the kink regions, as explained in Section 3.7. The
SLM gives a better result for the kink regions around the rightmost disc.
However, since the other two discs are connected to each other and to the
film, they are considered to be the same body and are extracted into the
same level-set function. Several kink regions are therefore not removed.
Since the LOLEX method only considers the local area, as explained in
Section 3.7.3, it is able to handle all the kink regions in a robust manner.

The LOLEX method has proven to be a good alternative to the CFDM
presented in Paper A. Its main advantages are that it does not rely on
complex algorithms as used in the CFDM or by Macklin and Lowengrub
[43], and that the method easily extends to 3D as demonstrated in the
paper in Section 4.4.

In the previous papers A–C, we used the DP1 projection method by
Hansen [22]. In this paper we instead used the more standard Chorin
projection method. These methods differ in that the DP1 assumes

∇ ·
(

∂u
∂t

)
= 0. (5.2)

60 5. Summary of contributions

(a) LOLEX method

(b) SLM

(c) CD-2

Figure 5.6.: Comparison of curvature calculation methods for three discs
and a film with an angle at the right-hand side. The film
is connected to the leftmost disc, which is connected to the
middle disc. The rightmost disc is disjoint. The color indicates
the curvature; white is zero, blue is negative and red is positive.

5.4. Paper D 61

When compared with the Chorin method, this assumption becomes
equivalent to assuming that ∇ · un = 0 in (3.20). That is, the DP1
assumes that the initial velocity field is divergence free. We have found
that the DP1 works well in most cases, but that it is less robust than the
Chorin method. In particular, the Chorin method is not equally affected
by errors in the curvature calculations in kink regions. In other words,
the difference between using a standard discretization and an improved
discretization of the curvature is smaller with the Chorin method than
with the DP1.

The LOLEX method is used for several test cases and compared with
CD-2. The results indicate that even though we use the Chorin projection
method, the LOLEX method outperforms CD-2 in all cases. Further, the
results agree well with experiments, except for time instants, as shown
in Figure 5.7. The exact reason why the time instants do not match is not
known, but one reason may be that the initial condition of the numerical
simulation did not match the corresponding state of the experiment.

When we study the drop-film collision processes, an important conse-
quence of the error in the curvature calculation is a loss of kinetic energy.
This can be seen in Figure 5.8, which compares the LOLEX method with
CD-2 at two different stages of the collision process. The figure also
compares two different frequencies of reinitialization of the level-set
function: Every 7 time steps ((a) and (c)) and every single time step ((b)
and (d)). The figure shows that the error in the curvature calculation
with CD-2 leads to a shorter neck, as seen in Figure 5.8, (c) and (d). The
error is larger for the higher frequency of reinitialization. The results
indicate that CD-2 leads to a loss of kinetic energy during the collision
process when compared with the LOLEX method. The LOLEX method
is not significantly affected by the amount of reinitialization, and the
kink region does not affect the curvature calculation, cf. Section 3.7.3.
Thus the pressure field is more sensible, as seen in Figure 5.8 (a) and (b).
Finally, we remark that some authors have noted [7] that the height of
the neck and the dynamics of the capillary waves are important factors
for the partial coalescence mechanism, which implies that the correct
calculation of the curvature is important to capture the correct physical
behavior.

62 5. Summary of contributions

(a) Experimental result

(b) Simulation result

Figure 5.7.: Experimental results (top) and simulation results (bottom) for
a 0.18 mm water drop falling through air and impacting a deep
pool of water at 0.29 m/s. Figure (a) is reprinted from [77],
Copyright (2011), with permission from Elsevier.

My contribution: The manuscript was written by Åsmund Ervik. The
new method was developed and implemented into our in-house finite-
difference code by Åsmund Ervik, and most of the numerical results
are due to Åsmund Ervik. I contributed with discussions during the
development of the new method, designed the test case in Section 4.1, ran
simulations for Section 5.2, created some of the result figures, and gave
feedback on the manuscript. I also assisted in some of the programming
efforts for initializing the test cases in Chapter 5. Svend Tollak Munkejord
contributed with discussions of the manuscript and some code testing.

5.4. Paper D 63

p [Pa]

t = 1.327× 10−4 s
LOLEX

t = 1.386× 10−4 s
CD-2

(a) Reinitialization every 7 time
steps

t = 1.323× 10−4 s
LOLEX

t = 1.342× 10−4 s
CD-2

(b) Reinitialization every time
step

p [Pa]

t = 2.408× 10−4 s
LOLEX

t = 2.459× 10−4 s
CD-2

(c) Reinitialization every 7 time
steps

t = 2.412× 10−4 s
LOLEX

t = 2.544× 10−4 s
CD-2

(d) Reinitialization every time
step

Figure 5.8.: Water drop falling onto a pool, a comparison between the
LOLEX method and CD-2. The interfaces are shown as solid
black lines and the pressure field is shown as colored contours.
(a) and (b): just before the interfaces merge. (c) and (d): when
the neck reaches its highest position.

64 5. Summary of contributions

5.5. Paper E: Towards a second-order diffuse-domain
approach for solving PDEs in complex geometries

Karl Yngve Lervåg and John Lowengrub. Submitted to Communications
in Math. Sciences, 2013.

Li et al. [40] developed a diffuse-domain method for solving partial-
differential equations (PDEs) inside complex, dynamic geometries with
Dirichlet, Neumann, and Robin boundary conditions. This method is
in the following referred to as DDM1. They use the diffuse-domain
approach [32], where the geometry is represented implicitly and the
sharp boundary is replaced by a diffuse layer with a fixed interface
width. The original governing equations are then reformulated on a
larger, regular domain and the boundary conditions are incorporated via
singular source terms. The method of matched asymptotic expansions is
used to show that the reformulated problem converges asymptotically
to the original problem.

In the present paper, we use the method of matched asymptotic ex-
pansions to extend the DDM1 with include a high-order correction term
in the diffuse formulation, cf. Section 4.4. The extension is derived for
elliptic problems with Neumann and Robin boundary conditions, where
the correction term is shown to yield an asymptotically second-order
accurate approximation of the original problem. The new method is
referred to as the DDM2.

The DDM1 and DDM2 are compared for a selection of test prob-
lems. The resulting equations were discretized by standard second-order
central-difference schemes on uniform grids, and solved by a multigrid
method. A red-black Gauss-Seidel type iterative method was used as a
smoother, see [74].

In addition to the comparison of DDM1 and DDM2, we compared
two different approximations of the boundary conditions. These corre-
spond to different diffuse-interface surface delta functions, and for the
Neumann boundary conditions they are

BC1 = |∇φ|g, (5.3)

and
BC2 = ε|∇φ|2g. (5.4)

5.5. Paper E 65

10−1100

10−3

10−2

10−1

Interface width, ε

E ε
DDM1 BC1
DDM2 BC1
DDM1 BC2
DDM2 BC2

Figure 5.9.: Errors for the Neumann problem with respect to ε for Case 2,
as labelled.

The approximations are similar for the Robin boundary condition, al-
though here it was found that only BC1 resulted in a valid asymptotically
second-order accurate DDM2.

Our results show that the global accuracy and convergence of DDM2
is better than DDM1, however both methods perform well and the global
convergence rate is around two for each. The error was measured as the
L2 norm of the difference between an analytic solution and the solution
uε for a given interface width, ε.

Figures 5.9 and 5.10 show two of the results, the first one with the
Neumann boundary conditions and the second with the Robin boundary
condition. The results indicate that DDM2 performs slightly better than
DDM1. They also show that the approximation BC1 gives more accurate
results than BC2. In particular, we found that with BC2 we needed much
finer grids to obtain convergence for a given ε. For the smallest values
of ε we were not able to refine the grids enough to obtain valid results.

66 5. Summary of contributions

10−1100

10−4

10−3

10−2

10−1

Interface width, ε

E ε
DDM1 BC1
DDM2 BC1
DDM1 BC2
DDM2 BC2

Figure 5.10.: Errors for the Robin problem with respect to ε for Case 2, as
labelled.

My contribution: I took a leading role in analysing the equations, de-
signing the numerical algorithms, selecting the test cases, and performing
the numerical simulations. I wrote the manuscript. John Lowengrub
contributed with important insights in the analysis, feedback on the
manuscript, and discussions of the results.

“What is research but a blind date with
knowledge?”

— Will Harvey (1967)

6
Conclusions and outlook

This thesis has considered two different problems: The discretization of
interface curvature and normal vectors with the level-set method and a
diffuse-domain approach for solving partial-differential equations (PDEs)
in complex domains. In the following, some general concluding remarks
and recommendations for further work are given.

Conclusions

The first part of the thesis considered the modelling of incompressible
two-phase flow. The main motivation was to study two-phase flow
phenomena that are relevant for compact heat exchangers, such as drop-
drop and drop-film collisions. In particular, the thesis addressed a
challenge with the calculation of interface curvature and normal vectors
with the level-set method. Two methods were presented to handle the
discretization in the kink regions: A curve-fitting discretization method
(CFDM) and a local level-set extraction (LOLEX) method. Both methods
were shown to be robust in the kink regions, where the standard central-
difference scheme (CD-2) fails. Of these methods, the LOLEX method is
the preferred method, because it relies on a less complicated algorithm
that easily extends to 3D.

67

68 6. Conclusions and outlook

CD-2 and the LOLEX method were used for simulations of drop-film
collisions that were compared with experiments. The results showed
that CD-2 leads to errors in the curvature that cause unphysical pressure
spikes during the coalescence. The errors are shown to lead to a dissipa-
tion of kinetic energy during the collision and to a slower coalescence
process. The LOLEX method was shown to prevent these unphysical
pressure spikes, and to produce to more accurate results.

The second part of the thesis considered the diffuse-domain approach
for solving PDEs in complex domains. The main contribution, pre-
sented in Paper E, was the derivation of an asymptotically second-order
diffuse-domain method (DDM2) for solving elliptic problems in complex
geometries with Neumann and Robin boundary conditions. The new
method is an extension by a high-order correction term of the method
presented in [40], here called DDM1. The DDM1 and DDM2 were com-
pared, and the results indicated that the DDM2 was slightly better than
the DDM1.

The thesis has expanded on the results of Paper E with a new asymp-
totic analysis that shows that DDM1 is in fact also asymptotically second
order. This analysis helps to explain why the performance of DDM2
presented in Paper E is only slightly better than that of DDM1. As such,
the new analysis leads to a better understanding of the DDM1 and the
DDM2.

Outlook

The following gives an outline of some possibilities for future work.

• A natural continuation of this work is to perform more in-depth
comparisons of simulations with experiments for the drop-film
collision phenomenon that was started in Paper D. In addition, it
would be interesting to study other two-phase flow phenomena
that are relevant for heat-exchanger processes, for instance drop-
drop collisions or flow across tube bundles. The latter requires
the treatment of more complex boundaries, which can be handled
either with the diffuse-domain method or other methods from the
literature.

69

• Paper C gave a short comparison of the standard discretization
method (CD-2), the direction-difference scheme (DDS), and the
curve-fitting discretization scheme (CFDM) applied to the calcula-
tion of the normal vectors. The results showed that the CD-2 leads
to inaccurate results in the kink regions. The DDS gives robust
and accurate results in most cases, but an example is given where
only the CFDM yields an accurate result. However, the impact of
inaccurate calculations of the normal vector should be investigated
in more detail. The normal vector is used both for the solution of
the level-set equations (3.4), (3.5), and (3.7), and for the calculation
of the interface jumps (2.23) and (2.32), so one can expect that large
errors in the calculation of the normal vector may lead to large
errors in the numerical solution. This warrants a further study.

• Mass and heat transfer are obviously an important part of the
heat-exchanger processes. The models that have been used in this
thesis should therefore be expanded with additional models for
heat transfer and mass transfer to enable the simulation of more
relevant phenomena.

• The DDM2 was only derived for problems with Robin and Neu-
mann boundary conditions. If possible, it should be extended to
also work with Dirichlet boundary conditions.

• As explained in Paper E, we found that we were unable to solve
the discrete system of equations when the surface Laplacian part
of the correction term for the DDM2 was included. A further
investigation of this problem should be done, and stable numerical
methods to solve the full DDM2 equations should be developed.

• The diffuse-domain approach is a promising method for solving
problems in complex and confined geometries with standard tools
and methods. Aland et al. [3] provide a diffuse-domain formulation
of the Navier-Stokes Cahn-Hilliard equations for incompressible
two-phase flow and use it to compute two-phase flow in both
complex and confined geometries. However, they do not provide
an asymptotic analysis of the reformulated equations to show that
the system converges. Such an analysis would be interesting, in

70 6. Conclusions and outlook

particular to verify that the equations do converge to the original
problem when the interface width is decreased.

• Finally, it would be interesting to develop a second-order diffuse-
domain formulation for the incompressible Navier-Stokes equa-
tions. A starting point would be to use the results and techniques
from this thesis and Paper E.

Bibliography

[1] Adalsteinsson, D. and Sethian, J. A. “A Fast Level Set Method for
Propagating Interfaces”. In: Journal of Computational Physics 118
(1995), pp. 269–277.

[2] Adalsteinsson, D. and Sethian, J. A. “The fast construction of ex-
tension velocities in level-set methods.” In: Journal of Computational
Physics 148 (1999), pp. 2–22.

[3] Aland, S., Lowengrub, J., and Voigt, A. “Two-phase flow in complex
geometries: A diffuse domain approach.” In: Computer Modeling in
Engineering & Sciences 57.1 (2010), pp. 77–106.

[4] Anderson, D. M., McFadden, G. B., and Wheeler, A. A. “Diffuse-
interface methods in fluid mechanics”. In: Annual Review of Fluid
Mechanics 30.1 (1998), pp. 139–165.

[5] Aris, R. Vectors, Tensors and the Basic Equations of Fluid Mechanics.
New York: Dover publications, 1989. isbn: 0-486-66110-5.

[6] Balay, S., Brown, J., Buschelman, K., Gropp, W. D., Kaushik, D.,
Knepley, M. G., McInnes, L. C., Smith, B. F., and Zhang, H. PETSc
Web page. Web page. 2013. url: http://www.mcs.anl.gov/petsc.

[7] Blanchette, F. and Bigioni, T. P. “Partial coalescence of drops at
liquid interfaces”. In: Nature Physics 2 (2006), pp. 254–257.

[8] Brackbill, J. U., Kothe, D. B., and Zemach, C. “A continuum method
for modeling surface tension”. In: Journal of Computational Physics
100 (1992), pp. 335–354.

[9] Buzbee, B. L., Dorr, F. W., George, J. A., and Golub, G. H. “The di-
rect solution of the discrete poisson equation on irregular regions”.
In: SAIM J. Numer. Anal. 8 (1971), pp. 722–736.

71

72 Bibliography

[10] Cahn, J. W. and Hilliard, J. E. “Free energy of a nonuniform system.
I. Interfacial free energy.” In: Journal of Chemical Physics 28 (1957),
pp. 258–267.

[11] Chorin, A. J. and Marsden, J. E. A Mathematical Introduction to Fluid
Mechanics. New York: Springer, 2000.

[12] Chorin, A. J. “Numerical solution of the Navier-Stokes equations”.
In: Mathematics of computation 22.104 (1968), pp. 745–762.

[13] Coyajee, E. and Boersma, B. J. “Numerical simulation of drop
impact on a liquid-liquid interface with a multiple marker front-
capturing method”. In: Journal of Computational Physics 228 (20=9),
pp. 4444–4467. doi: 10.1016/j.jcp.2009.03.014.

[14] Cristini, V. and Tan, Y. “Theory and numerical simulation of
droplet dynamics in complex flows — a review”. In: Lab on a
Chip 4 (2004), pp. 257–264.

[15] Dolbow, J. and Harari, I. “An efficient finite element method for
embedded interface problems”. In: Int. J. Numer. Meth. Eng. 78
(2009), pp. 229–252.

[16] Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. “A hybrid
particle level set method for improved interface capturing”. In:
Journal of Computational Physics 183 (2002), pp. 83–116.

[17] Fedkiw, R. P., Aslam, T., Merriman, B., and Osher, S. “A non-
oscillatory Eulerian approach to interfaces in multimaterial flows
(the Ghost Fluid Method)”. In: Journal of Computational Physics 152.2
(1999), pp. 457–492. doi: 10.1006/jcph.1999.6236.

[18] Franz, S., Gärtner, R., Roos, H.-G., and Voigt, A. “A Note on
the Convergence Analysis of a Diffuse-domain Approach”. In:
Computational Methods in Applied Mathematics 12.2 (2012), pp. 153–
167.

[19] Glowinski, R., Pan, T. W., and Periaux, J. “A fictitious domain
method for external incompressible viscous-flow modeled by Navier-
Stokes equations”. In: Comput. Meth. Appl. Mech. Engin. 112 (1994),
pp. 133–148.

Bibliography 73

[20] Glowinski, R., Pan, T. W., Wells, R. O., and Zhou, X. D. “Wavelet
and finite element solutions for the Neumann problem using ficti-
tious domains”. In: J. Comput. Phys. 126 (1996), pp. 40–51.

[21] Gottlieb, S., Shu, C. W., and Tadmor, E. “Strong stability-preserving
high-order time discretization methods”. In: SIAM Review 43 (2001),
pp. 89–112.

[22] Hansen, E. B. “Numerical Simulation of Droplet Dynamics in
the Presence of an Electric Field”. ISBN 82-471-7318-2. Doctoral
thesis. Trondheim: Norwegian University of Science, Technology,
Department of Energy, and Process Engineering, Nov. 2005.

[23] Harlow, F. H. and Welch, J. E. “Numerical Calculation of Time
Dependent Viscous Incompressible Flow of Fluid with Free Sur-
face”. In: Physics of Fluids 8 (1965), pp. 2182–2189. doi: 10.1063/1.
1761178.

[24] Hesselgreaves, J. E. Compact Heat Exchangers: Selection, Design and
Operation. Gulf Professional Publishing, 2001. isbn: 0-08-042839-8.

[25] Iserles, A. A First Course in the Numerical Analysis of Differential
Equations. second. Cambridge: Cambridge University Press, 2009.
isbn: 978-0-521-73490-5.

[26] Jacqmin, D. “Calculation of two-phase Navier-Stokes flows us-
ing phase-field modeling”. In: Journal of Computational Physics 155
(1999), pp. 96–127.

[27] Ji, H., Lien, F.-S., and Yee, E. “An efficient second-order accurate
cut-cell method for solving the variable coefficient Poisson equa-
tion with jump conditions on irregular domains”. In: Int. J. Numer.
Meth. Fluids 52 (2006), pp. 723–748.

[28] Jiang, G.-S. and Shu, C.-W. “Efficient Implementation of Weighted
ENO Schemes”. In: Journal of Computational Physics 126 (1996),
pp. 202–228.

[29] Johansen, H. and Colella, P. “A Cartesian grid embedded boundary
method for Poisson’s equation on irregular domains”. In: Journal
of Computational Physics 147 (1998), pp. 60–85.

74 Bibliography

[30] Kang, M., Fedkiw, R. P., and Liu, X.-D. “A boundary condition
capturing method for multiphase incompressible flow”. In: Journal
of Scientific Computing 15.3 (2000), pp. 323–360.

[31] Ketcheson, D. I. and Robinson, A. C. “On the practical importance
of the SSP property for Runge-Kutta time integrators for some com-
mon Godunov-type schemes”. In: International Journal for Numerical
Methods in Fluids 48 (2005), pp. 271–303.

[32] Kockelkoren, J., Levine, H., and Rappel, W. J. “Computational
approach for modeling intra- and extracellular dynamics”. In:
Phys. Rev. E 68 (2003), p. 037702.

[33] Kraaijevanger, J. F. B. M. “Contractivity of Runge-Kutta methods”.
In: BIT Numerical Mathematics 31.3 (1991), pp. 482–528.

[34] Kwakkel, M., Breugem, W.-P., and Boersma, B. J. “An efficient
multiple marker front-capturing method for two-phase flows”.
In: Computers and Fluids 63 (2012), pp. 47–56. doi: 10.1016/j.
compfluid.2012.04.004.

[35] Kwakkel, M., Breugem, W.-P., and Boersma, B. J. “Extension of a
CLSVOF method for droplet-laden flows with a coalescence/breakup
model”. In: Journal of Computational Physics (2013). In press. doi:
10.1016/j.jcp.2013.07.005.

[36] Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S., and Zanetti,
G. “Modeling merger and fragmentation in multiphase flows with
SURFER”. In: Journal of Computational Physics 113 (1994), pp. 34–47.

[37] Lervåg, K. Y. “Calculation of interface curvature with the level-set
method”. In: Sixth National Conference on Computational Mechanics
MekIT’11 (Trondheim, Norway). May 23-24 May 2011. isbn: 978-82-
519-2798-7.

[38] Lervåg, K. Y. “Simulation of two-phase flow with varying surface
tension”. MA thesis. Trondheim: Norwegian University of Science
and Technology, Department of Mathematical Sciences, June 2008.

[39] LeVeque, R. J. and Li, Z. “The immersed interface method for
elliptic equations with discontinuous coefficients and singular
sources.” In: SIAM Journal of Numerical Analysis 31 (1994), pp. 1019–
1044.

Bibliography 75

[40] Li, X., Lowengrub, J., Rätz, A., and Voigt, A. “Solving PDEs in
Complex Geometries: A Diffuse Domain Approach”. In: Communi-
cations in Mathematical Sciences 7.1 (2009), pp. 81–107.

[41] Liu, X.-D., Fedkiw, R. P., and Kang, M. “A Boundary Condition
Capturing Method for Poisson’s Equation on Irregular Domains”.
In: Journal of Computational Physics 160 (2000), pp. 151–178.

[42] Lowengrub, J. and Truskinovsky, L. “Quasi-incompressible Cahn-
Hilliard fluids and topological transitions”. In: Proceedings of the
Royal Society of London. Series A: Mathematical, Physical and Engineer-
ing Sciences 454 (1998), pp. 2617–2654.

[43] Macklin, P. and Lowengrub, J. “An improved geometry-aware
curvature discretziation for level set methods: Application to tumor
growth”. In: Journal of Computational Physics 215 (2006), pp. 392–
401.

[44] Macklin, P. and Lowengrub, J. “Evolving interfaces via gradients
of geometry-dependent interior Poisson problems: Application
to tumor growth”. In: Journal of Computational Physics 203 (2005),
pp. 191–220.

[45] Macklin, P. and Lowengrub, J. S. “A New Ghost Cell/Level Set
Method for Moving Boundary Problems: Application to Tumor
Growth”. In: Journal of Scientific Computing 35 (2008), pp. 266–299.

[46] Mallet, V., Keyes, D., and Fendell, F. “Modeling wildland fire
propagation with level set methods”. In: Computers and Mathematics
with Applications 57.7 (2009), pp. 1089–1101. issn: 0898-1221.

[47] Melicher, V., Cimrak, I., and Keer, R. V. “Level set method for
optimal shape design of MRAM core. Micromagnetic approach”.
In: Physica B: Condensed Matter 403 (2008), pp. 308–311. issn: 0921-
4526.

[48] Nobari, M. R., Jan, Y., and Tryggvason, G. “Head-on collision of
drops — A numerical investigation”. In: Physics of Fluids 8 (1996),
pp. 29–42.

76 Bibliography

[49] Olsen, R., Maråk, K. A., Zhao, H., and Munkejord, S. T. “An
experimental and computational strategy for an increased under-
standing of two-phase flow of natural gas”. In: HEFAT 2007, Fifth
International Conference on Heat Transfer, Fluid Mechanics and Thermo-
dynamics. Sun City, South Africa, July 2007.

[50] Olsson, E. and Kreiss, G. “A conservative level set method for
two phase flow”. In: Journal of Computational Physics 210 (2005),
pp. 225–246.

[51] Olsson, E., Kreiss, G., and Zahedi, S. “A conservative level set
method for two phase flow II”. In: Journal of Computational Physics
225 (2007), pp. 785–807.

[52] Osher, S. and Sethian, J. A. “Fronts propagating with curvature
dependent speed: Algorithms based on Hamilton-Jacobi formula-
tions”. In: Journal of Computational Physics 79 (1988), pp. 12–49.

[53] Osher, S. and Fedkiw, R. P. The Level-Set Method and Dynamic Implicit
Surfaces. New York: Springer, 2003. isbn: 0387954821.

[54] Pego, R. L. “Front Migration in the nonlinear Cahn-Hilliard equa-
tion”. In: Proceedings of the Royal Society A 422 (Apr. 1988), pp. 261–
278. doi: 10.1098/rspa.1989.0027.

[55] Saad, Y. Iterative Methods for Sparse Linear Systems. second. SIAM,
2003. isbn: 0-89871-534-2.

[56] Salac, D. and Lu, W. “A Local Semi-Implicit Level-Set Method
for Interface Motion”. In: Journal of Scientific Computing 35 (2008),
pp. 330–349.

[57] Scardovelli, R. and Zaleski, S. “Direct numerical simulation of free-
surface and interfacial flow”. In: Annual Review of Fluid Mechanics
31.1 (1999), pp. 567–603.

[58] Sethian, J. A. “Curvature and the evolution of fronts”. In: Commu-
nications in Mathematical Physics 101.4 (1985), pp. 487–499.

[59] Sethian, J. A. and Smereka, P. “Level Set Methods for Fluid In-
terfaces”. In: Annual Review of Fluid Mechanics 35 (2003), pp. 341–
372.

[60] Shell’s Prelude FLNG Project, Browse Basin, Australia. http://www.
offshore-technology.com/projects/shell-project/. 2012.

Bibliography 77

[61] Shin, S. and Juric, D. “Modelling three-dimensional multiphase
flow using a level contour reconstruction method for front track-
ing without connectivity”. In: Journal of Computational Physics 180
(2002), pp. 427–470.

[62] Shu, C.-W. and Osher, S. “Efficient Implementation of Essentially
Non-oscillatory Shock-Capturing Schemes”. In: Journal of Computa-
tional Physics 77 (1988), pp. 439–471.

[63] Smereka, P. “Semi-Implicit Level Set Methods for Curvature and
Surface Diffusion Motion”. In: Journal of Scientific Computing 19
(2003), pp. 439–456. issn: 0885-7474.

[64] Sussman, M., Smereka, P., and Osher, S. “A level set approach for
computing solutions to incompressible two-phase flow”. In: Journal
of Computational Physics 114 (1994), pp. 146–159.

[65] Sussman, M. and Puckett, E. G. “A coupled level set and volume-of-
fluid method for computing 3D and axisymmetric incompressible
two-phase flows”. In: Journal of Computational Physics 162 (2000),
pp. 301–337.

[66] Teigen, K. E., Li, X., Lowengrub, J., Wang, F., and Voigt, A. “A
diffuse-interface approach for modeling transport, diffusion and
adsorption/desorption of material quantities on a deformable
interface”. In: Communications in Mathematical Sciences 7.4 (Aug.
2009), pp. 1009–1037.

[67] Teigen, K. E., Song, P., Lowengrub, J., and Voigt, A. “A diffuse-
interface method for two-phase flows with soluble surfactants”.
In: Journal of Computational Physics 230 (2011), pp. 375–393. doi:
10.1016/j.jcp.2010.09.020.

[68] The Prelude FLNG project. http://www.shell.com.au/aboutshell/
who-we-are/shell-au/operations/upstream/prelude.html.
2012.

[69] Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi,
N., Tauber, W., Han, J., Nas, S., and Jan, Y. J. “A front-tracking
method for the computations of multiphase flow”. In: Journal of
Computational Physics 169.2 (2001), pp. 708–759.

78 Bibliography

[70] Tryggvason, G., Scrdovelli, R., and Zaleski, S. Direct Numerical
Simulations of Gas-Liquid Multiphase Flows. Cambridge: Cambridge
University Press, 2011.

[71] Tryggvason, G., Thomas, S., Lu, J., and Aboulhasanzadeh, B. “Mul-
tiscale issues in DNS of multiphase flows”. In: Acta Mathematica
Scientia 30 (2010), pp. 551–562.

[72] Walker, C. “Numerical Methods for Two–Phase Flow with Contact
Lines”. ISBN 978-82-471-3617-1. Doctoral thesis. Trondheim: Nor-
wegian University of Science, Technology, Department of Energy,
and Process Engineering, July 2012. isbn: 978-82-471-3617-1.

[73] White, F. M. Fluid Mechanics. seventh. New York: McGraw-Hill,
2011.

[74] Wise, S., Kim, J., and Lowengrub, J. “Solving the regularized,
strongly anisotropic Cahn-Hilliard equation by an adaptive non-
linear multigrid method”. In: Journal of Computational Physics 226
(2007), pp. 414–446. doi: 10.1016/j.jcp.2007.04.020.

[75] Xu, J.-J., Li, Z., Lowengrub, J., and Zhao, H.-K. “A Level Set Method
for Interfacial Flows with Surfactants”. In: Journal of Computational
Physics 212.2 (Mar. 2006), pp. 590–616.

[76] Zhao, H. “An Experimental Investigation of Liquid Droplets Im-
pinging Vertically on a Deep Liquid Pool”. ISBN 978-82-471-1864-1.
Doctoral thesis. Trondheim: Norwegian University of Science, Tech-
nology, Department of Energy, and Process Engineering, Oct. 2009.

[77] Zhao, H., Brunsvold, A., and Munkejord, S. T. “Transition between
coalescence and bouncing of droplets on a deep liquid pool”. In:
Journal of Multiphase Flow 37 (2011), pp. 1109–1119.

[78] Zhao, H.-K., Chan, T., Merriman, B., and Osher, S. “A variational
level set approach to multiphase motion”. In: Journal of Computa-
tional Physics 127 (1996), pp. 179–195.

[79] Zhou, Y., Zhao, S., Feig, M., and Wei, G. “High order matched
interface and boundary method for elliptic equations with discon-
tinuous coefficients and singular sources”. In: J. Comput. Phys. 213
(2006), pp. 1–30.

A
Calculation of interface curvature

with the level-set method

K. Y. Lervåg
Published in MekIT’11 - 6th National Conference on Computational Mechan-
ics, Trondheim, 2011. ISBN: 978-82-519-2798-7.

79

Calculation of interface curvature with the level-set method
Karl Yngve Lervåg

Norwegian University of Science and Technology
Department of Energy and Process Engineering

Kolbjørn Hejes veg 2
NO-7491 Trondheim, Norway
e–mail: karl.y.lervag@ntnu.no

Summary The level-set method is a popular method for interface capturing. One of the advan-
tages of the level-set method is that the curvature and the normal vector of the interface can be
readily calculated from the level-set function. However, in cases where the level-set method is
used to capture topological changes, the standard discretization techniques for the curvature and
the normal vector do not work properly. This is because they are affected by the discontinuities
of the signed-distance function half-way between two interfaces. This article addresses the cal-
culation of normal vectors and curvatures with the level-set method for such cases. It presents a
discretization scheme that is relatively easy to implement in to an existing code. The improved
discretization scheme is compared with a standard discretization scheme, first for a case with no
flow, then for a case where two drops collide in a shear flow. The results show that the improved
discretization yields more robust calculations in areas where topological changes are imminent.

Introduction
The level-set method was introduced by Osher and Sethian [16]. It is designed to implicitly
track moving interfaces through an isocontour of a function defined in the entire domain. In
particular, it is designed for problems in multiple spatial dimensions in which the topology of
the evolving interface changes during the course of events, c.f. [19].

This article addresses the calculation of interface geometries with the level-set method. This
method allows us to calculate the normal vector and the curvature of an interface directly as
the first and second derivatives of the level-set function. These calculations are typically done
with standard finite-difference methods. Since the level-set function is chosen to be a signed-
distance function, in most cases it will have areas where it is not smooth. Consider for instance
two colliding droplets where the interfaces are captured with the level-set method, see Figure 1.
The derivative of the level-set function will not be defined at the points outside the droplets that
have an equal distance to both droplets. When the droplets are in near contact, this discontinuity
in the derivative will lead to significant errors when calculating the interface geometries with
standard finite-difference methods. For convenience the areas where the derivative of the level-
set function is not defined will hereafter be refered to as kinks.

To the authors knowledge, this issue was first described in [11], where the level-set method was
used to model tumor growth. Here Macklin and Lowengrub presented a direction difference to

ϕ(x)

(a) Droplets in near contact

ϕ(x)

x

0

(b) A slice of the level-set function

Figure 1: (a) Two droplets in near contact. The dotted line marks a region where the derivative of the
level-set function is not defined. (b) A one-dimensional slice of the level-set function ϕ(x). The dots
mark points where the derivative of ϕ(x) is not defined.

treat the discretization across kinks for the normal vector and the curvature. They later presented
an improved method where curve fitting was used to calculate the curvatures [12]. This was
further expanded to include the normal vectors [13].

An alternative method to avoid the kinks is presented in [18], where a level-set extraction tech-
nique is presented. This technique uses an extraction algorithm to reconstruct separate level-set
functions for each distinct body.

Accurate calculation of the curvature is important in many applications, in particular in curvature-
driven flows. There are several examples in the literature of methods that improve the accuracy
of the curvature calculations, but that do not consider the problem with the discretization across
the kinks. The authors in [22] use a coupled level-set and volume-of-fluid method based on a
fixed Eulerian grid, and they use a height function to calculate the curvatures. In [6] a refined
level-set grid method is used to study two-phase flows on structured and unstructured grids
for the flow solver. An interface-projected curvature-evaluation method is presented to achieve
converging calculation of the curvature. In [14] they adopt a discontinuous Galerkin method
and a pressure-stabilized finite-element method to solve the level-set equation and the Navier-
Stokes equations, respectively. They develop a least-squares approach to calculate the normal
vector and the curvature accurately, as opposed to using a direct derivation of the level-set func-
tion. This method is used in [2], where they show impressive results for simulation of turbulent
atomization.

This article applies the level-set method to incompressible two-phase flow in two dimensions.
The direction difference described in [11] is used to calculate the normal vectors, and a curvature
discretization is presented which is based on the geometry-aware discretization given in [12].
The main advantage of the present scheme is that is is relatively easy to implement, since it
requires very little change to a typical implementation of the level-set method.

The article starts by briefly describing the governing equations. It continues with a description of
the numerical methods that are used. Then the discretization schemes for the normal vector and
the curvature are presented, followed by a detailed description of the curvature discretization.
Next a comparison of the improved discretization and the standard discretization is made, first
on static interfaces in near contact, then on two drops colliding in a shear flow. Finally some
concluding remarks are made.

Governing equations

Navier-Stokes equations for two-phase flow

Consider a two-phase domain Ω = Ω+ ∪ Ω− where Ω+ and Ω− denote the regions occupied
by the respective phases. The domain is divided by an interface Γ = δΩ+ ∩ δΩ− as illustrated
in Figure 2. The governing equations for incompressible and immiscible two-phase flow in the
domain Ω with an interface force on the interface Γ can be stated as

∇ ·u = 0, (1)

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p+ ∇ · (µ∇u) + ρf b +

∫

Γ

σκn δ(x− xI(s)) ds, (2)

where u is the velocity vector, p is the pressure, f b is the specific body force, σ is the coefficient
of surface tension, κ is the curvature, n is the normal vector which points to Ω+, δ is the
Dirac Delta function, xI is a parametrization of the interface, ρ is the density and µ is the

Γ
Ω+

Ω−

Figure 2: Illustration of a two-phase domain: The interface Γ separates the two phases, one in Ω+ and
the other in Ω−.

viscosity. These equations are often called the Navier-Stokes equations for incompressible two-
phase flow.

It is assumed that the density and the viscosity are constant in each phase, but they may be
discontinuous across the interface. The interface force and the discontinuities in the density and
the viscosity lead to a set of interface conditions,

[u] = 0, (3)
[p] = 2[µ]n ·∇u ·n+ σκ, (4)

[µ∇u] = [µ]
(
(n ·∇u ·n)nn+ (n ·∇u · t)nt+ (n ·∇u · t)tn+ (t ·∇u · t)tt), (5)

[∇p] = 0, (6)

where t is the tangent vector along the interface and [·] denotes the jump across an interface,
that is

[µ] ≡ µ+ − µ−. (7)

See [7, 5] for more details and a derivation of the interface conditions.

Level-set method

The interface is captured with the zero level set of the level-set function ϕ(x, t), which is pre-
scribed as a signed-distance function. That is, the interface is given by

Γ = { (x, t) | ϕ(x, t) = 0 }, x ∈ Ω, t ∈ R+, (8)

and for any t ≥ 0,

ϕ(x, t)

< 0 if x ∈ Ω−

= 0 if x ∈ Γ
> 0 if x ∈ Ω+

. (9)

The interface is updated by solving an advection equation for ϕ,

∂ϕ

∂t
+ û ·∇ϕ = 0, (10)

where û is the velocity at the interface extended to the entire domain. The interface velocity is
extended from the interface to the domain by solving

∂û

∂τ
+ S(ϕ)n ·∇û = 0, ûτ=0 = u, (11)

to steady state, c.f. [24]. Here τ is pseudo-time and S is a smeared sign function which is equal
to zero at the interface,

S(ϕ) =
ϕ√

ϕ2 + 2∆x2
. (12)

When Equation (10) is solved numerically, the level-set function loses its signed-distance prop-
erty due to numerical dissipation. The level-set function is therefore reinitialized regularly by
solving

∂ϕ

∂τ
+ S(ϕ0)(|∇ϕ| − 1) = 0,

ϕ(x, 0) = ϕ0(x),
(13)

to steady state as proposed in [20]. Here ϕ0 is the level-set function that needs to be reinitialized.

One of the advantages of the level-set method is that normal vectors and curvatures can be
readily calculated from the level-set function, i.e.

n =
∇ϕ

|∇ϕ| , (14)

κ = ∇ ·
(∇ϕ

|∇ϕ|

)
. (15)

Numerical methods
The Navier-Stokes equations, (1) and (2), are solved by a projection method on a staggered
grid as described in [5, Chapter 5.1.1]. The spatial terms are discretized by the second-order
central difference scheme, except for the convective terms which are discretized by a fifth-order
WENO scheme. The temporal discretization is done with explicit strong stability-preserving
Runge-Kutta (SSP RK) schemes, see [4]. A three-stage third-order SSP-RK method is used for
the Navier-Stokes equations (1) and (2), and a four-stage second-order SSP-RK method is used
for the level-set equations (10), (11) and (13).

The method presented in [1] is used to improve the computational speed. The method is often
called the narrow-band method, since the level-set function is only updated in a narrow band
across the interface at each time step.

The interface conditions are treated in a sharp fashion with the Ghost-Fluid Method (GFM),
which incorporates the discontinuities into the discretization stencils by altering the stencils
close to the interfaces. For instance, the GFM requires that a term is added to the stencil on
the right-hand side of the Poisson equation for the pressure. Consider a one-dimensional case
where [ρ] = [µ] = 0 and where the interface lies between xi and xi+1. In this case,

pi+1 − 2pi + pi−1

∆x2
= fk ±

σκΓ

∆x2
, (16)

where fk is the general right-hand side value and κΓ is the curvature at the interface. The sign
of the added term depends on the sign of ϕ(xi). See [7] for more details on how the GFM is
used for the Navier-Stokes equations and [9] for a description on how to use the GFM for a
variable-coefficient Poisson equation.

The normal vector and the curvature defined by equations (14) and (15) are typically discretized
by the second-order central difference scheme, c.f [7, 19, 23]. The curvatures are calculated on

ϕ > 0

ϕ < 0

ϕ = 0 xi
x

Figure 3: A level-set function that has one point where the derivative is discontinuous.

the grid nodes and then interpolated with simple linear interpolation to the interface, e.g. for κΓ

in Equation (16),

κΓ =
|ϕi|κi+1 + |ϕi+1|κi
|ϕi|+ |ϕi+1|

. (17)

If the level-set method is used to capture non-trivial geometries, the level-set function will in
general contain areas where it is not smooth, i.e. kinks. This is depicted in Figure 3, which
shows a level-set function in a one-dimensional domain that captures two interfaces, one on
each side of the grid point xi. The kink at xi will lead to potentially large errors with the standard
discretization both for the curvature and the normal vector. The errors in the curvature will lead
to erroneous pressure jumps at the interfaces, and the errors in the normal vector affects both
the discretized interface conditions and the advection of the level-set function. If the level-set
method is used to study for example coalescence and breakup of drops, these errors may severly
affect the simulations.

It should be noted that the kinks that appear far from any interfaces are handled by ensuring
that the denominators do not become zero, as explained in [15, Sections 2.3 to 2.4]. This works
fine, since only the values of the curvature at the grid nodes adjacent to any interface are used.
Also, the normal vector only needs to be accurate close to the interface due to the narrow-band
approach.

Improved discretization of geometrical quantities

The previous section explained why it is necessary to develop new discretization schemes for
the normal vector and the curvature that can handle kinks in the level-set function. This section
will give a brief presentation of a better discretization scheme for the normal vector and an
overview of an algorithm to calculate the curvature.

The normal vector

A discretization scheme is presented in [11] which uses a quality function to ensure that the
differences never cross kinks. The basic strategy is to use a combination of central differences
and one-sided differences based on the values of a quality function,

Q(x) = |1− |∇ϕ(x)|| , (18)

which is approximated with central differences. The quality function effectively detects the
areas where the level-set function differs from the signed-distance function. Let Qi,j = Q(xi,j)
and η > 0, then Qi,j > η can be used to detect kinks. The parameter η is tuned such that the
quality function will detect all the kinks. The value η = 0.1 is used in the present work.

The quality function is used to define a direction function,

D(xi,j) = (Dx(xi,j), Dy(xi,j)), (19)

where

Dx(xi,j) =

−1 if Qi−1,j < η and Qi+1,j ≥ η,
1 if Qi−1,j ≥ η and Qi+1,j < η,
0 if Qi−1,j < η and Qi,j < η and Qi+1,j < η,
0 if Qi−1,j ≥ η and Qi,j ≥ η and Qi+1,j ≥ η,
undetermined otherwise.

(20)

Dy(xi,j) is defined in a similar manner. If Dx or Dy is undetermined, D(xi,j) is chosen as the
vector normal to ∇ϕ(xi,j). It is normalized, and the sign is chosen such that it points in the
direction of best quality. See [11] for more details.

The direction difference is now defined as

∂xfi,j =

fi,j−fi−1,j

∆x
if Dx(xi, yj) = −1,

fi+1,j−fi,j
∆x

if Dx(xi, yj) = 1,
fi+1,j−fi−1,j

2∆x
if Dx(xi, yj) = 0,

(21)

where fi,j is a piecewise smooth function. The normal vector is calculated using the direction
difference on ϕ, which is equivalent to using central differences in smooth areas and one-sided
differences in areas close to the kinks. This method makes sure that the differences do not cross
any kinks, and the normal vector can be accurately calculated even close to a kink.

The curvature

The curvature is calculated with a discretization that is based on the improved geometry-aware
curvature discretization presented by Macklin and Lowengrub [12]. This is a method where the
curvature is calculated at the interfaces directly with the use of a least-squares curve parametriza-
tion of the interface. The curve parametrization is used to create a local level-set function from
which the curvature is calculated using standard discretization techniques. The local level-set
function only depends on one interface and is therefore free of kinks.

The main difference between the present method and that of Macklin and Lowengrub is that
they calculate the curvature at the interface directly, whereas the present method instead calcu-
lates the curvature at the grid nodes. In other words, Macklin and Lowengrub calculate κΓ in
Equation (16) directly, whereas the present method calculates κi and κi+1 with the improved
curvature discretization and then use linear interpolation as described in Equation (17) to find
κΓ. The main motivation behind this difference is that the present method does not require a
significant change to any existing code. Thus it is relatively straightforward to implement the
present method even when the curvature is needed for more than the Capillary force term in
the Navier-Stokes equations. An example of such a case is when the curvature is used to model
interfacial flows with surfactant [23].

An important consequence of the previously explained difference is that it becomes more im-
portant to have an accurate representation of the interface. The curvature discretization pre-
sented here uses monotone cubic Hermite splines to parametrize the curve. The least-square
parametrization used in [12] is only accurate very close to the point where the curvature needs
to be calculated. The Hermite spline is more accurate along the entire interface representation.

x0

x1

Figure 4: Sketch of a breadth-first search. The dashed lines depict the edges that are searched first, the
dotted lines depict the edges that are searched next and the solid lines depict two interfaces. The circular
dots mark where the algorithm finds interface points, and the rectangular dot marks the point which is
returned for the depicted case.

The algorithm to calculate the curvature at xi,j can be summarized as follows. The details are
explained in the next section.

1. If Qi+n,j+m ≤ η, where n = −1, 0, 1 and m = −1, 0, 1, then it is safe to use the standard
discretization. Otherwise continue to the next step.

2. Locate the closest interface, Γ.

3. Find a set of points x1, . . . ,xn ∈ Γ.

4. Create a parametrization γ(s) of the points x1, . . . ,xn.

5. Calculate a local level-set function based on the parametrization γ(s).

6. Use the standard discretization on the local level-set function to calculate the curvature.

Details of the curvature algorithm
Locating the closest interface

A breadth-first search is used to to identify the closest interface, see Figure 4. Let x0 denote the
starting point and x1 denote the desired point on the closest interface. The search iterates over
all the eight edges from x0 to its neighbours and tries to locate an interface which is identified
by a change of sign of ϕ(x). If more than one interface is found, x1 is chosen to be the point that
is closest to x0. If no interfaces are located the search continues at the next depth. The search
continues in this manner until an interface is found. Note that this algorithm does not in general
return the point on the interface which is closest to x0.

The crossing points between the grid edges and the interfaces are found with linear and bilinear
interpolation. E.g. if an interface crosses the edge between (i, j) and (i, j+1) at xI , the interface
point is found by linear interpolation,

xI = xi,j + θ(0,∆x), (22)

where

θ =
ϕ(xi,j)

ϕ(xi,j)− ϕ(xi,j+1)
. (23)

In the diagonal cases the interface point is found with bilinear interpolation along the diagonal.
This leads to

xI = xi,j + θ(∆x,∆x), (24)

where θ is the solution of
α1θ

2 + α2θ + α3 = 0. (25)

The α values depend on the grid cell. For instance, when searching along the diagonal between
(i, j) and (i+ 1, j + 1) the α values will be

α1 = ϕi,j − ϕi+1,j − ϕi,j+1 + ϕi+1,j+1, (26)
α2 = ϕi+1,j + ϕi,j+1 − 2ϕi,j, (27)
α3 = ϕi,j. (28)

Searching for points on an interface

When an interface and a corresponding point x1 on the interface are found, the next step is
to find a set of points x2, . . . ,xk, . . . ,xn on the same interface. The points should be ordered
such that when traversing the points from k = 1 to k = n, the phase with ϕ(x) < 0 is on the
left-hand side. Note that the ordering of the points may be done after all the points are found.
Three criteria are used when searching for new points:

1. The points are located on the grid edges.

2. The distance between xk and xk+1 for all k is greater than a given threshold µ.

3. The n points that are closest to x0 are selected, where x0 = xi,j is the initial point where
the curvature is to be calculated.

Let xk ∈ Γ ∩ [xi, xi+1) × [yj, yj+1) be given. To find a new point xk+1 on Γ, a variant of the
marching-squares algorithm1 is used. Given xk and a search direction which is either clockwise
or counter clockwise, the algorithm searches for all the points where an interface crosses the
edges of the mesh rectangle [xi, xi+1] × [yj, yj+1]. In most cases there will be two such points
and xk is one of them. xk+1 is then selected based on the search direction. If xk+1 = xk, the
search is continued in the adjacent mesh rectangle. The search process is depicted in Figure 5(a).

In some rare cases the algorithm must handle the ambiguous case depicted in Figure 5(b). In
these cases there are four interface crossing-points and two solutions. Either solution is valid,
and it is not possible to say which solution is better. The current implementation selects the first
solution that it finds, which will be in all practical sense a random choice. Note that the ambigu-
ous cases only occur when two interfaces cross a single grid cell. The ambiguity comes from
the fact that the level-set method is not able to resolve the interfaces on a sub-cell resolution.

It was found that n = 7 points where necessary in order to ensure that the closest points on the
interface with respect to the different grid points are captured with the spline parametrization.

1The marching-squares algorithm is an equivalent two-dimensional formulation of the well known marching-
cubes algorithm presented in [10]. The algorithm was mainly developed for use in computer graphics.

ϕ > 0 ϕ < 0

ϕ > 0 ϕ < 0xk+1

xk

(a) Marching squares

ϕ < 0 ϕ > 0

ϕ > 0 ϕ < 0

xk

x̂k+1

xk+1

(b) Ambiguous case

Figure 5: (a) The search starts by locating the two points where the interface crosses the mesh rectangle.
xk is the starting point, and if the search is counter clockwise it will select xk+1 as depicted. If the
search is clockwise, it will select xk+1 = xk, and the search continues in the adjacent mesh rectangle
[xi, xi+1]× [yj−1, yj]. (b) An example of an ambiguous case. The solid black lines and the dashed black
lines are two equally valid solutions for how the interfaces cross the mesh rectangle. If the search starts
at xk and searches counter clockwise, then both x̂k+1 and xk+1 are valid solutions.

Curve fitting

Cubic Hermite splines are used to fit a curve to the set of points

X0,m = {x0,x1, . . . ,xm}. (29)

Let the curve parametrization be denoted γ(s) for 0 < s < 1. A cubic spline is a parametrization
where

γ(s) =

γ1(s) s0 ≤ s < s1,
γ2(s) s1 ≤ s < s2,
...
γm(s) sm−1 ≤ s ≤ sm,

(30)

where 0 = s0 < s1 < · · · < sm = 1

γ(si) = xi, 0 ≤ i ≤ m, (31)

and each interpolant γi(s) = (xi(s), yi(s)) is a third-order polynomial. A Hermite spline is a
spline where each interpolant is in Hermite form, see [17, Chapter 4.5]. The interpolants are
created by solving the equations

γi(s) = h00(s)xi−1 + h01(s)xi + h10(s)mi−1 + h11(s)mi, (32)

for 1 ≤ i ≤ m, where mi is the curve tangents and h00, h01, h10 and h11 are Hermite basis
polynomials,

h00(s) = 2s3 − 3s2 + 1,

h01(s) = s3 − 2s2 + s,

h10(s) = −2s3 + 3s2,

h11(s) = s3 − s2.

(33)

The choice of the tangents is non-unique, and there are several possible options for a cubic
Hermite spline.

It is essential that the spline is properly oriented. This is because we require to find both the
distance and the position of a point on the grid relative to the spline in order to define a local
level-set function. The orientation of the spline γ(s) is defined such that when s increases, Ω−

is to the left.

To ensure that our curve is properly oriented, the tangents are chosen as described in [3]. This
will ensure monotonicity for each component as long as the input data is monotone. The tan-
gents are modified as follows. First the slopes of the secant lines between successive points are
computed,

di =
xi − xi−1

si − si−1

(34)

for 1 ≤ i ≤ m. Next the tangents are initialized as the average of the secants at every point,

mi =
di + di+1

2
(35)

for 1 ≤ i ≤ m − 1. The curve tangents at the endpoints are set to m0 = d1 and mm = dm.
Finally let k pass from 1 through m − 1 and set mk = mk+1 = 0 where dk = 0, and mk = 0
where sign(dk) 6= sign(dk+1).

Local level-set function

The local level-set function, here denoted as φ(xi,j) ≡ φi,j , is calculated at the grid points
surrounding and including x0 = xi,j . The curvature is then calculated with the standard dis-
cretization stencil where φ is used instead of the global level-set function, ϕ.

A precise definition of φ is
φ(xi,j) = min

s

(
d̂(xi,j,γ(s))

)
(36)

where d̂(x,γ(s)) is the signed-distance function, which is negative in phase one and positive
in phase two. This function is calculated by first finding the minimum distance between x and
γ(s) and then deciding the correct sign. The minimum distance is found by minimizing the
norm

d(x,γ(s)) = ‖x− γ(s)‖2. (37)

When γ is composed of cubic polynomials as is the case for cubic Hermite splines, the compu-
tation of the distance requires the solution of several fifth-order polynomial equations. Sturm’s
method (see [21, Section 11.3] or [8, Chapter XI,§2]) is employed to locate and bracket the
solutions and a combined Newton-Raphson and bisection method is used to refine them. The
correct sign is found by solving

sign(φ(xi,j)) = sign ((xi,j − γ(s))× tγ(s))z , (38)

where tγ(s) is the tangent vector of γ(s).

Verification and testing

This section presents results of calculating normal vectors and curvatures with the improved
discretization schemes. The results are compared with the standard discretization. Note that in
both the following cases the standard second-order central differences are used as the standard
discretization.

r

h

x

y

Figure 6: Initial setup for the circle and line test. The dotted line depicts the kink location.

Figure 7: A comparison of the calculated normal vectors between the standard discretization in red and
the improved method in green. The thick black lines depict the interface.

A static disc above a rectangle

The first case is a simple and static test-case where a disc of radius r is positioned at a distance
h above a rectangle, see Figure 6. Only the level-set function and the geometrical quantities
are considered. This means that none of the governing equations are solved (equations (1), (2),
(10), (11) and (13)). When h is small, the kinks along the dotted line will affect the discretization
stencils as has been explained.

The parameters for this case is r = 0.25 m and h = ∆x. The domain is 1.5 m× 1.5m, and the
straight line is positioned at y = 0.75 m. The grid size is 101× 101.

Figure 7 shows a comparison of the calculated normal vectors. The standard discretization is
depicted with red vectors and the direction difference is depicted with green vectors. The figure
shows that the standard discretization yields much less accurate results along the kink region
than the direction difference.

Figure 8 shows a comparison of the calculated curvatures. Note that the curvature is only cal-

(a) Standard discretization (b) Improved method with curve fitting

Figure 8: A comparison of curvature calculations between standard discretization and the improved
method. The standard discretization leads to large errors in the curvatures in areas that are close to
two interfaces.

culated at grid points adjacent to the interfaces. At the grid points where it is not calculated,
it is set to zero. The figure shows that the standard discretization leads to large errors in the
calculated curvatures in the areas that are close to two interfaces. In particular note that the sign
of the curvature becomes wrong. The analytic curvature for this case is κ = −1/r = −4, and
the curvature spikes seen for the standard discretization is in the order of |κ| ∼ 1

∆x
' 67.3.

These spikes will lead to large errors in the pressure jumps through Equation (17). The effect of
these errors will become more clear in the next case.

r

h

d

un = U

us = −U

Figure 9: The drop in shear setup.

Drop collision in shear flow

The second case considers drop collision in shear flow, see Figure 9. The drops both have a
radius r, and they are initially placed at a distance d = 5r apart in a shear flow where the flow
velocity changes linearly from us = −U < 0 at the bottom wall to un = U at the top wall.
The computational domain is 12r × 8r, and the grid size is 241 × 161. The size of the grid is
chosen to be relatively coarse, such that the difference between the standard discretization of
the curvature and the curve-fitting based discretization is properly revealed.

The purpose of this case is to study the behaviour of the level-set method, in particular the
calculation of the curvatures, when the drops are in close proximity. It is therefore a natural
simplification to only consider the case where the density difference and the viscosity difference
of the phases are zero, i.e. there is no jump in density or viscosity across the interface.

The flow is governed by the Reynolds number and the Capillary number, which in the current
case can be defined by

Re =
ρUr

4µ
, (39)

Ca =
µU

4σ
. (40)

In the following results the Reynolds and the Capillary numbers were set to

Re = 10, Ca = 0.025. (41)

The choice was made such that the drops would not be severely deformed in the shear flow. The
radius of the drops was r = 0.5 m, and the distance from the center line to the drop centers was
h = 0.84r = 0.42 m.

Figure 10 shows a comparison of the interface evolution and the curvature between the standard
discretization and the improved discretization. The top and bottom rows show the evolution
for the standard discretization and the improved discretization, respectively. The kinks between
the drops lead to curvature spikes with the standard discretization, whereas the improved dis-
cretization calculates the curvature along the kink in a much more reliable manner. The curva-
ture spikes are seen to prevent coalescence. This is due to the effect they have on the pressure
field.

t = 2.30 s t = 2.60 s t = 2.75 s t = 2.85 s

t = 2.95 s t = 3.10 s t = 3.40 s

κ

Figure 10: A comparison between the standard discretization (top row) and the improved discretization
(bottom row) of the interface evolution and the curvature κ of drop collision in shear.

(a) Standard discretization (b) Improved method

Figure 11: Comparison of the pressure field in the thin film between the droplets at t = 2.75 s. The
contour legends indicate the pressure in Pa.

The errors in the curvature with the standard discretization lead to an erroneous pressure field
between the drops that prevents coalescence, c.f. Equation (16). Figure 11 shows the pressure
field at t = 2.75 s. It can be seen that the pressure field for the standard discretization is distorted
in the thin-film region. This distortion in the pressure leads to a flow in the film region which
suppresses coalescence. The corresponding result for the improved method shows that the pres-
sure is not distorted. It is high in the center of the thin-film region and lower at the edges. The
pressure change induces a flow out of the region which is more as expected.

Conclusions

This article has implemented improved discretization schemes for the normal vector and the cur-
vature of the interface between two phases. The normal vector was discretized by the direction
difference which is presented in [11]. The curvature was discretized with a scheme that is based
on the geometry-aware discretization presented in [12]. The main advantage of the present dis-
cretization method for the curvature is that it is relatively straightforward to implement in to an
existing code since it does not require a change of the existing framework.

The implementation of the curvature discretization have been described in detail. The improved
schemes are compared with the standard discretization in two different cases. The first case is a
direct comparison of the schemes for a case with no flow. The second case compares the evolu-
tion of two drops colliding in shear flow. Both tests demonstrate that the standard discretization
of the normal vector and the curvature leads to erroneous behaviour at the kink locations. The
second case shows that this behaviour prevents coalescence from occurring due to an erroneous
pressure field. The curvature spikes at the kink regions are not observed with the improved
discretization schemes, and coalescence is achieved for the second case.

Acknowledgements

This work was financed through the Enabling Low-Emission LNG Systems project, and the
author acknowledge the contributions of GDF SUEZ, Statoil and the Petromaks programme of
the Research Council of Norway (193062/S60).

The author acknowledges Bernhard Müller (NTNU) and Svend Tollak Munkejord (SINTEF
Energy Research) for valuable feedback on the manuscript. The author also acknowledges Leif
Amund Lie and Eirik Svanes for several good discussions.

References
[1] D.Adalsteinsson and J. A.Sethian A fast level set method for propagating interfaces Journal of

Computational Physics, vol.118, 269–277, 1995.

[2] O.Desjardins, V.Moureau and H.Pitsch An accurate conservative level set/ghost fluid method for
simulating turbulent atomization Journal of Computational Physics, vol.227, 8395–8416, 2008.

[3] F. N.Fritsch and R. E.Carlson Monotone piecewise cubic interpolation SIAM Journal of Numerical
Analysis, vol.17(2), 238–246, 1980.

[4] S.Gottlieb, C. W.Shu and E.Tadmor Strong stability-preserving high-order time discretization
methods SIAM Review, vol.43, 89–112, 2001.

[5] E. B.Hansen Numerical Simulation of Droplet Dynamics in the Presence of an Electric Field Doc-
toral thesis, Norwegian University of Science and Technology, Department of Energy and Process
Engineering, Trondheim, Nov. 2005 ISBN 82-471-7318-2.

[6] M.Herrmann A balanced force refined level set grid method for two-phase flows on unstructured
flow solver grids Journal of Computational Physics, vol.227, 2674–2706, 2008.

[7] M.Kang, R. P.Fedkiw and X.-D.Liu A boundary condition capturing method for multiphase in-
compressible flow Journal of Scientific Computing, vol.15(3), 323–360, 2000.

[8] S.Lang Algebra Graduate texts in mathematics. Springer, 2002.

[9] X.-D.Liu, R. P.Fedkiw and M.Kang A boundary condition capturing method for poisson’s equation
on irregular domains Journal of Computational Physics, vol.160, 151–178, 2000.

[10] W. E.Lorensen and H. E.Cline Marching cubes: A high resolution 3D surface construction algo-
rithm Computer Graphics, vol.21(4), 163–169, July 1987.

[11] P.Macklin and J.Lowengrub Evolving interfaces via gradients of geometry-dependent interior pois-
son problems: Application to tumor growth Journal of Computational Physics, vol.203, 191–220,
2005.

[12] P.Macklin and J.Lowengrub An improved geometry-aware curvature discretziation for level set
methods: Application to tumor growth Journal of Computational Physics, vol.215, 392–401, 2006.

[13] P.Macklin and J. S.Lowengrub A new ghost cell/level set method for moving boundary problems:
Application to tumor growth Journal of Scientific Computing, vol.35, 266–299, 2008.

[14] E.Marchandise, P.Geuzaine, N.Chevaugeon and J.-F.Remacle A stabilized finite element method
using a discontinuous level set approach for the computation of bubble dynamics Journal of Com-
putational Physics, vol.225, 949–974, 2007.

[15] S.Osher and R. P.Fedkiw The Level-Set Method and Dynamic Implicit Surfaces Springer, 2003.

[16] S.Osher and J. A.Sethian Fronts propagating with curvature dependent speed: Algorithms based
on Hamilton-Jacobi formulations Journal of Computational Physics, vol.79, 12–49, 1988.

[17] H.Prautzsh, W.Boehm and M.Paluszny Bézier and B-spline Techniques Springer, 2002.

[18] D.Salac and W.Lu A local semi-implicit level-set method for interface motion Journal of Scientific
Computing, vol.35, 330–349, 2008.

[19] J. A.Sethian and P.Smereka Level set methods for fluid interfaces Annual Review of Fluid Me-
chanics, vol.35, 341–372, 2003.

[20] M.Sussman, P.Smereka and S.Osher A level set approach for computing solutions to incompress-
ible two-phase flow Journal of Computational Physics, vol.114, 146–159, 1994.

[21] B.Waerden, E.Artin and E.Noether Algebra Number v. 1 in Algebra. Springer-Verlag, 2003.

[22] Z.Wang and A. Y.Tong A sharp surface tension modeling method for two-phase incompressible
interfacial flows International Journal for Numerical Methods in Fluids, vol.64, 709–732, 2010.

[23] J.-J.Xu, Z.Li, J.Lowengrub and H.Zhau A level set method for interfacial flows with surfactants
Journal of Computational Physics, vol.212(2), 590–616, March 2006.

[24] H. K.Zhao, T.Chan, B.Merriman and S.Osher A variational level set approach to multiphase motion
Journal of Computational Physics, vol.127, 179–195, 1996.

B
Curvature calculations for the

level-set method

K. Y. Lervåg and Å. Ervik
Published in ENUMATH 2011 proceedings volume, Springer, 2013. ISBN:
978-3642331336.

99

Curvature calculations for the level-set method

Karl Yngve Lervåg and Åsmund Ervik

Abstract The present work illustrates a difficulty with the level-set method to accur-
ately capture the curvature of interfaces in regions that are of equal distance to two
or more interfaces. Such regions are characterized by kinks in the level-set function
where the derivative is discontinuous. Thus the standard discretization scheme is not
suitable. Three discretization schemes are outlined that are shown to perform better
than the standard discretization on two selected test cases.

1 Introduction

This article addresses the calculation of interface curvature with the level-set method.
In the level-set method, the normal vector and the curvature of an interface can be
calculated directly from the level-set function. These calculations are usually done
with standard finite-difference methods, typically the second-order central differ-
ence scheme (CD-2) [10, 12, 4].

A problem with these calculations may arise when the level-set function is
defined to be a signed-distance function. The signed-distance function is in general
not smooth, as can be seen in Figure 1. Here the derivative of the level-set function
will be discontinuous at the regions that are of equal distance to more than one inter-
face. When two droplets as in Figure 1 are in near contact, such discontinuities, or
kinks, may lead to significant errors when calculating the interface geometries with
standard finite difference methods.

Karl Yngve Lervåg, e-mail: karl.yngve@lervag.net
Norwegian University of Science and Technology, Department of Energy and Process Engineering,
Kolbjørn Hejes veg 2, NO-7491 Trondheim, Norway.

Åsmund Ervik, e-mail: aaervik@gmail.com
SINTEF Energy Research, Sem Sælands veg 11, NO-7465 Trondheim, Norway.
Norwegian University of Science and Technology, Department of Physics, Høgskoleringen 5, NO-
7491 Trondheim, Norway.

1

2 Karl Yngve Lervåg and Åsmund Ervik

ϕ(x)

(a) Droplets in near contact

ϕ(x)

x

0

(b) A slice of the level-set function

Fig. 1 (a) Two droplets in near contact. The dotted line marks a region where the derivative of the
level-set function is not defined. (b) A one-dimensional slice of the level-set function ϕ(x). The
dots mark points where the derivative of ϕ(x) is not defined.

2 Governing equations

2.1 Navier-Stokes equations for two-phase flow

Consider a domain Ω = Ω+ ∪ Ω−, where Ω+ and Ω− denote regions occupied
by two respective phases, divided by an interface Γ = δΩ+∩δΩ−. The governing
equations for incompressible and immiscible two-phase flow in the domain Ω with
an interface force on the interface Γ are

∇ ·u = 0, (1)

ρ
(

∂u
∂ t

+u ·∇u
)
=−∇p+∇ · (µ∇u)+ρfb +

∫

Γ
σκnδ (x−xI(s))ds. (2)

Here u is the velocity vector, p is the pressure, fb is the specific body force, σ is
the coefficient of surface tension, κ is the curvature, n is the normal unit vector
which points into Ω+, δ is the Dirac delta function, xI(s) is a parametrization of
the interface, ρ is the density and µ is the viscosity.

It is assumed that the density and viscosity are constant in each phase, but may
be discontinuous across the interface. The jump conditions across the interface are

[[u]] = 0, (3)
[[p]] = 2[[µ]]n ·∇u ·n+σκ, (4)

[[µ∇u]] = [[µ]]
(
(n ·∇u ·n)nn+(n ·∇u · t)nt+(n ·∇u · t)tn+(t ·∇u · t)tt

)
, (5)

where t is the tangent vector along the interface and [[·]] denotes the jump across an
interface, that is [[µ]]≡ µ+−µ−. Note that ∇u and (e.g.) nt are rank-2 tensors. See
[4, 3] for more details and a derivation of the interface conditions.

Curvature calculations for the level-set method 3

2.2 Level-set method

The interface is captured with the zero level set of the level-set function ϕ(x, t),
which is prescribed as a signed-distance function. It is updated by solving an advec-
tion equation for ϕ ,

∂ϕ
∂ t

+ û ·∇ϕ = 0, (6)

where û is the velocity at the interface, extended to the entire domain by solving

∂ û
∂τ

+S(ϕ)n ·∇û = 0, ûτ=0 = u, (7)

to steady state, cf. [15]. Here τ is a pseudo-time and S(ϕ) = ϕ/(ϕ2 +2∆x2)1/2 is a
smeared sign function which is equal to zero at the interface.

When (6) is solved numerically, the level-set function loses its signed-distance
property due to numerical dissipation. The level-set function is therefore reinitial-
ized regularly by solving

∂ϕ
∂τ

+S(ϕ0)(|∇ϕ|−1) = 0,

ϕ(x,0) = ϕ0(x),
(8)

to steady state as proposed in [13], where ϕ0 is the level-set function that needs to
be reinitialized.

Normal vectors and curvatures can be readily calculated from the level-set func-
tion as

n =
∇ϕ
|∇ϕ| and κ = ∇ ·

(
∇ϕ
|∇ϕ|

)
. (9)

3 Numerical methods

The Navier-Stokes equations (1) and (2) are solved using a projection method on a
staggered grid as described in [3, Chapter 5.1.1]. The spatial terms are discretized
with CD-2, except for the convective terms which are discretized by a fifth-order
WENO scheme. A third-order strong stability-preserving Runge-Kutta (SSP RK)
method is used for the momentum equation (2), and a second-order SSP-RK method
is used for the level-set equations (6) to (8) [2].

The interface conditions are treated in a sharp fashion with the Ghost-Fluid
Method (GFM), which incorporates the discontinuities into the discretization sten-
cils by altering the stencils close to the interfaces, cf. [1, 4, 6]. When using the GFM,
the curvature is linearly interpolated from the grid points to the interface before it is
used in the discretization stencils for the flow equations unless otherwise stated.

4 Karl Yngve Lervåg and Åsmund Ervik

4 Curvature discretizations

The normal vector and the curvature (9) are typically discretized with the CD-2 at
the grid points, cf. [4, 12, 14]. A problem with this is that CD-2 will not converge
across kinks, and it may therefore introduce potentially large errors. The errors in the
curvature will lead to erroneous pressure jumps at the interfaces, and the errors in the
normal vector affect both the discretized interface conditions and the extrapolated
velocity (7) which is used in the advection equation (6).

A direction difference scheme is presented in [7] which uses a combination of
one-sided and central difference schemes to ensure that the differences never cross
kinks. The same scheme is used in the present work to calculate the normal vector.
The idea is choose which difference scheme to use based on the values of a quality
function,

Q(x) = |1−|∇ϕ(x)|| . (10)

The quality function is itself calculated with central differences. It effectively detects
the regions where the level-set function differs from the signed-distance function.
Let Qi, j = Q(xi, j) and η > 0, then Qi, j > η can be used to detect kinks. The para-
meter η is tuned such that the quality function will detect all the kinks. The value
η = 0.1 is used in the present work.

In the following, three different improved discretization schemes for the curvature
are outlined. Note that the first two schemes use the quality function to detect when
the improved schemes should be used in favor of CD-2. Also note that the curvature
is only calculated at grid points in a narrow band along the interface. At the points
where it is not calculated, it is set to zero.

Macklin and Lowengrub’s method (MLM) was presented in [8, 9]. With this
method, the interface is parametrized with a second-order least-squares polynomial.
The curvature is then calculated directly from the parametrization at the desired
position on the interface.

To enable easy comparison with the other methods, the estimated curvature val-
ues are extrapolated from the interface to the adjacent grid points.

Lervåg’s method (LM) was presented in [5] and is based on MLM, specifically
[8]. The curve parametrization is used to create a local level-set function from which
the curvature is calculated on the grid points using CD-2.

The main difference from MLM is that the curvature is calculated at the grid
nodes and then interpolated to the interface afterwards. This is argued as a slight
simplification of MLM, although an important consequence is that it becomes more
important to have an accurate representation of the interface. Instead of using a
least-squares parametrization, LM uses monotone cubic Hermite splines.

Salac and Lu’s method (SLM) was presented in [11] and is a different approach
than MLM and LM. Consider the 2D case of two circles in near contact, see Fig-
ure 2. SLM reconstructs two independent level-set functions φ1 and φ2 for the two
circles. The reconstructed functions are then used to calculate the curvature. Since
the two reconstructed cones have no kinks, the curvature can be calculated with CD-
2. For points close to both circles, a weighted average of the curvature from φ1 and

Curvature calculations for the level-set method 5

Fig. 2 Simple sketch of how SLM works. The two circles are represented by separate level-set
functions.

from φ2 is stored. For points close to only one circle, the appropriate curvature is
stored. The weighted average is κ = (κ1φ2 +κ2φ1)/(φ1 +φ2), where the subscripts
refer to values calculated on the reconstructed level-set functions. This weighting
will prefer κ1 when closest to circle 1, and vice versa.

5 Comparison of the discretization schemes

5.1 A static disc above a rectangle

Consider a disc of radius r positioned at a distance h above a rectangle, see Fig-
ure 3(a). In this case, only the level-set function and the geometrical quantities are
considered. None of the governing equations (1), (2) and (6) to (8) are solved.

The parameters used for this case are r = 0.25 m and h = ∆x. The domain is
1.5 m×1.5m, and the rectangle height is 0.75 m. The grid size is 101×101.

Figure 4 shows a comparison of the calculated curvatures. The figure shows that
CD-2 leads to large errors in the calculated curvatures in the areas that are close to
two interfaces. In particular note that the sign of the curvature becomes wrong. The
analytic curvature for this case is κ =−1/r =−4, and the curvature spikes seen for
the standard discretization is of the order of |κ| ∼ 1

∆x ' 67.3. All of the improved
methods give much better estimates of the curvature, as expected.

6 Karl Yngve Lervåg and Åsmund Ervik

r

h

x

y

(a) Initial setup, first test case

r

h
d

un =U

us =−U

(b) Initial setup, second test case

Fig. 3 Initial setup for the circle and rectangle test, (a), and for the drop collision in shear flow test,
(b). In (a), the dotted line depicts the kink location, and there is no flow. In (b) the flow is indicated
by the velocity profile.

(a) CD-2 (b) MLM (c) LM (d) SLM

Fig. 4 A comparison of curvature calculations between standard discretization and the improved
method. The standard discretization leads to large errors in the curvatures in areas that are close to
two interfaces.

5.2 Drop collision in shear flow

Now consider two drops in a shear flow as depicted in Figure 3(b). Both drops have
radius r and are initially placed a distance d = 5r apart in the shear flow, where the
flow velocity changes linearly from us = −U < 0 at the bottom wall to un = U at
the top wall. The computational domain is 12r×8r, and the grid size is 241×161.
The density and viscosity differences of the two phases are zero.

The shear flow is defined by the Reynolds number and the Capillary number,

Re =
ρUr

µ
and Ca =

µU
σ
. (11)

The following results were obtained with r = 0.5 m, h = 0.84r = 0.42 m, Re = 10
and Ca = 0.025.

Figure 5 shows a comparison of the interface evolution and the curvature between
the different discretization schemes. The first column shows the results with the
CD-2. The next three columns show the results with the three improved schemes re-

Curvature calculations for the level-set method 7

t = 2.30 s

t = 2.75 s

t = 3.10 s

(a) CD-2 (b) MLM (c) LM (d) SLM

κ [1/m]

Fig. 5 A comparison between the different discretization schemes of the interface evolution and
the curvature κ of drop collision in shear flow.

spetively. The kinks between the drops lead to curvature spikes with CD-2, whereas
the improved discretizations calculate the curvature along the kink in a much more
reliable manner. LM and SLM give very similar results. This is most likely due to
the fact that both these methods calculate the curvature at the grid points and then
interpolate, resulting in very similar algorithms as long as the curvature calculations
are accurate. MLM on the other hand removes the interpolation step and calculates
the curvature directly on the interface. Note that the difference is mainly that the
MLM results in slightly earlier coalescence in the given case.

The curvature spikes in obtained with CD-2 are seen to prevent coalescence. This
is due to the effect they have on the pressure field as displayed in Figure 6. Here it is
shown that the errors in the curvature with CD-2 lead to an erroneous pressure field
between the drops. The distortion of the pressure in the thin-film region leads to a
flow into the film region that suppresses coalescence. The corresponding result with
LM shows that when the pressure is not distorted, it leads to a flow directed out of
the thin-film region.

8 Karl Yngve Lervåg and Åsmund Ervik

(a) CD-2 (b) LM

Fig. 6 Comparison of the pressure field in the thin film between the droplets at t = 2.75 s. The
contour legends indicate the pressure in Pa.

6 Conclusions

Three discretization schemes have been implemented to accurately calculate the
curvature in regions close to kinks in the level-set function. It has been demonstrated
in two test cases that the standard second-order central difference scheme (CD-2)
leads to relatively severe errors across the kinks. Macklin and Lowengrub’s method
(MLM), Lervåg’s method (LM), and Salac and Lu’s method (SLM) all give better
results. In the second test case where two droplets are put in a shear flow, CD-2
gives a qualitatively different result than all the three improved schemes due to an
erroneous pressure field in the thin film region.

Acknowledgements

The authors acknowledge Bernhard Müller (Norwegian University of Science and
Technology) and Svend Tollak Munkejord (SINTEF Energy Research) for valuable
feedback on the manuscript.

This work was financed through the Enabling Low-Emission LNG Systems pro-
ject, and the authors acknowledge the contributions of GDF SUEZ, Statoil and the
Petromaks programme of the Research Council of Norway (193062/S60).

References

1. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to
interfaces in multimaterial flows (the ghost fluid method). Journal of Computational Physics
152(2), 457–492 (1999). DOI 10.1006/jcph.1999.6236

Curvature calculations for the level-set method 9

2. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization
methods. SIAM Review 43, 89–112 (2001)

3. Hansen, E.B.: Numerical simulation of droplet dynamics in the presence of an electric field.
Doctoral thesis, Norwegian University of Science and Technology, Department of Energy and
Process Engineering, Trondheim (2005). ISBN 82-471-7318-2

4. Kang, M., Fedkiw, R.P., Liu, X.D.: A boundary condition capturing method for multiphase
incompressible flow. Journal of Scientific Computing 15(3), 323–360 (2000)

5. Lervåg, K.Y.: Calculation of interface curvature with the level-set method. In: Sixth National
Conference on Computational Mechanics MekIT’11 (Trondheim, Norway) (23-24 May 2011)

6. Liu, X.D., Fedkiw, R.P., Kang, M.: A boundary condition capturing method for Poisson’s
equation on irregular domains. Journal of Computational Physics 160, 151–178 (2000)

7. Macklin, P., Lowengrub, J.: Evolving interfaces via gradients of geometry-dependent interior
Poisson problems: Application to tumor growth. Journal of Computational Physics 203, 191–
220 (2005)

8. Macklin, P., Lowengrub, J.: An improved geometry-aware curvature discretziation for level
set methods: Application to tumor growth. Journal of Computational Physics 215, 392–401
(2006)

9. Macklin, P., Lowengrub, J.S.: A new ghost cell/level set method for moving boundary prob-
lems: Application to tumor growth. Journal of Scientific Computing 35, 266–299 (2008)

10. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: Algorithms based
on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)

11. Salac, D., Lu, W.: A local semi-implicit level-set method for interface motion. Journal of
Scientific Computing 35, 330–349 (2008)

12. Sethian, J.A., Smereka, P.: Level set methods for fluid interfaces. Annual Review of Fluid
Mechanics 35, 341–372 (2003)

13. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incom-
pressible two-phase flow. Journal of Computational Physics 114, 146–159 (1994)

14. Xu, J.J., Li, Z., Lowengrub, J., Zhao, H.K.: A level set method for interfacial flows with
surfactants. Journal of Computational Physics 212(2), 590–616 (2006)

15. Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase
motion. Journal of Computational Physics 127, 179–195 (1996)

C
Calculation of the interface

curvature and normal vector with
the level-set method

K. Y. Lervåg, B. Müller, and S. T. Munkejord
Published in Computers and Fluids, volume 84 (2013), 218–230.

111

Calculation of the interface curvature and normal vector

with the level-set method

Karl Yngve Lerv̊aga,∗, Bernhard Müllera, Svend Tollak Munkejordb

aDepartment of Energy and Process Engineering, Norwegian University of Science and
Technology, NO-7491 Trondheim, Norway

bSINTEF Energy Research, P.O. Box 4761 Sluppen, NO-7465 Trondheim, Norway

Abstract

This article addresses the use of the level-set method for capturing the in-
terface between two fluids. One of the advantages of the level-set method
is that the curvature and the normal vector of the interface can be readily
calculated from the level-set function. However, in cases where the level-set
method is used to capture topological changes, the standard discretization
techniques for the curvature and the normal vector do not work properly.
This is because they are affected by the discontinuities of the signed-distance
function half-way between two interfaces. This article addresses the calcula-
tion of normal vectors and curvatures with the level-set method for such cases.
It presents a discretization scheme based on the geometry-aware curvature
discretization by Macklin and Lowengrub [1]. As the present scheme is inde-
pendent of the ghost-fluid method, it becomes more generally applicable, and
it can be implemented into an existing level-set code more easily than Mack-
lin and Lowengrub’s scheme [1]. The present scheme is compared with the
second-order central-difference scheme and with Macklin and Lowengrub’s
scheme [1], first for a case with no flow, then for a case where two drops
collide in a 2D shear flow, and finally for a case where two drops collide
in an axisymmetric flow. In the latter two cases, the Navier-Stokes equa-
tions for incompressible two-phase flow are solved. The article also gives a
comparison of the calculation of normal vectors with the direction difference
scheme presented by Macklin and Lowengrub in [2] and with the present dis-

∗Corresponding author
Email address: karl.y.lervag@ntnu.no (Karl Yngve Lerv̊ag)
URL: http://folk.ntnu.no/lervag (Karl Yngve Lerv̊ag)

Preprint submitted to Computers and Fluids April 9, 2013

cretization scheme. The results show that the present discretization scheme
yields more robust calculations of the curvature than the second-order cen-
tral difference scheme in areas where topological changes are imminent. The
present scheme compares well to Macklin and Lowengrub’s method [1]. The
results also demonstrate that the direction difference scheme [2] is not always
sufficient to accurately calculate the normal vectors.

Keywords: Level-set method, Curvature discretization, Normal-vector
discretization, Curve-fitting discretization scheme, Finite differences,
Ghost-fluid method.

1. Introduction

The level-set method was introduced by Osher and Sethian [3]. It is
designed to implicitly track moving interfaces through an isocontour of a
function defined in the entire domain. In particular, it is designed for prob-
lems in multiple spatial dimensions in which the topology of the evolving
interface changes during the course of events, cf. [4].

This article addresses the calculation of interface geometries with the
level-set method. This method allows us to calculate the normal vector
and the curvature of an interface directly as the first and second derivatives
of the level-set function. These calculations are typically done with stan-
dard finite-difference methods. Since the level-set function is chosen to be
a signed-distance function, in most cases it will have areas where it is not
smooth. Consider for instance two colliding drops where the interfaces are
captured with the level-set method, see Figure 1. The derivative of the level-
set function will not be defined at the points outside the drops that have
an equal distance to both drops. When the drops are in near contact, this
discontinuity in the derivative will lead to significant errors when calculating
the interface geometries with standard finite-difference methods. For conve-
nience the areas where the derivative of the level-set function is not defined
will hereafter be referred to as kinks.

To the authors knowledge, this issue was first described in [2], where
the level-set method was used to model tumour growth. Here Macklin and
Lowengrub presented a direction difference to treat the discretization across
kinks for the normal vector and the curvature. They later presented an
improved method where curve fitting was used to calculate the curvatures
[1]. This was further expanded to include the normal vectors [5].

2

An alternative method to avoid the kinks is presented in [6], where a
level-set extraction technique is presented. This technique uses an extraction
algorithm to reconstruct separate level-set functions for each distinct body.

Accurate calculation of the curvature is important in many applications,
in particular in curvature-driven flows. There are several examples in the
literature of methods that improve the accuracy of the curvature calcula-
tions, but that do not consider the problem with the discretization across
the kinks. The authors in [7] use a coupled level-set and volume-of-fluid
method based on a fixed Eulerian grid, and they use a height function to cal-
culate the curvatures. In [8] a refined level-set grid method is used to study
two-phase flows on structured and unstructured grids for the flow solver.
An interface-projected curvature-evaluation method is presented to achieve
converging calculation of the curvature. Marchandise et. al [9] adopt a dis-
continuous Galerkin method and a pressure-stabilized finite-element method
to solve the level-set equation and the Navier-Stokes equations, respectively.
They develop a least-squares approach to calculate the normal vector and the
curvature accurately, as opposed to using a direct derivation of the level-set
function. This method is used by Desjardins et. al in [10], where they show
impressive results for simulations of turbulent atomization.

This article is a continuation of the work presented in [11]. It applies the
level-set method and the ghost-fluid method to incompressible two-phase flow
in two dimensions. A curve-fitting discretization scheme is presented which
is based on the geometry-aware discretization given in [1]. This scheme
is mainly applied to the curvature discretization. The normal vectors are
calculated both with the direction difference described in [2] and with a
combination of the direction difference and the curve-fitting discretization

ϕ(x)

(a) Drops in near contact

ϕ(x)

x

0

(b) A slice of the level-set function

Figure 1: (a) Two drops in near contact. The dotted line marks a region where the
derivative of the level-set function is not defined. (b) A one-dimensional slice of the level-
set function ϕ(x). The dots mark points where the derivative of ϕ(x) is not defined.

3

scheme.
The main advantage of the present scheme compared to the geometry-

aware discretization [1] is that it is independent of the ghost-fluid method.
That is, in [1] Macklin and Lowengrub calculate the curvature values directly
on the interface when it is needed by the ghost-fluid method, whereas we
compute the curvature values at the global grid points, indendent of the
ghost-fluid method. Because of this, the scheme can be implemented more
easily into existing Navier-Stokes codes employing the level-set method, since
only small parts of the existing codes need modification. It is also more
generally applicable, for instance it can be used with the continuum surface-
force method [15]. Further, it allows for more accurate curvature values in
models that require curvature values on the grid instead of on the interface,
e.g. surfactant models [12–14].

The article starts by briefly describing the governing equations for two-
phase flow and the level-set method in Section 2. It continues in Section 3
with a description of the numerical methods that are used for their solution.
Then the discretization schemes for the normal vector and the curvature are
presented in Section 4, followed by a detailed description of the method for
curvature discretization in Section 5. Section 6 gives a convergence test and
a comparison of the present discretization scheme with the second-order cen-
tral difference scheme and Macklin and Lowengrub’s scheme [1], first on static
interfaces in near contact, then on two drops colliding in a 2D shear flow,
and finally on a case where two drops collide in an axisymmetric flow. The
section is concluded with a comparison of the direction difference scheme [2]
with a combination of the direction difference and the curve-fitting discretiza-
tion schemes for calculating normal vectors. Finally in Section 7 concluding
remarks are made.

2. Governing equations

2.1. Navier-Stokes equations for two-phase flow

Consider a two-phase domain Ω = Ω+ ∪ Ω− where Ω+ and Ω− denote
the regions occupied by the respective phases. The domain is divided by an
interface Γ = δΩ+ ∩ δΩ− as illustrated in Figure 2. The governing equations
for incompressible and immiscible two-phase flow in the domain Ω with an

4

Γ
Ω+

Ω−

Figure 2: Illustration of a two-phase domain: The interface Γ separates the two phases,
one in Ω+ and the other in Ω−.

interface force on the interface Γ can be stated as

∇ ·u = 0, (1)

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p+ ∇ · (µ (∇u+ (∇u)T

))

+ ρf b +

∫

Γ

σκn δ(x− xI(s)) ds, (2)

where u is the velocity vector, p is the pressure, f b is the specific body force, σ
is the coefficient of surface tension, κ is the curvature, n is the normal vector
which points to Ω+, δ is the Dirac Delta function, xI is a parametrization
of the interface, ρ is the density and µ is the viscosity. These equations are
often called the Navier-Stokes equations for incompressible two-phase flow.

It is assumed that the density and the viscosity are constant in each phase,
but they may be discontinuous across the interface. The interface force and
the discontinuities in the density and the viscosity lead to a set of interface
conditions,

[u] = 0, (3)

[p] = 2[µ]n ·∇u ·n+ σκ, (4)

[µ∇u] = [µ]
(
(n ·∇u ·n)n⊗ n+ (n ·∇u · t)n⊗ t
− (n ·∇u · t)t⊗ n+ (t ·∇u · t)t⊗ t), (5)

[∇p] = 0, (6)

where t is the tangent vector along the interface, ⊗ denotes the dyadic prod-
uct, and [·] denotes the jump across an interface, that is

[µ] ≡ µ+ − µ−. (7)

5

See [16, 17] for more details and a derivation of the interface conditions.

2.2. Level-set method

The interface is captured with the zero level set of the level-set func-
tion ϕ(x, t), which is prescribed as a signed-distance function. That is, the
interface is given by

Γ = { (x, t) | ϕ(x, t) = 0 }, x ∈ Ω, t ∈ R+, (8)

and for any t ≥ 0,

ϕ(x, t)

< 0 if x ∈ Ω−

= 0 if x ∈ Γ
> 0 if x ∈ Ω+

. (9)

The interface is updated by solving an advection equation for ϕ,

∂ϕ

∂t
+ û ·∇ϕ = 0, (10)

where û is the velocity at the interface extended to the entire domain. The
interface velocity is extended from the interface to the domain by solving

∂û

∂τ
+ S(ϕ)n ·∇û = 0, ûτ=0 = u, (11)

to steady state, cf. [18]. Here τ is pseudo-time and S is a smeared sign
function which is equal to zero at the interface,

S(ϕ) =
ϕ√

ϕ2 + 2∆x2
. (12)

When equation (10) is solved numerically, the level-set function loses its
signed-distance property due to numerical dissipation. The level-set function
is therefore reinitialized regularly by solving

∂ϕ

∂τ
+ S(ϕ0)(|∇ϕ| − 1) = 0,

ϕ(x, 0) = ϕ0(x),
(13)

to steady state as proposed in [19]. Here ϕ0 is the level-set function that
needs to be reinitialized.

6

One of the advantages of the level-set method is that normal vectors and
curvatures can be readily calculated from the level-set function, i.e.

n =
∇ϕ

|∇ϕ| , (14)

κ = ∇ ·
(∇ϕ

|∇ϕ|

)
. (15)

3. Numerical methods

The Navier-Stokes equations, (1) and (2), are solved by a projection
method on a staggered grid as described in [17, Chapter 5.1.1]. The spatial
terms are discretized by the second-order central difference scheme, except
for the convective terms which are discretized by a fifth-order WENO scheme.
The temporal discretization is done with explicit strong stability-preserving
Runge-Kutta (SSP RK) schemes, see [20]. A three-stage third-order SSP-RK
method is used for the Navier-Stokes equations (1) and (2), and a four-stage
second-order SSP-RK method is used for the level-set equations (10), (11)
and (13).

The method presented in [21] is used to improve the computational speed.
The method is often called the narrow-band method, since the level-set func-
tion is only updated in a narrow band across the interface at each time step.

The interface conditions are treated in a sharp fashion with the Ghost-
Fluid Method (GFM), which incorporates the discontinuities into the dis-
cretization stencils by altering the stencils close to the interfaces. For in-
stance, the GFM requires that a term is added to the stencil on the right-hand
side of the Poisson equation for the pressure. Consider a one-dimensional case
where [ρ] = [µ] = 0 and where the interface lies between xi and xi+1. In this
case,

pi+1 − 2pi + pi−1

∆x2
= fk ±

σκΓ

∆x2
, (16)

where fk is the general right-hand side value and κΓ is the curvature at the
interface. The sign of the added term depends on the sign of ϕ(xi). See [16]
for more details on how the GFM is used for the Navier-Stokes equations
and [22] for a description on how to use the GFM for a variable-coefficient
Poisson equation.

The normal vector and the curvature defined by equations (14) and (15)
are typically discretized by the second-order central difference scheme, cf. [4,

7

ϕ > 0

ϕ < 0

ϕ = 0 xi
x

Figure 3: A level-set function that has one point where the derivative is discontinuous.

12, 16]. The curvatures are calculated on the grid nodes and then interpolated
with simple linear interpolation to the interface, e.g. for κΓ in equation (16),

κΓ =
|ϕi|κi+1 + |ϕi+1|κi
|ϕi|+ |ϕi+1|

. (17)

If the level-set method is used to capture non-trivial geometries, the
level-set function will in general contain areas where it is not smooth, i.e.
kinks. This is depicted in Figure 3, which shows a level-set function in a
one-dimensional domain that captures two interfaces, one on each side of the
grid point xi. The kink at xi will lead to potentially large errors with the
standard discretization both for the curvature and the normal vector. The
errors in the curvature will lead to erroneous pressure jumps at the interfaces,
and the errors in the normal vector affects both the discretized interface con-
ditions and the advection of the level-set function. If the level-set method
is used to study for example coalescence and breakup of drops, these errors
may severely affect the simulations.

It should be noted that the kinks that appear far from any interfaces are
handled by ensuring that the denominators do not become zero, as explained
in [23, Sections 2.3 to 2.4]. This works fine, since only the values of the
curvature at the grid nodes adjacent to any interface are used. Also, the
normal vector only needs to be accurate close to the interface due to the
narrow-band approach.

4. Improved discretization of geometrical quantities

The previous section explained why it is necessary to develop new dis-
cretization schemes for the normal vector and the curvature that can handle

8

kinks in the level-set function. This section will give an overview of the curve-
fitting discretization scheme and how it is applied to calculate the curvature.
It will then give a brief presentation of the direction difference which is used
to calculate the normal vector. A note is finally given on how to use the
curve-fitting discretization scheme to calculate the normal vector.

4.1. The curvature

The curvature is calculated with a discretization that is based on the
improved geometry-aware curvature discretization presented by Macklin and
Lowengrub [1]. This is a method where the curvature is calculated at the
interfaces directly with the use of a least-squares curve parametrization of
the interface. The curve parametrization is used to create a local level-set
function from which the curvature is calculated using standard discretization
techniques. The local level-set function only depends on one interface and is
therefore free of kinks.

The main motivation behind the present method is to improve the cur-
vature calculations specifically at the grid points, as these values may be
important for other models. Examples of such cases are the modelling of
interfacial flows with surfactants [12–14].

The main difference between the present method and that of Macklin and
Lowengrub [1] is that they modify the GFM to calculate the curvature at the
interface directly, whereas the present method only changes the procedure
to calculate the curvature at specific grid points. In other words, Macklin
and Lowengrub calculate κΓ in equation (16) directly with a parametrized
curve, whereas the present method uses parametrized curves to calculate κi
and κi+1. The present method is therefore independent of the GFM, which
makes it easier to adopt it into existing level-set codes.

An important consequence of not calculating the curvature directly on
the interface is that it becomes more important to have an accurate repre-
sentation of the interface. This is due to the fact that the point xi where
the curvature is calculated is not on the interface, so the calculation becomes
less local. Thus the parametrization needs to be more accurate at a larger
distance from xi. The curve-fitting discretization scheme presented here uses
monotone cubic Hermite splines to parametrize the curve. The least-square
parametrization used in [1] is only accurate very close to the point where the
curvature needs to be calculated. The Hermite spline is more accurate along
the entire interface representation.

9

The algorithm to calculate the curvature at xi,j can be summarized as
follows. The details are explained in the next section.

1. If Qi+n,j+m ≤ η, where n = −1, 0, 1 and m = −1, 0, 1, then it is safe
to use the central-difference discretization. Otherwise continue to the
next step.

2. Locate the closest interface, Γ.
3. Find a set of points x1, . . . ,xn ∈ Γ.
4. Create a parametrization γ(s) of the points x1, . . . ,xn.
5. Calculate a local level-set function based on the parametrization γ(s).
6. Use central-difference discretization on the local level-set function to

calculate the curvature.

4.2. The normal vector

This section will describe two methods to calculate the normal vector
close to kinks. The direction difference [2] will be described first. Then a
method based on the curve-fitting scheme will be presented.

4.2.1. Direction difference

The direction-difference scheme uses a quality function to ensure that the
difference stencils never cross kinks. The basic strategy is to use a combina-
tion of central differences and one-sided differences based on the values of a
quality function,

Q(x) = |1− |∇ϕ(x)|| , (18)

which is approximated with central differences. The quality function effec-
tively detects the areas where the level-set function differs from the signed-
distance function. Let Qi,j = Q(xi,j) and η > 0, then Qi,j > η can be used
to detect kinks. The parameter η is tuned such that the quality function will
detect all the kinks. The value η = 0.1 is used in the present work.

The quality function is used to define a direction function,

D(xi,j) = (Dx(xi,j), Dy(xi,j)), (19)

where

Dx(xi,j) =

−1 if Qi−1,j < η and Qi+1,j ≥ η,
1 if Qi−1,j ≥ η and Qi+1,j < η,
0 if Qi−1,j < η and Qi,j < η and Qi+1,j < η,
0 if Qi−1,j ≥ η and Qi,j ≥ η and Qi+1,j ≥ η,
undetermined otherwise.

(20)

10

Dy(xi,j) is defined in a similar manner. If Dx or Dy is undetermined, D(xi,j)
is chosen as the vector normal to ∇ϕ(xi,j). It is normalized, and the sign is
chosen such that it points in the direction of best quality. See [2] for more
details.

The direction difference is now defined as

∂xfi,j =

fi,j−fi−1,j

∆x
if Dx(xi, yj) = −1,

fi+1,j−fi,j
∆x

if Dx(xi, yj) = 1,
fi+1,j−fi−1,j

2∆x
if Dx(xi, yj) = 0,

(21)

where fi,j is a piecewise smooth function. The normal vector is calculated
using the direction difference on ϕ, which is equivalent to using central dif-
ferences in smooth areas and one-sided differences in areas close to the kinks.
This method makes sure that the differences do not cross any kinks, and the
normal vector can be accurately calculated even close to a kink.

4.2.2. Curve-fitting scheme

The direction difference is an elegant scheme which performs well in most
cases. However, it will be shown later that in some rare cases where both
direction functions are undetermined, this discretization scheme may be-
come very inaccurate. An alternative is to use the curve-fitting discretiza-
tion scheme on the normal vectors. But since this method starts by locating
the closest interface with a breadth-first search (see next section), it will be
slow when it is used far from any interfaces. It is therefore proposed to use
a combination of the direction difference and the curve-fitting discretization
scheme.

5. The curve-fitting discretization scheme

5.1. Locating the closest interface

A breadth-first search is used to to identify the closest interface, see Fig-
ure 4. Let x0 denote the starting point and x1 denote the desired point on
the closest interface. The search iterates over all the eight edges from x0 to
its neighbours and tries to locate an interface which is identified by a change
of sign of ϕ(x). If more than one interface is found, x1 is chosen to be the
point that is closest to x0. If no interfaces are located the search continues
at the next depth. The search continues in this manner until an interface is
found. Note that this algorithm does not in general return the point on the
interface which is closest to x0.

11

x0

x1

Figure 4: Sketch of a breadth-first search. The dashed lines depict the edges that are
searched first, the dotted lines depict the edges that are searched next and the solid lines
depict two interfaces. The circular dots mark where the algorithm finds interface points,
and the rectangular dot marks the point which is returned for the depicted case.

The crossing points between the grid edges and the interfaces are found
with linear and bilinear interpolation. E.g. if an interface crosses the edge
between (i, j) and (i, j + 1) at xI , the interface point is found by linear
interpolation,

xI = xi,j + θ(0,∆x), (22)

where

θ =
ϕ(xi,j)

ϕ(xi,j)− ϕ(xi,j+1)
. (23)

In the diagonal cases the interface point is found with bilinear interpolation
along the diagonal. This leads to

xI = xi,j + θ(∆x,∆x), (24)

where θ is the solution of

α1θ
2 + α2θ + α3 = 0. (25)

The α values depend on the grid cell. For instance, when searching along the
diagonal between (i, j) and (i+ 1, j + 1) the α values will be

α1 = ϕi,j − ϕi+1,j − ϕi,j+1 + ϕi+1,j+1, (26)

α2 = ϕi+1,j + ϕi,j+1 − 2ϕi,j, (27)

α3 = ϕi,j. (28)

12

5.2. Searching for points on an interface

When an interface and a corresponding point x1 on the interface are
found, the next step is to find a set of points x2, . . . ,xk, . . . ,xn on the same
interface. The points should be ordered such that when traversing the points
from k = 1 to k = n, the phase with ϕ(x) < 0 is on the left-hand side. Note
that the ordering of the points may be done after all the points are found.
Three criteria are used when searching for new points:

1. The points are located on the grid edges.

2. The distance between xk and xk+1 for all k is greater than a given
threshold µ.

3. The n points that are closest to x0 are selected, where x0 = xi,j is the
initial point where the curvature is to be calculated.

Let xk ∈ Γ ∩ [xi, xi+1) × [yj, yj+1) be given. To find a new point xk+1

on Γ, a variant of the marching-squares algorithm1 is used. Given xk and a
search direction which is either clockwise or counter clockwise, the algorithm
searches for all the points where an interface crosses the edges of the mesh
rectangle [xi, xi+1] × [yj, yj+1]. In most cases there will be two such points
and xk is one of them. xk+1 is then selected based on the search direction.
If xk+1 = xk, the search is continued in the adjacent mesh rectangle. The
search process is depicted in Figure 5(a).

In some rare cases the algorithm must handle the ambiguous case depicted
in Figure 5(b). In these cases there are four interface crossing-points and two
solutions. Either solution is valid, and it is not possible to say which solution
is better. The current implementation selects the first solution that it finds,
which will be in all practical sense a random choice. Note that the ambiguous
cases only occur when two interfaces cross a single grid cell. The ambiguity
comes from the fact that the level-set method is not able to resolve the
interfaces on a sub-cell resolution.

It was found that n = 7 points where necessary in order to ensure that
the closest points on the interface with respect to the different grid points
are captured with the spline parametrization.

1The marching-squares algorithm is an equivalent two-dimensional formulation of the
well known marching-cubes algorithm presented in [24]. The algorithm was mainly devel-
oped for use in computer graphics.

13

ϕ > 0 ϕ < 0

ϕ > 0 ϕ < 0xk+1

xk

(a) Marching squares

ϕ < 0 ϕ > 0

ϕ > 0 ϕ < 0

xk

x̂k+1

xk+1

(b) Ambiguous case

Figure 5: (a) The search starts by locating the two points where the interface crosses
the mesh rectangle. xk is the starting point, and if the search is counter clockwise it
will select xk+1 as depicted. If the search is clockwise, it will select xk+1 = xk, and the
search continues in the adjacent mesh rectangle [xi, xi+1]× [yj−1, yj]. (b) An example of
an ambiguous case. The solid black lines and the dashed black lines are two equally valid
solutions for how the interfaces cross the mesh rectangle. If the search starts at xk and
searches counter clockwise, then both x̂k+1 and xk+1 are valid solutions.

14

5.3. Curve fitting

Cubic Hermite splines are used to fit a curve to the set of points

X0,m = {x0,x1, . . . ,xm}. (29)

Let the curve parametrization be denoted γ(s) for 0 < s < 1. A cubic spline
is a parametrization where

γ(s) =

γ1(s) s0 ≤ s < s1,
γ2(s) s1 ≤ s < s2,
...
γm(s) sm−1 ≤ s ≤ sm,

(30)

where 0 = s0 < s1 < · · · < sm = 1

γ(si) = xi, 0 ≤ i ≤ m, (31)

and each interpolant γi(s) = (xi(s), yi(s)) is a third-order polynomial. A
Hermite spline is a spline where each interpolant is in Hermite form, see [25,
Chapter 4.5]. The interpolants are created by solving the equations

γi(s) = h00(s)xi−1 + h01(s)xi + h10(s)mi−1 + h11(s)mi, (32)

for 1 ≤ i ≤ m, where mi is the curve tangents and h00, h01, h10 and h11 are
Hermite basis polynomials,

h00(s) = 2s3 − 3s2 + 1,

h01(s) = s3 − 2s2 + s,

h10(s) = −2s3 + 3s2,

h11(s) = s3 − s2.

(33)

The choice of the tangents is non-unique, and there are several possible op-
tions for a cubic Hermite spline.

It is essential that the spline is properly oriented. This is because we re-
quire to find both the distance and the position of a point on the grid relative
to the spline in order to define a local level-set function. The orientation of
the spline γ(s) is defined such that when s increases, Ω− is to the left.

To ensure that our curve is properly oriented, the tangents are chosen as
described in [26]. This will ensure monotonicity for each component as long

15

as the input data is monotone. The tangents are modified as follows. First
the slopes of the secant lines between successive points are computed,

di =
xi − xi−1

si − si−1

(34)

for 1 ≤ i ≤ m. Next the tangents are initialized as the average of the secants
at every point,

mi =
di + di+1

2
(35)

for 1 ≤ i ≤ m− 1. The curve tangents at the endpoints are set to m0 = d1

and mm = dm. Finally let k pass from 1 through m − 1 and set mk =
mk+1 = 0 where dk = 0, and mk = 0 where sign(dk) 6= sign(dk+1).

5.4. Local level-set function

The local level-set function, here denoted as φ(xi,j) ≡ φi,j, is calculated
at the grid points surrounding and including x0 = xi,j. The curvature is then
calculated with the standard discretization stencil where φ is used instead of
the global level-set function, ϕ.

A precise definition of φ is

φ(xi,j) = min
s

(
d̂(xi,j,γ(s))

)
(36)

where d̂(x,γ(s)) is the signed-distance function, which is negative in phase
one and positive in phase two. This function is calculated by first finding the
minimum distance between x and γ(s) and then deciding the correct sign.
The minimum distance is found by minimizing the norm

d(x,γ(s)) = ‖x− γ(s)‖2. (37)

When γ is composed of cubic polynomials as is the case for cubic Hermite
splines, the computation of the distance requires the solution of several fifth-
order polynomial equations. Sturm’s method (see [27, Section 11.3] or [28,
Chapter XI,§2]) is employed to locate and bracket the solutions and a com-
bined Newton-Raphson and bisection method is used to refine them. The
correct sign is found by solving

sign(φ(xi,j)) = sign ((xi,j − γ(s))× tγ(s))z , (38)

where tγ(s) is the tangent vector of γ(s).

16

6. Verification and testing

This section presents results of calculating normal vectors and curvatures
with the present discretization scheme. First a convergence test is considered.
Then in the following three cases simulation results are compared with the
second-order central difference scheme and Macklin and Lowengrub’s scheme
[1]. In the final case, the direction difference [2] is compared with the curve-
fitting scheme outlined in Section 4.2.2.

6.1. Convergence test

The convergence of the present curve-fitting method is measured on a
simple test case depicted in Figure 6. Here a disc of radius r = 0.25 and
curvature κ0 = −4 is placed a distance h = 1.1∆x over a rectangle. The grid
is aligned such that a grid cell fits between the disc and the rectangle, see
Figure 7. The error for a grid of size n × n is defined as the 1-norm of the
difference between κ0 and the curvature values κi at the disc interface,

En =
1

m

m∑

i=1

|κ0 − κi|, (39)

where m is the number of curvature values along the interface. The curvature
values κi are calculated with linear interpolation (17) along the interface of
the disc.

The convergence results for several different grid sizes n are shown in
Table 1. The curvature calculated with central differences does not converge
due to an error O (1/∆x) introduced by the kink region. It is seen that the
present method converges, although the convergence order jumps between
0.6 and 3. Since h depends on the grid size, the case is slightly altered for
each grid refinement. This might be one of the reasons that the convergence
rate is slightly sporadic. Another reason is that the accuracy depends both
on the second-order discretization stencil for the curvature, and on the locally
generated level-set function. It is difficult to make a rigorous analysis of the
accuracy of the latter, since it depends on several steps as described in the
previous section. However, it is easy to see that the accuracy of the latter
depends on the alignment of the interface with respect to the grid, and in
particular the distance of the interface to the initial grid point xi,j. This
could explain the varying convergence rate.

17

r

h

x

y

Figure 6: A disc that rests a distance h over a rectangle. The dotted line depicts the kink
location.

Figure 7: The grid and the rectangle are aligned on the grid such that there is one grid
cell between the bodies.

Table 1: Convergence results for the curvature calculated for a disc that rests a distance
h = 1.1∆x above a rectangle. Results with the central difference on the left, and results
with the present method on the right.

n En order

64 1.035
128 1.213 -0.23
256 1.310 -0.11
512 1.351 -0.04

1024 1.401 -0.05
2048 1.394 0.01

n En order

64 4.172 · 10−2

128 1.123 · 10−2 1.90
256 3.950 · 10−3 1.50
512 2.583 · 10−3 0.61

1024 3.147 · 10−4 3.00
2048 1.164 · 10−4 1.40

18

Figure 8: A comparison of the normal vectors as calculated with central differences [in
red] and direction differences [in green]. The thick black lines depict the interfaces.

6.2. Disc and rectangle

Again consider the disc and rectangle, see Figure 6. It is of interest
to compare the curvature and normal vector calculations, especially in the
middle region close to the kink area. Only the level-set function and the
geometrical quantities are considered, that is none of the governing equations
is solved (equations (1), (2), (10), (11) and (13)). When h is small, the
kinks along the dotted line will affect the discretization stencils as has been
explained in Section 3.

The following results are obtained with r = 0.25 m and h = ∆x. The
domain is 1.5 m × 1.5m, and the straight line is positioned at y = 0.75 m.
The grid size is 101× 101.

Figure 8 shows a comparison of the calculated normal vectors. The results
with central differences are depicted with red vectors and the results with
direction differences are depicted with green vectors. The figure shows that
the central-difference scheme yields much less accurate results for the normal
vectors along the kink region than the direction-difference scheme.

Figure 9 shows a comparison of the calculated curvatures between the

19

central-difference scheme, Macklin and Lowengrub’s method [1], and the
present method. Note that for Macklin and Lowengrub’s method [1] the
values of the curvature at the grid points are first calculated with the central-
difference scheme. Then for the interface locations that need special treat-
ment the curvature values are copied from the interface to the adjacent grid
points. This is done in order to compare the results. In all three cases, the
curvature is set to zero at grid points that are far from any interface.

The figure shows that the present method yields similar results as Macklin
and Lowengrub’s method [1], which should be expected. Further, the central-
difference scheme leads to large errors in the calculated curvatures in the
areas that are close to two interfaces. In particular note that the sign of
the curvature becomes wrong. The analytic curvature for this case is κ =
−1/r = −4, and the curvature spikes seen with the central differences is in
the order of |κ| ∼ 1

∆x
' 67.3. These spikes will lead to large errors in the

pressure jumps through equation (4). The effect of these errors will become
more clear in the next case.

6.3. Drop collision in shear flow

The second case considers drop collision in shear flow. The initial con-
dition is sketched in Figure 10. Both drops have radius R and are initially
placed at a distance d = 5R apart in a shear flow. The initial flow velocity
changes linearly from the bottom-wall velocity us = −U < 0 to the top-wall
velocity un = U . The computational domain is 12R × 8R, and the grid size
is 241× 161.

The density and viscosity differences of the two phases are zero, and the
shear flow is defined by the Reynolds number and the Capillary number,

Re =
ρUr

µ
, Ca =

µU

σ
. (40)

The following results were obtained with Re = 10 and Ca = 0.025 for R =
0.5 m and h = 0.42 m. No-slip boundary conditions are used on all walls.
The evolution of the flow field and the pressure is simulated by solving the
Navier-Stokes equations (1) and (2) as described in Section 3.

Figure 11 shows the evolution of the interfaces and the velocity field for
a simulation where the present method is used. We observe that the drops
are deformed before they collide and that the evolution of the drops affects
the velocity field. Figure 12 shows a comparison of the interface evolution
and the curvature between the central-difference scheme and the present

20

(a) Standard (b) Macklin and Lowengrub

(c) Present

Figure 9: A comparison of curvature calculations between the central-difference scheme
(Standard), Macklin and Lowengrub’s method [1], and the present method. The central-
difference scheme leads to large errors in the curvatures in areas that are close to two
interfaces.

21

R

R

h

hd

un = U

us = −U

Figure 10: Sketch of the initial condition for the case with two drops in a shear flow.

method. The kinks between the drops again lead to curvature spikes for the
central-difference scheme, whereas the improved discretization calculates the
curvature along the kink in a much more reliable manner.

The curvature spikes in Figure 12 for the central-difference scheme are
seen to prevent coalescence. This is due to the effect they have on the pressure
field, cf. equation (16). Figure 13 shows the pressure field at t = 2.75 s. It can
be seen that the pressure field for the central-difference scheme is distorted
in the thin-film region. This distortion in the pressure leads to a flow in the
film region which suppresses coalescence. The corresponding result for the
present method shows that the pressure is not distorted. It is high in the
centre of the thin-film region and lower at the edges. The pressure change
induces a flow out of the region which is more as expected.

Finally, Figure 14 shows a comparison of Macklin and Lowengrub’s method
[1] and the present method. As can be expected, coalescence is observed also
with Macklin and Lowengrub’s method [1]. However, the time at which coa-
lescence occurs is slightly different, which might be due to small differences
in the flow of the thin film region just before coalescence.

22

t = 0.00 s t = 0.65 s

t = 1.25 s t = 1.90 s

t = 2.50 s t = 3.30 s

t = 4.10 s t = 5.00 s

Figure 11: The evolution of the velocity field and the interfaces for drop collision in shear
flow.

23

t = 2.30 s t = 2.60 s t = 2.75 s t = 2.85 s

t = 2.95 s t = 3.10 s t = 3.40 s

κ [1/m]

Figure 12: A comparison between the central-difference scheme (top row) and the present
discretization scheme (bottom row) of the interface evolution and the curvature κ of drop
collision in shear flow.

24

(a) Standard discretization (b) Improved method

Figure 13: Comparison of the pressure field in the thin film between the drops at t = 2.75 s.
The contour legends indicate the pressure in Pa.

t = 2.30 s t = 2.75 s t = 3.10 s

κ [1/m]

Figure 14: A comparison between Macklin and Lowengrub’s method [1] (top row) and
the present method (bottom row) of the interface evolution and the curvature κ of drop
collision in shear flow.

25

6.4. Drop collision in axisymmetric flow

The third case considers the collision of two drops of radius R in an
axisymmetric flow. The drops are initially placed at a distance d = R apart
in a linear flow field

u(r, z) =
r

R
U0,

v(r, z) = −2
z

R
U0.

(41)

Here r is the radial coordinate, z is the axial coordinate, and U0 is a scaling
factor of the velocity. Figure 15 shows streamlines of the initial velocity field
as well as the initial location of the drops with the centers at z = ±0.75 m.

The density and viscosity differences of the two phases are zero, and the
case is defined by the Reynolds number and the Capillary number,

Re =
ρU0R

µ
, Ca =

µU0

σ
. (42)

The governing equations (1) and (2) are solved as explained in the pre-
vious sections, with some modifications: In axisymmetry the divergence and
Laplacian operators become

∇ ·f =
1

r

∂

∂r
(rf1) +

∂f2

∂z
, (43)

∆g =
1

r

∂

∂r

(
r
∂g

∂r

)
+
∂2g

∂z2
, (44)

where the subscripts indicate vector components, that is f = (f1, f2). In
addition, one must add −u/r2 to the viscous term in the radial component
of the momentum equation, where u is the radial velocity component. Note
that equation (43) applies to the calculation of the curvature through equa-
tion (15).

The following results were obtained with Re = 0.5 and Ca = 0.025 for
R = 0.5 m and U0 = 0.5 m/s. The computational domain was 8R × 12R,
and the grid size was 120×160. The axis of symmetry coincides with the left
boundary. At the other boundaries we specify (u, v) to match equation (41).

The case is run both with the standard discretization of curvature and
with the present method. Figure 16 shows the interfaces, the curvature
values, and the velocity vectors plotted at various stages of the collision pro-
cess when the case is run with the standard discretization. The discretiza-
tion stencil for the curvature starts to cross the kink at some time between

26

r

z

-2

-1

0

1

2

1 2 3

t = 0.00 s

Figure 15: The initial drop interfaces and initial streamlines of the axisymmetric flow.

27

t = 0.30 s and t = 0.042 s, after which one can observe a spike in the cal-
culated curvature where both the value and the sign are erroneous. This in
turn affects the pressure calculation and leads to a slower coalescence process.
Figure 17 shows that the spike in the curvature calculation is prevented with
the present method. Note that right after the coalescence at t = 0.43 s, the
value of the curvature in the thin filament area is and should be very high.

6.5. Normal vectors between two near discs

The final case is designed to show that the direction difference is not
always sufficient to calculate the normal vectors. In this case two discs of
radius r are placed at a distance h from each other as shown in Figure 18.
As in the first case, only the level-set function and the geometrical quantities
are considered.

The parameters for this case are r = 0.25 m and h = 1.2∆x. The domain
is 1.5 m× 1.5m and the grid size is 101× 101.

As was noted in Section 4.2.2, the curve-fitting discretization scheme may
be used as an alternative. In this case the curve-fitting discretization scheme
is used at the grid points that are within 1 grid cell from any interface. The
direction difference is used at the other grid points.

Figure 19 shows a comparison of the calculated normal vectors. The
normal vectors calculated with the direction difference are depicted with red
vectors and the normal vectors calculated with a combination of the direction
difference and the curve-fitting scheme are depicted with green vectors. The
green vectors are on top of the red vectors, which shows that the results
are almost identical. But at the centre grid point between the discs, the
direction difference is not able to accurately calculate the normal vector. For
more complex geometries this error may appear at more than one grid point.
The error directly affects both the solutions of the level-set equations, (10),
(11) and (13), and the jump conditions for the pressure and the gradient of
the velocity, (4) and (5).

28

r

z

-0.5

0.0

0.5

r

z

r

z

r

z

-0.5

0.0

0.5

0.5 1.0
r

z

0.5 1.0
r

z

0.5 1.0

κ

t = 0.30 s t = 0.42 s t = 0.43 s

t = 0.48 s t = 0.49 s t = 0.60 s

Figure 16: Drop collision in axisymmetric flow calculated with the standard method. The
legend for the colour contours of the curvature κ is shown in the last image. The velocity
vectors are displayed to show the evolution of the flow during the collision.

29

r

z

-0.5

0.0

0.5

r

z

r

z

r

z

-0.5

0.0

0.5

0.5 1.0
r

z

0.5 1.0
r

z

0.5 1.0

κ

t = 0.30 s t = 0.42 s t = 0.43 s

t = 0.48 s t = 0.49 s t = 0.60 s

Figure 17: Drop collision in axisymmetric flow calculated with the present method. The
legend for the colour contours of the curvature κ is shown in the last image. The velocity
vectors are displayed to show the evolution of the flow during the collision.

30

r

h

x

y

Figure 18: A sketch of the initial state for the two-disc test. The dotted line depicts the
kink location.

Figure 19: A comparison of the direction difference and the curve-fitting method for
calculating normal vectors. The direction difference results are plotted in red below the
curve-fitting method results which are depicted in green. The thick black lines depict the
interfaces.

31

7. Conclusions

Improved discretization schemes for the normal vector and the curvature
of the interface between two phases have been devised and tested. The cur-
vature was discretized with a curve-fitting discretization scheme based on the
geometry-aware discretization presented in [1]. The normal vector was dis-
cretized both by the direction difference presented in [2] and a combination
of the direction difference and the curve-fitting discretization scheme. The
main advantage of the present curvature discretization scheme is that it is in-
dependent of the ghost-fluid method. This makes it easier to be adopted into
existing level-set codes, for instance codes that use the continuum surface-
force method. In addition, it enables the use of models that require curvature
values at the grid points, not just on the interface.

The present work has been restricted to two spatial dimensions. An exten-
sion to three dimensions would require bicubic parametrization of surfaces,
and a local reconstruction of the level-set function based on calculating the
minimum distances of parametrized curves to points on the grid. The com-
plexity of this is much higher than for the two-dimensional problem. Note
however, that the curve-fitting discretization scheme is directly applicable to
axisymmetric cases, which is demonstrated in a test case.

The implementation of the curve-fitting discretization scheme has been
described in detail. Our results show that the curvatures calculated with the
present scheme converge when the grid size is reduced in a case where the
standard scheme fails to converge.

The present discretization scheme is compared with the central-difference
scheme in three different cases. The first case is a direct comparison of the
schemes for a case with no flow. The second case compares the evolution
of two drops colliding in shear flow. Both of these cases demonstrate that
the central-difference scheme leads to erroneous behaviour at the kink loca-
tions. The second case shows that this behaviour prevents coalescence from
occurring due to an erroneous pressure field. The curvature spikes at the
kink regions are not observed with the present discretization scheme, and
coalescence is achieved for the second case. The present scheme was also
compared with Macklin and Lowengrub’s method [1], and the results show
that the present method gives similar results, as expected. The third case
considers the collision of two drops in an axisymmetric flow. As in the previ-
ous cases, the central-difference scheme leads to erroneous curvatures at the
kink, which is shown to lead to a slower coalescence.

32

Finally, a fourth test case demonstrates that the direction difference [2]
does not always yield accurate results for calculating the normal vector. A
combination of the curve-fitting discretization scheme and the direction dif-
ference is shown to remove the error in the given case. Accurate calculation of
the normal vector is crucial, as it is used both to advect the level-set function
(10), extrapolate the velocity vector (11), and to calculate the jumps across
the interface (4) and (5). More work should therefore be done to investigate
how much this error affects more complex cases.

Acknowledgements

This publication is based on results from the research project Enabling
low emission LNG systems, performed under the Petromaks program. The
author acknowledges the project partners; Statoil and GDF SUEZ, and the
Research Council of Norway (193062/S60) for support.

The authors acknowledge Claudio Walker, Leif Amund Lie and Eirik
Svanes for several good discussions.

[1] P. Macklin, J. Lowengrub, An improved geometry-aware curvature dis-
cretziation for level set methods: Application to tumor growth, Journal
of Computational Physics 215 (2006) 392–401.

[2] P. Macklin, J. Lowengrub, Evolving interfaces via gradients of geometry-
dependent interior Poisson problems: Application to tumor growth,
Journal of Computational Physics 203 (2005) 191–220.

[3] S. Osher, J. A. Sethian, Fronts propagating with curvature dependent
speed: Algorithms based on Hamilton-Jacobi formulations, Journal of
Computational Physics 79 (1988) 12–49.

[4] J. A. Sethian, P. Smereka, Level set methods for fluid interfaces, Annual
Review of Fluid Mechanics 35 (2003) 341–372.

[5] P. Macklin, J. S. Lowengrub, A new ghost cell/level set method for
moving boundary problems: Application to tumor growth, Journal of
Scientific Computing 35 (2008) 266–299.

[6] D. Salac, W. Lu, A local semi-implicit level-set method for interface
motion, Journal of Scientific Computing 35 (2008) 330–349.

33

[7] Z. Wang, A. Y. Tong, A sharp surface tension modeling method for two-
phase incompressible interfacial flows, International Journal for Numer-
ical Methods in Fluids 64 (2010) 709–732.

[8] M. Herrmann, A balanced force refined level set grid method for two-
phase flows on unstructured flow solver grids, Journal of Computational
Physics 227 (2008) 2674–2706.

[9] E. Marchandise, P. Geuzaine, N. Chevaugeon, J.-F. Remacle, A stabi-
lized finite element method using a discontinuous level set approach for
the computation of bubble dynamics, Journal of Computational Physics
225 (2007) 949–974.

[10] O. Desjardins, V. Moureau, H. Pitsch, An accurate conservative level
set/ghost fluid method for simulating turbulent atomization, Journal of
Computational Physics 227 (2008) 8395–8416.

[11] K. Y. Lerv̊ag, Calculation of interface curvature with the level-set
method, in: Sixth National Conference on Computational Mechanics
MekIT’11 (Trondheim, Norway), 23-24 May 2011.

[12] J.-J. Xu, Z. Li, J. Lowengrub, H.-K. Zhao, A level set method for inter-
facial flows with surfactants, Journal of Computational Physics 212 (2)
(2006) 590–616.

[13] K. E. Teigen, K. Y. Lerv̊ag, S. T. Munkejord, Sharp interface simula-
tions of surfactant-covered drops in electric fields, in: Fifth European
Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010,
Lisbon, Portugal, 2010.

[14] K. E. Teigen, S. T. Munkejord, Influence of surfactant on drop defor-
mation in an electric field, Physics of Fluids 22 (11) (2010) 112104.
doi:10.1063/1.3504271.

[15] J. U. Brackbill, D. B. Kothe, C. Zemach, A continuum method for mod-
eling surface tension, Journal of Computational Physics 100 (1992) 335–
354.

[16] M. Kang, R. P. Fedkiw, X.-D. Liu, A boundary condition capturing
method for multiphase incompressible flow, Journal of Scientific Com-
puting 15 (3) (2000) 323–360.

34

[17] E. B. Hansen, Numerical simulation of droplet dynamics in the pres-
ence of an electric field, Doctoral thesis, Norwegian University of Sci-
ence and Technology, Department of Energy and Process Engineering,
Trondheim, iSBN 82-471-7318-2 (Nov. 2005).

[18] H.-K. Zhao, T. Chan, B. Merriman, S. Osher, A variational level set
approach to multiphase motion, Journal of Computational Physics 127
(1996) 179–195.

[19] M. Sussman, P. Smereka, S. Osher, A level set approach for computing
solutions to incompressible two-phase flow, Journal of Computational
Physics 114 (1994) 146–159.

[20] S. Gottlieb, C. W. Shu, E. Tadmor, Strong stability-preserving high-
order time discretization methods, SIAM Review 43 (2001) 89–112.

[21] D. Adalsteinsson, J. A. Sethian, A fast level set method for propagating
interfaces, Journal of Computational Physics 118 (1995) 269–277.

[22] X.-D. Liu, R. P. Fedkiw, M. Kang, A boundary condition capturing
method for Poisson’s equation on irregular domains, Journal of Compu-
tational Physics 160 (2000) 151–178.

[23] S. Osher, R. P. Fedkiw, The Level-Set Method and Dynamic Implicit
Surfaces, Springer, 2003.

[24] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3d
surface construction algorithm, Computer Graphics 21 (4) (1987) 163–
169.

[25] H. Prautzsch, W. Boehm, M. Paluszny, Bézier and B-spline Techniques,
Springer, 2002.

[26] F. N. Fritsch, R. E. Carlson, Monotone piecewise cubic interpolation,
SIAM Journal of Numerical Analysis 17 (2) (1980) 238–246.

[27] B. Waerden, E. Artin, E. Noether, Algebra, no. v. 1 in Algebra, Springer-
Verlag, 2003.
URL http://books.google.com/books?id=XDN8yR8R1OUC

[28] S. Lang, Algebra, Graduate texts in mathematics, Springer, 2002.
URL http://books.google.com/books?id=Fge-BwqhqIYC

35

D
A robust method for calculating
interface curvature and normal

vectors using an extracted local
level set

Å. Ervik, K. Y. Lervåg, and S. T. Munkejord
Submitted to Journal of Computational Physics, 2013

149

A robust method for calculating interface curvature and normal
vectors using an extracted local level set

Åsmund Ervika,b,∗, Karl Yngve Lervågb, Svend Tollak Munkejorda

aSINTEF Energy Research, P.O. Box 4761 Sluppen, NO-7465 Trondheim, Norway
bNTNU, Department of Energy and Process Engineering, Kolbjørn Hejes v 1B, NO-7491 Trondheim, Norway

Abstract

The level-set method is a popular interface tracking method in two-phase flow simulations.
An often-cited reason for using it is that the method naturally handles topological changes
in the interface, e.g. merging drops, due to the implicit formulation. It is also said that the
interface curvature and normal vectors are easily calculated. This last point is not, however,
the case in the moments during a topological change, as several authors have already pointed
out. Various methods have been employed to circumvent the problem. In this paper, we
present a new such method which retains the implicit level-set representation of the surface and
handles general interface configurations. It is demonstrated that the method extends easily to
3D. The method is validated on static interface configurations, and then applied to two-phase
flow simulations where the method outperforms the standard method and the results agree well
with experiments.

Keywords: Level-Set Method, Curvature, Normal vector, Droplet-film interaction

1. Introduction

Investigations of droplet collision phenomena have a long tradition in the study of
multiphase flow, dating back to Lord Rayleigh [1] who in 1879 noted that a raindrop can
bounce off a pool, and to Worthington [2] who in 1876 studied among other things the central
jet that now bears his name. The early work predates the rise of computational studies, and
consists of experimental studies that enabled a separation of the flow patterns into various
regimes characterized by e.g. the Weber number and Ohnesorge number. A case which has
long been the focus of study is that of a single droplet of one liquid, immersed in some other gas
or liquid, and which collides with a deep pool of the first liquid. This could be e.g. a raindrop
falling onto a pond, or a droplet of Liquefied Natural Gas (LNG) merging with a pool of LNG
in a liquefaction heat exchanger, so the case is interesting also from an industry point of view.
Such a system may seem simple at first, but experimental and numerical studies have shown that
varied phenomena such as coalescence, bouncing, jetting and partial merging occur. The system

∗Corresponding author
Email addresses: asmund.ervik@sintef.no (Åsmund Ervik), karl.y.lervag@ntnu.no (Karl Yngve Lervåg),

svend.t.munkejord@sintef.no (Svend Tollak Munkejord)
Preprint submitted to Journal of Computational Physics 18th April 2013

is also not fully understood yet; as an example, Thoroddsen et al. [3] have recently shown that
for high impact velocities a turbulent boundary layer forms between the droplet and the pool
after they merge.

In order to study such a case using computer simulations, it is necessary to use a precise
interface-tracking method to capture the physics before, during and after the collision. The
Level-Set Method (LSM) is a popular choice for interface tracking in studies of collisions, since
its implicit formulation means that the method can handle the topological change which occurs
when two interfaces merge. The LSM is very general, and apart from fluid dynamics it has been
used for modeling such diverse phenomena as tumor growth [4], wildland fire propagation [5]
and computer RAM production [6]. For a good introduction to the LSM, see e.g. [7]. The
LSM originated from the seminal article by Osher and Sethian [8].

In two-phase flow simulations using the LSM, accurate interface curvature and normal
vector information is vital in order to get good results. Standard methods exist for calculating
these geometric quantities, but they fail when the interface topology changes, e.g. when two
drops collide and merge. Several approaches have been used to remedy this flaw. The first
approach to this problem is described by Smereka in [9]. He describes the problem briefly, and
increases the numerical smoothing in the curvature discretization to lessen the effect. This is not
an optimal solution, and Smereka notes on one of the simulations with merging interfaces that
“most of the area loss occurs at the topology change”. Several non-smearing approaches have
subsequently been developed, by Macklin and Lowengrub [4, 10], by Salac and Lu [11] and by
Lervåg [12, 13]. The methods by Macklin and Lowengrub and by Lervåg use curve fitting to
obtain an accurate representation of the interface, while the method by Salac and Lu extracts
several level-set functions each representing only a single body, and uses these to calculate the
curvature.

The present work proposes a new method, which is an extension of previous methods, for
calculating the curvature and normal vectors. The proposed method is based on the method by
Salac and Lu, but it handles more general interface configurations and topological changes, as
it considers only the local area around a point. The quality function introduced by Macklin
and Lowengrub is used to restrict the use of the proposed method to those areas where it is
needed, thus reducing the computational cost. As the proposed method uses no curve fitting, it
extends easily to three dimensions, as demonstrated here. The proposed method is compared to
the standard method for demanding cases where the analytical curvature is known; for such
a case the proposed method gives errors of 1–2% where the standard method gives errors of
O (1/∆x)¦ 100%.

The outline of this work is as follows: In Section 2, the theory of two-phase incompressible
flow, the LSM and numerical methods are briefly reviewed. In Section 3, the proposed method is
presented in detail. In Section 4, the method is validated on geometric test cases, and the results
are compared to other methods. In Section 5, the results of two-phase flow simulations using
the current method are reported and compared to experimental results. Finally, in Section 6,
some concluding remarks are offered.

2. The Level-Set Method and two-phase flow

The LSM is one of the more successful interface-capturing methods used in computational
physics. Since its introduction by Osher and Sethian in [8], it has been used for numerous
physical applications, as well as in computer graphics. Perhaps the main virtue of the LSM is how
intuitive it is; in 2D it can easily be explained to anyone with a basic knowledge of multivariate

2

calculus. This simplicity stems from the implicitness of the LSM, making the numerical
implementation of the LSM relatively easy. The implicit formulation also means that changes
in the interface topology are handled naturally. When comparing the LSM to other interface-
tracking methods, such as the Front-Tracking Method [14] where the interface is represented by
piecewise continuous functions, the simplicity becomes especially clear.

The main disadvantage of the LSM, on the other hand, is that it is not a conservative method.
During the course of a simulation, a fraction of fluid 1 may be converted to fluid 2 in an
unphysical fashion. Various methods have been invented to circumvent this, e.g. the HCR-2
reinitialization method [15], so it is only a small effect presently. Interface-tracking methods
may be conservative; an example of this is the Volume-of-Fluid (VOF) Method, but then they
typically have other disadvantages. In the VOF method, for instance, the advection equation
cannot easily be solved, necessitating the use of interface-reconstruction methods [16]. Recent
efforts have attempted to join the LSM and VOF in order to get the benefits of both methods;
this approach seems to be fairly successful [17].

We give here the formal definition of the level-set function used in the LSM. Let Γ be the
interface between two fluids, e.g. air and water, and S be the computational domain where the
fluids are confined. To represent this interface, we define a level-set function φ : S→R with the
property

Γ= {x |φ(x)= 0}. (1)

This only defines the value of φ at the interface Γ, and not elsewhere. The common choice here
is a signed distance function. Thus φ is fully specified by

φ(x)=

(
−dist(x,Γ) if x is inside Γ,

dist(x,Γ) if x is outside Γ.
(2)

Here, the function dist(x,Γ) is the shortest distance from the point x∈ S to the interface Γ. With
this definition of the level-set function, the normal vector to the interface is given by

n=
∇φ
|∇φ| . (3)

From this, the curvature is calculated by the well-known formula

κ=∇·n=∇·
� ∇φ
|∇φ|

�
. (4)

With suitable discretizations of the derivatives involved, these quantities are easy to calculate
numerically. This is often quoted as one of the nice features of the LSM, along with e.g. the very
natural way the method handles topological changes [18]. In 2D, the standard discretization of
the curvature is (see e.g. [19])

κ=
φx x+φyy

(φ2
x+φ

2
y+ε)

1/2
−
φ2

xφx x+φ
2
yφyy+2φxφyφxy

(φ2
x+φ

2
y+ε)

3/2
(5)

Here, e.g. φx denotes the first derivative of φ in x-direction, calculated using standard central
differences. However, when curvature and normal vector calculations are done during a change

3

in the interface topology, this approach fails; the error in curvature is of the order O (1/∆x) [4].
In [9], Smereka notes that “One of the major advantages of level-set methods is their ability to
easily handle topological changes. However for this problem we have found this not to be the
case.” It is this that the present method attempts to solve.

From the defining Equation (2), φ is initialized at the start of a simulation. For a given
velocity field u, φ should be transported so that the interface follows the flow. This is done by
solving the advection equation,

∂ φ

∂ t
= v |∇φ|=−u ·∇φ. (6)

Here v is the velocity normal to the interface, and u is an extrapolated velocity field constructed
using the method in [20]. This equation is not justified here, see e.g. [21].

Solving this equation will result in transportation of the interface, but it will also
degrade the accuracy of the interface representation, as φ is deformed from a signed distance
function. To avoid this, the level-set function is periodically reinitialized. We follow here
the PDE-based approach introduced by Sussman, Smereka and Osher [21], which consists in
solving

∂ φ

∂ τ
+sgn(φ)(|∇φ|−1)= 0. (7)

Here τ is a pseudo-time which is not related to the physical time in simulations. This approach
is both computationally fast and accurate when used as here with a narrow-band approach.
The extrapolation of the velocity field as used in Equation (6) above is performed by solving a
similar type of equation. These equations are solved using pseudo-CFL numbers of 1.0 for the
velocity extrapolation and 0.5 for the reinitialization. It is noted that a numerical solution of
the reinitialization equation needs accurate normal vectors at the interface.

A useful property of these equations is that the characteristics originate at the interface,
meaning that solving the equations numerically for N pseudo-time steps using a CFL-number
of C will yield a correct signed distance function C ·N space steps away from the interface. This
has led to the use of narrow-band methods, where the level-set function and other properties
such as the curvature are only calculated and used in a narrow band around the interface. This
reduces the computational time significantly.

In two-phase flow simulations, the LSM is coupled with the Navier-Stokes equa-
tions,

∇·u= 0, (8)

∂ u

∂ t
+(u ·∇)u=−∇p

ρ
+ν∇2u+f. (9)

Here ν =µ/ρ is the kinematic viscosity, while µ is the dynamic viscosity, ρ is the density, u
is the velocity field and p is the pressure. f is any external force, such as gravity, and may be
zero.

These equations hold for single-phase fluid flow, but can be extended to two-phase flow
using different methods. In the present work, the Ghost Fluid Method (GFM) [22] is used.
This method prescribes jump conditions for e.g. the pressure across the interface based on the

4

interface properties. The jump conditions used here are

[u]= 0, (10)
[p]= 2[µ]n ·∇u ·n+σκ, (11)

[µ∇u]= [µ]
�
(n ·∇u ·n)nn+(n ·∇u ·t)nt (12)

− (n ·∇u ·t)tn + (t ·∇u ·t)tt
�

, (13)

[∇p]= 0. (14)

based on [19]. Here, t is the tangent vector along the interface and [·] denotes the jump across
an interface, that is [µ]≡µ+−µ−. Note that∇u and (e.g.) nt are rank-2 tensors. The pressure
must also be decoupled from the velocity field in order to enable a numerical solution of the
Navier-Stokes equations; we use here the projection method due to Chorin [23]. This gives a
Poisson equation for the pressure which can be solved using freely available numerical libraries.
The PETSc library is used here [24].

In the present numerical implementation, SSP-RK schemes [25, 26] are used for the time
integration, while the WENO method [27] is used for the spatial discretizations. To determine
the time step dynamically, we use the CFL criterion given by Kang et al. [19].

3. The Local Level-Set Extraction (LOLEX) Method

3.1. Introduction
Calculating the curvature κ of the interface between two phases is important, since it appears

in the Young-Laplace formula for the capillary pressure,∆p =σκ. Its value is used in e.g. the
Ghost Fluid Method (GFM) (Equation (11)), or other methods of enforcing the jump conditions.
The normal vectors to the interface are also important, e.g. when advecting the level-set function
and when reinitializing it. Calculating these geometric quantities is straightforward in theory,
using Equation (3) and Equation (4) to compute them from the level-set function.

However, as is often the case, in practice it is not so straightforward. The problems
arise when the distance between two interfaces is of the order ∆x. This is illustrated in
Figure 1. The derivatives of φ are not defined at the kinks. As a result of this, the numerical
stencils approximating the derivatives of φ will often produce large, erroneous values. When
this happens, the curvatures and normal vectors will be erroneous. For the curvature, this
error is of order O (1/∆x), which can be several orders of magnitude larger than the correct
curvature value. It should be stressed that additional grid refinement does not solve this problem;
e.g. for the simulation of colliding drops, one would have to continue refining the grid ad
infinitum.

The earliest non-smearing approach to this problem, by Macklin and Lowengrub [4], uses
a modification of the directional differences for points close to kinks, along with a mesh
refinement for these points. The same authors introduced a curve-fitting method instead in
[10], which is said to be an improvement on the directional differences and a simplification.
The latter version will be referred to as the MLM (Macklin and Lowengrub Method). Further
improvements to this method, and adaptations to an on-grid framework (i.e. calculating the
curvature at the grid points, not at the interface), have been developed by Lervåg [12],[13].

5

These methods give good results in 2D, but are difficult to extend to 3D simulations due to the
use of curve-fitting.

An alternative approach to the problem is due to Salac and Lu [11], and will be referred to
as the Salac and Lu Method (SLM). In essence, this approach extracts the bodies represented by
the level-set function, such that each body (e.g. drop) is momentarily given its own version of
the computational domain. In this dedicated version, φ does not represent any other bodies
that can induce kinks, and this temporary φ can be reinitialized and the geometric quantities
can be calculated without problems. For a review and comparison of the SLM, MLM and the
method by Lervåg, see Lervåg and Ervik [28]. It should also be noted that the recent article by
Focke and Bothe [29] discusses a similar issue, in the context of thin lamellae which form when
liquid drops collide off-center. The authors introduce a method which resembles the SLM, but
which also has the ability to add small amounts of liquid to the lamella region, preventing a
numerical rupture.

The method considered here is a further development of the SLM. It is referred to as the
local level-set extraction method, or LOLEX method in short. The reason why the SLM is
insufficient in some cases, as well as the details of the present method, is given below. Suffice
it to say at this point that the present method is more general, so it applies both to the cases
considered by Salac and Lu and those considered by Focke and Bothe (except the stabilization
of thin lamellae which the latter introduce).

Another recently presented approach is due to Trontin et al. [30], who consider a hybrid
particle/level-set method. Their approach is to use the information from the tracking particles
to calculate the curvature and normal vectors, with good results. This can obviously not be
applied to a pure level-set method as discussed here, or e.g. a hybrid LSM-VOF method as has
recently become popular [17].

An approach which has not been considered here, or by other authors in the context of
level-set methods as far as we are aware, is the use of filtering. Vliet and Verbeek [31] study
the estimation of curvature from a discretely sampled greyscale image, using derivative-of-
Gaussian filters, and note that this outperforms a traditional curvature estimate analogous to
Equation (5).

The idea of Salac and Lu, on which the present method is based, is simple when compared
to the curve-fitting scheme used by Macklin and Lowengrub [4] and later by Lervåg [12, 13].
This simplicity is more in keeping with the “spirit” of the level-set method: the LSM is an
implicit alternative to front-tracking methods that employ curve fitting, and this implicitness
makes extending to higher dimensions straightforward. In the same fashion, the SLM is easily

φ(x)

(a) Droplets in near contact

φ(x)

x

0

(b) A slice of the level-set function

Figure 1: (a) Two droplets in near contact. The dotted line marks a region where the derivative of the level-set function
is not defined. (b) A one-dimensional slice of the level-set function. The dots mark points where the derivative of φ is
not defined.

6

extensible to 3D, while the methods employing curve fitting are not. There are, however, some
drawbacks to the Salac and Lu method as well.

The primary issue stems from the fact that the Salac and Lu method is aware of the global
topology of the interface. A problematic area, with a kink in the level-set function close to
φ= 0, can be caused either by two bodies in close proximity or by a single body folding back
onto itself. In the latter case, as illustrated in Figure 2, the Salac and Lu method falls back to the
standard discretization, and the calculated curvature will be erroneous. This may seem like an
edge case not worth considering, but simulations have shown that this often happens, e.g. when
a falling droplet merges into a pool. As pointed out by Smereka [9], errors like these can be the
main contribution to unphysical area loss in a simulation. Another situation where this would
often be the case is in tumor simulations like those performed by Macklin and Lowengrub, as
can be seen in e.g. [4, Figure 6].

Figure 2: The curvature field plotted for the SLM. Note the red curvature field inside the air finger between the drop
and the pool, which is incorrect. The color should be light blue in this area.(Figure best viewed in color.)

3.2. The idea of the LOLEX method
The method presented here tries to combine the best of the SLM with the best of the

MLM. As illustrated in the previous section, the SLM is aware of the global topology of the
interface, which is problematic in some cases. The MLM does not have this problem, as its
curve fitting considers only the local area, but as previously stated it does not extend easily
to 3D. A natural workaround to the “global awareness” is to make the Salac and Lu method
consider only the local topology; say, a 10×10×10 cube around the point where we calculate
the curvature.

Since the SLM relies on reinitialization to remove kinks, a potential problem with this
approach is computational efficiency, as reinitialization can be time-consuming. To avoid
problems with this, we want to use the standard discretization as much as possible, only
resorting to the LOLEX method when we have to, i.e. when kinks in φ are close to the
interface. To easily identify kinks, we use the quality function Q(x) which was introduced by
Macklin and Lowengrub in [4]. It is defined as

Q(x)= |1−∇φ(x)|, (15)

7

i.e. the deviation of φ from a signed distance function. If max(Q(xi,j,k))> η for xi , j ,k in a
3×3×3 cube around the current grid point, we use the LOLEX method. A value of η= 0.005 is
used here, and is seen to perform well. In addition to this, the current work uses the “narrow
band” level-set method introduced in [32]. This means that quantities such as the curvature are
only calculated in a narrow band around the zero level set, where they are needed. Together,
these significantly restrict the use of the present method compared to the use of the normal
method, keeping the computational cost low.

Having briefly presented the idea behind the present method and the scope in which it will
be used, we give here a step-by-step outline of it. 2D notation is used here for clarity, but all
steps are easily extensible to 3D. In this outline, a few arrays are introduced for storing data:
lookphi is a copy of the global φ for the local area we are considering, bodies indicates the
bodies present using increasing integers, and locphi holds the local φs that are extracted from
the global φ and then refined into more accurate representations of the local bodies present.
The quantities ilmax, jlmax and klmax represent the number of grid points, in the x, y and z
directions respectively, of the local grid. The values of ilmax, jlmax, klmax are all set to 7 in the
simulations performed here. Their values are independent of the global grid size.

,→ Loop over the computational domain using indices i,j

,→ If (xi , j not close to interface) do nothing

,→ Else if (Q(xn,m)≤η∀(n, m)∈ [i−1, i+1]×[j −1, j +1]) use ordinary method

,→ Else use LOLEX method:

,→ Copy φ in a [-1,ilmax+2]*[-1,jlmax+2] square around i,j into the lookphi
array.

,→ Identify the bodies present in the [0,ilmax+1]*[0,jlmax+1] square, store this in
the bodies array.

,→ For each body, extract the relevant part of the lookphi array into locphi(:,:,bodyno).
This array has 3 ghost cells on the boundary outside ilmax*jlmax; these are not
used until the extrapolation further down. Extracting means

− copying lookphi for the internal points of this body
− copying lookphi for external points that are not next to more than one body
− explicitly reconstructing the signed distance for external points that are next to

more than one body
− setting a value of 2*dx for all other points

,→ Once the locphi array has been filled for all bodies, the values are extrapolated into
the ghost cells. The extrapolation is zeroth-order, as will be explained further down.

,→ The locphi array is then reinitialized for all bodies. This erases the problematic
kink, as well as the value of 2*dx which was set previously. Thus this value is
unimportant, as long as it is > 0.

,→ Using these local φ’s, the curvature and normal vectors can be calculated for each
body. The curvature and normal vectors corresponding to the body which is closest
to the current grid point are used.

8

The steps in this algorithm that warrant further comments are: identifying the bodies
present, explicitly reconstructing the signed distance, extrapolating to the ghost cells, and
reinitializing. These will be considered further in the next section and subsections.

3.3. Details of the method
Some steps of the algorithm outlined need further explanations. This is either because they

are too technical to be fully described in the previous short outline, or because they have not
been properly motivated yet. The steps that will be considered are identifying the bodies present
(Section 3.3.1), explicitly reconstructing the signed distance (Section 3.3.2), extrapolating to the
ghost cells (Section 3.3.3), and reinitializing (Section 3.3.4).

3.3.1. Identifying the bodies present
To identify the bodies present, a recursive routine is used, which starts at a seed point in

a body and iterates through the entire body, marking it as a body in the bodies array. This
routine is called bodyscan here. The bodies array starts with a value of unchecked, and bodies
found are marked using increasing integers. The recursive subroutine will have marked the
entire first body when its first call returns.

After the subroutine returns, we check if the present body is large enough to keep, or if it
should be discarded. The reasoning behind discarding some bodies is twofold: a body which is
large in the global domain but occupying only a few cells in the local area will not be accurately
represented, and cannot be accurately reconstructed. If the body is small in the global domain
and close to the central point where we want to calculate things, it will be insufficiently resolved
anyway, and we fall back to the standard discretization. In the alternative case where all bodies
present are large bodies far away from the central point, we would not be using the LOLEX
method in the first place. For removed bodies, the points in the body are marked as removed.
Points not inside a body are marked as nobody.

Several methods were tested for determining which bodies are to be discarded. The simplest
and most effective method is to count the number of points in a body, and discard it if this
number is less than some threshold. This method worked well, using a threshold of 25 cells
for a 9×9 bodies array in 2D and 122 cells for a 9×9×9 bodies array in 3D. These thresholds
were chosen after tests with varying thresholds. They are large enough so that small bodies
leading to erroneous values were discarded, but not so large as to remove bodies which are
close to the central point (and thus important). Using a Gaussian weighting to give less
importance to bodies with many points far from the centre of the local grid did not give
any improvements.

A final point to note about the routine given here is that even though a recursive subroutine
is used, memory usage will not be problematic. This is because the routine operates on a small
array whose size is independent of the grid size. In 3 dimensions and with the presently used
size of the local area, the array bodyscan would have 11*11*11 = 1331 elements. This routine
can maximally be called 1331 times, giving a worst-case memory consumption of 13.5 MB. This
will not cause memory problems, although it is too large to fit in the CPU cache for some
processors. The performance impact has not been tested here, as the 3D calculations are only
considered as a proof-of-concept, and have not been optimized for speed. In 2D the memory
use is naturally much smaller.

9

s

(a)

s

t

(b)

s1

s2

t

(c)

s1

s2

(d)

Figure 3: Cases for the neighborhood of a point.

3.3.2. Explicit reconstruction of the signed distance
For some points with φ> 0, two or more bodies are within∆x of the point. This means

that the value of φ is probably incorrect, since it has to be the distance to two separate bodies at
the same time. We will call such points “dependent points”. Because φ is likely incorrect for
dependent points, we discard its value, and instead explicitly reconstruct the distance to the
relevant interface. The procedure used is due to Adalsteinsson et al. [33].

When we consider such a dependent point, it lies right next to two interfaces. When
reconstructing the distance, only one interface is of interest, so the other one is momentarily
removed. Note that the signed distance is always positive for exterior points, so it is just the
normal distance.

The procedure in [33] is as follows. The point (i , j) which we are considering is next to the
interface of current interest. We ignore all other interfaces. Up to rotational symmetry, there
are four possible cases. An illustration of these cases can be seen in Figure 3.

We examine the four cases (a to d) more closely:

a The interface crosses one of the lines from (i , j) to its four neighbors. In this case, we use the
distance to the interface along this line as our distance. This distance is given by

s =∆y+φ(i , j −1) (16)

where we have assumed that (i , j −1) is the neighbor on the other side of the interface.
Since this neighbor is an internal point, it has φ< 0. The distance to the interface is the
distance to the neighboring grid point (∆y) minus the distance from that grid point to
the interface, which gives this formula. It is best to use only the φ-value inside the body,
since it is less likely to be distorted.

b The interface crosses two of the lines, and these two lines make out a corner of the 2×2 grid
around (i , j). In this case we use the shortest distance to the straight line between the two

10

points of intersection. The distance d is given by the formula

�
d

s

�2

+
�

d

t

�2

= 1. (17)

As long as s2+ t 2 6= 0 this equation can be solved, and the positive solution is

d =
s tp

s2+ t 2
. (18)

If we have s2+ t 2= 0, then s = t = 0, so it is obvious that the distance to the interface is
d = 0.

c The interface crosses three lines. We construct the two straight lines between the points of
intersection, and use the shortest distance to either of these two lines, given by

�
d

min(s1, s2)

�2

+
�

d

t

�2

= 1. (19)

d The interface crosses two lines. These lines are on opposite sides of the point (i , j). In this
case, we use the shortest of the two distances, so d =min(s1, s2).

These formulae can be extended to three dimensions, where the possible cases are more
numerous. In 3D, the central point has two additional neighbors. This means there are
more variations in addition to the cases considered above. This is not considered in detail
here.

3.3.3. Extrapolation
After the interior of the locphi array has been filled, the ghost cells must be filled before we

can reinitialize the local φ. Two ways of doing this are illustrated in Figure 4. A first approach is
to use linear extrapolation, which should work well since φ is a linear function in 1D. However,
it turns out that this does not work. A fundamental property of the reinitialization equation
(7) is that its characteristics originate at the interface φ= 0. This is why the present method
(and the SLM) works – we only need a few cells directly next to the interface to have the correct
value of φ, and reinitialization will fix the rest. It also means that reinitialization will never
move the position of the interface, which is a desirable property in general.

The problem with linear extrapolation occurs when we extrapolate starting on the opposite
side of the kink from the interface. In this case, the values of the local φ are tending towards 0
from above, which means that extrapolation can reintroduce the other body (which we removed
in the first place). When this happens, reinitialization cannot fix the values beyond the kink,
since it cannot move the interface reintroduced by extrapolation. A straightforward alternative
is to use a zeroth-order extrapolation. This means simply copying the values along the edges
into the ghost cells. It is obvious that this will never cross φ= 0, so reinitialization works as
intended.

The difference between these two is shown in Figure 4. In (a), a zoom in on the global level
set of a droplet touching a pool is shown. In (b), the local level set of the lower body (the pool)
is shown after extraction and explicit reconstruction. Here, the values on the edges are not

11

(a) Zoom in on global level set (b) Extracted local level set

(c) First order extrapolated (d) Zeroth order extrapolated

(e) First order, reinitialized (f) Zeroth order, reinitialized

Figure 4: Extraction, extrapolation and reinitialization of the local level set is shown, for the lower body in Figure (a).
Red indicates a negative value, blue a positive value, and white indicates zero. The green lines indicate kinks in the level
set function, and the black lines are the zero level sets. A detailed explanation of the figures is given in Section 3.3.3.
(Figure best viewed in color.)

set, indicated in grey. In (c), the same is shown after first-order extrapolation, and in (d) after
zeroth-order extrapolation. In (e), the first-order extrapolated φ is shown reinitialized, and in
(f) the zeroth-order extrapolated φ is shown reinitialized. Note in particular that in (e), a kink
still exists after the entire procedure (green line), so the geometric quantities calculated would
still be wrong if the derivatives cross the kink.

The corner cells on the boundaries must also be set. Here, these all get the value from the
corresponding corner of the internal grid.

12

-1¹ 0¹ 1¹

-1² 0² 1²

Figure 5: Why we reinitialize from a lower level set: At the lower level set, indicated by the dotted line, values of e.g.
∇φ are more accurate at the grid point which is closest to the grey line than for the zero level set. The grey line indicates
the local level-set function φ. The dashed lines indicate∇φ calculated using central differences.

3.3.4. Reinitialization
When the extracted local level-set has been extrapolated, it must then be reinitialized before

the geometric quantities are calculated. This is essential in order to have good values of
the level-set function outside the interface. The entire LOLEX method hinges on the fact
that reinitialization restores the local level-set to a signed distance function, so that ordinary
discretizations will not give errors. This is not entirely straightforward, however.

When reinitializing, we require at least some points on either side of the interface with decent
φ-values, i.e. φ being the signed distance to the interface. In addition to this, we need to know
the smeared sign function, and most crucially, the normal vectors at the interface. Thus we are
faced with a bootstrapping problem: accurate normal vectors are required in order to accurately
calculate the normal vectors. This is only a problem when the global interfaces are very close;
when there is a moderate distance (i.e. more than one grid point between the interfaces), the
normal vectors can be calculated at the interface using the local level-set.

The solution to this conundrum is to exploit the redundant information which is stored
in the level-set function. To illustrate this redundancy, imagine that you are walking along a
normal vector to the interface. At each grid point you pass, you are told the current distance to
the interface. As long as you do not pass any kinks, this information is redundant: using the
value at the first grid point you pass, you can calculate the value at the next grid point, and the
one after that, given that you know the grid spacing.

What this means for the present case is that we have information inside the current body that
we can use. Most importantly, we can calculate the normal vectors without problem for internal
points. This means that we can reinitialize a level set different from φ= 0, e.g. φ=−0.8∆x,
and get essentially the correct φ afterwards. We are not guaranteed to get exactly the correct
φ, but as we cannot obtain the correct φ anyway, we will settle for a good approximation. An
illustration of this in 1D is shown in Figure 5, where the extracted local level-set function φ is
shown in grey. Note that e.g. the value of∇φ at the grid point 02, shown with a dashed line,
is much closer to 1 than the value at the grid point 01. When the lower level set is used, we
momentarily move the interface further to the left in this figure, so the grid point 02 is closest
to the interface. It is obvious that we have a better chance of restoring a signed distance function
with the correct location of the interface if we reinitialize from the lower level set.

The value of −0.8∆x used here gives the most accurate results. If the value is too close to
13

zero, the benefit of reinitializing from a lower level set is reduced. However, if the value is
too large, we risk having this lower level set too close to the edges of the local domain, and we
increase the potential error caused by reinitializing from a different level than zero.

Another problem solved by this is the fact that the values directly outside the zero level
set may be incorrect in some cases. In particular, this happens when an outside grid cell is not
flagged as dependent, but its value of φ still deviates from that dictated by a signed distance
function. Tests have shown that this sometimes occurs, and that it distorts the reconstructed
local level set.

Reinitializing from a different level may sound somewhat complicated to do, but the implicit
formulation springs to the rescue again. To reinitialize from a lower level set, we simply add
a positive constant to φ at every local grid point, call the reinitialization routine on this φ,
and then subtract the same constant from the reinitialized φ. The effect of this is illustrated in
Figure 6, which is an extreme case. Here, reinitialization of two very close bodies (concentric
circles) has distorted the global level-set function close to and outside the interfaces. The
reinitialized local level-set function is also wrong, but the one which is reinitialized from a lower
level set gives a much smoother representation of the interface, which agrees with the contour
lines further into the body. This smoother representation will, in turn, give a significantly more
accurate curvature. A plot of the curvature calculated with and without this improvement is
shown in Figure 7 for the concentric circles case; this global interface configuration can also
be seen in Figure 10 further down. This plot shows the curvature along the inner circle. It is
seen that the improvement is large, particularly in this case when two interfaces are close. The
curvature calculated using the standard method is not shown, as it is outside the y-axis range in
this figure.

While the curvature calculated using the LOLEX method is close to the analytical value,
there is still a more or less constant error of 1–2%. It turns out that this error is caused
by the reinitialization of the local level set, as is indicated in this figure as well. The line
captioned ‘Forced LOLEX’ shows the LOLEX method used on a single interface corresponding
to the inner circle. Here, the level-set function is correct and the standard method gives an
error for the single interface which is smaller than the line width in this figure. When we
force the use of the LOLEX method, the only difference from the standard method is the
extrapolation and reinitialization, meaning that these must be the culprits. To mitigate this, a
more accurate reinitialization procedure could be used, e.g. the HCR method due to Hartmann
et al. [15].

3.3.5. Parameters of the method
In the LOLEX method as presented here, there are a number of parameters that can be

varied. An overview of these is given here, along with the values used presently, and sensible
ranges, in Table 1.

After the local level sets have been extracted correctly, the standard discretizations can be
used to calculate the normal vector and curvature. As the curvature and normal vector cannot
be multiply defined at a single grid point, we must combine the information from different
local level sets. To do this, we simply select the one corresponding to the interface which is
closest to the central point.

As the present method uses reinitialization on a local grid for each grid point where it is used,
the performance impact of the method could become large. To avoid this, the quality function
Q(x) is used to restrict the use of the method. In a typical falling drop simulation, the present
method will only be used in a small percentage of the total number of time steps, and even then,

14

(a) Before (b) From φ=−0.8∆x (c) From φ= 0

Figure 6: The LOLEX method on a global level set which is distorted due to reinitialization of very close bodies. The
global bodies are two concentric circles. (a) Local φ before reinitialization. (b) Local φ reinitialized from φ=−0.8∆x.
(c) Local φ reinitialized from φ= 0.0. The black square indicates the boundary to the ghost cells, and the red square
indicates the 3×3 central points that are used in the final curvature calculation.

0 2 4 6 8 10 12 14 16
−7,000

−6,000

−5,000

−4,000

−3,000

Distance along interface

C
ur

va
tu

re

φ=−0.8∆x
φ= 0

Forced LOLEX
Analytical curvature

Figure 7: Lineplots of the curvature along the interface when reinitializing from both the zero level set and a lower level
set. Also shown are the curvature calculated when forcing use of the LOLEX method on a single interface, and the
analytical curvature.

15

Table 1: Parameters used in the LOLEX method, along with values used and sensible ranges.

Parameter Value Sensible range

Local grid size 7 5–11
Gradient threshold η 0.005 0.01–0.001
2D discard threshold 25 (given ilmax=7 etc.)
3D discard threshold 122 (given ilmax=7 etc.)
Reinit. level set −0.8∆x −1.0∆x to −0.5∆x

it will typically not be used for all points along the interface. This means the computational
cost of the present method has a low impact on the total runtime of a simulation.

3.4. Summary
In this section the presently used LOLEX method has been described in detail. The method

is used for grid points where the level-set function deviates from being a signed distance function,
where it extracts one or more local level sets, removes any kinks in these by use of reinitialization,
and finally uses these local level sets to calculate the curvature and normal vectors. The values
corresponding to the interface which is closest to the current grid point is used.

The method is motivated in that it is more general than the previous method by Salac and
Lu [11], handling bodies which fold back onto themselves, and it extends more easily to 3D
than the previous methods by Macklin and Lowengrub [4, 10] and by Lervåg [12, 13], which
use curve-fitting schemes. The parameters of the method are given in Table 1. Results, both for
static and dynamic simulations, are given in the next sections.

4. Geometric results

In order to test the LOLEX method, some static interface configurations were used that
replicate typical situations occurring in simulations of droplet collisions.

4.1. Circles and straight interfaces
The first test case consists of three circles and a straight-lined interface, where two of the

circles and the straight-lined interface are joined together. The results for this case are shown
in Figure 8 for the LOLEX method, the SLM, and the standard method. In this figure, the
interfaces are shown as black lines, and the color indicates the curvature. The background
curvature of 0 is indicated in white, blue indicates a negative curvature and red indicates a
positive curvature. The figure illustrates that the standard method produces positive unphysical
curvatures several places, both between the circles and the straight interface and between circles.
The Salac and Lu method remediates the situation somewhat, but still has problems where the
circle folds back onto the straight interface, and at the bottom of the middle circle, which is
particularly close to the straight interface. The LOLEX method produces positive curvatures
only where they are expected and needed.

16

(a) LOLEX method

(b) Salac and Lu method

(c) Standard method

Figure 8: Comparison of curvature calculation methods for circles and straight interfaces. The color indicates the
curvature; white is zero, blue is negative and red is positive.

17

4.2. Droplet falling onto a pool
In order to compare the behavior of the LOLEX and the standard method for different

interface separations, a test case was considered which mimics a droplet falling onto a pool. In
this case, a 0.2 m diameter circle and a horizontal line were initialized in a 1m×1m domain. The
separation between the circle and the line was varied from 3.6∆x down to 0∆x in increments of
0.1∆x. For each separation, the curvature was calculated at all points within the narrow band
close to the interfaces, and the supremum-norm ‖κ‖∞ of the curvature values was calculated.
This was done using the standard and the LOLEX method, for grid resolutions of 64×64,
256×256 and 1024×1024. The analytical curvature is 10 for the circle and 0 for the line, so the
supremum norm should be close to 10. The results are shown in Figure 9.

0 1 2 3

Distance from circle to line (Δx)

10

100

1000

M
a
x
im

u
m

 c
u
rv

a
tu

re

 6 4x64

Standard

LOLEX

1024x1024

256x256

Figure 9: Supremum norm of the curvature for decreasing interface separation. Dashed lines: results using the standard
method. Solid lines: results using the LOLEX method. The lines are shaded lighter with increasing grid resolution. The
analytical curvature of the circle is 10.

As is seen in this figure, the standard method returns the value used in regularizing the
curvature, ‖κ‖∞ = 1

∆x , when the interface separation becomes smaller than about 2.4 ∆x.
Increasing the grid resolution does not improve the situation. Note that the y axis in this plot is
logarithmic. Meanwhile, the LOLEX method gives decent values close to the analytical value of
10 all the way up to when the interfaces merge, which happens at a separation of 0.2∆x. It is
seen that the small deviations for the LOLEX method are reduced when the grid resolution is
increased.

In addition to the curvature, accurate normal vectors close to the interface are desirable
in level-set simulations. The importance in reinitialization has been suggested above, coming
from the fact that normal vectors are used in finding the upwind direction. Normal vectors
are equally important in calculating the extension velocity, where an error would lead to the
interface not moving according to the flow.

18

4.3. Concentric circles
In order to compare the proposed method to the standard method, a geometric test case was

considered which replicates the demands of simulating merging interfaces. The calculated
normal vectors are compared both to the standard central-differences discretization, to a
directional-differences discretization as described in [4], and to the curve-fitting method of
Lervåg [13].

In this test case, two concentric circles were initialized, as if we had a thin ring of fluid 1
inside fluid 2. The width of this ring was 1.6∆x. This test case is interesting, since it reveals
grid effects or anisotropies. It also replicates the situation of a thin film that forms between a
droplet and a pool for cases where the droplet deforms the pool surface before merging. This
has been observed experimentally, see e.g. [34]. The results for all four methods are shown in
Figure 10.

(a) Central difference (b) Directional difference

(c) Lervåg (d) LOLEX

Figure 10: Comparison of normal vector calculations using different methods.

In this figure it is seen that the directional difference method is not much better than the
central difference method. This is partly what prompted the use of curve fitting methods;

19

Macklin and Lowengrub initially used directional differences and additional grid refinement
in [4], but switched to curve-fitting methods in [10]. As is seen in Figure 10 (c), curve fitting
methods (the method by Lervåg is used here) give the correct result. In (d), we see that the
LOLEX method also gives the correct result. It is impossible to distinguish the results in (c) and
(d) without overlaying the figures and zooming in a lot. The difference is too small to have any
impact on the simulation results.

As pointed out several times already, the main advantage of the present LOLEX method
over methods employing curve fitting is that it scales easily to 3D. This is because the present
method retains the implicitness of the level-set method. A 3D extension of the Macklin and
Lowengrub method, on the other hand, would fit a local surface to the point of interest, as
they indicate in [10]. Curvature estimation in 3D based on local surface fitting has long been
a topic of research in computer vision, see [35] for a review of various methods including the
use biquadratic surfaces and of splines. The conclusion of [35] is that these methods are very
sensitive to numerical noise (in their context, sensor noise). In the current case, noise is to be
expected, as can be seen in Figure 6 (b). Due to this fact, methods in computer vision that avoid
local surface fitting and calculate only the sign of the curvature have been introduced, since this
quantity can be calculated more reliably[36]. This is not a viable alternative in two-phase flow
simulations as considered here.

4.4. 3D bubble above a plane
A curvature calculation using the LOLEX method on a 3D case is shown in Figure 11.

In this case, a bubble is placed above a plane, with distance 1.2 ∆x at the closest. The grid
is 50×50×50, and the bubble radius is 12.5 ∆x. The surfaces are colored according to the
curvature (interpolated to the surface). In Figure 11 (a), the standard method is used. In 3D, this
is the 27-point stencil given by Kang et al. [19]. In Figure 11 (b), the LOLEX method is used to
extract the local level sets, and the curvature is then calculated using the same 27-point stencil on
these local level sets. It is seen that the LOLEX method performs much better than the standard
discretization in areas where the bubble and plane are in close proximity. Note that the plane is
not shown here, only the bubble. The kink in the global φ is below the bubble.

Comparing to the analytical curvature, which in this case is −10 for the spherical bubble, it
is seen that the standard discretization performs well away from kinks, where the variation in
curvature is at most ±0.2%. Close to the kink, the standard discretization has errors of ±80%,
seen as green and dark blue bands in Figure 11 (a). The LOLEX method has the same variation
as the standard method away from kinks, while the variation is ±2% close to the kink, seen as
light blue spots in Figure 11 (b). Thus it is seen that the LOLEX method gives an error which is
an order of magnitude lower than the standard method close to kinks in the level-set function.
There is still a small error of the same size as reported above in 2D, which is again probably
caused by reinitialization. A deviation of this magnitude is unlikely to have a large impact on
simulations, in contrast to the errors from the standard discretization.

To the knowledge of the authors, improved calculation of geometric quantities for a pure
level-set formulation in three spatial dimensions that handles general topologies have not been
reported before in the literature. Salac and Lu report results of 3D simulations in [11], but it is
not known how (or if) they handle problems like that illustrated in Figure 2, i.e. a body folding
back onto itself. They also do not discuss the problem of needing good normal vectors at the
interface in order to solve the reinitialization equation.

Given the current state of developments toward petascale supercomputers, and particularly
the rapid evolution in GPU-accelerated solvers, dynamic 3D level-set simulations of colliding

20

(a) Standard discretization (b) LOLEX method

Figure 11: 3D bubble above a plane (not shown). Comparison of the standard curvature discretization (a) and the
LOLEX method (b). The surfaces are colored according to the curvature, and the standard method is seen to give large
errors close to the kink in the level-set function (which is below the sphere), seen as green and dark blue bands.

bodies are going to become more and more common. As this happens, a method such as the
present one will be necessary in order to get trustworthy results for situations where accurate
curvature is important.

5. Dynamic results

As discussed previously, the case of a single droplet of liquid falling onto a pool of the
same liquid, either through gas or another liquid, has been widely studied. Thus it is a good
benchmark on which to test the proposed method, since detailed experimental results are
available.

When considering this case, the main dichotomy is between a droplet falling through gas and
a droplet falling through liquid. We will consider both cases here, since both are interesting from
an industry standpoint. These two cases present different challenges to numerical simulations.
The liquid-in-gas case has a high density difference between the two fluids, which is known to
be a difficult case. Sussman et al. have studied this problem, and have produced good results
using a hybrid LSM-VOF method [17]. The liquid-in-liquid case, on the other hand, can be
time-consuming to simulate due to the viscous term in the CFL-criterion used here [19], but is
not challenging with respect to density differences.

5.1. Decane droplet in water merging with decane pool
The simulation discussed here consider two immiscible liquids, where a droplet of the

heaviest liquid is placed in the lightest liquid above a pool of the heaviest liquid. In the
experimental work by Chen et al. [37], the droplet is made to rest on the pool, and then
merging happens after some time. The heavy liquid is water, and the light liquid is a mix of 20 %
polybutene in decane. The droplet diameter is 1.1 mm. As the droplet and interface are brought
into proximity, a thin film is formed between them. This thin film drains, and after some time
the film ruptures and the droplet merges with the interface. In the Chen et al. experiments, the
merging happens at the central point, but off-center merging has also been reported for larger
droplets [38].

A simulation was performed with the same fluid properties and droplet dimension as
reported by Chen et al. The computational domain was 6×6 mm, the grid was 400×400, and

21

(a) Experimental result

(b) Simulation result

Figure 12: A 1.1 mm diameter water droplet merging with a water pool. The ambient fluid is 20% polybutene in decane.
Snapshots are taken 542 µs apart, the arrow indicates the capillary wave, and the horizontal lines indicate the top of the
bubble in the first frame. Figure (a) is the experimental result, reprinted with permission from [37], copyright 2006
American Institute of Physics. Figure (b) is the simulation result.

the CFL-number was 0.8. The results are shown in Figure 12. The agreement between the
simulation and experimental results is very good.

In this simulation, the point of merging is decided mainly by grid effects when the droplet
deforms the interface forming a thin film. With the present method, we must simply hope
that precisely what happens at the time of merging does not significantly affect the following
behaviour. Comparing Figure 12 (a) and (b) indicates that in this case the precise mechanisms of
merging are not very important, as the numerical and experimental results agree very nicely. To
accurately capture the thin film behaviour, the grid resolution would have to be extremely fine.

22

p [Pa]

LOLEX Standard

Figure 13: Water droplet in a mixture of polybutene and decane, about to merge with a water pool. Comparison of the
pressure field using the LOLEX method and the standard method at t = 0.007 s.

Hodgson and Lee [39] report that the width of the thin film between a droplet and a pool for the
water-toluene system they study is four orders of magnitude smaller than the droplet diameter,
i.e. around 100 nanometers. It is possible that an adaptive grid could be able to resolve such a
thin film, but since there is no analog to the Knudsen number for liquids, it is not immediately
clear whether the continuum description of the Navier-Stokes equations still holds at this length
scale.

Comparing the LOLEX method and the standard method on this case, the standard method
gives a more oscillatory pressure field around the contact point, as seen in Figure 13. This
increased pressure inside the thin film delays the rupture of the film, seen as a slightly increased
width of the film in Figure 13 (b).

5.2. Water droplet falling through air onto a water pool
Considering the case of a liquid in gas, a simulation was performed of a 0.18 mm diameter

water droplet falling through air at 0.29 m/s and impacting a deep pool of water. Experimental
results for this case due to Zhao, Brunsvold and Munkejord are found in [40]. These results
indicate that a partial coalescence occurs, but the high-speed camera used was not fast enough to
capture all the details of the partial coalescence process.

The simulation was performed using axisymmetry. The computational domain was
0.7 mm × 0.7 mm, resolved using a 401×401 Cartesian grid. The CFL number was 0.25.
The LOLEX method was used for curvature and normal vector calculation. A comparison of
the experimental and simulation results are shown in Figure 14.

The time intervals between frames for the experimental and simulation results do not match
in this figure. The intervals between the second and third frames are the ones that match best,

23

(a) Experimental result

(b) Simulation result

Figure 14: Experimental results (top) and simulation results (bottom) for a 0.18 mm water droplet falling through air
and impacting a deep pool of water at 0.29 m/s. Figure (a) is reprinted from [40], Copyright (2011), with permission
from Elsevier.

suggesting that the behaviour of the thin air film that forms between the droplet and the pool
before coalescence is the major source of this discrepancy. The grid used in the simulation is
unable to resolve the thin film. It is not clear that an increased grid resolution would amend
this, as the continuum approximation may not be valid for the thin air film. The width of this
film is not known from experiments.

As an order-of-magnitude estimate, we can use the results by Hodgson and Lee [39]. They
report that the width of the thin film between a droplet and a pool before merging, for the
water-toluene system they study, is around L= 100 nanometers. Since the mean free path in air
at room temperature and atmospheric pressure is around λ= 66 nanometers [41], the Knudsen
number is Kn= λ

L ≈ 0.7 6� 1, which would imply that the continuum description is no longer
valid.

Nevertheless, the simulation is able to correctly predict the partial coalescence, and the
simulation agrees well with experiments on the size of the daughter droplet produced. In the
experiments, this daughter droplet subsequently bounces on the pool of water. The simulation
is unable to predict this, again due to the thin air film formed, and shows the daughter droplet
merging with the water pool instead.

A comparison between the LOLEX method and the standard method is shown in Figures 15
and 16. These figures show a section through the droplets just before collision and just when
the neck is at its tallest, respectively. The pressure field is plotted as colored contours. The
LOLEX method is plotted on the left side and the standard method is plotted on the right side.

24

It is seen from these figures that the curvature errors produced by the standard method give
rise to significant oscillations in the pressure; note in particular the interleaved red and blue
patches where the pressure changes sign. As the reinitialization is performed more frequently,
the oscillations persist, and are even found inside the pool below the droplet.

An important effect of this erroneous pressure is a loss of kinetic energy, which can be seen
in Figure 16, where the neck is clearly shorter with the standard method. It is also seen that
more frequent reinitialization leads to a higher loss of kinetic energy. As some authors have
noted [42], the height of the neck and the dynamics of the capillary waves are important factors
for the partial coalescence mechanism.

The LOLEX method is not significantly affected by the amount of reinitialization, and gives
a more sensible pressure field in both cases. It should be noted that the pressure difference across
the droplet interface in Figure 15 is about 2500 Pa, which is very large, caused by the very small
droplet diameter.

p [Pa]

t = 1.327 ·10−4 s
LOLEX

t = 1.386 ·10−4 s
Standard

(a) Reinitialization every 7 time steps

t = 1.323 ·10−4 s
LOLEX

t = 1.342 ·10−4 s
Standard

(b) Reinitialization every time step

Figure 15: Water droplet falling onto a pool, just before the interfaces merge. Comparison between the LOLEX method
and the standard method. The pressure field is shown as colored contours.

6. Concluding remarks

In the present work we have proposed a new method for calculating the curvature and
normal vectors of an interface represented by a level-set function, and which gives accurate
results before, during and after topological changes in the interface. The method is compared
to the standard method for geometric test cases, where the analytical curvature is known, and
it is seen that in areas where the standard method gives errors of around 100 %, the proposed
method gives errors of around 1–2 %. The method is easily extended to 3D, as is demonstrated,
where the same reduction in error is seen. The method is then employed in simulations of two-
phase flow where a droplet merges with a pool. Here it is seen that the standard method gives
rise to unphysical pressure oscillations before merging, which affect the subsequent capillary

25

p [Pa]

t = 2.408 ·10−4
LOLEX

t = 2.459 ·10−4
Standard

(a) Reinitialization every 7 time steps

t = 2.412 ·10−4
LOLEX

t = 2.544 ·10−4
Standard

(b) Reinitialization every time step

Figure 16: Water droplet falling onto a pool, when the neck reaches its highest position. Comparison between the
LOLEX method and the standard method. The pressure field is shown as colored contours.

waves, while the proposed method fares much better. The results of the simulations using the
proposed method are compared to experimental results both for a liquid-in-liquid case, where
the agreement is very good, and for a more demanding liquid-in-gas case where the agreement is
qualitative, reproducing the partial coalescence behaviour.

Acknowledgements

This work was financed through the Enabling Low-Emission LNG Systems project
at SINTEF Energy Research, and the authors acknowledge the contributions of GDF
SUEZ, Statoil and the Petromaks programme of the Research Council of Norway
(193062/S60).

References

[1] L. Rayleigh, in: Proc. R. Soc., 28, p. 406.
[2] A. M. Worthington, in: Proc. R. Soc., 25, pp. 261–272.
[3] S. T. Thoroddsen, K. Takehara, T. G. Etoh, S. Popinet, P. Ray, C. Josserand, S. Zaleski, M.-J. Thoraval, von

Kármán vortex street within an impacting drop, Phys. Rev. Lett. 108 (2012) 264506.
[4] P. Macklin, J. Lowengrub, Evolving interfaces via gradients of geometry-dependent interior Poisson problems:

application to tumor growth, Journal of Computational Physics 203 (2005) 191 – 220.
[5] V. Mallet, D. Keyes, F. Fendell, Modeling wildland fire propagation with level set methods, Computers and

Mathematics with Applications 57 (2009) 1089 – 1101.
[6] V. Melicher, I. Cimrak, R. V. Keer, Level set method for optimal shape design of MRAM core. Micromagnetic

approach, Physica B: Condensed Matter 403 (2008) 308 – 311.
[7] S. Osher, R. P. Fedkiw, Level set methods: An overview and some recent results, Journal of Computational

Physics 169 (2001) 463 – 502.
[8] S. Osher, J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-

Jacobi formulations, Journal of Computational Physics 79 (1988) 12 – 49.

26

[9] P. Smereka, Semi-implicit level set methods for curvature and surface diffusion motion, Journal of Scientific
Computing 19 (2003) 439–456.

[10] P. Macklin, J. Lowengrub, An improved geometry-aware curvature discretization for level set methods:
Application to tumor growth, Journal of Computational Physics 215 (2006) 392 – 401.

[11] D. Salac, W. Lu, A local semi-implicit level-set method for interface motion, Journal of Scientific Computing 35
(2008) 330–349.

[12] K. Y. Lervåg, Calculation of interface curvature with the level-set method, in: Sixth National Conference on
Computational Mechanics MekIT’11, Trondheim, Norway.

[13] K. Y. Lervåg, B. Müller, S. T. Munkejord, Calculation of the interface curvature and normal vector with the
level-set method (2012). Submitted.

[14] S. O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of
Computational Physics 100 (1992) 25 – 37.

[15] D. Hartmann, M. Meinke, W. Schröder, The constrained reinitialization equation for level set methods, Journal
of Computational Physics 229 (2010) 1514 – 1535.

[16] J. E. Pilliod, Jr., E. G. Puckett, Second-order accurate volume-of-fluid algorithms for tracking material interfaces,
Journal of Computational Physics 199 (2004) 465 – 502.

[17] M. Sussman, K. Smith, M. Hussaini, M. Ohta, R. Zhi-Wei, A sharp interface method for incompressible two-phase
flows, Journal of Computational Physics 221 (2007) 469 – 505.

[18] D. Peng, B. Merriman, S. Osher, H. Zhao, M. Kang, A PDE-based fast local level set method, Journal of
Computational Physics 155 (1999) 410 – 438.

[19] M. Kang, R. P. Fedkiw, X.-D. Liu, A boundary condition capturing method for multiphase incompressible flow,
Journal of Scientific Computing 15 (2000) 323–360.

[20] E. B. Hansen, Numerical simulation of droplet dynamics in the presence of an electric field, Ph.D. thesis, NTNU,
2005.

[21] M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase
flow, Journal of Computational Physics 114 (1994) 146 – 159.

[22] R. P. Fedkiw, X. D. Liu, The Ghost Fluid Method for viscous flows, Presented at the “Solutions of PDE”
Conference in honour of Prof. Phil Roe, 1998.

[23] A. Chorin, Numerical solution of the Navier–Stokes equations, Math. Comp 22 (1968) 745–762.
[24] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith,

H. Zhang, PETSc Web page, 2012. http://www.mcs.anl.gov/petsc.
[25] J. Kraaijevanger, Contractivity of Runge–Kutta methods, BIT Numerical Mathematics 31 (1991) 482–528.
[26] D. I. Ketcheson, A. C. Robinson, On the practical importance of the SSP property for Runge–Kutta time

integrators for some common Godunov-type schemes, International Journal for Numerical Methods in Fluids 48
(2005) 271–303.

[27] G.-S. Jiang, C.-W. Shu, I. L, Efficient implementation of weighted ENO schemes, J. Comput. Phys 126 (1996)
202–228.

[28] K. Y. Lervåg, Å. Ervik, Curvature calculations for the level-set method, in: ENUMATH 2011 Proceedings
Volume, Leicester, England.

[29] C. Focke, D. Bothe, Direct numerical simulation of binary off-center collisions of shear thinning droplets at high
Weber numbers, Physics of Fluids 24 (2012) 73105.

[30] P. Trontin, S. Vincent, J. Estivalezes, J. Caltagirone, A subgrid computation of the curvature by a particle/level-set
method. application to a front-tracking/ghost-fluid method for incompressible flows, Journal of Computational
Physics 231 (2012) 6990 – 7010.

[31] P. Verbeek, L. van Vliet, J. van de Weijer, Improved curvature and anisotropy estimation for curved line bundles,
in: Jain, AK and Venkatesh, S and Lovell, BC (Ed.), Fourteenth International Conference on Pattern Recognition,
Vols 1 and 2, International Conference on Pattern Recognition, pp. 528–533.

[32] D. Adalsteinsson, J. A. Sethian, A fast level set method for propagating interfaces, Journal of Computational
Physics 118 (1995) 269 – 277.

[33] D. Adalsteinsson, J. A. Sethian, The fast construction of extension velocities in level set methods, Journal of
Computational Physics 148 (1999) 2 – 22.

[34] Z. Mohamed-Kassim, E. K. Longmire, Drop impact on a liquid–liquid interface, Physics of Fluids 15 (2003)
3263–3273.

[35] P. Flynn, A. Jain, On reliable curvature estimation, in: Computer Vision and Pattern Recognition, 1989.
Proceedings CVPR ’89., IEEE Computer Society Conference on, pp. 110 –116.

[36] C.-K. Tang, G. Medioni, Curvature-augmented tensor voting for shape inference from noisy 3D data, Pattern
Analysis and Machine Intelligence, IEEE Transactions on 24 (2002) 858 –864.

[37] X. Chen, S. Mandre, J. J. Feng, Partial coalescence between a drop and a liquid-liquid interface, Physics of Fluids
18 (2006) 051705.

27

[38] Z. Mohamed-Kassim, E. K. Longmire, Drop coalescence through a liquid/liquid interface, Physics of Fluids 16
(2004) 2170–2181.

[39] T. Hodgson, J. Lee, The effect of surfactants on the coalescence of a drop at an interface i, Journal of Colloid and
Interface Science 30 (1969) 94 – 108.

[40] H. Zhao, A. Brunsvold, S. T. Munkejord, Transition between coalescence and bouncing of droplets on a deep
liquid pool, Journal of Multiphase Flow 37 (2011) 1109–1119.

[41] S. G. Jennings, The mean free path in air, Journal of Aerosol Science 19 (1988) 159–166.
[42] F. Blanchette, T. P. Bigioni, Partial coalescence of drops at liquid interfaces, Nature Physics 2 (2006) 254–257.

28

E
Towards a second-order

diffuse-domain approach for
solving PDEs in complex

geometries

K. Y. Lervåg and J. Lowengrub
Submitted to Communications in Mathematical Sciences, 2013

179

TOWARDS A SECOND-ORDER DIFFUSE-DOMAIN METHOD FOR
SOLVING PDES IN COMPLEX GEOMETRIES∗

KARL YNGVE LERVÅG† AND JOHN LOWENGRUB‡

Abstract. In recent work, Li et al. (Comm. Math. Sci. (2009) 7:81-107) developed a first-
order accurate diffuse-domain method (DDM1) for solving partial differential equations in complex,
dynamic geometries with Dirichlet, Neumann and Robin boundary conditions. Here, we extend
this approach and develop higher order accurate diffuse-domain approximations focusing on Neu-
mann and Robin boundary conditions. The diffuse-domain method uses an implicit representation
of the geometry, where the sharp boundary is replaced by a diffuse layer, the equations are reformu-
lated on a larger regular domain and the boundary conditions are incorporated via singular source
terms. The resulting PDE is shown to converge asymptotically to the original problem. The present
contribution is to include higher-order corrections to the diffuse formulation in order to obtain a
second-order accurate approximation. Our analysis shows that the second-order DDM (DDM2)
converges asymptotically with second-order to the original problem. The DDM2 system is then in-
vestigated numerically and the results are compared with those from the DDM1 system for selected
cases with both Neumann and Robin boundary conditions. Two different approximations for the
boundary conditions are also compared, which correspond to different diffuse-interface surface delta
functions. The results indicate that the global accuracy and convergence of DDM2 is better than
DDM1, although both DDM1 and DDM2 generally perform well and the global convergence rate is
around two for each. The choice of boundary-condition approximation is also important for rapid
global convergence and high accuracy. Approximating the surface delta function by the modulus of
the gradient of the phase-field function yields more accurate and robust results than an alternative
approximation of the surface delta function based on a scaled version of the squared modulus.

Key words. numerical solution of partial differential equations, phase-field approximation,
implicit geometry representation, matched asymptotic analysis.

1. Introduction

There are many problems in computational physics that involve solving partial
differential equations (PDEs) in complex geometries. Examples include fluid flows
in complicated systems, vein networks in plant leaves, and tumors in human bodies.
Standard solution methods for PDEs in complex domains typically involve triangu-
lation and unstructured grids. This rules out coarse-scale discretizations and thus
efficient geometric multi-level solutions. Also, mesh generation for three-dimensional
complex geometries remains a challenge, in particular if we allow the geometry to
evolve with time.

In the past several years, there has been much effort put into the development
of numerical methods for solving partial differential equations in complex domains.
However, most of these methods typically require non-standard tools not frequently
available in standard finite element and finite difference software packages. Examples
of such approaches include the extended and composite finite element methods (e.g.,
[29, 10, 22, 11, 30, 48, 6, 3]), immersed interface methods (e.g., [37, 39, 53, 40, 58]),
matched interface and boundary methods (e.g., [65, 62, 61, 60, 64]), modified finite
volume/embedded boundary/cut-cell methods/ghost-fluid methods (e.g., [25, 33, 19,
23, 24, 32, 42, 63, 43, 8, 41, 57, 44, 7]). In another approach, known as the fictitious
domain method (e.g., [26, 27, 49, 31]), the original system is either augmented with

∗Received: ...
†Department of Energy and Process Engineering, Norwegian University of Science and Technology,

NO-7491 Trondheim, Norway (karl.y.lervag@ntnu.no).
‡Department of Mathematics, University of California, Irvine, Irvine CA-92697, USA (lowen-

grb@math.uci.edu).

1

2 Towards a second-order diffuse-domain method

equations for Lagrange multipliers to enforce the boundary conditions, or the penalty
method is used to enforce the boundary conditions weakly.

Here, we follow an alternate approach and use the diffuse domain method for
simulating PDEs in complex, non-standard domains. In this approach, the domain
is represented implicitly by a phase-field function, which is an approximation of the
characteristic function of the domain. The domain boundary is replaced by a narrow
diffuse interface layer such that the phase field function rapidly transitions from one
inside the domain to zero in the exterior of the domain. The boundary of the domain
can thus be represented as an isosurface of the phase field function. The PDE is
then reformulated on a larger, regular domain with additional source terms that ap-
proximate the boundary conditions. This diffuse domain method does not require any
modification of standard finite element or finite difference software. Although uniform
grids can be used, local grid refinement near domain boundaries improves efficiency
and enables the use of smaller interface thicknesses than are achievable using uniform
grids. A related approach involves the level-set method [46, 52, 45] to describe the
implicitly embedded surface and to obtain the appropriate surface operators (e.g.,
[28]).

The diffuse domain method (DDM) was introduced by Kockelkoren et al. [35]
to study diffusion inside a cell with zero Neumann boundary conditions at the cell
boundary (a similar approach was also used by [4, 5] using spectral methods). The
DDM was later used to simulate electrical waves in the heart [20], and in Levine
and Rappel [36] to simulate membrane-bound Turing patterns using bulk diffusion
coupled to an ODE on the membrane surface. More recently, diffuse-interface methods
have been developed for solving PDEs on stationary surfaces [50], evolving surfaces
[9, 13, 14, 17, 16, 15], for solving PDEs in complex evolving domains with Dirichlet,
Neumann and Robin boundary conditions by Li et al. [38] and by Teigen et al. [55]
who modeled bulk-surface coupling. The DDM was also used by Aland et al. [1] to
simulate incompressible two-phase flows in complex domains in 2D and 3D, and by
Teigen et al. [56] to study two-phase flows with soluble surfactants.

The method of matched asymptotic expansions can be used to show that a given
DDM formulation converges to the correct sharp-interface problem. As shown by Li
et al. [38], there exist several approximations to the physical boundary conditions
that converge asymptotically to the correct sharp-interface problem. Li et al. present
some numerical convergence results for a few selected problems. However they do
not perform any quantitative comparison between the different boundary-condition
approximations. Recently, Reuter et al. [51] reformulated the DDM using an inte-
gral equation solver and demonstrated that their generalized DDM, with appropriate
choices of approximate surface delta functions, converges with first order accuracy in
the diffuse-interface width for solutions of the Poisson equation with Dirichlet bound-
ary conditions.

The current versions of the DDM were developed such that they converge asymp-
totically to the sharp-interface problems with first order in the diffuse interface width.
Inspired by the work of Karma and Rappel [34] and Almgren [2], who incorporated
second-order corrections in their phase field models of crystal growth and by the work
of Folch et al. [21] who added second-order corrections in phase field models of advec-
tion, the present article aims to further generalize the DDM by deriving corrections
that give asymptotically second-order approximations to the sharp-interface problem
in the diffuse interface width. The second-order DDM (DDM2) is then compared to
the first-order DDM (DDM1) from Li et al. [38] on a set of test cases.

Karl Yngve Lerv̊ag and John Lowengrub 3

In addition, the present work considers a more quantitative comparison of two
different boundary condition approximations derived in [38]. The first approximation
uses the modulus of the gradient of the phase-field function, and the second approxi-
mation uses a scaled version of the squared modulus. The former is shown to be more
natural when considering the second-order extension.

Although the DDM is applicable to transient problems and geometries that evolve
with time, we will in this article only consider stationary problems. However, our
approach applies to transient problems in the same way as shown in [38].

The outline of the paper is as follows. In Section 2 we introduce the diffuse-domain
method and derive the second-order corrections. In Section 3 the numerical methods
are described, and in Section 4 the test cases are introduced and numerical results are
presented and discussed. We finally give some concluding remarks in Section 5.

2. The diffuse-domain method
The main idea of the diffuse-domain method (DDM) is to extend PDEs that

are defined inside complex and possibly time-dependent domains into larger, regular
domains. As a model problem, we will consider the Poisson equation in a domain D,

∆u=f, (2.1)

with Neumann or Robin boundary conditions. As shown in Li et al. [38], the results
for the Poisson equation can be used directly to obtain diffuse-domain methods for
more general second-order partial differential equations in evolving domains.

The DDM is defined in a larger domain Ω⊃D as

∇ ·(φ∇u)+BC=φf, (2.2)

see Figure 2.1. Here φ approximates the characteristic function of D,

χD =

{
1 if x∈D,

0 if x /∈D,
(2.3)

and BC is chosen to approximate the physical boundary condition, cf. [38], which
typically involves diffuse-interface approximations of the surface delta function. A
standard approximation of the characteristic function is the phase-field function,

χD'φ(x,t) =
1

2

(
1−tanh

(
3r(x,t)

ε

))
. (2.4)

Here ε is the interface thickness and r(x,t) is the signed-distance function with respect
to ∂D, which is taken to be negative inside D.

For a number of different choices of approximations for the boundary conditions,
as detailed in [38], the standard DDM is shown to converge asymptotically to the
sharp-interface equation when ε is decreased by use of the method of matched asymp-
totic expansions. In the following, the DDM will be extended to include corrections
that give second-order asymptotic convergence in ε, for Robin and Neumann boundary
conditions.

2.1. Asymptotic analysis
To show asymptotic convergence, we need to consider the expansions of the

diffuse-domain variables in powers of the interface thickness ε in regions close to and
far from the interface. These will be called inner and outer expansions, respectively.

4 Towards a second-order diffuse-domain method

∂D

D

Ω

χD = 1

χD = 0

Figure 2.1. A complex domain D covered by a larger, regular domain Ω.

The two expansions are then matched in a region where both are valid. See Figure 2.2
and [47].

The outer expansion for the variable u(x;ε) is simply

u(x;ε) =u(0)(x)+εu(1)(x)+ε2u(2)(x)+ ·· · . (2.5)

The outer expansion of an equation is then found by inserting the expanded variables
into the equation.

The inner expansion is found by introducing a local coordinate system near the
interface ∂D,

x(s,z;ε) =X(s;ε)+εzn(s;ε), (2.6)

where X(s;ε) is a parametrization of the interface, n(s;ε) is the interface normal
vector that points out of D, z is the stretched variable

z=
r(x)

ε
. (2.7)

Ω

D

Outer region

Overlapping region

Inner region

D

Ω

∂D

Figure 2.2. A sketch of the regions used for the matched asymptotic expansions. The inner
region is marked with a light gray color and the outer region with a slightly darker gray color. The
overlapping region is marked with the darkest gray color.

Karl Yngve Lerv̊ag and John Lowengrub 5

and r is the signed distance from the point x to ∂D, where r is taken to be negative
inside D. In the local coordinate system, the derivatives become

∇=
1

ε
n∂z+∇s, (2.8)

∆=
1

ε2
∂zz+

1

ε
κ∂z+∆s, (2.9)

where κ≡∇s ·n is the curvature of the interface. The inner variable û(z,s;ε) is now
given by

û(z,s;ε)≡u(x;ε) =u(X(s;ε)+εzn(s;ε);ε), (2.10)

and the inner expansion is

û(z,s;ε) = û(0)(z,s)+εû(1)(z,s)+ε2û(2)(z,s)+ ·· · . (2.11)

To obtain the matching conditions, we assume that there is a region of overlap
where both the expansions are valid. In this region, the solutions have to match.
In particular, if we evaluate the outer expansion in the inner coordinates, this must
match the limits of the inner solutions away from the interface, that is

u(X+εzn;ε)' û(z,s;ε). (2.12)

Insert the expansions into Eqs. (2.5) and (2.11) to get

u(0)(X+εzn)+εu(1)(X+εzn)+ε2u(2)(X+εzn)+ ·· ·
' û(0)(z,s)+εû(1)(z,s)+ε2û(2)(z,s)+ ·· · .

(2.13)

The terms on the left-hand side can be expanded as a Taylor series,

u(k)(X+εzn) =u(k)(s)+εzn·∇u(k)(s)+
ε2z2

2
n·∇∇u(k)(s) ·n+ ·· · , (2.14)

where k∈N and u(k)(s)≡u(k)(X(s;ε)). Now we end up with the matching equation

u(0)(s)+ε
(
u(1)(s)+zn ·∇u(0)(s)

)

+ε2
(
u(2)(s)+zn ·∇u(1)(s)+

z2

2
n·∇∇u(0)(s)·n

)

+·· ·' û(0)(z,s)+εû(1)(z,s)+ε2û(2)(z,s)+ ·· · ,

(2.15)

which must hold when the interface width is decreased, that is ε→0. In the matching
region it is required that εz=O(1). If we consider ε to be fixed and let z→±∞, we
get the following asymptotic matching conditions:

lim
z→±∞

û(0)(z,s) =u(0)±(s), (2.16)

and as z→±∞,

û(1)(z,s) =u(1)±(s)+zn·∇u(0)±(s)+o(1) , (2.17)

û(2)(z,s) =u(2)±(s)+zn·∇u(1)±(s)

+
z2

2
n ·∇∇u(0)±(s) ·n+o(1). (2.18)

Here o(1) means that the expressions approach equality when z→±∞. That is, o(1)
is defined such that if some function f(z) =o(1), then we have limz→±∞f(z) = 0.

6 Towards a second-order diffuse-domain method

2.2. Poisson equation with Robin boundary conditions
Now we are ready to consider the Poisson equation with Robin boundary condi-

tions,

∆u=f in D,

n·∇u=k(u−g) on ∂D.
(2.19)

Consider a general DDM approximation,

∇· (φ∇u)+
1

ε2
ψ=φf. (2.20)

where ψ is a correction term we will choose and the scaling factor 1/ε2 is taken for
later convenience. If we assume that ψ is local to the interface (e.g., vanishes to all
orders in ε away from ∂D) and that f is independent of ε (e.g., extended smoothly in
the normal direction out of D), then the outer solution to this equation when z→−∞
satisfies

∆u(0) =f, (2.21)

∆u(1) = 0, (2.22)

∆u(k) = 0, k= 2,3,. ... (2.23)

The goal is to determine ψ such that u(0) satisfies (2.19) and u(1) = 0 so that the outer
expansion u≈u(0) +ε2u(2) + .. . and therefore the DDM is asymptotically second-order
accurate.

2.2.1. Matching conditions
Before we determine ψ, we will develop a higher-order matching condition based

on Eqs. (2.17) and (2.18) that will match a Robin boundary condition for u(1). First
we take the derivative of Eq. (2.18) with respect to z and subtract k times Eq. (2.17),
which gives

û(2)z −kû(1) =−ku(1)−kzn ·∇u(0) +n·∇u(1) +zn·∇∇u(0) ·n. (2.24)

Keep the terms that make up a Robin condition for u(1) on the left-hand side, and
move the rest to the right-hand side, that is

n·∇u(1)−ku(1) = û(2)z −kû(1) +kzn·∇u(0)−zn·∇∇u(0) ·n. (2.25)

2.2.2. Inner expansions
Now consider the inner expansion of Eq. (2.20),

1

ε2
(φûz)z+

1

ε
κφûz+φ∆sû+

1

ε2
ψ̂=φf̂ . (2.26)

Expand û, f̂ and ψ̂ in powers of ε, to get

1

ε2

(
φû(0)z

)
z

+
1

ε

(
φû(1)z

)
z

+
(
φû(2)z

)
z

+
1

ε
κφû(0)z +κφû(1)z

+φ∆sû
(0) +

1

ε2
ψ̂(0) +

1

ε
ψ̂(1) + ψ̂(2) =φf̂ (0) +O(ε) . (2.27)

Karl Yngve Lerv̊ag and John Lowengrub 7

and then collect the leading order terms. The lowest power of ε gives
(
φû(0)z

)
z

=−ψ̂(0), (2.28)

if we let ψ̂(0) = 0 we obtain û
(0)
z = 0. The next order terms then give

(
φû(1)z

)
z

=−ψ̂(1), (2.29)

and by use of integration and the partial derivative with respect to z of the matching
condition (2.17), we get

n·∇u(0) =

∫ ∞

−∞
ψ̂(1)dz. (2.30)

To get the desired boundary condition for u(0), we need that
∫ ∞

−∞
ψ̂(1)dz=k(u(0)−g), (2.31)

which is satisfied if we assume that g is extended constant in the normal direction
and if we choose

ψ̂(1) =−φzk(û(0)− ĝ). (2.32)

Thus we have that u(0) satisfies

n·∇u(0) =k(u(0)−g) (2.33)

in the limit z→−∞. This shows that we have achieved first-order asymptotic con-
vergence. We note that there exist other choices, for instance

ψ̂(1) =φ2zk(û(0)− ĝ). (2.34)

It turns out, however, that the first choice (2.32) appears to be necessary in order to
obtain the second-order correction. This is because the choice of ψ constrains both
ψ̂(1) and ψ̂(2). This will become more apparent later.

Note that if we integrate Eq. (2.29), we get

φû(1)z =φk(û(0)− ĝ)+C, (2.35)

where C= 0 follows when we take the limit z→∞ and use the matching condition
(2.17). Thus

û(1)z =k(û(0)− ĝ), (2.36)

which will be useful later.
Now consider the zeroth order terms,

(
φû(2)z

)
z

=φf̂−κφû(1)z −φ∆sû
(0)− ψ̂(2). (2.37)

We will use that u(0) satisfies Eq. (2.19), that is

∆u(0) =f in D,

n ·∇u(0) =k(u(0)−g) on ∂D.
(2.38)

8 Towards a second-order diffuse-domain method

We note that the Laplacian can be decomposed into normal and tangential compo-
nents as

∆u=n·∇∇u·n+κn·∇u+∆su, (2.39)

which can be shown by writing the gradient vector as ∇=nn·∇+∇s. We can
therefore write

n ·∇∇u(0) ·n=f−κn·∇u(0)−∆su
(0) = f̂ (0)−κn·∇û(0)−∆sû

(0), (2.40)

where the last equality is valid in the matching region when we take the limit z→−∞.
If we insert this into the matching condition (2.25), we get

n·∇u(1)−ku(1)

= û(2)z −kû(1)−z
(
f̂ (0)−κk(û(0)− ĝ)−∆sû

(0)−k2(û(0)− ĝ)
)
. (2.41)

If we now subtract
(
φkû(1) +zφ

(
f̂−κk(û(0)− ĝ)−∆sû

(0)−k2(û(0)− ĝ)
))

z
(2.42)

from both sides of Eq. (2.37), we get

(
φû(2)z −φkû(1)−zφ

(
f̂−κk

(
û(0)− ĝ

)
−∆sû

(0)−k2
(
û(0)− ĝ

)))
z

=φf̂−κφû(1)z −φ∆sû
(0)− ψ̂(2)−

(
kφû(1)

)
z

−
(
zφ
(
f̂−κk

(
û(0)− ĝ

)
−∆sû

(0)−k2
(
û(0)− ĝ

)))
z
. (2.43)

Here we recognize that the matching condition (2.41) can be used on the left-hand
side if we integrate. To get the desired boundary condition for u(1), we wish to find
ψ̂(2) such that the right-hand side of Eq. (2.43) is zero. Some of the terms cancel
directly, so we are left with

ψ̂(2) =−kφzû(1)−kφû(1)z −κφû(1)z +φ(k+κ)k
(
û(0)− ĝ

)

−zφz
(
f̂−(k+κ)k

(
û(0)− ĝ

)
−∆sû

(0)
)
. (2.44)

Finally insert Eq. (2.36) to get

ψ̂(2) =−kφzû(1)−zφz
(
f̂−(k+κ)k

(
û(0)− ĝ

)
−∆sû

(0)
)
. (2.45)

Now we integrate Eq. (2.43) and use the matching condition (2.41), which yields the
boundary condition,

n ·∇u(1) =ku(1). (2.46)

Thus since u(1) satisfies Eqs. (2.22) and (2.46), we conclude that u(1) = 0, as desired.

It remains to find ψ in Eq. (2.20) that corresponds to ψ̂. It is straightforward to
see that

1

ε2
ψ̂=

1

ε2
ψ̂(0) +

1

ε
ψ̂(1) + ψ̂(2) +O(ε)'−1

ε
φzk

(
û(0)− ĝ

)

−φzkû(1)−zφz
(
f̂−(k+κ)k

(
û(0)− ĝ

)
−∆sû

(0)
)

(2.47)

Karl Yngve Lerv̊ag and John Lowengrub 9

corresponds to an inner expansion of

1

ε2
ψ=−(n·∇φ)k(u−g)−rn ·∇φ(f−(κ+k)k(u−g)−∆su) . (2.48)

Here we notice the connection between ψ̂(2) and ψ̂(1) in that the first term of ψ̂(2) is
the second term of the expansion of the corresponding outer term of ψ̂(1).

To summarize, we have shown that

∇· (φ∇u)−(n·∇φ)k(u−g)−rn·∇φ(f−(κ+k)k(u−g)−∆su) =φf (2.49)

gives an asymptotically second-order approximation to the corresponding sharp-
interface problem (2.19).

Remark 2.1. If we calculate the normal vector as

n=− ∇φ

|∇φ| , (2.50)

then

n·∇φ=−|∇φ|

and Eq. (2.49) becomes

∇· (φ∇u)+ |∇φ|
(
k(u−g)+r(f−(κ+k)k(u−g)−∆su)

)
=φf, (2.51)

which is a second-order version of an approximation considered in [38].

Remark 2.2. If we chose to use the alternative approximation of the boundary con-
dition, we would get the following DDM equation,

∇ · (φ∇u)+ε|∇φ|2k(u−g)−rn ·∇φ(f−(κ+k)k(u−g)−∆su) =φf. (2.52)

The zeroth order terms of the inner expansion would then give

(
φû(2)z −φkû(1)−zφ

(
f̂−κk

(
û(0)− ĝ

)

−∆sû
(0)−k2

(
û(0)− ĝ

)))

z

=kû(1)
(
φ2z−φz

)
, (2.53)

where the integral of the right-hand side is no longer zero. Thus we no longer obtain
the desired boundary condition for u(1).

2.3. Reaction-diffusion equation with Neumann boundary conditions
Since the Poisson equation with Neumann boundary conditions does not have

a unique solution, we instead consider the steady reaction-diffusion equation with
Neumann boundary conditions,

∆u−u=f in D,

n·∇u=g on ∂D.
(2.54)

Again we consider a general DDM approximation,

∇ · (φ∇u)−φu+
1

ε2
ψ=φf. (2.55)

10 Towards a second-order diffuse-domain method

Under the same conditions on ψ as in the previous section, the outer solution now
satisfies

∆u(0)−u(0) =f, (2.56)

∆u(k)−u(k) = 0, k= 1,2,3,. .., (2.57)

and as before the goal is to find ψ such that u(0) satisfies Eq. (2.54) and u(1) = 0.

2.3.1. Matching conditions
To construct the boundary condition for u(1), we consider the derivative of the

matching condition (2.18),

û(2)z (z,s) =n ·∇u(1)(s)+zn·∇∇u(0)(s) ·n. (2.58)

2.3.2. Inner expansions
The inner expansion of Eq. (2.55) is

1

ε2
(φûz)z+

1

ε
κφûz+φ∆sû−φû+

1

ε2
ψ̂=φf̂ , (2.59)

and based on the previous derivation we now choose directly ψ̂(0) = 0 to get û
(0)
z = 0.

To get the desired boundary condition for u(0), we need
∫ ∞

−∞
ψ̂(1)dz=g. (2.60)

Again there are several choices, and as before we choose

ψ̂(1) =−φz ĝ, (2.61)

so that

φû(1)z =φĝ. (2.62)

Finally, the zeroth order terms are
(
φû(2)z

)
z

+φκû(1)z +φ∆sû
(0)−φû(0) + ψ̂(2) =φf̂ (0). (2.63)

In a similar manner as before, we use that u(0) satisfies Eq. (2.54), which gives

n·∇∇u(0) ·n=f (0)−κg−∆su
(0) +u(0). (2.64)

If we insert this into the matching condition (2.58), we get

n·∇u(1) = û(2)z −z
(
f̂ (0)−κĝ−∆sû

(0) + û(0)
)
. (2.65)

Now we subtract
(
zφ
(
f̂ (0)−κĝ−∆sû

(0) + û(0)
))

z

(2.66)

on both sides of Eq. (2.63) to get
(
φû(2)z −zφ

(
f̂ (0)−κĝ−∆sû

(0) + û(0)
))

z

=φκ
(
ĝ− û(1)z

)
−zφz

(
f̂ (0)−κĝ−∆sû

(0) + û(0)
)
− ψ̂(2).

(2.67)

Karl Yngve Lerv̊ag and John Lowengrub 11

We let

ψ̂(2) =−zφz
(
f̂ (0)−κĝ−∆sû

(0) + û(0)
)
, (2.68)

so that (
φû(2)z −zφ

(
f̂ (0)−κĝ−∆sû

(0) + û(0)
))

z

=φκ
(
ĝ− û(1)z

)
= 0, (2.69)

where the last equality follows directly from Eq. (2.62). By integration and use of the
matching condition (2.65), we then obtain the desired boundary condition,

n·∇u(1) = 0. (2.70)

The correction is then

1

ε2
ψ̂'−1

ε
φz ĝ−zφz

(
f̂ (0)−κĝ−∆sû

(0) + û(0)
)
, (2.71)

which corresponds to

1

ε2
ψ=−(n·∇φ)g−rn ·∇φ(f−κg−∆su+u), (2.72)

and the second-order DDM equation becomes

∇· (φ∇u)−φu−(n·∇φ)g−rn·∇φ(f−κg−∆su+u) =φf. (2.73)

Note that in this case, the choice of the first-order correction ψ̂(1) is relatively
independent of the second-order correction ψ̂(2). The only requirement is that the
first-order correction must be used to ensure that∫ ∞

−∞
φκ
(
ĝ− û(1)z

)
dz= 0. (2.74)

For instance, if we instead of Eq. (2.61) choose

ψ̂(1) =φ2z ĝ, (2.75)

then we get

φû(1)z =φ2(3−2φ)ĝ. (2.76)

Now the integral must be evaluated, and the integrand is in this case

φκ
(
ĝ− û(1)z

)
=φκ(ĝ−φ(3−2φ)ĝ) =κĝφ(φ−1)(2φ−1), (2.77)

which becomes
∫ ∞

−∞
φ(φ−1)(2φ−1)dz=

∫ 0

1

φ(φ−1)(2φ−1)

φz
dφ

=

∫ 0

1

φ(φ−1)(2φ−1)

6φ(1−φ)
dφ

=
1

6

∫ 0

1

(2φ−1)dφ

=
1

6
[φ2−φ]10

= 0.

(2.78)

This leads to an alternative second-order DDM,

∇ · (φ∇u)−φu+ε|∇φ|2g−rn·∇φ(f−κg−∆su+u) =φf. (2.79)

12 Towards a second-order diffuse-domain method

2.4. Summary
Using n=−∇φ/|∇φ|, we have shown that the DDM equation

∇ · (φ∇u)+ |∇φ|k(u−g)+r|∇φ|(f−(κ+k)k(u−g)−∆su) =φf (2.80)

converges asymptotically with second order to the Poisson equation with Robin
boundary conditions,

∆u=f in D,

n·∇u=k(u−g) on ∂D.
(2.81)

We have also shown that the DDM equations

∇ · (φ∇u)−φu+ |∇φ|g+r|∇φ|(f−κg−∆su+u) =φf, (2.82)

and

∇ · (φ∇u)−φu+ε|∇φ|2g+r|∇φ|(f−κg−∆su+u) =φf, (2.83)

both converge asymptotically with second order to the steady reaction-diffusion equa-
tion with Neumann boundary conditions,

∆u−u=f in D,

n ·∇u=g on ∂D.
(2.84)

Note that in the higher-order correction formulas, the surface Laplacian has the op-
posite sign of the 2nd order elliptic operator ∇· (φ∇·).

3. Discretizations and numerical methods
The equations are discretized with second-order central finite differences. The

discrete system is solved using a multigrid method, where a red-black Gauss-Seidel
type iterative method is used to relax the solutions (see [59]). The equations are solved
in two-dimensions in a domain Ω = [−2,2]2 for all the test cases. Periodic boundary
conditions are used on the domain boundaries ∂Ω.

Since the phase-field function quickly tends to zero outside the physical domain
D, it must be regularized in order to prevent the equations from becoming ill posed.
We therefore use the modified phase-field function

φ̂= τ+(1−τ)φ, (3.1)

where the regularization parameter is set to τ = 10−6 unless otherwise specified. In
addition, one should note that the chosen boundary condition for the computational
domain, Ω, should not interfere with the physical domain. Thus one has to make sure
that the distance from the computational wall to the diffuse interface of D is large
enough not to affect the results.

As discussed earlier, the normal vector (and the curvature) can be calculated from
the phase-field function as

n=− ∇φ

|∇φ| , (3.2)

and

κ=−∇ · ∇φ

|∇φ| . (3.3)

Karl Yngve Lerv̊ag and John Lowengrub 13

The surface Laplacian can be found from the identity

∆s≡ (I−nn)∇· (I−nn)∇, (3.4)

where

(I−nn)∇≡ (δij−ninj)∂xi. (3.5)

In 2D we get

∆su=
(
n1n2(n1n2)x+n1n2(n21)y−(1−n21)(n21)x−(1−n22)(n1n2)y

)
ux

+
(
n1n2(n1n2)y+n1n2(n22)x−(1−n22)(n22)y−(1−n21)(n1n2)x

)
uy

+
((

1−n21
)2

+n21n
2
2

)
uxx

+
((

1−n22
)2

+n21n
2
2

)
uyy

−2n1n2
((

1−n21
)

+
(
1−n22

))
uxy.

Below, we verify the accuracy of our numerical implementation on several test
problems in which we manufacture a solution to the DDM approximations through
particular choices of f . Interestingly, we find that when we include the surface Lapla-
cian, we are unable to solve the discrete system. This is likely due to the fact that
it has the opposite sign as the second-order elliptic operator ∇ ·(φ∇·) in the bulk
region. Thus, even though this term is confined to the interfacial region, it seems to
prevent the convergence of our multigrid solver. We still consider the effect of this
term, however, by using the surface Laplacian of the analytic solution in the DDM2
equations. The development of stable methods for the full DDM2 system are still
under development.

4. Results
We next investigate the performance of the higher-order corrections, and compare

them against the corresponding first-order approximations and the exact solution
of the sharp-interface equations. We consider four different cases with Neumann
boundary conditions and three different cases with Robin boundary conditions. For
each case, we calculate and compare the error between the calculated solution u and
an analytic solution uan of the original PDE which is extended from D into Ω. The
error is defined as

Eε=
‖φ(uan−u)‖2
‖φuan‖2

, (4.1)

where φ is used to restrict the error to the physical domain D. For a given ε, the error
is calculated by refining the grids until the error has converged. The convergence rate
in ε as ε→0 is calculated as

k= log

(
Eεi
Eεi−1

)
/ log

(
εi
εi−1

)
, (4.2)

for a decreasing sequence εi.
In the derivation of the second-order corrections, it was argued that a specific

choice of the approximation of the boundary condition for u(0) was more natural. In
[38] it was remarked that could be significant differences in accuracy between the dif-
ferent boundary-condition approximations, although no quantitative comparison was

14 Towards a second-order diffuse-domain method

made. It is therefore of interest to investigate the performance of different approxima-
tions of the boundary condition. For the cases with Neumann boundary conditions,
these are

BC1 = |∇φ|g, (4.3)

and

BC2 = ε|∇φ|2g. (4.4)

The same comparison will be performed for the cases with Robin boundary con-
ditions. However it should be remarked that BC1 is required for the derivation of the
second-order correction for the Robin boundary conditions to be fully valid while BC2
does not guarantee an asymptotically second-order method, as shown in Section 2.2.

4.1. Neumann boundary conditions
Consider the steady reaction-diffusion equation with Neumann boundary condi-

tions,

∆u−u=f in D,

n·∇u=g on ∂D.
(4.5)

In this section we will solve the first-order and second-order DDM approximations

∇ · (φ∇u)−φu+BC =φf, (4.6)

∇ · (φ∇u)−φu+BC+r|∇φ|(f−κg−∆suan +u) =φf, (4.7)

denoted as DDM1 and DDM2, respectively. Here BC refers to either BC1 (4.3) or
BC2 (4.4), and as remarked above the surface Laplacian term is not solved, rather
the surface Laplacian of the analytic solution is used and is treated as a known source
term.

4.1.1. Case 1
Consider the case where D is a circle of radius R= 1 centered at (0,0), and where

the analytic solution to the reaction-diffusion equation in D is

uan(x,y) =
1

4

(
x2 +y2

)
. (4.8)

This corresponds to f = 1−(x2 +y2)/4, g=R/2, and ∆suan = 0. In this case, the
curvature is κ= 1/R.

4.1.2. Case 2
Now consider the case where D is the square D= [−1,1]2. Again let the analytic

solution in D be

uan(x,y) =
1

4

(
x2 +y2

)
, (4.9)

so that f = 1−(x2 +y2)/4, g= 1/2, and ∆suan = 1/2. In this case the curvature is
zero almost everywhere. To see the effect of the surface Laplacian term, this case
is also run once where the surface Laplacian term has been set to zero in Eqs. (4.6)
and (4.7).

Karl Yngve Lerv̊ag and John Lowengrub 15

To initialize the square domain D, the signed-distance function is defined as

r(x,y) =

{
|x|−1 if |x|≥ |y|,
|y|−1 else.

(4.10)

The phase-field function is then calculated directly from the signed-distance function
in Eq. (2.4).

4.1.3. Case 3
Again let D be the circle centered at (0,0) with radius R= 1, but now consider

the case where the analytic solution is

uan(x,y) =y
√
x2 +y2, (4.11)

which corresponds to

f =
3y√
x2 +y2

−y
√
x2 +y2, (4.12)

g= 2y, and

∆suan =− y√
x2 +y2

. (4.13)

Note that in the DDM equations, g is extrapolated constantly in the normal direction
off of the boundary ∂D. As in the previous case, we run this case also without the
surface Laplacian term.

4.1.4. Case 4
For the final Neumann case we again let D= [−1,1]2, and we consider the case

where the analytic solution is

uan(x,y) =er, (4.14)

where r= x2+y2

4 . This corresponds to

f = rer. (4.15)

The boundary function g and the surface Laplacian of the analytic function along the
boundary are

g=
1

2
e

1+ξ2

4 , (4.16)

∆suan =
1

4

(
ξ2 +2

)
e

1+ξ2

4 , (4.17)

where ξ≡x along the bottom and top boundaries, and ξ≡y along the left and right
boundaries.

4.1.5. Results
Figures 4.1 to 4.4 and Table 4.1 show convergence results where ε is reduced for

Cases 1 to 4 with DDM1 and DDM2, and with BC1 and BC2. The number of grid
cells is n= 8192 in each direction for all of the results. Although the DDM is most
efficient when adaptive meshes are used, here we consider only uniform meshes to

16 Towards a second-order diffuse-domain method

10−1100

10−3

10−2

10−1

Interface width, ε

E
ε

DDM1 BC1
DDM2 BC1
DDM1 BC2
DDM2 BC2

Figure 4.1. Errors for the Neumann problem with respect to ε for Case 1, as labelled.

more easily control the discretization errors in order to focus on the errors in the
DDM. When ε is small, the required refinement to obtain a converged result becomes
large, and in particular for the simulations that used BC2 we were not able to obtain
fully converged results for the smallest values of ε.

The results indicate that the difference between DDM1 and DDM2 is small, how-
ever DDM2 consistently performs better than DDM1. Interestingly, both DDM1 and
DDM2 seem to converge with roughly second-order accuracy in ε. Case 2 in partic-
ular shows a noticeable improvement of DDM2 over DDM1. Case 3 is the first case
that has a nonconstant boundary condition, and the surface Laplacian of the analytic
solution along the boundary is also nonconstant. An unexpected result for Case 3 is
that DDM2 performs better if the surface Laplacian term is removed. One possible
explanation to this is errors due to grid anisotropy. Therefore we also consider a
fourth case, which again has a nonconstant boundary condition and nonconstant sur-
face Laplacian of the analytic solution. Since the domain in this case is a square, the
effect of grid anisotropy is lessened. Correspondingly DDM2 performs better when
the surface Laplacian is included.

The difference between BC1 and BC2 is also noticable, especially with regard to
the required amount of grid refinement that is needed to obtain a convergent result.
Tables A.1 to A.11 in the Appendix show how each result for a given ε converges
under grid refinement. These tables are used to generate the results in Table 4.1, and
they show clearly that the convergence of the equations with respect to mesh size is
much faster with BC1 than with BC2.

Karl Yngve Lerv̊ag and John Lowengrub 17

10−1100

10−3

10−2

10−1

Interface width, ε

E
ε

DDM1 BC1
DDM2 BC1
DDM2 BC1 2
DDM1 BC2
DDM2 BC2
DDM2 BC2 2

Figure 4.2. Errors for the Neumann problem with respect to ε for Case 2, as labelled. Results
where the surface-Laplacian term has been removed are also included as DDM2 BC1 2 and DDM2
BC2 2.

10−1100

10−4

10−3

10−2

10−1

Interface width, ε

E
ε

DDM1 BC1
DDM2 BC1
DDM2 BC1 2
DDM1 BC2
DDM2 BC2
DDM2 BC2 2

Figure 4.3. Errors for the Neumann problem with respect to ε for Case 3, as labelled. Results
where the surface-Laplacian term has been removed are also included as DDM2 BC1 2 and DDM2
BC2 2.

18 Towards a second-order diffuse-domain method

10−1100

10−4

10−3

10−2

10−1

Interface width, ε

E
ε

DDM1 BC1
DDM2 BC1
DDM2 BC1 2
DDM1 BC2
DDM2 BC2
DDM2 BC2 2

Figure 4.4. Errors for the Neumann problem with respect to ε for Case 4, as labelled.

Karl Yngve Lerv̊ag and John Lowengrub 19

ε E k E k E k E k
DDM1 BC1 DDM2 BC1 DDM1 BC2 DDM2 BC2

Case 1

0.800 3.39×10−1 4.77×10−1 3.09×10−1 3.23×10−1

0.400 9.94×10−2 1.8 1.12×10−1 2.1 9.52×10−2 1.7 8.77×10−2 1.9

0.200 2.57×10−2 2.0 2.68×10−2 2.1 2.57×10−2 1.9 2.25×10−2 2.0

0.100 6.43×10−3 2.0 6.51×10−3 2.0 7.07×10−3 1.9 5.64×10−3 2.0

0.050 1.61×10−3 2.0 1.59×10−3 2.0

0.025 4.15×10−4 2.0 3.87×10−4 2.0

Case 2

0.800 2.46×10−1 1.96×10−1 2.22×10−1 3.53×10−1

0.400 7.30×10−2 1.8 2.58×10−2 2.9 6.99×10−2 1.7 5.10×10−2 2.8

0.200 1.94×10−2 1.9 5.21×10−3 2.3 1.95×10−2 1.8 1.08×10−2 2.2

0.100 5.16×10−3 1.9 1.20×10−3 2.1 5.88×10−3 1.7 2.99×10−3 1.9

0.050 1.58×10−3 1.7 3.70×10−4 1.7

Case 2 with no surface Laplacian term

0.800 2.88×10−1 1.70×10−1

0.400 7.81×10−2 1.9 6.06×10−2 1.5

0.200 1.96×10−2 2.0 1.70×10−2 1.8

0.100 5.10×10−3 1.9 4.39×10−3 1.9

0.050 1.46×10−3 1.8

Case 3

0.800 1.27×10−1 8.74×10−2 1.18×10−1 8.90×10−2

0.400 3.12×10−2 2.0 2.85×10−2 1.6 2.82×10−2 2.1 3.45×10−2 1.4

0.200 7.48×10−3 2.1 7.08×10−3 2.0 8.13×10−3 1.8 1.07×10−3 1.7

0.100 1.81×10−3 2.0 1.75×10−3 2.0 2.79×10−3 1.5 3.30×10−3 1.7

0.050 4.48×10−4 2.0 4.32×10−4 2.0

0.025 1.15×10−4 2.0 1.06×10−4 2.0

Case 3 with no surface Laplacian term

0.800 3.16×10−2 6.75×10−2

0.400 1.28×10−2 1.3 2.21×10−2 1.6

0.200 3.40×10−3 1.9 7.92×10−3 1.5

0.100 8.58×10−4 2.0 2.78×10−3 1.5

0.050 2.12×10−4 2.0

0.025 5.19×10−5 2.0

Case 4

0.800 1.71×10−1 1.38×10−1 1.74×10−1 8.58×10−2

0.400 4.42×10−2 2.0 2.04×10−2 2.8 4.61×10−2 1.9 1.38×10−2 2.6

0.200 1.14×10−2 2.0 4.58×10−3 2.2 1.20×10−2 1.9 3.36×10−3 2.0

0.100 2.95×10−3 1.9 1.18×10−3 2.0 3.27×10−3 1.9 8.62×10−4 2.0

0.050 8.23×10−4 1.8 3.43×10−4 1.8

0.025 2.88×10−4 1.5 1.33×10−4 1.4

Case 4 with no surface Laplacian term

0.800 3.39×10−1 2.81×10−1

0.400 5.51×10−2 2.6 4.64×10−2 2.6

0.200 1.24×10−2 2.2 1.07×10−2 2.1

0.100 3.09×10−3 2.0 2.60×10−3 2.0

0.050 8.20×10−4 1.9

0.025 2.53×10−4 1.7

Table 4.1. The error for the Neumann problem as a function of ε for all cases. All results are
calculated with n= 8192 in each direction on uniform grids. Blank results indicate that the solutions
require even finer grids to converge.

20 Towards a second-order diffuse-domain method

4.2. Robin boundary conditions

Now consider the Poisson equation with Robin boundary conditions,

∆u=f in D,

n·∇u=k(u−g) on ∂D.
(4.18)

As in the previous section, we solve the first-order and second-order DDM approxi-
mations

∇· (φ∇u)+BC=φf, (4.19)

∇· (φ∇u)+BC+r|∇φ|(f−(κ+k)k(u−g)−∆suan) =φf, (4.20)

respectively, where BC refers to either BC1 or BC2,

BC1 = |∇φ|k(u−g), (4.21)

BC2 = ε|∇φ|2k(u−g). (4.22)

4.2.1. Case 1

Consider the case where D is a circle of radius R= 1 centered at (0,0), and where
the analytic solution to the Poisson equation in D is

uan(x,y) =
1

4

(
x2 +y2

)
. (4.23)

This corresponds to f = 1−(x2 +y2)/4,

g=
1

2

(
1

2
− 1

k

)
, (4.24)

and ∆suan = 0. We will consider the case when k=−1, thus g= 3/4.

4.2.2. Case 2

Again let D be the circle at (0,0) with radius R= 1, but now consider the case
where the analytic solution is

uan(x,y) =y
√
x2 +y2, (4.25)

which corresponds to

f =
3y√
x2 +y2

, (4.26)

g=y

(
1− 2

k

)
, (4.27)

and

∆suan =− y√
x2 +y2

. (4.28)

Again let k=−1 so that g= 3y. Similar to the Neumann case 3, g is extended con-
stantly in the normal direction in the DDM equations.

Karl Yngve Lerv̊ag and John Lowengrub 21

10−1100

10−4

10−3

10−2

10−1

Interface width, ε

E
ε

DDM1 BC1
DDM2 BC1
DDM1 BC2
DDM2 BC2

Figure 4.5. Errors for the Robin problem with respect to ε for Case 1, as labelled.

4.2.3. Case 3
For the final Robin case we let D= [−1,1]2, and we consider a case that corre-

sponds to the Neumann Case 4 where the analytic solution is

uan(x,y) =er, (4.29)

where r= x2+y2

4 . This corresponds to

f = (r+1)er. (4.30)

The boundary function g and the surface Laplacian of the analytic function along the
boundary are

g=
3

2
e

1+ξ2

4 , (4.31)

∆suan =
1

4

(
ξ2 +2

)
e

1+ξ2

4 , (4.32)

where ξ≡x along the bottom and top boundaries, and ξ≡y along the left and right
boundaries.

4.2.4. Results
The convergence results are now presented in Figures 4.5 to 4.7 and Table 4.2.

The grid convergence for each ε is presented in Tables A.12 to A.15 in the Appendix.
Again the results indicate that DDM2 performs better than DDM1, although both
methods are roughly second-order accurate, and that BC1 gives better results than
BC2.

22 Towards a second-order diffuse-domain method

10−1100

10−4

10−3

10−2

10−1

Interface width, ε

E
ε

DDM1 BC1
DDM2 BC1
DDM1 BC2
DDM2 BC2

Figure 4.6. Errors for the Robin problem with respect to ε for Case 2, as labelled.

10−1100

10−4

10−3

10−2

10−1

100

Interface width, ε

E
ε

DDM1 BC1
DDM2 BC1
DDM1 BC2
DDM2 BC2

Figure 4.7. Errors for the Robin problem with respect to ε for Case 3, as labelled.

Karl Yngve Lerv̊ag and John Lowengrub 23

ε E k E k E k E k
DDM1 BC1 DDM2 BC1 DDM1 BC2 DDM2 BC2

Case 1

0.800 2.11×10−1 1.20×10−1 1.70×10−1 2.44×10−1

0.400 4.40×10−2 2.3 2.72×10−2 2.1 5.21×10−2 1.7 4.79×10−2 2.3

0.200 8.99×10−3 2.3 6.42×10−3 2.1 2.18×10−2 1.3 8.26×10−3 2.5

0.100 1.95×10−3 2.2 1.57×10−3 2.0 1.03×10−2 1.1 6.01×10−3 0.5

0.050 4.57×10−4 2.1 3.79×10−4 2.0

0.025 1.23×10−4 1.9 8.59×10−5 2.1

Case 2

0.800 1.32×10−1 2.75×10−2 1.14×10−1 9.80×10−2

0.400 2.75×10−2 2.3 8.77×10−3 1.6 2.54×10−2 2.2 3.03×10−2 1.7

0.200 5.27×10−3 2.4 2.20×10−3 2.0 8.54×10−3 1.6 8.10×10−3 1.9

0.100 1.02×10−3 2.4 5.47×10−4 2.0 3.86×10−3 1.1 3.05×10−3 1.4

0.050 2.08×10−4 2.3 1.35×10−4 2.0 2.01×10−3 0.9 1.69×10−3 0.9

0.025 4.88×10−5 2.1 3.43×10−5 2.0

Case 3

0.800 7.89×10−2 3.61×10−2 8.23×10−2 7.05×10−2

0.400 1.64×10−2 2.3 7.42×10−3 2.3 1.89×10−2 2.2 9.22×10−3 2.5

0.200 3.70×10−3 2.2 1.74×10−3 2.1 5.90×10−3 1.7 2.97×10−3 1.6

0.100 9.04×10−4 2.0 4.52×10−4 2.0 2.45×10−3 1.3 1.54×10−3 1.0

0.050 2.53×10−4 1.8 1.44×10−4 1.8

0.025 9.61×10−5 1.4 7.16×10−5 1.4

Table 4.2. The error for the Robin problem as a function of ε for all cases. All results are
calculated with n= 8192 in each direction on uniform grids, except for Case 3 with BC2, where
the results are calculated with n= 4096 in each direction. Blank results indicate that the solutions
require even finer grids to converge.

24 Towards a second-order diffuse-domain method

5. Conclusion

We have derived an asymptotically second-order diffuse domain method (DDM)
for the Poisson equation with Robin boundary conditions and for the steady diffusion-
equation with Neumann boundary conditions. The second-order DDM (DDM2) was
tested for selected test cases and compared to the first-order DDM (DDM1) with two
different approximations of the boundary condition, BC1, see Eqs. (4.3) and (4.21),
and BC2, see Eqs. (4.4) and (4.22). Due to a problem with solving the full DDM2
equations, we instead solved the DDM2 equations using the surface Laplacian of the
analytic solution in Eqs. (2.80), (2.82) and (2.83).

The results indicate that the global accuracy of DDM2 is better than that of
DDM1. However, both methods generally perform well, and the global convergence
rate is around 2. It was shown that the choice of boundary condition had a significant
impact on the accuracy: BC1 generally performed much better than the alternative
boundary condition BC2. Using DDM2 with BC1, we obtain a reliably second-order
accurate method.

In future work, we plan to perform an explicit error analysis for the first and
second order DDM-based schemes in order to better understand the convergence be-
haviour observed here. Further, this analysis should be also reveal why we have
difficulties incorporating the surface Laplacian in the DDM equations and whether
we can find an alternative numerical approach for handling this term.

Acknowledgement. KYL acknowledges support from the Fulbright founda-
tion for a Visiting Researcher Grant to fund a stay at the University of California,
Irvine. KYL also acknowledges support from Statoil and GDF SUEZ, and the Re-
search Council of Norway (193062/S60) for the research project Enabling low emission
LNG systems. JL acknowledges support from the National Science Foundation, Di-
vision of Mathematical Sciences, and the National Institute of Health through grant
P50GM76516 for a Center of Excellence in Systems Biology at the University of Cal-
ifornia, Irvine. The authors gratefully thank Bernhard Müller (NTNU) and Svend
Tollak Munkejord (SINTEF Energy Research) for helpful discussions and for feed-
back on the manuscript.

REFERENCES

[1] S. Aland, J. Lowengrub, and A. Voigt, Two-phase flow in complex geometries: A diffuse
domain approach., Computer Modeling in Engineering & Sciences, 57 (2010), pp. 77–106.

[2] R. F. Almgren, Second-order phase field asymptotics for unequal conductivities, SIAM Journal
on Applied Mathematics, 59 (1999), pp. 2086–2107.

[3] M.K. Nernauer, R. Herzog, Implementation of an X-FEM solver for the classical two-phase
Stefan problem, J. Sci. Comput., 52 (2012), pp. 271-293.

[4] A. Bueno-Orovio and V. M. Perez-Garcia, Spectral smoothed boundary methods: the role
of external boundary conditions, Numer. Meth. Partial Diff. Eqns., 22 (2006), pp. 435–448.

[5] A. Bueno-Orovio, V. M. Perez-Garcia, and F. H. Fenton, Spectral methods for partial
differential equations in irregular domains: the spectral smoothed boundary method, SIAM
Journal on Scientific Computing, 28 (2006), pp. 886–900.

[6] A. Byfut, A. Schroeder, hp-adaptive extended finite element method, Int. J. Numer. Meth.
Eng., 89 (2012), pp. 1293-1418.

[7] M. Cisternino, L Weynans, A parallel second order Cartesian method for elliptic interface
problems, Comm. Comput. Phys., 12 (2012), pp. 1562-1587.

[8] H. Johansen and P. Colella, Embedded boundary algorithms and software for partial differ-
ential equations, J. Phys., 125 (2008), pp. 012084.

[9] A. Demlow and G. Dziuk, An adaptive finite element method for the Laplace-Beltrami oper-
ator on implicitly defined surfaces , SIAM J. Numer. Anal., 45 (2007), pp. 421-442.

Karl Yngve Lerv̊ag and John Lowengrub 25

[10] J. Dolbow, I. Harari, An efficient finite element method for embedded interface problems,
Int. J. Numer. Meth. Eng., 78 (2009), pp. 229-252.

[11] R. Duddu, D.L. Chopp, P. Voorhees, B. Moran, Diffusional evolution of precipitates in
elastic media using the extended finite element method and level set methods, J. Comput.
Phys., 230 (2011), pp. 1249-1264.

[12] G. Dziuk, and C.M. Elliott, Finite elements on evolving surfaces, IMA J. Numer. Anal., 27
(2007), pp. 262-292.

[13] G. Dziuk and C.M. Elliott, Eulerian finite element method for parabolic PDEs on implicit
surfaces, Int. Free. Bound., 10 (2008), pp. 119-138.

[14] G. Dziuk and C.M. Elliott, An Eulerian approach to transport and diffusion on evolving
implicit surfaces, Comput. Visual. Sci., 13, (2010), pp. 17-28.

[15] G. Dziuk and C.M. Elliott, A fully discrete evolving surface finite element method, SIAM
J. Numer. Anal., 50, 5, (2012), pp. 2677-2694.

[16] C.M. Elliott, B. Stinner, V. Styles, R. Welford, Numerical computation of advection
and diffusion on evolving diffuse interfaces, IMA J. Num. Anal., 31, (2011), pp. 245-269.

[17] C.M. Elliott and B. Stinner, Analysis of a diffuse interface approach to an advection dif-
fusion equation on a moving surface, Math. Mod. Meth. Appl. Sci., (2009) in press.

[18] A.S. Fard, M.A. Hulsen, P.D. Anderson, Extended finite element method for viscous flow
inside complex three-dimensional geometries with moving boundaries, Int. J. Numer. Meth.
Fluids, 70 (2012), pp. 775-792.

[19] R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eulerian approach to
interfaces in multimaterial flows (the ghost fluid method, J. Comput. Phys., 152 (1999),
pp. 457-492.

[20] F. H. Fenton, E. M. Cherry, A. Karma, and W. J. Rappel, Modeling wave propagation in
realistic heart geometries using the phase-field method, CHAOS, 15 (2005).

[21] R. Folch, J. Casademunt, A. Hernandez-Machado, and L. Ramirez-Piscina, Phys. Rev.
E, 60 (1999), pp. 1724.

[22] F.-P. Fries, T. Belytschko, The extended/generalized finite element method: An overview
of the method and its applications, Int. J. Numer. Meth. Eng., 84 (2010), pp. 253-304.

[23] F. Gibou, R. Fedkiw, L.T. Cheng, and M. Kang, A second order accurate symetric dis-
cretization of the Poisson equation on irregular domains, J. Comput. Phys., 176 (2002),
pp. 205-227.

[24] F. Gibou and R. Fedkiw, A fourth order accurate discretization for the Laplace and heat
equations on arbitrary domains with applications to the Stefan problem, J. Comput. Phys.,
202 (2005), pp. 577-601.

[25] J. Glimm and D. Marchesin and O. McBryan, A numerical method for 2 phase flow with
an unstable interface, J. Comput. Phys., 39 (1981), pp. 179-200.

[26] R. Glowinski, T.W. Pan, and J. Periaux, A fictitious domain method for external incom-
pressible viscous-flow modeled by Navier-Stokes equations, Comput. Meth. Appl. Mech.
Engin., 112 (1994), pp. 133-148.

[27] R. Glowinski and T.W. Pan and R.O. Wells and X.D. Zhou, Wavelet and finite element
solutions for the Neumann problem using fictitious domains, J. Comput. Phys., 126 (1996),
pp. 40-51.

[28] J.B. Greer and A.L. Bertozzi and G. Sapiro, Fourth order partial differential equations on
general geometries, J. Comput. Phys., 216 (2006), pp. 216-246.

[29] S. Gross, and A. Reusken, An extended pressure finite element space for two-phase incom-
pressible flows, J. Comput. Phys., 224 (2007), pp. 40-48.

[30] X.M. He, T. Lin, Y.P. Lin, Immersed finite element methods for elliptic interface problems
with non-homogeneous jump conditions, Int. J. Numer. Anal. Model., 8 (2011), pp. 284-301.

[31] R. Lohner and J.R. Cebral and F.F. Camelli and J.D. Baum and E.L. Mestreau and
O.A. Soto, Adaptive embedded/immersed unstructured grid techniques, Arch. Comput.
Meth. Eng., 14 (2007), pp. 279-301.

[32] H. Ji and F.-S. Lien and E. Yee, An efficient second-order accurate cut-cell method for solving
the variable coefficient Poisson equation with jump conditions on irregular domains, Int.
J. Numer. Meth. Fluids, 52 (2006), pp. 723-748.

[33] H. Johansen and P. Colella, A Cartesian grid embedded boundary method for Poisson’s
equation on irregular domains, J. Comput. Phys., 147 (1998), pp. 60-85.

[34] A. Karma and W.-J. Rappel, Quantitative phase-field modeling of dendritic growth in two
and three dimensions, Physical Review E, 57 (1998), pp. 4323–4349.

[35] J. Kockelkoren, H. Levine, and W. J. Rappel, Computational approach for modeling intra-
and extracellular dynamics, Phys. Rev., E 68 (2003), p. 037702.

[36] H. Levine and W. J. Rappel, Membrane-bound turing patterns, Physical Review E, 72 (2005).

26 Towards a second-order diffuse-domain method

[37] R.J. Leveque and Z. Li, The immersed interface method for elliptic equations with discontin-
uous coefficients and singular sources, SIAM J. Numer. Anal., 31 (1994), pp. 1019-1044.

[38] X. Li, J. Lowengrub, A. Rätz, and A. Voigt, Solving pdes in complex geometries: A diffuse
domain approach, Communications in Mathematical Sciences, 7 (2009), pp. 81–107.

[39] Z. Li and K. Ito, The immersed interface method: Numerical solutions of PDEs involving
interfaces and irregular domains, SIAM Front. Appl. Math., 33 (2006).

[40] Z. Li, P. Song, An adaptive mesh refinement strategy for immersed boundary/interface meth-
ods, Comm. Comput. Phys., 12 (2012), pp. 515-527.

[41] S.H. Lui, Spectral domain embedding for elliptic PDEs in complex domains, J. Comput. Appl.
Math., 225 (2009), pp. 541-557.

[42] P. Macklin and J. Lowengrub, Evolving interfaces via gradients of geometry-dependent in-
terior Poisson problems: Application to tumor growth, J. Comput. Phys., 203 (2005),
pp. 191-220.

[43] P. Macklin and J. Lowengrub, A new ghost cell/level set method for moving boundary
problems: Application to tumor growth, J. Sci. Comput., 35 (2008), pp. 266-299.

[44] M. Oevermann, C. Scharfenberg, and R. Klein, A sharp interface finite volume method
for elliptic equations on Cartesian grids, J. Comput. Phys., 228 (2009), pp. 5184-5206.

[45] S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces, Springer (2003).
[46] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based

on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), pp. 12-49.
[47] R. L. Pego, Front migration in the nonlinear Cahn-Hilliard equation, Proceedings of the Royal

Society A, 422 (1988), pp. 261–278.
[48] T. Preusser, M. Rumpf, S. Sauter, and L.O. Schwen, 3D composite finite elements for

elliptic boundary value problems with discontinuous coefficients, SIAM J. Sci. Comput., 35
(2011), pp. 2115-2143.

[49] I. Ramiere and P. Angot and M. Belliard, A general fictitious domain method with im-
mersed jumps and multilevel nested structured meshes, J. Comput. Phys., 225 (2007),
pp. 1347-1387.

[50] A. Rätz and A. Voigt, PDEs on surfaces—a diffuse interface approach, Commun. Math.
Sci., 4 (2006), pp. 575-590.

[51] M. G. Reuter, J. C. Hill, and R. J. Harrison, Solving pdes in irregular geometries with
multiresolution methods i: Embedded Dirichlet boundary conditions, Computer Physics
Communications, 183 (2012), pp. 1–7.

[52] J.A. Sethian, Level set methods and fast marching methods, Cambridge University Press
(1999), ISBN 0-521-64557-3.

[53] J.A. Sethian and Y. Shan, Solving partial differential equations on irregular domains with
moving interfaces, with applications to superconformal electrodeposition in semiconductor
manufacturing, J. Comput. Phys., 227 (2008), pp. 6411-6447.

[54] I. Singer-Loginova and H.M. Singer, The phase field technique for modeling multiphase
materials, Rep. Prog. Phys., 71 (2008), pp. 106501.

[55] K. E. Teigen, X. Li, J. Lowengrub, F. Wang, and A. Voigt, A diffuse-interface approach
for modeling transport, diffusion and adsorption/desorption of material quantities on a
deformable interface, Communications in Mathematical Sciences, 7 (2009), pp. 1009–1037.

[56] K.E. Teigen, P. Song, A. Voigt, and J. Lowengrub, A diffuse-interface method for two-
phase flows with soluble surfactants, J. Comput. Phys., 230 (2011), pp. 375-393.

[57] E. Uzgoren, J. Sim, and W. Shyy, Marker-based, 3-D adaptive Cartesian grid method for
multiphase flows around irregular, Comm. Comput. Phys., 5 (2009), pp. 1-41.

[58] X.H. Wan, Z. Li, Some new finite difference methods for Helmholtz equations on irregular
domains or with interfaces, Disc. Cont. Dyn. Sys. B, 17 (2012), pp. 1155-1175.

[59] S. Wise, J. Kim, and J. Lowengrub, Solving the regularized, strongly anisotropic Cahn-
Hilliard equation by an adaptive nonlinear multigrid method, Journal of Computational
Physics, 226 (2007), pp. 414–446.

[60] K. Xia, M. Zhan, G. Wei, MIB method for elliptic equations with multimaterial interfaces, J.
Comput. Phys., 230 (2011), pp. 4588-4615.

[61] S. Zhao, High order matched interface and boundary methods for the Helmholtz equation in
media with arbitrarily curved interfaces, J. Comput. Phys., 229 (2010), pp. 3155-3170.

[62] S. Zhao, G. Wei, Matched interface and boundary (MIB) for the implementation of boundary
conditions in high-order central finite differences, Int. J. Numer. Meth. Eng., 77 (2009),
pp. 1690-1730.

[63] X.L. Zhong, A new high-order immersed interface method for solving elliptic equations with
imbedded interface of discontinuity, J. Comput. Phys., 225 (2007), pp. 1066-1099.

[64] Y.C. Zhou, J. Liu, D.L. Harry, A matched interface and boundary method for solving mul-

Karl Yngve Lerv̊ag and John Lowengrub 27

tiflow Navier-Stokes equations with applications to geodynamics, J. Comput. Phys., 231
(2012), pp. 223-242.

[65] Y.C. Zhou, S. Zhao, M. Feig, and G.W. Wei, High order matched interface and boundary
method for elliptic equations with discontinuous coefficients and singular sources

28 Towards a second-order diffuse-domain method

Appendix A. Convergence tables with respect to grid refinement.
This appendix gives a list of tables that shows convergence with respect to grid

refinement for each test case and for each ε. The tables are used to obtain the results
that are presented in Section 4.

n EDDM1 k EDDM2 k

ε=0.800

32 3.54×10−1 5.16×10−1

64 3.43×10−1 0.0 4.83×10−1 0.1

128 3.40×10−1 0.0 4.77×10−1 0.0

256 3.39×10−1 0.0 4.76×10−1 0.0

512 3.39×10−1 0.0 4.76×10−1 0.0

1024 3.39×10−1 0.0 4.76×10−1 -0.0

2048 3.39×10−1 0.0 4.76×10−1 -0.0

4096 3.39×10−1 0.0 4.77×10−1 -0.0

8192 3.39×10−1 0.0 4.77×10−1 -0.0

ε=0.200

32 3.38×10−3 3.57×10−1

64 2.37×10−2 -2.8 8.09×10−2 2.1

128 2.61×10−2 -0.1 3.32×10−2 1.3

256 2.58×10−2 0.0 2.77×10−2 0.3

512 2.57×10−2 0.0 2.69×10−2 0.0

1024 2.57×10−2 0.0 2.68×10−2 0.0

2048 2.57×10−2 0.0 2.68×10−2 0.0

4096 2.57×10−2 0.0 2.68×10−2 0.0

8192 2.57×10−2 0.0 2.68×10−2 0.0

ε=0.050

32 1.62×10−1 1.31

64 1.27×10−1 0.4 8.10×10−1 0.7

128 3.83×10−2 1.7 2.77×10−1 1.5

256 3.55×10−3 3.4 4.34×10−2 2.7

512 1.24×10−3 1.5 5.39×10−3 3.0

1024 1.60×10−3 -0.4 1.93×10−3 1.5

2048 1.62×10−3 -0.0 1.63×10−3 0.2

4096 1.62×10−3 0.0 1.60×10−3 0.0

8192 1.61×10−3 0.0 1.59×10−3 0.0

EDDM1 k EDDM2 k

ε=0.400

1.08×10−1 2.00×10−1

1.03×10−1 0.1 1.26×10−1 0.7

1.00×10−1 0.0 1.15×10−1 0.1

9.96×10−2 0.0 1.13×10−1 0.0

9.95×10−2 0.0 1.12×10−1 0.0

9.94×10−2 0.0 1.12×10−1 0.0

9.94×10−2 0.0 1.12×10−1 0.0

9.94×10−2 0.0 1.12×10−1 0.0

9.94×10−2 0.0 1.12×10−1 0.0

ε=0.100

1.03×10−1 8.54×10−1

3.16×10−2 1.7 2.92×10−1 1.5

1.88×10−3 4.1 5.14×10−2 2.5

6.21×10−3 -1.7 1.10×10−2 2.2

6.46×10−3 -0.1 7.00×10−3 0.6

6.44×10−3 0.0 6.59×10−3 0.1

6.43×10−3 0.0 6.52×10−3 0.0

6.43×10−3 0.0 6.51×10−3 0.0

6.43×10−3 0.0 6.51×10−3 0.0

ε=0.025

1.80×10−1 1.44

2.09×10−1 -0.2 1.14 0.3

1.31×10−1 0.7 7.53×10−1 0.6

3.99×10−2 1.7 2.70×10−1 1.5

4.87×10−3 3.0 4.11×10−2 2.7

1.67×10−5 8.2 3.94×10−3 3.4

3.90×10−4 -4.5 6.60×10−4 2.6

4.14×10−4 -0.1 4.10×10−4 0.7

4.15×10−4 -0.0 3.87×10−4 0.1

Table A.1. Grid convergence for Neumann Case 1 with BC1 (4.3).

Karl Yngve Lerv̊ag and John Lowengrub 29

n EDDM1 k EDDM2 k

ε=0.800

32 5.94×10−1 4.55×10−2

64 3.83×10−1 0.6 2.42×10−1 -2.4

128 3.27×10−1 0.2 3.02×10−1 -0.3

256 3.13×10−1 0.1 3.17×10−1 -0.1

512 3.10×10−1 0.0 3.21×10−1 -0.0

1024 3.09×10−1 0.0 3.22×10−1 -0.0

2048 3.09×10−1 0.0 3.23×10−1 -0.0

4096 3.09×10−1 0.0 3.23×10−1 -0.0

8192 3.09×10−1 0.0 3.23×10−1 -0.0

ε=0.200
32 2.50 2.21

64 1.03 1.3 9.43×10−1 1.2

128 3.23×10−1 1.7 2.74×10−1 1.8

256 1.03×10−1 1.6 5.74×10−2 2.3

512 4.50×10−2 1.2 7.67×10−3 2.9

1024 3.04×10−2 0.6 1.79×10−2 -1.2

2048 2.68×10−2 0.2 2.14×10−2 -0.3

4096 2.59×10−2 0.0 2.22×10−2 -0.1

8192 2.57×10−2 0.0 2.25×10−2 -0.0

ε=0.050
32 5.33 4.35
64 4.08 0.4 3.42 0.3

128 2.42 0.8 2.19 0.6

256 9.74×10−1 1.3 9.35×10−1 1.2

512 2.91×10−1 1.7 2.85×10−1 1.7

1024 7.76×10−2 1.9 7.45×10−2 1.9

2048 2.09×10−2 1.9 1.80×10−2 2.1

4096 6.49×10−3 1.7 3.68×10−3 2.3

8192 2.96×10−3 1.1 9.87×10−4 1.9

EDDM1 k EDDM2 k

ε=0.400

1.11 8.99×10−1

3.96×10−1 1.5 2.17×10−1 2.1

1.74×10−1 1.2 2.01×10−2 3.4

1.15×10−1 0.6 6.80×10−2 -1.8

1.00×10−1 0.2 8.28×10−2 -0.3

9.64×10−2 0.1 8.65×10−2 -0.1

9.54×10−2 0.0 8.74×10−2 -0.0

9.52×10−2 0.0 8.76×10−2 -0.0

9.52×10−2 0.0 8.77×10−2 -0.0

ε=0.100
4.14 3.48
2.44 0.8 2.19 0.7

9.90×10−1 1.3 9.42×10−1 1.2

2.99×10−1 1.7 2.84×10−1 1.7

8.32×10−2 1.8 7.15×10−2 2.0

2.59×10−2 1.7 1.45×10−2 2.3

1.15×10−2 1.2 2.77×10−3 2.4

7.93×10−3 0.5 4.87×10−3 -0.8

7.07×10−3 0.2 5.64×10−3 -0.2

ε=0.025
5.96 4.98
5.33 0.2 4.45 0.2
4.12 0.4 3.51 0.3
2.41 0.8 2.18 0.7

9.67×10−1 1.3 9.31×10−1 1.2

2.88×10−1 1.7 2.84×10−1 1.7

7.59×10−2 1.9 7.50×10−2 1.9

1.95×10−2 2.0 1.88×10−2 2.0

5.22×10−3 1.9 4.51×10−3 2.1

Table A.2. Grid convergence for Neumann Case 1 with BC2 (4.21).

30 Towards a second-order diffuse-domain method

n EDDM1 k EDDM2 k

ε=0.800

32 3.37×10−1 1.18×10−1

64 2.89×10−1 0.2 1.50×10−1 -0.4

128 2.67×10−1 0.1 1.70×10−1 -0.2

256 2.56×10−1 0.1 1.83×10−1 -0.1

512 2.51×10−1 0.0 1.90×10−1 -0.1

1024 2.48×10−1 0.0 1.93×10−1 -0.0

2048 2.47×10−1 0.0 1.95×10−1 -0.0

4096 2.46×10−1 0.0 1.96×10−1 -0.0

8192 2.46×10−1 0.0 1.96×10−1 -0.0

ε=0.200

32 1.20×10−1 7.59×10−2

64 6.93×10−2 0.8 3.57×10−2 1.1

128 4.37×10−2 0.7 1.72×10−2 1.1

256 3.12×10−2 0.5 8.82×10−3 1.0

512 2.51×10−2 0.3 5.67×10−3 0.6

1024 2.20×10−2 0.2 4.99×10−3 0.2

2048 2.05×10−2 0.1 5.02×10−3 -0.0

4096 1.97×10−2 0.1 5.13×10−3 -0.0

8192 1.94×10−2 0.0 5.21×10−3 -0.0

ε=0.050

32 9.58×10−2 1.16×10−1

64 4.87×10−2 1.0 3.68×10−2 1.7

128 2.55×10−2 0.9 1.75×10−2 1.1

256 1.33×10−2 0.9 8.62×10−3 1.0

512 7.24×10−3 0.9 4.26×10−3 1.0

1024 4.21×10−3 0.8 2.12×10−3 1.0

2048 2.71×10−3 0.6 1.07×10−3 1.0

4096 1.96×10−3 0.5 5.73×10−4 0.9

8192 1.58×10−3 0.3 3.70×10−4 0.6

EDDM1 k EDDM2 k

ε=0.400

1.75×10−1 7.33×10−2

1.22×10−1 0.5 3.35×10−2 1.1

9.69×10−2 0.3 2.18×10−2 0.6

8.46×10−2 0.2 2.17×10−2 0.0

7.86×10−2 0.1 2.34×10−2 -0.1

7.56×10−2 0.1 2.46×10−2 -0.1

7.41×10−2 0.0 2.53×10−2 -0.0

7.34×10−2 0.0 2.56×10−2 -0.0

7.30×10−2 0.0 2.58×10−2 -0.0

ε=0.100

9.97×10−2 7.78×10−2

5.41×10−2 0.9 3.60×10−2 1.1

2.94×10−2 0.9 1.75×10−2 1.0

1.70×10−2 0.8 8.62×10−3 1.0

1.09×10−2 0.6 4.29×10−3 1.0

7.81×10−3 0.5 2.27×10−3 0.9

6.29×10−3 0.3 1.47×10−3 0.6

5.53×10−3 0.2 1.24×10−3 0.2

5.16×10−3 0.1 1.20×10−3 0.0

ε=0.025

9.57×10−2 1.16×10−1

4.77×10−2 1.0 5.57×10−2 1.1

2.41×10−2 1.0 1.80×10−2 1.6

1.23×10−2 1.0 8.63×10−3 1.1

6.32×10−3 1.0 4.25×10−3 1.0

3.31×10−3 0.9 2.11×10−3 1.0

1.81×10−3 0.9 1.05×10−3 1.0

1.06×10−3 0.8 5.20×10−4 1.0

6.83×10−4 0.6 2.60×10−4 1.0

Table A.3. Grid convergence for Neumann Case 2 with BC1 (4.3).

Karl Yngve Lerv̊ag and John Lowengrub 31

n EDDM1 k EDDM2 k

ε=0.800

32 5.98×10−1 6.00×10−1

64 3.54×10−1 0.8 4.03×10−1 0.6

128 2.72×10−1 0.4 3.57×10−1 0.2

256 2.43×10−1 0.2 3.50×10−1 0.0

512 2.31×10−1 0.1 3.51×10−1 -0.0

1024 2.26×10−1 0.0 3.52×10−1 -0.0

2048 2.24×10−1 0.0 3.52×10−1 -0.0

4096 2.23×10−1 0.0 3.53×10−1 -0.0

8192 2.22×10−1 0.0 3.53×10−1 -0.0

ε=0.200
32 2.11 1.97

64 1.00 1.1 9.18×10−1 1.1

128 3.41×10−1 1.6 2.91×10−1 1.7

256 1.14×10−1 1.6 8.24×10−2 1.8

512 4.77×10−2 1.3 2.68×10−2 1.6

1024 2.85×10−2 0.7 1.40×10−2 0.9

2048 2.25×10−2 0.3 1.15×10−2 0.3

4096 2.04×10−2 0.1 1.09×10−2 0.1

8192 1.95×10−2 0.1 1.08×10−2 0.0

ε=0.050
32 4.10 3.92
64 3.17 0.4 3.09 0.3

128 2.02 0.6 1.98 0.6

256 9.20×10−1 1.1 8.99×10−1 1.1

512 2.89×10−1 1.7 2.79×10−1 1.7

1024 8.02×10−2 1.9 7.42×10−2 1.9

2048 2.25×10−2 1.8 1.91×10−2 2.0

4096 7.19×10−3 1.6 5.05×10−3 1.9

8192 3.07×10−3 1.2 1.66×10−3 1.6

EDDM1 k EDDM2 k

ε=0.400

1.10 9.56×10−1

4.25×10−1 1.4 3.28×10−1 1.5

1.83×10−1 1.2 1.19×10−1 1.5

1.08×10−1 0.8 6.62×10−2 0.8

8.37×10−2 0.4 5.44×10−2 0.3

7.53×10−2 0.2 5.17×10−2 0.1

7.20×10−2 0.1 5.12×10−2 0.0

7.06×10−2 0.0 5.10×10−2 0.0

6.99×10−2 0.0 5.10×10−2 0.0

ε=0.100
3.19 3.04
2.05 0.6 1.98 0.6

9.47×10−1 1.1 9.05×10−1 1.1

3.05×10−1 1.6 2.82×10−1 1.7

8.94×10−2 1.8 7.59×10−2 1.9

2.87×10−2 1.6 2.03×10−2 1.9

1.21×10−2 1.2 6.48×10−3 1.6

7.34×10−3 0.7 3.52×10−3 0.9

5.88×10−3 0.3 2.99×10−3 0.2

ε=0.025
4.61 4.43
4.08 0.2 3.99 0.2
3.16 0.4 3.12 0.4
2.00 0.7 1.98 0.7

9.06×10−1 1.1 8.96×10−1 1.1

2.82×10−1 1.7 2.77×10−1 1.7

7.64×10−2 1.9 7.36×10−2 1.9

2.02×10−2 1.9 1.88×10−2 2.0

5.63×10−3 1.8 4.77×10−3 2.0

Table A.4. Grid convergence for Neumann Case 2 with BC2 (4.21).

32 Towards a second-order diffuse-domain method

n EDDM2 BC1 k EDDM2 BC2 k

ε=0.800

32 4.03×10−1 1.51×10−1

64 3.37×10−1 0.3 1.25×10−1 0.3

128 3.12×10−1 0.1 1.61×10−1 -0.4

256 2.99×10−1 0.1 1.70×10−1 -0.1

512 2.93×10−1 0.0 1.71×10−1 -0.0

1024 2.90×10−1 0.0 1.71×10−1 0.0

2048 2.89×10−1 0.0 1.71×10−1 0.0

4096 2.88×10−1 0.0 1.70×10−1 0.0

8192 2.88×10−1 0.0 1.70×10−1 0.0

ε=0.200

32 1.10×10−1 1.94

64 6.00×10−2 0.9 8.94×10−1 1.1

128 3.83×10−2 0.6 2.69×10−1 1.7

256 2.85×10−2 0.4 6.19×10−2 2.1

512 2.38×10−2 0.3 1.02×10−2 2.6

1024 2.16×10−2 0.1 1.32×10−2 -0.4

2048 2.04×10−2 0.1 1.60×10−2 -0.3

4096 1.99×10−2 0.0 1.68×10−2 -0.1

8192 1.96×10−2 0.0 1.70×10−2 -0.0

ε=0.050

32 1.24×10−1 3.91

64 3.94×10−2 1.6 3.09 0.3

128 1.94×10−2 1.0 1.98 0.6

256 1.00×10−2 1.0 8.98×10−1 1.1

512 5.52×10−3 0.9 2.77×10−1 1.7

1024 3.33×10−3 0.7 7.30×10−2 1.9

2048 2.26×10−3 0.6 1.79×10−2 2.0

4096 1.73×10−3 0.4 3.88×10−3 2.2

8192 1.46×10−3 0.2 9.06×10−4 2.1

EDDM2 BC1 k EDDM2 BC2 k

ε=0.400

1.81×10−1 8.46×10−1

1.22×10−1 0.6 2.33×10−1 1.9

9.86×10−2 0.3 3.71×10−2 2.6

8.78×10−2 0.2 4.51×10−2 -0.3

8.27×10−2 0.1 5.67×10−2 -0.3

8.02×10−2 0.0 5.97×10−2 -0.1

7.90×10−2 0.0 6.04×10−2 -0.0

7.84×10−2 0.0 6.06×10−2 -0.0

7.81×10−2 0.0 6.06×10−2 -0.0

ε=0.100

8.92×10−2 3.04

4.39×10−2 1.0 1.97 0.6

2.33×10−2 0.9 9.00×10−1 1.1

1.37×10−2 0.8 2.77×10−1 1.7

9.18×10−3 0.6 7.10×10−2 2.0

6.98×10−3 0.4 1.55×10−2 2.2

5.90×10−3 0.2 2.95×10−3 2.4

5.36×10−3 0.1 3.74×10−3 -0.3

5.10×10−3 0.1 4.39×10−3 -0.2

ε=0.025

1.24×10−1 4.43

5.74×10−2 1.1 3.99 0.2

1.86×10−2 1.6 3.12 0.4

9.09×10−3 1.0 1.98 0.7

4.59×10−3 1.0 8.96×10−1 1.1

2.42×10−3 0.9 2.77×10−1 1.7

1.35×10−3 0.8 7.33×10−2 1.9

8.18×10−4 0.7 1.85×10−2 2.0

5.54×10−4 0.6 4.47×10−3 2.0

Table A.5. Grid convergence for Neumann Case 2 with BC1 (4.3) and BC2 (4.21) with no
surface Laplacian term.

Karl Yngve Lerv̊ag and John Lowengrub 33

n EDDM1 k EDDM2 k

ε=0.800

32 1.33×10−1 9.44×10−2

64 1.29×10−1 0.0 8.89×10−2 0.1

128 1.28×10−1 0.0 8.77×10−2 0.0

256 1.28×10−1 0.0 8.75×10−2 0.0

512 1.27×10−1 0.0 8.75×10−2 0.0

1024 1.27×10−1 0.0 8.74×10−2 0.0

2048 1.27×10−1 0.0 8.74×10−2 0.0

4096 1.27×10−1 0.0 8.74×10−2 -0.0

8192 1.27×10−1 0.0 8.74×10−2 0.0

ε=0.200

32 3.00×10−3 9.62×10−2

64 7.38×10−3 -1.3 2.19×10−2 2.1

128 7.71×10−3 -0.1 8.89×10−3 1.3

256 7.56×10−3 0.0 7.36×10−3 0.3

512 7.50×10−3 0.0 7.14×10−3 0.0

1024 7.49×10−3 0.0 7.10×10−3 0.0

2048 7.49×10−3 0.0 7.09×10−3 0.0

4096 7.48×10−3 0.0 7.08×10−3 0.0

8192 7.48×10−3 0.0 7.08×10−3 0.0

ε=0.050

32 4.72×10−2 3.61×10−1

64 3.50×10−2 0.4 2.21×10−1 0.7

128 1.04×10−2 1.7 7.53×10−2 1.6

256 9.47×10−4 3.5 1.18×10−2 2.7

512 3.54×10−4 1.4 1.47×10−3 3.0

1024 4.46×10−4 -0.3 5.25×10−4 1.5

2048 4.49×10−4 -0.0 4.43×10−4 0.2

4096 4.48×10−4 0.0 4.34×10−4 0.0

8192 4.48×10−4 0.0 4.32×10−4 0.0

EDDM1 k EDDM2 k

ε=0.400

3.50×10−2 5.25×10−2

3.24×10−2 0.1 3.24×10−2 0.7

3.15×10−2 0.0 2.93×10−2 0.1

3.12×10−2 0.0 2.87×10−2 0.0

3.12×10−2 0.0 2.86×10−2 0.0

3.12×10−2 0.0 2.85×10−2 0.0

3.12×10−2 0.0 2.85×10−2 0.0

3.12×10−2 0.0 2.85×10−2 0.0

3.12×10−2 0.0 2.85×10−2 0.0

ε=0.100

2.80×10−2 2.31×10−1

8.33×10−3 1.8 7.93×10−2 1.5

7.43×10−4 3.5 1.40×10−2 2.5

1.78×10−3 -1.3 2.99×10−3 2.2

1.83×10−3 -0.0 1.89×10−3 0.7

1.82×10−3 0.0 1.77×10−3 0.1

1.81×10−3 0.0 1.76×10−3 0.0

1.81×10−3 0.0 1.75×10−3 0.0

1.81×10−3 0.0 1.75×10−3 0.0

ε=0.025

5.43×10−2 4.01×10−1

5.88×10−2 -0.1 3.13×10−1 0.4

3.61×10−2 0.7 2.06×10−1 0.6

1.09×10−2 1.7 7.37×10−2 1.5

1.33×10−3 3.0 1.12×10−2 2.7

1.79×10−5 6.2 1.08×10−3 3.4

1.08×10−4 -2.6 1.81×10−4 2.6

1.15×10−4 -0.1 1.12×10−4 0.7

1.15×10−4 -0.0 1.06×10−4 0.1

Table A.6. Grid convergence for Neumann Case 3 with BC1 (4.3).

34 Towards a second-order diffuse-domain method

n EDDM1 k EDDM2 k

ε=0.800

32 1.85×10−1 4.56×10−2

64 1.34×10−1 0.5 7.22×10−2 -0.7

128 1.22×10−1 0.1 8.46×10−2 -0.2

256 1.19×10−1 0.0 8.79×10−2 -0.1

512 1.19×10−1 0.0 8.87×10−2 -0.0

1024 1.18×10−1 0.0 8.89×10−2 -0.0

2048 1.18×10−1 0.0 8.90×10−2 -0.0

4096 1.18×10−1 0.0 8.90×10−2 -0.0

8192 1.18×10−1 0.0 8.90×10−2 -0.0

ε=0.200

32 6.69×10−1 5.83×10−1

64 2.73×10−1 1.3 2.48×10−1 1.2

128 8.48×10−2 1.7 7.09×10−2 1.8

256 2.65×10−2 1.7 1.47×10−2 2.3

512 1.20×10−2 1.1 7.63×10−3 0.9

1024 8.94×10−3 0.4 9.73×10−3 -0.4

2048 8.31×10−3 0.1 1.04×10−2 -0.1

4096 8.16×10−3 0.0 1.06×10−2 -0.0

8192 8.13×10−3 0.0 1.07×10−2 -0.0

ε=0.050

32 1.47×10−0 1.18×10−0

64 1.11×10−0 0.4 9.28×10−1 0.3

128 6.58×10−1 0.8 5.94×10−1 0.6

256 2.64×10−1 1.3 2.54×10−1 1.2

512 7.89×10−2 1.7 7.72×10−2 1.7

1024 2.10×10−2 1.9 2.01×10−2 1.9

2048 5.60×10−3 1.9 4.82×10−3 2.1

4096 1.85×10−3 1.6 1.27×10−3 1.9

8192 1.12×10−3 0.7 9.85×10−4 0.4

EDDM1 k EDDM2 k

ε=0.400

2.92×10−1 2.25×10−1

1.02×10−1 1.5 5.18×10−2 2.1

4.55×10−2 1.2 1.99×10−2 1.4

3.21×10−2 0.5 3.02×10−2 -0.6

2.91×10−2 0.1 3.34×10−2 -0.1

2.84×10−2 0.0 3.43×10−2 -0.0

2.82×10−2 0.0 3.45×10−2 -0.0

2.82×10−2 0.0 3.45×10−2 -0.0

2.82×10−2 0.0 3.45×10−2 -0.0

ε=0.100

1.13×10−0 9.36×10−1

6.59×10−1 0.8 5.90×10−1 0.7

2.67×10−1 1.3 2.53×10−1 1.2

8.03×10−2 1.7 7.61×10−2 1.7

2.21×10−2 1.9 1.89×10−2 2.0

6.87×10−3 1.7 4.20×10−3 2.2

3.51×10−3 1.0 2.77×10−3 0.6

2.91×10−3 0.3 3.16×10−3 -0.2

2.79×10−3 0.1 3.30×10−3 -0.1

ε=0.025

1.67×10−0 1.36×10−0

1.46×10−0 0.2 1.21×10−0 0.2

1.12×10−0 0.4 9.56×10−1 0.3

6.56×10−1 0.8 5.93×10−1 0.7

2.63×10−1 1.3 2.54×10−1 1.2

7.85×10−2 1.7 7.74×10−2 1.7

2.07×10−2 1.9 2.04×10−2 1.9

5.30×10−3 2.0 5.10×10−3 2.0

1.43×10−3 1.9 1.24×10−3 2.0

Table A.7. Grid convergence for Neumann Case 3 with BC2 (4.21).

Karl Yngve Lerv̊ag and John Lowengrub 35

n EDDM2 BC1 k EDDM2 BC2 k

ε=0.800

32 3.07×10−2 1.06×10−1

64 3.13×10−2 -0.0 7.08×10−2 0.6

128 3.15×10−2 -0.0 6.77×10−2 0.1

256 3.16×10−2 -0.0 6.75×10−2 0.0

512 3.16×10−2 -0.0 6.75×10−2 0.0

1024 3.16×10−2 -0.0 6.75×10−2 0.0

2048 3.16×10−2 -0.0 6.75×10−2 -0.0

4096 3.16×10−2 -0.0 6.75×10−2 0.0

8192 3.16×10−2 0.0 6.75×10−2 -0.0

ε=0.200

32 8.92×10−2 5.90×10−1

64 1.74×10−2 2.4 2.53×10−1 1.2

128 4.93×10−3 1.8 7.48×10−2 1.8

256 3.60×10−3 0.5 1.81×10−2 2.1

512 3.43×10−3 0.1 6.91×10−3 1.4

1024 3.41×10−3 0.0 7.33×10−3 -0.1

2048 3.40×10−3 0.0 7.76×10−3 -0.1

4096 3.40×10−3 0.0 7.88×10−3 -0.0

8192 3.40×10−3 0.0 7.92×10−3 -0.0

ε=0.050

32 3.49×10−1 1.19

64 2.20×10−1 0.7 9.29×10−1 0.4

128 7.49×10−2 1.6 5.95×10−1 0.6

256 1.16×10−2 2.7 2.54×10−1 1.2

512 1.24×10−3 3.2 7.75×10−2 1.7

1024 3.02×10−4 2.0 2.03×10−2 1.9

2048 2.23×10−4 0.4 5.04×10−3 2.0

4096 2.14×10−4 0.1 1.41×10−3 1.8

8192 2.12×10−4 0.0 9.54×10−4 0.6

EDDM2 BC1 k EDDM2 BC2 k

ε=0.400

3.20×10−2 2.46×10−1

1.53×10−2 1.1 6.88×10−2 1.8

1.32×10−2 0.2 1.99×10−2 1.8

1.29×10−2 0.0 1.95×10−2 0.0

1.28×10−2 0.0 2.13×10−2 -0.1

1.28×10−2 0.0 2.19×10−2 -0.0

1.28×10−2 0.0 2.20×10−2 -0.0

1.28×10−2 0.0 2.20×10−2 -0.0

1.28×10−2 0.0 2.21×10−2 -0.0

ε=0.100

2.25×10−1 9.43×10−1

7.77×10−2 1.5 5.92×10−1 0.7

1.29×10−2 2.6 2.54×10−1 1.2

2.04×10−3 2.7 7.70×10−2 1.7

9.80×10−4 1.1 1.98×10−2 2.0

8.76×10−4 0.2 4.89×10−3 2.0

8.61×10−4 0.0 2.60×10−3 0.9

8.58×10−4 0.0 2.70×10−3 -0.1

8.58×10−4 0.0 2.78×10−3 -0.0

ε=0.025

3.84×10−1 1.37

3.10×10−1 0.3 1.21 0.2

2.05×10−1 0.6 9.57×10−1 0.3

7.36×10−2 1.5 5.93×10−1 0.7

1.12×10−2 2.7 2.54×10−1 1.2

1.02×10−3 3.5 7.75×10−2 1.7

1.26×10−4 3.0 2.05×10−2 1.9

5.80×10−5 1.1 5.16×10−3 2.0

5.19×10−5 0.2 1.29×10−3 2.0

Table A.8. Grid convergence for Neumann Case 3 with BC1 (4.3) and BC2 (4.21) with no
surface Laplacian term.

36 Towards a second-order diffuse-domain method

n EDDM1 k EDDM2 k

ε=0.800

32 1.97×10−1 1.77×10−1

64 1.83×10−1 0.1 1.48×10−1 0.3

128 1.77×10−1 0.1 1.42×10−1 0.1

256 1.74×10−1 0.0 1.39×10−1 0.0

512 1.72×10−1 0.0 1.38×10−1 0.0

1024 1.72×10−1 0.0 1.38×10−1 0.0

2048 1.71×10−1 0.0 1.38×10−1 0.0

4096 1.71×10−1 0.0 1.38×10−1 0.0

8192 1.71×10−1 0.0 1.38×10−1 0.0

ε=0.200

32 3.74×10−2 3.79×10−2

64 2.45×10−2 0.6 1.74×10−2 1.1

128 1.77×10−2 0.5 9.93×10−3 0.8

256 1.45×10−2 0.3 6.96×10−3 0.5

512 1.29×10−2 0.2 5.67×10−3 0.3

1024 1.21×10−2 0.1 5.07×10−3 0.2

2048 1.17×10−2 0.0 4.79×10−3 0.1

4096 1.15×10−2 0.0 4.65×10−3 0.0

8192 1.14×10−2 0.0 4.58×10−3 0.0

ε=0.050

32 2.39×10−2 4.33×10−2

64 1.30×10−2 0.9 1.31×10−2 1.7

128 7.22×10−3 0.8 5.76×10−3 1.2

256 3.98×10−3 0.9 2.79×10−3 1.0

512 2.34×10−3 0.8 1.46×10−3 0.9

1024 1.53×10−3 0.6 8.48×10−4 0.8

2048 1.13×10−3 0.4 5.55×10−4 0.6

4096 9.24×10−4 0.3 4.12×10−4 0.4

8192 8.23×10−4 0.2 3.43×10−4 0.3

EDDM1 k EDDM2 k

ε=0.400

7.09×10−2 5.79×10−2

5.70×10−2 0.3 3.42×10−2 0.8

5.04×10−2 0.2 2.62×10−2 0.4

4.72×10−2 0.1 2.30×10−2 0.2

4.56×10−2 0.0 2.16×10−2 0.1

4.49×10−2 0.0 2.10×10−2 0.0

4.45×10−2 0.0 2.07×10−2 0.0

4.43×10−2 0.0 2.05×10−2 0.0

4.42×10−2 0.0 2.04×10−2 0.0

ε=0.100

2.60×10−2 3.35×10−2

1.59×10−2 0.7 1.39×10−2 1.3

9.40×10−3 0.8 6.58×10−3 1.1

6.09×10−3 0.6 3.60×10−3 0.9

4.46×10−3 0.4 2.28×10−3 0.7

3.66×10−3 0.3 1.68×10−3 0.4

3.25×10−3 0.2 1.39×10−3 0.3

3.05×10−3 0.1 1.25×10−3 0.2

2.95×10−3 0.0 1.18×10−3 0.1

ε=0.025

2.39×10−2 4.33×10−2

1.25×10−2 0.9 1.81×10−2 1.3

6.49×10−3 0.9 5.64×10−3 1.7

3.43×10−3 0.9 2.59×10−3 1.1

1.81×10−3 0.9 1.26×10−3 1.0

9.97×10−4 0.9 6.46×10−4 1.0

5.91×10−4 0.8 3.50×10−4 0.9

3.89×10−4 0.6 2.05×10−4 0.8

2.88×10−4 0.4 1.33×10−4 0.6

Table A.9. Grid convergence for Neumann Case 4 with BC1 (4.3).

Karl Yngve Lerv̊ag and John Lowengrub 37

n EDDM1 k EDDM2 k

ε=0.800

32 2.69×10−1 4.48×10−2

64 2.09×10−1 0.4 7.16×10−2 -0.7

128 1.88×10−1 0.2 8.18×10−2 -0.2

256 1.80×10−1 0.1 8.44×10−2 -0.0

512 1.77×10−1 0.0 8.51×10−2 -0.0

1024 1.75×10−1 0.0 8.55×10−2 -0.0

2048 1.75×10−1 0.0 8.57×10−2 -0.0

4096 1.74×10−1 0.0 8.58×10−2 -0.0

8192 1.74×10−1 0.0 8.58×10−2 -0.0

ε=0.200

32 4.82×10−1 4.19×10−1

64 2.33×10−1 1.1 1.96×10−1 1.1

128 8.50×10−2 1.5 5.98×10−2 1.7

256 3.39×10−2 1.3 1.43×10−2 2.1

512 1.88×10−2 0.9 2.88×10−3 2.3

1024 1.43×10−2 0.4 2.69×10−3 0.1

2048 1.28×10−2 0.2 3.18×10−3 -0.2

4096 1.23×10−2 0.1 3.32×10−3 -0.1

8192 1.20×10−2 0.0 3.36×10−3 -0.0

ε=0.050

32 9.41×10−1 8.81×10−1

64 7.28×10−1 0.4 7.04×10−1 0.3

128 4.63×10−1 0.7 4.50×10−1 0.6

256 2.11×10−1 1.1 2.05×10−1 1.1

512 6.69×10−2 1.7 6.32×10−2 1.7

1024 1.90×10−2 1.8 1.67×10−2 1.9

2048 5.73×10−3 1.7 4.13×10−3 2.0

4096 2.19×10−3 1.4 9.36×10−4 2.1

8192 1.21×10−3 0.8 2.25×10−4 2.1

EDDM1 k EDDM2 k

ε=0.400

2.79×10−1 1.74×10−1

1.28×10−1 1.1 4.94×10−2 1.8

7.27×10−2 0.8 1.02×10−2 2.3

5.53×10−2 0.4 1.11×10−2 -0.1

4.96×10−2 0.2 1.31×10−2 -0.2

4.75×10−2 0.1 1.37×10−2 -0.1

4.66×10−2 0.0 1.38×10−2 -0.0

4.63×10−2 0.0 1.38×10−2 -0.0

4.61×10−2 0.0 1.38×10−2 -0.0

ε=0.100

7.30×10−1 6.78×10−1

4.68×10−1 0.6 4.41×10−1 0.6

2.17×10−1 1.1 2.02×10−1 1.1

7.16×10−2 1.6 6.24×10−2 1.7

2.25×10−2 1.7 1.62×10−2 1.9

8.65×10−3 1.4 3.68×10−3 2.1

4.78×10−3 0.9 7.71×10−4 2.3

3.64×10−3 0.4 7.42×10−4 0.1

3.27×10−3 0.2 8.62×10−4 -0.2

ε=0.025
1.06 1.00

9.42×10−1 0.2 9.13×10−1 0.1

7.28×10−1 0.4 7.16×10−1 0.4

4.60×10−1 0.7 4.55×10−1 0.7

2.08×10−1 1.1 2.06×10−1 1.1

6.51×10−2 1.7 6.35×10−2 1.7

1.78×10−2 1.9 1.68×10−2 1.9

4.83×10−3 1.9 4.25×10−3 2.0

1.45×10−3 1.7 1.04×10−3 2.0

Table A.10. Grid convergence for Neumann Case 4 with BC2 (4.21).

38 Towards a second-order diffuse-domain method

n EDDM2 BC1 k EDDM2 BC2 k

ε=0.800

32 3.76×10−1 2.32×10−1

64 3.44×10−1 0.1 2.60×10−1 -0.2

128 3.39×10−1 0.0 2.73×10−1 -0.1

256 3.38×10−1 0.0 2.77×10−1 -0.0

512 3.38×10−1 -0.0 2.79×10−1 -0.0

1024 3.38×10−1 -0.0 2.80×10−1 -0.0

2048 3.38×10−1 -0.0 2.81×10−1 -0.0

4096 3.39×10−1 -0.0 2.81×10−1 -0.0

8192 3.39×10−1 -0.0 2.81×10−1 -0.0

ε=0.200

32 5.07×10−2 4.07×10−1

64 2.67×10−2 0.9 1.87×10−1 1.1

128 1.82×10−2 0.6 5.15×10−2 1.9

256 1.49×10−2 0.3 6.46×10−3 3.0

512 1.36×10−2 0.1 6.60×10−3 -0.0

1024 1.29×10−2 0.1 9.64×10−3 -0.5

2048 1.26×10−2 0.0 1.04×10−2 -0.1

4096 1.25×10−2 0.0 1.06×10−2 -0.0

8192 1.24×10−2 0.0 1.07×10−2 -0.0

ε=0.050

32 4.59×10−2 8.79×10−1

64 1.41×10−2 1.7 7.03×10−1 0.3

128 6.52×10−3 1.1 4.50×10−1 0.6

256 3.36×10−3 1.0 2.04×10−1 1.1

512 1.97×10−3 0.8 6.27×10−2 1.7

1024 1.34×10−3 0.6 1.62×10−2 2.0

2048 1.04×10−3 0.4 3.65×10−3 2.2

4096 8.92×10−4 0.2 4.80×10−4 2.9

8192 8.20×10−4 0.1 4.27×10−4 0.2

EDDM2 BC1 k EDDM2 BC2 k

ε=0.400

9.97×10−2 1.32×10−1

7.05×10−2 0.5 1.36×10−2 3.3

6.13×10−2 0.2 3.11×10−2 -1.2

5.77×10−2 0.1 4.25×10−2 -0.5

5.63×10−2 0.0 4.54×10−2 -0.1

5.56×10−2 0.0 4.62×10−2 -0.0

5.53×10−2 0.0 4.63×10−2 -0.0

5.51×10−2 0.0 4.64×10−2 -0.0

5.51×10−2 0.0 4.64×10−2 -0.0

ε=0.100

3.77×10−2 6.74×10−1

1.69×10−2 1.2 4.38×10−1 0.6

8.86×10−3 0.9 2.00×10−1 1.1

5.62×10−3 0.7 6.04×10−2 1.7

4.24×10−3 0.4 1.42×10−2 2.1

3.61×10−3 0.2 1.81×10−3 3.0

3.31×10−3 0.1 1.65×10−3 0.1

3.16×10−3 0.1 2.41×10−3 -0.5

3.09×10−3 0.0 2.60×10−3 -0.0

ε=0.025

4.59×10−2 9.97×10−1

1.87×10−2 1.3 9.13×10−1 0.1

5.89×10−3 1.7 7.16×10−1 0.3

2.78×10−3 1.1 4.54×10−1 0.7

1.40×10−3 1.0 2.05×10−1 1.1

7.73×10−4 0.9 6.34×10−2 1.7

4.72×10−4 0.7 1.67×10−2 1.9

3.26×10−4 0.5 4.13×10−3 2.0

2.53×10−4 0.4 9.24×10−4 2.2

Table A.11. Grid convergence for Neumann Case 4 with BC1 (4.3) and BC2 (4.21) with no
surface Laplacian term.

Karl Yngve Lerv̊ag and John Lowengrub 39

n EDDM1 k EDDM2 k

ε=0.800

32 2.24×10−1 1.21×10−1

64 2.15×10−1 0.1 1.20×10−1 0.0

128 2.12×10−1 0.0 1.20×10−1 0.0

256 2.12×10−1 0.0 1.20×10−1 -0.0

512 2.12×10−1 0.0 1.20×10−1 0.0

1024 2.11×10−1 0.0 1.20×10−1 -0.0

2048 2.11×10−1 0.0 1.20×10−1 -0.0

4096 2.11×10−1 0.0 1.20×10−1 -0.0

8192 2.11×10−1 0.0 1.20×10−1 0.0

ε=0.200

32 5.97×10−3 1.11×10−1

64 8.67×10−3 -0.5 2.57×10−2 2.1

128 9.31×10−3 -0.1 8.32×10−3 1.6

256 9.11×10−3 0.0 6.61×10−3 0.3

512 9.02×10−3 0.0 6.45×10−3 0.0

1024 9.00×10−3 0.0 6.43×10−3 0.0

2048 8.99×10−3 0.0 6.42×10−3 0.0

4096 8.99×10−3 0.0 6.42×10−3 0.0

8192 8.99×10−3 0.0 6.42×10−3 0.0

ε=0.050

32 4.54×10−2 4.76×10−1

64 5.93×10−2 -0.4 3.43×10−1 0.5

128 1.92×10−2 1.6 1.25×10−1 1.5

256 2.13×10−3 3.2 2.03×10−2 2.6

512 2.84×10−4 2.9 2.16×10−3 3.2

1024 4.50×10−4 -0.7 5.28×10−4 2.0

2048 4.58×10−4 -0.0 3.95×10−4 0.4

4096 4.57×10−4 0.0 3.81×10−4 0.1

8192 4.57×10−4 0.0 3.79×10−4 0.0

EDDM1 k EDDM2 k

ε=0.400

5.18×10−2 4.35×10−2

4.63×10−2 0.2 2.90×10−2 0.6

4.46×10−2 0.1 2.74×10−2 0.1

4.42×10−2 0.0 2.72×10−2 0.0

4.41×10−2 0.0 2.72×10−2 0.0

4.40×10−2 0.0 2.72×10−2 0.0

4.40×10−2 0.0 2.72×10−2 0.0

4.40×10−2 0.0 2.72×10−2 0.0

4.40×10−2 0.0 2.72×10−2 0.0

ε=0.100

1.64×10−2 1.19×10−1

8.97×10−4 4.2 2.14×10−2 2.5

1.86×10−3 -1.1 3.43×10−3 2.6

1.96×10−3 -0.1 1.74×10−3 1.0

1.95×10−3 0.0 1.59×10−3 0.1

1.95×10−3 0.0 1.57×10−3 0.0

1.95×10−3 0.0 1.57×10−3 0.0

1.95×10−3 0.0 1.57×10−3 0.0

ε=0.025

3.52×10−2 5.12×10−1

9.37×10−2 -1.4 3.84×10−1 0.4

6.30×10−2 0.6 2.88×10−1 0.4

1.98×10−2 1.7 1.26×10−1 1.2

2.52×10−3 3.0 1.99×10−2 2.7

9.31×10−5 4.8 1.82×10−3 3.5

1.11×10−4 -0.2 2.16×10−4 3.1

1.22×10−4 -0.1 9.63×10−5 1.2

1.23×10−4 -0.0 8.59×10−5 0.2

Table A.12. Grid convergence for Robin Case 1 with BC1 (4.4).

40 Towards a second-order diffuse-domain method

n EDDM1 k EDDM2 k

ε=0.800

32 3.26×10−1 1.22×10−1

64 2.07×10−1 0.7 2.12×10−1 -0.8

128 1.79×10−1 0.2 2.36×10−1 -0.2

256 1.72×10−1 0.1 2.42×10−1 -0.0

512 1.70×10−1 0.0 2.43×10−1 -0.0

1024 1.70×10−1 0.0 2.44×10−1 -0.0

2048 1.70×10−1 0.0 2.44×10−1 -0.0

4096 1.70×10−1 0.0 2.44×10−1 -0.0

8192 1.70×10−1 0.0 2.44×10−1 -0.0

ε=0.200
32 1.94 1.69

64 6.11×10−1 1.7 5.62×10−1 1.6

128 1.78×10−1 1.8 1.55×10−1 1.9

256 6.12×10−2 1.5 4.08×10−2 1.9

512 3.15×10−2 1.0 1.32×10−2 1.6

1024 2.41×10−2 0.4 8.70×10−3 0.6

2048 2.23×10−2 0.1 8.30×10−3 0.1

4096 2.19×10−2 0.0 8.26×10−3 0.0

8192 2.18×10−2 0.0 8.26×10−3 0.0

ε=0.050
64 4.88 3.39

128 1.86 1.4 1.62 1.1

256 5.70×10−1 1.7 5.47×10−1 1.6

512 1.56×10−1 1.9 1.53×10−1 1.8

1024 4.34×10−2 1.8 4.22×10−2 1.9

2048 1.46×10−2 1.6 1.34×10−2 1.6

4096 7.36×10−3 1.0 6.24×10−3 1.1

8192 5.57×10−3 0.4 4.46×10−3 0.5

EDDM1 k EDDM2 k

ε=0.400

6.66×10−1 5.10×10−1

2.13×10−1 1.6 1.13×10−1 2.2

9.18×10−2 1.2 2.25×10−2 2.3

6.18×10−2 0.6 3.94×10−2 -0.8

5.45×10−2 0.2 4.58×10−2 -0.2

5.27×10−2 0.0 4.74×10−2 -0.1

5.23×10−2 0.0 4.78×10−2 -0.0

5.22×10−2 0.0 4.79×10−2 -0.0

5.21×10−2 0.0 4.79×10−2 -0.0

ε=0.100

1.87 1.64

5.84×10−1 1.7 5.57×10−1 1.6

1.63×10−1 1.8 1.57×10−1 1.8

4.90×10−2 1.7 4.42×10−2 1.8

1.99×10−2 1.3 1.52×10−2 1.5

1.26×10−2 0.7 8.12×10−3 0.9

1.08×10−2 0.2 6.42×10−3 0.3

1.03×10−2 0.1 6.01×10−3 0.1

ε=0.025

5.04 3.81
1.84 1.5 1.59 1.3

5.63×10−1 1.7 5.41×10−1 1.6

1.52×10−1 1.9 1.51×10−1 1.8

4.06×10−2 1.9 4.03×10−2 1.9

1.20×10−2 1.8 1.18×10−2 1.8

4.85×10−3 1.3 4.57×10−3 1.4

Table A.13. Grid convergence for Robin Case 1 with BC2 (4.22).

Karl Yngve Lerv̊ag and John Lowengrub 41

n EDDM1 k EDDM2 k

ε=0.800

32 1.37×10−1 2.73×10−2

64 1.34×10−1 0.0 2.73×10−2 0.0

128 1.33×10−1 0.0 2.74×10−2 -0.0

256 1.32×10−1 0.0 2.75×10−2 -0.0

512 1.32×10−1 0.0 2.75×10−2 0.0

1024 1.32×10−1 0.0 2.75×10−2 -0.0

2048 1.32×10−1 0.0 2.75×10−2 -0.0

4096 1.32×10−1 0.0 2.75×10−2 -0.0

8192 1.32×10−1 0.0 2.75×10−2 0.0

ε=0.200

32 5.54×10−3 4.18×10−2

64 5.62×10−3 -0.0 9.72×10−3 2.1

128 5.46×10−3 0.0 3.06×10−3 1.7

256 5.33×10−3 0.0 2.30×10−3 0.4

512 5.29×10−3 0.0 2.22×10−3 0.1

1024 5.27×10−3 0.0 2.20×10−3 0.0

2048 5.27×10−3 0.0 2.20×10−3 0.0

4096 5.27×10−3 0.0 2.20×10−3 0.0

8192 5.27×10−3 0.0 2.20×10−3 0.0

ε=0.050

32 1.79×10−2 1.85×10−1

64 2.13×10−2 -0.2 1.28×10−1 0.5

128 6.75×10−3 1.7 4.49×10−2 1.5

256 7.41×10−4 3.2 7.19×10−3 2.6

512 1.67×10−4 2.1 7.75×10−4 3.2

1024 2.08×10−4 -0.3 1.91×10−4 2.0

2048 2.09×10−4 -0.0 1.42×10−4 0.4

4096 2.08×10−4 0.0 1.36×10−4 0.1

8192 2.08×10−4 0.0 1.35×10−4 0.0

EDDM1 k EDDM2 k

ε=0.400

3.16×10−2 1.78×10−2

2.86×10−2 0.1 9.98×10−3 0.8

2.78×10−2 0.0 8.95×10−3 0.2

2.76×10−2 0.0 8.80×10−3 0.0

2.76×10−2 0.0 8.78×10−3 0.0

2.75×10−2 0.0 8.77×10−3 0.0

2.75×10−2 0.0 8.77×10−3 0.0

2.75×10−2 0.0 8.77×10−3 0.0

2.75×10−2 0.0 8.77×10−3 0.0

ε=0.100

5.52×10−3 4.29×10−2

7.81×10−4 2.8 7.67×10−3 2.5

1.02×10−3 -0.4 1.25×10−3 2.6

1.03×10−3 -0.0 6.18×10−4 1.0

1.02×10−3 0.0 5.57×10−4 0.2

1.02×10−3 0.0 5.49×10−4 0.0

1.02×10−3 0.0 5.48×10−4 0.0

1.02×10−3 0.0 5.47×10−4 0.0

ε=0.025

2.26×10−2 1.07×10−1

7.04×10−3 1.7 4.55×10−2 1.2

8.89×10−4 3.0 7.07×10−3 2.7

4.12×10−5 4.4 6.46×10−4 3.5

4.54×10−5 -0.1 7.99×10−5 3.0

4.87×10−5 -0.1 3.79×10−5 1.1

4.88×10−5 -0.0 3.43×10−5 0.1

Table A.14. Grid convergence for Robin Case 2 with BC1 (4.4).

42 Towards a second-order diffuse-domain method

n EDDM1 k EDDM2 k

ε=0.800

32 1.51×10−1 5.95×10−2

64 1.22×10−1 0.3 8.75×10−2 -0.6

128 1.16×10−1 0.1 9.53×10−2 -0.1

256 1.14×10−1 0.0 9.73×10−2 -0.0

512 1.14×10−1 0.0 9.78×10−2 -0.0

1024 1.14×10−1 0.0 9.79×10−2 -0.0

2048 1.14×10−1 0.0 9.80×10−2 -0.0

4096 1.14×10−1 0.0 9.80×10−2 -0.0

8192 1.14×10−1 0.0 9.80×10−2 -0.0

ε=0.200

32 5.28×10−1 4.66×10−1

64 1.93×10−1 1.5 1.77×10−1 1.4

128 5.87×10−2 1.7 5.02×10−2 1.8

256 2.02×10−2 1.5 1.36×10−2 1.9

512 1.10×10−2 0.9 7.81×10−3 0.8

1024 9.09×10−3 0.3 7.89×10−3 -0.0

2048 8.66×10−3 0.1 8.04×10−3 -0.0

4096 8.56×10−3 0.0 8.09×10−3 -0.0

8192 8.54×10−3 0.0 8.10×10−3 -0.0

ε=0.050
32 1.56 1.11

64 1.01 0.6 8.02×10−1 0.5

128 5.16×10−1 1.0 4.61×10−1 0.8

256 1.85×10−1 1.5 1.78×10−1 1.4

512 5.35×10−2 1.8 5.26×10−2 1.8

1024 1.50×10−2 1.8 1.46×10−2 1.8

2048 5.04×10−3 1.6 4.65×10−3 1.7

4096 2.59×10−3 1.0 2.24×10−3 1.1

8192 2.01×10−3 0.4 1.69×10−3 0.4

EDDM1 k EDDM2 k

ε=0.400

2.07×10−1 1.51×10−1

7.03×10−2 1.6 3.36×10−2 2.2

3.44×10−2 1.0 2.20×10−2 0.6

2.72×10−2 0.3 2.79×10−2 -0.3

2.58×10−2 0.1 2.97×10−2 -0.1

2.55×10−2 0.0 3.02×10−2 -0.0

2.54×10−2 0.0 3.03×10−2 -0.0

2.54×10−2 0.0 3.03×10−2 -0.0

2.54×10−2 0.0 3.03×10−2 -0.0

ε=0.100

5.17×10−1 4.64×10−1

1.88×10−1 1.5 1.79×10−1 1.4

5.52×10−2 1.8 5.30×10−2 1.8

1.66×10−2 1.7 1.49×10−2 1.8

6.78×10−3 1.3 5.36×10−3 1.5

4.50×10−3 0.6 3.45×10−3 0.6

3.98×10−3 0.2 3.12×10−3 0.1

3.86×10−3 0.0 3.05×10−3 0.0

ε=0.025

1.53 1.27

1.03 0.6 8.68×10−1 0.5

5.13×10−1 1.0 4.58×10−1 0.9

1.84×10−1 1.5 1.77×10−1 1.4

5.25×10−2 1.8 5.20×10−2 1.8

1.42×10−2 1.9 1.41×10−2 1.9

4.21×10−3 1.8 4.11×10−3 1.8

1.70×10−3 1.3 1.60×10−3 1.4

Table A.15. Grid convergence for Robin Case 2 with BC2 (4.22).

Karl Yngve Lerv̊ag and John Lowengrub 43

n EDDM1 k EDDM2 k

ε=0.800

32 9.54×10−2 4.57×10−2

64 8.63×10−2 0.1 4.01×10−2 0.2

128 8.24×10−2 0.1 3.75×10−2 0.1

256 8.06×10−2 0.0 3.67×10−2 0.0

512 7.97×10−2 0.0 3.64×10−2 0.0

1024 7.92×10−2 0.0 3.62×10−2 0.0

2048 7.90×10−2 0.0 3.61×10−2 0.0

4096 7.89×10−2 0.0 3.61×10−2 0.0

8192 7.89×10−2 0.0 3.60×10−2 0.0

ε=0.200

32 1.56×10−2 4.95×10−3

64 9.30×10−3 0.7 6.16×10−3 -0.3

128 6.33×10−3 0.6 3.78×10−3 0.7

256 4.96×10−3 0.4 2.67×10−3 0.5

512 4.30×10−3 0.2 2.15×10−3 0.3

1024 3.98×10−3 0.1 1.90×10−3 0.2

2048 3.82×10−3 0.1 1.79×10−3 0.1

4096 3.74×10−3 0.0 1.74×10−3 0.0

8192 3.70×10−3 0.0 1.71×10−3 0.0

ε=0.050

32 1.06×10−2 1.31×10−2

64 5.35×10−3 1.0 3.97×10−3 1.7

128 2.81×10−3 0.9 1.95×10−3 1.0

256 1.49×10−3 0.9 1.04×10−3 0.9

512 8.45×10−4 0.8 5.50×10−4 0.9

1024 5.27×10−4 0.7 3.13×10−4 0.8

2048 3.69×10−4 0.5 1.98×10−4 0.7

4096 2.91×10−4 0.3 1.44×10−4 0.5

8192 2.53×10−4 0.2 1.19×10−4 0.3

EDDM1 k EDDM2 k

ε=0.400

2.98×10−2 1.87×10−2

2.24×10−2 0.4 1.25×10−2 0.6

1.93×10−2 0.2 9.76×10−3 0.4

1.78×10−2 0.1 8.52×10−3 0.2

1.71×10−2 0.1 7.92×10−3 0.1

1.67×10−2 0.0 7.63×10−3 0.1

1.66×10−2 0.0 7.49×10−3 0.0

1.65×10−2 0.0 7.42×10−3 0.0

1.64×10−2 0.0 7.38×10−3 0.0

ε=0.100

1.14×10−2 8.47×10−3

6.28×10−3 0.9 4.14×10−3 1.0

3.49×10−3 0.8 2.39×10−3 0.8

2.14×10−3 0.7 1.35×10−3 0.8

1.49×10−3 0.5 8.50×10−4 0.7

1.18×10−3 0.3 6.12×10−4 0.5

1.02×10−3 0.2 5.02×10−4 0.3

9.42×10−4 0.1 4.52×10−4 0.2

9.04×10−4 0.1 4.28×10−4 0.1

ε=0.025

1.06×10−2 1.31×10−2

5.19×10−3 1.0 6.06×10−3 1.1

2.60×10−3 1.0 1.91×10−3 1.7

1.33×10−3 1.0 9.33×10−4 1.0

6.90×10−4 1.0 4.74×10−4 1.0

3.71×10−4 0.9 2.43×10−4 1.0

2.14×10−4 0.8 1.28×10−4 0.9

1.35×10−4 0.7 7.16×10−5 0.8

9.61×10−5 0.5 4.46×10−5 0.7

Table A.16. Grid convergence for Robin Case 3 with BC1 (4.4).

44 Towards a second-order diffuse-domain method

n EDDM1 k EDDM2 k

ε=0.800

32 1.43×10−1 3.54×10−2

64 1.02×10−1 0.5 4.94×10−2 -0.5

128 8.88×10−2 0.2 5.37×10−2 -0.1

256 8.42×10−2 0.1 5.74×10−2 -0.1

512 8.23×10−2 0.0 7.05×10−2 -0.3
1024
2048
4096

ε=0.200

32 4.00×10−1 8.56×10−1

64 1.42×10−1 1.5 1.20×10−1 2.8

128 4.41×10−2 1.7 3.36×10−2 1.8

256 1.65×10−2 1.4 9.86×10−3 1.8

512 8.96×10−3 0.9 4.26×10−3 1.2

1024 6.81×10−3 0.4 3.19×10−3 0.4

2048 6.14×10−3 0.1 3.00×10−3 0.1

4096 5.90×10−3 0.1 2.97×10−3 0.0

ε=0.050
32 2.34 1.86

64 9.48×10−1 1.3 8.89×10−1 1.1

128 3.77×10−1 1.3 3.65×10−1 1.3

256 1.27×10−1 1.6 1.24×10−1 1.6

512 3.54×10−2 1.8 3.39×10−2 1.9

1024 9.96×10−3 1.8 9.17×10−3 1.9

2048 3.34×10−3 1.6 2.85×10−3 1.7

4096 1.61×10−3 1.1 1.27×10−3 1.2

EDDM1 k EDDM2 k

ε=0.400

1.70×10−1 1.02×10−1

6.33×10−2 1.4 2.69×10−2 1.9

3.22×10−2 1.0 9.21×10−3 1.5

2.32×10−2 0.5 8.56×10−3 0.1

2.04×10−2 0.2 8.88×10−3 -0.1

1.94×10−2 0.1 9.03×10−3 -0.0

1.90×10−2 0.0 9.15×10−3 -0.0

1.89×10−2 0.0 9.22×10−3 -0.0

ε=0.100

9.52×10−1 8.39×10−1

3.84×10−1 1.3 3.58×10−1 1.2

1.31×10−1 1.5 1.23×10−1 1.5

3.79×10−2 1.8 3.42×10−2 1.8

1.18×10−2 1.7 9.62×10−3 1.8

4.84×10−3 1.3 3.39×10−3 1.5

2.98×10−3 0.7 1.89×10−3 0.8

2.45×10−3 0.3 1.54×10−3 0.3

ε=0.025

5.26×10−0 3.63×10−0

2.34×10−0 1.2 2.09×10−0 0.8

9.46×10−1 1.3 9.16×10−1 1.2

3.74×10−1 1.3 3.68×10−1 1.3

1.25×10−1 1.6 1.24×10−1 1.6

3.43×10−2 1.9 3.36×10−2 1.9

9.18×10−3 1.9 8.85×10−3 1.9

2.70×10−3 1.8 2.51×10−3 1.8

Table A.17. Grid convergence for Robin Case 3 with BC2 (4.22).

