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Abstract

Two models for the copolymerization of propylene and ethylene

in a fluidized bed reactor (fbr) were developed. A simple model

for control; and a more advanced model which served as both a

replacement for logged industrial plant data, and as a structurally

different simulator to test the robustness of the controller. To ensure

the best possible consistency between the two models, a set of

parameters in the control model (cm) was estimated by fitting it

to the plant replacement model (prm). Additionally, an unscented

Kalman filter (ukf) was set up to further mitigate the discrepancies

between the models.

A nonlinear model predictive control (nmpc) strategy was applied

to transition between two different polypropylene (pp) grades. Hard

constraints were imposed on the manipulated variables (mvs), while

soft constraints were applied on the controlled variables (cvs).

The effect of utilizing inert feed as an mv was studied with the cm as

the simulator, i.e., no mismatch between the model of the controller

and the process simulator. By employing the inert feed, the control

of pressure improved; however, more catalyst was required to keep

the production at the desired level.

In order to demonstrate the effectiveness and robustness of nmpc,

despite structural differences between the model and the plant,

grade transitions were simulated with the prm as the process simu-

lator. The controller performed reasonably well, however, further

tuning of both the controller and the ukf would result in more
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effective grade transitions. Nevertheless, the controller proved to be

robust and coped well, notwithstanding the model mismatch.
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Sammendrag

To modeller for kopolymerisasjon av propylen og etylen i en fluidi-

sert sjiktreaktor (fbr) ble utviklet. En forenklet modell for regule-

ringsformål (cm), og en mer avansert modell som ble brukt som

erstatning for loggdata fra et industrielt anlegg (prm). Den avanserte

modellen er strukturelt forskjellig fra den enkle modellen, og dette

ble benyttet for å vise robustheten til regulatoren. Parameterestime-

ring ble brukt for å sikre best mulig overensstemmelse mellom de

to modellene. I tillegg ble også et Kalmanfilter (ukf) satt opp for å

begrense modellavvikene ytterligere.

En ulineær modellprediktiv reguleringsstrategi (nmpc) ble anvendt

på overgangen mellom to typer polypropylen (pp). Harde beskrank-

ninger ble pålagt de manipulerte variablene (mv), mens myke be-

skrankninger ble benyttet på de kontrollerte variablene (cv).

Effekten av å benytte inertføden som en mv ble studert med cm

som prosessimulator, dvs., ingen uoverensstemmelse mellom regu-

latormodellen og simulatormodellen. Trykkreguleringen ble bedre

av å benytte inertføden, men mengden katalysator måtte økes for å

opprettholde produksjonen av pp.

For å demonstrere effektiviteten og robustheten av nmpc, selv med

strukturelle forskjeller mellom modellen og industrianlegget, ble

produktovergangen simulert med erstatningsmodellen (prm) som

prosessimulator. Regulatoren gjennomførte overgangene tilstrek-

kelig, til tross for modelluoverensstemmelsen. Fintuning av regu-

latoren og Kalmanfilteret er imidlertid nødvendig for å forbedre
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overgangene ytterligere. Likevel viste regulatoren seg å være robust

og overkom modellavvikene godt.
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CHAPTER 1

INTRODUCTION

I want to say one word to you. Just one word. [ . . . ] Plastics.

[ . . . ] There’s a great future in plastics. Think about it. Will you

think about it?
— Mr. McGuire, 19671

Synthetic polymers are a central part of the world we inhabit, and are

used in numerous applications, ranging from drinking bottles to cars to

consumer electronics [13, 68]. This thesis considers a polyolefin, namely

polypropylene (pp), which has applications in pipes and fittings; packag-

ing; furniture and parts for the automotive industry, to name a few (for a

more complete list of applications, see Tripathi [104]).

The pp industry is highly competitive, and producers have to meet the

diversified demands of the customers. These requirements are met by

1 Nichols, M., Director, The Graduate, Embassy Pictures, 1967

1
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producing several grades of pp [107]. Hence, the manufacturers must be

able to transition smoothly between these grades, which has prompted

the need to apply advanced control methods on the reactors.

This Master’s thesis has been written in collaboration with Cybernetica, a

small company that specializes in tailor made model based control sys-

tems. Cybernetica has implemented nonlinear model predictive control

(nmpc) on multiple polyolefin plants with focus on smooth grade transi-

tions, safer operation, increased production and more consistent product

quality. In this work, Cybernetica’s tools for parameter estimation and

nmpc have been utilized.

The main objective of this thesis has been to demonstrate the effective-

ness and robustness of nmpc applied to a pp fluidized bed reactor (fbr),

notwithstanding the mismatch between the model used for predictions

and the plant itself, i.e., to exhibit the robustness of nmpc. As a conse-

quence of the lack of log data from an industrial pp plant, two models

were developed. The control model (cm) used by the nmpc, and the

structurally different plant replacement model (prm), which served as

a substitute for any log data. By using two structurally different mod-

els for control and simulation, the robustness of the controller can be

corroborated.
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1.1 Production of polypropylene

There exists different processes for the production of pp, such as the

Himont Spheripol process, the Union Carbide Unipol process, the BASF

vertical stirred bed process and the Amoco-Chisso horizontal stirred bed

process [21]. In this thesis, a simplified version of the Unipol process has

been considered.

According to Shi et al. [101], the polypropylene industry circled $15 billion

with an average annual growth of five percent in 2006, and this industry

exhibit the strongest growth pattern of all the bulk polymer industries

[104]. According to a report by PlasticsEurope [80], the global demand

of plastics in 2012 was 288 Mt, which was a 2.8 % increase compared to

2011; and in Europe, pp was the most demanded plastic at 18.8 %.

Polypropylene has several advantages over competing materials, e.g.,

higher stiffness, better temperature resistance, good fatigue resistance

and good chemical resistance, especially when price is of concern [104].

However, pp suffers from disadvantages such as low transparency, higher

thermal expansion and lower impact strength [104]. In this thesis, ethylene

has been utilized as a comonomer for the production of copolymer. The

properties of polypropylene are dependent on the amount of comonomer

content of the polymer, thus different customers will require different

compositions.

The aforementioned Unipol process utilizes two fbrs in series with

different operating conditions. A simplified process flow diagram (pfd)
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Figure 1.1 – A simplified process flow diagram (pfd) of the Unipol process. The
process consists of two fluidized bed reactors (fbrs), with separate
feeds and operating conditions. Adapted from Debling et al. [21].

of this multistage gas phase process is displayed in Figure 1.1. The two

aforementioned models are, for simplicity, developed for the first reactor

of the Unipol process only. The simplest model, the cm, lumps the whole

process into one control volume, while the more complicated prm utilizes

four different control volumes. Hence, the structural difference between

the two models will be significant. The cm and the prm resemble the

well-mixed and the two-phase models of McAuley, Talbot, et al. [67]. The

development of the models is given in Chapter 2, where all the individual

aspects of each model are elucidated in addition to a more complete

process description.
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1.2 Model predictive control

Model predictive control (mpc) is often referred to as a set of control

methods based on prediction and optimization. The controller signals

are obtained by minimization of an objective function, which usually

contains the predicted future set point offsets and penalties for adjusting

the inputs. This thesis has considered a subset of mpc, known as receding

horizon control (rhc); these two terms will be used interchangeably

hereafter. Receding horizon control is a control method that predicts

the outputs and obtains the optimal sequence of future inputs based on

these predictions, but only applies the calculated input at the current

sample. This process is repeated at each sample, which yields a receding

prediction horizon, from which the method has its name. The theory

behind mpc is further clarified in Chapter 5.

A typical development process of the establishment of an mpc application

is depicted in Figure 1.2. The procedure involves procurement of process

knowledge and the establishment of a model of the plant. Logged process

data from the plant are utilized to estimate unknown parameters in the

model and to develop an estimator, e.g., a Kalman filter (kf). Once the

model and the estimator has been properly validated against the data,

simulations with the mpc are carried out to design the controller, i.e.,

tune the controller and select suitable constraints, until it passes a factory

acceptance test. The final step is to implement the application on site

with a subsequent site acceptance test.
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Model
development

Process
log data

Recursive
estimator

Cybernetica
RealSim

Process
knowledge

C/C++
model

Estimated
parameters

Cybernetica
ModelFit

Cybernetica
CENIT

{Controller tuning{Estimation

Figure 1.2 – Typical work flow of the development of a model predictive control
(mpc) with a first-principles model. Process knowledge is gath-
ered and a model is formulated based on physical and chemical
principles. The model is then fitted against logged process data by
estimating a set of unknown parameters. In addition, a recursive
estimator, e.g., a Kalman filter, is set up. Finally, the controller is
tuned in a simulation environment before it is implemented on
a plant. ModelFit, cenit and RealSim are Cybernetica’s tools for
parameter estimation, mpc and simulation, respectively.

This thesis follows a similar work flow as displayed in Figure 1.2; Chap-

ter 2 presents the model development, while Chapters 3 and 4 explain

the parameter estimation and the application of a recursive estimator,

respectively. Finally, the design of the mpc is provided in Chapter 5.

However, the thesis differs in the following ways; in a normal application,

only one model would be developed; the controller would be tested in a

simulation environment with model mismatch, but only parameter bias

would be considered, not structural differences.



CHAPTER 2

MODEL DEVELOPMENT

Modeling is a core activity in engineering and science: it

provides insight, understanding and models are great

sand-boxes – any game can be played.

— H. A. Preisig, 20151

Two models for the production of polypropylene (pp) in a fluidized bed

reactor (fbr) have been developed, the control model (cm) and the plant

replacement model (prm). The reason for this duality is the lack of

data from an industrial pp plant, but it also serves to demonstrate the

robustness of the controller. The prm has been developed as a substitute

to the data and acts a process simulator, while the cm is used for control

purposes.

1Preisig, H. A., “The ABC of process modelling, Lecture notes,” Jan. 19, 2015, [Online].
Available: https://dl.dropboxusercontent.com/u/19261469/ABC_script.pdf (visited
on May 13, 2015)
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Modeling of fbrs is a much researched topic and the number of existing

models is vast. Both computational fluid dynamics methodologies, e.g.,

discrete particle tracking, and simpler semi-empirical models have been

utilized [47, 57]. In this thesis, the models have been developed for use

in real-time applications which excludes the use of computational fluid

dynamics due to the high computational load. Instead, the hydrodynam-

ics of the fbr have been modeled similarly to the approach proposed by

Kunii and Levenspiel [57] with the addition of the empirical correlations

of Cui et al. [18].

The reactions involved in the production of pp have been modeled by

the kinetic scheme offered by McAuley, MacGregor, and Hamielec [66].

This reaction scheme was originally developed for the production of

polyethylene, but it has also been applied to polymerization of propylene.

The modeling follows an approach similar to the one used by Shamiri,

Wong, et al. [100], but the mole balances are formulated in extensive

variables, e.g., the number of moles, instead of intensive variables, e.g., the

concentrations. A method of moments has been applied to approximate

the chain length distribution of the polymers. These modeling concepts

will be elucidated in the succeeding sections.

2.1 Process description

The simplified process considered in this thesis consists of an fbr, a

heat exchanger and a compressor as shown in the process flow diagram
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LC

FC

TC

PC

FBR

Cooling water

Hydrogen feed

Propylene feed

Ethylene feed

Inert feed

Product

Purge

Catalyst feed

Figure 2.1 – The process flow diagram (pfd) of the first fluidized bed reactor
(fbr) from the Unipol process given in Figure 1.1 in Chapter 1.
Black lines denote mass flows in the system, blue lines are used
for the cooling water (cw) while the orange dots indicate control
signals.

(pfd) in Figure 2.1. The catalyst particles are fed directly into the reactor

while the make-up gas is mixed with the recycle before it enters the heat

exchanger. The reactor feed from the heat exchanger is controlled by a

flow controller (fc) to give a constant gas velocity. The reactor pressure is

controlled by a pressure controller (pc) which manipulates the purge rate

from the reactor. The remainder of the gas from the reactor outlet is fed

into a compressor before it is mixed with the fresh make-up streams. The
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production rate is given by a level controller (lc), while the temperature

in the reactor is controlled by manipulating the flow rate of the cooling

water (cw). This is a simplification of the temperature control present

in an industrial reactor, where cascade control is often applied [85], e.g.,

by controlling the reactor temperature with the temperature of the cw

(master), and controlling the temperature of the cw with the flow of cw

(slave).

2.2 Model description

For simplicity, the effect of the compressor has been neglected in both the

prm, and the cm. In addition, all fcs, e.g., the feed fcs and the recycle fc,

have been assumed to be perfect controllers, i.e., event-dynamic.

2.2.1 Plant replacement model

The prm has four distinct control volumes, one for the heat exchanger

and three for the reactor. These control volumes are assumed to be ideally

mixed, i.e., no internal gradients. The three parts of the reactor are the

bubble phase, the emulsion phase and the freeboard above the bed. The

temperature controller (tc) is manipulating the temperature of the cw

in order to keep the temperature in the reactor at the desired set point.

Solids are presumed to be present in the bubble and emulsion phase

volumes only; their distribution is assumed to occur instantly, and is

calculated using the model of Cui et al. [18]. A physical topology of the

model is presented in Figure 2.2. The model is further simplified by
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TC PC

LC

cw cat

H2

C3=

C2=

N2

hex

pu

polpol

b e

fb

Figure 2.2 – A physical abstraction of the plant replacement model (prm). The
black lines, red dashes and orange dots denote mass flow, heat flow
and control signals, respectively. C3= and C2= are abbreviations
for propylene and ethylene, respectively. cat is the catalyst, pu is
the purge outlet while pol is the product outlet. hex is the heat
exchanger, while the reactor is split into three control volumes,
freeboard (fb), emulsion phase (e) and bubble phase (b).

assuming that the tc can control the temperature of the cw instantly, i.e.,

no cascade control. The dynamics associated with the fc is assumed to

be event-dynamic, hence a constant flow rate into the reactor is applied.

2.2.2 Control model

The cm considers the whole process as one ideally mixed volume; an

abstraction of the cm is displayed in Figure 2.3. The controllers are

identical to that of the prm, but the fc for the recycle has not been

considered, due to the fact that it resides within the control volume.
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PC

LC

TC

H2

C3=

N2

cat

FBR

pu

pol

C2=

CW

Figure 2.3 – A physical abstraction of the control model (cm). The black lines,
red dashes and orange dots denote mass flow, heat flow and control
signals, respectively. C3= and C2= are abbreviations for propylene
and ethylene, respectively. cat is the catalyst, pu is the purge outlet
while pol is the product outlet.

2.3 Modeling of the reaction kinetics

The model of the reaction kinetics used to simulate the polymerization

process is taken from McAuley, MacGregor, and Hamielec [66], and is

recited in this section. This model has been applied by several authors in

applications related to polyolefin production [2, 43, 94–100]. The reactions

included are shown in Table 2.1, and the corresponding rate constants

are given in Table a.3 in Appendix a. Two important assumptions are

made for the reaction rates; firstly that the concentration of the gaseous

components adsorbed in the solid are in equilibrium; secondly, that all

adsorption effects can be included in the reaction rate constants [66].
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Table 2.1 – The reactions applied in the kinetic model [66, 100]. P is a potential
site, N0 and NH are uninitiated sites produced by formation and
transfer, respectively. N and Q are used for living and dead polymer
molecules. m and k denote the type of monomer, r is the length of
the polymer chain and j is the catalyst site type.

description reaction rate
constant

Formation Pj −−−→ Nj
0 kf j

Initiation with monomers Nj
0 + Mm −−−→ Nj

m,1 kij
m

Propagation Nj
m,r + Mk −−−→ Nj

k,r+1 kpj
mk

Transfer to hydrogen Nj
m,r + H2 −−−→ Nj

H + Qj
r kfhj

m

Transfer to cocatalyst Nj
m,r

AlEt3−−−→ Nj
m,1 + Qj

r kfrj
m

Spontaneous transfer Nj
m,r −−−→ Nj

H + Qj
r kfsj

Reinitiation with monomer Nj
H + Mm −−−→ Nj

m,1 khj
m

Reinitiation with cocatalyst Nj
H

AlEt3−−−→ Nj
1,1 khrj

Deactivation of living polymer Nj
m,r −−−→ Nj

d + Qj
r kdsj

Deactivation of uninitiated site Nj
0 −−−→ Nj

d kdsj

Deactivation of uninitiated site Nj
H −−−→ Nj

d kdsj

A mole balance for the number of potential catalyst sites is given in

eq. (2.1)

ṅj
P = n̂j

P,f − n̂j
P,pol − ñj

P, ∀j ∈ {1, . . . , ns} (2.1)

in which the feed of potential active sites is proportional to the catalyst

feed; the parameters for the catalyst used in the simulations are given in

Table a.4 in Appendix a. The product flow can be calculated from:

n̂j
P,pol = cj

PV̂pol =
nj

P
Vs

V̂pol (2.2)
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The reaction term in eq. (2.1) is the formation of uninitiated active sites,

which is calculated by:

ñj
P = kf jnj

P (2.3)

Similar expressions can be obtained for uninitiated sites produced by

formation and transfer, and are shown in eq. (2.4) in addition to the mole

balance for polymer chains of unit length:

ṅj
N0

= −n̂j
N0,pol + ñj

N0
(2.4a)

ṅj
NH

= −n̂j
NH,pol + ñj

NH
(2.4b)

ṅj
Nm,1

= −n̂j
Nm,1,pol + ñj

Nm,1
, ∀m ∈ {1, 2} (2.4c)

The outflows via the product stream are obtained by eq. (2.2), while the

reaction rates are recited below:

ñj
N0

= ñj
P − nj

N0

(
cMTkij

T + kdsj
)

(2.5a)

ñj
NH

= λ
j
0

(
cH2

kfhj
T + kfsj

T

)
− nj

NH

(
cMTkhj

T + kdsj + cAlEt3
khrj

)
(2.5b)

ñj
Nm,1

= cMm

(
kij

mnj
N0

+ khj
mnj

NH
+ kfmj

Tiλ
j
0

)

− nj
Nm,1

(
cMTkpj

mT + cMTkfmj
mT + cAlEt3

kfrj
m

+cH2
kfhj

m + kfsj
m + kdsj

)

(2.5c)

A pseudo-steady-state assumption (pssa) is applied to eqs. (2.1) and (2.4)

which yields the algebraic expressions in eq. (2.6).

nj
P =

n̂j
P,f

V̂pol
Vs

+ kf j
(2.6a)

nj
N0

=
ñj

P
V̂pol
Vs

+ cMTkij
T + kdsj

(2.6b)
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nj
NH

=
λ

j
0

(
cH2

kfhj
T + kfsj

T

)

V̂pol
Vs

+ cMTkhj
T + kdsj + cAlEt3

khrj
(2.6c)

nj
Nm,1

=
cMm

(
kij

mnj
N0

+ khj
mnj

NH
+ kfmj

Tiλ
j
0

)

V̂pol
Vs

+ cMTkpj
mT + cMTkfmj

mT + cAlEt3
kfrj

m

+ cH2
kfhj

m + kfsj
m + kdsj

(2.6d)

All the reaction rate constants that contain the subscript T are pseudo-

kinetic rate constants, which are defined in eq. (2.8). The total monomer

concentration, cMT
, is the sum of the individual monomer concentrations:

cMT
= ∑
∀m

cMm (2.7)

The pseudo-kinetic rate constants previously mentioned can be calculated

as follows:

kij
T = ∑

∀m
fmkij

m (2.8a)

khj
T = ∑

∀m
fmkhj

m (2.8b)

kfhj
T = ∑

∀m
ϕ

j
mkfhj

m (2.8c)

kfsj
T = ∑

∀m
ϕ

j
mkfsj

m (2.8d)

kfrj
T = ∑

∀m
ϕ

j
mkfrj

m (2.8e)

kfmj
kT = ∑

∀m
fmkfmj

km (2.8f)

kfmj
Tk = ∑

∀m
ϕ

j
mkfmj

mk (2.8g)

kfmj
TT = ∑

∀m
fmkfmj

Tm (2.8h)
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kpj
kT = ∑

∀m
fmkpj

km (2.8i)

kpj
Tk = ∑

∀m
ϕ

j
mkpj

mk (2.8j)

kpj
TT = ∑

∀m
fmkpj

Tm (2.8k)

The monomer fraction fm and the fraction of terminal monomer ϕ
j
m are

given in eq. (2.9), while the expression for ϕ
j
m is obtained by making the

long chain approximation for growing polymer chains [14, 66].

fm =
cMm

cMT

(2.9a)

ϕ
j
m =

fmkpj
km

fmkpj
km + fkkpj

mk

, k 6= m (2.9b)

Instead of having a mass balance of each chain length of living and dead

polymer, balances for the moments of the chain length distributions are

generated [37, 66, 97]. The balances for the zeroth, first and second

moment for the chain length distribution of living polymer are given in

eq. (2.10)

λ̇
j
ν = −λ̂

j
ν,pol + λ̃

j
ν, ∀ν ∈ {0, 1, 2} (2.10a)

λ
j
ν =

∞

∑
r=1

rν
2

∑
m=1

nj
Nm,r

(2.10b)

while the corresponding moments for dead polymer are given in eq. (2.11).

ξ̇
j
ν = −ξ̂

j
ν,pol + ξ̃

j
ν, ∀ν ∈ {0, 1, 2} (2.11a)
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ξ
j
ν =

∞

∑
r=2

rν
2

∑
m=1

nj
Qm,r

(2.11b)

λ
j
ν and ξ

j
ν denote the νth moment of the chain length distribution of living

and dead respectively; j indicate the catalyst site. The net reaction rates

for the moments of the chain length distributions are calculated by the

expressions below [37, 66, 100]:

λ̃
j
0 = cMT

(
kij

Tnj
N0

+ khj
Tnj

NH

)
+ khrjcAlEt3

nj
NH

− λ
j
0

(
kfhj

TcH2
+ kfsj

T + kdsj
)

(2.12a)

λ̃
j
1 = cMT

(
kij

Tnj
N0

+ khj
Tnj

NH
+ kpj

TTλ
j
0 + kfmj

TTλ
j
0

)

+ cAlEt3

(
khrjcH2

+ kfrj
Tλ

j
0

)

− λ
j
1

(
kfmj

TTcMT
+ kfrj

TcAlEt3
+ kfhj

TcH2
kfsj

T + kdsj
)

(2.12b)

λ̃
j
2 = cMT

(
kij

Tnj
N0

+ khj
Tnj

NH
+ kpj

TT

(
2λ

j
1 − λ

j
0

)
+ kfmj

TTλ
j
0

)

+ cAlEt3

(
khrjcH2

+ kfrj
Tλ

j
0

)

− λ
j
2

(
kfmj

TTcMT
+ kfrj

TcAlEt3
+ kfhj

TcH2
kfsj

T + kdsj
)

(2.12c)

ξ̃
j
ν =

(
λ

j
ν −

2

∑
m=1

nj
Nm,1

)

·
(

kfmj
TTcMT

+ kfrj
TcAlEt3

+ kfhj
TcH2

+ kfsj
T + kdsj

)
(2.12d)

It is worth noting that dead polymer of unit chain length is not considered

a part of the polymer, hence the summation in eq. (2.11) starts at r =

2. The outflows of the moments of the chain length distributions are

calculated by eq. (2.2). By inspecting eq. (2.12) it is evident that ξ
j
ν at each



18 Model development

site can be lumped together as shown in eq. (2.13).

ξν =
ns

∑
j=1

ξ
j
ν (2.13)

In addition, the second moments of the chain length distributions for

dead and living polymer can be described by defining a bulk moment

that includes both living and dead polymer chains. This bulk balance is

defined in eq. (2.14).

µ2 =
ns

∑
j=1

λ
j
2 + ξ2 (2.14)

The reaction rates for these lump and bulk moments are calculated as:

ξ̃ν =
ns

∑
j=1

ξ̃
j
ν (2.15a)

µ̃2 =
ns

∑
j=1

(
λ̃

j
2 + ξ̃

j
2

)

=
ns

∑
j=1

[
cMT

(
kij

Tnj
N0

+ khj
Tnj

NH
+ kpj

TT

(
2λ

j
1 − λ

j
0

)

+kfmj
TTλ

j
0

)
+ cAlEt3

(
khrjcH2

+ kfrj
Tλ

j
0

)

−
2

∑
m=1

nj
Nm,1

(
kfmj

TTcMT
+ kfrj

TcAlEt3

+kfhj
TcH2

+ kfsj
T + kdsj

)]

(2.15b)

In order to predict the composition of the polymer, additional balances of

the bound monomers are needed [66]. These mole balances are recited in

eq. (2.16).

ṅBm = −n̂Bm,pol + ñBm , ∀m ∈ {1, 2} (2.16a)

ñBm = −ñMm (2.16b)
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2.4 Mole balances of the gas components

The mole balances for each of the gaseous components, i.e., hydrogen,

propylene, ethylene and nitrogen, are required for each of the control

volumes. These balances will be presented for each of the two models in

the subsequent subsections.

2.4.1 Control model

The mole balances are given in eq. (2.17), in which it has been assumed

that the concentration of the components adsorbed in the solid is propor-

tional to the concentration in the gas phase, and that the proportionality

constant can be included in the rate constants in Table 2.1.

ṅH2
= n̂H2,f − n̂H2,pu − n̂H2,pol + ñH2

(2.17a)

ṅC3=
= n̂C3=,f − n̂C3=,pu − n̂C3=,pol + ñC3=

(2.17b)

ṅC2=
= n̂C2=,f − n̂C2=,pu − n̂C2=,pol + ñC2=

(2.17c)

ṅN2
= n̂N2,f − n̂N2,pu − n̂N2,pol (2.17d)

The feed rates are modeled by

n̂i,f = cgV̂i,f, ∀i ∈
{

H2, C3=, C2=, N2
}

(2.18)

where cg is the concentration of gas in the system; the gas concentration

is obtained from eq. (2.19).

cg = ∑
i

ci = ∑
i

ni

Vg
, ∀i ∈

{
H2, C3=, C2=, N2

}
(2.19)
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The purge rate of each component is calculated as

n̂i,pu = ciV̂pu, ∀i ∈
{

H2, C3=, C2=, N2
}

(2.20)

where the volumetric purge rate is given by a pc, which will be elucidated

in Section 2.8. The product stream contains mainly solids, but also a small

quantity of the gaseous compounds. The amount of gas that leaves the

reactor via the product valve is given in eq. (2.21)

n̂i,pol = εpolciV̂pol, ∀i ∈
{

H2, C3=, C2=, N2
}

(2.21)

in which the void fraction in the product stream is dependent on the type

of valve. The reaction rates are given as

ñH2
= −cH2

ns

∑
j=1

kfhj
Tλ

j
0 (2.22a)

ñC3=
= −cC3=

ns

∑
j=1

kpj
T1λ

j
0 (2.22b)

ñC2=
= −cC2=

ns

∑
j=1

kpj
T2λ

j
0 (2.22c)

where it has been assumed that the consumption of monomers by other

reactions than propagation is negligible. The pseudo-reaction rate con-

stants proposed by de Carvalho et al. [14] are used here, their definitions

are shown in eq. (2.8). λ
j
0 is the zeroth moment of the chain length

distribution of living polymer produced at site j. In addition, it has

been assumed that the concentration of the reactants at the active sites

is proportional to the concentration in the gas phase; the proportionality

constant has been included in the reaction rate constants.
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2.4.2 Plant replacement model

Mole balances for the gaseous components are required for all the control

volumes. The reactions are assumed to only occur in the bubble and

the emulsion phase, which is equivalent to neglecting the elutriation of

solids into the freeboard region. The mole balances for each of the control

volumes are then given as

ṅi,hex = n̂i,f|hex + n̂i,fb|hex − n̂i,hex|e − n̂i,hex|b (2.23a)

ṅi,fb = n̂i,b|fb + n̂i,e|fb − n̂i,fb|hex − n̂i,fb|pu (2.23b)

ṅi,e = n̂i,hex|e + n̂i,b|e − n̂i,e|fb − n̂i,e|pol + ñi,e (2.23c)

ṅi,b = n̂i,hex|b − n̂i,b|e − n̂i,b|fb − n̂i,b|pol + ñi,b (2.23d)

for all i ∈
{

H2, C3=, C2=, N2

}
. The feed flows into the heat exchanger

are calculated by

n̂i,f|hex = cg,hexV̂i,f (2.24)

where the concentration in the heat exchanger is

cg,hex = ∑
i

ci,hex = ∑
i

ni,hex

Vhex
(2.25)

and the volumetric flow from the heat exchanger into the reactor is given

by the superficial velocity into the reactor:

V̂hex|r = Ausf (2.26)

The molar flow of each component into the reactor can then be obtained:

n̂i,hex|r = ci,hexV̂hex|r (2.27)



22 Model development

The flow into the reactor is split into the bubble phase and the emulsion

phase, where the split factor is the bubble phase fraction defined in

eq. (2.40).

n̂i,hex|b = δn̂i,hex|r (2.28a)

n̂i,hex|e = (1− δ) n̂i,hex|r (2.28b)

By assuming that the total number of moles in the heat exchanger is

constant, i.e., a pssa for the number of moles in the heat exchanger, the

recycle from the freeboard region to the heat exchanger can be calculated

as:

n̂fb|hex = ∑
i

n̂i,fb|hex = ∑
i

(
n̂i,hex|r − n̂i,f|hex

)
(2.29)

The molar recycle flow of each component are then calculated:

n̂i,fb|hex =
ci,fb

∑i ci,fb
n̂fb|hex (2.30)

The flow from the bubble and emulsion phases into the freeboard region

are assumed to be proportional to the respective pressure differences

V̂s|fb = −ks|fb
(

pfb − ps
)

, ∀s ∈ {e, b} (2.31a)

n̂i,s|fb = −ci,sV̂s|fb (2.31b)

where it has been assumed that there is no backflow. The molar purge

rate of each component is calculated as

n̂i,fb|pu = ci,fbV̂pu (2.32)

where the volumetric purge rate is manipulated by a pc which is described

in Section 2.8. The transfer rate between the emulsion and the bubble
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phase is modeled as proportional to the concentration difference in the

phases [100] and the volume of the bubble phase, hence

n̂i,b|e = −kb|eVb
(
ci,e − ci,b

)
(2.33)

where the mass transfer resistance between bubble and emulsion phase

is given in eq. (2.46). The outflow of gas in the product stream for each

component in the bubble and the emulsion phase are given in eqs. (2.34a)

and (2.34b), respectively.

n̂i,b|pol = δεpolci,bV̂pol (2.34a)

n̂i,e|pol = (1− δ) εpolci,eV̂pol (2.34b)

The volumetric product flow is controlled by an lc, which is given in

Section 2.8.

The net reaction rates for the bubble and the emulsion phases are calcu-

lated as:

ñH2,s = −cH2,s

ns

∑
j=1

kfhj
Tλ

j
0,s, ∀s ∈ {e, b} (2.35a)

ñC3=,s = −cC3=,s

ns

∑
j=1

kpj
T1λ

j
0,s (2.35b)

ñC2=,s = −cC2=,s

ns

∑
j=1

kpj
T2λ

j
0,s (2.35c)

2.5 Hydrodynamic modeling

To obtain the amount of catalyst and cocatalyst in the reactor a mass

balance is required for each of them. However, if the ratio between cata-

lyst and cocatalyst is constant at all times, a single balance is required to
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describe the mass of both the catalyst and the cocatalyst. Thus, by assum-

ing a constant mass fraction of cocatalyst in the catalyst, the following

equations are valid:

ṁcat,tot = m̂cat,tot,f − m̂cat,tot,pol (2.36a)

m̂cat,tot,pol =
mcat,tot

Vs
V̂pol (2.36b)

mcat =
(

1−ωAlEt3

)
mcat,tot (2.36c)

nAlEt3
= ωAlEt3

mcat,tot

MAlEt3

(2.36d)

2.5.1 Control model

The void fraction of the cm is assumed to be constant, hence the level of

solids is given by [99]

h =
(

Ar (1− ε)
)−1 Vs (2.37)

where the volume of solids is:

Vs =
mpol

ρpol
+ mcat,tot

(
ωAlEt3

ρAlEt3

+
1−ωAlEt3

ρcat

)
(2.38)

The total mass of polymer in the reactor is given by amount of bound

monomers [66]:

mpol =
2

∑
m=1

nBm MMm (2.39)

2.5.2 Plant replacement model

The distribution of solids in the prm is assumed to occur instantaneously,

thus, only a total balance for each solid component is needed. The most
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important parameters are the bubble phase fraction and the void fractions

defined in ??, respectively.

The bubble phase fraction is defined as the volume of the bubbles in the

bed divided by the total volume of the bed:

δ =
Vb

Vbed
(2.40)

The void fractions are the volumetric fractions of gas in each of the phase:

εe =
Vg,e

Ve
(2.41a)

εb =
Vg,b

Vb
(2.41b)

Cui et al. [18] obtained the expressions in eq. (2.42) for the bubble phase

fraction and the void fractions for a fluidized bed of Geldart B particles,

which the polymer resins are [100]:

δ = 0.534

[
1− exp

(
−usf − umf

0.413

)]
(2.42a)

εe = εmf + 0.2− 0.059 exp
(
−usf − umf

0.429

)
(2.42b)

εb = 1− 0.146 exp
(
−usf − umf

4.439

)
(2.42c)

these expressions have also been applied to fluidized bed polymerization

by several other authors [2, 25, 43, 51, 52, 94, 95, 97, 98, 100]. usf and

umf are the superficial velocity and the velocity at minimum fluidization,

respectively.
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The level of solids is calculated with an average void fraction in the bed,

which is obtained from eq. (2.43). The level can then be calculated by

eq. (2.37), and the volume of solids is calculated as in the cm.

εavg = δεb + (1− δ) εe (2.43)

Equations (2.40) and (2.41) can be used to obtain an expression for the

distribution of the solids between each of the two phases:

mb

mtot
=

δ (1− εb)

δ (1− εb) + (1− δ) (1− εe)
(2.44a)

me

mtot
= 1− mb

mtot
(2.44b)

In eq. (2.42), the minimum fluidization velocity is obtained from the

minimum fluidization Reynolds number. The minimum fluidization

Reynolds number is commonly calculated by [37, 61, 100]

Remf =
umfρgdp

µg
(2.45a)

=
(

29.52 + 0.0357Ar
)1/2
− 29.5 (2.45b)

Ar =
ρg

(
ρs − ρg

)
gd3

p

µ2
g

(2.45c)

where Ar is the Archimedes number; ρg and ρs are the densities of the

gas and solid phases, respectively; dp is the diameter of the solid particles,

which is assumed to be constant; µg is the viscosity of the gas phase and

g is the gravitational acceleration.

The transfer of mass between the emulsion phase and the bubble phase is

given in eq. (2.33), in which the mass transfer coefficient, kb|e is given by
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eq. (2.46), recited below [57].

kb|e =

(
1

kb|c
+

1
kc|e

)−1

(2.46)

kb|c is the mass transfer resistance from the bubble phase to the cloud,

i.e., the interfacial region between the bubble phase and the emulsion

phase, while kc|e is the resistance between the cloud and the emulsion

phase. These resistances are calculated by the correlations of Kunii and

Levenspiel [57]

kb|c = 4.5
ue

db
+ 5.85

D1/2
g g1/4

d5/4
b

(2.47a)

kc|e = 6.77

(
εeubrDg

d3
b

)1/2

(2.47b)

where ue is the velocity of the emulsion phase, db is the bubble diameter,

Dg is the diffusivity of the gas and ubr is the rise velocity of the bubbles.

The bubble rise velocity is predicted with the correlation of Werther [108]:

ubr = ϕ
√

dbg, ϕ =





0.64 dr ≤ 0.1 m

1.6d0.4
r 0.1 m < dr ≤ 1 m

1.6 dr > 1 m

(2.48)

The diameter of the bubbles is calculated with the expression proposed

by Mori and Wen [70], recited in eq. (2.49).

db = db,max −
(
db,max − db,0

)
exp

(
−0.3h

dr

)
(2.49a)

db,0 = 0.376 (usf − umf)
2 (2.49b)
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Davidson and Harrison [20] proposed a maximum bubble diameter based

on the terminal velocity of the particles, while Haider and Levenspiel [36]

obtained a correlation for the terminal velocity of the particles. These cor-

relations are recited in eq. (2.50) with the correction for the dimensionless

particle diameter from Grace [35].

db,max = 2
ut

g
(2.50a)

ut = u?
t




gµg

(
ρs − ρg

)

ρ2
g




1/3

(2.50b)

u?
t =




18
(

d?p
)2 +

2.335− 1.744φp√
d?p




−1

(2.50c)

d?p = 2.7dpAr1/3 (2.50d)

The velocity of the emulsion phase is approximated as the average be-

tween the velocity into the emulsion phase and the velocity out of the

emulsion phase:

ue =
1
2

(
usf +

V̂e|fb
(1− δ) Ar

)
(2.51)

In addition to mass transfer between the bubble and the emulsion phase,

there is also heat transfer between the two phases. The heat transfer

coefficients are calculated similarly to the mass transfer coefficients, and

are given in eq. (2.52) [37, 57].

hb|e =

(
1

hb|c
+

1
hc|e

)−1

(2.52a)



2.6. Thermodynamics 29

hb|c = 4.5
ueρgcp,g

db
+ 5.85

(
ρgcp ,gkg

)1/2
g1/4

d5/4
b

(2.52b)

hc|e = 6.77

(
εeubrρgcp ,gkg

d3
b

)1/2

(2.52c)

2.6 Thermodynamics

The thermodynamics in the prm and the cm differ slightly. These differ-

ences will be elucidated in the succeeding subsections.

2.6.1 Pressure

The prm uses the Redlich-Kwong equation of state [38, 84], while the cm

applies a compressibility factor. The Redlich-Kwong equation of state is

given in eq. (2.53), and the definition of the compressibility factor is given

in eq. (2.54).

p =
RT ∑∀i ci

1− B
− A√

T (1 + B)
, ∀i ∈

{
H2, C3=, C2=, N2

}
(2.53a)

A = ∑
∀j

∑
∀i

cicj
√

aiaj (2.53b)

B = ∑
∀i

cibi (2.53c)

ai =
R2T5/2

c,i

9
(
21/3 − 1

)
pc,i

(2.53d)

bi =

(
21/3 − 1

)
RTc,i

3pc,i
(2.53e)

The subscript c denotes a critical constant; the critical constants for each

of the components are given in Table 2.2.
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Table 2.2 – Critical constants of the gaseous components.

component critical
temperature

critical
pressure

source

Hydrogen 33.15 K 12.964 · 105 Pa [39]
Nitrogen 126.192 K 33.9 · 105 Pa [39]
Propylene 364.9 K 45.9 · 105 Pa [40]
Ethylene 282.35 K 50.6 · 105 Pa [40]

The compressibility factor Z, which is used to estimate the pressure of

the cm is defined as [38]:

Z =
p

RT ∑∀i ci
, ∀i ∈

{
H2, C3=, C2=, N2

}
(2.54)

2.6.2 Energy balance

The energy balance for a simple control volume, depicted in Figure 2.4, is

given below [38]:

Ė = Êin − Êout + Q̂ + Ŵ (2.55)

E is the total energy which includes internal energy, potential energy and

kinetic energy. Q̂ and Ŵ are the flow of heat to the system and the work

performed by the surroundings on the system, respectively. By assuming

that the system is nonmoving and that the flow of mechanical energy can

be neglected, the energy balance can be written as:

U̇ = Ûin − Ûout + Q̂ + Ŵ (2.56)

The work performed on the system can be split into distinct contributions,

the pressure-volume work associated with the flow of mass in and out of
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CVF P

H

W

Figure 2.4 – A simple control volume. The black lines indicate flow of mass,
while the red dashes and the blue dots denote heat flow and work
flow, respectively.

the system, the pressure-volume work associated with change in volume

of the system, the shaft work and all other contributions:

Ŵ =
(

pV̂
)

in
−
(

pV̂
)

out
− pext

dV
dt

+ Ŵs + Ŵother (2.57)

By introducing the definition of enthalpy, H = U + pV, and neglecting

all other work than pressure-volume work and shaft work, the following

is obtained:

U̇ = Ĥin − Ĥout + Q̂− pext
dV
dt

+ Ŵs (2.58)

The left-hand side of this equation is usually rewritten in therms of

enthalpy instead of internal energy, which yields:

Ḣ = Ĥin − Ĥout + Q̂ +
(

p− pext
) dV

dt
+ V

dp
dt

+ Ŵs (2.59)

By examining different differentials for the enthalpy and applying a set

of appropriate Maxwell relations, the energy balance can be rewritten in
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terms of temperature [47]:

Cp
dT
dt

+ ∑
∀c

hcṅc = Ĥin − Ĥout + Q̂

+
(

p− pext
) dV

dt
+ T

(
∂V
∂T

)

p

dp
dt

+ Ŵs

(2.60)

The motivation behind this transformation is that the temperature is

required in many of the calculations, and solving the energy balance with

respect to enthalpy would require an additional algebraic equation for

the temperature. By utilizing the fact that enthalpy is Euler homogeneous

of degree one [38], the flows of enthalpy can be rewritten as:

Ĥ = ∑
∀c

hcn̂c (2.61)

Inserting the mole balances and eq. (2.61) into eq. (2.60) yields:

Cp
dT
dt

= ∑
∀c

[
(hc,in − hc,out) n̂c,in − hc,outñc

]

+ Q̂ +
(

p− pext
) dV

dt
+ T

(
∂V
∂T

)

p

dp
dt

+ Ŵs

(2.62)

By applying the following assumptions; the volume of the control volume

is constant, neglecting any contributions by changes in pressure and shaft

work; the well-known temperature equation is obtained [31];

Cp
dT
dt

= ∑
∀c

[
n̂c,in

∫ Tin

T
cp,c dτ

]
−∑
∀r

∆rxhr Ñr + Q̂ (2.63)

where r indicates the different reactions. It is assumed that only the prop-

agations contribute to the heat of reactions and that the heat capacities

are constant, hence:

∑
∀c

nccp,c
dT
dt

= ∑
∀c

[
cp,cn̂c,in (Tin − T)

]
−∑
∀r

∆rxhr Ñr + Q̂ (2.64)
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Equation (2.64) is applied by the cm without any further manipulations,

while the prm requires an energy balance for each of the control volumes.

The reactions are only taking place in the bubble and the emulsion phases,

while it is assumed that the heat exchanger is the only control volume

with heat transfer. Thus, rewriting eq. (2.64) for each of the control

volumes:

∑
∀c

nc,fbcp,c
dTfb

dt
= ∑
∀c

[
cp,cn̂c,e|fb (Te − Tfb)

]

+ ∑
∀c

[
cp,cn̂c,b|fb (Tb − Tfb)

]
(2.65a)

∑
∀c

nc,hexcp,c
dThex

dt
= ∑
∀c

[
cp,cn̂c,fb|hex (Tfb − Thex)

]

+ ∑
∀c

[
cp,cn̂c,f|hex (Tf − Thex)

]
+ Q̂

(2.65b)

∑
∀c

nc,ecp,c
dTe

dt
= ∑
∀c

[
cp,cn̂c,b|e (Tb − Te)

]

+ ∑
∀c

[
cp,cn̂c,f|e (Tf − Te)

]

+ ∑
∀c

[
cp,cn̂c,hex|e (Thex − Te)

]

−∑
∀r

∆rxhr Ñr,e

(2.65c)

∑
∀c

nc,bcp,c
dTb

dt
= ∑
∀c

[
cp,cn̂c,e|b (Te − Tb)

]

+ ∑
∀c

[
cp,cn̂c,f|b (Tf − Tb)

]

+ ∑
∀c

[
cp,cn̂c,hex|b (Thex − Tb)

]

−∑
∀r

∆rxhr Ñr,b

(2.65d)
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2.6.3 Heat exchanger

Two distinct models for the heat exchanger are applied to the cm and

the prm. In the cm, the flow of heat is assumed to be proportional to

the temperature difference between the cw and the reactor temperature,

as displayed in eq. (2.66). A logarithmic mean temperature difference is

applied to the heat transfer in the prm, which is shown in eq. (2.67).

Q̂cm = UA (T − Tcw) (2.66)

The simple heat transfer model in eq. (2.66) is valid for heat transfer

between two control volumes with uniform temperature [34, 103].

Q̂prm = UA∆Tlm (2.67a)

∆Tlm =
(Tfb − Tcw)− (Thex − Tcw)

ln
(

Tfb−Tcw
Thex−Tcw

) (2.67b)

The model in eq. (2.67) is valid for a pure co or countercurrent heat-

exchanger which exhibits plug flow characteristics [7, 34]. It is assumed

that the temperature of the cold side, i.e., the cw, is constant.

2.7 State representation

The models are written in a state representation, in which the states are

the variables for which a time-derivative is given. In addition, the models

include estimation of the available measurements; the models can then

be written as

ẋ = f (x, u;θ) (2.68a)
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y = g (x, u;θ) (2.68b)

z = h (x, u;θ) (2.68c)

where x, u, y, z and θ are vectors that contain the states, the inputs,

the measurements, the outputs and the parameters, respectively. The

vector of measurements and inputs are the same for both models, and are

given in eqs. (2.69) and (2.72), respectively. In the prm, the measurements

of the composition of the gas phase, the pressure and the temperature

are obtained from the freeboard section of the reactor, as indicated by

Figure 2.2.

y =

[
xH2

, xM1
, xM2

, p, h, T, V̂pu, V̂pol, Tcw, mfi

]ᵀ
(2.69)

The mole fractions are calculated by eq. (2.70), while the melt flow index

(mfi) is approximated by eq. (2.71) [66, 94, 97].

xi =
ci

∑∀c cc
, ∀c, i ∈

{
H2, C3=, C2=, N2

}
(2.70)

mfi = 3.346 · 1017M̄−3.472
w (2.71)

u =

[
V̂H2,f, V̂M1,f, V̂M2,f, V̂N2,f, m̂cat,f, Tsp

]ᵀ
(2.72)

In polymer production it is often desirable to control variables that are not

directly measured, such as the polydispersity index (pdi), the molecular

weight of the polymer and its composition [16, 63, 65]. The additional out-

puts chosen in this thesis are collected in the vector z, given in eq. (2.73).

z =

[
pdi, M̄w, xpol, m̂pol, m̂pu, X

]ᵀ
(2.73)



36 Model development

The pdi is the ratio between the mass average molecular mass and the

number average molecular mass [37, 46, 66, 97]

pdi =
M̄w

M̄n
(2.74)

where the average molecular masses are given in eq. (2.75).

M̄w = MM
µ2

µ1
(2.75a)

M̄n = MM
µ1

µ0
(2.75b)

MM =
2

∑
m=1

xBm MBm (2.75c)

The fraction of propylene bound in the polymer is obtained by:

xpol =
nB1

∑2
k=1 nBk

(2.76)

The production rate is given in eq. (2.77), while the purge rate is calculated

by eq. (2.78).

m̂pol = mpol
V̂pol

Vs
(2.77)

m̂pu = ρgV̂pu (2.78)

The productivity of the reactor, X, is defined as the ratio between the

mass of polymer produced and the mass of catalyst [105]:

X =
mpol

mTi
(2.79)
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2.7.1 Control model

The states used in the cm are given in eq. (2.80);

xcm =

[
nH2

nM1
nM2

nN2
nB1

nB2
λ1

0 λ2
0 λ1

1 λ2
1

ξ0 ξ1 µ2 mcat T
∫ t

0 eh dτ
∫ t

0 ep dτ
∫ t

0 eT dτ

]ᵀ
(2.80)

this includes the number of moles of the gaseous components, the moles

of monomers bound in the polymer, the moments of the chain length

distribution, the total mass of catalyst, the temperature and the integrals

of the controller errors.

2.7.2 Plant replacement model

The states used in the plant replacement are given in eq. (2.81);

xprm =

[
nH2,hex nM1,hex nM2,hex nN2,hex Thex nH2,fb nM1,fb

nM2,fb nN2,fb Tfb nH2,b nM1,b nM2,b nN2,b Tb

nH2,e nM1,e nM2,e nN2,e Te nB1
nB2

λ1
0 λ2

0 λ1
1

λ2
1 ξ0 ξ1 µ2 mcat

∫ t
0 eh dτ

∫ t
0 ep dτ

∫ t
0 eT dτ

]ᵀ

(2.81)

which includes the number of moles of the gaseous components in each

control volume, the temperature of each control volume, the moles of

monomers bound in the polymer, the moments of the chain length dis-

tribution, the total mass of catalyst and the integrals of the controller

errors.
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2.8 Controllers

The general form of a proportional integral derivative (pid) controller is

given in eq. (2.82) [3]

u (t) = u (0) + Kc

(
eP (t) +

1
τI

∫ t

0
eI (τ)dτ + τD

deD (t)
dt

)
(2.82)

in which Kc is the controller gain, τI and τD are the integral and derivative

time, respectively. e is the set point offset defined in eq. (2.83), while u is

the manipulated variable (mv), i.e., the input. The offset may be treated

differently for each of the three terms. The offset for the integral term

usually contains an additional term to prevent windup issues, while the

offset applied in the derivative action is filtered to minimize the effect of

measurement noise [3, 92].

e = ysp − y (2.83)

y is the controlled variable (cv), i.e., the output or the measurement, and

ysp is its set point, i.e., the desired value. The input is usually limited, by

physical constraints, between a maximum and a minimum value:

umin ≤ u ≤ umax (2.84)

At the limits, the input is saturated which can cause reset windup of the

integral action [92]. To remedy this problem, an antiwindup scheme was

applied [3], which is illustrated in Figure 2.5.

The controllers were tuned sequentially, with a simplified version of the

sequential algorithm of Hovd and Skogestad [45] (adapted from Seborg
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−1

Figure 2.5 – The structure of a simplified proportional integral derivative (pid)
controller with the antiwindup scheme of Åström and Murray [3].
e is the set point offset, v is the desired input, u is the actual input.
eu is the input offset, which is fed back to the integrator.

et al. [92, ch. 18]). The linearizations were performed numerically with

a central difference scheme.2 Each controller was tuned by applying

Matlab’s pid toolbox3 to the linearized model. This led to the following

tuning algorithm:

1. Linearize the open-loop model.

2. Tune the lc, and close the controller loop.

3. Linearize the model with the lc loop closed.

4. Tune the pc and close the controller loop.

5. Linearize the model with both the lc and the pc loops closed.

6. Tune the tc and close the controller loop.
2http://www.iue.tuwien.ac.at/phd/heinzl/node27.html
3http://mathworks.com/help/control/pid-controller-design.html

http://www.iue.tuwien.ac.at/phd/heinzl/node27.html
http://mathworks.com/help/control/pid-controller-design.html
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Table 2.3 – The controller settings obtained with Matlab’s pid toolbox.

controlled
variable (y)

manipulated
variable (u)

gain (Kc) integral
time (τI)

h V̂pol −0.034 99 m2 s−1 440.1 s
p V̂pu −3.451 · 10−7 m3 s−1 Pa−1 907.7 s
T Tcw 2.347 K K−1 1455 s

Table 2.4 – The controller constraints chosen in the simulations.

manipulated variable (u) maximum (umax) minimum (umin)

V̂pol 0.02 m3 s−1 0 m3 s−1

V̂pu 0.05 m3 s−1 0 m3 s−1

Tcw 60 ◦C 10 ◦C

The obtained tuning parameters are given in Table 2.3; the antiwindup

tuning parameter, ku was set equal to K−1
c as recommended by Åström

and Murray [3]. For simplicity, all the controllers were tuned as propor-

tional integral (pi) controllers; the implementation of the pi controllers is

shown in Code snippet d.1 in Appendix d. In addition, some physical

constraints were imposed on the mvs of the controllers, these are given in

Table 2.4.

2.9 Implementation

Both the prm and the cm were implemented both Matlab and C. The

models were first implemented in Matlab for visualization and data gen-

eration purposes, and later in C to be able to interact with Cybernetica’s
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programs. All additional parameters required for the simulations are

given in Tables a.1 and a.2 in Appendix a.

The Matlab implementation of the plant replacement is displayed in

Appendix b. The derivatives of the states are given in Code snippet b.1,

while the measurements are shown in Code snippet b.2. An implicit solver,

ode15s,4 was applied for the integration of the model equations. A sample

script which demonstrates how the model equations can be integrated

is given in Code snippet b.3. A fourth-order Runge-Kutta scheme [56,

p. 917] with a constant time-step was applied in the C implementation,

this scheme is presented in Code snippet b.5. The remainder of the C

source code is very similar to the Matlab code, and has been omitted for

brevity.

The Matlab source code of the cm is given in Appendix c. The derivatives

of the states are displayed in Code snippet c.1, while the measurements

and outputs are shown in Code snippets c.2 and c.3, respectively. A

second-order Runge-Kutta method (see Constantinides and Mostoufi [17,

p. 290]) was used to integrate the model equations. The implementation

in C of this model has also been excluded due to the many similarities

with the Matlab code.

A set of input steps was applied to the models and a selection of the

resulting step responses is plotted in Appendix e. These steps were

applied after the offline parameter estimation in Chapter 3. Some discrep-

4http://mathworks.com/help/matlab/ref/ode15s.html

http://mathworks.com/help/matlab/ref/ode15s.html
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ancies between the cm and the prm can be observed, these deviations are

mitigated further by applying a recursive estimation technique, which

is described in Chapter 4. These step responses served as a qualitative

verification of the implementations, but due to an absence of data from

an industrial scale reactor, the implementations have not been validated.

However, similar models have been compared against experimental data

by Shamiri, Hussain, Mjalli, and Mostoufi [95]; their results agreed rea-

sonably well with the experimental data, even without estimation of any

parameters.



CHAPTER 3

OFFLINE PARAMETER ESTIMATION

The optimum value of any parameter (or set of parameters) is

that value (or set of values) of which the likelihood is greatest.

— R. A. Fisher, 19221

To ensure the best possible consistency between the plant replacement

model (prm) and the control model (cm), a selection of parameters in

the cm was fitted against the outputs from a series of step responses.

This can be done by utilizing Cybernetica’s tool for offline parameter

estimation, ModelFit.2 The parameters chosen for fitting were the heat

transfer coefficient, the compressibility, the average void fraction and a

set of reaction rate corrections. A brief explanation of the applied theory

is provided in the subsequent section.
1Fisher, R. A., “On the mathematical foundations of theoretical statistics,” Philosophical

Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
vol. 222, no. 594–604, pp. 309–368, 1922. doi: 10.1098/rsta.1922.0009

2http://www.cybernetica.biz/v3/products/ModelFit/index.html

43

http://dx.doi.org/10.1098/rsta.1922.0009
http://www.cybernetica.biz/v3/products/ModelFit/index.html
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3.1 Theory

ModelFit calculated the parameters selected for estimation by solving the

following optimization problem

min
θ

J (θ)

subject to xk = xk−1 +
∫ tk

tk−1

f
(
x(τ), u(τ);θ

)
dτ, ∀k ∈ {1, . . . , n}

yk = g (xk, uk;θ)

θmin ≤ θ ≤ θmax

(3.1)

in which the cost function, J, is the sum of squares of the difference

between the estimated measurement and the actual measurement, given

in eq. (3.2). It is worth noting that the cost function is only dependent on

the parameters, the measurements are implicitly given by the parameters

through the model equations. k denotes the sample number, while n

is the total number of samples. Equation (3.1) is solved by applying a

sequential quadratic programming (sqp) method as described by Nocedal

and Wright [74, ch. 18]. The sqp algorithm works by approximating

the cost function by a quadratic function and linearizing the constraints.

This quadratic subproblem is solved at each iteration until the criteria of

convergence has been met.

J (θ) = (y− ym)ᵀ Q (y− ym) (3.2)

The block vectors3 y and ym contain all the variables from eq. (2.73) in

Chapter 2 at every sample. The block matrix2 Q contains the weight of
3A block vector/matrix is a vector/matrix that is composed of smaller vec-

tors/matrices.
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each variable, which is used to make the cost function dimensionless and

it could be used to favor between different measurements and samples.

The weight matrix used to estimate the parameters was chosen as

Q = In ⊗ diag (q) (3.3a)

q =

[
q2

xH2
q2

xC3=
q2

xC2=
q2

p q2
h q2

T q2
V̂pu

q2
V̂pol

q2
Tcw

q2
mfi

]ᵀ
(3.3b)

where the weights of the individual measurements are displayed in

Table 3.1. I is the identity matrix4 and ⊗ is the Kronecker product.5

In this formulation, all the samples have been weighted equally; each

measurement was sampled at regularly spaced intervals with a sample

time of one minute. The measurements of pressure, level and temperature

were not taken into account, because they are controlled by proportional

integral (pi) controllers, hence they cannot be considered independent

measurements.

The measurement data were generated by applying a series of steps in

the inputs to the prm. Each step was simulated for ten hours before a

new step was applied. The initial input was:

u0 =

[
4.5 · 10−5 m3 s−1 4.275 · 10−2 m3 s−1 2.205 · 10−3 m3 s−1

4.5 · 10−6 m3 s−1 3.385 · 10−3 kg s−1 353.15 K

]ᵀ

The steps were performed by perturbing the input vector by adding a

positive and a negative step sequentially for each of the inputs. The
4http://mathworld.wolfram.com/IdentityMatrix.html
5http://mathworld.wolfram.com/KroneckerProduct.html

http://mathworld.wolfram.com/IdentityMatrix.html
http://mathworld.wolfram.com/KroneckerProduct.html
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Table 3.1 – The weights for each measurement used in the parameter estimation.

measurement weight

Mole fraction of hydrogen qxH2
= 1√

5·10−4

Mole fraction of propylene qxC3=
= 1

1 · 10−4

Mole fraction of ethylene qxC2=
= 1

1 · 10−4

Pressure qp = 0
Level qh = 0
Temperature qT = 0
Purge rate qV̂pu

= 1
1 · 10−3 m3 s−1

Production rate rate qV̂pol
= 1

1 · 10−5 m3 s−1

Cooling water temperature qTcw = 1
1 K

Melt flow index qmfi =
1

1 · 10−3 dg min−1

steps of the feeds were set equal to 5 % of u(0), while the steps in the

temperature set point were chosen to be ±3 K. To validate the estimated

parameters, a new dataset was constructed similarly, but with the steps

in a different order and with twice the magnitude.

3.2 Results and discussion

The estimated parameters are shown in Table 3.2 together with their

respective initial guess. The corrections for the reaction rates are applied

as:

kpj
km = ψ

j
mkpj

km, k, m ∈
{

C3=, C2=
}

, j ∈ {1, 2} (3.4a)

kfhj
m = ψH2

kfhj
m (3.4b)
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Table 3.2 – The results of the offline parameter estimation.

parameter initial guess estimated value

Overal heat transfer coefficient, UA 80 kW K−1 83.58 kW K−1

Compressibility, Z 0.75 0.7222
Average void fraction, εavg 0.7 0.7000
Correction for C3= at site 1, ψ1

C3=
1.0 0.9399

Correction for C3= at site 2, ψ2
C3=

1.0 1.006

Correction for C2= at site 1, ψ1
C2=

1.0 0.9149

Correction for C2= at site 2, ψ2
C2=

1.0 1.066

Correction for H2, ψH2
1.0 0.4570

These corrections are included to account for the effects of the temperature

and concentration differences in the bubble and emulsion phases. A two-

site correction for hydrogen was also carried out, but that resulted in one

of the correction being equal to zero without producing a better fit to

the prm, hence a single correction was chosen. Several initial guesses

were applied, but it was observed that the initial estimate for each of the

parameters did not affect the results.

The graphical depictions of the results are shown in Figures 3.1 to 3.3.

The validation mentioned in the previous section, for the mole fraction of

hydrogen, is displayed in Figure 3.4, while the validation of the melt flow

index (mfi) is presented in Figure 3.5. The remainder of the validations

are left to Appendix f.

By inspecting Figures 3.1 to 3.3, it is evident that the estimation pro-

vides results which are in good agreement with the prm. By examining



48 Offline parameter estimation

0 24 48 72 96 120

2.0

2.2

2.4

2.6
·10−3

t [h]

x H
2
[−

]
prm cm – fitted cm – guess

a – Mole fraction of hydrogen.

0 24 48 72 96 120

0.972

0.974

0.976

0.978

t [h]

x C
3=

[−
]

b – Mole fraction of propylene.

0 24 48 72 96 120
2.0

2.2

2.4

2.6

·10−2

t [h]

x C
2=

[−
]

c – Mole fraction of ethylene.

Figure 3.1 – The results of the offline parameter estimation for the mole fractions.
The blue line is the plant replacement model (prm) while the red
dashed line and the green dash-dotted line denote the control
model (cm) before and after fitting, respectively.

Figures 3.4 and 3.5 it apparent that the estimation provides accurate

predictions for a doubling in the input steps. This is one of the advan-

tages a nonlinear first-principles model possesses, compared to a linear

heuristic or empirical model [90], i.e., being able to produce more precise

predictions independent of operating conditions. However, the estimated

parameters may not provide sufficiently accurate predictions for all oper-

ating conditions. To remedy this, a recursive estimation technique will be

applied, which will be elucidated in Chapter 4.
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Figure 3.2 – The results of the offline parameter estimation for the melt flow
index (mfi) and the temperature of the cooling water (cw). The blue
line is the plant replacement model (prm) while the red dashed
line and the green dash-dotted line denote the control model (cm)
before and after fitting, respectively.
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Figure 3.3 – The results of the offline parameter estimation for the product and
purge rates. The blue line is the plant replacement model (prm)
while the red dashed line and the green dash-dotted line denote
the control model (cm) before and after fitting, respectively.
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Figure 3.4 – The validation of the mole fraction of hydrogen. The blue line is
the plant replacement model (prm) while the red dashed line and
the green dash-dotted line denote the control model (cm) before
and after fitting, respectively.
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Figure 3.5 – The validation of the melt flow index (mfi). The blue line is the
plant replacement model (prm) while the red dashed line and the
green dash-dotted line denote the control model (cm) before and
after fitting, respectively.



CHAPTER 4

ONLINE PARAMETER ESTIMATION

The state is to be regarded always as an abstract quantity.

Intuitively speaking, the state is the minimum amount of

information about the past history of the system which suffices

to predict the effect of the past upon the future.

— R. E. Kálmán, 19631

A model will generally not be able to reproduce the actual plant measure-

ments perfectly, hence there will be inconsistencies between the measure-

ments and the measurements predicted by the model. This can, to some

extent, be rectified by recursive state estimation techniques, in which

the states are updated based on the deviations between the predicted

measurements and the actual measurements. Several such estimation

1Kálmán, R. E., “Mathematical description of linear dynamical systems,” Journal of
the Society for Industrial and Applied Mathematics Series A Control, vol. 1, no. 2, pp. 152–192,
1963. doi: 10.1137/0301010
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techniques are available, most notably the Kalman filter (kf) and its

derivatives, the moving horizon estimator and the H∞ filter [32, 90, 102].

In this thesis an augmented divided difference kf was chosen for online

estimation. The filter was applied to the control model (cm) such that it

was able to track the measurements from the plant replacement model

(prm) more precisely. A short review of the theory behind this type of

estimator is given in the succeeding section.

4.1 Theory

The conventional Kalman filter was derived for linear state-space models2,

with additive noise in the both the states and the measurements [102].

Extensions of the filter to nonlinear models have also been developed,

such as the extended Kalman filter (ekf), the unscented Kalman filter (ukf)

and the divided difference filters of Nørgaard et al. [75]. The ekf works by

linearizing the model by applying a Taylor expansion around the current

state estimate, while the ukf propagates an ensemble of points, known as

sigma points, through the nonlinear model equations [102]. The filters of

Nørgaard et al. [75] are based on polynomial approximations rather than

Taylor expansions, and works quite similarly to the ukf, which according

to Simon [102], can be considered a special case of these filters.

In Cybernetica’s tools, the first-order divided difference (dd1) and second-

2http://www.scholarpedia.org/article/State_space_model

http://www.scholarpedia.org/article/State_space_model
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order divided difference (dd2)3 filters of Nørgaard et al. [75], which are

generalizations of the filter proposed by Schei [89], are implemented. The

dd2 filter was chosen for its improved accuracy compared to the dd1

filter. In addition, the filtered estimate is constrained by the applying the

general projection approach to avoid violation of state constraints (see

Simon [102, p. 216] or Kolås et al. [54, sec. 5]).

The applied noise modeling concept is similar to method 3 by Kolås

et al. [55]. The noise is assumed to enter the model through a set of

parameters, which ensures that the balance equations, e.g., mass, mole

and energy, are not violated [90]. In addition, the parameters themselves

are estimated and are allowed to vary with time, thus the state vector is

augmented with the estimated parameters, which leads to the augmented

kf. The parameters are thus modeled as integrated white noise; the model

equations can be written as [54, 55, 102]:

x−k = F
(

x+k−1, uk−1, θ̃k−1

)
+ νI,k−1 a priori state estimate (4.1a)

θ̃k−1 = θ+k−1 (1 + νk−1) process noise via parameters (4.1b)

θ−k = θ+k−1 (1 + υk−1) a priori parameter estimate (4.1c)

y−k = g
(

x−k , uk,θ−k
)
+ωk measurement estimate (4.1d)

F is given in eq. (4.2) and the superscripts + and − denote a posteriori

and a priori estimates, respectively. Equation (4.1) is evaluated after

the measurements from the previous sample (k− 1) has been processed

3Not to be confounded with the finite difference methods for numerical differentia-
tion.
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x

k k+1 k+2k−1k−2k−3x

k k+2k−1k−2k−3 k+1

Figure 4.1 – Illustration of the Kalman filter (kf). x is the state, k is the sample
number and the superscripts − and + denote the a priori and the
a posteriori estimates, respectively. At each sample, the a priori
estimate is obtained before the measurements are processed (top
figure). After the measurements have been processed, the state is
updated to yield the a posteriori estimate (bottom figure).

and yields the a priori estimates for the current sample (k). When the

measurements from the current sample has been processed, eq. (4.4) is

evaluated, and the a posteriori estimates are obtained. This process is

illustrated in Figure 4.1. θ̃ is a supplementary variable through which

the process noise is added. Due to estimation errors in the pressure, level

and temperature, the integrated errors for the controllers may differ in

the model compared to the real process. To remedy this, additive noise is

assumed for the integral errors through the noise term νI. The noise of

the parameters is assumed to be multiplicative, while the measurement

noise is purely additive. The noise is assumed to be uncorrelated and

normal distributed, and is given in eq. (4.3).
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The equation for the state estimate, given the previous estimate, is the

previous state estimate plus the integral of the state derivatives from the

previous sample to the current sample:

F (xk−1, uk−1,θk−1) = xk−1 +
∫ tk

tk−1

f
(
x(τ), u(τ),θk−1

)
dτ (4.2)

The noise of the process, parameters and measurements are assumed to

be uncorrelated, i.e., their covariance is zero, and can be written as:

νk ∼ N (0, Rν) Gaussian process noise (4.3a)

νI,k ∼ N (0, RνI)
Gaussian process noise
on controller integrals

(4.3b)

υk ∼ N (0, Rυ) Gaussian parameter noise (4.3c)

ωk ∼ N (0, Q) Gaussian measurement noise (4.3d)

N (0, σ2) indicates a normal distributed variable with zero mean and

a variance of σ2. Large variances in the process and parameter noise

yield strong state and parameter updates, while large variances in the

measurement noise yield weak updates. The standard deviation, σ,

of each noise can then be considered a tuning parameter [19]. The

assumption of uncorrelated noise yields diagonal covariance matrices; Rν,

RνI, Rυ and Q.

The a posteriori estimate of the augmented state containing both the states

and the parameters is given by [55, 102]



x+k

θ+k


 =




x−k

θ−k


+ Kk

(
yk − y−k

) a posteriori state estimate

a posteriori parameter estimate
(4.4)
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Table 4.1 – The standard deviations of the measurement noise used in the simu-
lations.

measurement standard deviation
of measurement noise

Mole fraction of hydrogen, xH2
1 · 10−4

Mole fraction of propylene, xC3=
1 · 10−4

Mole fraction of ethylene, xC2=
1 · 10−4

Pressure, p 500 Pa
Level, h 0.1 m
Temperature, T 0.1 K
Purge rate, V̂pu 1 · 10−4 m3 s−1

Production rate, V̂pu 5 · 10−6 m3 s−1

Temperature of cooling water, Tcw 0.1 K
Melt flow index, mfi 1.0 · 10−3 dg min−1

where K is the kf gain which is multiplied by the difference between the

actual measurements and the estimated measurements. The kf gain is

dependent on the covariances of the augmented state, which are estimated

both a priori and a posteriori by the filter proposed by Nørgaard et al. [75]

and Schei [89].

The compressibility, the heat transfer coefficient and the reaction rate cor-

rections were chosen for online estimation. The filter was tuned manually

in ModelFit by adjusting the standard deviations for the parameter noise

and the process noise, including the noise on the controller integrals. The

standard deviation in the measurement noise was assumed to be known,

and is given in Table 4.1. The filter was tuned against a time series of

outputs from the prm. The outputs were generated by simulating with the
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two inputs given in eq. (4.5). The applied sequence of inputs was: u1 for

24 h, u2 for 24 h and then back to u1 for 24 h. Each of the measurements

was sampled at regularly spaced intervals with a sample time of one

minute.

u1 =

[
1.813 · 10−4 m3 s−1 0.040 46 m3 s−1 0.007 04 m3 s−1

4.5 · 10−6 m3 s−1 0.012 05 kg s−1 353.15 K

]ᵀ
(4.5a)

u2 =

[
2.614 · 10−4 m3 s−1 0.042 03 m3 s−1 0.004 611 m3 s−1

4.5 · 10−6 m3 s−1 0.0100 kg s−1 353.15 K

]ᵀ
(4.5b)

The initial standard deviations of the process and the parameter noise

were tuned by trial-and-error until a satisfactory filter was obtained. The

philosophy of the tuning process was that the parameters should vary

smoothly, and that the cm should be able to track the outputs from the

prm quite accurately. The first can be obtained by setting a low variance

for the parameter noise, υ, while the latter was obtained by adjusting the

variance of the process noise, ν. In addition the variance of the noise on

the controller integrals, νI, was increased until the model could track the

cooling water (cw) temperature, purge rate and production rate without

producing large deviations in temperature, pressure and level. Initially,

the filter was tuned by looking at open-loop responses in ModelFit, and

later retuned in closed-loop, i.e., with active control. This is explained

further in Chapter 5. The results of the tuning process are presented in

the next section.
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Table 4.2 – The chosen standard deviations of the process and parameter noise
for each of the estimated parameters.

parameter standard
deviation of
process noise

standard
deviation of

parameter noise
ν υ

Compressibility, Z 5 · 10−4 1 · 10−5

Heat transfer coefficient, UA 5 · 10−4 5 · 10−5

Site 1 correction for C3=, ψ1
C3=

5 · 10−4 2 · 10−5

Site 2 correction for C3=, ψ2
C3=

5 · 10−4 2 · 10−5

Site 1 correction for C2=, ψ1
C2=

5 · 10−4 2 · 10−5

Site 2 correction for C2=, ψ2
C2=

5 · 10−4 2 · 10−5

Correction for H2, ψH2
5 · 10−4 5 · 10−5

All the measurements were utilized in the kf despite not being inde-

pendent; the measurements of the proportional integral (pi) controlled

variables (cvs) can for instance not be considered independent of the

other measurements at steady-state. However, they are dynamically inde-

pendent, and it was observed that the filter performed better with these

measurements included. Consequently, they are included hereafter in all

the simulations with the kf.

4.2 Results and discussion

The standard deviations for the noise of each of the parameter is displayed

in Table 4.2, and the standard deviations for the noise of the controller

integrals are presented in Table 4.3. The standard deviation of the multi-
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Table 4.3 – The selected standard deviations of the noise on the controller inte-
grals for the level controller (lc), the pressure controller (pc) and the
temperature controller (tc).

controller integral standard deviation
νI

Level,
∫ t

0 eh dτ 1 · 10−2 m s
Pressure,

∫ t
0 ep dτ 1 · 104 Pa s

Temperature,
∫ t

0 eT dτ 5 · 10−2 K s

plicative parameter noise is very small, which yielded smooth parameter

variations. This is evident in Figures 4.8 and 4.9. The standard deviation

of the process noise between ten and fifty times greater than the parame-

ter noise, which allowed for accurate tracking of the measurements. This

can be seen in Figures 4.2 to 4.7. The initial value of each parameter was

the value obtained by the offline parameter estimation in Chapter 3.
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Figure 4.2 – The results with recursive parameter estimation of the mole frac-
tions of the monomers. The blue line is the plant replacement
model (prm) while the red dashed line correspond to the control
model (cm). The black dotted lines indicate when the each of the
steps were applied.
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Figure 4.3 – The results with recursive parameter estimation of the mole fraction
of hydrogen. The blue line is the plant replacement model (prm)
while the red dashed line correspond to the control model (cm).
The black dotted lines indicate when the each of the steps were
applied.

By inspecting Figures 4.8 and 4.9, rapid changes in the parameters at the

beginning of the simulation can be observed. These changes are mainly

due to the large measurement offsets at the beginning of the time series.

However, after approximately twenty hours the measurement coincide

more, and the parameters are stabilizing.
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Figure 4.4 – The results with recursive parameter estimation for the temperature.
The blue line is the plant replacement model (prm) while the red
dashed line correspond to the control model (cm). The black dotted
lines indicate when the each of the steps were applied.
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Figure 4.5 – The results with recursive parameter estimation for the pand level.
The blue line is the plant replacement model (prm) while the red
dashed line correspond to the control model (cm). The black dotted
lines indicate when the each of the steps were applied.

Figures 4.2 to 4.7 show that, after the initial stabilization, the cm is able

to track the outputs from the prm dynamically. Right after each step in

the inputs, marked by the black dotted lines, large changes in the outputs

occur. However, the outputs predicted by the cm coincide well with the

outputs from the prm.

In Figures 4.8 and 4.9 it can be observed that the largest changes in the

parameters occur right after each step change. This is probably due to

an increase in the difference between the outputs of the two models,

nevertheless, the modifications are relatively small. The fact that the

measurements from the models are coinciding, and that the parameters

are only experiencing minor changes, is an indication that the cm is able

to capture the dynamic behavior of the prm. Thus, the cm is a good

approximation of the prm, despite being structurally different.
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Figure 4.6 – The results of the recursive parameter estimation for the melt flow
index (mfi) and the temperature of the cooling water (cw). The blue
line is the plant replacement model (prm) while the red dashed
line correspond to the control model (cm). The black dotted lines
indicate when the each of the steps were applied.
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Figure 4.7 – The results of the recursive parameter estimation for the purge and
production rates. The blue line is the plant replacement model
(prm) while the red dashed line correspond to the control model
(cm). The black dotted lines indicate when the each of the steps
were applied.
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Figure 4.8 – The results of the recursive parameter estimation for the compress-
ibility and the heat transfer coefficient. The black dotted lines
indicate when the each of the steps were applied.
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Figure 4.9 – The results of the recursive parameter estimation for the reaction
rate corrections. The black dotted lines indicate when the each of
the steps were applied.





CHAPTER 5

NONLINEAR MODEL PREDICTIVE

CONTROL

The basic concept of mpc is to use a dynamic model to forecast

system behavior, and optimize the forecast to produce the best

decision – the control move at the current time.
— J. B. Rawlings & D. Q. Mayne, 20151

Model predictive control (mpc) is a set of control methods that obtains the

controller signals by minimizing an objective function [11]. The objective

function usually contains the future set point offsets for the controlled

variables (cvs) and the future controller moves, i.e., the increments of

the manipulated variables (mvs). The future outputs are predicted by a

1Rawlings, J. B. and Mayne, D. Q., Model Predictive Control, 5th ed. Madison, Wisconsin:
Nob Hill Publishing, 2015, isbn: 9780975937709 (print). [Online]. Available: http://
jbrwww.che.wisc.edu/home/jbraw/mpc/electronic-book.pdf (visited on May 14, 2015)
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model of the process in question, hence the term model predictive. In

this thesis, the term mpc will be used for receding horizon control (rhc);

the basic concept of rhc is to obtain the optimal inputs for the selected

horizon, but only apply the inputs at the current sample. At each sample,

the optimization problem is re-solved and a new set of inputs is applied.

Since the length of the horizon is fixed it recedes as time proceeds, which

has given this method its name [58].

The phrase nonlinear model predictive control (nmpc) is usually reserved

for applications where the process model is nonlinear, not the optimiza-

tion problem [12]. Nonlinear model predictive control has been applied

in numerous applications for processes where the nonlinear dynamics

are prominent, such as polymer production, power plant start-up, metal

refining, aluminum electrolysis and fluidized catalytic cracking [4, 12, 32,

33, 71, 72, 86]; a survey of the available industrial mpc technologies has

been performed by Qin and Badgwell [82].

In this thesis, Cybernetica’s tool for nmpc, cenit,2 has been utilized in

conjunction with their tool for simulation, RealSim. RealSim and cenit

communicate through open platform communcations (opc) server; the

setup of opc, cenit and RealSim is further explained in Appendix g. A

diagram of the control scheme is displayed in Figure 5.1. The controller

provides the inputs to the process and the model; the estimator updates

the state and the parameters of the model, based on the difference between

the measurements from the process and the measurements predicted by
2http://www.cybernetica.biz/v3/products/CENIT/index.html

http://www.cybernetica.biz/v3/products/CENIT/index.html
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Figure 5.1 – A diagram of the model predictive control (mpc) scheme. The
controller calculates the optimal sequence of future inputs by op-
timizing the response of the outputs from the model, and applies
the inputs to the process at each sample. The estimator updates the
states and the parameters of the model by utilizing the difference
between the measurements and the predicted measurements.

the model. cenit utilizes a sequential quadratic programming (sqp)

algorithm to obtain the optimal controller action at each sample, in

concurrence with an estimation technique for online state and parameter

estimation, e.g., Kalman filter (kf). The implemented control algorithm

is based on the works of Li and Biegler [59], Li, Biegler, et al. [60], and

de Oliveira and Biegler [76, 77]. In the succeeding section, a brief review

of the theory behind the principles of nmpc will be presented.

5.1 Theory

A conceptual illustration of the rhc formulation is given in Figure 5.2. The

prediction horizon gives the number of samples for which the outputs
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are predicted, while the control horizon determines the sample after

which the inputs are held constant for the remainder of the prediction

horizon, i.e., the control increments are zero beyond the control horizon.

In addition, the inputs are usually held constant for several samples to

reduce the number of optimization variables. This is known as blocking,

and this particular blocking strategy is known as input blocking; more

advanced blocking strategies have been developed (see Cagienard et al.

[10]), but input blocking is usually sufficient for most applications. The

input blocking is illustrated in Figure 5.2, in which the number of input

moves has been reduced by blocking the input move at sample number

k + 3. The snapshot of the prediction and control horizon in Figure 5.5 is

also depicting this.

The set point offsets of the outputs are included in the cost function, which

is minimized by adjusting the increments of the inputs as illustrated in

Figure 5.2. For slow or delayed outputs, the first samples after the

current sample is usually omitted, this is shown for sample number

k + 1 in Figure 5.2. This is due to the large offset after set point changes

which may lead to an overly aggressive controller [11]. Additionally, for

outputs with slow dynamics, it is not necessary to include every sample

in the cost function. This is due to the fact that the offset will be almost

identical for two neighboring samples. The subset of the samples in the

prediction horizon that is included, is known as coincidence points [82];

the coincidence points are marked with blue circles in Figure 5.2.
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Figure 5.2 – Conceptual illustration of model predictive control (mpc). z is
the controlled variable (cv) (top figure) and u is the manipulated
variable (mv) (bottom figure), while the sample number is denoted
by k. The blue circles denote where the output is weighted, and
the orange circles indicate the samples where the input is changed.
Adapted from Bemporad and Morari [5] and Findeisen, Imsland, et
al. [28].

5.1.1 Optimization formulation

The optimization problem which is solved at each sample in cenit is given

in eq. (5.1). The solution of the optimization problem is the sequence of

future inputs that yields the optimal response of the outputs [11]. The

number of sqp iterations is adjustable, and may be less than the number

required to reach convergence. However, the approximate solution at the

previous sample is employed as the starting value for the next sample,

thus the approximate solution will often become better at each sample

[83]. This is due to the fact that the optimum will probably not differ
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significantly between subsequent samples [60].

min
∆u

J (∆u)

subject to xk+j = F
(

xk+j−1, uk+j−1

)
, ∀j ∈

{
1, . . . , np

}

zk+j = h
(

xk+j, uk+j

)

umin ≤ u ≤ umax

∆umin ≤ ∆u ≤ ∆umax

zmin − ε ≤ z ≤ zmax + ε

0 ≤ ε ≤ εmax

(5.1)

∆u is a block vector3 that contains the sequence of increments for all the

mvs. The cost function, J, is presented in eq. (5.3); the first two constraints

in eq. (5.1) are the model equations, which has to be satisfied for all the

samples in the prediction horizon. k is the current sample number, while

np is the number of samples in the prediction horizon. The function

that propagates the state to the next sample, F, is defined in eq. (4.2) in

Chapter 4. The output vector, z, contains the measurements from eq. (2.69)

in addition to the outputs from eq. (2.73) from Chapter 2.

The constraints imposed on the inputs are usually physical limits, e.g.,

the feed rates must positive and less than the maximum value allowed by

the valve [62]. Constraints have also been imposed to the input moves,

∆u, to ensure that the controller does not change the inputs faster than

the physical limits of the actuators. However, tighter constraints than
3A block vector/matrix is a vector/matrix that is composed of smaller vec-

tors/matrices.
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z
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Figure 5.3 – An illustration of the slack variable that is used for the soft output
constraints. z is the output, and ε is the slack variable.

the physical limits may also be applied to increase the smoothness of the

input moves [106].

Soft constraints have been imposed on the outputs through the slack

variable, ε. The slack variable is a block vector with the all the constrained

outputs for all the coincidence points, and it is defined in eq. (5.2). An

illustration of the slack variable is given in Figure 5.3. The constraint

enforced on the slack variable, εmax, is usually set to infinity or a very

large value to avoid infeasibility, i.e., an ill-posed optimization problem

[48, 87].

εk = max (zk − zmax, zmin − zk, 0) (5.2)

The cost function implemented in cenit is given below, and it includes

four different terms. The first term is the quadratic set point offset,

which becomes smaller the closer the outputs are to the desired set point.

In order to penalize the controller moves, a quadratic cost is added to

the increments of the inputs in the second term. The last two terms

handles the soft output constraints imposed on the outputs via the slack

variables; both a quadratic and a linear cost is included to minimize the
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slack variables. The linear cost is added because it can be shown that

this may lead to the exact penalty method. In this method, the output

constraints are not violated unless no other feasible solution exists [62].

Additionally, it enables a ranking between the different constraints [77];

the exact penalty method has, however, not been considered in this thesis.

J (∆u) =
1
2

(
z? − z?sp

)ᵀ
Q
(

z? − z?sp

)
+

1
2
(∆u?)ᵀ S (∆u?)

+
1
2
(ε?)ᵀ R (ε?) + rᵀε?

(5.3)

The superscript ? is used to denote dimensionless variables. The definition

of the dimensionless variables are given in eq. (5.4). Q is the block matrix

that contain the weight of each output at each coincidence point. The

weights of all the input moves are contained in S for all the samples where

the inputs are incremented. R includes the weights for the slack variables

at each coincidence point for the quadratic constraint violation penalty,

while r contains the weight for the linear constraint violation penalty.

According to Qin and Badgwell [82], the weights are commonly constant

throughout the whole prediction horizon; the weight matrices can thus

be obtained by eq. (5.5). It is worth noting that the cost function is only

dependent on the input moves due to the fact that both the outputs and

the slack variables are implicitly given by the input moves via the model

equations.

z?k = Z−1zk (5.4a)

z?sp,k = Z−1zsp,k (5.4b)

ε?k = Z−1εk (5.4c)
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∆u?
k = U−1∆uk (5.4d)

Z and U are diagonal matrices that contain the span of each output and

input, respectively; the span of a variable is defined hereafter as the

typical range in which the variable varies. The introduction of the span

variables ensures that the outputs, slack variables and input moves are

dimensionless, and of the same order of magnitude. This makes the

tuning of the weight matrices more intuitive, because the differences in

the values of each variable has already been accounted for; the weight

matrices will then better reflect the weight of each individual variable.

The span of each of the variables is given in Section 5.1.4.

The weight matrices are

Q = Qk ⊗ Inz (5.5a)

S = Sk ⊗ Inu (5.5b)

R = Rk ⊗ Inz (5.5c)

r = rk ⊗ Inz (5.5d)

where ⊗ denotes the Kronecker product,4 while In denotes the identity

matrix5 of size n; nu is the number of input moves in the control horizon,

and nz is the number of coincidence points in the prediction horizon. The

weight matrices at sample number k are diagonal matrices that contain

the weight of each of their respective variables.

4http://mathworld.wolfram.com/KroneckerProduct.html
5http://mathworld.wolfram.com/IdentityMatrix.html

http://mathworld.wolfram.com/KroneckerProduct.html
http://mathworld.wolfram.com/IdentityMatrix.html
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Equation (5.1) describes a nonlinear optimization problem that is solved

in cenit by an sqp algorithm. This algorithm involves linearization

of the problem and sequentially solving quadratic problems [74]; the

subproblems are solved by a line-search method as described by Li and

Biegler [59]. Both the outputs and the slack variables are linearized with

respect to the input moves to yield a quadratic problem; the linearizations

are performed numerically by a central difference approximation at each

sample in the prediction horizon along the predicted trajectory. For more

details on the specific control algorithms, including constraint handling,

see Li and Biegler [59], Li, Biegler, et al. [60], and de Oliveira and Biegler

[76, 77].

5.1.2 Model predictive control of polyolefin reactors

For processes that operate over a narrow range of operating conditions,

linear mpc is usually sufficient [1]. To the contrary, processes that exhibit

highly nonlinear behavior or change operating conditions frequently, may

require nmpc for acceptable control [6]. Nonlinear model predictive

control have been applied to multiple polymerization processes by several

authors with success, see for instance [1, 6, 8, 72, 91, 93, 107].

Eliçabe and Meira [24] described the highly nonlinear dynamics in poly-

mer production processes, which stem from the mass and energy balances.

These nonlinearities are part of why nmpc have been applied to polymer-

ization reactors; most polymer grades are defined by properties such as

chain length distribution, average molecular mass, comonomer composi-
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tion and density which seldom are available for online measurement [1,

26, 65, 79]. Hence, estimation of these variables are required if they are to

be controlled.

Customers of polymers have an increasing demand for diversified prod-

ucts, hence polymer producers must be able to meet these demands

by producing several polymer grades [107]. The transition between

these grades is therefore crucial for economical operation of a polymer-

producing plant. Optimization of the grade transition problem have been

researched extensively over the last decades [16, 21, 53, 63, 85], and several

strategies for optimal grade transitions have been proposed (see Debling

et al. [21] for an overview.). This has however, not been in the scope of

this thesis; instead, the focus has been on set point tracking of the cvs.

The mvs were initially chosen as the feeds of hydrogen, monomers and

catalyst, with the inert feed as a measured disturbance and a constant

temperature set point. However, this proved to be insufficient to keep

the pressure within the desired constraints given in Section 5.1.3. To

mitigate this issue, the feed of nitrogen was also employed as an mv;

a comparison between the pressure control with and without the extra

input is presented Section 5.3.1. The inputs selected for the simulations

are summarized in Table 5.1.

Initially, the concentrations of the gas phase were controlled in addition

to the purge and production rates. The purpose of this was to test if the

nmpc was able to track set point changes of the gas concentrations. The
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Table 5.1 – The manipulated variables (mvs) and the controlled variables (cvs)
used in the simulations.

mv cv

Hydrogen feed, V̂H2,f Melt flow index, mfi
Propylene feed, V̂C3=,f Polymer composition, xpol

Ethylene feed, V̂C2=,f Purge rate, m̂pu

Catalyst feed, m̂cat,f Production rate, m̂pol

Nitrogen feed, V̂N2,f Nitrogen feed, V̂N2,f

reason for this approach is that the mvs have a more direct impact on the

gas concentrations than on the quality properties, e.g., melt flow index

(mfi), hence they are easier to control. After verifying that the controller

was able to track the set point changes of the concentrations, the cvs were

chosen to be the mfi, the polymer composition, the purge rate and the

production rate. Furthermore, with the extra input, i.e., the nitrogen feed,

an additional output was chosen, namely the nitrogen feed itself. This

creates an additional degree of freedom for the controller, and by setting

the set point of the nitrogen feed to zero, the extra degree of freedom

will only impact the dynamic responses and leave the steady-state values

unaffected. The outputs chosen for the simulations are summarized in

Table 5.1.

5.1.3 Applied constraints

Hard constraints have been imposed on the mvs and the input moves.

These constraints represent the physical limitation of the actuators, e.g.,

the flow manipulators cannot open the valves more than 100 % or less
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Table 5.2 – The hard constraints imposed on the manipulated variables (mvs). u
contain the input variables, which has constraints on their maximum
(umax) and minimum values (umin) in addition to their rate of change
(∆umax).

input maximum minimum increment
u umax umin ∆umax

Hydrogen feed, V̂H2,f 0.01 m3 s−1 0 m3 s−1 0.0001 m3 s−1

Propylene feed, V̂C3=,f 0.1 m3 s−1 0 m3 s−1 0.001 m3 s−1

Ethylene feed, V̂C2=,f 0.1 m3 s−1 0 m3 s−1 0.001 m3 s−1

Nitrogen feed, V̂N2,f 0.1 m3 s−1 4.5 · 10−6 m3 s−1 0.01 m3 s−1

Catalyst feed, m̂cat,f 0.1 kg s−1 0 kg s−1 0.001 kg s−1

Temperature set point, Tsp 90 ◦C 60 ◦C 0.5 ◦C

than 0 %. However, the constraints implemented on the temperature set

point are not physical limits, but can be considered bounds that ensure a

safe and efficient operation, i.e., to avoid runaway reactions and at the

same time achieve high conversion rates. The constraints of the inputs

chosen in the simulations are recited in Table 5.2. The constraints on the

input increments are equal for both positive and negative increments, i.e.,

|∆u| ≤ ∆umax. The minimum value of the nitrogen feed is nonzero to

model the trace amounts of inert gases present in the other feed flows.

Soft constraints have been utilized for two of the output variables, the

pressure and the temperature. These variables are controlled with pro-

portional integral (pi) controllers, however, the simple controllers were

not able to keep the cvs inside the specified limits. Both pressure control

and temperature control are essential in polyolefin production, to ensure

safe operations and correct product specifications [93, 107]. Consequently,
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Table 5.3 – The soft constraints for pressure and temperature.

variable maximum minimum

Pressure, p 25.5 bar 24.5 bar
Temperature, T 90 ◦C 60 ◦C

the constraints were imposed in order to utilize the mvs actively, to help

keep the pressure and the temperature inside their respective ranges. The

soft constraints are listed in Table 5.3.

Y. Wang et al. [107] proposed to apply limits on the instantaneous polymer

properties, because large variations in these variables may deteriorate

the overall polymer quality, i.e., the polymer resins may become layered

with polymer of highly different properties. This has however, not been

considered in this thesis.

5.1.4 Span variables

The diagonal span matrices introduced in eq. (5.4) contain the span of

each variable, i.e., the range in which the variable varies. As mentioned

earlier, these matrices are introduced to make the tuning of the weight

matrices more intuitive. By dividing each variable by their respective

span, all the variables in eq. (5.3) will be of the same order of magnitude,

hence the weight matrices will better reflect the individual weighting of

each variable. The span of each of the outputs is presented in Table 5.4,

while the span of each of the inputs is given in Table 5.5.
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Table 5.4 – The chosen span of each of the controlled variables (cvs) that make
up the span matrix in eq. (5.4), i.e., Z.

output span

Mole fraction of propylene in polymer, xpol 1 · 10−3

Melt flow index, mfi 1 · 10−2 dg min−1

Production rate, m̂pol 1 · 10−2 kg s−1

Purge rate, m̂pu 5 · 10−3 kg s−1

Temperature, T 5 · 10−1 K
Pressure, p 1 · 10−1 bar
Nitrogen feed, V̂N2,f 1 · 10−3 m3 s−1

Table 5.5 – The chosen span of each of the manipulated variables (mvs) that
make up the span matrix in eq. (5.4), i.e., U.

input span

Hydrogen feed, V̂H2,f 1 · 10−4 m3 s−1

Propylene feed, V̂C3=,f 1 · 10−3 m3 s−1

Ethylene feed, V̂C2=,f 1 · 10−3 m3 s−1

Nitrogen feed, V̂N2,f 1 · 10−3 m3 s−1

Catalyst feed, m̂cat,f 1 · 10−3 kg s−1

5.2 Tuning

The initial tuning of the controller was obtained by applying the control

model (cm) as both the process simulator and as the predictor. This

approach has the advantage that there is no mismatch between the pre-

dictions and the measurements, hence the focus can be on tuning of the

controller instead of ensuring that the predictions are sufficiently accurate.

After the initial tuning, the plant replacement model (prm) was used
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Table 5.6 – The polypropylene grades used in the simulation of the grade transi-
tions.

cv grade a grade b

Melt flow index, mfi 2.6 dg min−1 2.0 dg min−1

Polymer composition, xpol 0.85 0.9
Purge rate, m̂pu 0.01 kg s−1 0.01 kg s−1

Production rate, m̂pu 2.2 kg s−1 2.2 kg s−1

Nitrogen feed, V̂N2,f 0 0

as the process simulator, and the controller was retuned with mismatch

between the model of the controller and the model of the process simu-

lator. The final tuning parameters will be presented in the subsequent

subsections.

As previously outlined, the concentrations of the gas phase was initially

chosen as the cvs, in addition to the purge and production rates. After

verifying that the controller was able track set point changes in the gas

concentrations, the outputs were chosen as listed in Table 5.1.

The controller was tuned by simulating a grade transition between two

fictitious polypropylene (pp) grades. The specification of the two grades,

grade a and grade b, are listed in Table 5.6. Mieras and van Rijn [69]

studied a set of different polypropylene grades, and the mfis were chosen

based on their reported values. The purge rate was set to a low value to

minimize flaring, while the production rate and the polymer composition

were set to arbitrary, albeit realistic values.
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5.2.1 Prediction horizon and coincidence points

A long prediction horizon is beneficial because it will allow all the cvs to

stabilize within the horizon, even with large set point changes. However,

increasing the prediction horizon increases the computational demand,

thus choosing a very long prediction horizon may be infeasible in real-

time applications. In this thesis a prediction horizon of 540 samples, i.e.,

nine hours, was found to be a reasonable trade-off.

The coincidence points of the outputs were chosen differently based on

their dynamic responses. The pressure, temperature and the purge rate

reacted fast, compared to the mfi, polymer composition and production

rate, to any changes in the mvs. Based on this observed behavior, the

coincidence points of the fastest variables were chosen more densely near

the current sample number. The slower variables were, on the other

hand, distributed more evenly throughout the prediction horizon. The

last coincidence point of all the variables was selected as the prediction

horizon itself, in order to deter steady-state offsets. Code snippet 5.1

displays the selection of the equispaced coincidence points for each

output together with the selection of the last coincidence point.

5.2.2 Control horizon and input blocking

The control horizon was chosen to be a bit shorter than the prediction

horizon, and the parametrization of the inputs, i.e., the samples at which

the inputs are incremented, was chosen identically for all the mvs. The

selection of the input parametrization is presented in Code snippet 5.2.
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Code snippet 5.1 – The coincidence point selection for each of the controlled
variables (cvs) written in C. The matrix containing the 36
coincidence points of each output is defined on line number
2, and line numbers 3-12 fills in the 35 first points at regularly
spaced intervals. The last coincidence point is set equal to
the prediction horizon on line numbers 14-15.

1 /* Initialize the prediction matrix */
2 nrZerosIMat(Zpar, NZ, 36); // 36 coincidence points, NZ outputs
3 for (int j = 1; j <= 35; j++) // 35 first coincidence points
4 {
5 Zpar->m[i_z_T][j] = 5*j; // Temperature every 5th sample
6 Zpar->m[i_z_p][j] = 3*j; // Pressure every 3rd sample
7 Zpar->m[i_z_f_m_pu][j] = 5*j; // Purge every 3rd sample
8 Zpar->m[i_z_f_m_pol][j] = 10*j; // Production every 5th sample
9 Zpar->m[i_z_MFI][j] = 15*j; // MFI every 15th sample

10 Zpar->m[i_z_x_pol][j] = 15*j; // Polymer composition every 15th sample
11 Zpar->m[i_z_f_V_I_in][j]= 15*j; // Inert feed every 15th sample
12 }
13 /* Last coincidence for all the outputs is the prediction horizon */
14 for (int i = 1; i <= NZ; i++)
15 Zpar->[i][36] = 540; // Prediction horizon is 540 samples

Blocking of the inputs should be chosen such that the main characteristics

of the optimal trajectory of the inputs are captured with the fewest number

of increments; Figure 5.4 illustrates the parametrization of the inputs.

5.2.3 Weight matrices of the controller

The weights of the mvs and the cvs are given in Tables 5.7 and 5.8,

respectively. The weights were initially chosen as unity, and adjusted

after observing the closed-loop responses. Originally, the controller fed

too much nitrogen, but by increasing the weights of the nitrogen feed, the

amount of inert fed into the reactor was reduced. Large increments in the

catalyst feed yielded large variations in the temperature of the reactor. In
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Figure 5.4 – An illustration of the selection of the input parametrization points.
The yellow dashed line is the optimal trajectory of the input and
the red line is the optimal parametrized input. The points where
the input is incremented is select such that the discretized input is
able to capture the shape of the optimal continuous input trajectory.

Table 5.7 – The weight of each of the manipulated variables (mvs) that consti-
tutes the matrix S from eq. (5.5).

mv weight

Hydrogen feed, V̂H2,f 1
Propylene feed, V̂C3=,f 1
Ethylene feed, V̂C2=,f 1
Nitrogen feed, V̂N2,f 2
Catalyst feed, m̂cat,f 5

Table 5.8 – The weight of each of the controlled variables (cvs) that constitutes
the matrix Q from eq. (5.5).

cv weight

Melt flow index, mfi 1
Polymer composition, xpol 1
Purge rate, m̂pu 0.1
Production rate, m̂pol 0.1
Nitrogen feed, V̂N2,f 2
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Code snippet 5.2 – The parametrization for each of the manipulated variables
(mvs) written in C. Each input has the same parametrization,
and the selection of the points at which the mvs is displayed
on line numbers 3-14.

1 /* Initialize the input parametrization matrix */
2 nrZerosIMat(Upar, NU, 9); // 9 parameters for the inputs (input moves)
3 for (int i = 1; i <= NU; i++) // Loop through all the inputs
4 {
5 Upar->m[i][1] = 5; // Each input is parameterized
6 Upar->m[i][2] = 10; // with nine parameters,
7 Upar->m[i][3] = 15; // (input blocking)
8 Upar->m[i][4] = 25; // which determine the input at
9 Upar->m[i][5] = 45; // 0, 5, 10, 15, 25, 45

10 Upar->m[i][6] = 75; // 75, 135, 230 and 400
11 Upar->m[i][7] = 135; // sampling intervals into the future
12 Upar->m[i][8] = 230;
13 Upar->m[i][9] = 400;
14 }

Table 5.9 – The weight of each of the slack variables for the soft constraints that
constitutes the matrix R from eq. (5.5).

constrained variable weight

Pressure, p 1 · 106

Temperature, T 1 · 106

order to minimize these fluctuations in the temperature, the weight of the

catalyst feed was increased. To emphasize the importance of the polymer

quality outputs, i.e., mfi and polymer composition, the weights of these

cvs were set to be significantly greater than the purge and production

rates.

The weights of the slack variables for pressure and temperature are listed

in Table 5.9, and were chosen to be orders of magnitude greater than the

weights of the cvs and mvs to reduce the risk of violating the constraints.
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Figure 5.5 – A snapshot of the prediction and control horizons. The graphs on
the left depict the predictions just after a set point change from
grade b to grade a, while the graphs on the right depict the history
and the predictions 120 samples later. The top row portrays the
feed of propylene, while the bottom row displays the melt flow
index (mfi).

5.3 Results and discussion

Two sets of resulting grade transitions with the selected weights are

presented in the succeeding subsections. Firstly, the effect of utilizing the

inert feed as an input is elucidated with the cm as the process simulator,

i.e., no mismatch of the model used by the controller and the process

simulator. Secondly, the outcome of a model mismatch between the

model of the simulator and the model of the controller is presented.
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Figure 5.5 illustrates the future inputs and the predicted outputs just

after a set point change, and two hours, i.e., 120 samples, later. The

input blocking, with zeroth order hold, can be observed in the top row

which shows the feed of propylene. By inspecting the top row, the input

parametrization from Code snippet 5.2 appears to capture the shape of the

applied input; i.e., the future input obtained initially, on the left; resembles

the history of the applied input, on the right. This is an indication that

the choice of input parametrization is acceptable.

By examining the left graph on the bottom row of Figure 5.5, it is dis-

cernible that the output is able to reach the set point within the prediction

horizon. This suggests that the prediction horizon was chosen to be long

enough. The response of the output is also improving with time, which

is evident in the graph on the right where there no longer is a predicted

overshoot. With this prediction horizon and five inputs, the nmpc used

approximately two seconds on the calculations at each sample. This

corresponds to thirty times faster than real-time, suitable for an industrial

application.

Several issues present in a real pp plant have not been addressed, e.g.,

variable catalyst activity; input disturbances; impurities that cause deac-

tivation of catalyst, such as carbon monoxide; measurement noise and

delayed or offline measurements at irregularly spaced intervals. As previ-

ously mentioned, pp plants may consist of multiple reactors in series, and

the model would have to be extended to include all the reactors. These

problems would have to be resolved before implementation at a plant.
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Figure 5.6 – Polymer composition and melt flow index (mfi) with and without
inert feed as an input. The blue line and the dashed red line indicate
with and without inert, respectively. The green dotted line denotes
the set point.

5.3.1 Inert feed as an input

Figure 5.6 depicts the polymer composition and the mfi responses when

transitioning between the two grades in Table 5.6. It can be observed that

the transition is slightly faster with the nitrogen feed as an mv. This is

probably due to the fact that the controller has to increase the feed of the

other gases to keep the pressure within the desired limits, and is evident

for the feed of hydrogen in Figure 5.7a. The other gas feeds are very

similar for the two cases, and are given in Figure h.3 in Appendix h.

The total purge rate is lower with the inert feed as in input, which can

be observed in Figure 5.7b. However, the use of more inert lowers the

concentrations of the monomers, which in turn increases the demand of

catalyst. Figure 5.9b compares the catalyst feed of the two cases, and it
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Figure 5.7 – The feed of hydrogen and the purge rate with and without the feed
of inert as an input. The blue line and the dashed red line indicate
with and without inert, respectively.

is clear that more catalyst is required to keep the production rate at the

desired set point with inert as an mv.

It is worth noting that increasing the fraction of propylene in the polymer,

xpol, is considerably slower than reducing it. This can be discerned

in Figure 5.6a, and is due to the fact that ethylene polymerizes faster

than propylene, and consequently makes it quicker to incorporate more

ethylene in the polymer compared to propylene. The transition from

grade a to grade b occurs in approximately eight hours, while the opposite

transition occurs in about five hours. These differences in transition time

are important when scheduling the transitions between multiple polymer

grades.

Figure 5.8 displays the constrained outputs, pressure and temperature.

The temperature fluctuates well within its constraints, while the pressure
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Figure 5.8 – Pressure and temperature with and without inert feed as an input.
The blue line and the dashed red line indicate with and without
inert, respectively. The green dotted lines denote the set point and
the constraints.

violates its lower constraint when transitioning from grade a to grade b.

In Figure 5.8a, it can be observed that the case with the inert as an mv

recovers from the violation of the pressure constraint more rapidly than

the case without.

The rate of production and the feed of catalyst is depicted in Figure 5.9;

as previously mentioned, the case without the inert as an input requires

less catalyst which is evident in Figure 5.9b. Thus, the productivity i.e.,

the ratio between polymer production and catalyst requirement, increases

with lower amounts of inert, as expected. Figure 5.9a shows that the

production rate experiences larger spikes, both positive and negative,

when the inert feed is utilized as an mv. The larger positive spikes are

probably due to the increased catalyst feed, while the more negative spike

may be due to the lower concentration of monomers; the concentrations

are displayed in Figure h.2 in Appendix h.
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Figure 5.9 – The feed of catalyst and the production rate with and without the
feed of inert as an input. The blue line and the dashed red line
indicate with and without inert, respectively.

The feed of nitrogen for the case with the nitrogen feed as an input is

given in Figure 5.10a, while the concentration of nitrogen is displayed

in Figure 5.10b. Figure 5.10a displays the total amount of nitrogen fed

to the system during the simulation, and it as apparent that virtually

all the nitrogen is added during the transition from grade a to grade

b. The additional inert greatly impacts the concentration of the gaseous

compounds, and can be discerned in Figure 5.10b. Due to the low purge

rate, the inert stays in the system for an extended amount of time, which

results in the increased requirement of catalyst (see Figure 5.9b).

To lower the amount of catalyst used in process, the productivity from

eq. (2.79) could have been included in the optimization problem. However,

this could have caused an infeasible optimization formulation. Alterna-

tively, a decreased maximum constraint could have been imposed on the
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Figure 5.10 – The feed of nitrogen and the mole fraction of nitrogen with and
without the nitrogen feed as an input. The blue line and the
dashed red line indicate with and without inert, respectively.

nitrogen feed. A third option could have been to choose a greater weight

in Q for the feed of nitrogen. The previously mentioned alternatives,

would in all likelihood produce results that lie in between the two ap-

proaches taken in this section. Thus, the pressure control might improve

compared to the case without inert feed as an mv, and the amount of

catalyst might increase.

To achieve tighter control of pressure and temperature, the pressure

controller (pc) and temperature controller (tc) could have been replaced

by the nmpc; i.e., the pressure and the temperature could be added

as cvs with the purge rate and the cooling water temperature as mvs.

However, this would have increased the number of decision variables in

the optimization formulation, and was not considered due to the limited

time-frame of this work.
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The large spikes in the production rate, which can be observed in Fig-

ure 5.9a, could have been mitigated by imposing soft constraints on the

rate of production. Nevertheless, for the sake of simplicity, this has not

been assessed in this thesis.

5.3.2 Model mismatch

To assess whether nmpc is suitable when there exists structural differences

between the model and the plant, i.e., robust, the prm was set as the

process simulator. The cm and the prm are structurally different, e.g.,

one control volume versus four control volumes, and are thus suitable

for this assessment. The kf from Chapter 4 was utilized to minimize

the deviations between the cm and the prm. The feed of nitrogen was

included as an mv in the simulations to avoid problems with the control

of the pressure.

Figure 5.11 displays the controlled polymer quality variables for series of

grade transitions between grade a and grade b. The polymer composition

is not measured, and has thus not been included in the estimator, despite

this, the cm is able to accurately reproduce the composition calculated

by the prm. This is evident in Figure 5.11a, in which the polymer

composition calculated by the two models coincides with almost no

observable discrepancies.

The mfi is given in Figure 5.11b, and it can be observed that the over-

shoots, especially when transitioning from grade a to grade b, are greater

compared to the overshoots in Figure 5.6b. These overshoots might have
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Figure 5.11 – Polymer composition and melt flow index (mfi) with model mis-
match. The blue line and the dashed red line indicate the plant
replacement model (prm) and the control model (cm), respectively.
The green dotted line denotes the set point.

been rectified by imposing constraints on the instantaneous mfi, i.e., the

mfi of the polymer currently being produced.

The largest discrepancies between the mfi from the prm, and the estima-

tion by the cm occur at the overshoots. If less overshoot is predicted by

cm compared to the prm, the mfi of the prm will overshoot and the kf

will then adjust the parameters of the cm to minimize the model offset.

This seems to have occurred at the transitions from grade a to grade b,

and is reinforced by the fact that this coincides with the time at which the

largest variations in the reaction rate correction for hydrogen take place

(see Figure 5.12a).

Figure 5.12 demonstrates that the reaction rate corrections exhibit much

larger variations than in the open-loop simulations from Figure 4.9 in

Chapter 4. This is in all likelihood due to the fact that the transitions
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Figure 5.12 – The reaction rate corrections for hydrogen, ethylene and propylene
during the grade transitions.

occur much faster, and consequently, the parameters are prone to fluctuate

more vigorously to maintain accurate measurement estimations. However,

these fluctuations hint at model dissimilarities and the controller could

be susceptible to poor predictions. This might have been mitigated by

tuning the kf differently, e.g., lowering the standard deviation of the noise

of the parameters and increasing the variance of the noise of the process.

The pressure and the temperature are presented in Figures 5.13a and 5.13b,

respectively. The temperature of the reactor exhibits a very similar re-

sponse to the simulations without model mismatch, which can be ascer-
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Figure 5.13 – Pressure and temperature with model mismatch. The blue line
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plant replacement model (prm), respectively. The green dotted
lines denote the set point and the constraints.

tained by comparing Figures 5.8b and 5.13b. On the contrary, Figures 5.8a

and 5.13a evince quite different responses for the pressure. In the case

with no model mismatch, the controller struggles most to contain the

pressure within the constraints at the transitions from grade a to grade

b, while Figure 5.13a displays the opposite behavior, i.e., the controller

struggles most when transitioning from grade b to grade a. The reason

for this behavior is unclear, and in view of the fact that the pressure is

almost contained within the constraints, it has not been explored further.

Figure 5.13a shows minor deviations between the prm and the cm right

after initiating the transitions from grade a to grade b. This coincides well

with the largest changes in the compressibility, displayed in Figure 5.14a.

The standard deviation of the compressibility was chosen to be relatively

small, as seen in Table 4.2 in Chapter 4, and a larger variance might

have allowed the controller to reproduce the measurements with a higher
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Figure 5.14 – Compressibility and heat transfer coefficient during the grade
transitions.

degree of accuracy. In spite of that, increasing the standard deviations of

the compressibility would in all probability have induced more variations

of the compressibility, which in turn could have led to unsatisfactory

predictions. Increasing the standard deviation of the process noise via

the compressibility could have been a satisfactory compromise, but these

options have not been evaluated.

The volumetric purge and production rates are presented in Figure 5.15,

in which some minor discrepancies between the cm and the prm can

be observed. These disagreements could easily have been rectified by

including the flow of purge and production in the nmpc, i.e., setting the

purge and production rates as mvs, and the level and the pressure as cvs.

Nevertheless, if it is desirable to keep the level controller (lc) and the pc

as pi controllers, other mitigations would have to be employed, e.g., better

tuning of the kf. The flow rates are essential for achieving correct balance

equations, e.g., mole and energy, and the deviations in Figure 5.15 would
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Figure 5.16 – The mole fractions of hydrogen, propylene and ethylene. The blue
line and the dashed red line indicate the plant replacement model
(prm) and the control model (cm), respectively.

have to be mitigated in a real application. The mass based purge and

production rates are omitted for the sake of brevity, but are displayed in

Appendix h for completeness.
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The mole fractions of hydrogen, ethylene and propylene are given in Fig-

ure 5.16, in which it can be ascertained that the mole fractions estimated

by the cm coincides well with the prm. This is in all likelihood due to

two major factors; the low standard deviations of the measurements of

the mole fractions, given in Table 4.1 in Chapter 4; in addition to the fact

that the reaction scheme is identical for the two models.

If either of the models presented in this thesis were to be applied in the

control of an industrial pp reactor, one option would be to utilize the

prm as the model of the nmpc. This would require offline estimation of

several parameters of the prm, e.g., flow rate coefficients, reaction rate

corrections and heat transfer coefficient, against log data from the plant.

Additionally, a recursive estimator would have to be set up and validated;

the controller would also have to be tuned properly.

The controller was able to complete the grade transitions, despite the

structural differences. As previously mentioned, the usual way to assess

the robustness of the controller, is to vary the values of the parameters

of the simulator slightly; but by testing the controller on a structurally

different simulator, the test for robustness becomes more rigorous. These

facts substantiate the claim that the controller is robust.



CHAPTER 6

CONCLUSION

In desperation I asked Fermi whether he was not impressed by

the agreement between our calculated numbers and his

measured numbers. He replied, “How many arbitrary

parameters did you use for your calculations?” I thought for a

moment about our cut-off procedures and said, “Four.” He

said, “I remember my friend Johnny von Neumann used to say,

with four parameters I can fit an elephant, and with five I can

make him wiggle his trunk.”

— F. Dyson, 20041

The purpose of this thesis was to demonstrate the applicability and ro-

bustness of nonlinear model predictive control (nmpc), despite structural

differences between the model used by the controller and the plant, to

a polypropylene (pp) fluidized bed reactor (fbr). Due to a lack of plant
1Dyson, F., “A meeting with Enrico Fermi,” Nature, vol. 427, no. 297, 2004. doi:

10.1038/427297a
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data, two models were developed, a control model (cm) and a structurally

different plant replacement model (prm); the reason for this duality was

to substantiate the robustness of nmpc. To ensure the best possible corre-

spondence between the cm and the prm, both offline and online parameter

estimation techniques were carried out.

The controller was initially tuned by applying the cm as the model of the

controller and the process simulator, i.e., no mismatch between the model

of the controller and the simulator. In addition, the effect of utilizing the

feed of an inert, e.g., nitrogen, as a manipulated variable (mv) was studied.

Lastly, simulations were executed with the prm as the process simulator,

and a Kalman filter (kf) for online parameter estimation to demonstrate

the robustness of the controller. In both scenarios, the performance of the

controller was evaluated by simulating grade transitions between two pp

grades.

6.1 Offline estimation

Offline parameter estimation was utilized to estimate eight parameters in

cm. The fitting of the parameters was conducted by simulating a sequence

of steps in the inputs, and minimizing the offset between the cm and

the prm. The objective function was chosen as the sum of squares of the

deviation between the models at each sample, and the optimization was

carried out with a sequential quadratic programming (sqp) algorithm. A

validation of the obtained parameter set was performed by comparing
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the two models for a different sequence of inputs.

The fitting improved the agreement between the two models, and the

resulting parameters were deemed to be reasonable; the parameters

served as good initial values for the kf.

6.2 Online estimation

A second-order divided difference (dd2) kf was utilized for recursive

parameter estimation for seven of the parameters of the cm. The standard

deviation of the noise of the measurements was set to arbitrary, albeit

realistic values, while standard deviations of the noise of the process and

parameters were adjusted to tune the estimator. The kf was initially tuned

against an open-loop simulation of a sequence of input steps, and then

retuned after observing its behavior in a closed-loop grade transition.

The kf improved the correspondence between the two models further, but

there were still some minor discrepancies. These deviations could most

likely have been mitigated by fine-tuning the estimator, this was however,

not in the scope of this thesis.

6.3 Model predictive control

A Newton-type nmpc algorithm was utilized for control of the reactor,

and the optimization problem was solved using an sqp algorithm. Two

polymer quality parameters were controlled, in addition to the purge
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and production rates. To test the performance of the controller, grade

transitions between two pp grades were performed.

Two scenarios were studied, the first examined the effect of utilizing the

feed of inert as an mv, while the second considered mismatch between

the model used by the controller and the model used by the process

simulator.

6.3.1 Inert feed as an input

Simulations of the grade transitions were carried out with and without

the feed of inert as an input. The transitions occurred faster, with less use

of purge and better control of pressure, when the inert feed was utilized.

However, the use of catalyst increased considerably due to the decreased

concentration of monomers.

6.3.2 Model mismatch

The controller was able to complete the grade transitions reasonable fast

despite the mismatch between the model used for predictions, i.e., the

cm, and the prm. However, the overshoots for the melt flow index (mfi)

were found to be quite significant, and would have to be remedied in a

real application.

The recursively estimated parameters experienced larger variations in

closed-loop operations than in open-loop, especially the reaction rate cor-

rections for the two monomers. Most of the measurements were tracked
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with a high degree of accuracy, and the most conspicuous mismatches

between the two models were observed for the pressure, purge rate and

production rate. Nevertheless, the estimator performed well, but further

fine-tuning is needed mitigate the inconsistencies.

Overall, the controller and the estimator proved to be robust and were

able to cope with the model mismatch. Testing of the controller in closed-

loop with a structurally different process simulator is rarely accomplished,

but has the significant advantage that it may corroborate the robustness

of the controller before it is implemented on site.
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APPENDIX A

ADDITIONAL PARAMETERS

It is a capital mistake to theorize before one has data.

Insensibly one begins to twist facts to suit theories, instead of

theories to suit facts.
— Sherlock Holmes, 18921

a.1 Reactor design

The parameters of the reactor are given in Table a.1, including the di-

mensions of the reactor, the heat transfer coefficient and the flow rate

constants.

1Doyle, Sir. A. C., “A Scandal in Bohemia,” in The Adventures of Sherlock Holmes. 1892
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Table a.1 – Reactor design parameters.

variable value source

Reactor diameter, dr 5 m [2]

Reactor volume, Vtot 350 m3 chosen

Heat exchanger volume, Vhex 25 m3 chosen

Particle diameter, dp 500 · 10−6 m [100]

Particle sphericity, φp 1 [100]

Heat transfer coefficient, UA 60 kW K−1 chosen

Flow constant for emulsion phase, ke 2 · 10−3 m3 s−1 Pa−1 chosen

Flow constant for bubble phase, kb 5 · 10−3 m3 s−1 Pa−1 chosen

a.2 Physical parameters and constants

All the physical parameters and constants are displayed in Table a.2.

Table a.2 – Physical parameters and constants.

variable value source

Catalyst density, ρcat 2370 kg m−3 [95]

Polymer density, ρpol 910 kg m−3 [100]

AlEt3 density, ρAlEt3 832 kg m−3 [78]

Minimum fluidization void fraction, εmf 0.45 [66, 100]

Product stream void fraction, εpol 0.3 [64]

Molecular mass of H2, MH2
2.016 kg kmol−1 [41]

Molecular mass of C3=, MC3=
42.081 kg kmol−1 [41]

Continued on next page
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Table a.2 – Continued from previous page

variable value source

Molecular mass of C2=, MC2=
28.054 kg kmol−1 [41]

Molecular mass of N2, MN2
28.014 kg kmol−1 [41]

Molecular mass of AlEt3, MAlEt3
114.17 kg kmol−1 [41]

Molecular mass of Ti, MTi 47.867 kg kmol−1 [41]

Gas constant, R 8.314 · 103 J kmol−1 K−1 [42]

Heat capacity of H2, cp,H2
29.02 · 103 J kmol−1 K−1 [88]

Heat capacity of C3=, cp,C3=
71.89 · 103 J kmol−1 K−1 [88]

Heat capacity of C2=, cp,C2=
47.46 · 103 J kmol−1 K−1 [88]

Heat capacity of N2, cp,N2
29.16 · 103 J kmol−1 K−1 [88]

Heat capacity of AlEt3, cp,AlEt3
239 · 103 J kmol−1 K−1 [15]

Heat capacity of polymer, cp,pol 2.25 · 103 J kg−1 K−1 [1]

Heat capacity of catalyst, cp,cat 0.75 · 103 J kg−1 K−1 [15]

Heat of propagation of C3=, ∆rxhC3=
−1.0376 · 108 J kmol−1 [30]

Heat of propagation of C2=, ∆rxhC2=
−1.0753 · 108 J kmol−1 [30]

Gravitational acceleration, g 9.81 m s−2 [42]

Gas viscosity, µg 1.14 · 10−4 Pa s [100]

Gas diffusivity, Dg 4 · 10−7 m2 s−1 [37]

Gas conductivity, kg 0.0318 J m−1 s−1 K−1 [37]

a.3 Reaction rate constants

The reaction rate constants used in Table 2.1 in Chapter 2 is presented in

Table a.3.
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Table a.3 – Reaction rate constants for a two-site model of the

reactions in Table 2.1 in Chapter 2 [100].

variable site type 1 site type 2

Formation
[
s−1
]

kf 1 1

Initiation
[
m3 kmol−1 s−1

]

ki1 9.8 9.8

ki2 14.6 14.6

kh1 1 1

kh2 0.1 0.1

khr 20 20

Propagation
[
m3 kmol−1 s−1

]

kp11 220.477 22.047

kp12 591.1098 130.783

kp21 1.701 376.396

kp22 4.561 6.698

Transfer
[
m3 kmol−1 s−1

]

kfm11 0.006 0.006

kfm12 0.0021 0.0021

kfm21 0.006 0.006

kfm22 0.0021 0.0021

kfh1 0.088 0.37

kfh2 0.088 0.37

kfr1 0.024 0.12

kfr2 0.048 0.24

kfs1 0.0001 s−1 0.0001 s−1

kfs2 0.0001 s−1 0.0001 s−1

Deactivation
[
s−1
]

Continued on next page
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Table a.3 – Continued from previous page

variable site type 1 site type 2

kds 0.0001 0.0001

a.4 Catalyst properties

The properties of the catalyst used in the simulations are given in Ta-

ble a.4.

Table a.4 – Catalyst properties [46].

variable value

Mass fraction of titanium on catalyst, ωTi 0.02

Fraction of titanium that are potential sites, xP 0.4

Fraction of sites that are of type 1, x1
P 0.8064

Fraction of sites that are of type 2, x2
P 0.1936





APPENDIX B

IMPLEMENTATION OF THE PLANT

REPLACEMENT MODEL

Always code as if the guy who ends up maintaining your code

will be a violent psychopath who knows where you live. Code

for readability.

— J. F. Woods, 19911

b.1 Model equations

The implementation of the state derivatives is displayed in Code snip-

pet b.1.

1https://groups.google.com/d/msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
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Code snippet b.1 – The implementation of the state derivatives, model_dx.m.

1 function xdot = model_dx(~, x, u, par)
2 % Model for a polypropylene copolymerization in fluidized bed reactor.
3 % A two-phase model is employed for the reactor.
4 % 4 Control volumes:
5 % Heat exchanger tube side
6 % Emulsion phase
7 % Bubble phase
8 % Disengagement zone
9 %

10 % Abbreviations:
11 % hex Heat exchanger
12 % r Reactor
13 % fb Freeboard
14 % e Emulsion phase
15 % b Bubble phase
16 % Strategy:
17 % Calculate solid distribution
18 % Calculate flows
19 % Calculate reactions
20 % Energy calculations
21 % Apply balance equations
22 % States:
23 % n_H2_hex Moles of hydrogen in the heat exchanger
24 % n_M1_hex Moles of propene in the heat exchanger
25 % n_M2_hex Moles of ethene in the heat exchanger
26 % n_I_hex Moles of inert in the heat exchanger
27 % T_hex Temperature of the tube side in the heat exchanger
28 % n_H2_fb Moles of hydrogen in the disengagement zone
29 % n_M1_fb Moles of propene in the disengagement zone
30 % n_M2_fb Moles of ethene in the disengagement zone
31 % n_I_fb Moles of inert in the disengagement zone
32 % T_fb Temperature in the bubble phase 1
33 % n_H2_b Moles of hydrogen in the bubble phase
34 % n_M1_b Moles of propene in the bubble phase
35 % n_M2_b Moles of ethene in the bubble phase
36 % n_I_b Moles of inert in the bubble phase
37 % T_b Temperature in the bubble phase
38 % n_H2_e Moles of hydrogen in the emulsion phase
39 % n_M1_e Moles of propene in the emulsion phase
40 % n_M2_e Moles of ethene in the emulsion phase
41 % n_I_e Moles of inert in the emulsion phase
42 % T_e Temperature in the emulsion phase
43 % n_B1 Moles of propene bound in the polymer
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44 % n_B2 Moles of ethene bound in the polymer
45 % Y_0_1 0th moment of living polymer produced at site 1
46 % Y_0_2 0th moment of living polymer produced at site 2
47 % Y_1_1 1st moment of living polymer produced at site 1
48 % Y_1_2 1st moment of living polymer produced at site 2
49 % X_0 0th moment of dead polymer produced at both sites
50 % X_1 1st moment of dead polymer produced at both sites
51 % YX_2 2nd moment of living and dead polymer produced at both
52 % sites
53 % m_cat Total mass of catalyst
54 % i_e_h Integral of the level offset
55 % i_e_p Integral of the pressure offset
56 % i_e_T Integral of the temperature offset
57 % Inputs:
58 % f_V_H2_in Feed rate of hydrogen
59 % f_V_M1_in Feed rate of propene
60 % f_V_M2_in Feed rate of ethene
61 % f_V_I_in Feed rate of inert
62 % f_m_cat_in Feed rate of catalyst and cocatalyst
63 % T_s Temperature setpoint
64 % Parameters:
65 % g Gravitational acceleration
66 % V_hex Volume of heat exchanger
67 % V_t Total reactor volume
68 % A_r Cross sectional area of reactor
69 % D_r Diameter of reactor
70 % eps_mf Void fraction at minimum fluidization
71 % eps_prod Void fraction of product stream
72 % k_dp_e Pressure driven flow rate constant for emulsion phase
73 % k_dp_b Pressure driven flow rate constant for bubble phase
74 % d_p Particle diameter
75 % u_0 Superficial velocity
76 % sphericity Particle sphericity
77 % h_s Level setpoint
78 % p_s Pressure setpoint
79 % T_f Feed temperature
80 % T_ref Reference temperature
81 % Z Compressibility factor
82 % rho_cat Catalyst density
83 % rho_pol Polymer density
84 % rho_TEAL TEAL density
85 % w_TEAL Mass fraction TEAL in catalyst feed
86 % Mw_H2 Molecular mass of hydrogen
87 % Mw_M1 Molecular mass of propylene
88 % Mw_M2 Molecular mass of ethylene
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89 % Mw_I Molecular mass of inert
90 % mu_g Dynamic viscosity of the gas
91 % rho_g Density of the gas
92 % D_g Diffusivity of the gas
93 % k_g Conductivity of the gas{-1} s^{-1} K^{-1}]
94 % n_site_1 Moles of potential active site 1 per gram catalyst
95 % n_site_2 Moles of potential active site 2 per gram catalyst
96 % R Universal gas constant
97 % f_V_prod_0 Steady-state product flow
98 % f_V_purge_0 Steady-state purge flow
99 % T_cw_0 Steady-state cooling water temperature

100 % K_h Level controller gain
101 % K_p Pressure controller gain
102 % K_T Temperature controller gain
103 % tau_I_h Level controller integral time
104 % tau_I_p Pressure controller integral time
105 % tau_I_T Temperature controller integral time
106 % c_p_H2 Heat capacity of hydrogen
107 % c_p_M1 Heat capacity of propylene
108 % c_p_M2 Heat capacity of ethylene
109 % c_p_I Heat capacity of inert
110 % c_p_pol Specific heat capacity of polymer
111 % c_p_cat Specific heat capacity of catalyst
112 % c_p_TEAL Specific heat capacity of TEAL
113 % r_h_1 Heat of reaction for propylene polymerization at T_ref
114 % r_h_2 Heat of reaction for ethylene polymerization at T_ref
115 % r_cp_1 Heat capacity of reaction for propylene polymerization
116 % r_cp_2 Heat capacity of reaction for ethylene polymerization
117 %% Extractions
118 % Heat exchanger
119 n_H2_hex = x(1); % [kmol]
120 n_M1_hex = x(2); % [kmol]
121 n_M2_hex = x(3); % [kmol]
122 n_I_hex = x(4); % [kmol]
123 T_hex = x(5); % [K]
124 % Disengagement zone (freeboard/overhead)
125 n_H2_fb = x(6); % [kmol]
126 n_M1_fb = x(7); % [kmol]
127 n_M2_fb = x(8); % [kmol]
128 n_I_fb = x(9); % [kmol]
129 T_fb = x(10); % [K]
130 % Bubble phase
131 n_H2_b = x(11); % [kmol]
132 n_M1_b = x(12); % [kmol]
133 n_M2_b = x(13); % [kmol]
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134 n_I_b = x(14); % [kmol]
135 T_b = x(15); % [K]
136 % Emulsion phase
137 n_H2_e = x(16); % [kmol]
138 n_M1_e = x(17); % [kmol]
139 n_M2_e = x(18); % [kmol]
140 n_I_e = x(19); % [kmol]
141 T_e = x(20); % [K]
142 % Solids in reactor
143 n_B1 = x(21); % [kmol]
144 n_B2 = x(22); % [kmol]
145 Y_0_1 = x(23); % [kmol]
146 Y_0_2 = x(24); % [kmol]
147 Y_1_1 = x(25); % [kmol]
148 Y_1_2 = x(26); % [kmol]
149 X_0 = x(27); % [kmol]
150 X_1 = x(28); % [kmol]
151 YX_2 = x(29); % [kmol]
152 m_cat = x(30); % [kg]
153 % Integral errors for controllers
154 i_e_h = x(31); % [m s]
155 i_e_p = x(32); % [Pa s]
156 i_e_T = x(33); % [K s]
157

158 % Inputs
159 f_V_H2_in = u(1); % [m^{3} s^{-1}]
160 f_V_M1_in = u(2); % [m^{3} s^{-1}]
161 f_V_M2_in = u(3); % [m^{3} s^{-1}]
162 f_V_I_in = u(4); % [m^{3} s^{-1}]
163 f_m_cat_in = u(5); % [kg s^{-1}]
164 T_s = u(6); % [K]
165

166 % Parameters
167 % Universal constants
168 g = par.g; % [m s^{-2}]
169 % Reactor parameters
170 V_hex = par.V_hex; % [m^{3}]
171 V_t = par.V; % [m^{3}]
172 A_r = par.area_cs; % [m^{2}]
173 D_r = par.D_r; % [m]
174 eps_mf = par.eps_mf; % [-]
175 eps_prod = par.eps_prod; % [-]
176 k_dp_e = par.k_dp_e; % [m^{3} s^{-1} Pa^{-1}]
177 k_dp_b = par.k_dp_b; % [m^{3} s^{-1} Pa^{-1}]
178 p_s = par.p_s; % [Pa]
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179 h_s = par.h_s; % [m]
180 w_TEAL = par.w_TEAL; % [-]
181 d_p = par.d_p; % [m]
182 u_0 = par.u_0; % [m s^{-1}]
183 sphericity = par.sphericity; % [-]
184 n_site_1 = par.n_site_1; % [kmol kg^{-1}]
185 n_site_2 = par.n_site_2; % [kmol kg^{-1}]
186 T_f = par.T_f; % [K]
187 T_ref = par.T_ref; % [K]
188 % Molecular weights
189 Mw_H2 = par.Mw_H2; % [kg kmol^{-1}]
190 Mw_M1 = par.Mw_M1; % [kg kmol^{-1}]
191 Mw_M2 = par.Mw_M2; % [kg kmol^{-1}]
192 Mw_I = par.Mw_I; % [kg kmol^{-1}]
193 % Densities
194 rho_pol = par.rho_pol; % [kg m^{-3}]
195 rho_cat = par.rho_cat; % [kg m^{-3}]
196 rho_TEAL = par.rho_TEAL; % [kg m^{-3}]
197 % Gas parameters
198 mu_g = par.mu_g; % [Pa s]
199 rho_g = par.rho_g; % [kg m^{-3}]
200 D_g = par.D_g; % [m^{2} s^{-1}]
201 k_g = par.k_g; % [J m^{-1} s^{-1} K^{-1}]
202 % Controller parameters
203 f_V_prod_0 = par.u0_h; % [m^{3} s^{-1}]
204 K_h = par.K_h; % [m^{2} s^{-1}]
205 tau_I_h = par.tau_I_h; % [s]
206 f_V_prod_min = par.u_h_min; % [m^{3} s^{-1}]
207 f_V_prod_max = par.u_h_max; % [m^{3} s^{-1}]
208 f_V_purge_0 = par.u0_p; % [m^{3} s^{-1}]
209 K_p = par.K_p; % [m^{3} s^{-1} Pa^{-1}]
210 tau_I_p = par.tau_I_p; % [s]
211 f_V_purge_min = par.u_p_min; % [m^{3} s^{-1}]
212 f_V_purge_max = par.u_p_max; % [m^{3} s^{-1}]
213 T_cw_0 = par.u0_T; % [K]
214 K_T = par.K_T; % [-]
215 tau_I_T = par.tau_I_T; % [s]
216 T_cw_min = par.u_T_min; % [K]
217 T_cw_max = par.u_T_max; % [K]
218 % Heat capacities
219 c_p_H2 = par.c_p_H2; % [J kmol^{-1} K^{-1}]
220 c_p_M1 = par.c_p_M1; % [J kmol^{-1} K^{-1}]
221 c_p_M2 = par.c_p_M2; % [J kmol^{-1} K^{-1}]
222 c_p_I = par.c_p_I; % [J kmol^{-1} K^{-1}]
223 c_p_pol = par.c_p_pol; % [J kg^{-1} K^{-1}]
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224 c_p_cat = par.c_p_cat; % [J kg^{-1} K^{-1}]
225 c_p_TEAL= par.c_p_TEAL; % [J kg^{-1} K^{-1}]
226 % Heat of reactions
227 r_h_1 = par.r_h_1; % [J kmol^{-1}]
228 r_h_2 = par.r_h_2; % [J kmol^{-1}]
229 r_cp_1 = par.r_cp_1; % [J kmol^{-1} K^{-1}]
230 r_cp_2 = par.r_cp_2; % [J kmol^{-1} K^{-1}]
231 %% Calculation of solid distribution
232 % Mass of solids
233 m_pol = Mw_M1*n_B1 + Mw_M2*n_B2;
234 m_TEAL = w_TEAL*m_cat;
235 m_c = m_cat - m_TEAL;
236 % Volume of solids
237 V_pol = m_pol/rho_pol;
238 V_cat = m_c/rho_cat;
239 V_TEAL = m_TEAL/rho_TEAL;
240 V_s = V_pol + V_cat + V_TEAL;
241 % Average density of solids
242 rho_s = (m_pol + m_cat)/V_s;
243 % Minimum fluidization velocity
244 Ar = rho_g*(rho_s - rho_g)*g*d_p^3/mu_g^2;
245 Re_mf = sqrt(870.25 + 0.375*Ar) - 29.5;
246 u_mf = mu_g/(rho_g*d_p)*Re_mf;
247

248 eps_b = 1 - 0.146*exp(-(u_0 - u_mf)/4.439);
249 eps_e = eps_mf + 0.2 - 0.059*exp(-(u_0-u_mf)/0.429);
250 delta = 0.534*(1 - exp(-(u_0 - u_mf)/0.413));
251 % Average void fraction
252 eps_avg = delta*eps_b + (1-delta)*eps_e;
253

254 % Height of bed
255 h = V_s/((1-eps_avg)*A_r);
256 % Volume of bed
257 V_bed = h*A_r;
258 % Emulsion phase volume
259 V_e = (1 - delta)*V_bed;
260 % Bubble phase volume
261 V_b = V_bed - V_e;
262

263 % Distribution
264 [Y_0_1_e, Y_0_1_b] = distributeSolids(delta, eps_b, eps_e, Y_0_1);
265 [Y_0_2_e, Y_0_2_b] = distributeSolids(delta, eps_b, eps_e, Y_0_2);
266 [Y_1_1_e, Y_1_1_b] = distributeSolids(delta, eps_b, eps_e, Y_1_1);
267 [Y_1_2_e, Y_1_2_b] = distributeSolids(delta, eps_b, eps_e, Y_1_2);
268 [m_cat_e, m_cat_b] = distributeSolids(delta, eps_b, eps_e, m_cat);
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269 [m_pol_e, m_pol_b] = distributeSolids(delta, eps_b, eps_e, m_pol);
270 % Inflow of catalyst to each control volume
271 [f_m_cat_f_e, f_m_cat_f_b] = distributeSolids(delta, eps_b, ...
272 eps_e, f_m_cat_in);
273 % Inflow of potential sites on catalyst
274 f_n_P_1_in = f_m_cat_in*(1-w_TEAL)*n_site_1; % site 1 [kmol s^{-1}]
275 f_n_P_2_in = f_m_cat_in*(1-w_TEAL)*n_site_2; % site 2 [kmol s^{-1}]
276 [f_n_P_1_in_e, f_n_P_1_in_b] = distributeSolids(delta, eps_b, ...
277 eps_e, f_n_P_1_in);
278 [f_n_P_2_in_e, f_n_P_2_in_b] = distributeSolids(delta, eps_b, ...
279 eps_e, f_n_P_2_in);
280 %% Gas concentration and pressure calculations
281 % Gas concentrations in disengagement zone
282 V_fb = V_t - V_hex - V_bed; % Volume of disengagement zone [m^{3}]
283 [c_M1_fb, c_M2_fb, c_H2_fb, c_I_fb, c_g_fb] = getGasConc(n_M1_fb, ...
284 n_M2_fb, ...
285 n_H2_fb, ...
286 n_I_fb, ...
287 V_fb);
288 % Gas concentrations in heat exchanger
289 [c_M1_hex, c_M2_hex, c_H2_hex, c_I_hex, ...
290 c_g_hex] = getGasConc(n_M1_hex, n_M2_hex, n_H2_hex, n_I_hex, V_hex);
291

292 % Gas concentrations in emulsion phase
293 [c_M1_e, c_M2_e, c_H2_e, c_I_e, ~] = getGasConc(n_M1_e, ...
294 n_M2_e, ...
295 n_H2_e, ...
296 n_I_e, ...
297 V_e*eps_e);
298 % Gas concentrations in bubble phase
299 [c_M1_b, c_M2_b, c_H2_b, c_I_b, ~] = getGasConc(n_M1_b, ...
300 n_M2_b, ...
301 n_H2_b, ...
302 n_I_b, ...
303 V_b*eps_b);
304 % Pressure in reactor
305 [p_fb,~]= getPressure(c_H2_fb, c_M1_fb, c_M2_fb, c_I_fb, T_fb, par);
306 [p_b, ~]= getPressure(c_H2_b, c_M1_b, c_M2_b, c_I_b, T_b, par);
307 [p_e, ~]= getPressure(c_H2_e, c_M1_e, c_M2_e, c_I_e, T_e, par);
308 %% Flow calculations
309 % Outflow from heat exchanger is given by the superficial velocity
310 f_V_hex_r = u_0*A_r;
311 f_n_H2_hex_r = c_H2_hex*f_V_hex_r;
312 f_n_M1_hex_r = c_M1_hex*f_V_hex_r;
313 f_n_M2_hex_r = c_M2_hex*f_V_hex_r;
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314 f_n_I_hex_r = c_I_hex*f_V_hex_r;
315 % Gas feed into the heat exchanger
316 f_n_H2_f_hex = c_g_hex*f_V_H2_in;
317 f_n_M1_f_hex = c_g_hex*f_V_M1_in;
318 f_n_M2_f_hex = c_g_hex*f_V_M2_in;
319 f_n_I_f_hex = c_g_hex*f_V_I_in;
320 % Recycle stream is given by a stationary total mass balance for hex
321 % Total flow from heat exchanger to reactor
322 f_n_hex_r = f_n_H2_hex_r + f_n_M1_hex_r ...
323 + f_n_M2_hex_r + f_n_I_hex_r; % [kmol s^{-1}]
324 % Total flow from feed to heat exchanger
325 f_n_f_hex = f_n_H2_f_hex + f_n_M1_f_hex ...
326 + f_n_M2_f_hex + f_n_I_f_hex; % [kmol s^{-1}]
327

328 % Mole flow of recycle from disengagement zone to heat exchanger
329 f_n_fb_hex = f_n_hex_r - f_n_f_hex; % [kg s^{-1}]
330 f_V_fb_hex = f_n_fb_hex/c_g_fb; % [m^{3} s^{-1}]
331 f_n_H2_fb_hex = c_H2_fb*f_V_fb_hex; % [kmol s^{-1}]
332 f_n_M1_fb_hex = c_M1_fb*f_V_fb_hex; % [kmol s^{-1}]
333 f_n_M2_fb_hex = c_M2_fb*f_V_fb_hex; % [kmol s^{-1}]
334 f_n_I_fb_hex = c_I_fb*f_V_fb_hex; % [kmol s^{-1}]
335

336 % Calculation of reactor inlet flows
337 f_n_H2_hex_e = (1-delta)*f_n_H2_hex_r;
338 f_n_M1_hex_e = (1-delta)*f_n_M1_hex_r;
339 f_n_M2_hex_e = (1-delta)*f_n_M2_hex_r;
340 f_n_I_hex_e = (1-delta)*f_n_I_hex_r;
341 f_n_H2_hex_b = f_n_H2_hex_r - f_n_H2_hex_e;
342 f_n_M1_hex_b = f_n_M1_hex_r - f_n_M1_hex_e;
343 f_n_M2_hex_b = f_n_M2_hex_r - f_n_M2_hex_e;
344 f_n_I_hex_b = f_n_I_hex_r - f_n_I_hex_e;
345

346 % Internal reactor flow calculations, given by pressure differences
347 [f_n_H2_b_fb, f_n_M1_b_fb, ...
348 f_n_M2_b_fb, f_n_I_b_fb, ...
349 ~] = getReactorFlows(c_H2_b, c_M1_b, c_M2_b, c_I_b, p_b, ...
350 c_H2_fb, c_M1_fb, c_M2_fb, c_I_fb, p_fb, k_dp_b);
351 [f_n_H2_e_fb, f_n_M1_e_fb, ...
352 f_n_M2_e_fb, f_n_I_e_fb, ...
353 f_V_e_fb] = getReactorFlows(c_H2_e, c_M1_e, c_M2_e, ...
354 c_I_e, p_e, c_H2_fb, ...
355 c_M1_fb, c_M2_fb, ...
356 c_I_fb, p_fb, k_dp_e);
357 %% Flow controllers
358 % Pressure controller
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359 [f_V_fb_purge, e_p] = PIcontrol(p_fb, p_s, f_V_purge_0, K_p, ...
360 tau_I_p, i_e_p, ...
361 f_V_purge_min, f_V_purge_max);
362 % Purge flows
363 f_n_H2_fb_purge = c_H2_fb*f_V_fb_purge; % [kmol s^{-1}]
364 f_n_M1_fb_purge = c_M1_fb*f_V_fb_purge; % [kmol s^{-1}]
365 f_n_M2_fb_purge = c_M2_fb*f_V_fb_purge; % [kmol s^{-1}]
366 f_n_I_fb_purge = c_I_fb*f_V_fb_purge; % [kmol s^{-1}]
367 % Level controller
368 [f_V_r_prod, e_h] = PIcontrol(h, h_s, f_V_prod_0, K_h, ...
369 tau_I_h, i_e_h, ...
370 f_V_prod_min, f_V_prod_max);
371 % Emulsion gas in product stream
372 f_n_H2_e_prod = eps_prod*c_H2_e*(1-delta)*f_V_r_prod;
373 f_n_M1_e_prod = eps_prod*c_M1_e*(1-delta)*f_V_r_prod;
374 f_n_M2_e_prod = eps_prod*c_M2_e*(1-delta)*f_V_r_prod;
375 f_n_I_e_prod = eps_prod*c_I_e*(1-delta)*f_V_r_prod;
376 % Bubble gas in product stream
377 f_n_H2_b_prod = eps_prod*c_H2_b*delta*f_V_r_prod;
378 f_n_M1_b_prod = eps_prod*c_M1_b*delta*f_V_r_prod;
379 f_n_M2_b_prod = eps_prod*c_M2_b*delta*f_V_r_prod;
380 f_n_I_b_prod = eps_prod*c_I_b*delta*f_V_r_prod;
381 % Solids in product stream
382 tau_prod = V_s/f_V_r_prod; % Product flow "Time constant" [s^{-1}]
383 f_n_B1_prod = n_B1/tau_prod; % Bound C3= product flow [kmol s^{-1}]
384 f_n_B2_prod = n_B2/tau_prod; % Bound C2= product flow [kmol s^{-1}]
385 f_Y_0_1_prod= Y_0_1/tau_prod; % Y_0_1 product flow [kmol s^{-1}]
386 f_Y_0_2_prod= Y_0_2/tau_prod; % Y_0_2 product flow [kmol s^{-1}]
387 f_Y_1_1_prod= Y_1_1/tau_prod; % Y_1_1 product flow [kmol s^{-1}]
388 f_Y_1_2_prod= Y_1_2/tau_prod; % Y_1_2 product flow [kmol s^{-1}]
389 f_X_0_prod = X_0/tau_prod; % X_0 product flow [kmol s^{-1}]
390 f_X_1_prod = X_1/tau_prod; % X_1 product flow [kmol s^{-1}]
391 f_YX_2_prod = YX_2/tau_prod; % YX_2 product flow [kmol s^{-1}]
392 f_m_cat_prod= m_cat/tau_prod; % Catalyst product flow [kg s^{-1}]
393

394 % Temperature controller
395 [T_cw, e_T] = PIcontrol(T_fb, T_s, T_cw_0, K_T, tau_I_T, ...
396 i_e_T, T_cw_min, T_cw_max);
397

398 %% Hydrodynamic calculations
399 % Densities
400 rho_g_b = getGasDensity(c_H2_b, c_M1_b, c_M2_b, c_I_b, ...
401 Mw_H2, Mw_M1, Mw_M2, Mw_I);
402 % Bubble diameters
403 d_b = getBubbleDiameter(0.5*h, mu_g, rho_g_b, rho_s, g, ...
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404 d_p, sphericity, u_0, u_mf, D_r);
405 % Bubble rise velocities
406 u_br = 1.6*sqrt(g*d_b);
407 % Emulsion phase velocity as average between in and out velocities
408 u_e = 0.5*(u_0 + f_V_e_fb/((1-delta)*A_r));
409

410 % Mass transfer coefficients
411 K_be = getMassTransferCoeff(u_e, d_b, D_g, g, u_br, eps_e);
412 % Heat transfer coefficients
413 c_p_g_b = convertHeatCapacity(rho_g_b, c_H2_b, c_M1_b, c_M2_b, ...
414 c_I_b, c_p_H2, c_p_M1, c_p_M2, ...
415 c_p_I);
416 H_be = getHeatTransferCoeff(u_e, d_b, rho_g_b,...
417 c_p_g_b, k_g, g, u_br, eps_e);
418 % Molar flows between emulsion and bubble phases
419 f_n_H2_b_e = getInterfacialFlow(c_H2_e, c_H2_b, K_be, V_b);
420 f_n_M1_b_e = getInterfacialFlow(c_M1_e, c_M1_b, K_be, V_b);
421 f_n_M2_b_e = getInterfacialFlow(c_M2_e, c_M2_b, K_be, V_b);
422 f_n_I_b_e = getInterfacialFlow(c_I_e, c_I_b, K_be, V_b);
423 %% Reaction calculations
424 [r_n_H2_e, r_n_M1_e, r_n_M2_e, ...
425 r_n_B1_e, r_n_B2_e, r_Y_0_1_e, ...
426 r_Y_0_2_e, r_Y_1_1_e, r_Y_1_2_e, ...
427 r_X_0_e, r_X_1_e, r_YX_2_e] = getReactionRates(c_H2_e, c_M1_e, ...
428 c_M2_e, Y_0_1_e, ...
429 Y_0_2_e, Y_1_1_e, ...
430 Y_1_2_e, T_e, ...
431 V_s, m_cat, ...
432 tau_prod, ...
433 f_n_P_1_in_e, ...
434 f_n_P_2_in_e, par);
435 [r_n_H2_b, r_n_M1_b, r_n_M2_b, ...
436 r_n_B1_b, r_n_B2_b, r_Y_0_1_b, ...
437 r_Y_0_2_b, r_Y_1_1_b, r_Y_1_2_b, ...
438 r_X_0_b, r_X_1_b, r_YX_2_b] = getReactionRates(c_H2_b, c_M1_b, ...
439 c_M2_b, Y_0_1_b, ...
440 Y_0_2_b, Y_1_1_b, ...
441 Y_1_2_b, T_b, ...
442 V_s, ...
443 m_cat, tau_prod, ...
444 f_n_P_1_in_b, ...
445 f_n_P_2_in_b, par);
446 %% Energy calculations
447 % Heat exchanger
448 % Heat capacity of heat exchanger contents [J K^{-1}]
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449 C_p_hex = n_H2_hex*c_p_H2 + n_M1_hex*c_p_M1 ...
450 + n_M2_hex*c_p_M2 + n_I_hex*c_p_I;
451 % Heating of feed [J s^{-1}]
452 f_H_f_hex = (f_n_H2_f_hex*c_p_H2 + f_n_M1_f_hex*c_p_M1 ...
453 + f_n_M2_f_hex*c_p_M2 + f_n_I_f_hex*c_p_I) ...
454 *(T_f - T_hex);
455 % Heating of recycle [J s^{-1}]
456 f_H_fb_hex = (f_n_H2_fb_hex*c_p_H2 + f_n_M1_fb_hex*c_p_M1 ...
457 + f_n_M2_fb_hex*c_p_M2 + f_n_I_fb_hex*c_p_I) ...
458 *(T_fb - T_hex);
459

460 % Heat transfer
461 q_hex_cw = getHeatTransfer(T_hex, T_fb, T_cw, f_H_f_hex, ...
462 f_H_fb_hex, par);
463

464 % Disengagement zone
465 % Heat capacity of freeboard contents
466 C_p_fb = n_H2_fb*c_p_H2 + n_M1_fb*c_p_M1 ...
467 + n_M2_fb*c_p_M2 + n_I_fb*c_p_I;
468 % Heating of flow from bubble phase
469 f_H_b_fb = (f_n_H2_b_fb*c_p_H2 + f_n_M1_b_fb*c_p_M1 ...
470 + f_n_M2_b_fb*c_p_M2 + f_n_I_b_fb*c_p_I)*(T_b - T_fb);
471 % Heating of flow from emulsion phase
472 f_H_e_fb = (f_n_H2_e_fb*c_p_H2 + f_n_M1_e_fb*c_p_M1 ...
473 + f_n_M2_e_fb*c_p_M2 + f_n_I_e_fb*c_p_I)*(T_e - T_fb);
474

475 % Bubble phase
476 % Heat capacity of bubble phase 1 contents
477 C_p_b = n_H2_b*c_p_H2 + n_M1_b*c_p_M1 + n_M2_b*c_p_M2 ...
478 + n_I_b*c_p_I + m_pol_b*c_p_pol ...
479 + m_cat_b*((1-w_TEAL)*c_p_cat + w_TEAL*c_p_TEAL);
480 % Heating of gas from heat exchanger [J s^{-1}]
481 f_H_hex_b = (f_n_H2_hex_b*c_p_H2 + f_n_M1_hex_b*c_p_M1 ...
482 + f_n_M2_hex_b*c_p_M2 + f_n_I_hex_b*c_p_I)*(T_hex - T_b);
483 % Heating of catalyst feed [J s^{-1}]
484 f_H_f_b = f_m_cat_f_b*((1-w_TEAL)*c_p_cat + w_TEAL*c_p_TEAL) ...
485 * (T_f - T_b);
486 % Heat of reactions [J s^{-1}]
487 r_H_1_b = (r_h_1 + r_cp_1*(T_b - T_ref))*r_n_B1_b;
488 r_H_2_b = (r_h_2 + r_cp_2*(T_b - T_ref))*r_n_B2_b;
489

490 % Emulsion phase
491 % Heat capacity of emulsion phase contents
492 C_p_e = n_H2_e*c_p_H2 + n_M1_e*c_p_M1 + n_M2_e*c_p_M2 ...
493 + n_I_e*c_p_I + m_pol_e*c_p_pol ...
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494 + m_cat_e*((1-w_TEAL)*c_p_cat + w_TEAL*c_p_TEAL);
495 % Heating of gas from heat exchanger [J s^{-1}]
496 f_H_hex_e = (f_n_H2_hex_e*c_p_H2 + f_n_M1_hex_e*c_p_M1 ...
497 + f_n_M2_hex_e*c_p_M2 + f_n_I_hex_e*c_p_I)*(T_hex - T_e);
498 % Heating of gas from bubble phases
499 f_H_b_e = getInterfacialFlow(T_e, T_b, H_be, V_b);
500 % Heating of catalyst feed [J s^{-1}]
501 f_H_f_e = f_m_cat_f_e*((1-w_TEAL)*c_p_cat + w_TEAL*c_p_TEAL) ...
502 * (T_f - T_e);
503 % Heat of reactions [J s^{-1}]
504 r_H_1_e = (r_h_1 + r_cp_1*(T_e - T_ref))*r_n_B1_e;
505 r_H_2_e = (r_h_2 + r_cp_2*(T_e - T_ref))*r_n_B2_e;
506 %% Gas phase mole balances
507 % Heat exchanger
508 d_n_H2_hex = f_n_H2_fb_hex + f_n_H2_f_hex - f_n_H2_hex_r;
509 d_n_M1_hex = f_n_M1_fb_hex + f_n_M1_f_hex - f_n_M1_hex_r;
510 d_n_M2_hex = f_n_M2_fb_hex + f_n_M2_f_hex - f_n_M2_hex_r;
511 d_n_I_hex = f_n_I_fb_hex + f_n_I_f_hex - f_n_I_hex_r;
512 % Disengagement zone
513 d_n_H2_fb = f_n_H2_b_fb + f_n_H2_e_fb ...
514 - f_n_H2_fb_hex - f_n_H2_fb_purge;
515 d_n_M1_fb = f_n_M1_b_fb + f_n_M1_e_fb ...
516 - f_n_M1_fb_hex - f_n_M1_fb_purge;
517 d_n_M2_fb = f_n_M2_b_fb + f_n_M2_e_fb ...
518 - f_n_M2_fb_hex - f_n_M2_fb_purge;
519 d_n_I_fb = f_n_I_b_fb + f_n_I_e_fb ...
520 - f_n_I_fb_hex - f_n_I_fb_purge;
521 % Bubble phase
522 d_n_H2_b = f_n_H2_hex_b - f_n_H2_b_e - f_n_H2_b_fb ...
523 - f_n_H2_b_prod + r_n_H2_b;
524 d_n_M1_b = f_n_M1_hex_b - f_n_M1_b_e - f_n_M1_b_fb ...
525 - f_n_M1_b_prod + r_n_M1_b;
526 d_n_M2_b = f_n_M2_hex_b - f_n_M2_b_e - f_n_M2_b_fb ...
527 - f_n_M2_b_prod + r_n_M2_b;
528 d_n_I_b = f_n_I_hex_b - f_n_I_b_e - f_n_I_b_fb - f_n_I_b_prod;
529 % Emulsion phase
530 d_n_H2_e = f_n_H2_hex_e + f_n_H2_b_e - f_n_H2_e_fb ...
531 - f_n_H2_e_prod + r_n_H2_e;
532 d_n_M1_e = f_n_M1_hex_e + f_n_M1_b_e - f_n_M1_e_fb ...
533 - f_n_M1_e_prod + r_n_M1_e;
534 d_n_M2_e = f_n_M2_hex_e + f_n_M2_b_e - f_n_M2_e_fb ...
535 - f_n_M2_e_prod + r_n_M2_e;
536 d_n_I_e = f_n_I_hex_e + f_n_I_b_e - f_n_I_e_fb - f_n_I_e_prod;
537 %% Energy balances
538 % Heat exchanger
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539 d_T_hex = (f_H_fb_hex + f_H_f_hex - q_hex_cw)/C_p_hex;
540 % Disengagement zone
541 d_T_fb = (f_H_b_fb + f_H_e_fb)/C_p_fb;
542 % Bubble phase 1
543 d_T_b = (f_H_f_b + f_H_hex_b - r_H_1_b - r_H_2_b)/C_p_b;
544 % Bubble phase 2
545 % Emulsion phase
546 d_T_e = (f_H_f_e + f_H_hex_e + f_H_b_e - r_H_1_e - r_H_2_e)/C_p_e;
547 %% Solid balances
548 % Catalyst mass balance
549 d_m_cat = f_m_cat_in - f_m_cat_prod;
550 % Bound monomers balance
551 d_n_B1 = r_n_B1_b + r_n_B1_e - f_n_B1_prod;
552 d_n_B2 = r_n_B2_b + r_n_B2_e - f_n_B2_prod;
553 % Moments equations
554 d_Y_0_1 = r_Y_0_1_b + r_Y_0_1_e - f_Y_0_1_prod;
555 d_Y_0_2 = r_Y_0_2_b + r_Y_0_2_e - f_Y_0_2_prod;
556 d_Y_1_1 = r_Y_1_1_b + r_Y_1_1_e - f_Y_1_1_prod;
557 d_Y_1_2 = r_Y_1_2_b + r_Y_1_2_e - f_Y_1_2_prod;
558 d_X_0 = r_X_0_b + r_X_0_e - f_X_0_prod;
559 d_X_1 = r_X_1_b + r_X_1_e - f_X_1_prod;
560 d_YX_2 = r_YX_2_b + r_YX_2_e - f_YX_2_prod;
561 %% Insertions
562 xdot = zeros(size(x));
563 % Heat exchanger
564 xdot(1) = d_n_H2_hex;
565 xdot(2) = d_n_M1_hex;
566 xdot(3) = d_n_M2_hex;
567 xdot(4) = d_n_I_hex;
568 xdot(5) = d_T_hex;
569 % Disengagement zone
570 xdot(6) = d_n_H2_fb;
571 xdot(7) = d_n_M1_fb;
572 xdot(8) = d_n_M2_fb;
573 xdot(9) = d_n_I_fb;
574 xdot(10)= d_T_fb;
575 % Bubble phase
576 xdot(11) = d_n_H2_b;
577 xdot(12) = d_n_M1_b;
578 xdot(13) = d_n_M2_b;
579 xdot(14) = d_n_I_b;
580 xdot(15) = d_T_b;
581 % Emulsion phase
582 xdot(16) = d_n_H2_e;
583 xdot(17) = d_n_M1_e;
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584 xdot(18) = d_n_M2_e;
585 xdot(19) = d_n_I_e;
586 xdot(20) = d_T_e;
587 % Solids
588 xdot(21) = d_n_B1;
589 xdot(22) = d_n_B2;
590 xdot(23) = d_Y_0_1;
591 xdot(24) = d_Y_0_2;
592 xdot(25) = d_Y_1_1;
593 xdot(26) = d_Y_1_2;
594 xdot(27) = d_X_0;
595 xdot(28) = d_X_1;
596 xdot(29) = d_YX_2;
597 xdot(30) = d_m_cat;
598 % Integral errors
599 xdot(31) = e_h;
600 xdot(32) = e_p;
601 xdot(33) = e_T;
602 end

The implementation of the measurements is presented in Code snippet b.2.

Code snippet b.2 – The implementation of the measurements, model_y.m.

1 function y = model_y(x, u, par)
2 %% Measurements
3 % States:
4 % n_H2_hex Moles of hydrogen in the heat exchanger
5 % n_M1_hex Moles of propene in the heat exchanger
6 % n_M2_hex Moles of ethene in the heat exchanger
7 % n_I_hex Moles of inert in the heat exchanger
8 % T_hex Temperature of the tube side in the heat exchanger
9 % n_H2_fb Moles of hydrogen in the disengagement zone

10 % n_M1_fb Moles of propene in the disengagement zone
11 % n_M2_fb Moles of ethene in the disengagement zone
12 % n_I_fb Moles of inert in the disengagement zone
13 % T_fb Temperature in the bubble phase 1
14 % n_H2_b Moles of hydrogen in the bubble phase
15 % n_M1_b Moles of propene in the bubble phase
16 % n_M2_b Moles of ethene in the bubble phase
17 % n_I_b Moles of inert in the bubble phase
18 % T_b Temperature in the bubble phase
19 % n_H2_e Moles of hydrogen in the emulsion phase
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20 % n_M1_e Moles of propene in the emulsion phase
21 % n_M2_e Moles of ethene in the emulsion phase
22 % n_I_e Moles of inert in the emulsion phase
23 % T_e Temperature in the emulsion phase
24 % n_B1 Moles of propene bound in the polymer
25 % n_B2 Moles of ethene bound in the polymer
26 % Y_0_1 0th moment of living polymer produced at site 1
27 % Y_0_2 0th moment of living polymer produced at site 2
28 % Y_1_1 1st moment of living polymer produced at site 1
29 % Y_1_2 1st moment of living polymer produced at site 2
30 % X_0 0th moment of dead polymer produced at both sites
31 % X_1 1st moment of dead polymer produced at both sites
32 % YX_2 2nd moment of living and dead polymer produced at both
33 % sites
34 % m_cat Total mass of catalyst
35 % i_e_h Integral of the level offset
36 % i_e_p Integral of the pressure offset
37 % i_e_T Integral of the temperature offset
38 % Inputs:
39 % f_V_H2_in Feed rate of hydrogen
40 % f_V_M1_in Feed rate of propene
41 % f_V_M2_in Feed rate of ethene
42 % f_V_I_in Feed rate of inert
43 % f_m_cat_in Feed rate of catalyst and cocatalyst
44 % T_s Temperature setpoint
45 % Parameters:
46 % g Gravitational acceleration
47 % V_hex Volume of heat exchanger
48 % V_t Total reactor volume
49 % A_r Cross sectional area of reactor
50 % D_r Diameter of reactor
51 % eps_mf Void fraction at minimum fluidization
52 % eps_prod Void fraction of product stream
53 % k_dp_e Pressure driven flow rate constant for emulsion phase
54 % k_dp_b Pressure driven flow rate constant for bubble phase
55 % d_p Particle diameter
56 % u_0 Superficial velocity
57 % sphericity Particle sphericity
58 % h_s Level setpoint
59 % p_s Pressure setpoint
60 % T_f Feed temperature
61 % T_ref Reference temperature
62 % rho_cat Catalyst density
63 % rho_pol Polymer density
64 % rho_TEAL TEAL density
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65 % w_TEAL Mass fraction TEAL in catalyst feed
66 % Mw_M1 Molecular mass of propylene
67 % Mw_M2 Molecular mass of ethylene
68 % mu_g Dynamic viscosity of the gas
69 % rho_g Density of the gas
70 % f_V_prod_0 Steady-state product flow
71 % f_V_purge_0 Steady-state purge flow
72 % T_cw_0 Steady-state cooling water temperature
73 % K_h Level controller gain
74 % K_p Pressure controller gain
75 % K_T Temperature controller gain
76 % tau_I_h Level controller integral time
77 % tau_I_p Pressure controller integral time
78 % tau_I_T Temperature controller integral time
79 % Measurements:
80 % x_H2_fb Mole fraction of hydrogen in the disengagement zone
81 % x_M1_fb Mole fraction of propylene in the disengagement zone
82 % x_M2_fb Mole fraction of ethylene in the disengagement zone
83 % x_I_fb Mole fraction of nitrogen in the disengagement zone
84 % p_fb Pressure in the disengagement zone
85 % h Level
86 % T_fb Temperature in the disengagement zone
87 % f_V_purge Purge rate
88 % f_V_prod Product rate
89 % T_cw Cooling water temperature
90 % MI Melt index
91 %% Extractions
92 % Disengagement zone (freeboard/overhead)
93 n_H2_fb = x(6); % [kmol]
94 n_M1_fb = x(7); % [kmol]
95 n_M2_fb = x(8); % [kmol]
96 n_I_fb = x(9); % [kmol]
97 T_fb = x(10); % [K]
98 % Solids in reactor
99 n_B1 = x(21); % [kmol]

100 n_B2 = x(22); % [kmol]
101 Y_1_1 = x(25); % [kmol]
102 Y_1_2 = x(26); % [kmol]
103 X_1 = x(28); % [kmol]
104 YX_2 = x(29); % [kmol]
105 m_cat = x(30); % [kg]
106 % Integral errors for controllers
107 i_e_h = x(31); % [m s]
108 i_e_p = x(32); % [Pa s]
109 i_e_T = x(33); % [K s]
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110

111 % Inputs
112 T_s = u(6); % [K]
113

114 % Parameters
115 % Universal constants
116 g = par.g; % [m s^{-2}]
117 % Reactor parameters
118 V_hex = par.V_hex; % [m^{3}]
119 V_t = par.V; % [m^{3}]
120 A_r = par.area_cs; % [m^{2}]
121 eps_mf = par.eps_mf; % [-]
122 p_s = par.p_s; % [Pa]
123 h_s = par.h_s; % [m]
124 w_TEAL = par.w_TEAL; % [-]
125 d_p = par.d_p; % [m]
126 u_0 = par.u_0; % [m s^{-1}]
127 % Molecular weights
128 Mw_M1 = par.Mw_M1; % [kg kmol^{-1}]
129 Mw_M2 = par.Mw_M2; % [kg kmol^{-1}]
130 % Densities
131 rho_pol = par.rho_pol; % [kg m^{-3}]
132 rho_cat = par.rho_cat; % [kg m^{-3}]
133 rho_TEAL = par.rho_TEAL; % [kg m^{-3}]
134 % Gas parameters
135 mu_g = par.mu_g; % [Pa s]
136 rho_g = par.rho_g; % [kg m^{-3}]
137 % Controller parameters
138 f_V_prod_0 = par.u0_h; % [m^{3} s^{-1}]
139 K_h = par.K_h; % [m^{2} s^{-1}]
140 tau_I_h = par.tau_I_h; % [s]
141 f_V_prod_min = par.u_h_min; % [m^{3} s^{-1}]
142 f_V_prod_max = par.u_h_max; % [m^{3} s^{-1}]
143 f_V_purge_0 = par.u0_p; % [m^{3} s^{-1}]
144 K_p = par.K_p; % [m^{3} s^{-1} Pa^{-1}]
145 tau_I_p = par.tau_I_p; % [s]
146 f_V_purge_min = par.u_p_min; % [m^{3} s^{-1}]
147 f_V_purge_max = par.u_p_max; % [m^{3} s^{-1}]
148 T_cw_0 = par.u0_T; % [K]
149 K_T = par.K_T; % [-]
150 tau_I_T = par.tau_I_T; % [s]
151 T_cw_min = par.u_T_min; % [K]
152 T_cw_max = par.u_T_max; % [K]
153 %% Calculation of solid distribution
154 % Mass of solids
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155 m_pol = Mw_M1*n_B1 + Mw_M2*n_B2;
156 m_TEAL = w_TEAL*m_cat;
157 m_c = m_cat - m_TEAL;
158 % Volume of solids
159 V_pol = m_pol/rho_pol;
160 V_cat = m_c/rho_cat;
161 V_TEAL = m_TEAL/rho_TEAL;
162 V_s = V_pol + V_cat + V_TEAL;
163 % Average density of solids
164 rho_s = (m_pol + m_cat)/V_s;
165 % Minimum fluidization velocity
166 Ar = rho_g*(rho_s - rho_g)*g*d_p^3/mu_g^2;
167 Re_mf = sqrt(870.25 + 0.375*Ar) - 29.5;
168 u_mf = mu_g/(rho_g*d_p)*Re_mf;
169

170 eps_b = 1 - 0.146*exp(-(u_0 - u_mf)/4.439);
171 eps_e = eps_mf + 0.2 - 0.059*exp(-(u_0-u_mf)/0.429);
172 delta = 0.534*(1 - exp(-(u_0 - u_mf)/0.413));
173 % Average void fraction
174 eps_avg = delta*eps_b + (1-delta)*eps_e;
175

176 % Height of bed
177 h = V_s/((1-eps_avg)*A_r);
178 % Volume of bed
179 V_bed = h*A_r;
180

181 %% Gas concentration and pressure calculations
182 % Gas concentrations in disengagement zone
183 V_fb = V_t - V_hex - V_bed; % Volume of disengagement zone [m^{3}]
184 [c_M1_fb, c_M2_fb, c_H2_fb, c_I_fb, c_g_fb] = getGasConc(n_M1_fb, ...
185 n_M2_fb, ...
186 n_H2_fb, ...
187 n_I_fb, ...
188 V_fb);
189 [x_M1_fb, x_M2_fb, x_H2_fb, ~, ~] = getGasConc(c_M1_fb, ...
190 c_M2_fb, ...
191 c_H2_fb, ...
192 c_I_fb, ...
193 c_g_fb);
194

195 % Pressure in disengagement zone
196 [p_fb, ~] = getPressure(c_H2_fb, c_M1_fb, c_M2_fb, ...
197 c_I_fb, T_fb, par);
198

199
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200 %% Controllers
201 % Pressure controller
202 [f_V_purge, ~] = PIcontrol(p_fb, p_s, f_V_purge_0, K_p, tau_I_p, ...
203 i_e_p, f_V_purge_min, f_V_purge_max);
204 % Level controller
205 [f_V_prod, ~] = PIcontrol(h, h_s, f_V_prod_0, K_h, tau_I_h, ...
206 i_e_h, f_V_prod_min, f_V_prod_max);
207 % Temperature controller
208 [T_cw, ~] = PIcontrol(T_fb, T_s, T_cw_0, K_T, tau_I_T, ...
209 i_e_T, T_cw_min, T_cw_max);
210

211 % Molecular masses
212 % Average monomer molecular weight
213 Mw_M = (Mw_M1*n_B1 + Mw_M2*n_B2)/(n_B1 + n_B2); % [kg kmol^{-1}]
214 % Mass average polymer molecular weight
215 Mw_w = Mw_M*(YX_2/(X_1 + Y_1_1 + Y_1_2)); % [kg kmol^{-1}]
216

217 MI = 3.3542e17*Mw_w^-3.472; % Melt index [dg / min]
218 %% Insertions
219 y = zeros(10,1);
220 y(1) = x_H2_fb;
221 y(2) = x_M1_fb;
222 y(3) = x_M2_fb;
223 y(4) = p_fb;
224 y(5) = h;
225 y(6) = T_fb;
226 y(7) = f_V_purge;
227 y(8) = f_V_prod;
228 y(9) = T_cw;
229 y(10) = MI;
230 end

b.2 Integration of the model equations

To demonstrate how the model equations can be integrated in Matlab, a

sample script has been provided in Code snippet b.3.



b.2. Integration of the model equations 149

Code snippet b.3 – The main script for integrating the model equations, main.m.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Name : main
3 % Function : Sample main script to integrate the models in Matlab
4 % Method : ode15s (backwards difference)
5 % Author : Kasper J. Linnestad
6 % Modified : 25.5.2015
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8

9 [x0, u0, par, y0, z0]= init_model(); % Initialize
10 n_y = length(y0); % Number of measurements
11 n_z = length(z0); % Number of outputs
12 [x0, y0, z0, par] = steady_state(x0, u0, par, 5e6);% Obtain steady-state
13

14 % Apply step in hydrogen feed
15 u = u0;
16 u(1)= 1.1*u0(1);
17 % Integrate for 24 hours
18 [t, x] = ode15s(@(t,x) model_dx(t, x, u, par), [0, 24*3600], x0)
19 % Calculate measurements and outputs
20 [y, z] = calculate_y_z(t, x, u, par, n_y, n_z);

The initialization of the plant replacement model (prm) is shown in Code

snippet b.4.

Code snippet b.4 – The function that returns the initial values for the plant

replacement model (prm), init_model.m.

1 function [x0, u0, par, y0, z0] = init_model(u0)
2 cwd = cd;
3 cd('../matlab_well-mixed');
4 if nargin < 1
5 [x0, u0, par, ~, ~] = init_model;
6 else
7 [x0, ~, par, ~, ~] = init_model;
8 end
9 [x_ss, ~, ~, ~] = steady_state(x0, u0, par, 1e10);

10 cd(cwd);
11 par = init_par(par);
12 x0 = init_x(x_ss, par);
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13 y0 = model_y(x0, u0, par);
14 z0 = model_z(x0, u0, y0, par);
15 cd(cwd);
16 end
17

18 function par = init_par(par)
19 par.g = 9.81; % Gravitational acceleration [m s^{-2}]
20 par.V_hex = 25; % Heat exchanger volume [m^{3}]
21 par.D_r = 5; % Reactor radius [m]
22 par.k_dp_e = 2e-4; % "Valve const" [m^{3} s^{-1} Pa^{-1}]
23 par.k_dp_b = 1e-4; % "Valve const" [m^{3} s^{-1} Pa^{-1}]
24 par.d_p = 1000e-6; % Particle diameter [m]
25 par.sphericity = 1; % Particle sphericity [-]
26 par.mu_g = 1.14e-4; % Gas viscosity [Pa s]
27 par.rho_g = 45; % Gas density
28 par.D_g = 4e-7; % Gas diffusivity [m^{2} s^{-1}]
29 par.k_g = 0.0318; % Gas conductivity [J m^{-1}s^{-1}K^{-1}]
30 par.UA = 80000; % Heat exchanger coefficient [W K^{-1}]
31 par.u_0 = 0.57; % Superficial gas velocity
32 % Redlich-Kwong parameters
33 par.a_H2 = par.R^2*33.15^(5/2)/(9*(2^(1/3)-1)*1.2964e6);
34 par.a_M1 = par.R^2*364.9^(5/2)/(9*(2^(1/3)-1)*4.59e6);
35 par.a_M2 = par.R^2*282.35^(5/2)/(9*(2^(1/3)-1)*5.06e6);
36 par.a_I = par.R^2*126.192^(5/2)/(9*(2^(1/3)-1)*3.39e6);
37 par.b_H2 = (2^(1/3)-1)*par.R*33.15/(3*1.2964e6);
38 par.b_M1 = (2^(1/3)-1)*par.R*364.9/(3*4.59e6);
39 par.b_M2 = (2^(1/3)-1)*par.R*282.35/(3*5.06e6);
40 par.b_I = (2^(1/3)-1)*par.R*126.192/(3*3.39e6);
41 par.chi_H2 = 1.0;
42 par.chi_M1_1 = 1.0;
43 par.chi_M1_2 = 1.0;
44 par.chi_M2_1 = 1.0;
45 par.chi_M2_2 = 1.0;
46 end
47

48 function x = init_x(x0, par)
49 % Extract states from well-mixed model
50 n_H2 = x0(1);
51 n_M1 = x0(2);
52 n_M2 = x0(3);
53 n_I = x0(4);
54 n_B1 = x0(5);
55 n_B2 = x0(6);
56 Y_0_1 = x0(7);
57 Y_0_2 = x0(8);
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58 Y_1_1 = x0(9);
59 Y_1_2 = x0(10);
60 X_0 = x0(11);
61 X_1 = x0(12);
62 YX_2 = x0(13);
63 m_cat = x0(14);
64 T = x0(15);
65 % Calculate volumes
66 V_hex = par.V_hex; % Heat exchanger volume
67 V_t = par.V; % Total volume
68 V_bed = par.area_cs*par.h_s; % Bed volume
69 V_fb = V_t - V_hex - V_bed; % Freeboard volume
70 delta = 0.33; % Bubble phase fraction
71 V_e = (1-delta)*V_bed; % Emulsion phase volume
72 V_b = delta*V_bed; % Bubble phases volume
73 w_hex = 1.35*V_hex/V_t; % Heat exchanger fraction
74 % (adjusted for correct pressure)
75 w_fb = V_fb/V_t; % Freeboard fraction
76 w_e = V_e/V_t; % Emulsion phase fraction
77 w_b = V_b/V_t; % Bubble phase fraction
78 % Heat exchanger
79 n_H2_hex = n_H2*w_hex;
80 n_M1_hex = n_M1*w_hex;
81 n_M2_hex = n_M2*w_hex;
82 n_I_hex = n_I*w_hex;
83 T_hex = T;
84 % Disengagement zone (freeboard/overhead)
85 n_H2_fb = n_H2*w_fb;
86 n_M1_fb = n_M1*w_fb;
87 n_M2_fb = n_M2*w_fb;
88 n_I_fb = n_I*w_fb;
89 T_fb = T;
90 % Bubble phase
91 n_H2_b = n_H2*w_b;
92 n_M1_b = n_M1*w_b;
93 n_M2_b = n_M2*w_b;
94 n_I_b = n_I*w_b;
95 T_b = T;
96 % Emulsion phase
97 n_H2_e = n_H2*w_e;
98 n_M1_e = n_M1*w_e;
99 n_M2_e = n_M2*w_e;

100 n_I_e = n_I*w_e;
101 T_e = T;
102 x = zeros(33,1);
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103 % Heat exchanger
104 x(1) = n_H2_hex;
105 x(2) = n_M1_hex;
106 x(3) = n_M2_hex;
107 x(4) = n_I_hex;
108 x(5) = T_hex;
109 % Disengagement zone
110 x(6) = n_H2_fb;
111 x(7) = n_M1_fb;
112 x(8) = n_M2_fb;
113 x(9) = n_I_fb;
114 x(10)= T_fb;
115 % Bubble phase
116 x(11) = n_H2_b;
117 x(12) = n_M1_b;
118 x(13) = n_M2_b;
119 x(14) = n_I_b;
120 x(15) = T_b;
121 % Emulsion phase
122 x(16) = n_H2_e;
123 x(17) = n_M1_e;
124 x(18) = n_M2_e;
125 x(19) = n_I_e;
126 x(20) = T_e;
127 % Solids
128 x(21) = n_B1;
129 x(22) = n_B2;
130 x(23) = Y_0_1;
131 x(24) = Y_0_2;
132 x(25) = Y_1_1;
133 x(26) = Y_1_2;
134 x(27) = X_0;
135 x(28) = X_1;
136 x(29) = YX_2;
137 x(30) = m_cat;
138 % Integral errors
139 x(31) = 0;
140 x(32) = 0;
141 x(33) = 0;
142 end
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b.3 Runge-Kutta implementation

The implementation of the fourth-order Runge-Kutte integration scheme

is presented in Code snippet b.5.

Code snippet b.5 – The implementation of a fourth-order Runge-Kutta integra-

tion scheme [56], ode4.C.

1 /**************************************************************************
2 * Name : model_x_rk4
3 * Function : Integration of the state vector
4 * Method : Runge-Kutta 4th order method
5 * Author : Kasper J. Linnestad
6 * Modified : 28.4.2015
7 **************************************************************************/
8

9 int model_x_rk4 // Out: Error code (0 = OK!)
10 (
11 double *xs, // Out: New state
12 double *xs_old, // In: Old state
13 double *par, // In: Parameter vector
14 double *con, // In: Constant vector
15 double *u, // In: Process inputs
16 double *dcalcvar, // In: Internal variable calculated by model
17 int *icalcvar, // In: Internal variable calculated by model
18 double dt // In: Sampling time
19 )
20 {
21 int i, n, k, r = 0;
22 double dxs1[NS], dxs2[NS], dxs3[NS], dxs4[NS];
23 double xs_tmp[NS];
24 double dtn;
25 n = (int) ceil(dt/DT_INT);
26 dtn = dt/n;
27 for (i = 0; i < NS; i++)
28 xs[i] = xs_old[i];
29 for (k = 0; k < n; k++)
30 {
31 if (!r)
32 r = model_dx
33 (
34 dxs1,
35 xs,



154 Implementation of the plant replacement model

36 par,
37 con,
38 u,
39 dcalcvar,
40 icalcvar,
41 dtn
42 );
43 for (i = 0; i < NS; i++)
44 xs_tmp[i] = xs[i] + dxs1[i] * dtn / 2.0;
45 if (!r)
46 r = model_dx
47 (
48 dxs2,
49 xs_tmp,
50 par,
51 con,
52 u,
53 dcalcvar,
54 icalcvar,
55 dtn
56 );
57 for (i = 0; i < NS; i++)
58 xs_tmp[i] = xs[i] + dxs2[i] * dtn / 2.0;
59 if (!r)
60 r = model_dx
61 (
62 dxs3,
63 xs_tmp,
64 par,
65 con,
66 u,
67 dcalcvar,
68 icalcvar,
69 dtn
70 );
71 for (i = 0; i < NS; i++)
72 xs_tmp[i] = xs[i] + dxs3[i] * dtn;
73 if (!r)
74 r = model_dx
75 (
76 dxs4,
77 xs_tmp,
78 par,
79 con,
80 u,
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81 dcalcvar,
82 icalcvar,
83 dtn
84 );
85 for (i = 0; i < NS; i++)
86 xs[i] += (dxs1[i] + 2.0*dxs2[i] + 2.0*dxs3[i] + dxs4[i])
87 * dtn / 6.0;
88 }
89 return r;
90 }





APPENDIX C

IMPLEMENTATION OF THE

CONTROL MODEL

Everyone knows that debugging is twice as hard as writing a

program in the first place. So if you’re as clever as you can be

when you write it, how will you ever debug it?

— B. W. Kernighan & P. J. Plauger, 19781

c.1 Model equations

The implementation of the state derivatives is displayed in Code snip-

pet c.1.

1Kernighan, B. W. and Plauger, P. J., The Elements of Programming Style. 1978

157
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Code snippet c.1 – The implementation of the state derivatives, model_dx.m.

1 function xdot = model_dx(~, x, u, par)
2 %% Model for a fluidized bed polypropylene reactor
3 % The pseudo steady-state assumption (PSSA) is used for the moles of
4 % potential active sites, uninitiated sites produced by monomers and
5 % uninitiated sites produced by H2 transfer, n_P, n_0 and n_H
6 % respectively.
7 % States:
8 % n_H2 Moles of hydrogen
9 % n_M1 Moles of propylene (C3=, monomer 1)

10 % n_M2 Moles of ethylene (C2=, monomer 2)
11 % n_I Moles of inert (N2)
12 % n_B1 Moles of reacted propylene bound in the polymer
13 % n_B2 Moles of reacted ethylene bound in the polymer
14 % Y_0_1 0th moment of chain length distribution for living polymer
15 % produced at site 1
16 % Y_0_2 0th moment of chain length distribution for living polymer
17 % produced at site 2
18 % Y_1_1 1st moment of chain length distribution for living polymer
19 % produced at site 1
20 % Y_1_2 1st moment of chain length distribution for living polymer
21 % produced at site 2
22 % X_0 0th moment of chain length distribution for dead polymer
23 % produced at site 1 and 2
24 % X_1 1st moment of chain length distribution for dead polymer
25 % produced at site 1 and 2
26 % YX_2 2nd moment of chain length distribution for living and
27 % dead polymer produced at site 1 and 2
28 % m_cat Mass of catalyst and cocatalyst
29 % T Reactor temperature
30 % i_e_h Integral of the setpoint error in the level
31 % i_e_p Integral of the setpoint error in the pressure
32 % i_e_T Integral of the setpoint error in the temperature
33 % Inputs:
34 % f_V_H2_in Hydrogen feed
35 % f_V_M1_in Propylene feed
36 % f_V_M2_in Ethylene feed
37 % f_V_I_in Inert feed
38 % f_m_cat_in Catalyst feed
39 % Parameters:
40 % h_s Level setpoint
41 % p_s Pressure setpoint
42 % T_f Feed temperature
43 % T_ref Reference temperature
44 % Z Compressibility factor
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45 % rho_cat Catalyst density
46 % rho_pol Polymer density
47 % rho_TEAL TEAL density
48 % eps_avg Average void fraction
49 % eps_prod Void fraction of product stream
50 % area_cs Cross sectional area
51 % w_TEAL Mass fraction TEAL in catalyst feed
52 % Mw_M1 Molecular mass of propylene
53 % Mw_M2 Molecular mass of ethylene
54 % n_site_1 Moles of potential active site 1 per gram catalyst
55 % n_site_2 Moles of potential active site 2 per gram catalyst
56 % V Volume
57 % R Universal gas constant
58 % UA Heat transfer coefficient times heat transfer area
59 % f_V_prod_0 Steady-state product flow
60 % f_V_purge_0 Steady-state purge flow
61 % T_cw_0 Steady-state cooling water temperature
62 % K_h Level controller gain
63 % K_p Pressure controller gain
64 % K_T Temperature controller gain
65 % tau_I_h Level controller integral time
66 % tau_I_p Pressure controller integral time
67 % tau_I_T Temperature controller integral time
68 % c_p_H2 Heat capacity of hydrogen
69 % c_p_M1 Heat capacity of propylene
70 % c_p_M2 Heat capacity of ethylene
71 % c_p_I Heat capacity of inert
72 % c_p_pol Specific heat capacity of polymer
73 % c_p_cat Specific heat capacity of catalyst
74 % c_p_TEAL Specific heat capacity of TEAL
75 % r_h_1 Heat of reaction for propylene polymerization at T_ref
76 % r_h_2 Heat of reaction for ethylene polymerization at T_ref
77 % r_cp_1 Heat capacity of reaction for propylene polymerization
78 % r_cp_2 Heat capacity of reaction for ethylene polymerization
79 %% Extractions
80 % States
81 n_H2 = x(1); % [kmol]
82 n_M1 = x(2); % [kmol]
83 n_M2 = x(3); % [kmol]
84 n_I = x(4); % [kmol]
85 n_B1 = x(5); % [kmol]
86 n_B2 = x(6); % [kmol]
87 Y_0_1 = x(7); % [kmol]
88 Y_0_2 = x(8); % [kmol]
89 Y_1_1 = x(9); % [kmol]
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90 Y_1_2 = x(10); % [kmol]
91 X_0 = x(11); % [kmol]
92 X_1 = x(12); % [kmol]
93 YX_2 = x(13); % [kmol]
94 m_cat = x(14); % [kg]
95 T = x(15); % [K]
96 i_e_h = x(16); % [m s]
97 i_e_p = x(17); % [Pa s]
98 i_e_T = x(18); % [K s]
99

100 % Inputs:
101 f_V_H2_in = u(1); % [m^{3} s^{-1}]
102 f_V_M1_in = u(2); % [m^{3} s^{-1}]
103 f_V_M2_in = u(3); % [m^{3} s^{-1}]
104 f_V_I_in = u(4); % [m^{3} s^{-1}]
105 f_m_cat_in = u(5); % [kg s^{-1}]
106 T_s = u(6); % [K]
107

108 % Parameters
109 % General
110 h_s = par.h_s; % [m]
111 p_s = par.p_s; % [Pa]
112 T_f = par.T_f; % [K]
113 T_ref = par.T_ref; % [K]
114 Z = par.Z; % [-]
115 rho_cat = par.rho_cat; % [kg m^{-3}]
116 rho_pol = par.rho_pol; % [kg m^{-3}]
117 rho_TEAL = par.rho_TEAL; % [kg m^{-3}]
118 eps_avg = par.eps_avg; % [-]
119 eps_prod = par.eps_prod; % [-]
120 area_cs = par.area_cs; % [m^{2}]
121 w_TEAL = par.w_TEAL; % [-]
122 Mw_M1 = par.Mw_M1; % [kg kmol^{-1}]
123 Mw_M2 = par.Mw_M2; % [kg kmol^{-1}]
124 n_site_1 = par.n_site_1; % [kmol kg^{-1}]
125 n_site_2 = par.n_site_2; % [kmol kg^{-1}]
126 V = par.V; % [m^{3}]
127 R = par.R; % [kJ kmol^{-1} K^{-1}]
128 UA = par.UA_wm; % [W K^{-1}]
129

130 % Controllers
131 f_V_prod_0 = par.u0_h; % [m^{3} s^{-1}]
132 K_h = par.K_h; % [m^{2} s^{-1}]
133 tau_I_h = par.tau_I_h; % [s]
134 f_V_prod_min = par.u_h_min; % [m^{3} s^{-1}]
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135 f_V_prod_max = par.u_h_max; % [m^{3} s^{-1}]
136 f_V_purge_0 = par.u0_p; % [m^{3} s^{-1}]
137 K_p = par.K_p; % [m^{3} s^{-1} Pa^{-1}]
138 tau_I_p = par.tau_I_p; % [s]
139 f_V_purge_min = par.u_p_min; % [m^{3} s^{-1}]
140 f_V_purge_max = par.u_p_max; % [m^{3} s^{-1}]
141 T_cw_0 = par.u0_T; % [K]
142 K_T = par.K_T; % [-]
143 tau_I_T = par.tau_I_T; % [s]
144 T_cw_min = par.u_T_min; % [K]
145 T_cw_max = par.u_T_max; % [K]
146

147 % Heat capacities
148 c_p_H2 = par.c_p_H2; % [J kmol^{-1} K^{-1}]
149 c_p_M1 = par.c_p_M1; % [J kmol^{-1} K^{-1}]
150 c_p_M2 = par.c_p_M2; % [J kmol^{-1} K^{-1}]
151 c_p_I = par.c_p_I; % [J kmol^{-1} K^{-1}]
152 c_p_pol = par.c_p_pol; % [J kg^{-1} K^{-1}]
153 c_p_cat = par.c_p_cat; % [J kg^{-1} K^{-1}]
154 c_p_TEAL= par.c_p_TEAL; % [J kg^{-1} K^{-1}]
155

156 % Heat of reactions
157 r_h_1 = par.r_h_1; % [J kmol^{-1}]
158 r_h_2 = par.r_h_2; % [J kmol^{-1}]
159 r_cp_1 = par.r_cp_1; % [J kmol^{-1} K^{-1}]
160 r_cp_2 = par.r_cp_2; % [J kmol^{-1} K^{-1}]
161

162 %% Calculations
163 % Outflow of polymer product is controlled by a PI level controller
164 m_pol = Mw_M1*n_B1 + Mw_M2*n_B2; % Polymer mass [kg]
165 V_s = m_pol/rho_pol ... % Solid volume [m^{3}]
166 + m_cat*((1-w_TEAL)/rho_cat + w_TEAL/rho_TEAL);
167 h = V_s/((1 - eps_avg)*area_cs); % Level [m]
168 % Level controller
169 [f_V_prod, e_h] = PIcontrol(h, h_s, f_V_prod_0, K_h, ...
170 tau_I_h, i_e_h, ...
171 f_V_prod_min, f_V_prod_max);
172 % Gas concentrations [kmol m^{-3}]
173 [c_M1, c_M2, c_H2, c_I, c_g] = getGasConc(n_M1, n_M2, n_H2, ...
174 n_I, V - V_s);
175

176 % Inflow of potential sites on catalyst
177 f_n_P_1_in = f_m_cat_in*(1-w_TEAL)*n_site_1; % site 1 [kmol s^{-1}]
178 f_n_P_2_in = f_m_cat_in*(1-w_TEAL)*n_site_2; % site 2 [kmol s^{-1}]
179 % Inflow of gases
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180 f_n_H2_in = c_g*f_V_H2_in; % H2 [kmol s^{-1}]
181 f_n_M1_in = c_g*f_V_M1_in; % C3= [kmol s^{-1}]
182 f_n_M2_in = c_g*f_V_M2_in; % C2= [kmol s^{-1}]
183 f_n_I_in = c_g*f_V_I_in; % I [kmol s^{-1}]
184

185 % Gas in product flow
186 f_n_M1_prod = eps_prod*c_M1*f_V_prod; % C3= product flow [kmol s^{-1}]
187 f_n_M2_prod = eps_prod*c_M2*f_V_prod; % C2= product flow [kmol s^{-1}]
188 f_n_H2_prod = eps_prod*c_H2*f_V_prod; % H2 product flow [kmol s^{-1}]
189 f_n_I_prod = eps_prod*c_I*f_V_prod;% Inert product flow [kmol s^{-1}]
190

191 % Solids in product flow
192 tau_prod = V_s/f_V_prod;% Product flow "Time constant" [s^{-1}]
193 f_n_B1_prod = n_B1/tau_prod;% Bound C3= product flow [kmol s^{-1}]
194 f_n_B2_prod = n_B2/tau_prod;% Bound C2= product flow [kmol s^{-1}]
195 f_Y_0_1_prod = Y_0_1/tau_prod; % Y_0_1 product flow [kmol s^{-1}]
196 f_Y_0_2_prod = Y_0_2/tau_prod; % Y_0_2 product flow [kmol s^{-1}]
197 f_Y_1_1_prod = Y_1_1/tau_prod; % Y_1_1 product flow [kmol s^{-1}]
198 f_Y_1_2_prod = Y_1_2/tau_prod; % Y_1_2 product flow [kmol s^{-1}]
199 f_X_0_prod = X_0/tau_prod; % X_0 product flow [kmol s^{-1}]
200 f_X_1_prod = X_1/tau_prod; % X_1 product flow [kmol s^{-1}]
201 f_YX_2_prod = YX_2/tau_prod; % YX_2 product flow [kmol s^{-1}]
202 f_m_cat_prod = m_cat/tau_prod; % Catalyst product flow [kg s^{-1}]
203

204 % Purge is controlled by a PI pressure controller
205 p = Z*c_g*R*T; % Pressure [Pa]
206 [f_V_purge, e_p] = PIcontrol(p, p_s, f_V_purge_0, K_p, ...
207 tau_I_p, i_e_p, ...
208 f_V_purge_min, f_V_purge_max);
209 f_n_H2_purge = c_H2*f_V_purge; % H2 purge [kmol s^{-1}]
210 f_n_M1_purge = c_M1*f_V_purge; % C3= purge [kmol s^{-1}]
211 f_n_M2_purge = c_M2*f_V_purge; % C2= purge [kmol s^{-1}]
212 f_n_I_purge = c_I*f_V_purge; % Inert purge [kmol s^{-1}]
213

214 %% Reaction rates
215 [r_n_H2, r_n_M1, r_n_M2, ...
216 r_n_B1, r_n_B2, r_Y_0_1, ...
217 r_Y_0_2, r_Y_1_1, r_Y_1_2, ...
218 r_X_0, r_X_1, r_YX_2] = getReactionRates(c_H2, c_M1, ...
219 c_M2, Y_0_1, ...
220 Y_0_2, Y_1_1, ...
221 Y_1_2, T, ...
222 V_s, ...
223 m_cat, tau_prod, ...
224 f_n_P_1_in, ...
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225 f_n_P_2_in, par);
226

227 % Temperature control
228 [T_cw, e_T] = PIcontrol(T, T_s, T_cw_0, K_T, tau_I_T, ...
229 i_e_T, T_cw_min, T_cw_max);
230 q = UA*(T_cw - T); % Heat transfer [J s^{-1}]
231 % Energy balance
232 % Heat capacity of reactor contents [J K^{-1}]
233 C_p = n_H2*c_p_H2 + n_M1*c_p_M1 + n_M2*c_p_M2 + n_I*c_p_I ...
234 + m_pol*c_p_pol ...
235 + m_cat*((1-w_TEAL)*c_p_cat + w_TEAL*c_p_TEAL);
236 % Heating of feed [J s^{-1}]
237 f_H_in = (f_n_H2_in*c_p_H2 + f_n_M1_in*c_p_M1 + f_n_M2_in*c_p_M2 ...
238 + f_n_I_in*c_p_I ...
239 + f_m_cat_in*((1-w_TEAL)*c_p_cat + w_TEAL*c_p_TEAL))...
240 *(T_f - T);
241 % Heat of reactions [J s^{-1}]
242 r_H_1 = (r_h_1 + r_cp_1*(T - T_ref))*r_n_B1;
243 r_H_2 = (r_h_2 + r_cp_2*(T - T_ref))*r_n_B2;
244 %% Derivatives
245 % Mole balances for gases (reaction in emulsion phase only)
246 d_n_H2 = f_n_H2_in - f_n_H2_purge - f_n_H2_prod + r_n_H2;
247 d_n_M1 = f_n_M1_in - f_n_M1_purge - f_n_M1_prod + r_n_M1;
248 d_n_M2 = f_n_M2_in - f_n_M2_purge - f_n_M2_prod + r_n_M2;
249 d_n_I = f_n_I_in - f_n_I_purge - f_n_I_prod;
250 % Mole balances for bound monomer
251 d_n_B1 = -f_n_B1_prod + r_n_B1;
252 d_n_B2 = -f_n_B2_prod + r_n_B2;
253 % Mass balance for catalyst and cocatalyst
254 d_m_cat = f_m_cat_in - f_m_cat_prod;
255 % Distribution balances
256 d_Y_0_1 = -f_Y_0_1_prod + r_Y_0_1;
257 d_Y_0_2 = -f_Y_0_2_prod + r_Y_0_2;
258 d_Y_1_1 = -f_Y_1_1_prod + r_Y_1_1;
259 d_Y_1_2 = -f_Y_1_2_prod + r_Y_1_2;
260 d_X_0 = -f_X_0_prod + r_X_0;
261 d_X_1 = -f_X_1_prod + r_X_1;
262 d_YX_2 = -f_YX_2_prod + r_YX_2;
263 % Energy balance
264 d_T = (f_H_in - r_H_1 - r_H_2 + q)/C_p;
265 %% Insertions
266 xdot = zeros(size(x));
267 xdot(1) = d_n_H2;
268 xdot(2) = d_n_M1;
269 xdot(3) = d_n_M2;
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270 xdot(4) = d_n_I;
271 xdot(5) = d_n_B1;
272 xdot(6) = d_n_B2;
273 xdot(7) = d_Y_0_1;
274 xdot(8) = d_Y_0_2;
275 xdot(9) = d_Y_1_1;
276 xdot(10) = d_Y_1_2;
277 xdot(11) = d_X_0;
278 xdot(12) = d_X_1;
279 xdot(13) = d_YX_2;
280 xdot(14) = d_m_cat;
281 xdot(15) = d_T;
282 xdot(16) = e_h;
283 xdot(17) = e_p;
284 xdot(18) = e_T;
285 end

The implementation of the measurements is presented in Code snip-

pet c.2.

Code snippet c.2 – The implementation of the measurements, model_y.m.

1 function y = model_y(x, u, par)
2 %% Measurement estimation
3 % States:
4 % n_H2 Moles of hydrogen
5 % n_M1 Moles of propylene (C3=, monomer 1)
6 % n_M2 Moles of ethylene (C2=, monomer 2)
7 % n_I Moles of inert (N2)
8 % n_B1 Moles of reacted propylene bound in the polymer
9 % n_B2 Moles of reacted ethylene bound in the polymer

10 % Y_1_1 1st moment of chain length distribution for living polymer
11 % produced at site 1
12 % Y_1_2 1st moment of chain length distribution for living polymer
13 % produced at site 2
14 % X_1 1st moment of chain length distribution for dead polymer
15 % produced at site 1 and 2
16 % YX_2 2nd moment of chain length distribution for living and
17 % dead polymer produced at site 1 and 2
18 % m_cat Mass of catalyst and cocatalyst
19 % T Temperature
20 % i_e_h Integral of the setpoint error in the level



c.1. Model equations 165

21 % i_e_p Integral of the setpoint error in the pressure
22 % i_e_T Integral of the setpoint error in the temperature
23 % Inputs:
24 % T_s Temperature setpoint
25 % Parameters:
26 % h_s Level setpoint
27 % p_s Pressure setpoint
28 % Z Compressibility factor
29 % rho_cat Catalyst density
30 % rho_pol Polymer density
31 % rho_TEAL TEAL density
32 % eps_avg Average void fraction
33 % area_cs Cross sectional area
34 % w_TEAL Mass fraction TEAL in catalyst feed
35 % Mw_M1 Molecular mass of propylene
36 % Mw_M2 Molecular mass of ethylene
37 % V Volume
38 % R Universal gas constant
39 % f_V_prod_0 Steady-state product flow
40 % f_V_purge_0 Steady-state purge flow
41 % T_cw_0 Steady-state cooling water temperature
42 % K_h Level controller gain
43 % K_p Pressure controller gain
44 % K_T Temperature controller gain
45 % tau_I_h Level controller integral time
46 % tau_I_p Pressure controller integral time
47 % tau_I_T Temperature controller integral time
48 % Measurements:
49 % x_H2 Mole fractions of hydrogen
50 % x_M1 Mole fractions of propylene
51 % x_M2 Mole fractions of ethylene
52 % x_I Mole fractions of nitrogen
53 % p Pressure
54 % h Level
55 % T Temperature
56 % f_V_purge Purge rate
57 % f_V_prod Product rate
58 % T_cw Cooling water temperature
59 % MI Melt index
60 %% Extractions
61 % States
62 n_H2 = x(1); % [kmol]
63 n_M1 = x(2); % [kmol]
64 n_M2 = x(3); % [kmol]
65 n_I = x(4); % [kmol]
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66 n_B1 = x(5); % [kmol]
67 n_B2 = x(6); % [kmol]
68 Y_1_1 = x(9); % [kmol]
69 Y_1_2 = x(10); % [kmol]
70 X_1 = x(12); % [kmol]
71 YX_2 = x(13); % [kmol]
72 m_cat = x(14); % [kg]
73 T = x(15); % [K]
74 i_e_h = x(16); % [m s]
75 i_e_p = x(17); % [Pa s]
76 i_e_T = x(18); % [K s]
77

78 % Inputs
79 T_s = u(6); % [K]
80

81 % Parameters
82 h_s = par.h_s; % [m]
83 p_s = par.p_s; % [Pa]
84 Z = par.Z; % [-]
85 rho_cat = par.rho_cat; % [kg m^{-3}]
86 rho_pol = par.rho_pol; % [kg m^{-3}]
87 rho_TEAL = par.rho_TEAL; % [kg m^{-3}]
88 eps_avg = par.eps_avg; % [-]
89 area_cs = par.area_cs; % [m^{2}]
90 w_TEAL = par.w_TEAL; % [-]
91 Mw_M1 = par.Mw_M1; % [kg kmol^{-1}]
92 Mw_M2 = par.Mw_M2; % [kg kmol^{-1}]
93 V = par.V; % [m^{3}]
94 R = par.R; % [kJ kmol^{-1} K^{-1}]
95 % Controller settings
96 f_V_prod_0 = par.u0_h; % [m^{3} s^{-1}]
97 K_h = par.K_h; % [m^{2} s^{-1}]
98 tau_I_h = par.tau_I_h; % [s]
99 f_V_prod_min = par.u_h_min; % [m^{3} s^{-1}]

100 f_V_prod_max = par.u_h_max; % [m^{3} s^{-1}]
101 f_V_purge_0 = par.u0_p; % [m^{3} s^{-1}]
102 K_p = par.K_p; % [m^{3} s^{-1} Pa^{-1}]
103 tau_I_p = par.tau_I_p; % [s]
104 f_V_purge_min = par.u_p_min; % [m^{3} s^{-1}]
105 f_V_purge_max = par.u_p_max; % [m^{3} s^{-1}]
106 T_cw_0 = par.u0_T; % [K]
107 K_T = par.K_T; % [-]
108 tau_I_T = par.tau_I_T; % [s]
109 T_cw_min = par.u_T_min; % [K]
110 T_cw_max = par.u_T_max; % [K]
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111 %% Calculations
112 % Level
113 m_pol = Mw_M1*n_B1 + Mw_M2*n_B2; % Polymer mass [kg]
114 V_s = m_pol/rho_pol ... % Solid volume [m^{3}]
115 + m_cat*((1-w_TEAL)/rho_cat + w_TEAL/rho_TEAL);
116 h = V_s/((1 - eps_avg)*area_cs); % Level [m]
117 % Level controller
118 [f_V_prod, ~] = PIcontrol(h, h_s, f_V_prod_0, K_h, ...
119 tau_I_h, i_e_h, f_V_prod_min, f_V_prod_max);
120

121 % Gas concentrations [kmol m^{-3}]
122 [c_M1, c_M2, c_H2, c_I, c_g] = getGasConc(n_M1, n_M2, n_H2, n_I, ...
123 V - V_s);
124 % Mole fractions
125 x_H2 = c_H2/c_g;
126 x_M1 = c_M1/c_g;
127 x_M2 = c_M2/c_g;
128 x_I = c_I/c_g;
129

130 % Pressure [Pa]
131 p = Z*c_g*R*T;
132 [f_V_purge, ~] = PIcontrol(p, p_s, f_V_purge_0, K_p, ...
133 tau_I_p, i_e_p, ...
134 f_V_purge_min, f_V_purge_max);
135

136 % Temperature
137 [T_cw, ~] = PIcontrol(T, T_s, T_cw_0, K_T, tau_I_T, ...
138 i_e_T, T_cw_min, T_cw_max);
139

140 % Average monomer molecular weight in polymer
141 Mw_M = (Mw_M1*n_B1 + Mw_M2*n_B2)/(n_B1 + n_B2); % [kg kmol^{-1}]
142 % Mass average polymer molecular weight
143 Mw_w = Mw_M*(YX_2/(X_1 + Y_1_1 + Y_1_2)); % [kg kmol^{-1}]
144 MI = 3.3542e17*Mw_w^-3.472; % Melt index[dg / min]
145 %% Insertions
146 y = zeros(10,1);
147 y(1) = x_H2; % [-]
148 y(2) = x_M1; % [-]
149 y(3) = x_M2; % [-]
150 y(4) = p; % [Pa]
151 y(5) = h; % [m]
152 y(6) = T; % [K]
153 y(7) = f_V_purge; % [m^{3} s^{-1}]
154 y(8) = f_V_prod; % [m^{3} s^{-1}]
155 y(9) = T_cw; % [K]
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156 y(10) = MI; % [g / 10 min]
157 end

The implementation of the derived outputs is presented in Code snip-

pet c.3.

Code snippet c.3 – The implementation of the derived outputs, model_z.m.

1 function z = model_z(x, ~, ~, par)
2 %% Measurement estimation
3 % States:
4 % n_H2 Moles of hydrogen
5 % n_M1 Moles of propylene (C3=, monomer 1)
6 % n_M2 Moles of ethylene (C2=, monomer 2)
7 % n_I Moles of inert (N2)
8 % n_B1 Moles of reacted propylene bound in the polymer
9 % n_B2 Moles of reacted ethylene bound in the polymer

10 % Y_1_1 1st moment of chain length distribution for living polymer
11 % produced at site 1
12 % Y_1_2 1st moment of chain length distribution for living polymer
13 % produced at site 2
14 % X_1 1st moment of chain length distribution for dead polymer
15 % produced at site 1 and 2
16 % YX_2 2nd moment of chain length distribution for living and
17 % dead polymer produced at site 1 and 2
18 % m_cat Mass of catalyst and cocatalyst
19 % T Temperature
20 % i_e_h Integral of the setpoint error in the level
21 % i_e_p Integral of the setpoint error in the pressure
22 % i_e_T Integral of the setpoint error in the temperature
23 % Inputs:
24 % T_s Temperature setpoint
25 % Parameters:
26 % h_s Level setpoint
27 % p_s Pressure setpoint
28 % Z Compressibility factor
29 % rho_cat Catalyst density
30 % rho_pol Polymer density
31 % rho_TEAL TEAL density
32 % eps_avg Average void fraction
33 % area_cs Cross sectional area
34 % w_TEAL Mass fraction TEAL in catalyst feed
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35 % Mw_M1 Molecular mass of propylene
36 % Mw_M2 Molecular mass of ethylene
37 % V Volume
38 % R Universal gas constant
39 % f_V_prod_0 Steady-state product flow
40 % f_V_purge_0 Steady-state purge flow
41 % T_cw_0 Steady-state cooling water temperature
42 % K_h Level controller gain
43 % K_p Pressure controller gain
44 % K_T Temperature controller gain
45 % tau_I_h Level controller integral time
46 % tau_I_p Pressure controller integral time
47 % tau_I_T Temperature controller integral time
48 % Measurements:
49 % x_H2 Mole fractions of hydrogen
50 % x_M1 Mole fractions of propylene
51 % x_M2 Mole fractions of ethylene
52 % x_I Mole fractions of nitrogen
53 % p Pressure
54 % h Level
55 % T Temperature
56 % f_V_purge Purge rate
57 % f_V_prod Product rate
58 % T_cw Cooling water temperature
59 % MI Melt index
60 %% Extractions
61 % States
62 n_H2 = x(1); % [kmol]
63 n_M1 = x(2); % [kmol]
64 n_M2 = x(3); % [kmol]
65 n_I = x(4); % [kmol]
66 n_B1 = x(5); % [kmol]
67 n_B2 = x(6); % [kmol]
68 Y_0_1 = x(7); % [kmol]
69 Y_0_2 = x(8); % [kmol]
70 Y_1_1 = x(9); % [kmol]
71 Y_1_2 = x(10); % [kmol]
72 X_0 = x(11); % [kmol]
73 X_1 = x(12); % [kmol]
74 YX_2 = x(13); % [kmol]
75 m_cat = x(14); % [kg]
76 T = x(15); % [K]
77 i_e_h = x(16); % [m s]
78 i_e_p = x(17); % [Pa s]
79
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80 % Parameters
81 h_s = par.h_s; % [m]
82 p_s = par.p_s; % [Pa]
83 Z = par.Z; % [-]
84 rho_cat = par.rho_cat; % [kg m^{-3}]
85 rho_pol = par.rho_pol; % [kg m^{-3}]
86 rho_TEAL = par.rho_TEAL; % [kg m^{-3}]
87 eps_avg = par.eps_avg; % [-]
88 area_cs = par.area_cs; % [m^{2}]
89 w_TEAL = par.w_TEAL; % [-]
90 Mw_M1 = par.Mw_M1; % [kg kmol^{-1}]
91 Mw_M2 = par.Mw_M2; % [kg kmol^{-1}]
92 Mw_H2 = par.Mw_H2; % [kg kmol^{-1}]
93 Mw_I = par.Mw_I; % [kg kmol^{-1}]
94 V = par.V; % [m^{3}]
95 R = par.R; % [kJ kmol^{-1} K^{-1}]
96 % Controller settings
97 f_V_prod_0 = par.u0_h; % [m^{3} s^{-1}]
98 K_h = par.K_h; % [m^{2} s^{-1}]
99 tau_I_h = par.tau_I_h; % [s]

100 f_V_prod_min = par.u_h_min; % [m^{3} s^{-1}]
101 f_V_prod_max = par.u_h_max; % [m^{3} s^{-1}]
102 f_V_purge_0 = par.u0_p; % [m^{3} s^{-1}]
103 K_p = par.K_p; % [m^{3} s^{-1} Pa^{-1}]
104 tau_I_p = par.tau_I_p; % [s]
105 f_V_purge_min = par.u_p_min; % [m^{3} s^{-1}]
106 f_V_purge_max = par.u_p_max; % [m^{3} s^{-1}]
107 %% Calculations
108 % Level
109 m_pol = Mw_M1*n_B1 + Mw_M2*n_B2; % Polymer mass [kg]
110 V_s = m_pol/rho_pol ... % Solid volume [m^{3}]
111 + m_cat*((1-w_TEAL)/rho_cat + w_TEAL/rho_TEAL);
112 h = V_s/((1 - eps_avg)*area_cs); % Level [m]
113 % Level controller
114 [f_V_prod, ~] = PIcontrol(h, h_s, f_V_prod_0, K_h, ...
115 tau_I_h, i_e_h, ...
116 f_V_prod_min, f_V_prod_max);
117 f_m_pol = m_pol*f_V_prod/V_s;
118 % Purge rate
119 [c_M1, c_M2, c_H2, c_I, c_g] = getGasConc(n_M1, n_M2, n_H2, n_I, ...
120 V - V_s);
121 p = Z*c_g*R*T;
122 [f_V_purge, ~] = PIcontrol(p, p_s, f_V_purge_0, K_p, ...
123 tau_I_p, i_e_p, ...
124 f_V_purge_min, f_V_purge_max);
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125 rho_gas = c_H2*Mw_H2 + c_M1*Mw_M1 + c_M2*Mw_M2 + c_I*Mw_I;
126 f_m_pu = rho_gas*f_V_purge;
127

128 % Polymer properties
129 x_pol= n_B1/(n_B1 + n_B2);
130 Mw_M = x_pol*Mw_M1 + (1-x_pol)*Mw_M2; % [kg kmol^{-1}]
131 Mw_w = Mw_M*(YX_2/(X_1 + Y_1_1 + Y_1_2)); % [kg kmol^{-1}]
132 Mw_n = Mw_M*((X_1 + Y_1_1 + Y_1_2)/(X_0 + Y_0_1 + Y_0_2));
133 PDI = Mw_w/Mw_n;
134

135 prod = m_pol/((1-w_TEAL)*m_cat*0.02);
136 %% Insertions
137 z = zeros(6,1);
138 z(1) = PDI; % [-]
139 z(2) = Mw_w; % [kg kmol^{-1}]
140 z(3) = x_pol; % [-]
141 z(4) = f_m_pol; % [kg s^{-1}]
142 z(5) = f_m_pu; % [kg s^{-1}]
143 z(6) = prod; % [-]
144 end

c.2 Integration of the model equations

The main script is identical for the control model (cm) and the plant re-

placement model (prm), it is displayed in Code snippet b.3 in Appendix b.

The initialization of the model is provided in Code snippet c.4.

Code snippet c.4 – The function that returns the initial values for the control

model, init_model.m.

1 function [x0, u0, par, y0, z0] = init_model()
2 par = init_par;
3 [x0, u0] = init_x_u(par);
4 y0 = model_y(x0, u0, par);
5 z0 = model_z(x0, u0, y0, par);
6 end
7

8 function [x0, u0] = init_x_u(par)
9 x0 = zeros(18,1);

10 u0 = zeros(6,1);
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11 % Initial conditions:
12 % Feed composition
13 x_H2 = 0.001;
14 x_M1 = 0.95;
15 x_M2 = 0.049;
16 x_I = 1e-4;
17

18 p = par.p_s;
19 Z = par.Z;
20 R = par.R;
21 V = par.V;
22 T = par.T_f;
23 rho_pol = par.rho_pol;
24 Mw_M1 = par.Mw_M1;
25 Mw_M2 = par.Mw_M2;
26

27 % Solid and gas volumes
28 V_s = par.h_s*par.area_cs*(1-par.eps_avg);
29 V_g = V - V_s;
30 % Moles of gas
31 n_g = p*V_g/(Z*R*T);
32 n_H2 = n_g*x_H2;
33 n_M1 = n_g*x_M1;
34 n_M2 = n_g*x_M2;
35 n_I = n_g*x_I;
36 % Polymer
37 x_M1_s = x_M1/(x_M1 + x_M2);
38 x_M2_s = x_M2/(x_M1 + x_M2);
39 w_pol = 0.999;
40 m_pol = rho_pol*V_s*w_pol;
41 Mw_M = x_M1_s*Mw_M1 + x_M2_s*Mw_M2;
42 n_pol = m_pol/Mw_M;
43 n_B1 = n_pol*x_M1_s;
44 n_B2 = n_pol*x_M2_s;
45 % Insert states
46 % Gas phase
47 x0(1) = n_H2;
48 x0(2) = n_M1;
49 x0(3) = n_M2;
50 x0(4) = n_I;
51 % Bound monomers
52 x0(5) = n_B1;
53 x0(6) = n_B2;
54 % Catalyst
55 x0(14) = (1 - w_pol)/w_pol*m_pol;
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56 % Temperature
57 x0(15) = T;
58 % Volumetric feed rate
59 f_V_tot = 0.045;
60 f_m_ZN = 1e-3;
61 f_m_cat = f_m_ZN/(1-par.w_TEAL);
62 u0(1) = f_V_tot*x_H2;
63 u0(2) = f_V_tot*x_M1;
64 u0(3) = f_V_tot*x_M2;
65 u0(4) = f_V_tot*x_I;
66 u0(5) = f_m_cat;
67 u0(6) = 353.15;
68 end
69

70 function par = init_par
71 par.h_s = 14; % Level setpoint [m]
72 par.p_s = 25e5; % Pressure setpoint [Pa]
73 par.T_f = 325.15; % Feed temperature [K]
74 par.T_ref = 342.15; % Reference temperature for reaction rates
75 par.UA_wm = 83577; % Heat exchanger coefficient [W K^{-1}]
76 par.rho_cat = 2345; % Catalyst density [kg m^{-3}]
77 par.rho_pol = 910; % Polymer density [kg m^{-3}]
78 par.rho_TEAL= 832.4; % TEAL density [kg m^{-3}]
79 par.eps_mf = 0.45; % Minimum fluidization void fraction
80 par.eps_avg = 0.7 % Average void fraction
81 par.eps_prod= 0.3; % Void fraction in product stream
82 d = 5; % Reactor diameter [m]
83 par.area_cs = pi/4*d^2; % Cross sectional area [m^{2}]
84 par.Mw_TEAL = 114.17; % Molecular mass of TEAL [kg kmol^{-1}]
85 par.Mw_M1 = 42.08; % Molecular mass of C3= [kg kmol^{-1}]
86 par.Mw_M2 = 28.05; % Molecular mass of C2= [kg kmol^{-1}]
87 par.Mw_H2 = 2*1.008; % Molecular mass of H2 [kg kmol^{-1}]
88 par.Mw_I = 2*14.007; % Molecular mass of N2 [kg kmol^{-1}]
89 par.V = 350; % Volume [m^{3}]
90 par.R = 8.314e3; % Gas constant [J kmol^{-1} K^{-1}]
91 par.Z = 0.7222; % Compressibility factor
92 % Calculation of active sites per kg catalyst
93 w_Ti = 0.02; % Mass fraction Ti in catalyst
94 x_P = 0.2; % Potential site fraction
95 Mw_Ti = 47.867; % Molecular mass of Ti
96 x_P_1 = 0.8064; % Fraction of type 1 site
97 x_P_2 = 0.1936; % Fraction of type 2 site
98 n_site_T = w_Ti/Mw_Ti*x_P; % Moles of active sites [kmol kg^{-1}]
99 par.n_site_1= n_site_T*x_P_1; % site 1

100 par.n_site_2= n_site_T*x_P_2; % site 1
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101

102 r_AlTi = 50; % Molar ratio of aluminium to titanium
103 % Mass fraction of TEAL in catalyst feed
104 par.w_TEAL = 1/(Mw_Ti/(r_AlTi*w_Ti*par.Mw_TEAL) + 1);
105

106 % Heat capacities
107 par.c_p_H2 = 29.04e3; % [J kmol^{-1} K^{-1}]
108 par.c_p_M1 = 71.89e3; % [J kmol^{-1} K^{-1}]
109 par.c_p_M2 = 47.46e3; % [J kmol^{-1} K^{-1}]
110 par.c_p_I = 29.16e3; % [J kmol^{-1} K^{-1}]
111 par.c_p_pol = 2.25e3; % [J kg^{-1} K^{-1}]
112 par.c_p_cat = 0.77e3; % [J kg^{-1} K^{-1}]
113 par.c_p_TEAL= 239e3/par.Mw_TEAL; % [J kg^{-1} K^{-1}]
114 % Heat of reactions
115 par.r_h_1 = -103763200; % [J kmol^{-1}]
116 par.r_h_2 = -107528800; % [J kmol^{-1}]
117 par.r_cp_1 = 29288; % [J kmol^{-1} K^{-1}]
118 par.r_cp_2 = 46900; % [J kmol^{-1} K^{-1}]
119 % Activation energies
120 par.Ea_1 = 7200*4.184e3; % [J kmol^{-1}]
121 par.Ea_2 = 9000*4.184e3; % [J kmol^{-1}]
122 % Level controller parameters
123 par.K_h = -0.0349863; % Gain [m^2 s^{-1}]
124 par.tau_I_h = 440.113; % Integral time [s]
125 par.u0_h = 0; % Initial product rate
126 par.u_h_min = 0; % Minimum product flow [m^{3} s^{-1}]
127 par.u_h_max = 0.02; % Maximum product flow [m^{3} s^{-1}]
128 % Pressure controller parameters
129 par.K_p = -3.45115e-7; % Gain [m^{3} s^{-1} Pa^{-1}]
130 par.tau_I_p = 907.686; % Integral time [s]
131 par.u0_p = 0; % Initial purge rate [m^{3} s^{-1}]
132 par.u_p_min = 0; % Minimum product flow [m^{3} s^{-1}]
133 par.u_p_max = 0.05; % Maximum product flow [m^{3} s^{-1}]
134 % Temperature controller parameters
135 par.K_T = 2.34731; % Gain [-]
136 par.tau_I_T = 1454.81; % Integral time [s]
137 par.u0_T = 303.15; % Initial cooling water temperature [K]
138 par.u_T_min = 283.15; % Minimum cooling water temperature [K]
139 par.u_T_max = 333.15; % Maximum cooling water temperature [K]
140 % Reaction rates (1)
141 % Formation
142 par.k_f_1 = 1; % site 1 [s^{-1}]
143 par.k_f_2 = 1; % site 2 [s^{-1}]
144 % Initiations
145 par.k_i_1_1 = 9.8; % C3= site 1 [m^{3} kmol^{-1} s^{-1}]
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146 par.k_i_1_2 = 9.8; % C3= site 2 [m^{3} kmol^{-1} s^{-1}]
147 par.k_i_2_1 = 14.6; % C2= site 1 [m^{3} kmol^{-1} s^{-1}]
148 par.k_i_2_2 = 14.6; % C2= site 2 [m^{3} kmol^{-1} s^{-1}]
149

150 par.k_h_1_1 = 1; % C3= site 1 [m^{3} kmol^{-1} s^{-1}]
151 par.k_h_1_2 = 1; % C3= site 2 [m^{3} kmol^{-1} s^{-1}]
152 par.k_h_2_1 = 0.1; % C2= site 1 [m^{3} kmol^{-1} s^{-1}]
153 par.k_h_2_2 = 0.1; % C2= site 2 [m^{3} kmol^{-1} s^{-1}]
154

155 par.k_hr_1 = 20; % site 1 [m^{3} kmol^{-1} s^{-1}]
156 par.k_hr_2 = 20; % site 2 [m^{3} kmol^{-1} s^{-1}]
157 % Propagations
158 T_corr = exp(-10000*4.184/par.R*(1/par.T_ref - 1/333.15));
159 par.k_p_11_1 = 220.477*T_corr; % C3= C3= s1 [m^{3} kmol^{-1} s^{-1}]
160 par.k_p_11_2 = 22.047*T_corr; % C3= C3= s2 [m^{3} kmol^{-1} s^{-1}]
161 par.k_p_12_1 = 591.1098*T_corr;% C3= C2= s1 [m^{3} kmol^{-1} s^{-1}]
162 par.k_p_12_2 = 130.783*T_corr; % C3= C2= s2 [m^{3} kmol^{-1} s^{-1}]
163 par.k_p_21_1 = 1.701*T_corr; % C2= C3= s1 [m^{3} kmol^{-1} s^{-1}]
164 par.k_p_21_2 = 376.396*T_corr; % C2= C3= s2 [m^{3} kmol^{-1} s^{-1}]
165 par.k_p_22_1 = 4.561*T_corr; % C2= C2= s1 [m^{3} kmol^{-1} s^{-1}]
166 par.k_p_22_2 = 6.698*T_corr; % C2= C2= s2 [m^{3} kmol^{-1} s^{-1}]
167 % Transfers
168 par.k_fm_11_1 = 0.006; % C3= C3= site 1 [m^{3} kmol^{-1} s^{-1}]
169 par.k_fm_11_2 = 0.006; % C3= C3= site 2 [m^{3} kmol^{-1} s^{-1}]
170 par.k_fm_12_1 = 0.0021; % C3= C2= site 1 [m^{3} kmol^{-1} s^{-1}]
171 par.k_fm_12_2 = 0.0021; % C3= C2= site 2 [m^{3} kmol^{-1} s^{-1}]
172 par.k_fm_21_1 = 0.006; % C2= C3= site 1 [m^{3} kmol^{-1} s^{-1}]
173 par.k_fm_21_2 = 0.006; % C2= C3= site 2 [m^{3} kmol^{-1} s^{-1}]
174 par.k_fm_22_1 = 0.0021; % C2= C2= site 1 [m^{3} kmol^{-1} s^{-1}]
175 par.k_fm_22_2 = 0.0021; % C2= C2= site 2 [m^{3} kmol^{-1} s^{-1}]
176

177 par.k_fh_1_1 = 0.088; % C3= site 1 [m^{3} kmol^{-1} s^{-1}]
178 par.k_fh_1_2 = 0.37; % C3= site 2 [m^{3} kmol^{-1} s^{-1}]
179 par.k_fh_2_1 = 0.088; % C2= site 1 [m^{3} kmol^{-1} s^{-1}]
180 par.k_fh_2_2 = 0.37; % C2= site 2 [m^{3} kmol^{-1} s^{-1}]
181

182 par.k_fr_1_1 = 0.024; % C3= site 1 [m^{3} kmol^{-1} s^{-1}]
183 par.k_fr_1_2 = 0.12; % C3= site 2 [m^{3} kmol^{-1} s^{-1}]
184 par.k_fr_2_1 = 0.048; % C2= site 1 [m^{3} kmol^{-1} s^{-1}]
185 par.k_fr_2_2 = 0.24; % C2= site 2 [m^{3} kmol^{-1} s^{-1}]
186

187 par.k_fs_1_1 = 0.0001; % C3= site 1 [s^{-1}]
188 par.k_fs_1_2 = 0.0001; % C3= site 2 [s^{-1}]
189 par.k_fs_2_1 = 0.0001; % C2= site 1 [s^{-1}]
190 par.k_fs_2_2 = 0.0001; % C2= site 2 [s^{-1}]



176 Implementation of the control model

191 % Deactivation
192 par.k_ds_1 = 0.0001; % site 1 [s^{-1}]
193 par.k_ds_2 = 0.0001; % site 2 [s^{-1}]
194

195 % Reaction rate corrections (estimated)
196 par.chi_M1_1 = 0.9399; % C3= site 1
197 par.chi_M1_2 = 1.0064; % C3= site 2
198 par.chi_M2_1 = 0.9149; % C2= site 1
199 par.chi_M2_2 = 1.0655; % C2= site 2
200 par.chi_H2 = 0.4570; % H2 site 1
201 end



APPENDIX D

AUXILIARY MATLAB FUNCTIONS

Hofstadter’s Law: It always takes longer than you expect, even

when you take into account Hofstadter’s Law.

— D. Hofstadter, 19791

d.1 Common

This section contains the functions utilized by both the plant replacement

model (prm) and the control model (cm). The implementation of a

proportional integral (pi) controller is displayed in Code snippet d.1.

1Hofstadter, D., Gödel, Escher, Bach: An Eternal Golden Braid. 1979

177



178 Auxiliary Matlab functions

Code snippet d.1 – The implementation of a proportional integral (pi) controller,
PIcontrol.m.

1 function [u, e] = PIcontrol(y, y_s, u_0, K, tau_I, i_e, u_min, u_max)
2 %% PI Controller
3 % Calculates the applied input and the error for integration for a PI
4 % controller. Includes anti-windup where the reset time has been set
5 % equal to the integral time.
6 % Inputs: Pseudo-units
7 % y Current output/measurement [y]
8 % y_s Setpoint [y]
9 % u_0 Initial input [u]

10 % K Controller gain [u/y]
11 % tau_I Controller integral time [s]
12 % i_e Integral of the offset [y s]
13 % u_min Minimum input constraint [u]
14 % u_max Maximum input constraint [u]
15 % Outputs:
16 % u Applied input [u]
17 % e Error to be integrated [y]
18 e = y_s - y; % Setpoint offset [y]
19 v = u_0 + K*(e + 1/tau_I*i_e); % Desired input [u]
20 u = max(u_min, min(u_max, v)); % Constraints [u]
21 e_u = u - v; % Input offset [u]
22 e = e + e_u/K; % Error to be integrated [y]
23 end

The calculation of the gas concentrations is given in Code snippet d.2.

Code snippet d.2 – The implementation of the calculation of the gas phase
concentrations, getGasConc.m.

1 function [c_M1, c_M2, c_H2, c_I, c_g] = getGasConc(n_M1, n_M2, ...
2 n_H2, n_I, V)
3 c_M1 = n_M1/V; % Propylene [kmol m^{-3}]
4 c_M2 = n_M2/V; % Ethylene [kmol m^{-3}]
5 c_H2 = n_H2/V; % Hydrogen [kmol m^{-3}]
6 c_I = n_I/V; % Inert [kmol m^{-3}]
7 c_g = c_M1 + c_M2 + c_H2 + c_I; % Gas concentration [kmol m^{-3}]
8 end

The reaction rates is obtained with Code snippet d.3.
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Code snippet d.3 – The implementation of the calculation of the reaction rates,
getReactionRates.m.

1 function [r_n_H2, r_n_M1, ...
2 r_n_M2, r_n_B1, ...
3 r_n_B2, r_Y_0_1, ...
4 r_Y_0_2, r_Y_1_1, ...
5 r_Y_1_2, r_X_0, ...
6 r_X_1, r_YX_2] = getReactionRates(c_H2, c_M1, c_M2, Y_0_1, ...
7 Y_0_2, Y_1_1, Y_1_2, T, ...
8 V_s, m_cat, tau_prod, ...
9 f_n_P_1_in, f_n_P_2_in, par)

10 %% Calculate the reaction rates
11 % Input:
12 % c_H2 Hydrogen concentration
13 % c_M1 Propylene concentration
14 % c_M2 Ethylene concentration
15 % c_I Inert concentration
16 % Y_0_1 0th moment of chain length distribution for living
17 % polymer produced at site 1
18 % Y_0_2 0th moment of chain length distribution for living
19 % polymer produced at site 2
20 % Y_1_1 1st moment of chain length distribution for living
21 % polymer produced at site 1
22 % Y_1_2 1st moment of chain length distribution for living
23 % polymer produced at site 2
24 % T Temperature
25 % V_s Volume of solids
26 % m_cat Mass of catalyst and cocatalyst
27 % tau_prod Product flow rate divided by solid volume
28 % f_n_P_1_in Feed rate of potential active sites of type 1
29 % f_n_P_2_in Feed rate of potential active sites of type 2
30 % Parameters:
31 % T_ref Reference temperature
32 % Mw_TEAL Molecular mass of TEAL
33 % w_TEAL Mass fraction TEAL in catalyst feed
34 % R Universal gas constant
35 % k_f_1 Formation rate constant for site 1
36 % k_f_2 Formation rate constant for site 2
37 % k_i_1_1 Initiation from n_0 and C3= on site 1
38 % k_i_1_2 Initiation from n_0 and C3= on site 2
39 % k_i_2_1 Initiation from n_0 and C2= on site 1
40 % k_i_2_2 Initiation from n_0 and C2= on site 2
41 % k_h_1_1 Initiation from n_H and C3= on site 1
42 % k_h_1_2 Initiation from n_H and C3= on site 2
43 % k_h_2_1 Initiation from n_H and C2= on site 1
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44 % k_h_2_2 Initiation from n_H and C2= on site 2
45 % k_hr_1 Initiation from n_H and TEAL on site 1
46 % k_hr_2 Initiation from n_H and TEAL on site 2
47 % k_p_11_1 Propagation with terminal C3= with C3= on site 1
48 % k_p_11_2 Propagation with terminal C3= with C3= on site 2
49 % k_p_12_1 Propagation with terminal C3= with C2= on site 1
50 % k_p_12_2 Propagation with terminal C3= with C2= on site 2
51 % k_p_21_1 Propagation with terminal C2= with C3= on site 1
52 % k_p_21_2 Propagation with terminal C2= with C3= on site 2
53 % k_p_22_1 Propagation with terminal C2= with C2= on site 1
54 % k_p_22_2 Propagation with terminal C2= with C2= on site 2
55 % k_fm_11_1 Transfer with terminal C3= with C3= on site 1
56 % k_fm_11_2 Transfer with terminal C3= with C3= on site 2
57 % k_fm_12_1 Transfer with terminal C3= with C2= on site 1
58 % k_fm_12_2 Transfer with terminal C3= with C2= on site 2
59 % k_fm_21_1 Transfer with terminal C2= with C3= on site 1
60 % k_fm_21_2 Transfer with terminal C2= with C3= on site 2
61 % k_fm_22_1 Transfer with terminal C2= with C2= on site 1
62 % k_fm_22_2 Transfer with terminal C2= with C2= on site 2
63 % k_fh_1_1 Transfer with terminal C3= with H2 on site 1
64 % k_fh_1_2 Transfer with terminal C3= with H2 on site 2
65 % k_fh_2_1 Transfer with terminal C2= with H2 on site 1
66 % k_fh_2_2 Transfer with terminal C2= with H2 on site 2
67 % k_fr_1_1 Transfer with terminal C3= with TEAL on site 1
68 % k_fr_1_2 Transfer with terminal C3= with TEAL on site 2
69 % k_fr_2_1 Transfer with terminal C2= with TEAL on site 1
70 % k_fr_2_2 Transfer with terminal C2= with TEAL on site 2
71 % k_fs_1_1 Spontaneous transfer with terminal C3= on site 1
72 % k_fs_1_2 Spontaneous transfer with terminal C3= on site 2
73 % k_fs_2_1 Spontaneous transfer with terminal C2= on site 1
74 % k_fs_2_2 Spontaneous transfer with terminal C2= on site 2
75 % k_ds_1 Deactivation on site 1
76 % k_ds_2 Deactivation on site 2
77 % Output:
78 % r_n_H2 Reaction rate of hydrogen
79 % r_n_M1 Reaction rate of propylene
80 % r_n_M2 Reaction rate of ethylene
81 % r_n_B1 Reaction rate of bound propylene
82 % r_n_B2 Reaction rate of bound ethylene
83 % r_Y_0_1 Reaction rate of 0th moment of living at site 1
84 % r_Y_0_2 Reaction rate of 0th moment of living at site 2
85 % r_Y_1_1 Reaction rate of 1st moment of living at site 1
86 % r_Y_1_2 Reaction rate of 1st moment of living at site 2
87 % r_X_0 Reaction rate of 0th moment of dead polymer
88 % r_X_1 Reaction rate of 1st moment of dead polymer
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89 % r_YX_2 Reaction rate of 2nd moment of polymer
90 %% Extractions
91 w_TEAL = par.w_TEAL; % [-]
92 Mw_TEAL = par.Mw_TEAL; % [kg kmol^{-1}]
93 T_ref = par.T_ref; % [K]
94 R = par.R; % [J kmol^{-1} K^{-1}]
95 % Rate constants
96 % Formation
97 k_f_1 = par.k_f_1; % site 1 [s^{-1}]
98 k_f_2 = par.k_f_2; % site 2 [s^{-1}]
99 % Initiations

100 k_i_1_1 = par.k_i_1_1; % C3= site 1 [m^{3} kmol^{-1} s^{-1}]
101 k_i_1_2 = par.k_i_1_2; % C3= site 2 [m^{3} kmol^{-1} s^{-1}]
102 k_i_2_1 = par.k_i_2_1; % C2= site 1 [m^{3} kmol^{-1} s^{-1}]
103 k_i_2_2 = par.k_i_2_2; % C2= site 2 [m^{3} kmol^{-1} s^{-1}]
104

105 k_h_1_1 = par.k_h_1_1; % C3= site 1 [m^{3} kmol^{-1} s^{-1}]
106 k_h_1_2 = par.k_h_1_2; % C3= site 2 [m^{3} kmol^{-1} s^{-1}]
107 k_h_2_1 = par.k_h_2_1; % C2= site 1 [m^{3} kmol^{-1} s^{-1}]
108 k_h_2_2 = par.k_h_2_2; % C2= site 2 [m^{3} kmol^{-1} s^{-1}]
109

110 k_hr_1 = par.k_hr_1; % site 1 [m^{3} kmol^{-1} s^{-1}]
111 k_hr_2 = par.k_hr_2; % site 2[m^{3} kmol^{-1} s^{-1}]
112 % Propagations
113 k_p_11_1 = par.k_p_11_1; % C3= C3= site 1 [m^{3} kmol^{-1} s^{-1}]
114 k_p_11_2 = par.k_p_11_2; % C3= C3= site 2 [m^{3} kmol^{-1} s^{-1}]
115 k_p_12_1 = par.k_p_12_1; % C3= C2= site 1 [m^{3} kmol^{-1} s^{-1}]
116 k_p_12_2 = par.k_p_12_2; % C3= C2= site 2 [m^{3} kmol^{-1} s^{-1}]
117 k_p_21_1 = par.k_p_21_1; % C2= C3= site 1 [m^{3} kmol^{-1} s^{-1}]
118 k_p_21_2 = par.k_p_21_2; % C2= C3= site 2 [m^{3} kmol^{-1} s^{-1}]
119 k_p_22_1 = par.k_p_22_1; % C2= C2= site 1 [m^{3} kmol^{-1} s^{-1}]
120 k_p_22_2 = par.k_p_22_2; % C2= C2= site 2 [m^{3} kmol^{-1} s^{-1}]
121 % Transfers
122 k_fm_11_1 = par.k_fm_11_1;% C3= C3= site 1 [m^{3} kmol^{-1} s^{-1}]
123 k_fm_11_2 = par.k_fm_11_2;% C3= C3= site 2 [m^{3} kmol^{-1} s^{-1}]
124 k_fm_12_1 = par.k_fm_12_1;% C3= C2= site 1 [m^{3} kmol^{-1} s^{-1}]
125 k_fm_12_2 = par.k_fm_12_2;% C3= C2= site 2 [m^{3} kmol^{-1} s^{-1}]
126 k_fm_21_1 = par.k_fm_21_1;% C2= C3= site 1 [m^{3} kmol^{-1} s^{-1}]
127 k_fm_21_2 = par.k_fm_21_2;% C2= C3= site 2 [m^{3} kmol^{-1} s^{-1}]
128 k_fm_22_1 = par.k_fm_22_1;% C2= C2= site 1 [m^{3} kmol^{-1} s^{-1}]
129 k_fm_22_2 = par.k_fm_22_2;% C2= C2= site 2 [m^{3} kmol^{-1} s^{-1}]
130

131 k_fh_1_1 = par.k_fh_1_1; % C3= site 1 [m^{3} kmol^{-1} s^{-1}]
132 k_fh_1_2 = par.k_fh_1_2; % C3= site 2 [m^{3} kmol^{-1} s^{-1}]
133 k_fh_2_1 = par.k_fh_2_1; % C2= site 1 [m^{3} kmol^{-1} s^{-1}]
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134 k_fh_2_2 = par.k_fh_2_2; % C2= site 2 [m^{3} kmol^{-1} s^{-1}]
135

136 k_fr_1_1 = par.k_fr_1_1; % C3= site 1 [m^{3} kmol^{-1} s^{-1}]
137 k_fr_1_2 = par.k_fr_1_2; % C3= site 2 [m^{3} kmol^{-1} s^{-1}]
138 k_fr_2_1 = par.k_fr_2_1; % C2= site 1 [m^{3} kmol^{-1} s^{-1}]
139 k_fr_2_2 = par.k_fr_2_2; % C2= site 2 [m^{3} kmol^{-1} s^{-1}]
140

141 k_fs_1_1 = par.k_fs_1_1; % C3= site 1 [s^{-1}]
142 k_fs_1_2 = par.k_fs_1_2; % C3= site 2 [s^{-1}]
143 k_fs_2_1 = par.k_fs_2_1; % C2= site 1 [s^{-1}]
144 k_fs_2_2 = par.k_fs_2_2; % C2= site 2 [s^{-1}]
145 % Deactivation
146 k_ds_1 = par.k_ds_1; % site 1 [s^{-1}]
147 k_ds_2 = par.k_ds_2; % site 2 [s^{-1}]
148

149 % Activation energies for propagations
150 Ea_1 = par.Ea_1; % C3= [J kmol^{-1}]
151 Ea_2 = par.Ea_2; % C2= [J kmol^{-1}]
152

153 % Corrections
154 chi_M1_1 = par.chi_M1_1; % C3= site 1
155 chi_M1_2 = par.chi_M1_2; % C3= site 2
156 chi_M2_1 = par.chi_M2_1; % C2= site 1
157 chi_M2_2 = par.chi_M2_2; % C2= site 2
158 chi_H2 = par.chi_H2; % H2
159

160 %% Calculations
161 % Correct reaction rate constants
162 k_fh_1_1 = chi_H2*k_fh_1_1;
163 k_fh_2_1 = chi_H2*k_fh_2_1;
164 k_fh_1_2 = chi_H2*k_fh_1_2;
165 k_fh_2_2 = chi_H2*k_fh_2_2;
166

167 k_p_11_1 = chi_M1_1*k_p_11_1;
168 k_p_21_1 = chi_M1_1*k_p_21_1;
169 k_p_11_2 = chi_M1_2*k_p_11_2;
170 k_p_21_2 = chi_M1_2*k_p_21_2;
171

172 k_p_12_1 = chi_M2_1*k_p_12_1;
173 k_p_22_1 = chi_M2_1*k_p_22_1;
174 k_p_12_2 = chi_M2_2*k_p_12_2;
175 k_p_22_2 = chi_M2_2*k_p_22_2;
176

177 % Update temperature dependence
178
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179 k_p_11_1 = k_p_11_1*exp(-Ea_1/R*(1/T - 1/T_ref));
180 k_p_11_2 = k_p_11_2*exp(-Ea_1/R*(1/T - 1/T_ref));
181 k_p_21_1 = k_p_21_1*exp(-Ea_1/R*(1/T - 1/T_ref));
182 k_p_21_2 = k_p_21_2*exp(-Ea_1/R*(1/T - 1/T_ref));
183

184 k_p_12_1 = k_p_12_1*exp(-Ea_2/R*(1/T - 1/T_ref));
185 k_p_12_2 = k_p_12_2*exp(-Ea_2/R*(1/T - 1/T_ref));
186 k_p_22_1 = k_p_22_1*exp(-Ea_2/R*(1/T - 1/T_ref));
187 k_p_22_2 = k_p_22_2*exp(-Ea_2/R*(1/T - 1/T_ref));
188

189

190 % Cocatalyst concentration
191 n_TEAL = m_cat*w_TEAL/Mw_TEAL; % Moles of TEAL [kmol]
192 c_TEAL = n_TEAL/V_s; % TEAL [kmol m^{-3}]
193

194 % Fractions for pseudo rate constants
195 c_M_T = c_M1 + c_M2; % Total monomer concentration [kmol m^{-3}]
196 f_1 = c_M1/c_M_T; % Fraction of C3=
197 f_2 = c_M2/c_M_T; % Fraction of C2=
198 % Fractions of active sites of type j which have terminal monomer i
199 psi_1 = f_1*k_p_21_1 + f_2*k_p_12_1; % Denominator for site 1
200 psi_2 = f_1*k_p_21_2 + f_2*k_p_12_2; % Denominator for site 2
201 phi_1_1 = f_1*k_p_21_1/psi_1; % C3= site 1
202 phi_1_2 = f_1*k_p_21_2/psi_2; % C3= site 2
203 phi_2_1 = f_2*k_p_12_1/psi_1; % C2= site 1
204 phi_2_2 = f_2*k_p_12_2/psi_2; % C2= site 2
205

206 % Initiations
207 k_i_T_1 = f_1*k_i_1_1 + f_2*k_i_2_1; % site 1
208 k_i_T_2 = f_1*k_i_1_2 + f_2*k_i_2_2; % site 2
209

210 k_h_T_1 = f_1*k_h_1_1 + f_2*k_h_2_1; % site 1
211 k_h_T_2 = f_1*k_h_1_2 + f_2*k_h_2_2; % site 2
212

213 % Transfers
214 k_fh_T_1 = phi_1_1*k_fh_1_1 + phi_2_1*k_fh_2_1;
215 k_fh_T_2 = phi_1_2*k_fh_1_2 + phi_2_1*k_fh_2_2;
216

217 k_fs_T_1 = phi_1_1*k_fs_1_1 + phi_2_1*k_fs_2_1;
218 k_fs_T_2 = phi_1_2*k_fs_1_2 + phi_2_2*k_fs_2_2;
219

220 k_fm_1T_1 = f_1*k_fm_11_1 + f_2*k_fm_12_1;
221 k_fm_1T_2 = f_1*k_fm_11_2 + f_2*k_fm_12_2;
222

223 k_fm_2T_1 = f_1*k_fm_21_1 + f_2*k_fm_22_1;
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224 k_fm_2T_2 = f_1*k_fm_21_2 + f_2*k_fm_22_2;
225

226 k_fm_T1_1 = phi_1_1*k_fm_11_1 + phi_2_1*k_fm_21_1;
227 k_fm_T1_2 = phi_1_2*k_fm_11_2 + phi_2_2*k_fm_21_2;
228

229 k_fm_T2_1 = phi_1_1*k_fm_12_1 + phi_2_1*k_fm_22_1;
230 k_fm_T2_2 = phi_1_2*k_fm_12_2 + phi_2_2*k_fm_22_2;
231

232 k_fm_TT_1 = f_1*k_fm_T1_1 + f_2*k_fm_T2_1;
233 k_fm_TT_2 = f_1*k_fm_T1_2 + f_2*k_fm_T2_2;
234

235 k_fr_T_1 = phi_1_1*k_fr_1_1 + phi_2_1*k_fr_2_1;
236 k_fr_T_2 = phi_1_2*k_fr_1_2 + phi_2_2*k_fr_2_2;
237

238 % Propagations
239

240 k_p_1T_1 = f_1*k_p_11_1 + f_2*k_p_12_1;
241 k_p_1T_2 = f_1*k_p_11_2 + f_2*k_p_12_2;
242

243 k_p_2T_1 = f_1*k_p_21_1 + f_2*k_p_22_1;
244 k_p_2T_2 = f_1*k_p_21_2 + f_2*k_p_22_2;
245

246 k_p_T1_1 = phi_1_1*k_p_11_1 + phi_2_1*k_p_21_1;
247 k_p_T1_2 = phi_1_2*k_p_11_2 + phi_2_2*k_p_21_2;
248

249 k_p_T2_1 = phi_1_1*k_p_12_1 + phi_2_1*k_p_22_1;
250 k_p_T2_2 = phi_1_2*k_p_12_2 + phi_2_2*k_p_22_2;
251

252 k_p_TT_1 = f_1*k_p_T1_1 + f_2*k_p_T2_1;
253 k_p_TT_2 = f_1*k_p_T1_2 + f_2*k_p_T2_2;
254

255 % PSSA
256 % Potential active sites
257 n_P_1 = f_n_P_1_in/(k_f_1 + 1/tau_prod); % site 1 [kmol]
258 n_P_2 = f_n_P_2_in/(k_f_2 + 1/tau_prod); % site 2 [kmol]
259 % Initiation sites with monomer
260 n_0_1 = k_f_1*n_P_1/(k_i_T_1*c_M_T + k_ds_1 + 1/tau_prod); % s1 [kmol]
261 n_0_2 = k_f_2*n_P_2/(k_i_T_2*c_M_T + k_ds_2 + 1/tau_prod); % s2 [kmol]
262 % Initiation sites with hydrogen
263 n_H_1 = Y_0_1*(k_fh_T_1*c_H2 + k_fs_T_1)... % site 1 [kmol]
264 / (k_h_T_1*c_M_T + k_ds_1 + k_hr_1*c_TEAL + 1/tau_prod);
265 n_H_2 = Y_0_2*(k_fh_T_2*c_H2 + k_fs_T_2)... % site 2 [kmol]
266 / (k_h_T_2*c_M_T + k_ds_2 + k_hr_2*c_TEAL + 1/tau_prod);
267 % Initiated polymer chains of length 1
268 % C3= for site 1 [kmol]
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269 n_1_1_1 = c_M1*(k_i_1_1*n_0_1 + k_h_1_1*n_H_1 + Y_0_1*k_fm_T1_1) ...
270 / (c_M_T*(k_p_1T_1 + k_fm_1T_1) + c_H2*k_fh_1_1 ...
271 + c_TEAL*k_fr_1_1 + k_fs_1_1 + k_ds_1 + 1/tau_prod);
272 % C3= for site 2 [kmol]
273 n_1_1_2 = c_M1*(k_i_1_2*n_0_2 + k_h_1_2*n_H_2 + Y_0_2*k_fm_T1_2) ...
274 / (c_M_T*(k_p_1T_2 + k_fm_1T_2) + c_H2*k_fh_1_2 ...
275 + c_TEAL*k_fr_1_2 + k_fs_1_2 + k_ds_2 + 1/tau_prod);
276 % C2= for site 1 [kmol]
277 n_1_2_1 = c_M2*(k_i_2_1*n_0_1 + k_h_2_1*n_H_1 + Y_0_1*k_fm_T2_1) ...
278 / (c_M_T*(k_p_2T_1 + k_fm_2T_1) + c_H2*k_fh_2_1 ...
279 + c_TEAL*k_fr_2_1 + k_fs_2_1 + k_ds_1 + 1/tau_prod);
280 % C2= for site 2 [kmol]
281 n_1_2_2 = c_M2*(k_i_2_2*n_0_2 + k_h_2_2*n_H_2 + Y_0_2*k_fm_T2_2) ...
282 / (c_M_T*(k_p_2T_2 + k_fm_2T_2) + c_H2*k_fh_2_2 ...
283 + c_TEAL*k_fr_2_2 + k_fs_2_2 + k_ds_2 + 1/tau_prod);
284 % Totals
285 n_1_T_1 = n_1_1_1 + n_1_2_1; % site 1 [kmol]
286 n_1_T_2 = n_1_1_2 + n_1_2_2; % site 2 [kmol]
287

288 % Reactions
289 % Initiation with monomers and n_0
290 r_i_T_1 = c_M_T*k_i_T_1*n_0_1; % site 1 [kmol s^{-1}]
291 r_i_T_2 = c_M_T*k_i_T_2*n_0_2; % site 1 [kmol s^{-1}]
292 % Inititation with monomers and n_H
293 r_h_T_1 = c_M_T*k_h_T_1*n_H_1; % site 1 [kmol s^{-1}]
294 r_h_T_2 = c_M_T*k_h_T_2*n_H_2; % site 1 [kmol s^{-1}]
295 % Inititation with cocatalyst and n_H
296 r_hr_1 = c_TEAL*k_hr_1*n_H_1; % site 1 [kmol s^{-1}]
297 r_hr_2 = c_TEAL*k_hr_2*n_H_2; % site 1 [kmol s^{-1}]
298 % Total living polymer on site 1
299 r_Y_0_1 = r_i_T_1 + r_h_T_1 + r_hr_1 ...
300 - Y_0_1*(k_fh_T_1*c_H2 + k_fs_T_1 + k_ds_1);
301 % Total living polymer on site 2
302 r_Y_0_2 = r_i_T_2 + r_h_T_2 + r_hr_2 ...
303 - Y_0_2*(k_fh_T_2*c_H2 + k_fs_T_2 + k_ds_2);
304 % 1st moment of living polymer on site 1
305 r_Y_1_1 = r_i_T_1 + r_h_T_1 + r_hr_1 ...
306 + Y_0_1*(c_M_T*(k_p_TT_1 + k_fm_TT_1) + c_TEAL*k_fr_T_1) ...
307 - Y_1_1*(c_M_T*k_fm_TT_1 + c_TEAL*k_fr_T_1 + ...
308 c_H2*k_fh_T_1 + k_fs_T_1 + k_ds_1);
309 % 1st moment of living polymer on site 2
310 r_Y_1_2 = r_i_T_2 + r_h_T_2 + r_hr_2 ...
311 + Y_0_2*(c_M_T*(k_p_TT_2 + k_fm_TT_2) + c_TEAL*k_fr_T_2) ...
312 - Y_1_2*(c_M_T*k_fm_TT_2 + c_TEAL*k_fr_T_2 ...
313 + c_H2*k_fh_T_2 + k_fs_T_2 + k_ds_2);
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314 % Total dead polymer
315 r_X_0 = (Y_0_1 - n_1_T_1)*(c_M_T*k_fm_TT_1 + c_TEAL*k_fr_T_1 ...
316 + c_H2*k_fh_T_1 + k_fs_T_1 + k_ds_1) ...
317 + (Y_0_2 - n_1_T_2)*(c_M_T*k_fm_TT_2 + c_TEAL*k_fr_T_2 ...
318 + c_H2*k_fh_T_2 + k_fs_T_2 + k_ds_2);
319 % 1st moment of dead polymer
320 r_X_1 = (Y_1_1 - n_1_T_1)*(c_M_T*k_fm_TT_1 + c_TEAL*k_fr_T_1 ...
321 + c_H2*k_fh_T_1 + k_fs_T_1 + k_ds_1) ...
322 + (Y_1_2 - n_1_T_2)*(c_M_T*k_fm_TT_2 + c_TEAL*k_fr_T_2 ...
323 + c_H2*k_fh_T_2 + k_fs_T_2 + k_ds_2);
324 % 2nd moment of living and dead polymer
325 r_YX_2 = r_i_T_1 + r_h_T_1 + r_hr_1 ...
326 + r_i_T_2 + r_h_T_2 + r_hr_2 ...
327 + Y_0_1*(c_M_T*(k_fm_TT_1 - k_p_TT_1) + c_TEAL*k_fr_T_1) ...
328 + Y_0_2*(c_M_T*(k_fm_TT_2 - k_p_TT_2) + c_TEAL*k_fr_T_2) ...
329 + 2*Y_1_1*c_M_T*k_p_TT_1 ...
330 + 2*Y_1_2*c_M_T*k_p_TT_2 ...
331 - n_1_T_1*(c_M_T*k_fm_TT_1 + c_TEAL*k_fr_T_1 ...
332 + c_H2*k_fh_T_1 + k_fs_T_1 + k_ds_1) ...
333 - n_1_T_2*(c_M_T*k_fm_TT_2 + c_TEAL*k_fr_T_2 ...
334 + c_H2*k_fh_T_2 + k_fs_T_2 + k_ds_2);
335 % Gas components
336 r_n_H2 = -c_H2*(Y_0_1*k_fh_T_1 + Y_0_2*k_fh_T_2); % H2
337 r_n_M1 = -c_M1*(Y_0_1*k_p_T1_1 + Y_0_2*k_p_T1_2); % C3=
338 r_n_M2 = -c_M2*(Y_0_1*k_p_T2_1 + Y_0_2*k_p_T2_2); % C2=
339 % Bound monomers
340 r_n_B1 = -r_n_M1; % C3=
341 r_n_B2 = -r_n_M2; % C2=
342 end

The steady-state is obtained by integrating for a long time, and can be

found by utilizing Code snippet d.4

Code snippet d.4 – The implementation of the calculation of the steady-state,
steady_state.m.

1 function [x, y, z, par] = steady_state(x0, u0, par, t_end)
2 if length(x0) < 30
3 nSel = 13;
4 else
5 nSel = 29;
6 end
7 options = odeset('AbsTol', eps, ...
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8 'RelTol', 1e-13, ...
9 'NormControl', 'on', ...

10 'Stats', 'off', ...
11 'OutputFcn', @odeplot, ...
12 'OutputSel', nSel);
13 [t, x] = ode15s(@(t,x) model_dx(t,x,u0,par), [0 t_end], x0, options);
14 [y, ~] = calculate_y_z(t, x, u0, par, 10);
15 x = x(end,:)';
16 y = model_y(x, u0, par);
17 z = model_z(x, u0, y, par);
18 par.u0_p= y(7);
19 par.u0_h= y(8);
20 par.u0_T= y(9);
21 x(end-2:end) = 0;
22 end

To calculate the measurements and the derived outputs, Code snippet d.5

has been utilized.

Code snippet d.5 – The implementation of the calculation of the measure-
ments and the outputs given the state at each time-step,
calculate_y_z.m.

1 function [x, y, z, par] = steady_state(x0, u0, par, t_end)
2 if length(x0) < 30
3 nSel = 13;
4 else
5 nSel = 29;
6 end
7 options = odeset('AbsTol', eps, ...
8 'RelTol', 1e-13, ...
9 'NormControl', 'on', ...

10 'Stats', 'off', ...
11 'OutputFcn', @odeplot, ...
12 'OutputSel', nSel);
13 [t, x] = ode15s(@(t,x) model_dx(t,x,u0,par), [0 t_end], x0, options);
14 [y, ~] = calculate_y_z(t, x, u0, par, 10);
15 x = x(end,:)';
16 y = model_y(x, u0, par);
17 z = model_z(x, u0, y, par);
18 par.u0_p= y(7);
19 par.u0_h= y(8);
20 par.u0_T= y(9);
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21 x(end-2:end) = 0;
22 end

d.2 Plant replacement model

This section contains the functions used exclusively in the implementation

of the prm.

The conversion of the heat capacity of the gas phase from mole based to

mass based is given in Code snippet d.6.

Code snippet d.6 – The implementation of the conversion of the heat capacity
from mole-based to mass-based, convertHeatCapacity.m.

1 function c_p_g = convertHeatCapacity(rho_g, c_H2, c_M1, c_M2, c_I, ...
2 c_p_H2, c_p_M1, c_p_M2, c_p_I)
3 c_p_g = (c_H2*c_p_H2 + c_M1*c_p_M1 + c_M2*c_p_M2 + c_I*c_p_I)/rho_g;
4 end

The distribution of solids between the bubble and the emulsion phase has

been obtained from Code snippet d.7.

Code snippet d.7 – The implementation of the distribution of solids between the
bubble phase and the emulsion phase, distributeSolids.m.

1 function [e, b] = distributeSolids(delta, eps_b, eps_e, tot)
2 b = (delta*(1-eps_b))/(delta*(1-eps_b) + (1-delta)*(1-eps_e)) * tot;
3 e = tot - b;
4 end

To calculate the diameter of the bubbles, Code snippet d.8 was applied.

Code snippet d.8 – The implementation of the diameter of the bubbles,
getBubbleDiameter.m.

1 function d_b = getBubbleDiameter(z, mu_g, rho_g, rho_s, g, ...
2 d_p, sphericity, u_0, u_mf, D)
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3 d_p_s = 2.7*d_p*(mu_g^(-2)*rho_g*(rho_s - rho_g)*g)^(1/3);
4 u_T_s = (18*d_p_s^(-2) ...
5 + (2.335 - 1.744*sphericity)*d_p_s^(-0.5))^(-1);
6 u_T = u_T_s*(mu_g*rho_g^(-2)*(rho_s-rho_g)*g)^(1/3);
7 d_b_max = 2*u_T^2/g;
8 d_b_0 = 0.376*(u_0 - u_mf)^2;
9 d_b = d_b_max - (d_b_max - d_b_0)*exp(-0.3*z/D);

10 end

The density of the gas phase has been calculated by Code snippet d.9.

Code snippet d.9 – The implementation of the density of the gas phase,
getGasDensity.m.

1 function rho_g = getGasDensity(c_H2, c_M1, c_M2, c_I, ...
2 Mw_H2, Mw_M1, Mw_M2, Mw_I)
3 rho_g = c_H2*Mw_H2 + c_M1*Mw_M1 + c_M2*Mw_M2 + c_I*Mw_I;
4 end

The heat transfer in the heat exchanger was calculated by Code snip-

pet d.10.

Code snippet d.10 – The implementation of the heat transfer in the heat ex-
changer, getHeatTransfer.m.

1 function q = getHeatTransfer(T_hex, T_fb, T_cw, f_H_f_hex, ...
2 f_H_fb_hex, par)
3 %% Calculates the heat flow from the heat exchanger
4 % Inputs:
5 % T_hex Heat exchanger temperature
6 % T_fb Freeboard temperature
7 % T_cw Cooling water temperature
8 % f_H_f_hex Enthalpy required to heat the feed flow
9 % f_H_fb_hex Enthalpy required to heat the recycle flow

10 % Parameters:
11 % UA Heat transfer coefficient times heat transfer area
12 % T_f Feed temperature
13 % Output:
14 % q Heat transfer
15

16
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17 UA = par.UA;
18 T_f = par.T_f;
19 % Inlet temperature is the weighted average of the recycle and feed
20 if abs(T_fb - T_hex) < 1e-2 % Avoid division by zero
21 T_in = T_fb;
22 else
23 T_in = (f_H_f_hex + f_H_fb_hex)...
24 / (f_H_f_hex/(T_f - T_hex) + f_H_fb_hex/(T_fb - T_hex)) ...
25 + T_hex;
26 end
27 dT_1 = T_in - T_cw; % Temperature difference at inlet
28 dT_2 = T_hex - T_cw; % Temperature difference at outlet
29

30 if abs(dT_1 - dT_2) < 1e-2; % Avoid division by zero
31 dT_lm = dT_1;
32 else
33 if dT_1/dT_2 > 0
34 dT_lm = (dT_1 - dT_2)/log(dT_1/dT_2);
35 else
36 dT_lm = abs(max(dT_1,dT_2));
37 end
38 end
39 q = UA*dT_lm;
40 end

To obtain the heat transfer coefficient, Code snippet d.11 has been utilized.

Code snippet d.11 – The implementation of the heat transfer coefficient,
getHeatTransferCoeff.m.

1 function H_be = getHeatTransferCoeff(u_e, d_b, rho_g, c_p_g, ...
2 k_g, g, u_br, eps_e)
3 H_bc = 4.5*(u_e*rho_g*c_p_g/d_b) ...
4 + 5.85*(sqrt(k_g*rho_g*c_p_g*sqrt(g))/d_b^(5/4));
5 H_ce = 6.77*sqrt(k_g*rho_g*c_p_g*eps_e*u_br/d_b^3);
6 H_be = 1/(1/H_bc + 1/H_ce);
7 end

The interfacial flow between the bubble and the emulsion phase is given

in Code snippet d.12.
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Code snippet d.12 – The implementation of the interfacial flows be-
tween the bubble phase and the emulsion phase,
getInterfacialFlow.m.

1 function f_n_bi_e = getInterfacialFlow(c_e, c_bi, K_be, V_bi)
2 f_n_bi_e = -K_be*V_bi*(c_e - c_bi);
3 end

To obtain the mass transfer coefficient, Code snippet d.13 has been uti-

lized.

Code snippet d.13 – The implementation of the mass transfer coefficient,
getMassTransferCoeff.m.

1 function K_be = getMassTransferCoeff(u_e, d_b, D_g, g, u_br, eps_e)
2 K_ce = 6.77*sqrt(D_g*eps_e*u_br/d_b^3);
3 K_bc = 4.5*u_e/d_b + 5.85*sqrt(D_g*sqrt(g))/d_b^(5/4);
4 K_be = 1/(1/K_ce + 1/K_bc);
5 end

The implementation of the Redlich-Kwong equation of state is presented

in Code snippet d.14.

Code snippet d.14 – The implementation of the Redlich-Kwong equation of
state, getPressure.m.

1 function [p, Z] = getPressure(c_H2, c_M1, c_M2, c_I, T, par)
2 % Calculates the pressure and the compressibility of a mixture using
3 % the Redlich-Kwong equation of state
4 % Volume corrections
5 b_H2 = par.b_H2;
6 b_M1 = par.b_M1;
7 b_M2 = par.b_M2;
8 b_I = par.b_I;
9 % Attractive potential corrections

10 a_H2 = par.a_H2;
11 a_M1 = par.a_M1;
12 a_M2 = par.a_M2;
13 a_I = par.a_I;
14 % Gas constant
15 R = par.R;
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16 % Mixture volume correction
17 B = c_H2*b_H2 + c_M1*b_M1 + c_M2*b_M2 + c_I*b_I;
18 % Mixture attractive potential correction
19 A = (c_H2*sqrt(a_H2) + c_M1*sqrt(a_M1) ...
20 + c_M2*sqrt(a_M2) + c_I*sqrt(a_I))^2;
21 % Total gas concentration
22 c = c_H2 + c_M1 + c_M2 + c_I;
23 % Pressure
24 p = c*R*T/(1 - B) - A/(sqrt(T)*(1 + B));
25 Z = p/(c*R*T);
26 end

Code snippet d.15 has been applied to calculate the internal flow in the

reactor.

Code snippet d.15 – The implementation of the internal reactor flows from
the bubble and emulsion phases to the freeboard region,
getReactorFlows.m.

1 function [f_n_H2, f_n_M1, f_n_M2, f_n_I, ...
2 f_V] = getReactorFlows(c_H2_1, c_M1_1, c_M2_1, c_I_1, p1,...
3 c_H2_2, c_M1_2, c_M2_2, c_I_2, p2, k)
4 if p1 > p2
5 f_V = -k*(p2 - p1);
6 f_n_H2 = f_V*c_H2_1;
7 f_n_M1 = f_V*c_M1_1;
8 f_n_M2 = f_V*c_M2_1;
9 f_n_I = f_V*c_I_1;

10 else
11 f_V = -k*(p2 - p1);
12 f_n_H2 = f_V*c_H2_2;
13 f_n_M1 = f_V*c_M1_2;
14 f_n_M2 = f_V*c_M2_2;
15 f_n_I = f_V*c_I_2;
16 end
17 end



APPENDIX E

STEP RESPONSES

That’s one small step for a man, one giant leap for mankind.

— N. Armstrong, 1969

The steps were performed by performing perturbations on the inputs

around a steady-state. The nominal inputs were

u0 =

[
1.813 · 10−4 m3 s−1 0.040 46 m3 s−1 0.007 04 m3 s−1

4.5 · 10−6 m3 s−1 0.012 05 kg s−1 353.15 K

]ᵀ

and the perturbations were chosen as

∆u =

[
1 · 10−5 m3 s−1 1 · 10−5 m3 s−1 1 · 10−5 m3 s−1

0 m3 s−1 1 · 10−5 kg s−1 0 K

]ᵀ

The resulting step responses are presented in the succeeding sections.
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e.1 Polymer composition

The perturbations of the polymer composition, i.e., the percentage of

propylene in the polymer, is depicted in Figure e.1.
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Figure e.1 – The resulting step responses of the polymer composition (xpol)
when perturbing the feeds. The blue line and the blue dashed line
correspond to a positive and negative perturbation respectively,
applied to the plant replacement model (prm). The red line and the
red dashed line correspond to a positive and negative perturbation
respectively, applied to the control model (cm).
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e.2 Melt flow index

The step responses of the melt flow index (mfi) are portrayed by Fig-

ure e.2.
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Figure e.2 – The resulting step responses of the melt flow index (mfi) when
perturbing the feeds. The blue line and the blue dashed line corre-
spond to a positive and negative perturbation respectively, applied
to the plant replacement model (prm). The red line and the red
dashed line correspond to a positive and negative perturbation
respectively, applied to the control model (cm).
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e.3 Production rate

The sensitivity of the production rate is displayed in Figure e.3.
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Figure e.3 – The resulting step responses of the production rate (m̂pol) when
perturbing the feeds. The blue line and the blue dashed line corre-
spond to a positive and negative perturbation respectively, applied
to the plant replacement model (prm). The red line and the red
dashed line correspond to a positive and negative perturbation
respectively, applied to the control model (cm).



APPENDIX F

VALIDATION OF THE OFFLINE

PARAMETER ESTIMATION

All models are wrong, but some are useful.

— G. E. P. Box & N. R. Draper, 19871

To validate the parameters obtained by the offline parameter estimation

from Chapter 3, a simulation of a series of steps in the manipulated

variables (mvs) was performed. The resulting monomer mole fractions

are given in Figure f.1, while the other measurements can be examined

in Figure f.2.

1Box, G. E. P. and Draper, N. R., Empirical model-building and response surfaces. 1987
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Figure f.1 – The validation of the offline parameter estimation for the mole
fraction of the monomers. The blue line is the plant replacement
model (prm) while the red dashed line and the green dash-dotted
line are the control model (cm) before and after fitting respectively.
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Figure f.2 – The validation of the offline parameter estimation for the tem-
perature of the cooling water, melt flow index (mfi), purge and
production rates. The blue line is the plant replacement model
(prm) while the red dashed line and the green dash-dotted line are
the control model (cm) before and after fitting respectively.



APPENDIX G

SETUP OF THE SIMULATION TOOLS

Cybernetica’s tool for nonlinear model predictive control (nmpc), cenit,1

together with their tool for carrying out simulations, RealSim.2 These two

tools communicate through tags via an open platform communcations

(opc) server. Tags were created for all the manipulated variables (mvs)

and the measurements in the Matrikon opc server.3 The measurements

were then set to be written by the simulator, RealSim and read by cenit.

The inputs on the other hand, were set up oppositely, thus they were

written to the server by cenit and read by RealSim. An illustration of the

tags in Matrikon is given in Figure g.1.

The graphical user interface (gui) for RealSim is displayed in Figure g.2,

where the simulations can be set to run for a given number of samples, to

1http://www.cybernetica.biz/v3/products/CENIT/index.html
2http://www.cybernetica.no/v3/products/RealSim/RealSim.html
3http://www.matrikonopc.com/
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Figure g.1 – The tags of the inputs and the measurements in the Matrikon open
platform communcations (opc) server.

a given number of samples, or indefinitely.

The tool for nmpc, cenit has a command line interface to the kernel in

addition to a gui. They are presented in Figures g.3 and g.4 respectively.

The gui, cenitmmi, allows the user to interactively adjust the set points

of the controlled variables (cvs), the weights, the constraints in addition

to viewing the predictions and the history of every calculated variable.



201

Figure g.2 – The graphical user interface (gui) of RealSim.

Figure g.3 – The command line interface of cenit.
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Figure g.4 – The graphical user interface (gui) of cenit, cenitmmi.



APPENDIX H

GRADE TRANSITIONS

All the additional results of the nonlinear model predictive control (nmpc)

grade transitions from Chapter 5 are presented in the subsequent sections.

h.1 Inert feed as an input

The mole fractions of the components are displayed in Figures h.1 and h.2,

while the feed of the monomers are given in Figure h.3.
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Figure h.1 – The mole fraction of hydrogen with and without the feed of inert
as an input.
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Figure h.2 – The mole fractions of propylene and ethylene with and without
the feed of inert as an input. The blue line and the dashed red line
indicate with and without inert respectively.
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Figure h.3 – The feed of propylene and ethylene with and without the feed of
inert as an input. The blue line and the dashed red line indicate
with and without inert respectively.
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h.2 Model mismatch

The purge and the production rate of the control model (cm) is presented

in Figure h.4.
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Figure h.4 – Production and purge rates with model mismatch. The red line
and the dotted green line denote the control model (cm) and the
set point respectively.
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