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Background and objective

Exhaust gas from a gas turbine contains a large amount of heat that can be utilized for process
purposes or for power generation. On offshore platforms, it is necessary to make heat recovery
units as compact and light weight as possible. The department, in cooperation with SINTEF
Energy Research and international oil companies engaged in a work which seeks to develop
compact heat exchangers for heat recovery from exhaust gas from gas turbines. In the present
project, finned tubes shall be considered. Existing correlations for heat transfer and pressure drop
of finned tube bundles have limited validity ranges. Data from various experimenters shall be
used to establish new correlations with a wider range of validity. A test rig for measurements on
heat transfer and pressure drop on finned tube bundles is available in the laboratory of NTNU.

The following tasks are to be considered:

1. The method of multivariate analysis shall be described, and a suitable procedure for the
analysis of the available heat transfer and pressure drop data shall be proposed.

2. Perform a multivariate analysis on the collected experimental data of solid and serrated
finned tubes having staggered tube arrangements. The resulting correlations of heat transfer
and pressure drop shall be presented, discussed and compared to available data and
correlations. A sensitivity analysis shall be performed. Based on the results, additional
experiments needed to improve the prediction accuracy and validity range shall be proposed.

3. Suggestions for further work shall be made.
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Abstract

The exhaust gas from gas turbines contains a large amount of heat that can be utilized for
process purposes or for further power generation. The heat recovery units on offshore
platforms are required to be as compact and light as possible. During the design of waste heat
recovery units correlations are used to estimate the heat transfer and pressure drop. The
correlations in the literature have limited validity ranges. The aim of this project was to
develop correlations with a wider range of validity than the correlations in the literature. Data
from different experimenters, collected in databases, were used in order to establish the new

correlations.
The report can be divided into the following two parts:
1) Literature survey of multivariate analysis:

A literature survey of the method of multivariate analysis was done. Here the aim was to find
a method that could be used in order to develop the new correlations. The multivariate method
called multiple linear regression was chosen. In order to select which variables to include in
the multiple linear regression, the variable selection procedure called best subsets regression
was carried out. The regression analysis was performed with the statistical software Minitab

16.

2) Regression analysis:

The data from the two available databases for serrated and solid fins were used in the
regression analysis. Correlations for heat transfer and pressure drop were developed for both
serrated and solid fins. It was decided to develop two different versions for each correlation:
The first version was using different dimensionless groups for fin geometry, while the second
version was using Ar (defined by PFR (1976)) as fin geometry effect. For both versions the
effect of the Reynolds number and the tube bundle layout was included. In addition, the

effect of the segment height on the heat transfer and the pressure drop was investigated.






Samandrag

Eksosgassen frd gassturbinar inneheld store mengder av varme som kan utnyttast til
prosessformal eller til vidare kraftproduksjon. Det er eit krav om at
varmegjenvinningseiningane pa offshore plattformar er sa kompakte og lette som mogleg.
Under utforminga av einingar for varmegjenvinning av spelvarme blir korrelasjonar nytta til a
estimere varmeovergangen og trykktapet. Korrelasjonane i litteraturen er gyldige for eit
avgrensa omrade. Mélet i dette prosjektet var & utvikle korrelasjonar som er gyldige for eit
storre omrade enn korrelasjonane i litteraturen. Data fra forskjellige eksperiment, samla i

databasar, vart nytta for & utvikle dei nye korrelasjonane.
Rapporten kan delast inn 1 folgjande to delar:
1) Litteraturstudie av multivariabel analyse:

Eit litteraturstudie av metoden multivariabel analyse vart gjennomfort. Her var mélet & finne
ein metode som kunne nyttast til & utvikle dei nye korrelasjonane. Den multivariable metoden
kalla multippel lineaer regresjon vart valt. For & velje kva variablar som skulle inkluderast 1
sjolve regresjonen vart ein seleksjonsprosedyre kalla best subsets regression nytta.

Regresjonsanalysen vart gjennomfert i det statistiske dataprogrammet Minitab 16.

2) Regresjonsanalysen:

Data fra dei to tilgjengelege databasane for serraterte og heiltrekte finner vart nytta i
regresjonsanalysen. Korrelasjonar for varmeovergang og trykktap vart utvikla for bade

serraterte og heiltrekte finner. Det vart bestemt a utvikle to versjonar for kvar korrelasjon:

Den forste versjonen brukte forskjellige dimensjonslause grupper for finnegeometri, medan
den andre versjonen brukte Ar (definert av PFR (1976)) som finnegeometrieffekt. For begge
versjonane vart ogsa effekten av Reynoldstalet og reyrlayout inkludert. I tillegg vart effekten

av segmenthggda pa varmeovergangen og trykktapet undersokt.
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Nomenclature list

Symbol Unit Comment

A m’ Total heat transfer area

Abpase tube m>/m Base tube surface area per unit length

Ar - Ratio of the overall extended surface area to the area of the base

2
Asegmented part, m°/m

fin
Arg -
Asolid part, fin m?/m
A m’
Af m*/m
C -
C, i
Cp J/kgK
m
e m
de m
dn m
i m
do m
Eu -
F -
Fq m*/m
Fy m*/m
G Kg/m’s
W/(m°K)
e m
h¢ m
hs m
W/(mK)

tube.

Surface area of segmented part of the fin (for I-foot fins) per unit
length

Ar for serrated fins calculated as for solid fins (see appendix B)
Surface area of solid part of the fin (for I-foot fins) per unit length
Outside surface area tube except fins

Outside surface area tube except fins per unit length

Constant

Mallows C,

Specific heat capacity

Diameter

Effective tube outside diameter, (de=d,*+2t for L-foot finned
tubes)

Fin diameter

Hydraulic diameter

Tube inside diameter

Tube outside diameter

Euler number, Eu=2App/ G2N1=2Ap/ pumaszl

F-value (for F-test)

Twice the free-flow area in diagonal plane between two tubes
Free-flow area in transversal plane between two tubes

Mass flux in narrowest free-flow area

Heat transfer coefficient

Effective fin height (he=hst for L-foot fins)

Fin height

Segment height of fin (for I-foot fins)

Thermal conductivity

Number of predictors in the regression model



MSE

liadj2
Re
Regr

Redh

Sf

SSreq
SSres
SSiot

umax

VIF

=

8 A~ A~ A~

m/s

m/s

Mean square error

Mean square regression

Number of observations

Number of fins per meter

Number of tube rows in direction of flow
Nusselt number, Nu=hd./k

Pressure drop

Longitudinal tube pitch

Prandt]l number, Pr=c,wk

Transversal tube pitch

Diagonal tube pitch

Ratio between the explained variation in the dependent variable y
and the total variation in 'y (R2=S Sree/SStot)
The adjusted R

Reynolds number, Re=pu,des/p
Reg=pumaxds/p

Regh=pumaxdn/pt

P-value

Fin spacing, s=s¢t

VMSE, square root of the mean square error.
Fin pitch

Components explained or accounted for by the regression line
Components unexplained (sum of squared residuals)
Total variation in y (SSi=SSregtSSres)

Fin thickness

t-value

Temperature

Average or bulk gas temperature

Average fin surface temperature

Tube wall thickness

Velocity

Velocity of air at minimum cross section

Variance inflation factor



Wi m Fin segment width

Greek letters:

Symbol Unit Comment

B © Tube layout angle (figure 2)
B - Beta coefficient
v kg/(ms) Kinematic viscosity
p kg/m3 Density
Subscripts:

adj Adjusted

b Bulk

dn Based on hydraulic diameter as length scale

de Based on fin diameter as length scale

e Effective

f Fin

h Hydraulic

1 Inner

max Maximum

0 Outer

reg Regression

res Residuals

S Surface

t Tube

tot Total

w Wall

0 Infinite
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1 Introduction

1.1 Background

Finned tube bundles are used both for waste heat recovery and steam production. Gas turbines
are widely used offshore for power generation. The exhaust gas from gas turbines contains a
large amount of heat that can be utilized for process purposes or for further power generation.
The heat recovery units on offshore platforms are required to be as compact and light weight
as possible. The Department of Energy and Process Engineering cooperates with Sintef
Energy Research and international oil companies in order to develop compact heat exchangers
for heat recovery from exhaust gas from gas turbines. The heat recovery units arranged as

finned tube bundles shall be considered in the present project.

During the design of a waste heat recovery unit (WHRU) correlations are used to estimate the
heat transfer and pressure drop. The correlations developed by the different authors for heat
transfer and pressure drop for finned tube bundles have limited validity ranges. Therefore data
from different experimenters, collected in databases, shall be used to establish new

correlations with a wider range of validity.

1.2 Structure of the report

Chapter 2 gives an overview over multivariate analysis. Here the multivariate analysis is
explained in general and more specifically. Also the results from a literature survey of
methods used in earlier reports are presented. Further the multivariate method multiple linear
regression is described in detail as this method was chosen for the data analysis. The different
techniques for multiple linear regression are described, because the choice of technique is

important for the variable selection procedure.

In chapter 3 the results from the regression analysis are presented. The results from the
analysis of the heat transfer data and pressure drop data for serrated fins are presented in
chapter 3.4.2. The results from the analysis of the same data for solid fins are presented in
chapter 3.4.3. The correlations developed in the analysis are compared with correlations from
the literature in chapter 3.5. In chapter 3.6 a sensitivity analysis of the correlations presented
in chapter 3.4 is performed. The results from an investigation of the impact of the segment

height on the heat transfer and on the pressure drop are presented in chapter 3.7.



2 Multivariate analysis

2.1 General about multivariate analysis

According to Esbensen et al. (2002) most of the problems in the world are multivariate in
nature, in other words there are many variables that contribute to them. It is very seldom that a
property only depends on one variable. Multivariate analysis consists of a collection of
methods that can be used when several measurements are made on each individual object in
one or more samples. The measurements are usually referred to as variables, while the

individuals or objects often are referred to as units or observations, Alvin (2002) .

Often it is necessary to observe, study or measure more than one variable simultaneously. If
the measuring correspond directly to the phenomenon being investigated everything is fine,
Esbensen et al. (2002). For example, using a temperature sensor to measure a temperature is
possible. When a desired parameter cannot be measured directly, it is necessary to turn to
indirect observations, Esbensen et al. (2002). This means that something else needs to be
measured to determine what one really wants to know. An example is when the aim is to
measure the heat transfer coefficient: Here indirect observations as temperature and flow rate

are measured in order to find the heat transfer coefficient.

The aim of this project is to find how different parameters affect the heat transfer and the
pressure drop in finned tube bundles. Neither the heat transfer nor the pressure drop depends
on one single parameter. The combination of different geometrical parameters determines the
heat transfer and the pressure drop. Therefore a multivariate analysis should be performed.
Here the different parameters for the flow, the fin geometry and the tube bundle layout will be

-1/3

the variables, while the heat transfer (On dimensionless form, NuPr" ") and the pressure drop

(On dimensionless form, Eu) will be the observations in the respective analysis.
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2.2 Methods of multivariate analysis

Esbensen et al. (2002) divide multivariate analysis into three main groups:
1) Data description

According to Esbensen et al. (2002) a large part of multivariate analysis is concerned with
simply “looking” at the data. The aim of the data description could be different things, for
example to determine means, standard deviations or correlation. For example to find the
correlation between the heat transfer and the different parameters could be useful as this could

give an impression of what to expect from the multivariate data analysis later on.

A common method for data description is Principal component analysis (PCA).

2) Discrimination and classification

According to Esbensen et al. (2002) discrimination separates groups of data. The method

classifies observations into homogenous groups, for example sweet and sour apples.
Discriminant analysis is a common method for discrimination.

Classification has a similar purpose as discrimination, but according to Esbensen et al. (2002)

here one typically knows the relevant groupings in the data set before the analysis.

3) Regression and prediction

Regression is an approach to relate two sets of variables to each other. This means to

determine one (eventually several) y-variables on the basis of a set of relevant x-variables.

There are different regression methods. Examples are Principal Component Regression

(PCR), Partial Least Squares Regression (PLS-R) and Multiple Linear Regression (MLR).

Prediction means to determine y-values for the new x-objects, based on a previously
estimated x-y model, Esbensen et al. (2002). For example to predict NuPr™'” for a completely

new geometry by using a correlation developed earlier.

11



2.3 Methods used in the literature

In order to find a suitable procedure for the analysis of the available heat transfer and pressure
drop data, a literature study was done searching for the methods other authors had used. In
most of the reports it was only mentioned that multiple linear regression was used, but Briggs

and Young (1963) described their method more specific:

They found the dimensions that could be important in describing the tube and tube layout (hy,

s, t, d, and dy). The dimensions were further arbitrarily arranged into dimensionless groups

s t . . . .
(?’ e ) As many parameters as possible were considered in order to prevent the exclusion
o

of any significant parameters.

A step-by-step regression analysis of the data was made, and an F level (See chapter 3.1 for
definition) of 3,95 was used for removing any parameters which was not significant. For the
number of data an F level=3,95 indicated that the parameter under question had a probability
of 95 % of being significant to the correlation. The computer program they used selected the
dimensionless groups with the largest range of values as the first variable to be tried. If the F
level of the variable was greater than 3,95, the variable was included in the correlation. After
the first dimensionless group had been considered, the computer then selected from the
remaining groups the one with the largest range of values and repeated the process. This step-
by-step regression analysis was continued until all the variables had been considered. In other

words a forward selection (See chapter 2.4.1.1) method was used.

Naess (2007) also described the regression method he used in detail. The dimensionless heat

transfer coefficient was expressed as:

Nu = f,(geometry) - f, (Redf) - pri/3 (1)

The influence of the Reynolds number was first studied, and the relation between NuPr™* and

Re was observed to follow simple power-law dependencies (See equation below):

Nu = C, - Re™ - Prt/3 (2)

The individual exponents m were evaluated by a linear least squares regression analysis.

12



The individual geometry specific constants C; were calculated using the equation below:

n

c 1 Z:Nui-Pr_l/3 ;
i=

The average value of m, m, was used in the equation above.

In order to explore the impact of the geometry, several dimensionless groups (d¢/d., Pi/d. etc.)
were constructed and fitted to the data assuming simple power-law dependencies. Parameters
cancelling each other and parameters with unrealistically high or low exponents were
removed. Parameters not contributing significantly to the improvement of the correlation
accuracy were also discarded. Following this procedure the heat transfer equation had the

general form:

Nu = (C, -Redfm - Pri/3 - f,(Tube layout)
“)
- f2(Fin geometry)

The same method was used for the pressure drop data, resulting in the general equation for the

Euler number:

— . La ], :
Eu=0C, [C3 + Ren] fz(Tube layout) )
fa(Fin geometry)

The method used by Ness (2007) also seems like a stepwise method, as several different

parameters are included and removed if they are not significant (Backward elimination).

Conclusion: The literature survey gave the impression that multiple linear regression was the
common method to analyze the experimental heat transfer and pressure drop data. Therefore it

was chosen to use this method also in this project.
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2.4 Multiple linear regression

Multiple linear regression is a general statistical technique through which one can analyze the
relationship between a dependent or criterion variable and a set of independent or predictor
variables. According to Kasai (1998) multiple linear regression may be viewed either as a
descriptive tool by which the linear dependence of one variable on others is summarized and
decomposed, or as an inferential tool by which the relationships in the population are

evaluated from the examination of sample data.

Usually the response variable is denoted by y and the set of predictor variables by xi, X5,X3,...,
Xk, where k denotes the number of predictor variables. The true relationship between y and x,

X2,X3,..., Xk can be approximated by the regression model, Chatterjee and Hadi (2006):

y = f(x1,%X2, 0, Xp) + € (6)

where ¢ is assumed to be a random error representing the discrepancy in the approximation.

An example of the relationship between y and xi, X;,X3,..., Xk 1s the linear regression model:

y=Pot+Br-x1+ P Xy + +Prrxpt+ € (7

where B(), Bl

to be determined from the data. The regression coefficient, for example ;, stands for the

B are called the regression coefficients or parameters, are unknown constants

......

change in y with a change of one unit in x; when the other variables x,,...,xx are held constant

or controlled for. The estimated regression equation becomes:

P=PFo+Br s+ By xg -+ Prx + € (8)

A hat on top of a parameter denotes an estimate of the parameter. The value ¥ is called the

fitted value, Chatterjee and Hadi (2006). Using equation 8, one can compute n fitted values

14



one for each of the n observations in the data. For example, the fitted ith value would be:

Ji=PBo+ B1-Xig+PrXip+ -+ P X + £ )

The total sum of squares in y is the variability of the dependent variable y. According to

Walpole et al. (2007) this can be partitioned into components which are:

1) Components that are explained or accounted for by the regression line (regression sum

of squares), denoted by SS;.; which is defined in equation 10.
2) Components that are unexplained (the sum of squared residuals), SS,.;, defined in

equation 11.

SSreg = ) 9= 7)? (10)

SSres = ) (7= 9)? (a1

The total variation in y can then be defined as:

SStot = SSreg + 5Sres

SSee= ) G =9+ ) (v =97

(12)

When this portioning is given, a measure of prediction accuracy and the strength of linear
association is the ratio between the explained variation in the dependent variable y and the

total variation in y:

R2 _ SSreg _ SStot - SSres

= (13)
SStot SStot

The adjusted R? or adjusted multiple coefficient of determination is defined as:
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SSres/(n —k— 1)

R.,.2=1-—
ad) SStot/(n—1)

(14)

Walpole et al. (2007) point out that the adjusted R? is a variation on R? that provides an
adjustment for degrees of freedom. This term cannot decrease as terms are added to the
model. In other words, R? does not decrease as the error degrees of freedom n-k-1 are
reduced, the latter result being produced by an increase in k, the number of model terms,

Walpole et al. (2007).

2.4.1 Multiple linear regression techniques
Multiple linear regression can be performed with different techniques. In the next sections

two of the most common multiple regression techniques are presented:

2.4.1.1 Stepwise regression

One standard procedure for searching for the “optimum subset” of variables in the absence of
orthogonality is a technique called stepwise regression, Walpole et al. (2007). This is based on

the procedure of sequentially introducing the variables into the model one at a time.

One way to select variables is to use the method called forward selection. In the forward
selection procedure the variables are inserted one at a time until a satisfactory regression

equation is found. Walpole et al. (2007) suggest the following procedure:

Step 1: Choose the variable that gives the largest SS,., when performing a simple linear
regression with y or, equivalently, that which gives the largest value of R?. This initial

variable is called x;.

Step 2: Choose the variable that when inserted in the model gives the largest increase in R, in

the presence of x;, over the R? found in step 1. This is the variable Xp for which

R(BylB1) = R(B11Bp) — R(BY) (15)
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is largest. This variable is called x,. The regression model with x; and x» is then fitted and R

observed.

This process is continued until the most recent variable inserted fails to induce a significant
increase in the explained regression. Such an increase can be determined at each step using

the appropriate F-test or t-test. For example in step 2 the value

R(Ba1By)
F= otk (16)

can be used to test the appropriateness of x, in the model. Here the value of S? is the mean

square error (MSE) for the model containing the variable x; and x,. If F < Fo(1,n-3) at step 2
for a prechosen significance level (often a=0,05 is chosen), x5 is not included and the process
is terminated, resulting in a simple linear equation relating y and x;. However, if F > Fo(1,n-

3), one can proceed to the next step and try to add more variables.

Backward elimination involves the same concept as forward selection except that one begins
with all the variables in the model, Walpole et al. (2007). Walpole et al. (2007) present an

example where five variables are under consideration. The procedure is as follows:

Step 1: Fit a regression equation with all five variables included in the model. Choose the
variable that gives the smallest value of the regression sum of squares adjusted for the others.

Suppose that this variable is x,. Remove x; from the model if

— R(,BZ I.Bl' ,83' ,84-' ,85)

- (17)

F

is insignificant (If F <F,). If one of the variables is removed in step 1, perform the regression
with the remaining variables and repeat step 1.This process is repeated until the variable with
the smallest adjusted regression sum of squares results in a significant F-value for some

predetermined significance level (In other words until F > F,).
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Stepwise regression is accomplished with a slight but important modification of forward
selection procedure. The modification involves further testing at each stage to ensure the
continued effectiveness of variables that had been inserted into the model at an earlier stage,
Walpole et al. (2007). This is an improvement of forward selection because variables are both
inserted and deleted. In the forward selection method none of the variables from the earlier
stages are removed. When the stepwise regression is performed and a new variable has been
entered into the regression equation through a significant increase in R as determined by the
F-test, all the variables already in the model are subjected to F-tests in light of this new
variable and are deleted if they do not display a significant F-value. The procedure is

continued until no additional variables can be inserted or deleted, Walpole et al. (2007).

2.4.1.2 Best subsets regression
The best subsets regression procedure (also called all possible subsets regression) is a
common procedure when doing multiple regressions. This method goes beyond stepwise

regression and tests all possible subsets of the set of potential independent variables.

According to Minitab’s Statguide (Minitab version 16, 2010) the general method is to select
the smallest subset that fulfills certain statistical criteria. The reason that one would use a
subset of variables rather than a full set is because the subset model may actually estimate the
regression coefficients and predict future responses with smaller variance than the full model

using all predictors.
The best subsets regression procedure involves the following steps:

Step 1: First all the possible regression models derived from all the possible combinations of

the candidate predictors (this can be a very large number of possible models).

As an example, when there are three candidate predictors X, X, and xs, there are eight

possible regression models that can be considered:

- The one model with no predictors

- The three models with only one predictor each; the model with x; alone, the model
with x, alone and the model with x5 alone.

- The three models with two predictors each; the model with x; and x,, the model with

x; and x3 and the model with x, and x3.
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- And the one model with all three predictors; the model with x;, x, and x3.

In general, if there are k possible predictors, then there are 2* possible regression models
containing the predictors. So for many predictors there will be a lot of models to consider, but

statistical software like Minitab manages to do this work.

Step 2: From the possible models identified in the first step, determine the one-predictor
models that do the best at meeting some criteria, the two-predictor models that do the best and
so on. When this is done, the number of possible regression models to consider is reduced. In

order to pick the best models; the following criteria can be used:
1) The model with the largest R
2) The model with the largest adjusted R?, Radjz.

3) The model with the smallest MSE (Mean square error), or S = vMSE.

SSres _ 2(37_37)2 (18)

MSE:n—k—l_n—k—l

4) The model with the smallest Mallows C,,. The Minitab’s Statguide gives this advice: Look
for models where Mallows C,, is small and close to the number of predictors in the model plus
the constant (p=k+1). A small Mallows C, value indicates that the model is relatively precise
(has small variance) in estimating the true regression coefficients and predicting future
responses. Models with considerable lack-of-fit and bias have values of Mallows C,, larger
than p. According to the Statguide of Minitab the Mallows C, is calculated the following way:

SSres,
Cp =FEY:—(”—2P) (19)

where SS;¢5p 18 SS;es for the model under consideration, MSE,,, is the mean square error for

the model with all predictors included, n is the number of observations and p is the number of

terms in the model, including the constant.
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2.5 Choice of multiple linear regression method for the data

It seems like the stepwise regression method is the most commonly used regression method in
the old reports. However, a meeting with a statistician gave the impression that the stepwise
regression method was out of fashion and not recommended to use. Instead it was
recommended to use the best subsets regression, because this tests all the possible variables at
once and finds the best combination of the variables. Whittingham et al. (2006) also suggested
that use of stepwise multiple regression was bad practice. The following principal drawbacks

of stepwise multiple regression were presented:

1) Bias in parameter estimation

2) Inconsistencies among model selection algorithms

3) An inherent (but often overlooked) problem of multiple hypothesis testing

4) An inappropriate focus or reliance on a single best model

Best subsets regression tests all possible models and identifies the best-fitting regression
models that can be constructed with the variables specified. It is an efficient way to reduce the
amount of variables in the model. In addition, no variables are forgotten as all the possible
combinations of variables are tested (All possible models with one variable, two variables and

so on are tested).

The Statguide of Minitab (Minitab 16) gives the following general guideline when the choice

is between best subsets regression and stepwise regression:

1) For data sets with a small number of predictors, best subsets regression is preferable to

stepwise regression because it provides information on more models.

2) For data sets with a large number of predictors (>32 in Minitab), stepwise regression is
preferable to best subsets regression because best subsets regression requires a significant

amount of computational resources (which may not be available).

In the regression analysis the amount of variables would be quite much lower than 32.
Therefore it was decided to use the best subsets regression method when working with the

heat transfer and pressure drop data.
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2.6 Software for the data analysis

The statistical software Minitab (version 16, 2010) has been used for the data analysis.
Minitab can perform different multivariate methods, plot graphs, calculate basic statistics etc.
Both best subsets regression and stepwise regression can be performed in the program.
Especially the best subsets regression command is very useful as the program manages to find

the best models when using several variables.

Another positive thing about Minitab is that data from Microsoft Excel can be copied directly
into the program. The data for heat transfer and pressure drop are exported from the database

program Filemaker Pro to Microsoft Excel. Further it is copied from Excel into Minitab.
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3 Regression analysis

3.1 Test for significance

To test whether a significant relationship between the dependent variable and all the
independent variables exists, the F-test could be used. The F-test is also referred to as the test
for overall significance. Here the F-value must be calculated. The F-value is defined by the

following ratio:

SSreglk R?/k

= SSodn—k—D  A-RD/mn—k—1) 0

F is then compared with the F-distribution, with three different parameters; k, n-k-1 and the
significance level (typically 95 %), Esbensen et al. (2002). The F-value can be found in a
statistical table. If F>F-value, then the effect is regarded to be significant, Esbensen et al.

(2002).

A complementary measure is the P-value, Esbensen et al. (2002). The P-value is the
probability that an independent variable has no effect on the dependent variable. If the P-value

found is small, the effect is significant.

Usually, a hypothesis is formulated to test for overall significance as done by Walpole et al.
(2007). Here the null hypothesis is that all the parameters are equal to zero, while the

alternative hypothesis is that not all of the parameters are equal to zero:

Ho: B1=P2=....=Px=0

H,: One or more slope terms is non-zero.

The rejection rule: For a certain value a (often 0, 05) and a certain degrees of freedom find F,,.

Reject Hy if P-value<a or F> F, When the regression analysis is performed in Minitab, the P-

value is a part of the output.

The t-test on the other hand tests for individual significance, in other words it is used to find
out whether each of the independent variables is significant. The t-value is used to perform

the t-test. The t-value can be calculated the following way:
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t=—
B,

@2y

As for overall significance a hypothesis test is formulated. The null hypothesis is that the
single parameter is equal to zero, while the alternative hypothesis is that the parameter is non-

Ze10:
Ho: Bi=0
Hai Bﬁfo

The rejection rule: reject Hy if P-value<a or if t<-t, or t>t,» where t, is based on a t-

distribution with n-k-1 degrees of freedom.

3.2 Multicollinearity

When doing multiple regression analysis one should be aware of the possibility for
multicollinearity in the regression model. According to Esbensen et al. (2002) collinearity
means that the x-variables are intercorrelated to a non-neglectable degree, that the x-variables

are linearly dependent to some degree; for example

xl = f(xz,X3,...,xk)

Lee and Cincotta (2007) point out that multicollinearity affects the standard errors of
estimated regression coefficients, biasing significance tests, the estimated regression

coefficients themselves and possibly also forecasted values for the dependent variable, y.

In order to find out if there is collinearity in the model one can evaluate the term VIF
(Variance inflation factor). VIF is the degree to which the variance f; is increased because of

the degree to which x; is correlated with the other predictors, Lee and Cincotta (2007).

VIF can be evaluated the following way, Stine (1995):
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1
VIF, = 22
= TTRz 22)

where R, is the R? statistics when doing the regression with the variable x as the response

and all the other variables as predictors (x-variables).

A rough rule of thumb is that variance inflation factor greater than 10 give some cause for

concern, Der and Everitt (2012). Larose (2006) presents the following rule of thumb:

VIF>5 indicates moderate multicollinearity, VIF>10 indicates serious multicollinearity.

3.3 Description of the procedure chosen for the data analysis
In this section the method used when analyzing the heat transfer and pressure drop data will

be described. There will also be examples of output and how to interpret the output:

As mentioned in the previous chapter it was decided to perform multiple linear regression

analysis of the available data. The method can be divided into two different steps:
1) Performing the best subsets regression in order to do the selection of variables.

2) Perform the multiple linear regression using the variables selected from the best subsets

regression.

After step two it is important to study the results of the regression analysis, including the beta-
coefficients, R*-value, P-values (See chapter 3.1) and variance inflation factor (See chapter

3.2).

As an example the output from the regression analysis for all the heat transfer data (except
from the data from Cox (1973) and Schryber (1945), see chapter 3.4.1.2 for discussion) for

serrated fins (for F/F4<1,0) is presented below:

The data were log;o-transformed before the regression as the aim was to get a correlation on

the following form:

24



P
log(Nu - Pr=%/3) = log(C,) + a-log(Re) + b - log (Ft) + ¢ - log (
!

+d-log(:—;) + e -log(£)+f-log(%)

The best subsets regression using the dimensionless groups in the equation above gave the

Nu - Pr=3 = C, - Re® - (Tube layout ef fect)?

following results:

- (fin geometry ef fect)®

Best Subsets Regression: logNuPr versus logRe; logPtPI; ...

Response is logNuPr
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(24)

For five variables the R” reached its maximum and the value for Mallows Cp was the smallest

one. S was also the lowest here. When the regression was performed with five variables, the

dimensionless group t/s¢ was found to be insignificant so therefore the regression was

performed with four variables instead. Actually the R did only increase with 0,1 % when

including t/s, which was no significant increase in R*. After the selection of variables through
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best subsets regression, the multiple linear regression (step 2) was performed. The output is

presented below:

Regression Analysis: logNuPr versus logRe; logPtde; logheff/sf; logdf/de

The regression equation is
logNuPr = - 1,15 + 0,740 logRe + 0,236 logPtde - 0,206 logheff/sf
+ 0,507 logdf/de

Predictor Coef SE Coef T P VIF
Constant -1,15304 0,04873 -23,66 0,000

logRe 0,740438 0,008687 85,24 0,000 1,090
logPtde 0,23588 0,04979 4,74 0,000 1,229
logheff/sf -0,20572 0,01970 -10,44 0,000 1,356
logdf/de 0,50728 0,07899 6,42 0,000 1,301

S = 0,0492073 R-Sq = 96,0% R-Sq(adj) = 96,0%

Analysis of Variance

sSource DF SS MS F P
Regression 4 19,4764 4,8691 2010,90 0,000
Residual Error 332 0,8039 10,0024

Total 336 20,2803

Source DF Seqg SS

logRe 1 19,1692

logPtde 1 0,0274

logheff/sf 1 0,1799

logdf/de 1 0,0999

Minitab displays the regression equation. In addition the standard error, the T-value, the P-
value and the variance inflation factor (VIF) for each of the coefficients are displayed. In the
analysis of variance table the degrees of freedom, $S,.4, SSyes) MSyey, MSE, F-value and P-
value for the model are presented. All the parameters are significant (P-value<0,05), the VIF

is acceptable (no multicollinearity) and the R* is high.
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At last the regression equation should be transformed:

—0,20572
Nu - PT'_l/3 — 10—1,15304— . ReO,74—O4— . (E) .

Sf

B 07408 he —0,20572
Nu- Pr=1/3 =0,0703 - Re®740%. ~ -
f

df 0,5073 (
de
>0,5073 (

df
de

0,2359
P

de

0,2359
P

de

(25)
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3.4 Results from the regression analysis

3.4.1 Introduction
In the regression analysis for the heat transfer and pressure drop data for serrated fins, the data

was divided into two parts:

1) The part of the data where the transversal free-flow area was the narrowest, in other words

where Fi/F4<1,0.

2) The part of the data where twice the diagonal free-flow area was the narrowest, F/F4>1,0.
This was only the case for some of the geometries from Naess (2007) (Geometry 3, 5, 7, 8, 9,
10 and 11).

This division was done to see how the effect of tube layout changed when the narrowest free
flow area shifts from the transversal to the diagonal. Nass (2007) observed that the heat
transfer coefficient increased with an increasing Fy/F4 up to a maximum at Fy/F4=1,0. After

that the heat transfer coefficient decreased monotonically.

For solid fins, there were only data for F/F4<1,0. The data for both serrated and solid fins

used in the analysis are for staggered tube layouts.

All the Minitab output from the regression analysis can be found in a separate attached file.

173 , where the effective

The data points for heat transfer in the databases are given as NuPr
tube outside diameter is the length scale for Nu. The data points for pressure drop in the
databases are given as the Euler number, where the velocity is taken at the narrowest cross-
section. The Reynolds number is based on the effective tube outside diameter as length scale

and the velocity in the narrowest cross-section.
The general form for the correlations for heat transfer and pressure drop respectively:

Nu - Pr='/3 = Constant - Re™ - f;(Tube layout) 26)
- f,(Fin geometry)

Eu = Constant - Re™ - f;(Tube layout) @
- fu(Fin geometry)
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Different dimensionless groups for fin geometry and tube bundle layout were tried, and it was

decided to develop two sets of equations:

One set where different dimensionless groups for fin geometry were used and one set where

only one dimensionless group for fin geometry was used (Ar from PFR (1976)). Ar expresses

the ratio of the overall extended surface area to the area of the base tube. The advantage of

using Ar as dimensionless group for fin geometry is that the regression equation becomes

simpler. However, the data from Kawaguchi et al. (2005)/Kawaguchi et al. (2006b) (for heat

transfer) and Kawaguchi et al. (2004)/Kawaguchi et al. (2006a) (for pressure drop) could not

be used when Ar was used as dimensionless group for fin geometry because the segment

width for the serrated fins was not given in these papers. Ar was calculated the following way

for serrated (L-foot and I-foot respectively) fins:

t
Ar=1+2-1vf-he-<1+—>
Wr

!
Ar = At + Asolid part,fin + Asegmented part,fin

Abase tube

,where

Al =m-dy-(1—N-t)
T 2
Asolid part,fin — Z ' ((do +2- (hf - hs)) - doz) -2 Nf

Asegmented part,fin = (2 “hg - Wy + 2-hg-t+ Wy * t)

.n-(d0+2-(hf—hs))
Wr

Apase tuve = T~ d,

For solid fins Ar was calculated using the equation below:

(28)

(29)

(30)

1)

(32)

(33)
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_ T
Ar=1+2-Np-he- {1+ (34)
o

The figure below shows the difference between serrated and solid fins:

Figure 1 Tube with serrated fins (to the left) and tube with solid fins (to the right). (Delfintubes)

In the figures below the parameters for tube bundle layout and fin geometry are defined:

Py

IPt WLy

el B B

P

Figure 2 Tube bundle layout (staggered) (Nzess (2010))
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Figure 3 Fin geometry definitions (Nzess (2010))

In the figure below the effective tube outside diameter and the effective fin height is defined

for I-foot fins and L-foot fins respectively:

de de

Figure 4 Effective tube outside diameter and effective fin height (Kaspersen (1995))
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3.4.2 Serrated fins

3.4.2.1 The data

The data for heat transfer and pressure drop for serrated fins were taken out from a database
implemented in the database program Filemaker Pro. The database was implemented by
Kaspersen (1995). Heat transfer and pressure drop data from experiments after 1995 was

added to the database by Feten (2012).

Table 1 Data sources for heat transfer and pressure drop data for serrated fins

Data Fin type
Schryber (1945) Nu, Eu L-foot
Worley and Ross (1960) Nu, Eu Stud fin tubes
Vampola (1966) Nu, Eu L-foot
Ackerman and Brunsvold (1970) | Nu, Eu Stud fin tubes
Cox (1973) Nu, Eu Integral fins
Rabas and Eckels (1975) Nu, Eu L-foot
Weierman (1977) Eu I-foot
Weierman et al. (1978) Nu, Eu I-foot
Hashizume (1981) Nu, Eu [-foot
Kawaguchi et al. Nu, Eu I-foot
(2004)/Kawaguchi et al.
(2005)/Kawaguchi et al.
(2006a)/Kawaguchi et al. (2006b)
Naess (2007) Nu, Eu L-foot
Hofmann (2009) Nu, Eu U-shaped
Ma et al. (2011) Nu, Eu I-foot




3.4.2.2 Heat transfer data

The regression analysis was first performed for all the heat transfer data for Fy/F4<1,0. When
the calculated and experimental values for NuPr™® were compared, it was observed that the
data from Cox (1973) were calculated too low (ratio between calculated and experimental
values ca. 0,7-0,85). Cox (1973) used integral fins in the experiments, so this could be the
reason why the regression equation estimated these data too low. On the other hand the data
from Schryber (1945) were estimated too high (ratio between calculated and experimental

values ca. 1,2-1,45).

In order to get a more accurate regression equation for the rest of the heat transfer data, the
data from Cox (1973) and Schryber (1945) were removed. After that the regression analysis

was performed again.

The regression analysis gave the following regression equation for the heat transfer for

serrated fins (the same equation as the one presented in the example in chapter 3.3):

P 0,2359 h —0,20572
Nu - Pr=%/3 = 0,0703 - Re®7404. (—t) (-2
de Sf

df 0,5073
de

The exponent for the Reynolds number is rather high (0,7404) compared to the exponent in

(25)

the correlation from Naess (2007). The reason could be that the large amount of data from
Kawaguchi et al. (2006b) dominate in the regression analysis (the exponent for the Reynolds
number in their correlation was 0,81). Also it is observed that the exponent for the ratio
between the fin diameter and the effective tube outside diameter is almost the same as in the
correlation from Weierman (presented in McKetta (1992)). In the figure below the calculated
values using the equation above are plotted against the experimental values in order to

determine the prediction accuracy:
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Figure 5 Prediction accuracy of regression equation (eq. 25) for heat transfer (serrated fins)

The figure below shows the calculated value divided by the experimental value plotted against

the Reynolds number:
1,6
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E
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Q
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Figure 6 Ratio between calculated (eq. 25) and experimental value against Re (serrated fins)
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The data from Rabas and Eckels (1975) were calculated higher than the experimental values
(ratio 1,2-1,4 for geometry 3 and 4). It was also seen that geometry 1 from Neess (2007) was
overestimated (ratio 1,2-1,3). One reason for this could be the Reynolds number exponent
which is higher in this correlation than in the Ness (2007) correlation (0,74 and 0,65
respectively). In addition it can be seen that the data from Kawaguchi et al. (2006b) have a
lower calculated value than experimental value. As mentioned, the Kawaguchi et al. (2006b)
correlation had a higher exponent for the Reynolds number than the regression equation so

this could be the reason why the data are underestimated.

90,2 % of the data were predicted within +20 %. 71,8 % of the data were predicted within £10
%.

Further the regression analysis was performed using Ar instead of all the dimensionless
groups for fin geometry for the same data as before except from the data from Kawaguchi et
al. (2006b)/Kawaguchi et al. (2005) (segment width not given). As in the earlier regression
analysis, it was concluded that the data from Cox (1973) and Schryber (1945) were calculated
too low and too high respectively. Therefore it was decided to remove those data also in this
case. When the regression analysis was performed again without the mentioned data, the

following regression equation was developed:

0,2902

P
Nu - Pr=1/3 = 0,0821 - Re®73% - (d—f> - Ar=0.0697 (35)
e

The exponent for Ar is quite low, but significant. The exponent for the Reynolds number is in
the same range as for the correlation using the dimensionless groups for fin geometry
(equation 25), even though the data from Kawaguchi et al. (2005)/Kawaguchi et al. (2006b)
were not included. The calculated values using the regression equation above are plotted

against the experimental values in the figure below:
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Figure 8 Ratio between calculated (eq. 35) and experimental value against Re (serrated fins)

The regression equation predicted 98,4 % of the data within £20 % . As can be seen from the

figure above, only some data from Rabas and Eckels (1975) were calculated more than 20 %
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higher than the experimental values. 81,2 % of the data were predicted within +10 %. The
prediction accuracy is as expected better for this equation, because there are fewer data than

in the first case (Kawaguchi et al. (2005)/Kawaguchi et al. (2006b) not included in this case).

The regression analysis of the heat transfer data for Fi/F4>1,0 was performed the following

way:

NuPr!”? was divided by the fin geometry and Reynolds number effect found in for Fy/F4<1,0:

C. - Nu - pr=1/3
7 f(fin geometry) - Re™ (36)
Nu - pr=1/3
(3 = ~020750 ;4\ 0:5073
00703 - Re0.7404 . (E) . <_f)
! Sf de

Further the regression was performed using C5 as the response (i.e. y-variable) and different

dimensionless groups for tube bundle layout as predictors.

This led to the following regression equation:

h —0,20572 d 0,5073
Nu - Pr=/3 = 0,1539 - Re0740% . (—e> : (—f>

Sf de (37)
P
(&)

-0,7726

The equation shows that increasing the ratio between the transversal and longitudinal tube
pitch decreases the heat transfer coefficient for Fi/F4>1,0, which is in agreement with the

conclusions from Ness (2007).
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Figure 10 Ratio between calculated (eq. 37) and experimental value vs Re (serrated fins) for

F/Fq>1,0

All the data were predicted from +10 % to -12 %.
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At last the same regression analysis was performed for Fy/Fg>1,0 using the Ar correlation:

c Nu - pr=1/3 B Nu - pr=1/3 (38)
* 7 f(fin geometry) - Re™ ~ 0,0821 - Re0739% - Ar—0.0697

Regression analysis was performed with C, as response and different dimensionless groups

for tube bundle layout as predictors. The analysis gave the following regression equation:

—0,60923

P
Nu - Pr=1/3 = 0,1698 - Re®73% . (Ft) - Ar—00697 (39)
l

Also for this equation the heat transfer coefficient decreases when the ratio between the

transversal and longitudinal tube pitch is increased.
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Figure 11 Prediction accuracy for regression equation (eq. 39) using Ar for Ft/Fd>1,0 (serrated

fins)
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All the data were predicted within +12 % to -14 %.
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3.4.2.3 Pressure drop data

Before starting the regression analysis, all the pressure drop data represented as the Euler
numbers were plotted against the Reynolds number (Re<50 000) for F/F4<1,0. The Reynolds
number restriction (Re<50 000) was chosen because it was observed that the Euler number

became approximately constant for Re>50 000:
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Figure 13 Pressure drop data for serrated fins vs Re

From the inspection of the data it was observed that only for the data from Cox (1973),
Hofmann (2009), Kawaguchi et al. (2006a)/ Kawaguchi et al. (2004), Ma et al. (2011),
Weierman (1977) and Weierman et al. (1978) there were six or more data points for the Euler
number for most of the geometries. Worley and Ross (1960) tested 16 different geometries,

but there were only ca. three data points for the Euler number for each geometry.

The following authors had five points for the Euler number for each geometry: Ackerman and
Brunsvold (1970), Hashizume (1981), Rabas and Eckels (1975), Schryber (1945) and
Vampola (1966).

The regression analysis was first tried for all the data for Re<50 000. This resulted in a model
with a very low R (ca. 41 %) and high MSE (Mean square error). A trial and error procedure
was performed; here data from the different authors were removed in order to find out if the

model was improved. It was observed that the model was improved a lot when the data from
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the authors with few data points were removed before doing the regression analysis.
Therefore only the data from the authors with six or more data points for the Euler number

were included in the regression analysis.

The regression analysis using the data from authors with six or more data points resulted in

the regression equation below:

~0,6928 ~0,623 0,2827
Eu = 7,132 - Re~91775. (&> . (ﬂ> . <E>
d, d, 55

0,4954
(%
de

(40)

The regression equation shows that the tube bundle layout has a very large impact on the
pressure drop. Both an increase of the transversal and longitudinal tube pitch results in a

significant decrease of the Euler number.
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Figure 14 Prediction accuracy of regression equation (eq. 40) for pressure drop (serrated

fins),F/F3<1,0



$12
1]
= + Cox 3
S
S B Hofmann
E
E’_ 0.8 A Kaw SR210K
&5 - % Kaw SR200A
°
%' 0,6 f Kawaguchi others
S 4
E 0.4 ® Ma
1]
E | + Naess
E 0,2 A Weierman
i + WeiermanTaborekMarner
O T T T T 1
0 10000 20000 30000 40000 50000

Re
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serrated fins) F/F;<1,0

The regression equation predicted 96,4 % of the data within £20 %. 73,8 % of the data were
predicted within £10 %. It is observed that for the high Euler numbers, the equation calculates
the Euler numbers lower than they really are (For example Weierman et al. (1978)). In
addition the data from geometry SR200A (Kawaguchi et al. (2004)) are calculated ca. 20-30

% higher than the experimental values.

Also for the pressure drop data, a regression equation using Ar instead of all the
dimensionless groups for fin geometry was developed. Here the same data were included,
except from the data from Kawaguchi et al. (2006a)/Kawaguchi et al. (2004) because Ar

could not be calculated for these data (the segment width was not given in the papers).
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The regression analysis led to the regression equation below:

-0,58387

P, P
Eu = 5,867 - Re~01804. (_t) . (_’> . Ay04153 1)

de

As can be seen from the equation, the tube bundle layout is even more important now. This is
probably because the data from Kawaguchi et al. (2006a)/Kawaguchi et al. (2004) (where the

tube arrangement had no significant effect) were not included.
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Figure 16 Prediction accuracy of regression equation (eq. 41) using Ar for pressure drop

(serrated fins)
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98,5 % of the data were predicted within £20 %, while 75,9 % of the data were predicted
within £10 %. Also for this regression equation it is seen that for the data with high Euler
numbers, the Euler number is calculated lower than the experimental value (for example

Hofmann (2009) and Weierman et al. (1978)).

The regression analysis was also tried for F/F4>1,0 using the same method as for the heat

transfer data for serrated fins:

The Euler number was divided by the fin geometry and Reynolds number effect from the

correlation for F/F4<1,0:

C = Eu
L™ f(fin geometry) - Re™
(42)
Eu
Cl = h 0,2827 df 0,4954
. Re—01775 . (te (2L
7,132 - Re (Sf) (de>
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The regression analysis was performed with the C;-values as the response and the
dimensionless groups for tube bundle layout as the predictors. This gave the following

equation:

—3,0779

0,2827
Eu = 74,945 - Re=%1775 . (&) : (i)mm- fe
) Sf
(43)

However, it is not recommended to use this regression equation. The exponent for the ratio
between the transversal tube pitch and the effective tube outside diameter is not at all realistic
(expected to be in the range 0 to -1). It seems like the method used for the heat transfer data
for F/F4>1,0 fails for the corresponding pressure drop data. When using the Ar correlation,

the same was observed.
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3.4.3 Solid fins

3.4.3.1 The data

The heat transfer data and pressure drop data for solid fins were collected during the project
thesis in the autumn 2012 (Feten (2012)). A completely new database was implemented in the
database program Filemaker Pro. The database corresponds to the database implemented by

Kaspersen (1995) for serrated fins.

Table 2 Data sources for heat transfer and pressure drop for solid fins

Data Fin type
Ward and Young (1959) Nu, Eu I-foot
Briggs and Young (1963) Nu, Eu I-foot
Brauer (1964) Nu, Eu I-foot
Robinson and Briggs (1966) Eu I-foot
Weierman (1977) Eu I-foot
Stasiulevicius et al. (1988) Nu, Eu I-foot
Kawaguchi et al. Nu, Eu I-foot
(2004)/Kawaguchi et al.
(2005)/Kawaguchi et al.
(2006a)/Kawaguchi et al.
(2006b)
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3.4.3.2 The heat transfer data
In the case of solid fins, all the heat transfer data were for Fi/F3<1,0. The amount of data for

heat transfer was less for solid fins than for serrated fins.

Before the regression analysis was started, an inspection of the data was done. This inspection
gave the impression that some of the data from Brauer (1964) had rather high values for
NuPr"”? compared to the others. This can be seen in the figure below where the NuPr -

values are plotted against the Reynolds number:
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Figure 18 NuPr™"” against Re for solid fins

Especially the geometries 5v, 7v and 9v from Brauer (1964) did not follow the rest of the
data. It was decided to remove these data, because it was seen that the prediction accuracy of

the regression equation would increase a lot when removing them.

Also it was observed that there was a quite large amount of data for high Reynolds numbers.
This was especially the case for the data from Stasiulevicius et al. (1988). The data from
Stasiulevicius et al. (1988) for the high Reynolds numbers were in the turbulent region.
Therefore only the heat transfer data for Reynolds numbers less than 50 000 were included in

the regression analysis.
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The regression analysis using all the data (Except from the mentioned geometries from Brauer

(1964)) for Re<50 000 gave the following equation:

p.\"022417  p -0,34171 d 0,69323
Nu - Pr-1/3 = 0,072 - Re0:7504 , (_t) N %
P, Sf de

¢ 0,0732
Sf

However, it is not recommended to use this equation as it gives the false impression that the

(44)

heat transfer coefficient decreases when P/P) is increased. In the correlation from
Stasiulevicius et al. (1988) the heat transfer coefficient increases when P,/P) is increased.
Kawaguchi et al. (2006b) concluded that the tube layout had no impact on the heat transfer.
Briggs and Young (1963) and Ward and Young (1959) used the same Py/P; for all their
geometries. Therefore it is difficult to say why the exponent was negative, but somehow the

combination of these data gave a negative exponent.

A trial and error procedure was carried out. Here different data were removed before doing
the analysis to see if the exponent changed sign. For some reason the sign of the exponent
changed when the data from Kawaguchi et al. (2005)/Kawaguchi et al. (2006b) and geometry
4v from Brauer (1964) were removed. The same happened when the data from Stasiulevicius
et al. (1988) and geometry 4v from Brauer (1964) were removed. It seemed like the
combination of the data from Kawaguchi et al. (2005)/Kawaguchi et al. (2006b) and

Stasiulevicius et al. (1988) gave the negative exponent.

The following regression equation is recommended to use (Kawaguchi et al.
(2005)/Kawaguchi et al. (2006b) and geometry 4v from Brauer (1964) were not included in
the analysis):

P 0,24502 h —-0,21808 d 0,29684
Nu-Pr1/3 = 0,117-Re°'659-(—t) (X (<
Pl Sf de

)

(45)

0,11758
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Figure 19 Prediction accuracy of regression equation (eq. 45) for heat transfer (solid fins)
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93,9 % of the data were predicted within £20 %. Apart from the data for geometry 6 from
Ward and Young (1959), almost all the data were predicted within £20 %. 80,8 % of the data

were predicted within £10 %.

Further Ar was tried as dimensionless group for the same data as above. This resulted in the

regression equation below:

0,3667

Nu-Pr~1/3 =0,176 - Re®52 . (ﬁ) - Ar—00969 (46)
!

The Reynolds number exponent decreased (as expected) quite a lot when the data from

Kawaguchi et al. (2005)/Kawaguchi et al. (2006b) were removed (From 0,75 to ca. 0,65).
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Figure 21 Prediction accuracy of regression equation (eq. 46) using Ar for heat transfer (solid

fins)
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93 % of the data were predicted within £20 %. Geometries 2 and 6 from Ward and Young

(1959) were calculated more than 20 % higher than the experimental values. 65,7 % of the

data were predicted within £10 %. In other words the first version of the regression equation

is more accurate (predicted 80,8 % of the data within +10 %) than the version with Ar.
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3.4.3.3 Pressure drop data
First all the pressure drop data (represented as the Euler number) were plotted against the

Reynolds number for Re<50 000:
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Figure 23 Euler number plotted vs Re for solid fins

The plot showed that some of the geometries from Ward and Young (1959) and one of the
geometries from Brauer (1964) had high values for the Euler number compared to the other
data. On the other hand, the data from Briggs and Young (1963) had low values for the Euler

number compared to the other data.

First the regression analysis was performed using all the data for Re<50 000. The results were
quite good, but as expected the geometries mentioned above were underestimated by the
equation. In general it looked like the correlation failed for Euler numbers larger than ca. 1,2.

The geometries from Briggs and Young (1963) were overestimated.

In order to get a more accurate equation for the rest of the data, all the data from Briggs and
Young (1963) and geometry 5v from Brauer (1964) were removed. Also it was decided to
perform the analysis for Eu<1,2. The reason for this choice was the fact that the high Euler
numbers were calculated much lower than the experimental values and the prediction

accuracy increased for the rest of the data when this restriction was applied. Some of the
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geometries from Ward and Young (1959) and Stasiulevicius et al. (1988) were removed,

because there was a lack of data points (as a consequence of the Euler number restriction).

The regression analysis gave the following regression equation:

—-0,72394 -0,19613 0,2634
Eu = 9,82 - Re™020979.. (i> . (ﬂ) . (E)
d, d, S¢

t 0,19259 df 0,3971
Sf de

(47)

The equation is rather complicated and as for serrated fins the tube bundle layout has a mayor
effect on the Euler number. Especially the ratio between the transversal tube pitch and the
effective tube outside diameter has a large impact on the Euler number in the equation.
However, it is observed that Py/d. had a larger impact on the pressure drop for serrated fins

than for solid fins.
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Figure 24 Prediction accuracy of the regression equation (eq. 47) for pressure drop (solid fins)
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98 % of the data were predicted within £20 %, while 70,8 % of the data were predicted within
+10 %. Geometry 2 from Ward and Young (1959) is calculated ca. 20-30 % higher than the
experimental values, while the geometry SP300A from Kawaguchi et al. (2004) is calculated

ca. 15-18 % lower than the experimental values.

Using Ar as dimensionless group for fin geometry for the same data as above led to the

following regression equation:

—-0,626 —0,28395

) (ﬂ) . 4034595 (48)

P
Eu = 4,817 - Re 01976 . (—t)
de

de

The transversal tube pitch plays a major role, as it did in the first correlation. In addition, Ar is

a significant variable for the Euler number.
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Figure 27 Ratio between calculated (eq. 48) and experimental value vs Re (solid fins, pressure

drop)

95,3 % of the data were predicted within +20 %, while 68,4 % of the data were predicted

within £10 %. In other words the prediction accuracy was a little lower than in the first
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correlation. Geometry SP300A from Kawaguchi et al. (2004) was calculated ca. 20 % lower
than the experimental values, while geometry 2 from Ward and Young (1959) was calculated

15-30 % higher than the experimental values.
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3.5 Comparison of correlations

In this section the correlations developed in the regression analysis are compared with the
available correlations from the literature (see appendix A for the correlations). The
comparison is done for the data used in the regression analysis. The correlations are compared

through the ratio between the calculated value and the experimental value for the same Re.

Nu-Pr=Y3(Ma correlation)

For example:
P Npr-1/3 (Experimental)

For serrated fins, data for both areas F/F4<1,0 and F/F4>1,0 are available. For this
comparison only the data for Fy/F4<1,0 were used, because the correlations are developed for

the data where F/F4 is less than one.

3.5.1 Heat transfer correlations for serrated fins
In the table below the percents of the data predicted within the given intervals are presented

(using equation 25, presented in chapter 3.4.2.2). 337 data points were used:

Table 3 Prediction accuracy for the heat transfer correlations (serrated fins) F/F;<1,0

Nu - Pr='3(calc.) +£30 % +20 % +10 %

Nu - Pr—1/3(exp.)
Weierman 99,40 % 86,10 % 52,50 %
Worley/Ross 92,60 % 78 % 41,50 %
Biraghi 88,70 % 77,20 % 42,80 %
Ackerman/Brunsvold 83,90 % 67,70 % 39,50 %
ESCOA 96,40 % 81 % 45,10 %
Hofmann 89,60 % 77,20 % 43,60 %
Ma 97,60 % 89,60 % 59,90 %
Neess 88,10 % 67,40 % 37,10 %
New correlation (Equation 25) | 97,60 % 90,20 % 71,80 %
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It can be seen from the table above that the correlation from the regression analysis predicts
the data better than the other correlations. However, for the prediction intervals £30 % and
+20 %, the correlation is only slightly better than the correlation from Ma et al. (2011). For
the prediction interval £10 %, the correlation from the regression analysis is clearly better
than the others. The correlation from Weierman (McKetta (1992)) predicts almost all the data
within £30 %.

Also, the Ar correlation (equation 35) was compared to the other correlations. As mentioned,
the data set was smaller in this case because Ar could not be calculated for the geometries

from Kawaguchi et al. (2006b)/Kawaguchi et al. (2005). 251 data points were used:

Table 4 Prediction accuracy for the heat transfer correlations (serrated fins, Ar) F/F<1,0

Nu - Pr=*3(calc.) +30 % +20 % +10 %

Nu - Pr=1/3(exp.)
Weierman 99,60 % 88,80 % 55,40 %
Worley/Ross 100 % 95,20 % 55,80 %
Biraghi 90,80 % 83,70 % 49,40 %
Ackerman/Brunsvold 81,30 % 67,30 % 39,80 %
ESCOA 95,20 % 78,50 % 43,80 %
Hofmann 94,40 % 88,80 % 55 %
Ma 99,20 % 97,60 % 76,10 %
Neaess 98 % 84,50 % 49 %
PFR 100 % 95,60 % 68 %
New correlation (Equation 25) | 96,80 % 91,60 % 76,50 %
New Ar correlation (equation | 99,20 % 98.40 % 81,30 %
35)
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Also in this case the regression equation developed in the analysis is slightly better than the
correlation from Ma et al. (2011). Also it is observed that the correlations from Worley and
Ross (1960) and PFR (1976) manage to predict all the data within +30 %. The Ar correlation
did not manage this, because two data points from Rabas and Eckels (1975) were predicted

ca. 32,5 % higher than the experimental values.
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3.5.2 Heat transfer correlations for solid fins
The same comparison was done for the heat transfer correlations for solid fins. However, in
this case the two correlations were developed for the same amount of data. 213 data points

were used:

Table 5 Prediction accuracy for the heat transfer correlations (solid fins)

Nu - Pr=13(calc.) +30 % +20 % +10 %
Nu - Pr=1/3(exp.)

Briggs/Young 94,80 % 91,50 % 69 %
Stasiulevicius/Skrinska 96,70 % 78,40 % 45,50 %
Ward/Young 84,00 % 60,60 % 35,70 %
PFR 89,20 % 74,60 % 46,50 %
Schmidt 93 % 73,20 % 33,80 %
VDI 92 % 80,80 % 38,50 %
Weierman 33,80 % 8,90 % 3,75%

New correlation (equation 45) | 98,60 % 93,90 % 80,80 %

New correlation Ar (equation 98,10 % 93,00 % 65,70 %
46)

The first heat transfer correlation using the dimensionless groups for fin geometry (equation
45) is the best. It is observed that this correlation predicts a large amount of the data within
+10 % compared to the other correlations. The Ar correlation is almost as good as the first
correlation in order to predict the data within £20 % and £30 %. The correlation from Briggs
and Young (1963) predicts the data better than the other authors, but this was expected as a
rather large amount of the data included in the data analysis were from Briggs and Young
(1963).
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3.5.3 Pressure drop correlations for serrated fins
The same comparison was performed using the available correlations for the Euler number.
The table below presents the prediction accuracy of the correlations for the data used to

develop the regression equation (equation 40). 275 data points were used:

Table 6 Prediction accuracy for pressure drop correlations for F/F;<1,0 (serrated fins)

Eu(calc) +30 % +20 % +10 %

Eu(exp)
Biraghi 90,20 % 83,30 % 50,50 %
Weierman 92,40 % 65,50 % 26,90 %
Neess 60,00 % 53,10 % 42,50 %
Ma 47,30 % 37,10 % 34,90 %
Kawaguchi 65,50 % 63,30 % 45,8 %
New correlation (equation 40) | 100 % 96,40 % 73,80 %

The correlation from the regression analysis predicts the data much better than the other
correlations. The correlation from Biraghi (Kaspersen (1995)) is the second best. The fact that
this correlation is only a function of the Reynolds number could be the reason why it predicts
most of the data within +30 %. The correlations from Naess (2010) and Kawaguchi et al.
(2006a) fail to predict the data from Ma et al. (2011) and vice versa. Therefore the prediction

accuracy for those three correlations is smaller than for the other correlations.

The Ar correlation (equation 41) was also compared to the other correlations (the data from
Kawaguchi et al. (2006a)/Kawaguchi et al. (2004) not included here). The data set contained

195 data points for the Euler number (see table next page):
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Table 7 Prediction accuracy for Ar correlation for pressure drop (serrated fins)

Eu(calc) +30 % +20 % +10 %

Eu(exp)
Biraghi 86,20 % 76,90 % 49,20 %
Weierman 89,20 % 62,60 % 27,70 %
Neess 48,70 % 48,20 % 34,80 %
Ma 57,90 % 52,30 % 49,20 %
Kawaguchi 48,70 % 48,20 % 34,80 %
New correlation (equation 40) | 100 % 98,50 % 77,40 %
Ar correlation (equation 41) 100 % 98,50 % 75,90 %

The Ar correlation is very accurate compared to the other correlations. It is also seen that the

first correlation developed (using dimensionless groups for fin geometry) has ca. the same

prediction accuracy as the Ar correlation. Also for this amount of data the Biraghi (Kaspersen

(1995)) correlation is the best one from the available literature.

63



3.5.4 Pressure drop correlations for solid fins
The comparison of the new correlations and the correlations from the literature for pressure

drop for solid fins gave the results tabulated below:

Table 8 Prediction accuracy of the pressure drop correlations (solid fins)

Eu(calc) +30 % +20 % +10 %

Eu(exp)
Weierman 99,30 % 89,20 % 50,20 %
Stasiulevicius/Skrinska 79,0 % 66,40 % 33,80 %
Robinson/Briggs 72,80 % 51,20 % 26 %
Ward/Young 69,60 % 56,10 % 43,10 %
New correlation (equation 47) | 99,30 % 98 % 70,80 %
New Ar correlation (equation | 99,80 % 95,10 % 68,40 %
48)

The table above shows that the new correlations from the regression analysis are much more
accurate than most of the correlations from the literature. The correlation from Weierman
(McKetta (1992)) also predicts most of the data within £20 %. The two correlations from the
regression analysis are evenly good. A total of 408 data points were included in the analysis,
and therefore it was quite impressive that both of the correlations from the analysis manage to

predict almost all of the data within £20 %.

64



3.6 Sensitivity analysis

A sensitivity analysis was performed for the heat transfer and pressure drop correlations
developed through the regression analysis. The aim was to find how a change in the different
variables influenced NuPr'"”* and Eu. It was decided to use a reference geometry (Geometry 1
from Ma et al. (2011) for serrated fins and geometry 27 from Robinson and Briggs (1966) for
solid fins) and change every parameter by £25 %. The analysis was performed for both
versions of the correlation (both the one using the dimensionless groups for fin geometry and
tube bundle layout, and the one using Ar and the dimensionless groups for tube bundle

layout).

The following parameters were changed with 25 %:

1) Fin height, h¢

2) Tube outside diameter, d,

3) Fin thickness, t

4) Fin pitch, s¢

5) Segment width, w¢ (for serrated fins)

6) Transversal tube pitch, Py

7) Longitudinal tube pitch P,

8) pu (in order to find the effect of the Reynolds number)

Table 9 Reference geometries for the sensitivity analysis

Geometry: 1 from Ma et al. (2011) 27 from Robinson and
Briggs (1966)

hs (mm) 16 14,5

d, (mm) 38,1 40,9

t (mm) 1 0,46

sf (mm) 3,89 3,22

wi (mm) 4 .

P¢ (mm) 88 114,05

P; (mm) 92 98,77
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3.6.1 Heat transfer correlations for serrated fins

The results from the sensitivity analysis for the heat transfer correlation using the different
dimensionless groups for fin geometry (equation 25) are shown in the figure below. There are
two columns for each parameter; the column NuPr'” low/NuPr'” nom is the ratio between

-1
B_value

the NuPr'*-value calculated when the parameter is reduced by 25 % and the NuPr
for the reference geometry. The other column is the ratio between the calculated value when

the parameter is increased by 25 % and the value for the reference geometry.
For example for the parameter hg:

Nu-Pr=Y3low  Nu-Pr~*3(hsreduced by 25 %)

= (49)
Nu-Pr='3nom Nu:Pr~1/3 (reference geometry)

Nu-Pr=*/3 high _ Nu- Pr='/3(hs increased by 25 %)
Nu-Pr-3nom  Nu-Pr-/3(reference geometry)

(50)

1,4

1,2

0,8 -
W NuPr™(-1/3) low/NuPr”(-1/3) nom

Ratio

0,6 - B NuUPr~(-1/3) high/NuPr?(-1/3) nom

0,4 -

0,2 -

hf do t wf sf Pt Pl pu

Figure 28 Sensitivity analysis heat transfer correlation for serrated fins (equation 25)

The figure above shows that the Reynolds number was the most significant variable, as
expected. The parameters d,, P; and sf had a significant impact on the heat transfer coefficient.

An increase in these parameters will increase the heat transfer coefficient. The effect of the fin
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height seemed to be small. The longitudinal tube pitch, the fin thickness and the segment

width had no impact on the heat transfer.

The same analysis for the Ar correlation (equation 35) gave the following results:

1,4

1,2

0,8 +
- B NuPr~(-1/3) low/NuPr~(-1/3) nom

0,6 - W NuPr~(-1/3) high/NuPr~(-1/3) nom

Ratio

0,4 -

0,2 -

hf do t wf sf Pt Pl pu

Figure 29 Sensitivity analysis heat transfer correlation (using Ar) for serrated fins (equation 35)

The same things were observed for the Ar correlation. The Reynolds number was the most
significant variable. An increase in d,, P; and s increased the heat transfer coefficient.
However, s¢seemed less significant than in the first correlation. Also an increase in hy
decreased the heat transfer coefficient slightly. Though Ar depends on the fin thickness and
the segment width, the impact of the two parameters was not significant. The longitudinal

tube pitch had no effect on the heat transfer.
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3.6.2 Heat transfer correlations for solid fins
The figure below shows the results from the sensitivity analysis for the heat transfer

correlation using the dimensionless groups for fin geometry (equation 45):

1.4

1,2

WNuPrr(-1/3) low/NuPra(-1/3) nom

Ratio

0,6 - WNuPr~(-1/3) high/NuPrt(-1/3) nom

0,4 -

0,2 ~

hf do t sf Pt Pl pu

Figure 30 Sensitivity analysis heat transfer correlation for solid fins (equation 45)

The trends were very much the same as for the heat transfer correlations for serrated fins. The
Reynolds number was the most significant variable. An increase in d,, P; and s¢resulted in a
significant increase of the heat transfer coefficient. The flow changes when the tube outside
diameter is varied. The velocity at the narrowest cross section is raised to a certain extent with
increasing the tube outside diameter and the recirculation zone behind the tube is also
increased, Mon (2003). According to Mon (2003), increasing the fin pitch gives a thinner
boundary layer which leads to a higher heat transfer coefficient. When the fin height or the fin
thickness was increased, the heat transfer coefficient decreased slightly. Contrary to the
correlations for serrated fins the longitudinal tube pitch had an impact on the heat transfer
coefficient for this correlation. The increase in P; resulted in a decreasing heat transfer

coefficient.

The same analysis for the heat transfer correlation using Ar (equation 46) gave the results in

the diagram below:
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1,4

1,2

0,8 -
B NuPr™(-1/3) low/NuPr~(-1/3) nom

0,6 - M NuPr~(-1/3) high/NuPr~(-1/3) nom

Ratio

0,4

0,2

hf do t sf Pt Pl pu

Figure 31 Sensitivity analysis heat transfer correlation (using Ar) for solid fins (equation 46)

The tube bundle layout variables were more important in this correlation than in the first
version. On the other hand, the significance of the fin pitch was less in this correlation than in
the first version. It was also observed that the tube outside diameter was as important as the

Reynolds number.
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3.6.3 Pressure drop correlations for serrated fins

The sensitivity analysis of the pressure drop correlations was performed the same way as for

the heat transfer correlations. For example for the parameter d,:

Eulow Eu(d, — 25 %)
Eunom Eu(reference geometry)

Eu high Eu(d, + 25 %)
Eunom Eu(reference geometry)

The results from the analysis are shown in the column diagram below:

(51

(52)

1,4

1,2

1

0,8

Ratio

0,6
0,4

0,2

0

hf do t wf sf Pt Pl pu

M Eulow/Eu nom

M Eu high/Eu nom

Figure 32 Sensitivity analysis pressure drop correlation for serrated fins (equation 40)

The two parameters P and P, had a large impact on the Euler number. According to the

analysis, an increase of these variables resulted in a significant decrease of the pressure drop.

It was also observed that the Reynolds number was not as important as it was for the heat

transfer coefficient. The increase of either the fin height or the tube outside diameter increased

the Euler number, while an increase of the fin pitch decreased the Euler number.
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The sensitivity analysis for the pressure drop correlation using Ar (equation 41) gave the

results below:

Ratio

1,4
1,2

1
0,8
0,6
0,4
0,2

0

hf

do

wf

sf

Pt

PI

pu

M Eulow/Eu nom

M Eu high/Eu nom

Figure 33 Sensitivity analysis for pressure drop correlation using Ar for serrated fins (equation

41)

The same things were observed for this correlation as in the first version. However, the

increase in the longitudinal tube pitch decreased the Euler number even more than in the first

correlation.
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3.6.4 Pressure drop correlations for solid fins

The results from the sensitivity analysis of the pressure drop correlation using the different

dimensionless groups for fin geometry (equation 47) and the pressure drop correlation using

Ar (equation 48) are shown in the column diagrams below:

1,4

1,2
1

0,8 -

Ratio

0,6
0,4

0,2 -

0 -

M Eu low/Eu nom

M Eu high/Eu nom

Figure 34 Sensitivity analysis of pressure drop correlation for solid fins (equation 47)

1,4

1,2

0,8 -

Ratio

0,6 -
04 -

0,2

hf

do

sf

Pt

PI

pu

M Eu low/Eu hom

M Eu high/Eu nom

Figure 35 Sensitivity analysis of pressure drop correlation (using Ar) for solid fins (equation 48)

For both of the correlations, an increase in the transversal tube pitch gave a significant

reduction in the Euler number. However, the decrease in the Euler number when increasing
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the longitudinal tube pitch was not as large as it was for the pressure drop correlations for
serrated fins. Increasing either the fin height or the tube outside diameter led to a significant
rise in pressure drop for both of the correlations. The pressure drop was reduced when the fin
pitch was increased. The fin thickness did not affect the Euler number in the Ar correlation,
but in the first correlation it was seen that increasing the fin thickness increased the Euler

number slightly.
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3.7 Effect of segment height
There are not many authors who have investigated the effect of the segment height on the heat
transfer and the pressure drop. This is interesting for serrated I-foot fins, where there is a solid

part and a segmented part.

Kawaguchi et al. (2006a) and Kawaguchi et al. (2006b) investigated how the pressure drop
and the heat transfer changed when comparing two geometries (named SR211HK and
SR211LK) that only differed in segment height. In addition a third geometry (SR210K) with
a higher fin height (13,0 mm) than the two others (9,0 mm) was used. The table below
presents the ratio between the segment height and the fin height for the three geometries:

Table 10 Ratio between segment height and fin height for the geometries

Geometry: SR210K SR211HK SR211LK
hy/h¢ 0,4846 0,4888 0,2666

The heat transfer data for the three geometries are sketched in the figure below:
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Figure 36 Comparison of the heat transfer data from Kawaguchi et al. (2006b)

The figure above shows that the geometry with the higher fin height had a higher heat transfer

coefficient than the two other geometries. The two geometries that only differed in segment
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height had ca. the same heat transfer coefficient for the low Reynolds numbers, but for the
higher Reynolds numbers it can be seen that the geometry with the highest segment height
had ca. 15-20 % higher heat transfer coefficient than the one with the lower segment height.

A regression analysis using the heat transfer data for the three geometries was performed. The

analysis led to the following regression equation:

s Jsea h—s 0,30554
Nu - Pr=1/3 = 0,1224 - Re%756%. = (53)
f

Using only the data from the two geometries that differed in segment height (SR211HK and
SR211LK) gave the regression equation below:

0,22
h )
Nu - Pr=1/3 = 0,1358 - Re®7347. <h—s> (54)
f

Both of the equations above give the impression that the heat transfer coefficient will increase

if the segment height is increased.

The pressure drop data for the same three geometries are sketched in the figure below:
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0,4 mSR211LK
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0,2

0,1
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0 20000 40000 60000 80000

Re

SR211HK

Figure 37 Comparison of the pressure drop data from Kawaguchi et al. (2006a)
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It was observed that the geometry with a higher fin height had a higher pressure drop than the
two geometries with a lower fin height. Comparing the two geometries that only differed in
segment height, it was seen that the effect of the segment height was not very significant. The

increase in segment height decreased the Euler number slightly.

The regression analysis using the pressure drop data for all the three geometries gave the

following equation:

h 0,1314
Eu = 6,6757 - Re~0:205% . (h—s> (55)
f

The corresponding analysis using only the two geometries that differed only in segment

height resulted in the equation below:

-0,07377
5) (56)

Eu = 6,444 - Re™0%29. <
hy

The effect of the segment height is opposite for the two equations; in the first equation an
increase in segment height will increase the Euler number, while in the second equation the
increase in segment height will decrease the Euler number. However, for both of the

equations the effect of the segment height is rather low.

Conclusion: All in all the effect of the segment height was larger on the heat transfer

coefficient than on the pressure drop.
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3.7.1 Regression analysis of the heat transfer data for serrated and solid fins

In order to find out more about the effect of the segment height on the heat transfer
coefficient, it was decided to use the data for both serrated and solid fins. However, only the
data for those of the serrated fins that had I-foot fins were included, i.e. the geometries from
Hashizume (1981), Kawaguchi et al. (2006b), Ma et al. (2011) and Weierman et al. (1978). It
was also wished to include the data from Kawaguchi et al. (2005), but here the segment height

was not given.

In order to find the dependency of the segment height, the following dimensionless group was

used in the analysis:

(57)

Here, the value for the dimensionless group for solid fins always is equal to one (hs=0 for

solid fins).

From the inspection of all the data for Fy/F4<1,0, it was observed that the data from Brauer
(1964) should not be included (as in the regression analysis of the heat transfer data for solid
fins, see chapter 3.4.3.2).

The regression analysis using all the data except from the data from Brauer (1964) resulted in

the equation below:

-0,1673 _ —0,286
Nu - Pr=1/3 = 0,0497 - Re®7709 (i) (= hs
P, By

he -0,3177 df 0,764 (58)
Sf de

The exponent for Py/P; was not as expected, the heat transfer coefficient is expected to increase
when the ratio P¢/P is increasing (the same observed in the regression analysis for heat
transfer for solid fins, see chapter 3.4.3.2). For some reason the exponent changed sign when

the data from Stasiulevicius et al. (1988) were removed before performing the analysis. The
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data from Hashizume (1981) and geometry 6 from Ward and Young (1959) were calculated
too high using the equation above (30-50 % higher and 30-55 % higher respectively).
Therefore these data were removed as well. The regression analysis for the remaining data

gave the equation below:

0,2603 _ -0,35153
Nu-Pr=1/3 = 0,04 - Re®7917 . (&) (hy — hs
’ Pl hf

he —0,3459 df 0,76627 (59)
Sf de

From the above equation, it is seen that an increase in the segment height will result in an
increase of the heat transfer coefficient. This is in agreement with the conclusions from

Kawaguchi et al. (2006b).
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Figure 38 Prediction accuracy of the heat transfer correlation for both serrated and solid fins

(eq.59)
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correlation (heat transfer)

95,4 % of the data were predicted within £20 %, 66,8 % of the data were predicted within +10

%.
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3.7.2 Regression analysis of the pressure drop data for serrated and solid fins

The regression analysis was also performed for the pressure drop data for both serrated and
solid fins in order to find out how the segment height influenced the Euler number. Also in
this case the data for those of the serrated fins that had I-foot fins were included. The
following dimensionless group was used in order to find the dependency of the segment

height (the same as in the analysis of the heat transfer data):

hy — hg
hy

(57)

Only the data for Re<50 000 were included. In addition, Euler numbers larger than 1,2 for
solid fins were not included (as the regression equation seemed to fail for the higher Euler

numbers, see chapter 3.4.2.3).

When the regression analysis was performed for all the data, it was seen that the data from
Hashizume (1981) were overestimated (calculated ca. 40 % higher than the experimental
values). The same trend was observed for the data from Briggs and Young (1963) and
geometry 5v from Brauer (1964).

Therefore the analysis was performed again without the data mentioned above in order to get
a more accurate regression equation for the rest of the data. The analysis resulted in the

following equation:

p 07117 b -03224 ,p 008384
Eu=637"R —0,1926_(_t) (_l) Ny s
u e 2 "

he 0,23255 df 0,4831 (60)
sy d,

. . hg—hs . ) .
The exponent for the dimensionless group % is negative. In other words the correlation
f

gives the impression that the Euler number increases when the segment height, hg, is
increased. This is contrary to the results from Kawaguchi et al. (2006a), where the Euler
number was slightly higher for geometry SR211LK (hs=2,4 mm) than for geometry SR211HK
(h=4,4 mm). However, in general serrated fins have higher pressure drop than solid fins. This

has been verified by the experiments from Weierman (1977).
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[ [
[y ] S

o
00

o
=]

o
-

o
o

Calculated value/Experimental value

o

Re

0 10000 20000 30000 40000

50000

+ Kawaguchi serrated

mMa

A Weierman serrated

> WeiermanTaborekMarner

K Brauer

® Kawaguchi solid

+ Kaw SP300A

= RobinsonBriggs
StasiuleviciusSkrinska

+ WardYoung 2

" Weierman solid

Figure 41 Ratio between calculated (eq. 60) and experimental value vs Re for serrated/solid

correlation (pressure drop)

95,9 % of the data were predicted within £20 %, while 69,3 % of the data were predicted

within £10 %. The data from Weierman (1977) (serrated fins) and Weierman et al. (1978)

were estimated 15-25 % lower than the experimental value.
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4 Summary, conclusions and recommendations for further work

4.1 Summary

The exhaust gas from gas turbines contains a large amount of heat that can be utilized for
process purposes or for further power generation. The heat recovery units on offshore
platforms are required to be as compact and light as possible. During the design of waste heat
recovery units correlations are used to estimate the heat transfer and pressure drop. The
correlations in the literature have limited validity ranges. The aim of this project was to
develop correlations with a wider range of validity than the correlations in the literature. Data
from different experimenters, collected in databases, were used in order to establish the new

correlations.
The report can be divided into the following two parts:
1) Literature survey of multivariate analysis:

A literature survey of the method of multivariate analysis was done. Here the aim was to find
a method that could be used in order to develop the new correlations. The multivariate method
called multiple linear regression was chosen. In order to select which variables to include in
the multiple linear regression, the variable selection procedure called best subsets regression
was carried out. The regression analysis was performed with the statistical software Minitab

16.

2) Regression analysis:

The data from the two available databases for serrated and solid fins were used in the
regression analysis. Correlations for heat transfer and pressure drop were developed for both
serrated and solid fins. It was decided to develop two different versions for each correlation:
The first version was using different dimensionless groups for fin geometry, while the second
version was using Ar (defined by PFR (1976)) as fin geometry effect. For both versions the
effect of the Reynolds number and the tube bundle layout was included. In addition, the

effect of the segment height on the heat transfer and the pressure drop was investigated.

All the Minitab output from the regression analysis can be found in a separate attached file.
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From the regression analysis of the heat transfer data for serrated fins the following

correlations are recommended:

For Fy/F4<1,0:

p, 02359 h -0,20572
Nu - Pr-1/3 = 0,0703 - Re0,7404 (_t> e
d, 57

0,5073
(4
de

The correlation predicted 90,2 % of the data within £20 %. 71,8 % of the data were predicted

(25)

within £10 %.

0,2902

P
Nu - Pr=1/3 =0,0821 - Re®73% . (d—t) - Ar—00697 (35)
e

The regression equation predicted 98,4 % of the data within £20 % . 81,2 % of the data were
predicted within +10 %.

For F/F+1,0:

h —0,20572 d 0,5073
Nu - Pr=1/3 = 0,1539 - Re®740%. (—e> - (—f>

s d

! ‘ (37)
p,\~07726
()
The correlation predicted all the data from +10 % to -12 %.
P, ~0.60923
Nu-Pr=%/3 =0,1698 - Re®73% . (Ft) - Ar=0.0697 39)
l

The correlation predicted all the data from +12 % to -14 %.
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From the regression analysis of the pressure drop data for serrated fins, the following

correlations are recommended:

For Fy/F4<1,0:

P —0,6928 P —-0,623 h 0,2827
Eu = 7,132+ Re 91775 (_f) : (_l> ) <_e>
de de 5 (40)

0,4954
(%
de

The equation predicted 96,4 % of the data within +20 %. 73,8 % of the data were predicted
within £10 %.

-0,58387 -0,88026

Eu = 5,867 - Re~01804. (&) . <_> . Ay04153 (41)

de

98,5 % of the data were predicted within £20 %, while 75,9 % of the data were predicted
within £10 %.

From the regression analysis of the heat transfer data for solid fins the following correlations

are recommended (for F/F4<1,0):

P 0,24502 h —0,21808 d 0,29684
Nu-Pr‘1/3=0,117-Re0'659-(—t) (2L A
Pl Sf de

)

(45)

0,11758

93,9 % of the data were predicted within +20 %. 80,8 % of the data were predicted within +£10
%.

0,3667

Nu - Pr=1/3 =0,176 - Re®52 - (ﬁ) - Ar~0.0969 (46)
!
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93 % of the data were predicted within £20 %. 65,7 % of the data were predicted within =10
%.

From the regression analysis of the pressure drop data for solid fins the following correlations

are recommended (For Fy/F4<1,0):

P —-0,72394 P -0,19613 h 0,2634
Fu=982-R —0r20979-(_t) (_l) (%
u e de de Sf

¢ 0,19259 df 0,3971
Sf de

98 % of the data were predicted within £20 %, while 70,8 % of the data were predicted within
+10 %.

(47)

-0,626 P, —0,28395
l

) (_) . Ay 0:34595 (48)

P
Eu = 4,817 - Re™%1976 - (—t)
de

de

95,3 % of the data were predicted within +20 %, while 68,4 % of the data were predicted

within £10 %.
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4.2 Conclusions

The analysis of the heat transfer data gave the following conclusions:

The main parameter influencing the heat transfer coefficient was the gas flow rate. The tube
bundle layout had a larger impact on the heat transfer coefficient than the fin geometry. This
was the case for both serrated and solid fins. The transversal tube pitch had a significant effect
on the heat transfer coefficient for F/Fy4<1,0. The increase in transversal tube pitch increased
the heat transfer coefficient for both serrated and solid fins. The longitudinal tube pitch did
not have any significant effect on the heat transfer coefficient in the same range for serrated
fins. For solid fins, the heat transfer coefficient tended to decrease when the longitudinal tube

pitch was increased for Fy/F4<1,0.

For F/Fg>1,0, the effect of both of the tube bundle layout variables was significant for
serrated fins. The heat transfer coefficient seemed to reach its maximum for ca. F/F4=1,0.
After this the heat transfer coefficient decreased monotonically when the ratio P,/P; was

increased.

The heat transfer coefficient (for both serrated and solid fins) was also influenced by the

following parameters:

- Tube outside diameter: The increase of the tube outside diameter increased the heat
transfer coefficient.

- Fin pitch: Increasing the fin pitch increased the heat transfer coefficient.

The analysis of the pressure drop data gave the following conclusions:

For the pressure drop data it was observed that the tube bundle layout had a very large impact
on the Euler number. Increasing the transversal or the longitudinal tube pitch decreased the
Euler number significantly. However, the effect of the longitudinal tube pitch on the Euler

number was larger for serrated fins than for solid fins.
The Euler number was also influenced by the following parameters:

- Tube outside diameter: Increasing the tube outside diameter increased the pressure
drop.

- Fin pitch: Increasing the fin pitch led to an increase in pressure drop.
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- Fin height: The increase in fin height increased the pressure drop.

In addition the increase in segment height increased both the heat transfer coefficient and the

pressure drop, but this should be verified by further experiments.
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4.3 Recommendations for further work

For serrated fins there are available data for heat transfer and pressure drop for both ranges
F/F4<1,0 and F/Fs>1,0. However, there is a very limited amount of data for the range
F/F¢>1,0, i.e. where the minimum free-flow area is in the diagonal plane. Actually, only the
seven geometries tested by Nass (2007) cover this range. The change of tube bundle layout
dependency for F/Fg=1,0 found by Ness (2007) should be verified by further experiments. In
the correlations developed in this project, the fin geometry effect is assumed to be the same
for both of the ranges. As pointed out by Naess (2007), this should be verified by further

experiments in the range F/Fg>1,0.

All the available heat transfer and pressure drop data for solid fins are in the range F/F4<1,0,

therefore it is also recommended to perform experiments in the range Fy/F4>1,0 for solid fins.

Kawaguchi et al. (2006b) investigated the effect of varying only the segment height on the
pressure drop, while the effect on the heat transfer was investigated in Kawaguchi et al.

(2006a). However, these reports seem like the only ones that investigate the effect of only
varying the segment height. More experiments using geometries only differing in segment

height are therefore suggested.

The effect of varying only the fin segment width, wr, is not investigated in the available
literature. According to Nass (2007) the segment width will influence the thickness of the
boundary layers which especially will affect the heat transfer coefficient. The investigation of

geometries differing only in segment width could be considered.

In this project only data for staggered tube layouts have been used in the analysis. However,
in the database implemented by Kaspersen (1995) there are also data for in-line tube layouts.
Performing the similar analysis as in this project for the in-line tube layout data is possible.
The heat transfer coefficient and the Euler number was observed to be higher for staggered
tube layout than for in-line tube layout by Weierman et al. (1978) and Ackerman and
Brunsvold (1970). It should be noted that there is a rather small amount of data for in-line
tube layouts in the literature, so more experimental measurements in in-line tube layouts

could be performed.
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In the database for solid fins only data for staggered tube layouts have been collected. One
possibility is therefore to collect data for in-line tube layouts as well. However, according to
Naess (2010) the in-line tube layouts are generally less compact than staggered tube layouts.
Therefore a further investigation of in-line tube layouts probably will be more useful for

onshore applications.

&9



Appendix A Correlations from the available literature

Table A-1 Heat transfer correlations for serrated fins

Author

Correlation

Weierman (McKetta
(1992))

gty
Nu = 0,25 - Re®65 - py1/3. {0,55 40,45 - e( 03575 )}

,5

S R AN
. {0’7 + (0’7 -08- (=015 )) ‘e Pt} . (d_>
o
[T/ T5]%%
Worley and Ross (1960) | Nu = 0,125 - Re®7 - pr1/3
Biraghi (Kaspersen Nu = 0,414 - Re®°88 . py1/3
(1995))
Ackerman and P\
Nu = 0,497 - Re®547 - pri/3. (—)
Brunsvold (1970) do
ESCOA (Nass (2007)) —017 Y
Nu = 0,091 - Re®”5 - Pr1/3.10,35 + 0,65 - e< ’ 7Sf)
2 (dp
: {0,7 +(0,7—0.8-e(-015N%)) . ¢ Pt} : (—f>
do
'[Tb/TE]QZS
Hofmann (2009)

Ny o
Nu = 0,36475 - Re%$013 . pr1/3 . [1 — 0,392 log (]C—)]

l

Ma et al. (2011)

250hf/s
Nu = 0,117 - Re®717 . pr033. <0,6 +04-e Re ) . <F>
l

P

0,06

Naess (2010 —0,14 02 035
e Nu = 0,107 - Re%s5 - prif3 . (e (S_f> .(i)
Sf de de
h -0,13
e
(@)
PER (1976) Nu = 0,195 Re%7 - pri/3 . Ar=017
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Table A-2 Heat transfer correlations for solid fins

Author Correlation
Briggs and Young s\%%  g.01134
Nu = 0,134 - Re®681 . py1/3.( — ) (_)
(1963) )\
Stasiulevicius et al. P02 ,g.\018 [p.\ 04
Nu = 0,044 - (—t> - (—f> (Z) - Reos
(1988) ) &) \q

Ward and Young (1959) d A\ 7 \03
Nu = 0,364 - Re®68- pri/3. (L) .
do ds

PFR (1976) Nu = 0,29 - Re®%633 . prl/3. gp=017
Schmidt (Mon (2003)) A\ "0375
Nu = 0,45 - Re%625 . py1/3. (—)
At
-0,15

VDI (1997) M
Nu = 0,38 Re%® - pri/3. (A—)
t

Weierman (McKetta

(_o zs-ﬂ)
Nu = 0,25+ Re%65 - pr1/3.10,35 +0,65-e\ s
(1992))

_Py
: {0,7 +(0,7 —0,8-e(-015V%)) . ¢ Pt} : (

[T/ T5)%%

dr

o

0,5
7
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Table A-3 Pressure drop correlations for serrated fins

Author Correlation
Biraghi (Kaspersen Eu = 2,892 - Re™0137
(1995))
Weierman (McKetta o (h_ )0.23
32 P17 \Us
(1992)) Eu = {0,28 + W} 10,11 - [0,05 d—o]
2y —20L
41,1+ (1,8—21-e7 015N ). e "R
P 0,5
_ (0'7 -08- e(—0,15-1v12)) _ e—o,(,.P_tl . ﬁ
do
Ness (2010) 8,2 h\%t8 SF\ 074
fu=lozr il (@) @)
" [ * Re%>] \d, d,

Caoalt
- min <1,0 0,52 + 9645 e 3‘241’:)

Ma et al. (2011)

Eu = 3,546 - Re™%18%. <

0,556 0,673 0,133
E) P\~ .<Pl>

s d_o d,

Kawaguchi et al. (2006a)

4,99

—33
Redho' 3

Eu =

E 0,13 . Sf —t -1,19
dh Sf

92



Table A-4 Pressure drop correlations for solid fins

Author

Correlation

Weierman (McKetta
(1992))

hf 0.2
32 P, ‘07(1r)
Fu = {028+ ool Qﬂ:kp&aj

Py

-{Ll-r(L8-—24-e-Q15Nf)-e‘2m

&4
dy

>0,5

Stasiulevicius et al.

(1988)

— (0;7 - 0,8 . e(—O,ls-le)) . 6_0‘6_1;_;} . (
1,8
1&1-(1-2%) . Re-025

Eu =

Pt 0,55 Pl 0,5 hf 1!4
@) @ (-F)

Robinson and Briggs p\"0927  p 0515
Eu::3186-Re—Q“6-<—£> -(i>

(1966) d, P,

Ward and Young (Mon £\ 0377 o \-039% P,
Eu = 0,512 - Re~ 0264 . <—> . <_) : (_)

(2003)) 4 a 4
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Appendix B More correlations from the regression analysis

In this appendix the correlations from the regression analysis that were not

presented/recommended in chapter 3.4 will be presented. Basically, these are the correlations

that were developed in the steps before the recommended ones. In the left column, the data

which the correlations are developed for are presented.

Table A-5 Heat transfer correlations for serrated fins from the regression analysis

Data

Correlation

All, F/Fg<1,0

p 0,2137 h —0,19451
Nu - Pr=1/3 = 0,124 - Re®7933 - (—t) : (—e>

Pl Sf
df 0,4679
de

AH, Ft/Fd<1,0 PL' 0,351
Nu - Pr=1/3 = 0,177 - Re%%8 - <F> . Ay—0,0512
L

All, F/Fg<1,0 (Ar 0,27881

t . Nu - Pr=1/3 = (0,203 - Re%6% . (_t> 'ATsol_O'13891
calculated as for solid P,
fins)
All except from Cox P, 028496

Nu - Pr=1/3 = 0,104 - Re%7412 . <_t)  Ar,, 014814

(1973) and Schryber d,

(1945), F/F4<1,0. (Ar
calculated as for solid

fins)
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Table A-6 Heat transfer correlations for solid fins from regression analysis

Data Correlation
All except from the p,\"019185

Nu - Pr=1/3 =0,0756 - Re®79%% . (—) - Ar—019918
geometries 5v, 6v, 7v, 8v Py

and 9v from Brauer

(1964)

All except from the data
from Brauer (1964) and
Stasiulevicius et al.

(1988)

P 0,37087 h —0,33038
Nu - Pr~1/3 = 0,0475 - Re0768% . (—t) : (—f>

All except from the data
from Brauer (1964) and
Stasiulevicius et al.

(1988)

Pl Sf
df 0,75496
de
0,25938

Nu - Pr=%/3 = 0,0452 - Re®81939. (%) . Ay—0,18483
e
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Table A-7 Pressure drop correlations for serrated fins from regression analysis

Data

Correlation

Only data from authors
with six or more data
points (see chapter
3.4.2.3), Ar calculated as
for solid fins, F/F4<1,0

—0,63537 -0,65401

P
Eu = 5,364 - Re™01721. (—t>
de

0,3605

(@

" Ao

All the data for
F/Fg>1,0. Fin geometry
effect kept from equation

41

—2,77964 1,02598

Eu = 41,34 - Re™*180%. (i) - Ar041s3

de

Table A-8 Pressure drop correlations for solid fins from regression analysis

Data Correlation
All for Re< -0,66356 —-0,2934 0,2572
or Re<50 000 Eu = 849 - Re—0:2069 . (i) _ (ﬂ) (v
) de de Sf
0,0627 d; 0,2516
Sf de
All for Re<50 000, using P,y 062361 p | ~032347
Eu = 5,33 - Re0202. (—) (_> . 4032398
Ar de d,
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