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Abstract

Network analysis of gene co-expression data has been shown to be a strong tool to
elucidate biological information from large datasets. In this analysis the goal has
been to see if the method developed by Voigt, Nowick & Almaas (2015), based on
pairwise gene co-expression correlation, can be used to extract biologically significant
information about co-infection of HIV and tuberculosis. Their method is based on
the idea that pairwise correlation between genes can be grouped in categories of
conserved, divergent and specific correlation, based on their expression in di�erent
tissues/samples.

Data has been gathered from the study done by Kaforou et al. (2013), which
includes whole-blood RNA samples gathered from HIV positive and HIV negative
patients with either active or latent tuberculosis infection. These samples were
grouped accordingly and analyzed, generating networks consisting of conserved,
divergent and specific correlations. Networks consisted of correlations between
either HIV negative or HIV positive samples co-infected with either active or latent
TB, resulting in two di�erent networks. These were compared to each other, and
the network consisting of HIV positive samples was further analyzed to determine
significant nclustering and gene hubs, in the hopes of extracting biological information
useful in relation to HIV and TB co-infection.

Clusters of conserved correlation between gene pairs was found to be preserved
between the two di�erent networks, consisting of genes that were found to be involved
in the general upkeep of cells. Hubs were found to be located in areas of high degree of
specific and divergent pairwise gene co-expression correlations, implying involvement
in immune response pathways that di�er between the case of latent infection of TB
and active TB infection in HIV positive patients.

Results from the study performed by Kaforou et al. (2013) were used to determine
whether or not the findings from this analysis were consistent with previous findings.
TB "Fingerprint" genes are genes whose expression correlated with active TB infection,
and could help distinguish between active TB infection from other types of infection,
were found to be present to some degree in the network, located in areas of mainly
specific and divergent gene pair correlations. This is consistent with what is expected
when performing pairwise gene co-expression correlation analysis.

These findings indicate that the method described by Voigt et al. (2015) shows
great promise in extraction of biological information from gene co-expression data,
but more analysis is required to determine more specific genetic implications of the
data considered in this study.
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Sammendrag

Nettverksanalyse av gen-koekspresjonsdata har vist seg å være et kraftig verktøy
for å hente ut biologisk informasjon fra store datasett. I denne analysen har målet
vært å se om metoden utviklet av Voigt, Nowick & Almaas (2015) kan benyttes for
å hente ut biologisk interessant informasjon om koinfeksjon av HIV og tuberkulose.
Metoden er basert på ideen om at parvis korrelsjon mellom gener kan bli gruppert i
henhold til hvorvidt de er konserverte, divergente eller spesifikke korrelajsoner, ut i
fra deres ekspresjon i forskjellige vev/prøver.

Data har blitt innhentet fra studien gjennomført av Kaforou et al. (2013), som
inkluderer "whole-blood" RNA-prøver samlet fra HIV-positive og HIV-negative pasien-
ter som i tillegg er smittet med enten aktiv eller latent tuberkulose. Disse prøvene
ble gruppert og analysert slik at to nettverk ble produsert, bestående av konserverte,
divergente og spesifikke korrelasjoner Dette resulterte i to forskjellige nettverk som
ble sammenlignet med hverandre, og nettverket av HIV-positive prøver ble videre
analysert for å bestemme signifikante "klustere"/klynger og tilstedeværelsen av "hubs".
Dette ble gjort i håp om å kunne hente ut biologisk informasjon som kan benyttes i
forbindelse med koinfeksjon av HIV og tuberkulose.

Klynger bestående av konserverte korrelasjoner var tilstedeværende i begge
nettverk. Disse genene viste seg å være delaktige i generelle genfunksjoner. Hubs
ble lokalisert i områder med høy andel spesifikke og divergente korrelasjoner, og det
ble funnet indikasjoner påat disse områdene er involvert i immunrespons som er
di�erensiert mellom prøver med latent tuberkulose og prøver med aktiv tuberkulose.

Resultater fra studien gjennomført av Kaforou et al. (2013) ble benyttet for
å vise hvorvidt resultatene fra denne analysen stemte overens med tidligere funn.
"Fingeravtrykkgener" er gener hvis ekspresjon viser samvarians med aktiv tuberku-
loseinfeksjon. Disse kan bidra til åskille prøver med aktiv tuberkulose fra prøver
med andre infeksjoner. Omtrent halvparten av fingeravtrykkgenene ble funnet i
nettverket bestående av HIV-positive prøver, lokalisert i områder med høy andel
spesifikke og divergente korrelasjoner. Dette er konsistent med hva som er forventet.

Resultatene indikerer at metoden beskrevet av Voigt et al. (2015) viser stort
potensiale for åhente ut biologisk informasjon fra gen-koekspresjonsdata, men at mer
analyse er nødvendig for åbestemme mer spesifikke genetiske implikasjoner i dataene
benyttet i denne analysen.
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1. Background

This master thesis is based upon the network analysis method developed by Voigt,
Nowick & Almaas (2015) The foundation of this method is that gene sequences that
diverge between species, whilst conserved within them, are believed to contribute to
phenotypic di�erences between species (Hudson et al. 1987). It is expected that not
only di�erences in gene sequences, but also in gene expression contribute to such
phenotypic di�erences (Nowick et al. 2009).

This reasoning has been extended to gene co-expression networks, and the aim
was to investigate the role of specific genetic interactions by studying correlation
between gene pairs and whether this correlation is conserved or di�erentiates under
alternative environmental perturbations. Network analysis has shown great promise in
elucidating biological meaning from gene expression sets, protein-protein interaction
networks, but correlating network information between species or perturbations is
still a work in progress. Examples of environmental perturbations can mean either
cell cultures from two (or more) di�erent species or a single cell culture expressed
under di�erent regiments.

The premise of this master thesis is an example of the latter; human blood
samples with or without HIV infection as well as either active or latent tuberculosis
infection. This kind of system has been studied by Kaforou et al. (2013). Their
hypothesis was that a unique host blood RNA transcriptional signature could be
used to distinguish tuberculosis from other diseases in HIV-infected and -uninfected
patients. Co-infection of HIV and TB is a highly significant cause of death, especially
in areas of inadequate health systems and poverty. Fast, cheap and reliable detection
of infection can help save many lives. Through analysis of patients infected with
these diseases, Kaforou et al. (2013) were able to distinguish a "fingerprint" set of
expressed RNA specific to patients co-infected with HIV and TB.

Is it possible to detect di�erences in the gene co-expression networks of patients
infected with HIV and/or TB? By introducing the pair-wise gene co-expression
correlation analysis of Voigt et al. (2015) to this system, this study is assessing the
possibility of detecting gene modules or gene hubs in humans specific to infection of
either active or latent tuberculosis and co-infection of HIV. Determining the feasibility
of extracting biological sense from networks created using pair-wise correlation, and
whether this can be used in unison with other findings regarding co-infection to more
easily be able to detect and treat these diseases.
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2. Theory

2.1 Network theory

Newman (2003) describes a network as a set of items, known as vertices or nodes,
that are connected to each other through edges (Figure 2.1). The concepts stem from
the mathematical area of graph theory. Network theory can be used to describe many
structures known to us, such as social networks where nodes represent individuals and
edges the connection between them, or the World Wide Web, where nodes represent
servers or computers and edges represent pathways of information between them.
The edges can take on di�erent kinds of connections between nodes. In our social
network the edges between individuals can represent friendliness, animosity or sexual
interactions as just some examples. Network theory can be used on a multitude of
di�erent data sets capable of network representation, from gene expression (Ruan
et al. 2010), to tennis players (Radicchi 2011), to the connection between social
interactions and influenza outbreaks (Gardy et al. 2011).

Figure 2.1: Conceptual example of a network. The circles are nodes and the black lines are
edges, signifying which nodes are connected to each other.
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2.1.1 Adjacency matrix and degree
As defined by Horvath (2011), an adjacency matrix A = (Aij) can be used to describe
the pairwise relationship between a set of n nodes. Each component Aij quantifies
the connection strength from node i to node j. Two types of networks give di�erent
values for the adjacency matrix. For an unweighted network, the value of component
Aij equals either 1 or 0. Either the link between the nodes exists or it does not.
For a weighted network, the value Aij is a real number between 0 and 1. Edges
between nodes can also be either directed or undirected. For an undirected network,
there is no di�erence in going from node i to node j compared to going from node
j to i (Aij = Aji), while for a directed network, the adjacency matrix may not be
symmetrical.

The nodes that are directly connected to node i, are known as its nearest neighbors
in the network, and the number of nearest neighbors of node i is known as connectivy
or degree (ki). If we treat the network in Figure 2.1 as unweighted, node 1 has seven
nearest neighbors, and k1 = 7, and node 2, which has five nearest neighbors, has
degree k2 = 5. More generally, Horvath (2011)defines the degree of node i is as:

ki =
ÿ

j ”=i

Aij (2.1)

For an unweighted network, ki equals the number of nearest neighbors, while in a
weighted network, ki is the sum of connection weights between node i and the other
nodes. For the remainder of this text, focus will be held on unweighted networks
unless otherwise stated.

2.1.2 Hubs and modules
One of the prominent feature of many networks is the occurrence of hubs and modules.
Hubs are defined as nodes with a high degree ki, meaning that they have connections
to many other nodes. These nodes have been shown in several network studies to
be important actors in the network structure (Albert et al. 2000, Jeong et al. 2001,
Albert & Barabási 2002), though this does not always have to be the case. In Figure
2.1 the three nodes with the highest degree are node 1, node 2 and node 3, with a
degree of 7, 5 and 5 respectively.

An example of hub significance is protein-protein interaction networks, where
deletion of hub genes from an organism are more likely to be lethal than deletion of
non-hub genes (He & Zhang 2006). Alternatively, in a social network, if connections
between nodes are based on friendliness, hubs can be seen as the popular individuals.
In such a network, the hubs might even be highly connected to each other, forming
a clique. In network context highly connected groups of nodes are called modules or
clusters.

The network shown in Figure 2.1 we can identify two separate clusters, one
including node 1 and the other including node 2 and 3. In gene co-expression
networks, gene clusters have been shown to express products linked to the same
biological pathways or protein complexes (Segal et al. 2003, Zhang & Horvath 2005).
In this context, for the network in Figure 2.1, node 4 could be referred to as a
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"bridge" node that link the two clusters together. In gene co-expression it can be
seen as a kind of gatekeeper gene, responsible for co-regulation of the production of
two correlated protein complexes by transmitting information between the them.

There are di�erent methods that can be used to calculate and identify clustering in
a network. Horvath (2011) mentions partitioning-around-medoids (PAM) clustering
and hierarchal clustering as two methods often used in network applications. For this
analysis, the MCODE plugin was used, and the method, which is based on k-coring,
is further detailed in Section 3.4. The general approach is to find sets of nodes with
robust and strong connections to each other, that stand out from the network in
general. One central parameter in regards to clustering is the clustering coe�cient,
which is a density measure of local connections. Dong & Horvath (2007) defines the
clustering coe�cient as follows:

ClusterCoefi = number of actual connections between neighbors of i
number of possible connections between neighbors of i

This can be evaluated in the context of an adjacency matrix, resulting in the
following expression:

ClusterCoefi = 2�i

ki(ki ≠ 1) = 1
ki(ki ≠ 1)

Nÿ

j=,l=1
aijajlali, (2.2)

where �i is the number of triangles node i is a part of. Following this logic,
ClusterCoefi equals 1 if all neighbors of i are connected to each other.

2.1.3 Centrality
The term centrality is used when determining the relative importance of nodes or
edges in a network. Degree is one such centrality measure. As mentioned, a node
with a high degree could correlate with high significance for the architecture of the
network, but there are limitations. Chen et al. (2012) propose that degree as a
centrality measure can fail to identify important nodes in some cases.

In Figure 2.1 node 1 has a higher degree than node 2. Still, node 2 may be more
influential on the other nodes in the network because of its connectivity beyond its
first neighbors. The biological example by Chen et al. (2012) argues that an infection
that starts in node 2 will have faster and further-reaching e�ects than an infection
starting in node 1as a result of its nearest neighbors having a higher degree than
node 1.

Several centrality measure parameters have been proposed to account for these
global e�ects in a network, including betweenness centrality and closeness centrality,
two geodesic-path-based ranking measures. Geodesic path is a distance measurement
where one "walks" from one node via the least amount of edges necessary to another
node. This distance is also known in network theory as the shortest path between
nodes.

The betweenness centrality of a node v is defined as the fraction of shortest paths
between node pairs that pass through v. Chen et al. (2012) define betweenness
centrality CB(v) for a network with n nodes and m edges as:
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CB(v) =
ÿ

s ”=v ”=t

‡st(v)
‡st

, (2.3)

where ‡st is the total number of shortest paths between s and t and ‡st(v) is the
number of shortest paths through v. The rationale behind betweenness centrality
is that nodes with a high fraction of shortest paths through it will have significant
e�ect on the network as a whole since information from other nodes will readily pass
through it. The "bridge" nodes from Figure 2.1 are examples of nodes with high
betweenness centrality.

Closeness centrality CC(v) takes into account the distance from node v to all
other nodes, and focuses on how long it will take to spread information from node
v to all other nodes. It is defined as the reciprocal sum of geodesic distances to all
other nodes of V :

CC(v) = 1
q

t”=v dg(v, t) , (2.4)

where dg(v, t) is the geodesic distance between v and t.

2.2 Gene co-expression networks
The thought behind gene co-expression studies is that genes that are expressed in
concert with each other (i.e. one gene’s expression displays similar pattern to another
gene’s expression) is related to phenotypic and functional consequences (Oldham
et al. 2006, Nowick et al. 2009). The advantage of studying a network generated
from pairwise gene co-expression data is that it is possible to look at the system-level
functionality of genes. Co-expression analysis uses correlation data or any other
"distance" measure to find similarities between gene expression profiles.

DNA microarray experiments have shown that clusters of genes with correlated
expression patterns have protein products that participate in the same pathways
(Hughes et al. 2000, Segal et al. 2003). By studying gene co-expression it has
been possible to see how changes in gene expression result in phenotypic di�erences
between species. Ebersberger et al. (2002) find that chimpanzees and humans have a
high extent of gene sequence homology, and points to di�erences in the expression of
homologous genes as a reason for our di�erent physiologies.

Earlier work has looked at di�erences in expression between species or tissues,
but with di�culties in discerning between functionally significant and insignificant
expression changes (Khaitovich et al. 2004). The usage of network analysis on
a genome-wide scale have come a long way in elucidating how clusters of genes
are conserved or di�erentiate between species, further establishing their phenotypic
e�ects. Stuart et al. (2003) found that there are both animal-specific components and
conserved relationships between newly evolved and ancient modules when comparing
the genomes of Homo sapiens, Drosophila melanogaster, Caenorhabditis elegant and
Saccharomyces cerevisae.
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Their network analysis also showed that some genes with unknown biological
function linked closely to modules of genes with known functions. These genes were
experimentally shown to be functionally essential for the metabolic pathways of
these modules. This shows that network analysis of gene co-expression networks also
opens up the possibility to map the biological significance of genes with previously
unknown functions.

2.3 Constructing gene co-expression networks
Construction of gene co-expression networks is conceptually straight-forward. Nodes
represent genes, and if two genes are significantly co-expressed across appropriately
chosen tissue samples, they are connected. To get to a finalized network is not as
straight-forward. It is necessary to make decisions on how to analyze the raw data.
There are many statistical aspects to take into account, as pointed out by Zhang &
Horvath (2005). What kind of data to analyze, what kind of correlation coe�cient
to use, and as Zhang and Horvath focus on in their article, what kind of significance
weighted networks can have as apposed to unwheigted networks. In this section, the
choices done by Voigt, Nowick & Almaas (2015) when establishing their method are
detailed.

2.3.1 Determining correlation values
To construct di�erential gene co-expression networks, the correlation of each gene
pair is found using the Spearman’s rank correlation (fl), defined as:

fl = 1 ≠ 6 q
d

2
i

n(n2 ≠ 1) (2.5)

Here, for a sample size n, the n raw scores Xi and Yi are converted to ranks xi

and yi and di = xi ≠ yi. A value of +1 or ≠1 for fl signifies a perfect Spearman
correlation, where 1 would indicate perfect positive correlation (both parameters
increase or decrease in the same direction), while a spearman correlation of ≠1
indicates that the parameters are inversely correlated (one parameter increases as
the other decreases). Values close to 0 signifies little or no correlation between the
tested values.

Spearman correlation is only one of several possible methods of defining the rela-
tionship between gene pairs. Horvath (2011) discusses the possible other correlation
coe�cient methods to note; Pearson- and biweight mid-correlation. In general, the
di�erence between Spearman and Pearson correlation is that Spearman measures
the rank order of data points, not taking into account exactly where they are on an
axis, while Pearson measures how well the two parameters fit a linear relationship.
Pearson correlation is more sensitive to outliers (values that deviate from the general
trend), while Spearman is overly conservative in many applications. The biweight
mid-correlation is more complex than Spearman’s rank and Pearson, but combines
the advantage of Person-correlation’s high power and the Spearman-correlations high
robustness.
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To analyze changes in correlation, the group defined three possible scenarios for
gene pairs present in two tissues/samples:

• Conserved correlations: Strong and similar in both tissues

• Divergent correlations: Strong in both tissues, but dissimilar

• Specific correlations: Strong in one tissue only

The di�erent regions corresponding to the three scenarios are shown in Figure
2.2. Conserved correlations in a gene co-expression data set would be gene pairs
whose pairwise expression in an organism is unchanged between environmental
perturbations, or highly evolutionary stable gene modules between species.

An example of specific correlations are gene pairs whose role is only evident in
one type of tissue in an organism, such as brain-specific genes. When measuring
gene expression of these genes in other tissues, one would expect little or no pairwise
gene correlation in contrast to expression rate in brain tissue. In general, gene pairs
that are strongly correlated in one tissue or species while showing no significant
correlation in the other.

Divergent correlations are predicted to be present in gene pairs who have strong
absolute correlations in both tissues/perturbations, but these are oppositely correlated
(negatively correlated in one and positively correlated in the other).

Figure 2.2: Map of possible scenarios of correlation combination. Gene pairs with co-
expression correlation values such that they fall within the areas of the red triangles are
considered specific to one tissue/sample, while yellow triangles depict strongly conserved
pairs, and blue depict strongly divergent pairs.
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2.3.2 Correlation metrics
To determine whether a gene pair is specific for one tissue/species or divergent or
conserved between them, three metrics have been introduced that are non-overlapping
and can be generalized to any higher-order comparison:

Conservation (C):

C = |fl1 + fl2|Ò
‡

2
1 + ‡

2
2

(2.6)

Divergence (D):

D = |fl1| + |fl2| ≠ |fl1 + fl2|Ò
‡

2
1 + ‡

2
2

(2.7)

Specificity (S):

S = Îfl1| ≠ |fl2ÎÒ
‡

2
1 + ‡

2
2

(2.8)

Here, fl1 refers to the correlation value for a gene pair in one tissue or sample
and fl2 to the correlation value for the same gene pair in another, ‡i is the variation
for each of the gene pairs in a tissue/sample. Significant scores are evaluated by
introducing a threshold value for each of the metrics, by determining a p-value.
Details on determining threshold values for this analysis is given in Section 3.2.

For the three metrics, C, S and D, the variation ‡i is introduced. The method is
based upon correlation between two disparate groups, for example two gene sequences
taken from two di�erent species. To e�ectively evaluate the correlation between
these two groups, and the significance of their overlap, we need to calculate the
variation in each of the sample groups. In the example of gene sequences evaluated
between species, a gene sequence with a lot of variation in expression in one species
is likely loosely regulated, meaning it is of less significance to the overall system. ‡i

is introduced to score correlation values with a high amount of variation in a set of
samples correctly. This can be done by subsampling in the di�erent test groups, and
calculating its standard deviation of the mean.

2.4 Gene ontology
As previously stated, gene sequences specifying core biological process are shared
between many species. This has led to the advent of gene ontology studies and
identification (Ashburner et al. 2000). A consortium of di�erent agencies and research
groups work together to categorize genes and gene products into functional groupings
based on their roles. Each gene is given a set of gene ontology (GO) ID-markings,
making it possible to check the connection between sets of genes. There are three
main categories; molecular functions, cellular components and biological processes.
Genes and gene products are also linked to other databases, such as GenBank and
Ensembl for easy identification of di�erent gene IDs.

Ashburner et al. (2000) mentions ’cell growth and maintenance’ and ’signal
transduction’ as a couple of the broad biological process terms under which genes
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and gene products can be categorized. Molecular functions can incorporate ’enzyme’,
’transporter’ or ’ligand’ among others, while cellular components refers to where in
the cell di�erent genes are active, such as ’ribosome’ and ’protesome’.

Gene ontology databases, such as the Database for Annotation, Visualization and
Integrated Discovery (DAVID) bioinformatics database (Da Wei Huang & Lempicki
2008, Huang et al. 2009), can be used to check whether clusters in co-expression
networks are part of a specialized biological process, or if there is a common molecular
output from these genes, possibly correlating cluster a�liation and protein complexes
or pathways. The DAVID analysis clusters genes that share gene ontologies together
and rank them according to an enrichment score based on number of genes from the
supplied list which are a part of the given gene ontology.

2.5 HIV and tuberculosis
Tuberculosis (TB) and human immunodeficiency virus/acquired immune deficiency
syndrome (HIV/AIDS) ranks as some of the deadliest infectious diseases on a global
scale. Estimates from the World Health Organization (WHO) show approximately 9
million new cases of TB in 2013 and 1.5 million deaths, 360 000 of which were HIV
positive (WHO Global Tuberculosis Report 2014). In 2010, 14 million individuals
were estimated to be dually infected with both HIV and TB (Getahun et al. 2010).

2.5.1 HIV

HIV is an infectious retrovirus responsible for causing AIDS, a condition recognized
by progressive failure of the immune system in humans (Weiss 1993). HIV is a
systemic infection, meaning that it is found throughout the body of an infected
individual. It transmits between humans through body fluids such as blood and
semen. The main routes of infection are sexual transmission, parenteral transmission
(sharing needles, blood transfusion) and transmission from mother to infant (De Cock
et al. 2000). It has been found that HIV susceptibility and transmission increases
when co-infected with other sexually transmitted diseases (STDs), such as gonorrhea
and chlamydia (Cameron et al. 1989, Mayer & Venkatesh 2011).

HIV infects cells vital to the immune response system in humans such as T
helper cells (CD4+ T cells), macrophages and dendritic cells (Cunningham et al.
2010), leading to low levels of CD4+ T cells. When this cell count decline below a
critical threshold, cell-mediated immunity is lost, making the body susceptible to
opportunistic infections.

One of the trademarks of progressive HIV infection is chronic activation of the
immune system. Multiple types of cells involved in immune response show increased
turnover and frequency (Brenchley et al. 2006). It is believed that this may result
from HIV interfering with the functional organization of the immune system, further
allowing viral evolution and spurring on the emergence of AIDS (Grossman et al.
2006).
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2.5.2 Mycobacterium tuberculosis

TB is caused by infection of the bacteria Mycobacterium tuberculosis, and most
commonly a�ect the lungs (Pawlowski et al. 2012). It spreads via air in droplets
from infected individuals caused by coughing or sneezing. Symptoms of active TB
are coughing with sputum or sometimes blood, chest pains, weakness, weightless,
fever and night sweats (WHO Global Tuberculosis Report 2014). Otherwise healthy
individuals do not exhibit active TB, as the immune system keeps the infection in
check. A TB-infected individual who does not exhibit symptoms is said to have a
latent TB infection, or LTBI. TB is held in check by the activation of CD4+ and
CD8+ T helper cells, as well as other immune response cell types(Pawlowski et al.
2012). Decline in immune system response may reactivate LTBI to an active state,
propagating the disease.

2.5.3 HIV and tuberculosis co-infection
TB and HIV co-infection poses a novel pathogenic scenario , leading to challenges
both in regards of diagnosis and therapy (Pawlowski et al. 2012). Management and
epidemiology becomes a great deal more complex for both diseases when co-infected
in comparison to a mono-infection of either TB or HIV. This severity is related
to the fact that both pathogens potentiate one another leading to an accelerated
deterioration of the immune system (Pawlowski et al. 2012). LTBI has a 20-fold
increase of reactivation to active TB in the presence of HIV infection.

There are treatments available for dealing with HIV/TB co-infection, but there
are challenges related to the quality of the health system in many countries where
this problem is prevalent. Better and easier ways of early diagnosis could help save
the lives of many infected patients (Kaforou et al. 2013).

2.6 Microarray analysis
A microarray is an analytical device based on a solid substrate (glass slide or silicon
thin-film cell) containing labeled components from cells, tissues and other biological
sources placed in indents or wells on the plate (Schena 2003). These are used to
assay large amounts of biological material using high-throughput screening. Types
of microarrays include DNA microarrays (cDNA, oligonucleotide microarrays etc.),
protein microarrays, peptide microarrays, antibody arrays and others. Prominent
manufacturers of microarray technology are A�ymetrix, Agilent and Illumina.

In gene expression analysis the sample that is to be analyzed is amplified and
hybridized against labeled probes, creating a 2D-array with di�erent probes expressed
in di�erent regions. The arrays are scanned by a laser that excites the labeled probes,
and registers their expression value as emission levels. This results in values of
expression for each of the labeled probes related to each other. The data is usually
normalized and have background noise reduced as a part of the procedure (Schena
2003).
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2.6.1 Illumina bead array
Illumina bead arrays, as used by Kaforou et al. (2013) in their initial research, is
a type of microarray analysis where each array is assembled on an optical imaging
fiber bundle consisting of about 50000 individual fibers fused together (Oliphant
et al. 2002). These are etched to produce the wells in which the beads that are
central to this method is placed. The beads are produced by covalently attaching
oligonucleotides to silica beads. The di�erent beads are pooled together and mounted
randomly to fibers, and their place is determined post-assembly. The resulting
matrix is then processed as usual for microarray analysis. The size of the beads
(3µm in diameter) makes it possible to increase throughput by increasing matrix size
compared to regular microarray chips.

2.6.2 Whole-blood RNA samples
Whole-blood RNA samples contain mRNA collected from peripheral blood samples
(Kaforou et al. 2013), meaning minimal preprocessing of the blood before RNA is
extracted. Both HIV and TB are systemic infections that a�ect the entire organism,
resulting in activated immune system and stress responses throughout organs/tissues.
Whole-blood samples will e�ectively become a "snapshot" of the state of the infected
organism, since protein-producing mRNA strands involved in these reactions will
be carried throughout the circulatory system. This makes this kind of sampling a
strong candidate to determine the ramifications and e�ects of a pathogenic infection
on a system.
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3. Method

3.1 Data collection
The data used in this analysis consists of the findings in the 2013 study by Kaforou
et al.: Detection of tuberculosis in HIV-infected and -uninfected African adults using
whole blood RNA expression signatures: a case-control study. 536 patients from
Malawi and South Africa with either active TB infection, latent TB infection (LTBI)
or other diseases (OD) were classified as either HIV positive or HIV negative. Whole
blood RNA was extracted from blood samples and labeled cRNA analysed on Human
HT-12 v.4 expression Beadarrays from Illumina. The datasets were accessed from
the Gene Expression Omnibus (GEO) database, accession set GSE37250. The raw
data has been adjusted so that background values have been subtracted and quantile
normalized prior to being obtained from GEO.

The dataset consisted of microarray data using whole blood RNA samples from
536 patients, with 47323 probes per sample. Samples were grouped as shown in Table
3.1. For the purpose of this analysis, the data from the OD group was discarded,
as the focus of the analysis was on changes relating to co-infection of HIV and TB.
Probes had been annotated according to the National Center for Biotechnology
Information’s (NCBI) Reference Sequence collection (RefSeq) for gene identification.
Using this as a filter, a perl script was written to select only genes with known protein
products for further analysis, annotated in the dataset as NM genes. This was done
to reduce the amount of data before processing, but without losing significant and
central gene probes. For genes with multiple probes, their mean value was calculated
and used in further computation. To group probes in terms of gene target, they were
matched with their o�cial gene names, using a perl script and HGNC (HUGO Gene
Nomenclature Committee) nomenclature provided from the metadata in the GEO
dataset.

Protein-producing genes were selected on the basis that the main characteristic
of this analysis is to find di�erences in expression that can account for infection
of HIV and/or TB. These infections interact in di�erent ways with the immune
system response of humans (Section 2.5), resulting in changes in cell production.
The hypothesis is that this will reflect on the protein-producing genes in that these
include DNA-regulatory proteins (Mitchell & Tjian 1989) and proteins involved in
cell proliferation and maintenance (Ensoli et al. 1990, Shaulian & Karin 2001).
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Table 3.1: Number of samples collected from dataset GSE37250 of the GEO database. The
numbers represent patients with that are either HIV positive and negative, and whether
they are co-infected with active tuberculosis, latent tuberculosis or other diseases.

Active TB Latent TB Other diseases
HIV positive 97 84 92
HIV negative 97 83 83

3.2 Computer analysis
After selection of the protein-producing gene probes and calculation of mean values,
the resulting samples consisted of 19396 gene probe values. These were further
subsampled into 40 sets of 10000 randomized probes for each of the four categories;
HIV positive and active TB, HIV positive and LTBI, HIV negative and active TB and
lastly HIV negative and LTBI. This was done to be able compile the large amount
of data present in the datasets. Testing showed that needed computer memory for
running the code written to calculate correlation values for all 19396 gene probes at
the same time was found to be 180 GB of RAM. The available computer equipment
had a limit of 130 GB available RAM, making subsampling of the data set necessary.
By dividing it into partitions of 10000 data points per sample, the amount of needed
memory no longer exceeded 130 GB.

40 subsamplings with 10000 randomized gene expression values per sample
were done for each set to be sure that each gene pair would have their pairwise
correlation value calculated at least once. The reasoning behind this is straight-
forward. The probability of one gene occurring in a subsample of 10000 genes:
P (Gene occurring) = 10000

19396 = 0, 52. This implies that there is a one in four chance
two genes occur in the same subsample. By doing 40 sets of subsamples, each gene
pair should appear approximately ten times. A perl script was written to choose
10000 random gene probes and group them together. Analysis of the resulting
subsamples showed that all possible gene pairings were present.

Spearman rank correlation value was calculated to obtain pairwise co-expression
scores using Equation 2.5. Variability in co-expression was found by dividing the
samples into groups of ten, so that the variance ‡ could be calculated for each gene
pair. This subsampling was done so that no more than one individual sample was
shared between subsamples, resulting in enough subsamples to calculate variance
while still ensuring independence between subsamples. A C++ script had been made
by Voigt et al. (2015) for this purpose. Some changes were done to this program to
accommodate for di�erences in input data.

Four possible combinations of of the sample sets were thought to carry meaningful
biological significance, each consisting of two sets of correlation data di�ering in
either HIV status or TB status.

• HIV positive and active TB - HIV negative and active TB

• HIV positive and active TB - HIV positive and LTBI

• HIV negative and LTBI - HIV negative and active TB
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• HIV negative and LTBI - HIV positive and LTBI

The reason for this choice was to connect findings in the networks to changes in
infection status. By letting one parameter di�er between the networks, it would be
easier to point to possible explanations, as is common practice in research. One of
these sets were focused on, the HIV positive pool of TBa active and LTBI samples.
These samples were thought to show di�erences between active and latent TB
infection in HIV patients, and could possibly point to interesting gene modules or
hubs that are specific for either of the cases. As pointed out in Section 2.5.3, the novel
aspects of HIV and TB-coinfection needs a di�erent approach than monoinfection.
The pool of HIV negative TB and LTBI-samples were analyzed to contrast findings
in the HIV positive pool.

After pairwise gene correlation had been calculated for each gene pair, a perl script
was written and used to select all of the unique gene pairs and their correlation and
variation values. Equations 2.6-2.8 were used to evaluate each pairwise correlation
metric. Another C++ script supplied by Voigt et al. (2015) was used for this purpose.
Some changes had to be made for the data to be correctly handled, and to obtain
the wanted metrics.

Using a perl script, a hard cuto� threshold for C, S and D was calculated using a
method based on Bonferroni correction. For each of the metrics, a sample of 20000
scores were randomly chosen. The highest metric score in this sampling was select
and stored. This was repeated 50000 times, and the mean value of the highest scores
was calculated. Gene pairs with metric scores over this threshold. By chosing 20000
random scores, the p-value of this method was 5 ú 10≠5. Several iterations using
di�erent p-values were done to assess how many significant gene pairings to include,
and how stable the resulting cuto� value was.

3.3 Network generation
The resulting sets of gene pairs were imported and further analyzed using the
Cytoscape software environment (Cline et al. 2007). The three metrics were merged
to create one network including all correlations, as well as individual smaller networks
consisting of only conserved, divergent or specific correlations. The main components
of these networks were selected and di�erent parameters, such as degree, clustering
coe�cient, betweenness centrality and closeness centrality, were calculated using the
appropriate network analysis plugins readily available in Cytoscape. Correlations
between these parameters were calculated using MATLAB (2010)’s native corrcoe� -
function, based on Pearson correlation (Section 2.3.1). The function takes in a
n ◊ m matrix and evaluates the correlation between each column.

3.4 Network cluster analysis
Cluster analysis was done using the Cytoscape plugin MCODE (Bader & Hogue 2003).
Initially created for protein interaction networks, the algorithm is transferrable to
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other sets of network data. MCODE analyzes the network and determines clustering
in three steps. First all nodes are weighted. This is done by selecting the highest
k-core of the node neighborhood and determining each node’s local network density.
A k-core is a subnetwork of the starting network with minimal degree k. Bader &
Hogue (2003) define the parameter core-clustering coe�cient of a node v to be the
density of the highest k-core of the immediate neighborhood of v, including v.

The second step takes the highest weighted node and moves outwards from this. A
percentage of the original node weight is determined as the threshold of the clustering
algorithm, and nodes above this is included in the cluster and their nearest neighbors
are checked against the threshold value. When no more vertices are included, a new
seed node that has not been checked is selected and the process repeated. Vertices
are not checked more than once in this process, resulting in non-overlapping clusters.

The third step of the MCODE algorithm post-processes the network clusters.
They are filtered out if they do not contain at least a network of minimum degree 2
(2-core), and options are available for further post-processing. A "flu�" option is a
parameter between 0.0 and 1.0, and all neighbors of nodes in the clusters are checked
against this value if they have not already been "seen" by the algorithm. New nodes
are included if the neighborhood density is higher than the flu� parameter. Using
the flu� option can lead to overlap in clusters. A second option, "haircut" removes
singly connected nodes from the clusters, e�ectively "2-coring" them. A score is given
to the resulting clusters, where ranking is based on density of the clusters.

3.5 Gene ontology analysis
The general concept of gene ontology analysis is outlined in Section 2.4. In this
analysis, the DAVID bioinformatics database has been used to annotate genes with
gene ontology signifiers. The procedure of performing such an analysis is relatively
straight-forward. For a set of genes for which function or relation is unknown,
the DAVID database web interface (accessible through david.abcc.ncifcrf.gov) can
perform gene ontology enrichment analysis. The layout of DAVID is shown in
Appendix A.

Here, a list containing gene IDs of di�erent origin can be inserted, or a file
containing them uploaded. After the list has been submitted, DAVID will recognize
species whose genome match the supplied gene list, and a selection species background
can be chosen. Di�erent gene ontology databases can be selected for matching with
the gene list, and a functional annotation clustering can be performed, one example
of which is given in Appendix A.

Genes are grouped according to annotations, and their function is listed, along
with the fraction of supplied genes who fall under that category and the p-value of
this selection happening by chance. By evaluating di�erent clusters and the fraction
of genes who are a part of the di�erent enrichments, it can be possible to deduce the
overall function of the gene cluster/module from which the gene list was extracted.
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4. Results

Network representations were created using Cytoscape software package (Da Wei Huang
& Lempicki 2008, Huang et al. 2009) and clusters are created using the Cytoscape
MCODE plugin (Bader & Hogue 2003). Degree, betweenness centrality, closeness
centrality, clustering coe�cient and number of conserved, specific and divergent
correlations for each node were calculated using Cytoscape’s native network analysis
plugin.

4.1 Networks
Correlation metric datasets for HIV positive and HIV negative data sets for TB
active and LTBI were analyzed using Cytoscape. Extraction of the largest connected
components yielded networks consisting of 4807 nodes and 14516 edges for the HIV
positive dataset and 5169 nodes and 14259 edges for the HIV negative dataset, when
using p-value =5 ◊ 10≠5 as a correlation metric threshold. Representations of the
resulting networks are shown in Figure 4.1, and the number of conserved, divergent
and specific correlations are listed in Table 4.1.

Table 4.1: Number of conserved, specific and divergent pairwise gene co-expression corre-
lations for networks consisting of with HIV positive or HIV negative samples co-infected
with either active TB or LTBI.

Network Correlation
Conserved Specific Divergent

HIV positive (TB active vs LTBI) 4807 5097 4934
HIV negative (TB active vs LTBI) 4455 5156 4648

Two networks were also created using threshold values calculated from p-value =
7 ◊ 10≠5 from the HIV negative and HIV positive data pool to analyze a larger set
of genes. The resulting networks were merged using Cytoscape’s network merging
tool. Nodes and edges not present in both networks were filtered out. The resulting
network consisted of 6 main components (Figure 4.2), consisting of a total of 431
nodes and 833 edges, all of which were conserved correlations except for divergent
correlations between genes CD47 and SFMBT2 and between C4orf32 and DDAH2.



18 Results

(a) (b)

Figure 4.1: Visual representations of networks created in Cytoscape showing pairwise gene
co-expression correlation between TB active and LTBI samples for (a) HIV positive samples
and (b) HIV negative samples. Yellow lines signify conserved correlations, blue lines are
divergent correlations and red lines are specific correlations. Nodes have been arranged
using the organic layout style.

Names of genes located in the di�erent components are listed in supplemental data
S1.

4.2 Correlation analysis of network parameters
For each of the four parameters node degree and conserved, divergent and specific
correlations per node, betweenness centrality, closeness centrality and clustering
coe�cient was evaluated for the network created from pairwise gene co-expression
correlation network created with HIV positive samples, and are shown in Table 4.2.
The result of correlation evaluation between node degree and conserved, divergent
and specific correlations are also shown. This was calculated using the MATLAB
corrcoef -function (Section 3.3).

Table 4.2: Pearson correlation values for selected parameters in network created from
correlation between TB active and LTBI samples co-infected with HIV. Correlation values
between node degree, as well as conserved, specific and divergent edges for the entire
network were calculated against closeness centrality, betweenness centrality and clustering
coe�cient. Their respective p-values are shown in parentheses (Values of 0 occur as a
result of MATLAB’s lower bound of representing p-values).

Betweenness centrality Closeness centrality Clustering coe�cient Degree
Degree 0.714 (0) 0.414 (1.39 ◊ 10≠198) 0.178 (2.13 ◊ 10≠35) -
Conserved 0.107 (9.0◊10≠14) 0.241 (1.8◊10≠64) 0.521 (0) 0.470 (5.29 ◊ 10≠263)
Divergent 0.615 (0) 0.420 (4.2 ◊ 10≠205) -0.147 (1.4 ◊ 10≠24) 0.532 (0)
Specific 0.516 (0) 0.535 (0) -0.105 (2.5 ◊ 10≠13) 0.676 (0)
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Figure 4.2: Visual representation created in Cytoscape showing genes and their correlations
present in both HIV negative and HIV positive data sets. The components are numbered
according to size. Yellow edges signify conserved edges, while blue signify divergent edges.
Only two pairs of genes exhibit divergent correlations.

4.3 Correlation and centrality analysis of hubs
Using degree k as a measure of hub significance, the ten highest ranking hubs were
located for the network created from pairwise gene co-expression correlation between
active TB and latent TB infection samples co-infected with HIV. Figure 4.3 shows
their placement in the network.

Table 4.3 lists hub degree, betweenness centrality, closeness centrality and cluster-
ing coe�cient, as well as the fraction of conserved, divergent and specific correlations
these hubs are a part of. The total fraction for hub correlations are shown in Figure
4.4.

For each of the top hubs, the average percentage of conserved, specific and
divergent correlations among their nearest neighbors was also calculated, as shown
in Table 4.3, along with the average degree of each hubs neighborhood and the
highest degree among their neighboring nodes. A list of gene names for each hub
neighborhood is given in supplemental file S1.

4.4 Clustering
Cluster analysis was done using the Cytoscape plugin MCODE (Bader & Hogue
2003). With degree cuto� 2, and ’haircut’ and ’flu�’ options on. Node density cuto�
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Figure 4.3: Location of hubs shown in closeup of network of pairwise gene co-expression
correlation between active TB and LTBI co-infected with HIV. Green circles represent hubs.

was set to 0.1, node score cuto� was set to 0.2, K-core was set to 2, and Max. depth
was set to 100. The four clusters with the highest ranking based on the MCODE
algorithm had scores of 8.187 through 5.176, and their location in the network is
shown in Figure 4.5. Clusters with lower ranking either overlapped with one of
higher ranked clusters or consisted of to few genes to be of any significance. Clusters
consisted mainly of conserved correlations, with a few divergent correlations in cluster
1 and 4. Cluster closeups are shown in Appendix C, and genes located in each of the
clusters are given in supplemental file S1.

When comparing the di�erent modules against the components preserved between
HIV positive and HIV negative networks, there was found to be an overlap of approx.
80% of genes present in modules and genes present in the six components.

4.5 Functional analysis of clusters and hubs
4.5.1 Gene ontology analysis of conserved components be-

tween HIV positive and HIV negative sample pools
Gene ontology analysis using DAVID for each of the conserved components found
when comparing the resulting HIV positive network against HIV negative network
(Figure 4.2 resulted in generally low enrichment scores. DAVID evaluated the network
to mainly constitute of genes related to cell maintenance and proliferation, finding
minor enrichments for transcription activity, organelle structures (ribosomes, mito-
chondrion, etc.), transport proteins (GTPase and ion channels), a high enrichment of
DNA/RNA-binding proteins ( i.e. zinc fingers) and membrane proteins involved in
electron transport. Component 3 stood out having very high enrichment of ribosomal
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Conserved (0.4%)0.4%

Divergent

39.4%

Specific

60.2%

Figure 4.4: Distribution of conserved (0.4%), specific (60.2%) and divergent(39.4%) pair-
wised co-expression correlations for the top ten hubs in network created from pairwise
co-expression correlation between gene pairs in TB active and LTBI samples co-infected
with HIV. Threshold determined for edges included in network was calculated using p-
value<0.00005. Hubs ranked based on node degree (k).

proteins and ribonucleoproteins, with 23 out of 42 genes grouped under production
of components for ribonucleotides. A closeup of component 3 with gene names is
given in Appendix B.

4.5.2 Gene ontology analysis of clusters in network of HIV
positive samples

An analysis of each of the four main clusters in the network consisting of HIV
positive samples showed many of the same characteristics as the analysis of the
conserved components between HIV positive and HIV negative samples. Low general
enrichment, but with some enrichment in production of cell components, cell life
cycle, DNA repair and maintenance, metal binding-proteins and cell respiration.

Module 4 was highly enriched with genes involved in ribosome production and
activity, the same as component 3 in the preserved network between HIV positive
and HIV negative. A comparison of these two modules showed that 38 genes were
shared between them (out of 43 genes in component 3 and 51 genes in cluster 4).

4.5.3 Gene ontology analysis of hubs
Gene ontology analysis was performed for each of the ten highest ranking hubs
and their neighborhoods. None of the neighborhoods exhibited especially high
functionality enrichments, but the general trend for all of the neighborhoods were
genes encoding products used in nucleotide binding, energy pathways, apoptosis,
transcription, RNA processing and immune response (including leukocyte and T



22 Results

Figure 4.5: Clustering in network created from pairwise co-expression correlation between
gene pairs in TB active and LTBI samples co-infected with HIV. Clusters were found
using the Cytoscape MCODE plugin, and are ranked according to clustering score given by
MCODE.

cell regulation). The occurrence of genes involved in immune response was higher
than that of genes present i clusters, though the individual hubs themselves did not
represent important molecular functions, nor direct involvement in immune response.

4.6 Detection of TB fingerprint genes
Kaforou et al. (2013) Defined a set of "fingerprint" genes, genes whose transcription
profile was unique to samples infected with active TB. Approximately 50% of these
genes were detected in the network created from active TB and LTBI samples co-
infected with HIV. Fingerprint genes were heavily enriched with either divergent or
specific correlations, and their immediate neighborhood were also part of the large
area in the network consisting of mainly divergent and specific correlations.
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Table 4.3: The ten highest ranking hubs from network generated from pairwise gene co-
expression correlation data for samples with active TB compared to samples with latent
TB infection. Both sample groups were co-infected with HIV. Hub significance is based
on degree k, and the betweenness centrality, closeness centrality and clustering coe�cient
has been calculated for each of the ten genes, as well as for the neighborhood consisting
of each genes nearest neighbors. The fraction of conserved, divergent and specific gene
pair correlation have also been calculated for each of the ten hubs, as well as the average
fraction in these genes’ neighborhood. Fractions over 0.6 are marked with blue. The average
degree of the hub neighborhood, as well as the highest degree amongst those neighbors are
also specified (gene name in parentheses). Network average for node degree, betweenness
centrality, closeness centrality and clustering coe�cient are listed as a reference.

Fraction of

Gene Degree Betweenness
centrality

Closeness
centrality

Clustering
coe�cient Conserved Specific Divergent

OAT 101 0.0342 0.2626 0.0024 0 0.07 0.93
STOM 93 0.0405 0.2631 0.0072 0 0.31 0.69
IDH2 79 0.0163 0.2588 0.0133 0 0.95 0.05
DDX39 73 0.0188 0.2510 0.0156 0 0.88 0.12
WBSCR22 69 0.0142 0.2609 0.0200 0.01 0.99 0
SLC25A5 69 0.0274 0.0255 0.0057 0 0.03 0.97
SARS2 67 0.0282 0.2628 0.0086 0 0.85 0.15
CNNM3 63 0.0248 0.2628 0.0102 0.03 0.44 0.53
MRPL38 61 0.0152 0.2629 0.0126 0 0.92 0.08
ATIC 61 0.0162 0.2602 0.0186 0 0.93 0.7
Network
average 6 0.0001 0.1832 0.0635

Average fraction
in neighborhood of

Gene Average degree of
neighborhood

Maximum degree in
neighborhood Conserved Specific Divergent

OAT 12 69 (SLC25A5) 0.07 0.58 0.35
STOM 12 73 (DDX39) 0.05 0.36 0.58
IDH2 18 61 (ATIC) 0.04 0.14 0.82
DDX39 18 93 (STOM) 0.04 0.29 0.67
WBSCR22 23 73 (DDX39) 0.04 0.23 0.73
SLC25A5 14 101 (OAT) 0.12 0.76 0.12
SARS2 16 73 (RFTN1) 0.08 0.23 0.68
CNNM3 17 73 (DDX39) 0.06 0.48 0.46
MRPL38 20 73 (DDX39) 0.02 0.23 0.75
ATIC 21 79 (IDH2) 0.07 0.20 0.73
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5. Discussion

5.1 Evaluation of network layout and parameters

The two main networks created from the HIV positive and HIV negative data sets
(Figure 4.1) exhibited similar network traits. In both networks conserved correlations
grouped together in clusters that were connected to a larger main group consisting of
specific and divergent correlations, suggesting that the main buildup of the pairwise
gene co-expression networks are the same, even if the constituents of the networks
di�er.

Cluster analysis of the HIV positive network agrees with the network layout
observed, where clustering is clearly shown to be a characteristic prominent in
nodes with a high fraction of conserved correlations (Figure 4.5), while the larger
group of divergent and specific correlations exhibit insignificant clustering when
analyzed using the Cytoscape MCODE software. When evaluating the correlation
between conserved, specific and divergent metrics and clustering coe�cient, as listed
in Table 4.2, the same picture is drawn, with high correlation between conserved
correlations and clustering coe�cient, while divergent and specific correlations show
slight negative correlation with clustering coe�cient.

The average betweenness centrality and clustering coe�cient of the network, as
seen in Table 4.3, was quite low, suggesting the network layout was dominated by
large areas of nodes connected to each other by a few central nodes or hubs.

Calculations showed very strong correlation between node degree and betweenness
centrality, reflected by the fact that the top ranking hubs showed high values of
betweenness centrality. These observations point to a situation where hubs are
responsible for connecting di�erent parts to produce the resulting network. This
is mirrored in the correlation to closeness centrality, where divergent and specific
correlations rank high. Significant correlation to closeness centrality suggests that
genes high in divergent and specific pairwise co-expressions are tightly linked to the
rest of the network as a whole. Betweenness centrality was also highly correlated
with divergent and specific pairwise co-expressions, which was expected since these
are associated with the highest ranking hubs in the system.
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5.2 Evaluation of hub analysis

The top ranking hubs were found to be genes with a high fraction of either divergent or
specific correlations. Interestingly, when analyzing the same score for their immediate
neighbors, there was a markedly di�erent distribution of correlation behaviors, where
almost all neighborhoods of "specific" hubs were heavily involved in divergent pairwise
co-expression correlations and vice versa. This hub characteristic can imply that the
highly connected hubs act as "bridges" between specific and divergent areas in the
network, further implicating their importance to the overall functions of the network.
As seen in Table 4.3, there was also a tendency for hubs to be connected to other
high-ranking hubs, one of which was the DDX39 gene, a prominent participant in
many of the other hubs’ neighborhoods.

One hub, the CNNM3 gene, stood out as having a neighborhood which was
neither heavily specific or divergent, reflecting on its own distribution of correlations,
where almost half of its correlations are specific and the other half is divergent.
The STOM gene showed a similar, though not as strong, pattern for its nearest
neighbors, but was itself markedly more involved in divergent pairwise co-expression
correlations.

5.3 Biological interpretations of network analysis

5.3.1 Clustering of conserved correlations

High clustering of conserved correlations may indicate that these are gene modules
responsible for the main, vital processes of the cell. Functions and processes that are
needed regardless of otherwise environmental perturbations or pathogenic infections.
The importance of these conserved correlations is strengthened by the fact that a
portion of the conserved clusters where preserved between HIV positive data and
HIV negative data.

Gene ontology analysis showed that the clusters where mainly involved in functions
that are indeed vital to cell proliferation, such as cell respiration, DNA repair and
transcription of RNA. Their location, away from the network center, also points to
the fact that their functionality is less a�ected by alterations other places in the
network.

An explanation may be that conserved modules that are vital to main cell
functions need to be less sensitive to alterations in the network, thus reducing their
interaction with other parts of the network. Another explanation can be that if an
alteration should occur in one of these clusters, the rest of the network is less likely
to be heavily a�ected by these changes, leaving the other vital functions unperturbed
until the normal state of the gene cluster is restored. This could also explain why the
di�erent clusters seem to be located "distant" from each other as well as the main
bulk of the network, since this could improve the autonomy of the clusters.
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5.3.2 Biological characteristics of divergent and specfic cor-
relations

By studying the main hubs, divergent and specific correlations were found to be
highly incorporated with each other in the resulting network. This may imply that
there is a complex and interrelated response to changes in infection status of the
patients. Co-infection of HIV and TB, as pointed out in Section 2.5.3, has been
found to be a more complex situation than monoinfection, caused by TB and HIV’s
ability to potentiate each other, and the resulting complex network of divergent and
specific correlations may reflect this pathogen interaction.

Gene ontology analysis found that genes involved in immune response was more
enriched in the specific and divergent correlations than in the conserved, implying
that TB and HIV co-infection leads to a new regime of immune response compared
to HIV infection alone. Detection of fingerprint genes from the Kaforou et al. (2013)
article in specific and divergent correlations further bolster this implication. It is
expected that these genes should not appear as conserved genes, since their function
is what identified them as specific to active TB infection in the initial study.

The enrichment of immune response in specific and divergent correlations could
also occur as a result of HIV’s role in disturbing the functionality of the immune
system, as some of the genes were responsible for negative regulation of T cells and
lymphocytes. This would imply that the occurrence of active TB in these patients
is a result of earlier deactivation of the immune system by HIV, and that latent
TB could have converted to active state. It is di�cult to say something conclusive
about the role of these pairwise gene correlations, since it has not been evaluated
whether the co-expression profiles are specific to either patients with active TB or
latent TB infection, and how divergent correlations are expressed in each of the cases.
Evaluation of the individual expression profiles for each probe might clarify this.
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6. Concluding remarks

The network analysis method developed by Voigt et al. (2015) shows great promise in
extracting biological information from gene expression data sets. The resulting gene
co-expression correlation networks found in this analysis show that the method is
capable of correctly identifying the di�erent characteristics of pairwise gene correlation.
Preservation of conserved correlations between systems (HIV positive samples and
HIV negative samples) and the detection of fingerprint genes in specific/divergent
areas both imply this.

Pairwise gene co-expression correlation analysis has been shown to e�ectively
separate correlations that are significant and possibly exclusive to HIV negative
samples from those in HIV positive samples, while at the same time preserving the
conserved correlations shared by both systems. At the same time this method can
help elucidate the functional connection between conserved modules and genetic
relations that are specific to di�erent environmental perturbations, in this case
pathogenic infection status.

Further work is needed to specify the roles of network structures that have been
detected in this analysis. By evaluating the expression values of the di�erent probes in
latent and active TB infection, it could be possible to select co-expression correlations
that are specific to each case, and possible detect functional gene correlations that
can be used to improve detection of latent TB or even support other research in
treatment of HIV and TB co-infection.

It could be beneficial to perform a new analysis on the same data using even
stricter thresholds, to limit the amount of included genes further. This could possibly
give an even clearer picture of the essential clusters and the role of the specific and
divergent correlations. Using a di�erent method for selecting genes to analyze could
also be of interest, to evaluate di�erent aspects of the infection response, for example
by choosing a set of genes whose immune response already has been defined, or by
analyzing genes involved in signal transmission, since these genes also would be of
great importance in immune response.

Introducing weighted correlation metric thresholding to the analysis is also a
possible path to improve the understanding of the connection between network
and biological function. Weighted correlations could help determine which pairwise
correlations are of more significance without losing too much of the underlying
information in the network.
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Lastly, expanding the analysis to include all of the possible pairings of sample
groups provided by Kaforou et al. (2013) could help determining whether the general
pattern of these network structures incorporate all of the di�erent infection scenarios,
and if the scope of this method can be expanded. This would further strengthen the
method as a tool for examining biological systems and interactions.
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A. DAVID gene ontology utility

Layout and output from the DAVID gene ontology functional annotation clustering
utility.

Figure A.1: The main layout of the DAVID gene ontology utility web interface.



II DAVID gene ontology utility
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B. Component closeup

Figure B.1 shows a closeup of component 3, including gene names, from the network
consisting of nodes and correlations present in both HIV positive and HIV negative
pairwise gene co-expression correlation networks.

Figure B.1: Correlation network for component detected in preserved gene correlations
between HIV positive and HIV negative samples. This component had the highest gene
ontology enrichment score of the six components when analyzed in DAVID. All correlations
are conserved in regards to metric score.
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C. Cluster closeups

Figure C.1 shows closeups of clusters found using the Cytoscape MCODE plugin on
data from correlation analysis of samples with active TB versus latent TB infection,
co-infected with HIV.

(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

Figure C.1: Closeup of clusters from correlation analysis of samples with active TB versus
latent TB infection, co-infected with HIV. Yellow edges signify conserved correlations, blue
divergent and red are specific correlations.


