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Abstract

In population management, the e�ective population size, Ne, can be viewed in
tandem with actual population size, N , as the main factors determining a popula-
tion’s long-term viability and sustainability. Ne is the number of individuals in an
observed population that would lose genetic variation at the same rate as an ideal
population. Understanding which demographic factors that a�ect Ne/N , will make
resource allocation and decision making more e�ective, either if the management
goal is to maximise, maintain or minimize Ne/N . The goal of this thesis was to
calculate the demographic parameters that determine Ne/N , following the method
of Engen et al. (2010), and then determine which of these parameters Ne/N is
most sensitive to. In other words, determine which parameters that contribute
most to the total variation in Ne/N . This was done, using data on 13 Norwegian
populations of house sparrows (Passer domesticus), including more than 4000 indi-
viduals, and spanning up to 20 years. To find which of the demographic parameters
(demographic variance, generation time, stable age distribution, reproductive val-
ues, individual fecundity and survival) that a�ect Ne/N most, sensitivity analyses
were carried out. Using the global variance-based Sobol’ method, it was found
that demographic variance, especially of older individuals, was the parameter that
Ne/N was most sensitive to. Generation time was found to be less important
than demographic variance, which includes all the other parameters. The demo-
graphic variance of a population is determined by fecundity and survival on the
individual level. The individual reproductive values were found to be most sensitive
to fecundity, followed by survival. In contrast, the stable sex-age distributions, and
the sex-age specific reproductive values, were found to be of little importance. For
population management purposes, the results from this study show that resources
should be focused on the manipulation of demographic variance in older individu-
als, more specifically their fecundity and survival. Even though these results are
from insular populations of house sparrows, they may also apply to fragmented
populations of other species with similar life histories and demography.
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Sammendrag

Innen populasjonsforvaltning er e�ektiv populasjonsstørrelse, Ne, sammen med
observert populasjonsstørrelse, N , hovedfaktorene som avgjør overlevelse og hvor
bærekraftig en populasjon er p̊a sikt. Ne er antallet individer i en observert popu-
lasjon som ville miste genetisk variasjon med samme rate som i en ideell populasion.
Å forst̊a hvilken faktorer som er med p̊a å p̊avirke Ne/N , vil gjøre b̊ade ressurs-
allokering og avgjørelser innen forvaltning mer e�ektive. Dette gjelder b̊ade for
mål om å maksimere, opprettholde eller minimalisere Ne/N . Formålet med denne
oppgaven var å beregne de demografiske parameterne som inng̊ar i Ne/N , ved å
følge metoden i Engen et al. (2010), for deretter å finne hvilke av disse parameterne
Ne/N er mest sensitiv til. Det vil si at man identifiserer hvilke parametere som
bidrar mest til den total variasjonen i Ne/N . Dette ble utført ved å bruke opptil
20 år med data p̊a over 4000 individer fra 13 norske populasjoner med gr̊aspurv
(Passer domesticus). For å finne hvilke av de demografiske parameterne (demo-
grafisk varians, generasjonstid, stabil alderstruktur, reproduktiv verdi, individuell
fekunditet og overlevelse) som p̊avirker Ne/N mest, ble det utført sensitivitetsan-
alyser. Ved å bruke den globale, varians-baserte Sobol’-metoden, ble det funnet
at den demografiske variansen, nærmere bestemt variansen hos eldre individer, var
parameteren som Ne/N var mest sensitiv til. Generasjonstid var mindre viktig
enn den demografisk variansen som inkluderer alle de resterende parameterne.
Den demografiske variansen til en populasjon, bestemmes av individuell fekunditet
og overlevelse. Den individuelle reproduktive verdien var mest sensitiv til fekun-
ditet, etterfulgt av overlevelse. Hverken den stabile kjønns-alderstrukturen eller
de kjønns-aldersspesifikke reproduktive verdiene, ble funnet å være viktige para-
metere. Resultatene fra dette studiet viser at ressurser innen forvaltning burde
bli fokusert p̊a å manipulere demografisk varians hos eldre individer, mer spesifikt
deres fekunditet og overlevelse. Selv om disse resultatene kommer fra øypopu-
lasjoner av gr̊aspurv, vil de kanskje ogs̊a være gjeldende for andre fragmenterte
populasjoner hos arter med liknende livssykluser og demografi.
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1 Introduction

Today, there is a growing number of threats to natural populations, and many
are due to anthropological activities. The threats come in several forms: over-
exploitation, pollution, pathogens, climate change and habitat fragmentation, de-
gradation and destruction (Primack 2010), which in turn might lead to isolated
and small populations (Frankham et al. 2010). Small populations, and populations
with large variation in number of individuals, are known to have a higher risk of ex-
tinction (Legendre et al. 2008), due to both stochastic and deterministic ecological
and evolutionary processes (Lande et al. 2003). Population size is positively correl-
ated with genetic variation, and smaller populations therefore tend to have lower
genetic diversity, which may make them vulnerable to environmental changes and
selectional pressures such as diseases (Frankham 1996). For population managers,
it is important to focus on the maintenance of genetic variation. Small populations
are more susceptible to genetic drift, which are random changes in allele frequencies
from one generation to the next. Founder events, where a handful of individuals
are the basis of a new population, are often followed by increased rates of inbreed-
ing. Migration between local populations in a metapopulation is crucial to reduce
inbreeding (Allendorf et al. 2012), but also to maintain the metapopulation by
recolonizing locally extinct populations, as was found in the extensive metapopula-
tion study of the butterfly Glanville fritillary (Melitaea Cinxia) in Finland (Hanski
et al. 1994). Mating of related individuals, i.e. inbreeding, leads to further loss
of genetic variation and reduced fitness by increased homozygosity, or inbreeding
depression. Expression of deleterious recessive alleles are thought to be the main
mechanism behind this process (Allendorf et al. 2012). For example, traits such
as reproductive success, survival, immune response, and even male’s song reper-
toire was negatively a�ected by severe inbreeding in a population of song sparrows
(Melospiza melodia) on Mandarte Island in Canada (Smith 2006). Furthermore,
historically small population sizes a�ect populations and species in the long-run.
An example is the endemic Tasmanian devil (Sarcophilus harrisii) that experienced
a founder event more than 12,000 years ago, when a small group of individuals was
separated from the now extinct mainland population in Australia. This founder
event, and the genetic drift and inbreeding that followed, left the species with low
genetic diversity, especially at the genes in the major histocompability complex
(MHC), which is important for immune recognition of foreign cells. The low ge-
netic variation in the MHC has allowed for a contagious cancer, known as devil
facial tumour, to spread across the island for the last 20 years, resulting in a 84%
population decline and the Tasmanian devil is now threatened by extinction (Miller
et al. 2011; Cheng et al. 2012).

A population is a�ected by both demographic and environmental stochasticity,
which are defined as the di�erences in survival and fecundity of individuals within
a year, and as the mean di�erence between years, respectively. Demographic vari-
ance have a larger e�ect in small populations, as the individual di�erences in large
populations are averaged out. While stochasticity increases probability of extinc-
tion, most documented extinctions follows a steady decline in population size over
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1 INTRODUCTION

time (Lande et al. 2003). One example is the Californian condor (Gymnogyps
californianus), that went extinct in the wild in 1987, after decades of steadily de-
clining population sizes. The main reasons of the decline was found to be loss of
habitat, and lead poisoning from eating carcasses killed by hunters (Dennis et al.
1991). Several processes on the individual level in a population influence popu-
lation size; birth, growth, development, maturation, migration, reproduction and
death (Tuljapurkar and Caswell 1997). These processes depend on both genes and
the environment, and they describe an individual’s movement throughout the life
cycle, either empirically or theoretically. It is these processes that ultimately de-
termine whether the population increases, declines, fluctuates, or is stable (Caswell
2001).

In many ecological and evolutionary models, it is actually the e�ective population
size, Ne, and not the actual population size, N , that is used. To be able to manage
populations, and make predictions on how the aforementioned threats might a�ect
populations in both long- and short-term perspective, one must understand the
importance of Ne, as it includes both ecological and genetic factors (Sha�er 1981;
Nunney and Elam 1994; Palstra and Fraser 2012). Wright (1984) defined the e�ect-
ive population size as the number of individuals in a population that substitutes
the population size, N , in his formula for genetic drift in an ideal population:

Ht = H0

3
1 ≠ 1

2N

4t

, (1)

where Ht is the expected heterozygosity in the population in generation t, and H0 is
the original heterozygosity in the first or present generation. In other words, Ne is a
theoretical number of individuals in an observed population that lose heterozygosity
at the same rate as an ideal population (Freeman and Herron 2007; Frankham et al.
2010). An ideal population is a conceptual infinitely large panmictic population
with constant size, consisting of monoecious diploid individuals that have discrete
generations, Poisson distributed family sizes (µ = ‡2) and no selection or mutations
in autosomal loci. For the population size to remain constant, the mean and
variance in family size must equal 2 (Nunney and Baker 1993; Caballero 1994;
Wang and Caballero 1999; Kalinowski and Waples 2002; Frankham et al. 2010).
If a population fulfils all of these conditions, the e�ective and observed size will
be the same, Ne = N . Natural populations violate the conditions of an ideal
population in one or several ways, by being finite, under selection, and so on
(Harris and Allendorf 1989; Wang and Caballero 1999; Frankham et al. 2010).
Due to these deviations from ideal population characteristics, most populations
behave as if they were a lot smaller than their census size, N (Halliburton 2003;
Freeman and Herron 2007; Frankham et al. 2010). In stable populations, Ne/N
is expected to be between 0.5-1 (Nunney and Elam 1994; Nunney 1995), while in
fluctuating, wild populations it has been found to be 0.10 on average (Frankham
1995; Palstra and Ruzzante 2008). Ne/N vary a lot between di�erent taxa, e.g.
marine species tend to have a very low average values (Ne/N = 0.0001), compared
to many terrestrial species (Ne/N = 0.14) (Palstra and Ruzzante 2008). The
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extremely low values of many marine species, such as fish and shellfish, is due to
high fecundity and juvenile mortality. This means that only a few of the millions
of individuals in the observed population contribute to the following generations
(Hedrick 2005). In tandem with severe exploitation that leads to bottleneck events,
the Ne/N is reduced even further as inbreeding and genetic drift increases, as
found in populations of the commercially exploited Australasian snapper (Pagrus
auratus) (Hauser et al. 2002). By maximising the e�ective, as well as the observed
population size, the genetic variation and resilience to change is expected to increase
in the population, and the risk of extinction will decrease (Frankham et al. 2010;
Allendorf et al. 2012).

Of all deviations from the ideal population, variation in population size have been
shown to be the factor that often reduce Ne most, relative to N (Kalinowski and
Waples 2002; Engen 2005; Frankham et al. 2010). Furthermore, variation in family
size, and skewed sex ratios might also be important (Caballero 1994; Frankham
1995; Frankham et al. 2010). In medium ground finches (Geospiza fortis) on
Galapagos, there is a large variance in family size, which results in a reduced
Ne/N compared to other species of finch on the islands (Grant and Grant 1992).
Examples of skewed sex-ratios may be harem mating systems, such as in red deer
(Cervus elaphus), where there are more females than males due to both natural
selection and di�erential hunting (Van Dyke 2008). Other factors that a�ect Ne

include overlapping generations and age structure (Engen 2005), generation time
(Nunney and Baker 1993), population density, mating potential, birth and death
rates, survival, and reproductive success (Lebreton et al. 1992; Frankham et al.
2010). All these factors may consequently be important to include, or account for,
when estimating Ne.

In population management, it is of great importance to determine which factor(s)
that a�ect Ne. This applies to all management strategies that aim to decrease,
maintain or increase population sizes, e.g. pest species, fish stocks or threatened
species (Tuljapurkar and Caswell 1997; Caswell 2001). Implementation of man-
agement actions can be challenging and, sometimes, give unexpected results, such
as in supplementary feeding of females to stimulate production of o�spring and
hence increase Ne in the endemic and threatened kakapo (Strigops habroptilus) on
New Zealand. The plan worked per se, by increasing reproduction, but the well-
fed kakapo females only produced male o�spring, as good quality males are more
costly to produce, and the species have evolved a reproductive strategy to produce
mainly males under good conditions. Instead of increasing Ne, the supplementary
feeding reduced Ne even more, by increasing the already male biased sex-ratio.
They solved the problem by feeding the females just enough to start breeding, but
not so much that they only produced males (Robertson et al. 2006).

There are di�erent ways to estimate Ne, and the appropriate approach depends on
point of interest, knowledge of the biological processes of the population, or species
in question, and available data. Since fluctuations in N are expected to have a
large influence on Ne, the harmonic (Equation (2)), and not the arithmetic mean
should be used when calculating Ne based on N . Small N ’s will a�ect Ne more
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1 INTRODUCTION

strongly, which is accounted for in the harmonic mean (Wright 1931; Halliburton
2003):

Ne = n≠1
nÿ

t=1

1
Nt

, (2)

where t is years, and t = 1, 2, ..., n. Extreme reductions in N are called bottle-
neck events, such as the hunting induced bottleneck of the northern elephant seal
(Mirounga angustirostris) at the end of the nineteenth century. The population was
reduced from tens of thousands to less than 20 individuals. This has reduced Ne

drastically, and even though N now has been estimated to be back to pre-bottleneck
levels (Hoelzel et al. 2002), it is still at risk of succumbing to environmental changes
or diseases (Miller et al. 2011). Another important factor that a�ect Ne is variation
in mean family sizes, and the e�ect of this variation on Ne is given by (Frankham
et al. 2010):

Ne = 4N ≠ 2
var(k) + 2 , (3)

where k is the mean family size. An ideal population will have var(k) = 2, which
gives Ne ¥ N . If there is no variation at all, var(k) = 0, then Ne ¥ 2N , which
shows that Ne is indeed a theoretical population size. The issue of variation in
family size, is a well-known problem in breeding of captive, and often threatened
species (Frankham et al. 2000). Equalization of family sizes have been found to
successfully increase the e�ective number of breeders in captive breeding of coaster
brook trout (Salvelinus fontinalis) in Lake Superior in North America (Cooper
et al. 2010). This method of culling o�spring of the most successive breeders has
been shown to only be e�ective in species with high fecundity and short generation
time, two characteristics that are not found in many threatened species currently
being managed, such as larger mammals (Williams and Ho�man 2009). Variation
in sex-ratio is also an important factor a�ecting Ne (Crow and Kimura 1970):

Ne = 4Nef Nem

Nef + Nem
, (4)

where Nef and Nem is the e�ective population size of females and males, respect-
ively. A skewed sex-ratio will reduce Ne significantly (Equation (4)), e.g. a breeding
program with 1 male fertilizing 100 females, will lead to an e�ective population size
of only four individuals, Ne = (4 ◊ 100)/101 ¥ 4.

Some of the first models to estimate Ne were simplistic and purely theoretical
(Wright 1931), but over time they have become increasingly complex and realistic
for natural populations (Crow and Kimura 1970; Nei and Tajima 1981; Caballero
and Hill 1992; Wang 2005; Engen et al. 2007). The challenge is to settle for a solu-
tion that is simple enough to be applicable, but at the same time complex enough
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to give estimates of value. Short-term management often requires general and
simple models, while more complex and specific models are needed for long-term
goals. In general, more parameters add precision and realism to the model, but it
might reduce the interpretability (Tuljapurkar and Caswell 1997). There are both
genetic and demographic methods for estimating Ne, with di�erent advantages
and drawbacks depending on the situation. While genetic methods require data
on DNA sequences or genetic markers (Wang 2005), demographic methods require
data from successive years on population sizes, individuals sex and age, and indi-
vidual reproductive success (Harris and Allendorf 1989; Nunney and Elam 1994).
Genetic methods can estimate current, past, and even ancient e�ective population
sizes (Wang 2005), while the demographic models in tandem with ecological in-
formation, have the possibility of predicting future changes in e�ective population
size (Nunney and Elam 1994). This element of prediction can make demographic
models the preferred choice, e.g., when several management options are considered.
For example, it is possible to do a simulation of how wolf (Canis lupus) reintro-
duction will reduce Roosevelt elk populations (Cervus elaphus rooseveltii) (Fieberg
and Jenkins 2005). When evaluating management strategies, it is preferable to
get robust results quickly, and with minimal e�ort and costs. While demographic
models can give solid and accurate estimates, a drawback is the extensive amount
of data needed to execute the analyses (Caswell 2001). Since it is known that
Ne in general is strongly correlated with N (Kalinowski and Waples 2002; Engen
2005; Frankham et al. 2010), it is in many cases more interesting to look at their
ratio, Ne/N . The relative value of Ne/N can, at least in theory, be used to assess
population persistence, based on the influence of demographical, environmental
and genetic factors (Palstra and Fraser 2012). Because Ne/N can give insight into
ecological factors that a�ect Ne, it might lead to more e�ective conservation and
management decisions (Kalinowski and Waples 2002). The idea that species have
a specific ratio between Ne and N (Frankham 1995), could ease the assessment
of a population, but no studies have found evidence of such a simple relationship,
because other factors than N also determine Ne (Palstra and Fraser 2012).

To make robust decisions in population management, knowledge about factors that
influence the variance of e�ective population size is crucial. Or in other words: it
is important to determine the parameters to which e�ective population size is most
sensitive (Caswell 2001; Saltelli et al. 2004). This can be achieved with sensitivity
analysis; by apportioning the output variance to the specific input variances, and
determine which inputs that contribute most (and least) to the total variation in
the output (Chan et al. 1997; Saltelli et al. 2009). By identifying the demographic
parameter(s), or the stage(s) in the life cycle, that Ne is most sensitive to, the
population size can be controlled through manipulation of said parameter(s). A
famous example of how sensitivity analysis have been used in practice, is in the
management of the declining populations of loggerhead turtles (Caretta caretta)
(Crouse et al. 1987; Crowder et al. 1994). For many years, management e�ort was
put into hatchling survival, but this had no e�ect, and the populations continued
to decline. A sensitivity analysis showed that the population growth rate of the
loggerhead turtle was most sensitive to juvenile survival, and very little to egg
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1 INTRODUCTION

and hatchling survival. Introduction of turtle excluder devices in trawl fisheries
was therefore a logical management strategy, since by-catch is the main reason for
juvenile mortality. The results of this strategy seems to be positive, but are so
far inconclusive due to long generation times and poor implementation in some
areas (Crowder et al. 1995; Lewison et al. 2003; Finkbeiner et al. 2011). Sensit-
ivity analysis is recognized as an important tool in management, and has become
part of governmental guidelines, such as the U.S. Environmental Protection Agency
guideline for environmental model development, evaluation and application (EPA
Council for Regulatory Environmental Modeling 2009), and the European Com-
missions guideline for impact assessments (European Commission 2009).

In this study, Norwegian populations of house sparrows (Passer domesticus) with
data on more than 4000 individuals spanning up to 20 years, was used to calculate
all parameters needed to estimate the demographic Ne and the e�ective to census
population size ratio, Ne/N , as outlined in Engen et al. (2010). The demographic
parameters include generation time and the demographic variance, which is given
by the sex-age class specific variance, and the stable sex-age distribution. The sex-
age class variance is given by the reproductive values, and the individual fecundity
and survival. A sample-based Sobol’ method will be used for a global variance-
based sensitivity analysis, to determine which demographic parameters Ne/N is
sensitive to. The principle of global analyses is that all inputs are varied simul-
taneously, the entire parameter space is explored, and any interactions between
input parameters are accounted for (Sobol’ 2001). Based on previous studies, all
the included parameters are expected to have an e�ect on Ne/N , especially demo-
graphic variance since it includes all other parameters, except generation time. By
identifying demographic parameters Ne/N is most sensitive to, one can infer where
management e�orts to regulate populations should be put. The house sparrow is
used as a model species because it has a life history and demography that is similar
to many other species, making it likely that my results will be relevant for other
populations and species as well.
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2 Materials and methods

2.1 Study populations

The 13 populations used in this study are spread out along the Norwegian coast,
from near Trondheim in the south, to near Mo i Rana in the north (Figure 1). 6 of
the northernmost populations were located in a long-term study system consisting
of an insular metapopulation at Helgeland o� the coast of Northern Norway, posi-
tioned at the Arctic Circle (66¶N, 13¶E). The remaining 7 populations were located
on the mainland, and on islands to the south of this insular metapopulation. See
Pärn et al. (2012) for more details about the study area. The dataset includes
4,074 unique individuals, and the number of years of data per population ranges
from 2-20, with an average of 7 years. The mean population size over all years of
data in a population varies from 19-170 individuals (Table 1). Annual population
sizes for all populations can be found in Appendix A (Table A.1).

Figure 1: The populations in the dataset are spread out along the Norwegian coast,
from an area outside of Trondheim (63¶N, 10¶E) in the south, to the coast outside Mo i
Rana (66¶N, 13¶E) in the north (also see Table 1).
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2 MATERIALS AND METHODS

Table 1: Overview of study populations, their number on the map in Figure 1, years of
data per population, n, and their mean population size over these years.

Numbera Population Years of data n

b Mean N

1 Aldrac 1998-2007 10 29
2 Gjerøy 1993-2002 10 45
3 Handnesøy 2011-2013 3 66
4 Hestmannøy 1993-2012 20 128
5 Indre Kvarøy 1993-2002 10 38
6 Lekad 2002-2009 8 127
7 Linesøya 2012-2013 2 73
8 Løkta 2011-2013 3 34
9 Nesøy 1993-2002 10 19
10 R̊anes 2012-2013 2 46
11 Røvass 2011-2013 3 20
12 Vegad 2002-2009 8 170
13 Ytre Kvarøye 1993-1998 6 25

a
Numbers on map in Figure 1

b
Total number of years of data for each population

c
Founded in 1998, by four individuals (Billing et al. 2012)

d
Was part of a selection experiment (2002-2005) (Kvalnes et al. in prep.)

e
Went extinct in 2000 (Ringsby et al. 2006)

The locations of the 13 populations di�er in quality of nesting sites, food availability
and shelter (Pärn et al. 2012; Jensen et al. 2013), which is likely to have resulted
in di�erences between the populations, e.g. mean population sizes (Table 1). One
of the populations, on the island Aldra (population 1 in Figure 1), was founded
in 1998 by one female and three males (Billing et al. 2012), while the population
at Ytre Kvarøy (population 13 in Figure 1) went extinct in 2000 (Ringsby et al.
2006). Two other populations, Leka and Vega (population 6 and 12 in Figure 1),
were part of a selection experiment in 2002-2005. On both islands, approximately
60 % of the population was removed based on their size measured by tarsus length.
Small and large individuals were removed on Leka and Vega, respectively (Kvalnes
et al. in prep.). These four islands are included to increase the range of variation,
within natural limits, in the dataset.

2.2 Study species

The house sparrow is a small, sedentary passerine bird and is found around the
globe in proximity to human settlements (Anderson 2006). In the study popula-
tions, it is often found at dairy farms, where there are nesting places, shelter and
food. The house sparrow is sexually dimorphic with a brown-grey plumage. Fe-
males have a relatively light plumage, light coloured beaks, and a bright eyebrow
stripe. Males have a generally darker plumage with chestnut brown heads, grey
crowns, dark beaks, and black feathers around the beak and eyes, and on the throat
and chest (Anderson 2006). The house sparrow is a socially monogamous species,
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2.3 Data collection and handling

with some extra-pair mating (Jensen et al. 2008), where both parents contribute
to brooding and feeding of chicks (Ringsby et al. 2009). In the study area, the
breeding season is from May-August, and each pair produce 1-3 clutches with an
average of five eggs per clutch during this time (Ringsby et al. 2002; Husby et al.
2006). Of all fledglings, only 15-20 % survive their first winter (i.e. still alive after
1 February) to become recruits in the next years breeding population (Ringsby
et al. 2002). The average generation time, T , is 2 years in this system (Jensen
et al. 2008), and an annual adult survival rate at approximately 50 % (Ringsby
et al. 1999). There are quite low dispersal rates within the system; around 10 % of
the new recruits are dispersers (Altwegg et al. 2000; Pärn et al. 2009, 2012), and
60 % of them travel distances shorter than 13 km (Tufto et al. 2005). The house
sparrow has a life history that is typical for many small birds, with high mortality
rates the first autumn and winter, and a relatively constant annual adult mortality
rate (Botkin and Miller 1974). For a schematic overview of the house sparrow life
cycle that is used in this thesis, see Figure 2.

2.3 Data collection and handling

The breeding season is the main field season, where most of the data was collected.
Adults and fledged juveniles were caught in mist nets, while chicks were gathered
directly from the nests. All birds were marked with a unique numbered metal ring,
and three coloured plastic rings for identification (Ringsby et al. 2002; Jensen et al.
2004). A blood sample of approximately 25 µl were drawn from the brachial vein
underneath the wing, which provide DNA necessary to genotype individuals on mi-
crosatellite markers needed to carry out genetic parentage analyses, and construct
genetic pedigrees (Jensen et al. 2003). For details on the genotyping analyses, see
Jensen et al. (2008, 2013), Billing et al. (2012) and Hagen et al. (2013). Most of
the islands in my dataset had complete pedigrees, but for Handnesøy, Linesøya,
Løkta, R̊anes and Røvass, it had to be established. See Appendix B for method

B2!

B1!
J1!

J2!1! 2!

Figure 2: Life cycle of the house sparrow with two age classes,
1 and 2. J1 is the probabilty of surviving from age class 1 to
age class 2, J2 is the probability of surviving and staying in
age class 2. B1 and B2 is the number of recruits age class 1
and 2 respectively contributes with to age class 1

9



2 MATERIALS AND METHODS

and results. The pedigrees in tandem with capture and observation, provides data
on annual survival, fecundity and census population size. The birds are counted
before, or during the first part of the breeding season, so only recruits and older
adult birds are included in the census populations size, N . The females and males
in the dataset were split into two age classes each; the first consisted of yearlings,
and the second a terminal age class that included all individuals of age two years
or older. In total there are four groups, hereafter addressed as sex-age classes,
denoted by i = (f1, f2, m1, m2) for females and males in age class 1 and 2, respect-
ively. Since the survival rate for adult birds in the study system is approximately
50 % (Ringsby et al. 1999), the same number of individuals are included in each
age class, which makes them directly comparable. The pooling of individuals into
a terminal age class is done to exclude the e�ect of small sample sizes of older
individuals (Appendix A, Figure A.3). This approach is justified, and has little
e�ect on estimates of Ne, because the vital rates vary little with age (Engen et al.
2010). The sex-ratio at birth, q, given as the proportion of females, is assumed to
be known, and set at 0.5 (Husby et al. 2006). Since q is known, the total number
of recruits can be used for the calculations, instead of assigning the recruits by sex
(Engen et al. 2010). In accordance with Engen et al. (2007, 2009), it is assumed
that the population dynamics are density-independent, and that all parameters,
except survival, can be evaluated as continuous due to the high number of indi-
viduals and the large timespan of the dataset. All data handling and statistical
analyses were done in the software R version 3.1.2 and 3.1.3 (R Core Team 2014).

2.4 Demographic parameters

Demography describes the dynamics and structure of the population, and in age-
structured populations demographic variation contribute to fluctuations in both
the age structure, as well as the population size, N (Lande et al. 2003; Engen et al.
2005). Since it is already known that N is the most influential factor for determ-
ining Ne (Engen 2005; Frankham et al. 2010), the e�ective to census population
size ratio, Ne/N , will be used, and I will start by examining how this ratio is af-
fected by the input parameters demographic variance, ‡2

dg, and generation time, T
(Equation (5)). For all populations, Ne/N was estimated following the method for
age-structured populations with two sexes in Engen et al. (2010), with k = 2 age
classes.

Ne

N
= 1

‡2
dgT

(5)

The data on individual survival and fecundity, were used to calculate the expected
population projection matrix, l, for each population:
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l =

S
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1
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1
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1
2 (1 ≠ q) B̄m1

1
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0 0 J̄m1 J̄m2

T

XXXXXXXXXXXV

(6)

The matrix includes the mean number of total recruits produced in all sex-age
classes, B̄i, and their mean specific survival probabilities, J̄i, where i signifies the
four di�erent sex-age classes. It also includes q for proportion of females, and
(1 ≠ q) for proportion of males at birth, which in this study was assumed to be
the same (q = 0.5). The population growth rate, ⁄, is calculated as the real
dominant eigenvalue of l. The left and right eigenvectors of l, ui and vi, are
scaled so that

q
ui = 1, and

q
uivi = 1, are the stable sex-age distribution and

reproductive values of each sex-age class i, respectively. The scaling is done so
that the values of ui represent proportions of the total population (Caswell 2001).
Both u and v are conceptual values for a population in equilibrium, and if the
population is in its stable sex-age distribution, the number of individuals equals
the total reproductive value of the population (Engen et al. 2010). The R-package
lmf, version 1.2 (Kvalnes 2013) was used to calculate ⁄, u and v.

To estimate the population specific demographic variance, ‡2
dg, in Equation (5),

data on annual fecundity, Bij , and annual survival, Jij , for all individuals, j,
in each sex-age class, i, is needed. On the individual level, the sex-age specific
individual reproductive value, Wij can be calculated:

Wij = Jijvi+1 + 1
2Bijv1 + 1

2Bijv3 (7)

Wij is defined as the annual individual contribution to the total reproductive value
of the population the following year, and depends on v from the projection matrix
l (Engen et al. 2010). The first part is the individual’s own survival, J , and the
expected contribution of said individual to the next age class, vi+1. The second
and third part concerns the number of recruits, B, produced by the individual,
and the expected contribution the recruits will make to their age class, v1 and v3
for females and males in age class 1, respectively. Remember that v is a vector of
length four, representing each sex-age class, i = (f1, f2, m1, m2). There is half a B
per sex because half of the recruits are expected to be female and the other half
male, since q = 0.5. The value vi+1, can due to the number of k = 2 age classes
in this case, maximally take the value v2 for females, and v4 for males. Since Wij

is calculated from observed and not estimated data on viability and fecundity, the
annual demographic variance for each sex-age class, ‡2

dgi(Z), is:

11



2 MATERIALS AND METHODS

‡2
dgi(Z) = var (Wij |Z) , (8)

where Z is a vector that describes the environment a given year, and var(Wij |Z)
is the variation in individual reproductive value for a given year. The subscript
g denotes that the demographic variance has a genetic component, as explained
in Engen (2005). ‡2

dgi(Z) in Equation (8) can be estimated as the sum of squares
(Engen et al. 2009):

‡̂2
dgi (Z) = 1

mti ≠ 1

mtiÿ

j=1

!
Wij ≠ W̄ti

"2
, (9)

where i is the sex-age class. The number of individuals, j, takes the value from 1
to mti, where mti is the total number of individuals in sex-age class i in year t.
Wij are the individual W ’s in year t, and W̄ti is their mean value. The sex-age
class specific demographic variance, ‡2

dgi, is the weighted mean of ‡̂2
dgi (Z) over all

years with mti ≠ 1 as weights:

‡2
dgi =

q
‡̂2

dgi (Z) (mti ≠ 1)
q

mti ≠ 1 (10)

The total demographic variance of the population, ‡2
dg, is the weighted mean of

‡2
dgi with weights u (remember that u sums up to 1 due to scaling):

‡2
dg =

ÿ
‡2

dgiui (11)

Finally, Ne/N was calculated for each of the 13 populations, by setting the values of
‡2

dg into Equation (5). The population specific generation time, T , was calculated as
the mean age of all adults with recruits in each population (Lande et al. 2003). The
Ne/N ratios of all populations were calculated with both the population specific
generation time, and the average generation time for the entire study system (T =
1.97) (Jensen et al. 2008).

2.5 Sensitivity analysis

A global variance-based method was used in the sensitivity analysis of Ne/N , be-
cause it provides quantitative measures of how important the di�erent demographic
input parameters are for the variance in the model output, Ne/N . It is also model
independent, and there are no assumptions about linearity, monotonicity or inde-
pendence of inputs (Saltelli and Annoni 2010). This model independent approach
suits biological data well, as parameters often are dependent (Caswell 2001), and
it reduces the number of assumptions in the data. The variance-based method can
be illustrated with a general model: Y = f(X), where Y is the output with an
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unconditional variance var(Y ), f is the function, and X = (x1, x2...xn) are the
inputs. The importance of the input xp is defined as: the smaller the conditional
variance var(Y |xp) is, but the larger influence it has on var(Y ), the more important
is xp. The global variance-based method encompass the entire parameter space,
and detect interaction e�ects between inputs (Saltelli et al. 2008). Even though
variance-based methods can be computationally costly (Yang 2011), a good method
is not only evaluated based on computational costs, it is also important that the
multidimensional parameter space of the input parameters is explored su�ciently.
A lot of the data is distributed away from the centre of the space, so there is a
natural trade-o� between computational cost and the degree of exploration of the
parameter space (Saltelli et al. 2010). For more information on sensitivity analysis,
and the chosen method, see Appendix C.

2.5.1 Sobol’s method

Sobol’s method (Sobol’ 1990, 1993) is based on variance decomposition of the total
output variance, V = var(Y ), into the partial, or conditional, variance, Vp =
var(Y |xp), of input parameter, p. It has been shown to be a robust method, and
used as a benchmark to compare other methods to (Tang et al. 2007; Yang 2011).
The method use Sobol’ indices, or sensitivity indices, to quantitatively measure the
importance of inputs. This is done by looking at the ratio of each input’s partial
variance to the total variance in the output (Sobol’ 1993, 1990):

Sp = Vp

V
, (12)

where the first order index, Sp, is the main e�ect of input parameter p. Sp is
normalized, and varies between 0 and the partial variance of the input in question.
The partial variances have an additive e�ect on the output, and sum up to one,
since they are based on ratios of the total variance. The input(s) the output is
most sensitive to, are those with the largest Sobol’ indices (Sobol’ 2001). Ranking
of inputs is most easily done by estimating the first order indices (Equation (12)),
but these indices do not include possible interactions among inputs, and might
lead to an erroneous ranking. To account for the e�ect of possible interactions, it
is preferable to use the total-order index, ST p, which is calculated as:

ST p = 1 ≠ V≥p

V
= 1 ≠ S≥p, (13)

where ≥ p is all input parameters, except p (Homma and Saltelli 1996; Chan et al.
1997). The interaction e�ect of a parameter, �S, is given as the di�erence between
the total and first order index of the parameter (Nossent and Bauwens 2012). In
Chu-Agor et al. (2011), they only focus on interactions Ø 0.05, and the same limit
is used in this thesis. 95% confidence intervals (CI) were used to establish if two
(or more) input parameters were significantly di�erent (Yang 2011). The input
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2 MATERIALS AND METHODS

parameters for the analysis were sampled from their respective distributions with
a Sobol’ quasi-random sampling scheme (Saltelli et al. 2010). Such sequences are
characterized by having enhanced convergence of parameter values (Sobol’ 2001),
which is preferable, as it reduces the total number of model runs. To monitor the
convergence, and estimate confidence intervals of the indices, one can use bootstrap-
ping. Here, the sensitivity index for each re-sample is calculated, and the sampling
distribution of all indices is used to construct the confidence intervals (Yang 2011).
Saltelli (2002) used a bootstrap dimension of 10,000, and Yang (2011) found that
the Sobol’ method converges at n ¥ 3000. Based on this, each parameter was
sampled n = 5000 times, and bootstrapped 10,000 times to ensure convergence of
the indices.

2.5.2 Parameter distributions

In practice, input parameters are associated with uncertainty, but there often exist
some knowledge about their range of variation, e.g. through measurements, obser-
vations, expert opinions, biological or physical limits (Saltelli et al. 2004). Due to
this uncertainty, it is convenient to view inputs as random variables with probab-
ility density functions (PDF). The R-package fitdistrplus (Delignette-Muller and
Dutang 2015) was used to evaluate the parameters and fit the density functions.
Due to few data points (13) for most parameters, their most likely distribution was
not always clear, but in tandem with biological assumptions, a distribution was
chosen (Table 2). To evaluate the distribution of the data, Shapiro-Wilk tests of
normality was performed. This test have a H0 that states that values are sampled
from a normal distribution, and use p-values to decide if H0 should be accepted
or not (see Table 2 for the p-values). Also the symmetry of the distributions were
assessed, and parameters that looked symmetric, and had a p > 0.05 in the Shapiro-
Wilk test, were assumed to be normally distributed. There were two exceptions
(‡2

dgf1, ‡2
dgm1), where the p > 0.05 in the Shapiro-Wilk test, but the parameters

were fitted to log-normal distributions. There were also one exception (vf1) that
had p < 0.05 in the Shapiro-Wilk test, but it was fitted to a normal distribution
regardless. These three exceptions were all close to 0.05, and given the relatively
few numbers of values, they were not fitted based solely on their p-values (Table
2), but also evaluated according to the shape of their density plots (Appendix D,
Figure D.3 and D.5). They were also compared to the distributions of the other
sex-age classes for the parameter in question, as all four were assumed to have the
same distribution. To evaluate the distributions visually, I plotted the empirical
distribution in form of a histogram together with the density function and the
fitted distribution. In cases where there was a positive tail to the distribution, a
log-normal distribution was assumed. When there was a positive tail, and zero
values in the negative tail, a gamma distribution which is closely related to the
log-normal, was assumed. For survival there are only two possibilities, to live or
die, and a binomial distribution was fitted. The package fitdistrplus also calculated
the distributions, and the respective estimates, such as mean and standard devi-
ation for the normal and log-normal distributions, the probability of success for the
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Table 2: Description and notation of all parameters included in the sensitivity analyses.
For each parameter, the number of values used to fit the distribution, n, the sex-age
class, i, the chosen distribution and the estimates of its shape parameters in parentheses,
and p-values from Shapiro-Wilk tests of normality is given. N is the normal distribution
with shape parameters mean and standard deviation, lnN is the log-normal distribution
with shape parameters log-mean and log-standard deviation, B is the binomial distribu-
tion with probability of success, and � is the gamma distribution with shape and rate
parameters.

Parameter Notation n

a
i Distribution Shapiro-Wilk

(p-value)

Generation time T 13 - N(1.718, 0.399) 0.296

Population
demographic variance ‡

2
dg 13 - lnN(0.283, 0.451) 0.013

Sex-age class
demographic variance ‡

2
dgi

13 f1 lnN(0.226, 0.411) 0.078
13 f2 lnN(0.373, 0.479) 0.021
13 m1 lnN(0.166, 0.470) 0.064
13 m2 lnN(0.238, 0.694) 0.005

Stable sex-age
distribution ui

13 f1 N(0.209, 0.054) 0.277
13 f2 N(0.269, 0.087) 0.449
13 m1 N(0.209, 0.054) 0.277
13 m2 N(0.312, 0.069) 0.677

Sex-age class specific
reproductive value vi

13 f1 N(0.924, 0.245) 0.035
13 f2 N(1.058, 0.225) 0.131
13 m1 N(0.890, 0.097) 0.887
13 m2 N(1.066, 0.287) 0.202

Survival (0,1) Jij

1 982 f1 B(1, 0.467) 2.20x10≠16

1 428 f2 B(1, 0.487) 2.20x10≠16

2 001 m1 B(1, 0.493) 2.20x10≠16

1 585 m2 B(1, 0.503) 2.20x10≠16

Fecundity Bij

1 982 f1 �(0.399, 0.479) 2.20x10≠16

1 428 f2 �(0.448, 0.475) 2.20x10≠16

2 001 m1 �(0.325, 0.474) 2.20x10≠16

1 585 m2 �(0.430, 0.487) 2.20x10≠16

a
Number of values the distributions were fitted to

binomial, and the shape and rate in the case of the gamma distributions (Table 2).

2.5.3 Estimation of indices

To estimate the sensitivity indices, the R-package sensitivity version 1.11 (Pujol
and Janon 2015) was used. The inputs for the estimation of the indices were
sampled from the parameter distributions identified above, and presented in Table
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2. The sensitivity package includes several of the most common methods for global
sensitivity analysis. For this thesis, the soboljansen estimator was chosen, as it has
been shown to be a e�cient estimator (Saltelli et al. 2010), and is good both for
large first-order indices, and both large and small total indices (Pujol and Janon
2015). Due to restrictions of the sensitivity package and the soboljansen estimator,
and the input and output requirements, Ne/N (Equation (5)) was first evaluated
by T and ‡2

dg. Then generation time was fixed at the average generation time
in the study system (T = 1.97), and ‡2

dg was replaced by ‡2
dgi and ui (Equation

(11)). Since the scope of this thesis does not include investigation of the e�ect
of number of years in a dataset, and a stochastic annual function is too complex
for the chosen sensitivity estimator, the annual input parameter ‡2

dgi(Z) was not
included in the sensitivity analysis. Instead, the sensitivity analysis started at the
population level in step one and two, and then continued at the individual level
in step three (Equation (7)), where Wij given by Jij , Bij and vi, was evaluated.
From Equation (8-11), we see that Wij can be regarded as the basic demographic
level for Ne/N .
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3 Results

3.1 Demographic parameters

All the demographic parameters needed to estimate Ne/N were calculated using
Equations (5-11) (Tables 3-4 and Appendix E, Table E.1). The population specific
T ranged from 1.20-2.39 years, and had a mean of 1.72 years. T was highest
(> 2.1 years) for Aldra, Gjerøy and Nesøy, intermediate and approximately equal
to the mean T = 1.97 in the study system, on Hestmannøy and Indre Kvarøy, and
lowest (< 1.5 years) for Handnesøy, Linesøya, Løkta, R̊anes and Røvass (Table
3). The low T in these populations, could be due to the fact that they all had
n < 4 years of data (Table 1). The population specific demographic variance, ‡2

dg,
ranged from 0.69-2.98, with a mean at 1.48. Four of the populations known to have
special demographic histories, had a higher ‡2

dg than the other populations. The
four populations are the recently founded population on Aldra (‡2

dg = 1.40), the
population that went extinct on Ytre Kvarøy (‡2

dg = 1.63) and the two populations
Leka (‡2

dg = 2.56) and Vega (‡2
dg = 2.98) that were subject to strong artificial

selection (Table 3, see also Appendix A, Table A.1 and Figure A.1). All four,
except Aldra, had a higher ‡2

dg than the overall mean (‡2
dg = 1.48). The reasons

for why these four populations had a higher ‡2
dg, might be due to several reasons.

Table 3: Population level parameters for each of the populations. Both the ratio Ne/N

calculated with a fixed T = 1.97 (Ne/N , fix. T ), and with the population specific T

(Ne/N , pop. T ) are listed. The population specific demographic variance, ‡

2
dg is also

listed, as well as the population growth rate, ⁄, from the projection matrix l (Equation
(6)).

Population Ne/N

(fix. T )a
Ne/N

(pop. T ) T ‡

2
dg ⁄

Aldra 0.36 0.30 2.35 1.40 1.08
Gjerøy 0.39 0.35 2.19 1.29 0.89
Handnesøy 0.56 0.74 1.49 0.91 0.81
Hestmannøy 0.42 0.42 1.95 1.22 0.80
Indre Kvarøy 0.47 0.48 1.94 1.08 0.76
Leka 0.20 0.22 1.75 2.56 1.06
Linesøya 0.54 0.89 1.20 0.93 0.90
Løkta 0.74 1.18 1.23 0.69 0.58
Nesøy 0.53 0.44 2.39 0.96 0.85
R̊anes 0.19 0.30 1.25 2.67 1.26
Røvass 0.58 0.79 1.44 0.88 0.71
Vega 0.17 0.22 1.55 2.98 1.10
Ytre Kvarøy 0.31 0.38 1.63 1.63 0.70

Mean values 0.42 0.55 1.72 1.48 0.88
a T in Equation (5) is fixed at the average generation time in the study system (T = 1.97) (Jensen

et al. 2008).
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There was high and skewed fecundity the first years in the case of Aldra (Appendix
A, Table A.1), while for Ytre Kvarøy there was decreasing fecundity and skewed
sex ratios (e.g. in 1996, see Appendix A, Table A.1). For Leka and Vega, that
went through artificial selection experiments, there was high mortality during the
years of selection, followed by high fecundity (Appendix A, Table A.1). R̊anes also
had a high ‡2

dg (‡2
dg = 2.67), but this may be due to chance, as there were only 2

years of data (Table 1). In contrast, for Handnesøy, Linesøya, Løkta, Nesøy and
Røvass, ‡2

dg was low (< 1), and they all have few years of data, except for Nesøy
which seem to be a small, but stable population (Appendix A, Figure A.1). For the
population growth rate, ⁄, only four populations (Aldra, Leka, R̊anes and Vega)
have a ⁄ > 1, while all others have ⁄ < 1. For the sex-age specific parameters,
the mean, variance and the minimum and maximum values are presented in Table
4 (all parameters can be found in Appendix E, Table E.1). For the sex-age class
specific demographic variance, ‡2

dgi, both the mean and the variance is highest in
the two oldest sex-age classes (Table 4). For the two populations included in the
artificial selection experiment, Leka and Vega, ‡2

dgi was exceptionally high for both

Table 4: Sex-age class specific parameters averaged across all islands; their specific demo-
graphic variance, ‡

2
dgi, stable sex-age distribution, ui, reproductive values, vi, survival,

Jij , and fecundity, Bij . The mean, variance, minimum and maximum values are listed
instead of empirical data, to ease interpretation.

Values
Parameter i Min Mean Max Var

‡

2
dgi

f1 0.57 1.37 2.81 0.38
f2 0.69 1.63 3.19 0.74
m1 0.47 1.32 2.91 0.46
m2 0.38 1.64 5.03 1.81

ui

f1 0.13 0.21 0.30 3.15x10≠3

f2 0.14 0.27 0.49 8.27x10≠3

m1 0.13 0.21 0.30 3.15x10≠3

m2 0.20 0.31 0.44 5.11x10≠3

vi

f1 0.45 0.92 1.20 6.52x10≠2

f2 0.46 1.06 1.49 5.50x10≠2

m1 0.70 0.89 1.06 1.02x10≠2

m2 0.70 1.07 1.76 8.95x10≠2

Jij

f1 0 0.47 1 0.25
f2 0 0.49 1 0.25
m1 0 0.49 1 0.25
m2 0 0.50 1 0.25

Bij

f1 0 0.83 14 1.74
f2 0 0.94 8 1.99
m1 0 0.69 11 1.44
m2 0 0.88 9 1.81
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age class 2 (‡2
dgi > 3) and age class 1 (‡2

dgi ¥ 2) (Appendix E, Table E.1). The most
extreme value of ‡2

dgi was found for older males on R̊anes (‡2
dgi = 5.034), which

might explain why R̊anes had a large demographic variance (‡2
dg = 2.67) (Table

3). For both the stable sex-age distribution, ui, and for the sex-age class specific
reproductive values, vi, the mean was highest in age class 2 for both sexes (Table
4). Moreover, the variance was very low (< 0.1) for all classes (Table 4). There was
a tendency for m2 to have the highest values of u (9/13 populations), and in general
(10/13 populations) age class 2 had larger u values than age class 1 (Table 4 and
Appendix E, Table E.1). Exceptions were Leka, R̊anes, and Vega, where age class
1 had the highest values. Leka and Vega both experienced increased population
sizes after their bottleneck events, which is consistent with the expectation of more
young than old individuals in a growing population, while R̊anes most likely has
such a distribution due to chance. For v, there was a tendency for age class 2
to have higher values than age class 1 for one or both sexes (11/13 populations).
When it comes to survival, J , the mean was approximately the same (¥ 0.50) for
all sex-age classes, and the di�erence between the highest and lowest mean value
was small (�J = 0.03, Table 4). Furthermore, the variance was the same for all
age classes (Table 4). For the fecundity, B, the highest mean value is found in
older females (f2 = 0.94), while it was lowest for young males. Age class 2 had
the highest mean values for both sexes, but the di�erence between age classes was
smaller for females (�B = 0.11), than for males (�B = 0.19). Finally, the highest
variance in B was found in older females, whereas the lowest was found in young
males.

3.2 Ne/N

The ratio, Ne/N , calculated with T = 1.97 ranged from 0.17-0.58, with a mean
of 0.42. For Ne/N calculated with the population specific T , it ranged from 0.22-
1.18, with a mean of 0.55. Ne/N calculated with T = 1.97 tends to be smaller
than the ratio calculated with the population specific T (Table 3). This is true
for all populations, except Aldra, Gjerøy and Nesøy where it is the opposite, and
Hestmannøy where the two ratios are the same. For Indre Kvarøy, the two ratios
are approximately the same.

Table 5: The results (± standard error of the indices) from the variance-based sensitivity
analysis of Ne/N , with demographic variance, ‡

2
dg, and generation time, T , as input

parameters. The parameters are ranked based on their total sensitivity indices, ST p. The
parameter interactions, �S, are given as the di�erence between the total and the first
order index of each parameter.

Parameters Rank Sp ST p �S

‡

2
dg 1 0.69 ± 0.02 0.72 ± 0.03 0.03
T 2 0.30 ± 0.04 0.31 ± 0.01 0.01
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3.3 Sensitivity analysis

In the first sensitivity analysis of Ne/N with input parameters being the population
specific estimates of ‡2

dg and T , the demographic variance was found to be the most
important parameter (Table 5, Figure 3). The 95% CI in Figure 3 for the total order
indices of the two parameters, do not overlap, meaning that Ne/N is significantly
more sensitive to ‡2

dg than to T . Because �S < 0.05, the e�ect on the output seems
to be due to the main e�ect of the input parameters, and not through interactions
(Table 5). Since T was found to be the least important of the two inputs in the
first analysis, it was fixed at the average value of the study system (T = 1.97),
and in order to examine which components of ‡2

dg Ne/N was most sensitive to,
‡2

dg was replaced by the parameters in Equation (11). For the second sensitivity
analysis of Ne/N with input parameters ‡2

dgi and ui, I found that the demographic
variance of age class 2 was most important. Most of the e�ects of the parameters
on the output were due to the main e�ects of the input parameters, although two
parameters had �S Ø 0.05 (Table 6). From the results (Figure 4), it was also
quite clear that Ne/N was not sensitive to ui, and that it was most sensitive to the
demographic variance of males in age class 2 followed by females in the same age
class. These two input parameters, ‡2

dgm2 and ‡2
dgf2, had clearly non-overlapping

95% CI’s, which means that they were significantly di�erent. The total order index
for males in age class 1 was only slightly larger than for females in the same age
class, but their 95% CI did not overlap (f1: 95% CI [0.101, 0.116], m1: 95% CI
[0.119, 0.137]), which means that they are also significantly di�erent. In the third
sensitivity analysis, the output parameter was the individual reproductive value
Wij . Wij can be regarded as the basic demographic level for Ne/N , through ‡2

dgi
(Equation (8-11)). The Wij ’s for all four sex-age classes were analysed with Jij ,
Bij and vi as input parameters. In all four analyses, fecundity, B, was identified
as the most important input, followed by survival J , and as none of the 95% CI’s
overlapped, these di�erences were significant (Figure 5). Furthermore, the e�ect

Table 6: The results (± standard error of the indices) from the variance-based sensit-
ivity analysis of Ne/N , with sex-age class specific demographic variance, ‡

2
dgi, and the

stable sex-age distribution, ui, as input parameters. The parameters are ranked based on
their total sensitivity indices, ST p, and the parameter interactions, �S, are given as the
di�erence between the total and the first order index of each parameter.

Parameters Rank Sp ST p �S

‡

2
dgf1 4 0.08 ± 0.02 0.11 ± 0.00 0.03

‡

2
dgf2 2 0.23 ± 0.02 0.27 ± 0.01 0.05

‡

2
dgm1 3 0.12 ± 0.02 0.13 ± 0.00 0.01

‡

2
dgm2 1 0.47 ± 0.02 0.53 ± 0.01 0.06

uf1 6 ≠0.01 ± 0.02 0.01 ± 0.00 0.02
uf2 5 0.00 ± 0.02 0.02 ± 0.00 0.02
um1 6 ≠0.01 ± 0.02 0.01 ± 0.00 0.02
um2 6 ≠0.01 ± 0.02 0.01 ± 0.00 0.02
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Figure 3: The first, Sp, and total order, ST p, sensitivity indices
from the variance-based sensitivity analysis of Ne/N , with the
demographic variance, ‡

2
dg, and the generation time, T , as input

parameters. The error bars are the 95% confidence intervals of
the indicies.
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Figure 4: The first, Sp, and total order, ST p, sensitivity indices from
the variance-based sensitivity analysis of Ne/N , where T = 1.97 and
the sex-age class specific demographic variance, ‡

2
dgi, and the stable sex-

age distribution, ui, as input parameters. The error bars are the 95%
confidence intervals of the indicies.
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3 RESULTS

on the outputs are due to the main e�ect of the input parameters, and not through
interactions (�S < 0.05). It was not possible to rank the vi’s, as they were all
close to zero and each other (Table 7), and it is clear that none of the Wij ’s are
sensitive to vi (Figure 5). Note that there are only three v’s in each analysis, due
to the fact that no females contribute directly to m2, just as no male contribute
directly to f2 (Equation (7)).

To investigate whether the extreme value of sex-age specific demographic value of
older males on R̊anes (Table Appendix E, E.1) was likely to a�ect the analysis
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Figure 5: The result from the four variance-based sensitivity analyses of individual re-
productive value, Wij , with fecundity, B, survival, J , and the sex-age specific reproductive
values vi, as input parameters. The panels (a) and (b) show the results from females and
males in age class 1, respectively, while panels (c) and (d) show the results from females
and males in age class 2, respectively. Both the first, Sp, and total order, ST p, sensitivity
indices are given. The error bars are the 95% confidence intervals of the indices. Note
that there are only three v’s in each panel, due to the fact that no females contribute
directly to m2, just as no male contribute directly to f2 (Equation (7)).
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3.3 Sensitivity analysis

and the fitted distribution (Table 2), it was removed. After removing the R̊anes
value, the p-value in the Shapiro-Wilk test was still low (p = 0.009), and the new
distribution parameters (lnN(0.123, 0.592)), did not have an e�ect on the outcome
of the sensitivity analysis (results not shown), so the value was not removed from
the dataset.

Table 7: The results (± standard error of the indices) from the four variance-based
sensitivity analysis of individual reproductive value, Wij , with survival, Jij, fecundity,
Bij, and the class specific reproductive value, vi, as input parameters. The parameters are
ranked based on their total sensitivity indices, ST p, and the parameter interactions, �S,
are given as the di�erence between the total and the first order index of each parameter.
The vi’s are not ranked, as they are all close to zero, and there is no di�erence between
them within a sex-age class.

Output Parameters Rank Sp ST p �S

a

Wf1

Jf1 2 0.28 ± 0.03 0.32 ± 0.01 0.03
Bf1 1 0.68 ± 0.01 0.72 ± 0.03 0.03
vf1 - ≠0.02 ± 0.03 0 ± 0.00 0.02
vf2 - ≠0.02 ± 0.03 0 ± 0.00 0.02
vm1 - ≠0.02 ± 0.03 0 ± 0.00 0.02

Wf2

Jf2 2 0.15 ± 0.04 0.11 ± 0.01 -0.04
Bf2 1 0.89 ± 0.01 0.85 ± 0.04 -0.04
vf1 - 0.04 ± 0.04 0 ± 0.00 -0.04
vf2 - 0.04 ± 0.04 0 ± 0.00 -0.04
vm1 - 0.04 ± 0.04 0 ± 0.00 -0.04

Wm1

Jm1 2 0.19 ± 0.04 0.19 ± 0.01 0
Bm1 1 0.81 ± 0.01 0.81 ± 0.04 0
vf1 - 0.01 ± 0.04 0 ± 0.00 -0.01
vm1 - 0.01 ± 0.04 0 ± 0.00 -0.01
vm2 - 0.01 ± 0.04 0 ± 0.00 -0.01

Wm2

Jm2 2 0.10 ± 0.03 0.10 ± 0.01 -0.01
Bm2 1 0.90 ± 0.01 0.90 ± 0.03 -0.01
vf1 - 0 ± 0.04 0 ± 0.00 0
vm1 - 0 ± 0.04 0 ± 0.00 0
vm2 - 0 ± 0.04 0 ± 0.00 0

a ST p ≠ Sp
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4 Discussion

First, Ne/N was analysed with the demographic variance, ‡2
dg, and the generation

time, T , as input parameters. From this sensitivity analysis, ‡2
dg was found to be

the parameter Ne/N was most sensitive to (Figure 3). This is not so surprising,
as ‡2

dg include all the other demographic parameters; ‡2
di, u, v, B and J , which

ultimately determines the population dynamics and Ne. Second, to see which
of the parameter(s) in ‡2

dg that Ne/N was sensitive to, the generation time was
fixed at the average value for the study system (T = 1.97), and ‡2

dg was replaced
by ‡2

di and u (Equation 11). From this second analysis, it was clear that Ne/N
was most sensitive to the demographic variance in older males, followed by the
demographic variance in older females, and that Ne/N was not sensitive to u
(Figure 4). Finally, to investigate which parameter(s) in ‡2

dgi that Ne/N was most
sensitive to, the sensitivity analysis was carried out at the individual level, since
‡2

dgi can be decomposed into survival and fecundity by looking at the variance
components of the individual reproductive value, Wij (Engen et al. 2010). In this
third sensitivity analysis, the four Wij ’s were analysed with v, B and J as input
parameters. For all four sex-age classes B was found to the input parameter Wij

was most sensitive to, followed by J , while it was not sensitive to v (Figure 5).
These results are consistent with previous findings, that variance in family size is
important for Ne (Frankham et al. 2010).

4.1 Demographic parameters

When using Ne/N , it is important that estimates of Ne and N are correctly linked,
as in properly matched, both temporally and methodologically, i.e. using either
genetic or demographic estimates (Waples 2005). In a review by Palstra and Fraser
(2012), it was found that only a third (31%) of the studies with Ne/N , linked
Ne and N correctly. In this thesis, demographic estimates were used for both
parameters, and the two parameters were calculated annually for all populations.
The observed number of individuals in the populations was included in the annual
estimate of ‡2

dgi(Z) (Equation (9)), and as weights for ‡2
dgi (Equation (10)). Since

N and Ne are related, they will a�ect each other, but so far little is known on how.
For example, Newton (1995) found that in seven di�erent bird species, only a few
breeders (16–32%) produced 50% of the next generation. Thus, a large increase
in N might improve population viability, but it is often a result of highly skewed
individual contributions, which reduce Ne (Lee et al. 2011). Furthermore, which
N that has been used, is of particular importance when considering Ne/N . Some
studies have used all individuals, both juveniles and adults, others only adults,
while others again only include the breeders (Frankham 1995). Palstra and Fraser
(2012) argues that it is important to use the individuals assumed to be part of the
active breeding population, as done in this thesis, since these are the individuals
that ultimately determine Ne.
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4.1 Demographic parameters

The generation time, T , was calculated as the mean age of all individuals that had
produced a recruit (Lande et al. 2003). T was calculated for each population, with
a mean for all 13 populations of 1.72 years (Table 3). For the 5 populations with
less than 4 years of data, the mean was 1.32 years, while for the 8 populations
with more than 4 years of data, the mean was 1.97 years, which is the same value
found by Jensen et al. (2008). The limit at 4 years was set because this includes
two generation times, and populations with less than 4 years of data are expected
to have a lower T (Table 1 and 3). When new house sparrow populations are
included in the study system, all adult individuals are assumed to be 1 year old
the first time they are caught and marked (see Appendix A, Table A.1). This is
an assumption which is most likely false, but reasonable, as adult house sparrows
lack age specific traits. Given the 50% annual adult survival, the true age of most
individuals (¥ 94%) will be known after 4 years. Due to the relation between Ne/N
and T (Equation (5)), populations with a short estimated generation time will have
a higher Ne/N compared to populations with longer generation times (but which
are otherwise similar), which was also found in this study (Table 3).

Demographic variance, ‡2
dg, is the variation among individuals in their contribu-

tion to future breeding populations, both directly through survival, and indirectly
through recruits (Lande et al. 2003). Sæther et al. (2004) found that the majority
of 52 populations of 31 bird species, had a mean female ‡2

dg = 0.358. This is con-
siderably lower than what I found in this study where both sexes are accounted
for (see Table 3), but the study of Sæther et al. (2004) included only females, and
long-lived birds with very di�erent life cycles from the house sparrow, e.g. wan-
dering albatross (Diomedea exulans). Bird species with more similar life cycles to
the house sparrow, such as blue tit (Parus caeruleus) and great tit (Parus major),
have higher ‡2

dg’s than the average found by Sæther et al. (2004). Blue tits have a
‡2

dg = 0.85 for females, or 1.70 for both sexes (Sæther et al. 2004), and great tits
have ‡2

dg = 0.57 for females, or 1.14 for both sexes (Engen et al. 2003). The 13
populations in this study, have a mean ‡2

dg = 1.48 (Table 3), which fall within the
range of ‡2

dg found in other passerines.

The mean values of Ne/N calculated with T = 1.97 (Ne/N = 0.42), and population
specific T (Ne/N = 0.55) (Table 3), are slightly larger than the mean values of the
sampled ratios from the sensitivity analyses, both for T = 1.97 (Ne/N = 0.37),
and for sampled T (Ne/N = 0.51). The sampled values are the means of 50,000
and 20,000 model runs for fixed and sampled T , respectively. The di�erences
between calculated and sampled ratios (�Ne/N = 0.05 and �Ne/N = 0.04) might
be due to sampling error, or that the calculated ratios are slightly higher due
to few data points or simply by chance. All of the ratios, both calculated and
sampled, are within the range of Ne/N values found in other studies on several
di�erent passerines: from 0.09-0.80, and with an average of 0.49 (see Table 2 in
O’Connor et al. (2006)). The values in this study are also similar to the mean
values (Ne/N = 0.37 and Ne/N = 0.50, ⁄ = 1) found by Engen et al. (2007) in six
populations in the same house sparrow study system. As several di�erent methods
are used to estimate Ne/N , it is not always possible to compare the results of
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di�erent studies. For example, in a study of the common frog (Rana temporaria),
they used di�erent methods to estimate Ne/N from the same dataset, and they got
values spanning a range of 0.23-1.67 (Schmeller and Merilä 2007). Furthermore,
di�erent taxa tend to have di�erent ranges, e.g. a tropical dioecious tree species
(Triplaris americana) on Costa Rica, have a Ne/N close to 1 (Melampy and Howe
1977), while many marine species such as fish and shellfish have values of Ne/N in
the area of 0.0001 (Hauser et al. 2002).

Three of the calculated parameters are from the population projection matrix, l
(Equation 6); the population growth rate, ⁄, the stable sex-age distribution, u,
and the reproductive values of the sex-age classes, v. The population growth rate,
⁄, is not used in the analysis, but will be discussed briefly. For most populations
⁄ < 1 (Table 3), which is unexpected as some seems to be increasing (Appendix
A, Figure A.1), but it might be explained by migration. Migration of juveniles
happens mostly in autumn (Altwegg et al. 2000), and they are therefore gone by
the time population census is done the following year. Emigrants from a local
population are not included among the recruits in this population, but assumed
dead, and immigrants are not counted as recruits as they are produced in another
population. This a�ects ⁄, which is calculated from l with mean fecundity based
on local parents and their recruits. The stable sex-age distributions of age class 1 is
the same for both sexes (Appendix E, Table E.1), due to the assumption of q = 0.5,
and the use of total number of o�spring in l (Equation (6)). Since u is scaled so
that

q
ui = 1, the values of ui represent ratios. Based on the mean values of ui, the

house sparrow populations on Helgeland will consist of approximately 40% recruits,
and 60% older individuals, if they reach their stable population structure (Table
4). Age class 2 also had the highest mean vi values (Table 4), and vi reflect the
expected future contribution from an individual in a sex-age class to the long-term
population growth (Caswell and Keyfitz 2005). Neither ui nor vi were found to be
important parameters in the sensitivity analyses. This might be because they are
non-important, or because they are (in contrast to all the other observed values)
conceptual values for a population in equilibrium, calculated as the eigenvectors of
l (Equation (6)).

The mean survival was found to be approximately equal (50%) for all sex-age
classes, and they also had the same variance (0.25) (Table 4). This is consistent
with the assumption of constant adult survival rates in this study system (Ringsby
et al. 1999). The mean fecundity, or the mean number of recruits produced, was
highest for females in both age classes. This means that females have produced
more recruits than males (in the dataset, 2,997 and 2,770 recruits were produced
by females and males, respectively), which cannot be true, as all recruits must
have two parents. In the dataset, there are in general more males than females
in both age classes (f1: 1,982, f2: 1,428, m1: 2,001, m2: 1,585). Based on the
data from the five populations in Appendix B, it seems like mothers and fathers
are similarly related, and at the same proportions. This suggests that some fathers
have avoided capture, and/or that the assignment of recruits are lower to fathers
than to mothers due to the procedures in genetic parentage analyses (Jensen et al.

26



4.2 Sensitivity analysis

2008; Billing et al. 2012). Within sexes, age class 2 had the highest mean values of
Bij (f2 = 0.94, m2 = 0.88), and the highest variance (f2 = 1.99, m2 = 1.81) (Table
4). In females there was a smaller di�erence in mean Bij between age class 2 and
1 (�Bij = 0.11) than for males (�Bij = 0.19). This is consistent with studies of
other passerines, where it has been found that males increase their reproductive
success most with age (Green 2001; Geslin et al. 2004). The importance of age
on reproductive output in males, might contribute to the explanation of why older
males were found to be the input parameter Ne/N is most sensitive to. Also Jij

was identified as an important factor, especially in age class 1 (Figure 5), which
might be explained by the importance of surviving to age class 2 to increase lifetime
reproductive success, as mean fecundity increase from age class 1 to 2 for both sexes
(Table 4).

4.2 Sensitivity analysis

Distributions of the calculated parameters were fitted for sampling in the sensitiv-
ity analyses (Table 2). Sources of error might be that the wrong distributions were
fitted, or wrong distribution parameters were estimated. Even though some of the
parameters had quite few data points (Table 2), it is reasonable to assume that
the chosen distributions were good approximations of the data. To be able to fit
a distribution to raw data, some compromises and generalisations when it comes
to assumptions about the distribution must be allowed. The dataset used in this
study is large, encompassed thousands of unique individuals and included popu-
lations with up to 20 years of data. It also included both a founder, an extinct,
and two manipulated populations, so the range of the parameters was expected
to be quite large, but biologically reasonable. By including these four popula-
tions, the analyses probably reflect the sensitivity of Ne/N to various demographic
parameters both in isolated populations, and in a dynamic metapopulation with
strong selection events, local extinctions and recolonizations. The dataset may
therefore be assumed to represent trends not only found in house sparrow popu-
lations, but also in other species with similar life cycles, e.g. great tits, common
starlings (Sturnus vulgaris), red squirrels (Sciurius vulgaris) or tri-coloured bats
(Pipistrellus subflavus) (Gurnell 1983; Sibly et al. 1997).

It is important to keep in mind that variance-based sensitivity analyses can be used
to see how inputs impact the variance of the output (Da Veiga 2014). Therefore, in
this study, conclusions can be drawn based on how the variance of Wij , and finally
the variance of Ne/N was a�ected by the di�erent demographic parameters. It is
a common misconception that it is the input parameters with large variance the
output is most sensitive to. Some of the parameters the output is most sensitive
to can have little variation, and strong regulatory mechanisms, which makes evolu-
tionary sense (Tuljapurkar and Caswell 1997). To account for possible interactions
between input parameters, Sobol’ total index (Equation 13) was used to rank the
di�erent parameters (Tables 5-7). In this study, very little of the e�ect was ex-
plained by interactions, and only two input parameters, the sex-age demographic
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variances in age class 2, had �S Ø 0.05 (Table 6). This interaction might be ex-
plained by the fact that production of recruits require both sexes. The e�ect input
parameters have on output variation, tend to be asymmetrically distributed, in the
way that only a few parameters are found to be important, while the rest have a
negligible e�ect (Saltelli et al. 2008). This is true for two of the analyses, where u
and v was found to be non-important (Figure 4 and 5). For the analysis of Ne/N
with only two input parameters, ‡2

dg and T , both were found to be important,
‡2

dg significantly more so than T (Figure 3). Ne is known to be dependent on T
(Nunney and Baker 1993), but as generation time depends on the average age of
parents with recruits, it was not possible to analyse T further in this study, as only
two age classes were used for the sensitivity analysis. ‡2

dg, on the other hand, was
investigated further as it includes all the other demographic parameters; ‡2

dgi, u,
v, B and J . Sensitivity analyses of Ne/N and Wij was therefore done, with these
parameters as inputs, as they ultimately determine Ne and Ne/N . The sensitivity
estimator chosen for this study, soboljansen, is a good estimator for large first order
indices, and both large and small total order indices (Pujol and Janon 2015), which
was suitable for the value-ranges of the total order indices found here (Tables 5-7).
To ensure that the input parameters were significantly di�erent from each other,
95% confidence intervals based on 10,000 bootstraps were used. For all analyses,
none of the CI’s for the total indices overlapped, meaning they were significantly
di�erent, except for u and v which were found to be non-important (Figures 3-5).

There are several possible explanations to why Ne/N is more sensitive to age class
2, and why older males seem to be more important than females. In birds, it has
been established by many studies that reproductive success tend to increase with
age (Forslund and Pärt 1995). The e�ect of age on reproductive success has also
been found in mammals, e.g. in European badgers (Meles meles), where lower re-
productive rates was found in younger, compared to middle aged individuals of both
sexes (Dugdale et al. 2011). The three main hypotheses for why reproductive suc-
cess increases with age are; (i) the selection hypothesis, (ii) the restraint-hypothesis
and (iii) the constraint-hypothesis (Curio 1983; Forslund and Pärt 1995). The first
is based on the idea that reproductive success is higher in older birds because
the poor breeders are selected against, and implicitly have higher mortality. The
second hypothesis states that young breeders restrain themselves, and save invest-
ment for later breeding attempts. The third hypothesis states that young breeders
are constrained by their lack of breeding skills, and/or their physiological condi-
tion. The e�ect of age on reproductive success in birds has mainly been looked
at in long-lived species, such as lesser snow geese (Chen caerulescens caerulescens)
(Rockwell et al. 1993) or mute swans (Cygnus olor) (McCleery et al. 2008). Many
of the studies only include the female segment of the population. However, there
are some studies on short-lived bird species, where both the e�ect of male and fe-
male age on reproductive performance have been compared. Examples are studies
done on the Australian brown thornbill (Acanthiza pusilla) (Green 2001), French
bluethroats (Luscinia svecica) (Geslin et al. 2004), and North-American house spar-
rows (Hatch and Westneat 2007). Both brown thornbills and bluethroats are small
and short-lived passerines, socially monogamous, and have biparental care, just as
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the house sparrow. For the house sparrows, the increase in reproductive success
with age was due to earlier onset of breeding in older individuals, which could be
explained by both the restraint- and the constraint-hypotheses. In brown thorn-
bills and bluethroats it was found that yearlings lacked skills and experience that
influenced their breeding performance, supporting the constraint-hypothesis. Some
of the breeding skills important for reproductive success di�er between sexes, while
others are common for both sexes. Examples might be timing of egg-laying, nest
location, predation avoidance, foraging skills and feeding rate (Green 2001; Geslin
et al. 2004). Both in bluethroats (Geslin et al. 2004) and in blackbirds (Turdus
merula) (Desrochers 1992), it has been found that younger birds are less good at
foraging, but this tendency was not found in the brown thornbill (Green 2001). In
all these species, including house sparrows (Ringsby et al. 2009), the female feed
the chicks more than the male. In the study system used in this thesis, it has been
found that badge size increase with age (Jensen et al. 2004), and that there is a
positive relationship between badge size and feeding rates in males (Ringsby et al.
2009). Higher feeding rate by older males, especially in the first days after hatch-
ing, when the female must eat after brooding, is believed to be the main reason
for why males have the highest increase in reproductive success with age in brown
thornbills and bluethroats (Green 2001; Geslin et al. 2004). This tendency is found
not only in passerines, but also in birds of prey, e.g. Tengmalm’s owls (Aegolius
funereus) (Laaksonen et al. 2002). In the brown thornbill, only males had a signific-
ant improvement in reproductive success with age (Green 2001), in the bluethroats
both sexes improved with age, but males improved most (Geslin et al. 2004), while
in house sparrows, both sexes improved with age (Hatch and Westneat 2007). This
is consistent with the findings of this study, where mean fecundity increased to age
class 2, and males had the largest increase in mean fecundity between age classes
(Table 4). This might contribute to explain why Ne/N was most sensitive to older
individuals, especially males (Figure 4).

Since older individuals, especially males, were found to be what Ne/N was most
sensitive to, this is where management action on house sparrows, and species with
a similar life history, should be focused. Either if the goal is to increase, maintain
or decrease the Ne or Ne/N of a population, manipulation of the fecundity and
survival in the oldest age class is assumed to be the quickest way to the desired
outcome. How the manipulation is done is another question, and it depends on the
hypothesis, or reason, for why older individuals are better at producing recruits.
If poor quality breeders are selected against and die as yearlings, which implicate
that parenting skills and survival are linked, it will not help to increase survival
of yearlings, as they will still be ”bad” breeders when they are older. But if they
either save up resources to later breeding seasons, or they actually learn to be better
parents and improve their breeding skills in subsequent breeding seasons, then it
will help to increase survival. This will of course have to be tested before any
management action is implemented, to assure that the desired outcome is achieved.
There are several examples of management e�orts being ine�ective, or even having
an opposite e�ect, often due the widespread usage of knowledge-based, instead of
evidence-based data. Around 60% of decisions in conservation management have
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4 DISCUSSION

been found to be based on experience, and not on empirical studies or reviews
of the e�ects of the management actions (Cook et al. 2010). An example of an
expensive, but ine�ective management e�ort is from Australia, where the endemic
ground-dwelling malleefowl (Leipoa ocellata) is listed as a vulnerable species. It
faces several threats, i.e. habitat loss, grazing competition, frequent fires, and as
so many other species in Australia: predation by the introduced European red
fox (Vulpes vulpes). Fox baiting has been, and still is, widely used in malleefowl
conservation, despite both the lack of empirical evidence, and studies that suggest
fox baiting have little impact on increasing recruitment rates (Walsh et al. 2012).
Sometimes management actions have the opposite e�ect of what was intended, e.g.
the culling of the Eurasian badger in the United Kingdom, to prevent outbreaks
of bovine tuberculosis. The disease is transferred from badgers to cattle, and
the logic behind culling badgers is simple; fewer badgers near farms means less
disease carriers, and less infected cattle. But the result of the extensive culling
was actually increased number of infected badgers and cattle. This was due to the
territorial nature of badgers, and the influx of individuals to areas where they had
been culled. The increased ranging and mixing of healthy and infected badgers,
resulted in more outbreaks of bovine tuberculosis on nearby farms (Carter et al.
2007). These examples emphasizes the importance of evaluating empirical data,
and to quantify the e�ect of management implementations, both before and after
implementation. This new way of thinking, and the incorporation of empirical
data together with traditional knowledge-based management (Cook et al. 2010),
will most likely be important for conservation and management of Ne and Ne/N
in the future, and this is where sensitivity analyses can be especially useful.

For a manager, sensitivity analyses indicates the critical parameters in a model
(Tuljapurkar and Caswell 1997), and this insight can contribute to more e�ective
and better decisions, as there is never enough time or resources to be one-hundred
percent certain when a decision has to be made (Cook et al. 2010). There are sev-
eral examples of how sensitivity analysis have been applied to management issues;
e.g. investigation of population growth in the desert tortoise (Gopherus agassizii)
(Reed et al. 2009) and lesser prairie-chicken (Tympanuchus pallidicinctus) (Hagen
et al. 2009), or to determine equilibrium population size in short-tailed shearwaters
(Pu�nus tenuirostris) (Yearsley et al. 2003). There are also examples of manage-
ment predictions, e.g. how wolf reintroduction might a�ect the Roosevelt elk in
Olympic National Park (Fieberg and Jenkins 2005), the e�ect of domestic cat (Felis
catus) predation on birds (Maclean et al. 2008), future population trends in swamp
wallabies (Wallabia bicolor) (Ben-Ami et al. 2006), or determine the invasive speed
of species (Neubert and Caswell 2000; Caswell et al. 2010). Even though demo-
graphy, models and analyses have a key role in conservation and management,
there are also other factors that need to be considered. This includes both direct
issues regarding habitat and genetic variation, and indirect issues such as economy,
legal, politics, and ethics (Caswell 2001). The method used in this study is based
on annual, demographic data, which is a short-term perspective a�ected by demo-
graphic variance. From a sustainable management perspective it is also important
to consider that in the long-term, Ne/N will be a�ected by environmental variance
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4.2 Sensitivity analysis

(Engen et al. 2010). It is important to keep in mind that Ne/N is a�ected not
only by the species life history (Lee et al. 2011) and mating system (Engen et al.
2003), but also external factors such as anthropogenic activities (Therkildsen et al.
2010). Based on this study, it might be recommended to use the average species
generation time for the calculation of Ne/N , especially if there are few years of
data available, as a low T might lead to an overly optimistic Ne/N . It is known
that T a�ects Ne/N (Nunney and Baker 1993), but if there is no, or poor data
available, the average T of the study system or species might be appropriate. In
absence of data or resources to collect data, one can also use samples to estimate
demographic parameters, as was done for Siberian jay (Perisoreus infaustus) in
Engen et al. (2010). The importance of number of years of data in a dataset was
not evaluated here, but it is quite interesting to be able to maximize the output of
management e�ort, and should be further studied. Through studies of a common
and well-known species, such as the ubiquitous house sparrow, knowledge may be
inferred to other species with similar life histories and demography. Due relatively
extensive range of demographic characteristics of the populations in this study, it
may be used as a model for other isolated, fragmented and perhaps threatened pop-
ulations and species with similar life histories. As a result, the findings from this
study on sensitivity of Ne/N to demographic parameters, might assist to identify
where e�orts and resources in management and conservation should be focused in
similar species.

31



Acknowledgements

This study was funded by the Centre for Biodiversity Dynamics at NTNU, and
the Research Council of Norway. I would like to thank my supervisors Henrik
Jensen, Ane Marlene Myhre and Bernt-Erik Sæther, and also Steinar Engen and
Jarle Tufto, for guidance and advice. I am also very grateful to Thomas Kvalnes
for help with the lmf package, and to H̊akon Holand for guidance and help with
software and scripts for relatedness and assignment of genetic parents. Thanks to
all at CBD for feedback on my presentations, and all the helpful comments for
my thesis. Also my fellow sleep-deprived field workers deserves mentioning, for
making long days seem shorter, and for making the trips to Helgeland memorable.
I want to thank my fellow students and friends for all the great discussions about
everything and nothing, both on and o� campus, with and without beer, and for
making my years in Trondheim so awesome. Last but not least, I want to thank
my better half for all your love, patience, help and support.

32



References

Allendorf F W, Luikart G H and Aitken S N (2012). Conservation and the Genetics
of Populations, John Wiley & Sons.

Altwegg R, Ringsby T H and Sæther B E (2000). Phenotypic correlates and con-
sequences of dispersal in a metapopulation of house sparrows Passer domesticus,
Journal of Animal Ecology 69(5), 762–770.

Anderson T R (2006). Biology of the Ubiquitous House Sparrow: From Genes to
Populations, Oxford University Press.

Ben-Ami D, Ramp D and Croft D B (2006). Population viability assessment and
sensitivity analysis as a management tool for the peri-urban environment, Urban
Ecosystems 9(3), 227–241.

Billing A M, Lee A M, Skjelseth S, Borg Å A, Hale M C, Slate J, Pärn H, Ringsby
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Appendix A Dataset

Table A.1: All populations, their annual observed population sizes, N , their e�ective
population sizes, Ne, calculated with T = 1.97, and the number of individuals in each
sex-age class.

Sex-age classes
Population Year N Ne f1 f2 m1 m2

Aldra 1998 4 1 1 0 3 0
Aldra 1999 7 3 1 1 3 2
Aldra 2000 17 6 7 1 5 4
Aldra 2001 28 10 9 4 10 5
Aldra 2002 31 11 7 10 4 10
Aldra 2003 33 12 9 9 5 10
Aldra 2004 45 16 10 13 13 9
Aldra 2005 52 19 13 13 9 17
Aldra 2006 36 13 5 15 2 14
Aldra 2007 37 13 5 10 6 16
Gjerøy 1993 27 11 9 0 18 0
Gjerøy 1994 49 19 18 7 14 10
Gjerøy 1995 35 14 7 10 7 11
Gjerøy 1996 40 16 3 14 9 14
Gjerøy 1997 34 13 9 6 3 16
Gjerøy 1998 52 20 16 13 15 8
Gjerøy 1999 61 24 13 18 14 16
Gjerøy 2000 60 24 9 17 11 23
Gjerøy 2001 51 20 13 13 9 16
Gjerøy 2002 38 15 7 11 7 13
Handnesøy 2011 86 48 45 0 41 0
Handnesøy 2012 57 32 15 12 19 11
Handnesøy 2013 56 31 11 16 13 16
Hestmannøy 1993 96 40 46 0 50 0
Hestmannøy 1994 97 40 19 31 18 29
Hestmannøy 1995 92 38 19 23 28 22
Hestmannøy 1996 71 30 9 25 8 29
Hestmannøy 1997 73 30 23 17 18 15
Hestmannøy 1998 98 41 29 17 37 15
Hestmannøy 1999 134 56 48 16 42 28
Hestmannøy 2000 120 50 33 30 23 34
Hestmannøy 2001 119 50 33 31 29 26
Hestmannøy 2002 74 31 12 23 11 28
Hestmannøy 2003 95 40 30 15 30 20
Hestmannøy 2004 95 40 27 18 25 25

Continued on next page
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A DATASET

Table A.1: Continued from previous page
Sex-age classes

Population Year N Ne f1 f2 m1 m2

Hestmannøy 2005 130 54 34 28 39 29
Hestmannøy 2006 137 57 37 32 31 37
Hestmannøy 2007 180 75 45 45 42 48
Hestmannøy 2008 162 68 42 43 36 41
Hestmannøy 2009 169 71 41 44 43 41
Hestmannøy 2010 225 94 74 43 59 49
Hestmannøy 2011 254 106 45 77 53 79
Hestmannøy 2012 142 59 36 34 31 41
Indre Kvarøy 1993 23 11 7 0 16 0
Indre Kvarøy 1994 46 22 14 4 18 10
Indre Kvarøy 1995 54 25 9 12 16 17
Indre Kvarøy 1996 49 23 8 16 7 18
Indre Kvarøy 1997 44 21 7 13 11 13
Indre Kvarøy 1998 38 18 7 9 8 14
Indre Kvarøy 1999 44 21 10 8 15 11
Indre Kvarøy 2000 20 9 7 3 3 7
Indre Kvarøy 2001 29 14 7 4 11 7
Indre Kvarøy 2002 32 15 8 7 5 12
Leka 2002 117 23 32 20 45 20
Leka 2003 125 25 46 11 41 27
Leka 2004 119 24 19 27 40 33
Leka 2005 109 22 25 25 27 32
Leka 2006 98 19 27 21 27 23
Leka 2007 161 32 56 29 48 28
Leka 2008 137 27 46 30 33 28
Leka 2009 147 29 45 30 52 20
Linesøya 2012 68 37 34 0 34 0
Linesøya 2013 78 42 26 13 25 14
Løkta 2011 24 18 11 0 13 0
Løkta 2012 18 13 3 5 5 5
Løkta 2013 61 45 23 6 25 7
Nesøy 1993 13 7 5 0 8 0
Nesøy 1994 16 8 7 3 2 4
Nesøy 1995 14 7 3 5 3 3
Nesøy 1996 16 8 3 6 5 5
Nesøy 1997 19 10 6 4 4 8
Nesøy 1998 21 11 1 4 3 8
Nesøy 1999 18 10 0 7 0 10

Continued on next page
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Table A.1: Continued from previous page
Sex-age classes

Population Year N Ne f1 f2 m1 m2

Nesøy 2000 28 15 5 8 9 6
Nesøy 2001 25 13 3 8 3 11
Nesøy 2002 21 11 1 6 4 10
R̊anes 2012 39 7 23 0 16 0
R̊anes 2013 53 10 21 8 19 5
Røvass 2011 26 15 13 0 13 0
Røvass 2012 19 11 6 4 3 6
Røvass 2013 16 9 3 3 6 4
Vega 2002 123 21 38 17 51 17
Vega 2003 171 29 64 24 56 27
Vega 2004 163 28 56 39 41 27
Vega 2005 78 13 17 22 18 21
Vega 2006 145 25 51 22 49 23
Vega 2007 124 21 31 26 41 26
Vega 2008 223 38 81 31 75 36
Vega 2009 336 57 107 56 110 63
Ytre Kvarøy 1993 27 8 12 0 14 1
Ytre Kvarøy 1994 38 12 9 7 12 10
Ytre Kvarøy 1995 33 10 6 7 10 10
Ytre Kvarøy 1996 26 8 5 4 4 13
Ytre Kvarøy 1997 14 4 1 6 0 7
Ytre Kvarøy 1998 11 3 3 3 4 1
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A DATASET
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(c)
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Figure A.1: Annual observed population sizes, N , and the annual e�ective population
sizes, Ne, calculated with T = 1.97. The 13 populations have been split into three groups
to ease interpretation: (a) few years of data, (b) medium sized populations and (c) large
populations.
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and (b), respectively.
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Appendix B Parentage analysis

The pedigrees for the populations Handnesøy, Linesøya, Løkta, R̊anes and Røvass
had to be established. For all the other study islands, pedigrees were already
available.

Materials and methods

To make a pedigree for a given population, I needed to determine the recruits from
a given breeding season, and their potential candidate parents. The parent candid-
ates in a given year were assumed to be all adult individuals caught or observed
during, or right after, breeding season for the year in question. Also individuals
that were ringed in a previous year, and then captured or observed in a later, were
included as candidate parents. The recruits from a given year were all individu-
als caught, or observed, during February-March the following year, excluding any
previously ringed and surviving adults. In addition to knowledge of recruits and
candidate parents, it is also necessary to have information on the genotypes of all
individuals. DNA from the blood samples was extracted and analysed, using 14
unlinked polymorphic microsatellite markers. Genotypes based on allelic variation
at these microsatellites, were scored using the software GeneMapper 4.0 (Applied
Biosystems) (Billing et al. 2012; Jensen et al. 2013). The work was done by the
technicians, Margit Dagsdatter Haugsnes and Randi Røsbak. To get the number of
candidate parents, since a capture rate at 90% is assumed, the observed number of
candidates is multiplied by 1.10 to account for the non-captured individuals. The
software cervus 3.0 (Kalinowski et al. 2007) was used to determine parentage
based on candidates and their genotype data. The genotype frequencies used in
the parentage analysis, were calculated from all years of data available for each
population. The assignment of parent pairs to recruits was set to a confidence
limit of 0.9, meaning that they on average will be correct in at least 90 % of the
cases (see also Jensen et al. (2008, 2013); Billing et al. (2012); Hagen et al. (2013)).
For recruits that did not get assigned a parent pair, possible mother and father
candidates (with > 90% confidence) were compared, and the individual that was
the most likely a parent, was assigned to the recruit. The missing parents are
probably due to unknown candidate parents in the population, that the recruits
immigrating from other populations, or error in the scoring of genotypes, which
was estimated to be Æ 2.5 %. Further, information on, or estimates of, how related
candidate mothers are to other females, and how related candidate fathers are to
other males is needed. A traditional way to calculate relatedness, is to look at
the probability of alleles to be identical by descent from a common ancestor in
a pedigree (Speed and Balding 2014). When there is little, or no information on
pedigree and population structure, which is often the case for natural populations,
relatedness estimates can be applied (Wang 2007). To estimate the proportion of
relatives among candidate parents, and the average relatedness among relatives,
the R-package related version 0.8 (Pew et al. 2014; Frasier et al. 2014), which is
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based on the software package coancestry (Wang 2011) was used. The pairwise
relatedness, was calculated with the relatedness estimator trioml, a triadic likeli-
hood estimator based on genotype frequencies, that have been shown to be precise
and robust (Wang 2007), and account for both genotyping error and inbreeding,
which increase the credibility of the relatedness estimates. The relatedness was
determined using annual genotype frequencies for each population. All individuals
with relatedness larger than zero were included in the estimate of the proportion
of relatives among candidate parents.

Results

The number of recruits in the five populations was relatively stable across the
study years (Table B.1) stay stable, even though the number of parent candidates
decreased from one year to the next in Handnesøy, Røvass. Løkta is a special
case, as it had a steep increase in both number of candidate parents and number of
recruits in 2013 due to the inclusion of more farms on the island as part of the study
population. The assignment rate of parent pairs tended to be lower for the first
year, but increased for most populations in the second, except for Linesøya were
there was a 5 % decrease. On average, parents tend to be approximately as related
(0.14) as is expected of first cousins (0.125), except for on Løkta in 2012 where
the relatedness was higher, but the proportion related was quite low compared to

Table B.1: Results from annual parentage analysis of the five populations that lacked
pedigrees. Listed are the number of recruits and candidate parents (n), the percentage of
recruits assigned (Ass.) a parent pair, the proportion (Prop.) related individuals within
each sex, and the relatedness (Rel.) among these related individuals.

Recruits Candidate mothers Candidate fathers
Population Year n Ass. n Prop. Rel. n Prop. Rel.

Handnesøy
2011 34 18 % 63 0.431 0.093 58 0.412 0.102
2012 26 35 % 35 0.393 0.092 39 0.359 0.087
2013 34 59 % 31 0.368 0.086 32 0.357 0.113

Linesøya 2012 51 45 % 45 0.417 0.106 45 0.399 0.102
2013 30 40 % 44 0.367 0.136 44 0.402 0.105

Løkta
2011 8 38 % 12 0.273 0.085 14 0.244 0.162
2012 5 60 % 9 0.071 0.595 11 0.111 0.296
2013a 21 43 % 32 0.345 0.129 35 0.381 0.097

Røvass
2011 10 22 % 17 0.321 0.115 17 0.282 0.125
2012 10 50 % 12 0.222 0.149 11 0.194 0.103
2013 11 45 % 9 0.133 0.018 13 0.200 0.294

R̊anes 2012 40 20 % 31 0.372 0.115 24 0.317 0.084
2013 43 53 % 32 0.355 0.110 26 0.297 0.149

a
More farms were included this year
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previous and following year. On average, a third (0.31) of the parents were related,
across populations and years.
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Appendix C Sensitivity analysis

There are two main types of sensitivity analysis, local and global, and choice of
type depends on interest and assumptions of the model. Local analyses measure the
e�ect a given input has on the output, and is often based on the partial derivatives
of the model parameters. Traditionally, most sensitivity analyses are local, some
inappropriately so, because they only explore one point of the parameter space.
The parameters are changed one-at-the-time (OAT), while all other inputs are
held at a nominal value (Saltelli et al. 2004). The computational cost for this
method is low, but it cannot detect interactions between inputs, and tend to have
a high bias for non-linear models (Yang 2011). Global analysis on the other hand,
varies all inputs simultaneously, explores the entire parameter space, and accounts
for interactions between input parameters (Sobol’ 2001). An accurate method of
sensitivity analysis should be model independent, be able to cope with di�erences
in dimensions, and consider all interaction e�ects among input parameters. One
type of global sensitivity analysis is variance-based, and has been found to be a
method that fulfils these requirements (EPA Council for Regulatory Environmental
Modeling 2009).

Global variance-based methods have a long history, starting with Cukier et al.
(1973) and then formalised by Sobol’ (1990, 1993). Later, there have been several
improvements by Jansen et al. (1994), Jansen (1999), Saltelli (2002), Sobol’ et al.
(2007) and Saltelli et al. (2010), among others. Variance based methods are quant-
itative in principle, as long as the sample sizes are large enough to tell how much
more important factor A is, relative to factor B (Saltelli et al. 2004). Some of the
commonly used variance-based methods are the Sobol’ method (Sobol’ 1990, 1993),
the Fourier Amplitude Sensitivity Testing (FAST) (Cukier et al. 1973; Saltelli et al.
1999), and several di�erent regression and correlation methods. The Sobol’ method
has been found to be very robust when it comes to quantifying sensitivity, and rank-
ing inputs by using sensitivity indices (Tang et al. 2007; Yang 2011; Lagerwall et al.
2014). For complex models the Sobol’ method can be computational heavy, as it
requires a high number of model runs to estimate the first and total order sensit-
ivity indices (Saltelli 2002). The first order index is the main e�ect of a input on
the output, while the total order index also includes all higher order indices, which
are contributions to variance in the output through interactions among inputs (So-
bol’ 1990, 1993). The Sobol’ method have been found to work well with biological
data, and can handle both continuous and discrete inputs (Lagerwall et al. 2014).
Ranking of inputs is most easily done by estimating the first order indices (Equa-
tion (12)), but these indices do not include possible interactions among inputs,
and might lead to an erroneous ranking. Two, or more inputs are per definition
interacting when their joint e�ect di�ers from their individual e�ects combined.
Higher order indices include interactions among inputs, e.g. second order indices
are interactions between two, third order are interactions among three, and so on.
As the number of interactions among inputs increase geometrically (2p) with the
number of inputs, it is easier to compute the total index of a parameter (Saltelli
et al. 2010), which includes the first and all higher order indices of an input (Sobol’
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2001). To illustrate, if there is a model with three inputs, A, B and C, the total
sensitivity index of parameter A is: ST A = SA + SAB + SAC + SABC . The total
sensitivity index in this example includes the first, second and third order e�ect, or
in other words: all possible ways parameter A can contribute to the output (Chan
et al. 1997).

Saltelli et al. (2010) tested some of the estimators used to calculate sensitivity
indices, and concluded that the Jansen estimator (Jansen 1999) was the best. In
all the comparisons, it had the highest e�ciency and lowest mean absolute error.
The Jansen estimator equals the soboljansen estimator in the sensitivity package,
which is the estimator used for the analyses in this study. The soboljansen estimator
is based on the work of Sobol’ (1990, 1993), improved upon by Jansen (1999), and
later updated by Saltelli et al. (2010). This updated Jansen-Sobol’ scheme uses
a Sobol’ quasi-random sequence for sampling of inputs from their distributions,
which were found to outperform standard Monte Carlo sampling (Saltelli et al.
2010). The soboljansen estimator has a cost of (p + 2)n model runs, where p
is the number of input parameters, and n is the number of parameter samples.
The soboljansen estimator requires a function that takes a data frame where each
column is a parameter, and each row a new combination of all parameters (each
cell is a random draw from the respective distribution). The output of the function
must be a vector with the same length as the number of rows in the data frame
(Pujol and Janon 2015).

The Sobol’ method use a Monte Carlo estimation of the indices, or a so-called
pick-freeze method. This method was adapted by Homma and Saltelli (1996) to
calculate the total indices. This is a method where the Sobol’ index is regarded as
the regression coe�cient between the output and a pick-freeze replication. A pick-
freeze replication is when one, or several inputs are kept at a certain value (frozen),
while the others are sampled from their respective distributions (picked) (Sobol’
1993, 2001). The decomposition of variance in the Sobol’ method is done through
evaluation of multidimensional integrals, estimated by Monte Carlo integrals (So-
bol’ 2001). To obtain these Monte Carlo estimates, two independent matrices,
or data frames, with parameter values sampled from their respective probability
distributions are needed. These matrices have dimensions (n, p) where n is the
number of samples (rows) and p is the number of parameters (columns) (Chan
et al. 1997). There are several sampling methods, e.g. random sampling, Monte
Carlo sampling, Latin Hypercube Sampling and a whole array of possible sampling
schemes or sequences. The data for the two random sampled matrices needed for
the Sobol’ method is usually generated by a Sobol’ quasi-random sampling scheme.
It is called quasi-random, even though it is not random at all, and in contrast to
true random sampling, it remembers previously sampled data points, and fill in
the gaps between them (Saltelli et al. 2010). Such sequences are characterized by
having enhanced convergence (Sobol’ 2001), which is preferable, as it reduces the
total number of model runs. When using a Monte Carlo estimation, or pick-freeze
method, to calculate sensitivity indices, one need to consider how many samples is
in order to achieve convergence of parameter values (Nossent and Bauwens 2012).
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The Sobol’ method requires a large number of model runs to get convergence, typ-
ically in the order of thousands (Saltelli 2002). To monitor the convergence, and
estimate confidence intervals of the indices, one can re-sample, e.g. by bootstrap-
ping, as done in this thesis.
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Appendix D Probability density functions (PDF)

All parameter PDF’s follows, except for survival, Ji, which was binomially distrib-
uted.
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Figure D.1: Observed density distribution of generation time,
T , based on the data from 13 populations, and the fitted dis-
tribution.

0.0

0.2

0.4

0.6

0.8

0.5 1.0 1.5 2.0 2.5 3.0

Demographic variance (σdg
2 )

D
e

n
si

ty

Density
distribution
Fitted
distribution

Figure D.2: Observed density of population specific demo-
graphic variance, ‡

2
dg, based on data from 13 populations, and

the fitted distribution.

56



(a)

0.00

0.25

0.50

0.75

1.00

0.5 1.0 1.5 2.0 2.5 3.0

D
e
n
si

ty

(b)

0.00

0.25

0.50

0.75

1.00

0.5 1.0 1.5 2.0 2.5 3.0

Density
distribution

Fitted
distribution

(c)

0.00

0.25

0.50

0.75

1.00

1.25

0.5 1.0 1.5 2.0 2.5

Sex−age demographic variance (σdi
2 )

D
e
n
si

ty

(d)

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5

Sex−age demographic variance (σdi
2 )

Figure D.3: Observed density of sex-age class demographic variance, ‡

2
dgi, based on

data from 13 populations, and their fitted distributions. Panels (a) and (b) are the
distributions of females and males in age class 1, respectively, while panels (c) and (d)
are the distributions of females and males in age class 2, respectively.
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D PROBABILITY DENSITY FUNCTIONS (PDF)
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Figure D.4: Observed density of stable sex-age distribution, ui, based on data from
13 populations, and their fitted distributions. Panels (a) and (b) are the distributions of
females and males in age class 1, respectively, while panels (c) and (d) are the distributions
of females and males in age class 2, respectively.
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Figure D.5: Observed density of sex-age class specific reproductive value, vi, based
on data from 13 populations, and their fitted distributions. Panels (a) and (b) are the
distributions of females and males in age class 1, respectively, while panels (c) and (d)
are the distributions of females and males in age class 2, respectively.
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Figure D.6: Observed density of individual fecundity, Bij , based on data from 13 popu-
lations, and their fitted distributions. Panels (a) and (b) are the distributions of females
and males in age class 1, respectively, while panels (c) and (d) are the distributions of
females and males in age class 2, respectively.
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Appendix E Parameters

Table E.1: All sex-age class parameters for all 13 populations in the dataset; stable sex-
age distribution, ui, sex-age specific reproductive value, vi, and sex-age class demographic
variance, ‡

2
dgi.

Parameters
Population i ui vi ‡

2
dgi

Aldra f1 0.200 0.864 1.308
Aldra f2 0.254 0.954 1.243
Aldra m1 0.200 0.958 1.076
Aldra m2 0.345 1.137 1.768

Gjerøy f1 0.189 1.060 1.265
Gjerøy f2 0.307 1.010 1.507
Gjerøy m1 0.189 0.928 1.093
Gjerøy m2 0.315 0.998 1.216

Handnesøy f1 0.184 0.619 0.568
Handnesøy f2 0.277 1.049 1.176
Handnesøy m1 0.184 0.738 1.014
Handnesøy m2 0.355 1.295 0.825

Hestmannøy f1 0.197 0.922 0.992
Hestmannøy f2 0.289 0.974 1.326
Hestmannøy m1 0.197 0.986 1.065
Hestmannøy m2 0.316 1.081 1.348

Indre Kvarøy f1 0.165 1.097 1.221
Indre Kvarøy f2 0.316 1.257 1.178
Indre Kvarøy m1 0.165 0.845 1.089
Indre Kvarøy m2 0.353 0.797 0.934

Leka f1 0.279 0.899 2.339
Leka f2 0.203 1.217 3.160
Leka m1 0.279 0.837 1.808
Leka m2 0.238 1.125 3.180

Linesøya f1 0.208 0.479 0.728
Linesøya f2 0.142 0.462 0.793
Linesøya m1 0.208 0.890 1.215
Linesøya m2 0.442 1.469 0.942

Løkta f1 0.143 1.193 1.080
Løkta f2 0.486 1.116 0.690
Løkta m1 0.143 0.891 0.797
Løkta m2 0.228 0.699 0.383

Nesøy f1 0.128 1.093 1.004
Nesøy f2 0.365 1.178 1.150
Nesøy m1 0.128 0.854 0.715
Nesøy m2 0.379 0.846 0.844

Continued on next page
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E PARAMETERS

Table E.1: Continued from previous page
Parameters

Population i ui vi ‡

2
dgi

R̊anes f1 0.302 0.453 1.305
R̊anes f2 0.162 0.927 2.466
R̊anes m1 0.302 0.996 2.315
R̊anes m2 0.235 1.757 5.034

Røvass f1 0.246 1.049 1.538
Røvass f2 0.214 1.487 0.994
Røvass m1 0.246 0.696 0.465
Røvass m2 0.294 0.859 0.592

Vega f1 0.298 1.084 2.811
Vega f2 0.209 1.055 3.186
Vega m1 0.298 0.890 2.908
Vega m2 0.195 0.979 3.146

Ytre Kvarøy f1 0.180 1.198 1.602
Ytre Kvarøy f2 0.274 1.074 2.382
Ytre Kvarøy m1 0.180 1.061 1.603
Ytre Kvarøy m2 0.365 0.816 1.087
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