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Table 12:. 

Overall 8 different sub networks was obtained with three families of motifs, Feed forward 

loop (FFL), Single Input modules (SIM), Dense over lapping regulon (DOR) 

 

C) YeaSTRACT 

Under the default condition of MCODE application, the YeaSTRACT dataset is 

applied through MCODE algorithm to obtain sub networks within. The transcription 

factor is fluorescent green and target gene is light pink. 

The different sub networks are obtained from YeaSTRACT dataset. 
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Figure 33The different sub networks visualized through Cytoscape 

The topmost left to right is motif no 1-3, similarly second row of images has the same 

pattern, left to right is 3-6, 6-9, 9-12 and 13
th

 motifs with fluorescent green as transcription 

factor and pink as target genes. The motif count starts from top left of every column up to 

right. 

 

 

 

 

 

 

 

 

 

 

 

Table 12The sub networks of the YeaSTRACT dataset from MCODE 

Cluster Type Transcription Target MCODE Node/Edge 
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factor gene score 

1 SIM 6 14 3.35 20/67 

2 SIM 17 11 3.214 28/90 

3 SIM 17 11 2.429 28/68 

4 SIM 3 7 1.8 10/18 

5 SIM 10 11 1.286 21/27 

6 SIM 6 5 1.273 11/14 

7 SIM 3 2 1.2 5/6 

8 SIM 3 2 1.2 5/6 

9 SIM 3 2 1.2 5/6 

10 SIM 4 4 1.125 8/9 

11 SIM 4 4 1.125 8/9 

12 SIM 2 2 1 4/4 

13 SIM 2 2 1 4/4 

 

For YeaSTRACT dataset, the 13 motifs are observed but all of them with the same motif 

family type; Single input motif (SIM). 
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4 Discussion: 

Despite the glorious approach of reductionism in biology, the alarming necessity for 

uncovering the absolute molecular world with the approach of system biology has become a 

new frontier in biology. System biology is inherently a study of mechanisms of underlying 

complex biological process as an integrated system of many interacting components 

(www.biocomp.unibo.it/piero/MSB/IntSB.ppt). An example of large Zoological and 

botanical expedition at the end of nineteenth century led to characterization of organism 

diversity and their relations. In the same way, molecular biologists are exploring the canvas 

of diversity inside the cell. The similar pattern of exploration was observed after the 

elucidation of biochemical pathways in the early-middle twenty centuries provided more 

complete picture of genes, proteins and metabolites by the initiating research on molecular 

biology.   

Even though in this period of high through put researches or biotechnological advancements, 

the current understanding of system is only a sketch of actual relation between elements, 

whereas the most of biological details are still in the state of oblivion. With increasing 

number of research, exponentially increasing data flows towards the motive of scientific 

community in addressing the lacking biological details. The advent of genomic, proteomic 

and metabolomics approach which has offered the required ingredients for the revolution of 

molecular biology and biomedical facet of science and emergence of novel approach of 

system biology that are meant on unravelling the mystery of biology. Definitely, the approach 

in graph theory of system biology for the real system has been applied to append the 

understanding on relation between the elements of the system. The graph theory opens the 

possibility for global understanding of the system, against the predominant reductionism idea 

on the current scientific explorations.  

Graph theory enables a systemic study through statistical calculation of the local interactions; 

however the global understanding is delimited by its sample size. By this we can estimate, in 

any statistical approach, the larger size of data is directly proportional to the reliability of the 

statistics. Basically the graph theory is a highly developed field of mathematics, which has 

from past three centuries been an important means to describe properties of networks. In very 

explicit language for understanding a network, networks can also be described as nothing 

more than set of discrete elements(the vertices) and set of connections (edges) that link the 

elements, typically in pairwise fashion(Cline, Smoot et al. 2007). This concept is rather 

stochastic to define a  elements´ interaction to form a random network (Shen-Orr, Milo et al. 

http://www.biocomp.unibo.it/piero/MSB/IntSB.ppt
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2002) therefore rather deterministic approach is recently fed into network science. So during 

1999, Albert –Laszlo Barabasi, Hawoong Jong and Reka Albert came up with the idea of 

scale free network. The basic hypothesis of their model focused on the probability 

distribution. The new connections get attach to a node with probability proportional to 

existing number of connection. The growth and preferential attachment are the mechanisms 

which are prevalent to a number of complex systems(Jeong, Néda et al. 2003). 

Thus obtained graph theory leads to the elucidation of all these datasets by forming a 

network. In a network for cellular system, cell acts as `node` in the network of molecules 

which are connected by the biochemical reactions as `edge`. The network is ubiquitous in 

nature. Societies are the network of people linked by friendships, family and professionals as 

relation. In large scale, food webs and ecosystems can also be represented as network. 

Network is present everywhere as mentioned earlier. The language we speak can also be 

represented as network where words are connected by syntactic relationships. Network has its 

presence pervading in technology, internet network, power grid and transportation networks 

are some of its examples.(Walhout 2006). 

The network analysis in different dataset is primarily performed in this thesis to observe the 

pattern of distribution of transcription factor and target genes; and their clustering coefficient 

distribution in the network. The different sub networks that are formed in the network are 

also studied which enables one to access the overall information about a network. This is the 

bottom up approach of system biology, which has start with the separates nodes of the 

network in the bottom. Similarly motifs and modules were studied before visualizing and 

understanding the whole network. The transcription factor and target genes are shown by 

nodes and the interactions between them is edge. The different dataset were retrieved from 

various databases presenting transcription regulation between transcription factor and target 

genes.  

 HTRIdb dataset 

 TFactS Sign less/ Sign sensitive dataset 

 YeaSTRACT dataset 

 ESCAPE dataset 

The HTRIdb dataset is primarily an open access database for experimentally verified human 

transcriptional regulation interactions. The interaction pattern based modelling of 

transcription factor and target gene is useful in achieving the complete understanding of the 
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biological process. It is basically a repository of human transcription regulation interactions. 

The advantage of this dataset to other is that it gives the information on different 

experimental techniques which has been used to extract the information(Bader and Hogue 

2003). The different techniques used have the certain biochemical feature of it that determine 

the interactions. The database allows the user to upload their set of interactions and increase 

the database quality. The inconsistencies, that can be identified in the database is also another 

aspect where one can work on(Alon 2007).  

TFactS dataset has the catalogue of 2720 target genes and 6401 experimentally validated 

regulations. In order to decipher the regulated transcription factor´s network, which were 

obtained from microarray data are compared with the well characterized target genes in 

TFactS. TFactS has the validated published list of regulated genes which were compared to 

tools based on In silico promoter analysis(Zhang, Jin et al. 2007).  In silico gene mining 

strategy is an excellent tool for identification of key genes and gene clusters whose 

expression is changed in disease tissue. The data generated by this investigation offers 

delineation for molecular basis of diseases(Vidal, Cusick et al. 2011). The prediction of 

transcription factors which are regulated, inhibited or activated in biological condition for 

TFactS is entirely based on the lists of regulated, up regulated and down regulated genes 

resulted from the transcriptomics experiment (http://www.TFactS.org/). The nature of 

transcription factors in the catalogue is determined to be correlated with the target genes in 

the set. The different species under which the experiments are performed is also separately 

dealt. The different data source like PAZAR, NFIregulome, curated TRED and TRRD along 

with PubMed are used to obtain the Tg for all those Tf. The catalogue of Tf-Tf interaction in 

TFactS is the repository of those transcription factor and its respective target genes, with 

additional information on the regulation level, whether they are up regulated or down 

regulated.  

The genome of Saccharomyces cerevisae was sequenced by 1996, after that period this model 

eukaryote has been used to understand complex biological networks that controls the cellular 

processes. The Yeast Search for Transcriptional Regulators And Consensus Tracking 

(YeaSTRACT) is the consequence of release of genome sequence of Saccharomyces 

cerevisae, now it has been transformed into a curated repository for the 20, 6000 regulatory 

associations between transcription factor and target genes in Saccharomyces cerevisae. The 

database information is based on the huge number of bibliographic references. The site has 

the updated gene information from the Saccharomyces Genome database, and use of updated 

http://www.tfacts.org/
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gene ontology term is another feather attached to the database. Along with PBM- MITOMI 

changes, MITOMI is the versatile platform useful for different bio molecular interaction 

measurements including protein –protein, protein-DNA, protein-RNA and protein small 

molecules(Geertz, Shore et al. 2012), the database is prospering under newly appended 

curation regulatory information on environmental condition, association type and evidence 

code(http://www.YeaSTRACT.com/).  

The ability of the cell to give rise to all the cell of the embryo and the adult organism is 

referred to as Cell`s Pluripotency. Pluripotent cells are usually found within mammalian 

blastocysts and for brief moments in embryo after implantation. The embryonic cells are 

derivation from inner mass of the blastocysts, which is a renewable source of pluripotent 

stem cells that are striking high in basic science studies. Later may become an efficient 

source of cells for safe, effective, cell based therapies. Thus all these embryonic stem cell 

research are leading  to generate a canvas for molecular signature of Pluripotency with the 

emergence of complex interaction of transcription factor networks, signaling pathways, and 

epigenetic processes involving modification in structure of DNA, histones and 

chromatin(Gearhart, Pashos et al. 2007). High content studies on the mouse and human 

embryonic stem cells (m/hESCs)  using various genome wide technologies like 

transcriptomics and proteomics is continuously done and published as well for a novel 

purpose. But the integration of these data with the motive to obtain global map of molecular 

network in m/hESCs was missing. Thus, m/hESCs centered database called ESCAPE 

compiles data from many recent high throughput studies including chromatin 

immunoprecipitation, followed by deep sequencing, genome wide inhibitory RNA screens, 

gene expression microarray or RNA sequence after KD (Knock down) or over expression of 

critical factors, immunoprecipitation followed by mass spectrometry proteomics and 

phosphor proteomics. Retrieved Protein-DNA data from ESCAPE comprised 206521 

documented interaction form ChIP-chip/seq studies connecting 61 transcription factors to 

their respective target genes. Besides Protein-DNA dataset in ESCAPE it also has datasets on 

protein-protein, LOF (Loss of Function)-GOF(Gain of function) interactions and many 

more(Shih and Parthasarathy 2012).   

4.1 Node degree analysis 

Node degree analysis of the network is the important measure to estimate the spatial 

distribution of different nodes within the network and their transmission range(Bettstetter 

2002).  The different nodes like protein, gene and small molecules interact to represent the 

http://www.yeastract.com/
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cellular system, and by analyzing individual components` interaction to each other of a 

complex organism it appears to be a daunting approximation to gain full understanding of the 

system. However in recent years of biological science, there have been using several 

advancements in technology to study the interaction of molecules. The range of techniques 

like microarray, co immunoprecipitation, two hybrid assay and different ChIP approaches has 

been used in Protein-Protein interaction (PPi) and gene regulatory networks. The number of 

research work that has been done has the motive not only to unravel the different biochemical 

phenomena; instead the larger objective is to elucidate essential principle and cardinal 

mechanisms of cellular system(Wang, Joshi et al. 2006).   

However the degree (K) of a node is number of biochemical reactions it gets involved in. For 

example in encoding genes, transcription factor (AR) that is turned on, induce the expression 

of gene (FOXO3). The transcription factor and target genes are the nodes and the technique 

called ChIP-chip which is used to elucidate the interaction is usually technique in HTRIdb 

dataset. Since the edge joins the participating nodes, edge may vary upon the choice of 

picking any interaction between the Tf-Tg. Most of the time it is weather the technique 

employed to detect binding, regulations, species or cell type etc. 

4.1.1 HTRIdb dataset 

The HTRIdb dataset has the scale free with the hierarchical modurity in the degree 

distribution. The numbers of nodes forming the regulatory hubs within the network gives the 

shape of hierarchical network to the datasets. More than 15 nodes have the node degree (K) < 

500. Even though they have unit frequency, there are thousands ((K) =5335) of other nodes 

with the node degree close to 1. These nodes join the different regulatory hubs together. The 

scarcely available nodes with the low node degree joined to the distinctly separable nodal 

hubs enable the network to acquire the small world property. Basically the transcription 

factors in the dataset have the node degree in the higher side. The transcription factors like 

ETS1, GATA, AR, YBX1, FOXP3 and many more has more out degree as well with minimal 

indegree.  

The nature of nodes shows the phenomena of preferential attachment, basically the nodes 

which are already involved gets more nodes towards it and the nodes  which has very low 

degree remains same. The topology of these network appear to be dynamical in nature, 

instead of being static, the evolution of the network can be characterized by hypothesis of the 

growth and preferential attachment. The growth hypothesis delivers the suggestion about the 

network that the networks continuously expand through the addition of new nodes and links 
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between the edges and the preferential attachment hypothesis focusses on the rate ∏    with 

which the node k gets attached to new links is actually a subsequently increasing function of 

K(Jeong, Néda et al. 2003). 

Similarly the Outdegree of transcription factors in HTRIdb dataset has the similar pattern of 

distribution like overall node degree distribution. The reason behind this might being the 

transcription factors making regulatory hubs in the network. The several modules that are 

formed by the transcription factors gives the out degree distribution the hierarchical 

configuration.   

However the appearance or involvement of transcription factors in huge number can be 

correlated with the obvious suspicion every biological reaction in vivo carries. The noise in 

the data is suspected in the HTRIdb dataset.  
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The distribution of different techniques employed to detect the binding between the 

transcription factor and target genes in the dataset are shown in Bar chart below

Fig 5.1: The distribution of different techniques employed to detect the binding of Tf-Tg in the 

HTRIdb dataset. 
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During the ChIP-seq experiments, the majority of unbound DNA fragments are meant for 

wash in immune precipitation procedure. Thus ChIP processed library has the fragments 

pulled down from the genomic loci with high chance of protein-DNA interaction or histone 

modifications. But sometime the non-useful fragments remain in the library because of 

random protein-DNA or antibody-DNA contacts that are not position specific. The sequence 

read from these fragments are widely spread in genome and later gets considered as noise in 

addition to the real enrichments by ChIP experiments. The noise rate stated in the model 

estimates the accuracy  of data quality(Xu, Handoko et al. 2010).   

The important aspect of gene regulation is the interaction of genomic cis acting elements with 

transcription factors. The binding sites for transcription factors are found by promoter studies 

on known genes. These studies typically are sequence analysis for consensus binding sites, 

electro mobility shift assays, promoter-reporter analyses and chromatin immunoprecipitation 

(ChIP) experiments. These process are worked basically on already studied genes and 

specifically towards the binding sites located in their proximal 5` flanking sequences. The 

less biased approach for discovery of transcription targets is through administrating the 

activity of transcription factors followed by gene expression analysis, such as RNA 

differential display or expression microarrays(Barski and Frenkel 2004).  But the real 

problem is on the interpretation of such experiments. It is difficult to conclude weather a gene 

under study is direct or indirect target of transcription factor of interest. Secondly, in 

experiments in which there is overexpression of transcription factors, the response of some 

genes may be forced by exaggerated concentration of the transcription factors, hence 

resulting in physiologically insignificant results. Next flaw behind such study is that they do 

not provide information on the location of cis-acting regulatory elements. And these 

expression studies are simply futile in disclosing genes, which get bound to transcription 

factor of interest without influencing  the respective mRNA levels under different 

experimental conditions, due to a) compensatory mechanism or b) absence of co-activators 

that may be present under different conditions(Barski and Frenkel 2004). 

Most of the interaction between transcription factor and target genes in HTRIdb dataset is 

detected by the Chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) 

and Chromatin immunoprecipitation coupled with microarray (ChIP-chip) technique. ChIP-

seq is used for 64 % of interaction and ChIP-chip for 31 %, which is the predominating 

margin where there are 12 other techniques used. Similarity another façade of data reveal 



91 

  

comparatively very few transcription factors are involved in these interactions. The 

transcription factors- target genes interaction which have been isolated by these ChIP 

techniques can be visualized as the one to many interaction, as normally 1 transcription factor 

gets involved with many target genes. 

Out of total 284 transcription factors involved in regulation with 18,302 target genes enabling 

51,871 interactions between, only nine (9) transcription factors are involved in 33,500 

interactions is detected from the chromatin immunoprecipitation coupled with deep 

sequencing (ChIP-seq similarly, eight (8) transcription factors are involved in 16,260 

interactions which are revealed by the Chromatin immunoprecipitation coupled with 

microarray (ChIP-chip). ). Those transcription factors are scripted in the discussion to know 

about those highly active transcription factor namely ESR1, ETS1, GATA1, GATA2, 

GATA3, FOXA1, YBX1, TFAP2C, PRDM14 in case of ChIP-seq  detection and AR, E2F4, 

ESR1, HIF1A, MYC, TP53, TP73, FOXP3 were  involved in interactions,  later were 

detected by  ChIP-chip. 

Huge number of target genes of HTRIdb dataset has the distribution following the scale free 

topology. That does have inferences after observing the indegree distribution graph, like there 

is uniform distribution of highly connected node, i.e. descending in indegree count for nodes 

is uniform.  For example CDKN2A has the highest indegree of 65, this is target gene with 

highest indegree, there are 65 transcription factors getting involved with this target gene to 

regulate and result the desired regulation. However the involvement of target gene falls after 

that to 19, 17, and 16, and so on, for the target genes VEGFA, CDKN1A and BCL2 

respectively. After the VEGFA, the transcription factor load on the genes gradually 

decreases. However there are 124 target genes involved with only one transcription factor for 

transcription. Since it is expected for the transcription factor, it has many target gene to act on 

in case of HTRIdb dataset, thus the In-degree of target gene can be adjusted to be at least 1. 

This correlation for minimum transcription factor acting on target gene can be extracted by 

the fact that dataset has only 283 Transcription factor acting with 18028 Target genes. The 

relationship between transcription factors to the target gene is of `one to many`.  So each one 

from the set of `many` target genes gets at least one transcription factor with the help of 

estimation conferred with HTRIdb data. 

4.1.2 Sign-less TFactS dataset 

The total of 342 transcription factors and 2450 target genes in the dataset, have the 6823 

experimentally verified interaction in the different organisms Rattus norvegicus, 
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Homosapiens, Mus musculus. The data retrieved from the catalogue has three set of data, 

one has the features about the transcription factor and target gene interaction in in different 

species and in combination of them as well. The microarray data of TFactS without any 

information on the transcriptional activation or inhibition was analyzed on the basis on the 

node distribution, clustering coefficient and sub networks for this dataset.  

The node degree distribution of Sign less data has the strong preference towards forming 

regulatory hubs within the network. Since the data set has the observation of the 

transcription factors like Myc which has the nodal degree of 579, however it has the 

character of acting as the target gene as well, since it has indegree of 25 and Outdegree is 

552. In human genome , Myc is expected to regulate the 15% of all the genes(Gearhart, 

Pashos et al. 2007), by binding to the enhance box sequences (E-boxes) and recruiting 

histone acetyltransferases (HAT). This enables Myc to function for regulating global  

chromatin structure by performing regulating histone acetylation in human genome both in 

gene rich regions and also in sites with no known genes(Cotterman, Jin et al. 2008). The 

likes of nodes like SP1, CTNNB1, E2F1, TP53 has disproportionate share of higher 

Outdegree with minimal indegree like Myc. That means those transcription factors also act 

as the target genes during the regulation. 

 

 The dataset has the 10 more nodes able to form regulatory hubs in the network similarly 

there are 107 nodes with the node degree of 1. The dataset had distribution of regulation 

between different species. The out degree of the transcription factors in sign less TFactS 

has the Myc transcriptional factor which is highly involving to the many target genes.  

4.1.3 Sign-sensitive TFactS dataset 

The purpose of this dataset seems to provide the general information about the 

transcription factor and their respective target gene interaction, however when the 

increasing necessity of information on level of regulation between Tf-Tg, the catalogue of 

TFactS offered sign-sensitive dataset as well. The up and down regulation of the 

interaction is mentioned as an additional information to the sign less dataset. In sign 

sensitive dataset, there are 114 target genes and 1635 transcription factor.  The node 

degree distribution (Fig: 15) of TFactS dataset has the scale free nature of distribution with 

hierarchical modularity in the network. However it can be observed that the transcription 

factors have the dominant presence on the overall nodal distribution of Sign-sensitive 

TFactS dataset. The graph obtained by the Outdegree distribution (Fig: 16) highlights the 
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MYC, SP1 and other transcription factors has the lower count of out degree. The highest 

for CDKN1A is Outdegree        of 20. They both have the modular scale free 

hierarchical architecture.   However the Scale free coefficient observed in the indegree 

distribution of target gene is observed. Therefore the network of the whole TFactS dataset 

is scale free in topology, with nodes always aiming for growth through possible 

preferential attachment. The RBPJ and FOXO3 nodes have the more indegree than for 

average target genes. 

 

Fig 32: The Cytoscape visualization of the two genes, queried in human through MiMI 

plugins. The Square shaped genes (RBPJ and FOXO3) are interacting with the proteins in 

pink circle.  

 

The RBPJ gene is found to be involved in many biological processes with hundreds of 

transcription factors acting on it. It is involved in notch signaling pathway, negative 

regulation of gene expression and Regulation of DNA dependent transcription with the p-

value of                                    . Similarly the FOXO3 gene has major 

role in the regulation of developmental process and cell differentiation with the p-value 

showing as                        , for the respective processes. 

 

Comparison of HTRIdb and TFactS datasets. 

The genes from the HTRIdb dataset were compared to the TFactS, by the data analysis 

feature on webpage of TFactS. The purpose behind the comparison is to know about the 

gene repertoire of TFactS dataset. Since it is already known about TFactS, it has the 

catalogue for Tf-Tg interaction. The observed genes from the HTRIdb dataset will be 
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analyzed in the Data analysis in the TFactS. The data observed has the 0.5 P-value, E. 

value and Q value threshold. 

 

SN Technique of HTRIdb No of genes from 

HTRIdb 

No of genes that are 

present in TFactS. 

1. Streptavidin Chromatin 

Immunoprecipitation 

30 5 

2. Chromatin Immunoprecipitation 1416 451 

3. Chromatin immunoprecipitation 

coupled with deep sequencing 

33500 1878 

4 Chromatin immunoprecipitation 

coupled with microarray 

16260 1328 

5 Electrophoretic mobility shift 

assay 

871 282 

Table 13: The table observed as the result of analysis in TFactS data analysis of HTRIdb 

genes. 

The Inference obtained from this analysis is that the TFactS data catalogue is not updated. 

Thus it cannot become a very good source of data analysis source. Beside this issue of 

TFactS not getting updating, we can conclude that HTRIdb dataset has the good repertoire 

of genes retrieved through different techniques.  

Comparing regulatory hubs 

The node degree analysis is done in data sets’ network revealed that there are discrepancies in 

the number of regulatory hubs forming. Even though it is expected since they are both 

different datasets to work on. But a different result appeared. We sorted the nodes based on 

the node degree     above 50 in both networks. In case of TFactS, Out of total 1748 nodes, 

44 nodes with node degree      above 50 were observed. The node degree ranges from 57 to 

579. The transcription factor MYC had the highest node degree.  The HTRIdb database has 

only 24 highly connected nodes, i.e. node degree (k) <50. Even though the size between them 

is not comparable, HTRIdb is large enough than TFactS. It has radical range of a node having 

degree      51 to 9759. Among them 15 nodes have node degree      above 1000 nodes in 

the total of 18308 nodes. As a whole in network they are involved with more than 91.98 

percentages of the nodes. This shows network of few densely involved nodes and other one 
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with many but smaller regulatory hubs in large number. Here comes an approach of 

preferential attachment. The preferential attachment is the cause behind these biological 

networks to form regulatory hubs, instead of getting sparsely distributed. One node tend to go 

the one which already in group/connection/ as hub. 

Similarly the issue of attack to these networks is very benile but when the targeted attack is 

attempted the lethal effect is observed. Hence we can conclude that the regulatory hubs 

formed in the biological networks have some centrally important nodes/biomolecules. If the 

central component of node is removed the effect is really massive, in case of biological 

process. 

In network science the centrality of the node can be measured by different parameters like 

node degree, clustering coefficient and shortest path length and connectivity value. Thus the 

assistance of network science is taken to elucidate the various biological processes. 

 

4.1.4 YeaSTRACT dataset 

The documented list of transcription factor and target genes was retrieved through the 

YeaSTRACT dataset. The matrix form of the data was first changed in two columns of 

transcription factor and target gene. The initial impression was 255 transcription factors were 

observed 287 target genes. The similar density of transcription factor and target gene was 

obtained for the first time in all these datasets. However the total interaction observed was 

7876.  

The node degree distribution of the YeaSTRACT had a very unusual pattern for any 

biological network to behave. The numbers of sub graphs appears with the network but 

minimal clustering coefficient value per node. It is observed that the transcription factor and 

target genes only do interact one to one or one to many. I believe the absence of reversible 

biochemical reaction in them. After observing the recurring motifs that are obtained from 

MCODE analysis it is visible that most of them are single input motifs and the most of the 

regulation can be operating via simple regulation between regulators and the sequence.  

The node degree distribution corresponds to the earlier model presented by the two Holland 

mathematic, Erdos and Renyi, the random network model can be predicted with the 

observation of the Node degree     distribution, Outdegree        distribution of 

transcription factor and indegree       of target gene. 
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4.1.5 ESCAPE dataset 

The humongous size of the data was dealt with lot of effort, regarding efficient computer 

with good memory to simulate the data in Cytoscape and generate the network parameter 

result. The huge size corresponds to the node distribution for some nodes. In this case 

MYC along with other transcription factors like SMC1A, NANOG, SUZ12, MED1, 

MED12 are forming huge regulatory hubs within the network. The character of the 

network is determined by these transcription factors. However there are only 61 

transcription factors compared to 23047 target genes.  

The node degree distribution shares a beautiful graph of a hierarchical model of network 

where there is few highly involving central point of the network. However the Outdegree 

       distribution has the totally different nodes with different Outdegree        

values. They suggest the formation of random network within. Since the average of the 

Outdegree        value is equal to the most of the node` Outdegree.   The scale free 

distribution of the target genes in the ESCAPE dataset has the distribution of all the 23047 

genes throughout the network. Since compared to the transcription factor number the 

target genes are in more number the sharing transcription factor activity on all the genes 

has caused in the uniform distribution of Outdegree value. The highest indegree was for 

DIDO1 with            

 

Normalization study 

Basically the purpose behind making Normalization study is to observe a particular 

gene/transcription factor, its redundancy in any set and compare them  in between.. 

Normalization actually delimits the observation frequency according to the relative 

calculation of its frequency to make in same level. The observation will basically focus on 

the frequency of MYC in the three different datasets; HTRIdb, TFactS and ESCAPE. 

The calculation is made to know the frequency of selected node as s transcription factor, s 

a target gene and as a whole in undirected network. The calculation is done is percentage: 

                         

                                
                       

              
     ………..(ii) 
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Data set In undirected network  Transcription factor Target gene 

MYC-TFactS 42.43% 40.45% 1.8% 

MYC-ESCAPE 3.3% 3.2% 0.065% 

MYC-HTRIdb 2.97% 2.8% 0.092% 

AR-TFactS 0.505% 0.439% 0.065% 

AR-HTRIdb 36.10% 0.021% 36.06% 

SP1-TFactS 3.18% O.036% 3.12% 

SP1-HTRIdb 1.14% 0.004% 1.09% 

JUN-TFactS 1.11% 0.146% 0.95% 

JUN-HTRIdb 0.207 0.043% 0.16% 

Table 14: The observation of MYC, JUN and AR presence in the different datasets. 

 

Thus it is observed that MYC is found in the highest frequency in TFactS dataset 

compared other in other two. However, the remaining 3 set of observation was not found 

in ESCAPE dataset. The AR transcription factor is more than in TFactS dataset. The SP1 

is in higher proportion at TFactS than HTRIdb. And lastly the JUN was relatively found in 

relative number in both dataset, yet TFactS has a bit higher per percentage, precisely 

observing. 

4.2 Clustering coefficient distribution analysis 

The clustering coefficient distribution of the nodes in the network was carried out in the 

undirected network of different datasets. The clustering coefficient distribution is expected to 

provide the complexity parameter of the network. In an ideal condition, the biological 

network forming a cluster most probably regulate by feed forward loop between two 

regulators and a gene sequence. The interaction between the transcription factor (regulators) 

and gene sequence (DNA) forms a pattern of transferring the information in the central 

dogma of biology. The clustering coefficient maps out the path between them and correlate 

with the essence of the direction of that way. If the paths between these macromolecules of 

the biological process are intertwined to form triangles in between frequently - Then it is 

believed that the transfer of information/energy is proportionate for the end product in 

biology. The most clustered network or the sub graphs within in is expected to have more 

valuable clique than other in the same network.  
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In case of HTRIdb dataset, the clustering coefficient to is respective degree was plotted to 

observe the graph. The graph resulted in the hierarchical conformation. The negative slope of 

the graph, the clustering coefficient decreasing with the increase of degree count, leads to the 

solid assumption of referring it as the scale free hierarchical network. 

With the 30 target genes forming 30 triangle’s in the network, the architecture of the network 

coincides with the hierarchical topology. The nodes clustering coefficient of the node having 

degree ranging 1 to 579 formed a hierarchical network, representing the different modules 

within. Modules are the sub graphs with the specific biological functioning.  

On the other hand in this TFactS Sign-sensitive dataset, the highly clustered portion of the 

network is formed by transcription factors only. The Scale free topology of the graph is 

complemented with the hierarchical inputs. 

The graph of YeaSTRACT has the clustering coefficient not dependent on the degree of the 

transcription factor or target gene of the network. It simply forms no triangle, i.e. equal to two 

nodes having a common acquaintance. The graph formed is of random graph topology. 

In this gigantic network, the 608 nodes appear with the clustering coefficient value of 1. But 

one thing is to be making sure that size of any network do not assures its increment in the 

overall clustering coefficient. The clustering coefficient of overall network is 0.540 (from 

table). The data forms the hierarchical network.  

4.3 Sub network analysis 

The Local level of analysis studies is the units of a network, pattern of regulation which is 

called the Network motifs. The regulatory network is organized as the repeated appearance of 

highly significant motifs. The easily characterizable feature of network motifs’ view in the 

entire known transcriptional network of the organism is the defining feature in analyzing 

computational elements of biological network(Shen-Orr, Milo et al. 2002). 

4.3.1 HTRIdb 

HTRIdb dataset has the 30 sub networks within contain 13 motifs with simple regulation 

(SR) pattern, 6 dense overlapping regulon (DOR), 6 Feed forward loops (FFL), 5 Single input 

modules (SIM). The diversity of different pattern can be observed with 100 target genes and 

63 transcription factors. The transcription factor and target gene interact with each other for 

the regulation of transcription in human transcription regulation system by forming motifs 

throughout.  
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The overrepresentation analysis is performed to find out the genes of motifs, that are involved 

in particular process. Out of 30 motifs 10 motifs are briefly described here to observe the 

different processes that happen in the motifs. These motifs are recurrent throughout the body. 

 1
st
 cluster:  

The genes like cdc6, rad1, e2f4, fanCD, e2f6, pim1, wee1, foxn3, rad51 are basically 

involved with cell cycle phase and interphase mitotic cell cycle with the p-value of 

         ,          respectively. The MCODE score of the cluster is 1.875. 

 2
nd

 cluster 

The likes of gene FOS, RARA, STAT1, SLIT2 are the one which are involved in the cellular 

response to hormone stimulus and endogenous stimulus with the p-value          and 

          respectively. Gene GATA3 is involved in the same process but with the p-value 

of         . The MCODE score is 1.75. 

 3
rd

 cluster: 

The genes like GATA2 and SP1 are involved in the positive regulation of gene specific 

transcription with the p-value showing         . The MCODE score of the cluster is 1.667 

 4
th

 cluster 

The ETS1, VEGFA, TRF4, TFA4, TFA2a, IRF2, PAX5, RORA,USF1and MXD4 are 

involved in the regulation of transcription from RNA polymerase II promoter. The p-value is 

          . The MCODE value of the cluster is 1.647. 

 5
th

 cluster 

The PLA2 and G4A genes are involved in many biological processes like response to methyl 

mercury, positive regulation of vesicle fusion, platelets activating factor biosynthetic process 

and regulation of post glandin biosynthetic process. The p-value for these processes is 

         . The MCODE score is 1.5. 

 6
th

 cluster: 

The two genes APOP4 and PPARA are involved in numerous processes; however the 

positive regulation of lipid catabolic process is more dominant. The MCODE score is 1.5 

 7
th

 cluster 

The genes like RARG and ESR1 are involved with prostate gland epithelium morphogenesis 

with the p-value of         . Along with another gene called HOXA10 has involvement 
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with the skeletal system development. The p value of the process is           . The 

MCODE score is 1.5. 

 8
th

 cluster 

The eighth cluster has the different genes like ATF4, ASNS, RBPJ, MYC and PTCN 

involved with the positive regulation of cellular process. The p-vale of the process is 

        . The negative regulation of cell migration is controlled by RBPJ, PTEN with the p-

value of         . The MCODE score is 1.5. 

 9
th

 cluster 

The cluster have genes FOXO1, IFBP, PARP1, STAT3 have the cellular response to the 

peptide hormone stimulus. And genes like SATB1, YY1, CREM, EZH2, BFCA2, FOXO1, 

PRM2, FOX3, RUNX3 and STAT3 has the regulation of transcription, DNA dependent. The 

MCODE score is 1.467. 

 10
th

 cluster 

The genes like CDKN1A, BAX and TP53 were found to be involved in induction of 

apoptosis by intracellular signals. The p-value is           . Another set of genes within 

same motif are found to activate caspase activity by cytochrome C, the genes are BAX and 

TP53. The p-value is          . The MCODE score is 1.333. 

4.3.2 Sign sensitive TFactS: 

The MCODE analysis of the dataset provided 8 sub networks for the dataset. The different 

combination of the motifs is observed throughout the network. The sub network had different 

pattern of combination of sub networks.  The 4 Dense overlapping Regulon (DOR), 2 single 

input modules (SIM) patterned modules, single Feed forward loop and Simple regulations 

motifs were found. 

The gene which was involved in different sub network formation in dataset was very few. 

Only 5 target genes STAT5A, STAT5B, SMAD3, CREB1 and RBPJ were involved in 

several regulations in sub network. The transcription factor acted both as transcription 

regulators and site to act on, for other regulators in the regulation process. All of the 

interaction within Sub graphs resulted in the activation only 6 are repressed.  

The overrepresentation analysis of target genes in the BiNGO led some biological 

significance of these genes in Human. The overrepresentation analysis was done in default 

parameters of BiNGO: It was observed that the genes were involved in positive regulation of 
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transcription and positive regulation of gene expression with the p-value of           

and        . The genes CREB1 and SMAD3 were involved in process of positive 

regulation of transforming growth factors     production with the p-value of          and 

many more. 

The overrepresentation of up regulated genes of humans results; those genes are mostly 

involved in DNA dependent  regulation of transcription, regulation of RNA metabolic 

processes and regulation of transcription from RNA II polymerase promoter with the p-value 

of            ,          ,            respectively and many more. 

The down regulated genes are also involved in Regulation of transcription, DNA dependent, 

regulation of metabolic process and regulation of transcription with the p-value of 

                       and            respectively and many more. 

The over representation analysis of unregulated genes of Mus musculus has the regulation on 

the DNA dependent transcription and regulation of RNA metabolic processes with the p-

value of            and          . The genes involved are E2F1, PPARA; E2F2, 

MYOD1, MEF2A, CDX2, E2F4, HNF1A, STAT5A and PPARG.  

The over representation analysis of down regulated genes of Mus musculus resulted in: genes 

like E2F1, PPARA, E2F4, THRB, CREB, YY1, SOX2, TP53, SOX6 and HMGA in the 

regulation of DNA dependent transcription and Regulation of RNA metabolic processes. The 

p-value of the occurrence was observed as            and          .  

The over representation analysis of Rattus norvegicus up regulated genes  like E2F1, SREBF, 

HNFIB, HNFIA, RXRA, ESR1, SMAB, NFYA and many more are involved in processes of 

positive regulation of DNA dependent transcription and positive regulation of RNA 

metabolic process. The p-vale of these two biological process occurrence by these were 

           and          . 

The overrepresentation analysis of down regulated genes SREBF1, SREBF2  are found 

involved in positive regulation of transcription via sterol regulatory element binding with p-

value           and same gene set including SMAD3 get themselves down regulated at the 

positive regulation of gene specific transcription from RNA polymerase II promoter. The p-

value is later down regulation is          . 

4.3.3 YeaSTRACT 

The saccharomyces cerevisae dataset observed from YeaSTRACT database was retrieved in 

order to know the different pattern of Transcription factor and target genes. Total of 13 
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different sub graphs were observed. The different pattern of sub graphs in the dataset were 

like 5 Single input module (SIM), 6 Dense overlap regulon (DOR) and 2 Feed forward loop 

(FFL). The separation of the sub graphs were labelled according to its MCODE score. 

The overrepresentation analysis of the different sub graphs gives the biological significance 

these sub graphs, within the network. The recurring pattern of these sub graphs/motifs are the 

reason behind giving the importance to a particular clique/sub graph/motif in the network. 

 1
st
 cluster 

The first cluster has 6 transcription factor and 14 target genes. The small molecule catabolic 

process is regulated by the genes of this cluster. The genes are CHA1, ADH5, GLK1 and the 

p-value is          . The process of cellular aminoacid catabolism and amine catabolic 

process has these genes namely CHA1, ADH5. The p-value of the process was         . 

The MCODE score is 3.35. 

 2
nd

 cluster: 

No overrepresentation was observed in this cluster. 

 3
rd

 cluster 

No overrepresentation was observed in this cluster. 

 4
th

 cluster 

In this cluster, the only one gene was over expressed. The TSC10 gene was found to be 

involved with 3-keto sphinganine metabolic process. The p-value observed is         . The 

MCODE score is 1.8. 

 5
th

 cluster 

No overrepresentation was observed in this cluster. 

 6
th

 cluster 

No overrepresentation was observed in this cluster. 

 7
th

 cluster 

No overrepresentation was observed in this cluster. 

 8
th

 cluster 

No overrepresentation was observed in this cluster. 

 9
th

 cluster 
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The ninth feedback motif has genes like ARL1, getting involved in Golgi to plasma 

membrane protein transport. The p-value is          . Similarly another gene Sec66 is 

found to be involved in post translational protein targeting to membrane translocation. The p-

value is          . The MCODE score is 1.2. 

 10
th

 cluster 

No overrepresentation was observed in this cluster. 

 11
th

 cluster 

In the sub graph, MET8 is overexpressed, with the role in Siroheme biosynthetic process, 

Siroheme metabolic process and sulphate assimilation. The p-value for the processes 

are         ,          and           respectively. The MCODE score was 1.125. 

 12
th

 cluster 

No overrepresentation was observed in this cluster. 

 13
th

 cluster 

No overrepresentation was observed in this cluster. 
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5 Conclusion 

The aim of the thesis is to analyze, compare and isolate some biologically relevant 

understandings from the different datasets retrieved from public resource database . The 

dataset were analyzed on the baseline of graph theory. Most of the data analysis was 

performed through Cytoscape, an open source software platform. Different Cytoscape 

applications like Network analyzer, BiNGO, MCODE and MiMI were the yardstick for the 

network analysis. The topological parameters were selected and worked accordingly for the 

further progression in the analysis; by focusing on parameters like Node degree, clustering 

coefficient and Sub networks of the network formed from datasets. 

5.1 Node degree distribution 

The node degree enacted as tool to compare between the datasets by elucidating the 

distribution of transcription factor and target genes. The undirected network node degree 

distribution, Outdegree of transcription factor and indegree of target genes were compared in 

between the datasets. Three scale free networks had the prominent presence in the 

distribution of Outdegree and Indegree of transcription factor and target genes. 

Outdegree of transcription factors has characteristics functional regulatory hubs, whereas the 

indegree of target genes is purely Scale free in case of HTRIdb and Sign-les TFactS. In case 

of Sign sensitive TFactS, the Outdegree was observed having scale free distribution and the 

Indegree had exponential distribution. Similarly, In case of ESCAPE dataset, Outdegree was 

found having random graph, small world effect in distribution and indegree exposing 

beautiful scale free network. Whereas, the YeaSTRACT dataset had both distributions of 

target gene and transcription factor as an example of random network model. A conclusion is 

derived from the different distribution pattern of these datasets in this report. If in a dataset, if 

the number of transcription factor is way higher than target genes (Tf>>Tg), it has been 

observed that Outdegree of transcription factor in this case gets a pure scale free distribution 

and Outdegree a modular hierarchical network with various regulatory hubs. In the same 

way, if the target gene is way higher than transcription factor (Tg>>Tf) Indegree of target 

gene appears in the pure scale free distribution and another can be exponential or hierarchical 

distribution.  

5.2 Clustering coefficient Distribution 

The clustering coefficient distribution in the different dataset was observed as each one had 

the negative slope on the graph that means the clustering coefficient goes on decreasing with 

increasing number of degree on node. Thus, some conclusions can be inferred from this 



105 

  

observation is; the clustering coefficient is not dependent on the size of the network. Instead 

clustering coefficient has the requirement of only three nodes joined together for the peak 

value or proper transmission of information between different components of biological 

processes. The clustering coefficient for YeaSTRACT was found due to the reason because 

no regulators acted as the target gene during the various processes. There is no transcription 

factor with the character of target genes.  

5.3 Sub-network analysis 

Different functional motifs within the network were analyzed. The analysis was based on the 

ranking provided by the MCODE score, higher the score higher is prevalence in the network. 

Every dataset had a set of sub networks with specific pattern of formation.  The sub network 

provided the biological processes it is more involved in together with all the joint molecules 

of motif. It is assumed everyone works together, but in real picture at least one of the 

members of the motif is involved in a biological process. The p-vale determines the 

probability of obtaining a desired result, the p-value should be,             , for the 

selection of biological processes in which the gene is involved most. Since the BiNGO, 

provides the overrepresentation analysis in wide spectrum of p-value-Thus selecting the 

probable best provides the understanding on the biological processes. By analyzing different 

sub networks of a whole network, one can gain insights on the different prominent biological 

processes. .  

6 Future perspectives 

The transcriptional regulatory databases were primarily maintained by the different 

techniques like ChIP, ChIP-chip, ChIP-seq; but the emergence of noisy data in the database 

may not resource the community with the prolific understandings on the biological processes. 

Rather, other reliable techniques can be emphasized for the better and updated formulation of 

transcription regulation related datasets.   The analysis of network by thus, formed sound 

dataset will convincingly propagate the essence of studying the biological networks more. 
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