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Abstract  

Adult sex ratio is often biased in natural populations, and its variation is known to influence 

different demographic components at the population level. The causes of variation in adult 

sex ratio remain, however, poorly understood. Using time series from 1979 to 2013, I 

investigated sex-specific adult population growth rates and mortality indices (based on 

carcass counts) of Svalbard reindeer (Rangifer tarandus platyrhynchus) to explain variation in 

adult sex ratio in response to climate variability and animal density. Food limitation due to 

harsh winter conditions and high animal density was expected to have a stronger effect on 

males relative to females due to a higher energy requirement related to body size and 

reproductive strategy. Accordingly, when accounting for the delayed effect of population-

level fecundity (i.e. input from new cohorts) and the positive effect of summer temperature 

(directly determining vascular plant biomass), I found that increased winter precipitation (i.e. 

reduced forage accessibility) had a stronger negative effect on adult population growth rate 

in males than in females. Additionally, the mortality index increased more strongly in 

response to increased winter precipitation in males than in females. Increased winter 

precipitation, therefore, lead to a more female-biased ASR. High animal density, however, 

had a stronger negative effect on female adult population growth rate and increased the 

mortality index more strongly in females than in males, which could be related to sex-

differences in density-dependent age structure. The present study is the first to demonstrate 

the effects of climate variability and animal density on adult sex ratio variation in an Arctic 

ungulate, which has important implications for management and harvest regimes of 

populations facing climate change. 

 

Key Words: Arctic, environment, growth rate, mortality, population structure, Rangifer 

tarandus platyrhynchus, ungulate 
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Sammendrag  

Kjønnsfordeling blant voksne dyr er ofte skjevt fordelt i naturlige populasjoner og 

variasjonen i kjønnsratene påvirker ulike demografiske parametre på populasjonsnivå. 

Fremdeles er årsakene til variasjon i kjønnsrate hos voksne lite kjent. I oppgaven bruker jeg 

populasjons- og strukturtellinger av svalbardrein (Rangifer tarandus platyrhynchus) (1979 til 

2013) for å undersøke kjønnsspesifikke populasjonsvekstrater for voksne dyr og 

mortalitetsindekser (basert på kadavertellinger) for å forklare variasjon i kjønnsfordeling 

som en respons til klimavariabilitet og tetthet av reinsdyr. Begrenset tilgang til mat som 

følge av dårlige vinterforhold og høy tetthet av reinsdyr ble forventet å ha sterkere 

påvirkning på populasjonsvekstraten hos voksne bukker enn simler på grunn av et høyere 

næringsbehov i relasjon til kroppsstørelse og reproduktiv strategi. Økt vinternedbør (som 

reduserer mattilgang) hadde en sterkere negativ effekt på populasjonsvekstrate hos voksne 

bukker enn simler etter å ha tatt hensyn til både en forsinket effekt av fekunditet (dvs. input 

fra nye årsklasser [kohorter]) og en positiv effekt av sommertemperatur (som direkte 

påvirker vaskulær plantebiomasse). I tillegg hadde økt vinternedbør en sterkere positiv 

effekt på mortalitetsindeks hos bukker enn simler. Økt vinternedbør førte derfor til en mer 

simlefordelt voksen kjønnsrate. Høy tetthet av dyr hadde derimot en sterkere negativ effekt 

på populasjonsvekstraten hos simler enn bukker og økte dødeligheten hos simler sterkere 

sammenlignet med bukker. Disse resultatene kan være knyttet til kjønnsforskjeller i 

tetthetsavhengig aldersstruktur. Dette studiet er det første til å vise påvirkningene av både 

klimavariabilitet og tetthet av dyr på voksen kjønnsfordeling hos et arktisk hovdyr, noe som 

har implikasjoner for forvaltning og bevaring av populasjoner som er utsatt for klimaendring.  
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Introduction  

Studies on sex ratio variation generally focus on adaptive theories on sex allocation and 

mechanisms affecting primary sex ratio (i.e. the ratio at fertilization) and secondary sex ratio 

(the ratio at birth) (see e.g. Clutton-Brock and Iason 1986; Frank 1990). The adult sex ratio 

(ASR) in wild populations is frequently skewed (Donald 2007) and fluctuates significantly 

over time (Pettersson et al. 2004). Donald (2007) reviewed estimates of ASRs on birds and 

mammals, showing that the majority of populations of bird species are male-biased. 

Deviation from parity is even stronger in mammals, but generally female-biased. In 

ungulates, female-biased ASRs are rather the rule than the exception (Owen-Smith and 

Mason 2005). 

Variation in birth sex ratio in ungulates is affected by population density and climate 

(Clutton-Brock and Iason 1986; red deer Cervus elaphus, Kruuk et al. 1999), and, in 

accordance with Trivers and Willard (1973), with maternal condition (e.g. feral horse Equus 

caballus, Cameron et al. 1999; Sheldon and West 2004). After birth, juvenile mortality rates 

remain higher for males than females (red deer, Bonenfant et al. 2009). Juvenile males show 

greater susceptibility to food shortages due to higher energy requirements (Clutton-Brock et 

al. 1985) and are thus more sensitive to high population density than females (e.g. red deer, 

Bonenfant et al. 2002; Alpine chamois Rupicapra rupicapra, Willisch et al. 2013) both pre-

weaning and post-weaning (Bonenfant et al. 2009). In reindeer (Rangifer tarandus), skewed 

secondary sex ratios indicate higher neonatal and post-natal mortality rates for males than 

females (Skogland 1985). 

Beside sex ratio variation among recruits, skewed ASRs in birds and mammals can result 

from higher mortality of the rarer sex as a consequence of sex-differences in behaviour, 

physiology and genetics (see Donald 2007). Sex-biased mortality rates can be induced by 

intrinsic (non-environmental) mechanisms, such as through sexual selection (see below), or 

extrinsic factors such as predation (Berger and Gompper 1999; Christe et al. 2006), selective 

harvesting  (e.g. Van Deelen et al. 1997; Vidya et al. 2003; Solberg et al. 2005) and 

environmental conditions (Toigo and Gaillard 2003). In males, fitness is strongly linked to 

success in intrasexual competition over matings. Because of this, sexual size dimorphism 
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through sexual selection appears in a wide range of species, and is strongly related to the 

degree of polygyny (Loison et al. 1999). Accordingly, male longevity is found to decrease 

with sexual size dimorphism (Bro-Jørgensen 2012). However, no direct relationship is found 

between sexual size dimorphism and ASR (Berger and Gompper 1999), and sex-differences 

in adult survival were related to sexual size dimorphism only when correcting for 

environmental conditions (Toigo and Gaillard 2003). 

Clutton-Brock and Isvaran (2007) showed that selection for longevity is weaker in males than 

females in polygynous species. In ungulates, variability in adult survival is also higher for 

males than females (Toigo and Gaillard 2003). Studies on roe deer show that adult males can 

reach survival rates equally high as females under good environmental conditions, but 

sharply declines to rates similar to yearlings under harsh conditions (Cobben et al. 2009). 

Under food-limited environmental conditions, sex-differences in survival increase with 

sexual size dimorphism due to increased male mortality rather than decreased female 

mortality (Toigo and Gaillard 2003). Males are thus more prone to starvation due to higher 

absolute energy requirements as a consequence of larger body size (Demment and Vansoest 

1985), and lower fat reserves relative to females (Glucksmann 1974). Adult males commonly 

exhibit rut-induced hypophagia due to increased energy demands and decreased time 

foraging (fallow bucks Dama dama, Apollonio and Di Vittorio 2004; Alpine chamois, Willisch 

and Ingold 2007; Alpine ibex Capra ibex, Brivio et al. 2010) resulting in reduced body 

condition and hence increased male mortality when facing harsh winters or drought. 

Studies on ungulates have shown that altered ASRs can affect population demography by 

influencing mean parturition date (Holand et al. 2003; Sæther et al. 2003), female fecundity 

(Solberg et al. 2002), offspring sex ratio (Bjørneraas et al. 2009), sexual size dimorphism 

(Garel et al. 2006) and overall population growth rate (Schmidt and Gorn 2013). How 

variation in ASR is influenced by population density and climate variability is, however, 

unclear. Because of its sedentary and solitary behaviour and lack of predators, Svalbard 

reindeer (Rangifer tarandus platyrhynchus) is an ideal model organism to study the effects of 

climate and density on ASR variation. Furthermore, this part of the Arctic is characterised by 

significant annual fluctuations in winter weather conditions and a rapid change in climate 

(Christensen et al. 2013). For instance, future climate scenarios indicate an increase in the 

frequency of ‘rain-on-snow’ events (ROS) causing ground ice (Putkonen and Roe 2003; 
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Rennert et al. 2009) as a consequence of climate warming. ROS events are well-known to 

have detrimental effects on Arctic ungulates (Forchhammer and Boertmann 1993; Solberg et 

al. 2001; Hansen et al. 2011) as it causes ground-icing and impenetrable snowpacks (Kohler 

and Aanes 2004), having a strong negative effect on population growth rates through the 

formation of ice-locked pastures (Hansen et al. 2010, 2011). However, increased summer 

temperature and longer growth seasons might counteract this negative effect of climate 

warming on population dynamics in Arctic ungulates (Aanes et al. 2002; Hansen et al. 2013). 

In this study, I investigated the effects of animal density- and environmentally-induced food 

limitation on sex-specific adult population growth rates (hereafter, adult growth rates) and 

adult mortality indices, to explain fluctuations in ASR in two neighbouring Svalbard reindeer 

populations. Following studies on variability in sex-specific survival under food-limited 

conditions (e.g. Bonenfant et al. 2002; Toigo and Gaillard 2003), I expected males to be more 

sensitive to (1) increase in food competition through increased animal density, and (2) 

poorer forage availability due to harsh winter conditions. ASR is hence expected to become 

more female-biased following years with high animal density and severe winters. 
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Methods  

Study area and populations  

The Svalbard archipelago is located in the High Arctic at 74 – 81°N and 10 – 30°E (Fig. 1). The 

terrain is characterized by wide U-shaped valleys, coastal plains and steep mountains, and 

approximately 60% of the land area is covered by glaciers (Johansen et al. 2012). In general, 

the vegetation is characterized by polar desert and Arctic tundra (Jónsdóttir 2005). Because 

of the North Atlantic Current, winters are relatively mild compared to other Arctic regions at 

these latitudes. 

The two Svalbard reindeer populations investigated in this study are located in Nordenskiöld 

Land, Spitsbergen (Fig. 1). The Adventdalen valley system consists of one main valley, 

Adventdalen, with several small side valleys. The Reindalen valley system consists of three 

main valleys: Reindalen, Colesdalen and Semmeldalen (Fig. 1). Adventdalen (AD) and 

Reindalen (RD) are adjacent valley systems and reindeer migration between them occurs 

(Stien et al. 2012), but is limited due to physical barriers (Aanes et al. 2003; Loe et al. 

unpubl.). The endemic Svalbard reindeer along with Svalbard rock ptarmigan (Lagopus muta 

hyperborea) are the only overwintering native herbivores in Svalbard. During the snow free 

period, reindeer show some habitat overlap with two migratory geese species (Anser 

brachyrhynchus and Branta leucopsis; Tyler and Øritsland 1999). The effect of interspecific 

resource competition with geese on reindeer population dynamics is considered to be low 

due to the seasonal and local occurrence of geese. Despite the presence of polar bears 

(Ursus maritimus) and Arctic foxes (Vulpes lagopus), predation on Svalbard reindeer is very 

limited. Derocher et al. (2000) described observations of polar bears preying on Svalbard 

reindeer, while only one observation of an Arctic fox killing a Svalbard reindeer calf has been 

reported (Prestrud 1992). 

Hunting on Svalbard reindeer is restricted to Reindalen and Colesdalen and four other 

valleys outside the study area (Governor of Svalbard 2009) and the annual quota is very 

limited (range 1983 to 2013 [117 – 235]; Pedersen et al. (2014)). Stien et al. (2012) estimated 

that since 1998 yearly harvest rates varied between 6–14% of yearlings and adults, and 4–
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9% of calves, for the entire harvest area. Note, however, that these rates are most likely 

overestimated (Pedersen et al. 2014) due to underestimation of population sizes (Lee et al. 

subm.). Males (yearlings and adults) were twice as likely to get shot as females (9–20% and 

4–10% respectively). No significant long-term effects of harvest on the population dynamics 

were found (Stien et al. 2012). 

Reindeer census data  

Reindeer population censuses were conducted annually since 1979 in summer after calving 

and included total or transect counts of live animals and carcasses (Table 1). During counts, 

animals were categorized by age (calf, yearling, or adult 2 years and older). The two latter 

age classes were also categorized by sex. 

The AD census consists of total population counts conducted by four to six persons during 

late June-early July over a period of 7–10 days. Observers walk separate predefined routes 

(see Tyler 1987b) scanning the entire area with binoculars, and only deviating from the route 

when necessary to optimize visibility for detection and classification. Reindeer still have 

parts of their winter fur during this period, making them conspicuous against the barren 

landscape (Tyler 2008). Due to the open landscape, counts are assumed to be close to the 

actual population number for AD (Tyler and Øritsland 1999; Tyler et al. 2008). 

The RD census consists of fixed transect counts conducted by two people during late July-

early August over a period of 5–8 days (see Solberg et al. 2001). Observers use binoculars 

and telescopes to scan the area. In contrast to the AD census, reindeer have acquired their 

summer fur in this period, making them less distinct in the landscape. Sexing and aging is, 

however, easier since sexual characteristics are more apparent, due to nearly fully 

developed antlers and visible sexual organs in males. Due to deviating area coverage during 

counts in RD in 1990 and 1993, data for these years were only used to estimate fecundity 

(see below). 

The number of animals unclassified to age and sex never exceeded 11.4% (mean ± SD, 4.7 ± 

3.0) for AD for the period of 1998–2013 (data on unclassified animals were not available for 

the earlier period 1979–1997), and 11.4% (4.2 ± 3.2) for RD. However, misclassification of 
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sex and age, especially for yearlings and young adults, is not very uncommon during early 

summer and depends on observer experience and distance to the animal (Peeters et al., 

unpubl. data). 

Carcasses of reindeer that died during the last 12 months were aged to calf, yearling or adult 

based on tooth eruption pattern (Reimers and Nordby 1968), and sexed based on antler 

morphology for older individuals and sexual dimorphism in the pelvic bone (Tyler 1987a). 

Carcasses from adult individuals from RD were in addition aged by year based on analysis of 

tooth cementum layers (Reimers and Nordby 1968). A considerable proportion of the 

population in RD consists of marked individuals of known sex and age (mainly females). 

Marked dead animals could be accurately sexed and aged based on the capture history data. 

Although the exact time of death is unknown, the majority of carcasses are from individuals 

that died from starvation during the previous winter and early spring (Reimers 1983). Antlers 

attached to the carcass from older males indicate they died during or shortly after the rut, as 

adult males shed their antlers in early winter. Due to the open landscape and their light fur 

contrasting the landscape of rocks and tundra vegetation, carcasses are easy to observe. 

Climate data  

Daily precipitation (mm) and average temperature (°C) for the winter period (defined here as 

1 November – 30 April) and summer period (1 July – 31 August) were collected at the 

Norwegian Meteorological Institute’s weather station at Longyearbyen airport (Fig. 1; 

http://eklima.met.no). The number of days with precipitation as rain in winter (temperature 

≥ 1°C and precipitation ≥ 1 mm, in accordance with Hansen et al. (2013)), representing the 

number of ‘rain-on-snow’ events (ROS), was included as a ground ice index. Total winter 

precipitation (mm) was used as another index of winter harshness conditions (Solberg et al. 

2001), integrating the effects of both rain and snow on forage availability. Note that the 

proportion of winter precipitation falling as rain was positively correlated with the amount 

of precipitation (Pearson’s r = 0.49, d.f. = 32, P < 0.01). The mean summer temperature (°C) 

was used as an index of summer forage availability, since summer temperature directly 

affects above-ground green vascular biomass (Van der Wal and Hessen 2009; Van der Wal 
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and Stien In press) and has a positive effect on the next year’s population growth rate of 

Svalbard reindeer (Aanes et al. 2002; Hansen et al. 2013). 

Data analysis  

The following variables were derived from the census data: (1) Adult sex ratio (ASR) was 

calculated as the proportion of males per total sexed adult (i.e. ≥ 2 years) (Fig. 2A); (2) 

change in ASR (ΔASR) from year t to t+1, i.e. ASRt+1 – ASRt; (3) the logistic population growth 

rate (Rt) for both male and female adults (≥ 2 years), calculated as Xt+1 – Xt , with Xt being the 

natural logarithm of the number of either adult male or female reindeer in year t (Figs 2B-C); 

(4) total number of animals counted, hereafter referred to as total population size (N; Fig. 

2D); (5) fecundity, measured as the number of calves per adult female (Fig. 2E); (6) a 

mortality index, calculated as the number of adult male or female carcasses in year t divided 

by the total number of live animals from each respective sex counted in year t-1 (Fig. 3). 

Mortality indices calculated based on the number of carcasses versus live animals for the 

period 1980–1998 in Adventdalen (Fig. 3A) were obtained from Tyler and Øritsland (1999) 

and multiplied by the total number of live animals in year t-1 to obtain the number of 

carcasses in year t for both adult males and females. The climatic variables summer 

temperature, winter precipitation and ROS are illustrated in Fig. 2F. 

Reindeer populations in AD and RD showed a positive trend in population size during the 

study period (Fig. 2D), indicating an increase in carrying capacity, possibly as a result of 

increased green biomass due to a long-term increase in summer temperature (Fig. 2F) (Van 

der Wal and Hessen 2009; Hansen et al. 2013). Population size and summer temperature 

were, therefore, detrended. 

To investigate the effect of climate and animal density on male and female growth rate, 

multiple linear regression analysis was used with the following predictor variables in the 

global model: sex (male or female) as a categorical variable; detrended total population size 

in year t as a relative measure of animal density; fecundity in year t-1 to control for input 

from new cohorts; detrended mean summer temperature; total winter precipitation; and 

ROS, which was ln-transformed after adding one unit in the analysis. To detect differences in 

the effects between sexes two-way interactions between sex and either one of the 
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covariates were included. Sex was included in all candidate models. All covariates were 

standardized in the analysis to make relative effects of parameters comparable. Pearson 

rank correlation coefficients between covariates were |r| < 0.60 for all combinations of 

covariates. 

To investigate the effects of climate and animal density on the mortality index, a logistic 

regression analysis with a logit link was used. The mortality index was entered as response 

variables in matrix-form with the number of carcasses and estimated survivors (i.e. number 

of live adults in year t-1 – number of carcasses in year t), representing “successes” and 

“failures” respectively, for either sex. The previous year’s variables (t-1) of detrended total 

population size, detrended summer temperature, total winter precipitation and ROS were 

standardized and included as predictor variables (in the global model) in interaction with 

sex, which was included in all candidate models. Due to high overdispersion (8.1 and 7.7 for 

the global models for AD and RD, respectively) from a generalized linear model, a 

generalized linear mixed effect model (GLMM, binomial family) was used with Year as a 

random effect on the intercept. 

Finally, to investigate the effects of climate and density on ΔASR, multiple linear regression 

was used with the following predictor variables in the global model: detrended population 

size, fecundity, detrended summer temperature, total winter precipitation and ROS. 

All statistical analyses were conducted in R version 3.0.2 (R Core Team 2013). The regression 

analyses were conducted separately for AD and RD, because of the difference in time 

periods (see Table 1) and differences in sampling methods (see above) for the censuses. 

Model selection was performed using the corrected Akaike’s Information Criterion (AICc) 

based on the models maximum likelihood (ML), which was facilitated by generating full 

model sets using the ‘dredge’-function in the MuMIn package (Barton 2013). 

Overparameterization was avoided by not allowing models where the number of cases was 

less than four times the number of parameters. Winter precipitation and ROS, both indices 

for winter harshness, were not allowed in the same candidate models. Models were checked 

for approximate normality and constant variance of residuals. The arm package (Gelman and 

Su 2013) was used for simulating the estimates of the regression parameters to include 

confidence intervals in the regression plots. 
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Results  

The sex-specific adult growth rate was best described as a function of total winter 

precipitation, animal density (i.e. detrended population size), previous year’s fecundity and a 

two-way interaction between sex and total winter precipitation for both AD and RD reindeer 

populations (Table 2; for model selection, see Appendix Table A1). In addition, there was an 

effect of summer temperature and a two-way interaction between sex and animal density 

for AD (Table 2). Total winter precipitation had a stronger negative effect on adult growth 

rate in males than in females (Figs 4A-B). Animal density had a negative effect on adult 

growth rate in both AD and RD, and was significantly stronger in females than in males for 

AD (Figs 4C-D). Adult growth rate increased with increasing summer temperature in AD (Fig. 

4E) and previous year’s fecundity in both AD and RD (Table 2). 

The median age at which Svalbard reindeer died, given that they survived until the age of 1 

year, was 7 years for males (n = 124) and 9 years for females (n = 169; Fig. 5), based on the 

aged carcasses from RD for the period 1996–2012. Female reindeer became significantly 

older than males (given survival until age 1; Wilcoxon rank sum test; W = 7475, P < 0.001). Of 

female and male carcasses aged ≥ 1 year, respectively 27 and 37% were unclassified by age, 

and 6% of carcasses aged ≥ 1 year were unsexed. Among the total number of carcasses 

found, 45% were from calves (0 year), indicating a high mortality risk during their first year. 

The mortality index was best described as a function of sex, and previous year’s animal 

density and winter precipitation, with a two-way interaction between sex and previous 

year’s winter precipitation for AD, and a two-way interaction between sex and previous 

year’s animal density for RD (Table 3; for model selection, see Table A2). The mortality index 

was significantly higher for adult males than for adult females. For AD, the previous year’s 

winter precipitation had a significantly stronger positive effect on the mortality index of 

adults in males than in females (Fig. 6A). For RD, the previous year’s winter precipitation had 

a strong positive effect on the mortality index with no significant difference between adult 

males and females (Fig. 6B). The mortality index increased with increasing animal density the 

previous year both in AD (Table 3, model 2) and RD, and increased more strongly for adult 

females than males for RD (Figs 6C-D). 
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ASR for AD ranged from 0.32 – 0.49 (mean ± SD, 0.39 ± 0.04, n = 35), and ASR for RD ranged 

from 0.31 – 0.49 (0.40 ± 0.06, n = 21) (Fig. 2A). ASR was clearly female-biased throughout the 

time series for both populations (AD: χ2 = 96.24, d.f. = 34, P < 0.001; RD: χ2 = 130.10, d.f. = 

20, P < 0.001). The most parsimonious models describing ΔASR included an effect of both 

winter precipitation and animal density for AD and an effect of winter precipitation for RD 

(Table 4; for model selection, see Table A3). The negative effect of increased winter 

precipitation on ΔASR (Figs 7A-B) caused ASR to become more female-biased. However, as 

seen in AD, ASR would become more even with increasing animal density due to a positive 

effect on ΔASR (Fig. 7C). Note that the variables used in the regression analysis were 

standardized to make their effect size directly comparable. Thus, for AD, the effect size of 

winter precipitation and animal density on ΔASR are of approximatly the same size, but of 

opposite sign (Table 4). 
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Discussion  

By decomposing long-term time series of population monitoring data into sex-specific 

components, this study has demonstrated that annual variation in Svalbard reindeer ASR 

(i.e. the proportion of males per total sexed adults) is affected by both winter climate 

variability and animal density (Fig. 7). Increased winter precipitation leads to a stronger 

decrease in male adult population growth rate (Figs 4A-B) and a stronger increase in male 

adult mortality index (based on carcass counts) compared to females (in AD; Fig. 6A) and, 

therefore, a decline in ASR (Figs 7A-B). On the other hand, increased population density had 

a stronger negative effect on female adult growth rate (in AD; Fig. 4C) and a stronger 

positive effect on female adult mortality index compared to males (in RD; Fig. 6D), which 

consequently increased the ASR (in AD; Fig. 7C). 

Based on sex-differences in reproductive strategy (Kastnes 1979; Bårdsen et al. 2008) and 

studies on variability in sex-specific survival under food-limited conditions (e.g. Bonenfant et 

al. 2002; Toigo and Gaillard 2003), males were expected to be more sensitive to food 

limitation due to harsh winter conditions and animal density compared to females. 

Accordingly, ASR was expected to become more female-biased following years with harsh 

winter conditions and high animal density. 

Conforming to my predictions, increased winter precipitation as an indicator of winter 

harshness conditions decreased male adult growth rate and increased male adult mortality 

index more strongly compared to females. ASR became, therefore, more female-biased 

following years with increased winter precipitation. Winters with increased precipitation are 

characterized by large amounts of rain forming ice-blocked pastures (Hansen et al. 2010). 

Adult males of Svalbard reindeer, particularly old large males, spend little time grazing and 

resting during the rutting period (Kastnes 1979; Vestues 2009) resulting in a reduced body 

condition at the onset of winter. Adult female reindeer, on the other hand, adopt a risk-

sensitive reproductive allocation strategy in response to winter conditions (Bårdsen et al. 

2008, 2010, 2011). In addition, female reindeer retain their antlers during winter and are, 

therefore, superior to males in competition over forage patches (Holand et al. 2004). During 

extreme winters with high rainfall and ground icing, part of the reindeer population will seek 
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out forage opportunities at higher altitudes (Hansen et al. 2010). Due to intra-sexual 

competition, it could be that a higher proportion of adult males than females are driven to 

high and steep habitat in search for food. Males seem more determined than females to 

climb up mountains in search for food, making them more exposed to avalanche risks or 

falling off cliffs (see Reimers 1983). Because of these sex-differences in behavioural ecology, 

increased winter precipitation and, thus, ground icing had a stronger negative effect on adult 

survival of males relative to females, resulting in an increased female-biased ASR. 

Total winter precipitation had a strong positive effect on the mortality index of adult 

reindeer in RD, but no difference in the effect between sexes (Table 2; Fig. 6B). This is 

presumably due to noise in the monitoring data related to, for instance, differences in 

detection probability of carcasses between sexes due to sexual habitat segregation during 

years with increased icing (see above). Overall, winters with increased precipitation forming 

ground ice (Hansen et al. 2010, 2011) are known to have strong negative effects on reindeer 

population growth rates (Hansen et al. 2011, 2013) and are predicted to become more 

frequent due to climate warming (Hansen et al. 2011). Given that other factors are kept 

constant, my results indicate that this might lead to an overall more female-biased ASR in 

the future. 

In contradiction to my predictions, animal density influenced both female adult growth rate 

and mortality index more strongly compared to males. Therefore, ASR increased in response 

to increased animal density. This is a rather unexpected result regarding studies on sex- and 

age-dependent survival in relation to population density (reindeer, Skogland 1985; red deer, 

Bonenfant et al. 2002; Alpine chamois, Willisch et al. 2013). However, in ungulates, the 

proportion of senescent individuals is typically higher at high compared to low animal 

density (Festa-Bianchet et al. 2003; Bonenfant et al. 2009) and adult survival declines more 

rapidly for males than females with increasing age (Clutton-Brock and Isvaran 2007). 

Therefore, it is possible that a stronger impact of animal density on female adult growth rate 

and mortality index compared to males could be associated with sex-differences in density-

dependent age structure effects. 

Adult males of Svalbard reindeer showed a higher average mortality (Table 3) and a lower 

median life span (Fig. 5) compared to females. While most female carcasses found during 
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the summer counts apparently died during mid-late winter, approximately 30% of male 

carcasses in age class 5-8 years have been registered with intact antlers during the survey in 

RD (Veiberg pers. comm.). Prime-aged males shed their antlers at the onset of the winter, 

and it is therefore likely that those males died during early winter from starvation or injuries 

related to the rutting activity. For instance, eight adult male carcasses in RD were found with 

interlocked antlers, indicating that they died after getting stuck during the rut (see also 

Reimers 1983). It is, therefore, possible that the proportion of senescent individuals dying 

during winter increases more strongly for females than males after years with high animal 

density. Alternatively, male energy expenditure during the rut might decrease with 

increasing animal density due to easier access to females or decreased effort in harem 

holding, in particular amongst young adult males. This would consequently increase the 

survival probability of (young) adult males during the upcoming winter. 

The effect of animal density on ΔASR and its interaction with sex on adult growth rate was 

not included in the top models for RD (Table 2 and 4; see also Table A1 and A3). For the 

mortality index analysis, however, the interaction effect of sex with animal density was 

strongly significant for RD, but not included in the model for AD (Table 3; see also Table A2). 

These slight differences in results between AD and RD can be related to sample size and the 

restricted number of parameters allowed in the model to avoid overparameterization 

(particularly for the mortality index analysis), and observation error. Lee et al. (subm.) 

indicated that transect counts of reindeer in RD are uncertain due to sampling error. 

Differences in observation methods (time of season, handheld binoculars vs. telescopes) 

between AD and RD can also give different sources of observation error. Since the census in 

AD is conducted early in the summer season, young males could be misclassified as adult 

females and vice versa. The amount of such misclassifications can vary greatly between 

years due to large annual variation in the fecundity (Fig. 2E), i.e. either due to annual 

variation in cohort size and, therefore, the number of young males in the population, or 

simply because females with a calf are easy to classify. Additionally, the sex-specific adult 

growth rate and mortality index can be influenced by sex-differences in migration probability 

related to animal density (red deer, Clutton-Brock et al. 2002). Nevertheless, the results 

from the AD and RD population monitoring data were overall consistent. 
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In general, winter precipitation had a stronger negative effect on adult survival in males, 

while animal density had a stronger negative effect on adult survival in females. Years with 

good winter conditions (i.e. little or no rain causing ground ice) and high animal density 

would lead to an increase in ASR (e.g. AD year 1994–1995, Fig. 2), while years with poor 

winter conditions and relatively low animal density would lead to a strong decline in ASR 

(e.g. year 1995–1996, Fig. 2). 

A positive effect of summer temperature on Svalbard reindeer population dynamics has 

been reported in only a few previous studies (Aanes et al. 2002; Hansen et al. 2013). Using 

the Arctic Oscillation index rather than summer temperature per se, Aanes et al. (2002) 

indicated that Svalbard reindeer population dynamics were influenced by summer weather 

conditions through a trophic bottom-up effect. Since fecundity in year t-1 was included to 

correct for input from new cohorts, the adult growth rate analysis indicated a significant, 

positive effect of summer temperature on adult survival. 

The effects of biased ASRs and ASR variation on demographic components and the 

implications for population management have been emphasized in previous studies (Solberg 

et al. 2002; Holand et al. 2003; Sæther et al. 2003; Mysterud et al. 2005; Garel et al. 2006; 

Bjørneraas et al. 2009; Schmidt and Gorn 2013). For instance, studies on moose (Alces alces) 

have shown that the proportion of male calves in a population declined with high animal 

densities and with low proportions of adult males (Bjørneraas et al. 2009). High population 

density can cause a decline in maternal body condition (Sæther 1997) and consequently 

lower recruitment rates (Solberg et al. 2002), particularly lower male recruitment 

(Bjørneraas et al. 2009). 

Hunting on Svalbard reindeer is restricted to some areas (see methods; Governor of Svalbard 

2009) and is assumed to have limited effects on total population size (Stien et al. 2012). 

However, the yearly harvest has been relatively stable (6-12% of the estimated total 

population from 1997-2012), while the proportion of harvested calves has been adjusted 

based on the calf-per-female ratio during counts (4.2-38.6% of the total harvest) (Pedersen 

et al. 2014). During years with strong declines in population size (due to e.g. high animal 

density or harsh winter conditions), mortality rates increase drastically for calves and 

senescent individuals in particular (Lee et al. subm.). In addition, fecundity rates in such 
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years are very low. Prime-aged individuals will thus be more strongly targeted during the 

hunting season, partly because very few calves are in the quota at the expense of other 

demographic groups. Thus, hunting quotas can be adjusted taking the results from this study 

and information on changes in population size due to animal density and winter weather 

into consideration. This is to avoid that, for instance, a high proportion of prime-aged 

animals is shot after crash years due to high animal density or harsh winter conditions. 

The results of this study provide empirical evidence on how ASR variation is influenced by 

both climate variability and animal density. While ASR in Svalbard reindeer was overall 

female-biased, this bias increased with increasing winter harshness. Higher animal density, 

on the other hand, reduced this bias in ASR, possibly due to sex-differences in density-

dependent age structure effects. It is reasonable to believe that climate variability and 

animal density may have similar effects on the ASR variation of other Rangifer populations 

and even other species, particularly those with a polygynous mating system. Considering 

Arctic winters to become warmer and wetter in the future (Christensen et al. 2013) and the 

consequences on population dynamics (Hansen et al. 2011, 2013), these results provide 

valuable insights on the response of demographic structure to climate warming. Harvest 

regimes and conservation strategies can accordingly be optimized to sustain viable 

populations. 
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Tables  

Table 1: Data sources for reindeer population and carcass data used in this study. Population 

data includes total and transect reindeer counts and structured counts by sex and age. 

Carcass data includes sexed adult carcasses for Adventdalen, and sexed and aged carcasses 

for Reindalen. NPI = Norwegian Polar Institute, NINA = Norwegian Institute for Nature 

Research. 

 Data Time period Source 

Adventdalen Population  1979 – 1997 Tyler and Øritsland (1999) 

  1998 – 2010 Hansen et al. (2013)† 

  2011 – 2013 NPI unpubl. 

 Carcass  2001 – 2013 NPI unpubl. 

Reindalen Population  1990 – 2011 Solberg et al. (2012)† 

  2012 NINA unpubl. 

 Carcass  1996 – 2012  NINA unpubl. 

† Structured counts by sex and age are unpublished (data courtesy of NPI and 

NINA for Adventdalen and Reindalen, respectively). 
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Table 2: Parameter estimates (β), standard error (SE) and test statistics (t- and P-values) of 

the top ranking models (ΔAICc > 2 for all other alternative models) for the sex-specific adult 

growth rate analysis of Svalbard reindeer in Adventdalen and Reindalen. The reference level 

for Sex is females. Covariates were standardized. Fect-1 = fecundity in year t-1; dtr_N = 

detrended population size; Prec= total winter precipitation (1 November – 30 April); 

dtr_sumT = detrended summer temperature (1 July – 31 August). 

 Adventdalen  Reindalen 

 β ± SE t (P)  β ± SE t (P) 

Intercept 0.014 ± 0.029 0.48 (0.63)  0.034 ± 0.050 0.77 (0.45) 

Sex 0.000 ± 0.040 0.00 (1.00)  –0.047 ± 0.070 –0.67 (0.51) 

Fect-1 0.071 ± 0.022 3.28 (<0.01)  0.119 ± 0.038 3.14 (<0.01) 

dtr_N –0.181 ± 0.030 –6.05 (<0.001)  –0.138 ± 0.035 –3.97 (<0.001) 

Prec 0.008 ± 0.029 0.26 (0.79)  –0.038 ± 0.050 –0.76 (0.45) 

dtr_sumT 0.056 ± 0.021 2.61 (<0.05)    

Sex × dtr_N 0.093 ± 0.041 2.24 (<0.05)    

Sex × Prec –0.084 ± 0.040 –2.07 (<0.05)  –0.159 ± 0.070 –2.28 (<0.05) 

      

Adjusted R^2 0.554   0.555  
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Table 3: Parameter estimates (β), standard error (SE) and test statistics (z- and P-values) of the top ranking models for the mortality index 

analysis of adult Svalbard reindeer in Adventdalen and Reindalen. Only the most parsimonious models with ΔAICc < 1 are shown (see table A2 

for model selection). Estimates and standard errors (β ± SE) are on the logit scale. Standard deviation (SD) for the residual variability and the 

number of groups (i.e. years) are given for the random effects on the intercept. The reference level for Sex is females. Covariates were 

standardized. dtr_Nt-1 = detrended population size in year t-1; Prect-1= total winter precipitation in year t-1 (1 November – 30 April). 

 Adventdalen  Reindalen 

 Model 1 Model 2 Model 1 

Fixed effects β ± SE z (P) β ± SE z (P)  β ± SE z (P) 

Intercept –3.79 ± 0.25 –15.33 (<0.001) –3.80 ± 0.22 –17.13 (<0.001)  –3.89 ± 0.30 –13.13 (<0.001) 

Sex 0.65 ± 0.12 5.24 (<0.001) 0.65 ± 0.12 5.26 (<0.001)  0.35 ± 0.12 2.79 (<0.01) 

dtr_Nt-1   0.44 ± 0.23 1.95 (0.051)  0.56 ± 0.29 1.98 (<0.05) 

Prect-1 –0.23 ± 0.25 –0.91 (0.37) –0.11 ± 0.23 –0.49 (0.63)  0.81 ± 0.30 2.76 (<0.01) 

Sex × dtr_Nt-1      –0.33 ± 0.10 –3.42 (<0.001) 

Sex × Prect-1 0.49 ± 0.13 3.79 (<0.001) 0.49 ± 0.13 3.77 (<0.001)    

Random effects SD No. groups SD No. groups  SD No. groups 

Year 0.81 13 0.71 13  1.11 17 

AICc 179.78  179.80   216.31  

ΔAICc 0.00  0.02   0.00  
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Table 4: Parameter estimates (β), standard error (SE) and test statistics (t- and P-values) of 

the top ranking models (ΔAICc > 2 for all other alternative models) for the analysis of change 

in adult sex ratio (ΔASR) of Svalbard reindeer in Adventdalen and Reindalen. Covariates were 

standardized. dtr_N = detrended population size; Prec= total winter precipitation (1 

November – 30 April). 

 Adventdalen  Reindalen 

 β ± SE t (P)  β ± SE t (P) 

Intercept 0.001 ± 0.008 0.11 (0.91)  –0.011 ± 0.017 –0.67 (0.52) 

dtr_N 0.022 ± 0.008 2.70 (<0.05)    

Prec –0.020 ± 0.008 –2.43 (<0.05)  –0.038 ± 0.017 –2.24 (<0.05) 

      

Adjusted R^2 0.277   0.182  
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Figures  

 

Figure 1: The two study populations of Svalbard reindeer are located in Adventdalen and 

Reindalen in Nordenskiöld Land on the Svalbard archipelago (inset). The valley systems 

Colesdalen and Semmeldalen are part of the Reindalen population. The star indicates the 

location of the Norwegian Meteorological Institute’s weather station at Svalbard Airport, 

Longyearbyen. 



 

28 

 

Figure 2: Time series of (A) adult sex ratio (i.e. the proportion of males per total sexed 

adults) for Adventdalen (1997–2013; white circles, straight lines) and Reindalen (1991–2012; 

black circles, dotted lines); (B-C) adult logistic population growth rates (R) from year t to t+1 

for males (black circles, straight lines) and females (grey squares, dotted lines) for 
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Adventdalen (B) and Reindalen (C); (D) total population size (N; grey dashed lines indicate 

the positive trends), and (E) population-level fecundity (i.e. the number of calves per female) 

for Adventdalen (white circles, straight lines) and Reindalen (black circles, dotted lines); (F) 

climate data used for all analyses: total winter precipitation (mm) (Prec; black circles, dotted 

lines), average summer temperature (°C) (sumT ; white circles, dotted lines with the positive 

trend in summer temperature indicated by the grey dashed line), and the number of days 

with ‘rain-on-snow’ (ROS; grey bars).  
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Figure 3: Yearly adult mortality index for male (dark bars) and female reindeer (light bars) in 

(A) Adventdalen and (B) Reindalen. Mortality indices were calculated by dividing the number 

of carcasses of adult animals from each sex (died within 12 months from the previous year’s 

census) by the previous year’s number of live adults of each respective sex.  
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Figure 4: Estimated response of adult population growth rate (R) to (A-B) total winter 

precipitation (mm; 1 November – 30 April), (C-D) detrended population size, and (E) 

detrended summer temperature (1 July – 31 August) for Adventdalen (A, C, E) and Reindalen 

(B, D). Red and blue lines are for adult males and females, respectively. Dotted lines indicate 

95% confidence intervals based on 1000 simulations of the estimated coefficients from the 

most parsimonious regression model (Table 2). For each estimated response illustrated in 

the graphs, all other variables included in the model were kept constant at their average 

value. 
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Figure 5: Age class distribution for male (dark bars, n = 124) and female (light bars, n = 169) 

reindeer carcasses of age ≥ 1 year from Reindalen over the period 1996–2012. Vertical lines 

indicate median age at death for males (straight line) and females (dashed line), given that 

they survived until the age of 1 year. Note that 45% of total carcasses were from calves (0 

year), which were usually not sexed. Of female and male carcasses aged ≥ 1 year, 

respectively 27 and 37% were unclassified by age, and 6% of carcasses aged ≥ 1 year were 

unsexed. Only carcasses of known age and sex are shown in the figure. 
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Figure 6: Estimated response of the mortality index (on logit scale) to (A-B) total 

precipitation (mm; 1 November – 30 April) during the previous winter, and (C-D) detrended 

population size in year t-1 for Adventdalen (A, C) and Reindalen (B, D). Red and blue lines are 

for adult males and females, respectively. Dotted lines indicate 95% confidence intervals 

based on 1000 simulations of the fixed effects from the first and second ranking models for 

Reindalen and Adventdalen, respectively (Table 3). For each estimated response illustrated 

in the graphs, all other variables included in the model were kept constant at their average 

value.  
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Figure 7: Estimated response of change in adult sex ratio from one year to the next (ΔASR) to 

(A-B) winter precipitation (mm; 1 November – 30 April), and (C) detrended population size 

for Adventdalen (A, C) and Reindalen (B). Dotted lines indicate 95% confidence intervals 

based on 1000 simulations of the estimated coefficients from the most parsimonious 

regression model (Table 4). For each estimated response illustrated in the graphs, all other 

variables included in the model were kept constant at their average value. 
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Appendix: Model selection  

Table A1: The five best models according to AICc and ΔAICc for adult population growth rate analysis of Svalbard reindeer in Adventdalen and 

Reindalen. ‘X’ indicates whether a variable was included in a model. Sex was included in all candidate models. Winter precipitation (Prec [mm]; 

1 November – 30 April) and the ln-transformed number of days with ROS (logROS = ln[ROS + 1]) were never included in the same model. dtr_N  

= detrended population size; Fect-1 = fecundity in year t-1; dtr_sumT = detrended summer temperature (1 July – 31 August). 

Model rank Sex dtr_N Fect-1 Prec dtr_ 

sumT 

logROS Sex × 

dtr_N 

Sex × 

Fect-1 

Sex × 

Prec 

Sex × 

dtr_ 

sumT 

Sex × 

logROS 

AICc ΔAICc 

Adventdalen              

1 X X X X X  X  X   –38.37 0.00 

2 X X X X X  X     –36.35 2.01 

3 X X X  X  X     –36.18 2.19 

4 X X X X X  X  X X  –35.61 2.76 

5 X X X X X    X   –35.59 2.77 

Reindalen              

1 X X X X     X   1.67 0.00 

2 X X X X        4.35 2.67 

3 X X X X   X  X   4.87 3.20 

4 X X X X    X X   4.91 3.23 

5 X X X X X    X   4.91 3.23 
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Table A2: The five best models according to AICc and ΔAICc for mortality index analysis of adult Svalbard reindeer in Adventdalen and 

Reindalen. ‘X’ indicates whether a variable was included in a model. Sex was included in all candidate models. Winter precipitation in year t-1 

(Prect-1 [mm]; 1 November – 30 April) and the ln-transformed number of days with ROS in year t-1 (logROSt-1 = ln[ROSt-1 + 1]) were never 

included in the same model. dtr_Nt-1 = detrended population size in year t-1; dtr_sumTt-1 = detrended summer temperature in year t-1 (1 July – 

31 August). 

Model rank Sex dtr_Nt-1 Prect-1 dtr_ 

sumTt-1 

logROSt-1 Sex × 

dtr_Nt-1 

Sex × 

Prect-1 

Sex × 

dtr_ 

sumTt-1 

Sex × 

logROSt-1 

AICc ΔAICc 

Adventdalen            

1 X  X    X   179.78 0.00 

2 X X X    X   179.80 0.02 

3 X  X X   X   182.95 3.17 

4 X    X     184.38 4.60 

5 X X   X X    185.19 5.41 

Reindalen            

1 X X X   X    216.31 0.00 

2 X X X X  X    218.13 1.82 

3 X X X X  X  X  218.27 1.96 

4 X X X   X X   219.01 2.70 

5 X X    X    219.76 3.45 
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Table A3: The five best models according to AICc and ΔAICc for the analysis of change in adult 

sex ratio (ΔASR) of Svalbard reindeer in Adventdalen and Reindalen. ‘X’ indicates whether a 

variable was included in a model. Winter precipitation (Prec [mm]; 1 November – 30 April) 

and the ln-transformed number of days with ROS (logROS = ln[ROS + 1]) were never included 

in the same model. dtr_N = detrended population size; Fect-1 = fecundity in year t-1; 

dtr_sumT = detrended summer temperature (1 July – 31 August). 

Model rank dtr_N Fect-1 Prec dtr_ 

sumT 

logROS AICc ΔAICc 

Adventdalen        

1 X  X   –106.58 0.00 

2 X  X X  –103.81 2.76 

3 X     –103.21 3.37 

4   X   –101.97 4.60 

5 X    X –101.74 4.83 

Reindalen        

1   X   –40.41 0.00 

2      –38.36 2.05 

3   X X  –37.70 2.71 

4 X  X   –37.22 3.19 

5  X X   –37.16 3.25 

 


