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SUMMARY: 
 
In this Thesis, the numerical methods used in STARFiSh (MacCormack or McC) have been tested and compared with five 
other state of the art flow-solvers: discontinuous Galerkin (DCG),  locally conservative Galerkin (LCG), Galerkin least-
squares finite element method (FEM), finite volume method (FVM), and a simplified trapezium rule method (STM). 
Comparisons are made in a series of six benchmark test cases with an increasing degree of complexity. The tests revealed 
limitations in the original implementation of STARFiSh. The original MacCormack scheme was not implemented correctly, 
which resulted in discontinuities between boundary and field nodes. The scheme also proved to be non-conservative in 
cases with big relative weight on the convective term. The original linear bifurcation model gave rise to discrepancies in 
networks with big changes in dynamic pressure. As a result a new conservative solving scheme, and a new bifurcation 
model was implemented. The implementations have been validated in the comparison with the five other flow solvers, and 
in additional cases where analytical solutions exist. 
 
The thesis has evolved around a joint project to form the article "Comparison1D-scheme". The tests, results and findings 
have been conducted to contribute with STARFiSh's part of the article. The accuracy of the numerical schemes is 
assessed by comparison against theoretical results, 3-D data in compatible domains with distensible walls, or experimental 
data in a network of silicone tubes. Results show a good agreement among all numerical schemes 
and their ability to capture the main features of pressure, flow and area waveforms  
in large arteries. 
 
Grid tests show that for the physiological cases where the wave length is long comparing with each vessel segment, low 
CFL numbers can be tolerated without introduction of significant diffusive and dispersive errors for STARFiSh solutions. 
 
A model which integrates Womersley theory for pulsatile pipe flow with One-dimensional (1-D) compliant vessel flow, have 
been established. The solutions using Womersley theory for estimating the velocity profile, and it's subsequent effect on 
convective- and friction term have been compared with solutions using an assumed velocity profile. The solution using 
Womersley theory did not yield better results comparing with 3-D numerical data, in a single vessel test replicating blood 
flow in the upper thoracic aorta. 
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Assignment

One-dimensional models are currently the models of choice for the investigation of wave phenom-
ena in the arterial tree. STARFiSh, which stands for STochastic ARterial Flow Simulations, is
a code that is currently in development at the Norwegian University of Science and Technology
(NTNU) and uses 1-D models of the arterial tree.
This thesis has been focused around a joint project with five other groups to form the article
"Comparison of numerical schemes for nonlinear 1-D arterial blood flow modeling". The as-
signment was suggested by Prof. Leif Rune Hellevik, as he was invited to join the project. The
comparison of STARFiSh with five other state of the art flow solvers formed a fine arena for
checking the current state of STARFiSh.

Suggested topics for the thesis are:

• Perform the test cases suggested in the article

• Compare with the other solvers

• Do appropriate changes in implementations

• rerun tests

• write MacCormacks contributions to the article

• Validation of new implementations

Optional topics could then be:

• Womersleytheory
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Preface

"Every Problem is an opportunity in disguise." Benjamin Franklin

This thesis is the result of the research project, which concludes my studies towards the M. Sc.
degree in Mechanical Engineering at NTNU in Trondheim.

The research project leading to this thesis was carried out in the Division of Biomechanics
at Norwegian University of Science and Technology in Trondheim. The thesis builds up on
the STARFiSh (Stochastic Arterial Flow Simulations) code, which was previously developed
at NTNU with contributions of Paul Roger Leinan, Vinzenz Gregor Eck, Knut Petter Maråk,
Yvan Gugler and Professor Leif Rune Hellevik. The subject of this thesis is a comparison of
the numerical methods used to solve the equations that govern 1-D pressure and flow propa-
gation. It has evolved around a joint project with five other state of the art solvers. However
as it turned out, there were some limitations in the current implementations of STARFiSh.
This Thesis has been a dynamic process of setting up tests, comparing, doing mistakes, finding
promblems and fixing them.

I would like to point out that parts of this Thesis have been adapted more or less directly
from the article "Comparison1Dscheme". As a CoAuthor I have taken this liberty. Where
plural form is used (we), refers to work performed by the group that make out the authors of
the article. Elsewhere singular form have been used (I).

The application of engineering science to human physiology and medicine might not be an
obvious topic to many people. The same was true for me. The fourth year of my studies
was carried out on exchange in Vancouver, Canada. Here I attended a very interesting course
on the "Fundamentals of Injury Biomechanics." This was indeed what made me contact the
Division of Biomechanics at Norwegian University of Science and Technology in Trondheim.
Hopefully the research conducted here at NTNU, and in collaboration with the other partic-
ipants of "Comparison1D-scheme" will result in better understanding of the hemodynamics
system. Ideally it will one day form the basis for diagnostic tools and treat illness associated
with the hemodynamics system.
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Abstract

In this Thesis, the numerical methods used in STARFiSh (MacCormack or McC) have been
tested and compared with five other state of the art flow-solvers: discontinuous Galerkin (DCG),
locally conservative Galerkin (LCG), Galerkin least-squares finite element method (FEM), fi-
nite volume method (FVM), and a simplified trapezium rule method (STM). Comparisons are
made in a series of six benchmark test cases with an increasing degree of complexity. The tests
revealed limitations in the original implementation of STARFiSh. The original MacCormack
scheme was not implemented correctly, which resulted in discontinuities between boundary and
field nodes. The scheme also proved to be non-conservative in cases with big relative weight
on the convective term. The original linear bifurcation model gave rise to discrepancies in net-
works with big changes in dynamic pressure. As a result a new conservative solving scheme, and
a new bifurcation model was implemented. The implementations have been validated in the
comparison with the five other flow solvers, and in additional cases where analytical solutions
exist.
The thesis has evolved around a joint project to form the article "Comparison1D-scheme".
The tests, results and findings have been conducted to contribute with STARFiSh’s part of the
article. The accuracy of the numerical schemes is assessed by comparison against theoretical
results, 3-D numerical data in compatible domains with distensible walls, or experimental data
in a network of silicone tubes. Results show a good agreement among all numerical schemes
and their ability to capture the main features of pressure, flow and area waveforms in large
arteries.
Grid tests show that for the physiological cases where the wave length is long comparing with
each vessel segment, low CFL numbers can be tolerated without introduction of significant
diffusive and dispersive errors for STARFiSh solutions.
A model which integrates Womersley theory for pulsatile pipe flow with One-dimensional (1-D)
compliant vessel flow have been established. The solutions using Womersley theory for esti-
mating the velocity profile, and it’s subsequent effect on convective- and friction term have
been compared with solutions using an assumed velocity profile. The solution using Womersley
theory did not yield better results comparing with 3-D numerical data in a single vessel test
replicating blood flow in the upper thoracic aorta.

Keywords: 1-D wave propagation model, STARFiSh, Conservative, Non-Conservative, 1-D Numerical Schemes,
Benchmark Tests Cases, Womersley Theory.
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Sammendrag

I denne oppgaven har de numeriske metodene brukt i STARFiSh (MacCormack eller McC), blitt
testet og sammenlignet med fem andre metoder for løsning av blodstrøm og blodtrykk: diskon-
tinuerlig Galerkin (DCG), lokalt konservative Galerkin (LCG), Galerkin minste kvadrats ele-
ment metode (FEM), endelig-volum metode (FVM), og en forenklet trapesium metode (STM).
Sammenligningen er utført i seks tester med gradvis økning av kompleksitet. Testene avs-
lørte noen feil og begrensninger i den originale implementeringen av STARFiSh. MacCormack
skjemat inneholdt en implementeringsfeil, noe som gav opphav til diskontinuitet mellom løs-
ning av grense- og felt-noder. I tillegg viste skjemaet seg å være ikke-konservativt i tester
med stor relativ vekt på det konvektive leddet. Den originale metoden for løsning av link og
bifurkasjoner introduserte avvik i tester med store endringer i dynamisk trykk. Dette resul-
terte i implementering av ett nytt konservativt skjema for løsning av felt-noder, samt en ny
bifurkasjonsmodell. De nye implementeringene har blitt validert i sammenligning med de andre
numeriske skjemaene, samt i ytterligere tester hvor analytisk løsning finnes.
Oppgaven er utført med utgangspunkt i samarbeidsprosjektet om å publisere artikkelen "Com-
parsion1Dscheme". Testene, resultatene og nye implementeringer har blitt utført for å levere
best mulig resultater som STARFiSh sitt bidrag. Nøyaktigheten til de numeriske metodene
har blitt bestemt i sammenligning med teoretisk løsning, 3-Dnumerisk data med kompatibel
geometri, grensebetingelser og vegg-modell, samt eksperimentelle data fra nettverk med silikon-
rør. Resultatene viser veldig godt samsvar mellom alle numeriske metoder, og deres evne til å
modellere blodtrykk og blodstrøm.
For fysiologiske tilfeller, med tilhørende lange bølgelengder, viser tester at lave CFL tall kan
tolereres uten å introdusere betydelige feil (amplitude og fase) for STARFiSh.
En modell som knytter sammen Womersley teori for oscillerende strømning i rør med En-
dimensjonal (1-D) blodstrømning i bevegelige rør har blitt etablert. Løsninger med Womers-
ley teori for estimering av hastighetsprofil og dens anvendelse på konvektivt- og friksjonsledd
har blitt sammenlignet med løsning basert på antatt hastighetsprofil. Løsning med Womersley
teori gav ikke bedre løsning sammenlignet med 3-D data i en test som simulerer blodstrømning i
aorta.
Keywords: 1-D wave propagation model, STARFiSh, Conservative, Non-Conservative, 1-D Numerical Schemes,
Benchmark Tests Cases, Womersley Theory.
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1 Introduction

One-dimensional (1-D) models of blood flow have been extensively used to study wave propa-
gation phenomena in arteries and veins. In contrast to 3-D fluid-structure interaction models,
they are notably recognized to be computationally inexpensive. Pressure and flow pulse wave-
forms can be obtained at any points of extensive networks. Pulse waveforms are intimately
related to physical properties of the cardiovascular system that are altered by disease (e.g.
arterial geometry and stiffness). Through 1-D modelling we can investigate physical mecha-
nisms underlying changes produced by disease in pulse wave patterns that can be measured
in vivo and, hence, provide valuable information for the clinical assessment of cardiovascular
function. Key contributions to 1-D modelling include the studies of Hughes and Lubliner [22],
Avolio [5], Stettler et al. [47], Stergiopulos et al. [46, 37], Olufsen et al. [33], Formaggia et al.
[17], Sherwin et al. [43], Bessems et al. [9], Mynard and Nithiarasu [32], and more recently
Müller and Toro [28, 29], and Blanco et al. [11, 10].

The 1-D equations also form the basis of wave analysis tools for extracting clinically rele-
vant information from waveform measurements; e.g. separation of waves into forward- and
backward-traveling components [54] and wave intensity analysis [35]. For recent reviews on
arterial pulse wave hæmodynamics see [50, 3]. For a historical overview of this field of research
see [34] and the introductions in [22, 43, 50].

An increasing number of recent studies have shown the ability of the 1-D formulation to cap-
ture the main features of pressure, flow and area waveforms in large human arteries, using in
vivo measurements [47, 33, 45, 37, 56], in vitro experiments [41, 8, 1, 39, 21], or 3-D numeri-
cal data [32, 57]. Although an exhaustive comparison between 1-D and 3-D formulations has
recently been published [57], to date there have been very few comparisons among commonly
used numerical schemes for 1-D blood flow modeling.

Different formulations and several corresponding numerical methods have been proposed to
solve the 1-D equations, especially in the time domain. These include the method of character-
istics [40, 51], finite element methods such as Galerkin [43, 45, 9, 32, 1, 53] and Taylor-Galerkin
(combined with operator splitting techniques) [17] schemes, finite volume methods [49, 27, 30],
and finite difference methods such as the Lax-Wendroff method [33, 6, 25] and the MacCormack
method [19, 39]. Taylor-Galerkin and discontinuous Galerkin 1-D schemes were compared in an
idealised artery with abrupt changes in material properties [42], and in a model of the aorta and
cerebral arteries [4]. In these studies, however, there was no ‘benchmark’ data to compare with,
and in the latter, the emphasis was more on the development of a methodology for parameter
estimation than on providing a systematic comparison between numerical schemes. Using a dif-
ferent formulation, Müller and Toro [27] proposed and validated a novel ‘well-balanced’ scheme
against the experimental results obtained in [1], but did not provide a cross-comparison among
other schemes. Wang et al. [52] recently presented a comparison of four numerical schemes
(local discontinuous Galerkin, MacCormack, Taylor-Galerkin, and a monotonic upwind scheme
for conservation laws), tested on a single tube, a simple bifurcation and a network with 55
arteries. However, they did not rely on experimental or 3-D data to assess the accuracy of their
1-D numerical solutions.

The aim of this thesis is to compare the numerical methods used in STARFiSh (MacCormack,
McC), with 5 other commonly used numerical schemes for arterial 1-D modelling in a series of
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benchmark test cases. The schemes under consideration are: discontinuous Galerkin (DG), lo-
cally conservative Galerkin (LCG), Galerkin least-squares finite element method (FEM), finite
volume method (FVM), and a simplified trapezium rule method (STM). The test cases are: (i)
a model of blood flow in a reflection-free tube for which a theoretical solution exists; (ii) blood
flow in the human common carotid artery, (iii) the upper thoracic aorta, and (iv) the aortic
bifurcation, for which 3-D solutions are available from [57]; (v) blood flow in a network with
37 arterial segments representing the aorta and its largest branches, for which in vitro pressure
and flow waveforms were acquired in [26]; and (vi) blood flow in the ADAN55 model, which
contains the largest 55 systemic arteries of the human circulation under normal physiological
conditions [11].

The outline of this Thesis is as follows. In Methods and Numerical solution I describe the
1-D formulation and numerical schemes used in this work paying special attention to common
and particular aspects of each scheme, including the implementation of boundary conditions.
The Descriptions of the five other schemes are relatively short, but includes the needed refer-
ences for a more detailed description. The numerical methods used in STARFiSh is elaborated
in more detail. Here I present the original (MacCormack) scheme, and suggest a new one.
These sections also include a new bifurcation model, and a model that includes Womersley
Theory. I then present all testcases used in the Thesis. In Gridadaption the numerical parame-
ters used in STARFiSh’s contribution to the article is decided. In the Results section I test and
compare new and old implementations of STARFiSh in the six benchmark test cases, and in
additional tests. Based on these results the numerical methods (solving scheme and Bifurcation
model) used in STARFiSh’s contribution to the article is decided. The Thesis also includes the
final results (Results Comparison1Dscheme) and discussion (Discussion Comparison1Dscheme)
of the six numerical schemes. Here we compare the numerical predictions of all six numerical
schemes in all benchmark test cases.
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2 Methods

This section contain the governing equations of 1-D compliant vessel flow. Three mathemat-
ically equivalent systems are presented. A mathematical manipulation (methods of charac-
teristic) of the system(s), used when treating boundary-conditions is then performed. Lastly
Womersley theory for pulsatile rigid pipe flow is presented.

2.1 Governing equations

The governing 1D-equations for flow and pressure propagation in a blood vessel is obtained
by ensuring continuity of mass and momentum balance in a compliant vessel. The governing
equations can be derived by use of Reynolds Transport Theorem for a movable control volume
illustrated in figure 1, but this is omitted here. Blood is assumed incompressible and Newtonian,
and the vessel wall to be impermeable.

Figure 1: Moveable Control Volume.

2.1.1 A,Q system

The governing equations written in terms of the the variables (A, Q) [43] are:

@A

@t

+

@Q

@x

= 0 (1a)
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+

@↵Q
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/A

@x
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f

⇢

(1b)

where A is the crossectional area, Q is the volumetric flow, and P is the pressure assumed
constant over the crossection. ⇢ is the density of blood and f is frictional forces. ↵ in the mo-
mentum equation accounts for nonlinearity in the crossectional integration of the local velocity
û [43]: Z
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⇢(û)

2

d� = ↵⇢U

2

A = ↵⇢QU ) ↵(x, t) =

R
S

û
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Where U is the crossectional averaged velocity. Assuming a flat velocity profile results in
↵ = 1. A common way to asses the dependence on the local velocity profile on the convective
and friction term is to assume a power law for the shape of the axial velocity given by:

u(x, ⇠, t) = U(x, t)

⇣ + 2

⇣

"
1�

✓
⇠

r

◆
⇣

#
, (3)

where r(x, t) is the lumen radius, ⇠ is the radial coordinate and ⇣ is the polynomial order.
This profile yields f(x, t) = 2µ⇡r

@u

@⇠

|
⇠=r

[44], with µ the viscosity of blood, assumed to be
constant. For the velocity profile given by Eq. (3) we have f = �2 (⇣ + 2)µ⇡U in which the
local f is proportional to the local flow. Note that ⇣ = 2 leads to the Poiseuille flow resistance
f = �8µ⇡U . By evaluating the integral in Eq. (2) with the assumed profile given by Eq. (3)
leads to

↵(x, t) =

R
S

û

2

d�

AU

2

=

(⇣ + 2)

(⇣ + 1)

(4)

2.1.2 A,U system

An alternative formulation of Eqs. (1a) and (1b), can be formulated in terms of the variables
(A,U). By assuming a flat velocity profile and inviscid flow the governing equations in terms of
the (A, U) variables are [43]:
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+

@UA
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= 0 (5a)
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(5b)

Still neglecting the nonlinearity associated with the integration of the local velocity û given by
Eq. (4), but not assuming inviscid flow the governing equations in terms of the variables (A,
U) can be expressed in matrix form as:
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(6)

2.1.3 Closing the system; Constitutive equation

Regardless of the formulation there are two governing equations with three primary variables.
Either A, Q and P , or A, U and P , and thus a constitutive equation relating pressure and area
is needed to close the system. The elasticity of the vessel wall is nonlinear and also exhibit
viscoelastic effects, and thus this is a field of its own. In this thesis a purely algebraic relation
between pressure and area have been used:

P = f(A; x, t) (7)

A commonly used constitutive relationship between P and A (or tube law) based on Laplace’s
law leads to [17]

P � P

ext

= P

d
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A
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p
A

d

⌘
, (8)
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where P

ext

is the external pressure, P � P

ext

is the trans-mural pressure, and P

d

, A
d

are the
diastolic pressure and area respectively. The term �(x) =

4

3

p
⇡Eh accounts for the material

properties of the arterial wall, modeled here as a thin, incompressible, homogeneous, isotropic,
elastic membrane with elastic modulus E(x) and thickness h(x). Despite the fact that it does
not account for vessel collapse, and that it results in increasing compliance at high pressures, the
simple relationship given by Eq. (8) has been used extensively [33, 17, 43, 32], and exclusively
in this thesis. Regardless of the algebraic relation the compliance is defined as.

C =

@A

@P

, (9)

The introduction of the compliance C, allows for a more generic representation of an algebraic
constitutive equations

A(P ) = A

0

+ C (P � P

0

) (10)

The compliance is a measure of the vessels ability to expand and is related to the inverse of
the elasticity. By introducing a compliance model equation (1a) and (1b) will take the form
of Hyperbolic PDE’s, and thus changes (e.g. in P, Q or A) at the boundaries will not be "felt"
instantaneously in the domain, but will propagate with a finite velocity.

2.1.4 P,Q system

By applying the chain rule on the mass equation (1a) (@A
@t

=

@A

@P

@P

@t

)and combining with the
momentum equation (1b), the governing equations can be written written in terms of the
variables (P,Q) [50]:
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A non-conventional matrix form of the P, Q system could be stated as
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Where C

c

, and A

c

denotes that these values are not differentiated, and thus for every term @F0

@x

,
these values should be treated as constants, as is ⇢. Alternatively the system may be written
as
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in which (C,Q,A, P ) are truly treated as variables in the evaluation of @F0

@x

. The above systems
can also be rearranged and presented in non conservative Matrix form as follows
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where the relation @

@x

⇣
Q

2

A

⌘
= 2U

@Q

@x

� U

2

@A

@x

is used. Evaluating the integral in Eq. (3) leads

to ↵ =

(⇣+2)

(⇣+1)

.

2.2 Characteristic variables and their relation with the state variables

Regardless of the formulation ((AQ), (AU) or (PQ)), the general hyperbolic system that is
formed by Eq. (1a), (1b) and (10) may be presented in a general nonconservative form;

@U

@t

+M
@U

@x

= S, (15)

where M-matrix is the Jacobian of the flux vector, i.e.

M =

@F

@U
(16)

The non-conservative representation (15) may be diagonalized (i.e. coupled into two indepen-
dent wave equations) showing that there are two waves traveling in opposite directions with
wave speeds.
The diagnoalization of (15) is obtained by decomposing M = R⇤L [19], where ⇤ is the
diagonal eigenvalue matrix with eigenvalues �

1

and �

2

. The left and right eigenmatrices are
denoted L and R, respectively, and satisfy LR = I. A change of variables is obtained by
multiplying (15) with

@!

@U
= L, (17)

Assumption of negligible local viscous losses (i.e. zero right hand side) and subsequent use of
the chain rule in reverse and the decomposition M = R⇤L yields a system of decoupled wave
equations:
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which shows that !

1

and !

2

are constant (or invariant) along characteristic paths. Subject to
assumptions of flat velocity profiles (convective correction factor ↵ = 1) the eigenvalues of M
may be shown to be:
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which may be shown to hold for all formulations (AU,PU, PQ, AQ) of the governing equations.
The characteristic variables may be found from (17):
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L dU (20)
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2.2.2 P,Q system

The system matrix M is represented in Eq. (14), and
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With c given by the Bramwell-Hill equation c

2

C = A/⇢ [13]. Notice that if one assumes ↵ = 1

also in the P,Q formulation the eigenvalues for the P,Q and A,U system will be the same.
Further the following representations of the right and left eigenvalue matrices are obtained:
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With Z

1

=

1

C�1
, and Z

2

= � 1

C�2
, which may be recognized as the vessel impedance for forward

and backward traveling waves respectively. By substitution of Eq. (24) into (20) integrating
between two time-steps and applying the mean value theorem, the following expression relating
primary anda characteristic variable is used when treating boundary-conditions:
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If in addition U/c ⌧ 1, the right and left eigenvalues will be equal, but with opposite signs. In
such cases the forward and backward impedances will be equal. Inserting in Eq. (24), combining
with (20) and integrating from diastolic to systolic values yields the classical results for wave
separation is obtained[50]:
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Figure 2: Illustration of compliant vessel with major axis along the z-axis. Given by vessel radius
R = R(z, t) and cross-section area A = A(z, t). The axial fluid velocity is v

z

= v

z

(r, z, t) and the cross
sectional averaged fluid velocity and pressure are given by v = v(z, t) and p = p(z, t). The A

1

= A

1

(t)
and A

2

= A

2

(t) boundaries define in/out-flow faces of the vessel fixed at the axial positions z
1

and z

2

.
The Riemann variables !

1

and !

2

in the positive and negative z-direction respectively, are illustrated
as they leave the boundary surfaces A1 and A2. The figure is adapted from "Blood Flow in Compliant
Vessels" [18]
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2.3 Womersley Theory

In the previously described methods, the velocity is treated as known. However the velocity
profile has an effect on both convective and friction term in the momentum equation. As
mentioned earlier, the profile is commonly assumed flat in regards to the convective term, and
a power law description given by Eq. (3) is commonly used for treating the friction term. Or one
could use the assumed power law profile also in the convective term, by adding the nonlinear
effect simply with the correction given by Eq. (4). Yet another method that could be used is
the Womersley theory for periodic pulsatile flow [38]. With assumptions of periodic/pulsatile
fully developed flow in infinite long rigid pipes, Womersley developed analytical solution for the
velocityprofile. Even though these assumptions are relatively crude when it comes to flow in
compliant vessels, with bifurcations, tapering and curvature, the velocity profile obtained with
Womersley theory could yield a better estimation of the actual velocity profile, than assuming
one akin to the one given by Eq. (3). In regards to Womersley theory it is convenient to write
the momentum equation in its most general form, without assuming the velocity profile
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Using Womersleytheory yields the following expression for the velocity profile
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where Q

n

(x, t) is the n

th harmonic of the flow pulse, and J

0

and J

1

are the complex Bessel
functions of zero and first order respectively. ↵

i

is the Womersley number for each harmonic
defined as ↵

i

= R

⇣
⇢2⇡fi

µ

⌘
[38]. ! is the angular frequency defined as ! = 2⇡f

i

. An analytic form
of the friction term could also be obtained by differentiating Eq. (28) and using the definition
for friction f(x, t) = 2µ⇡r

@u

@⇠

|
⇠=r

. However to reduce the number of computations needed, a
numerical differentiation of the obtained velocity profile has been chosen in this work. Eq. (28)
could also be stated with pressure gradient dP

dx

instead of Q. However using this formulation
leads to a needed numerical evaluation of dP

dx

, and a question arises when choosing dx and
if to use static or total pressure [7]. Regardless,the signal of interest has to be transformed
into the frequency domain. Previous work in STARFiSh has been done on the subject, by
Hallvard Moian Nydal. He proposed methods for using future expanding Fourier transforms
to obtain data for the convective and friction terms in the next time step. Azer et al. [7]
proposed a method that integrate the Womersley theory in the governing momentum equation
and that solve the system iteratively for each time step. Here I present a method inspired by
Reymond et al. [38], which exploit the periodic nature of a full heart cycle. This method is
thus primarily valid in cases where the period of the heart cycle is known, and constant. This
is also in accordance with the Womersley theory. The procedure is done as follows; First, one
full cycle is run by assuming a profile shape given by Eq. (3), from which the flow data for all
interior nodes is transformed into the frequency domain by a FFT (Fast Fourier Transform).
From this data the velocity profiles for every node and every time step (could calculate for less
time steps and interpolate to use in correct time) of one cycle is calculated. From the obtained
profiles,

R
A

u

2

dA is evaluated numerically with use of a trapezoidal rule, and stored for usage in
Convective term in next heart cycle. Similarly @u

@⇠

|
⇠=r

, is calculated by a forward euler and fed
into the friction term in the next heart cycle. The procedure is repeated until convergence.
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3 Numerical solution

This sections outlines the six numerical schemes used in this work. We focus on highlighting
common and particular aspects of each method and refer the reader to our previous papers in
which these schemes are described in detail.
Each segment of the computational domain ⌦ is discretised according to the chosen method,
using either finite elements (DG, LCG, FEM), finite volumes (FVM), finite differences (McC),
or any equivalent spatial discretisation (STM). In order to define the characteristic spatial dis-
cretisation, an element, a cell or finite difference stencil are equally referred to as ⌦

e

.

STARFiSh uses the MacCormack scheme. The numerical methods used for the five other
schemes are written in short descriptions, with needed references for a more detailed one. The
numerical methods used in STARFiSh is elaborated in more detail. These same methods have
been used for the Womersley model with the needed changes to treat the convective and friction
terms.

3.1 Discontinuous Galerkin (DG) scheme

The DCG scheme solves Eq. (6) together with the tube law given by Eq. (8). The discrete weak
form is obtained by multiplying the resulting system by Galerkin test functions, which belong
to the finite space of piecewise polynomial vector functions, and by integrating over the domain
⌦. The solution vector is expanded using high-order Legendre polynomials, which may be
discontinuous across inter-element boundaries, resulting in a spectral/hp spatial discretization.
Information is propagated between elemental regions ⌦

e

through the flux term F, using the
characteristics variables introduced in Section 2.2. Time integration is performed by means
of an explicit second-order Adams-Bashforth method. A detailed description of this scheme is
given in [3] and of the spectral/hp element methods in [23]. The flux correction factor ↵ given
by Eq. (4) in the convective term is taken to be 1.

3.2 Locally conservative Galerkin (LCG) scheme

The LCG method is based on a standard finite element Galerkin procedure, with the addition
of Taylor-Garlerkin stabilisation [42]. The scheme is derived as in the DCG method, but in
this case, the solution vector is expanded using a piecewise linear approximation. Elements ⌦

e

are treated as sub-domains with their own boundaries, so that only small systems are solved
locally and independently of one another, i.e. without the need for assembling global arrays.
Information is propagated between elements at each time step using interface fluxes and, at
global mesh nodes, contributions from different elements are averaged to provide a unique
solution. The scheme is first order in space and second order in time. The resulting equations
must satisfy the Courant-Friedrichs-Lewy (CFL) stability condition. See [32, 48] for a detailed
exposition and further references. The flux correction factor ↵ given by Eq. (4) in the convective
term is taken to be 1.

3.3 Finite Volume (FV) scheme

In the FEM, the equivalent AQ formulation is rewritten in characteristic form and discretised
in time using an implicit finite difference Euler scheme. A least-squares approach is used to
formulate a variational problem on top of which a Galerkin finite element method is employed
for the spatial discretisation. The method is implicit, requiring the assembly of the matrix

9
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system at each time step. However, no CFL constraint must be satisfied. First-order spatial
approximation is used and nonlinearities are treated using fixed point iterations. See [53] for
a detailed exposition. The flux correction factor ↵ given by Eq. (4) in the convective term is
taken to be 1.

3.4 Galerkin Least-Squares Finite Element (FE) scheme

The system is written in terms of conserved variables AQ Eqs. (1a)-(1b) and reformulated
as proposed in [49] in order to treat varying mechanical properties up to the limiting case of
discontinuous properties. The resulting non-conservative system is solved using a finite-volume
type numerical scheme [31]. The numerical scheme is fully explicit and allows for arbitrary
space-time accuracy. In order to preserve the space-time accuracy at bifurcations, a special
treatment is applied [30]. The time step is computed adaptively at each time iteration, in order
to satisfy the corresponding CFL condition. The flux correction factor ↵ given by Eq. (4) in
the convective term is taken to be 1.

3.5 MacCormack (McC) scheme

This section present the general MacCormack scheme used for solving interior nodes in STARFiSh.
Further two different applications on the P,Q system is presented; original (non-conservative),
and new (conservative).

3.5.1 Derivation of the MacCormack scheme for a general hyperbolic system

Given a general hyperbolic system of the form:

@U

@t

+

@F

@x

= b (29)

the derivation of the MacCormack method proceeds in two steps: a predictor and a corrector
step. At the predictor step a provisional value of Ūn+1

i

= Up

i

is estimated with forward euler
difference for both the temporal and spatial derivatives:

Un+1

i

�Un

i

�t

= �
Fn

i+1

� Fn

i

�x

+ b (30)

rearraning so that Ūn+1

i

= Up

i

is alone on LHS gives:

Up

i

= Un

i

��t

Fn

i+1

� Fn

i

�x

+�tb (31)

In the corrector step a backward finite difference approximation is utilized for the spatial
derivatives, and the time step used in the in the temporal derivative is �t/2 leading to:

Un+1

i

�Un+1/2

i

�t/2

= �
Fp

i

� Fp

i�1

�x

+ b (32)

rearranging so that Un+1

i

is alone on LHS and using the approximation Un+1/2

i

=

Un+1
i +Up

i
2

gives:

Un+1

i

=

Un+1

i

+Up

i

2

� �t

2

Fp

i

� Fp

i�1

�x

+

�t

2

b (33)
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3.5.2 Application on 1D-system

In the original scheme for solving the governing equations in the interior nodes of the vessels,
the system is written in the matrix form given by Eq. (14). This may be recognized as the
nonconservative form of the general hyperbolic system given by Eq. (29), where:

@F

@x

= M (U)

@U

@x

, M =

@F

@U
(34)

Substituting into Eq. (33) leads the following form of the MacCormack predictor corrector
method:

Û
i

= Un

i

��t

 
M (Un

i

)

�
Un

i+1

�Un

i

�

�x

+ S0
(Un

i

)

!
,

U
i

=

1

2

0

@Un

i

+ Û
i

��t

0

@M
⇣
Û

i

⌘
⇣
Û

i

� Û
i�1

⌘

�x

+ S0
⇣
Û

i

⌘
1

A

1

A
,

(35)

Even though the different formulations in Eq. (34) is mathematically equivalent for arbitrary,
nonlinear fluxes, their numerical implementation is not [20]. This can be exemplified for
instance by looking at the term:

M (Un

i

)

�
Un

i+1

�Un

i

�

�x

(36)

if one sum all contributions of this term over all grid nodes in a domain there will be residual
internal flux contributions. Let‘s look at a domain with N grid nodes. Summing over all nodes
leads to:

M (Un

1

)

(Un

2

�Un

1

)

�x

+M (Un

2

)

(Un

3

�Un

2

)

�x

+M (Un

3

)

(Un

4

�Un

3

)

�x

+ ......+

M
�
Un

N�3

�
�
Un

N�2

�Un

N�3

�

�x

+M
�
Un

N�2

�
�
Un

N�1

�Un

N�2

�

�x

+M
�
Un

N�1

�
�
Un

N

�Un

N�1

�

�x

(37)
where no terms cancel, leading to numerical flux contributions from the interior. On contrary,
if one perform the same analysis on the conservative form leads to

(Fn

2

� Fn

1

)

�x

+

(Fn

3

� Fn

2

)

�x

+

(Fn

4

� Fn

3

)

�x

+ ......+

�
Fn

N�2

� Fn

N�3

�

�x

+

�
Fn

N�1

� Fn

N�2

�

�x

+

�
Fn

N

� Fn

N�1

�

�x

=

(Fn

N

� Fn

1

)

�x

(38)

where only the flux contributions from the nodes remain. Indeed this is why its called conserva-
tive form, and sometimes called the ’telescoping property’ of the flux terms [20]. In the current
implementation M (Un

i

) is evaluated at the point of interest. This is not fundamental, and
M
⇣
Un

i+1/2

⌘
, or M

�
Un

i+1

�
might be a better choice. This problem is avoided by keeping the

governing equation in its conservative form. A related question arises also in the conservative
form. Looking at the governing equation for the P, Q system, the Compliance in the mass
equation, and Area in pressure term in momentum equation is not part of the differentiation,
and thus for every term (

Fn
i+1�Fn

i )

�x

a value of P and C between P

n

i

and P

n

i+1

, and C

n

i

and C

n

i+1

has to be chosen to be used in both flux terms
�
Fn

i+1

,Fn

i

�
. Since the wavelength in general

is long in physiological conditions, the effect of this choice is likely not very big. However it
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is something to have in mind. I would assume that the effect is more prominent in the mass
equation than in the momentum equation, keeping in mind that the Compliance is a differen-
tiated variable (C(P ; x, t) =

@A

@P

). Looking at the A, U system given by Eq. (5b), one can see
that it has a very compact conservative form, and no evaluation of dependent (A, P, Q, C)
variables are needed. Worth noting is that the way this A,U system is written assumes a flat
velocity-profile in regards to the convective term. In the A, Q system this is avoided in the
mass equation.
The following MacCormack scheme, slightly altered from the general scheme have been imple-
mented:

Up

i

= Un

i

��t

Fn

i+1

|
Cc,Ac � Fn

i

|
Cc,Ac

�x

+�tb (Un

i

) (39)

Un+1

i

=

Un+1

i

+Up

i

2

� �t

2

Fp

i

|
Cc,Ac � Fp

i�1

|
Cc,Ac

�x

+

�t

4

(b (Up

i

) + b (Un

i

)) (40)

where C

c

= C

n

i

or C

c

= C

p

i

, and P

c

= P

n

i

or P

c

= P

p

i

respectively, and

F =

"
Q

Cc
↵Q

2

A

+

AcP

⇢

#
(41)

Because of the needed evaluation of C
c

, and A

c

, one could argue that this P,Q flux lack the
’telescoping property’. The predictor corrector method is second order in time and space [20].
Stability requires that the CFL (Courant-Friedrichs-Lewy) condition is satisfied CFL  1,
where the CFL number is given by CFL =

�t

�x

(|U |+ c)

max

. The flux correction factor ↵ given
by Eq. (4) in the convective term is evaluated from the assumed velocity profile given by Eq. (3),
leading to ↵ =

(⇣+2)

(⇣+1)

. However, in the final solutions submitted in Comparison1Dscheme, the
correction factor is set to one.

3.6 Simplified Trapezium Rule Method (STM)

The STM scheme solves the PQ system for a domain discretised into non-overlaping two noded
elements after linearisation, time discretisation and spatial integration along the vessel axis.
Linearisation is performed by Newton’s method up to first order, time discretization is achieved
using a second order backward difference scheme and integration is done using the trapezium
rule. It can be shown that continuity of static pressure is automatically satisfied using this
method, and thus no additional coupling equations are required. For more details regarding
the numerical scheme, we refer the reader to [24]. The flux correction factor ↵ given by Eq. (4)
in the convective term is taken to be 1.

3.7 Boundary conditions

Given that we have a convection-dominated problem with sub-critical flow, we need to prescribe
one boundary condition at both the inlet and outlet of each arterial domain ⌦. We classify them
into inflow (Sect. 3.7.1), junction (Sect. 3.7.2) and terminal (Sect. 3.7.3) boundary conditions.

3.7.1 Inflow boundary condition

In all test cases presented below, the volume flow rate Q

in

(t) is imposed at the inlet of single-
domain models (4.1, 4.2 and 4.3) or at the root of network models (Sections 4.4, 4.5 and 4.6).
This amounts to consider the following condition at the corresponding terminal site

Q = Q

in

(t) (42)
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where Q

in

(t) is a given function of time.
To avoid spurious reflections in the DCG, FVM, LCG and McC schemes, values of the prim-
itive variables are determined from the prescribed flow rate using the characteristic variables,
following the same procedure as described below for terminal boundary conditions. For the
FEM the inflow condition is strongly imposed in the system matrix by replacing the incoming
characteristic equation by the boundary condition. For the STM method, however, enforcing
continuity of propagating characteristic variables is not required.

3.7.2 Junction matching conditions

In the 1-D formulation the nodes connecting the arterial segments are treated as discontinu-
ities. Detailed 3-D calculations of flow at arterial bifurcations show that the flow is generally
very complex with the possibility of transient separation and the development of secondary
flows. Most of these flow features are confined to the region near the bifurcation and their
effect on pulse wave propagation is commonly neglected in the 1-D formulation. In this study,
we connect arterial domains at junctions by enforcing conservation of mass, and continuity of
both total pressure (P +

1

2

⇢U

2) and propagating characteristics variables. The McC scheme
originally had a linearized method which lead to continuity of static pressure throughout the
bifurcation. The STM scheme uses this linearized method

In cases with branching into vessels with big difference in radius, the difference between the
two methods used in branching could be relatively big. Previously, only the linear method
which ensures continuity of static pressure was implemented in Starfish. Here I present an
implementation of the nonlinear method which ensures continuity of total pressure, propagat-
ing characteristics variables and conservation of mass. Looking at the bifurcation, information
from inside the mother vessel can only reach the bifurcation from !

1

1

, and similarly information
from inside the two daughter vessels can only reach the bifurcation from !

2

2

and !

2

3

, respec-
tively. Where subscript 1, 2, 3 denotes mother-vessel, left daughter vessel and right daughter
vessel respectively, and superscript 1, 2 denotes forward or backward characteristics. !

1

1

was a
distance �x

1

= �

1

1

�t, proximal to the bifurcation node at time t

n. Similarly !

2

2

was a distance
�x

2

= ��

2

2

�t distal to the boundary node in the left daughter vessel, and !

2

3

was a distance
�x

3

= ��

2

3

�t distal to the boundary node in the right daughter vessel at time t

n. Continuity
of propagating characteristics variables thus leads to the following three equations:

!

1

1

�
x

1

, t

n+1

�
= !

1

1

(x

1

��x

1

, t

n

) (43a)
!

2

2

�
x

2

, t

n+1

�
= !

2

2

(x

2

+�x

2

, t

n

) (43b)
!

2

3

�
x

3

, t

n+1

�
= !

2

3

(x

3

+�x

3

, t

n

) (43c)

Where x

1

, x

2

, x

3

denotes the position of bifurcation in mother vessel, left and right daughter
vessel respectively. In addition Conservation of Mass, and continuity of total Pressure in the
bifurcation contributes with three additional equations:

Q

1

= Q

2

+Q

3

(44a)

P

1

+ ⇢

1

2

U

2

1

= P

2

+ ⇢

1

2

U

2

2

(44b)

P

1

+ ⇢

1

2

U

2

1

= P

3

+ ⇢

1

2

U

2

3

(44c)
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This yields six equations for the six unknowns, P

1

, P

2

, P

3

, Q

1

, Q

2

and Q

3

. However by
discretization of the pressure and flow with the Riemann invariants according to Eq. (25a) and
(25b), Eqs. (43a) - (43c) are automatically satisfied, and thus reduces the number of unknowns
from six, to the three unknown characteristics !2

1

, !1

2

and !

1

3

. Rearranging so that RHS is 0 in
Eqs. (44a), (44b) and (44c), and using � values when discretization of the pressure and flow
yields the following three functions
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(45)
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Being nonlinear the equations need to be solved iteratively for each time-step. A

1

, A
2

and A

3

is also dependent on the pressure and should be updated for each iteration. The Nonlinear
equations were solved for each time step by the Newton-Raphson method given by:

xi+1 = xi � (Ji)
�1

f

i

(48)

where J is the Jacobi Matrix:
J

jk

=

@f

j

@x

k

(49)

where x = [x

1

, x

2

, x

3

] = [�!

2

1

,�!

1

2

,�!

1

3

], f = [f

1

, f

2

, f

3

], J
jk

=

@fj

@xk
, j = 1, 2, 3, k = 1, 2, 3.

Performing the differentiations lead to the following Jacobi, and inverse Jacobi matrices:

J =

2

4
a b c

d e 0

f 0 g

3

5
, J�1
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4
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3

5 1
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. (50)

where

a = R22

1

(51a)
b = �R21

2

(51b)
c = �R21

3

(51c)

d = f = R12
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g = �R11

3

� ⇢

(Q

n

3

+R21

3

�!

1

3

+R22

3

�!

2

3

)R21

3

A

2

3

(51f)
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The iterations are started with x values from the previous time-step. The iterations are stopped
with criteria based on the three functions f(x) = [f

1

, f

2

, f

3

] < [10

�14

, 10

�4

, 10

�4

]. Keeping in
mind that f

1

, is a mass/flow equation, and the two others are pressure equations.

3.7.3 Terminal boundary conditions

In peripheral vessels (small arteries, arterioles and capillaries), fluid resistance dominates over
wall compliance and fluid inertia, which are both dominant in large arteries. The effect of
peripheral resistance on pulse wave propagation in large 1-D model arteries is commonly sim-
ulated using linear lumped parameter models (or zero-dimensional (0-D) models) coupled to
1-D model terminal branches. In this Thesis, I use the following three types of terminal bound-
ary conditions: completely absorbent outflow conditions, single-resistance models, or matched
three-element Windkessel models. The latter is required in models in which peripheral vessels
include large compliant arteries. This model relates the pressure and the flow at the end point
of a terminal domain ⌦ through

Q

✓
1 +

R

1

R

2

◆
+ CR

1

@Q

@t

=

P � P

out

R

2

+ C

@P

@t

. (52)

It consists of a resistance R

1

connected in series with a parallel combination of a second resis-
tance R

2

and a compliance C . The resistance R

1

is equal to the characteristic impedance of
the end point in ⌦ to minimise wave reflections [2].
More sophisticated terminal models include 0-D models with time-dependent resistances to
simulate flow control mechanisms [2], single tapering vessels [32] and structured-tree net-
works [33, 14] to capture wave propagation phenomena in downstream vessels, and 0-D (com-
partmental) models of parts of the cardiovascular system that are not simulated using the
1-D formulation (e.g. the chambers of the heart and the venous circulation) [28, 29, 25, 36].

The McC scheme discretized the governing equation of the three-element Windkessel around
the next time step t

n

+�t, with central differences for the derivatives of P and Q, which give
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. (53)

The � values of P and Q are further formulated in terms of the Riemann invariables according
to Eq. (17), and where the right eigenvalue matrix R

⇣
Û
⌘

is evaluated at the time step t

n.
inserting in Eq. (53) gives
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The characteristic variable traveling from proximal to distal direction !

1

, can be calculated from
the eigenvalue �

1

of the system matrix M (See Sect. 2.2). !
1

was a distance �x

0
= �

1

�t, prox-
imal to the terminal boundary node at time t

n. This leaves !

2

the only unknown in Eq. (55),
and is thus solved for. The � values of the primary variables P and Q is then calculated from
Eq. (25b) and the values at time step t

n

+�t is updated.
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A Similar approach is made in the case of single-resistance terminal model (P � P

out

= QR).
Where R is the distal resistance. In the case of completely absorbent outflow condition, this is
obtained by simply setting !

2

= 0.

3.8 Error calculations

For the test cases presented in Sects. 4.2, 4.3 and 4.4, the numerical solutions of pressure
P , volumetric flow rate Q = AU and luminal radius r were compared between the 1-D and
3-D formulations, based on the results obtained by Xiao et al. [57]. For the benchmark
problem presented in Sect. 4.5, the numerical solutions of the 1-D problem are compared at
each measuring site, as determined from the data in Matthys et al. [26].
We use the following relative error metrics:
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EDIAS
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)�min(P)

min(P)

, EDIAS

Q
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min(Q

1D

)�min(Q)

max(Q)

, (59)

where P

1D

i

and Q

1D

i

are the results obtained from the 1-D solutions at a given spatial location,
and for each time point i, and P

i

and Q
i

are either the cross-sectional averaged pressure and
flow from the 3-D model, or the instantaneous values measured in vitro. The number of time
points n is determined by the 3-D solution (1 kHz) for the test cases, and by the experimental
sampling rate for the benchmark problem (1 kHz). In addition, when comparing quantities
such a radii and pressure differences (�P ) between the inlet and the outlet of a domain ⌦,
we use definitions similar to those in Eq. (56) for the flow rate, with Q replaced by r or �P ,
respectively. All error metrics were calculated over a single cardiac cycle, after the numerical
results achieved periodic behaviour.
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4 Tests

In this section a series of eight tests are presented. Tests 4.1 to 4.6 are adapted from Compari-
son1Dscheme, whereas test 4.7 and 4.8 are primarily tests of the implemented link/bifurcation
model presented in Sect. 3.7.2, and the two schemes in Sect. 3.5.

4.1 Propagation of a single pulse in a straight vessel

This test simulates the propagation of a narrow Gaussian-shaped wave in a single vessel with
uniform parameters and a completely absorbent outflow boundary condition; i.e. with a zero
reflection coefficient that absorbs any incident wave [4]. The parameters of this model, which
we refer to as the single-pulse model, are given in Table 1. At the inlet, a volume inflow rate
with a peak value of 1 ml s�1 is prescribed using the function

Q

in

= 10

�6

exp

�
�10000(t� 0.05)

2

�
m

3

s

�1

, (60)

with t given in seconds. The solution is determined using Eq. (8) with A

d

= A

0

and P

d

=

P

ext

= 0. Two different values of blood viscosity (µ) are considered: µ = 0 (inviscid problem)
and µ = 4 mPa s.

Property Value

Length, L 10 m
Cross-sectional area, A

0

⇡ cm2

Wall thickness, h 1.5 mm
Blood mass density, ⇢ 1050 kg m�3

Blood viscosity, µ 4 mPa s
Velocity profile order, ⇣ 9

Young’s modulus, E 400 kPa
Diastolic pressure, P

d

0
External pressure, P

ext

0
Outflow pressure, P

out

0

Table 1: Model parameters of the single-pulse model taken from [4]. The calculated pulse wave velocity
at A

0

is c

0

= 6.17 m s�1.

4.2 CCA

The common carotid artery is simulated as a single vessel with uniform properties coupled
to a three-element lumped parameter model of the rest of the systemic circulation [57]. The
parameters of this model are given in Table 2. The initial area A

0

= 0.22038 cm2 that yields
the reference diastolic area A

d

= 0.28274 cm2 at P = P

d

= 10.933 kPa is calculated using

A

0

= A

d

✓
1�

p
A

d

P

d

�

◆
2

. (61)

This expression follows from Eq. (8) by considering P = 0, A = A

d

and solving for A

0

.
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Property Value

Length, L 126 mm
Radius at diastolic pressure, r

d

3 mm
Wall thickness, h 0.3 mm
Blood density, ⇢ 1, 060 Kg m�3

Blood viscosity, µ 4 mPa s
Velocity profile order, ⇣ 2

Young’s modulus, E 700.0 kPa
Diastolic pressure, P

d

10.933 kPa
External pressure, P

ext

0
Outflow pressure, P

out

0
Windkessel resistance, R

1

2.4875 · 108 Pa s m�3

Windkessel compliance, C 1.7529 · 10�10 m3 Pa�1

Windkessel resistance, R
2

1.8697 · 109 Pa s m�3

Table 2: Model parameters of the common carotid artery taken from [57]. The resulting wave speed
at mean pressure is c

m

= 6.74 m s�1.

4.3 ThoA

The thoracic aorta from the aortic root to the descending aorta is simulated as a single vessel
with uniform properties coupled to a three-element lumped parameter model of the rest of the
systemic circulation [57]. The parameters of this model are displayed in Table 3. The initial
area A

0

= 3.0605 cm2 that yields the reference diastolic area A

d

= 4.5239 cm2 at P = P

d

= 9.4

ˆ

6

kPa is calculated using Eq. (61).

Property Value

Length, L 24.137 cm
Radius at diastolic pressure, r

d

1.2 cm
Wall thickness, h 1.2 mm
Blood density, ⇢ 1, 060 Kg m�3

Blood viscosity, µ 4 mPa s
Velocity profile order, ⇣ 9

Young’s modulus, E 400.0 kPa
Diastolic pressure, P

d

9.4666666666 kPa
External pressure, P

ext

0
Outflow pressure, P

out

0
Windkessel resistance, R

1

1.1752 · 107 Pa s m�3

Windkessel compliance, C 1.0163 · 10�8 m3 Pa�1

Windkessel resistance, R
2

1.1167 · 108 Pa s m�3

Table 3: Model parameters of the upper thoracic aorta taken from [57]. The resulting wave speed at
mean pressure is c

m

= 5.17 m s�1.
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4.4 AoBif

Before considering a complete network of arteries, we simulate the abdominal aorta branching
into the two iliac arteries as a symmetric, single-bifurcation model [57]. Both iliac arteries are
coupled to a three-element lumped parameter model of the rest of the systemic circulation.
This test case verifies the ability of each scheme to deal with multiple reflections generated
at a junction, where continuity and compatibility conditions are imposed (Section 3.7.2). The
parameters of this model are shown in Tab. 4. Initial areas are calculated using Eq. (61).

Property Aorta Iliac

Length, L 8.6 cm 8.5 cm
Radius at diastolic pressure, r

d

0.86 cm 0.60 cm
Wall thickness, h 1.032 mm 0.72 mm
Blood density, ⇢ 1, 060 Kg m�3

Blood viscosity, µ 4 mPa s
Velocity profile constant ⇣ 9

Young’s modulus, E 500.0 kPa 700.0 kPa
Diastolic pressure, P

d

9.4666666666 kPa 9.4666666666 kPa
External pressure, P

ext

0 0
Outflow pressure, P

out

� 0
Windkessel resistance, R

1

� 6.8123 · 107 Pa s m�3

Windkessel compliance, C � 3.6664 · 10�10 m3 Pa�1

Windkessel resistance, R
2

� 3.1013 · 109 Pa s m�3

Table 4: Model parameters of the human aortic bifurcation taken from [57]. The resulting wave speed
at mean pressure is c

m

= 6.26 m s�1 in the abdominal aorta and c

m

= 7.35 m s�1 in both iliac arteries.

19



4 Tests Cardiovascular Biomechanics

4.5 Benchmark (in vitro)

We simulate the arterial tree presented in Matthys et al. [26], for which in vitro pressure and
flow measurements were acquired at multiple locations. The tree is made up of 37 silicone
vessels representing the largest central systemic arteries of the human vascular system. At the
inlet of the ascending aorta, the flow rate measured in vitro is prescribed as the inflow boundary
condition. Terminal vessels are coupled to single resistors that are simulated as single-resistance
terminal models. The 1-D governing equations are solved using the tube law given by Eq. (8)
with A

d

= A

0

and P

d

= 0. General parameters of this model are given in Table 5. A complete
set of parameters is listed in Table 18, and topology is illustrated in Fig. 3

Figure 3: Topology of the Benchmark (in vitro) model adapted from Matthys et al. [26] (see Table 18)

Property Value

Blood density, ⇢ 1, 050 Kg m�3

Blood viscosity, µ 2.5 mPa s
Velocity profile order, ⇣ 9

Young’s modulus, E 1.2 MPa
Diastolic pressure, P

d

0
External pressure, P

ext

0
Outflow pressure, P

out

432.6 Pa

Table 5: General model parameters of the benchmark model taken from [26].
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4.6 Benchmark (ADAN55 model)

The last benchmark model considered to test 1-D numerical schemes is a reduced version of
the anatomically-detailed arterial network (ADAN) model developed by Blanco et al. [10, 12].
The model contains the largest 55 vessels of the human arterial system (an artery is composed
by more than one segment), as described in [12]. Hereafter, we refer to this model as ADAN55.
Wall thickness is calculated using the following empirical expression [12]

h = R

0

⇥
ã exp (

˜

bR

0

) + c̃ exp (

˜

dR

0

)

⇤
, (62)

where R

0

is the reference radius (related to A

0

) , ã = 0.2802, ˜b = �5.053 1/cm, c̃ = 0.1324 and
˜

d = �0.1114 1/cm. The rest of the parameters of the model are presented in Table 6. This
model is not exactly as in [12], because the tube law is different. In the present case, Young
moduli are constant throughout the arterial network and the tube law is given by Eq. (8)
with A

d

= A

0

and P

d

= P

0

= 10 kPa.The initial conditions are (A(x, 0), U(x, 0), P (x, 0)) =

(A

0

(x), 0, P

0

) A complete set of parameters is listed in Tables 19 and 20.

Property Value

Blood density, ⇢ 1, 040 Kg m�3

Blood viscosity, µ 4.0 mPa s
Velocity profile order, ⇣ 2

Young’s modulus, E 225 kPa
Diastolic pressure, P

d

10 kPa
External pressure, P

ext

0
Outflow pressure, P

out

0

Table 6: Model parameters of the ADAN55 model [12]. Arterial compliance was redefined [12] to be
consistent with the present linear tube law.

Figure 4: Topology of the ADAN55 model (see Tables 19 and 20 for details).
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4.7 Steady Flow in a single vessel with narrowing in the middle

The parameters of this model are the same as in the single-pulse model, except from a narrowing
to half the area between four and six meters. I consider a continous narrowing, by using two half
sine functions, and also by separating the vessel into three segments. The flow is set constant
at the inlet with value 100 ml/s. The distal boundary condition is a single resistance element
with R = 10

8 Pa s/m2 . The geometries are presented in Fig. 5, and properties in Table 7.

Property Left section Middle section Right section

Length, L 4 m 2 m 4 m
Radius at diastolic pressure, r

d

1 cm 0.707 cm 1 cm
Wall thickness, h 1.5 mm 1.5 mm 1.5 mm
Blood density, ⇢ 1, 050 Kg m�3

Blood viscosity, µ 0 mPa s
Velocity profile constant ⇣ NA

Young’s modulus, E 400.0 kPa 400.0 kPa 400.0 kPa
Diastolic pressure, P

d

0 kPa 0 kPa 0 kPa
External pressure, P

ext

0 kPa 0 kPa 0 kPa
Outflow pressure, P

out

� � 0
Resistance, R � � 1 · 108 Pa s m�3

Table 7: Model parameters of long narrowing vessel with constant flow as described in Sect. 4.7. notice that
two cases are considered; a continous narrowing (one vessel with narrowing constructed by half sine functions)
and a discontinous narrowing (three vessels). See Fig. 5. The vessels have compliance models that govern
wavespeed and give the problem a hyperbolic nature, however the area is set constant.

Figure 5: Figure showing the geometries associated with test 4.7. The area in the middle is half of the area in
the start and end section, which is ⇡ cm2. The continous case is constructed by five smooth curves; 1, straight
line from x = 0m to x = 4m; 2, half sine from x = 4 m to x = 4.5m; 3, straight line from x = 4.5m to x = 5.5m;
4, half sine from x = 5.5m to x = 6m; 5, straight line from x = 6m to x = 10m. The Discontinous case is
constructed by linking three single vessels; 1, single vessel with area ⇡cm2, from x = 0m to x = 4m; 2, single
vessel with area ⇡/2cm2, from x = 4m to x = 6m; 3, single vessel with area ⇡cm2, from x = 4m to x = 6m.
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4.8 Constant Flow in symmetric and asymmetric single-bifurcation

In this test I consider two single bifurcations with constant flow. The first of whom is a
symmetric bifurcation with parameters akin to those in the previous test, but now considering
a bifurcation rather than a link. The mother vessel is one meter long and have constant
crossectional area of A

m

= ⇡ cm2. The two daughter vessel are also one meter and have constant
crossectional area of A

l

= A

r

=

Am
4

=

⇡

4

cm2. The flow is set constant at the inlet with value
100 ml/s. The distal boundary condition of both daughter vessels is a single resistance element
with R = 10

8 Pa s/m2 . The geometries are presented in Fig. 6, and parameters in Table 8.
Secondly I consider an asymmetric bifurcation, where the mother- and left daughter-vessel,
inlet and outlet boundary boundary conditions are equal to the symmetric case. However in
this case the right daughter vessel has a constant area of A

r

=

Am
8

=

⇡

8

cm2. Parameters are
listed in Table 9, and geometry is illustrated in Fig. 7

Property Mother Daughters

Length, L 1 m 1 m
Radius at diastolic pressure, r

d

1 cm 0.5 cm
Wall thickness, h 1.5 mm 1.5 mm
Blood density, ⇢ 1, 050 Kg m�3

Blood viscosity, µ 0 mPa s
Velocity profile constant ⇣ NA

Young’s modulus, E 400.0 kPa 400.0 kPa
Diastolic pressure, P

d

0 kPa 0 kPa
External pressure, P

ext

0 0
Outflow pressure, P

out

� 0
Resistance, R � 1 · 108 Pa s m�3

Table 8: Model parameters of the symmetric bifurcation with constant flow as described in Sect. 4.8.
The vessels have compliance models that govern wavespeed and give the problem a hyperbolic nature,
however the area is set constant.

Property Mother L. daughter R. daughter

Length, L 1 m 1 m 1 m
Radius at diastolic pressure, r

d

1 cm 0.5 cm 0.354 cm
Wall thickness, h 1.5 mm 1.5 mm 1.5 mm
Blood density, ⇢ 1, 050 Kg m�3

Blood viscosity, µ 0 mPa s
Velocity profile constant ⇣ NA

Young’s modulus, E 400.0 kPa 400.0 kPa 400.0 kPa
Diastolic pressure, P

d

0 kPa 0 kPa 0 kPa
External pressure, P

ext

0 kPa 0 kPa 0 kPa
Outflow pressure, P

out

� 0 0
Resistance, R � 1 · 108 Pa s m�3

1 · 108 Pa s m�3

Table 9: Model parameters of the asymmetric bifurcation with constant flow as described in Sect. 4.8.
The vessels have compliance models that govern wavespeed and give the problem a hyperbolic nature,
however the area is set constant.
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Figure 6: Showing the geometries associated with test 4.8. A single symmetric bifurcation. Mother
vessel with constant area of ⇡cm2; Two equal daughter vessels with constant area ⇡

4

cm2.

Figure 7: Showing the geometries associated with test 4.8. A single asymmetric bifurcation. Mother
vessel with constant area of ⇡cm2; Two daughtervessels with constant area of ⇡

4

cm2 and ⇡

8

cm2 respec-
tively.
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5 Process

The first part of this Master Thesis delt with getting (better) to know with STARFiSh and
to set up the test cases described in Sect. 4. The preliminary deadline for performing the
tests in Coparison1Dscheme was set to April 1st. However the 3D and Experimental data for
Comparison in tests 4.2 to 4.5 were not obtained before march 16th, which slowed down the
process of validating and optimizing the tests. As will be seen in Sect. 6 the final solutions
with the original implementation of STARFiSh were not satisfying in all tests. The Process of
finding the reason for the big discrepancies in the STARFiSh solutions proved a cumbersome
one. For every strange result, the natural thing to do is to check your own procedures, once,
twice, three, four or more times, before looking into other solutions. After easter a problem-
solving period started. For better understanding of the methods used in STARFiSh, test 4.1 to
4.3 were programmed in mini-solvers on my own personal computer, where BCs, and Riemann
invariants were added adaptively. Finally a version which also included Womersley theory was
made. The solving schemes in all these minisolvers were based on the Fluxbased method given
by Eq. 39 and Eq. 40
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6 Grid-adaption

In this section the effect of changing CFL number, �t and amount of nodes is presented. In
the following sections the term Flux refers to field equations being solved according to Eq. 39
and Eq. 40, whereas Matrix refers to field equations being solved according to Eq. 35. Linear
link/bifurcation model refers to model based on continuity of static pressure, whereas nonlinear
model referes to link/bifurcation model based on continuity of total pressure, as described in
Sect. 3.7.2. Thus, naturally six different combinations evolve:

combination 1 Flux based scheme, Singlevessel

combination 2 Matrix based scheme, Singlevessel

combination 3 Flux based scheme, and nonlinear link/bifurcation model

combination 4 Flux based scheme, and linear link/bifurcation model

combination 5 Matrix based scheme, and nonlinear link/bifurcation model

combination 6 Matrix based scheme, and linear link/bifurcation model

It should be noted that the results (in this section) presented for test 4.1 to 4.3 were all per-
formed with combination 2. As will be seen in the following sections, I argue that combination
1 is more numerically correct. However it is believed that the same tendencies in CFL number,
�t and amount of nodes is also valid for combination 1. The gridadption for test 4.4 and 4.5
were performed with combination 6, even though I later argue that combination 3 is numeri-
cally and physiologically more correct. The gridadaption for test 4.6 were all performed with
combination 3. The results from this Section form the basis for the grid, and �t values used
in the final STARFiSh (McC) solutions in Comparison1Dscheme.

6.1 Propagation of a single pulse in a straight vessel

The inflow has a width of approximately 0.05 s and an initial wave speed of c
0

= 6.17 m s�1,
giving a wavelength of about c

0

T ⇡ 31 cm. This is a short wavelength comparing with the
length of the vessel.
Fig. 8 show the pulse as it has propagated for 1.5 s. Different CFL and �t values are compared.
It is clear that this test requires CFL numbers close to one in order to avoid diffusive and
dispersive errors. When assuring CFL number close to one, diffusive and dispersive errors are
relatively small, even at high � t values. The �t value chosen in this test is 0.5 ms, with 3201
nodes, giving a CFL number of 0.99. The Simulation time for this test was 0.36 seconds.

6.2 CCA

In Appendix B (B) a series of tables with error metrics (relative to 3D data), for different
�t values, grid-nodes, and CFL number is shown. All simulations in were initialized with a
constant pressure of Pd, to try to reach steady state solution fast. It should be noted that Table
21 contain error metrics calculated after just 3 cycles, whereas Table 22 and 23 were calculated
in its 8 th cycle, which could cause some inconsistency. Nevertheless, some concluding remarks
could be made. This test has a much higher wavelength than the previous test. An approximate
wavelength based on the period of the systolic inflow is l = c

m

/f = c

m

T ⇡ 2.7m, with period
T ⇡ 0.4, and wave speed at mean pressure c

m

= 6.74 m s�1. This indeed is much longer than
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(a) �t = 0.8 ms

(b) �t = 0.4 ms

Figure 8: Showing the effect on changing the CFL number in the single-pulse model. The figures
show the pulse at t=1.5 s. All simulations in the top figure have �t of 0.8 ms, and the number of
Nodes to achieve CFL numbers of 0.99, 0.94, 0.89 and 0.79 is 2001, 1901, 1801 and 1601 repectively.
All simulations in the bottom figuere have �t of 0.4 ms, and the number of Nodes to achieve CFL
numbers of 0.99, 0.94, 0.89 and 0.79 is 4001, 3801, 3601 and 3201 repectively. From the graphs it is
clear that diffusive (loss in amplitude), and dispersive(change in phase) errors occur if the CFL number
is not very close to 1 in this short wave test. It is also clear that the effect is enhanced at higher �t

values
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in the first test, and from table 21, 22 and 23 one can see that diffusive and dispersive errors
are not as sensitive on the CFL number, as in the first test. Also the errors when increasing
�t is not very big. A satisfying solution is found by using a �t value of 0.5 ms, CFL number
of 0.87 and 33 grid-nodes.

6.3 ThoA

For the ThoA test a series of tables with error-metrics relative to 3D data is presented in
Appendix B. As was the case in the previous case, the error metrics in Table 24 were calculated
after 8 cycles, whereas the error metrics in Table 25 and 26 were calculated after 20 cycles. An
approximate wavelength based on the period of the systolic inflow is l = c

m

/f = c

m

T ⇡ 1.8m,
with period T ⇡ 0.35, and wave speed at mean pressure c

m

= 5.17 m s�1. This is also relatively
long, and reflected in that low CFL numbers do not constitute large errors. In table 25, and 26 it
almost seems as low CFL number give rise to lower error metrics. This is sort of a paradox, but
as can be seen from Fig. 9, very low CFL numbers coincide with non physiological oscillations.
Table 25, and 26 also show that increasing �t does not critically increase the errors. The chosen
�t, CFL number and grid-node for this test is, 0.5, 0.35 and 35 respectively.

Figure 9: Showing pressure (top left), pressure gradient (top right), flow (bottom left), and change in
radius (bottom right), for 1D MacCormack (STARFiSh)in Thoracic aorta test. Simulation with only
5 nodes, and a resulting maximum CFL number of only 0.04 give rise to nonphysiological oscillations,
noticable in diastole.

6.4 AoBif

Also with the AoBif test, a series of tables with error-metrics relative to 3D data is presented
in Appendix B. The trends are similar to those in the previous two cases. Long wavelength
means that relatively low CFL numbers can be tolerated, and increasing �t does not critically
increase the errors. The error metrics in Table 27 were calculated after 8 cycles, whereas the
error metrics in Table 28 and 29 were calculated after 25 cycles. The chosen �t, maximum
CFL number (Iliac artery), and grid-nodes (all arteries) in this test is, 0.5 ms, 0.53 cm and 13.
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6.5 Benchmark

Similar tests were on the Benchmark test, however the results are not presented in this The-
sis. Comparing with the experimental data, increasing the numerical parameters (�t and �x)
did not critically increase the error-metrics. However noticeable differences between the other
schemes occurred by increasing the numerical parameters. Also worth noting is that the So-
lutions in this test have relatively high frequent waveforms. As a result a relatively high CFL
number was chosen. The final numerical parameters were chosen to be �t = 0.25 ms, �x =

0.18 cm and CFL number of 0.7.

6.6 Adan55

Fig. 10a show the dependence on changing CFL/�t values for the Adan55 model. Corre-
sponding numerical parameters are given in Table 10. The figure show pressure waveforms
through the aorta segments at systole (t/T=0.2 s). In contrast to the previous physiological
tests, the dependence on grid seem more important here. However this is believed to be related
to the bifurcation/link model rather than to CFL number and order of accuracy in solving of
field equations. One difficulty with this test is that it has some very short vessels. In order
to calculate the field equations, at least three nodes are needed. Looking at Fig. 10a this
behaviour is present in the interface between the longest vessel, aorta 9 (Id 40), and shortest
vessel aorta 10 (ID 41). Aorta 9 is the vessel furthest to the left in Fig. 10b. Aorta 10 is the
shortest vessel just to the right of aorta 9, and as can be seen the solution with only two nodes
(MacCormack643) in aorta 10 have increasing pressure with increasing distance (x). As the
nodes in this vessel increase the solution seem to converge more or less to the DCG solution.
As will be seen in later sections the DCG scheme coincide with most of the other state of the
art numerical schemes, and thus is a good reference. Another thing to notice is that this grid-
dependence does not seem to be present in the DCG scheme and many of the other schemes,
and only two or a few nodes in aorta 10 seem to suffice. The reason for this is not certain,
and more tests should be run to figure this out. However some thoughts around this have been
made. In the implementation of the nonlinear link/bifurcation model the pressure and flow
is discretized with Riemann invariants and thus only three equations and three unknowns are
solved for. This should automatically satisfy continuity of propagating characteristic variables.
However looking at simulation 643MacComack in Fig. 10a and 10b in aorta 11, the solutions
at the boundary does not seem to form a nice smooth curve coinciding with the field solution.
The other schemes seem to have smoother solutions. Thus a question arises; is continuity of
characteristic variables really satisfied? And if not, why so? Some thought and possible reasons
for this is Discussed in Sect. 8.1.4.

Another problem that was encountered in this test was the setting of the parameters for the
tube law. In the first few tests the vessel wall-thickness was calculated according to Eq. 62,
with R

0

chosen as the proximal radius(constant wall-thickness in each vessel). This had some
interesting effects, noticeable in certain links. This tests has some vessels that are segmented
into two or more vessels, even though they have continuously decreasing radius. Aorta 9 and
Aorta 10 is an example of such a vessel. Fig. 11a, show how aorta 9 and aorta 10 behave as two
discontinuous vessels if parameters are set according to R

proximal

. Fig. 11b on the other hand
show how aorta 9 and 10 behave as one continuous vessel, when the wall-thickness is calculated
according to R

0

(x) (tapering included in vessel wall-thickness). The final solution chosen as
STARFiSh contribution in Comparison1Dscheme was MacCormack642, with tapering included
in calculation of wall-thickness. This simulation was chosen since it has a fine balance between
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accuracy and amount of nodes. Later findings proved that using a �t value of 0.1 ms, the
same amount of nodes giving an average CFL number of 0.32 yields a solution closer to the
other schemes. Thus once again, the solution is not sensitive to low CFL numbers. The error
is directly related to �t.

simulation �t [ms] CFL number note
MacCormack631 0.2 0.6-0.9
MacCormack633 0.1 0.6-0.9 high CFL number in short

vessels, lower in longer ves-
sels

MacCormack637 0.2 0.6-0.9 high CFL number in short
vessels, lower in longer ves-
sels

MacCormack642 0.25 0.8 constant CFL number
MacCormack643 0.25 0.5 constant CFL number

Table 10: Showing �t values and CFL numbers for simluations corresponding to Fig. 10.
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(a) All segments

(b) close up of aorta 9, 10, 11, 12 and 13

Figure 10: Showing the dependence on gridnodes and or �t. The figure show pressure waveforms
through the aorta segments at systole (t/T=0.2 s). The CFL numbers, and �t values of this figure
is listed in Table 10. All simluations are performed with parameters for the tube law given by Eq.
62, with R

0

= R

0

(x) (tapering also included in wallthickness). The behaviour at the vessel segment
interface is griddependent. Also noticable is that STARFiSh solutions does not seem to form as nice
smooth curves connecting boundary and field nodes as the other schemes.
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(a) Discontinous

(b) Continous

Figure 11: Showing static and total (dotted line) pressuer (top), area, volumetric flow, initial radius
and wallthickness (bottom), for aorta 9 (blue line) and aorta 10 (red line), as a function of x in adan
55 model at time t/T=0.2 s. The wallthickness in the top simulation is not continous, resulting in
discontinuities in area at the vessel interface (different pressure area relation). The wallthickness in the
bottom simulation is continous. Thus the area at the vessel interface is equal throughout the period.
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7 Results: STARFiSh and Womersley

This section shows the results from the tests presented in Sect. 4. The section is subdivided
into Sect. 7.1, and Sect. 7.2. Sect. 7.1 contains results from tests with different methods and
feautures within STARFiSh only. Sect. 7.2 contain results on Womersleytheory.

7.1 STARFiSh

Unless otherwise stated all STARFiSh simulations presented in this section have �t, and �x

as described in Sect. 6, Grid-adaption. This can also be found in Table 33, which in addition
show �t, and �x for any other scheme’s solution presented here.

7.1.1 Propagation of a single pulse in a straight vessel

This test proved to take quite a bit of time due to an implementation error in the MacCormack
scheme. Fig. 12 shows the pulse propagating through the first few nodes of the vessel, and as
can be seen a quite substantial loss of peak flow is present from node zero to node one. The
problem proved to simply be that in the MacCormack scheme the value of the predicted values
at node zero was chosen to be the value U

n

0

rather than calculated as given by Eq. 35. The
error caused both loss in flow, pressure and also introduced dispersive errors.

Figure 12: Showing the effect of an implementation error in the original MacCormack scheme. A quite
substantial loss of Flow from node zero to node one is present, due to wrong handling of predicted
values of boundaries in MacCormack scheme.

In this section I also present a comparison of the corrected Matrix formulation (combination
2), with the new Flux formulation, (combination 1) . Fig. 13 show a comparison of the original
Matrix formulation of the MacCormack scheme given by Eq. 35 with the new scheme given by
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Eq. 39 and Eq. 40. The figure show the pressure pulse at time t = 1.5. The solution from
the FEM scheme is plotted for comparison. Both STARFiSh solutions have �t = 0.5 ms, and
3201 nodes. Both schemes show very small diffusive errors, whereas it seems that the Matrix
formulation introduce some dispersive errors.

Figure 13: Showing the pressure pulse at time t = 1.5 s comparing the inviscid case of the original
Matrix MacCormack scheme (combination 2) with the new Flux based formulation (combination 1).
The results from the FEM scheme is also plotted for Comparison.

7.1.2 CCA

In this section different features of STARFiSh are tested and compared with each other in a
test replicating the Common Carotid artery. 3D data and some of the other state of the art
flow-solvers are also present for better visualization. McCMatrix1 is combination two with
convective correction factor equal to one (1 ! ↵ = 1). McCFlux1 is combination one with
convective correction factor equal to one. McCMatrixa is combination two with convective
correction factor calculated according to Eq. 4 (a ! ↵ =

(⇣+2)

(⇣+1)

). The results are presented
in Fig. 14 and Table 11. The difference between the STARFiSh solutions are small. The
waveforms are very similar, but the McC solution seem to have the best error metrics. The
only noticable difference is visible in the Pressure Gradient. Here one may observe that the
Flux method is more in accordance with the other Schemes. There is also a slight difference
between using convective correction factor equal to one, and calculating it based on the assumed
Poiseuille flow velocity-profile.
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(a) Pressure (b) Pressure Gradient

(c) Flow (d) Radius Change

Figure 14: Common carotid artery. Pressure (a), pressure gradient between inlet and outlet (�P ) (b),
flow rate (c), and change in radius from diastole (d) with time at the midpoint of the vessel. Results
are shown for three different STARFiSh solutions (See text description in Sect. 7.1.2), three other
1-D numerical schemes and the 3-D model from [57]. The model parameters are shown in Table 2 and
the error calculations in Table 11.
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7.1.3 ThoA

In this section different features of STARFiSh are tested and compared with eachother in the
test replicating the Thoracic Aorta. 3D data and some of the other state of the art flowsolvers
are also present for better visualization. MacCMatrix1 is combination two with convective
correction factor equal to one. McCFlux1 is combination one with convective correction factor
equal to one. MacCMatrixa is combination two with convective correction factor calculated
according to Eq. 4. The results are presented in Fig. 15 and Table 12. The difference between
the STARFiSh solutions are bigger than in the previous case. The waveforms are different
especially looking at the flow and pressure gradient. The McCFlux seem more in accordance
with the other schemes, and have the best error-metrics. There is also a slight difference between
using convective correction factor equal to one, and calculating it based on the assumed power
law (⇣ = 9) velocity-profile, visible in the pressure gradient (MacCMatrix1 vs MacCMatrixa).

(a) Pressure (b) Pressure Gradient

(c) Flow (d) Radius Change

Figure 15: Upper thoracic aorta. Pressure (a), pressure gradient between inlet and outlet (b), flow
rate (c), and change in radius from diastole (d) with time at the midpoint of the vessel. Results
are shown for three different STARFiSh solutions (See text description in Sect. 7.1.3), three other
1-D numerical schemes and the 3-D model from [57]. The model parameters are shown in Table 3 and
the error calculations in Table 12.
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CCA

DCG LCG STM McCMatrix1 McCFlux1 McCMatrixa

ERMS

P

0.19 0.24 0.24 0.22 0.24 0.23
ERMS

Q

0.39 0.26 0.29 0.29 0.30 0.29
ERMS

�r

0.94 1.00 0.98 0.99 1.01 1.01
ERMS

�P

4.43 4.35 4.47 3.95 4.47 4.35

EMAX

P

0.30 0.52 0.53 0.46 0.52 0.51
EMAX

Q

1.21 1.02 1.13 1.15 1.20 1.16
EMAX

�r

1.68 1.93 1.96 1.80 1.93 1.91
EMAX

�P

16.69 16.17 16.90 12.89 16.58 15.39

ESY S

P

-0.26 -0.27 -0.26 -0.26 -0.27 -0.27
ESY S

Q

-0.54 -0.46 -0.55 -0.62 -0.62 -0.64
ESY S

�r

-1.62 -1.63 -1.63 -1.61 -1.63 -1.63
ESY S

�P

-15.11 -15.37 -15.76 -12.41 -15.73 -13.59

EDIAS

P

0.28 0.28 0.27 0.26 0.28 0.26
EDIAS

Q

0.26 0.22 0.27 0.22 0.23 0.22
EDIAS

�P

4.98 4.76 4.85 4.94 4.45 4.66

Table 11: Calculated relative root mean square, maximum, systolic and diastolic errors (%), as defined
in Eq. (56), for test case presented in . 4.2, or the common carotid artery (CCA), Fig. 14. Errors are
determined at the midpoint of each segment.

ThoA

DCG LCG STM McCMatrix1 McCFlux1 McCMatrixa

ERMS

P

1.08 1.21 1.12 1.14 1.08 1.18
ERMS

Q

2.55 2.19 2.28 2.11 2.22 2.17
ERMS

�r

2.30 2.41 2.90 2.52 2.33 2.64
ERMS

�P

7.71 7.23 7.52 7.51 7.23 7.96

EMAX

P

3.55 3.55 3.30 3.24 3.27 3.53
EMAX

Q

9.12 7.20 7.40 6.84 7.04 7.12
EMAX

�r

7.77 7.67 8.04 7.26 7.09 7.87
EMAX

�P

31.86 29.31 31.19 31.70 29.31 34.06

ESY S

P

-0.55 -0.32 -0.59 -0.70 -0.55 -0.77
ESY S

Q

-5.57 -5.36 -5.56 -3.33 -5.58 -3.02
ESY S

�r

-2.48 -1.93 -4.48 -2.84 -2.49 -3.00
ESY S

�P

-8.97 -8.89 -9.70 -7.66 -9.04 -8.25

EDIAS

P

0.85 1.12 0.85 0.81 0.87 0.80
EDIAS

Q

2.70 2.67 2.95 2.43 2.67 2.45
EDIAS

�P

7.28 7.24 7.47 6.23 7.32 6.30

Table 12: Calculated relative root mean square, maximum, systolic and diastolic errors (%), as defined
in Eq. (56), for test cases corresponding to Fig. 15, or the upper thoracic aorta (ThoAo). Errors are
determined at the midpoint of the segment.
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7.1.4 AoBif

In this section different features of STARFiSh are tested and compared with each other in the
test replicating an aortic bifurcation. 3D data and some of the other state of the art flow-
solvers are also present for better visualization. In Fig. 16 MacCMatrixaL is STARFiSh with
Matrix based scheme with linear bifurcation model (L=Linear), and convective correction factor
calculated according to Eq. 4 (combination 6), MacCMatrix1N is STARFiSh with Matrix based
scheme with nonlinear bifurcation model (N=Non-linear), and convective correction factor set
to one (combination 5), McCFlux1N is STARFiSh with Flux based scheme with nonlinear
bifurcation model, and convective correction factor set to one (combination 3). In this test the
difference between the three is almost indiscernible. Error-metrics are shown in Table 13, for the
Junction. Further error metrics for midsection of aorta and iliac may be found in Table 30and
31 in Appendix C. The error-metrics are very similar for all three STARFiSh solutions.

(a) Pressure (b) Flow (c) Radius Change

Figure 16: Aortic bifurcation. Pressure (a), flow rate (b), and change in radius from diastole (c) at
the midpoint of the aorta (top), end point of the aorta (middle) and midpoint of either iliac artery
(bottom). Results are shown for three different STARFiSh solutions (See text description in Sect.
7.1.4), three other 1-D numerical schemes and the 3-D model from [57] The model parameters are
shown in Table 4 and the error calculations in Table 13, 30 and 31 .
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Junction

DCG LCG STM McCMatrix1N McCFlux1N McCMatrix1L

ERMS

P

0.42 0.43 0.42 0.41 0.42 0.41
ERMS

Q

1.19 1.13 0.46 1.11 1.12 1.10
ERMS

�r

4.07 4.02 4.05 4.07 4.08 4.08

EMAX

P

0.75 0.75 0.73 0.73 0.74 0.74
EMAX

Q

3.58 3.54 1.48 3.43 3.53 3.41
EMAX

�r

6.86 6.76 6.98 6.84 6.85 6.85

ESY S

P

-0.69 -0.70 -0.69 -0.70 -0.70 -0.71
ESY S

Q

-3.52 -3.53 -1.08 -3.43 -3.52 -3.40
ESY S

�r

-6.81 -6.73 -6.90 -6.83 -6.83 -6.84

EDIAS

P

0.53 0.55 0.53 0.53 0.54 0.52
EDIAS

Q

1.76 1.78 0.69 1.77 1.77 1.77
EDIAS

�r

-1.95 -1.92 -1.88 -1.94 -1.94 -1.95

Table 13: Calculated relative root mean square, maximum, systolic and diastolic errors (%), as
defined in Eq. (56), for test cases corresponding to Fig. 16 or the aortic bifurcation (AoBif). Errors
are determined at the midpoint of each segment.

7.1.5 Benchmark (in vitro)

In this section different features of STARFiSh are tested and compared with each other in the
Benchmark (in vitro test). For this test the results have been moved to Appendix C. Fig. 30 to
33 show the results in selected aortic segements and through first second and third generation
vessels. Table 32 show errormetrics comparing with in vitro data. Some of the other state of
the art flow-solvers are also present for better visualization. MacCMatrixaL is STARFiSh with
Matrix based scheme with linear bifurcation model, and convective correction factor calculated
according to Eq. 4 (combination 6), MacCMatrix1N is STARFiSh with Matrix based scheme
with nonlinear bifurcation model, and convective correction factor set to one (combination
5), McCFlux1N is STARFiSh with Flux based scheme with nonlinear bifurcation model, and
convective correction factor set to one (combination 3). There are no significant difference
between any of the solutions, either in waveforms (figures) or errormetrics.
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7.1.6 Benchmark (ADAN55 model)

In this section different features of STARFiSh are tested and compared with each other in the
detailed arterial network adan55. Fig. 17 and Fig. 18 show the pressure and flow waveforms in
the aorta and in third and fourth generation of bifurcations. Fig. 19 show pressure in the 15
segments that form the aorta, in different period of the cycle. The methods and grid description
of the different STARFiSh solutions, McCFlux1, McCFlux2, McCMatrixN and McCMatrixL
are listed in Table 14. DCG and LCG solutions are plotted for Comparison. As can be seen
from the Figures, the differences between the STARFiSh solutions are quite big, and this test
revealed some problems and limitations of the original implementations in STARFiSh. The
test has a high density of link and bifurcations, and also have high Reynolds-number in the
aortic segments. One can see that the tests run with the original implementations of STARFiSh
(Combination 5 and 6) deviate a lot from the other state of the art Flow-Solvers. From Fig.
19 it is clear that the behaviour in the Bifurcations are quite important in this test, and that
the bifurcation model which ensures continuity of static pressure introduce quite big errors in
this test. It also proved that the difference between the flux based scheme and the matrix
based scheme is quite big in this test. The Flux based method is much more in accordance
with the other solvers. As previously described in the Grid adaption Sect. 6.6, The number

simulation combination ↵ �t [ms] CFL number
McCFlux1 3 1 0.1 0.6-0.9
McCFlux2 3 1 0.25 0.5
McCMatrixN 5 1 0.25 0.5
McCMatrixL 6 1 0.25 0.5

Table 14: Simulation cases corresponding to Fig. 17 to 19.

of nodes, and CFL number is also of big importance here. McCFlux2 and McCFlux1 are both
combination 1 solutions, but McCFlux 1 has a finer grid. The solution seem to converge to the
other state of the are flow-solver, as the grid gets finer.
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(a) Aortic Arch

(b) Thoracic Aorta

(c) Abdominal Aorta

Figure 17: ADAN55 model. Pressure (left) and flow (right) waveforms in the midpoint of three aortic
segments: (a) aortic arch I, (b) thoracic aorta III and (c) abdominal aorta V. Results are shown for
STARFiSh solutions, McCFlux1, McCFlux2, McCMatrixN and McCMatrixL. Difference in grid and
methods used are listed in Table 14. General model parameters are shown in Table 6.
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(a) Right Posterior Interosseous

(b) Right Femoral

(c) Right Anterior Tibial

Figure 18: ADAN55 model. Pressure (left) and flow (right) waveforms in the midpoint of three
vessels from the third and fourth generation of bifurcations: (a) right posterior interosseous, (b) right
femoral and (c) right anterior tibial. Results are shown for STARFiSh solutions, McCFlux1, McCFlux2,
McCMatrixN and McCMatrixL. Difference in grid and methods used are listed in Table 14. General
model parameters are shown in Table 6.
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(a) t/T = 0.1 (b) t/T = 0.2

(c) t/T = 0.3 (d) t/T = 0.5

(e) t/T = 0.7 (f) t/T = 1.0

Figure 19: ADAN55 model. Pressure contour along the aorta at several time instants during the
cardiac cycle, relative to the cardiac period T .
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7.1.7 Steady Flow in a single vessel with narrowing in the middle

In this section the results from the test with narrowing (continous and link) is presented. In
this case the flow is assumed laminar even though the case is without friction (Reynolds number
is undefined (Re =

⇢Ud

µ

)). Thus for this case the analytic solution through the narrowing is the
Bernoulli equation:

�P =

⇢

2

�
U

2

2

� U

2

1

�
(63)

where U

1

is the mean velocity before the narrowing, and U

2

is the mean velocity in the narrow-
ing. Conservation of mass yields U

1
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1
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2
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2

, inserting in Eq. 63 give
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� 1

◆
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The equilibrium static pressure is given by P = QR = 10

�4 m3/s 108 Pa s/m3

= 10000 Pa. The
flux based formulation given by Eq. 39 and Eq. 40 is not possible to part from the analytic
Bernoulli solution. The Matrix formulation on the other hand given by Eq. 35 deviate from the
Bernoulli solution as can be seen by two peaks in total pressure during the narrowing. It is also
clear that the matrix based scheme does not regain the same pressure after the narrowing, as
it should. The test reveal the non-conservative aspects of this method. The test also show that
the new link model, which is the same as the bifurcation model presented in Sect. 3.7.2, but
with only two vessels, is in accordance with the analytic Bernoulli solution. Using the model
based on continuity of static pressure introduce quite big errors in this case. This is all clear
from Fig. 20. All tests were run with �t = 0.6 ms and with a total of 2001 nodes (equidistant
spacing). The simulations were initialized with zero pressure and zero flow rate. The flow rate
was then set to increase linearly from Q(t = 0) = 0, to Q(t = 1s) = 100 ml/s. The flow rate
was then set constant for another 120 seconds to allow for steady state solution. The long time
needed for steady state is a result of reflections from distal and proximal boundaries (prescribed
total flow is highly reflective).
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Figure 20: Results showing comparison between Flux based formulation of the MacCormack scheme
given by Eq. 39 and Eq. 40, and the previously implemented Matrix formulation given by Eq. 35
(Continuous sine vessel). It also show the comparison of the implemented link model based on conti-
nuity of total pressure, and the previously implemented model based on continuity of static pressure.
One can see that the Matrix formulation is not in accordance with the analytic Bernoulli solution. It
also does not have completely regained the pressure after the narrowing. The difference between the
two link models are big, and using the static pressure model introduce big errors comparing with the
analytic Bernoulli solution.

7.1.8 Constant Flow in symmetric and asymmetric single-bifurcation

In this section the nonlinear bifurcation model described in Sect. 3.7.2 is tested and compared
with analytic Bernoulli solutions. Since the test has constant flow and does not include friction,
the network has an electrical equivalent analytical solution (See Fig 23). As described in Sect.
4.8 both a symmetric and an asymmetric bifurcation is evaluated. The first of which having
a relatively easily derived analytic counterpart. Symmetric geometry and Resistance divide
the flow into Q

l

= Q

r

=

Qm

2

. In addition pressure and flow need to be in equilibrium with
the resistance in the distal end of the daughter vessels P

l

= P

r

= Q

l

R = Q

r

R =

Qm

2

R =

50 ⇤ 1e�6 ⇤ 1e8Pa = 5000Pa. Thus the pressure difference from daughters and mother can be
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evaluated:
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Where all RHS elements are known. Subscript m, l, and r denotes mother-, left daughter- and
right daughter-vessel.
With the asymmetric bifurcation on the other hand, the pressure and flow values in mother,
right and left daughter vessel is not as easily depicted. However, there are five equations and five
unknowns; one mass equation, two Bernoulli equations, and two P �Q equilibrium equations,
for the five unknowns (P
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Being non-linear the above system must be solved iteratively. A Newton-Rhapson solver similar
to the one described in Sect. 3.7.2 have been used to solve for the analytical electrical equivalent
system, to compare with STARFiSh solution. See Appendix E.1 for a complete description of
the Newton Rhapson solver.
The results for the symmetric bifurcation are presented in Fig. 21 and Table 15, and the
results for the asymmetric bifurcation in Fig. 22 and Table 16. Both cases have very good
agreement between STARFiSh and analytical solution. Tests were also run with asymmetric
distal boundary (R1 6= R2) with similar agreements with analytical solution.

Variable Mother Daughters

P

STARFiSh

, 5159.58086424 Pa 5000.0 Pa
P

analytic

, 5159.5808642 Pa 5000.0 Pa
Q

STARFiSh

, 100 ml/s 50.0 ml/s
Q

analytic

, 100 ml/s 50.0 ml/s

Table 15: Results comparing STARFiSh with analytical Bernoulli solution in the symmetric bifurca-
tion. The focus is on the numerical solution, and digits have not been rounded.

All simulations in this sections were run with �t = 0.6ms, and �x = 0.5 cm. The simulations
were initialized with zero pressure and zero flow rate. The flow rate was then set to increase
linearly from Q(t = 0) = 0, to Q(t = 1s) = 100 ml/s. The flow rate was then set constant for
another 120 seconds to allow for steady state solution.
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Figure 21: Showing static and total (dottedline) [top], dynamic pressure together with analytic
Bernoulli solution, area and flow rate [bottom], for the symmetric bifurcation

Figure 22: Showing static and total pressure [top], dynamic pressure together and analytic Bernoulli
Pressure, area and flow rate [bottom], for the asymmetric bifurcation
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Variable Mother L. daughter R. daughter

P

STARFiSh

, 5446.53374527 Pa 5263.89970128 Pa 4736.10029885 Pa
P

analytic

, 5446.53374527 Pa 5263.89970117 Pa 4736.10029883 Pa
Q

STARFiSh

, 100 ml/s 52.6389970137 ml/s 47.3610029884 ml/s
Q

analytic

, 100 ml/s 52.6389970117 ml/s 47.3610029883 ml/s

Table 16: Results comparing STARFiSh with analytical Bernoulli solution in the asymmetric bifur-
cation. The focus is on the numerical solution, and digits have not been rounded.

Figure 23: Showing the electrical equivalent system to the bifurcation with constant flow and distal
single resistance boundary. R1, and R2 are the distal boundary resistance, whereas RD1 and RD2
are the resistances that govern the dynamic pressure difference between each daughter and the mother
vessel.

7.2 Womersley

In this section some test are performed on the Womersley model. In Fig. 25 the input flow
signal used in ThoaA test have been transformed from time-domain to frequency-domain to
calculate the velocity profiles (using r

d

as constant radius). Fig. 25 show the input flow, and
the flow from the integrated velocity profiles. The input and output is indiscernible. Fig. 26
show the comparison of the nonlinear convective term

�R
A

u

2

dA

�
using womersleytheory, as-

suming a flat velocity profile, and using the assumed power law profile given by Eq. (3). Fig.
27 show the difference between the friction-term f(x, t) = 2µ⇡r

@u

@⇠

|
⇠=r

using womerslyetherory,
and the assumed velocity profile. Finally Fig. 24 show the application of the womersleytheory
in the ThoaA test. McCFlux is combination 1 solved in STARFiSh, McCFluxmy is combina-
tion 1 solved on personal computer using my own created minisolver, Womersley is solution
using womersleytheory in both convective and friction-term, and Womersleyf is solution using
womersleytheory in friction-term only. 3D data and DCG solution is showed for comparison.
Error-metrics are given in Table 12. There are a few things to note; the difference between
using Womersleytheory only in friction term, and using it in both the convective and friction
term is not very big. Using womersleytheory on the friction-term seem to give rise to bigger
difference (comparing with powerlaw), than using it on convective term. This is also evident in
the pressure Gradient shown in Fig. 24. The solutions with Womersleytheory follow the same
path, but a noticeable different one than the power-law solutions. Also noticable is that peak
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pressure is lower in solutions with Womersley, and also further apart from the peak pressure in
3D solutions, than the power-law solutions. Errormetrics are worse for solutions with womer-
sleytheory. McCFlux and McCFluxmy are indiscernible. The solutions were run with �t = 1

ms and using 17 nodes, giving a maximum CFL number of about 34. The high �t was chosen
because of long simulation time for the Womersley simulations.

Looking at Fig. 28 one can see that using the assumed powerlaw velocity-profile in ThoA
test give very similar profiles to those obtained with Womersley solution. This is especially the
case in the systolic parts of the cycle.

(a) Pressure (b) Pressure Gradient

(c) Flow (d) Radius Change

Figure 24: Upper thoracic aorta. Pressure (a), pressure gradient between inlet and outlet (b), flow
rate (c), and change in radius from diastole (d) with time at the midpoint of the vessel. Results are
shown for four different McC solutions (See text description in Sect. 7.2), one other 1-D numerical
scheme and the 3-D model from [57]. The model parameters are shown in Table 3 and the error
calculations in Table 17.
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ThoAW

DCG McCFlux McCFluxMy Womersley Womersleyf

ERMS

P

1.08 1.04 1.04 1.18 1.19
ERMS

Q

2.55 2.51 2.51 2.75 2.80
ERMS

�r

2.30 2.43 2.43 2.79 2.82
ERMS

�P

7.71 7.74 7.74 8.82 9.04

EMAX

P

3.55 3.10 3.10 3.38 3.46
EMAX

Q

9.12 8.78 8.78 10.65 11.03
EMAX

�r

7.77 6.96 6.96 7.81 7.97
EMAX

�P

31.86 32.76 32.76 38.86 40.34

ESY S

P

-0.55 -0.78 -0.78 -1.17 -1.19
ESY S

Q

-5.57 -6.41 -6.41 -5.14 -5.03
ESY S

�r

-2.48 -3.01 -3.01 -3.92 -3.98
ESY S

�P

-8.97 -11.15 -11.15 -12.16 -12.18

EDIAS

P

0.85 0.61 0.61 0.71 0.71
EDIAS

Q

2.70 2.58 2.58 1.60 1.74
EDIAS

�r

1.86 1.53 1.53 1.67 1.67
EDIAS

�P

7.28 6.99 6.99 7.27 7.31

Table 17: Calculated relative root mean square, maximum, systolic and diastolic errors (%), as
defined in Eq. (56), for test cases corresponding Fig. 24, or the upper thoracic aorta (ThoAo). Errors
are determined at the midpoint of the segment.

Figure 25: Results showing transformation of input-signal Q, to the frequency-domain to obtain
the the velocity profiles during one period. The velocity profiles are then integrated to regain
the flow. The input and output is indescernible
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Figure 26: Comparing the convective term
�R

A

u

2dA
�

using flat velocity profile, Womersley profiles
and the assumed power law (⇣ = 9) velocity profile.

Figure 27: Comparing the friction term (f(x, t) = 2µ⇡r @u

@⇠

|
⇠=r

) using Womersley theory, and the
assumed velocity profile.
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Figure 28: Comparing the velocity profiles obtained from inlet of ThoA, using Womersly theory(-),
using assumed power law (⇣ = 9) profiles (-.), and assuming Pouseille flow (:).
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8 Discussion

In this section the results from Sect. 7 are discussed. In Sect. 8.1 the implementations and
different methods used in STARFiSh are discussed. The findings here form the basis for the final
solutions/methods used in STARFiShs contributions in Comparison1Dscheme. These solutions
are then compared with the five other state of the art numerical flow-solversin Sect. 9, and
discussed in Sect. 10. Finally the tests run with Womersley theory is discussed in Sect. 8.2.

8.1 STARFiSh

8.1.1 SingleVesselPulse

After fixing the implementation error in the original scheme, there is not a lot of difference
between the Flux based method and the Matrix based scheme, however looking at Fig. 13 it
seems as though the Flux based scheme is more in accordance with the other state of the art
solvers. This case has negligible convective terms dependence, due to the low flow rate (1 ml/s).
Both schemes are non diffusive, but comparing with FEM, the Matrix formulation seem to be
more dissipative.

8.1.2 CCA, AoBif, BenchMark

All these three tests has low flow rate Q. As a result the nonlinear convective acceleration term
in the balance of momentum has a less significant weight relative to the other terms. This is
reflected in very small differences when comparing the Flux based scheme and the Matrix based
scheme. The non-conservative aspects of the Matrix formulation is not prominent. Thus these
test didn’t reveal any limitations of the original scheme. Regarding the bifurcation model the
nonlinear model does not seem to be a drawback in test 4.4 and 4.5. This is related to the low
flow, and small difference in total area from mother vessel to daughter vessel(s). Looking at
test 4.4 which has a peak flow of about 70 ml/s and and relative difference in area (diastolic)
between mother and daughter vessel equal to ⇡r

2
m

⇡r

2
d
=

0.85

2

0.6

2 ⇡ 2. The difference in pressure is:

�P =

⇢U

2

1

2

� ⇢U

2

2

2

⇡ �0.3Pa

(66)

The difference is thus negligible. Test 4.5 has even lower flow, (low velocities) and correspond-
ingly small differences in dynamic pressure. Also looking at the error-metrics comparing with
3D data in Table 11 for the CCA test, and Tables 13 to 31 for AoBif it is not obvious that the
Matrix formulation and linear bifurcation/link model is less correct. It is sort of a paradox that
in some of the error-metrics they even seem to be more correct. However this should not be
used as proof of their correctness. The 1D models assume fully developed axisymmetric flow,
and does not account for boundary layers. Also Vortex flow and recovery length in Bifurcations
etc. are not accounted for. All of this likely introduce a lot more errors than the errors due
to internal fluxes in the Matrix scheme, and the linearity in the static bifurcation/link model.
The difference between using convective correction-factor set to one, or calculated according to
Eq. 4 is very small. This may also be explained by the physical problem, and the low relative
weight on the convective term.
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8.1.3 ThoA

This test is a more demanding test than the CCA test, since it has higher flow and a bigger
Reynolds-number. As a result the nonlinear convective acceleration term in the balance of
momentum has a more significant weight relative to the other terms. Comparing the Flux
based scheme, with the Matix based scheme in Fig. 15 the difference between the Flux and
Matrix scheme is more obvious. The Matrix based scheme follow a different curve than the Flux
based scheme, and also the other state of the art solvers. The difference is especially prominent
in the pressure gradient and the flow waveforms. This is due to internal fluxes introduced by
the Matrix scheme. Once again, this is not necessarily represented in the error-metrics in Table
12. The other schemes form a better comparison than the 3-D data. The difference between
using convective correction-factor set to one, or calculated according to Eq. 4 is very small.
The difference is only a scaling of ↵ = 1 and ↵ = 1.1 respectively. Thus neglecting the nonlinear
effect in this test is justified. This is in accordance with Stergiopulos et al. [46].

8.1.4 Adan55

This test proved to be a very good test for figuring out the present state of STARFiSh. The
test was constructed to be a demanding test for the methods, which it indeed has proven to be.
The test has many bifurcations and links, with big difference in mother and daughter vessel
areas, resulting in relative big importance of dynamic pressure changes. Thus the original linear
bifurcation model introduced big errors. Fig. 19 show the different behaviour of the bifurcation
models in an excellent way. The test also have aortic segments with big Reynoldsnumber. As
a result the nonlinear convective acceleration term in the balance of momentum has a more
significant weight relative to the other terms. It is very clear from Fig. 17 to Fig. 18 that
internal fluxes introduced by the nonconservative Matrix scheme also introduce big errors in
this test. The internal flux errors seem to accumulate in the big network and effect the pressure
and flow waveforms distinctly. The Parameters for the Tube law should be set with tapering
also included in the wall-thickness, like discussed in described in the Gridadaption Sect. 6.6.
Thus from the first test, to the final one, submitted in Comparison1Dscheme, three important
changes were made:

bifurcations New nonlinear model implemented.
Scheme New scheme implemented.
Tube law Wall-thickness including tapering.

Still there are some unresolved problems regarding the grid-dependence in this test. This is
believed to be related to the many bifurcations, and introduction of very short vessels in aortic
regions with big flow, and resulting big changes in dynamic pressure. The region is thus highly
nonlinear and challenging for the methods. This was discussed in Sect. 6.6 and some thought
and possible reasons for the grid-dependance is revisited here:
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characteristic variables The Riemann variables moving toward the bifurca-
tion/link is calculated by interpolation. With few
nodes, and in the limit of only having one node
at each boundary, no field equations are solved.
Thus the solution is only calculated from the bi-
furcationmodel. The Riemann invariants needed
from the vessel with only two boundary nodes
is thus interpolated between these two boundary-
nodes. The Riemann invariants are based on a
linearized inviscid form of the governing equations
(18). There might be a big difference in order of ac-
curacy between the linearized Riemann solutions,
and the actual scheme solving the 1-D equations.
When fewer nodes are used, more weight is put on
the linearizion.
Another related question arises when calculat-
ing the Riemann invariant coming from the field.
For instance for the mother vessel !1

1

(x

1

, t

n+1

) =

!

1

1

(x

1

��x

1

, t

n

) is considered known. In the cur-
rent implementation of STARFiSh !

1

1

is calculated
based on information on the distal node of the ves-
sel. However I argue that if CFL numbers are close
to one, information should be taken from node -2
rather than -1 to calculate it. The effect of this is
likely not very big, since the only information that
is needed is �

1

, �
2

, c, and C. See Sect. 2.2.
PQ vs AU characteristics In Sect. 2.2 a characteristic analysis is performed

on both the AU and the PQ systems under as-
sumption of negligible local viscous losses (i.e. zero
right hand side). However looking at the RHS of
these two system, they are not equal. If this con-
stitute a difference, and the magnitude of this dif-
ference however is uncertain, but could be tested.

constrained area This is an area which is highly constrained, and
both the field-waveform and Bernoulli equation
should be satisfied. This constitute a numerical
difficulty.

Initialization The simulation is initialized with Constant pres-
sure and zero flow. Thus the network is not ini-
tilized in equilibrium P = QR, where R is the Re-
sistance in the network. The field equations should
converge to the equilibrium, however it is not cer-
tain that this is the case for the boundaries. The
boundaries are calculated with � values. Thus if
one start outside equilibrium, the solution does not
necessarily converge to equilibrium. See also Sect.
8.3.
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P, Q system As described in Sect. 3.5 I argue that the P, Q
system have some non-conservative aspects com-
paring with the A,U system. Thus it would be in-
teresting to solve this test with an implementation
of the A,U system, to see if the grid-dependence is
in part due to non-conservative P,Q formulation.

Alternating scheme It has been argued [20] that MacCormack (for-
ward/backward) is better at resolving waves prop-
agating in the positive direction, and opposite
for MacCormack (backward/forward). The errors
are more prominent in systole when the flow is
big. Consequently the difference between veloc-
ity of forward and backward traveling waves could
be relatively big. A scheme that alternates be-
tween forward/backward and backward/forward
could maybe resolve the problem better. This
would probable also be an advantage when solv-
ing vessels with few nodes. In the limit of only
having three nodes, only using forward/backward
method for instance result in more weight on node
1 and 2, than 3. Alternating thus lead to a solution
based more evenly on the domain. See Fig 29

(a) Forward/Backward (b) Backward/Forward

Figure 29: Illustration of the difference between using Forward/Backward (left) and Back-
ward/Forward macCormack scheme. The arrows indicate where information (Fluxes and RHS) are
taken from to calculate the field node in a vessel with only three nodes.

8.1.5 Steady Flow in a single vessel with narrowing in the middle

This test was created as a test of the new link model, and a check of the two schemes (Flux
and Matrix) ability to regain pressure after the narrowing. It is clear that the new link model
follow the Analytic Bernoulli solution. Also the Flux based scheme follow the Analytic Bernoulli
solution through the narrowing, and regain the pressure after the narrowing. The Matrix based
scheme on the other hand, does not follow the analytic Bernoulli solution through the narrowing.
In addition, the pressure is not fully regained after the narrowing. Once again this is related
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to the changes in the convective term through the narrowing, and internal fluxes from the
non-conservative matrix form introduce noticeable errors.

8.1.6 Constant Flow in symmetric and asymmetric single-bifurcation

The results from the symmetric and asymmetric bifurcations show excellent agreement with
analytical Bernoulli and electrical-equivalent solutions. The tests thus show that STARFiSh
with the newly implemented nonlinear bifurcation model is able to reach correct steady state
solutions for single bifurcations. Errors introduced through the transient part does not accumu-
late to any noticeable amount. The waves that propagate as a result of the linearly increasing
flow from zero to the steady state value of 100 ml/s are very long. Thus these tests are not
very challenging for the methods. Any errors introduced by the use of Riemann invariants
(linearizing the governing equations) are not prominent. As a result these tests may be seen as
a verification of the implemented bifurcation model, but cannot be used to depict the accuracy
of the Riemann invariants.

8.1.7 Methods used in STARFiSh’s contribution to Comparison1D-scheme

Based on the results/findings presented and discussed in the eight tests above the final solutions
used as STARFiSh’s solutions in the article were run with the new conservative scheme, and
nonlinear link/bifurcation model (where applicable). Moreover the convective correction factor
in all tests was set to one, to be compatible with the other schemes. The �t and spatial
discretization used are based on the the results from Sect. 6, Grid-adaption and is summarized
in Table 33

8.2 Womersley

A lot more tests should be done on the womersleymodel. However some things can be noted
from the few tests made in Sect. 7.2. The flow is regained after the change from time-domain
to frequency-domain, and back again. On the test on ThoA the effect off Womersley-aplication
on the convective term is almost negligible. Thus assuming a flat profile, or a power-law veloc-
ity profile are good estimations in regards to the convective term in this test. This is also in
accordance with the findings in Sect. 8.1.3, and Stergiopulos et al. [46]. Looking at the velocity
profiles comparing womersley and power-law (⇣ = 9), they are quite similar and also close to
flat in systole (Fig. 28). They differ more in diastole, but this is a period when the Windkessel
effect is dominent, and the velocityprofile is not important.

The effect of womersleytheory on the friction-term is noticeable in the test with ThoA. One
could argue that the solution for the pressure-gradient with womersley application on the fric-
tion term in Fig. 24 follow a path that is more similar to the 3D solution. However looking
at the error-metrics in Table 17, the solutions with womersleytheory are all less in accordance
with the 3D solution, than the solutions without womersleytheory. Thus all the simplifications
and assumptions made in the 1D-solutions, all introduce more errors, and uncertainties in wall
models etc. overshadows the effect of womersleytheory. At least in this test.

In bigger networks, in which the velocity profile likely varies from Pouseille flow in small arter-
ies, to almost flat profiles in aortic segments, the womersley application on the convective and
friction term is likely more important. For instance looking at the ADAN55 model, the entire
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network is assumed to have a Pouseille (⇣ = 2) velocity-profile. In aortic regions the velocity-
profile will be similar to those obtained in this test (Fig. 28). The effect of using Womersley
theory would likely be noticeable. It also reduce the number of uncertain parameters (⇣).

8.3 Future work

All the tests and data that now are available for STARFiSh, through the project Compari-
son1Dscheme form a brilliant basis for benchmarking future implementations of STARFiSh.
The test-case adan55 is in my opinion an especially good test case, being the most demanding
test for the numerical methods. As mentioned there are still some unresolved questions re-
garding the big dependence on grid in this test. More work should be done in figuring out the
reason for this. I believe the grid-dependence is more related to the handling of the bifurcations
than to the field equations. More tests should be done to validate the methods used in the
bifurcation model. Is there a difference between our way of handling the Riemann invariants
(discretization of the pressure, flow, and velocity with the Riemann-invariants), and the way
the other schemes handle it.

The findings in this Thesis revealed that the original implementation of the MacCormack
scheme was non-conservative. The new scheme seem to be much more in accordance with
the other schemes, and has not given any signs of being non-conservative. Still I argue that
there are some non-Conservative aspect of the governing equations written in terms of the P,Q
variables. Most importantly it requires an evaluation of the Compliance C, in the calculations
in the mass equation. However where to evaluate this in order to ensure conservation of mass
is not obvious. A related, but probably less important evaluation of the Area in the pressure
term in the momentum equation is also needed. Looking at the governing equations written in
terms of their A,U variables this numerical problem is avoided in both conservation equations.
The A, Q system avoids this problem in the mass equation. Of the six schemes compared in
this Thesis, only the McC (STARFiSh) and TP scheme use the P, Q variables. Tests should
be made to figure out if the P,Q system introduce unnecessary internal flux errors.

Using the current implementations of STARFiSh, one should be aware when initializing the
simulations. Quite some time have been spent on strange results due to wrong initialization.
The tests; CCA, ThoA, AoBIf and Benchmark test are all based on a prescribed total flow. In
addition the flow at time zero is not equal to one Q(t = 0) 6= 0. The current implementation
of STARFiSh uses � values at boundaries If one initialize the network at the wrong value this
error is not eliminated, but the next value (in time) is simply the initial value with a � value
added to it. If one is not aware of this, and initialize the network with a different flow than
the prescribed flow at time zero, the input and output will not be the same. Another related
problem was encountered in the Single Resistance model. The current implementation assumes
that the network is initilized in equilibrium P = QR. Thus, it will not converge to the correct
solution if it is not initialized in equilibrium (This have likely introduced some unnecessary
errors in BenchMark test). In my opinion this model should be reimplemented. This may be
the case for other boundary models.
Also some problems was encountered using the Auto initialization. It does not necessarily find
the correct equilibrium (in Adan55 it is way of), and it does not necessarily cut the simulation
at the correct time (in Benchmark test, Auto initialization was used, but I needed to shift the
solution myself in order for it to be in accordance with the inflow).
This is all something one should be aware of when initializing for solutions. In my opinion,
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the handling of the Boundary-conditions with using � values, and the methods for initial-
izations should be checked more thoroughly. Or one should at least check that the input and
output is the same, and that the governing equations are really satisfied (P = QR for instance).

More tests should be done on the new link/bifurcation model. Tests should be done regarding
number of iterations needed to satisfy the equations with enough accuracy. More challeng-
ing/nonlinear tests could also be performed.

The Womersley model that I have suggested, have not been implemented in STARFiSh. Thus
this still remain. Also the model I suggest is very time consuming, and more work could be
done to reduce the computational time. The model is based on previous work done by Hallvard
Moian Nydal. I would like to point out that I think that his treating of the convective term
might be wrong. To calculate the convective term using Womersley theory one need to evaluate
the term

�R
A

u

2

dA

�
, not the term Q

2

A

.

See also table in Sect. 8.1.4 for a discussion on grid-dependence in ADAN55 model.
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9 Results Comparison1Dscheme

We first compare the solutions given by the six numerical schemes described above in a series of
simple test cases: a model of blood flow in a reflection-free tube for which a theoretical solution
exists in the limit of almost negligible fluid velocity (Section 9.1), and models of blood flow in
the human common carotid artery (Section 9.2), upper thoracic aorta (Section 9.3) and aortic
bifurcation (Section 9.4), for which 3-D solutions are available from [57]. We then assess the
six schemes in two different arterial networks: a 37-artery model of the aorta and its largest
branches for which in vitro pressure and flow waveforms were acquired in [26] (Section 9.5), and
the ADAN55 model by Blanco et al. [12], which contains the largest 55 systemic arteries of the
human circulation (Section 9.6). For each test case, we provide graphical comparisons supported
by tabulated calculations of relative errors. Table 33 shows the time step, characteristic spatial
discretization (characteristic length of ⌦

e

), and space and time accuracies for each scheme.

9.1 Single pulse propagation in a straight reflection-free vessel

Figure 34 shows the dimensionless pressure wave at different times along the length of the tube.
The inflow has a width of approximately 0.05 s and an initial wave speed of c

0

= 6.17 m s�1,
giving a wavelength of about c

0

T ⇡ 31 cm. This is a short wavelength compared with the 10
m long vessel, which enables showing the full shape of the pulse wave as it propagates along
the vessel. For the inviscid problem, theoretical pressure and flow waveforms are in phase,
have a constant amplitude, and propagate to the right with a wave speed given by Eq. (19)
[4]. These theoretical results are well predicted by all six numerical schemes. In particular,
the peak magnitude of the pressure wave (P

peak,inv

) decreases by less than 2.2%, relative to the
peak magnitude at the inlet, as it travels the length of the vessel. For the viscous problem, the
peak magnitude of the pressure wave (P

peak,visc

) decreases with distance x from the inlet, with
good agreement between numerical results and the asymptotic exponential damping rate given
by the theoretical solution

P

peak,visc

(x) = P

peak,inv

exp

✓
(⇣ + 2)⇡µx

⇢ c

0

A

0

◆
, (67)

where c

0

is the pulse wave velocity at the initial area A

0

. This theoretical solution is indicated
by the thick black line in each panel of Fig. 34.

9.2 Common carotid artery

Figure 35 shows the pressure, pressure gradient (difference between inlet and outlet pressures),
flow, and variations in luminal radius with time at the midpoint of the vessel obtained by
solving the 1-D equations using all six schemes. These waveforms are almost identical to the
corresponding waveforms calculated by solving the Navier-Stokes equations in a 3-D domain
with compatible geometrical and mechanical properties and identical inflow and outflow bound-
ary conditions [57]. Relative errors were determined with respect to the 3-D solution and are
presented in Table 34. Pressure and flow errors are smaller than errors in pressure gradient and
variations in radius, with no significant differences between the six schemes. Relative root mean
square errors are smaller than 1.0% for pressure, the flow and change in radius, and smaller
than 5.0% for the pressure gradient.
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9.3 Upper thoracic aorta

Figure 36 presents numerical results for the pressure, pressure gradient, flow rate, and variations
in luminal radius with time at the midpoint of the segment. They are calculated for all six
numerical schemes and compared with the corresponding 3-D solutions. The 1-D solutions are
similar to each other, with the largest differences with respect to the 3-D results observed during
the systolic part of the cardiac cycle. The smallest relative errors are for the pressure and the
largest for the pressure gradient (Table 35). Relative root mean square errors are all smaller
than 3% for the pressure, flow and change in radius, and smaller than 8% for the pressure
gradient.

9.4 Aortic bifurcation

Figure 37 displays the waveforms for pressure, flow rate, and variations in luminal radius at
three points: the midpoint of the aorta, end point of the aorta and midpoint of either iliac artery.
All these waveforms are similar among the six schemes and compare well with the corresponding
3-D model waveforms. Relative errors were determined with respect to the 3-D solution and
are shown in Table 36. Relative errors for the pressure and flow rate are consistently smaller
than for the change in radius, with no significant differences between the six schemes. Relative
root mean square errors are all smaller than 1.2% for the pressure and flow, and smaller than
4.4% for the variation in radius.

9.5 Benchmark (in vitro)

Comparisons between experimental and numerical pressure and flow waveforms are shown in
Fig. 38 for the aorta, and in Figs. 39, 40 and 41 for vessels of the first, second and third
generation of bifurcations, respectively. All six numerical schemes are able to capture the main
features of in vitro pressure and flow waveforms at the eight arterial sites investigated. However,
numerical predictions overestimate the amplitude of the high-frequency oscillations observed
in the in vitro pressure and flow waveforms of vessels of the second (Fig. 40) and third (Fig.
41) generation of bifurcations. Table 37 shows relative errors calculated with respect to in
vitro measurements at the eight arterial vessels studied. Relative errors for the pressure are
all consistently smaller than for the flow rate, with no significant differences between the six
schemes. Relative root mean square errors are all smaller than 4% for the pressure and smaller
than 26% for the flow rate.

9.6 ADAN55 model

Comparisons of pressure and flow rate waveforms obtained using the different numerical tech-
niques are shown in Fig. 42 for three aortic segments, in Fig. 43 for first-generation vessels,
in Fig. 44 for second-generation vessels, and in Fig. 45 for third- and fourth-generation ves-
sels. There is an excellent agreement among all waveforms generated by the DG, LCG, FEM,
FVM and McC methods; differences cannot be appreciated in the scale of the figures. Some
discrepancies, however, can be observed between these waveforms and those provided by the
STM scheme. In addition, Fig. 46 presents a comparison of the pressure variation throughout
the aorta at several time instants during the cardiac cycle. These results also illustrate how
changes in material properties and branching affect the pressure flow waveforms throughout
the cardiac period. In the ADAN55 model, the first major branches of the aorta are situated at
about 30 cm downstream of the aortic root, affecting the pressure waves as observed in Fig. 46.
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Lastly, Fig. 47 shows that all six schemes produce similar diastolic pressures along the aorta.
Some discrepancies are observed for systolic and mean pressures for the STM scheme, where
it overestimates systolic pressures by about 1% in proximal locations and underestimates them
by about 3% in distal locations, relative to the values calculated by the other five methods.
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10 Discussion Comparison1Dscheme

We have compared the solution provided by six distinct numerical schemes for nonlinear
1-D blood flow modelling in a set of benchmark test cases. The schemes were chosen to em-
brace a variety of numerical techniques for the numerical solution of the 1-D formulation: finite
element (DG, FEM, LCG, STM), finite volume (FVM) and finite difference (McC) methods.
In this study, we have considered the widely used form of the 1-D equations (6) and (8), which
accounts for nonlinear effects and is able to provide physiological features of human pulse wave-
forms.

Our study has been motivated by the scarceness of test cases for benchmarking 1-D numerical
schemes, as well as by our desire to provide an accessible reference dataset. To address this gap
in the literature, we have chosen six test cases that collectively provide a comprehensive frame-
work for the development and assessment of other numerical schemes. With this aim in mind,
we have fully described all test cases in Sections 9.1 to 9.6 and have provided, as supplementary
material, all numerical and in vitro data used in this study for benchmarking 1-D numerical
schemes. The test cases range from a simple, non-physiological, reflection-free, single tube, to
more physiological single-vessel models, to network models simulating blood flow in the largest
arteries of the human systemic circulation under normal physiological conditions. In Sections
10.1 to 10.3 we discuss the value of each test case for benchmarking 1-D schemes and examine
similarities and discrepancies in the solutions computed by the DG, LCG, FEM, FVM, McC
and STM methods.

10.1 Single pulse model

In the linear regime (i.e. for small and constant average velocity), a theoretical solution exists
for the propagation of a narrow Gaussian-shaped wave in a reflection-free vessel, for both in-
viscid and viscous flow. This wave, which features a small wavelength compared to the vessel
length (⇡ 31 cm versus 10 m, Fig. 34), is a continuous approximation to the unit pulse �(t�t

0

),
t

0

= 0.05 s (i.e. �(t

0

) = 1 and �(t) = 0 for t 6= t

0

). Thus, very high frequencies dominate the
Gaussian-shaped wave considered here. The single-pulse model, therefore, enables us to assess
the ability of numerical schemes to solve the 1-D equations correctly and, in particular, to
propagate high-frequency pulse waves. Numerically this is more challenging than the propaga-
tion of low-frequency pulse waves. Capturing the correct propagation of high-frequency waves
is important for simulating arterial pulse wave hæmodynamics under physiological conditions,
since high frequencies are responsible for relevant features of pulse waveforms; e.g. the feet of
pressure, flow and area waveforms, and the dicrotic notch in the aortic pressure waveform.

Our results have shown the ability of all six schemes to solve correctly Eqs. (6) and (8) in
the single-pulse model. For the FEM, FVM, McC and STM schemes, the high frequency and
low wavelength of the Gaussian wave require a smaller spatial discretisation, compared to the
discretisation employed in the other more physiological cases (Table 33). The DG method needs
a higher space accuracy (order 10) than in the other test cases. The LCG approach involves
more elements than the DG method (5000 versus 250), since the former has a linear accuracy
in space. The FVM presents a compromise between number of elements used to discretize the
spatial domain (1000) and time step, since 4-th order accuracy in space and time is used. The
time step must be drastically reduced in the FEM, because the method is first order and the
wavelength is short with respect to the vessel length. Moreover, CFL numbers must be very
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close to one for the McC scheme to avoid dispersive errors.

10.2 Physiological single artery models

We have considered two additional single-vessel test cases under normal physiological conditions
and for which 3-D solutions are available from [57]. These have allowed us to show that the six
1-D model schemes are able to capture the main features of 3-D model pressure, flow and area
waveforms in two large arteries: the common carotid artery (Fig. 35) and the upper thoracic
aorta (Fig. 36). For all six schemes, relative errors were consistently smaller for the carotid
(Table 34) than aorta (Table 35) model. This is due to inertial forces playing a larger role
in the aorta model; the peak Reynolds number is nearly an order of magnitude greater in the
aorta model [57]. As a result, for the aorta model, the nonlinear convective acceleration term in
the balance of momentum equation in (1b) has a more significant weight relative to the other
terms, making it a more challenging test for 1-D schemes. Larger wall strains (�r/r

d

) in the
aorta model were also identified in [57] as an additional source of discrepancy between 1-D and
3-D modelling. Moreover, relative errors in the aorta model decrease during the diastolic part
of the cardiac cycle, since the physics of blood flow becomes increasingly linear and inertia-free
with the increasing time in diastole [55].

Compared to the single-pulse test case, pulse wavelengths in the carotid and aorta cases are
much longer. These lengths can be approximated by multiplying the period of the systolic part
of the inflow wave (T

s

) with the pulse wave speed at mean pressure (c
m

); we obtain T

s

c

m

= 2.7

m for the carotid test and T

s

c

m

= 1.8 m for the aorta test. As a result, the numerical parame-
ters of all six numerical schemes can be relaxed (Table 33): the time step can be increased by a
factor of 103 in the FEM and of 10 in STM, the order of the space accuracy can be dropped for
both DG and FVM, and lowering the CFL number does not critically increase dispersive and
diffusive errors for the McC scheme. Similarly for the LCG scheme, the solutions for both the
carotid and aortic models are obtained with a significantly smaller number of elements than for
the single-pulse model.

10.3 Physiological network models

The three additional test cases that we have used to assess 1-D numerical schemes contain arte-
rial bifurcations – a key anatomical feature for blood flow modelling in the arterial tree. These
are a single-bifurcation model and the 37- and 55-artery models of blood flow in the systemic
arterial network, which contain multiple bifurcations. They allow us to verify the ability of
each scheme to deal with multiple reflections generated at a junction, where continuity and
compatibility conditions are imposed (Section 3.7.2).

The single-bifurcation model provides a test for benchmarking the connection of three 1-D model
vessels through a bifurcation under normal physiological conditions. This test simulates blood
flow in the abdominal aorta and its bifurcation into the two iliac arteries that perfuse the legs.
For this test, a 3-D solution is available from [57] to assess the accuracy of 1-D schemes. All
six 1-D schemes considered here are able to capture the multiple wave reflections generated at
the bifurcation, which shape pressure, flow and area waveforms in the aorta and iliac arteries
(Fig. 37). All numerical schemes yield comparable relative errors (Table 36), despite the dy-
namic part of pressure (1/2⇢U2

) being neglected in the STM scheme. This is because 1/2⇢U

2

is small compared to the hydrostatic pressure (P ) at the bifurcation. Moreover, relative root
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mean square errors are smaller than for the single-aorta test and similar to the common carotid
test, since peak Reynolds numbers are of similar order of magnitude for both the carotid and
bifurcation cases.

The 37-artery model includes the aorta and its larger branches. For this case, in vitro pressure
and flow waveforms were acquired in [26], which has allowed us to test the accuracy of the six
1-D schemes. These are all able to reproduce the main features of pressure and flow waveforms
measured in vitro (see Figs. 38 to 41), with relative errors smaller than 4% for pressure and 26%
for the flow (Table 37). Discrepancies between experimental and numerical results arise from
the uncertainties in the experimental measurements and the assumptions and simplifications of
the 1-D formulation. According to [26], the larger relative errors in the flow predictions com-
pared to their pressure counterparts can be explained because experimental flow measurements
were less precise than experimental pressure measurements. Moreover, the greater amplitude
of high-frequency oscillations in the peripheral vessels predicted by the numerical schemes, but
not seen in the in vitro measurements, can be reduced by adding a visco-elastic component to
the tube law defined by Eq. (8), as described in [1]. These oscillations, whose frequency is well
predicted by all six methods, are produced by the resistive outflow boundary conditions used
in the experimental set-up, which are non-physiological since they lack any peripheral compli-
ance. Similarly to the single-bifurcation model discussed above, the dynamic part of pressure
(1/2⇢U2

) was neglected in the STM. Given that the STM produces similar results to the other
five methods we conclude that (1/2⇢U2

) does not play an important role in the 37-artery model.

The ADAN55 model simulates blood flow in the 55 larger arteries of the human systemic
circulation. Arterial anatomy and mechanical properties, and inflow and outflow boundary
conditions are all based on physiological human data. ADAN55, therefore, enables verification
of numerical methods to solve 1-D haemodynamics under normal physiological conditions. For
the ADAN55 model the six numerical schemes deliver pretty consistent solutions. Noticeable
discrepancies are obtained with the STM in comparison to the rest of the numerical schemes
(see Figs. (42) to (45)). Such larger differences are explained by the anatomical configuration
of the ADAN55 model, which makes the model more sensitive to the coupling strategy at junc-
tions. Recall that in the STM strategy the dynamic pressure is neglected when coupling vessels
at junctions. Furtheremos, differences between models are more visible when zooming in the
pressure along the aorta (see Fig. (46)). Except for the coupling strategy in the STM discussed
above, the rest of the differences can be explained by discretization errors, just as occurred with
the high frequency oscillations in the 37-artery model.

Using the 37-artery and ADAN55 test cases we have shown the ability of all six numerical
methods to solve the nonlinear 1-D equations accurately and to capture the main features of
pulse wave propagation in networks made up of large arterial segments. This is consistent with
the outcome of previous studies [47, 37, 33, 32, 45, 56, 41, 8, 1, 39, 21, 57].
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11 Conclusions

The results from the eight tests performed in this Thesis revealed that the original solving-
scheme in STARFiSH is non-conservative. The non-conservative aspects are only prominent in
tests with big relative weight on the convective term. The original Matrix formulation should
not form the basis of the solving scheme, but is only needed to perform the characteristic
analysis used in handling of boundary-conditions. Adan55 test also revealed that the bifur-
cation model based on continuity of static pressure can deviate a lot from the model based
on continuity of total pressure. As a result a new solving-scheme and bifurcation model have
been implemented. The models have been validated in cases where analytical solutions exist.
Moreover the new scheme have showed to conserve flow-rate and pressure in all tests.

The findings from the grid-adaption show that for physiological cases with corresponding long
wavelengths, relatively low CFL numbers can be tolerated. Dispersive and Diffusive errors
introduced by low CFL numbers are small comparing with 3D and experimental data.

With the new implementations we have shown that arterial pulse wave haemodynamics can
be accurately simulated using finite element, finite volume or finite difference methods. All six
schemes considered in this study have been assessed in a series of benchmark test cases with
increasing degree of complexity, for which theoretical, numerical 3-D or in vitro pulse wave-
forms are available. Results have shown a good agreement among all numerical schemes and
their ability to capture the main features of pressure, flow and area waveforms in large arteries.
This study have provided additional support for the use of 1-D reduced modeling to accurately
simulate arterial pulse wave haemodynamics with a reasonable computational cost. The test
cases used in this study can be applied to facilitate the development and assessment of future
numerical schemes for the correct solution of the 1-D equations of blood flow in networks of
compliant arteries.

The model which integrates Womersley theory with 1-D compliant vessel flow did not yield
a better solution than the standard model based on assumed velocity-profiles, comparing with
3-D data in a test replicating blood flow in the thoracic aorta. The effect of Womersley theory
is likely more noticeable in bigger networks, which has regions with high and low Reynolds-
number.
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A Tests

A.1 Benchmark (in vitro)

ID LD RD l [cm] r

p

[cm] r

d

[cm] R [Pa s/m3] name

1 2 8 3.6 1.44 1.3 - Ascending aorta

2 4 3 2.8 1.1 0.73 - Innominate

3 - - 14.5 0.54 0.39 2.67 ·109 R. carotid

4 5 - 21.8 0.44 0.33 - R. subclavian 1

5 7 6 16.5 0.33 0.28 - R. subclavian 2

6 - - 23.5 0.21 0.21 3.92 ·109 R. radial

7 - - 17.7 0.21 0.21 3.24 ·109 R. ulnar

8 9 10 2.1 1.3 1.25 - Aortic arch 1

9 - - 17.8 0.56 0.37 3.11 ·109 L. carotid

10 11 15 2.9 1.25 1.18 - Aortic arch 2

11 12 - 22.7 0.44 0.34 - L. subclavian 1

12 13 14 17.5 0.34 0.28 - L. subclavian 2

13 - - 24.5 0.21 0.21 3.74 ·109 L. radial

14 - - 19.1 0.21 0.21 3.77 ·109 L. ulnar

15 16 17 5.6 1.18 1.1 - Thoracic aorta 1

16 - - 19.5 0.41 0.32 2.59 ·109 Intercostals

17 23 18 7.2 1.1 0.93 - Thoracic aorta 2

18 19 20 3.8 0.4 0.4 - Celiac 1

19 22 21 1.3 0.43 0.43 - celiac 2

20 - - 19.1 0.18 0.18 3.54 ·109 Splenic

21 - - 19.8 0.19 0.19 4.24 ·109 Gastric

22 - - 18.6 0.33 0.29 3.75 ·109 hepatic

23 24 25 6.2 0.93 0.8 - Abdominal aorta 1

24 - - 12.0 0.26 0.26 3.46 ·109 L. renal

25 27 26 0.7 0.79 0.79 - Abdominal aorta 2

26 - - 11.8 0.25 0.25 3.45 ·109 R.renal

27 31 28 10.4 0.78 0.59 - Abdominal aorta 3

28 29 - 20.5 0.39 0.34 - R. iliac-femoral 1

29 30 - 21.6 0.34 0.23 - R. iliac-femoral 2

30 35 34 20.6 0.23 0.21 - R. iliac-femoral 3
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31 32 - 20.1 0.4 0.33 - L.iliac-femoral

32 33 - 19.5 0.33 0.23 - L. iliac-femoral 2

33 37 36 20.7 0.23 0.21 - L. iliac-femoral 3

34 - - 16.3 0.16 0.16 5.16 ·109 R.anterior tibial

35 - - 15.1 0.15 0.15 5.65 ·109 R. posterior tibial

36 - - 14.9 0.16 0.16 4.59 ·109 L. posterior tibial

37 - - 12.6 0.16 0.16 3.16 ·109 L. anterior tibial

Table 18: Parameters for BenchMark test model described in 4.5. It should be noted that the metrics
in this table have been rounded to the second integer of the used units.

A.2 Benchmark (ADAN55 model)
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N� Artery name Length p. Radius d. Radius R

1

R

2

C

[cm] [cm] [cm]
⇥dyn.s

cm5

⇤ ⇥dyn.s
cm5

⇤ ⇥cm5

dyn
⇤

1 aortic arch I 7.441 1.595 1.295
2 brachiocephalic trunk 4.735 0.673 0.616
3 aortic arch II 0.960 1.295 1.257
4 subclavian R I 1.574 0.490 0.418
5 common carotid R 8.122 0.448 0.333
6 vertebral R 20.445 0.134 0.134 18104 72417 3.129E-06
7 subclavian R II 4.112 0.418 0.230
8 axillary R 12.000 0.230 0.208
9 brachial R 22.311 0.208 0.183
10 radial R 30.089 0.138 0.138 11539 46155 4.909E-06
11 ulnar R I 2.976 0.141 0.141
12 common interosseous R 1.627 0.096 0.096
13 ulnar R II 23.926 0.141 0.141 11749 46995 4.821E-06
14 posterior interosseous R 23.056 0.068 0.068 47813 191252 1.185E-06
15 external carotid R 6.090 0.227 0.227 9391 37563 6.032E-06
16 internal carotid R 13.211 0.277 0.277 5760 23041 9.833E-06
17 common carotid L 12.132 0.448 0.333
18 aortic arch III 0.698 1.257 1.228
19 external carotid L 6.090 0.227 0.227 9424 37696 6.011E-06
20 internal carotid L 13.211 0.277 0.277 5779 23118 9.801E-06
21 subclavian L I 4.938 0.490 0.348
22 aortic arch IV 4.306 1.228 1.055
23 vertebral L 20.415 0.134 0.134 19243 76972 2.944E-06
24 subclavian L II 4.112 0.348 0.230
25 axillary L 12.000 0.230 0.208
26 brachial L 22.311 0.208 0.183
27 radial L 31.088 0.138 0.138 11332 45329 4.998E-06
28 ulnar L I 2.976 0.141 0.141
29 common interosseous L 1.627 0.096 0.096
30 ulnar L II 23.926 0.141 0.141 11976 47905 4.730E-06
31 posterior interosseous L 23.056 0.068 0.068 47986 191945 1.180E-06
32 thoracic aorta I 0.990 1.055 1.036
33 posterior intercostal R 19.688 0.140 0.140 249127 996508 2.274E-07
34 thoracic aorta II 0.788 1.036 1.022
35 posterior intercostal L 17.803 0.140 0.140 255583 1022333 2.216E-07
36 thoracic aorta III 1.556 1.022 0.992
37 posterior intercostal R 20.156 0.155 0.155 232434 929735 2.437E-07
38 thoracic aorta IV 0.533 0.992 0.982
39 posterior intercostal L 18.518 0.155 0.155 234425 937702 2.416E-07
40 thoracic aorta V 12.156 0.982 0.754
41 thoracic aorta VI 0.325 0.754 0.749

Table 19: Parameter dataset for the ADAN55 model (see Fig. 4). Data is rounded to an adequate
number of decimal digits. See Supplementary Material for data in full detail.
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N� Artery name Length p. Radius d. Radius R

1

R

2

C

[cm] [cm] [cm]
⇥dyn.s

cm5

⇤ ⇥dyn.s
cm5

⇤ ⇥cm5

dyn
⇤

42 celiac trunk 1.682 0.335 0.321
43 abdominal aorta I 1.399 0.749 0.732
44 common hepatic 6.655 0.269 0.269 3349 13394 1.692E-05
45 splenic I 0.395 0.217 0.217
46 left gastric 9.287 0.151 0.151 343394 1373574 1.650E-07
47 splenic II 6.440 0.217 0.217 4733 18933 1.197E-05
48 superior mesenteric 21.640 0.393 0.393 2182 8728 2.596E-05
49 abdominal aorta II 0.432 0.732 0.726
50 renal L 2.184 0.271 0.271 2263 9051 2.503E-05
51 abdominal aorta III 1.198 0.726 0.711
52 renal R 3.772 0.310 0.310 2270 9082 2.495E-05
53 abdominal aorta IV 5.409 0.711 0.643
54 inferior mesenteric 9.024 0.208 0.208 23913 95652 2.369E-06
55 abdominal aorta V 4.222 0.643 0.590
56 common iliac R 7.643 0.450 0.409
57 common iliac L 7.404 0.450 0.409
58 external iliac R 10.221 0.338 0.319
59 internal iliac R 7.251 0.282 0.282 4146 16582 1.366E-05
60 femoral R I 3.159 0.319 0.314
61 profunda femoris R 23.839 0.214 0.214 3427 13707 1.653E-05
62 femoral R II 31.929 0.314 0.269
63 popliteal R I 13.203 0.269 0.237
64 anterior tibial R 38.622 0.117 0.117 24525 98100 2.310E-06
65 popliteal R II 0.880 0.237 0.235
66 tibiofibular trunk R 3.616 0.235 0.235
67 posterior tibial R 38.288 0.123 0.123 21156 84625 2.677E-06
68 external iliac L 10.221 0.338 0.319
69 internal iliac L 7.251 0.282 0.282 4158 16632 1.362E-05
70 femoral L I 3.159 0.319 0.314
71 profunda femoris L 23.839 0.214 0.214 3429 13715 1.652E-05
72 femoral L II 31.929 0.314 0.269
73 popliteal L I 13.203 0.269 0.237
74 anterior tibial L 38.622 0.117 0.117 24533 98131 2.309E-06
75 popliteal L II 0.880 0.237 0.235
76 tibiofibular trunk L 3.616 0.235 0.235
77 posterior tibial L 38.288 0.123 0.123 21166 84662 2.676E-06

Table 20: Continuation of Table 19. Parameter dataset for the ADAN55 model (see Fig. 4). p.:
proximal, d.: distal. Data is rounded to an adequate number of decimal digits. See Supplementary
Material for data in full detail.
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B Grid-adaption

B.0.1 CCA, ThoA and AoBif

table 23 to 29 are table showing error metrics for different CFL numbers and �t performed on
tests 4.2 to 4.4.

CFL 0.87 0.43 0.22 0.11 0.05

ERMS

P

0.2 0.2 0.2 0.2 0.19
ERMS

�P

2.84 2.86 2.9 2.99 3.06
ERMS

Q

0.21 0.21 0.21 0.22 0.27
ERMS

�r

0.82 0.82 0.82 0.83 0.81

EMAX

P

0.42 0.42 0.43 0.44 0.42
EMAX

�P

15.78 15.88 16.06 16.4 16.69
EMAX

Q

1.03 1.04 1.06 1.08 1.37
EMAX

�r

1.84 1.84 1.85 1.86 1.82

ESY S

P

-0.28 -0.28 -0.28 -0.29 -0.28
ESY S

�P

-13.28 -13.36 -13.52 -13.83 -14.190
ESY S

Q

-0.56 -0.57 -0.59 -0.62 -0.95
ESY S

�r

-1.71 -1.71 -1.72 -1.73 -1.7

EDIAS

P

0.26 0.26 0.26 0.25 0.25
EDIAS

�P

5.08 5.02 4.89 4.65
EDIAS

Q

0.24 0.24 0.24 0.23 0.11
EDIAS

�r

0.0 0.0 0.0 0.0 0.0

Table 21: CCA. Calculated relative root mean square, maximum, systolic and diastolic errors for
different maximum CFL numbers. All calculations are calculated according to equation 19. �t for all
the simulations is 0.1 ms, and the number of nodes is 161, 81, 41, 21 and 11, respectively
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CFL 0.87 0.43 0.22 0.11 0.04

ERMS

P

0.2 0.2 0.2 0.2 0.2
ERMS

�P

2.86 2.9 2.99 3.13 3.14
ERMS

Q

0.21 0.21 0.21 0.24 0.22
ERMS

R

0.84 0.85 0.85 0.85 0.83

EMAX

P

0.43 0.44 0.44 0.43 0.45
EMAX

�P

16.32 16.5 16.86 17.4 17.22
EMAX

Q

1.04 1.06 1.09 1.27 1.03
EMAX

R

1.89 1.9 1.92 1.9 1.86

ESY S

P

-0.29 -0.3 -0.3 -0.3 -0.27
ESY S

�P

-13.64 -13.8 -14.11 -14.62 -14.98
ESY S

Q

-0.58 -0.6 -0.64 -0.85 -0.55
ESY S

R

-1.77 -1.77 -1.79 -1.78 -1.69

EDIAS

P

0.26 0.26 0.26 0.25 0.26
EDIAS

�P

4.89 4.77 4.52 4.17 4.52
EDIAS

Q

0.24 0.23 0.22 0.14 0.3
EDIAS

R

0.0 0.0 0.0 0.0 0.0

Table 22: CCA. Calculated relative root mean square, maximum, systolic and diastolic errors for
different maximum CFL numbers. All calculations are calculated according to equation 19. �t for all
the simulations is 0.2 ms, and the number of nodes is 81, 41, 21, 11 and 5, respectively

CFL 0.87 0.43 0.22 0.11 0.05

ERMS

P

0.21 0.22 0.22 0.21 0.17
ERMS

�P

2.94 3.06 3.29 3.36 3.32
ERMS

Q

0.22 0.22 0.23 0.23 1.47
ERMS

R

0.91 0.92 0.93 0.88 0.74

EMAX

P

0.45 0.46 0.48 0.46 0.31
EMAX

�P

18.11 18.54 19.32 19.65 18.28
EMAX

Q

1.06 1.11 1.15 1.05 3.57
EMAX

R

2.05 2.06 2.09 1.95 1.57

ESY S

P

-0.35 -0.35 -0.36 -0.31 -0.23
ESY S

�P

-14.71 -15.09 -15.79 -16.31 -16.12
ESY S

Q

-0.62 -0.67 -0.72 -0.63 -3.02
ESY S

R

-1.93 -1.94 -1.96 -1.81 -1.51

EDIAS

P

0.26 0.26 0.26 0.26 0.22
EDIAS

�P

4.33 4.01 3.44 3.5 4.69
EDIAS

Q

0.22 0.2 0.21 0.28 -0.67
EDIAS

R

0.0 0.0 0.0 0.0 0.0

Table 23: CCA. Calculated relative root mean square, maximum, systolic and diastolic errors for
different maximum CFL numbers. All calculations are calculated according to equation 19. �t for all
the simulations is 0.5 ms, and the number of nodes is 33, 17, 9 5 and 3 respectively
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CFLnumber 0.72 0.35 0.18 0.09 0.04

ERMS

P

1.04 1.04 1.04 1.04 1.04
ERMS

�P

4.03 4.03 4.03 4.02 4.02
ERMS

Q

1.04 1.03 1.03 1.03 1.03
ERMS

�r

1.96 1.96 1.96 1.98 1.98

EMAX

P

3.94 3.94 3.95 3.96 3.96
EMAX

�P

28.6 28.6 28.6 28.61 28.61
EMAX

Q

5.22 5.21 5.19 5.11 5.11
EMAX

�r

10.55 10.55 10.56 10.61 10.61

ESY S

P

-0.79 -0.79 -0.79 -0.79 -0.79
ESY S

�P

-8.34 -8.34 -8.33 -8.32 -8.323
ESY S

Q

-3.05 -3.05 -3.04 -3.01 -3.01
ESY S

�r

-4.81 -4.81 -4.82 -4.84 -4.84

EDIAS

P

0.82 0.82 0.83 0.84 0.84
EDIAS

�P

5.83 5.83 5.84 5.88 5.88
EDIAS

Q

2.55 2.55 2.54 2.51 2.51
EDIAS

�r

0.05 0.05 0.05 0.05

Table 24: Thoa. Calculated relative root mean square, maximum, systolic and diastolic errors for
different maximum CFL numbers. All calculations are calculated according to equation 19. �t for all
the simulations is 0.1 ms, and the number of nodes is 327, 163, 81, 41 and 21, respectively

CFLnumber 0.71 0.35 0.18 0.09 0.04

ERMS

P

1.04 1.04 1.04 1.03 1.02
ERMS

�P

4.05 4.05 4.04 4.02 3.94
ERMS

Q

1.05 1.04 1.04 1.03 0.96
ERMS

R

1.96 1.97 1.98 2.04 2.22

EMAX

P

3.93 3.93 3.94 3.98 3.76
EMAX

�P

29.01 29.01 29.03 29.13 28.05
EMAX

Q

5.3 5.28 5.2 4.92 5.96
EMAX

R

10.53 10.54 10.58 10.71 10.58

ESY S

P

-0.79 -0.79 -0.8 -0.83 -0.95
ESY S

�P

-8.37 -8.36 -8.36 -8.35 -8.91
ESY S

Q

-3.03 -3.02 -2.99 -2.97 -2.16
ESY S

R

-4.83 -4.84 -4.86 -5.0 -5.43

EDIAS

P

0.83 0.83 0.84 0.89 0.97
EDIAS

�P

5.84 5.85 5.88 6.1 6.59
EDIAS

Q

2.53 2.53 2.5 2.43 2.62
EDIAS

R

0.05 0.05 0.05 0.04 0.0

Table 25: ThoA. Calculated relative root mean square, maximum, systolic and diastolic errors for
different maximum CFL numbers. All calculations are calculated according to equation 19. �t for all
the simulations is 0.2 ms, and the number of nodes is 160, 80, 40, 20 and 10, respectively
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CFLnumber 0.71 0.35 0.18 0.09 0.04

ERMS

P

1.04 1.04 1.04 1.03 1.06
ERMS

�P

4.09 4.08 4.05 3.92 3.9
ERMS

Q

1.04 1.03 1.01 1.03 1.36
ERMS

R

1.99 2.01 2.11 2.33 2.78

EMAX

P

3.95 3.96 3.99 4.22 5.5
EMAX

�P

29.47 29.52 29.41 27.43 18.98
EMAX

Q

5.27 5.14 4.83 6.07 9.61
EMAX

R

10.59 10.65 10.81 11.67 14.86

ESY S

P

-0.81 -0.82 -0.85 -1.03 -1.0
ESY S

�P

-8.49 -8.47 -8.47 -9.52 -14.01
ESY S

Q

-2.97 -2.93 -2.89 -3.64 -2.56
ESY S

R

-4.91 -4.95 -5.11 -5.72 -5.93

EDIAS

P

0.85 0.87 0.93 1.03 1.25
EDIAS

�P

5.91 5.97 6.23 7.03 10.05
EDIAS

Q

2.52 2.48 2.52 3.62 7.72
EDIAS

R

0.05 0.05 0.03 0.0 0.01

Table 26: ThoA. Calculated relative root mean square, maximum, systolic and diastolic errors for
different maximum CFL numbers. All calculations are calculated according to equation 19. �t for all
the simulations is 0.5 ms, and the number of nodes is 64, 34, 16, 8 and 4, respectively

CFLnumber 0.81 0.41 0.19 0.09 0.04

ERMS

P

0.39 0.39 0.39 0.38 0.38
ERMS

Q

0.81 0.81 0.81 0.81 0.8
ERMS

R

1.84 1.85 1.85 1.85 1.83

EMAX

P

0.92 0.92 0.93 0.92 0.9
EMAX

Q

3.57 3.56 3.56 3.55 3.58
EMAX

R

5.04 5.05 5.05 5.04 5.0

ESY S

P

-0.79 -0.79 -0.8 -0.79 -0.77
ESY S

Q

-3.45 -3.45 -3.44 -3.43 -3.35
ESY S

R

-4.94 -4.95 -4.95 -4.94 -4.89

EDIAS

P

0.42 0.43 0.42 0.41 0.42
EDIAS

Q

1.78 1.78 1.78 1.77 1.77
EDIAS

R

0.01 0.01 0.01 0.01 0.0

Table 27: AoBif. Calculated relative root mean square, maximum, systolic and diastolic errors for
different maximum CFL numbers. All calculations are calculated according to equation 19. �t for all
the simulations is 0.1 ms, and with 93, 47, 23, 11 and 5, nodes in the Aorta and both Iliac arteries,
respectively
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CFLnumber 0.71 0.35 0.18 0.11 0.07

ERMS

P

0.42 0.42 0.42 0.41 0.41
ERMS

Q

0.81 0.81 0.81 0.8 0.8
ERMS

R

1.92 1.92 1.93 1.9 1.9

EMAX

P

0.88 0.89 0.89 0.87 0.87
EMAX

Q

3.55 3.55 3.54 3.51 3.51
EMAX

R

5.17 5.17 5.18 5.11 5.11

ESY S

P

-0.76 -0.77 -0.78 -0.76 -0.76
ESY S

Q

-3.45 -3.45 -3.44 -3.39 -3.39
ESY S

R

-5.08 -5.09 -5.09 -5.02 -5.02

EDIAS

P

0.59 0.58 0.57 0.56 0.56
EDIAS

Q

1.79 1.79 1.79 1.78 1.78
EDIAS

R

0.01 0.01 0.01 0.01 0.01

Table 28: AoBif. Calculated relative root mean square, maximum, systolic and diastolic errors for
different maximum CFL numbers. All calculations are calculated according to equation 19. �t for all
the simulations is 0.2 ms, and with 41, 21, 11, 7 and 5, nodes in the Aorta and both Iliac arteries,
respectively

CFLnumber 0.88 0.71 0.53 0.35 0.18

ERMS

P

0.45 0.45 0.45 0.45 0.42
ERMS

Q

0.82 0.82 0.81 0.81 0.79
ERMS

R

2.06 2.06 2.06 2.07 2.0

EMAX

P

0.98 0.98 0.99 1.0 0.93
EMAX

Q

3.51 3.51 3.51 3.49 3.39
EMAX

R

5.48 5.48 5.49 5.5 5.31

ESY S

P

-0.89 -0.89 -0.9 -0.91 -0.85
ESY S

Q

-3.47 -3.47 -3.47 -3.45 -3.32
ESY S

R

-5.42 -5.42 -5.43 -5.43 -5.25

EDIAS

P

0.65 0.65 0.64 0.63 0.58
EDIAS

Q

1.81 1.81 1.81 1.81 1.79
EDIAS

R

0.0 0.0 0.0 0.0 0.0

Table 29: AoBif. Calculated relative root mean square, maximum, systolic and diastolic errors for
different maximum CFL numbers. All calculations are calculated according to equation 19. �t for all
the simulations is 0.5 ms, and with 21, 16, 12, 8 and 5, nodes in the Aorta and both Iliac arteries,
respectively
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C Results STARFiSh

This Appendix contain additional Tables and figures that correspond to Sect. 7

C.1 AoBif

Tables showing errormetrics corresponding to Sect. 7.1.4.

Aortamid

DCG LCG STM McCMatrix1N McCFlux1N McCMatrix1L

ERMS

P

0.36 0.37 0.38 0.39 0.37 0.38
ERMS

Q

0.89 0.84 0.83 0.71 0.84 0.82
ERMS

�r

2.47 2.45 2.51 2.43 2.47 2.45

EMAX

P

0.60 0.66 0.66 0.67 0.65 0.66
EMAX

Q

2.55 2.56 2.58 2.24 2.55 2.52
EMAX

�r

4.03 3.99 3.98 3.90 4.00 3.94

ESY S

P

-0.51 -0.53 -0.53 -0.54 -0.53 -0.51
ESY S

Q

-2.51 -2.54 -2.56 -2.23 -2.53 -2.52

EDIAS

P

0.48 0.48 0.49 0.51 0.47 0.48
EDIAS

Q

1.16 1.16 1.17 1.03 1.16 1.17

Table 30: Calculated relative root mean square, maximum, systolic and diastolic errors (%), as defined in Eq. (56), for test

cases corresponding to Fig. 16 or the aortic bifurcation (AoBif). Errors are determined at the midpoint of each segment.

Iliacamid

DCG LCG STM McCMatrix1N McCFlux1N McCMatrix1L

ERMS

P

0.45 0.44 0.47 0.45 0.44 0.44
ERMS

Q

0.89 0.65 0.68 0.66 0.62 0.66
ERMS

�r

4.29 4.35 4.31 4.30 4.32 4.26

EMAX

P

0.82 0.84 0.92 0.86 0.85 0.85
EMAX

Q

2.25 2.01 1.80 2.00 1.94 2.02
EMAX

�r

7.25 7.37 7.48 7.36 7.34 7.34

ESY S

P

-0.81 -0.81 -0.85 -0.83 -0.82 -0.81
ESY S

Q

-1.80 -1.81 -1.58 -1.84 -1.77 -1.79

EDIAS

P

0.53 0.54 0.57 0.55 0.53 0.54
EDIAS

Q

1.17 1.17 1.18 1.19 1.19 1.18

Table 31: Calculated relative root mean square, maximum, systolic and diastolic errors (%), as defined in Eq. (56), for test

cases corresponding to Fig. 16 or the aortic bifurcation (AoBif). Errors are determined at the midpoint of each segment.
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C.2 Benchmark test

ERMS

P

ERMS

Q

EMAX

P

EMAX

Q

ESY S

P

ESY S

Q

EDIAS

P

EDIAS

Q

Aortic arch II

DCG 1.78 3.59 -1.40 -0.42 12.32 29.58 8.78 -17.95
LCG 1.68 3.21 -1.02 -0.93 12.34 31.83 10.02 -16.93
STM 1.84 3.76 -1.39 -0.36 12.19 29.45 8.75 -17.99
McCMatrix1N 1.90 3.82 -1.68 -0.27 12.09 28.99 8.85 -17.94
McCFlux1N 1.94 3.97 -1.60 -0.12 12.11 29.40 8.81 -17.74
McCMatrixaL 1.88 3.84 -1.64 -0.24 12.09 28.96 8.60 -17.91

Thoracic aorta II

DCG 2.36 5.29 -0.96 1.66 25.59 67.52 60.70 -39.65
LCG 2.17 5.03 -0.79 1.13 25.36 70.75 61.59 -35.47
STM 2.42 5.58 -0.98 1.69 25.37 65.32 61.16 -38.77
McCMatrix1N 2.44 5.54 -1.19 1.86 25.65 65.28 61.99 -40.00
McCFlux1N 2.53 5.70 -1.13 1.98 25.62 66.22 62.24 -38.74
McCMatrixaL 2.46 5.59 -1.17 1.83 25.51 64.82 61.31 -39.76

Left subclavian I

DCG 3.09 6.13 -3.92 -3.97 14.31 38.39 -2.11 -11.57
LCG 3.12 6.06 -3.38 -4.63 13.87 34.76 -2.92 -11.33
STM 3.11 6.13 -3.80 -3.97 14.45 38.96 -1.18 -10.83
McCMatrix1N 3.17 6.42 -4.19 -3.82 14.24 38.14 -2.28 -10.68
McCFlux1N 3.11 6.35 -4.09 -3.69 14.31 38.25 -2.08 -10.92
McCMatrixaL 3.14 6.27 -4.12 -3.79 14.39 39.03 -1.57 -10.85

Right iliac-femoral II

DCG 3.82 9.00 -2.20 -4.13 24.49 59.63 50.20 -39.72
LCG 3.97 9.69 -2.19 -5.57 24.17 61.14 49.23 -36.92
STM 3.75 9.32 -2.37 -4.17 24.12 60.41 51.29 -38.26
McCMatrix1N 3.82 9.03 -2.33 -4.15 25.21 60.01 52.22 -45.05
McCFlux1N 3.65 8.95 -2.33 -3.73 24.80 61.61 52.41 -40.21
McCMatrixaL 3.79 9.10 -2.46 -4.16 25.06 59.45 51.56 -45.97

Table 32: Calculated relative root mean square, maximum, systolic and diastolic errors (%), as defined
in Eq. (56), for the aortic arch II and thoracic aorta II (Fig. 30), the left subclavian I and right iliac-
femoral II (Fig. 31)
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(a) Aortic Arch

(b) Thoracic Aorta

Figure 30: 37-artery network. Pressure (left) and flow (right) waveforms in the midpoint of two aortic
segments: (a) aortic arch II and (b) thoracic aorta II. MacCCormack is STARFiSh with Matrix based
scheme with linear bifurcation model, and convective correction factor calculated according to Eq.
4 (combination 6), McC is STARFiSh with Matrix based scheme with nonlinear bifurcation model,
and convective correction factor set to one (combination 5), McCFlux is STARFiSh with Flux based
scheme with nonlinear bifurcation model, and convective correction factor set to one (combination 3).
in vitro data data (Exp.) measured in [26].
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(a) Left Subclavian

(b) Right Iliac-Femoral

Figure 31: 37-artery network. Pressure (left) and flow (right) waveforms in the midpoint of two
vessels from the first generation of bifurcations: (a) left subclavian I and (b) right iliac-femoral II.
MacCCormack is STARFiSh with Matrix based scheme with linear bifurcation model, and convective
correction factor calculated according to Eq. 4 (combination 6), McC is STARFiSh with Matrix based
scheme with nonlinear bifurcation model, and convective correction factor set to one (combination
5), McCFlux is STARFiSh with Flux based scheme with nonlinear bifurcation model, and convective
correction factor set to one (combination 3). in vitro data data (Exp.) measured in [26].
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(a) Left Ulnar

(b) Right Anterior Tibial

Figure 32: 37-artery network. Pressure (left) and flow (right) waveforms in the midpoint of two vessels
from the second generation of bifurcations: (a) left ulnar and (b) right anterior tibial. MacCCormack is
STARFiSh with Matrix based scheme with linear bifurcation model, and convective correction factor
calculated according to Eq. 4 (combination 6), McC is STARFiSh with Matrix based scheme with
nonlinear bifurcation model, and convective correction factor set to one (combination 5), McCFlux is
STARFiSh with Flux based scheme with nonlinear bifurcation model, and convective correction factor
set to one (combination 3). in vitro data data (Exp.) measured in [26].
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(a) Right Ulnar

(b) Splenic

Figure 33: 37-artery network. Pressure (left) and flow (right) waveforms in the midpoint of two vessels
from the third generation of bifurcations: (a) right ulnar and (b) splenic. MacCCormack is STARFiSh
with Matrix based scheme with linear bifurcation model, and convective correction factor calculated
according to Eq. 4 (combination 6), McC is STARFiSh with Matrix based scheme with nonlinear
bifurcation model, and convective correction factor set to one (combination 5), McCFlux is STARFiSh
with Flux based scheme with nonlinear bifurcation model, and convective correction factor set to one
(combination 3). in vitro data data (Exp.) measured in [26].
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D Comparison1Dscheme

D.1 tables

Accuracy

Case Scheme �t ⌦
e

Space Time
Si

ng
le

pu
ls

e DG 0.1 4.00 10th 2nd

LCG 0.01 0.20 1st 2nd

FEM 0.0001 0.25 1st 1st

FVM 1.457 1.00 4th 4th

McC 0.25 0.156 2nd 2nd

STM 0.1 0.10 1st 2nd

C
ar

ot
id

DG 0.1 2.00 5th 2nd

LCG 0.2 0.17 1st 2nd

FEM 0.1 1.26 1st 1st

FVM 3.27 2.00 2nd 2nd

McC 0.5 0.39 2nd 2nd

STM 1.0 1.00 1st 2nd

A
or

ta

DG 0.1 2.00 5th 2nd

LCG 0.2 0.48 1st 2nd

FEM 0.1 1.20 1st 1st

FVM 3.31 2.00 2nd 2nd

McC 0.5 0.71 2nd 2nd

STM 1.0 1.00 1st 2nd

A
o.

bi
fu

rc
at

io
n DG 0.1 2.00 5th 2nd

LCG 0.2 0.17 1st 2nd

FEM 1.0 0.86 1st 1st

FVM 1.99 2.00 2nd 2nd

McC 0.5 0.71 2nd 2nd

STM 1.0 1.00 1st 2nd

37
-A

rt
er

y

DG 0.1 2.00 3rd 2nd

LCG 0.1 0.175 1st 2nd

FEM 0.1 1.00 1st 1st

FVM 0.76 2.00 3rd 3rd

McC 0.25 0.18 2nd 2nd

STM 1.0 0.20 1st 2nd

A
D

A
N

55

DG 0.1 2.00 3rd 2nd

LCG 0.01 0.065 1st 2nd

FEM 1.0 0.50 1st 1st

FVM 0.59 1.00 3rd 3rd

McC 0.5 0.45 2nd 2nd

STM 0.5 0.50 1st 2nd

Table 33: Numerical parameters for all six numerical schemes in the test cases considered in this study. The
time step is �t, and the characteristic spatial discretization is ⌦

e

.
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Error DG LCG FEM FVM McC STM

ERMS

P

0.19 0.24 0.23 0.28 0.24 0.24
ERMS

Q

0.39 0.26 0.28 0.29 0.30 0.29
ERMS

�r

0.94 1.00 1.00 1.07 1.01 0.98
ERMS

�P

4.43 4.35 4.27 4.21 4.47 4.47

EMAX

P

0.30 0.52 0.50 0.66 0.52 0.53
EMAX

Q

1.21 1.02 1.12 1.07 1.20 1.13
EMAX

�r

1.68 1.93 1.88 2.28 1.93 1.96
EMAX

�P

16.69 16.17 15.88 15.60 16.58 16.90

ESY S

P

-0.26 -0.27 -0.26 -0.29 -0.27 -0.26
ESY S

Q

-0.54 -0.46 -0.54 -0.58 -0.62 -0.55
ESY S

�r

-1.62 -1.63 -1.61 -1.68 -1.63 -1.63
ESY S

�P

-15.11 -15.37 -15.16 -14.83 -15.73 -15.76

EDIAS

P

0.28 0.28 0.27 0.29 0.28 0.27
EDIAS

Q

0.26 0.22 0.26 0.24 0.23 0.27
EDIAS

�r

0.07 0.11 0.08 0.12 0.09 0.08
EDIAS

�P

4.98 4.76 5.03 4.91 4.45 4.85

Table 34: Relative errors (in %) as defined in Section 3.8 for the six numerical schemes at the midpoint
of the common carotid artery.

Error DG LCG FEM FVM McC STM

ERMS

P

1.08 1.21 1.09 1.14 1.08 1.12
ERMS

Q

2.55 2.19 2.23 2.17 2.22 2.28
ERMS

�r

2.30 2.41 2.33 2.44 2.33 2.90
ERMS

�P

7.71 7.23 7.23 7.14 7.23 7.52

EMAX

P

3.55 3.55 3.26 3.18 3.27 3.30
EMAX

Q

9.12 7.20 7.04 7.07 7.04 7.40
EMAX

�r

7.77 7.67 7.32 7.20 7.09 8.04
EMAX

�P

31.86 29.31 29.15 29.13 29.31 31.19

ESY S

P

-0.55 -0.32 -0.56 -0.71 -0.55 -0.59
ESY S

Q

-5.57 -5.36 -5.63 -5.29 -5.58 -5.56
ESY S

�r

-2.48 -1.93 -2.50 -2.86 -2.49 -4.48
ESY S

�P

-8.97 -8.89 -9.29 -8.53 -9.04 -9.70

EDIAS

P

0.85 1.12 0.88 0.99 0.87 0.85
EDIAS

Q

2.70 2.67 3.09 3.48 2.67 2.95
EDIAS

�r

1.86 2.24 1.89 2.05 1.89 0.00
EDIAS

�P

7.28 7.24 7.60 6.37 7.32 7.47

Table 35: Relative errors (in %) as defined in Section 3.8 for the six numerical schemes at the midpoint
of the upper thoracic aorta.
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Site Error DG LCG FEM FVM McC STM
M

id
po

in
t

ao
rt

a
ERMS

P

0.36 0.39 0.37 0.40 0.38 0.38
ERMS

Q

0.89 0.71 0.82 0.81 0.83 0.82
ERMS

�r

2.47 2.43 2.55 2.49 2.48 2.45
EMAX

P

0.60 0.67 0.65 0.68 0.66 0.66
EMAX

Q

2.55 2.24 2.53 2.44 2.56 2.52
EMAX

�r

4.03 3.90 4.03 4.01 3.98 3.94
ESY S

P

-0.51 -0.54 -0.51 -0.55 -0.53 -0.51
ESY S

Q

-2.51 -2.23 -2.52 -2.44 -2.55 -2.52
ESY S

�r

-3.92 -3.86 -3.99 -4.00 -3.94 -3.93
EDIAS

P

0.48 0.51 0.47 0.53 0.49 0.48
EDIAS

Q

1.16 1.03 1.16 1.16 1.17 1.17
EDIAS

�r

-1.41 -1.37 -1.49 -1.35 -1.40 -1.41

E
nd

po
in

t
ao

rt
a

ERMS

P

0.42 0.43 0.41 0.44 0.42 0.42
ERMS

Q

1.19 1.13 1.12 1.08 1.12 0.46
ERMS

�r

4.07 4.02 4.14 4.08 4.08 4.05
EMAX

P

0.75 0.75 0.72 0.80 0.74 0.73
EMAX

Q

3.58 3.54 3.53 3.28 3.53 1.48
EMAX

�r

6.86 6.76 6.89 6.95 6.85 6.98
ESY S

P

-0.69 -0.70 -0.69 -0.72 -0.70 -0.69
ESY S

Q

-3.52 -3.53 -3.52 -3.26 -3.52 -1.08
ESY S

�r

-6.81 -6.73 -6.87 -6.88 -6.83 -6.90
EDIAS

P

0.53 0.55 0.53 0.57 0.54 0.53
EDIAS

Q

1.76 1.78 1.76 1.74 1.77 0.69
EDIAS

�r

-1.95 -1.92 -2.02 -1.89 -1.94 -1.88

M
id

po
in

t
ili

ac

ERMS

P

0.45 0.45 0.44 0.47 0.45 0.44
ERMS

Q

0.89 0.66 0.65 0.68 0.67 0.66
ERMS

�r

4.29 4.30 4.35 4.31 4.31 4.26
EMAX

P

0.82 0.86 0.84 0.92 0.86 0.85
EMAX

Q

2.25 2.00 2.01 1.80 2.01 2.02
EMAX

�r

7.25 7.36 7.37 7.48 7.35 7.34
ESY S

P

-0.81 -0.83 -0.81 -0.85 -0.82 -0.81
ESY S

Q

-1.80 -1.84 -1.81 -1.58 -1.89 -1.79
ESY S

�r

-7.22 -7.26 -7.27 -7.31 -7.25 -7.22
EDIAS

P

0.53 0.55 0.54 0.57 0.54 0.54
EDIAS

Q

1.17 1.19 1.17 1.18 1.19 1.18
EDIAS

�r

-2.38 -2.37 -2.45 -2.35 -2.38 -2.41

Table 36: Relative errors (in %) as defined in Section 3.8 for the six numerical schemes at three points
of the aortic bifurcation: midpoint of the aorta (top), end point of the aorta (middle), and midpoint
of either iliac artery (bottom).
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Arterial Numerical ERMS

P

EMAX

P

ESY S

P

EDIAS

P

ERMS

Q

EMAX

Q

ESY S

Q

EDIAS

Q

segment scheme (%) (%) (%) (%) (%) (%) (%) (%)

A
or

tic
ar

ch
II DG 1.78 3.59 -1.40 -0.42 12.32 29.58 8.78 -17.95

LCG 1.68 3.21 -1.02 -0.93 12.34 31.83 10.02 -16.93
FEM 1.89 3.78 -1.40 -0.17 12.02 29.00 8.81 -17.08
FVM 1.87 3.72 -1.46 -0.30 12.11 29.13 8.75 -17.93
McC 1.94 3.97 -1.60 -0.12 12.11 29.40 8.81 -17.74
STM 1.84 3.76 -1.39 -0.36 12.19 29.45 8.75 -17.99

T
ho

ra
ci

c
ao

rt
a

II DG 2.36 5.29 -0.96 1.66 25.59 67.52 60.70 -39.65
LCG 2.17 5.03 -0.79 1.13 25.36 70.75 61.59 -35.47
FEM 2.49 5.66 -0.97 1.97 25.26 64.93 60.39 -38.29
FVM 2.44 5.57 -1.03 1.81 25.43 65.69 61.59 -39.26
McC 2.53 5.70 -1.13 1.98 25.62 66.22 62.24 -38.74
STM 2.42 5.58 -0.98 1.69 25.37 65.32 61.16 -38.77

Le
ft

su
bc

la
vi

an
I DG 3.09 6.13 -3.92 -3.97 14.31 38.39 -2.11 -11.57

LCG 3.12 6.06 -3.38 -4.63 13.87 34.76 -2.92 -11.33
FEM 3.05 6.10 -3.91 -3.72 14.17 37.89 -2.53 -10.86
FVM 3.12 6.29 -3.96 -3.93 14.24 38.12 -2.25 -11.05
McC 3.11 6.35 -4.09 -3.69 14.31 38.25 -2.08 -10.92
STM 3.11 6.13 -3.80 -3.97 14.45 38.96 -1.18 -10.83

R
.i

lia
c-

fe
m

or
al

II DG 3.82 9.00 -2.20 -4.13 24.49 59.63 50.20 -39.72
LCG 3.97 9.69 -2.19 -5.57 24.17 61.14 49.23 -36.92
FEM 3.69 8.66 -2.32 -3.67 23.90 59.28 49.99 -37.18
FVM 3.75 9.09 -2.26 -4.04 24.19 60.61 51.42 -39.06
McC 3.65 8.95 -2.33 -3.73 24.80 61.61 52.41 -40.21
STM 3.75 9.32 -2.37 -4.17 24.12 60.41 51.29 -38.26

Le
ft

ul
na

r

DG 2.65 7.19 -0.99 -2.68 12.74 30.14 5.37 -17.48
LCG 2.57 6.51 -1.45 -3.54 12.42 25.91 4.30 -17.93
FEM 2.70 7.29 -1.13 -2.34 12.43 27.75 3.63 -16.14
FVM 2.74 7.51 -1.09 -2.54 12.70 29.30 4.60 -17.15
McC 2.75 7.42 -1.07 -2.27 12.78 29.19 4.43 -16.80
STM 2.74 7.46 -0.81 -2.63 12.91 29.55 5.68 -17.02

R
.a

nt
er

io
r

tib
ia

l DG 3.25 9.87 0.57 -0.13 10.49 35.07 8.37 -15.09
LCG 3.43 12.24 0.57 -0.80 11.05 35.80 12.37 -14.59
FEM 3.21 9.12 0.55 0.04 9.88 31.16 8.40 -13.25
FVM 3.30 9.42 0.66 -0.14 10.22 33.57 9.79 -14.75
McC 3.41 10.33 0.89 0.03 10.24 34.38 9.76 -14.43
STM 3.27 9.22 0.72 -0.15 10.24 34.54 10.32 -14.07

R
ig

ht
ul

na
r DG 2.54 6.32 -2.18 -3.91 11.67 31.30 16.89 -3.47
LCG 2.58 6.88 -1.92 -4.33 11.47 28.19 17.56 -7.48
FEM 2.66 6.36 -2.55 -3.96 11.22 29.28 15.77 -4.08
FVM 2.49 6.32 -2.20 -3.92 11.62 30.93 16.50 -4.60
McC 2.42 6.06 -2.15 -3.66 11.63 31.09 16.58 -4.39
STM 2.50 6.50 -2.06 -4.09 11.73 31.58 17.40 -5.34

Table 37: Relative pressure and flow errors (in %) in the 37-artery network with available in vitro data.
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D.2 figures

(a) DG (b) LCG

(c) FEM (d) FVM

(e) McC (f) STM

Figure 34: Single pulse. Pressure (P ) with distance for the six numerical schemes at the times indicated by
the labels in a 10 m long vessel with a completely absorbent outlet. They are produced by a narrow Gaussian-
shaped wave propagating from the inlet of the vessel with a peak volume inflow rate of 1 ml s�1. The model
parameters are shown in Table 1. Two cases are shown: inviscid blood (thin solid lines) and viscous blood
(dashed lines). For the viscous case, the theoretical solution given by Eq. (67) corresponds to the thick black
line. Pressures are non-dimensionalised by the peak value of the inflow pressure (Ppeak).
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(a) Pressure (b) Pressure Gradient

(c) Flow (d) Radius Change

Figure 35: Common carotid artery. Pressure (a), pressure gradient between inlet and outlet (b), flow
rate (c), and change in radius from diastole (d) with time at the midpoint of the vessel. Results are
shown for the six 1-D numerical schemes and the 3-D model from [57]. The model parameters are
shown in Table 2 and the error calculations in Table 34.
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(a) Pressure (b) Pressure Gradient

(c) Flow (d) Radius Change

Figure 36: Upper thoracic aorta. Pressure (a), pressure gradient between inlet and outlet (b), flow
rate (c), and change in radius from diastole (d) with time at the midpoint of the vessel. Results are
shown for the six 1-D numerical schemes and the 3-D model from [57]. The model parameters are
shown in Table 3 and the error calculations in Table 35.
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(a) Pressure (b) Flow (c) Radius Change

Figure 37: Aortic bifurcation. Pressure (a), flow rate (b), and change in radius from diastole (c) at
the midpoint of the aorta (top), end point of the aorta (middle) and midpoint of either iliac artery
(bottom). Results are shown for the six 1-D numerical schemes and the 3-D model from [57]. The
model parameters are shown in Table 4 and the error calculations in Table 5.
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(a) Aortic Arch

(b) Thoracic Aorta

Figure 38: 37-artery network. Pressure (left) and flow (right) waveforms in the midpoint of two aortic
segments: (a) aortic arch II and (b) thoracic aorta II. Results are shown for the six 1-D numerical
schemes and the in vitro data (Exp.) measured in [26]. General model parameters are shown in Table 5.
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(a) Left Subclavian

(b) Right Iliac-Femoral

Figure 39: 37-artery network. Pressure (left) and flow (right) waveforms in the midpoint of two vessels
from the first generation of bifurcations: (a) left subclavian I and (b) right iliac-femoral II. Results
are shown for the six 1-D numerical schemes and the in vitro data (Exp.) measured in [26]. General
model parameters are shown in Table 5.
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(a) Left Ulnar

(b) Right Anterior Tibial

Figure 40: 37-artery network. Pressure (left) and flow (right) waveforms in the midpoint of two
vessels from the second generation of bifurcations: (a) left ulnar and (b) right anterior tibial. Results
are shown for the six 1-D numerical schemes and the in vitro data (Exp.) measured in [26]. General
model parameters are shown in Table 5.
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(a) Right Ulnar

(b) Splenic

Figure 41: 37-artery network. Pressure (left) and flow (right) waveforms in the midpoint of two vessels
from the third generation of bifurcations: (a) right ulnar and (b) splenic. Results are shown for the
six 1-D numerical schemes and the in vitro data (Exp.) measured in [26]. General model parameters
are shown in Table 5.
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(a) Aortic Arch

(b) Thoracic Aorta

(c) Abdominal Aorta

Figure 42: ADAN55 model. Pressure (left) and flow (right) waveforms in the midpoint of three aortic
segments: (a) aortic arch I, (b) thoracic aorta III and (c) abdominal aorta V. Results are shown for
the six 1-D numerical schemes. General model parameters are shown in Table 6.
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(a) Right Common Carotid

(b) Right Renal

(c) Right Common Iliac

Figure 43: ADAN55 model. Pressure (left) and flow (right) waveforms in the midpoint of three
vessels from the first generation of bifurcations: (a) right common carotid, (b) right renal and (c) right
common iliac. Results are shown for the six 1-D numerical schemes. General model parameters are
shown in Table 6.
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(a) Right Internal Carotid

(b) Right Radial

(c) Right Internal Iliac

Figure 44: ADAN55 model. Pressure (left) and flow (right) waveforms in the midpoint of three vessels
from the second generation of bifurcations: (a) right internal carotid, (b) right radial and (c) right
internal iliac. Results are shown for the six 1-D numerical schemes. General model parameters are
shown in Table 6.
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(a) Right Posterior Interosseous

(b) Right Femoral

(c) Right Anterior Tibial

Figure 45: ADAN55 model. Pressure (left) and flow (right) waveforms in the midpoint of three vessels
from the third and fourth generation of bifurcations: (a) right posterior interosseous, (b) right femoral
and (c) right anterior tibial. Results are shown for the six 1-D numerical schemes. General model
parameters are shown in Table 6.
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(a) t/T = 0.1 (b) t/T = 0.2

(c) t/T = 0.3 (d) t/T = 0.5

(e) t/T = 0.7 (f) t/T = 1.0

Figure 46: ADAN55 model. Pressure contour along the aorta at several time instants during the
cardiac cycle, relative to the cardiac period T .
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Figure 47: ADAN55 model. Systolic, mean and diastolic pressure along the aorta.

E Additional mathematics

E.1 Analytical solution for steady flow through Bifurcation with Re-

sistance BC

Here I present the Analytical solution used in Sect. 7.1.8. The governing equations of the
Bifurcation with constant flow, and distal single Resistance boundary conditions are repeated
below:

f
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The Nonlinear equations were solved for each time step by the Newton-Raphson method given
by:

xi+1 = xi � (Ji)
�1

f

i

where J is the Jacobi Matrix:
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, j =

1, 2, 3, 4, 5, k = 1, 2, 3, 4, 5. Performing the differentiations lead to the following Jacobi, and
inverse Jacobi matrices:

J =

2

66664

0 0 �1 0 �1

1 �1 a 0 0

1 0 0 �1 b

0 1 c 0 0

0 0 0 1 d

3

77775
, J�1
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2

66664

(a+ c)(b+ c) (d+ c) (c+ a) (b+ d) (c+ a)
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�(d+ b) 1 �1 1 �1
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�(a+ c) �1 1 �1 1
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where

a =

�⇢Q

l

A

2

l
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l

A

l

r

c = �R

l
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l

Det = a+ b+ c+ d
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