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SUMMARY: 
Hydrogel materials are very soft materials consisting of polymer networks and solvent molecules. The 
materials may exhibit large volume changes depending on its external chemical and mechanical environment 
and have viscoelastic properties which is common for many polymeric materials. In order to model the 
material response with the finite element method, a hydrogel constitutive model have been combined with 
finite viscoelastic theory and the resulting viscoelastic hydrogel constitutive model have been coded in a 
UMAT-subroutine for analysis with the ABAQUS/Standard finite element modeling software. Material 
parameters have been extracted from a hydrogel relaxation experiment, and while the experimental data is 
variable, the constitutive model have successfully been able to mimic the viscoelastic material response 
shown in the experimental data. 
 
The Neo-Hookean and Yeoh hyperelastic models have also been combined with finite viscoelastic theory in 
order to model compression experiments performed on acrylic Ugelstad particles. The material models were 
not able to model the complex force-deflection curve shown in the experimental data and some different 
hyperelastic models should be considered in order to properly model the material. 
 
The constitutive models have been numerically tested, with finite element creep and relaxation tests, which 
show that the models are numerically stable at large deformations. 
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Abstract

Hydrogel materials are very soft materials consisting of polymer networks and solvent
molecules. The materials may exhibit large volume changes depending on its external
chemical and mechanical environment and have viscoelastic properties which is common
for many polymeric materials. In order to model the material response with the finite el-
ement method, a hydrogel constitutive model have been combined with finite viscoelastic
theory and the resulting viscoelastic hydrogel constitutive model have been coded in a
UMAT-subroutine for analysis with the ABAQUS/Standard finite element modeling soft-
ware. Material parameters have been extracted from a hydrogel relaxation experiment, and
while the experimental data is variable, the constitutive model have successfully been able
to mimic the viscoelastic material response shown in the experimental data.

The Neo-Hookean and Yeoh hyperelastic models have also been combined with finite
viscoelastic theory in order to model compression experiments performed on acrylic Ugel-
stad particles. The material models were not able to model the complex force-deflection
curve shown in the experimental data and some different hyperelastic models should be
considered in order to properly model the material.

The constitutive models have been numerically tested, with finite element creep and
relaxation tests, which show that the models are numerically stable at large deformations.
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Sammendrag

Hydrogel materialer er svært myke materialer som består av polymerkjeder og væske
med oppløste partikler. Materialet responderer med store volumforandringer avhengig
av ytre kjemisk og mekanisk miljø, og har viskoelastiske egenskaper som er vanlig for
enkelte polymerer. For å modellere responsen til materialet med elementmetoden, har
en hydrogel materialmodell blitt kombinert med viskoelastisk teori og den resulterende
viskoelastiske materialmodellen har blitt kodet som en UMAT-subroutine til bruk med ele-
mentmodelleringsprogrammet ABAQUS/Standard. Materialparametere har blitt tilpasset
til et relaksjonsforsøk av et hydrogelmateriale, og selv om de eksperimentelle dataene
er variable, har det blitt vist at materialmodellen klarer å modellere responsen vist i de
eksperimentelle dataene.

Neo-Hookean og Yeoh hyperelastiske modeller har også blitt kombinert med viskoe-
lastisk teori for å modellere et kompresjonsforsøk gjort på Ugelstadpartikler av akryl. Ma-
terialmodellene klarte ikke å modellere den komplekse kraft-forskyvningsrepsonsen fra
eksperimentet og en annen hyperelastisk modell er nødvendig for å modellere materialet.

Materialmodellene har blitt testet numerisk med kryp- og relaksjonstester, ved hjelp av
elementmetoden, som viser at modellene er numerisk stabile ved store deformasjoner.
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Chapter 1

Introduction

Viscoelastic response is a common property of many polymeric materials. While most
viscoelastic theories developed are linear with the viscoelastic internal variables close to
thermodynamic equilibrium such as Bonet (2001) and Lubliner (1985) the theory devel-
oped by Reese and Govindjee (1998) allows large perturbations away from thermodynamic
equilibrium described as finite viscoelasticity (FV). In this thesis the theory of finite vis-
coelasticity have been combined with some common finite strain (hyperelastic) material
models such as the Neo-Hookean material model and the Yeoh material model as well as
the hydrogel material model developed by Kang and Huang (2010).

A hydrogel material is a material consisting of polymer networks and water molecules
known to undergo large reversible swelling deformations due to diffusion of solvent molecules
in the gel. Due to the materials high sensibility to external change, such as change in pH,
pressure and temperature, it may be used in Biotechnology and Medicine for a wide range
of applications such as drug delivery and mimicking bio-tissue Galaev and Mattiasson
(1999).

Hydrogel materials shows two modes of viscoelastic effects as discussed in Hong et al.
(2008), Gentile et al. (2013) and Urayama and Takigawa (2012) with a short time relax-
ation effect explained by the local rearrangement of the polymer molecules and a long time
volume changing effect due to the diffusion of solvent molecules in the gel. This motivates
the development of a stable FV hydrogel material model for finite element implementation.

The main goal of this thesis is to implement a stable viscoelastic hydrogel model for
finite element modeling which may be used to model and if possible fit the material pa-
rameters to experimental data. The Neo-Hookean and Yeoh material models which have
been implemented have been used to test the FV model and to model a nano-indentation
experiment performed at the NTNU Nanomechanical Lab. The material models described
in this thesis have been implemented as user-defined subroutines (UMAT) for use with the
ABAQUS/Standard finite element modeling software.

1.1 Mathematical notation
The following notation is used in the next chapters:

1



Chapter 1. Introduction

Small bold letter a = Vectors and 2-tensors (3x3 matrix)
in the spatial configuration

Large bold letterA = Vectors and 2-tensors
in the reference configuration

a · b (a,b = vector) = aibi
a⊗ b (a,b = vector) = aibjEi ⊗Ej

A ·B (A,B = 2-Tensor) = AikBkjEi ⊗Ej

A · b (A = 2-Tensor, b = vector) = AijbjEi

A⊗B (A,B = 2-Tensor) = AijBklEi ⊗Ej ⊗Ek ⊗El

C = CijklEi ⊗Ej ⊗Ek ⊗El = 4-tensor

Table 1.1: Mathematical notation of tensors and vectors.

with the Einstein summation convention employed such that

a · b = aibi ⇐⇒ a · b =
3∑
i=1

aibi

EA and eA (A=1,2,3) are the cartesian basis vectors in the reference and spatial con-
figuration defined in chapter 2, · and⊗ is the inner and outer dot product and the 2-tensor
and 4-tensor is tensors which may be represented by a 2-dimensional or 4-dimensional
array. The notation chosen with bold upper- or lower-case letters have been chosen to sep-
arate tensors in the two configurations and it will be made clear in the following chapters
if a mathematical object is a vector or a tensor.

2



Chapter 2

Theory

In this chapter the basic concepts of Continuum Mechanics, Hyperelasticity and Viscoelas-
ticity are summarized. The content of the sections of Continuum Mechanics and Hypere-
lasticity are largely based on the lecture notes provided by Professor F. Armero (2014) for
his course in Structural Mechanics I attended during my year as an exchange student at
UC Berkeley and Slaughter (2002). Some other useful resources have been Marsden and
Hughes (1994); Ogden (1997); Gurtin (1982) and the website continuummechanics.org
made by McGinty (published date unknown). The section about Viscoelasticity are based
on the article by Reese and Govindjee (1998) and Tschoegl (2012). This chapter is meant
as a brief summary of the theory of the mechanics of viscoelastic materials under finite
strains. The cited resources contains a more detailed and rigorous explanation of the con-
tents.

2.1 Introduction to Continuum Mechanics
Continuum Mechanics is the theory describing finite deformations in continua. Mathe-
matically a continuum is defined as a continuous compact metric space while for practical
purposes we are describing smooth solids or confined liquids. The continuum mechanics
of isotropic solids will be covered in this chapter.

Suppose a 3D-body B in R3 where H0 denotes the undeformed state or the refer-
ence configuration of B while H1 is the deformed state or the spatial configuration of
B. Introducing the Cartesian coordinate system {E1,E2,E3} ∈ R3 for the reference
configuration allows any point in B at state H0 to be described by the vector

X = X1E1 +X2E2 +X3E3 = XAEA (2.1)

where X ∈ B is the material points of the continuum. Choosing a different Cartesian
coordinate system {e1, e2, e3} ∈ R3 for the spatial configuration leads to the material
points at state H1 being described by the vector

x = x1e1 + x2e2 + x3e3 = xAeA. (2.2)

3



Chapter 2. Theory

For simplicity the basis of the two configuration will be chosen to be similar such that
EA = ea (A = a = 1, 2, 3) in this chapter.

The deformation of B is described by the mapping ϕ : B → R3 which transforms a
particles position in H0 to its position in H1 such that x = ϕ(X). The inverse mapping
is given by X = ϕ−1(x). Further the displacement of a point from H0 to H1 is defined
as u(X) = x(X)−X .

Let the curve C describe the material line passing through the material point X . The
tangent vector to the curve is then dX . Similarly the the tangent to the curve c passing
the point x in the spatial configuration has the tangent vector dx. It can then be shown the
following relation between the two tangent vectors,

dx = F dX, (2.3)

where F is the deformation gradient defined as

F = ∂ϕ

∂X
= ∂x

∂X
. (2.4)

Figure 2.1: Sketch of the deformation of a solid continuum.

4



2.1 Introduction to Continuum Mechanics

2.1.1 Polar Decomposition
According to the Polar Decomposition Theorem the deformation gradient F may be de-
composed such that

F = R ·U = V ·R (2.5)

withR being the rotational tensor while U and V is the right and left stretch tensors.
The interpretation of this is that the deformation may be decomposed into a rigid body

movement, which produces no strains, and stretching which causes strains in B. Note that
R is an orthogonal tensor such thatRRT = 1 and the stretch tensors are symmetric.

The right stretch tensor U represents the stretch in the reference configuration H0 ,
while the left stretch tensor V represents the stretch in the spatial configuration H1 as
shown in figure 2.2.

Figure 2.2: Sketch of the Polar Decomposition of the deformation gradient.

The relevance of U and V in terms of strain in the reference and spatial configuration
will be described more in depth in the next section.

2.1.2 Volume and area change
Consider the volume dV defined by the three vectors dX , dY and dZ in the reference
configuration and the corresponding volume dv defined by the three vectors dx, dy and
dz in the spatial configuration. dV is then defined as

dV = dX · (dY × dZ). (2.6)

5



Chapter 2. Theory

Taking advantage of equation (2.3) the following result is obtained

dv = dx · (dy × dz) = F dx · (F dy × F dz)
= det(F )

(
dX · (dY × dZ)

)
= det(F )dV

⇒ J = dv
dV , J := det(F )

Physically J is the volume change at a point between the reference and the spatial
configuration. Another interesting property is that ϕ, being a one-to-one mapping of B,
implies that the finite volumes must be larger than zero such that

J = detF > 0. (2.8)

Since detF > 0, F is positive definite such that U and V are symmetric positive
definite tensors which may be decomposed by the rules of the Spectral Decomposition
Theorem. Since F is positive definite, F is also invertible.

The transformation of area from the reference configuration to the spatial configuration
(Nanson’s formula, Slaughter (2002, chap.3)) may be written as

nda = JF−TNdA, (2.9)

with n and N being unit normal vectors to the areas da and dA in the spatial and
reference configuration.

2.2 Kinematics - Strain and motion

2.2.1 Strain measures
Let dS be the line segment of the curve C passing throughX in the reference configuration
and ds be the line segment of the corresponding curve c passing through x in the spatial
configuration. It may then be shown that

(ds)2 = ||dx||2 = dx · dx = dX · F TF dX = dX ·CdX = N ·CN(dS)2

(dS)2 = ||dX||2 = dX · dX = dx ·F−TF−1dx = dx · (FF T )−1dx = n · b−1n(ds)2

N = dX

||dX||
= dX

||dS || n = dx

||dx||
= dx

||ds|| .

With these results we may define the stretch of the continuum in terms of the reference
configuration only

ds =
√
N ·CN dS , (2.11)

or in terms of the spatial configuration

dS =
√
n · b−1n ds. (2.12)

6



2.2 Kinematics - Strain and motion

C is the right Cauchy-Green strain tensor while b is the left Cauchy-Green strain
tensor. Using the results from the Polar Decomposition of F ,

C := F T · F = (R ·U)T · (R ·U) = UT ·U = U ·U (2.13a)

b := F · F T = (V ·R) · (V ·R)T = V · V T = V · V (2.13b)

it is clear that as U is a tensor in the reference configuration C is also a tensor in the
reference configuration also called a material tensor. Similarly as V is a tensor in the
spatial configuration b is also a tensor in the spatial configuration. Such tensors are called
spatial tensors.

2.2.2 Principal stretches and invariants
As both C and b are positive definite symmetric tensors the spectral decomposition theo-
rem states that the tensors may be expressed as

C =
3∑

A=1
λ2
A(NA ⊗NA) (2.14a)

b =
3∑

A=1
λ2
A(nA ⊗ nA) (2.14b)

and equation (2.13a) and (2.13b) may then be reformulated as

U =
√
C =

3∑
A=1

λA(NA ⊗NA) (2.15a)

V =
√
b =

3∑
A=1

λA(nA ⊗ nA). (2.15b)

Realizing thatR is the rotation atX such that

nA = R ·NA, (A = 1, 2, 3)

and the fact that the set of vectorsNA are orthogonal leads to the following expression
for the rotation tensor

R =
3∑

A=1
nA ⊗NA. (2.16)

Combining equation (2.15a) and (2.16) leads to the following final expression for the
deformation gradient

F = R ·U =
3∑

B=1

3∑
C=1

λC(nB ⊗NB) · (NC ⊗NC) =
3∑

A=1
λA(nA ⊗NA) (2.17)

7



Chapter 2. Theory

Figure 2.3: Sketch of the reference and spatial principal directions.

The principal stretches can be found by solving for the roots of the characteristic poly-
nomial

det
(
C − (λ2

A)I
)

= −(λ2
A)3 + I1(λ2

A)2 − I2(λ2
A) + I3 = 0, (2.18)

with the invariants defined as

I1 = tr(C) (2.19a)

I2 = 1
2

(
tr(C)2 − tr(C2)

)
(2.19b)

I3 = detC = J 2. (2.19c)

An important property of the invariants is that IA(C) = IA(b) which comes from
the fact that C and b have the same principal stretches. The invariants in the reference
configuration are similar to the invariants in the spatial configuration which is a useful
property applied in constitutive theory.

2.2.3 Motion
Introducing time dependence to the change of a particles motion

x = ϕ(X, t) (2.20)

the material velocity may be defined as

V := ∂ϕ(X, t)
∂t

∣∣∣
X=const.

. (2.21)

Noting thatX is fixed while x is time dependent, the spatial velocity is defined as

v := v(x, t) = V
(
ϕ−1(x, t), t

)
. (2.22)
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2.2 Kinematics - Strain and motion

Both vectors are similar but differs in their depends onX and x respectively although
both are defined in the spatial configuration.

The time-derivative of the deformation gradient may be found by applying the chain-
rule such that

ḞiK = d

dt

∂xi
∂Xk

= ∂Vi

∂Xk
= vi

xj
xj
Xk

⇒ Ḟ = ∇v · F

and by defining the velocity gradient as l := ∇v leads to

l = Ḟ · F−1 = d+w (2.24a)

d = 1
2(l+ lT ) (2.24b)

w = 1
2(l− lT ). (2.24c)

The symmetric part, d, of l is called the rate of deformation tensor while the skew-
symmetric part, w, is called the spin tensor. The rate of deformation tensor and the spin
tensor will be used later in describing the constitutive theory in the spatial configuration.

2.2.4 Material and spatial frame indifference
An important concept of continuum mechanics is the change of observer and how it affects,
or rather should not affect, the observed deformation in the continuum. Consider two
different observers, A and B, observing the following deformation pattern of a body

A : x = ϕ(X, t) and B : x∗ = a(t) +Q(t) · x

where a(t) andQ(t) are an arbitrary translation and rotation from observer A.
To ensure frame indifference the measured deformation observed by the different ob-

servers must be similar regardless of a(t) and Q(t). Taking the deformation gradient
measured by B

F ∗ = Q · F

and applying the polar decomposition such that

F ∗ = Q · (R ·U) = (Q ·R) ·U = R∗ ·U∗

and

F ∗ = Q · (V ·R) = (Q · V ·QT ) · (Q ·R) = V ∗ ·R∗

three requirements for frame indifference is found. As covered earlier U is a material
tensor while V is a spatial tensor which imply the following.

A material tensor U is frame indifferent if

9



Chapter 2. Theory

U∗ = U (2.25)

and a spatial tensor V is frame indifferent if

V ∗ = Q · V ·QT . (2.26)

Examples of frame indifferent material tensors are the right Cauchy-Green strain tensor
C and the second Piola-Kirchhoff stress tensor S. Examples of frame indifferent spatial
tensors are the left Cauchy-Green strain tensor b, the rate of deformation tensor d and the
Kirchhoff stress tensor τ .

2.3 Hyperelasticity
Hyperelastic materials are materials undergoing zero internal dissipation during external
mechanical work.

Consider a closed process from t = t0 to t = t1 with F (t1) = F (t0). The total
mechanical work point-wise on a solid as stated by the second law of thermodynamics is

W =
∫ t1

t0

P : Ḟ dt ≥ 0. (2.27)

Assuming no dissipation leads to

W =
∫ t1

t0

P : Ḟ dt = 0, P = ∂U(F ,X)
∂F

(2.28)

where P is the first Piola-Kirchoff stress tensor and U(F ,X) is the strain-energy
function.

Equation (2.28) may be modified to include the other frame indifferent material and
strain tensors such that

W =
∫ t1

t0

τ : d dt =
∫ t1

t0

P : Ḟ dt =
∫ t1

t0

S : Ė dt = 0 (2.29)

where E is the Green-Lagrange strain tensor defined as

E = 1
2(C − I). (2.30)

The second Piola-Kirchoff stress tensor may be expressed in terms of the strain energy
function as

S = ∂Ŭ(E,X)
∂E

= 2∂Ũ(C,X)
∂C

. (2.31)

Note that U(F ,X) = Û(U ,X) = Ũ(C,X).
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2.3 Hyperelasticity

2.3.1 Elasticity tensors
In the 3-dimensional case the elasticity tensor takes the form of a constitutive 4-tensor
and may be found from the linearized weak form of equilibrium. An example of such a
calculation is found in Reese and Govindjee (1998).

In terms of the second Piola-Kirchoff stress tensor S we have

Ṡ = C : Ė, Ṡij = CijklĖkl (2.32a)

C = ∂S

∂E
= 2 ∂S

∂C
= 4∂

2Ũ(C,X)
∂C∂C

, Cijkl = 2 ∂Sij
∂Ckl

(2.32b)

where C is the material tangent modulus.
The spatial tangent modulus c may be found by performing the push-forward opera-

tion (see Appendix C) on the material tangent C such that

Jc = F · F · C · F T · F T . (2.33)

The spatial tangent modulus c have the following relation with the Lie derivative, also
known as the Truesdell rate, of the Kirchhoff stress

£vτ = τ̇ − l · τ − τ · lT = Jc : d. (2.34)

In the ABAQUS/Standard-module the Jaumann-rate is used, defined as:

τ∆J = τ̇ + τ ·w −w · τ = C∆J : d. (2.35)

The Jaumann tangent modulus C∆J can be found from the spatial tangent modulus c
and the Kirchhoff stress tensor τ by the following calculation

C∆J = J (c+ C̃) (2.36)

J C̃ijkl = 1
2(δikτjl + δilτjk + δjkτil + δjlτik). (2.37)

Both rates are frame indifferent as shown in appendix C. The tangent modulus used
in the ABAQUS/Standard UMAT-subroutine CABA is defined as 1

J C
∆J in the ABAQUS

documentation ABAQUS (2013, chap. 1).

2.3.2 Isotropy
A material is isotropic if its mechanical response are independent of the direction. In other
words the internal force due to stretching in one directions should be the same even if
the material is rotated and applied the same value of stretch. Some important mathemat-
ical properties of isotropic tensor functions such as for the Cauchy stress σ = σ̂(F ) are
(Gurtin, 1982, appendix)

1.
σ̂(F ) = R · σ̂(U) ·RT = σ̂(R ·U ·RT ) = σ̂(V ) = σ̂(b)

11
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2.
σ = β1I + β2b+ β3b

2, βk = f(I1, I2, I3)

which shows another important property of isotropic materials in that the principal
directions nA of the Cauchy-stress σ and Kirchhoff stress τ and the left Cauchy-Green
strain tensor b are the same. The same property apply for the principal directions NA of
the second Piola-Kirchhoff stress tensor S and right Cauchy-green strain tensor C.

2.3.3 Strain Energy Functions
Strain energy functions are fundamental to developing constitutive materials for materials
during finite strains. Isotropic strain energy functions are scalar valued functions most
commonly represented by the three invariants I1, I2 and I3 = J 2, while for anisotropic
materials like transversely isotropic materials it is common to define pseudo-invariants to
model the material properties in the different directions (Prot et al., 2007). Only isotropic
material models have been developed as part of this thesis.

Some common isotropic strain energy functions are:

1. Neo-Hookean material
U(I1, J ) = C1

(
I1 − 3− 2ln(J )

)
+ U(J )

2. Yeoh material
U(I1, J ) =

∑3
i=1 Ci(Ī1 − 3)i + U(J )

3. Generalized Rivlin (polynomial) model
U(I1, I2, J ) =

∑n
i,j=0 Cij(I1 − 3)i(I2 − 3)j + U(J )

where U(J ) is the volumetric part of the strain energy function, with some variants
such as

1.
U(J ) = 1

D1
ln(J )2

2.
U(J ) = 1

D1

(
(J − 1)2 + ln(J )2

)
3.

U(J ) =
∑3
k=1

1
Dk

(J − 1)2k

where Ci and Dk are material constants related to the deviatoric and volumetric re-
sponse of the material. For the Neo-Hookean material 2C1 and 2

D1
are associated with the

initial shear modulus G and initial bulk modulus κ of linear elasticity. Another common
feature is to decompose the deformation gradient into an isochoric and volumetric part.
The isochoric formulation of the deformation gradient F̄ causes no volumetric change as
shown by the definition

F̄ = J− 1
3F , det(F̄ ) = det(J− 1

3F ) = J−1J = 1 (2.38)

thus the strain energy function U may be written as
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2.4 Finite Viscoelasticity

U = U(I1, I2, J ) = Ũ(Ī1, Ī2) + Ũ(J ). (2.39)

Strain energy functions with the isochoric-volumetric split Ũ will be characterized
as uncoupled while the strain energy functions without this split will be characterized as
coupled.

2.4 Finite Viscoelasticity
This section is a summary of the most important aspects from Reese and Govindjee (1998).
While most viscoelastic theories are based on linear evolution laws (response assumed
close to thermodynamic equilibrium) the theory described in the article is a non-linear
evolution law suitable to describe response away from thermodynamic equilibrium for
isotropic materials. To further discuss the concepts viscoelasticity the 1D case of a rheo-
logical model and some examples is described first.

2.4.1 Generalized Maxwell model - 1D linear viscoelasticity
In the case of small deformations and 1-dimensional behavior the concept of viscoelas-
ticity may be described by a rheological model such as the generalized Maxwell model
(sometimes referred to as the Wiechert Model, Tschoegl (2012, chap. 3)). The model
consists of a long-term spring of stiffness K∞ in parallel with an arbitrary number α of
Maxwell elements which consists of a dash-pot of viscosity ηα in series with a spring of
stiffness Kα. The deformation of each dash-pot xα is the unknown variables of the sys-
tem. Each of the viscous parallel elements force fα can be expressed in terms of the spring
or the rate of change of the internal viscous deformation ẋα as

fα = ηαẋα (2.40a)

fα = Kα(x − xα). (2.40b)

Equating equation (2.40a) and (2.40b) leads to a evolution equation for xα

ẋα = 1
τα

(x − xα) (2.41)

where the relaxation time τα is introduced which is defined as

τα := ηα
Kα

. (2.42)

An illustration of the generalized Maxwell model is shown in figure 2.4.
Equation (2.41) is an ODE which may be solved in the time-domain. To illustrate,

equation (2.41) is solved for a ramp function of x of the form

x(t) =
{
a t
t1

t < t1
a t ≥ t1

(2.43)

the solution for equation (2.41) is then

13



Chapter 2. Theory

Figure 2.4: Sketch of the Generalized Maxwell model.

xα(t) =
{

a
t1

(t− τα) + a ταt1 e
− t
τα t < t1

a
t1

+ a ταt1 (e−
t
τα − e

1−t
τα ) t ≥ t1

(2.44)

By setting a = 1 and t1 = 1, xα may be plotted for different values of τα as seen in
figure 2.5. By setting K∞ = Kα = 1 the relaxation effect is apparent as seen in figure
2.6.

Given a ramp-function of the external force of the form

f (t) = f∞ + f1 =
{
P t
t1

t < t1
P t ≥ t1

(2.45)

with f1 as the force in a single Maxwell-element and f∞ as the force in the spring
element with stiffness K∞. The total force in terms of the deformation x and x1 is

f (t) = f∞ + f1 = K∞x + K1(x − x1). (2.46)

Combining equation (2.46) with equation(2.41) leads to the following expression in
terms of x1

τ1(K∞ + K1)ẋ1 + K∞x1 − f (t) = 0 (2.47)

with the solution in terms of x1 as
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Figure 2.5: Total deformation x and the internal deformation xα plotted with different values of τα.

x1(t) =


P

K∞

(
t
t1
− K∞+K1

K∞
τ1
t1

+ C1 exp
(
− K∞

K∞+K1
t
τ1

))
t < t1

P
K∞

(
1 + C2 exp− K∞

K∞+K1
t
τ1

)
t ≥ t1

(2.48)

As x1(t = 0) = 0 the first expression for t < t1 collapse to

P

K∞

(
t

t1
+ K∞ + K1

K∞
τ1
t1

(
exp

(
− K∞

K∞ + K1

t

τ1

)
− 1
))

.

As both expressions for x1 must be equal at t = t1, solving for C2 leads to the final
expression for x1

x1(t) =


P

K∞

(
t
t1

+ K∞+K1
K∞

τ1
t1

(
exp

(
− K∞

K∞+K1
t
τ1

)
− 1
))

t < t1

P
K∞

(
1 + K∞+K1

K∞
τ1
t1

(
1− exp

( K∞
K∞+K1

t1
τ1

))
exp

(
− K∞

K∞+K1
t
τ1

))
t ≥ t1

(2.49)
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Figure 2.6: Total force f plotted for different values of τα.

With the total deformation x defined as

x(t) = K1

K∞ + K1
x1(t) + f (t)

K∞ + K1

=
{

K1
K∞+K1

x1(t) +
P t
t1

K∞+K1
t < t1

K1
K∞+K1

x1(t) + P
K∞+K1

t ≥ t1
(2.50)

It can be seen clearly in figure 2.7 that the system undergo creep deformations, the
deformations continues beyond the time the peak load is reached, and that the time before
equilibrium is reached is proportional with the time retardation parameter τ1. The values
of P , K∞, K1 and t1 where all set to 1 in figure 2.7.

2.4.2 Derivation of the evolution equation
In Reese and Govindjee (1998) a multiplicative decomposition of the deformation gradient
F is employed such that

F = Fe · Fi (2.51)
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Figure 2.7: Deformation x plotted for different values of τα.

with Fe and Fi being the elastic and the inelastic part of the deformation gradient. To
relate to the the generalized Maxwell model, Fe is analog to x − xα while Fi is analog to
xα in the linear 1D case. In the general case an arbitrary number α of decompositions may
be employed to increase the number of internal variables just like increasing the number
of dash-pot elements in the generalized Maxwell model such that

F = F 1
e · F 1

i = F 2
e · F 2

i = ... = F αe · F αi
To develop the theory further some tensors have to be defined

Ce := F Te · Fe = (F−Ti · F T ) · (F · F−1
i ) = F−Ti ·C · F−1

i (2.52a)

be := Fe · F Te = (F · F−1
i ) · (F−Ti · F T ) = F ·C−1

i · F
T (2.52b)

Ci := F Ti · Fi (2.52c)

where be is the elastic left Cauchy-Green strain tensor while Ce and Ci is the elastic
and inelastic right Cauchy-Green strain tensor.

The strain energy function with α number of internal variables, in this case Ce, may
be defined in terms of the right Cauchy-Green strain tensor C such that
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U := Ũ(C,H1,H2, ...,Hα) (2.53)

where Hα is the internal variables. Rewriting equation (2.27) point-wise leads to the
internal dissipation inequality

1
2S : Ċ − U̇ ≥ 0 (2.54)

which may then be rewritten as

(
S − 2 ∂U

∂C

)
: 1

2Ċ −
α∑
k=1

∂U

∂Hk
: Ḣk ≥ 0. (2.55)

By splitting the free energy function into an equlibrium partUEQ and a non-equilibrium
(viscous) part UNEQ and replacingHk with the tensor Ce such that

U = ŨEQ(C) + ŨNEQ(Ce) = ŨEQ(C) + ÛNEQ(F−Ti ·C ·F−1
i ) = Ũ(C,Fi) (2.56)

the inequality (2.55) reduces to

(
S − 2∂UEQ

∂C
− 2F−Ti · ∂UNEQ

∂Ce
· F−1

i

)
: 1

2Ċ −
∂UNEQ
∂Ce

: ∂Ce
∂Fi

: Ḟi ≥ 0 (2.57)

with the sum dropped to simplify further calculations. Identifying that the second
Piola-Kirchhoff stress tensor S is defined as

S = SEQ + SNEQ = 2 ∂U
∂C

= 2∂UEQ
∂C

+ 2F−Ti · ∂UNEQ
∂Ce

· F−1
i (2.58)

reduces the inequality to

− ∂UNEQ
∂Ce

: ∂Ce
∂Fi

: Ḟi = −∂UNEQ
∂Ce

: (lTi ·Ce +Ce · li) ≥ 0 (2.59)

with li := Ḟi · F−1
i . By exploiting the symmetry of Ce and identifying that

τNEQ = F ·SNEQ ·F T = 2F ·F−Ti · ∂UNEQ
∂Ce

·F−1
i ·F

T = 2Fe ·
∂UNEQ
∂Ce

·F Te (2.60)

leads to the following expression

− τNEQ · b−1
e : (Fe · li · F Te ) ≥ 0. (2.61)

In Reese and Govindjee (1998) isotropy is assumed such that be and τNEQ share
the same principal directions. Another implication of assuming isotropy is that the NEQ
Kirchhoff stress τNEQ may be defined in terms of be so that τNEQ = τ̃NEQ(be). With
these considerations the inequality reduces to
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− τNEQ : 1
2£vbe · b−1

e ≥ 0. (2.62)

To conclude the theory the isotropic 4-tensor V−1 is introduced defined as

V−1 = 1
2ηD

(
ISYM − 1

3I ⊗ I
)

+ 1
9ηV

I ⊗ I (2.63a)

ISYMijkl = 1
2
(
δikδjl + δilδjk

)
(2.63b)

which satisfies the inequality condition (2.62) such that

− 1
2£vbe · b−1

e = V−1 : τNEQ. (2.64)

Finally the evolution equation is found as

− 1
2£vbe · b−1

e = 1
ηD

dev(τNEQ) + 2
3ηV

vol(τNEQ)I (2.65)

with ηD and ηV defined as the deviatoric and volumetric viscosity and the deviatoric
and volumetric parts of τNEQ, dev(τNEQ) and vol(τNEQ) defined as

vol(τNEQ) = 1
3τNEQ : I = 1

3 tr(τNEQ) (2.66a)

dev(τNEQ) = τNEQ − vol(τNEQ)I (2.66b)

2.4.3 Newton iteration of the evolution equation
To find the elastic left Cauchy-Green tensor be at each increment equation (2.65) have to
be integrated. Because of its non-linearity a local Newton iteration have been proposed in
Reese and Govindjee (1998).

The Lie-rate of the tensor be is defined as

£vbe = ḃe − l · be − be · lT (2.67)

with the rate of change of be defined as

ḃe = F · ˙(C−1
i ) · F T + Ḟ ·C−1

i · F
T + F ·C−1

i · Ḟ
T

= F · ˙(C−1
i ) · F T + (Ḟ · F−1) · be + be · (F−T · Ḟ T )

= F · ˙(C−1
i ) · F T + l · be + be · lT . (2.68)

Combining equation (2.67) and (2.68) leads to

£vbe = F · ˙(C−1
i ) · F T (2.69)

An operator split is set up such that ḃe = E+I . WithE = l ·be+be · lT as an elastic

predictor and I = F · ˙(C−1
i )

(n−1)
· F T as an inelastic corrector.
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For the elastic predictor-step the rate of change of Ci is assumed close to zero such
that

btre = F · (C−1
i )(n−1) · F T (2.70)

with n denoting the current global iteration.
For the inelastic corrector step the spatial velocity l is assumed close to zero. Which

leads to

ḃe ≈ £vbe = −2(V−1 : τNEQ) · be (2.71)

which may be solved by exponential mapping (see Appendix C) so that

be = exp
(
− 2

∫ tn

tn−1

(V−1 : τNEQ)dt
)
· btre

b(n)
e ≈ exp

(
− (tn − tn−1 )

( 1
η
D

dev[τNEQ] + 2
9η

V

tr(τNEQ)I
))
· btre

= exp

(
−∆t

( 1
η
D

dev(τNEQ) + 2
3η

V

vol(τNEQ)I
))
· btre . (2.72)

As isotropy is assumed equation (2.72) may be rewritten in terms of principal values
of be and btre so that

λ2
Ae = exp

(
−∆t 1

η
D

dev(τAe) + 2
3η

V

vol(τNEQ)
)

(λ2
Ae)tr (2.73)

and by introducing the logarithmic stretches εAe = ln
(
λAe

)
and εtrAe = ln

(
(λ2
Ae)tr

)
leads to

εAe = −∆t
(

1
2η

D

dev(τAe) + 1
3η

V

vol(τNEQ)
)

+ εtrAe (2.74)

where τAe is the principal values of τNEQ while A have values (1,2,3). Note that due
to isotropy the principal directions of be and btre is equal.

Rewriting equation (2.74) as a residual such that

rA = εAe − εtrAe + ∆t
(

1
2η

D

dev(τAe) + 1
3η

V

vol(τNEQ)
)

= 0 (2.75)

and linearizing rA around εAe = ε
(k)
Ae , with k denoting the current local iteration, leads

to

rA ≈ rA
∣∣∣
ε

(k)
Ae

+
3∑

B=1

∂rA
∂εBe

∣∣∣
ε

(k)
Ae

·∆ε(k)
Be = r

(k)
A +

3∑
B=1

K
(k)
AB ·∆ε

(k)
Be = 0 (2.76a)

r(k) +K(k) ·∆ε(k) = 0, ∆ε(k) = −(K(k))−1 · r(k) (2.76b)
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with ε(k+1) = ε(k) + ∆ε(k). Thus a Newton iteration is found using the vector r and
the matrixK which have to be updated at each iteration.

This leads to the following iteration scheme:

At global iteration step n:

btre = Fk · (C−1
i )(n−1) · F Tk −→ (λ2(trial)

Ae ,nA)

(λ2
Ae)(k=1) = (λ2

Ae)tr and ε = ln(λ)

At local iteration step k:

1 : r
(k)
A = ε

(k)
Ae − ε

tr
Ae + ∆t

(
1

2η
D

dev(τAe)(k) + 1
3η

V

vol(τNEQ)(k)
)

2 : K
(k)
AB = ∂rA

∂εBe

∣∣∣
ε

(k)
Ae

3 : ∆ε(k) = −(K−1)(k) · r(k)

4 : ε(k+1) = ε(k) + ∆ε(k)

if norm(∆ε(k)) ≤ tol, complete iteration

Update : b(n)
e =

3∑
A=1

λ2
Ae(nA ⊗ nA), Store : (C−1

i )(n) = F−1 · b(n)
e · F−T

2.4.4 NEQ spatial tangent modulus
The derivation of the NEQ tangent modulus is explained in detail in Reese and Govindjee
(1998) and only the most important aspects are covered in this section. The tangent mod-
ulus is an incremental tangent modulus in the sense that it is not exact but based on the
following multiplicative decomposition of the deformation gradient

F = F tre · F
(n−1)
i (2.79)

found by re-writing equation (2.70) such that

btre = F · (C−1
i )(n−1) · F T = F ·

(
(F−1

i )(n−1) · (F−Ti )(n−1)
)
· F T

=
(
F · (F−1

i )(n−1)
)
·
(
F · (F−1

i )(n−1)
)T

= F tre · (F tre )T . (2.80)

with the advantage thatF (n−1)
i may be treated as constant when calculating the tangent

modulus. First some tensors must be defined, the second Piola-Kirchhoff stress tensor S
may be written in terms of the Kirchhoff stress tensor so that

SNEQ = F−1 · τNEQ · F−T

= (F−1
i )(n−1) ·

(
(F−1

e )tr · τNEQ · (F−Te )tr
)
· (F−Ti )(n−1)
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= (F−1
i )(n−1) · S̃NEQ · (F−Ti )(k−1) (2.81)

S̃NEQ = (F−1
e )tr · τNEQ · (F−Te )tr (2.82)

As Fi is treated as constant the material tangent modulus is

CNEQ = 2∂SNEQ
∂C

= (F−1
i )(n−1) · (F−1

i )(n−1) · C̃NEQ · (F−Ti )(n−1) · (F−Ti )(n−1) (2.83)

with the 4-tensor C̃NEQ defined as

C̃NEQ = 2∂S̃NEQ
∂Ctr

e

. (2.84)

As the spatial tangent modulus cNEQ is found from the push-forward operation in
equation (2.33) and considering that F tre = F · (F−1

i )(n−1) leads to the following expres-
sion for cNEQ

JcNEQ = F tre · F tre · C̃NEQ · (F Te )tr · (F Te )tr. (2.85)

The 4-tensor C̃NEQ is given in Reese and Govindjee (1998) as

C̃NEQ =
3∑

A=1

3∑
B=1

1
(λAe)2

trial(λBe)2
trial

(CalgAB − τA2δAB)
(
NA ⊗NA ⊗NB ⊗NB

)

+1
2

3∑
A=1

3∑
B=1

2 S∗B − S∗A
(λBe)2

trial − (λAe)2
trial

(
NA ⊗NB ⊗NA ⊗NB

+NA ⊗NB ⊗NB ⊗NA

)

=
3∑

A=1

3∑
B=1

3∑
C=1

3∑
D=1

(C̃NEQ)ABCDNA ⊗NB ⊗NC ⊗ND (2.86)

with (C̃NEQ)ABCD consisting of a total of 21 components with values

(C̃NEQ)AAAA = CALGAA − 2τA
(λ4
Ae)tr

(2.87a)

(C̃NEQ)AABB = CALGAB

(λ2
Ae)tr(λ2

Be)tr
, A 6= B (2.87b)

(C̃NEQ)ABAB = (C̃NEQ)ABBA = SB − SA
(λ2
Be)tr − (λ2

Ae)tr
, A 6= B (2.87c)

where CALG is the algorithmic tangent modulus and SA is the principal values of the
NEQ part of the second Piola-Kirchhoff stress tensor SNEQ. Recalling that the vectors
NA andNB are orthogonal (A 6= B) it can be shown that
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( 3∑
B=1

λBnB ⊗NB

)
·
( 3∑
A=1

NA ⊗NA

)
·
( 3∑
C=1

λC(nC ⊗NC)T
)

=
3∑

B=1

3∑
C=1

λBλCδBCnB ⊗ nC =
3∑

B=1
λ2
BnB ⊗ nB

=
3∑

A=1
λ2
AnA ⊗ nA. (2.88)

With this in mind the push-forward operation for the spatial tangent modulus cNEQ in
equation (2.85) leads to

JcNEQ =
3∑

A=1

3∑
B=1

3∑
C=1

3∑
D=1

J (cNEQ)ABCDnA ⊗ nB ⊗ nC ⊗ nD (2.89)

=
3∑

A=1

3∑
B=1

3∑
C=1

3∑
D=1

(C̃NEQ)ABCDλtrAeλtrBeλtrCeλtrDenA ⊗ nB ⊗ nC ⊗ nD (2.90)

with the 21 components of J (cNEQ)ABCD found as

J (cNEQ)AAAA = CALGAA − 2τAe (2.91a)

J (cNEQ)AABB = CALGAB , A 6= B (2.91b)

J (cNEQ)ABAB = (cNEQ)ABBA = τBe(λ2
Ae)tr − τAe(λ2

Be)tr

(λ2
Be)tr − (λ2

Ae)tr
, A 6= B (2.91c)

As the NEQ Kirchhoff stress τNEQ and the trial stretches λtrAe are known and found
during the local Newton iteration it leaves to define the algorithmic tangent modulus
CALG.

The algorithmic tangent modulus is defined as

CALGAB = ∂τAe
∂εtrBe

, ∆τAe =
3∑

B=1
CALGAB ∆εtrBe. (2.92)

Taking into consideration that εtrBe is not constant between the global increments, equa-
tion (2.76a) may be modified as

∆rA =
3∑

B=1
KAB∆εBe −∆εtrAe = 0 (2.93)

with ∆ denoting the perturbations in the global iteration. With this CALG may be
found as

∆τAe =
3∑

B=1

∂τAe
∂εBe

∆εBe =
3∑

C=1

3∑
B=1

∂τAe
∂εBe

K−1
BC∆εtrCe
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=
3∑

C=1
CALGAC ∆εtrCe (2.94a)

CALGAC =
3∑

B=1

∂τAe
∂εBe

K−1
BC (2.94b)

with the matrixK defined in equation (2.76a).

Remark (Symmetry ofCALG). Reese and Govindjee (1998) provides a proof of the sym-
metric properties of CALG. Upon further inspection of the implemented material mod-
els the calculated CALG have shown to be unsymmetric, because of that a unsymmetric
solver have been used in some of the calculations in this thesis. The Neo-Hookean and
Yeoh-material models have been tested and performs well with a symmetric solver, while
the hydrogel material model have been tested with only a unsymmetric solver.

2.4.5 Summary of Finite Viscoelasticity

To summarize the theory the NEQ-part of the strain energy function UNEQ and the mate-
rial tangent modulus for the NEQ-part implemented in the UMAT subroutine CABANEQ must
be defined. The strain energy function of the NEQ-part is defined as in Bonet (2001) as

UNEQ(Ce) = βUEQ(C)
∣∣∣
C=Ce

(2.95)

with the material scaling parameter β added to make a linear relation between the EQ
material constants and the NEQ material constants (f. ex. C1e = βC1), alternatively the
NEQ material constants may be chosen to be independent of the EQ material constants,
but this is likely to increase the calculation effort needed to fit the material models to
experimental data. The NEQ material tangent modulus CABANEQ is then found from equation
(2.36) as

CABANEQ = 1
J C∆J

NEQ = (cNEQ + C̃NEQ) (2.96)

J (C̃NEQ)ijkl = 1
2

(
δik(τNEQ)jl+δil(τNEQ)jk+δjk(τNEQ)il+δjl(τNEQ)ik

)
. (2.97)

The iteration process is shown in figure 2.8. Note that for all material models, except
the hydrogel material model presented in the next chapter, F = F TOT .
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2.4 Finite Viscoelasticity

Figure 2.8: Float-chart of the iteration process at each integration point during the
ABAQUS/Standard Finite Element analysis.
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2.5 Variational approach to determine the material tan-
gent modulus

Chapter 4 of the ABAQUS documentation (ABAQUS, 2013) provides a practical method
to determine the Jaumann rate of the Kirchhoff stress τ by calculation of the variations
of the isochoric left Cauchy-Green tensor b̄ and its two first invariants Ī1 and Ī2, and the
variation of the determinant J of the deformation gradient. The variation of the second
invariant is left out as the constitutive models evaluated in this thesis are independent of it.
The variations are given as

δb̄ = H : δe+ δw · b̄− b̄ · δw (2.98a)

δĪ1 = 2b̄ : δe (2.98b)

δJ = Jδεvol (2.98c)

with the 4-tensor H, 2-tensor δe and scalar δεvol given as

Hijkl := 1
2(δik b̄jl + b̄ikδjl + δilb̄jk + b̄ilδjk) (2.99a)

δεvol := I : δD (2.99b)

δe := δd− 1
3δε

volI. (2.99c)

Given a tensor function of the Kirchhoff stress such that τ = τ̂ (b̄, Ī1 , J ) the variation
of the Kirchhoff stress is then given as

δτ = ∂τ̂

∂b̄
: δb̄+ ∂τ̂

∂Ī1
δĪ1 + ∂τ̂

∂J δJ . (2.100)

The goal is then to rewrite equation (2.100) on the following form

δτ = A : δd+ δw · τ − τ · δw = C∆J : δd+ δw · τ − τ · δw. (2.101)

where C∆J is the Jaumann tangent modulus, w is the spin tensor and d is the rate of
deformation tensor.

Finally the tangent modulus implemented in the UMAT-subroutine is given as

CABANEQ = 1
J C∆J (2.102)

26



Chapter 3

Constitutive models

The main objective of this master thesis was to obtain a stable viscoelastic constitutive
model for hydrogel materials, based on the constitutive model developed by Kang and
Huang (2010), coded in a UMAT-subroutine. As experimental data from a spherical Ugel-
stad polymeric particle was available, a viscoelastic Neo-Hookean constitutive model was
initially implemented in a UMAT-subroutine in order to model the viscoelastic response
of the polymer particle and to test the stability of the finite viscoelasticity model with
finite element models. As the experimental compression data showed a ”s”-shaped force-
deflection curve, some different variants of the Neo-Hookean constitutive model and the
Yeoh constitutive model was also implemented in UMAT-subroutines. The derivations of
the different constitutive models implemented are shown in this chapter.

3.1 Yeoh hyperelastic model
The Yeoh hyperelastic model is a polynomial model proposed by Yeoh (1993). The mate-
rial model have been implemented in the UMAT-file YEOH3visco.for. The strain energy
function has the following form

UEQ = U (Ī1, J ) =
3∑
i=1

Ci(Ī1 − 3)i +
3∑
k=1

1
Dk

(J − 1)2k (3.1)

where Ci and Di are material constants related to the shear modulus G and the bulk
modulus κ.

By applying the assumptions from section 2.4.5, UNEQ may be defined as

UNEQ = U ( ¯I1e, Je) = β

3∑
i=1

Ci(Ī1e − 3)i + β

3∑
k=1

1
Dk

(Je − 1)2k (3.2)

with Ī1e defined as Je
− 2

3 I1 (Ce) = Je
− 2

3 I1 (be) and Je defined as
√

I3 (Ce).
The second Piola-Kirchoff stress tensor S is then found as

S = SEQ + SNEQ (3.3a)
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SEQ = b1
∂Ī1
∂C

+ 2pe
∂J
∂C

= b1J− 2
3 (I − 1

3 I1C
−1) + pJC−1 (3.3b)

SNEQ = F−1
i · (βb1e

∂Ī1e
∂Ce

+ 2βpe
∂Je
∂Ce

) · F−Ti

= βb1eJe
− 2

3 (C−1
i −

1
3 I1eC

−1) + βpeJeC−1 (3.3c)

with the variables b1, b1e, p and pe defined as

b1 := 2 ∂

∂Ī1

( 3∑
i=1

Ci(Ī1 − 3)i
)

= 2C1 + 4C2(Ī1 − 3) + 6C3(Ī1 − 3)2 (3.4a)

b1e := 2 ∂

∂ ¯I1e

( 3∑
i=1

Ci(Ī1e − 3)i
)

= 2C1 + 4C2(Ī1e − 3) + 6C3(Ī1e − 3)2 (3.4b)

p := ∂

∂J

( 3∑
k=1

1
Dk

(J − 1)2k
)

= 2
D1

(J − 1) + 4
D2

(J − 1)3 + 6
D2

(J − 1)5 (3.4c)

pe := ∂

∂Je

( 3∑
k=1

1
Dk

(Je−1)2k
)

= 2
D1

(Je−1)+ 4
D2

(Je−1)3 + 6
D2

(Je−1)5. (3.4d)

The Kirchhoff stress tensor τ and Cauchy stress tensor σ may then be found by the
push-forward operation of the second Piola-Kirchoff stress tensor S

(
equation (3.3a)

)
such that

τ = Jσ = F · S · F T = τEQ + τNEQ (3.5a)

τEQ = b1(b̄− 1
3 Ī1I) + pJI (3.5b)

τNEQ = βb1e(b̄e −
1
3 Ī1eI) + βpeJeI (3.5c)

with b̄e defined as Je
− 2

3 be.
The tangent modulus of the EQ-part CABAEQ calculated in the UMAT-subroutine is de-

fined as

CABAEQ = a1H− a2(I ⊗ b̄+ b̄⊗ I) + a3b̄⊗ b̄+ a4I ⊗ I + dpI ⊗ I (3.6)

with the variables a1, a2, a3, a4 and dp defined as

a1 := b1
J (3.7a)
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a2 := 1
J

( Ī1
3 b2 + 2

3b1
)

(3.7b)

a3 := b2
J (3.7c)

a4 := 1
J

(( Ī1
3
)2
b2 + 2

3
Ī1
3 b1

)
(3.7d)

dp := ∂(pJ )
∂J =

2
D1

(2J − 1) + 4
D2

(
(J − 1)3 + 3J (J − 1)2

)
+ 6
D2

(
(J − 1)5 + 5J (J − 1)4

)
(3.7e)

b2 := 2∂b1
∂Ī1

= 8C2 + 24C3(Ī1 − 3) (3.7f)

and the 4-tensor H defined as

Hijkl := 1
2(δik b̄jl + b̄ikδjl + δilb̄jk + b̄ilδjk). (3.8)

The tangent modulus of the NEQ-part (viscous part) CABANEQ is calculated as described
in section 2.4.4 and 2.4.5. The calculation steps for the tangent modulus of the EQ-part
CABAEQ is shown below.

3.1.1 Calculation of the EQ-part tangent modulus
The EQ-part of the tangent modulus have been calculated by using variations as described
in section 2.5. Recalling that

δεvol := I : δD (3.9a)

δe := δd− 1
3δε

volI (3.9b)

δb̄ = H : δe+ δw · b̄− b̄ · δw (3.9c)

δĪ1 = 2b̄ : δe (3.9d)

δJ = Jδεvol (3.9e)

and taking note of the following useful properties

H : I = 2b̄ (3.10a)

δw · I − I · δw = 0 (3.10b)

the variation of the Kirchhoff stress τ may be found as

δ(τEQ)ij = ∂b1

∂Ī1
(b̄ij −

1
3 Ī1 δij)δĪ1 + b1(δb̄ij −

1
3δĪ1 δij) + ∂(pJ )

J δijδJ
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= 1
2b2(b̄ij −

1
3 Ī1 δij)δĪ1 + b1(δb̄ij −

1
3δĪ1 δij) + dpδijδJ

= b2(b̄ij b̄kl −
2
3 Ī1 δij b̄kl)δekl

+b1(Hijkl −
2
3δij b̄kl)δekl + b1(δwik b̄kj − b̄ikδwkj)

+dpδijJδεvol.

Exploiting equation (3.10b) it may be shown that

b1(δw · b̄− b̄ · δw) = b1(δw · (b̄− 1
3 Ī1I)− (b̄− 1

3 Ī1I) · δw)

= −(τEQ · δw − δw · τEQ).

This leads to the Jaumann-rate such that

δτEQ + τEQ · δw − δw · τEQ = C∆J : δd

= b2(b̄⊗ b̄− 2
3 Ī1I ⊗ b̄) : δe

+b1(H− 2
3I ⊗ b̄) : δe+ JdpIδεvol

=
(
b2(b̄⊗ b̄− 2

3 Ī1I ⊗ b̄) + b1(H− 2
3I ⊗ b̄)

)
: δd

−1
3

(
b2(b̄⊗ b̄− 2

3 Ī1I ⊗ b̄) + b1(H− 2
3I ⊗ b̄)

)
: Iδεvol + JdpIδεvol.

As b̄⊗ b̄ : I = Ī1 b̄, H : I = 2b̄ and δεvol := I : δD this leads to

C∆J : δd =
(
δd = b1H− ( Ī1

3 b2 + 2
3b1)(I ⊗ b̄+ b̄⊗ I)

+b2b̄⊗ b̄+
(( Ī1

3
)2
b2 + 2

3
Ī1
3 b1

)
I ⊗ I + JdpI ⊗ I

)
: δd.

The material tangent is then found as

CABAEQ = 1
J C∆J = a1H− a2(I ⊗ b̄+ b̄⊗ I) + a3b̄⊗ b̄+ a4I ⊗ I + dpI ⊗ I. (3.15)
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3.1.2 Viscoelastic iteration variables
At each increment the internal variables C−1

i must be found as described in section 2.4.3.
For the YEOH-material the deviatoric and volumetric parts of τNEQ is given as

dev(τNEQ) = τNEQ −
1
3 tr(τNEQ)I = βb1e(b̄e −

1
3 Ī1eI) (3.16a)

vol(τNEQ) = 1
3 tr(τNEQ) = 1

3 tr(τNEQ) = βpeJe (3.16b)

Equation 2.75 then collapse to

rA = εAe − εtrAe + v1b1edev(b̄Ae) + v2peJe (3.17)

dev(b̄Ae) = 2
3 λ̄

2
Ae −

1
3 λ̄

2
Be −

1
3 λ̄

2
Ce (A 6= B 6= C), (A,B,C)ε(1, 3)

λ̄2
Ae = J−

2
3

e λ2
Ae, v1 = ∆tβ

2ηD
, v2 = ∆tβ

3ηV
. (3.18)

The next step is to determine the matrixK. By applying the following derivatives

∂Je
∂εBe

= Je,
∂λAe
∂εBe

= λAeδAB (3.19a)

∂λ̄2
Ae

∂εBe
= −2

3J−
5
3

e λ2
Ae

∂Je
∂εBe

+ J−
2
3

e 2λAe
∂λAe
∂εBe

= (2δAB −
2
3)λ̄2

Ae (3.19b)

∂Ī1e
∂εBe

= 4
3 λ̄

2
Be −

2
3(λ̄2

Ae + λ̄2
Ce)

= 2
(2

3 λ̄
2
Be −

1
3(λ̄2

Ae + λ̄2
Ce)
)

= 2dev(b̄Be) (3.19c)

∂dev(b̄Ae)
∂εBe

= (3.19d)

= 2
3
(4

3 λ̄
2
Ae + 1

3 λ̄
2
Be + 1

3 λ̄
2
Ce

)
A = B

= 2
3
(
− 2

3 λ̄
2
Ae −

2
3 λ̄

2
Be + 1

3 λ̄
2
Ce

)
A 6= B (3.19e)

the matrixK is defined as

KAB = ∂rA
∂εBe

= δAB + v1

(∂b1e
∂Ī1e

dev(b̄Ae)
∂Ī1e
∂εBe

+b1e
∂dev(b̄Ae)
∂εBe

)
+ v2

∂(peJe)
∂Je

∂Je
∂εBe

= v1

(
b2edev(b̄Ae)dev(b̄Be) + b1e

∂dev(b̄Ae)
∂εBe

)
+ δAB + v2(dp)eJe. (3.20)
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With the variables b1e, b2e and (dp)e defined as

(dp)e := 2
D1

(2Je − 1) + 4
D2

(
(Je − 1)3 + 3Je(Je − 1)2

)
+ 6
D2

(
(Je − 1)5 + 5Je(Je − 1)4

)
(3.21a)

b1e := 2C1 + 4C2(Ī1e − 3) + 6C3(Ī1e − 3)2 (3.21b)

b2e := 2∂b1e
∂Ī1

= 8C2 + 24C3(Ī1e − 3). (3.21c)

The algorithmic tangent modulus Calg is defined as

CalgAC = ∂τA
∂εBe

K−1
BC (3.22)

with

∂τA
∂εBe

= βb2edev(b̄Ae)dev(b̄Be) + βb1e
∂dev(b̄Ae)
∂εBe

+ β(dp)eJe. (3.23)

3.2 Neo-Hookean hyperelastic model - uncoupled variant
The Neo-Hookean hyperelastic model is one of the simplest polynomial hyperelastic mod-
els. Three variants of the Neo-Hookean model have been implemented for calculations
with ABAQUS/Standard as UMAT-subroutines. Two uncoupled UMAT subroutines Neo-
HookeVisco.for and NeoHookeViscoV2.for and one coupled model NeoHookeViscoCou-
pled.for. The first two models is based on a split of the strain energy function into an
isochoric (volumetric) and a deviatoric part. The model implemented into the UMAT
NeoHookeVisco.for is defined in terms of the following strain energy function

UEQ = U (Ī1, J ) = C1(Ī1 − 3) + 1
D1

(J − 1)2 (3.24)

with the NEQ-part defined as

UNEQ = U (Ī1e, Je) = C1(Ī1e − 3) + 1
D1

(Je − 1). (3.25)

From this it can concluded that this Neo-Hookean model may be viewed as a special
simplified case of the Yeoh-model with i, k = 1. The variables defined in section 3.1
collapse to

b1 = b1e = 2C1, b2 = b2e = 0 (3.26a)

p = 2
D1

(J − 1), pe = 2
D1

(Je − 1) (3.26b)

a1 = b1
J , a2 = 2

3
b1
J = 2

3a1 (3.26c)

32



3.2 Neo-Hookean hyperelastic model - uncoupled variant

a3 = 0, a4 = 1
J

2Ī1
9 b1 = 2Ī1

9 a1 (3.26d)

dp = 2
D1

(2J − 1), (dp)e = 2
D1

(2Je − 1) (3.26e)

This leads to the following expressions for the Kirchoff stress tensors τEQ and τNEQ
and the EQ material tangent CABAEQ

τEQ = b1(b̄− 1
3 Ī1I) + pJI (3.27a)

τNEQ = βb1e(b̄e −
1
3 Ī1eI) + βpeJeI (3.27b)

CABAEQ = a1

(
H− 2

3(I ⊗ b̄+ b̄⊗ I) + 2
3

Ī1
3 I ⊗ I

)
+ dpI ⊗ I (3.27c)

3.2.1 Viscoelastic iteration variables
The Neo-Hookean model gives a simpler expression to solve for the viscoelastic variables
as b1e is constant. The necessary viscoelastic iteration variablesR,K and CALG is then

rA = εAe − εtrAe + v1b1edev(b̄Ae) + v2peJe (3.28)

KAB = δAB + v1b1e

(
(2δAB −

2
3)λ̄2

Be −
2
3dev(b̄Ae)

)
+ v2(dp)eJe (3.29)

CalgAC = ∂τA
∂εBe

K−1
BC ,

∂τA
∂εBe

= βb1e

(
(2δAB−

2
3)λ̄2

Be−
2
3dev(b̄Ae)

)
+β(dp)eJe (3.30)

with b1e and (dp)e defined by equation (3.26e) and (3.26a) and v1 and v2 defined by
equation (3.18).

3.2.2 Interchanging the volumetric part of the strain energy function
A UMAT with the volumetric part of the strain energy function U(J ) = 1

D1
(J − 1)2

interchanged with U(J ) = 1
D1

(
(J − 1)2 + ln(J )2

)
. This only results in a change of the

variables p, pe, dp and (dp)e which is then defined as

p = 2
D1

(
(J − 1) + ln(J )

J

)
, pe = 2

D1

(
(Je − 1) + ln(Je)

Je

)
(3.31a)

dp = 2
D1

(
(2J − 1) + 1

J

)
, (dp)e = 2

D1

(
(2Je − 1) + 1

Je

)
. (3.31b)

This material model is implemented in the UMAT-file NeoHookeViscoV2.for.
Linearizing ln(J)

J around J = 1 gives the following expression for p

p ≈ 4
D1

(J − 1) (3.32)

which shows that the initial bulk modulus κ0 is equal to 4
D1

for this kind of strain
energy function.
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3.3 Neo-Hookean hyperelastic model - coupled variant

Another Neo-Hookean model have been implemented into a UMAT-subroutine to possibly
improve the modeling of compressible materials. The model is implemented in the UMAT-
file NeoHookeViscoCoupled.for modeled with the following strain energy function

UEQ = U (I1, J ) = C1(I1 − 3− 2ln(J )) + 1
D1

(ln(J ))2 (3.33)

where the first part is identical to the elastic part of the strain energy function shown
in Kang and Huang (2010) based on statistical mechanics as shown in Flory et al. (1976)
with 1

2NkBT = C1. The NEQ-part is then defined as

UNEQ = U (I1e, Je) = βC1
(
I1e − 3− 2ln(Je)

)
+ β

1
D1

ln(Je)2. (3.34)

The second Piola-Kirchhoff stress tensor S is then found as

S = SEQ + SNEQ (3.35a)

SEQ = 2C1(I −C−1) + 2
D1

ln(J )C−1 (3.35b)

SNEQ = F−1
i ·

(
β2C1(I −C−1

e ) + β
2
D1

ln(Je)C−1
e

)
· F−Ti

= β2C1(C−1
i −C

−1) + β
2
D1

ln(Je)C−1. (3.35c)

The Kirchhoff stress τ is then found from the push-forward operation as

τ = Jσ = F · S · F T = τEQ + τNEQ (3.36a)

τEQ = 2C1(b− I) + 2
D1

ln(J )I (3.36b)

τNEQ = β2C1(be − I) + β
2
D1

ln(Je)I. (3.36c)

The tangent modulus of the EQ-part CABAEQ calculated in the UMAT-subroutine is de-
fined as

CABAEQ = 2C1

J J 2
3 H + 2

D1

1
J I ⊗ I. (3.37)

The calculation of the tangent modulus is shown below.
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3.3 Neo-Hookean hyperelastic model - coupled variant

3.3.1 Calculation of the EQ-part tangent modulus
Rewriting the EQ-Kirchhoff stress τEQ in terms of b̄ and J leads to the following expres-
sion

τEQ = 2C1(J 2
3 b̄− I) + 2

D1
ln(J )I. (3.38)

The variation of τEQ is then

δτEQ = 2C1
(2

3J− 1
3 b̄δJ + J 2

3 δb̄
)

+ 2
D1

1
J IδJ

= 2C1J 2
3

(
(2
3 b̄⊗ I) : δd+ H : δe+ (δw · b̄− b̄ · δw)

)
+
( 2
D1
I ⊗ I

)
: δd.

Recalling the properties of equation (3.10b) it may then be shown that

δτEQ + τEQ · δw − δw · τEQ = C∆J : δd

= 2C1J 2
3

(
(2
3 b̄⊗ I) : δd+ H : δe

)
+
( 2
D1
I ⊗ I

)
: δd

= 2C1J 2
3

(
(2
3 b̄⊗ I) : δd+ H : δd− (2

3 b̄⊗ I) : δd
)

+
( 2
D1
I ⊗ I

)
: δd

=
(

2C1J 2
3 H + 2

D1
I ⊗ I

)
: δd. (3.41)

The tangent modulus of the EQ-part CABAEQ is then defined as

CABAEQ = 2C1

J J 2
3 H + 2

D1

1
J I ⊗ I (3.42)

with H defined by equation (3.8).

3.3.2 Viscoelastic iteration variables
By splitting the viscous Kirchhoff stress τNEQ into a deviatoric and volumetric part

dev(τNEQ) = τNEQ −
1
3 tr(τNEQ)I = β2C1(be −

I1e

3 I) = β2C1dev(be) (3.43a)

vol(τNEQ) = 1
3 tr(τNEQ) = β2C1( I1e

3 − 1)I + β
2
D1

ln(Je) (3.43b)
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the vector r and matrixK is then defined as

rA = εAe − εtrAe + v12C1dev(bAe) + v2

(
2C1( I1e

3 − 1) + 2
D1

ln(Je)
)

(3.44)

KAB = δAB + v12C1
∂dev(bAe)
∂εBe

+ v2

(
2C1

∂I1e

∂εBe

1
3 + 2

D1

1
Je

∂Je
∂εBe

)
= δAB + v12C1

(
2δAB −

2
3
)
λ2
Be + v2

(
2C1

2
9λ

2
Be + 2

D1

)
(3.45)

with the variables v1 and v2 defined by equation (3.18). The algorithmic tangent mod-
ulus is then defined as

CalgAC = ∂τA
∂εBe

K−1
BC (3.46)

with

∂τA
∂εBe

= β2C1
∂λ2

Ae

∂εBe
+ 2
D1

1
Je

∂Je
∂εBe

= β
(

4C1λ
2
AeδAB + 2

D1

)
. (3.47)

3.4 Hydrogel Constitutive model

The viscoelastic hydrogel model implemented is a combined model consisting of the elas-
tic hydrogel model developed by Kang and Huang (2010) and finite viscoelasticity de-
veloped by Reese and Govindjee (1998). The polymer chain network is assumed to be
incompressible while the mix of solvent with the polymer particles is assumed to cause
the volumetric deformations of the material. This material behavior is modeled by part 1
and part 2 respectively of the strain energy function as shown below. A good example of
this behavior is the dissipation of water observed from hydrogels during compression.

The strain energy function from Kang and Huang (2010) is

UEQ = 1
2NkBT (I1 − 3− 2 ln(J ))

+ kBT

ν
[(J − 1) ln(J − 1

J ) + χ
J − 1

J ]− µ

ν
(J − 1) (3.48)

with the new parameters defined as

N = Number of polymer chains per unit volume
kB = Boltzmanns constant
T = Absolute temperature
ν = Volume per solvent molecule
µ = Chemical potential of the hydrogel
χ = Energy parameter
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3.4 Hydrogel Constitutive model

in this case NkBT is the initial shear modulus during small strains.
The NEQ strain energy function is then found as

UNEQ = 1
2βNkBT [I1e − 3− 2 ln(Je)]

+ β
kBT

ν
[(Je − 1) ln(Je − 1

Je
) + χ

Je − 1
Je

]− βµ
ν

(Je − 1). (3.49)

To further develop the theory, the second Piola Kirchhoff stress tensor is then found as

S = SEQ + SNEQ (3.50a)

SEQ = 2∂UEQ
∂C

= NkBT
(
I + f (J )C−1) (3.50b)

SNEQ = F−1
i · 2∂UNEQ

∂Ce
· F−Ti

= βNkBT
(
C−1
i + f (Je)C−1) (3.50c)

The Kirchhoff stress tensor is then found from the push-forward operation as

τ = Jσ = F · S · F T = τEQ + τNEQ (3.51a)

τEQ = NkBT
(
b+ f (J )I

)
(3.51b)

τNEQ = βNkBT
(
be + f (Je)I

)
(3.51c)

with the function f(y) defined as

f(y) = ∂

∂y

(
1
Nν

(
(y − 1) ln(y − 1

y ) + χ
y − 1

y − µ

kBT

))
· y − 1

= 1
Nν

(
ln(y − 1

y )y + 1−Nν + χ

y −
µ

kBT
y
)
. (3.52)

3.4.1 Initial state-variable
The function f(y) approach −∞ as y approach 1 which leads to the chemical potential
µ approaching a value of −∞ if the initial state should be stress-free. This is solved
by Kang and Huang (2010) by introducing an initial swelling deformation F 0 such that
the initial state is stress free. The total deformation of the hydro gel is then defined as
F TOT = F · F 0.

The initial deformation gradient F 0 with a given chemical potential µ may then be
found be solving

(τ (0)
EQ)A = NkBT

(
(λ(0))2+ 1

Nν

(
ln(J

(0) − 1
J (0) )J (0)+1−Nν+ χ

J (0)−
µ

kBT
J (0)

))
= 0

(3.53)
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for the case of isotropic swelling with J (0) = λ(0)λ(0)λ(0). For the case of constraints
causing anisotropic swelling (λ(0)

1 , λ(0)
2 and/or λ(0)

3 6= 0) the initial stress may be found
by some modifications as shown in Kang and Huang (2010). Alternatively the chemi-
cal potential µ may be found by equation (3.53) if the initial deformations are known or
prescribed.

The initial state of the elastic part of the decomposed deformation gradient F 0
e is iden-

tical to the initial deformation gradient F 0 as

(τ (0)
NEQ)A = NkBT

(
(λ(0)
e )2+ 1

Nν

(
ln(J

(0)
e − 1
J

(0)
e

)J (0)
e +1−Nν+ χ

J
(0)
e

− µ

kBT
J (0)
e

))
= 0

(3.54)
which leads to J (0) = J

(0)
e and λ(0)

A = λ
(0)
Ae .

Figure 3.1: Sketch of the decomposition of the deformation gradient

3.4.2 The EQ-part tangent modulus

The tangent modulus of the EQ-part CABAEQ is found by the variation of the Kirchhoff
stress as performed in the previous sections. The calculation are shown in detail in Kang
and Huang (2010) leading to

CABAEQ = NkBT

(
J− 1

3 H + g(J )
J I ⊗ I

)
(3.55)

which have some similarities to equation (3.37). The function g(y) is defined as

38



3.4 Hydrogel Constitutive model

g(y) = ∂f(y)
∂y · y = 1

Nν

(
ln(y − 1

y )y + y
y − 1 −

χ

y −
µ

kBT
y
)
. (3.56)

3.4.3 Viscoelastic iteration variables
The viscoelastic variables r, K and CALG must be found to complete the hydrogel vis-
coelastic model and to find the internal variables Ci and the NEQ constitutive tangent
CABANEQ. The deviatoric and volumetric parts of τNEQ is given as

dev(τNEQ) = τNEQ −
1
3 tr(τNEQ)I = βNkBT (be −

I1e

3 I) = βNkBTdev(be)
(3.57a)

vol(τNEQ) = 1
3 tr(τNEQ) = βNkBT

( I1e

3 + f(Je)
)

(3.57b)

The vector r is given as

rA = εAe + ∆t
(

1
2η

D

dev(τA) + 1
3η

V

vol(τNEQ)
)
− (εAe)trial

= εAe − (εAe)trial +NkBT

(
v1dev(bAe) + v2

( I1e

3 + f(Je)
))

(3.58)

with the variables v1 and v2 defined by equation (3.18). The matrix K is then found as

KAB = δAB +NkBT

(
v1
∂dev(bAe)
∂εBe

+ v2

( ∂I1e

∂εBe

1
3 + ∂f(Je)

∂Je
∂Je
∂εBe

))

= δAB +NkBT

(
v1
(
2δAB −

2
3
)
λ2
Be + v2

(2
9λ

2
Be + g(Je)

))
(3.59)

with the function g(Je) defined by equation (3.56).
Finally the incremental tangent modulus CALG is found as

CalgAC = ∂τA
∂εBe

K−1
BC (3.60)

with

∂τA
∂εBe

= βNkBT

(
∂λ2

Ae

∂εBe
+ ∂f(Je)

∂Je
∂Je
∂εBe

)
= βNkBT

(
2λ2

AeδAB + g(Je)
)
. (3.61)

The viscoelastic hydrogel material model have been implemented in the UMAT-file
KANGViscous.for.
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Chapter 4

Numerical tests

To test the material models numerically a creep test and a relaxation test under large de-
formations have been performed with ABAQUS/Standard. The element tested is a single
20-node quadratic reduced integration brick element (C3D20R) with all sides length equal
to 1mm.

The material models where tested with the following values for the Neo-Hookean ma-
terial models:

Name 2C1 2/D1 ηDEV ηV OL β UMAT-file
NH1 3 120 15 600 1 KANGViscous.for
NH2 3 120 15 600 1 KANGViscousV2.for
NHC 3 120 15 600 1 KANGViscousCoupled.for
NH1:2-el 3 120 15/240 600/1200 1/1 KANGViscous2EL.for

Table 4.1: Values of the Neo-Hookean material constants during the FEM tests.

where NH1 is the first variant of the uncoupled Neo-Hookean material model described
in section 3.2 and NH2 is the second variant of the uncoupled Neo-Hookean material.
NHC is the coupled Neo-Hookean material described in section 3.3 while NH1:2-el is the
first material model with 2 viscous (internal) elements. The Yeoh-material (YEOHV) and
the hydrogel material model (KANG) was tested with the following values:

Name 2C1 2C2 2C3 2/D1 2/D1 2/D1
ηDEV ηV OL β UMAT-file

YEOHV 3 -0.01 0.0016 120 12 1
15 600 1 YEOH3Visco.for

Name NkBT Nν χ ηDEV ηV OL β UMAT-file
KANG 1.5 0.0375 0.48 15 600 1 KANGViscous.for

Table 4.2: Values of the Yeoh and hydrogel material constants during the FEM tests.
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The material constants have the following units:

[C1] = [MPa]
[C2] = [MPa]
[C3] = [MPa]
[D1] = [(MPa)−1]
[D2] = [(MPa)−1]
[D3] = [(MPa)−1]
[NkBT ] = [MPa]
[ηDEV ] = [MPa · s]
[ηV OL] = [MPa · s]
[β] = [ ]
[Nν] = [ ]
[χ] = [ ]

Table 4.3: Units of the material constants.

while the force shown in the figures have units of MPa.

4.1 Creep test

The solid element described is prescribed a a traction force of 10 newton on one edge
normal to the 2-direction (t02 = 20) as a ramp force over a time period of 1 second and
then held constant in the succeeding step for 35 seconds. The deformations at the initial
step and at the end of step 1 and step 2 are shown in figure 4.1.
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4.1 Creep test

Figure 4.1: Deformation of the solid element at t = 0, 1, 36.

As seen in figure 4.2 the initial tangent of the material models at small deformations
are close, while the stiffness of the YEOH material increases more non-linearly with the
strain. The Neo-Hookean model with an extra viscous element is stiffer during the loading
phase as expected.

The resulting stretch values shown in figure 4.3 shows that the behavior is as predicted
by the linear results (figure 2.7). It is also clear that a time-period of 35 seconds of the
second step is insufficient for the second viscous variable b(2)

e to reach thermodynamic
equilibrium b

(2)
e ≈ 0 due to the high viscosity values prescribed to the second viscous

element. Recalling from the generalized Maxwell model that the relaxation time τ in
the linear case is given as τ = η

K the deviatoric and volumetric relaxation times may be
approximated from the shear-module G and the bulk modulus κ as

τDEV ≈
ηDEV
G

≈ ηDEV
2C1 =

{
5 First viscous element
80 Second viscous element (4.1a)

τV OL ≈
ηV OL
κ
≈ ηDEV

2/D1 =
{

5 First viscous element
10 Second viscous element (4.1b)

which indicates that the second element needs a much greater time-period to reach
thermodynamic equilibrium. Figure 4.4 shows this effect.
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Figure 4.2: Stress-stretch results of the Neo-Hookean and Yeoh material models.

Figure 4.3: Stretch results of the Neo-Hookean and Yeoh material models.44



4.1 Creep test

Figure 4.4: NEQ-Stress results of the Neo-Hookean and Yeoh material models.

The hydrogel viscoelastic models response depends greatly on the initial chemical
potential µ and the corresponding initial swelling stretches λ(0) as shown in figure 4.5.
The normalized chemical potential from Kang and Huang (2010) is defined as

µ∗ = µ

kBT
(4.2)

with the following values and corresponding swelling stretches tested:

µ∗ λ(0)

0 1.490
-0.04 1.302
-0.4 1.093

Table 4.4: Values of µ∗ and the corresponding value of λ(0) used in the FEM test.

The compressibility of the hydrogel material also varies greatly with the normalized
chemical potential as shown in figure 4.6, which shows Poisson’s ratio for the different
values of µ∗ where values close to 0.5 shows nearly incompressible behavior.
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Figure 4.5: Stretch values of the hydrogel material model at different values of normalized chemical
potential µ∗.
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4.2 Relaxation test

Figure 4.6: Poisson’s ratio of the hydrogel material model at different values of normalized chemical
potential µ∗.

4.2 Relaxation test

A relaxation test was done with the same properties and setup as for the creep test. The
solid element is deformed such that λ2 = 3.5 over a time-period of 1 second and held
in the following step for 35 seconds. Figure 4.7 and 4.8 shows the total stress and NEQ-
stresses in the 2-direction and it is clear that the viscoelastic behavior is as predicted in the
linear case (figure 2.6).
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Figure 4.7: Total stress results of the Neo-Hookean and Yeoh material models.

Figure 4.8: NEQ-stress results of the Neo-Hookean and Yeoh material models.
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4.3 Hydrogel swelling

The hydrogel material behavior in terms of compressibility is almost the same as in
the creep-test case as shown in figure 4.9.

Figure 4.9: Poisson’s ratio of the hydrogel material model at different values of normalized chemical
potential µ∗.

4.3 Hydrogel swelling
To illustrate the large swelling due to change in the chemical potential in the hydrogel ma-
terial model, a FEM-model with 8-node axisymmetric coupled temperature-displacement
elements (CAX8RT) was subject to a change of normalized chemical potential from µ∗ =
−0.5 to µ∗ = 0 over a time-step of 1 second, then held for 10 seconds. The model is a
half-sphere with a radius of 60µm restrained from movement on the flat surface.

The following material properties where used:

[NkBT ] = 3
[Nν] = 0.075
[χ] = 0.48
[ηDEV ] = 30
[ηV OL] = 600
[β] = 1

Table 4.5: Material constants used in the swelling test.

The resulting swelling is shown in figure 4.10 while the displacement at the top of the
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half-sphere is shown in figure 4.11, which shows that the swelling continues after the first
step.

Figure 4.10: Chemical potential variation induced swelling of a half-sphere axisymmetric FEM-
model.

The swelling in the 2-direction equals λ2 = 1.39 at the center of the halfsphere while
unrestrained isotropic swelling from µ∗ = −0.5 to µ∗ = 0 would make λ2 = 1.41
where the small difference in the stretch values is due to the constraint in the 1- and 3-
direction. Due to the rapid swelling rate when µ∗ approaches zero, very small time-steps
(∆t = 0.015) where necessary for the FEM-solution to converge.
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4.4 The impact of the material scaling parameter on the viscous variables

Figure 4.11: Displacement of the top of the half-sphere due to chemical potential variation-induced
swelling.

4.4 The impact of the material scaling parameter on the
viscous variables

In Reese and Govindjee (1998) equation (2.64) is linearized around be = I which leads to

Ċi = 1
τ

(C −Ci), τ = ηDEV
G = ηV OL

κ
(4.3)

where τ is the relaxation time close to thermodynamic equilibrium while G and κ
is mechanical properties of the NEQ stress close to thermodynamic equilibrium. As the
material scaling parameter β is added to the NEQ part of the strain energy equation τ is
given as

τ = ηDEV
βG = ηV OL

βκ
(4.4)

which means that the parameter β decrease the relaxation times for β > 1 and increase
the relaxation time for β < 1 as seen in figure 4.12. As seen in figure 4.13 the relaxation
time may be held close to constant by multiplying the initial viscosity η0 with β, while the
increase in the NEQ stress is proportional to β.

51



Chapter 4. Numerical tests

Figure 4.12: NEQ-stress over time with the same values of viscosity and changing β.

4.5 Summary
The material models show satisfactory stability and behavior undergoing large strains in
uniaxial tension. The normalized chemical potentials impact of the hydrogel materials
volumetric behavior have also been identified as an important initial parameter of the ma-
terials mechanical response. The hydrogel material model is also shown to be sensitive to
changes in normalized chemical potential µ∗ when µ∗ is close to zero.
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4.5 Summary

Figure 4.13: NEQ-stress over time with the values of viscosity scaled to the values of β.
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Chapter 5

Material testing and material
parameter estimation

The material models described in chapter 4 have been used to fit material parameters
to two sets of experimental indentation experiments. The viscoelastic hydrogel material
model have been matched with indentation experiments of a hydrogel material while the
viscoelastic Neo-Hookean and Yeoh material models have been matched with a nanoin-
dentation experiment of an acrylic Ugelstad sphere.

5.1 Material parameter estimation of a hydrogel material

A series of indentation experiments of a hydrogel material have been performed at the Di-
vision of Biophysics and Medical Technology, NTNU. The gels have thickness of 1.25mm
and contains 10% acrylamide and 3% bis-acrylamide with a 10mM acetate buffer with pH5
and 0.15M NaCl covering the gel.

All experiments are relaxation experiments performed by pressing a spherical or flat
indenter 130µm into the gel over a step-time of approximately 2.6 seconds and then held in
position while the reaction force is monitored. The diameter of the flat indenter is 4.5mm
while the cross-sectional diameter of the conical indenter is 4.5mm.

55



Chapter 5. Material testing and material parameter estimation

Figure 5.1: Reaction force in units of Newton from an experiment with a conical indenter.

The experimental data shows long relaxation times which may indicate high viscosity
values as seen in figure 5.1.

5.1.1 The finite element model

Two axisymmetric finite element models (FEM) have been constructed for use
with ABAQUS/Standard. The gel is modeled with a radius of 15mm and thickness of
1.25mm on a rigid surface while the indenter is modeled as an analytic surface in both
cases.
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5.1 Material parameter estimation of a hydrogel material

Figure 5.2: FEM model with a spherical indenter.

The gel consists of 8-node bi-quadratic reduced integration elements (CAX8R) with
an element size of roughly 0.15mm by 0.15mm with a total of 800 elements. In the model
with the flat indenter the edge of the analytic surface was curved slightly to avoid issues
with high stress concentrations near the edge of the indenter as seen in figure 5.4. All
forces are in units of Newton while all lengths are in units of mm.
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Figure 5.3: FEM model with a flat indenter.

Figure 5.4: The curved edge of the flat indenter.
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5.1 Material parameter estimation of a hydrogel material

5.1.2 The inverse FEM-procedure

An inverse FEM-procedure have been set up using the MATLAB function lsqnonlin and
ABAQUS Python scripts. The non-linear least square method used is the Trust-region-
reflective algorithm which minimizes the error of the experimental and FEM results through
a series of iteration. The input values are the material parameters while the resulting vector
function f being minimized is defined as

fi = (RFFEM2 )i − (RFEXP2 )i
(RFEXP2 )i

(5.1)

where RFFEM2 and RFEXP2 is reaction force in the vertical direction calculated with
the FEM-model and the measured force from the experimental data. Given a set of material
parameters x the function f is minimized in terms of x such that

min
x
||f ||2 = min

x

n∑
i=1

f 2
i (x) (5.2)

which is done by the MATLAB function as explained in the documentation (MATLAB,
2013).

To determine the number of viscous elements α necessary, the inverse FEM material
parameter fitting procedure was performed on the data-set Fil9Aam with α = 1, 2, 3 with
the material scaling parameter βα = 1. The preliminary material fit shown in figure
5.5 indicates that α = 3 provides a reasonable accuracy in describing the viscoelastic
properties of the material, provided βα = 1, which amounts to six viscoelastic material
parameters to be found (η1

DEV , η
1
V OL, η

2
DEV , η

2
V OL, η

3
DEV , η

3
V OL). For the case of the

material parameter β 6= 1, α = 1 provides a good fit of the reaction force reducing the
amount of viscoelastic material parameters to three (ηDEV , ηV OL, β) in this case, but due
to time-constraints this option was not investigated further.
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Figure 5.5: Resulting reaction force for different values of α after the inverse-FEM procedure.

5.1.3 Experimental data

Four gel samples from the same main gel material have been tested with a total of ten data
files analyzed with the inverse FEM-procedure shown in table 5.1.

Spherical Indenter Flat Indenter
Gel sample Data files Data files
1 Fil9Aam, Fil10Aam
2 Fil1Aam2, Fil2Aam2 Flat1Aam2
3 Fil3Aam3 Flat2Aam3, Flat3Aam3, Flat4Aam3
4 Flat2Aam4

Table 5.1: Hydrogel samples and their associated experimental data.

Figure 5.6 and 5.7 shows the normalized experimental data with the reaction force,
RF2, shown as the change of weight from the point the indenter is pushed into the gel in
units of Newton. The standard gravity g is assumed to equal 9.81ms2 .
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Figure 5.6: Reaction force (RF2) from experiment with spherical indenter.
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Figure 5.7: Reaction force (RF2) from experiment with flat indenter.

It is clear that there is a significant variation in the material response for the different
samples and no conclusion for the material parameters of the material may be made with
this set of experimental data. It was reported issues with having the gel stick properly to the
glass which may have caused the gels to float in the buffer solution. Some inhomogeneities
in the gel-samples was also observed. The inverse FEM-procedure have still been applied
to the data to further test the material model and to possibly identify preliminary relaxation
times for the viscous elements.

5.1.4 Results

The hydrogel experimental data have been analyzed with the inverse FEM-procedure with
the assumptions that βα = 1, kBTν = 40 [MPa], χ = 0.48 and the normalized chemical
potential µ∗ is equal to −0.04 using three viscous elements. Table 5.2 and 5.3 shows
the resulting material parameters from the inverse FEM-procedure and the squared vector
norm of the vector function f defined as ||f ||2 =

∑N
i=1 f 2

i .
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Data file Fil1Aam2 Fil2Aam2 Fil3Aam3 Fil9Aam Fil10Aam
NkBT 5.14 · 10−3 5.65 · 10−3 2.42 · 10−3 5.91 · 10−3 5.33 · 10−3

Nν 1.29 · 10−4 1.41 · 10−4 0.61 · 10−4 1.48 · 10−4 1.33 · 10−4

χ 0.48 0.48 0.48 0.48 0.48
η1
DEV 130.13 148.46 8.0 687.14 673.99
η1
V OL 1191.2 1606.96 718.0 716.23 446.00
β1 1 1 1 1 1
η2
DEV 2.88 5.93 0.6 4.28 2.80
η2
V OL 2966.4 3729.84 3480 3679.32 3465.01
β2 1 1 1 1 1
η3
DEV 10.34 11.03 8.0 13.24 13.34
η3
V OL 74.05 354.52 70.0 70.32 71.73
β3 1 1 1 1 1
||f ||2 0.59 · 10−3 1.09 · 10−3 12.6 · 10−3 1.05 · 10−3 0.41 · 10−3

Table 5.2: Material parameters identified with the inverse FEM-procedure for the spherical indenter
experiment.

Data file Flat1Aam2 Flat2Aam3 Flat2Aam4 Flat3Aam3 Flat4Aam3
NkBT 5.0 · 10−3 2.26 · 10−3 5.10 · 10−3 2.39 · 10−3 N/A
Nν 1.25 · 10−4 0.57 · 10−4 1.28 · 10−4 0.60 · 10−4 N/A
χ 0.48 0.48 0.48 0.48 0.48
η1
DEV 213.0 14.23 250.0 8.31 N/A
η1
V OL 788.0 737.01 1230.0 717.88 N/A
β1 1 1 1 1 1
η2
DEV 0.001 0.64 0.6 4.30 N/A
η2
V OL 1993 3995.2 3080 3675.55 N/A
β2 1 1 1 1 1
η3
DEV 11.5 16.67 120 13.12 N/A
η3
V OL 119 70.43 75 70.30 N/A
β3 1 1 1 1 1
||f ||2 62.5 · 10−3 133.8 · 10−3 1.72 · 10−3 1.72 · 10−3 N/A

Table 5.3: Material parameters identified with the inverse FEM-procedure for the flat indenter ex-
periment.

5.1.5 Discussion

The tested gel was observed to not stick properly to the surface during testing which is
most likely the reason to the large variations in the experimental data, as well as some
inhomogeneities in the gel material. The finite element model with the flat indenter also
had some issues with large stress concentrations and distorted elements near the edge of
the indenter which caused the finite element iteration to diverge. As a result no mate-
rial parameters where found with the inverse FEM-procedure from the experimental data
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Flat4Aam3. As the experimental data shows, the small reaction force and corresponding
low stiffness is likely to cause the elements near the outer edge of the flat indenter to distort
excessively.

The initial assumptions that the parameters kBT
ν = 40 [MPa], χ = 0.48 and µ∗ =

−0.04 should also be investigated and may not be the case for this gel. The initial bulk
modulus κ is proportional to kBT

ν as seen from equation 3.51b and with the initial shear
modulusG approximately equal toNkBT which is in the range of 10−3−10−2 [MPa] the
material is close to incompressible. Pritchard et al. (2013) reports an initial Poisson ratio
of 0.5 which relaxes to 0.26 for a gel with 30% acrylamide immersed in water, in the finite
element model the Poisson ratio stays close to 0.5 for the full time-series which is likely
due to a constant chemical potential and small initial swelling during the analysis. With
this in mind it is clear that initial assumptions regarding the mentioned material parameters
may need to be modified.

The initial swelling λ(0) which is equal to 1.3 and its impact on the resulting stress in
the gel may make it necessary to scale the reaction force and/or the depth of indentation,
but this have not been done in the analysis.

To compare the resulting material parameters the following parameters are introduced.

G0 = βNkBT (5.3a)

κ0 = β
kBT

ν
(5.3b)

(τDEV )i = G0

ηiDEV
, i = 1, 2, 3 (5.3c)

(τV OL)i = κ0

ηiV OL
, i = 1, 2, 3 (5.3d)

where G0 and κ0 is related to the initial shear modulus and bulk modulus while
(τDEV )i and (τV OL)i is approximate time relaxation parameters for the deviatoric and
volumetric part. κ0 is given as 40 [MPa] while the other parameters are shown in table
5.4 and 5.5.

Data file Fil1Aam2 Fil2Aam2 Fil3Aam3 Fil9Aam Fil10Aam
G0 5.14 · 10−3 5.65 · 10−3 2.42 · 10−3 5.91 · 10−3 5.33 · 10−3

(τDEV )1 25.3 · 103 26.3 · 103 3.3 · 103 116.3 · 103 126.5 · 103

(τV OL)1 29.8 40.2 20.0 17.9 11.2
(τDEV )2 0.6 · 103 1.1 · 103 0.2 · 103 0.7 · 103 0.5 · 103

(τV OL)2 74.2 93.2 87.0 92.0 86.6
(τDEV )3 2.0 · 103 2.0 · 103 3.3 · 103 2.2 · 103 2.5 · 103

(τV OL)3 1.9 8.9 1.8 1.8 1.8

Table 5.4: Initial shear modulus and approximate relaxation times found with the inverse FEM-
procedure for the spherical indenter experiment.
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Data file Flat1Aam2 Flat2Aam3 Flat2Aam4 Flat3Aam3 Flat4Aam3
G0 5.0 · 10−3 2.3 · 10−3 5.1 · 10−3 2.4 · 10−3 N/A
(τDEV )1 42.6 · 103 6.3 · 103 49.0 · 103 3.5 · 103 N/A
(τV OL)1 19.7 18.4 30.8 17.9 N/A
(τDEV )2 0.01 · 103 0.3 · 103 0.1 · 103 1.8 · 103 N/A
(τV OL)2 49.8 99.9 77.0 91.9 N/A
(τDEV )3 2.3 · 103 7.4 · 103 23.5 · 103 5.5 · 103 N/A
(τV OL)3 3.0 1.8 1.9 1.8 N/A

Table 5.5: Initial shear modulus and approximate relaxation times found with the inverse FEM-
procedure for the flat indenter experiment.

The hydrogel material was tested as four samples, shown in table 5.1. It is clear that
sample 3 deviates the most with values of the initial shear modulus G0 between 2.3 and
2.4 kPa, while analyzing sample 1, 2 and 4 give initial shear modulus values between 5.0
and 5.9 kPa.

While there is problems regarding highly variable experimental data and uncertainty
in the values of kBTν , χ and µ∗ the material parameters found will hopefully provide some
good start values for further analysis. It is also clear that allowing the material scaling
parameter β to have other values than 1 would most likely improve the curve fit with less
viscous elements.

5.2 Material parameter estimation of a PMMA particle

A series of nanoindentation experiments performed on acrylic Ugelstad particles with di-
ameter 3µm have been performed at the NTNU Nanomechanical Lab, He et al. (2009).
The experiments have been performed with a flat indenter compressing the particles. As
the particles have been shown to exhibit viscoelastic behavior, the experimental data have
been analyzed with the inverse FEM-procedure with the material models NH1, NH2, NHC
and YEOHV (see chapter 4 for abbreviations).

5.2.1 The finite element model

The spherical particle have been idealized as an axisymmetric half-sphere due to symme-
try, as seen in figure 5.8, where the deflection of the indenter in the FE-model is half of the
total deflection of the indenter from experimental data. The mesh of the half-sphere con-
sists of 216 8-node bi-quadratic reduced integration elements (CAX8R) with an element
size of about 0.1 by 0.1 µm which is constrained from movement in the 2-direction.
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Figure 5.8: Finite element model of the Ugelstad particle.

5.2.2 Experimental data

The experimental data consists of a set of time-series with different load-times tR, holding
times tH and peak loads P2. As seen from the Force-Deflection curve in figure 5.9 the
material is highly non-linear and load-rate dependent.
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Figure 5.9: Force-deflection curve of the experimental data at different load rates.

5.2.3 Results

The time-series with peak load P2 = 1mN , load-time tR = 10s and holding time tH =
100s have been analyzed with the inverse FEM-procedure described in section 5.1.2 with
the residual function defined as

fi = (U2FEM2 )i − (U2EXP2 )i
(U2EXP2 )i

(5.4)

where (U2FEM2 )i and (U2EXP2 )i is the deflection of the indenter and the first data
point is taken at t = 3s to avoid dividing by values close to zero. The results using 1
viscous element with β set to one is shown in table 5.6.

The results in figure 5.10 and 5.11 shows that the fit of the deflection curve after the
peak load is good for the Yeoh material model, but the material models used in the analysis
can not capture the non-linear force-deflection curve found by the experimental data during
loading with the initial assumptions.
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Material model NH1 NH2 NHC YEOHV
C1 909.9 2110.8 442.7 508.8
D1 20.4 · 10−3 99.9 · 10−3 19.4 · 10−3 10.7 · 10−3

η1
DEV 2507.0 6052.6 2636.7 977.6
η1
V OL 2848.0 2423.6 1003.1 160.3
β1 1 1 1 1
C2 −146.8
C3 4.8
D2 15.8
D3 17.9 · 10−3

||f ||2 24.0 · 10−2 9.2 · 10−2 14.9 · 10−2 9.1 · 10−2

Table 5.6: Material parameters identified from experimental data with load P2 = 1000µN , ramp-
time tR = 10s and hold time tH = 100s with 1 viscous element and β = 1.

Figure 5.10: Deflection at the indenter with the different material models with material parameters
from table 5.6.
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Figure 5.11: Force-deflection plot with the different material models with material parameters from
table 5.6.

Another analysis allowing the material scaling factor β to vary was performed for the
materials NH2 and NHC with two viscous elements. The material NH1 was analyzed
with only one viscous element due to an error in the analysis, but will be used to compare
with the other results. The resulting material parameters are shown in table 5.7 while the
resulting force-deflection plot is shown in figure 5.12.

Material model NH1 NH2 NHC
C1 101.9 94.2 96.7
D1 0.98 · 10−3 0.69 · 10−3 0.51 · 10−3

η1
DEV /β

1 64.7 215.7 199.2
η1
V OL/β

1 5391.9 6768.4 2089.3
β1 4.75 0.03 0.01
η2
DEV /β

2 8.2 9.0
η2
V OL/β

2 466.2 232.7
β2 27.0 25.4
||f ||2 5.37 · 10−2 4.07 · 10−2 4.12 · 10−2

Table 5.7: Material parameters identified from experimental data with load P2 = 1000µN , ramp-
time tR = 10s and hold time tH = 100s with two viscous element and variable β values.
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Figure 5.12: Force-deflection plot with the different material models with material parameters from
table 5.7.

5.2.4 Discussion

As seen in figure 5.11, the material models used in the fitting procedure was not successful
in accurately predicting the force-deflection curve from the experimental data with one
viscous element and with the material scaling β = 1. The impact on the resulting time-
deflection curve is shown in figure 5.13 for the Yeoh-material model for different peak
loads and a constant load rate of 0.1mNs . The fit is good for the values of P2 where
the Yeoh-materials force-deflection curve is close to the experimental curve but not at the
points where it deviates from the curve.
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Figure 5.13: Time-deflection plot of the Yeoh-material at peak loads P2 = 100, 300, 800, 1000µN
with material parameters from table 5.6.

Looking at the values ofD1 andC1 for the Neo-Hookean material models and recalling
that the initial shear-modulus G = 2C1 and the initial bulk modulus κ = 2

D1
(κ = 4

D1
for

NH2), it is clear that the inverse FEM-procedure predicts very low values of κ compared
to G as seen in table 5.8. From linear elasticity the relationship between Poisson’s ratio ν,
the bulk modulus and the shear modulus is given as Slaughter (2002, chap. 5)

κ

G
= 2(1 + ν)

3(1− 2ν) . (5.5)

It may then be seen from table 5.8 that the results leads to negative values of Poisson’s
ratio. While this is found to be the case for some rare materials Evans (1991) it is very
unlikely to be the case for the polymer particle tested. The material properties found
in table 5.6 must then be discarded as unphysical and a new analysis with stricter lower
bounds on the initial bulk modulus or 2/D1 is performed.

Material model NH1 NH2 NHC YEOHV
( κG )(0) 0.11 0.02 0.23 0.37
ν0 −0.63 −0.91 −0.39 −0.21

Table 5.8: Approximate ratio between the bulk modulus and the shear modulus and initial Poisson’s
ratio for the tested material models with material parameters from table 5.6.
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Since the initial fit was bad with one viscous element and a material scaling parameter
β = 1, a new analysis with two viscous elements and a varying material scaling parameter
was performed for the material models NH2 and NHC, while the inverse FEM-procedure
was performed with one viscous element and varying β for the NH1 material model. The
Yeoh material model was not analyzed due to time constraints.

The results proved to both better fit the force-deflection curve and give physically
plausible initial values of Poisson’s ratio ν0 for the material models, as shown in figure
5.12 and table 5.9. While the material models still struggle to match the ”s”-shaped force-
deflection curve, adding more viscous elements or changing the initial material values for
the inverse FEM-procedure might help increase the fit to the experimental data.

The curve-fit for the NH1 material model with only one viscous element is almost as
good as for the other material models with two viscous elements. This may indicate that
a more advanced hyperelastic material model is necessary in order to model the material
or that the initial material parameter values are close to a local minimum of the residual
function f(x).

Material model NH1 NH2 NHC
( κG )(0) 10.1 30.9 20.2
ν0 0.45 0.48 0.47

Table 5.9: Approximate ratio between the bulk modulus and the shear modulus and initial Poisson’s
ratio for the tested material models with material parameters from table 5.7.

Figure 5.14 shows the time-deflection plots at a load rate of 0.1mNs using the NH2
material model with two viscous elements. While the curve fit is decent for some of the
high peak loads (P2 = 800, 100µN ) the response deviates by up to 25 % for the peak
load of 100 µN . The creep seems also to continue at a lower rate than the experimental
data indicates after the peak load is reached, which may be modeled better with an extra
viscous element with higher relaxation times.

The nanoindentation device is reported to have an accuracy of 100 nN and 1 nm He
et al. (2009) which gives high accuracy compared to the experimental data which have
peak loads between 100-1000 mN and peak deflections between 0.27-1.2 µm so the error
from the experimental data is most likely small.

The finite element model and the initial simplification of symmetry by modeling only
half the sphere may lead to some modeling errors, but an initial test of the axisymmet-
ric model with the whole sphere yielded the expected result; twice the deflection of the
half-sphere. The contact properties chosen was ’hard’ normal behavior and frictionless
tangential behavior, these choices may have some impact on the end result.

As discussed in Reese and Govindjee (1998), viscoelastic models based on linear evo-
lution equations is not suitable for systems undergoing large creep deformations, in this
case the materials creep deformations seems to be relatively small and a model based on
finite linear viscoelasticity may give a successful result with less computational effort.
Also introducing NEQ material parameters independent of the EQ material parameters
may give better results, but the disadvantage with this approach is that more parameters
need to be fit to experimental data.
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Figure 5.14: Time-deflection plot of the NH2-material at peak loads P2 = 100, 300, 800, 1000µN
with material parameters from table 5.7.

In Ogden et al. (2004) the problems concerning fitting of hyperelastic material parame-
ters to experimental data and the issue with non-unique sets of optimal material parameters
which may occur during this process is discussed. In the article they show how a set of op-
timal parameters found from one experimental test results in bad values for an experiment
with different boundary conditions. In this case the material parameters are only analyzed
by solving one boundary-value problem which may cause the material parameters to be
incompatible with solving other boundary-value problems.
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Chapter 6

Conclusion

As discussed in chapter 4, the implemented UMAT-subroutines behave well numerically
during large deformation and shows the expected viscoelastic response when it comes to
force-relaxation and creep during finite element analysis. The hydrogel models sensibility
to change in normalized chemical potential µ∗ is also discussed. Due to the high rate of
swelling close to µ∗ = 0 small time-steps are necessary for the solution to converge. The
relation between the material scaling parameter β, the material parameters and the viscos-
ity η have also been shown for the linearized case with the resulting relaxation time. With
this in mind, interpreting further results in terms of relaxation times instead of viscosities,
might give a more intuitive understanding of the physical property of the material.

Even though there was some issues with the experimental hydrogel data, the viscoelas-
tic material model have been able to match the data from the relaxation experiment with
a spherical indenter to a high degree of accuracy. From a finite element modeling point
of view, the experiment with a flat indenter causes issues with distorted elements and may
not be recommended for the purpose of extracting material parameters with the inverse
FEM-procedure.

The variations of the Neo-Hookean material model were not successful in mimicking
the response of the acrylic particle accurately. The Yeoh material model may provide
better results, but based on the results from the first analysis with the material scaling
parameter set to 1, a model better suited for non-linear behavior in compression is most
likely necessary to properly model the particles mechanical response.
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Chapter 7

Further work

Hydrogel materials have a large variety of possible applications. The developed viscoelas-
tic hydrogel material model will hopefully provide a good tool for the modeling of hydro-
gel materials in the future.
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Appendix A

Five UMAT-subroutines coded in .for files have been made as part of this Master Thesis.
The material properties (PROPS) for input from ABAQUS are numbered as follows

PROPS NH1 NH2 NHC YEOHV KANGViscous
1 C1 C1 C1 C1 NkBT
2 D1 D1 D1 C2 Nν
3 ηDEV ηDEV ηDEV C3 χ
4 ηV OL ηV OL ηV OL D1 ηDEV
5 β β β D2 ηV OL
6 D3 β
7 ηDEV
8 ηV OL
9 β

where the material models NH1, NH2, NH3 and YEOHV (for abbreviation see chap-
ter 4) are coded in the FORTRAN files NeoHookeVisco.for, NeoHookeViscoV2.for, Neo-
HookeCoupled.for and YEOH3visco.for. The hydrogel material model, KANGViscous,
is coded in the FORTRAN file KANGViscous.for. Additionally the FORTRAN files with
2EL or 3EL at the end of the file name are coded with 2 and 3 viscous elements. The
state-variables (STATEV) are numbered as follows

STATEV NH1 NH2 NHC YEOHV KANGViscous
1 C−1

11 C−1
11 C−1

11 C−1
11 λ

(0)
1

2 C−1
22 C−1

22 C−1
22 C−1

22 λ
(0)
2

3 C−1
33 C−1

33 C−1
33 C−1

33 λ
(0)
3

4 C−1
12 C−1

12 C−1
12 C−1

12 C−1
11

5 C−1
13 C−1

13 C−1
13 C−1

13 C−1
22

6 C−1
23 C−1

23 C−1
23 C−1

23 C−1
33

7 C−1
12

8 C−1
13

9 C−1
23

The 2-element and 3-element subroutines requires a minimum of 12 and 18 (15 and
21 for the hydrogel material) state-variables with the numbering continuing in the same
pattern as shown in the table.

For the viscoelastic models NH1, NH2, NHC and YEOHV, the comments in the FOR-
TRAN files and chapter 3 should be sufficient for understanding the code. As the FOR-
TRAN file KANGViscous.for contain some extra subroutines and may need to be modified,
parts of the code will be covered.
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KANGViscous

C MATERIAL PROPERTIES
C
C DNKT = N*K*T DvN = v*N DkTV = K*T/v BmukT = mu/K*T
C K := BOLTZMANNS CONSTANT N := # POLYMER CHAINS / UNIT VOLUME
C T := ABSOLUTE TEMPERATURE v := VOLUME PER SOLVENT MOLECULE
C mu := CHEMICAL POTENTIAL chi := DIMENSIONLESS ENERGY PARAMETER
C NKT := INITIAL SHEAR MODULUS BETA := SCALING CONSTANT OF NEQ-STRESS
C VISCdev := DEVIATORIC VISCOSITY
C VISCVOL := VOLUMETRIC VISCOSITY
C ----------------------------------------------------------------
C

DNKT=PROPS(1)
DvN=PROPS(2)
DkTV=DNKT/DvN
chi=PROPS(3)
VISCdev=PROPS(4)
VISCvol=PROPS(5)
BETA=PROPS(6)

C
C For use in coupled temp-disp analysis
c BmukT=Bmukt0+TEMP
C

BmukT=-0.04D0
C
C CALCULATE INITIAL SWELLING
C

if (KSTEP.EQ.1 .AND. KINC.EQ.1) then
CALL DJ0calc (DvN, chi, BmukT, DJ0c)
STATEV(1)=DJ0c**(ONE/THREE)
STATEV(2)=DJ0c**(ONE/THREE)
STATEV(3)=DJ0c**(ONE/THREE)

END IF
Dl01=STATEV(1)
Dl02=STATEV(2)
Dl03=STATEV(3)

C

At the start of the FORTRAN script the material properties are defined, six in total and
another three for each extra viscous element. The variable named BmukT is the normalized
chemical potential µ∗ = µ

kBT
and must be modified for use in a coupled temperature-

displacement analysis. The subroutine DJOcalc calculates the initial swelling values λ(0)

as discussed in section 3.4.1 with a Newton-iteration of equation (3.53). If a prescribed
initial swelling is used, this part of the code may be commented out and STATEV(1),
STATEV(2) and STATEV(3) can be prescribed directly. The initial value of µ∗ (BmukT)
may then be calculated from equation (3.53).

SUBROUTINE DJ0calc (vN, chi, DmukT, DJ0)

IMPLICIT NONE

DOUBLE PRECISION, INTENT(IN) :: vN
DOUBLE PRECISION, INTENT(IN) :: chi
DOUBLE PRECISION, INTENT(IN) :: DmukT

DOUBLE PRECISION, PARAMETER :: VARTEST = 1.0D-8
DOUBLE PRECISION, INTENT(OUT) :: DJ0
DOUBLE PRECISION :: VAR0
DOUBLE PRECISION :: VAR1
DOUBLE PRECISION :: F
DOUBLE PRECISION :: DF
integer :: K1
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VAR0=1.5D0
do K1=1,25,1

F=vN*VAR0**(-1.D0/3.D0)
1 + (log(1.D0-1.D0/VAR0)+(1.D0-vN)/VAR0+chi/(VAR0**2.D0)-DmukT)

DF=-(vN/3.D0)*VAR0**(-4.D0/3.D0)-(1.D0-vN)/(VAR0**2.D0)
1 - 2.D0*chi/(VAR0**3.D0)+1.D0/(VAR0**2.D0-VAR0)

VAR1=VAR0-F/DF

IF (ABS(VAR1-VAR0) .LE. VARTEST) THEN
DJ0 = VAR1
RETURN

END IF
VAR0=VAR1

END DO

RETURN

END SUBROUTINE DJ0calc

The variables fvisc and gvisc are defined in equation (3.52) and (3.56), so if only the
volumetric part of the strain-energy function is changed, replacing these two variables will
modify the material tangent and EQ-stress sufficiently.
C VARIABLES
C

vN=DvN
chhi=chi
BI1=BBTOT(1,1)+BBTOT(2,2)+BBTOT(3,3)
fvisc=(LOG(ONE-ONE/DETTOT)*DETTOT+ONE-vN+chi/DETTOT
1 -BmukT*DETTOT)/vN
gvisc=(LOG(ONE-ONE/DETTOT)*DETTOT+DETTOT/(DETTOT-1)-chi/DETTOT
1 -BmukT*DETTOT)/vN

C
C CALCULATE EQ CAUCHY-STRESS
C

sig(1,1) = DNKT*(BTOT(1,1)+fvisc)/DETTOT
sig(1,2) = DNKT*BTOT(1,2)/DETTOT
sig(1,3) = DNKT*BTOT(1,3)/DETTOT
sig(2,1) = DNKT*BTOT(2,1)/DETTOT
sig(2,2) = DNKT*(BTOT(2,2)+fvisc)/DETTOT
sig(2,3) = DNKT*BTOT(2,3)/DETTOT
sig(3,1) = DNKT*BTOT(3,1)/DETTOT
sig(3,2) = DNKT*BTOT(3,2)/DETTOT
sig(3,3) = DNKT*(BTOT(3,3)+fvisc)/DETTOT

C

From an initial state of zero mechanical loadCi = I so the variables STATEV(4-9) is
defined at the first step in the first increment forming an array of ones and zeros to make
C−1
i = I (CiINV0) at this increment. The subroutine BECALCMOD calculates the NEQ

Kirchhoff stress τNEQ and the elastic left Cauchy-Green strain tensor be as well as the
vectors and tensors used to calculate the NEQ spatial tangent modulus cNEQ as covered
in section 2.4.3 and 2.4.4. The subroutine DNEQTANGENT calculates the NEQ spatial
tangent modulus and returns the tangent modulus CABA used in ABAQUS/Standard as a 6
by 6 matrix (Voigt form) by using the output from BECALCMOD. The state-variables are
then updated with the new values of C−1

i after the local iteration.

C DEFINE INITIAL STATE-VARIABLE, INV(Ci)
C

IF (KSTEP.EQ.1 .AND. KINC.EQ.1) THEN
STATEV(4)=ONE
STATEV(5)=ONE
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STATEV(6)=ONE
STATEV(7)=ZERO
STATEV(8)=ZERO
STATEV(9)=ZERO

END IF
C

CiINV0(1,1)=STATEV(4)
CiINV0(1,2)=STATEV(7)
CiINV0(1,3)=STATEV(8)
CiINV0(2,1)=STATEV(7)
CiINV0(2,2)=STATEV(5)
CiINV0(2,3)=STATEV(9)
CiINV0(3,1)=STATEV(8)
CiINV0(3,2)=STATEV(9)
CiINV0(3,3)=STATEV(6)

C
C CALCULATE Be, NEQ KIRCHOFF STRESS AND NEQ MATERIAL TANGENT
C

DTID=DTIME
CALL BECALCMOD (DvN, DkTV, chi, BmukT, BETA,NDI,NSHR,

1 VISCdev, VISCvol, DTID,
1 DFTOT, CiINV0, Be, TAUNEQ, TAUVEC, DLTR, DPVEC, CALG)

C
C

CALL DNEQTANGENT (DETTOT, TAUVEC, DLTR, DPVEC,
1 CALG, TAUNEQ, DDSDDE2)

C
C UPDATE STATE-VARIABLE
C

CALL M33INV(Be, BeINV, FLAG)
CiTEMP=MATMUL(BeINV,DFTOT)
Ci=MATMUL(TRANSPOSE(DFTOT),CiTEMP)
CALL M33INV(Ci, CiINV1, FLAG)

C
STATEV(4)=CiINV1(1,1)
STATEV(5)=CiINV1(2,2)
STATEV(6)=CiINV1(3,3)
STATEV(7)=CiINV1(1,2)
STATEV(8)=CiINV1(1,3)
STATEV(9)=CiINV1(2,3)

C

The variables f and g in the subroutine BECALCMOD is also defined by equation
(3.52) and (3.56) and may be modified without changing the rest of the code (note that
y = Je).

do K3=1,175,1
C
CCC Explanation of the variables
CCC DETE:=Je CC Q0(A):=Lambdaˆ2_A CC DEVA:=dev(Be_A)
CCC TR3:=tr(Be)/3 CC f:=f(y) CC g:=g(y)
CCC ETRIAL(A):=epsilonˆtr_Ae CC E0(A):=epsilon_Ae at step k
C

DETE=(Q0(1)*Q0(2)*Q0(3))**(1.0D0/2.0D0)
TR3=(Q0(1)+Q0(2)+Q0(3))/3.D0
DEV1=(2.D0*Q0(1)-Q0(2)-Q0(3))/3.D0
DEV2=(2.D0*Q0(2)-Q0(1)-Q0(3))/3.D0
DEV3=(2.D0*Q0(3)-Q0(1)-Q0(2))/3.D0
f=(LOG(1.0D0-1.0D0/DETE)*DETE+

1 1.0D0-DvN+CHI/DETE-DMUKT*DETE)/DvN
g=(LOG(1.0D0-1.0D0/DETE)*DETE+

1 DETE/(DETE-1.0D0)-CHI/DETE-DMUKT*DETE)/DvN
E0(1)=1.D0/2.D0*LOG(Q0(1))
E0(2)=1.D0/2.D0*LOG(Q0(2))
E0(3)=1.D0/2.D0*LOG(Q0(3))

C
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Appendix B

Relation of the spatial and material tangent modulus
Given the material tangent modulus C defined from

Ṡ = C : Ė = C : (F T · d · F )
and the time derivative of the Kirchhoff stress τ given in terms of the second Piola-

Kirchhoff stress as

τ̇ = ˙
F · S · F T = l · (F · S · F T ) + (F · S · F T ) · lT + F · Ṡ · F T

= l · τ + τ · lT + F · Ṡ · F T .
Combining the two equations then leads to

τ̇ = l · τ + τ · lT + F ·
(
C : (F T · d · F )

)
· F T

= l · τ + τ · lT +
(
F · F · C · F T · F T

)
: d

= l · τ + τ · lT + Jc : d
where c is the spatial tangent modulus.

Frame indifference of the Jaumann-rate
Starting with the Lie-derivative of the Kirchhoff stress-tensor, it can be shown that frame
indifference is satisfied. F , τ and d are frame indifferent such that

F ∗ = Q · F

τ∗ = Q · τ ·QT

d∗ = Q · d ·QT .

The rotation tensorQ have the following properties

Q ·QT = I

˙
Q ·QT = İ = 0 = Q̇ ·QT +Q · Q̇T = 0.

The velocity gradient under a change of observer is

l∗ = Ḟ ∗ · (F ∗)−1 = (Q̇ · F +Q · Ḟ ) · (F−1 ·QT )
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= Q̇ ·QT +Q · (Ḟ · F−1) ·QT = Q̇ ·QT +Q · l ·QT

while the time-derivative of τ ∗ is

˙τ∗ = Q̇ · τ ·QT +Q · τ̇ ·QT +Q · τ · Q̇T .

By applying these properties to the Lie-derivative of Kirchhoff stress during a change
of observer

£vτ
∗ = ˙τ∗ − l∗ · τ∗ − τ∗ · (l∗)T

= Q̇ · τ ·QT +Q · τ̇ ·QT +Q · τ · Q̇T

−(Q̇ ·QT +Q · l ·QT ) · (Q · τ ·QT )− (Q · τ ·QT ) · (Q · Q̇T +Q · lT ·QT )

= Q · (τ̇ − l · τ − τ · lT ) ·QT + Q̇ · τ ·QT − Q̇ · τ ·QT +Q · τ · Q̇T −Q · τ · Q̇T

= Q ·£vτ ·QT

it can be concluded that the Lie-derivative of the Kirchhoff stress is frame indifferent.

Finally the Jaumann rate is defined as,

τ∆J = τ̇ −wτ − τwT = τ̇ − (l− d)τ − τ (l− d)T = £vτ + dτ + τd

and with the change of observer,

τ ∗ ∆J = £vτ
∗ + d∗τ∗ + τ∗d∗

= Q ·£vτ ·QT + (Q · d ·QT ) · (Q · τ ·QT ) + (Q · τ ·QT ) · (Q · d ·QT )

= Q · τ∆J ·QT

which concludes that the Jaumann, rate which is implemented in the Abaqus UMAT-
subroutine, is indeed frame indifferent.

Exponential mapping of a tensor in SO(3)
Given a tensor Λ where:

Λ( ; η)︸ ︷︷ ︸
Λη

∈ R3 × S0(3) η ∈ R (7.8)

the variation of δΛ is defined as:

δΛ = d

dη
Λη

∣∣∣
η=0

(7.9)

Note that δΛ ∈ so(3), where so(3) is the set of linear spaces (tangent spaces of SO(3))
while SO(3) is the manifold group (see figure below). Given the relation:
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dΛη

dη
= BΛη (7.10)

Exponential mapping between so(3) and SO(3) can be performed such that:

Λη = exp
[
ηB
]
Λη=0 (7.11)

Sketch of the exponential mapping of the variation δΛ from so(3) to SO(3)

References:
Weisstein, Eric W. ”Exponential Map.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/ExponentialMap.html
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