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Abstract 

This study investigates the dynamic behaviour of a cantilever bridge during construction. 

The investigations are carried out using operational modal analysis techniques. The Second-

Order Blind Identification (SOBI) Method is implemented in MATLAB. This method is 

tested and compared with analytical results obtained from a shear frame with non-

proportional damping properties. The accuracy is investigated for several damping ratios, 

and the quality of the results are considerably reduced for higher damping ratios. The method 

showed noteworthy improvement for longer time series durations. Modal analysis of the 

Dolmsundet Bridge measurements were carried out with SOBI method and compared with 

results from Covariance-driven Stochastic Subspace Identification. Similar modes obtained 

from the two methods showed little deviation in the obtained frequencies. The influence of 

the temporary support structure is found to be significant. Predicted values are available for 

two periods during construction, received from the Norwegian Public Roads Administration. 

The numerically predicted stage one follows the tendency found from the measurements, 

while the numerically predicted second building stage shows significant deviation from the 

observed tendency. The last mode of interest in the experimental data appears at a lower 

frequency than the numerically predicted mode. The damping estimates are more scattered. 

The predicted damping ratio appears to be non-conservative for the investigated wind 

loading. Modal parameters obtained from a more extensive dataset will contribute to updates 

of analytical models, increase knowledge and contribute to the safety during construction 

stage under more challenging conditions.  

 

 

  



  



 

Sammendrag 

Dynamiske egenskaper til en fritt frembygg bro i byggefasen er undersøkt ved hjelp av modal 

analyse. Systemidentifikasjons metoden, Second-Order Blind Identification (SOBI) er 

implementert i MATLAB. Metoden er testet og sammenlignet med analytiske verdier fra en 

skjær ramme med ikke-proporsjonale dempings egenskaper. Nøyaktigheten er undersøkt for 

flere dempingsstadier og var betydelig redusert ved høyere dempingsforhold. Analyse av 

lengre tidsserier gave mindre avvik fra analytiske verdier. Estimater fra målinger fra 

Dolmsundbrua er funnet med SOBI metoden og sammenlignet med estimater fra system 

identifikasjons metoden; covariance-driven Stochastic Subspace Identification. Lignende 

moder fra disse metodene viste lite avvik i egenfrekvensverdier. Innvirkning av oppført 

midlertidig hjelpesøyle kommer tydelig frem i analysen. Numerisk predikerte moder er 

tilgjengelig fra to perioder under bygging, motatt av Statens Vegvesen. Det numerisk 

beregnet byggesteget nummer en følger en observert trend funnet fra målingene, mens 

byggesteg nummer to avviker fra dette. Dempingsestimater fra analysen er spredte, og regnes 

som dels usikre. Dempingsforhold påsatt beregninger ser ut til å være ikke-konservative for 

den undersøkte vindbelastningen. Modale parametre hentet fra et mer omfattende datasett 

vil kunne bidra til oppdateringer av analytiske modeller, øke kunnskapen og dermed bidra 

til økt sikkerhet i byggefasen. 
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Chapter 1 Introduction 

 

“Understanding the dynamic response of large civil structures improves design and safety, 

extends life, and reduces mainentance.” Stated in the IMAC, A conference on Strucutral 

Dynamics [1]. 

Civil engineering structures are built in correspondence to planning based on engineering 

calculations. Finite Element Model (FEM) programs are an excellent tool for structural 

analysis. However, with an increasing complexity of the structures, the need for an additional 

tool to support and validate the numerical analysis is evident. In dynamic analysis, 

parameters and effects such as damping, friction and fatigue properties are hard to predict[2]. 

Values of structural damping used for calculations are usually rough estimates based on 

assumptions from similar structures. A more accurate prediction could increase physical 

insight and improve structural performance and integrity. Modal analysis can be performed 

in order to identify characteristics and properties of the structure of interest. Modal 

parameters such as eigenvalues, eigenfrequencies and corresponding mode shapes, give 

knowledge of the dynamic system. This can be used to validate or upgrade the analytic model 

or to increase knowledge of built structures.  

It is of interest to better understand the behavior of a cantilever bridge under construction. 

Cantilever bridges are frequently built for spans between 100-300 m in Norway. They are 

preferable because of their efficient construction [3]. As the name implies, the bridge is built 

from both sides, standing as a cantilever before being connected at the middle. The dynamic 

demands are largest during construction, and this will often give the dimension criteria of 

the bridge. Dolmsundet Bridge is constructed as a cantilever bridge, and is the structure of 

interest in this study. A measurement system is installed on the bridge so that dynamical 

behavior throughout the building process can be investigated. 
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Figure 1.1 a) Location of Dolmsundet brigde b) Illustration of proposed structure [4]. 

Dolmsundet Bridge crosses Dolmsundet, connecting Hitra and Dolmøya, shown in Figure 

1.1. The new bridge will reduce the road Fv. 714 by almost 6 km, and thus reduce transport 

road as well as increase road safety. It is estimated to open over summer 2016. As of June 

2015, both cantilevers spanning from the column at the Hitra side are constructed, and the 

measurements are collected from this structure before connecting to adjacent cantilevers. 

The construction of the cantilevers spanning from the column positioned at Dolmøya are 

about to start. 

 Background 

Operational, experimental or combined modal analysis are separated into three different 

steps [5]. 

1. Collection of data and preprocessing 

2. System identification 

3. Determination of modal characteristics (modal analysis) 

Hence, the terminology modal analysis is defined as both the processing and the 

determination of modal characteristics.  

Dynamic characteristics can be identified through deterministic investigation by artificial 

excitation and corresponding vibration, noted as Experimental Modal Analysis (EMA). This 

is challenging for civil engineering structures, due to their large size and low frequencies. 

The development of Operational Modal Analysis (OMA) has increased in the last few 

decades, and the methods are mostly derived from the EMA methods. OMA uses excitation 

from the environment as an unknown load on the structure, such as wind and traffic, and is 

therefore suitable for civil engineering structures. It is solved as an inverse problem, where 

output is known, but either input or system characteristics are unknown. In OMA, the normal 

approach is to make an assumption about the input and solve for the unknown system 
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characteristics. It is developed in a stochastic framework for analysis of random signals. A 

vast amount of relevant articles are produced in the field. Rainieri and Fabbrocino (2014) [6] 

have gathered relevant research and background information in their book “Operational 

Modal Analysis of Civil Engineering Structure”, which is useful in this study. OMA of civil 

engineering structures has tools for understanding dynamics of advanced structures and 

update and verify analytical models. Progress has also been made in the field of Automated 

OMA, which provides possible applications in the field of civil Structural Health Monitoring 

(SHM). SHM is an active research field that includes investigation of how Modal Analysis 

testing can be used to detect damage in the structures.  

The Second-Order Blind Identification (SOBI) method is studied in detail. This method was 

chosen for several reasons. The method has not been previously implemented at the 

department of structural engineering at NTNU, and would increase their knowledge base. 

Additionally, it is not a part of the MATALB toolbox MACEC which includes several state 

of the art methods. The method has become popular as the interest in automated codes 

increases. Combining this method with other methods, or implementing modified versions 

of the method can give an automated modal analyses with reliable results. [7] 

 Scope of work 

Modal analysis is not common knowledge for most civil engineers, so a lot of time is devoted 

to review of the different OMA methods available and to common practice in the field of 

OMA. The SOBI method is implemented in MATLAB. A benchmark shear frame is created 

to serve as a quality check of the implemented method.  Modal analysis of Dolmsundet 

Bridge during construction will be carried out by the SOBI method in this study.  The 

commercial software MACEC, with the covariance-driven Stochastic Subspace 

Identification (SSI) method is used for comparison of the estimates. The result will be 

compared on the basis of estimated damping, frequencies and mode shapes.  A FEM analysis 

of the bridge has been performed by Norwegian Public Roads Administration and is used 

for further comparison. The validity of the estimates will be discussed.  

It should be noted that the data acquisition system provided for this study appeared less 

comprehensive than assumed. The strain sensors were found inadequate for dynamical 

investigation, due to low sampling rate. The accelerometer sensor had an adequate sampling 

rate, and will therefore be used. The sensor location was firstly assumed to be on both 

cantilevers but were found to be on the same cantilever late in the study.   
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 Structure of the report 

Necessary theories for understanding, implementing and performing the modal analysis 

method are outlined in Chapter 2. Stochastic processes and system identification are 

unfamiliar for most civil engineers. The statistical foundation of modal analysis is 

fundamental, and therefore emphasized in the explanation. The implemented modal analysis 

methods are explained in detail as well as common procedures for obtaining consistency and 

quality of results. 

Chapter 3 presents the method.. The method is split into two case studies. The first case study 

concentrates on the implementation of SOBI performed on a benchmark shear frame model. 

As the results are important for further studies, they are presented and discussed in the 

method part case 1. The second case study is the analysis of the cantilever bridge, performed 

with both the SOBI and the SSI method for different time of occurrences. 

 The results and discussion are presented in Chapter 4. Concluding remarks  and suggestions 

of further work are presented in Chapter 6 and Chapter 7 respectively. The material is 

presented on a level suitable for engineering students with fundamental structural dynamic 

courses. 
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Chapter 2 Theory 

 Random data 

An introduction to terminology and techniques for analysis of random processes will be 

provided. Basic statistics are assumed known and stochastic processes are emphasized in the 

explanation. Dynamic analyses are performed in both deterministic and stochastic 

framework. A deterministic analysis requires a known load time history; thus, the observed 

data must be able to be described by an explicit mathematical relationship. A random 

property characterizes several physical processes, and each observation of the process will 

be unique. It must therefore be described in terms of statistical properties, as in the case of 

wave and wind generated loads.  

2.1.1 Processes 

A stochastic process is the collection of all possible sample functions representing a random 

phenomenon, also called a random process. A single time history, also noted as a sample 

function or ensemble, may be regarded as a realization of a stochastic process as defined by 

Bendat and Piersol [8].  

A random process is defined to be stationary if the statistical properties of one instance are 

equal for all points in time. Næss [9] defines a process to be weakly stationary if the mean; 

  𝜇𝑥(𝑡) = 𝐸[𝑥𝑘(𝑡)]  (2.1) 

and the autocorrelation; 

 𝑅𝑥𝑥(𝜏) = 𝐸[𝑥𝑘(𝑡)𝑥𝑘(𝑡 + 𝜏)]  (2.2) 

is independent of 𝑡. 𝑥𝑘(𝑡) is a random variable over the index k. The autocorrelation in 

Equation (2.2) will be explained in the next section. Higher order moments can prove strong 

stationary. In the case of Gaussian processes, weak stationarity implies strong stationarity 

since all possible probability distributions depends on mean values and covariance functions 

[8]. As defined by Næss (2008) [9], the process is ergodic if every ensemble mean in a 

stationary process can be replaced by a time average over a single realization. Hence, the 
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autocorrelation and mean value will be independent of the realization being studied. The 

property of an ergodic process makes it possible to use one single time history to estimate 

statistical parameters of the process.  

2.1.2 Basic concepts 

Stationarity is assumed in the following description of statistical properties. Autocorrelation 

gives the correlation between different instants in a single ensemble. The term ‘auto’ 

indicates that only one time history is involved. The autocorrelation function, 𝑅𝑥𝑥(𝜏), is 

defined in Equation (2.2) and can be estimated by direct computation from realizations as 

[8]: 

 �̂�𝑥𝑥(𝑟Δ𝑡) =
1

N − r
∑ 𝑥𝑛𝑥𝑛+𝑟                 𝑟 = 0,1,2, … ,𝑚

𝑁−𝑟

𝑛=1

 (2.3) 

Where 𝑟 is the number of time-lag intervals, Δ𝑡 is an equally spaced time interval, 𝑚 is the 

maximum lag number and N is the length of the time series investigated. Autocorrelations 

are even functions with respect to time-lag intervals, thus only positive lags need to be 

considered.  

𝑅𝑥𝑦 is the cross-correlation function between the time series {𝑥(𝑡)} and {𝑦(𝑡)}. Cross-

correlation gives the relationship between two different time series, either of two different 

realizations of the same process or from two different processes [10], given by:  

 𝑅𝑥𝑦(𝜏) = 𝐸[𝑥𝑘(𝑡)𝑦𝑘(𝑡 + 𝜏)] (2.4) 

Autocorrelation is a special case of the cross-correlation. The cross-correlation can be 

estimated from realizations from:  

 �̂�𝑥𝑦(𝑟Δ𝑡) =
1

N − r
∑ 𝑥𝑛𝑦𝑛+𝑟                 𝑟 = 0,1,2, … ,𝑚

𝑁−𝑟

𝑛=1

 (2.5) 

Where 𝑟 is the lag number, N is the length of time series, Δ 𝑡 is an equally spaced time 

interval, 𝑚 is the maximum lag number, and 𝑥 and 𝑦 are different realizations. Cross-

correlations are not even, but satisfy the relationship 𝑅𝑥𝑦(−𝜏) = 𝑅𝑦𝑥(𝜏).  The relationship 

between covariance and correlation is:  

 𝐶𝑥𝑥(𝜏) = 𝑅𝑥𝑥(𝜏) − 𝜇𝑥
2 (2.6) 
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𝐶𝑥𝑦(𝜏) = 𝑅𝑥𝑦(𝜏) − 𝜇𝑥𝜇𝑦 

Hence, two stationary random processes are uncorrelated if 𝐶𝑥𝑦(𝜏) = 0, as this implies a 

correlation 𝑅𝑥𝑦 (𝜏) = 𝜇𝑥𝜇𝑦, and they are thus independent of each other. Correlation and 

cross-correlation functions are identical with covariance and cross-covariance functions for 

a zero mean process. The covariance with time-lag equal to zero equals the variance.   

 𝜎𝑥
2 = 𝐶𝑥𝑥(0) (2.7) 

A vector process {x(𝑡)}, containing several ensembles, is stationary if all component 

processes are stationary and jointly stationary [9]. Thus, the variance and cross spectra 

components can be collected into a covariance matrix. The covariance matrix is then 

independent of t and defined as:  

 [𝐶x(𝜏)] = [
𝐶1,1(𝜏) 𝐶1,2(𝜏) ⋯

𝐶2,1(𝜏) 𝐶2,2(𝜏) ⋯

⋮ ⋮ ⋱

] (2.8) 

Where the diagonal terms are the autocovariances and the off diagonal terms equal the cross-

covariance between the different realizations. 

2.1.3 Spectral density  

The variance spectrum is defined as the Fourier transform of the covariance function [9]. A 

closer look at the Fourier transform is provided in section 2.3.2. The variance spectrum is 

also known as the power spectral density, the energy spectrum, the spectral density or just 

the spectrum [9] . It shows how the variances are distributed along the frequency axis. The 

autospectral density function, 𝑆𝑥𝑥(𝜔), and cross-spectral density function, 𝑆𝑥𝑦(𝜔), are given 

as: 

 𝑆𝑥𝑥(𝜔) =
1

2𝜋
∫ 𝐶𝑥𝑥(𝜏)𝑒

−𝑖𝜔𝜏𝑑𝜏
∞

−∞

 (2.9) 

 
𝑆𝑥𝑦(𝜔) =

1

2𝜋
∫ 𝐶𝑥𝑦(𝜏)𝑒−𝑖𝜔𝜏𝑑𝜏

∞

−∞

 
(2.10) 

The cross-variance 𝑆𝑥𝑦(𝜔) can also be calculated directly from the realizations by a Fast 

Fourier transform algorithm (FFT) and the covariance can then be found from the inverse 

Fourier transform of the variance spectrum:  
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 𝐶𝑥𝑦(𝜏) = ∫ 𝑆𝑥𝑦(𝜔)𝑒𝑖𝜔𝜏𝑑𝑤
∞

−∞

 (2.11) 

A one-sided spectral density function is often used, since it is represented with positive, and 

thus physically realizable, frequencies. One-sided spectral density function, 𝑆𝑥𝑦
+ (𝜔), is 

defined as: 

 𝑆𝑥𝑦
+ (𝜔) = {

2𝑆𝑥𝑦(𝜔) 𝜔 ≥ 0

0             𝜔 < 0
 (2.12) 

2.1.4 White noise 

The white noise spectrum is a broad banded spectrum where the spectrum is constant for all 

frequencies. In theory, this distribution will give an infinite variance. According to Næss 

(2013) [9], the process will, in practice,  be regarded as white noise if the largest frequency 

𝑓2 is significantly higher than all other relevant frequencies. A Gaussian white noise 

ensemble can be simulated with the 𝑟𝑎𝑛𝑑𝑛(∙) function in MATLAB. One of the 

shortcomings of this function is that it provides slightly different results depending on the 

number of segments used. A time history and a constant spectrum from a broad banded 

process is visualized in Figure 2.1, with sample frequency 10 Hz.  

 

Figure 2.1 Plot of time history of white noise over the frequencies between 0-5 Hz. Plot b) and c) represent the variance 

spectrum and covariance of the broad banded white noise.  

Note that the 𝑟𝑎𝑛𝑑𝑛(∙) is used in Figure 2.1, and the figure deviates from perfect white noise 

conditions. The auto covariance should be represented with a spike at time-lag zero, and zero 

elsewhere. The covariance function of broad banded spectrum is defined as: [9] 
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 𝐶𝑥(𝜏) = 𝑆0 ∫ 𝑒−𝑖𝜔𝜏𝑑𝜔 = 2𝜋𝑆0𝛿(𝜏)
∞

−∞

 (2.13) 

where 𝛿(𝜏) is the Kronecker delta, and 𝑆0 denotes constant auto-spectral density. In a broad-

banded process, the autocorrelation decreases rapidly for increasing time-lags, which 

represents a weak statistical dependence between the values at different time instants. 

 Dynamics of MDOF 

A multiple degree of freedom (MDOF) system can be described with a linear, second order 

differential equation in matrix form as given below: 

 [𝑀]{�̈�(𝑡)} + [𝐶]{�̇�(𝑡)} + [𝐾]{𝑦(𝑡)} = [𝐵]{𝑓(𝑡)} (2.14) 

The matrices [𝑀], [𝐶], and  [𝐾]denote the mass, damping and stiffness matrices for the given 

structural system. The vector {𝑓(𝑡)} contains the nodal forces and {𝑦(𝑡)} describes the nodal 

displacements. The matrix [𝐵] is the selection matrix which connects the loads to the 

respective degrees of freedom (DOF), and 𝑡 is the time. The undamped eigenfrequencies, 

𝜔𝑛, and associated real-valued modes, {𝜙𝑛}, can be solved as a classic eigenvalue problem; 

 
([𝐾] − 𝜔𝑛

2[𝑀]){𝜙𝑛} = 0 

det([𝐾] − 𝜔𝑛
2[𝑀])=0 

(2.15) 

This solution is valid for proportional, also called classical, damped systems. Proportional 

damping is present if the matrix [𝐾][𝑀]−1[𝐶] is symmetrical. A non-proportional damped 

system can only be solved by complex solutions since its undamped frequencies will deviate 

from the undamped frequencies found by classical eigenvalue problem in Equation (2.15).  

2.2.1 Complex solution 

The homogenous solution of Equation (2.14) can be assumed to be of the form: 

 {𝑦(𝑡)} = {𝑎}𝑒𝜆𝑡 (2.16) 

Here, {𝑎} is as a vector of constants and the pole, 𝜆, is a scalar. Inserting equation (2.16) into 

the homogenous equation (2.14), with {𝑓(𝑡)} = 0,  yields: 

 (𝜆2[𝑀] + 𝜆[𝐶] + [𝐾]){𝑎} = {0} (2.17) 
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The nonlinear eigenvalue problem can be solved by different approaches. A tutorial on the 

solution using a state space model is given by Lallement and Inman (1995) [11]. The 

obtained eigenvalues, denoted as poles, 𝜆, are in complex conjugate pairs, given as  [11]: 

 𝜆𝑟 = −𝜉𝑟𝜔𝑟 ∓ 𝑖𝜔𝑟√1 − 𝜉𝑟
2 (2.18) 

The poles hold information about frequencies and damping ratios, where  𝜔𝑟 is the 

𝑟𝑡ℎ undamped natural frequency and 𝜉𝑟 is the 𝑟𝑡ℎ modal damping ratio. Undamped 

frequency 𝑓𝑟, damped frequency 𝑓𝑑,𝑟, and modal damping ratio ξr are obtained from the 

following relations: 

 𝑓𝑟 = |
𝜆𝑟

2𝜋
| (2.19) 

 
𝑓𝑑,𝑟 =

𝐼𝑚(𝜆𝑟)

2𝜋
 

(2.20) 

 
𝜉𝑟 =

−𝑅𝑒(𝜆𝑟)

|𝜆𝑟|
 

(2.21) 

The vector of constants, {𝑎𝑟}, corresponds to eigenvectors, given in complex pairs for the . 

𝑟𝑡ℎ mode. For proportional damping, the complex modes will equal real valued modes 

obtained from the undamped case with damping matrix [𝐶] = [0]. 

2.2.2 MDOF system –Modal expansion 

The MDOF system in Equation (2.14) can be solved as modal analysis under the condition 

of linear system with classical damping. The total displacement can be represented as a 

superposition of modal contributions [12]:  

 𝑦(𝑡) = ∑ {𝜙𝑛}𝑞𝑛(𝑡)∞
𝑛=1 =[𝜙]{𝑞(𝑡)} (2.22) 

{𝜙𝑛} is the mode shape with associated generalised coordinates, {𝑞𝑛(𝑡)}. Natural modes 

{𝜙𝑛}  are orthogonal and independent by definition, and are used as a basis for representing 

the displacement[12]. In a discrete format, the matrix [𝜙] consists of 𝑛 mode shapes with 𝑁𝑟 

global DOFs. The mode shape is given as: 

 {𝜙𝑛}   = [ 𝜙1 𝜙2 ⋯ 𝜙𝑁𝑟  ]
𝑇 (2.23) 
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The generalized coordinate is a time dependent vector 𝑞𝑛(𝑡) and will depend on the level of 

the excitation force. 𝑁𝑚 is the number of modes included in order to represent the 

displacement. The generalized coordinate vector is defined [13]:  

 {𝑞(𝑡)} = [ 𝑞1 𝑞2
⋯ 𝑞𝑁𝑚  ]𝑇 (2.24) 

Introducing Equation (2.22) into Equation (2.14) and multiplying by [𝜙]𝑇, the equation of 

motion can be expressed in modal coordinates as [13]: 

 [ϕ]T[M][ϕ]{q̈(t)}+[ϕ]T[C][ϕ]{q̇(t)}+[ϕ]T[K][ϕ]{q(t)}=[ϕ]T[B]{f(t)} (2.25) 

The modal equivalent structural properties are defined as; 

 

[�̃�] = [𝜙]𝑇[𝑀][𝜙] 

[�̃�] = [𝜙]𝑇[𝐶][𝜙] 

[�̃�] = [𝜙]𝑇[𝐾][𝜙] 

(2.26) 

and the load vector becomes: 

 {�̃�} = [𝜙]𝑇[B]{f(t)} (2.27) 

Due to orthogonal properties of the mode shapes, [�̃�] and [�̃�] are diagonal matrices. Since 

classical damping is required, [�̃�] will become a diagonal matrix. 

Hence, the MDOF system consists of uncoupled diagonal matrices and can be divided into 

uncoupled single degree of freedom (SDOF) systems. The system is solved with respect to 

generalized coordinates and then transformed back into original coordinates by Equation 

(2.22). Thus, only 𝑁𝑚𝑜𝑑 equations need to be solved. For a system with few active modes 

and a large number of DOFs this may give a computational advantage. In a practical context, 

a few modes will yield reasonably accurate displacement estimate.  

The spectral density of the displacement, Syy(ω), is related to the spectral density of the 

modal coordinate, Sqq(ω), as given by Strømmen [13], 

 Syy(ω)=[ϕ]Sqq(ω)[ϕ]T  (2.28) 

Since the modal shape matrix is independent of time, the relation can be shown to hold for 

the autocovariance by an inverse Fourier transform of the spectral density. 
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(2.29) 

 𝐶𝑦𝑦(𝜏) = [𝜙]𝐶𝑞𝑞(𝜏)[𝜙]𝑇 (2.30) 

This relation will be useful in order to relate the autocovariance of modal coordinates to the 

response time series. 

2.2.3 State-space formulation 

State-space techniques represent mathematical models of physical systems and are a 

convenient method to analyze systems with multiple inputs and outputs [9]. This can be used 

to solve the linear dynamic model in Equation (2.14). The state-space model converts second 

order ordinary differential equations (ODEs) into coupled first order ODEs. This is done by 

partitioning the differential equation into a state equation and an observation equation. The 

following section outlines the state-space formulation by Rainier [6], and the reference can 

be used for further explanations. 

The state variable, a state vector {𝑠(𝑡)}, holds the information about the system at a time 

instant, given as: 

 {𝑠(𝑡)} = {
{�̇�(𝑡)}

{𝑦(𝑡)}
} (2.31) 

The second-order ODE is rewritten as a first-order matrix equation, defined as the state 

equation. This equation expresses the change in the state vector: 

 {�̇�(𝑡)} = [𝐴𝑐]{𝑠(𝑡)} + [𝐵𝑐]{𝑢(𝑡)} (2.32) 

[𝐴𝑐] is defined as the state matrix and transforms one state to the next state. [𝐵𝑐] is the input 

influence matrix in continuous time. The vector, {𝑢(𝑡)}, represent time variation. 

Acceleration, velocity and displacement are measured in discrete locations and collected as 

linear combinations into an observation vector {𝑦𝑙(𝑡)}. Measured output at location l is 

represented by the observation equation:  

 {𝑦𝑙(𝑡)} = [𝐶𝑎]{�̈�(𝑡)} + [𝐶𝑣]{�̇�(𝑡)} + [𝐶𝑑]{𝑦(𝑡)} (2.33) 

Generalized for all locations, the observation equation is given as: 

 {𝑦(𝑡)} = [𝐶𝑐]{𝑠(𝑡)}+[𝐷𝑐]{𝑢(𝑡)} (2.34) 
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[𝐴𝑐], [𝐶𝑐] and [𝐷𝑐] are considered to be the state-space matrices. They are determined by 

inserting the observation equation into Equation (2.14). The index 𝑐 implies that the state-

space matrices are in a continuous format. [𝐴𝑐] is the state matrix as noted above. [𝐶𝑐] is the 

output influence matrix, and consists of the output location for acceleration, velocity and 

displacements, which are held in the selection matrices [𝐶𝑎], [𝐶𝑣] and [𝐶𝑑]. [𝐷𝑐] is the direct 

transmission matrix and is only needed if accelerometers are used in the output 

measurements. The matrix [𝐷𝑐] will reflect the changes in the time variation of the input, 

{𝑢(𝑡)}. The matrix [�̅�] contains information about locations of inputs. The state-space 

matrices are defined: 

 𝐴𝑐 = [
−[𝑀]−1[𝐶] [𝑀]−1[𝐾]

[𝐼] [0]
] (2.35) 

 𝐵𝑐 = [
−[𝑀]−1[�̅�]

[0]
] (2.36) 

 
𝐶𝑐 = [

[𝐶𝑣]−[𝐶𝑎][𝑀]−1[𝐷] [0]

[0] [𝐶𝑑]−[𝐶𝑎][𝑀]−1[𝐷]
]  

(2.37) 

 
𝐷𝑐 = [

[𝐶𝑎][𝑀]−1[�̅�] [0]

[0] [0]
] 

(2.38) 

A discrete formulation of the state-space is advantageous, as the measurements are found 

from a distinct number of samples. The discrete-time stochastic state-space model is 

presented in Equation (2.39), where 𝑘 is the sample number. The state equation is given as: 

 {𝑠𝑘+1} = [𝐴]{𝑠𝑘} + {𝑤𝑘} (2.39) 

The observation equation is then: 

 {𝑦𝑘} = [𝐶]{𝑠𝑘} + {𝑣𝑘} (2.40) 

In the transfer from a continuous to a deterministic approach, a Zero Order Hold (ZOH) 

assumption is utilized. The ZOH states that input is piecewise constant over the sampling 

period. The discrete state-space matrices are equal: 

 [𝐴] = 𝑒[𝐴𝑐]Δ𝑡 (2.41) 

 [𝐵] = ([𝐴] − [𝐼])[𝐴𝑐]
−1[𝐵𝑐] (2.42) 
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 [𝐶] = [𝐶𝑐] (2.43) 

 [𝐷] = [𝐷𝑐] (2.44) 

where Δ𝑡 is the discrete time step. The stochastic approach is identical to classical 

discretization, except for the ability to handle noise. The noise represents the two stochastic 

processes in the problem, and would account for the immeasurable inputs in the OMA 

context. {𝑤𝑘} is the process noise and {𝑣𝑘} is the measurement noise raised from sensor 

inaccuracies. The input to the system is assumed to possess natural white noise with a zero 

mean Gaussian distribution. The response in the state-space model can be represented as a 

zero mean Gaussian process, so that the covariance matrix equals correlation matrix and is 

given by: 

 [𝑅𝑖] = 𝐸[{𝑦𝑘+𝑖}{𝑦𝑘}
𝑇] (2.45) 

Mathematical manipulations of the state-space equations leads to fundamental relations. 

Refer to [6] for more details. Factorization of the correlation matrices can be derived: 

 [𝑅𝑖] = [𝐶][𝐴]𝑖−1[𝐺] (2.46) 

Where the covariance between the system and the updated state vector is described by: 

 [𝐺] = 𝐸[{𝑠𝑘+𝑖}{𝑦𝑘}
𝑇] (2.47) 

The matrix [𝐺] equals the next state-output covariance matrix. This gives a fundamental 

relation necessary for the solution of the stochastic subspace identification (SSI) methods.  

2.2.4 Rayleigh damping  

Rayleigh damping is a method to construct the damping matrix from modal damping ratios 

and provides an idealized classical damping matrix. Relevant estimates of modal damping 

ratios can be found in literature from measured data of similar structures.  

Rayleigh damping is defined as a linear combination of the mass and stiffness matrix. A 

linear combination of stiffness proportional and mass proportional damping is given: 

 [𝐶] = 𝑎0[𝑀] + 𝑎1[𝐾] (2.48) 
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Rayleigh damping ratios are defined by the undamped angular eigenfrequencies, 𝜔𝑖and 𝜔𝑗, 

of the  𝑖𝑡ℎand  𝑗𝑡ℎ mode in a MDOF system. The coefficients 𝑎0 and 𝑎1 are defined by Chopra 

(2012) [12] as:  

 𝑎0 = ξ
2𝜔𝑖𝜔𝑗

𝜔𝑖+𝜔𝑗
 ,     𝑎1 = ξ

2

𝜔𝑖+𝜔𝑗
   (2.49) 

The damping ratio for the 𝑛𝑡ℎ mode is given as: 

 𝜉𝑛 =
𝑎0

2
 
1

𝜔𝑛
+

𝑎1

2
𝜔𝑛  (2.50) 

 

2.2.5 Damping, logarithmic decrement 

Damping ratios can be estimated from the response of a structure excited with an impact 

load. The damping is estimated by the logarithmic decrement which is the natural logarithm 

of the ratio of two successive peaks [12]. The logarithmic decrement can be obtained for a 

free vibration time series when damping is present. It can also be determined from the 

autocorrelation function of a SDOF system, as the envelope depends on the damping alone 

[14]. It is desirable to define the logarithmic decrement for the 𝑘𝑡ℎ extreme, where both 

peaks and valleys are considered. Hence, the decrement can be defined for slow decays and 

is more accurate as all maxima can be included. The logarithmic decrement is found from: 

 𝛿 =
2

𝑘
ln

𝑟1
|𝑟𝑘+1|

 (2.51) 

Where 𝑟 is the value of the peak. When the logarithmic decrement is obtained, the modal 

damping ratio is given by: 

 𝜉 =
𝛿

√𝛿2 + 4𝜋2
 (2.52) 

Thus, this provides a way to directly compute the damping. To find the logarithmic 

decrement in this study, a linear regression of 𝑘𝛿 and  2 ln
𝑟1

|𝑟𝑘+1|
 is used [14].  
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 Signal processing 

2.3.1 Concepts in signal processing  

The signal needs to be adequately sampled in order to capture the analog signal. Lost 

information is not the only problem that can occur, because a low sampling frequency, 𝑓𝑠, can 

cause frequencies to be represented as lower frequency signals due to aliasing.  Aliasing 

occurs when the sampling frequency is too low, and the registered signal is different than the 

one that actually occurred. Digital sampling cannot capture higher frequencies than the 

Nyquist frequency. The Nyquist frequency is equal to 𝑓𝑠/2, where 𝑓𝑠 is digital sampling rate 

1/Δ𝑡 [15].  Figure 2.2 illustrates a cosine curve, of 60 Hz , sampled with a) a sampling rate 

of twice the signal frequency (Nyquist frequency) and b) a sampling rate below the Nyquist 

frequency, which presents a low frequency curve. Digital filters cannot remove the effect of 

aliasing after the signal has been sampled.  

The signal may be resampled in order to achieve a new sampling frequency. Decimation 

(down-sampling) saves computational time and is used when the signal is sampled with a 

higher frequency than needed in the analysis. Decimation must be performed with care as 

aliasing might occur. Thus, any signal above the new Nyquist frequency needs to be blocked, 

which can be performed with a low-pass filter before decimation [6]. 

 

 

Figure 2.2 a) is sampled with Nyquist frequency = 120 Hz. b) is sampled with 70 Hz and exhibits the effect of aliasing. 

2.3.2 Fourier transformation 

A Fourier transformation transforms a time series into a sum of harmonic oscillations. Hence, 

the signal can be transformed from the time domain into the frequency domain.  This can be 

performed in both real and complex terms. See Kreyszig [16] for more details. The 

continuous Fourier transform in complex terms is given by: 
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 𝑓(𝜔) =
1

√2𝜋
∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞

 (2.53) 

 And the inverse 

 𝑓(𝑡) =
1

√2𝜋
∫ 𝑓(𝑤)𝑒𝑖𝜔𝑡𝑑𝜔

∞

−∞

 (2.54) 

When dealing with samples instead of functions, the Fourier transform is replaced by a 

discrete Fourier transform (DFT). The signal 𝑓 is transformed by a discrete Fourier transform 

into 𝑓. 𝑓 gives the frequency spectrum of the signal [16]. 

 𝑓 = [𝑓0  ⋯ 𝑓𝑁−1]
𝑇 (2.55) 

 𝑓 = [𝑓0̂  ⋯ 𝑓𝑁−1]
𝑇
 (2.56) 

With components 

 𝑓�̂� = ∑ 𝑓𝑘𝑒−𝑖𝑛𝑥𝑘  

𝑁−1

𝑘=0

 (2.57) 

 This requires 𝑂(𝑁2) operations for every 𝑛 >
𝑁

2
  where N is the number of measurements 

[16]. Hence, the Fourier transform is a time demanding operation. The fast Fourier transform 

(FFT) algorithm has been developed in order to reduce the number of operations [6]. It 

operates by breaking down the operation into smaller problems. N measurements are divided 

into 𝑁 = 2𝑝 measurements and the method only needs 𝑂(𝑁) log2 𝑁 operations.   

2.3.3 Leakage, windowing and zero padding 

DFT takes a non-periodic signal and makes it periodic. For a periodic signal, the sampling 

needs to be done with caution with regard to the wavelength of the signal to avoid 

discontinuities at the boundary of the observation interval. For a random data series the signal 

will inherit different properties, and discontinuities at the boundary will occur. The effect of 

this is large side lobes in the frequency domain, as seen in Figure 2.3. This is called leakage, 

as the energy at one specific frequency is spread out to the nearby frequencies.   

Windows are introduced to reduce the effect of leakage. Smoothing windows will reduce the 

amplitudes of the time domain data at the beginning and the end of the finite observation 
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intervals as in Figure 2.3 c).  Thus, the periodic extension of the signal would be continuous  

[17].  

A frequency spectrum based on a time series without windowing will have the narrowest 

central peak, but the leakage is significant [15]. The amount of leakage is reduced as seen in 

the comparison in Figure 2.3, but a broader central peak is introduced. The main peak has a 

lower amplitude due to windowing. This is a result of loss of energy due to the envelope 

created in the windowing process. 

 

Figure 2.3 A sinus curve with frequency 3 Hz over 7.5 s is plotted in both time and frequency domain. A Hanning window 

is applied in the right hand plots. The amount of leakage is reduced in the bottom right plot, due to the windowed time 

series above.  

Zero padding is a common technique in a FFT analysis [15]. It is performed by adding a 

string of zeros to the time domain signal. This provides two effects. Firstly, it is used to run 

a more efficient FFT algorithm by increasing the sample number to the power of two. 

Secondly, it carries out an interpolation in the frequency domain and can be seen as a 

frequency interpolation function. The interpolation occurs when the same frequency range 

is presented with more sampling points. This does not improve the frequency resolution but 

can reveal details. E.g. if peaks are split between two binds in the FFT analysis they can be 

revealed as exemplified in Figure 2.4. The solid curve shows the zero padded data with 4 

times as many points as the original data series. The data series contains frequencies of 1 and 

1.4 Hz. Here, the zero padding is able to reveal two successive peaks. There are few 

drawbacks with the method, however, it increases computational cost without actually 

improving the resolution. 
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Figure 2.4  The frequency response of two sine curves with amplitude 1 and frequencies 1 Hz and 1.4 Hz are shown in the 

figure. The solid line is zero padded with four times as many samples as the dotted curve.  

2.3.4 Welch method 

The FFT is a direct computation of the power spectral density (PSD). Different signal 

processing algorithms can be used to calculate the PSD, in order to reduce the amount of 

noise and to reduce computational effort. The Welch method is a common procedure and 

involves sectioning the time series into several overlapping shorter intervals. Each interval 

is treated with a window in order to limit the discontinuities between the intervals. A FFT is 

calculated for each windowed segment and the total PSD is an averaged estimated spectra. 

The averaging reduces the variance of the spectra and the PSD is improved. The noise 

improvement is illustrated in Figure 2.5.  The Welch method requires fewer computations 

[18] and gives an improved result of the FFT calculations.   

 

 

Figure 2.5 The PSD of a one hour long time series, obtained from case study1, is calculated with Welch method. Plot a) is 

calculated with one windowed segment. In b),  N sampling values is divided into segments with K=N/15 sampling values 

each with a 50% window overlap.  

2.3.5 Filters 

Digital filters attenuate or enhance certain frequency components from a signal. They are an 

important part of OMA, as they are efficient for noise removal. Figure 2.6 shows a time 

series with added white noise compared with the filtered time series. The effect could be 
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viewed in the frequency domain where frequency above the cut out frequency (10 Hz) is 

attenuated. Filters can be understood as a transfer function that gives a specified response 

containing a certain frequency range of the selected input signal. Even though filtering is 

thought of as a method in the frequency domain, it is implemented in the time domain. 

A low-pass filter indicates that the low frequencies will be prevalent in the filtered signal. 

These frequencies are passed through the passband, while frequencies above the pass-band 

are attenuated. The converse is a high-pass filter. Band-pass and band-stop filters eliminate 

certain frequency ranges.  

 

Figure 2.6 Signal with white noise compared with filtered signal (to the right). The noise removal could be viewed in the 

frequency domain, where frequency above cut out frequency 10 Hz is attenuated.  A filtfilt() matlab function is used which 

preserve the phase of the time series. 

The signal does not remain unchanged through the filtering process, and the concepts of gain 

and phase are introduced [19]. The amplitudes of the signal components would be larger or 

smaller with respect to the filter’s transfer function; this characteristic is called gain. The 

gain is the ratio between the input signal and the filtered output signal with respect to the 

frequencies. The time of occurrence might be shifted with respect to input signal. This shift 

between input and output is expressed in relative terms of phase. This study will use designed 

filters, and further theory of filter design will not be emphasized.  

The specification of filtered responses is utilized with various parameters. The cut-off 

frequency, 𝑓𝑐,  determines where the frequencies are attenuated. Filtering is approximate, 

and tolerances can be specified in the passband, noted as ripple. The order of the filter 

determines the steepness of the transition band, which is the area between cut-off frequency 

and the reject band (see Figure 2.7). The transition band will have a sharper change with a 

higher order, but needs an infinite order to achieve a true step change. The frequency 

response is expected to be smooth and discontinuities are not allowed. 
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Figure 2.7 Specification of a low-pass filter with ideal and actual response. The transition band, passband, reject band 

denotes which frequencies are attenuated. The cut-off frequency is 3 Hz with max ripple 3 dB. 

2.3.6 Butterworth filter 

The Butterworth filter can be applied as either low-pass, high-pass or band-pass filter. The 

flat frequency response in either a passband or a stopband is characteristic for the 

Butterworth filter [19]. Frequencies in the passband (below the cut-off frequency) can be 

reduced with a max ripple of 1/√2 = 3 𝑑𝐵. The gain of a Butterworth filter is given in 

Equation (2.58). The gain, G, is a complex function, and thus it inherits both the magnitude 

and the phase, which are plotted in Figure 2.8. The phase is represented in relative terms and 

is cyclical over 2𝜋. This effect is called wrapping, and is removed with the MATLAB 

function 𝑢𝑛𝑤𝑟𝑎𝑝(∙).The unwrapped phase is plotted in Figure 2.8.  

 |𝐺(𝜔)|2 =
1

1 + 𝜔2𝑛
 (2.58) 

𝑛 denotes the order of the filter, which determines the steepness of the transistion zone. 𝜔 is 

here the cutoff frequency, given as normalized frequency × π/sample. A Butterworth filter 

can be created in MATLAB with the function 𝑏𝑢𝑡𝑡𝑒𝑟(𝑛, 𝑤𝑐), where 𝑛 is the filter order and 

𝑤𝑐  is the normalized cutoff frequency. Butterworth is an Infinite Impulse Response (IIR) 

filter and has a nonlinear phase [19]. MATLAB gives the option of a zero-phase filtering 

approach by the 𝑓𝑖𝑙𝑡𝑓𝑖𝑙𝑡(∙) function. It will eliminate the nonlinear phase distortion when 

applying an IIR filter.  
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Figure 2.8 The upper graph shows the gain of a Butterworth low pass filter. With a cut frequency of 15 Hz, equal to 0.3 ×
𝜋/𝑠𝑎𝑚𝑝𝑙𝑒, here with fs=1000. The bottom graph shows the phase treated with unwrap.  

 System Identification methods 

System identification methods are used to investigate the system characteristics of a 

structure. Operational Modal Analysis (OMA) use already existing impacts like ambient 

forces and operational loads, such as wind, and traffic as system inputs. Fundamental 

principles and assumptions about the system are required. The system needs to be a linear 

time-invariant system (LTI). A linear system implies that superposition will be valid and a 

time-invariant system requires stationarity, where the structural properties are independent 

of time. The sensor needs to be designed in a way to observe the modes of interest, thus one 

must have an observable system [6].  

The physical process is assumed to be white noise. This is seldom the case for an ambient 

load input. By investigating both the excitation system and structural system as a combined 

system, the random load can be considered as an input to the system, as illustrated in Figure 

2.9.  

 

Figure 2.9 A schematic illustration of the combined system with white noise input and the Fourier of the measured response. 
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The flowchart in Figure 2.9 is given in the frequency domain, to explain the combined model. 

This is done, even though the investigated methods are in the time-domain. White noise in 

the frequency domain, 𝑁(𝜔), serve as input to the combined system. The force on the 

structure from the excitation system, 𝐹(𝜔), is unknown.  𝑌(𝜔) is the FFT of the observed 

response. 𝐻𝑓(𝜔) and 𝐻𝑠(𝜔) are the frequency response functions of excitation system and 

structure.  

The combined frequency response function, 𝐻𝑐(𝜔), is given as the product of the excitation 

system and structural system in the combined system: 

 𝐻𝑐(𝜔) = 𝐻𝑓(𝜔)𝐻𝑠(𝜔) (2.59) 

The unknown force is defined from the white noise input and the transfer function of the 

excitation system: 

 𝐹(𝜔) = 𝐻𝑓(𝜔)𝑁(𝜔) (2.60) 

Hence, the combined system response can be described by: 

 𝑌(𝜔) = 𝐻𝑠(𝜔)𝐹(𝜔) = 𝐻𝑠(𝜔)𝐻𝑓(𝜔)𝑁(𝜔) (2.61) 

Which yields: 

 𝑌(𝜔) = 𝐻𝑐(𝜔)𝑁(𝜔) (2.62) 

The white noise will, together with an excitation system, provide a given, unknown load on 

the structure of interest. The output is by definition the response of the combined system. 

The excitation system is assumed to be a broad-banded process, so that all relevant 

frequencies are excited and the accuracy is not changed.  Due to the excitation transfer 

function, assumed broad-banded, the investigated structural characteristics will be from the 

structural system. Variance plays a fundamental role in the investigation. The input is 

considered uncorrelated by the white noise assumption. Hence, the covariance holds the 

physical information about the structural system only.   

OMA methods are divided into different classes. Methods where a model is fitted to the data 

are denoted parametric methods with the converse being non-parametric methods. 

Parametric methods often define a model order to the dataset of interest. This will often 

require a stabilization diagram.  Parametric methods are divided into low order methods, 

which imply that the physical coordinates are larger than the obtained eigenvalues, and high 

order models, which denote an under-sampled system. Another distinction is made between 
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SDOF and MDOF models, and -indicates if one or more modes determine the structural 

response. SDOF assumption can be used if the modes are well separated. The methods that 

calculate all modal parameters in one step are called one-step methods. Likewise, two stage 

methods calculate one set of parameters first, and the other modal parameters are estimated 

based on the data found in step one. Methods are also classified by the domain of 

implementation, and are either time domain methods or frequency domain methods. This 

provides differences with regard to noise rejection and the quality of numerical conditioning. 

Analyses of time histories or correlation functions are denoted as time domain methods and 

frequency methods are based on spectral density calculations.  

2.4.1 Second Order Blind Identification method 

The Second Order Blind Identification (SOBI) method is a non-parametric system 

identification method in the time domain. The procedure is outlined in the following 

flowchart:  

 

 Figure 2.10 Flow chart of Second-Order Blind Identification 

Different sensors measure vibrations created by a structure under ambient vibrations. These 

measurements can be regarded as a sum of original sources multiplied by an unknown 

matrix. The linear and static mixture of sources can be given as [20]: 

 {𝑦(𝑡)} = [𝐴]{𝑠(𝑡)} + {𝑛(𝑡)}  (2.63) 

{𝑦(𝑡)} is defined as the mixture of the real sources {𝑠(𝑡)}. [𝐴] is the unknown nonsingular 

mixing matrix. {𝑛(𝑡)}  is assumed to be sensor noise. The linear mixture [𝐴]{𝑠(𝑡)} could be 

seen as a modal extension problem given in Equation (2.22),  repeated for convenience: 

 {𝑦(𝑡)} = ∑ {𝜙𝑛}𝑞𝑛(𝑡)∞
𝑛=1 =[𝜙]{𝑞(𝑡)} (2.64) 

The matrix [𝐴] can be set equal to the mode shape matrix [𝜙],  and where the sources can be 

physically interpreted as the modal coordinates. The column of the modal matrix consists of 

orthogonal mode shapes, which are obtainable if the mixing matrix is found. The method 



2.4 Theory  25 

separates the different modal coordinates that provide virtual sources with different spectral 

contents [21]. 

The SOBI method identifies the unobserved sources by analyzing the linear mixtures from 

the observed signal. Based on source separation techniques, the mixing matrix [𝐴] in 

Equation (2.63) is identified through the observed time series and assumptions of its 

correlations and noise properties. As the noise input into the system is assumed to be white 

noise, the correlation can be observed from the investigated system alone.  

SOBI is a two stage method. Firstly, the mode shapes are found through the mixing matrix. 

The natural frequencies and damping ratios are found in the second stage. Since the signals 

are separated into different sources, which are assumed to be mutually uncorrelated and 

temporally correlated, the frequencies and damping ratios can be found from SDOF methods 

of the sources correlation functions.   

The method can handle different mixes of sources, both linear and non-linear. From a time-

domain perspective it is natural to assume convolutive mixing, where the observed signal is 

regarded as a convolution product of the impulse response function and external force 

vector[21]. The extraction of sources from convolutive mixtures is not completely solved [6] 

and only static mixtures of sources are outlined in this section.  

One drawback of the method is the limited ability to handle complex modes. The mixing 

matrix is a real valued matrix. Thus, real valued mode shapes are presented and the method 

is inherently limited to weakly damped systems.[22] The Blind Modal Identification (BMID) 

algorithm by McNeill and Zimmerman presents a solution to this problem [23]. Another 

limitation of SOBI is that the method requires the number of sensors to be larger than the 

number of active modes. Equation (2.63) shows the l dimensional vector {𝑦(𝑡)} and mixing 

matrix with dimensions 𝑙 × 𝑁𝑚. 𝑁𝑚 is the number of columns equal to the number of active 

modes and sources. In order to identify the 𝑁𝑚 modes, 𝑟𝑎𝑛𝑘([𝐴]) must be at least 𝑁𝑚. 

Hence, the number of time histories {𝑦(𝑡)} needs to be 𝑙 ≥ 𝑁𝑚. The problem can be 

overcome by applying a passband filter so that only a limited range of frequencies is 

considered in one step. This method is only able to identify distinct modes, thus source 

signals must have different spectral shapes. Repeated modes are difficult to obtain by the 

SOBI method [22].  

The assumptions for this method related to sources and noise properties are presented in the 

following equations. The sources are assumed to be mutually uncorrelated, stationary and 

scaled to have unit variance. The covariance matrix should equal the identity matrix: 
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 [𝑅𝑠𝑠(0)] = 𝐸{{𝑠(𝑡)}{𝑠(𝑡)}𝑇} = [𝐼]  (2.65) 

where {𝑠(𝑡)} is a 𝑁𝑚 dimensional source vector at time instant t. 

The sensor noise is assumed to be a temporally and spatially white, stationary, and random 

process with the following properties:  

 𝐸{{𝑛(𝑡)}} = {0} (2.66) 

 [𝑅𝑛𝑛(0)] = 𝐸{{𝑛(𝑡)}{𝑛(𝑡)}𝑇} = 𝜎2[𝐼]  (2.67) 

The noise should be independent of the source signals: 

 𝐸{{𝑛(𝑡)}{𝑠(𝑡)}𝑇} = [0]  (2.68) 

The observed data should be detrended to obtain a mean equal to zero. A zero mean is 

therefore assumed in the following derivations, which forces the covariance and correlation 

to be equal. Therefore they will not be distinguished in the following section. 

A step-by-step explanation of the method will be provided. The SOBI method starts with 

defining a whitening matrix to apply to the signal part {𝑥(𝑡)} =  [𝐴]{𝑠(𝑡)} so that the 

achieved data are uncorrelated and have a unit variance. The whitened observed data 𝑧 is 

given as:  

 {𝑧(𝑡)} = [𝑊]{𝑥(𝑡)} ⇒ [𝑅𝑧𝑧(0)] =  𝐸{{𝑧(𝑡)}{𝑧(𝑡)}𝑇} = [𝐼] (2.69) 

Combining Equation (2.69) and (2.65) in (2.70), it is seen that [𝑊][𝐴] creates a unitary 

matrix, hereafter noted as [𝐴′]. A unitary matrix gives the identity matrix when multiplied 

with its own transpose. Hence, the mixing matrix can be factored as a product of the inverse 

whitening matrix and the unitary matrix [𝐴′]. 

 [𝑅𝑧𝑧(0)] = [𝑊][𝐴]𝐸{{𝑠(𝑡)}{𝑠(𝑡)}𝑇}[𝐴]𝑇[𝑊]𝑇 = [𝑊][𝐴][𝐴]𝑇[𝑊]𝑇 = [𝐼] (2.70) 

Two different approaches of defining the whitening matrix will be investigated. The first 

method, classical whitening, is covered by Belouchrain (1997) [20]. The whitening matrix 

obeys a linear model given as 

 [𝑊]{𝑦(𝑡)} = [𝑊]([𝐴]{𝑠(𝑡)} + {𝑛(𝑡)}) = [𝐴′]{𝑠(𝑡)} + [𝑊]{𝑛(𝑡)} (2.71) 
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The signal part is now a unitary mixture of source signals. This is advantageous since 

changing [𝐴′] to any other unitary matrix will give an unchanged covariance of 𝑧(𝑡) [20]. 

The covariance of the observed mixture is, 

 [𝑅𝑦𝑦(0)] = 𝐸{{𝑦(𝑡)}{𝑦(𝑡)}𝑇} = [𝐴][𝐴]𝑇 + 𝜎2[𝐼] (2.72) 

The following relation can be seen  

 [𝐴][𝐴]𝑇 = [𝑅𝑦𝑦(0)] − 𝜎2[𝐼] (2.73) 

If the noise covariance can be estimated, it can be shown that the whitening matrix can be 

estimated. Firstly, the eigenvalue decomposition of y is performed  

 [𝑅𝑦𝑦(0)] = [𝑉][𝐷][𝑉]𝑇 (2.74) 

Where [𝑉] is an orthogonal eigenvector matrix, and [𝐷] is the diagonal eigenvalue matrix. 

The (𝑙 − 𝑁𝑚) smallest eigenvalues are chosen to be regarded as noise. The variance of the 

noise, noted as 𝜎2 (2.67) is calculated as the average of (𝑙 − 𝑁𝑚) eigenvalues. [𝐷] is an 

eigenvalue matrix with the 𝑁𝑚 largest eigenvalues. An estimate of the whitening matrix is 

calculated as: 

[𝑊] = ([𝐷𝑁𝑚
] − 𝜎2[𝐼𝑁𝑚

])
−

1
2[𝑉𝑁𝑚

]
𝑇
 (2.75) 

The second way of determining the whitening matrix is called the robust whitening 

procedure [24]. The assumption in Equation (2.67) is omitted and there is no assumption 

about the noise distribution or spatial correlation properties. The noise is assumed to be 

temporally white. The assumption in Equation (2.67) will be replaced with: 

 𝐸{{𝑛(𝑡)}{𝑛(𝑡)}𝑇} = [𝑅𝑛𝑛]  (2.76) 

Where [𝑅𝑛𝑛] is considered unknown. The robust whitening method performs an eigenvalue 

decomposition of the linear combination of correlation matrices of different time-lags. The 

correlation matrices must be positive definite and the lag should be nonzero. The correlation 

matrices are gathered in an 𝑙 × 𝐾 matrix set, where 𝑙 is the number of observed time series 

and 𝐾 the number of time steps: 

 [𝑅] = [�̂�𝑦(1). . �̂�𝑦(𝐾)] (2.77) 

A singular value decomposition (SVD) of [𝑅] is performed 
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 [𝑅] = [𝐸𝑅][Σ][V]𝑇 (2.78) 

To define the contribution factor, 𝛼𝑖, which gives the contribution from the correlation 

matrices of a specific time-lag, a final-step global convergence algorithm is introduced in 

Equation (2.80) - (2.81) [24]. This algorithm will secure a positive definite combination. The 

factor [𝐹] is computed: 

 [𝐹𝑖] = [𝐸𝑅
𝑇][�̂�𝑦(𝑖)][ER]𝑇 (2.79) 

 [𝐹] = ∑𝛼𝑖

𝐾

𝑖=1

[𝐹𝑖] (2.80) 

The smallest eigenvector of 𝐹 is noted as 𝐸𝐹  and should be used to update 𝛼 by defining 𝑑 

as: 

 𝑑 =
[[𝐸𝐹

𝑇][𝐹1][𝐸𝐹]+. . . +[𝐸𝐹
𝑇][𝐹𝐾][𝐸𝐹]]

𝑇

‖[[𝐸𝐹
𝑇][𝐹1][𝐸𝐹]+. . . +[𝐸𝐹

𝑇][𝐹𝐾][𝐸𝐹]]‖
 (2.81) 

The contribution factor, 𝛼, is updated with 𝛼𝑖=d+ 𝛼, and is inserted in Equation (2.80). If F 

is not positive definite, another update of 𝛼 by Equation (2.81) will be performed. If F is 

positive definite the linear combination of correlation matrices with contribution factor 𝛼𝑖 is 

given as: 

 [𝐶] = ∑𝛼𝑖

𝐾

𝑖=1

[�̂�𝑦(𝑖)] (2.82) 

[�̂�𝑦(𝑖)] is the correlation matrix for time-lag i. An eigenvalue decomposition is performed 

on the linear combination matrix: 

[𝐶] = [𝑉𝐶][𝐷𝑐][𝑉𝐶]𝑇 (2.83) 

The whitening matrix defined by robust whitening is given as 

[𝑊] = ([𝐷𝑐])
−

1
2[𝑉𝑐]

𝑇 (2.84) 

And the whitened correlation matrix becomes 

 [�̂�𝑦(𝑖)] = [𝑊][�̂�𝑦(𝑖)][𝑊]𝑇 (2.85) 
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After the whitening matrix is established from classical or robust whitening, the whitened 

correlation matrices for a series of time-lags are calculated.  

 [𝑅𝑧𝑧(𝜏𝑖)]          𝑖 = 1,2, . . 𝐾 (2.86) 

Number of time lags K should be set to achieve a ratio of 10% between the first and last 

cycle for source correlation of the fundamental mode [22].  

A unitary matrix, [�̃�],  that minimizes the sum of off-diagonal terms of the shifted covariance 

matrix [𝑅𝑧𝑧(𝜏𝑖)]. of {𝑧(𝑡)}. The joint diagonalization is performed with a numerical 

algorithm called the joint approximate diagonalization (JAD) technique, which is an 

extension of the Jacobi technique that finds a unitary diagonalizer as a product of the Givens 

rotation. An extended explanation can be found in reference [25].  

The optimization problem is defined as:  

 
𝑚𝑖𝑛
[Ψ]

∑ 𝑜𝑓𝑓([�̃�]
𝑇
[𝑅𝑧𝑧(𝜏𝑖)][�̃�]𝐾

𝑖=1 ) (2.87) 

The optimization problem is solved by the JAD technique. A threshold value, 𝑡, is set to stop 

the JAD iteration. By Rainier [22] it is shown that t can be assumed to be 10−8, and reducing 

𝑡 any further provides a negligible effect. 

The mixing matrix [𝐴] is then easily obtained as 

 [𝐴] = [𝑊]+[�̃�] (2.88) 

The demixing matrix U is defined as  

 [𝑈] = [�̃�]
𝑇
[𝑊] (2.89) 

And the source signal will be estimated from the demixing matrix as  

 �̂�(𝑡) = [�̃�]
𝑇
[𝑊]𝑥(𝑡) = [𝑈]𝑥(𝑡) (2.90) 

[𝑊]+Implies the Moore-Penrose pseudoinverse. [𝑅𝑧𝑧(𝜏𝑖)] is provided in the JAD function, 

as seen in Equation (2.87), and will be nearly shift-uncorrelated as the matrices are nearly 

diagonal: 

 [𝑅𝑠𝑠(𝜏𝑘)] = [�̃�]
𝑇
[𝑊]𝐸(𝑦(𝑡)𝑦(𝑡 + 𝜏)𝑇)[𝑊]𝑇[�̃�] (2.91) 
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                   = [�̃�]
𝑇
[𝑅𝑧𝑧(𝜏𝑘)][�̃�] = [𝑈][𝑅𝑦𝑦][𝑈]𝑇  

The mode shapes are found directly from the columns of [𝐴]. The columns will correspond 

to the numbered sources. Since the sources are independent, SDOF methods can be used.  

The eigenfrequencies can be obtained from zero crossings of the independent sources or their 

correlation functions. However, damping is only estimated by the correlation function. 

Information from the random excitation is necessary if damping ratios are to be investigated 

from the time series of the sources [22]. 

The autocorrelation function of the displacement is related to the autocorrelation of the 

modal coordinate as derived in Section 2.2.2.  

2.4.2 Stochastic Subspace Identification 

Stochastic Subspace Identification (SSI) methods are output-only methods classified as 

parametric time domain methods. Within the field of system identification, SSI methods are 

considered to be among the most stable and reliable methods [6]. 

A real structure is characterized by an infinite number of DOFs, but this is shortened to a 

few dozen in a practical context. A stochastic state-space model search is performed to 

determine the order of the system and to determine the state-space matrices, as defined in 

section 2.2.3. The stochastic realization problem is defined as the method of identifying a 

stochastic state-space model from output-only data [6].  

The estimation of state-space matrices can be done through different approaches, including 

partitioning as a covariance-driven SSI method and the data-driven SSI method. The former 

establishes the state-space matrices through preprocessing, including the establishment of 

covariance matrices. The latter establishes the state-space matrices directly from the raw 

data. 

The covariance-driven stochastic subspace identification method is carried out in this study 

and the basic concepts will be explained in the following section. This method is chosen due 

to its ability to establish the variances of the identified system parameters.  

2.4.2.1 Covariance-driven Stochastic Subspace Identification 

To construct a state-space model, the system needs to be capable of establishing an 

observable and controllable part. The system is considered observable if it is possible to 

determine the state from the output, given that the state-space matrices are known. The 
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system is controllable if a state 𝑠𝑘 at instant 𝑘 can be reached from any initial state by some 

control actions. The model order 𝑛 is the number of state variables, which should contain 

enough information to describe the system. Hence, the observability and controllability 

matrices need to be of rank 𝑛 in order for the method to work. The order of the system 𝑛 is 

most likely unknown. Thus, a conservative approach is to overestimate the order of the 

system. As a result of overestimating the order, the method will produce both physical and 

nonphysical poles, and the nonphysical poles need to be separated from the physical ones at 

a later stage in the method.  

The main steps in the method are introduced in the following section, and explained more 

thoroughly by Rainieri et al. [6]. The output correlation matrices should be calculated from 

the 𝑙 × 𝑁 data matrix, [𝑌], containing 𝑁 data samples from 𝑙 observed data signals. The 

matrix [�̅�𝑖 ] denotes the unbiased estimate from time-lag 𝑖. 

 [�̅�𝑖] =
1

𝑁 − 𝑖
[𝑌(1:𝑁−𝑖)][𝑌(𝑖:𝑁−𝑖)]

𝑇
 (2.92) 

The output correlation matrix is stored in a block Toeplitz matrix, Equation (2.93).  

 [𝑇1|𝑖] =

[
 
 
 
 

[�̂�𝑖 ] [�̂�𝑖−1 ] ⋯ [�̂�1 ]

[�̂�𝑖+1 ] [�̂�𝑖 ] ⋯ [�̂�2 ]

⋮
[�̂�2𝑖−1 ]

⋮
[�̂�2𝑖−2 ]

⋱
⋯

⋮
[�̂�𝑖 ]]

 
 
 
 

 (2.93) 

The block Toeplitz matrix will take on dimensions 𝑙𝑖 × 𝑙𝑖, where 𝑖 is the number of time-

lags. The requirement in this step is 𝑙𝑖 > 𝑛, where n is the order of the system. The order of 

the system can be overestimated and the number of necessary time-lags 𝑖 is therefore given 

by 

 𝑖 > 𝑛/𝑙. (2.94) 

The number of singular values from the PSD matrix, or the number of peaks in the power 

spectra in the frequency domain, serves as an estimate of the system order. The order of the 

system is the only parameter used to fit the method to the model.  

The correlation matrices describe the statistical properties of the system. Fundamental 

relations between the state-space equation and the statistical relations are given in section 

2.2.3 and the state-space matrices might be estimated by decomposition of the covariance 

matrices. The Toeplitz matrix is factored according to Equation (2.46).  The observability 

matrix [𝑂𝑖] and reversed controllability matrix [Γ𝑖]is derived from this factorization as 
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 [𝑇1|𝑖] = [

[𝐶]

[𝐶][𝐴]
⋮

[𝐶][𝐴]𝑖−1

] [[𝐴]𝑖−1[𝐺] ⋯ [𝐴][𝐺] [𝐺]] = [𝑂𝑖][Γ𝑖] (2.95) 

Matrix [𝐶] is the discrete-time output matrix, [𝐴] equals the discrete-time state matrix and 

[𝐺] is the next state-output covariance matrix. An SVD of the block Toeplitz matrix provides 

the rank, which equals the number of nonzero values. The rank will theoretically equal 𝑛 if 

the system is both observable and controllable. The zero singular values and their 

corresponding eigenvalue vectors are omitted, and the decomposition of the Toeplitz matrix 

is given as 

 [𝑇1|𝑖] = [𝑈1][𝛴1][𝑉1]
𝑇 = [𝑂𝑖][Γ𝑖] (2.96) 

Where [𝑈1] is the matrix of left singular vectors corresponding to nonzero values, [𝛴1] holds 

the nonzero values, and  [𝑉1] is the matrix of the right singular values. The SVD is then split 

into two parts by a non-singular square matrix [𝑇]: 

 [𝑂𝑖] = [𝑈1][𝛴1]
1/2[𝑇] (2.97) 

 [𝑇𝑖] = [𝑇]−1[𝛴1]
1/2[𝑉1]

𝑇 (2.98) 

It can be shown that if [𝑇] is a non-singular square matrix, this provides a similarity 

transformation explained in the reference [6]. [𝑇] can be chosen as the identity matrix.  

The output influence matrix and the next state output covariance matrix can be obtained from 

the observability and controllability matrices, comparing Equations (2.47), (2.97), and 

(2.98). By creating a one lag shifted Toeplitz matrix, the state matrix [𝐴] can be found from 

the decomposition as  

 [𝑇2|𝑖] = [𝑂𝑖][𝐴][Γ𝑖] (2.99) 

Introducing Equation (2.97) and (2.98) into (2.99), gives the following equation for the state 

matrix: 

 [𝐴] = [𝑂𝑖]
+[𝑇2|𝑖][Γ𝑖]

+ = [𝛴1]
−1/2[𝑈1]

𝑇[𝑇2|𝑖][𝑉1][𝛴1]
−1/2 (2.100) 

[ ]+ denotes the pseudoinverse.  Other approaches to determine the state matrix are found 

in [6].  
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The eigenvalues of the state matrix [𝐴] denote the poles. This needs to be converted into 

continuous time as given in Equation (2.41). Thereafter, properties can be determined from 

the physical poles. The natural frequency, damped modal frequencies and damping ratios are 

estimated from the poles 𝜆𝑟 according to Equations (2.19), (2.20), and (2.21). Couples with 

frequencies that are multiples of (2𝜋/ Δ𝑡 ) are indistinguishable. Thus, Δ𝑡 must be chosen 

carefully and must be sufficiently short to prevent frequencies beyond the Nyquist frequency 

to be observed at lower frequencies in the realization. 

The output correlation and the identified state space matrices are all estimates. Errors in the 

estimates arise due to different noise sources such as [6]: 

1. Modelling inaccuracies if the system does not fit the stochastic state-space model  

2. Measurement noise due to the measurement equipment 

3. Computational noise raised from precision problems 

4. Use of a finite number of data points, hence the output correlations are not exact. 

Consequently, the factorization properties of the Toepliz matrix do not hold, as the output 

correlations are not exact. Due to the noise, the order number of nonzero singular values 

does not correspond to the order 𝑛 of the system. The smallest singular values can be 

removed due to noise. Hence, the gap between two subsequent singular values might give a 

prediction of the model order. Modal parameters are calculated for an increasing model order 

n, and plotted in a stabilization diagram, where the spurious modes are separated from the 

physical ones. See section 2.4.3 for the properties of the stabilization diagram. 

One benefit of cov-SSI is the ability to assess the quality of the identified state-space model 

and the uncertainty of the estimated parameters. This is achieved by comparing the 

synthesized spectra from the identified state-space model with those estimated from the 

measurements. The spectra is derived by Peeters (2000) [26]. 

2.4.3 Quality check and comparison 

If different OMA methods are performed, comparison can be used to check consistency of 

the obtained modal parameters. Normal approaches are presented by Rainier [6], and will be 

used in the investigation of modal properties. Relative scatter between natural frequencies 

obtained from different models or between estimated and analytical parameters can be 

compared and expressed in a percent as, 
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 Δ𝑓𝑛 = 100
𝑓2,𝑛 − 𝑓1,𝑛

𝑓1,𝑛
 (2.101) 

where 𝑛 denotes the 𝑛𝑡ℎ mode of comparison and index 1 and 2 denote the different models 

or analysis results under comparison.  

The consistency between models can also be presented in a scatter plot. Values from the first 

set of analyses are on the horizontal axis and the second set under comparison is on the 

vertical axis. A trendline can be drawn and a line going through the origin with a slope of 

45 ° demonstrates good correlation. It is important to check information about the modes so 

that the corresponding frequencies are compared.  

The modes shape correlations can be investigated by graphical representation as scatter plots, 

as explained above, or by comparing MAC values. MAC value is a squared, linear regression 

correlation coefficient. It measures the degree of linearity between two vectors and is 

computed as [6]:  

 𝑀𝐴𝐶({𝜙𝑛
1}, {𝜙𝑛

2}) =
|{𝜙𝑛

1}𝑇{𝜙𝑛
2}|2

({𝜙𝑛
1}𝑇{𝜙𝑛

1})({𝜙𝑛
2}𝑇{𝜙𝑛

2})
 (2.102) 

Where 1 and 2 denote the different methods for comparison of the n’th mode. This provides 

an estimate of the consistency, but does not ensure validity. A MAC value of 1 indicates full 

correlation. MAC values from two different models can be presented in a CrossMAC matrix. 

It is a MAC matrix but it consists of modes from two different sets of estimated mode shapes. 

It will have a unit value at the diagonal and zero elsewhere if the mode shape estimates are 

consistent.  

The sensor layout is important in an OMA in order to observe the correct modes. The 

performance with identifying modes can be investigated by an AutoMAC matrix. This is a 

matrix consisting of the mode shapes from one OMA method. The diagonal will be unity. If 

off-diagonal terms are close to zero, the obtained modes can be regarded as independent of 

each other. If the off-diagonal terms are large, further investigation should be performed. It 

might indicate that repated modes are found for distinct frequencies. This could also be due 

to orthogonality, spatial aliasing, or spurious modes that are included in the obtained modes. 

Spatial aliasing is the counterpart of time aliasing and occurs when the number of sensors is 

too small to measure the correct shapes and occurs if the wave number of one mode exceeds 

the number of sensors regularly spaced in that direction. The aliased mode shape will be 

repeated as a mode with a lower wave number.  
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The modal complexity contains valuable information needed to validate the result. Complex 

modes originate from several sources, including gyroscopic effects, aerodynamic effects, 

nonlinearities and non-proportional damping [2]. So, in some cases, more or less complex 

modes are expected. However, when normal modes are expected the complexity can be an 

important part of validating the results. As complex modes often occur due to poor signal-

to-noise ratio, this can be used to distinguish between physical and spurious modes. The 

degree of complexity can be investigated visually in a complexity plot. A few indexes that 

provide a quantitative measure of the degree of complexity are presented in the following 

section. They will later be utilized in the process of picking modes in the stabilization 

diagram. 

Modal Phase Collinearity (MPC) is an index that assesses modal shape complexity. It takes 

on the value 1 for mode shapes with a phase equal to 180° or 0°  which indicates a normal 

(real) mode. A MPC value of 1 is therefore sought after when expecting normal modes, 

whereas a low MPC value can indicate a non-structural mode. The detailed calculations can 

be found in reference [6]. For a normal (real) mode shape, both MPD and Mean Phase ought 

to be close to zero. 

Stabilization diagrams are a common practice for the parametric method, and can determine 

which system order the modal parameter should be estimated from. The diagram itself does 

not solve for modal parameters, but is a helpful graphical tool to separate physical modes 

from spurious ones. Modal parameters are calculated for an increasing model order n. The 

spurious ones occur from noise modes due to system excitation and because of 

overestimation.  If white noise is present, the poles are different from the system poles. 

However, when coloured noise is present, the modes can look quite similar to the physical 

ones [27]. Typical indications of spurious modes are high damping ratios or unrealistic mode 

shapes. 

 For state space models, eigenvalues corresponding to system poles for different system 

orders are found. Poles are given in complex conjugate pairs, refer to Section 2.2.1. As only 

poles with positive imaginary components give positive damping, they are the only poles 

that are plotted. The state-space model only provides half the order of modal parameters. 

True poles are detected by comparing modes from different orders 𝑛. Modal parameters can 

be chosen from the alignment of stable modes. 

Stable modes are defined by following criteria [6]: 
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|𝑓𝑛(𝑛) − 𝑓𝑛(𝑛 + 1)|

𝑓𝑛(𝑛)
< 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (2.103) 

 |𝜉(𝑛) − 𝜉(𝑛 + 1)|

𝜉(𝑛)
< 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (2.104) 

 [1 − 𝑀𝐴𝐶{𝜙(𝑛)}{𝜙(𝑛 + 1)}] < 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 (2.105) 

For frequency 𝑓𝑛, damping 𝜉 and MAC values of the mode shape for each order 𝑛. 
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Chapter 3 Method 

Two case studies are presented in the method chapter. Firstly, a benchmark example is 

established in order to check accuracy of the implemented SOBI method. Both results and 

description are provided in case study 1. In Case study 2, the data obtained from Dolmsundet 

Bridge during construction is investigated. The result from this case is provided in the 

following chapter. 

 Implementation of system identification method 

The SOBI method is implemented in MATLAB, based on the theory described in section 

3.3.7, patterned after reference [22]. Different ways of establishing the whitening matrix 

were investigated. Robust whitening was preferred as whitening method as it does not 

require spatial white noise. Some errors occured in the implementation of robust whitening, 

and the implementation was replaced by the with classical whitening method. The method 

is limited to handle non-complex modes. 

The SOBI method does not provide any statistical parameters of accuracy as in the cov-SSI 

method. Hence, checking assumption validity and comparing graphical outputs is important 

in order to control the quality of the results.  

 Case study I –Implementation of SOBI on a shear frame 

In order to investigate the implemented SOBI method, a simplified shear frame is studied. 

The load is modelled as Gaussian white noise and applied in the systems DOFs. The noise 

is generated by the random number generation function in MATLAB, 𝑟𝑎𝑛𝑑𝑛(). Rayleigh 

damping is used for applying damping ratios, defined in Equation (2.48)-(2.50). The 

simulated response are calculated numerically with Newmark’s method, with constant 

acceleration properties. This analytical response is used as the vibration input to the 

implemented SOBI method. 

Two different shear frames are generated in case study 1. Firstly, system 1 is generated in 

order to implement and give an overview of the performance of the SOBI method. System 2 
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is analyzed in order to check the methods performance with closely spaced modes. The 

impact of varying damping ratios and time series duration are investigated for system 1 and 

presented in the case study 1 results. The modes are compared with analytical values, hence, 

the accuracy is investigated. 

3.2.1 Properties of 5DOF shear frame 

 

Figure 3.1 Illustration of MDOF shear frame and numbering of DOFs.  

The system is applied Rayleigh damping, which is proportional damping. The system’s 

modal parameters are solved analytically by the complex eigenvalue solution, section 2.2.1. 

Analytical results are viewed in Table 3-1, where the damping variations of system 1 are 

included. 

Table 3-1 Properties of system 1 and 2, Case Study 1 

 System 1 System 2 

Mode 𝑓𝑛[𝐻𝑧] 𝜉𝑎 𝜉𝑏 𝜉𝑐 𝜉𝑑 𝑓𝑛[𝐻𝑧] 𝜉𝑎 

1 0.2615 0.05 0.0 0.10 0.20 0.109 0.05 

2 0.7634 0.03 0.0 0.07 0.14 0.3092 0.03 

3 1.2035 0.04 0.0 0.08 0.16 0.4991 0.04 

4 1.546 0.05 0.0 0.09 0.18 0.7399 0.05 

5 1.7633 0.05 0.0 0.10 0.20 0.7517 0.05 

 

3.2.2 Method 

The method is explained by analysis performed on System 1 with damping ratios case a, and 

a signal length 60 minutes. The simulated response was resampled from 100 Hz to 20 Hz 

and a low-pass Butterworth filter of order 6 and cut-off frequency 2 Hz was applied. The 

preprocessing is explained more throughout in the theory section 2.3. The low pass-band 

filter is applied close to the desired frequencies as mode 5 was hard to excite, and it was 

necessary to remove noise in order to identify this mode.  
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The new time series {𝑧(𝑡)} = [𝑊]{𝑥(𝑡)}  is obtained by linear transformation of {𝑥(𝑡)}  with 

the whitening matrix. The correlation 𝑅𝑧𝑧 is checked to take form as the identity matrix, 

which denotes uncorrelated data. 

The MATLAB code for JAD is provided by Jean-Francois Cardoso and is available online 

[28], explained in reference [25]. This code solves the optimization problem in Equation 

(2.87) and provides a unitary matrix, which the sources and mixing matrix can be calculated 

from.  

 

Figure 3.2 a-b) Illustration of correlation matrix before  and after applied whitening and JAD. 

Figure 3.2 a) represents the correlation of the observed signal, whereas part b) gives the 

correlation of the separated sources. The diagonal represents autocorrelation of the signal 

and the off-diagonal represents the cross-correlation, both with respect to time-lags. This 

illustrates how the signals are separated into spatial uncorrelated sources, and is helpful in 

order to see if the method was able to separate the sources.  
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Figure 3.3 Sources, shown for the 60 first second, is shown to the left. PSD of sources are shown to the right with 

corresponding peak value. 

The sources are provided in Figure 3.3, showing with time series of the first 60 seconds and 

a PSD plot. The PSD shows a narrow banded process. This is in accordance with the 

comparison of a damped SDOF system loaded with white noise. As the system is loaded 

with white noise, the sources will inherit several frequencies close to their eigenfrequencies.   

Damping ratios would not be possible to identify from the sources’ time series as the system 

is excited with random excitation [22]. Peak picking of the PSD shows approximate 

estimates of the damped eigenfrequencies. The decay of a SDOF systems’ correlation 

function will provide the damping ratio. Hence, it is not necessary to compute the sources 

separately, as the sources’ correlation functions are provided from the joint diagonalization.   

The number of time-lags is crucial when modal parameters are derived from the correlation 

functions. The number of time-lags is set such that a ratio equal to 10 % of the last and first 

peak in the fundamental mode is obtained, as recommended by Rainieri (2014) [22].  

 

Figure 3.4 Correlation of sources, given with damped frequencies,𝑓𝑑. 
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Figure 3.4 shows correlation functions with estimated damped frequencies. Frequencies are 

then found by zero-crossings of the correlation functions of the independent sources, and 

damping ratios are calculated from the decay. The logarithmic decrement can be calculated 

with a various numbers of maxima, given by Equation (2.51). Linear regression on 𝑘𝛿𝑗  and 

2ln(
𝑟0

𝑟𝑘
) is used to find an estimated value of the logarithmic decrement, where 𝑘 is the 

number of maximas included. The value of 𝑘 is selected depending on the best linear fit. 

This is illustrated in Figure 3.5. The 𝑘 peaks included are marked with the solid line. 

Damping ratios are then defined after Equation (2.52). 

 

Figure 3.5 The slope of the linear curve gives an estimated value of the logarithmic decrement. 

3.2.3 Result and considerations 

Relative deviances from analytical values are shown in Table 3-2 and Table 3-3.  MAC 

values are used to estimate the correlation between analytical solved modes and the ones 

obtained from the mixing matrix A. 

Table 3-2 Result, system 1a. 

System 1a 

Mode Analytical  𝑓𝑛 Δ𝑓𝑛 [%] Δ𝜉𝑛 [%] MAC Corresponding 

source  

1 0.262 0.306 14.7 1.00 5 

2 0.763 0.121 18.2 1.00 3 

3 1.20 0.518 9.64 1.00 1 

4 1.55 0.155 0.704 0.99 2 

5 1.76 0.343 2.71 0.99 4 
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Figure 3.6 Mode shapes from analytical solution and from the mixing matrix a. Scaled to unit displacement in DOF1. 

System 2a is analysed to check performance at closely spaced modes, and the deviation from 

analytical values are small. 

Table 3-3 Results, system 2a 

 System 2a  

Mode Analytical  𝑓𝑛 Δ𝑓𝑛 [%] Δ𝜉𝑛 [%] MAC 

1 0.109 0.0749 4.12 0.99 

2 0.309 0.101 1.12 1.00 

3 0.499 0.594 7.87 1.00 

4 0.740 0.116 2.67 0.99 

5 0.751 0.238 8.50 0.99 

System 1a is analysed with 5 different simulation durations. This was performed in order to 

investigate the error in damping ratio, as it was found to be almost 20 % in system 1a with 

60 minutes analysis-length. Figure 3.7 shows how the damping deviates from the analytical 

result for different time-intervals.  

 

Figure 3.7 Error of damping ratio with respect to length of the analysed signal. 
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The duration of analysis is seen to improve the damping estimates, and the scatter for series 

of short duration is significant. However, in practical context, the loading is not likely to be 

stationary for a long time interval.  

 

Figure 3.8 Error estimates for different  damping ratios. 

Mean error for each damping case in system 1 is provided in Figure 3.8, performed with an 

analysis-length of two hours. The damping ratio is found to have considerable impact on the 

error estimate, especially for damping error. It is also observed that frequency errors are 

generally notably smaller than for damping estimates, which corresponds to a series of 

research results from investigation of OMA methods [6].  

 Case Study 2 - Operational modal analysis of Dolmsundet Bridge 

3.3.1 Dolmsundet Bridge 

The total length of Dolmsundet Bridge is 462 meters, with a maximal main span of 190 

meters and a maximum sailing height of 32 meters. The bridge has two main pillars. The 

cross-section is a box girder with a height varying from 2.75 meters to a maximum of 10 

meters positioned directly over the pillars. The maximum cantilever arm before connection 

is 98.7 meters. Additional support during construction is needed, and temporary structures 

are installed 48 m from the pillars, see Figure 3.9.  
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Figure 3.9 Bridge with dimensions, before connecting to adjacent cantilever.  

A cantilever bridge is built from both sides, standing as two cantilevers before being 

connected at the middle. The span is expanded symmetrically from each side of the columns, 

to reduce the moment in the column. The dynamic demands are usually largest during 

construction, and this will often give the dimensional criteria of the bridge.  

Dolmsundet Bridge is a cast-in-situ concrete construction. The falsework for each section is 

moved forward along the bridge as construction proceeds with a form traveller. A form 

traveller is attached to each side of the cantilever as seen on Figure 3.10. The form travellers 

are attached to the cross section by tension legs, between the different casting stages. The 

different casting sections are marked on figure Figure 3.9, where the largest section length 

is 4.9 meters [29]. 

  

Figure 3.10 Dolmsundet bridge under construction. a) view from Dolmsundet towards Hitra [30] b) Cantilever with form 

traveller on the cantilever edges [31]. 

A FEM analysis of the bridge is performed by Norwegian Public Roads Administration in 

the RM bridge program. The bridge is constructed for windload class II under construction, 

and for windload class I for the final structure [32]. Thus, calculation of dynamic response 

is only included during the construction phase. There are two construction stages of interest. 

Maximum free cantilever from axis 2, before installing a support-column, is called building 

stage B21. Building stage B22 is the critical stage, after added support structure and before 

connection to adjacent cantilever [32]. One additional section is added at one side to capture 
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the effects of unsymmetrical casting. The result from the dynamic analysis will be used for 

comparison in the method and result part of this thesis. Data from different construction 

stages are chosen in order to better understand the construction of a cantilever bridge with 

respect to dynamic parameters. An overview of calculated, predicted, cast stages and 

measurement points of interest is provided in Figure 3.11.  

 

Figure 3.11. Included elements in the different analysis m1-m4, with dates of the obtained measurements. 

3.3.2 Instrument positions  

It is fundamental to achieve high-quality measurements in order to get the best modal 

identification estimates [6]. This varies with how the sensors are placed on the structure, and 

how the sampling frequencies are set. The sensor location affects the observability of the 

different structural modes. In this study, the sensor locations and their sampling frequencies 

are already set, and the measurement data is provided by Norwegian Public Roads 

Administration, obtained from the survey system provider Cautus Geo. Information about 

the instrument installation is found in the installation document for axis 2, received from the 

survey system provider [33]. There are 18 strain sensors, 8 located in the column and 10 in 

the pier head. In the work carried out for this thesis, it was revealed that strain measurements 

were collected for static analysis as they were sampled once every hour. Hence, they are 

useless for the purpose of dynamic analysis. Therefore, the vibration data available is the 

data from the two accelerometers, with acceleration measurements in three directions located 

on the north sides of axis2. Figure 3.12 shows the instrument positions with coordinates. 



46  3.3 Method 

 

 

 

Figure 3.12 Instrument positions with local and global coordinates.  

The 3D accelerometers are mounted on the form traveller. Thus, the accelerometers position 

changes during construction stages. The accelerometer positions for measurements in this 

study are shown and labeled in Figure 3.11. 

 

Figure 3.13 Accelerometer positions along the span.  

Wind measurements are received from a 3D anemometer mounted on column axis 2, 

oriented in the north direction.  

3.3.3 Description of file structure and importing considerations 

This section gives a description of the dataset structure. The organization of data is explained 

in detail which will be helpful for others who wants to make use of the measurements. Firstly, 

an overview of the map structure is provided in Figure 3.14. Windfiles are stored in two main 

folders, containing different time-periods. Files are stored in subfolders, named for each date 

between the 15th of January 2015 and the 3rd of February.  All wind data files obtained before 

the 15th of January are included in one folder. Acceleration files from the 15th of January 
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2015 to the 3rd of February 2015 are stored in one folder, while acceleration data prior to this 

date are stored in subfolders named after respective month. 

 

Figure 3.14 Overview over file storage. 

Windfiles are saved as .dat files. The information used in this study includes information of 

date and time, vertical wind speed, wind direction and corresponding wind speed. Start date 

and time is labelled in the file name and saved in a new file approximately once per hour, 

stored with sampling frequency of 1 Hz. 

Acceleration files are stores as .txt files, containing two columns each with information of 

record number and acceleration value for one direction. The record number starts with zero 

at the beginning of each sequence. Each sequence is stored in several files, starting as 

part000, part001, etc. Part000 contains metadata for the sequence, where one sequence 

represents approximately one hour of sampling. This is done separately for 𝑥, 𝑧, 𝑦 direction 

and separated by noting 0_0_0, 0_1_0 and 0_2_0 in the filename. It is worth noting that the 

different sensors start their sequence at different time instants, and the record numbers for 

the different sensors do not correspond to eachother. However, the data series measured in 

the three directions of a sensor have corresponding record numbers. Accelerations are 

sampled with 100 Hz. 

The rawdata is organized in a way that requires a location pointer in order to find series with 

desired wind properties, and then match it with the corresponding acceleration time series. 

The difference in start time of the different sensors needs to be adjusted for. An illustration 

of the procedure is given in figure Figure 3.15. 
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Figure 3.15 Flow chart of import procedure. 

As the acceleration and wind is organized in different folders, they are best connected to 

each other by the date and time, which are given in the filename of each file. The script 

Find_series imports wind files into one file for each day by the function Import_wind. 

Thereafter, it searches for the time intervals with the highest wind speeds of each date. The 

start times of the chosen wind series are then the input to the find_Acc script. Series of each 

direction and sensor are then imported with the function importAcc.  

It should be noted that some of the recorded samples have dropped out. This must be 

corrected in order to prevent delay between vibration data from different sensors and 

directions. Find_Acc solves this by doing linear interpolation with the function 𝑖𝑛𝑡𝑒𝑟𝑝1(∙)  

before the series are assembled. Example of the interpolation is shown in Figure 3.16. A 

cubic interpolation was found to add information, and increase amplitudes in the system, and 

linear interpolation was therefore preferred.  

 

Figure 3.16 Illustration of 60 samples, sampled with fs=100. Blue stars denotes original series, red circles are added the 

series in the interpolation. 

Data from each time interval was thereafter stored in a [6𝑥𝑛] dimensional matrix, with 6 

different acceleration channels, and n is the number of sample points. The chosen series are 

given different IDs and an overview of selected series are provided in Appendix A.    
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3.3.4 Choice of time series  

The data needs to be picked carefully in order to get the best possible estimates. It is 

important to analyze sequences where expected levels of vibration of the structure are 

significantly higher than noise from measurement devices and hardware [6]. Wind-

measurements are used to choose the most adequate data, by ensuring the desired statistical 

properties and amplitude of the excitation system. A wind direction transversal to the bridge 

span was found to excite the fundamental modes adequately. This would be equal to the east-

west direction, as the bridge spans from north to south. Firstly, the time series that were 

considered had comparable wind speed and wind direction throughout the building stage. 

This gave a low mean wind speed, which seemed too low to excite the modes of interest. 

Hence, the maximum mean speeds that occurred for different construction stages were 

investigated. 

Time series collected by night were chosen in order to avoid building activity on the bridge, 

and thus reduce the amount of noise in the dataset.  Hence, time series measured between 8 

pm and 7 am are preferred. There is no adjustments for any potential storage of equipment 

on the bridge. This could affect the dynamic properties of the system. 

3.3.5 Validation of dataset 

Wind series are investigated in order to secure the assumption of stationary data. The 

direction is represented in Figure 3.17, in both Cartesian - and polar coordinates. The 

directional plot is corrected with unwrap() in MATLAB, such that the direction is 

represented within the interval 0° − 360°. The time series used in the examples is obtained 

from the time series interval ID07, refer to Appendix A for ID overview. 
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Figure 3.17 Wind direction a) Cartesian coordinates b) Polar coordinates.  

The preferred time series for this study have a near constant wind speed and wind direction. 

A constant mean value, independent of the time it is calculated for, secures stationary 

behavior. The wind should follow a Gaussian distribution. Both horizontal wind for given 

directions and vertical winds are shown with its representative distribution in Figure 3.18. 

The red line shows the theoretical Gaussian distribution.  

 

 

Figure 3.18 Wind time series, distribution and PSD plot for vertical- and horizontal wind speeds. 

The load transfer function should equal a broadbanded process, in order to excite the 

structural modes of interest, refer to section 2.4. An overview of the PSD of the wind speed 

reveals that only low frequencies are excited. It should be noted that the wind is sampled 
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with 1 Hz, hence it is not possible to capture all fluctuation in the wind. Thus, the signal 

might contain aliasing, and its frequency distribution is questionable. However, it implies 

that a limited amount of modes would be found in the signal.  

Inspection of time histories with respect to their distribution will reveal anomalies in the 

dataset. It should be a stationary, random signal and not exhibit any periodicities [6]. 

Acceleration series from from equivalent time-interval, obtained from sensor Ax1 in x-

direction is investigated in figure Figure 3.19 and Figure 3.20.  

 

Figure 3.19 Acceleration time series. 

The acceleration should follow a Gaussian distribution. However, the unfiltered acceleration 

does not seem to be Gaussian distributed. The tails of the probability distribution are to thick 

in comparison with the theoretical distribution marked with red solid line in Figure 3.20.   

 

Figure 3.20 The raw data accelerations do not follow a Gaussian distributed, in a), and are bandpass filtered, shown in 

b). 
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A few possible reasons for why we can not obtain a Gaussian distribution are investigated. 

The higher mean wind speed, the more spikes are usually found in the signal. This might be 

due to physical events or intermittent noise. Spikes in the signal have short pulses, that have 

flat density spectra, and will provide a more flat distribution in the signal and make a thicker 

tail in the signal distribution.  The noise might be induced by some periodicities, as a periodic 

signal will give sharp peaks in the distribution, which can be confused with narrowband 

resonances. This can to some extent be seen in the unfiltered acceleration distribution plot. 

Linear interpolation is applied to the dataset during import, see section 3.3.3. This causes a 

similar dropout effect in some series, and a dropout with duration of 0.5 sec can be seen in 

Figure 3.21. This might cause some inaccuracies [6] in the results and  can be identified by 

spikes in the distribution. 

 

Figure 3.21 The linear interpolation creates dropouts in the signal. 

This problem is reduced by applying band pass filter such that the acceleration is found to 

follow a Gaussian distribution, recall Figure 3.20. This is valuable information in the signal 

processing part, as most series needs band-pass filter in order to have the wanted distribution.  

3.3.6 Signal processing 

Firstly, the series are detrended in order to remove offsets from a zero-mean. A Butterworth 

high-pass filter and low-pass filter of order 5 are used in the signal processing. The high-

pass cut off frequency is set to 0-0.2 Hz and the low-pass filter is applied with a cut-off 

frequency of 1-3 Hz, depending on the modes of interest and noise in the signal. A 

Butterworth filter with low-pass  𝑓𝑐 = 3 Hz and high-pass 𝑓𝑐 = 0.14 Hz is shown in Figure 

3.22. 
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Figure 3.22 Applied filter Butterworth filter of order 5, with lower 𝑓𝑐  of 3 Hz and higher 𝑓𝑐  of 0.14 Hz. 

An acceleration time series and spectral density, before and after applied filter, can be seen 

in Figure 3.23. The amplitude loss can be seen in the filtered time series. The PSD is 

attenuated below 0.14 Hz and above 3 Hz. The peak between 0.4 and 0.5 Hz is significantly 

more excited, and is not represented in order to get a better view of the impact from the 

Butterworth filter.  

 

Figure 3.23 Acceleration time series, top plot, and spectral density, bottom plot,  before and after applied filter. 

The series are resampled in order to decrease computational effort. To avoid aliasing, the 

filter upper 𝑓𝑐  is checked to  be less than 50–80% of the Nyquist frequency, as recommended 

by Rainier [6]. For higher 𝑓𝑐 =3 Hz, a decimation factor of 10 is applied, reducing the 

sampling frequency to 10 Hz from the original 𝑓𝑠 = 100 Hz.  



54  3.3 Method 

 

 

3.3.7 Second-order Blind Identification method  

SOBI seems to be more sensitive with regard to noise, and it is found necessary to filter 

closely to the wanted frequency, recall case study 1. Even though a peak close to 1.5 Hz can 

be seen from the PSD in the acceleration plot, Figure 3.23, this is not separated by the SOBI 

method. It was found necessary to filter with lower pass-band 𝑓𝑐 = 1.5. 

Due to classical whitening formulation, only the number of active modes needs to be 

included. PSD of the sources are viewed in Figure 3.24. Source 5-6 have significant noise 

and do not represent a SDOF system applied white noise spectrum.  Hence, the number of 

active modes is set to 𝑁𝑚=4. In the whitening matrix calculation, only the four highest 

eigenvalues of the covariance matrix from the input signal and their eigenvectors will be 

included, as explained in section 2.4.1. 

 

Figure 3.24 Choice of Nm active modes. Noise is seen in the two bottom time series. 

The whitened signal satisfies the requirement of variance equal to identity matrix given in 

Equation (2.70). The separated sources should be independent of each other. However, the 

joint diagonalization does not make all sources independent, seen in Figure 3.25. Thus, one 

might expect sources 3 and 4 to not correctly represent modal coordinates. 
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Figure 3.25. Cross correlation matrix of Sources for time-lags 1:1000. 

Identified sources with their corresponding peak spectral density plots are shown in Figure 

3.26. The PSD is not a part of SOBI. However, it gives an indication of the frequency content 

in the sources.  

 

Figure 3.26 Identified sources with peak spectral density plot 

Their autocorrelation functions are shown in Figure 3.27. 

 

Figure 3.27 Autocorrelation functions with respect to number of time-lags, 𝜏  
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SDOF methods are used obtain frequencies and damping ratios. Figure 3.28 shows the 

identified maxima and zero crossings for correlation of source 1. 

 

Figure 3.28 Zero crossings and maxima of autocorrelation function from source 1.  

A linear regression on the logarithmic decrement and peak number is shown in Figure 3.29, 

with different numbers of peaks included. The correlation functions for source 3 and 4 are 

not well defined and damping estimates can give several different outcomes, depending of 

the number of peaks included in the regression. 

 

Figure 3.29 Linear regression of the logarithmic decrement 

The obtained modal parameters with corresponding mode shapes are provided in results. 

3.3.8 cov-SSI with MACEC software 

MACEC 3.2 is a MATLAB toolbox for experimental and operational Modal Analysis of 

structures [5] and is used in this study. It is developed at the Structural Mechanics division 

of KU Leuven.  The toolbox has data conversion, signal processing, system identification, 

methods for selection of modes and tools for visualization of data.  
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Several different identification methods are available, including deterministic, stochastic and 

combined deterministic stochastic system identification methods. As mentioned in section 

2.4.2, the state-space models are robust and have a range of advantages and will be utilized 

in this analysis. The SSI methods are provided with both data driven and covariance driven 

versions, where SSI-covariance is preferred in this study due to its ability to provide 

variances of the estimates.    

The acceleration time series are analysed with the Cov-SSI identification method. This 

provides a comparison with the SOBI obtained modal parameters. The spectra can be 

calculated for the obtained state-space model, and provides variances of the modal 

parameters, refer to section (2.4.2.1) 

Signal processing is performed in the MACEC toolbox system. The current analyzed signal 

is processed with constant detrend, Butterworth filter of 5th order with lower 𝑓𝑐 = 0.2 Hz 

and higher  𝑓𝑐 = 3 Hz. A decimation factor of 10 is applied, achieving a new sampling 

frequency of 10 Hz. The parameters chosen for SSI and corresponding singular value plot 

are presented in Figure 3.30.  

  

Figure 3.30 a) Screenshot of SSI window in MACEC  b) Singular value plot 

Firstly, an expected model order is determined. This should equal 2 times the number of 

expected modes, as the poles received are complex valued conjugate pairs. A few trials are 

carried out and an expected system order of 4-6 is found from the singular value plot, which 

are the singular values from the SVD of the block Toeplitz matrix of correlations. The gap 

between singular values should theoretically equal the order number necessary to describe 

the dynamical behaviour. Due to noise in the data, the order number needs to be over-

specified, in correspondence with the discussion in section 3.3.8. The order number is over-

specified by MACEC and the expected model order is therefore multiplied by 8, yielding an 

order number of 8 × 20 = 160 [5]. 
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The block number 𝑖 determines the number of covariance matrices gathered in the block 

Toeplitz matrix. The required number of block rows is specified with Equation (2.94) by 

MACEC and equals 27 in this case. This is only a recommendation for the minimum block 

𝑖 value. From Reynders and De Roeck, it is recommended to set the block rows as large as 

possible [27]. Their recommended number of blocks is given with respect to the sampling 

frequency, given by 𝑖 >
𝑓𝑠

2∗𝑓0
. This will correspond to a minimum of 13 blocks, when 𝑓𝑠 is 

equal 10 Hz and the minimum frequency 𝑓0 is set to 0.4.  Hence, their suggestion yields a 

lower bound.  However, even higher numbers of blocks were investigated, but gave less 

stable modes in the stabilization diagram. According to Raineri et al (2010) the variance of 

the estimate decreases when the number of block rows increases due to the noise rejection, 

but increases again with an overestimated block row number [34]. Hence, an optimization 

of the number of blocks 𝑖 is necessary, and several trials were investigated. 

The maximal possible system order is equal to 𝑖 × 𝑙. However, from the singular value plot, 

the physical poles are prone to stabilize earlier. Hence, the maximum order in the 

construction of the stabilization diagram is set to n=100, with stepsize 2. In order to estimate 

the covariances, a number of blocks must be chosen, se Figure 3.30. This block number 

equals the number of blocks that the time data is divided into, before the sample covariances 

are calculated. The number of blocks is set to the MACEC suggested value of 69. The 

number needs to be large enough to give a reasonable accuracy of the variance, yet low 

enough for the data blocks to be statistically independent of each other.  
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Figure 3.31 User interface in MACEC of the stabilization diagram, provided with variance limits. 

The nonzero singular values from the Toeplitz matrix are used to compute the observability 

matrix and reversed controllability matrix. The state matrix [𝐴] is then achieved and the 

poles are found from the eigenvalues determined for different system orders. These are 

plotted in a discrete format in the stabilization diagram. Mathematically, an equal number of 

poles and order of system will be obtained. This gives a number of spurious poles, which 

can be sorted out in the stabilization diagram. A screenshot of the stabilization window is 

given in Figure 3.31. Here, the variance criteria is applied. If the covariance critera is left 

out, the parameters for validity is set to 1% for frequency, 5% for damping and 1 % for mode 

shapes. The obtained stabilization diagram is given in Figure 3.32.  
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Figure 3.32 Stabilization diagram, without variance limits, 5 modes are selected in frequency range from 0.2-1 Hz. 

Physical poles are chosen from the alignment of stable modes. As the objective is 

identification of accurate modal parameters, and not to obtain an estimated order number, 

poles are chosen from different order numbers. Poles with MPC close to 1, MD close to 0 ° 

and a low MPD value are preferable, indicating low damping values and non-complex mode 

shapes. 

 To better distinguish the spurious and physical modes, a power spectrum is shown on top of 

the stabilization diagram, even though it is not a part of the SSI method. This is shown in 

Figure 3.32. One pole is selected for each identified structural mode, marked with the red 

circle in the figure. These poles denote where the modal parameters are estimated from, 

presented in the result section. 

Results from all investigated time series are provided in Appendix B. A few comments are 

made on ften-occurred stabilization diagram. Alignments of apparently stable modes shows 

up for poles around 2 Hz, and around the lower cut off frequency and higher cut off 

frequency. However, these are easily distinguished from the physical poles by looking at the 

damping ratio, which is unrealistically high for those frequencies. The poles around 2 Hz are 

assumedly a result of coloured input instead of white noise, which means that the load 

frequencies might appear as modes. The spurious modes are identified by unreasonably high 

damping of about 30%, and are not included as stable poles. If several sensor points were 

present, they would most likely be distinguished from physical modes by weird looking 

mode shapes. 
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Chapter 4 Results and discussion 

The results section contains two parts.  

The first part presents the obtained result of time series, ID7, and predicted measurements 

from building stage B22. This is outlined in order to investigate the quality and consistency 

of obtained results from the two modal analysis methods. The results are found by 

investigation of time series ID07, which is obtained at stage m4. The reader should be aware 

of the difference of between stage B22 and stage m2, recall Figure 3.11. Stage m4 includes 

one less cast section than predicted stage B22, reducing the dimension of each cantilever by 

4.9 meters.  The parameters and analysis considerations for these given results are presented 

in method sections 3.3.7-3.3.8.  

The second part presents the results obtained from different building stages. The emphasis 

is comparing trends and predicted behavior. Results from all time series analysed can be 

found in the Appendix(B).  

 Modal parameters from construction stage 2 

4.1.1 Predicted modal parameters 

The following eigenfrequencies and mode shapes are predicted by the Norwegian Public 

Roads Administration for construction stage B22. A 0.8% damping ratio is applied in the 

model for the dynamic analysis of the Service Limit State (SLS) [32].  
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Table 4-1 Predicted eigenfrequencies and mode shapes for construction stage B22. Illustration and frequencies are 

obtained from calculation report provided by the Norwegian Public Roads Administation [32]. 

MODE 1 

𝑓1 = 0.472 

Torsion of column 

 

 

MODE 2 

𝑓2 = 0.583 

Vertical displacement of 

cantilever 
 

MODE 3 

𝑓3 = 0.945 

Vertical displacement and 

torsion of deck 
 

MODE 4 

𝑓4 = 1.339 

Transversal bending 

 

MODE 5 

𝑓5 = 1.389 

Bending of cantilevers 
 

 

4.1.2 Modal parameters obtained by SOBI  

Review Figure 3.27 for the obtained sources from time series ID07. As it is not possible to 

determine the order of the identified sources by the SOBI method, the frequencies are sorted 

in ascending order [21]. Corresponding source number is given in Table 4-2.  
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Table 4-2 Result obtained by SOBI, time series ID07, construction stage m4. 

Mode 𝑓𝑛 [𝐻𝑧] 𝜉 [%] Source number 

1 0.4002 10.0887* 4 

2 0.4235 0.4517 2 

3 0.6885 0.4009 1 

4 0.6931 2.6062 3 

* denotes much uncertainty from when the damping ratio was found from a linear regression 

on the logarithmic decrement seen in Figure 3.29. 

A look at the PSD of source 4, in Figure 3.27, reveals a source that is not fully separated. 

The influence of other frequencies is significant. It is likely that the obtained modes are 

contributions from several processes or noise.  

Four mode shapes are obtained from the mixing matrix and illustrated together with 

corresponding frequencies in Table 4-3. The modes are scaled to unity. Due to sensor 

location, only local displacements are available, and only one cantilever end is investigated.  

The left plot illustrates the edge of the deck, and seen from the column, axis2. Here, modes 

with vertical and out-of plane movement can be illustrated. Corresponding coordinates can 

be reviewed from Figure 3.12. The view of the right plot is from above the deck. Movement 

in the bridge span direction (coordinate y) and transverse to the span (coordinate x) can be 

observed.  

Table 4-3 Illustration of modes obtained from SOBI, and labelled with assumed mode shape description. 

Mode 1 

𝑓1 = 0.4002 

Undetermined 

 

  

Mode 2 

𝑓2 = 0.4235 

Torsion of column 

  

Mode 3 

𝑓3 = 0.6885 

Vertical displacement 
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Mode 4 

𝑓4 = 0.6931 

Torsion of deck 

  

Visual inspection of the cantilever edge movements may give indicators of the bridge’s 

global mode shape. Mode 1 shows high uncertainty, both due to the correlated source and 

by visual inspection of the mode shape. The mode shape indicates movements of both 

cantilever edges in opposite x-directions. This is inferred as large strain in the concrete box 

girder and does not represent a physical movement for such low frequencies. However, it 

can also occur due to movements of the other cantilever and a minor displacement in the 

measured end. Then the unrealistic movement in the x-direction might be accounted for from 

enlargement of the shape due to unit scaling. It will be regarded as non-physical due to lack 

of further information. 

Mode 2 shows lateral movement of the cantilever end. This might indicate torsion of the 

column. Torsion of column is an expected finding when referring to the predicted mode 

shapes. The vertical displacement of mode 3 might indicate a vertical displacement of the 

cantilever deck, either caused by bending of the cantilever or as vertical displacement of the 

cantilever.  The vertical twisting of the deck seen in mode 4 indicates torsion of the bridge 

deck.  

An AutoMAC matrix of the obtained SOBI modes is provided in Figure 5.2. An AutoMAC 

matrix was created in order to investigate the dependence between obtained mode shapes. 

This is used in order to detect non-real obtained modes or investigate the efficiency of the 

sensor locations. Correlation might indicate that same mode shape is identified for distinct 

modes, or indicate a non-efficient senor layout. It also might indicate problems such as 

spatial aliasing or spurious modes. 
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Figure 4.1 AutoMac matrix of modes obtained from SOBI. 

The diagonal shows the modes correlated with themselves, and will, by definition, be equal 

to one. The off-diagonal terms provide a measurement of the colinearity between the 

obtained modes. Zero indicates no correlation and 1 is complete coincidence. Note the 

correlation between mode 1 and 4. By visual inspection, this is due to the torsion of deck 

being present in both mode shapes.  Since information is compared from only a few points, 

this might also imply inefficiency of the sensor layout. 

4.1.3 Modal parameters obtained by cov-SSI 

Cov-SSI was performed with the MACEC toolbox in MATLAB. The modal parameters with 

a 95 % confidence interval of the Gaussian distribution are provided in Table 4-4. The 

confidence interval is estimated based on the obtained space-state model in MACEC. The 

MPC, MP and MPD values are provided in order to investigate the modes shape’s 

complexity. A completely real mode shape will hold a MPC equal to 1, and MP and MPD 

equal to 0. 

Table 4-4 Result obtained by Cov-SSI, time series ID07, construction stage m4. Included with 2𝜎 confidence interval. 

Mode 𝒇𝒏 [𝑯𝒛] 𝜉 [%] MPC MP MPD 

1 0.4122±0.0161 7.3715±2.5961 0.89 3.42 12.4 

2 0.4239±0.0013 0.4120±0.2358 0.99 2.35 4.57 

3 0.6883±0.0026 0.5358±0.3629 0.65 13.5 17.7 

4 0.6951±0.0225 3.0443±2.3455 0.84 1.00 15.0 

5 0.8576±0.0296 1.5797±4.5774 0.86 4.15 11.5 

Note the significantly smaller uncertainty for the damping and frequency of mode numbers 

2 and 3. The complexity varies, with number 3 being significantly more complex, with a low 

MPC value and a significant MP and MPD value. The mode shapes are illustrated in Table 
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4-5. The upper plot provides the cantilever edge seen from column axis 2, whereas the lower 

plot illustrates the edge from above. A complexity plot is provided for each mode, where 

each arrow equals displacement in one DOF with illustrated phase angle.  

Table 4-5 Illustration of modes and complexity plot obtained from Cov-SSI and labelled with assumed mode shape 

description 

Mode 1 

𝑓1 = 0.4122 

-- 

 

 

 

Mode 2 

𝑓2 = 0.4239 

Torsion of column 

 

 

  
Mode 3 

𝑓3 = 0.6883 

Vertical 

displacement 

+Torsion of deck 

 

 
Mode 4 

𝑓4 = 0.6951 

Torsion of deck + 

Vertical 

displacement 

 

 
Mode 5 

𝑓5 = 0.8576 

Vertical 

displacement 

+Torsion of column  

 

 

The modes are illustrated with their real parts. This will not give a significant difference for 

complex modes with maximum phase of ±10° from 0° to 180° [6], but it is considered 

approximate to apply this to all phase angles [2]. The first mode in SSI exhibits non-physical 

movement in the x-direction. This might be due to a spurious obtained mode, review the 

stabilization diagram in Figure 3.32, with two closely spaced modes at frequency 0.4 Hz. 
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The complexity of the mode shape is pronounced, with one DOF displacement 30° off-phase. 

Mode 2 shows an almost completely real mode with lateral displacement, this can be 

interpreted as torsion of the column, equivalent to mode 2 obtained from the SOBI method. 

Mode 3 has vertical displacement and a small amount of twisting, indicating a mode with 

vertical displacement and torsion of the deck. However, the complexity plot indicates a 

complex mode, as also seen from high MPC, and low MP and MPD value. Complex modes 

occur if non-proportional damping is present, but is also often a result of noise in the 

measurements, recall theory section 2.4.3. The variance obtained from cov-SSI is low, so a 

complex mode may be more likely than noise in the measurements. Mode 4 displays the 

same behavior as Mode 3, but the torsion of the deck is pronounced. This mode also has a 

high complexity, but low amplitude. Mode 5 has some complexity and contains both vertical 

and lateral displacement indicating vertical displacement and torsion of the column.  

The following gives the AutoMAC matrix of obtained modes from cov-SSI.  

 

Figure 4.2 AutoMAC matrix of the modes form cov-SSI 

The correlation between modes 2-5 and 3-4 stands out with a value above 60 %. This 

corresponds to the visual inspection of the modes. Review Table 4-4 where modes 1, 4 and 

5 have a significantly higher confidence interval for both frequencies and damping together, 

and with a less stable alignment on the stabilization diagram for the same modes.  It is likely 

that modes 1, 4 are 5 are spurious modes. 
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4.1.4 Comparison of modal parameters obtained from SOBI and cov-SSI  

The mode shapes are visually inspected in order to compare corresponding eigenfrequencies.  

The four first modes from SOBI and SSI will be compared in the following, even though 

some of the mode shapes deviate slightly. All of these are included in the comparison 

analysis, even though some of the modes show dependence in the AutoMAC matrix, as this 

could be due to inappropriate sensor layout. The relative scatter between frequency and 

damping from the two methods in comparison are noted in Table 4-6 together with the 

corresponding MAC value.  

Table 4-6 Relative scatter and mac values comparing SOBI modes with cov-SSI 

SOBI/ SSI 

 
Δ𝑓𝑛 [%] Δ𝜉𝑛 [%] MAC 

1/1 2.92 36.9 0.53 

2/2 0.113 9.64 0.99 

3/3 0.0323 25.2 0.87 

4/4 0.291 14.4 0.66 

Note, the relative scatter of lightly damped modes is severe. Mode shape vectors are 

compared with a scatter diagram in Figure 4.3. Positive real values are plotted for 

comparison. The vectors real parts with positive signs are compared. A line going through 

the origin with a slope of 45 ° is added to the plots. For perfect collinear modes, the points 

should lie on this line.     

 

Figure 4.3 Scatter diagram representing the scatter between mode shape vectors obtained from the two methods. 

Note that cov-SSI gives consistently lower values compared to SOBI. This might be due to 

the complexity of cov-SSI, and the absolute value might be larger. Note the distribution of 

points in mode 1, with nearly all points on one side of the 45 ° line. Deviations with all points 
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on one side might imply a systematic error. It seems like mode 2 and 3 show good 

consistency. The diagram does not ensure validity, only consistency between the methods.  

 

Figure 4.4 CrossMAC matrix of SOBI and cov-SSI modes. 

The CrossMAC matrix between the mode shapes considered for the comparison are provided 

in Figure 4.4. MAX-values larger than 0.8-0.9 are accepted as indicators of good consistency 

in practical aspects [6].  Good consistency is observed between mode 2 from SOBI and mode 

2 from SSI (hereafter noted mode 2/2) and between mode 3/3, with high MAC values on the 

diagonal. Note the low MAC value between modes 1/1 and modes 4/4.  This might result 

from the cov-SSI mode, which seems to be a combination of several district modes. Recall 

the assumption of mode 1 and 4 being spurious modes. The low consistency between the 

methods supports this assumption. 

The modes that show consistency between the methods, and hold a physically reasonable 

mode shape obtained from an independent source in SOBI, are reviewed in Table 4-7. They 

will be used further in comparison between different construction stages. The modes are 

labeled after their assumed global mode shape. TC=Torsion of Column, V=Vertical 

displacement of cantilever, TD=Torsion of Deck. 

Table 4-7 Modes chosen to be compared for different construction stages 

SOBI/SSI SOBI SSI-cov  Mode 

mode 𝑓𝑛 [𝐻𝑧] 𝜉 𝑓𝑛 [𝐻𝑧] 𝜉 MAC label 

2/2 0.4235 0.4517 0.4239±0.0013 0.4120±0.2358 0.99 TC 

3/3 0.6885 0.4009 0.6883±0.0026 0.5358±0.3629 0.87 V 
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Even though there is a high relative scatter between damping ratios from Table 4-6, both  the 

damping ratio and the frequency estimates from SOBI fall within the confidence bound 

found from cov-SSI.  

The comparison between the predicted and analyzed mode was done through visual 

inspection. The Torsion of Column (TC) and Vertical displacement (V) modes are found in 

both the analyzed and predicted results. The frequency deviation between the predicted and 

analyzed results is significant, due to the element difference between stage m4 and B22. The 

measured wind speeds did not reach velocities large enough to excite higher modes. 

4.1.5 Uncertainty considerations 

Several sensors at different locations are helpful in order to eliminate spurious and uncertain 

obtained sources. Here, only assumptions of mode shapes are available, and the presented 

results will not be enough to assess the correct modal shapes. The quality of visual inspection 

is therefore shown to be limited. This makes it harder to reject spurious modes on the basis 

of coincidence from MAC values.  

Coincidence of mode shapes from different methods can be seen through MAC values close 

to 1 and low scatter values. However, this does not imply accuracy to the real modes. Errors 

might be present and bias the results from both methods. One of these biases might follow 

from the analyzed dataset. The interpolation utilized before the data was assembled 

introduced a drop out in the signal that can lead to errors in both methods. However, this bias 

can be limited if a large number of time series is analyzed. 

The SOBI method does not identify complex modes, which might be a source of the 

uncertainty in the presence of complex modes, which are implied by the cov-SSI estimates. 

The SOBI method has problems with repeated modes, recall section 2.4.1. As few sensors 

are available, so modes might appear to be repeated even though they would turn out to be 

distinct with several sensor locations.  

The OMA technique assumes white noise. In a practical context, few processes are perfectly 

white, resulting in inaccuracies of the results. Noise in the data can produce highly damped 

modes, which are found and rejected in the stabilization diagram provided by cov-SSI. Noise 

in the data leads to spurious and complex modes. 

The accelerometers are mounted on the form traveler. This is attached to the bridge cross-

section by tension legs and is assumed not to influence the obtained vibration from the 

system. Little information of the form traveller’s appearance has been available. Thus, the 
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impact of the form traveller to the investigated system is not verified and might add errors 

to the result.  

 Variation of Modal parameters through different building stages 

The previous section reviewed the uncertainty of the measurements and measured 

consistency by comparison between methods. Eight distinct time series from construction 

stage m1-m4 are analyzed with both cov-SSI and the SOBI method. As SOBI found more 

shapes in general, these are included even though consistency with SSI method is not present. 

This might be due to different stabilization criteria from SSI and choices of SOBI modes. In 

addition, different signal processing filter 𝑓𝑐 have been applied, which might also influence 

the results.  

It has been found reasonable to distinguish the findings into modes that might correspond to 

Torsion of Column (TC), Vertical displacement of cantilever (V) and Torsion of Deck (TD). 

Review Table 4-3 and Table 4-5 for an illustration of the mode shapes.  

4.2.1 Eigenfrequencies 

The frequencies obtained from time series 1-8 are shown in Table 4-8. The variation in the 

eigenfrequencies within each construction stage is found to be small. It is noted that Torsion 

of Column (TC), Vertical displacement (V) and Torsion of Deck (TD) are present in all 

stages. 

Table 4-8 Frequencies obtained from casting stage m1-m4, frequencies are given as SOBI/SSI  

SOBI/SSI   Mode label  

 Series ID TC V TD 

m1 1 0.4408/- 0.4860/0.4846 0.4866/0.4862 

 Mean m1 0.4408 0.4853 0.4864 

m2 2 0.5635/- 0.9909/0.9903 0.9929/0.9947 

 3 0.5625/- 0.9926/0.9897 0.9919/- 

 4 0.5620/- -/0.9954 -/- 

 Mean m2 0.5627 0.9918 0.9932 

m3 5 0.4526/- -/0.7593 0.7584/- 

 6 0.4508/0.4521 0.7596/- 0.7608/- 

 Mean m3 0.4518 0.7594 0.7596 

m4 7 0.4237/0.4239 0.6890/0.6884 - 

 8 0.4240/0.4243 0.6867/0.6872 0.6966/- 

 Mean m4 0.4240 0.6878 0.6966 

Figure 4.5 shows the mean values of eigenfrequencies with respect to construction stages. 

The plot demonstrates an increase of frequency value between stage m1 and m2 and a 

reduction in frequency values between stage m2 and m4. The same tendencies are 
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pronounced for the three different modes of interest. It should be clear that the stages are not 

equally spaced in time or by casting stage, and the slope is not indicating a rate. 

 

Figure 4.5 Frequency variation for construction stage m1-4.  

Adding mass during construction stages is assumed to reduce the eigenfrequencies. The 

findings in Figure 4.5 support this assumption within the interval m2-m4. The jump between 

stage m1 and m2 can be explained to be a result of the installation of the support structure 

between these stages. The increase in frequency between m1 and m2 is observed for all 

modes, but is significant for modes including vertical displacement. A support structure is 

likely to affect the vertical modes the most, as the temporary support column is weaker with 

respect to bending than axial deformation.  

Table 4-9 Frequencies and mode labels from predicted construction stages B21 and B22, mode 1-3.   

  B21  B22 

mode 𝒇𝒏 [𝑯𝒛] Mode shapes 𝒇𝒏 [𝑯𝒛] Mode shapes 
1 0.419 Torsion of column 0.472 Torsion of column 

2 
0.448 Vertical displacement 

of cantilever 

0.583 Vertical displacement of 

cantilever 

3 
0.958 Bending in transversal 

direction 

0.945 Vertical displacement 

and torsion of deck 

The relation between eigenfrequencies from analysis and the two first predicted modes in 

stage B21 and B22 are investigated and included in Figure 4.6. The Torsion of Deck (TD) 

mode shape is present in predicted modes at higher frequencies. However, due to limited 

sensor locations, it is hard to determine which modes contain torsion of deck in analysis. 

Note that modes containing torsion of the deck are significantly higher in the predicted 

modes. TD mode is closely spaced to the TC mode, and  the SSI method has problem in 

particular has problems with identifying this one.  
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Figure 4.6 Frequency variation for construction stage m1-m4 and numerically predicted modes in B21 and B22.  

B21 includes one cast stage more than analyzed stage m1. Both the corresponding V and TC 

modes have a frequency between m1 and B21. Hence, modes from predicted stage B21 

follow the same tendencies as obtained by OMA. Note that the support structure is applied 

after B21. B22 corresponds to one cast stage after m4. The vertical displacement mode 

follows the assumed reduction in frequencies. However, the predicted torsion (TC) mode 

deviates from the observed tendency with an increasing value. Seen from Table 4-1, mode 1 

for stage B22 contains bending of the cantilever, which does not occur for mode 1,  B21. 

This might also affect the frequency.  

Frequencies are regarded to be confidently and easily estimated [6]. Due to uncertainty of 

the obtained modes, this data does not provide enough validity to reject the predicted 

parameter, as several uncertainty factors are pronounced.  

4.2.2 Damping 

Table 4-10 present damping ratio with respect to modes from different construction stages. 

Table 4-10 Damping ratios obtained from casting stage m1-m4, given from two methods SOBI/SSI 

SOBI/SSI Series ID  Mode label  

  TC V TD 

Stage 1 1 0.64/- 0.24/0.51 0.91/1.7 

Mean m1  0.64 0.38 1.3 

Stage 2 2 0.58/- 0.45/0.44 0.62/0.60 

 3 0.73/- 0.35/0.58 0.51/- 

 4 0.60/- -/0.47 - 

Mean m2  0.63 0.46 0.58 

Stage 3 5 0.60/- -/0.51 0.46/- 

 6 0.55/0.57 0.56/- 0.49/- 

Mean m3  0.57 0.54 0.48 

Stage 4 7 0.50/0.41 0.40/0.51 - 

 8 0.38/0.30 0.30/0.28 0.56/- 

Mean m4  0.40 0.38 0.56 
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A large scatter of damping ratios from different time series is observed.  Mode V for stage 4 

have ratios going from 0.28-0.51. The mean should be used with care. Inaccurate damping 

estimates are a known problem in OMA, as it is usually characterized by large error bounds 

[6]. A linear system is assumed in OMA. However, damping consist of several damping 

mechanisms, with a linear damping independent of motion and an non-linear part, which 

denotes damping dependent of the amplitudes of motion [6]. Different series will give 

different amplitudes of motion. This can be seen for time series 7 and 8, where time series 7 

has a consistently higher damping ratio than from time series 8. Series with different wind 

speeds add uncertainty to predicting the changes with respect to time stages. This should be 

noted as a limitation of the ability to compare the results. The duration since last cast will 

most likely affect the result, however this is not investigated any further.  

 

Figure 4.7 Mean values of damping ratios for different construction stages. 

Figure 4.5 presents the estimated damping ratio over different construction stages. The mode 

labeled Torsion of Deck (TD) seems to give the highest scatter. The damping in the first 

stage may be rejected, due to the high damping ratio indicating noise or a spurious mode. 

The mean of the vertical displacement (V) mode is observed as consistently lower than the 

mean damping ratio from TC for the respective construction stages.  

The applied SLS damping ratio for the predicted results is equal to 0.8 % [32]. This might 

be considered as an un-conservative estimate. However, with larger loading, the non-linear 

damping might increase resulting from friction and aerodynamic damping. The wind speed 

during construction stages was too low to investigate this relationship 
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Chapter 5 Concluding remarks 

The implemented SOBI method was tested with a 5 DOF shear frame with non-proportional 

damping. The accuracy of the obtained parameters in relation to the damping ratio was 

investigated, and the quality of the results was considerably reduced for higher damping 

ratios. The method showed noteworthy improvement for longer time series durations.  

The SOBI-obtained parameters fall within the 95% confidence interval provided by the cov-

SSI method for selected time series where variances were calculated. The methods found a 

different number of modes. The frequency deviations between the methods were small, but 

the methods provided varying damping estimates.  

Three mode shapes are identified throughout the different construction stages. They are 

assumed to correspond to torsion in the column, vertical displacement of the cantilever, and 

torsion of the deck. The two first modes provided the best variance estimates obtained from 

cov-SSI. They were also the most frequently observed modes in the series investigated. 

The change in eigenfrequencies during construction was investigated and the temporary 

structure was seen to have a significant effect on the eigenfrequency values. The 

eigenfrequencies rised after construction of the temporary structure, and then decreased with 

increasing construction stages. This is an expected tendency, as adding mass is likely to 

lower the eigenfrequencies. By comparison of the first two modes, the predicted first stage 

follows the obtained trend, while the predicted second building stage shows significant 

deviation. The last mode of interest in the experimental data appears at a lower frequency 

than the predicted mode.  

Damping is estimated to be between 0.4-0.7% for the two modes which coincide with 

predicted mode shapes. The applied damping of 0.8% seen in the predictions is, therefore, 

found to be non-conservative for the investigated wind speed. However, a large amount of 

uncertainty is related to the damping estimates, and the results should be considered 

accordingly.  
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The number of sensors and the sensor layout are found critical in order to detect non-physical 

and correlated modes. Modal parameters obtained from a more extensive dataset will provide 

a more reliable result.  
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Chapter 6 Further work 

Different ways of establishing the whitening matrix in the SOBI method were investigated.  

Robust whitening does not require spatial white noise and is able to handle more noise. This 

was first investigated, but then rejected due to time limitations. The implemented SOBI 

method can be improved by adding the robust whitening found described in section 2.4.1. 

The SOBI methods performance on non-proportional damping should be investigated more. 

The BMID algorithm could be implemented in order to improve the handling of complex 

modes [23]. This is merely adjustments on the preprocessing part of the implemented code, 

and an equivalent JAD code for complex number is available online [28].  

Only a few data series from each stage are analyzed, and it is advantageous to investigate 

more time series to reduce the bias in the results. The results can be compared with analyses 

by other OMA methods. However, the quality obtained by two closely spaced sensor 

locations is limited for the purpose of modal assessment. It is therefore advised to use the 

dataset primarily for static investigations.  

Other investigations of cantilever bridges should be performed. It is then important to require 

a minimum number of sensor locations to capture the different mode shapes. A sensor on 

each cantilever, as well asthe column is regarded as a minimum layout. Preferably, due to 

bending modes of the cantilever, and the observability of torsion of deck, more sensors 

should be available. The sampling rate is important with regard to dynamic analyses and can 

with advantage be set equal 200 Hz for acceleration and strain measurements. The wind 

should preferably be sampled with a minimum of 20 Hz. The validity of a wireless data 

collection should be investigated due to the amount of record sample dropouts found during 

this study. 
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APPENDIX A  I 

A Selected time series 

 

Eight different time series from four construction stages are analyzed. A description of the 

time series investigated us provided in Table A-1. Corresponding date, Start time and 

construction stage are shown. All series have a duration of 30 minutes. 

Table A-1 Date and time of collected time series 

ID Date Start time  Construction stage 

1 06.10.2014 23.01.01 m1 

2 03.12.2014 20.29.56 m2 

3 03.12.2014 21.04.42 m2 

4 03.12.2014 07.03.35 m2 

5 13.01.2015 02.25.29 m3 

6 13.01.2015 03.30.17 m3 

7 27.01.2015 21.15.01 m4 

8 27.01.2015 21.57.02 m4 

The time series corresponding file names are given in Table A-2. The name is given for x-

direction and part000, although all directions and several parts are included in the analysis. 

Table A-2 Time series with corresponding filenames. 

ID Filename from sensor: Ax1 Filename from sensor: Ax2 

1 'Streaming_0_x_0_0_x_00158D00000E03
B0_06-10-2014_22.48.40_part000.txt' 

'Streaming_0_x_0_0_x_00158D00000E0462
_06-10-2014_22.47.32_part000.txt' 

2 'Streaming_0_x_0_0_x_00158D00000E03
B0_03-12-2014_20.02.11_part000.txt' 

'Streaming_0_x_0_0_x_00158D00000E0462
_03-12-2014_20.04.38_part000.txt' 

3 'Streaming_0_x_0_0_x_00158D00000E03
B0_03-12-2014_21.02.15_part000.txt' 

'Streaming_0_x_0_0_x_00158D00000E0462
_03-12-2014_21.04.42_part000.txt' 

4 Streaming_0_x_0_0_x_00158D00000E03B
0_03-12-2014_07.01.10_part000.tx 

'Streaming_0_x_0_0_x_00158D00000E0462
_03-12-2014_07.03.37_part000.txt' 

5 Streaming_0_x_0_0_x_00158D00000E03B
0_13-01-2015_02.25.29_part000.txt' 

Streaming_0_x_0_0_x_00158D00000E0462_
13-01-2015_02.22.28_part000.txt' 

6 'Streaming_0_x_0_0_x_00158D00000E03
B0_13-01-2015_03.25.33_part000.txt’ 

'Streaming_0_x_0_0_x_00158D00000E0462
_13-01-2015_03.22.32_part000.txt' 

7 'Streaming_0_x_0_0_x_00158D00000E03
B0_27-01-2015_20.46.27_part000.txt' 

'Streaming_0_x_0_0_x_00158D00000E0462
_27-01-2015_20.56.58_part000.txt' 

8 'Streaming_0_x_0_0_x_00158D00000E03
B0_27-01-2015_21.46.31_part000.txt' 

'Streaming_0_x_0_0_x_00158D00000E0462
_27-01-2015_21.57.02_part000.txt' 
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APPENDIX B  III 

B Result from all investigated time series  

Time series analyzed with cov-SSI are preprocessed with a Butterworth filter of order 6 with 

high-pass 𝑓𝑐 = 0.2 𝐻𝑧 and low-pass 𝑓𝑐 = 3 𝐻𝑧. The time series are decimated to 𝑓𝑠 =

10 𝐻𝑧. Number of Block rows i and number of blocks for covariance estimates inserted in 

MACEC are provided in Table B-1.  

Time series analyzed with SOBI are preprocessed with a lower low-pass filter 𝑓𝑐 than SSI. 

This was found necessary in order to receive separated sources. A lower 𝑓𝑐 = 0.2 𝐻𝑧 is used 

for all time series. The higher 𝑓𝑐 for distinct time series is given in Table B-1. The time series 

are decimated to 25 Hz.   

Table B-1 Parameters  variations for different time series 

 SOBI SSI 

ID ℎ𝑖𝑔ℎ𝑒𝑟 𝑓𝑐  
[𝐻𝑧] 

Block 

rows 𝑖 
Blocks-covariance estimates 

1 0.8 50 60 

2 1.5 50 60 

3 1.5 50 - 

4 1.5 30 - 

5 1 50 - 

6 1 50 - 

7 1.5 30 69 

8 1 50 - 

The modes in the result section are labeled after assumed mode shape. TC denotes Torsion 

of Column, V denotes Vertical displacement of cantilever and TD represent Torsion of Deck. 

U labels an undetermined/nonphysical mode. Positions of sensors were adjusted late in the 

study. Accelerometer positions were first assumed placed on each cantilever, therefore, some 

modes which are later considered nonphysical are included in comparison between the 

methods. However, they are not included in comparison of different construction stages 

given in the main document.  

This appendix presents all modes found from the stabilization diagram and separation of 

sources. However, many modes were found to have high confidence interval from cov-SSI, 

not separated by SOBI or unrealistic damping. The consistence between the mode is checked, 

and the modes which followed the observed TC, V and TD mode shaped and showed best 

quality are selected. A comprehensive overview from the included mode is given in main 

document in Table 4-8 and Table 4-10. 
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Note, results from time series ID7 are not included in appendix since a full description of the 

results are provided in main report section 4.1.  



APPENDIX B  V 

B.1 Results from time series ID01 

B.1.1 Result from cov-SSI 

 Modes found from stabilization diagram is presented with a 2𝜎 confidence interval. 

Table B-2 cov-SSI result from time series ID01, given with 2𝜎 confidence interval  

Mode 𝒇𝒏 [𝑯𝒛] 𝜉 [%] MPC MP MPD Label 

1 0,4423±0,0055 1,081±1,0420 0,99 0,847 5,56 U 

2 0,4443±0,0026 0,530±0,6517 0,62 13,5 24,0 U 

3 0,4846±0,0033 0,514±0,4390 0,99 0,38 2,88 V 

4 0,4862±0,0043 1,701±1,2324 0,75 10,4 14,1 TD 

 

 

 

Figure B.1 a) Stabilization diagram b) AutoMAC matrix, time series ID01 

B.1.2 Results from SOBI 

Table B-3 SOBI result from time series ID01 

Mode 𝑓𝑛 [𝐻𝑧] 𝜉 [%] Source number Label 

1 0,440845 0, 6411 3 T 
2 0,444061 0, 6177 4 U 
3 0,48604 0, 2415 1 V 
4 0,486622 0, 9144 6 TD 

No correlation between the modes are found in AutoMAC matrix. 

B.1.3 Comparison 

Table B-4 Comparison of SOBI and SSI modes from time series ID01 

SOBI/ SSI 

 
Δ𝑓𝑛 [%] Δ𝜉𝑛 [%] MAC Mode label 

2/2 0,046 16,6 0,79 U 

3/3 0,291 53,1 0,98 V 

4/4 0,084 46,3 0,92 TD 
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Notice that the damping and frequencies from SOBI falls within the confidence interval 

provided by cov-SSI. 
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B.2 Time series ID02 

B.2.1 Result from cov-SSI 

 Modes found from stabilization diagram is presented with a 2𝜎 confidence interval. 

Table B-5 cov-SSI result from time series ID02, given with 2𝜎 confidence interval  

Mode 𝒇𝒏 [𝑯𝒛] 𝜉 [%] MPC MP MPD Label 

1 0,5632±0,0020 0,5604±0,2794 0,58 9,93 20,3 T 

2 0,9903±0,0021 0,4426±0,2936 0,79 9,49 12,8 V 

3 0,9947±0,0034 0,5958±0,3343 0,72 13,4 15,9 TD 

4 1,1199±0,0338 1,1282±5,3937 0,84 0,85 10,6 V/TD 

 

 

Figure B.2 a) Stabilization diagram b) AutoMAC matrix, time series ID02 

Mode 4 is rejected due to its high confidence interval. It is also seen to correlate with the 

other modes as seen in the AutoMAC matrix in Figure B.2 b). 

B.2.2 Results from SOBI 

Table B-6 SOBI results from time series ID02 

Mode 𝑓𝑛 [𝐻𝑧] 𝜉 [%] Source number Label 

1 0,5626 0,6395 3 U 

2 0,5635 0,5754 1 T 

3 0,9909 0,4459 2 V 

4 0,9930 0,6167 4 TD 

B.2.3 Comparison 

Table B-7 Comparison of SOBI and SSI modes from time series ID02 

SOBI/ SSI 

 

Δ𝑓𝑛 [%] Δ𝜉𝑛 [%] MAC Mode label 

2/1 0,0518 2,6844 0,4905 T 

3/2 0,0601 0,7464 0,8555 V 

4/3 0,1766 3,5067 0,8356 TD 
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Figure B.3 CrossMAC matrix, comparing modes from cov-SSI and SOBI. 

Note the low MAC value between mode 2/1 from SOBI/SSI.  See the high complexity of 

mode 1 from SSI. Recall that SOBI method does not provide complex modes. 
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B.3 Time series ID03 

B.3.1 Result from cov-SSI 

Table B-8 cov-SSI result from time series ID03  

Mode 𝒇𝒏 [𝑯𝒛] 𝜉 [%] MPC MP MPD Label 

1 0,5606 0,6633 0,58 10,2 21,1 U 

2 0,9897 0,5760 0,99 1,97 3,64 V 

Higher stabilization limits were used in this case, given as frequency=2% damping=10% and 

vectors 2%.  

 

Figure B.4 Stabilization diagram, ID03. 

It should be noted that the recognized nonphysical mode shape does have a significant and 

clear peak in the PSD spectrum, plotted on the top of the stabilization diagram in Figure B.4. 

B.3.2 Results from SOBI 

Table B-9 SOBI results from time series ID03 

Mode 𝑓𝑛 [𝐻𝑧] 𝜉 [%] Source number Label 

1 0,561 0,577 1 U 

2 0,563 0,728 3 T/U 

3 0,992 0,514 4 TD 

4 0,993 0,351 2 V 

B.3.3 Comparison 

Table B-10 Comparison of SOBI and SSI modes from time series ID03 

SOBI/ SSI 

 
Δ𝑓𝑛 [%] Δ𝜉𝑛 [%] MAC Mode label 

1/1 0,134 13,04 0,586 U 

4/2 0,292 39,13 0,930 V 
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B.4 Time series ID04 

B.4.1 Result from cov-SSI 

Table B-11 cov-SSI result from time series ID04 

Mode 𝒇𝒏 [𝑯𝒛] 𝜉 [%] MPC MP MPD Label 

1 0,5646 0,6208 0,99 1,70 2,88 U 

2 0,9954 0,4722 0,97 2,61 4,72 V 

Higher stabilization limits were used in this case. frequency=3% damping=10% and vectors 

3%.  

 

Figure B.5 Stabilization diagram  

Mode 1 is labelled as undetermined mode due to unexpected mode shape behaviour. Note 

the corresponding peak in the PSD plot, which is seen to represent a physical mode. 

B.4.2 Results from SOBI 

Table B-12 SOBI result from time series ID04 

Mode 𝑓𝑛 [𝐻𝑧] 𝜉 [%] Source number Label 

1 0,5620 0,60 3 U/T 

2 0,5624 0,56 1 U 

3 0,9929 0,36 2 V*  

4 0,9932 0,34 4 V* 

*only displacement in one DOF 
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B.4.3 Comparison 

Table B-13 Comparison of SOBI and SSI modes from time series ID04 

SOBI/ SSI Δ𝑓𝑛 [%] Δ𝜉𝑛 [%] MAC Mode label 

2/1 0,394 9,12 0,75 U 

4/2 0,226 27,7 0,88 V 
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B.5 Time series ID05 

B.5.1 Result from cov-SSI 

Table B-14 cov-SSI result from time series ID05 

Mode 𝒇𝒏 [𝑯𝒛] 𝜉 [%] MPC MP MPD Label 

1 0,7593 0,5113 0,89 8,75 9,31 V 

2 1,498 0,4188 0,90 -10,9 8,06 V/U 

3 1,629 0,5613 0,85 7,97 13,2 U 

 

  

Figure B.6 a) Stabilization diagram b) AutoMAC matrix of  modes from cov-SSI, time series ID05 

Note from stabilization diagram. Peak just below 0.5 Hz had unrealistic high damping, 19%, 

and was regarded as a spurious mode. The AutoMAC matrix reveals high correlation 

between mode 1 and 2. 

B.5.2 Results from SOBI 

Table B-15 SOBI result from time series ID05 

Mode 𝑓𝑛 [𝐻𝑧] 𝜉 [%] Source number Label 

1 0,4522 0,39 3 U 

2 0,4526 0,60 2 T 

3 0,7584 0,46 1 TD 
 

 



XIV  APPENDIX B 

 

 

 

Figure B.7 Cross correlation matrix from SOBI, time series ID05 

Note from the correlations between source 2 and 3, which implies a not separated source.  

B.5.3 Comparison 

Table B-16 Comparison of SOBI and SSI modes from time series ID05 

SOBI/ SSI 

 
Δ𝑓𝑛 [%] Δ𝜉𝑛 [%] MAC Mode label 

1/1 0,124 9,10 0,97 U 
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B.6 Time series ID06 

B.6.1 Result from cov-SSI 

Table B-17 cov-SSI result from time series ID06 

Mode 𝒇𝒏 [𝑯𝒛] 𝜉 [%] MPC MP MPD Label 

1 0,4521±0,001 0,5676±0,2026 0,65 -17,0 18,3 T 

 

Higher stabilization limits were used in this case. frequency=2% damping=10% and vectors 

2%.  

 

 

Figure B.8 Stabilization diagram obtained from time series ID06 

No alignments of poles for the peak seen in the PSD plot just below 0.8 Hz. 

B.6.2 Results from SOBI 

Table B-18 SOBI result from time series ID06 

Mode 𝑓𝑛 [𝐻𝑧] 𝜉 [%] Source number Label 

1 0,4501 0,56 4 U 

2 0,4508 0,55 2 T 

3 0,7596 0,56 1 V 

4 0,7608 0,48 3 TD 

B.6.3 Comparison 

Table B-19 Comparison of SOBI and SSI modes from time series ID06 

SOBI/ SSI Δ𝑓𝑛 [%] Δ𝜉𝑛 [%] MAC Mode label 

2/1 -0,28 -2,48 0,90 T 
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B.7 Time series ID08 

B.7.1 Result from cov-SSI 

Table B-20 cov-SSI result from time series ID08 

Mode 𝒇𝒏 [𝑯𝒛] 𝜉 [%] MPC MP MPD Label 

1 0,4243 0,3024 1,00 1,29 2,48 T 

2 0,6872 0,2834 0,64 15,8 18,4 V/TD 

 

 

Figure B.9Stabilization diagram from ID08 

B.7.2 Results from SOBI 

Table B-21 SOBI result from time series ID08 

Mode 𝑓𝑛 [𝐻𝑧] 𝜉 [%] Source number Label 

1 0,4240 0,38 2 T 

2 0,6867 0,30 1 V 

3 0,6966 0,56 3 TD 

B.7.3 Comparison 

Table B-22 Comparison of SOBI and SSI modes from time series ID08 

Mode SOBI/Mode 

SSI 

 

Δ𝑓𝑛 [%] Δ𝜉𝑛 [%] MAC Mode label 

1/1 0,052 27,08 0,98 T 

2/2 0,080 6,699 0,88 V 

 

 

 


