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The heart is an electro-mechanical pump which consists of four chambers: the left and
right ventricles and the left and right atria. The left ventricle is a thick-walled muscular
chamber that pumps blood at physiologically high pressures throughout the body. The
cavity of the LV resembles a truncated ellipsoid in which both the inflow and outflow
tracts are adjacent. The material properties and the complex anatomy of the myocardium
presents a computational challenge and are of crucial interest in order to understand the
pumping function of the intact heart. The topic includes:

• the development of a finite element model of the left ventricle accounting for the
complex overall geometry and the structure of the myocardium;

• the investigation of the influence of material anisotropy on the computed wall stress
and strain;

• the modelling of the active cardiac muscle fibers;

• the inclusion of the mitral valve and the LVOT in the finite element model.

A finite element model of a human left ventricle taking into account a local material orientation.





Abstract

The development of a well functioning finite element model of the left ventricle is an
important step to better understand the pumping function of the human heart. This may be
of interest when developing effective treatments for different heart diseases.

The goal of this thesis is to develop a finite element model of the left ventricle, taking
into account the material properties and complex structure of the myocardium. The model
uses a truncated ellipsoid as geometry and is assigned a linear, transmural variation of
both fiber and sheet orientations in the myocardium. Using existing constitutive models of
the myocardium, the deformation of the ventricle in systole was analysed using a simple,
active stress component. The behaviour of the model was evaluated using the parameters:
ejection fraction, torsion, wall thickening, longitudinal shortening and radial shortening.
Describing the left ventricular function, these parameters are compared with the physical
values.

The results show that in order to realistically model the different ventricular features,
active stress components in fiber, sheet normal and shear (sn) directions are all needed.
The model is not able to show a realistic ejection fraction even when the active stress
contribution is raised to non-physiological levels. The model has in particular problems of
producing wall thickening and radial displacement, but still a relatively realistic systolic
contraction is seen. The model significantly overestimates the left ventricular torsion.
This is in part due to the symmetrical geometry and the fact that the right ventricle is not
included.
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Samandrag

Utviklingen av ein velfungerande elementmetodemodell av den venstre ventrikkelen er eit
steg på vegen til ein betre forståing av pumpeeigenskapane til menneskehjartet. Dette er
av interesse for utviklinga av effektive behandlingsmetodar for hjartesjukdom.

Målet for denne oppgåva er å utvikle ein elementmetodemodell av den venstre ven-
trikkelen, der materialeigenskapane og den komplekse strukturen til myokard er inkludert.
Modellen bruker ein trunkert ellipsoide som geometri og en lineær, transmural variasjon
av orienteringen til muskelfibrane i myokard. Ved å bruke eksisterande materialmodellar
av myokard, har deformasjonen av ventrikkelen i systole blitt analysert ved å implementer
ein enkel, aktiv spenningskomponent. Responsen til modellen vart vurdert ved å sjå på
parametarane: ejeksjonsfraksjon, torsjon, samt endring i veggtjukkelse, lengde og radius.
Parametarane vart så samanlikna med fysioligiske verdiar.

Resultata viser at for å realistisk modellere ventrikkelkontraksjon, må aktive spen-
ningskomponentar i både fiber, normalt på fiber og skjær (sn) retning inkluderast. Mod-
ellen er ikkje kapabel til å gi ein realistisk ejeksjonsfraksjon, sjølv når den aktive stresskom-
ponenten vert auka til ikkje-fysiologiske verdiar. Modellen har spesielt problem med å
produsere auka veggtjukkelse og radiel forskyvning, men til tross for dette gir modellen
ein relativt realistisk systolisk kontraksjon. Torsjonen av ventrikkelen vert i stor grad over-
estimert i modellen, noko som kan forklarast av den symmetriske geometrien og mangelen
av ein høgre ventrikkel.
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CHAPTER 1
INTRODUCTION

Heart disease is one of the primary causes of death in the world today. There is a hope
that advances made within biomechanics can improve our scientific understanding of the
heart. A deeper knowledge of the structural and mechanical functions of the heart may
lead to a better understanding of different diseases and enable us to develop more effective
treatments.

The mechanical function of the heart depends greatly on its mechanical properties.
Understanding how these properties relates to the structure of the myocardium and how the
structure varies within the heart is an important step to fully understand how the pumping
effect of the heart is created. The purpose of this thesis is to review the current knowledge
of the myocardium structure and the models which tries to explain it. By implementing a
constitutive material law into a finite element analysis we can get a better understanding
of the left ventricular mechanics.

The analysis of soft biological tissue present some challenges. The myocardium is
anisotropic, inhomogeneous, incompressible and non-linear, all which must be taken into
account. The problem calls for the need of finite deformation theory, as opposed to small-
strain elasticity theory.

This thesis will be based in great part of the work of Holzapfel and Ogden [14]. The
constitutive model presented there will be implemented in to the finite element analysis
program Abaqus in a full scale model of the left ventricle. A truncated ellipsoid is used
and the geometry is chosen to approximate the volume of a physical human heart. An
active stress component will be added and the contraction of the left ventricle in systole
will be studied. As this has not been attempted earlier, some computational aspects will
also be studied. Soft tissue finite element problems is known to exhibit some numerical
challenges, and computational cost for different mesh refinement will be weighed against
the needed accuracy.

In chapter 2 of this thesis the anatomy of the heart and the cardiovascular system is
presented. Here the architecture of the heart and how it functions as a pump in the cardio-
vascular system is explained. The the structure cardiac muscle given some attention and
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Chapter 1. Introduction

the mechanics behind ventricular contraction is explained. Further, the essential elements
of continuum mechanics is presented. This includes a look at the kinematics and invari-
ant theory, and the derivation of the strain-energy function and stress tensors. We then
review some of the existing constitutive models of the myocardium. Here the evolution of
the different models is outlined, moving from isotropic and transverse isotropic models,
to the current orthotropic models. Lastly, the constitutive model used this thesis is pre-
sented thoroughly. In chapter 3 we move on to the modelling aspects of the thesis. This
includes the implementation of both the passive and active part of the constitutive model
in to Abaqus. The different aspects of the Abaqus model is then presented, including the
choice of loads and boundary conditions, and reflection around the meshing technique.
The implementation of the fiber field is also presented in this chapter. In chapter 4 the
results of the different analysis is presented. Studies on different aspects of the model is
performed, including some discussion of the results. In chapter 5 the findings is discussed
further, both by comparing with physiological values and reflecting on the implication
of the different assumptions and simplifications. Finally, some concluding remarks are
presented in chapter 6.

2



CHAPTER 2
THEORY

2.1 Anatomy

2.1.1 The Cardiovascular System

The cardiovascular system is the rapid connective transport system which supplies the
body with among other oxygen, glucose, vitamins, drugs and water. It is also a control
system distributing hormones, and is crucial for the regulation of body temperature. The
human heart is a hollow muscle which functions as the pump that drives the blood through
cardiovascular system. The heart has four chambers, where the right and left ventricles are
filled from the right and left atrium, respectively. The right ventricle pumps de-oxygenated
blood through the pulmonary trunk to the lungs after which oxygenated blood continues
through the pulmonary veins into the left atrium. This completes the short, low pressure
pulmonary circulation. The left ventricle pumps oxygenated blood through the aorta which
after repeated branching reaches the many capillaries where oxygen diffuses to all of the
different cells in the body. De-oxygenated blood returns to the right atrium through the
superior and inferior vena cava. The ventricles pumps at the same time and the same
volume of blood, but the left ventricle at a much higher pressure.

The left ventricle is the main pumping chamber of the heart. It has a thick wall, typi-
cally around 10 mm, and is able to generate a high pulse pressure of 120 mmHg, or ∼16
kPa. In comparison the pressure in the right ventricle is only up to 25 mmHg∼3-4kPa and
therefore has thinner wall than the left. The atria again has even lower pressures and the
walls are thin in comparison with the ventricular walls.

The heart has four valves to prevent a back flow of blood. The tricuspid valve connects
the right atrium to the right ventricle. The pulmonary valve guards the outlet from the
right ventricle to the pulmonary artery. The mitral valve lies between the left atrium and
ventricle and the aortic valve lies at the root of the aorta. These valves open and close
depending on the pressure gradient through the valves. Both the tricuspid and mitral cusp
margins are tethered by the chordea tendineae. These tendunous strings, with inward
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Chapter 2. Theory

projection from the ventricular wall, are tense during systole and thus preventing the valves
from reverting into the atrium as the pressure rises.

Figure 2.1: Structure of human heart. Pink indicates oxygenated blood, where as grey indicates
deoxygenated blood. [20]

The cardiac output is defined as the volume of blood ejected by a ventricle in a minute,
and thus the output is a product of the stroke volume and the heart rate. A resting adult
has a stroke volume of about 70-80 ml and with a heart rate of 50-75 beats per minutes
the resting cardiac output is generally 5 liter per minute. The heart has to make available
sufficient amount of blood to allow organs to perform their function, and the output can
increase five times during hard exercise.

The walls of the ventricles consists of three layers as shown in Figure 2.2. The en-
docardium is a thin sheet lining the inner surface. The myocardium is the muscle layer
responsible for the contraction of the heart. The epicardium, the outer layer, is a thin sheet
of connective tissue. The entire heart is enclosed in a fibrous sac called the pericardium.
[20]

2.1.2 The Ventricular Cycle
The ventricular cycle describes the cycle of ventricular contraction. It is divided into four
phases: ventricular filling, isovolumetric contraction, ejection and isovolumetric relax-
ation. The cycle can also be divided in to the contracting phase, called systole, and the
relaxing phase, called diastole.

4



2.1 Anatomy

Figure 2.2: Cross section of the heart wall. [18]

During the initial phase of the ventricular filling both the atria and ventricles are in
diastole and thus blood is passively flowing from the veins through the atria and valves
into the ventricles. As the ventricle is recoiling elastically from its end-systolic shape,
it is creating a pressure gradient sucking blood in to the ventricles in this early diastole
phase. Because of this, the ventricular pressure is actually falling in the initial rapid-filling
phase. The ventricle reaches a relaxed volume and the rate of filling slows only driven by
the venous pressure. Finally, atrial contraction pumps blood into the ventricle completing
the filling phase, which lasts about 0.5s in a resting human. The volume of blood in
the ventricle at this time is referred to as the end-diastolic volume and the corresponding
pressure, end-diastolic pressure.

Figure 2.3: Pressure-volume loop for resting human left ventricle. [20]
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Chapter 2. Theory

Figure 2.4: Changes in pressure, volume and flow for aorta, left ventricle and left atrium during
human cardiac cycle. [20]
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2.1 Anatomy

Ventricular systole begins with a brief isovolumetric contraction lasting 0.05s. The
pressure in the ventricles rise above the pressure in the atria and the valves are thus shut,
making the ventricles closed chambers. The tension of the contracting walls causes the
blood pressure to rise very fast. Just as the ventricular pressure surpasses the arterial
pressure, the outflow valves open and the ejection phase starts. The initial rapid ejection
phase, lasting 0.15s, accounts for three quarters of the stroke volume. Later, as the rate
of which the aortic blood is draining away exceeds the ventricular ejection, the pressure
drops. The outward momentum of the blood keeps the aortic valve open, but since the
pressure gradient is now reversed, the outflow decelerates until the valve is closed by a
backflow. This marks the end of ventricular systole.

Both the pulmonary and the aortic valves are now closed, creating a closed cham-
ber in the isovolumetric relaxation phase. The elastic recoil of the deformed, relaxing
myocardium causes the ventricular blood pressure to drop rapidly. As soon as the pres-
sure drops below the atrial pressure, after approximately 0.08s, the valves open, starting
the next ventricular cycle. The entire cycle is visually described through the ventricular
pressure-volume loop in Figure 2.3, and also in Figure 2.4. [20]

2.1.3 The Cardiac Myocyte
The cardiac myocytes are the muscle cells which adds up to create the myocardium. The
myocytes are packed with with long, contractile bundles called myofibrils. These myofib-
riles are composed of many, basic contractile unites called sarcomeres. The sarcomere
comprises a set of filamentous proteins, between two thin partitions called the Z lines,
composed of the protein α-acitin. Between the Z lines lies the thick filaments, composed
of the protein myosin, and thin filaments, composed of the protein actin. Thick myosin
filaments are arranged parallel in the center of the sarcomere, called the A band. Each
myosin molecule has two heavy chains forming a double helix making up the tail of the
molecule. At one end, two free heads stick out on the side of the filament, making the
molecule resemble the form of a golf club. Thin actin filament lies in between the myosin
filaments, with one end in the A band and one in the Z line, forming the I band.

The Mechanics of Contraction

The contraction of the heart is done by the shortening of the sarcomeres. During this short-
ening the thin actin filaments slides into the spaces between the thick myosin filaments.
The motion is created by the the repeating making, rotation and breaking of the so called
crossbriges, which are biochemical bonds between the thin and thick filaments. Each
myosin head contributes to the force generation by protruding from the side of the thick
filament. Each head acts as a force generator and the countless numbers of myosin heads
sum up to a significant force. Each actin subunit has a binding site for a myosin head,
however the site is blocked at rest by the molecule tropomyosin. Each tropomyosin has a
troponin complex attaced to one end. Exposure of the binding site is created by a sudden
rise in the concentration of free Ca2+. This causes the tropomyosin-troponin complex to
move deeper into the thin filament, which it lies around, and thus exposing the myosin
binding sites. This enables the myosin head to bind to the actin and form a crossbridge.
The force of the contraction is proportional to the number of crossbridges formed and
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Chapter 2. Theory

Figure 2.5: Schematic of myofibrils and sarcomeres. [2]

is therefore dependant on the Ca2+ concentration during exitation. In the heart, the Ca2+

concentration only reach 0.5-2µM, activating only a small part of the potential crossbridge
sites. Adrenaline, which increases the Ca2+ level, is therefore efficient in increasing the
force of the heartbeat. [20]

2.1.4 The Cardiac Structure

The architecture of the heart still remains controversial and debated, and several competing
models explaining the heart structure and function, exist. Seeing as the biological under-
standing lies as a foundation for a solid computational model, insight into the myocardial
architecture is important. [10]

Several anatomical studies have revealed that the cardiac tissue is a composite of dis-
crete layers of myocardial muscle fibers bound tightly by endomysial collagen. The my-
ocardial laminea, or sheets, are coupled by perimysial collagen and can slide over each
other without much resistance. The lamineas are four to six cells thick and continuously
branch throughout the ventricular wall. [23] As can be seen from Figure 2.6, the muscle
fiber orientations change with the position through the wall. This feature is important for
the ventricular function and plays an important part in the further work. [14]

As an important part of describing the mechanical properties of the myocardium, the
laminar structure is characterized by identifying the axes align

8
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1. with the myocyte direction (f0), also called the fiber direction,

2. transverse to the myocyte axis within a layer (s0), and

3. normal to the layer (n0).

Figure 2.6: Definition of local myocyte coordinate system and visualization of transmural variation
of layer orientation.[14]

2.1.5 Features of Ventricular Contraction

The deformation of the left ventricle during systole is described by some geometrical pa-
rameters, which are presented in this section. The physical values of these parameters are
used later for comparison with those obtained in the finite element model.

9
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Ejection Fraction

The ejection fraction (EF) is the parameter which is most widely used to describe the
ventricular function. It is defined as

EF =
ESV − EDV

EDV
, (2.1)

where ESV is the end-systole volume and EDV is the end-diasole volume. Levick [20]
defines the normal value of the ejection fraction to be 67% in a healty, resting human heart
and values in the range 55-65% is considered to be normal. [8]

Left Ventricular Torsion

Left ventricular torsion is the wringing motion of the ventricle around its long axis. Some
definitions are appropriate as the terminology differs in the literature. The rotation is the
rotatory movement about the long axis and during systole counterclockwise rotation will
be expressed with positive values when looking from the apex towards the base.

The fibers is running in a left handed helix from the apex to the base in the sub-
epicardium and a right handed helix in the sub-endocardium. As the muscle fibers con-
tracts during systole, the fiber orientation cause the apex to rotate in a counterclockwise
direction and the base in a clockwise direction. Seeing as the direction of the fibers is
opposite in the sub-epicardium and sub-endocardium, the rotation is also opposite on the
two surfaces. The global torsion of the left ventricle follows predominantly the rotation of
the sub-epicardium in a counter clockwise direction.

The torsion is understood to play an important part in the ventricular contraction. The
shortening of myocardial fibers is about 10-15% and if there were no rotation this short-
ening is not able to account for the ejection fraction of the human heart being 55-65%.
Therefore the torsion is crucial for the overall function of the left ventricle.

In this thesis the definition of absolute myocardial torsion (AMT) will be used, where
AMT = AMR - BMR is the difference between the maximum rotation at the most basal
myocardial section (BMR) and at the apex (AMR). At end-systole these angles has be
experimentally record to -3.71◦ ± 0.84◦ and 6.73◦ ± 1.69◦ for basal and apical planes,
respectively, resulting in left ventricular mean AMT of 10.48 ◦ ± 1.63 ◦. [3] [26] [21]

Wall thickening

It is generally accepted that the ventricular wall thickening during systole plays an impor-
tant part in the contractile function. By defining the the wall thickness at end-diastole, hed,
and the wall thickness at end-systole, hes, we calculate the fractional thickening,

hf =
hed − hes
hed

. (2.2)

Dumesnil and Shoucri [7] gives a value for the ventricular wall thickening hf = 0.52,
which will be used as comparison to the model results.[9]

10
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Longitudinal Shortening

The relative ventricular longitudinal shortening is defined as |∆LL |, where L is the internal
longitudinal distance from the apex to base. Dumesnil and Shoucri [7] found a mean value
of 0.21 from a study of 9 healthy human hearts, while Carreras et al. [3] found found
a similar mean value of 19.07◦±2.71◦ using the the distance between the base and the
epicardial part of the apex.

Radial Shortening

The relative radial shortening is defined as ∆R
R , where R is the internal radius of the left

ventricle. Dumesnil and Shoucri [7] found the radial shortening to be in the range 31-39%
in healthy human hearts.

2.2 Continuum Mechanics

2.2.1 Kinematics
Lets consider a continuum body B initially occupying the region Ω0 at the reference time
t = 0, known as the reference configuration. A point in Ω0 is characterized by the position
vector X. At a time t > 0 the continuum body is in a deformed configuration and now
occupying a region Ω. The same point in Ω is now characterized by the position vector x.
The deformation gradient F is the primary measure of deformation in nonlinear continuum
mechanics and is defined as

F(X, t) =
dx
dX

(2.3)

In an anisotropic material, the stress at a material point depends not only on the de-
formation gradient, but also the preferred direction of the material at the point, called the
fiber direction. Let a0 denote the preferred direction in the reference configuration. Under
deformation the fiber length changes, and we define the stretch λ as the ratio between the
length of the fiber in the deformed and reference configuration along it direction a0,

λa(x, t) = F(X, t)a0(X). (2.4)

Using standard convension we have

J = det F > 0, (2.5)

where J is the Jacobian determinant for the deformation gradient F. For an incompressible
material, we have the definition

J = det F ≡ 1 (2.6)

The right and left Cauchy-Green tensors are defined by

C = FTF and B = FFT , (2.7)

respectively, and the Green-Lagrange strain tensor is defined by

E =
1

2
(C− I), (2.8)
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where I is the identity matrix. Introducing the principle invariants of C, we have

I1 = tr C, I2 =
1

2
[I2

1 − tr (C2)] and I3 = det C, (2.9)

and thus I3 = J2 = 1 for an incompressible material. These are only the isotropic
invariants, and to introduce anisotropy more will have to be included. Remembering a0

denoting the preferred direction, we then introduce two transversely isotropic invariants,

I4 = a0 · (Ca0) and I5 = a0 · (C2a0). (2.10)

When there are two preferred direction, the second direction is denoted b0, which intro-
duces the invariants

I6 = b0 · (Cb0) and I7 = b0 · (C2b0). (2.11)

A final coupling invariant is defined as

I8 = a0 · (Cb0) = b0 · (Ca0) (2.12)

Note that I8 is not a true invariant, seeing as reversing the sign of either a0 or b0, changes
the sign if I8. The formulation is however convenient in the following.

2.2.2 The Strain-Energy Function and Stress Tensors
In this section we look at the material properties described by a strain-energy function Ψ,
measured per unit reference volume. The strain-energy function depends on the deforma-
tion gradient F through C. For an elastic material, the Cauchy stress tensor σ is given
by

Jσ = F
∂Ψ

∂F
= F

∂Ψ

∂E
FT (2.13)

for a compressible material, which modified becomes

σ = F
∂Ψ

∂F
− pI = F

∂Ψ

∂E
FT − pI (2.14)

for an incompressible material, where J = 1 accommodated in the expression by the
Langrange multiplier p. For an elastic material with a strain-energy function Ψ depending
on a list of invariants I1, I2, ..., IN for some N, equations (2.13) and (2.14) are expanded
to the forms

Jσ = F
N∑
i=1

ψi
∂Ii
∂F

and σ = F
N∑

i=1,i6=3

ψi
∂Ii
∂F
− pI, (2.15)

respectively. We have introduced the notation

ψi =
∂Ψ

∂Ii
, i = 1, 2, ..., N, (2.16)

where i = 3 is omitted from the summation and I3 from the list of invariants for the
incompressible material.
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The second Piola-Kirchoff stress tensor S is given in terms of the Cauchy stress tensor
via the formula S = JF−1σF−T . Explicitly, by using equations (2.13) and (2.14), and
with E as the independent variable, we have

S =
∂Ψ

∂E
and S =

∂Ψ

∂E
− p(I + 2E)−1 (2.17)

for compressible and incompressible materials, respectively. [13] [14]

2.3 Constitutive Models for Passive Myocardium
In this section a selection of the existing constitutive models of the myocardium will be
reviewed. Some of the earlier models which are based on linear isotropic elasticity are not
mentioned, as they do not capture the definite anisotropy of the myocardium.

2.3.1 Transversely Isotropic Models
One of the first proposed invariant based models that takes to into account the fiber struc-
ture of the myocardium was, Humphrey and Yin [15]. They proposed the strain energy
function

Ψ = c {exp[b(I1 − 3)]− 1}+A {exp[a(
√
I4 − 1)2]− 1}, (2.18)

using four material parameters. Later however, it was determined that the myocardium
is not a transversely isotropic material, and the models using this assumptions are thus
inappropriate.

2.3.2 Orthotropic Models
In this section three main orthotropic models are presented. Several others have been pro-
posed, but deemed inappropriate for modelling myocardial tissue, as they do not reflect
the morphology of the myocardium. The models reviewed all share the basic foundation
as they are partly structurally based, taking into account the fiber, sheet and normal ma-
terial directions, and partly phenomenological, thus trying to replicate the myocardium
behaviour without necessarily trying to explain it.

Strain-energy function proposed by Costa et al. [4]

Costa et al. [4] proposed a Fung-type exponential strain-energy function given by

Ψ =
1

2
a(expQ− 1), (2.19)

where

Q = bffE
2
ff + bssE

2
ss + bnnE

2
nn + 2bfsE

2
fs + 2bfnE

2
fn + 2bsnE

2
sn, (2.20)

with seven material parameters, a and bij where i, j ∈ {f, s, n}. Their proposed model
is based on earlier work with a transversely isotropic, exponential strain energy function.
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This is generalized and extended to material orthotropy by recognizing that the ventricular
myofibers are organized into branching laminae, suggesting that the myocardium may be
locally orthotropic with distinct cross-fiber stiffness within and across the sheet plane.
They further note the difficulty with a constitutive model based only on biaxial tissue test,
as there is uncertainty to how the biaxial properties of isolated tissue slices are related to the
properties of the intact ventricular wall. Shear deformations are an important component
of the mechanics in the intact heart, ant the then current biaxial protocol did not include
the in-plane shear at the time when the model was proposed. [4]

Fung-type model proposed by Schmid et al. [27]

Schmid et al. [27] introduced another Fung-type model by separating the exponential terms
for each component and thus decouple the effects of the material parameters in the single-
exponential model of Costa et al. [4]. The model with 12 material parameters, is given
by

Ψ =
1

2
aff [exp(bffE

2
ff )− 1] +

1

2
afn[exp(bfnE

2
fn)− 1] +

1

2
afs[exp(bfsE

2
fs)− 1]

+
1

2
ann[exp(bnnE

2
nn)− 1] +

1

2
ans[exp(bnsE

2
ns)− 1] +

1

2
ass[exp(bssE

2
ss)− 1].

(2.21)

The Pole-zero model

The pole-zero model is based on evidence from several biaxial tension tests on thin sec-
tions of ventricle myocardium which reveals a highly nonlinear, anisotropic stress-strain
behaviour. Figure 2.7 depicts this typical stress-strain behaviour of the myocardium. Here
the distinct difference in the properties along each of the micro strctural relevant directions
are clearly seen, and Nash and Hunter [23] notes the large difference in the limiting strain
for an elastic response of the three axes. This difference can be explained by the organi-
sation of the extracellular connective matrix. High fiber stiffness can be attributed to the
intracellular titin together with the tightly bound endomysial collagen coils surrounding
the individual myocytes. The relatively low sheet-normal stiffness is most likely due to
the sparse array of perimysial collagen links in the cleavage planes between myocardial
sheets.

Since the stress-strain behaviour along one axis is nearly independent of lateral stretch,
the contribution to the total strain energy from the stretch along one axis is nearly inde-
pendent of the contribution from the two other axes. The small cross-axis coupling from
the hydrostatic pressure is neglected since hydrostatic pressure is zero in a bi-axial tension
test. Therefore the strain energy function is seperated into individual expressions for the
stretch along each material axes. Further it is noted that, which is easily observed in Figure
2.7, that small axial strain gives very low axial stress, but stress rapidly increases as the
strain approaches the strain limit for that axis. This material behaviour and micro struc-
tural observations are all included in the pole-zero strain-energy function first proposed by
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Figure 2.7: Typical nonlinear stress-strain properties of ventricular myocardium. [23]

Hunter et al. (1997):

Ψ =
kffE

2
ff

|aff − |Eff ||bff
+

kfnE
2
fn

|afn − |Efn||bfn
+

knnE
2
nn

|ann − |Enn||bnn

+
kfsE

2
fs

|afs − |Efs||bfs
+

kssE
2
ss

|ass − |Ess||bss
+

knsE
2
ns

|ansf − |Ens||bns
,

(2.22)

with 18 material parameters kij , aij and bij , where i, j ∈ f, s, n, and the different com-
poenents of Eij are separated. Here aij represents the limiting strains or poles, bij are
related to the curvature of the uniaxial stress-strain relasionship and lastly the kij param-
eters weight the contribution from each corresponding mode of deformation to the total
strain energy of the material.

2.3.3 The Structurally Based Model Proposed by Holzapfel and Og-
den [14]

This section outlines the basis for the constitutive model which is used for the remainder
of this thesis. By using the fiber, sheet and sheet-normal directions specified, and the
definition of the invariant I4 in the first part of equation (2.10), the invariant I4 associated
with each direction is defined as

I4f = f0 · (Cf0), I4s = s0 · (Cs0) and I4n = n0 · (Cn0). (2.23)

By noting that ∑
i=f,s,n

I4i = C : (f0 ⊗ f0 + s0 ⊗ s0 + n0 ⊗ n0) = C : I = I1 (2.24)
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only three of the invariants I4f , I4s, I4n and I1 are independent, and thus one of these
might be dropped. Similarly, for the second part of equation (2.10), the invariants I5f , I5s
and I5n may be defined for each direction. These are however not needed further as they
are expressible in terms of the other invariants. Further, by using equation (2.12) and the
here specified direction, we have

I8fs = I8sf = f0 · (Cs0), I8fn = I8nf = f0 · (Cn0) and I8sn = I8ns = s0 · (Cn0).
(2.25)

The data from Dokos et al. [5], which performed simple shear experiments on the my-
ocardium, indicate that the shear response is stiffest when the fiber direction is extended,
least stiff in the normal direction and intermediate stiff in the sheet direction. Further, the
data indicate that there are differences between (fs) and (fn) and between the (sf) and (sn).
The data can not distinguish responses for (nf) and (ns). The results of the shear experi-
ments is presented in Figure 4.2. To capture these differences in a strain-energy function,
one or more of the coupling invariants must be included. By choosing I1, I2, I3, I4f , I4s,
I8fs and I8fn, the Cauchy stress from equation (2.7) becomes

Jσ = 2ψ1B + 2ψ2(I1B−B2) + 2I3ψ2I + 2ψ4f f ⊗ f + 2ψ4ss⊗ s

+ψ8fs(f ⊗ s + s⊗ f) + ψ8fn(f ⊗ n + n⊗ f),
(2.26)

for a compressible material. The invariants I8fs and I8fn in equation (2.26) changes
signs if the sense of one of the vectors f0, s0 and n0 is reversed. However, Ψ should
be independent of this sense. By writing Ψ̂(..., I2

8fs, ...) = Ψ(..., I8fs, ...), then ψ8fs =

2 ∂Ψ̂
∂(I28fs)

I8fs and the shear in the (fs) plane becomes I8fs = f · s = γ in either direction

and vanishes in the reference configuration. As long as Ψ is well behaved, ψ8fs also
disappears in the reference state. This also holds for I8fn = f · n = γ for shear in the (fn)
plane and I8sn = s · n = γ for shear in the (sn) plane. With these conditions in mind,
equation (2.26) is reduced to

2(ψ1 + 2ψ2 + ψ3)I + 2ψ4f f0 ⊗ f0 + 2ψ4ss0 ⊗ s0 = 0, (2.27)

in the reference configuration. This only holds if

ψ1 + 2ψ2 + ψ3 = 0, ψ4f = 0 and ψ4s = 0, (2.28)

as well as
ψ8fs = ψ8fn = 0. (2.29)

Similar, for an incompressible material

σ = 2ψ1B + 2ψ2(I1B−B2)− pI + 2ψ4f f ⊗ f + 2ψ4ss⊗ s

+ψ8fs(f ⊗ s + s⊗ f) + ψ8fn(f ⊗ n + n⊗ f),
(2.30)

with only six inveriants I1, I2, I4f , I4s, I8fs and I8fn, which holds for the same conditions
as before, except the first equation in (2.28) which is replaced by 2ψ1 + 4ψ2 − p0 = 0,
where p0 is the value of p in the reference configuration. The amount of shear stress versus
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the amount of shear for the six simple shears are given by

(fs) : σfs = 2(ψ1 + ψ2 + ψ4f )γ + ψ8fs, (2.31)
(fn) : σfn = 2(ψ1 + ψ2 + ψ4f )γ + ψ8fn, (2.32)
(sf) : σsf = 2(ψ1 + ψ2 + ψ4s)γ + ψ8fs, (2.33)
(sn) : σsn = 2(ψ1 + ψ2 + ψ4s)γ, (2.34)
(nf) : σnf = 2(ψ1 + ψ2)γ + ψ8fn, (2.35)

and (ns) : σns = 2(ψ1 + ψ2)γ. (2.36)

2.3.4 Holzapfel’s Specific Model
With the structurally based model for the passive myocardium derived in the previous
section, Holzapfel and Ogden [14] further derives a particular model by interpreting the
different invariant and choosing which to include in the strain-energy function. The invari-
ant I1, the isotropic term, is included and can be regarded as associated with the underlying
non-collagenous and non-muscular matrix. This can be modelled both as a neo-Hookean
and exponential term. Figure 2.8 shows a schematic of the arrangement of muscle and

Figure 2.8: Schematic of the arrangement of muscle and collagen fibers and the surrounding matrix.
[14]

collagen fibers for the unloaded configuration and both subjected to tension and compres-
sion. As seen, when muscle fibers are under tension in the fiber direction, the muscle
fibers extend and the inter fiber distance decrease. The collagous network provide rel-
atively little resistance to this deformation. For tension lateral to the fiber direction the
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exponential stress behaviour can be attributed to the collagous network. Under compres-
sive load in the fiber direction the muscle fibers buckle and thus stretching the collagous
fibers. This stretching is thought to contribute to the relatively large compressive stiffness
of the myocardium. The stiffening behaviour in the muscle fiber direction is included as an
exponential function of the invariant I4f . In the sheet direction as an exponential function
of the invariant I4s. These terms only contribute to the stored energy in tension, where as
the contribution in compression is negligible, and thus the terms are only included in the
energy function for I4f > 1 or I4s > 1. The invariant I4n is not included as it, previ-
ously shown, depends on I1, I4f and I4s, and thus the latter three invariant are sufficient to
model the tension/compression behaviour. The invariant I2 is also omitted. To completely
capture the shear behaviour from Dokos et al. [5], and thus distiguish between the (fs)
and (fn) and between the (sf) and (sn) responses, it is necessary to include an exponential
function of the invariant I8fs. This lead Holzapfel and Ogden [14] to propose the energy
function

Ψ =
a

2b
exp[b(I1−3]+

∑
i=f,s

ai
2bi
{exp[bi(I4i−1)2]−1}+ afs

2bfs
[exp(bfsI

2
8fs)−1], (2.37)

where a, b, af , as, bf , bs, afs and bfs are positive material constants. All a parameters
have dimensions stress and b parameters are dimensionless. Using equation 2.30, the
Cauchy stress becomes

σ = a exp[b(I1 − 3]B− pI + 2af (I4f − 1) exp[bf (I4f − 1)2]f ⊗ f

+2as(I4s − 1) exp[bs(I4s − 1)2]s⊗ s + afsI8fs exp(bfsI
2
8fs)(f ⊗ s + s⊗ f).

(2.38)

This constitutive model is at present considered to be the one to most accurately de-
scribe the material response of the myocardium and it is on this the full scale finite element
model of the left ventricle in this thesis is based.

It is important for ensuring material stability and physical meaningful and unambigu-
ous mechanical behaviour, that the strain-energy function shows convexity. In this context,
strict local convexity means that the second-derivative of Ψ with respect to E is positive
definite. In particular, when used for numerical computations, that no desirable instabili-
ties may appear. Some of the earlier mentioned strain energy functions do not all fulfill the
convexity requirement, something which the specific model proposed by Holzapfel and
Ogden [14] does. [12]

2.4 Models for Active Cardiac Muscles
In this section we briefly outline some of the models proposed to model the active cardiac
muscle.

2.4.1 HMT Model of Cardiac Mechanics
The Hunter-McCullock-terKeurs (HMT) model of cardiac mechanics is one of the most
notable models intended for use in continuum mechanics. It is built on a fading memory

18



2.4 Models for Active Cardiac Muscles

model of crossbridge kinetics and is developed in the following stages: (i) passive prop-
erties of cardiac muscle, (ii) the kinetics of Ca2+ binding to troponin-C, (iii) tropomyosin
kinetics and (iv) crossbridge kinetics. The passive part used in their model is the earlier
reviewed pole-zero law which is not further discussed here. By regarding the free calcium
concentration [Ca2+]i and the muscle fiber extension ratio λ as input to the system, the
model can be summarized in four fundamental equations

[Ca2+]b = f1([Ca2+]i, [Ca
2+]b, T, T0), (2.39)

z = f2(z, λ, [Ca2+]b, T ), (2.40)
T0 = f3(λ, z) and (2.41)
T = f4(T0, λ, t). (2.42)

Here f1 governs the binding kinetics of Ca2+ to troponin-C binding sites and is a function
of both the concentration of free Ca2+ ([Ca2+]i), Ca2+ bound at the binding site ([Ca2+]b),
as well as the actively developed tension in the muscle fiber (T). Further, f2 models the
tropomyosin kinetics where z is a non-dimensional parameter representing the proportion
of actin sites available for cross-bridge binding. λ still denotes the extension ratio (stretch).
f3 governs the relationship between the muscle tension and the myofilament length under
steady state conditions. f4 incorporates the development of tension as a function of time.
[16]

2.4.2 A Simplified Approach to Active Cardiac Mechanics
Zulliger et al. [30] presents a constitutive formulation for arterial mechanics including
vascular smooth muscle (VSM) tone. They propose the term

Ψactive = S1S2fV SMΨV SM , (2.43)

where fV SM is the cross-section area fraction of VSM and ΨV SM is the strain-energy
function describing the VSM at maximum contraction. Here S1 is a non dimensional
function describing the level of VSM tone and S2 governs the relationship between the
stretch and the maximum force. S1 is mathematically expressed through an error function
as

S1 =


0 , fully relaxed
1 , maximum contraction
Sbasal + (1− Sbasal) 1

2 [1 + Erf (Q−µ√
2σ

)] , normal tone
(2.44)

where Sbasal represent the VSM basal tone contraction, which is the tone when there is
no contraction, and Q is a function of the VSM deformation. The function is thus 0 at a
fully relaxed state and 1 at maximum contraction with a smooth Gaussian distribution in
between, using the error function Erf . Modelling the active muscle in the mitral valve,
Skallerud et al. [28] simplified equation (2.44) further by taking the activation as a linear
function of time,

σf =
t− tstart

tmax − tstart
σmax, t ∈ [tstart, tmax] (2.45)

σf = 0, t < tstart and σf = σmax, t > tmax (2.46)
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CHAPTER 3
MODELLING

3.1 Implementation of the Constitutive Model
In order to obtain solutions of nonlinear problems in computational finite elasticity an
incremental/iterative solution technique is applied, solving a sequence of linearized prob-
lems. The constitutive law presented in equation (2.37) is implemented into Abaqus with
the UMAT subroutine using the following form,

Ψ(Ī1, Ī4f
, Ī4s , Ī8fs

) = c10(Ī1 − 3) +
a

2b
(exp[b(Ī1 − 3)]− 1)

+
∑
i=f,s

ai
2bi

(exp[bi(Ī4i − 1)2]− 1) +
afs
2bfs

(exp[bfsĪ
2
8fs

]− 1) + κ(J − 1)2 (3.1)

Here the parameter c10 includes a neo-Hookean part which is excluded in this thesis by
setting c10 = 0 and κ is the positive penalty parameter governing the volumetric change.

We adopt a slightly different notation the previously. [28] Rather than dealing di-
rectly with F, we perform a multiplicative decomposition of F into volume-changing and
volume-conserving parts,

F = (J1/31)F̄ and (3.2)

C = (J2/31)C̄, (3.3)

where F̄ and C̄ = F̄T F̄ are called the modified deformation gradient and the modified right
Cauchy-Green tensor. The modified left Cauchy-Green tensor is defined by B̄ = F̄F̄T . We
also define the following vectors,

f̄ = F̄f0 and s̄ = F̄s0, (3.4)

corresponding to the push-forward of f0 and s0 through the volume preserving part of the
deformation gradient. Based on this kinematic framework, the strain-energy function can
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be presented on a decoupled form,

Ψ(C) = U(J) + Ψiso(C̄), (3.5)

where U and Ψiso are the volumetric and isochoric contributions of Ψ, respectively. In
equation (3.1), the invariants are defined as

Ī1 = tr C̄, Ī4f
= f0(̇C̄f0), Ī4s

= s0(̇C̄s0) and Ī8fs
= f0(̇C̄s0) (3.6)

The second Piola-Kirchoff stress S on decoupled fotm, is derived from Ψ thorugh

S = 2
∂Ψ

∂C
= Svol + Siso. (3.7)

The Cauchy stress tensor σ is then obtained by the push-forward operation of S to the
configuration σ = 1

JFSFT , giving

σ = 2κ(J − 1)1 +
1

J
dev σ̄,

σ̄ = 2ψ̄1B̄ + 2ψ̄4f
f̄ ⊗ f̄ + 2ψ̄4s

s̄⊗ s̄ + ψ̄8fs
(f̄ ⊗ s̄ + s̄⊗ f̄),

(3.8)

where

dev [•] = (I− 1

3
1⊗ 1) : (•). (3.9)

I denotes the fouth order identity tensor and reads

(I)ijkl =
1

2
(δikδjl + δilδjk) (3.10)

In equation (3.8) we have adopted the notation

ψ̄i =
∂Ψ

∂Īi
, i = 1, 4f , 4s, 8fs. (3.11)

We further introduce the definition

C = 2
∂Ψ

∂C
= Cvol + Ciso, (3.12)

where C, in a material description, is the elasticity tensor which measures the change in
stress from a change in strain. Combining equations (3.7) and (3.12), we arrive at the
relation

C = 4
∂2S

∂C∂C
, (3.13)

The spatial description of the elasticity tensor is defined as the push-forward operation
on C as

c = χ∗(C), cijkl =
1

J
FiIFjJFkKFlLCIJKL. (3.14)
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3.2 Material Parameters based on Shear Data

3.2 Material Parameters based on Shear Data
Göktepe et al. [11] identified the material parameters a, b, af , bf , as, bs, afs and bfs
using the data from the simple shear experiments from Dokos et al. [5]. Their results are
presented in Table 3.1.

a b af bf as bs afs bfs
[kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-]

0.496 7.209 15.193 20.417 3.283 11.176 0.662 9.499

Table 3.1: Material Parameters governing the constitutive law. [11]

Holzapfel and Ogden [14] obtained different material parameters using the same data
set, and based on this Wang et al. [29] created another set of parameters. Considering
that all parameter sets claim to appropriately represent the data, the values in Table 3.1
will be used throughout this analysis. Further, since the invariant I4s and I4f gives the
major stress contribution and the parameters governing them, as and af , are relatively
close when comparing the different parameter sets, the model should show similar results
in either case. A last material parameters is also needed in the model. The volumetric
penalty parameter κ, governing the volumetric contribution in the constitutive law, affects
to what degree the materials exhibits volumetric changes during deformations. Given that
the myocardium is considered a incompressible material, the penalty parameter κ = 105

MPa. This non-pysiological value is chosen to be much larger than the other material
parameters in Table 3.1 and thus ensuring that the material will not exhibit any volumetric
change.

3.3 Modelling of Active Contraction
The systolic contraction is modelled by defining the total second Piola-Kirchoff stress
tensor S as the sum of the passive stress tensor Sp which is derived from the strain energy
function and an active component Sa giving

S = Sp + Sa. (3.15)

There have been several proposed models to describe the activation of force in the
myocardium. A rather complex and phenomenological approach is presented in Hunter
et al. [17], where they in detail develop a model explaining the mechanics of the muscle
contraction. In this thesis a much more simplified approach is chosen,

Sa =

{
t

tmax
× Tmax , for 0 < t ≤ tmax

Tmax , for tmax < t < tendsystole.
(3.16)

Here the activation level increases linearly from t = 0 at end-diastole up to a maximum
level at tmax and is kept there for the remainder of the analysis. tmax = 0.13s is chosen
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to correspond with the time of maximum endocardial pressure implemented in the analy-
sis. Different levels of activations will by studied to investigate at which level of Tmax a
realistic ejection fraction is achieved.

One could argue that the implementation of a more complex model of the active con-
traction would lead to a more realistic response in the left ventricle. However, as the
constitutive model for the passive part of the material has not earlier been implemented
here, a simpler approach is chosen. There are also upsides to this, as by limiting the num-
ber of variables in the model, a better understanding of the model can be obtained without
the added uncertainty from a more complex active muscle formulation.

It is assumed that all the fibers activate simultaneously and that all fibers exhibit the
same contraction behaviour. For the contraction to become realistic it must include fea-
tures like wall thickening, longitudinal shortening, torsion and radial constriction. To
achieve this realism, earlier work has shown that in addition to active stress in the fiber
direction, components in the sheet normal direction and shear in the (sn)-plane is neces-
sary Dorri et al. [6]. Only adding components in the fiber direction has not been able to
create a realistic deformation pattern. The complete stress tensor implemented in the user
subroutine UMAT will thus be on the following form:

Sa =

Sa(f, f) 0 0
0 0 Sa(s, n)
0 Sa(s, n) Sa(n, n)

 (3.17)

It is noted in equation (3.17) that Sa(s, n) = Sa(n, s), preserving symmetry. Further,
the level of activation in each direction is of some uncertainty. A study made on rabbit
myocardium indicated that Sa(n,n) could be in the range of 20-60% of Sa(f,f) and based
on the work of Dorri et al. [6], 60% is chosen as an estimate. Sa(s,n) is chosen to be 3%
of Sa(f,f), but this assumption is of even more uncertainty since very little data exists to
support it. This gives us the stress components,

Sa(n, n) = 0.60 · Sa(f, f) (3.18)
Sa(s, n) = 0.03 · Sa(f, f) (3.19)

The stress component Sa(s,s) is assumed to be negligible. Seeing as the sheet axis has
a large component outwards normal to the endo-/epicardial surface (completely normal
in the case of sheet angle, α = 0), a stress component in this direction would counteract
the wall thickening, and further there is no experimental data indicating any significant
component in the (s,s)-direction.

When implementing the active stress contribution into the material law, the Cuachy
stress tensor σ is additively decomposed by

σ = σp + σa, (3.20)

where σp is the passive part described in equation (3.8) and σa refers to the active part.
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The components of the active stress tensor σa is found as

σa(f, f) =
1

J
Sa(f, f)(f̄ ⊗ f̄), (3.21)

σa(n, n) =
1

J
Sa(n, n)(n̄⊗ n̄) and (3.22)

σa(n, s) = σa(s, n) =
1

J
Sactive(s, n)

1

2
(s̄⊗ n̄ + n̄⊗ s̄), (3.23)

for the three different directions. The active stress tensor is implemented in UMAT by
adding each of the active stress components to the already existing passive part. It is
notable that the fiber direction vectors f̄ , s̄ and n̄ are automatically normalized by Abaqus
when they are introduced to the UMAT. [1]

3.4 Modelling the Laminar Structure of the Heart
To be able to produce a quantitative analysis of the heart function, the ventricular structure,
and hereunder the myocardium architecture, must be properly represented. Legrice et al.
[19] presents a mathematical model describing the cardiac micro structure by identifying
the three axis of symmetry described and relating them to the ventricular geometry. This
is used as a basis for implementing the fiber and sheet orientation in to the finite element
model.

Figure 3.1: Fiber sheets stacked crossing the ventricular wall. [25]

Figure 2.6 gives a visual representation of how the fiber orientation varies transmural in
the left ventricle. As seen in sub-figure c) the muscle fiber orientation change through the
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wall, from +50◦ to +70◦ in the sub-epicardial region to -50◦ to -70◦ in the sub-endocardial
region with respect to the circumferential direction. [14] The muscle fibers run from the
apex to the base in a left-handed direction on the sub-epicardial side and in a right-handed
direction on the sub-endocardial side. [22] The fibers in the heart form a 3 dimensional
structure due to the arrangement of fibers in sheets. The laminar structure can be visualized
as a twisting surface going across the wall and stacked from apex to base. The angle of
the sheets is also reported to vary transmural with respect to the radial direction, which is
illustrated in Figure 3.1. [25] Both the muscle fiber and the sheet orientation varies from
the apical region to the basal region, but for simplicity these variations are excluded in
this thesis. Work has also been done implementing DTMRI (Diffusion Tensor Magnetic
Resonance Imaging) data in to a finite element model, by among others Dorri et al. [6],
to get a more accurate description of the fiber orientation field, but such an approach is
outside the scope of this thesis.

Figure 3.2: Fiber and sheet directions and their respective inclination angles from local element
axes. [9]

3.4.1 Implementation of the Fiber Field
For each element of the Abaqus model, as shown in Figure 3.2, a local orthogonal co-
ordinate (ξ1, ξ2, ξ3) system is defined, where ξ1 is the outward pointing normal to the
endo-/epicaridal surface, ξ3 is tangential to the endo-/epicardial surface, lying in a circum-
ferential direction, and ξ2 is orthogonal to the two former. This is achieved by arranging
the local element numbering, referring to Figure 3.3, such that the 1-2-3-4 and 5-6-7-8
planes are parallel to and facing the epicardial and endocardial surfaces, respectively. Two
vectors are created to define each of the planes and the vectors are averaged to find the
average plane. The ξ1 axis is defined as the cross product of the two averaged vectors. The
angle φ is found as the angle ξ1 makes with the global X-axis in the XY-plane. The ξ3 axis
is then defined as normal to the ξ1-axis by rotating φ by 90◦ about the global Z-axis, lying
in the XY-plane. Lastly, the ξ2-axis is defined as the cross product of ξ1 and ξ3 axes.

As shown in Figure 3.2 the fiber inclination angle α is defined as the angle between
the projection of fiber axis f0 on the (ξ2, ξ3) plane and the ξ3-axis. Similar, the sheet angle
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Figure 3.3: Node numbering convention in Abaqus. [1]

β is defined as the angle between the projection of the sheet axis s0 on the (ξ1, ξ2) plane
and the ξ1-axis. This is implemented by first rotating the (ξ1, ξ2, ξ3) system about the
ξ3-axis, creating the sheet angle, and next about the ξ1-axis creating the fiber angle. In
doing this the sheet axis is pulled out of the plane and is consequently no longer normal to
the surface. The fiber axis kept tangential to the epicardial surface and although this is not
always physically correct, it is consistent with the general fiber direction.

Figure 3.4: Definition of fiber and sheet angles for implementation of fiber field.

The out-of-plane angle (imbrication angle) is considered so small that neglecting it still
gives the required accuracy. The choice of keeping f0 tangential is also justified by the fact
that fibers are well represented by a vector. The sheets however, being surfaces, can not be
represented with one vector alone and therefore the sheet axis needs only to lie in the sheet
plane and thus will be rotated out of the (ξ1, ξ2) plane to keep the orthogonality. Because
of the rotation of s0 out of the (ξ1, ξ2) plane, the initial rotation of s0 must be larger than β
in order for the sheet angle projection to be correct. The calculation of this angle is found
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by identifying the relevant angles in Figure 3.4,

γ = arctan
( tan(β)

cos(α)

)
, (3.24)

where γ is the inital rotation of s0.
In Figure 3.4 the green axis represents the material axes f0 and s0, the blue axis is the

inital rotation of the sheet axis with an angle γ and red axis is the projection of s0 on to
the (ξ1, ξ2) plane. The procedure is implemented in a MATLAB script which is presented
in Appendix B.

3.5 The Truncated Ellipsoid Model
In this section the different aspects surrounding the creation of the finite element model in
Abaqus is presented.

3.5.1 Left Ventricular Geometry
An idealized and simplified geometry is used to model the left ventricle and an ellipsoid
truncated at the base is chosen. This approach has become the convention when mod-
elling the heart and among others Eriksson et al. [9], Göktepe et al. [11] and Remme and
Hunter [24] use variations of this geometry. As the objective of this thesis is to investigate
the deformation of the human left ventricle in systole, the initial geometry is chosen to
approximate the geometrical parameters of the end-diastolic geometry in a physiological
heart. The geometric parameters are presented in Table 3.2 and Figure 3.5 depicts a cross
section of the model geometry. In this thesis neither the mitral valve or the aortic valve
are included in the left ventricular geometry. As they play an important part during the
ventricular cycle, their inclusion is a natural continuation of this work.

Theoretical Values Model Values
Volume 120ml 123ml

Wall thickness 7-11mm 10mm
Internal diameter 25-56mm 50mm

Internal longitudinal length - 85mm

Table 3.2: Left ventricle end-diastole geometry parameters. Theoretical taken from Levick [20].

The internal diameter of the model is valid for the equatorial region. The internal
volume of the model is also dependent on the mesh size and the element type. For the
majority of the analysis a linear cube element is used and since the geometry then is lin-
earized, a finer mesh will produce a larger internal volume then a course. The volume of
the model is however approximately 123ml for all mesh sizes. The wall thickness in the
model is kept at a constant 10mm in all regions. Compared with a physiological heart this
simplification. The septal wall is in general thinner than the rest of the ventricle and also
the apex is shown to have a different thickness. The longitudinal length was chosen to give
a volume of approximately 120ml, but is still with in the physiological range.
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3.5 The Truncated Ellipsoid Model

(a) Sketch of complete geometry with
cylindrical coordinate system used to define
boundary conditions.

(b) Cross-section of geometry with global
Cartesian coordinate system.

Figure 3.5: Geometry of the truncated ellipsoid model.

Figure 3.6: Schematic of transmural partitions on a slice of the ventricular wall.
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The myocardial structure is modelled with a linear transmural variation of the fiber
and sheet angle. To accommodate this in the model, the geometry is partitioned into layers
of equal thickness, ensuring a correct representation of the fiber field. This is visually
displayed in Figure 3.6. It is apparent that the number of layers may affect the result of the
analysis. A course subdivision will yield a more discrete fiber distribution where as more
layers yields a more uniform distribution, which must be considered as more physically
correct. However, more layers consequently produces a finer mesh, which will affect the
computational cost. A study will therefore be performed to investigate the affect of number
of layers.

3.5.2 Boundary Conditions
Modelling the boundary conditions for biological soft tissue is somewhat challenging as
the boundaries are not very well defined. Qualitative assumptions and approximations
must therefore be carried out.

In this model every node on the basal surface has been restricted in the Z direction
and thus the nodes are free to deform in the radial and Θ direction in an cylindrical co-
ordinate system, shown in Figure 3.5a. An initial study showed that by restricting nodal
displacement all together, a very large deformation gradient localized in the basal region
and consequently also unnaturally high stresses occurred in the region. It is here noted,
that if the model is not symmetrical, additional boundary conditions should be added. By
constraining the apical nodes at X = Y = 0 from radial movement, the model becomes for
secure against any rigid body movements. As this was not strictly needed here, the nodes
are kept unrestrained.

Further to account for the tissue surrounding the epicardial surface, Göktepe et al. [11]
applied linear springs with stiffness kx=ky=10−3 N/mm to every node on the epicardial
surface. There is very little data regarding how the pericardium and other surrounding
tissue affects the myocardial deformation. During contraction, given the model works as
intended, the spring stiffness will also counteract the contraction, which is not necessarily
correct. It is preferable not to add any extra uncertainty to the system and based on the
lacking in supporting data, springs are not added to the model.

In systole the contraction creates a intracavital blood pressure acting on the endocardial
surface. The pressure is a function of both time and location on the surface, but as the
spatial distribution would have had to be implemented using computational fluid dynamics,
which is outside the scope of this thesis, this is omitted. The systolic pressure is therefore
implemented as a uniform pressure on the endocaridal suface with the function

PLV = −944t2 + 245t, 0 ≤ t ≤ 0.2s, (3.25)

depicted in Figure 3.7.
This function in equation (3.25) has Pmax = 16.0kPa at t = 0.13s which is in agreement

with the normal systolic blood pressure for a healthy heart 120mmHg. [20] [6]. The phase
prior to Pmax is equivalent to the rapid ejection phase of the cardiac cycle. After Pmax the
pressure drops simulating the reduced ejection phase. Further the pressure from the right
ventricle blood pressure acting on the septal region has been neglected. The inclusion of
these forces will affect both the stress and strain distribution and the deformation pattern
in the left ventricle, but this is not studied any further.
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Figure 3.7: Sysolic pressure on endocardial surface.

In a real heart the active stress tensor will not keep constant level after the maximum
pressure is reached, as is assumed in this model. However, since the blood pressure is
included as an internal pressure, as opposed to through fluid dynamics, the decreasing
pressure during the reduced ejection phase is serving as the reduction of active tension in
the myocytes. [24]

3.5.3 Element Type
For every finite element analysis an appropriate element must be chosen to obtain the nec-
essary accuracy, but also provide good convergence at a acceptable computational cost.
In this work the eight node brick hybrid element C3D8H is used. Triangular and tetrahe-
dral elements is convenient when meshing a complex geometry, but is known to be overly
stiff and requiring a very fine mesh to provide accuracy. The first-order version of these
elements are also known to exhibit volumetric locking when used in incompressible prob-
lems, hence they are considered inappropriate here. Further, quadrilateral elements, when
provided with a good mesh provide equal accuracy at less computational cost.

When a material is incompressible, or nearly incompressible, very small displacements
may cause very large changes in pressure, since the bulk modulus is much larger than the
shear modulus. A displacement based solution may therefore cause numerical difficulties.
When using a hybrid formulation the pressure is treated as a independent interpolated solu-
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tion variable which solves any problems regarding volumetric locking. The elements, hav-
ing more internal variables, are though computationally more expensive than non-hybrid
formulations.

The Abaqus element C3D8H uses a first order element using a full integration scheme.
Second-order elements with reduced integration can also be a good choice for this prob-
lem. Second-order elements are known to give a higher accuracy given the problem does
not have severe element distortion. They are also better at modelling geometries as they
can use fewer elements on a curved surface. A study using the element C3D20HR will be
performed to assess any advantages of using second order elements. [1]

3.5.4 Damping Factor
A known issue with non-linear problems are instabilities. Specifically for the case of a
hyperelastic material exhibiting large deformations, as is the case for the myocardium,
local instabilities may occur and cause numerical problems. In the initial work with the
model, the analysis exhibited convergence problems that may have been linked to some
instability. To address this issue a constant damping factor with magnitude 10−8 was
included to stabilize the problem. By doing this Abaqus includes a damping force in
the global equilibrium equations. To ensure that the analysis still convergence towards the
correct solution, it is important to compare the static dissipated energy with internal elastic
energy. For all of the analysis this fraction was of the order 10−4, which indicates that the
added stabilization does not negatively affect the solution. [1]

3.5.5 Extraction of Results
This section describes the procedure for extracting the different results from the model.
This is done to be able to better judge the validity of the results.

Ejection Fraction

The ejection fraction is calculated using the nodal coordinates of the nodes defining the
endocardial surface at the end-diastole and end-systole configurations. The volumes of the
two states are then calculated using the convhull function in MATLAB. This function re-
turns the volume of a convex hull of a set of point in a 3 dimensional space. The procedure
using MATLAB and Python scrips are found in Appendix D.

Torsion

The myocardial torsion of the Abaqus model is found by tracking the movement of the
mesh between the end-diastole and end-systole configuration. It is noted that the values
found are greatly affected by at which point on the geometry they are calculated. The
rotation of the base is calculated from the four points on the epicardial surface and located
on the global X=0 and Y=0 in the undeformed configuration. The rotation of the apex is
calculated from the four nodes closest to the apex lying on the global X=0 and Y=0 in
the undeformed configuration. The rotation is then calculated as the angle between the
between the lines of the mesh at the start and end of the analysis. This gives four angles
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for both apex and base, which are averaged to find the mean rotation. The torsion is found
as the difference between the apex and base rotations. The rotation is found as about the
global longitudinal axis and any movement in the global XY-plane of the apex point is
accounted for. The procedure combined for calculating the torsion, using both Python and
MATLAB scripts are found in Appendix F.

Wall Thickening

The wall thickening is found both at the apex and the equatorial region. The apex the wall
thickening is found as the change of distance between the nodes on the endo and epicardial
surfaces for global X=Y=0. At the equator the wall thickening is found as the change of
distance between the nodes at Y=0 on the two surfaces. For the equator, only movement
in the XY-plane is considered as the movement in the Z-direction must be considered to
be a function of other mechanics than wall thickening. As the model is symmetric the wall
thickening will be approximately equal for the same global Z-value and a single point on
the equator will therefor be sufficient. For different positions along the longitudinal axis
the wall thickness will however change.

Longitudinal and Radial Shortening

The change in relative longitudinal distance is found as the change in the distance between
the node at the endocardial apex and the base, along the long axis. The change in radial
distance is found as the change in the distance between the node on at the endocardial
surface and Y=0, and the long axis.
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CHAPTER 4
RESULTS

4.1 Validation of the Constitutive Model
The structural based constitutive model for passive myocardium is implemented in the
Abaqus model using the user subroutine UMAT. The use of user subroutines allows for
modelling with more specializes material models, but initial testing on single element
models is required to confirm that expected behaviour is achieved. The UMAT used in
this thesis was developed and provided by Assoc. Prof. Victorien Prot and is presented in
Appendix C. Since the UMAT had not previously been used in a full scale model of the
left ventricle, an initial validation analysis was performed. As a basis for this validation,
the results from the shear tests by Dokos et al. [5] were used and recreated. The analysis

Figure 4.1: Sketches of the six modes of simple shear for myocardium with respect to the local
material axis (f0, s0, n0) [11].
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was performed by creating a 3x3x3mm cube and using one C3D8H element. For each
of the six different shear modes, a displacement equivalent to simple shear γ = 0.5 was
prescribed, consistent with that shown in Figure 4.1. The material parameters presented in
Table 3.1 in combination with the implemented constitutive model represents the passive
myocardium material.

Figure 4.2: Comparison of simple shear experiments. Abaqus results (lines) and experimental data
from Dokos et al. [5] (circles).

We observe in Figure 4.2 that the results of the Abaqus analysis agrees reasonably with
the data from the shear test, however not to the degree of accuracy reported in Göktepe
et al. [11]. Especially the result for (sf) shear gives slightly more resistance than the
experimental results. The numerical result does predict the expected 5 distinguishable
shear responses. This agrees with the number of invariant implemented in the model as
the present research has not been able to find any significant difference in the (nf) and (ns)
response. Further, the relative degree of stiffness in the different directions also is correct,
with F > S > N, and thus the material implemented shows the wanted behaviour.

4.2 Validation of Active Stress Implementation
The active stress component was implemented into the finite element model thorough the
UMAT user subroutine. Here the current activation level is found as a function of time in
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the analysis and the different stress components is combined with the stress calculations for
the passive response of the myocardium. The entire subroutine is reviewable in Appendix
C. To validated correct behaviour a simple cube model of myocardium tissue was created.
Here the local material axis is aligned with the global coordinate system. The cube has the
boundary conditions: suppressed displacement in X direction for all X=0, displacement in
Y direction for all Y=0 and displacement in Z direction for all Z=0, thus restricting any
rigid body motion, but to allowing free deformation.

Considering the boundary conditions and the stress activation, it is instructive to view
the setup as biaxial where the deformation is defined by

x1 = λfX1, x2 = λsX2 and x3 = λnX3, (4.1)

where λf , λs and λn are the principal stretches in the three material directions. Given the
incompressible material, equation (4.1) must satisfy the condition

λfλsλn = 1 (4.2)

and following the volume is conserved during deformation.
With activation only in the fiber direction, Figure 4.3, the cube exhibits a contraction in

the fiber direction graphically represented as λf < 1. Consequently we then have λs > 1
and λn > 1. Further the stretch is larger in the n than s direction, consistent with the
myocardium being less stiff in the n direction.

In Figure 4.4, a second stress component has been added in the sheet normal direction.
Notably the contraction in the sheet normal direction is significantly larger than the fiber
contraction. The lesser stiffness in this direction, than in the fiber direction, results in a
relative large contraction although the stress is only 60% of that in the fiber direction. How
this affects the behaviour of the full scale left ventricular model is to be investigated.

In Figure 4.5, a shear stress component, 3% of the fiber component, in the (ns) plane
has been introduced. The inclusion of a shear component is evident in a much larger stretch
in the sheet direction. It is clear that the contraction in the sheet normal direction is here
more restricted which yields larger stretch in sheet direction to preserve the volume. While
the two first cases has a stress free equilibrium, this is not the case here. However, for the
purpose of comparing with the two former cases, and in order to get a better understanding
of how the shear component affects the deformation, symmetry of the cube was kept.
When not restricted the shear stress gave some shear deformation, which is to be expected.
[9]
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(a) Deformation of cube under activation. White and blue represents
undeformed and deformed state with Tmax=100kPa, respectively.

(b) Stretch as function of activation level. 100kPa and 200kPa illustrated by
solid and dotted lines, respectively.

Figure 4.3: Response of cube with activation in fiber direction. Global (X, Y, Z) is equivalent to
material (f0, s0, n0) system.
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(a) Deformation of cube under activation. White and blue represents
undeformed and deformed state Tmax=100kPa, respectively.

(b) Stretch as function of activation level. Analysis with 100kPa and 200kPa
illustrated by solid and dotted lines, respectively.

Figure 4.4: Response of cube with activation in fiber and sheet normal direction. Global (X, Y, Z)
system is equivalent to material (f0, s0, n0) system.
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(a) Deformation of cube under activation. White and blue represents
undeformed and deformed state Tmax=100kPa, respectively.

(b) Stretch as function of activation level. Analysis with 100kPa and 200kPa
illustrated by solid and dotted lines, respectively.

Figure 4.5: Response of cube with activation in fiber, sheet normal and shear (sn) direction. Global
(X, Y, Z) system is equivalent to material (f0, s0, n0) system.
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4.3 The Truncated Ellipsoid Model
To see how the truncated ellipsoid model behaves compared to a physiological heart, we
choose a set of parameters describing the systolic deformation. These are the ejection
fraction, myocardial torsion, wall thickening, longitudinal shortening and radial shorten-
ing. The physiological values are summarized in Table 4.1

EF AMT ∆h
h

∆L
L

∆R
R

[% ] [◦] [%] [%] [%]

67 9-12 52 17-25 31-39

Table 4.1: Theoretical values describing systolic heart deformations. Values are taken from Levick
[20] and Dumesnil and Shoucri [7]

In Table 4.1, both the longitudinal shortening ∆L
L and the radial shortening ∆R

R is
measured as internal values in the left ventricle (hence from the endocardium). Dumesnil
and Shoucri [7] does not specify where the internal radius is measured, however, as it is a
relative value, it is still appropriate to use.

4.3.1 Validation of the Fiber Field Implementation
Figures 4.6 and 4.7 show the result of the implementation of the fiber field in Abaqus. The
figures show the outermost layer of the model with fiber angle α = 45◦ and sheet angle β
= 0◦. We can clearly see the at the fiber axis form a left handed helix from the apex to
the base and that the fibers are aligned with the circumferential direction. The sheet axis
is confirmed as normal to the surface and is pointing in an outwards direction. The figures
confirms that the implementation of the fiber field is correct.

Figure 4.8 show the transmural variation of the fiber angle using α = 45◦. The fibers are
varying from a left handed to a right handed helix when moving from the sub-epicardium
to the sub-endocardium, which is in agreement with the literature. In Figure 4.9, the
variation of the sheet angles for the different layers are shown for sheet angle β = 45◦. It
is also visible, when comparing with Figure 4.7a, that the sheet axis is no longer normal
to the surfaces, which is as expected.
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(a) Material direction f0 in the longitudinal
direction.

(b) Material direction f0 in the global XY
plane.

Figure 4.6: The local material f0 axis implemented in Abaqus with fiber angle α = 45◦. Figures
show the outermost layer in the model.

(a) Material direction s0 in the global XZ
plane.

(b) Material direction s0 in the global XY
plane.

Figure 4.7: The local material s0 axis implemented in Abaqus with sheet angle β = 0◦. Figures
show the outermost layer in the model.
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4.3 The Truncated Ellipsoid Model

(a) Layer 4, α = +45◦. (b) Layer 3, α = +15◦.

(c) Layer 2, α = -15◦. (d) Layer 1, α = -45◦.

Figure 4.8: The local material f0 axis with fiber angle α = ± 45◦, shown for the different layers
through the left ventricular wall.
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(a) Layer 4, β = +45◦. (b) Layer 3, α = +15◦.

(c) Layer 2, α = -15◦. (d) Layer 1, α = -45◦.

Figure 4.9: The local material s0 axis with sheet angle β = ± 45◦, shown for the different layers
through the left ventricular wall.
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4.3.2 Mesh Study
The mesh study was done on a model with fiber angle α = 45◦, sheet angle β = 0◦ and
a maximum activation Tmax = 150kPa in (ff), (nn) and shear (sn) directions. Different
combinations of angles and activations has shown different analysis time, this gives some
uncertainty to how a model with different fiber angles may be affected by the mesh refine-
ment. The mesh study using α = 45◦ will however serve as an indication of at what mesh
size sufficient accuracy is reached. Further, since the models behaviour is also dependent
on how many layers the ventricular wall is divided into, four layers will be used through-
out the mesh study. A separate study of the effect of the number of layers is presented in
the following section. Convergence will be checked for the parameters ejection fraction,
torsion, longitudinal shortening, radial shortening and wall thickening.

Nels EF AMT ∆h
h equator

∆h
h apex

∆L
L

∆R
R CPU time

[◦] [%] [◦] [%] [%] [%] [%] [s]

15192 31.1 30.8 17.6 19.9 8.9 13.0 7712
8960 31.1 27.2 17.6 19.8 8.9 12.9 4888
2552 31.0 20.2 17.6 19.7 9.0 12.9 7502
1296 31.0 17.8 17.5 20.3 9.1 12.9 1592

Table 4.2: Results of mesh study, with α = 45◦, β = 0◦ and Tmax = 150kPa with activation in (ff),
(nn) and (sn) directions. Nels is the number of elements in the model.

Referring to Table 4.2, it is noticeable that the ejection fraction is almost equal for
the different meshes. This also applies for wall thickening at equator, and longitudinal
and radial shortening, where only minor changes are seen. A larger difference is observed
in the wall thickening at the apex. Here the mesh using 1296 element gives a somewhat
different result. Near the apex is also where we have largest curvature and it is clear that
such a large mesh is not able to accurately describe this region. An important detail to
bare in mind when evaluating the torsion results for the different meshes in Table 4.2, is
how the torsion is calculated. The apex rotation is found by averaging the rotation of the
4 nodes closest to the apex and thus as the mesh changes, the distance from the nodes to
the apex changes. Therefore the rotation is found at points in different locations on the
geometry for the different meshes. A different approach, which perhaps would be better
for this study, is to sample points at a specific geometric location. This would however
not give the maximum rotation of the apex. Seeing as linear elements are used, the chosen
method provides the absolute torsion at the apex and this approach seems consistent. A
larger mesh produces a significant smaller torsion, but the different sampling points limits
our ability to draw certain conclusions from this. The difference is however so large that
the accuracy of the most course mesh at the apical region is considered insufficient.

Apart from what the convergence of the chosen parameters shows. A more qualita-
tive study of the mesh is appropriate. Near the apex, the curvature is quite large and thus
the region requires a finer mesh than the rest of the geometry. Using a structured mesh-
ing technique, Abaqus insists on using two elements per partition in the radial direction.
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(a) Mesh with approximate size 2.0 mm,
giving 15192 elements.

(b) Mesh with approximate size 2.5 mm,
giving 8960 elements.

(c) Mesh with approximate size 5 mm,
giving 2552 elements.

(d) Mesh with approximate size 7.5 mm,
giving 1296 elements.

Figure 4.10: Different meshes used in the mesh study, in undeformed state.
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4.3 The Truncated Ellipsoid Model

Therefore, the thickness of each layers is not strictly forced to be equal. It is visually
observable that when a courser mesh is used, the difference in element size, in the radial
direction, is larger than for finer meshes. The change in fiber angles then no longer has a
linear variation, as is assumed, and the contribution from the different fiber angles in the
layers will therefore be different. This adds to the uncertainty of the accuracy of the apical
deformation and highlights the need for a finer mesh in this region.

When looking at the total CPU time for the different meshes, some irregular numbers
is encountered. For the analysis using 2552 element the analysis time is higher than those
using a more refined mesh. A possible reason for this is that the analysis has encounter
some sort of numerical issue, which has slowed the analysis. A typical feature of all the
analysis in this thesis, is that Abaqus tends to use very small time increments, in the order
10−7. This can be attributed to the exponential change of stiffness seen in the material,
when smaller time steps are need. The analysis uses relatively longer using 15192 ele-
ments than 8960 elements, and there is no evidence that the results are significantly more
accurate.

Based on the results, both quantitative and qualitative, it is clear that a mesh using
8960 elements is necessary to give enough accuracy in the apical region.

4.3.3 Study of Number of Layers

Using an otherwise equal model setup as in the previous section, a study of how differ-
ent number of layers affect the results is performed. It is a reasonable assumption that a
finer transmural partitioning gives a better representation of the fiber field. Increasing the
number of layers will produce a more continuous change in the fiber angles and can be
considered to give a more accurate implementation of the rule based fiber field. However,
the increasing finer partitioning adds to the number of elements and then increasing the
computational cost. As noted, when using cube elements and a structured mesh, Abaqus
insists on assigning minimum two elements in the radial direction per partition thus sig-
nificantly increasing the number of elements. This also makes it not so straight forward to
compare the results based on the fiber distribution alone, as a finer mesh generally will in-
crease the accuracy. One approach to counter this would be to increase the global element
size to get approximately the same number of elements in the different cases. However, as
shown in the results of the mesh study, larger elements compromises the accuracy in the
apical region making comparison difficult. The global mesh size is therefore kept equal at
2.5mm and thus creating a similar mesh pattern in the circumferential direction, as shown
in Figure 4.11. The added number of elements must of course be accounted for when
analysis the results.

A trend which is apparent when looking at Table 4.3 is that for an increasing num-
ber of layers the model exhibit a decrease in longitudinal shortening and an increase in
radial shortening. A quick geometric consideration is done by splitting unit fibers into
circumferential and longitudinal components. The average components for a transmu-
ral cross-section is found as 1

Nlayers

∑Nlayers

i=1 cos(αi) for the circuferetial direction and
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(a) Mesh with 6 layers, giving 15192
elements.

(b) Mesh with 8 layers, giving 19984
elements.

Figure 4.11: Meshes with 6 and 8 layers, in undeformed state.

1
Nlayers

∑Nlayers

i=1 sin(αi) for the longitudinal direction, giving

(4layers)circum :
1

4
· 2 · (cos(45◦) + cos(5◦)) = 0.837

(4layers)long :
1

4
· 2 · (sin(45◦) + sin(5◦)) = 0.483

(6layers)circum :
1

6
· 2 · (cos(45◦) + cos(27◦) + cos(9◦)) = 0.862

(6layers)long :
1

6
· 2 · (sin(45◦) + sin(27◦) + sin(9◦)) = 0.440

Interpreting the different components we see that a increasing number of layers gives
a larger circumferential component and smaller longitudinal component, which explains
the global behaviour. The ejection fraction is increasing for an increase in number of
layers. This indicates that the radial shortening and wall thickening plays a relatively more
important part in creating the ejection fraction than the longitudinal shortening. Further, it
is interesting that the torsion is decreasing for an increasing number of layers. The mesh
pattern on the surface is approximately equal between the different meshes and thus the
rotation at the apex can be compared with confidence. It is clear that a higher number of
layers to a lesser degree is overestimating the myocardial left ventricular torsion.

The analysis time is approximately 5 times higher when using 8 layer compared with
4 layers. Individually the CPU time of 26892 seconds for the 8 layer analysis is not so
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Nlayers Nels EF AMT ∆h
h equator

∆h
h apex

∆L
L

∆R
R CPU time

[ ] [ ] [%] [◦] [%] [%] [%] [%] [s]

4 8960 31.1 27.2 17.6 19.8 8.9 12.9 4888
6 15192 31.3 25.1 17.9 20.5 8.0 13.6 7295
8 19984 31.5 22.6 18.2 21.3 7.7 14.0 26892

Table 4.3: Results from study of number of transmural layers. α = 45◦, Tmax = 150kPa in (ff), (nn)
and (sn) directions.

much, but as previously mentioned the analysis time is much larger when using other fiber
angles and the increasing number of layers makes the computational cost too large, at least
for this thesis. A analysis was performed using 6 layers and fiber angle α = 60◦ where the
analysis was terminated after a CPU time of 900350 seconds. The analysis was then only
71 finished and based on the computational cost of increasing the number of layers, only
4 layers will be used in further studies.

4.3.4 Study of Fiber Distribution

In this section different ranges of fiber angles are studied to see how the different distri-
butions affect the systolic deformation. For practical reasons, the response using an active
stress component in different directions will also be studied here. The different cases of
fiber angles chosen are

1. αendo = 0◦, αepi = 0◦

2. αendo = -45◦, αepi = 45◦

3. αendo = -60◦, αepi = 60◦

4. αendo = -70◦, αepi = 70◦

The angles are chosen both to be within the realistic angles reported in literature, but
also to show how the left ventricle would act without any fiber angle. During this section
the sheet angle β = 0◦ for all cases. It is noted that the maximum activation level Tmax
refers to the maximum value in the fiber direction. Thus for Tmax = 100kPa in the fiber
direction, we have Tmax(n,n) = 60kPa and Tmax(s,n) = 3kPa when using equations (3.18)
and (3.19).

Activation in fiber direction

As a first try, activation was only added in the fiber direction. With Tmax = 100kPa, and
for all ranges of fiber angles, the model did not exhibit any contraction and the volume
increased during the analysis. There were a significant increase in longitudinal length and
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radius, and because the volume is constrained to constant, the walls became thinner. At-
tempts were made to increase the maximum activation level up to higher levels, but analy-
sis with Tmax = 300kPa still did not show any signs of a physiological correct contraction.
This indicates, what already was found by Dorri et al. [6], that a realistic contraction can
not be reproduced by using only an active stress component in the fiber direction.

Activation in fiber and sheet normal directions

In this section the results of the model using Tmax = 100kPa in the fiber and sheet normal
direction is presented. The myocardial torsion as defined by Carreras et al. [3], the dif-
ference between apical and basal rotation, has a physical value in the approximate range
9-12◦. By comparing this with the values predicted by the models in Table 4.4, it is clear
that the model has a significantly larger torsion than what is physiologically true. Further,
the model rotates in the opposite direction, clockwise when looking from the apex to the
base, then what it is supposed to. This can be account for in what directions the muscle
fibers now are activated in.

α β EF AMT ∆h
h equator

∆h
h apex

∆L
L

∆R
R

[◦] [%] [◦] [%] [%] [%] [%] [%]

45 0 25.8 -23.2 18.4 19.3 18.0 5.6
60 0 27.2 -25.3 18.2 19.5 15.4 7.6
70 0 28.3 -23.8 18.0 19.7 13.6 9.0

Table 4.4: Response of left ventricular model with different fiber angles. β = 0 and Tmax = 100kPa
in fiber and sheet normal directions.

(a) Tmax = 100kPa. (b) Tmax = 150kPa.

Figure 4.12: First principal stress for deformed and undeformed states with α = 45◦, Tmax = 100
kPa and 150kPa in (ff) and (nn) directions. Cuts made for Y=0 and Z=-15 mm.
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4.3 The Truncated Ellipsoid Model

By examining Figure 4.4, we observe that the contraction in the sheet normal direction
is considerably larger than in the fiber direction. The model, giving the results in Table
4.4, has no additional sheet angle and thus the sheet normal axis is directed in the normal
direction from the fiber angle, in the circumferential plane. A larger contraction in the
sheet normal direction therefore gives a clockwise rotation and activation only in fiber and
sheet normal direction is then not able to reproduce a realistic torsion response. The results
in Table 4.4 also reveals a very low internal radial displacement. The radial movement is
function of both wall thickening and more rigid body movement. The longitudinal short-
ening however, displays, most significant for α=45◦, more realistic values. What is not
so evident from the numbers, but can be visually interpreted from Figure 4.12a is that the
radial movement in the equatorial region is more as a consequence of the longitudinal dis-
placement than actual radial displacement. Looking at the most basal region, we actually
see a slight outwards movement in the radial direction at the epicardium, which indicates
that the current model is not realistically reproducing the radial movement.

α EF AMT ∆h
h equator

∆h
h apex

∆L
L

∆R
R

[◦] [%] [◦] [%] [%] [%] [%]

45 28.2 -24.6 19.6 20.3 17.6 7.5
60 29.5 -26.6 19.4 20.3 15.2 9.3
70 30.4 -26.3 19.4 20.5 13.7 10.6

Table 4.5: Response of left ventricular model with different fiber angles. β = 0 and Tmax = 150kPa
in fiber and sheet normal directions.

Tmax was therefore increased to 150kPa to see if a more realistic radial contraction
could be produced. By comparing the results in Tables 4.5 and 4.4, a larger radial dis-
placement and wall thickness is in fact produced. As a result the ejection fractions are
somewhat higher, although the longitudinal shortening is now lower. Again, by examin-
ing the epicardial, basal region in Figure 4.12b, it is clear that model has very little radial
displacement here.

Activation in fiber, sheet normal and shear (sn) directions

The following presents the results of the analysis with active stress components in fiber,
sheet normal and shear (sn) directions. The initial analysis using maximum activation level
Tmax = 100kPa showed a significant increase of the ventricular volume. This indicates
that the active components is not able to overcome the internal pressure on the endocardial
surface. The level was therefore increased to 150kPa, which is still within a realistic range,
where more realistic deformations was achieved.

The inclusion of a shear component in the (sn) direction of the active stress tensor, has
as expected produced torsion in the correct, counter-clockwise direction. The values of the
torsion is still significantly larger than what is physically correct, but some of this can be
accounted for in lack of right ventricle and the symmetrical geometry of the model.
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α EF AMT ∆h
h equator

∆h
h apex

∆L
L

∆R
R

[◦] [%] [◦] [%] [%] [%] [%]

0 34.2 7.5 18.7 21.0 3.9 17.4
45 31.1 27.2 17.6 19.8 8.9 12.9
60 29.0 31.5 17.5 20.3 11.9 10.2
70 27.7 16.5 17.6 20.4 13.4 9.0

Table 4.6: Response of left ventricular model with different fiber angles. β = 0 and Tmax = 150kPa
in fiber, sheet normal and shear (sn) directions

The longitudinal shortening is somewhat lower now than without the shear activation.
It is reasonable that the contraction in the fiber direction is the major component contribut-
ing to the longitudinal shortening. Seeing as both the fiber and sheet normal axis lies in the
tangential plane to the wall surfaces, it is logical that contraction in sheet normal direction
also contributes a little. This is supported by the increasing longitudinal shortening for
increasing fiber angles, where the fiber axis gets a greater longitudinal components. By
studying Figures 4.4 and 4.5, we see that the combined stretch in fiber and sheet normal
directions is larger without activation in the shear direction. This fact may explain the
reduced longitudinal shortening when adding the shear component to the active stress.

Although some slight differences, the fiber angle can not be said to have a great affect
on the wall thickening, considering the values for both the apical and equatorial regions.
The values are also significantly lower than physically correct.

Comparing Tables 4.5 and 4.6 it is clear that the active shear component to a larger
degree is able to create a radial inwards motion. This is also visually observed in Figure
4.13. The magnitude from the more physically correct fiber angles are still quite small
compared to over 30%, which is physiologically correct. What is evident, from studying
Table 4.6 is that none of the different fiber angles are able to recreate the physical ejection
fraction which is considered to be approximately 55-65%.

Figure 4.14 shows a typical rotation pattern seen through the analysis. It is easily ob-
served that the rate of rotation is largest at the start of the systolic phase, which agrees
with the material becoming exponentially stiffer under deformation. It is however in con-
tradiction with the findings of Carreras et al. [3] where a more continuous rotation is seen
throughout systole. As for any of the results from this model, the result at end-systole
should be given more emphasise than results during the analysis. Seeing as the active
contraction is implemented as a linear function, without much physiological meaning, re-
sponse patterns during systole must me considered as a general trend rather than exact.
The large rotation early in systole is however so significant, that its deviation from exper-
imental results must be noted. Further, the rotation at the endocardium is in the opposite
direction from the epicardium, for both basal and apical regions. This indicates a clock-
wise rotation for the endocardium which is consistent with what physically happens. In
the earliest stage of the analysis, for both the base and apex, the endocardium first rotates
counter clockwise before changing direction to clock wise. This is most predominant at
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(a) α = 45◦. (b) α = 60◦.

(c) α = 70◦.

Figure 4.13: First principal stress for deformed and undeformed states Tmax = 150 kPa in (ff), (nn)
and (sn) directions. Cuts made for Y=0 and Z=-15 mm.

the apex. This can be explained by the larger rotation gradient at the epicardium dragging
the endocardium at the start, before the the fiber tension at the endocardium overcomes this
effect. The epicardium at the base is experimentally shown to exhibit a counterclockwise
rotation is the first 30% of systole. [3] The model is not able to reproduce this behaviour,
but this is not to be expected given the form of the active stress tensor.

4.3.5 Study of Activation Level
During the study of which directions of activation that needs to be included, a maximum
activation stress of 100kPa was initally used, as this is roughly at the level indicated in
literature. [6] When including activation also in shear (sn) direction, this activation level
was no longer sufficient to overcome the pressure on the endocardium and the model
showed an increase in volume rather than decrease. The level was therefore increased
to 150kPa where contraction was achieved, but still the ejection fraction was no where
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Figure 4.14: Rotation at apex and base, both for endocardium and epicardium, for α = 45◦, β = 0◦,
Tmax=150kPa in (ff), (nn) and (sn) directions.

near the physical value. A study is therefore performed to find at what activation level a
physically realistic ejection fraction is reached. From Table 4.6 we find that fiber angle
α = 70◦ produced the highest ejection fraction, but since the computational cost is much
lower, α = 45◦ is chosen for this study.

α Tmax EF AMT ∆h
h equator

∆h
h apex

∆L
L

∆R
R

[◦] [%] [◦] [%] [%] [%] [%]

45 150 31.1 27.2 17.6 19.8 8.9 12.9
45 200 33.1 27.7 19.3 20.3 8.4 14.8
45 300 35.1 28.6 21.0 21.0 7.9 16.6
45 500 36.9 29.9 22.3 22.1 7.6 18.0
45 1000 38.9 31.4 23.6 23.5 7.5 19.3

Table 4.7: Response of left ventricular model with increasing Tmax for α = 45◦, β = 0◦ and activa-
tion in fiber, sheet normal and shear (sn) directions.

Referring to Table 4.7, we see that as expect the ejection fraction increases for in-
creasing Tmax. There is also an increase in wall thickening and radial shortening, where
as the longitudinal shortening is decreased. An ejection fraction of 38.9% when using
Tmax=1000kPa is still however far from a realistic value of 55-65%. It is therefore clear
that despite using an active stress component well over what can be considered physiolog-
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ical, the model is unable to produce a significantly larger ejection fraction.
A reason for this can be found by examining Figure 4.5. When increasing Tmax to

200kPa for one cube element, a larger deformation is seen, but because of the exponen-
tial stiffening of the material, a increasingly larger stress is needed to produce a larger
deformation. Further, this result strongly indicate that some mechanisms, which are not
included in this mode, play a important part of the left ventricular function. Not surpris-
ingly, an increasing Tmax also produces an increasing ventricular torsion

4.3.6 Study of the Sheet Angle
Analysis were run using both sheet angle β = ±45◦ and β = ±85◦, which are both es-
timated to be within the physiological range. [9] Using activation in (ff), (nn) and (sn)
directions with Tmax=150kPa the model showed no contraction at all. To the contrary the
volume increased during the analysis, showing large outwards radial displacement. As a
result of this, the analysis it self became very slow, using very small time increments, and
was terminated before completion. This was seen for all ranges of fiber angles. Attempts
were made to increase Tmax, but this did not affect the response noticeably.

For analysis using β = 0◦, the sheet axis has a normal direction to the endo-/epicardial
surface. The large stretch in the s direction, seen in Figure 4.5b, may be considered as
the main component of creating both the radial motion and wall thickening. By varying
β transmurally, a significantly smaller component is directed normal, which may to some
degree explain why no realistic contraction is seen. However, the lack of contraction can
at this point not fully be explained and further studies is needed here.

4.3.7 Volumetric Penalty Parameter Study
The volumetric penalty parameter κ is the parameter governing the volumetric change of
the material. As the myocardium is considered to be nearly incompressible material, it has
here been modelled as completely incompressible by setting κ = 105MPa. This arbitrary
value is chosen to be much larger than the other material parameters governing the material
law in Table 3.1. By choosing lower value, the volumetric change becomes less restricted.

κ ∆ V EF AMT ∆h
h equator

∆h
h apex

∆L
L

∆R
R

[MPa ] [%] [%] [◦] [%] [%] [%] [%]

100000 0 31.1 27.2 17.6 19.9 8.9 13.0
1000 0.003 31.1 27.2 17.6 19.9 8.9 13.0

1 0.32 31.8 27 18.4 19.3 9 13.3
0.5 0.62 32.2 26.6 18.9 18.9 8.9 13.5
0.1 2.97 32.1 24.7 21 15.9 8.4 13.4
0.05 5.98 30.2 23.6 22.3 14.2 7.7 12.4

Table 4.8: Results from study of different values of κ, with α = 45◦, β = 0 and Tmax = 150kPa in
fiber, sheet normal and shear (sn) directions
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Eriksson et al. [9] used a volumetric penalty parameter µk = 3333kPa in the volumetric
function U(J) = µkln(J)2/2. They experienced a small reduction of the ventricular wall
volume during systole. The values in Table 4.8 show that a decreased κ gives an increased
ventricular wall volume. Figure 4.15 shows a contour plot of the element volumes for
κ=0.05MPa giving a increased volume of approximately 6 %. The increasing element
volumes are predominantly seen on the sub-epicardial apical region, where as the sub-
endocardial elements has decreased volumes.

Figure 4.15: Contour plot of element volume for κ = 0.05MPa.

It is also interesting, that a part until a certain point, a more relaxed volumetric con-
straint produces a higher ejection fraction. This may be because the change in volume
allows for a larger radial displacement without forcing a lower longitudinal shortening.

4.3.8 Stress and Strain Distribution
Figure 4.16 shows the distribution of the first principal stress for models with fiber angle
α = 45◦, 60◦ and 70◦ using Tmax = 150kPa in (ff), (nn) and (sn) directions. The highest
values of stresses are found at the apex. Here it is clear that some very high non-physical
stresses also occur, which may be considered as a byproduct of the numerical method.
All three models show in general a very similar stress pattern. In the region from mid-
wall to sub-endocardium, the stresses are slightly negative as result of the pressure on
the endocardial surface. From mid-wall to the sub-epicardial region the model shows
stresses up to approximately 50kPa. There is thus a stress gradient from lower to higher
transmurally from the endocardium to the epicardium.

When looking at the distribution of the first principal strains in Figure 4.17, the dif-
ferent fiber angles show a relatively similar pattern. For the majority of the left ventricle
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the models show strains in average range 0.20-0.25, with the exception of the endocardial
region at the apex.

(a) α = 45◦. (b) α = 60◦.

(c) α = 70◦.

Figure 4.16: First principal stresses [MPa] for fiber angles α = 45◦, 60◦ and 70◦ at end-systole.
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(a) α = 45◦. (b) α = 60◦.

(c) α = 70◦.

Figure 4.17: First principal strains for fiber angles α = 45◦, 60◦ and 70◦ at end-systole.
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CHAPTER 5
DISCUSSION

The results have to some extent already been discussed in the previous chapter. Here this
is extended upon and the results are further weighed up against the simplifications and
assumptions made in the modelling.

5.1 Torsion
In general, when looking at the analysis with fiber angles which are physiological reason-
able, the model significantly overestimates the torsion. There may be several reasons for
this. First of all the simplified geometry, which is very symmetrical, is bound to increase
the torsion as non-symmetry should add to the resistance to torsion. Further, the model
excludes the right ventricle, which should restrain torsion as the septal region would be
more restricted. A study done by Eriksson et al. [9], comparing rule based fiber angle
distribution and a more heterogeneous distribution, gave more realistic torsion for the het-
erogeneous distribution, indicating that the simplified approach for implementing the fiber
distribution has some drawbacks. Further, it is unknown how well the chosen bound-
ary conditions replicate those which are physically correct. In the model, the boundary
conditions were chosen to avoid possible rigid body motions, but allow deformation and
rotation. In a real heart both the aorta and pulmonary arteries, as well as surrounding tis-
sues, will play a part in restraining the heart deformation. Little data exist concerning the
effects, but it is reasonable to believe that they will to some extent restrain the rotation.

5.2 Wall Thickening
A feature which the model have problems of recreating is the wall thickening. Some ex-
planation of why this is can be found by examining what the model does not include. It
is believed that the cleavage planes in the myocardium are an important function to facil-
itate the wall thickening. The muscle fibers are here able to rearrange during thickening
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trough shear deformation. This sliding of sheets along the cleavage planes, predominant
in the inner third of the wall, is thought to play a significant part in the thickening. [19]
The cleavage planes and sliding mechanics is in no way explicitly included in the model.
However as the the material parameters governing the constitutive material law is based
on shear experiments, some of this may be captured in these data. Considering this, it is
important to bare in mind that these test were done on passive myocardium ex vivo, in a
small scale. The sliding of sheets along cleavage planes is very much a global mechanical
function present during the contraction of the muscle, and thus it is unlikely that this is
captured in the experimental shear tests.

5.3 Fiber and Sheet Angles
As noted in the implementation of the fiber and sheet angles, the imbrication angle (out-
of-plane angle) is not included and following the fiber axis is always parallel to the endo-
/epicardial surfaces. This is assumed to have little affect in the major part of the ventricle,
as the imbrication angle is mostly < 5◦. However, as noted by Legrice et al. [19], the
imbrication angle is not small in the apical and basal region and will definitely affect the
local mechanics. Using a homogeneous fiber field as in this model is of course a sim-
plification of what is physiological correct, but it gives us an opportunity to analyse how
different fiber angles affect the left ventricular contraction. The results presented in Table
4.6 show that a fiber field varying from -45◦ to +45◦, from the endocardium to the epi-
cardium, gives a larger radial shortening and higher wall thickening, than a fiber field with
±70◦. At the same time, longitudinal shortening increases when comparing increasing
the maximum fiber angle. It therefore seems that fibers which are more circumferential
aligned adds to the radial movement and the more longitudinally aligned fibers contributes
to the longitudinal shortening. However, it is not apparent why the circumferential aligned
fiber should add to the radial shortening, as they are still tangential to the wall surfaces
when the sheet angle is kept at 0◦. Bearing in mind the incompressible nature of the mate-
rial, the radial shortening may actually become larger because of the lack of longitudinal
shortening. Since the material must conserve its volume, a large longitudinal shortening
acts as a constraint on the the radial movement, and on the wall thickening. This is most
predominant in the case of fiber angle α = 0◦. Here all fibers are aligned circumferential
throughout the ventricle, something which is physically unrealistic. This produces almost
no longitudinal shortening, but as can be seen in Table 4.6, both the radial movement and
the wall thickening are considerably larger than any other case. It is also interesting to
note that the case using α = 0◦ is actually the one with the highest ejection fraction. This
cannot be interpreted to have any physical meaning, but it highlights how important the
radial movement and wall thickening in producing the ejection fraction, and thus also for
the effectiveness of the heart.

5.4 The Passive Constitutive Model
The validation of the constitutive model of the passive myocardium, confirms that the
model is able to show a correct response. As earlier noted, there is not a perfect match

60



5.5 Active Contraction

between the Abaqus results and the experimental results. This slight stiffer behaviour
might to some degree affect the behaviour of the model. If the ratio of stiffness between
the different directions is different in the model, it will deform easier in one direction than
is physiological correct. This might have some affect the global response. However, the
slight stiffer behaviour itself can not account for the relatively low ejection fraction seen
in the model. During the analysis of activation level, the stress component were increased
well beyond physiological values without the ejection fraction coming close to that of a
real heart. Had the stiffness been an important factor, the added stress would have created
relatively larger ejection fraction than it did. This leads to suggest that features which
are not included in the model, may play a big part in creating the physiological correct
ejection fraction. Further, there is a need for further experiments on the myocardium.
Current models still use the work Dokos et al. [5] as the only source of experimental data.
Though this work was a breakthrough in the understanding of the orthotropic nature of the
myocardium, more experiments should be performed to further validate the mechanical
properties of the myocardium.

Considering the left ventricle as only consisting of myocardium is also somewhat in-
accurate. Tissue in both the endocardial and epicardial regions are different from the my-
ocardium and thus will have different mechanical properties. This will definitively have
an some effect on the systolic deformation which is not included in the model.

In this model the myocardium is modelled as incompressible by setting the volumetric
penalty parameter in the constitutive law, κ = 105MPa. It is however noted that during sys-
tole there is a spatially and time varying changing coronary blood pressure. This change
in fluid volume affects the hydrostatic pressure and therefore introduces an effective com-
pressibility. [23] The modelling of this variation over the course of the systolic phase
needs a fluid interaction which is not within the scope of this thesis.

5.5 Active Contraction
In this work a very simplified model of the active stress components have been used. This
approach is sufficient to create a contraction in the left ventricle and by using relatively
physiological stress levels, gives a good approximation. However, since the variation of
active stress through systole is only time dependant, and with limited physical meaning,
only end-systolic results should be considered. The next step in this work would be to
implement a more physiological correct active stress model. Models, such as the HMT-
model, take in parameters as Ca2+ concentrations and fiber stretch, which gives a more
realistic evolution of the active stress component.

Further, in this work the size of the different components of the active stress tensor
have been based on findings in previous work, and not investigated thoroughly. It is clear,
by observing the different principal stretches in Figures 4.4 and 4.5, that the adding of a
small shear component has a large effect. The size of this component includes a great deal
of uncertainty, as little work has been done to investigate it. It is though very likely that
different values would affect the deformation seen in the left ventricular model, and this is
something which may be of interest for further studies.

Lastly, a known problem within finite element analysis, is that discontinues loads can
cause numerical difficulties. Both the HMT-model and a model using an error function,

61



Chapter 5. Discussion

has a smooth, continuous stress development, which could prove to be beneficial from a
numerical standpoint.
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CHAPTER 6
CONCLUDING REMARKS

This works has shown that the invariant based constitutive model proposed by Holzapfel
and Ogden [14] is to successfully able to reproduce the mechanical response of a full scale,
left ventricular model. By using a rule based implementation of the cardiac muscle fiber
field and a simplified model for the active muscle, the model is able to reproduce some
of the main features describing ventricular contraction. The results of the work show that
in able to correctly produce contraction, the active stress must have components in fiber,
sheet normal and shear (sn) directions.

The model is not able to reproduce a realistic ejection fraction, even when using non-
physiological, high active stress components. The work has here shown that it is challeng-
ing to properly model the radial shortening and wall thickening, two of the most important
features of the ventricular contraction. This strongly indicates that mechanical features,
such as sliding along cleavage planes, which are not included in the present model is nec-
essary to achieve more realistic results. Further, the inclusion of a sheet angle did not
give any realistic contraction, even when the active stress components were significantly
increased. It is finally clear that a model of only the left ventricle, using a simplified,
symmetrical geometry, overestimates the torsion.

Numerically the analysis has proven to be somewhat unstable considering rate conver-
gence and computational cost. Several factors, as fiber angle and active stress components,
is shown to greatly affect the convergence and force the analysis to use very small time
increments.
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Appendix

A Create Abaqus Model

#This python script recreates the 4 layer Truncated Ellipsoid
model used in the

#greater part of this thesis.

#----------------------Initialize----------------------

from part import *
from material import *
from section import *
from assembly import *
from step import *
from interaction import *
from load import *
from mesh import *
from optimization import *
from job import *
from sketch import *
from visualization import *
from connectorBehavior import *

#----------------------Create model----------------------

mdb.Model(name=’Model-1’)
mdb.models[’Model-1’].setValues(noPartsInputFile=ON)

#----------------------Create part----------------------

mdb.models[’Model-1’].ConstrainedSketch(name=’__profile__’,
sheetSize=200.0)

mdb.models[’Model-1’].sketches[’__profile__’].ConstructionLine(
point1=(0.0,
-100.0), point2=(0.0, 100.0))

mdb.models[’Model-1’].sketches[’__profile__’].FixedConstraint(
entity=
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mdb.models[’Model-1’].sketches[’__profile__’].geometry[2])
mdb.models[’Model-1’].sketches[’__profile__’].

EllipseByCenterPerimeter(
axisPoint1=(0.0, 65.0), axisPoint2=(25.0, 0.0), center=(0.0,

0.0))
mdb.models[’Model-1’].sketches[’__profile__’].

EllipseByCenterPerimeter(
axisPoint1=(0.0, 75.0), axisPoint2=(35.0, 0.0), center=(0.0,

0.0))
mdb.models[’Model-1’].sketches[’__profile__’].Line(point1=(0.0,

-75.0000000018626), point2=(0.0, -65.0))
mdb.models[’Model-1’].sketches[’__profile__’].VerticalConstraint(

addUndoState=
False, entity=mdb.models[’Model-1’].sketches[’__profile__’].

geometry[7])
mdb.models[’Model-1’].sketches[’__profile__’].ParallelConstraint(

addUndoState=
False, entity1=mdb.models[’Model-1’].sketches[’__profile__’].

geometry[2],
entity2=mdb.models[’Model-1’].sketches[’__profile__’].geometry

[7])
mdb.models[’Model-1’].sketches[’__profile__’].CoincidentConstraint

(
addUndoState=False, entity1=
mdb.models[’Model-1’].sketches[’__profile__’].vertices[5],

entity2=
mdb.models[’Model-1’].sketches[’__profile__’].geometry[2])

mdb.models[’Model-1’].sketches[’__profile__’].CoincidentConstraint
(
addUndoState=False, entity1=
mdb.models[’Model-1’].sketches[’__profile__’].vertices[6],

entity2=
mdb.models[’Model-1’].sketches[’__profile__’].geometry[2])

mdb.models[’Model-1’].sketches[’__profile__’].Line(point1=(0.0,
20.0), point2=(
40.0, 20.0))

mdb.models[’Model-1’].sketches[’__profile__’].HorizontalConstraint
(
addUndoState=False, entity=
mdb.models[’Model-1’].sketches[’__profile__’].geometry[8])

mdb.models[’Model-1’].sketches[’__profile__’].autoTrimCurve(curve1
=
mdb.models[’Model-1’].sketches[’__profile__’].geometry[3],

point1=(
-10.6040496826172, -57.5122756958008))

mdb.models[’Model-1’].sketches[’__profile__’].autoTrimCurve(curve1
=
mdb.models[’Model-1’].sketches[’__profile__’].geometry[5],

point1=(
-19.4768447875977, -62.0470886230469))
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mdb.models[’Model-1’].sketches[’__profile__’].autoTrimCurve(curve1
=
mdb.models[’Model-1’].sketches[’__profile__’].geometry[8],

point1=(
11.0368957519531, 20.6593246459961))

mdb.models[’Model-1’].sketches[’__profile__’].autoTrimCurve(curve1
=
mdb.models[’Model-1’].sketches[’__profile__’].geometry[9],

point1=(
20.5588989257813, 34.0478363037109))

mdb.models[’Model-1’].sketches[’__profile__’].autoTrimCurve(curve1
=
mdb.models[’Model-1’].sketches[’__profile__’].geometry[10],

point1=(
30.2973175048828, 34.0478363037109))

mdb.models[’Model-1’].sketches[’__profile__’].autoTrimCurve(curve1
=
mdb.models[’Model-1’].sketches[’__profile__’].geometry[11],

point1=(
37.2224273681641, 20.2274398803711))

mdb.models[’Model-1’].Part(dimensionality=THREE_D, name=’TEM’,
type=
DEFORMABLE_BODY)

mdb.models[’Model-1’].parts[’TEM’].BaseSolidRevolve(angle=360.0,
flipRevolveDirection=OFF, sketch=
mdb.models[’Model-1’].sketches[’__profile__’])

del mdb.models[’Model-1’].sketches[’__profile__’]

#----------------------Partition part----------------------

mdb.models[’Model-1’].parts[’TEM’].PartitionCellByPlaneThreePoints
(cells=
mdb.models[’Model-1’].parts[’TEM’].cells.getSequenceFromMask((

’[#1 ]’, ), )
, point1=mdb.models[’Model-1’].parts[’TEM’].InterestingPoint(
mdb.models[’Model-1’].parts[’TEM’].edges[1], MIDDLE), point2=
mdb.models[’Model-1’].parts[’TEM’].InterestingPoint(
mdb.models[’Model-1’].parts[’TEM’].edges[3], MIDDLE), point3=
mdb.models[’Model-1’].parts[’TEM’].vertices[0])

mdb.models[’Model-1’].parts[’TEM’].PartitionCellByPlaneThreePoints
(cells=
mdb.models[’Model-1’].parts[’TEM’].cells.getSequenceFromMask((

’[#2 ]’, ), )
, point1=mdb.models[’Model-1’].parts[’TEM’].InterestingPoint(
mdb.models[’Model-1’].parts[’TEM’].edges[9], MIDDLE), point2=
mdb.models[’Model-1’].parts[’TEM’].InterestingPoint(
mdb.models[’Model-1’].parts[’TEM’].edges[8], MIDDLE), point3=
mdb.models[’Model-1’].parts[’TEM’].vertices[1])
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mdb.models[’Model-1’].parts[’TEM’].PartitionCellByPlaneThreePoints
(cells=
mdb.models[’Model-1’].parts[’TEM’].cells.getSequenceFromMask((

’[#2 ]’, ), )
, point1=mdb.models[’Model-1’].parts[’TEM’].InterestingPoint(
mdb.models[’Model-1’].parts[’TEM’].edges[14], MIDDLE), point2=
mdb.models[’Model-1’].parts[’TEM’].InterestingPoint(
mdb.models[’Model-1’].parts[’TEM’].edges[13], MIDDLE), point3=
mdb.models[’Model-1’].parts[’TEM’].vertices[1])

mdb.models[’Model-1’].ConstrainedSketch(gridSpacing=5.06, name=’
__profile__’,
sheetSize=202.46, transform=
mdb.models[’Model-1’].parts[’TEM’].MakeSketchTransform(
sketchPlane=mdb.models[’Model-1’].parts[’TEM’].faces[8],
sketchPlaneSide=SIDE1,
sketchUpEdge=mdb.models[’Model-1’].parts[’TEM’].edges[14],
sketchOrientation=TOP, origin=(23.339913, -28.854688, 0.0)))

mdb.models[’Model-1’].parts[’TEM’].projectReferencesOntoSketch(
filter=
COPLANAR_EDGES, sketch=mdb.models[’Model-1’].sketches[’

__profile__’])
mdb.models[’Model-1’].sketches[’__profile__’].sketchOptions.

setValues(
gridOrigin=(-23.3399130000917, 28.8546879999259))

mdb.models[’Model-1’].sketches[’__profile__’].
EllipseByCenterPerimeter(
axisPoint1=(-23.3399130000917, 98.8546879999259), axisPoint2=(
6.6600869999083, 28.8546879999259), center=(-23.3399130000917,
28.8546879999259))

mdb.models[’Model-1’].parts[’TEM’].PartitionFaceBySketch(faces=
mdb.models[’Model-1’].parts[’TEM’].faces.getSequenceFromMask((

’[#100 ]’, ),
), sketch=mdb.models[’Model-1’].sketches[’__profile__’],

sketchOrientation=
TOP, sketchUpEdge=mdb.models[’Model-1’].parts[’TEM’].edges

[14])
del mdb.models[’Model-1’].sketches[’__profile__’]
mdb.models[’Model-1’].parts[’TEM’].PartitionCellBySweepEdge(cells=

mdb.models[’Model-1’].parts[’TEM’].cells.getSequenceFromMask((
’[#4 ]’, ), )

, edges=(mdb.models[’Model-1’].parts[’TEM’].edges[0], ),
sweepPath=

mdb.models[’Model-1’].parts[’TEM’].edges[9])
mdb.models[’Model-1’].parts[’TEM’].PartitionCellBySweepEdge(cells=

mdb.models[’Model-1’].parts[’TEM’].cells.getSequenceFromMask((
’[#2 ]’, ), )

, edges=(mdb.models[’Model-1’].parts[’TEM’].edges[0], ),
sweepPath=

mdb.models[’Model-1’].parts[’TEM’].edges[16])
mdb.models[’Model-1’].parts[’TEM’].PartitionCellBySweepEdge(cells=
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mdb.models[’Model-1’].parts[’TEM’].cells.getSequenceFromMask((
’[#20 ]’, ),

), edges=(mdb.models[’Model-1’].parts[’TEM’].edges[0], ),
sweepPath=

mdb.models[’Model-1’].parts[’TEM’].edges[28])
mdb.models[’Model-1’].parts[’TEM’].PartitionCellBySweepEdge(cells=

mdb.models[’Model-1’].parts[’TEM’].cells.getSequenceFromMask((
’[#10 ]’, ),

), edges=(mdb.models[’Model-1’].parts[’TEM’].edges[0], ),
sweepPath=

mdb.models[’Model-1’].parts[’TEM’].edges[31])
mdb.models[’Model-1’].parts[’TEM’].DatumPlaneByPrincipalPlane(

offset=0.0,
principalPlane=XZPLANE)

mdb.models[’Model-1’].parts[’TEM’].DatumPlaneByPrincipalPlane(
offset=-20.0,
principalPlane=XZPLANE)

mdb.models[’Model-1’].parts[’TEM’].DatumPlaneByPrincipalPlane(
offset=-40.0,
principalPlane=XZPLANE)

mdb.models[’Model-1’].parts[’TEM’].PartitionCellByDatumPlane(cells
=
mdb.models[’Model-1’].parts[’TEM’].cells.getSequenceFromMask((

’[#ff ]’, ),
), datumPlane=mdb.models[’Model-1’].parts[’TEM’].datums[10])

mdb.models[’Model-1’].parts[’TEM’].PartitionCellByDatumPlane(cells
=
mdb.models[’Model-1’].parts[’TEM’].cells.getSequenceFromMask((

’[#1cc7 ]’,
), ), datumPlane=mdb.models[’Model-1’].parts[’TEM’].datums

[11])
mdb.models[’Model-1’].parts[’TEM’].PartitionCellByDatumPlane(cells

=
mdb.models[’Model-1’].parts[’TEM’].cells.getSequenceFromMask((

’[#18017c ]’,
), ), datumPlane=mdb.models[’Model-1’].parts[’TEM’].datums

[12])
mdb.models[’Model-1’].parts[’TEM’].Surface(name=’endoSurf’,

side1Faces=
mdb.models[’Model-1’].parts[’TEM’].faces.getSequenceFromMask((
’[#300c000 #330 #33 #3042 ]’, ), ))

#----------------------Create mesh----------------------

mdb.models[’Model-1’].parts[’TEM’].setElementType(elemTypes=(
ElemType(
elemCode=C3D8H, elemLibrary=STANDARD), ElemType(elemCode=C3D6,
elemLibrary=STANDARD), ElemType(elemCode=C3D4, elemLibrary=

STANDARD)),
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regions=(mdb.models[’Model-1’].parts[’TEM’].cells.
getSequenceFromMask((

’[#ffffffff ]’, ), ), ))
mdb.models[’Model-1’].parts[’TEM’].seedPart(deviationFactor=0.1,

minSizeFactor=
0.1, size=2.5)

mdb.models[’Model-1’].parts[’TEM’].generateMesh()
mdb.models[’Model-1’].parts[’TEM’].assignStackDirection(cells=

mdb.models[’Model-1’].parts[’TEM’].cells.getSequenceFromMask((
’[#ffffffff ]’, ), ), referenceRegion=
mdb.models[’Model-1’].parts[’TEM’].faces[72])

mdb.models[’Model-1’].parts[’TEM’].PartFromMesh(copySets=True,
name=
’TEM-mesh-1’)

mdb.models[’Model-1’].parts.changeKey(fromName=’TEM-mesh-1’,
toName=
’TEM-4layers’)

#----------------------Create sets----------------------

mdb.models[’Model-1’].parts[’TEM-4layers’].Set(elements=
mdb.models[’Model-1’].parts[’TEM-4layers’].elements.

getSequenceFromMask(
mask=(’[#ffffffff:5 #ffff #0:16 #ff000000 #ffffffff:9 #0:5 #

ffff0000’,
’ #ffffffff:3 #ffff #0:33 #ffffffff:3 #ffffff #0:38 #ffffffff

:5’,
’ #ffff #0:5 #ffffffff:4 #0:7 #ff000000 #ffffffff:3 #ffff’,
’ #0:5 #ffffffff:9 #ffff #0:3 #ffff0000 #ffffffff:3 #ffff’,
’ #0:7 #ffffff00 #ffffffff:3 #0:65 #ffffffff:3 #ffffff #0:7’,
’ #ffff0000 #ffffffff:3 #ffff:8 #5555ffff #55555555:7 ]’, ), )

, name=
’layer1’)

mdb.models[’Model-1’].parts[’TEM-4layers’].Set(elements=
mdb.models[’Model-1’].parts[’TEM-4layers’].elements.

getSequenceFromMask(
mask=(’[#0:5 #ffff0000 #ffffffff:5 #0:8 #ffffffff:3 #ffffff

#0:9’,
’ #ffffffff:5 #ffff #0:3 #ffff0000 #ffffffff:3 #ffff #0:32’,
’ #ff000000 #ffffffff:3 #ffff #0:39 #ffff0000 #ffffffff:5 #0:4

’,
’ #ffffffff:7 #ffffff #0:3 #ffff0000 #ffffffff:5 #0:9 #

ffff0000’,
’ #ffffffff:3 #ffff #0:3 #ffff0000 #ffffffff:7 #ff #0:71’,
’ #ff000000 #ffffffff:7 #ffff #0:3 #ffff0000:8 #aaaa0000 #

aaaaaaaa:7 ]’, ),
), name=’layer2’)

mdb.models[’Model-1’].parts[’TEM-4layers’].Set(elements=
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mdb.models[’Model-1’].parts[’TEM-4layers’].elements.
getSequenceFromMask(

mask=(’[#0:15 #ffffffff:4 #0:32 #ffffffff:5 #ffff #0:5 #
ffffffff:5’,

’ #ffff #0:3 #ffffff00 #ffffffff:3 #0:11 #ffff0000 #ffffffff:3
’,

’ #ffff #0:5 #ffffffff:5 #ffff #0:3 #ffff0000 #ffffffff:3’,
’ #ffff #0:3 #ffffff00 #ffffffff:3 #0:61 #55555555:8 #aaaaaaaa

:7’,
’ #aaaa #0:3 #ffffff00 #ffffffff:3 #0:4 #ffffffff:4 #ffff:8’,
’ #c0007fff #f0001fff #fc0007ff #ff0001ff #ffc0007f #fff0001f

#fffc0007’,
’ #1 #0:3 #ffffff00 #ffffffff:3 #0:5 #ffff0000 #ffffffff:5 ]’,

), ), name=
’layer3’)

mdb.models[’Model-1’].parts[’TEM-4layers’].Set(elements=
mdb.models[’Model-1’].parts[’TEM-4layers’].elements.

getSequenceFromMask(
mask=(’[#0:11 #ffffffff:4 #0:30 #ffff0000 #ffffffff:5 #0:5 #

ffff0000’,
’ #ffffffff:5 #0:5 #ffff0000 #ffffffff:3 #ff #0:10 #ffff0000’,
’ #ffffffff:3 #ffff #0:3 #ffff0000 #ffffffff:5 #0:5 #ffff0000’

,
’ #ffffffff:3 #ffff #0:3 #ffff0000 #ffffffff:3 #ff #0:64’,
’ #aaaaaaaa:8 #55555555:7 #ffff5555 #ffffffff:3 #ff #0:3 #

ffffffff:4’,
’ #0:4 #ffff0000:8 #3fff8000 #fffe000 #3fff800 #fffe00 #3fff80

’,
’ #fffe0 #3fff8 #fffffffe #ffffffff:3 #ff #0:3 #ffffffff:5’, ’

#ffff ]’, ),
), name=’layer4’)

mdb.models[’Model-1’].parts[’TEM-4layers’].Set(name=’basalNodes’,
nodes=
mdb.models[’Model-1’].parts[’TEM-4layers’].nodes.

getSequenceFromMask(mask=(
’[#0 #7afe0 #0:25 #ffc00000 #fffc000f #80010180 #bfffffff’,
’ #1fff80 #0 #ffff8000 #f0003fff #80ffffff #ffe03fff #fffff’,
’ #0:138 #c0000000 #fff #0:6 #7fff000 #0:3 #fffc0000’,
’ #0:7 #ffc00000 #1f #0:5 #c0000000 #fff #0:20’,
’ #ffffffe0 #7 #0:5 #fffc000 ]’, ), ))

mdb.models[’Model-1’].parts[’TEM-4layers’].Set(name=’endoNodes’,
nodes=
mdb.models[’Model-1’].parts[’TEM-4layers’].nodes.

getSequenceFromMask(mask=(
’[#e1f0007 #fffe0198 #7fff7fff #0:5 #fffc0000 #8fffffff #

fffffff’,
’ #fffff800 #ffff #0:4 #fc000000 #ffffffff #f #0:3’,
’ #fffff800 #7fff #fdfffff0 #fffeffff #0 #fffff800 #7f’,
’ #0:5 #ff000000 #ff9fffff #ffffffff:5 #3fff #0:16 #fff80000’,
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’ #ffffffff:2 #1fffff #80000000 #ffffffff:4 #1ffffff #0:5 #
ffff0000’,

’ #ffffffff:2 #1ffffff #0:32 #c0000000 #ffffffff:3 #0:24 #
fffc0000’,

’ #ffffffff:4 #fc000fff #ffffffff:3 #7 #0:2 #f8000000 #
ffffffff:2’,

’ #1fffffff #fffc0000 #ffffffff:7 #1fffff #fffff800 #ffffffff
:2 #fffff’,

’ #0:6 #ffffc000 #ffffffff:2 #ffff #0:41 #fffff000 #ffffffff:5
’,

’ #7fffff #0 #fffffff8 #ffffffff:5 #3fff ]’, ), ))
mdb.models[’Model-1’].parts[’TEM-4layers’].Set(name=’apexNodes’,

nodes=
mdb.models[’Model-1’].parts[’TEM-4layers’].nodes.

getSequenceFromMask(mask=(
’[#800024 #0:2 #1 #0:10 #10000000 ]’, ), ))

#----------------------Create material----------------------

mdb.models[’Model-1’].Material(name=’orthotropic’)
mdb.models[’Model-1’].materials[’orthotropic’].Depvar(n=10)
mdb.models[’Model-1’].materials[’orthotropic’].UserMaterial(

mechanicalConstants=(0.0, 0.000496, 7.209, 0.015193, 20.417,
0.003283,

11.176, 0.000662, 9.466, 100000.0))

#----------------------Create section----------------------

mdb.models[’Model-1’].HomogeneousSolidSection(material=’
orthotropic’, name=
’Section-1’, thickness=None)

mdb.models[’Model-1’].parts[’TEM-4layers’].SectionAssignment(
offset=0.0,
offsetField=’’, offsetType=MIDDLE_SURFACE, region=Region(
elements=mdb.models[’Model-1’].parts[’TEM-4layers’].elements.

getSequenceFromMask(
mask=(’[#ffffffff:274 ]’, ), )), sectionName=’Section-1’,
thicknessAssignment=FROM_SECTION)

#----------------------Assign material orientation
----------------------

mdb.models[’Model-1’].parts[’TEM-4layers’].MaterialOrientation(
additionalRotationType=ROTATION_NONE, fieldName=’’, localCsys=

None,
orientationType=USER, region=Region(
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elements=mdb.models[’Model-1’].parts[’TEM-4layers’].elements.
getSequenceFromMask(

mask=(’[#ffffffff:274 ]’, ), )), stackDirection=STACK_3)

#----------------------Create assembly----------------------

mdb.models[’Model-1’].rootAssembly.DatumCsysByDefault(CARTESIAN)
mdb.models[’Model-1’].rootAssembly.Instance(dependent=ON, name=’

TEM-4layers-1’,
part=mdb.models[’Model-1’].parts[’TEM-4layers’])

mdb.models[’Model-1’].rootAssembly.rotate(angle=90.0,
axisDirection=(1.0, 0.0,
0.0), axisPoint=(0.0, 0.0, 0.0), instanceList=(’TEM-4layers-1’

, ))

#----------------------Create step----------------------

mdb.models[’Model-1’].StaticStep(adaptiveDampingRatio=None,
continueDampingFactors=False, initialInc=0.001, maxInc=0.2,

maxNumInc=20000
, minInc=1e-15, name=’static’, nlgeom=ON, previous=’Initial’,
stabilizationMagnitude=1e-08, stabilizationMethod=

DAMPING_FACTOR,
timePeriod=0.2)

mdb.models[’Model-1’].steps[’static’].control.setValues(
allowPropagation=OFF,
resetDefaultValues=OFF, timeIncrementation=(4.0, 8.0, 9.0,

16.0, 10.0, 4.0,
12.0, 10.0, 6.0, 3.0, 50.0))

#----------------------Request output----------------------

mdb.models[’Model-1’].fieldOutputRequests[’F-Output-1’].setValues(
numIntervals=
50, timeMarks=OFF, variables=(’S’, ’PE’, ’PEEQ’, ’PEMAG’, ’LE’

, ’U’, ’RF’,
’CF’, ’SDV’))

mdb.models[’Model-1’].historyOutputRequests[’H-Output-1’].
setValues(
numIntervals=50, timeMarks=OFF)

#----------------------Apply loads and BCs----------------------

mdb.models[’Model-1’].TabularAmplitude(data=((0.0, 0.0), (0.01,
2.3556), (0.02,
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4.5224), (0.03, 6.5004), (0.04, 8.2896), (0.05, 9.89), (0.06,
11.3016), (

0.07, 12.5244), (0.08, 13.5584), (0.09, 14.4036), (0.1, 15.06)
, (0.11,

15.5276), (0.12, 15.8064), (0.13, 15.8964), (0.14, 15.7976),
(0.15, 15.51),

(0.16, 15.0336), (0.17, 14.3684), (0.18, 13.5144), (0.19,
12.4716), (0.2,

11.24)), name=’systolicAmp’, smooth=SOLVER_DEFAULT, timeSpan=
TOTAL)

mdb.models[’Model-1’].Pressure(amplitude=’systolicAmp’,
createStepName=’static’
, distributionType=UNIFORM, field=’’, magnitude=0.001, name=
’systolicPressure’, region=
mdb.models[’Model-1’].rootAssembly.instances[’TEM-4layers-1’].

surfaces[’endoSurf’])
mdb.models[’Model-1’].rootAssembly.DatumCsysByThreePoints(

coordSysType=
CYLINDRICAL, name=’CyldricalCSYS’, origin=(0.0, 0.0, 20.0),

point1=(1.0,
0.0, 20.0), point2=(0.0, 1.0, 20.0))

mdb.models[’Model-1’].DisplacementBC(amplitude=UNSET,
createStepName=’static’,
distributionType=UNIFORM, fieldName=’’, fixed=OFF, localCsys=
mdb.models[’Model-1’].rootAssembly.datums[4], name=’basalBC’,

region=
mdb.models[’Model-1’].rootAssembly.instances[’TEM-4layers-1’].

sets[’basalNodes’]
, u1=UNSET, u2=UNSET, u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET)

#The following BC, restrcting radial movement in the apex node can
be used if,

#problems with rigid body motion occurs.
mdb.models[’Model-1’].DisplacementBC(amplitude=UNSET,

createStepName=’static’,
distributionType=UNIFORM, fieldName=’’, fixed=OFF, localCsys=
mdb.models[’Model-1’].rootAssembly.datums[4], name=’apexBC’,

region=
mdb.models[’Model-1’].rootAssembly.instances[’TEM-4layers-1’].

sets[’apexNodes’]
, u1=0.0, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET, ur3=UNSET)
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B Write ORIENT Subroutine

clear all
close all

%This MATLAB script writes an ORIENT user subroutine for Abaqus
used

%in the left ventricle truncated ellipsoid model based on the
Abaqus input file.

%It assumes that the Abaqus model is partitioned transmurally and
that

%the element sets defined containing the element for each layer.
Using this

%information different fiber and sheet angles are given to each
layer.

%Defining number of layers, fiber and sheet angles

nLayers = 4;

angleAmp = 60*pi()/180;
dAngle = 2*angleAmp/(nLayers-1);

l1angle = -angleAmp;
l2angle = -angleAmp + dAngle;
l3angle = -angleAmp + 2*dAngle;
l4angle = -angleAmp + 3*dAngle;

sheetProjection = 45*pi()/180;
dSheetProjection = 2*sheetProjection/(nLayers-1);

sheetl1angle = atan2(tan(-sheetProjection),cos(l1angle));
sheetl2angle = atan2(tan(-sheetProjection+dSheetProjection),cos(

l2angle));
sheetl3angle = atan2(tan(-sheetProjection+2*dSheetProjection),cos(

l3angle));
sheetl4angle = atan2(tan(-sheetProjection+3*dSheetProjection),cos(

l4angle));

%Finding the line numbers for the relevant lines in the input file
inputFile = fopen(’TEM_4layers_active_fn100_f60_2.inp’,’rt’);
counter = 0;
while 1

tline = fgetl(inputFile);
counter = counter + 1;
if ischar(tline)

U = strfind(tline, ’*Node’);
if isfinite(U) == 1;

nodeLine = counter;
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end
U = strfind(tline, ’*Element’);
if isfinite(U) == 1;

elsLine = counter;
end
U = strfind(tline, ’elset=Layer1’);
if isfinite(U) == 1;

layer1line = counter;
end
U = strfind(tline, ’elset=Layer2’);
if isfinite(U) == 1;

layer2line = counter;
end
U = strfind(tline, ’elset=Layer3’);
if isfinite(U) == 1;

layer3line = counter;
end
U = strfind(tline, ’elset=Layer4’);
if isfinite(U) == 1;

layer4line = counter;
end
U = strfind(tline, ’nset=basalNodes’);
if isfinite(U) == 1;

layer4stop = counter;
break

end
end

end
fclose(inputFile);

nnodes=elsLine-nodeLine-1;
noel=layer1line-elsLine-1;

%Reading the data from the input file
nodeCoor = csvread(’TEM_4layers_active_fn100_f60_2.inp’,nodeLine,

1, [nodeLine,1,nodeLine+nnodes-1,3]);

%Rotating coordinates the same way the instance is rotated in
Abaqus, 90

%degrees about x-axis
tempY = nodeCoor(:,2);
tempZ = nodeCoor(:,3);

nodeCoor(:,2) = cos(pi()/2)*tempY(:)-sin(pi()/2)*tempZ(:);
nodeCoor(:,3) = sin(pi()/2)*tempY(:)+cos(pi()/2)*tempZ(:);

elements = csvread(’TEM_4layers_active_fn100_f60_2.inp’,elsLine,
1, [elsLine,1,elsLine+noel-1,8]);
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layer1 = csvread(’TEM_4layers_active_fn100_f60_2.inp’,layer1line,
0, [layer1line,0,layer2line-2,15]);

layer1 = sort(layer1(:));
layer1(layer1==0) = [];

layer2 = csvread(’TEM_4layers_active_fn100_f60_2.inp’,layer2line,
0, [layer2line,0,layer3line-2,15]);

layer2 = sort(layer2(:));
layer2(layer2==0) = [];

layer3 = csvread(’TEM_4layers_active_fn100_f60_2.inp’,layer3line,
0, [layer3line,0,layer4line-2,15]);

layer3 = sort(layer3(:));
layer3(layer3==0) = [];

layer4 = csvread(’TEM_4layers_active_fn100_f60_2.inp’,layer4line,
0, [layer4line,0,layer4stop-2,15]);

layer4 = sort(layer4(:));
layer4(layer4==0) = [];

%Ordering the relevant angles into lists according to the element
numbering

elementAngleList = zeros(noel,1);
elementSheetAngleList = zeros(noel,1);

for i=1:numel(layer1)
elementAngleList(layer1(i)) = l1angle;
elementSheetAngleList(layer1(i)) = sheetl1angle;

end
for i=1:numel(layer2)

elementAngleList(layer2(i)) = l2angle;
elementSheetAngleList(layer2(i)) = sheetl2angle;

end
for i=1:numel(layer3)

elementAngleList(layer3(i)) = l3angle;
elementSheetAngleList(layer3(i)) = sheetl3angle;

end
for i=1:numel(layer4)

elementAngleList(layer4(i)) = l4angle;
elementSheetAngleList(layer4(i)) = sheetl4angle;

end

%Declaring variables
originalCoor = zeros(8,3);
elsCenteroid = zeros(noel,3);
f = zeros(noel,3);
s = zeros(noel,3);
n = zeros(noel,3);
T = zeros(3,3,noel);
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phi = zeros(noel);
theta = zeros(noel);
R1= zeros(3,3);
R2= zeros(3,3);

for i=1:noel
for j=1:8

originalCoor(j,:) = nodeCoor(elements(i,j),:);

end
%Centeroids are only calculated for plotting purposes
for k=1:8

elsCenteroid(i,1) = elsCenteroid(i,1)+originalCoor(k,1);
elsCenteroid(i,2) = elsCenteroid(i,2)+originalCoor(k,2);
elsCenteroid(i,3) = elsCenteroid(i,3)+originalCoor(k,3);

end
elsCenteroid(i,1) = elsCenteroid(i,1)/8;
elsCenteroid(i,2) = elsCenteroid(i,2)/8;
elsCenteroid(i,3) = elsCenteroid(i,3)/8;

%Defining epi/endocardium plane by two vectors in the 1-2-3-4
plane

v1=[originalCoor(1,1)-originalCoor(3,1) originalCoor(1,2)-
originalCoor(3,2) originalCoor(1,3)-originalCoor(3,3)];

v2=[originalCoor(2,1)-originalCoor(4,1) originalCoor(2,2)-
originalCoor(4,2) originalCoor(2,3)-originalCoor(4,3)];

%The vector defining the s0-axis is the normalvector to the
plane and

%thus the cross product of the two vectors
s0temp=cross(v1,v2);

s0(1)=s0temp(1)/sqrt(s0temp(1)ˆ2+s0temp(2)ˆ2+s0temp(3)ˆ2);
s0(2)=s0temp(2)/sqrt(s0temp(1)ˆ2+s0temp(2)ˆ2+s0temp(3)ˆ2);
s0(3)=s0temp(3)/sqrt(s0temp(1)ˆ2+s0temp(2)ˆ2+s0temp(3)ˆ2);

%Calculate relevant angles
phi(i) = atan2(s0(2),s0(1));

%Define inital v0-axis as a 90 degree rotation of s0 with no
fiberangle

f0(1)=cos(phi(i)+pi()/2);
f0(2)=sin(phi(i)+pi()/2);
f0(3)=0;

%Define inital n0 axis as cross-product of s0 and v0
f0temp=[f0(1) f0(2) f0(3)];

n0temp=cross(f0temp,s0temp);
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n0(1)=n0temp(1);
n0(2)=n0temp(2);
n0(3)=n0temp(3);

%Inital coordinate system

Tinital = [f0(1) f0(2) f0(3); s0(1) s0(2) s0(3); n0(1) n0(2)
n0(3)];

%Rotation matrix to rotate inital coordinate system about f0
axis with

%an angle alpha
alpha = elementSheetAngleList(i);
R1 = [cos(alpha)+f0(1)ˆ2*(1-cos(alpha)) f0(1)*f0(2)*(1-cos(

alpha))-f0(3)*sin(alpha) f0(1)*f0(3)*(1-cos(alpha))+f0(2)*
sin(alpha);
f0(2)*f0(1)*(1-cos(alpha))+f0(3)*sin(alpha) cos(alpha)+f0

(2)ˆ2*(1-cos(alpha)) f0(2)*f0(3)*(1-cos(alpha))-f0(1)*
sin(alpha);

f0(3)*f0(1)*(1-cos(alpha))-f0(2)*sin(alpha) f0(3)*f0(2)

*(1-cos(alpha))+f0(1)*sin(alpha) cos(alpha)+f0(3)
ˆ2*(1-cos(alpha))];

%Rotate coordinate system

T1=Tinital*R1;

%Rotation matrix to rotate inital coordinate system about s0
axis with

%an angle beta
beta = elementAngleList(i);
R2 = [cos(beta)+s0(1)ˆ2*(1-cos(beta)) s0(1)*s0(2)*(1-cos(beta)

)-s0(3)*sin(beta) s0(1)*s0(3)*(1-cos(beta))+s0(2)*sin(beta
);
s0(2)*s0(1)*(1-cos(beta))+s0(3)*sin(beta) cos(beta)+s0(2)

ˆ2*(1-cos(beta)) s0(2)*s0(3)*(1-cos(beta))-s0(1)*sin(
beta);

s0(3)*s0(1)*(1-cos(beta))-s0(2)*sin(beta) s0(3)*s0(2)*(1-
cos(beta))+s0(1)*sin(beta) cos(beta)+s0(3)ˆ2*(1-cos(
beta))];

%Rotate coordinate system

T(:,:,i)=T1*R2;

%Extract vectors from T-matrix for plotting
f(i,1)=T(1,1,i);
f(i,2)=T(1,2,i);
f(i,3)=T(1,3,i);
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s(i,1)=T(2,1,i);
s(i,2)=T(2,2,i);
s(i,3)=T(2,3,i);
n(i,1)=T(3,1,i);
n(i,2)=T(3,2,i);
n(i,3)=T(3,3,i);

end

%WRITE FORTRAN SUBROUTINE
orientFile = fopen(’ORIENT_4layers_f60_s45_NOTVALID.for’,’w’);
fprintf(orientFile, ’%s\n’, ’ SUBROUTINE ORIENT(T,NOEL,NPT,

LAYER,KSPT,COORDS,BASIS,’);
fprintf(orientFile, ’%s\n’, ’ 1 NNODES,CNODES,JNNUM)’);
fprintf(orientFile, ’%s\n’, ’C’);
fprintf(orientFile, ’%s\n’, ’ INCLUDE ’’ABA_PARAM.INC’’’);
fprintf(orientFile, ’%s\n’, ’C’);
fprintf(orientFile, ’%s\n’, ’ CHARACTER*80 ORNAME’);
fprintf(orientFile, ’%s\n’, ’C’);
fprintf(orientFile, ’%s\n’, ’ DIMENSION T(3,3),COORDS(3),

BASIS(3,3),CNODES(3,NNODES)’);
fprintf(orientFile, ’%s\n’, ’ DIMENSION JNNUM(NNODES)’);

for i=1:noel
fprintf(orientFile, ’%s%d%s\n’, ’ IF (NOEL == ’,i,’) THEN

’);

fprintf(orientFile, ’%s%d\n’, ’ T(1,1) = ’,T(1,1,i));
fprintf(orientFile, ’%s%d\n’, ’ T(2,1) = ’,T(1,2,i));
fprintf(orientFile, ’%s%d\n’, ’ T(3,1) = ’,T(1,3,i));
fprintf(orientFile, ’%s%d\n’, ’ T(1,2) = ’,T(2,1,i));
fprintf(orientFile, ’%s%d\n’, ’ T(2,2) = ’,T(2,2,i));
fprintf(orientFile, ’%s%d\n’, ’ T(3,2) = ’,T(2,3,i));
fprintf(orientFile, ’%s%d\n’, ’ T(1,3) = ’,T(3,1,i));
fprintf(orientFile, ’%s%d\n’, ’ T(2,3) = ’,T(3,2,i));
fprintf(orientFile, ’%s%d\n’, ’ T(3,3) = ’,T(3,3,i));

fprintf(orientFile, ’%s\n’, ’ ENDIF’);
end

fprintf(orientFile, ’%s\n’, ’ RETURN’);
fprintf(orientFile, ’%s\n’, ’ END’);

%The rest of the code are only plotting for the purpose of visual
%confirmation of correct implementation of fiber angle field.

%Arrange all the coordinates for the element centeroid in theire
respective

%layers
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layer1Coor=zeros(numel(layer1),3);
layer2Coor=zeros(numel(layer2),3);
layer3Coor=zeros(numel(layer3),3);
layer4Coor=zeros(numel(layer4),3);

for i=1:numel(layer1)
layer1Coor(i,1)=elsCenteroid(layer1(i),1);
layer1Coor(i,2)=elsCenteroid(layer1(i),2);
layer1Coor(i,3)=elsCenteroid(layer1(i),3);
end
for i=1:numel(layer2)
layer2Coor(i,1)=elsCenteroid(layer2(i),1);
layer2Coor(i,2)=elsCenteroid(layer2(i),2);
layer2Coor(i,3)=elsCenteroid(layer2(i),3);
end
for i=1:numel(layer3)
layer3Coor(i,1)=elsCenteroid(layer3(i),1);
layer3Coor(i,2)=elsCenteroid(layer3(i),2);
layer3Coor(i,3)=elsCenteroid(layer3(i),3);
end
for i=1:numel(layer4)
layer4Coor(i,1)=elsCenteroid(layer4(i),1);
layer4Coor(i,2)=elsCenteroid(layer4(i),2);
layer4Coor(i,3)=elsCenteroid(layer4(i),3);
end

for i=1:numel(layer4)
layer3fvector(i,1)=s(layer3(i),1);
layer3fvector(i,2)=s(layer3(i),2);
layer3fvector(i,3)=s(layer3(i),3);
end

for i=1:numel(layer4)
layer3svector(i,1)=s(layer3(i),1);
layer3svector(i,2)=s(layer3(i),2);
layer3svector(i,3)=s(layer3(i),3);
end

%Plotting the s and f vectors for layer3
figure()
hold on
quiver3(layer3Coor(:,1), layer3Coor(:,2), layer3Coor(:,3),

layer3fvector(:,1),layer3fvector(:,2),layer3fvector(:,3),’r’,
’AutoScaleFactor’, 2)

xlabel(’X’)
ylabel(’Y’)
zlabel(’Z’)
hold off

figure()
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hold on
quiver3(layer3Coor(:,1), layer3Coor(:,2), layer3Coor(:,3),

layer3svector(:,1),layer3svector(:,2),layer3svector(:,3),’b’,
’AutoScaleFactor’, 2)

xlabel(’X’)
ylabel(’Y’)
zlabel(’Z’)
hold off
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C UMAT Subroutine

C This Abaqus UMAT user subroutine implements Holzapfels
structurally based

C constitutive material law. The passive part was implemented by
Victorien Prot

C and is is unchanged in this thesis. The implentation of the
active contraction

C is done by adding to the vairable PSI4f and the addition of the
new vairables

C PSI6 and PSI6sn. These are futher used in the stress calculation
.

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,
1 RPL,DDSDDT,DRPLDE,DRPLDT,STRAN,DSTRAN,
2 TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,MATERL,NDI,NSHR,NTENS,
3 NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,CELENT,
4 DFGRD0,DFGRD1,NOEL,NPT,KSLAY,KSPT,KSTEP,KINC)

C
INCLUDE ’ABA_PARAM.INC’

C
CHARACTER*8 MATERL
DIMENSION STRESS(NTENS),STATEV(NSTATV),

1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),
2 STRAN(NTENS),DSTRAN(NTENS),DFGRD0(3,3),DFGRD1(3,3),
3 TIME(2),PREDEF(1),DPRED(1),PROPS(NPROPS),COORDS(3),DROT

(3,3)
C

C LOCAL ARRAYS
C ----------------------------------------------------------------
C BBAR - DEVIATORIC RIGHT CAUCHY-GREEN TENSOR
C DISTGR - DEVIATORIC DEFORMATION GRADIENT (DISTORTION TENSOR)
C ----------------------------------------------------------------
C

DIMENSION BBAR(6),DISTGR(3,3), BB(3,3), bf0(3), bf(3),
SIGBAR(3,3)

DIMENsION CB(3,3), SIGISO(3,3),devB(3,3), devff(3,3)
DIMENSION devss(3,3), devfs(3,3),bs0(3), bs(3), bn0(3), bn

(3)
C

PARAMETER(ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, FOUR=4.
D0)

C
C ----------------------------------------------------------------

C ----------------------------------------------------------------
C
C ELASTIC PROPERTIES
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C

STATEV(1)=0.
STATEV(2)=0.
STATEV(3)=0.
STATEV(4)=0.
STATEV(5)=0.
STATEV(6)=0.
STATEV(7)=0.
STATEV(8)=0.

STATEV(10)=0.

C10=PROPS(1)

a=PROPS(2)
b=PROPS(3)

af=PROPS(4)
bff=PROPS(5)

as=PROPS(6)
bss=PROPS(7)

afs=PROPS(8)
bfs=PROPS(9)

D11 =PROPS(10)

C
C JACOBIAN AND DISTORTION TENSOR
C

DET=DFGRD1(1, 1)*DFGRD1(2, 2)*DFGRD1(3, 3)
1 -DFGRD1(1, 2)*DFGRD1(2, 1)*DFGRD1(3, 3)
IF(NSHR.EQ.3) THEN

DET=DET+DFGRD1(1, 2)*DFGRD1(2, 3)*DFGRD1(3, 1)
1 +DFGRD1(1, 3)*DFGRD1(3, 2)*DFGRD1(2, 1)
2 -DFGRD1(1, 3)*DFGRD1(3,1)*DFGRD1(2, 2)
3 -DFGRD1(2, 3)*DFGRD1(3, 2)*DFGRD1(1, 1)
END IF
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SCALE=DET**(-ONE/THREE)
DO K1=1, 3

DO K2=1, 3
DISTGR(K2, K1)=SCALE*DFGRD1(K2, K1)

END DO
END DO

STATEV(1)=DET
STATEV(5)=DISTGR(1,2)-DISTGR(2,1)
STATEV(6)=DISTGR(1, 3)-DISTGR(3,1)
STATEV(7)=DISTGR(2,3)-DISTGR(3,2)
STATEV(8)=DISTGR(1,1)
STATEV(9)=DISTGR(2,2)
STATEV(10)=DISTGR(3,3)

C
C CALCULATE LEFT CAUCHY-GREEN TENSOR
C

BBAR(1)=DISTGR(1, 1)**2+DISTGR(1, 2)**2+DISTGR(1, 3)**2
BBAR(2)=DISTGR(2, 1)**2+DISTGR(2, 2)**2+DISTGR(2, 3)**2
BBAR(3)=DISTGR(3, 3)**2+DISTGR(3, 1)**2+DISTGR(3, 2)**2
BBAR(4)=DISTGR(1, 1)*DISTGR(2, 1)+DISTGR(1, 2)*DISTGR(2, 2)
1 +DISTGR(1, 3)*DISTGR(2, 3)
IF(NSHR.EQ.3) THEN

BBAR(5)=DISTGR(1, 1)*DISTGR(3, 1)+DISTGR(1, 2)*DISTGR(3,
2)

1 +DISTGR(1, 3)*DISTGR(3, 3)
BBAR(6)=DISTGR(2, 1)*DISTGR(3, 1)+DISTGR(2, 2)*DISTGR(3,

2)
1 +DISTGR(2, 3)*DISTGR(3, 3)
END IF

C
C CALCULATE THE STRESS
C

TRBBAR=(BBAR(1)+BBAR(2)+BBAR(3))/THREE
EG=TWO*C10/DET
EK=TWO*D11*(TWO*DET-ONE)
PR=TWO*D11*(DET-ONE)

c EK=D1*Log(sqrt(DET))+0.5*D1
c PR=D1*Log(sqrt(DET))

DO K1=1,NDI
STRESS(K1)=EG*(BBAR(K1)-TRBBAR)+PR

END DO
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DO K1=NDI+1,NDI+NSHR
STRESS(K1)=EG*BBAR(K1)

END DO
C
C CALCULATE THE STIFFNESS
C

EG23=EG*TWO/THREE

DDSDDE(1, 1)= EG23*(BBAR(1)+TRBBAR)+EK
DDSDDE(2, 2)= EG23*(BBAR(2)+TRBBAR)+EK
DDSDDE(3, 3)= EG23*(BBAR(3)+TRBBAR)+EK
DDSDDE(1, 2)=-EG23*(BBAR(1)+BBAR(2)-TRBBAR)+EK
DDSDDE(1, 3)=-EG23*(BBAR(1)+BBAR(3)-TRBBAR)+EK
DDSDDE(2, 3)=-EG23*(BBAR(2)+BBAR(3)-TRBBAR)+EK
DDSDDE(1, 4)= EG23*BBAR(4)/TWO
DDSDDE(2, 4)= EG23*BBAR(4)/TWO
DDSDDE(3, 4)=-EG23*BBAR(4)
DDSDDE(4, 4)= EG*(BBAR(1)+BBAR(2))/TWO
IF(NSHR.EQ.3) THEN
DDSDDE(1, 5)= EG23*BBAR(5)/TWO
DDSDDE(2, 5)=-EG23*BBAR(5)
DDSDDE(3, 5)= EG23*BBAR(5)/TWO
DDSDDE(1, 6)=-EG23*BBAR(6)
DDSDDE(2, 6)= EG23*BBAR(6)/TWO
DDSDDE(3, 6)= EG23*BBAR(6)/TWO
DDSDDE(5, 5)= EG*(BBAR(1)+BBAR(3))/TWO
DDSDDE(6, 6)= EG*(BBAR(2)+BBAR(3))/TWO
DDSDDE(4,5)= EG*BBAR(6)/TWO
DDSDDE(4,6)= EG*BBAR(5)/TWO
DDSDDE(5,6)= EG*BBAR(4)/TWO

END IF

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

BB(1,1) = DISTGR(1,1) ** 2 + DISTGR(1,2) ** 2 + DISTGR(1,3)

** 2

BB(1,2) = DISTGR(1,1) * DISTGR(2,1) + DISTGR(1,2) * DISTGR
(2,2) +

# DISTGR(1,3) * DISTGR(2,3)

BB(1,3) = DISTGR(1,1) * DISTGR(3,1) + DISTGR(1,2) * DISTGR
(3,2) +

# DISTGR(1,3) * DISTGR(3,3)

BB(2,1) = DISTGR(1,1) * DISTGR(2,1) + DISTGR(1,2) * DISTGR
(2,2) +
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# DISTGR(1,3) * DISTGR(2,3)

BB(2,2) = DISTGR(2,1) ** 2 + DISTGR(2,2) ** 2 + DISTGR(2,3)

** 2

BB(2,3) = DISTGR(2,1) * DISTGR(3,1) + DISTGR(2,2) * DISTGR
(3,2) +

# DISTGR(2,3) * DISTGR(3,3)

BB(3,1) = DISTGR(1,1) * DISTGR(3,1) + DISTGR(1,2) * DISTGR
(3,2) +

# DISTGR(1,3) * DISTGR(3,3)

BB(3,2) = DISTGR(2,1) * DISTGR(3,1) + DISTGR(2,2) * DISTGR
(3,2) +

# DISTGR(2,3) * DISTGR(3,3)

BB(3,3) = DISTGR(3,1) ** 2 + DISTGR(3,2) ** 2 + DISTGR(3,3)

** 2

CCCCCC

CB(1,1) = DISTGR(1,1) ** 2 + DISTGR(2,1) ** 2 + DISTGR
(3,1) ** 2

CB(1,2) = DISTGR(1,1) * DISTGR(1,2) + DISTGR(2,1) * DISTGR
(2,2) +

# DISTGR(3,1) * DISTGR(3,2)

CB(1,3) = DISTGR(1,1) * DISTGR(1,3) + DISTGR(2,1) * DISTGR
(2,3) +

# DISTGR(3,1) * DISTGR(3,3)

CB(2,1) = DISTGR(1,1) * DISTGR(1,2) + DISTGR(2,1) * DISTGR
(2,2) +

# DISTGR(3,1) * DISTGR(3,2)

CB(2,2) = DISTGR(1,2) ** 2 + DISTGR(2,2) ** 2 + DISTGR(3,2)

** 2

CB(2,3) = DISTGR(1,2) * DISTGR(1,3) + DISTGR(2,2) * DISTGR
(2,3) +

# DISTGR(3,2) * DISTGR(3,3)

CB(3,1) = DISTGR(1,1) * DISTGR(1,3) + DISTGR(2,1) * DISTGR
(2,3) +

# DISTGR(3,1) * DISTGR(3,3)

CB(3,2) = DISTGR(1,2) * DISTGR(1,3) + DISTGR(2,2) * DISTGR
(2,3) +
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# DISTGR(3,2) * DISTGR(3,3)

CB(3,3) = DISTGR(1,3) ** 2 + DISTGR(2,3) ** 2 + DISTGR(3,3)

** 2

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C INVARIANTS

bf0(1)=1
bf0(2)=0
bf0(3)=0

bf(1)=bf0(1)*DISTGR(1,1)+bf0(2)*DISTGR(1,2)+bf0(3)*DISTGR
(1,3)

bf(2)=bf0(1)*DISTGR(2,1)+bf0(2)*DISTGR(2,2)+bf0(3)*DISTGR
(2,3)

bf(3)=bf0(1)*DISTGR(3,1)+bf0(2)*DISTGR(3,2)+bf0(3)*DISTGR
(3,3)

BI1=CB(1,1)+CB(2,2)+CB(3,3)

BI4f=bf0(1) * (CB(1,1) * bf0(1)+ CB(1,2)*bf0(2) + CB(1,3)*
bf0(3)

#) + bf0(2) * (CB(2,1) * bf0(1) + CB(2,2)*bf0(2) + CB(2,3)*
bf0(3))

#+ bf0(3) * (CB(3,1) * bf0(1) + CB(3,2)*bf0(2) + CB(3,3)*bf0
(3))

bs0(1)=0
bs0(2)=1
bs0(3)=0

bs(1)=bs0(1)*DISTGR(1,1)+bs0(2)*DISTGR(1,2)+bs0(3)*DISTGR
(1,3)

bs(2)=bs0(1)*DISTGR(2,1)+bs0(2)*DISTGR(2,2)+bs0(3)*DISTGR
(2,3)

bs(3)=bs0(1)*DISTGR(3,1)+bs0(2)*DISTGR(3,2)+bs0(3)*DISTGR
(3,3)

BI4s=bs0(1) * (CB(1,1) * bs0(1) + CB(1,2)*bs0(2) + CB(1,3)

*bs0(3)
#) + bs0(2) * (CB(2,1) * bs0(1) + CB(2,2)*bs0(2) + CB(2,3)*

bs0(3))
#+ bs0(3) * (CB(3,1) * bs0(1) + CB(3,2) * bs0(2) + CB(3,3)*

bs0(3))

BI8=bf0(1) * (CB(1,1) * bs0(1) + CB(1,2) * bs0(2) + CB
(1,3) * bs
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#0(3)) + bf0(2) * (CB(2,1) * bs0(1) + CB(2,2) * bs0(2) + CB
(2,3) *

#bs0(3)) + bf0(3) * (CB(3,1) * bs0(1) + CB(3,2) * bs0(2) + CB
(3,3)

#* bs0(3))

STATEV(2)=ACOSD((bs(1)*bf(1)+bs(2)*bf(2)+bs(3)*bf(3))
#/(SQRT(bs(1)*bs(1)+bs(2)*bs(2)+bs(3)*bs(3))*
#SQRT(bf(1)*bf(1)+bf(2)*bf(2)+bf(3)*bf(3))))

STATEV(3)=BI4f
STATEV(4)=BI4s

bn0(1)=0
bn0(2)=0
bn0(3)=1

bn(1)=bn0(1)*DISTGR(1,1)+bn0(2)*DISTGR(1,2)+bn0(3)*DISTGR
(1,3)

bn(2)=bn0(1)*DISTGR(2,1)+bn0(2)*DISTGR(2,2)+bn0(3)*DISTGR
(2,3)

bn(3)=bn0(1)*DISTGR(3,1)+bn0(2)*DISTGR(3,2)+bn0(3)*DISTGR
(3,3)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C Material law

c a=0.496
c b=7.209
c af=15.193
c bff=20.417
c as=3.283
c bss=11.176
c afs=0.662
c bfs=9.466

C Active contraction
c Set Tm=100kPa=0.1MPa

TM=0.1
DMAXTIME=0.2

c Function governing stress at time
IF (TIME(2)<DMAXTIME) THEN
F=(TIME(2)+DTIME)/DMAXTIME

ELSE
F=1

ENDIF
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PSI1=a * exp(dble(b * (BI1 - 3))) / 0.2D1
PSI4f=af * dble(BI4f - 1) * exp(dble(bff * (BI4f - 1) **

2)) +
1(TM*F)/0.2D1
STATEV(10)=PSI4F
PSI4s=as * dble(BI4s - 1) * exp(dble(bss * (BI4s - 1) **

2))
PSI8=afs * BI8 * exp(bfs * BI8 ** 2)

PSI11=a * dble(b) * exp(dble(b * (BI1 - 3))) / 0.2D1

PSI14f=0
PSI14s=0
PSI18=0

PSI44f=af*exp(dble(bff * (BI4f - 1) ** 2)) + 0.2D1 * af *
dble((BI

#4f - 1) ** 2) * dble(bff) * exp(dble(bff * (BI4f - 1) ** 2))

PSI44s=as*exp(dble(bss * (BI4s - 1) ** 2)) + 0.2D1 * as *
dble((BI

#4s - 1) ** 2) * dble(bss) * exp(dble(bss * (BI4s - 1) ** 2))

PSI88=afs*exp(bfs * BI8 ** 2) + 0.2D1 * afs * BI8 ** 2 *
bfs * e

#xp(bfs * BI8 ** 2)

PSI6 = 0.6*(TM*F)/0.2D1

PSI6sn = 0.03*(TM*F)/0.2D1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C STRESS CALCULATION

SIGBAR(1,1) = 2 * PSI1 * BB(1,1) + 2 * PSI4f*bf(1)**2 +2*
PSI4s*bs(

#1) ** 2 + 2 * PSI8 * bf(1) * bs(1) + 2 * PSI6 * bn(1) * bn
(1) +

#0.2D1 * 0.2D1 * PSI6sn * bs(1) * bn(1)
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STATEV(11) = SIGBAR(1,1)
STATEV(12) = PSI1
STATEV(13) = PSI4s
STATEV(14) = PSI8

SIGBAR(1,2) = dble(2*PSI1 * BB(1,2))+dble(2 * PSI4f*bf(1)*bf
(2))+

# dble(2 * PSI4s * bs(1) * bs(2)) + 0.2D1 * PSI8 * (dble(bf
(1) * bs

#(2)) / 0.2D1 + dble(bs(1) * bf(2)) / 0.2D1) + 0.2D1 * PSI6 *
bn(1)

# * bn(2) + 0.2D1 * PSI6sn * (dble(bs(1) * bn(2)) / 0.2D1 +
dble(bn

#(1) * bs(2)) / 0.2D1)

SIGBAR(1,3) = dble(2 *PSI1*BB(1,3)) + dble(2*PSI4f*bf(1)* bf
(3)) +

# dble(2 * PSI4s * bs(1) * bs(3)) + 0.2D1 * PSI8 * (dble(bf
(1) * bs

#(3)) / 0.2D1 + dble(bs(1) * bf(3)) / 0.2D1) + 0.2D1 * PSI6 *
bn(1)

# * bn(3) + 0.2D1 * PSI6sn * (dble(bs(1) * bn(3)) / 0.2D1 +
dble(bn

#(1) * bs(3)) / 0.2D1)

SIGBAR(2,1) = dble(2 * PSI1*BB(2,1)) + dble(2*PSI4f*bf(1)*bf
(2)) +

# dble(2 * PSI4s * bs(1) * bs(2)) + 0.2D1 * PSI8 * (dble(bf
(1) * bs

#(2)) / 0.2D1 + dble(bs(1) * bf(2)) / 0.2D1) + 0.2D1 * PSI6 *
bn(2)

# * bn(1) + 0.2D1 * PSI6sn * (dble(bs(2) * bn(1)) / 0.2D1 +
dble(bn

#(2) * bs(1)) / 0.2D1)

SIGBAR(2,2) =2 * PSI1*BB(2,2) + 2*PSI4f*bf(2) ** 2 + 2*PSI4s

* bs
#(2) ** 2 + 2 * PSI8 * bf(2) * bs(2) + 2 * PSI6 * bn(2) * bn

(2) + 2
# * PSI6sn * bs(2) * bn(2)

STATEV(15) = SIGBAR(2,2)

SIGBAR(2,3) = dble(2 * PSI1*BB(2,3)) + dble(2*PSI4f*bf(2)*bf
(3)) +

# dble(2 * PSI4s * bs(2) * bs(3)) + 0.2D1 * PSI8 * (dble(bf
(2) * bs

#(3)) / 0.2D1 + dble(bs(2) * bf(3)) / 0.2D1) + 0.2D1 * PSI6 *
bn(2)
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# * bn(3) + 0.2D1 * PSI6sn * (dble(bs(2) * bn(3)) / 0.2D1 +
dble(bn

#(2) * bs(3)) / 0.2D1)

SIGBAR(3,1) =dble(2*PSI1*BB(3,1)) + dble(2 * PSI4f*bf(3)*bf
(1)) +

# dble(2 * PSI4s * bs(3) * bs(1)) + 0.2D1 * PSI8 * (dble(bf
(3) * bs

#(1)) / 0.2D1 + dble(bs(3) * bf(1)) / 0.2D1) + 0.2D1 * PSI6 *
bn(3)

# * bn(1) + 0.2D1 * PSI6sn * (dble(bs(3) * bn(1)) / 0.2D1 +
dble(bn

#(1) * bs(3)) / 0.2D1)

SIGBAR(3,2) =dble(2 * PSI1*BB(3,2))+dble(2*PSI4f*bf(2)*bf(3)
) +

# dble(2 * PSI4s * bs(2) * bs(3)) + 0.2D1 * PSI8 * (dble(bf
(2) * bs

#(3)) / 0.2D1 + dble(bs(2) * bf(3)) / 0.2D1) + 0.2D1 * PSI6 *
bn(3)

# * bn(2) + 0.2D1 * PSI6sn * (dble(bs(3) * bn(2)) / 0.2D1 +
dble(bn

#(3) * bs(2)) / 0.2D1)

SIGBAR(3,3) =2 * PSI1*BB(3,3) + 2*PSI4f*bf(3) ** 2 +2*PSI4s

* bs
#(3) ** 2 + 2 * PSI8 * bf(3) * bs(3) + 0.2D1 * PSI6 * bn(3) *

bn(3)
# + 0.2D1 * PSI6sn * bs(3) * bn(3)

STATEV(16) = SIGBAR(3,3)

SIGISO(1,1) = 1 / DET*(0.2D1/0.3D1*SIGBAR(1,1)-SIGBAR(2,2)/
0

#.3D1 - SIGBAR(3,3) / 0.3D1)

STATEV(17) = SIGISO(1,1)

SIGISO(1,2) = 1 / DET * SIGBAR(1,2)

SIGISO(1,3) = 1 / DET * SIGBAR(1,3)

SIGISO(2,1) = 1 / DET * SIGBAR(2,1)

SIGISO(2,2) = 1/DET *(0.2D1/0.3D1*SIGBAR(2,2)-SIGBAR(1,1)/ 0
#.3D1 - SIGBAR(3,3) / 0.3D1)

SIGISO(2,3) = 1 / DET * SIGBAR(2,3)
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SIGISO(3,1) = 1 / DET * SIGBAR(3,1)

SIGISO(3,2) = 1 / DET * SIGBAR(3,2)

SIGISO(3,3) = 1 /DET *(0.2D1/0.3D1*SIGBAR(3,3)-SIGBAR(1,1)/
0

#.3D1 - SIGBAR(2,2) / 0.3D1)

c STATEV(10)=SIGISO(1,2)

STRESS(1)=STRESS(1)+SIGISO(1,1)
STRESS(2)=STRESS(2)+SIGISO(2,2)
STRESS(3)=STRESS(3)+SIGISO(3,3)
STRESS(4)=STRESS(4)+SIGISO(1,2)
STRESS(5)=STRESS(5)+SIGISO(1,3)
STRESS(6)=STRESS(6)+SIGISO(2,3)

TRSIGB=SIGBAR(1,1) + SIGBAR(2,2) + SIGBAR(3,3)
CCC definition devB devff,ss,fs

devB(1,1)=0.2D1 / 0.3D1*BB(1,1)- BB(2,2)/0.3D1 - BB(3,3) /
0.3D1

devB(1,2)=BB(1,2)
devB(1,3)=BB(1,3)
devB(2,1)=BB(2,1)
devB(2,2)=0.2D1 / 0.3D1*BB(2,2)- BB(1,1)/0.3D1 - BB(3,3) /

0.3D1
devB(2,3)=BB(2,3)
devB(3,1)=BB(3,1)
devB(3,2)=BB(3,2)
devB(3,3)=0.2D1 / 0.3D1*BB(3,3)- BB(1,1)/0.3D1 - BB(2,2) /

0.3D1
C

----------------------------------------------------------------------

devff(1,1)=0.2D1/0.3D1 * bf(1)**2 - bf(2) ** 2 / 0.3D1 -
bf(3) **

#2 / 0.3D1

devff(1,2)=bf(1) * bf(2)
devff(1,3)=bf(1) * bf(3)
devff(2,1)=bf(2) * bf(1)
devff(2,2)=0.2D1/0.3D1 * bf(2)**2 - bf(1) ** 2 / 0.3D1 -

bf(3) **
#2 / 0.3D1

devff(2,3)=bf(2) * bf(3)
devff(3,1)=bf(3) * bf(1)
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devff(3,2)=bf(3) * bf(2)
devff(3,3)=0.2D1/0.3D1 * bf(3)**2 - bf(1) ** 2 / 0.3D1 -

bf(2) **
#2 / 0.3D1

C
----------------------------------------------------------------------

devss(1,1)=0.2D1/0.3D1 * bs(1)**2 - bs(2) ** 2 / 0.3D1 -
bs(3) **

#2 / 0.3D1

devss(1,2)=bs(1) * bs(2)
devss(1,3)=bs(1) * bs(3)
devss(2,1)=bs(2) * bs(1)
devss(2,2)=0.2D1/0.3D1 * bs(2)**2 - bs(1) ** 2 / 0.3D1 -

bs(3) **
#2 / 0.3D1

devss(2,3)=bs(2) * bs(3)
devss(3,1)=bs(3) * bs(1)
devss(3,2)=bs(3) * bs(2)
devss(3,3)=0.2D1/0.3D1 * bs(3)**2 - bs(1) ** 2 / 0.3D1 -

bs(2) **
#2 / 0.3D1

C
----------------------------------------------------------------------

devfs(1,1)=0.2D1/0.3D1 * bf(1)*bs(1) - bf(2) * bs(2) / 0.3
D1 - bf(

#3) * bs(3) / 0.3D1

devfs(1,2)=bf(1) * bs(2) / 0.2D1 + bs(1) * bf(2) / 0.2D1
devfs(1,3)=bf(1) * bs(3) / 0.2D1 + bs(1) * bf(3) / 0.2D1
devfs(2,1)=bf(1) * bs(2) / 0.2D1 + bs(1) * bf(2) / 0.2D1
devfs(2,2)=0.2D1/0.3D1 * bf(2)*bs(2) - bf(1) * bs(1) / 0.3

D1 - bf(
#3) * bs(3) / 0.3D1

devfs(2,3)=bf(2) * bs(3) / 0.2D1 + bs(2) * bf(3) / 0.2D1
devfs(3,1)=bf(3) * bs(1) / 0.2D1 + bs(3) * bf(1) / 0.2D1
devfs(3,2)=bf(2) * bs(3) / 0.2D1 + bs(2) * bf(3) / 0.2D1
devfs(3,3)=0.2D1/0.3D1 * bf(3)*bs(3) - bf(1) * bs(1) / 0.3

D1 - bf(
#2) * bs(2) / 0.3D1

98



CCC Tangent stiffness

DDSDDE(1,1)=DDSDDE(1,1)+
#dble(4 * PSI11* devB(1,1) ** 2) + dble(8 * PSI14f * devB

(1,1)
# * devff(1,1)) + dble(8 * PSI14s * devB(1,1) * devss(1,1)) +

dble(
#8 * PSI18 * devB(1,1) * devfs(1,1)) + dble(4 * PSI44f *

devff(1,1)
# ** 2) + dble(4 * PSI44s * devss(1,1) ** 2) + dble(4 * PSI88

* dev
#fs(1,1) ** 2) - 0.4D1 / 0.3D1 * SIGBAR(1,1) + 0.8D1 / 0.9D1

* TRSI
#GB

DDSDDE(2,2)=DDSDDE(2,2)+
#dble(4 * PSI11* devB(2,2) ** 2) + dble(8 * PSI14f * devB(2,2
#) * devff(2,2)) + dble(8 * PSI14s * devB(2,2) * devss(2,2))

+ dble
#(8 * PSI18 * devB(2,2) * devfs(2,2)) + dble(4 * PSI44f *

devff(2,2
#) ** 2) + dble(4 * PSI44s * devss(2,2) ** 2) + dble(4 *

PSI88 * de
#vfs(2,2) ** 2) - 0.4D1 / 0.3D1 * SIGBAR(2,2) + 0.8D1 / 0.9D1

* TRS
#IGB

DDSDDE(3,3)=DDSDDE(3,3)+
#dble(4 * PSI11* devB(3,3) ** 2) + dble(8 * PSI14f * devB(3,3
#) * devff(3,3)) + dble(8 * PSI14s * devB(3,3) * devss(3,3))

+ dble
#(8 * PSI18 * devB(3,3) * devfs(3,3)) + dble(4 * PSI44f *

devff(3,3
#) ** 2) + dble(4 * PSI44s * devss(3,3) ** 2) + dble(4 *

PSI88 * de
#vfs(3,3) ** 2) - 0.4D1 / 0.3D1 * SIGBAR(3,3) + 0.8D1 / 0.9D1

* TRS
#IGB

DDSDDE(4,4)=DDSDDE(4,4)+
#dble(4 * PSI11* devB(1,2) ** 2) + dble(8 * PSI14f * devB(1,2
#) * devff(1,2)) + dble(8 * PSI14s * devB(1,2) * devss(1,2))

+ dble
#(8 * PSI18 * devB(1,2) * devfs(1,2)) + dble(4 * PSI44f *

devff(1,2
#) ** 2) + dble(4 * PSI44s * devss(1,2) ** 2) + dble(4 *

PSI88 * de
#vfs(1,2) ** 2) + TRSIGB / 0.3D1
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DDSDDE(5,5)=DDSDDE(5,5)+
#dble(4 * PSI11* devB(1,3) ** 2) + dble(8 * PSI14f * devB(1,3
#) * devff(1,3)) + dble(8 * PSI14s * devB(1,3) * devss(1,3))

+ dble
#(8 * PSI18 * devB(1,3) * devfs(1,3)) + dble(4 * PSI44f *

devff(1,3
#) ** 2) + dble(4 * PSI44s * devss(1,3) ** 2) + dble(4 *

PSI88 * de
#vfs(1,3) ** 2) + TRSIGB / 0.3D1

DDSDDE(6,6)=DDSDDE(6,6)+
#dble(4 * PSI11* devB(2,3) ** 2) + dble(8 * PSI14f * devB(2,3
#) * devff(2,3)) + dble(8 * PSI14s * devB(2,3) * devss(2,3))

+ dble
#(8 * PSI18 * devB(2,3) * devfs(2,3)) + dble(4 * PSI44f *

devff(2,3
#) ** 2) + dble(4 * PSI44s * devss(2,3) ** 2) + dble(4 *

PSI88 * de
#vfs(2,3) ** 2) + TRSIGB / 0.3D1

DDSDDE(1,2)=DDSDDE(1,2)+
#dble(4 * PSI11* devB(1,1) * devB(2,2)) + dble(4 * PSI14f * (
#devB(1,1) * devff(2,2) + devff(1,1) * devB(2,2))) + dble(4 *

PSI14
#s * (devB(1,1) * devss(2,2) + devss(1,1) * devB(2,2))) +

dble(4 *
#PSI18 * (devB(1,1) * devfs(2,2) + devfs(1,1) * devB(2,2))) +

dble(
#4 * PSI44f * devff(1,1) * devff(2,2)) + dble(4 * PSI44s *

devss(1,
#1) * devss(2,2)) + dble(4 * PSI88 * devfs(1,1) * devfs(2,2))

- 0.2
#D1 / 0.3D1 * SIGBAR(2,2) - 0.2D1 / 0.3D1 * SIGBAR(1,1) + 0.2

D1 / 0
#.9D1 * TRSIGB

DDSDDE(1,3)=DDSDDE(1,3)+
#dble(4 * PSI11* devB(1,1) * devB(3,3)) + dble(4 * PSI14f * (
#devB(1,1) * devff(3,3) + devff(1,1) * devB(3,3))) + dble(4 *

PSI14
#s * (devB(1,1) * devss(3,3) + devss(1,1) * devB(3,3))) +

dble(4 *
#PSI18 * (devB(1,1) * devfs(3,3) + devfs(1,1) * devB(3,3))) +

dble(
#4 * PSI44f * devff(1,1) * devff(3,3)) + dble(4 * PSI44s *

devss(1,
#1) * devss(3,3)) + dble(4 * PSI88 * devfs(1,1) * devfs(3,3))

- 0.2
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#D1 / 0.3D1 * SIGBAR(3,3) - 0.2D1 / 0.3D1 * SIGBAR(1,1) + 0.2
D1 / 0

#.9D1 * TRSIGB

DDSDDE(1,4)=DDSDDE(1,4)+
#dble(4 * PSI11* devB(1,1) * devB(1,2)) + dble(4 * PSI14f * (
#devB(1,1) * devff(1,2) + devff(1,1) * devB(1,2))) + dble(4 *

PSI14
#s * (devB(1,1) * devss(1,2) + devss(1,1) * devB(1,2))) +

dble(4 *
#PSI18 * (devB(1,1) * devfs(1,2) + devfs(1,1) * devB(1,2))) +

dble(
#4 * PSI44f * devff(1,1) * devff(1,2)) + dble(4 * PSI44s *

devss(1,
#1) * devss(1,2)) + dble(4 * PSI88 * devfs(1,1) * devfs(1,2))

- 0.2
#D1 / 0.3D1 * SIGBAR(1,2)

DDSDDE(1,5)=DDSDDE(1,5)+
#dble(4 * PSI11* devB(1,1) * devB(1,3)) + dble(4 * PSI14f * (
#devB(1,1) * devff(1,3) + devff(1,1) * devB(1,3))) + dble(4 *

PSI14
#s * (devB(1,1) * devss(1,3) + devss(1,1) * devB(1,3))) +

dble(4 *
#PSI18 * (devB(1,1) * devfs(1,3) + devfs(1,1) * devB(1,3))) +

dble(
#4 * PSI44f * devff(1,1) * devff(1,3)) + dble(4 * PSI44s *

devss(1,
#1) * devss(1,3)) + dble(4 * PSI88 * devfs(1,1) * devfs(1,3))

- 0.2
#D1 / 0.3D1 * SIGBAR(1,3)

DDSDDE(1,6)=DDSDDE(1,6)+
#dble(4 * PSI11* devB(1,1) * devB(2,3)) + dble(4 * PSI14f * (
#devB(1,1) * devff(2,3) + devff(1,1) * devB(2,3))) + dble(4 *

PSI14
#s * (devB(1,1) * devss(2,3) + devss(1,1) * devB(2,3))) +

dble(4 *
#PSI18 * (devB(1,1) * devfs(2,3) + devfs(1,1) * devB(2,3))) +

dble(
#4 * PSI44f * devff(1,1) * devff(2,3)) + dble(4 * PSI44s *

devss(1,
#1) * devss(2,3)) + dble(4 * PSI88 * devfs(1,1) * devfs(2,3))

- 0.2
#D1 / 0.3D1 * SIGBAR(2,3)

DDSDDE(2,3)=DDSDDE(2,3)+
#dble(4 * PSI11* devB(2,2) * devB(3,3)) + dble(4 * PSI14f *
#(devB(2,2) * devff(3,3) + devff(2,2) * devB(3,3))) + dble(4

* PSI1
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#4s * (devB(2,2) * devss(3,3) + devss(2,2) * devB(3,3))) +
dble(4 *

# PSI18 * (devB(2,2) * devfs(3,3) + devfs(2,2) * devB(3,3)))
+ dble

#(4 * PSI44f * devff(2,2) * devff(3,3)) + dble(4 * PSI44s *
devss(2

#,2) * devss(3,3)) + dble(4 * PSI88 * devfs(2,2) * devfs(3,3)
) - 0.

#2D1 / 0.3D1 * SIGBAR(3,3) - 0.2D1 / 0.3D1 * SIGBAR(2,2) +
0.2D1 /

#0.9D1 * TRSIGB

DDSDDE(2,4)=DDSDDE(2,4)+
#dble(4 * PSI11* devB(2,2) * devB(1,2)) + dble(4 * PSI14f *
#(devB(2,2) * devff(1,2) + devff(2,2) * devB(1,2))) + dble(4

* PSI1
#4s * (devB(2,2) * devss(1,2) + devss(2,2) * devB(1,2))) +

dble(4 *
# PSI18 * (devB(2,2) * devfs(1,2) + devfs(2,2) * devB(1,2)))

+ dble
#(4 * PSI44f * devff(2,2) * devff(1,2)) + dble(4 * PSI44s *

devss(2
#,2) * devss(1,2)) + dble(4 * PSI88 * devfs(2,2) * devfs(1,2)

) - 0.
#2D1 / 0.3D1 * SIGBAR(1,2)

DDSDDE(2,5)=DDSDDE(2,5)+
#dble(4 * PSI11* devB(2,2) * devB(1,3)) + dble(4 * PSI14f *
#(devB(2,2) * devff(1,3) + devff(2,2) * devB(1,3))) + dble(4

* PSI1
#4s * (devB(2,2) * devss(1,3) + devss(2,2) * devB(1,3))) +

dble(4 *
# PSI18 * (devB(2,2) * devfs(1,3) + devfs(2,2) * devB(1,3)))

+ dble
#(4 * PSI44f * devff(2,2) * devff(1,3)) + dble(4 * PSI44s *

devss(2
#,2) * devss(1,3)) + dble(4 * PSI88 * devfs(2,2) * devfs(1,3)

) - 0.
#2D1 / 0.3D1 * SIGBAR(1,3)

DDSDDE(2,6)=DDSDDE(2,6)+
#dble(4 * PSI11* devB(2,2) * devB(2,3)) + dble(4 * PSI14f *
#(devB(2,2) * devff(2,3) + devff(2,2) * devB(2,3))) + dble(4

* PSI1
#4s * (devB(2,2) * devss(2,3) + devss(2,2) * devB(2,3))) +

dble(4 *
# PSI18 * (devB(2,2) * devfs(2,3) + devfs(2,2) * devB(2,3)))

+ dble
#(4 * PSI44f * devff(2,2) * devff(2,3)) + dble(4 * PSI44s *

devss(2
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#,2) * devss(2,3)) + dble(4 * PSI88 * devfs(2,2) * devfs(2,3)
) - 0.

#2D1 / 0.3D1 * SIGBAR(2,3)

DDSDDE(3,4)=DDSDDE(3,4)+
#dble(4 * PSI11* devB(3,3) * devB(1,2)) + dble(4 * PSI14f *
#(devB(3,3) * devff(1,2) + devff(3,3) * devB(1,2))) + dble(4

* PSI1
#4s * (devB(3,3) * devss(1,2) + devss(3,3) * devB(1,2))) +

dble(4 *
# PSI18 * (devB(3,3) * devfs(1,2) + devfs(3,3) * devB(1,2)))

+ dble
#(4 * PSI44f * devff(3,3) * devff(1,2)) + dble(4 * PSI44s *

devss(3
#,3) * devss(1,2)) + dble(4 * PSI88 * devfs(3,3) * devfs(1,2)

) - 0.
#2D1 / 0.3D1 * SIGBAR(1,2)

DDSDDE(3,5)=DDSDDE(3,5)+
#dble(4 * PSI11* devB(3,3) * devB(1,3)) + dble(4 * PSI14f *
#(devB(3,3) * devff(1,3) + devff(3,3) * devB(1,3))) + dble(4

* PSI1
#4s * (devB(3,3) * devss(1,3) + devss(3,3) * devB(1,3))) +

dble(4 *
# PSI18 * (devB(3,3) * devfs(1,3) + devfs(3,3) * devB(1,3)))

+ dble
#(4 * PSI44f * devff(3,3) * devff(1,3)) + dble(4 * PSI44s *

devss(3
#,3) * devss(1,3)) + dble(4 * PSI88 * devfs(3,3) * devfs(1,3)

) - 0.
#2D1 / 0.3D1 * SIGBAR(1,3)

DDSDDE(3,6)=DDSDDE(3,6)+
#dble(4 * PSI11* devB(3,3) * devB(2,3)) + dble(4 * PSI14f *
#(devB(3,3) * devff(2,3) + devff(3,3) * devB(2,3))) + dble(4

* PSI1
#4s * (devB(3,3) * devss(2,3) + devss(3,3) * devB(2,3))) +

dble(4 *
# PSI18 * (devB(3,3) * devfs(2,3) + devfs(3,3) * devB(2,3)))

+ dble
#(4 * PSI44f * devff(3,3) * devff(2,3)) + dble(4 * PSI44s *

devss(3
#,3) * devss(2,3)) + dble(4 * PSI88 * devfs(3,3) * devfs(2,3)

) - 0.
#2D1 / 0.3D1 * SIGBAR(2,3)
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DDSDDE(4,5)=DDSDDE(4,5)+
#4 * PSI11* devB(1,2) * devB(1,3) + 4 * PSI14f * (devB(1,2)
#* devff(1,3) + devff(1,2) * devB(1,3)) + 4 * PSI14s * (devB

(1,2) *
# devss(1,3) + devss(1,2) * devB(1,3)) + 4 * PSI18 * (devB

(1,2) * d
#evfs(1,3) + devfs(1,2) * devB(1,3)) + 4 * PSI44f * devff

(1,2) * de
#vff(1,3) + 4 * PSI44s * devss(1,2) * devss(1,3) + 4 * PSI88

* devf
#s(1,2) * devfs(1,3)

DDSDDE(4,6)=DDSDDE(4,6)+
#4 * PSI11* devB(1,2) * devB(2,3) + 4 * PSI14f * (devB(1,2)
#* devff(2,3) + devff(1,2) * devB(2,3)) + 4 * PSI14s * (devB

(1,2) *
# devss(2,3) + devss(1,2) * devB(2,3)) + 4 * PSI18 * (devB

(1,2) * d
#evfs(2,3) + devfs(1,2) * devB(2,3)) + 4 * PSI44f * devff

(1,2) * de
#vff(2,3) + 4 * PSI44s * devss(1,2) * devss(2,3) + 4 * PSI88

* devf
#s(1,2) * devfs(2,3)

DDSDDE(5,6)=DDSDDE(5,6)+
#4 * PSI11* devB(1,3) * devB(2,3) + 4 * PSI14f * (devB(1,3)
#* devff(2,3) + devff(1,3) * devB(2,3)) + 4 * PSI14s * (devB

(1,3) *
# devss(2,3) + devss(1,3) * devB(2,3)) + 4 * PSI18 * (devB

(1,3) * d
#evfs(2,3) + devfs(1,3) * devB(2,3)) + 4 * PSI44f * devff

(1,3) * de
#vff(2,3) + 4 * PSI44s * devss(1,3) * devss(2,3) + 4 * PSI88

* devf
#s(1,3) * devfs(2,3)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DO K1=1, NTENS
DO K2=1, K1-1

DDSDDE(K1, K2)=DDSDDE(K2, K1)
END DO

END DO
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DDSDDE(1,1) = DDSDDE(1,1) + 2 * SIGISO(1,1)
DDSDDE(1,2) = DDSDDE(1,2)
DDSDDE(1,3) = DDSDDE(1,3)
DDSDDE(1,4) = DDSDDE(1,4) + SIGISO(1,2)
DDSDDE(1,5) = DDSDDE(1,5) + SIGISO(1,3)
DDSDDE(1,6) = DDSDDE(1,6)
DDSDDE(2,1) = DDSDDE(2,1)
DDSDDE(2,2) = DDSDDE(2,2) + 2 * SIGISO(2,2)
DDSDDE(2,3) = DDSDDE(2,3)
DDSDDE(2,4) = DDSDDE(2,4) + SIGISO(1,2)
DDSDDE(2,5) = DDSDDE(2,5)
DDSDDE(2,6) = DDSDDE(2,6) + SIGISO(2,3)
DDSDDE(3,1) = DDSDDE(3,1)
DDSDDE(3,2) = DDSDDE(3,2)
DDSDDE(3,3) = DDSDDE(3,3) + 2*SIGISO(3,3)
DDSDDE(3,4) = DDSDDE(3,4)
DDSDDE(3,5) = DDSDDE(3,5) + SIGISO(1,3)
DDSDDE(3,6) = DDSDDE(3,6) + SIGISO(2,3)
DDSDDE(4,1) = DDSDDE(4,1) + SIGISO(1,2)
DDSDDE(4,2) = DDSDDE(4,2) + SIGISO(1,2)
DDSDDE(4,3) = DDSDDE(4,3)
DDSDDE(4,4) = dble(DDSDDE(4,4)) + dble(SIGISO(1,1)) / 0.2D1

#+ dble(SIGISO(2,2)) / 0.2D1
DDSDDE(4,5) = dble(DDSDDE(4,5)) + dble(SIGISO(2,3)) / 0.2D1
DDSDDE(4,6) = dble(DDSDDE(4,6)) + dble(SIGISO(1,3)) / 0.2D1
DDSDDE(5,1) = DDSDDE(5,1) + SIGISO(1,3)
DDSDDE(5,2) = DDSDDE(5,2)
DDSDDE(5,3) = DDSDDE(5,3) + SIGISO(1,3)
DDSDDE(5,4) = dble(DDSDDE(5,4)) + dble(SIGISO(2,3)) / 0.2D1
DDSDDE(5,5) = dble(DDSDDE(5,5)) + dble(SIGISO(1,1)) / 0.2D1

#+ dble(SIGISO(3,3)) / 0.2D1
DDSDDE(5,6) = dble(DDSDDE(5,6)) + dble(SIGISO(1,2)) / 0.2D1
DDSDDE(6,1) = DDSDDE(6,1)
DDSDDE(6,2) = DDSDDE(6,2) + SIGISO(2,3)
DDSDDE(6,3) = DDSDDE(6,3) + SIGISO(2,3)
DDSDDE(6,4) = dble(DDSDDE(6,4)) + dble(SIGISO(1,3)) / 0.2D1
DDSDDE(6,5) = dble(DDSDDE(6,5)) + dble(SIGISO(1,2)) / 0.2D1
DDSDDE(6,6) = dble(DDSDDE(6,6)) + dble(SIGISO(2,2)) / 0.2D1

#+ dble(SIGISO(3,3)) / 0.2D1

C END IF
RETURN
END
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D Calculate Ejection Fraction

D.1 Python Script

#This Python script is used as a part of calculating the end-
diastole volume, end-systole volume and ejection fraction.

#The script extracts coordinates and displacement at the end of
the analysis for every node and writes them to a txt-file.

#The txt-file is then processed further using a MATLAB script.

from odbAccess import *
from abaqusConstants import *

# create odb object from odb file
outputDatabase = openOdb(path=’C:\Users\Gaute\Documents\

MASTERTHESIS\Abaqus\MainModel\TEM_8layers_fnsn150_f45_14.odb’)

# get access to the nodal displacement data
frame = outputDatabase.steps[ ’static’ ].frames[-1]

dispField = frame.fieldOutputs[’U’]

# get access to the part instance
my_part_instance = outputDatabase.rootAssembly.instances[’TEM-8

LAYERS-1’]

# Write deformed shape to txt file

outFile = open("deformed_shape_TEM_8layers_fnsn150_f45.txt" , ’w’
)

# write points

numNodesTotal = len( my_part_instance.nodes )

for i in range( numNodesTotal ):

curNode = my_part_instance.nodes[i]

defNodePos = curNode.coordinates + dispField.values[i].data

outFile.write( ’\n’ )

for j in range( 3 ):
if j<2:

outFile.write( str( defNodePos[j] ) + ’ ’
)

else:
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outFile.write( str( defNodePos[j] ) )

outputDatabase.close()

D.2 MATLAB Script

%This MATLAB-script is used to calculate the end-diastole volume,
%end-systole volume and ejection fraction for the left ventricle

model.
%The scrpit uses an Abaqus inputfile which must contain a node set

with all
%nodes on endocaridal surface.
%Further at txt file (created with the python script) containing

the node
%coordinates at the end-systole state.

clear all
close all
clc

%Extract relevant line numbers from input file. Change keywords to
coincide

%with the currect file.
inputFile = fopen(’TEM_8layers_fnsn150_f45.inp’,’rt’);
counter = 0;
while 1

tline = fgetl(inputFile);
counter = counter + 1;
if ischar(tline)

U = strfind(tline, ’*Node’);
if isfinite(U) == 1;

nodeLine = counter;
end
U = strfind(tline, ’*Element’);
if isfinite(U) == 1;

elsLine = counter;
end

U = strfind(tline, ’nset=endoNodes’);
if isfinite(U) == 1;

endoNodeline = counter;
end
U = strfind(tline, ’nset=basalNodes’);
if isfinite(U) == 1;

endoNodestop = counter;
break

end
end

end
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fclose(inputFile);
%Number of nodes
nnodes=elsLine-nodeLine-1;
%Extract node coordinates at end-diastole state.
orgNode = csvread(’TEM_8layers_fnsn150_f45.inp’,nodeLine, 1, [

nodeLine,1,nodeLine+nnodes-1,3]);

%Rotate nodes 90 degrees about x-axis as done with the instance in
the

%Abaqus model
tempY = orgNode(:,2);
tempZ = orgNode(:,3);

orgNode(:,2) = cos(pi()/2)*tempY(:)-sin(pi()/2)*tempZ(:);
orgNode(:,3) = sin(pi()/2)*tempY(:)+cos(pi()/2)*tempZ(:);

%Extract node numbers from the endoNode set
endoNodeSet = csvread(’TEM_8layers_fnsn150_f45.inp’,endoNodeline,

0, [endoNodeline,0,endoNodestop-2,15]);
endoNodeSet(endoNodeSet==0) = [];
endoNodeSet = sort(endoNodeSet(:));

%Extract node coordinates at end-systle state.
deformedNode =textread(’deformed_shape_TEM_8layers_fnsn150_f45.txt

’,’’,’headerlines’, 3);

%Creating variables containing node coordinates only from the
nodes on the

%endocardial surface
orgEndoCoor = zeros(numel(endoNodeSet),3);
deformedEndoCoor = zeros(numel(endoNodeSet),3);

for i=1:numel(endoNodeSet)
orgEndoCoor(i,:) = orgNode(endoNodeSet(i),:);
deformedEndoCoor(i,:) = deformedNode(endoNodeSet(i),:);

end

%Caclutate the end-diastole and end-systole volume using the
convhull

%function
[TriIdx, V] = convhull(orgEndoCoor(:,1),orgEndoCoor(:,2),

orgEndoCoor(:,3));

[TriIdx2, V2] = convhull(deformedEndoCoor(:,1),deformedEndoCoor
(:,2),deformedEndoCoor(:,3));

%Write out the volumes (in ml) and ejection fraction
V*0.001
V2*0.001
ejectionFraction=(V-V2)/V
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%The remainder of the script is plots used for visual confirmation
of the

%validity of the result

figure()
hold on
scatter3(orgEndoCoor(:,1), orgEndoCoor(:,2), orgEndoCoor(:,3), ’.’

)
scatter3(deformedEndoCoor(:,1), deformedEndoCoor(:,2),

deformedEndoCoor(:,3), ’r.’)
xlabel(’X’)
ylabel(’Y’)
zlabel(’Z’)
hold off

figure()
hold on
scatter3(deformedEndoCoor(:,1), deformedEndoCoor(:,2),

deformedEndoCoor(:,3), ’.’)
xlabel(’X’)
ylabel(’Y’)
zlabel(’Z’)
hold off

figure()
hold on
trisurf(TriIdx, orgEndoCoor(:,1),orgEndoCoor(:,2),orgEndoCoor(:,3)

)
xlabel(’X’)
ylabel(’Y’)
zlabel(’Z’)
hold off

figure()
trisurf(TriIdx2, deformedEndoCoor(:,1),deformedEndoCoor(:,2),

deformedEndoCoor(:,3))
xlabel(’X’)
ylabel(’Y’)
zlabel(’Z’)
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E Calculate Wall Thickness, Longitudinal and Radial Short-
ening

#This python script extracts nodal displacement and calculates the
longitudinal shortening, radial shortening and wall

thickening
#Variables which needs to be changed are: odb file-path, instance

name and node numbers.

from odbAccess import *
from abaqusConstants import *

# create odb object from odb file
outputDatabase = openOdb(path=’C:\Users\Gaute\Documents\

MASTERTHESIS\Abaqus\MainModel\TEM_4layers_f100_f60_14.odb’)

# get access to the nodal displacement data
frame = outputDatabase.steps[ ’static’ ].frames[-1]

dispField = frame.fieldOutputs[’U’]

# get access to the part instance
my_part_instance = outputDatabase.rootAssembly.instances[’TEM-4

LAYERS3-1’]

#Variables with node numbers on the form [endocardium,epicardium]
equNodes = [36,27]
ApexNodes = [11, 21]

#Extracting the coordinates before and after deformation
#Note that the note label is not the same as the node number.

numNodesTotal = len( my_part_instance.nodes )
for i in range( numNodesTotal ):

nodeLabel = my_part_instance.nodes[i].label
if nodeLabel==equNodes[0]:

node1int = i
node1Pos = my_part_instance.nodes[i].coordinates
defNode1Pos = node1Pos + dispField.values[i].data

if nodeLabel==equNodes[1]:
node2int = i
node2Pos = my_part_instance.nodes[i].coordinates
defNode2Pos = node2Pos + dispField.values[i].data

if nodeLabel==ApexNodes[0]:
apexint = i
apexEndoPos = my_part_instance.nodes[i].

coordinates
defEndoApexPos = apexEndoPos + dispField.values[i

].data
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if nodeLabel==ApexNodes[1]:
apexEpiint = i
apexEpiPos = my_part_instance.nodes[i].coordinates
defEpiApexPos = apexEpiPos + dispField.values[i].

data

#Calculate the wanted parameters
initalWallTh = sqrt((node2Pos[0]-node1Pos[0])**2 + (node2Pos[1]-

node1Pos[1])**2 + (node2Pos[2]-node1Pos[2])**2)
defWallTh = sqrt((defNode2Pos[0]-defNode1Pos[0])**2 + (defNode2Pos

[1]-defNode1Pos[1])**2)
thFrac = ( defWallTh - initalWallTh) / initalWallTh

initalApexWallTh = sqrt((apexEndoPos[0]-apexEpiPos[0])**2 + (
apexEndoPos[1]-apexEpiPos[1])**2 + (apexEndoPos[2]-apexEpiPos
[2])**2)

defApexWallTh = sqrt((defEndoApexPos[0]-defEpiApexPos[0])**2 + (
defEndoApexPos[1]-defEpiApexPos[1])**2 + (defEndoApexPos[2]-
defEpiApexPos[2])**2)

thApexFrac = ( defApexWallTh - initalApexWallTh) /
initalApexWallTh

initalLong = 20 - apexEndoPos[2]
defLong = 20 - defEndoApexPos[2]
relLongShort = (initalLong - defLong) / initalLong

initalRad = node1Pos[0]
defRad = defNode1Pos[0]
radShort = (initalRad-defRad)/initalRad

#Printing the parameters to the command window
print "equ wallth:"
print initalWallTh
print defWallTh
print thFrac
print "apex wallth:"
print initalApexWallTh
print defApexWallTh
print thApexFrac
print "rel Long short:"
print initalLong
print defLong
print relLongShort
print "Radial shortening"
print initalRad
print defRad
print radShort
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F Calculate Torsion

F.1 Python Script

#This Python script extracts displacement history of a set of
chosen nodes as part of calculating the rotation of the left
ventricle model.

#The script writes the node coordinates for each frame of the
analysis to a file. This must be done for the 4 nodes on the
endocardium and epicardium of both the base and apex.

#The four files created using this script is processed further
using a MATLAB script.

from odbAccess import *
from abaqusConstants import *
from math import *

# create odb object from odb file
outputDatabase = openOdb(path=’C:\Users\Gaute\Documents\

MASTERTHESIS\Abaqus\MainModel\TEM_4layers_fnsn150_f45_14.odb’)

# get access to the nodal displacement data
allFrames = outputDatabase.steps[ ’static’ ].frames
lastFrame = outputDatabase.steps[ ’static’ ].frames[-1]

numFrames = len (allFrames)

dispField = lastFrame.fieldOutputs[’U’]

# get access to the part instance
my_part_instance = outputDatabase.rootAssembly.instances[’TEM-4

LAYER3-1’]

#Declare variables with the node numbers from the different
regions on the form [center, left, up, right down ] when
looking from the apex to the base.

#The center basal node number is set to 0, and given the global
coordinate (0,0,20) which is the center of the base in the
model.

apexEpiNodes = [21, 419, 376, 496, 615 ]
apexEndoNodes = [11, 553, 144, 187, 345 ]
basalEndoNodes = [0, 40, 51, 50, 41 ]
basalEpiNodes = [0, 49, 47, 44, 48 ]

#Choose node data to write to file
activeNodes = apexEpiNodes8layers

#Write data to files (change file name to coincide with nodes)
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outFile = open("rotation_TEM_8layers_fnsn150_f45_apexEpi.txt" , ’w
’ )

# write points
numNodesTotal = len( my_part_instance.nodes )
for i in range( numNodesTotal ):

nodeLabel = my_part_instance.nodes[i].label
if nodeLabel==activeNodes[0]:

nodeCenterint = i
nodeCenterPos = my_part_instance.nodes[i].

coordinates
if nodeLabel==activeNodes[1]:

nodeLeftint = i
nodeLeftPos = my_part_instance.nodes[i].

coordinates
if nodeLabel==activeNodes[2]:

nodeUpint = i
nodeUpPos = my_part_instance.nodes[i].coordinates

if nodeLabel==activeNodes[3]:
nodeRightint = i
nodeRightPos = my_part_instance.nodes[i].

coordinates
if nodeLabel==activeNodes[4]:

nodeDownint = i
nodeDownPos = my_part_instance.nodes[i].

coordinates

for k in range (numFrames):
if activeNodes[0]==0:

defNodeCenterPos = [0,0,20]
else:

nodeCenterDisp = outputDatabase.steps[ ’static’ ].
frames[k].fieldOutputs[’U’].values[
nodeCenterint].data

defNodeCenterPos = nodeCenterPos + nodeCenterDisp

nodeLeftDisp = outputDatabase.steps[ ’static’ ].frames[k].
fieldOutputs[’U’].values[nodeLeftint].data

defNodeLeftPos = nodeLeftPos + nodeLeftDisp

nodeUpDisp = outputDatabase.steps[ ’static’ ].frames[k].
fieldOutputs[’U’].values[nodeUpint].data

defNodeUpPos = nodeUpPos + nodeUpDisp

nodeRightDisp = outputDatabase.steps[ ’static’ ].frames[k
].fieldOutputs[’U’].values[nodeRightint].data

defNodeRightPos = nodeRightPos + nodeRightDisp

nodeDownDisp = outputDatabase.steps[ ’static’ ].frames[k].
fieldOutputs[’U’].values[nodeDownint].data
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defNodeDownPos = nodeDownPos + nodeDownDisp

for j in range( 3 ):
outFile.write( str( defNodeCenterPos[j] ) + ’ ’ )

for j in range( 3 ):
outFile.write( str( defNodeLeftPos[j] ) + ’ ’ )

for j in range( 3 ):
outFile.write( str( defNodeUpPos[j] ) + ’ ’ )

for j in range( 3 ):
outFile.write( str( defNodeRightPos[j] ) + ’ ’ )

for j in range( 3 ):
if j<2:

outFile.write( str( defNodeDownPos[j] ) +
’ ’ )

else:
outFile.write( str( defNodeDownPos[j] ) )

outFile.write("\n")

outputDatabase.close()

F.2 MATLAB Script

%This MATLAB script calculates the rotation of endocardium and
epicardium

%for both the base and apex for all frames through the Abaqus
analysis. It

%takes as input 4 txt files with nodal coordinate data, created
with the

%Python script.

%NOTE: the function atan2 change sign at 180 degrees which is
relevant for

%some of the nodes. For simplicity, when this is relevant, the
node in

%question is not included in the calculation of the average
rotation. As

%the rotation of the different nodes are almost equal, this has
little or

%no effect on the results.

clear all
close all
clc

%Reading node data from files

nodeCoorApexEpi =textread(’
rotation_TEM_4layers_fnsn150_f45_apexEpi.txt’,’’,’headerlines’
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, 0);
nodeCoorApexEndo =textread(’

rotation_TEM_4layers_fnsn150_f45_apexEndo.txt’,’’,’headerlines
’, 0);

nodeCoorBasalEpi =textread(’
rotation_TEM_4layers_fnsn150_f45_basalEpi.txt’,’’,’headerlines
’, 0);

nodeCoorBasalEndo =textread(’
rotation_TEM_4layers_fnsn150_f45_basalEndo.txt’,’’,’
headerlines’, 0);

%Initalize variable

angleV=zeros(4); %Angles of the vectors the 4 undeformed nodes
creates in the global csys

defv=zeros(4,2); %X and Y components of the deformed vectors
angleDefV=zeros(4,length(nodeCoorApexEpi)); %Angles of the vectors

the 4 deformed nodes creates in the global csys, for every
frame

rot=zeros(4,length(nodeCoorApexEpi)); %Rotation of the 4 nodes for
every frame

%Caclulate rotation of apex at epicardium

for i=1:4
angleV(i) = atan2(nodeCoorApexEpi(1,2+3*i),nodeCoorApexEpi

(1,1+3*i))*180/pi();
if angleV(i)<-170

angleV(i) = 180;
end

for j=1:length(nodeCoorApexEpi)
defv(i,1) = nodeCoorApexEpi(1,1)-nodeCoorApexEpi(j,1+3*i);
defv(i,2) = nodeCoorApexEpi(1,2)- nodeCoorApexEpi(j,2+3*i);
angleDefV(i,j) = atan2(nodeCoorApexEpi(j,2+3*i),

nodeCoorApexEpi(j,1+3*i))*180/pi();
if (angleDefV(i,j)) < -170

angleDefV = angleDefV - 360*sign(angleDefV);
end
rot(i,j) = (angleDefV(i,j)-angleV(i));
end

end

%Average rotation of apex at epicaridum

avgRotApexEpi = -(rot(1,:)+rot(2,:)+rot(3,:)+rot(4,:))/4;

%Caclulate rotation of apex at endocardium
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for i=1:4
angleV(i) = atan2(nodeCoorApexEndo(1,2+3*i),nodeCoorApexEndo

(1,1+3*i))*180/pi();
if angleV(i)<-170

angleV(i) = 180;
end

for j=1:length(nodeCoorApexEndo)
defv(i,1) = nodeCoorApexEndo(1,1)-nodeCoorApexEndo(j,1+3*i);
defv(i,2) = nodeCoorApexEndo(1,2)- nodeCoorApexEndo(j,2+3*i);
angleDefV(i,j) = atan2(nodeCoorApexEndo(j,2+3*i),

nodeCoorApexEndo(j,1+3*i))*180/pi();
if (angleDefV(i,j)) < -170
angleDefV = angleDefV - 360*sign(angleDefV);
end

rot(i,j) = (angleDefV(i,j)-angleV(i));
end

end

%Average rotation of apex at endocaridum

avgRotApexEndo = -(rot(1,:)+rot(2,:)+rot(4,:))/4;

%Caclulate rotation of base at epicardium

for i=1:4
angleV(i) = atan2(nodeCoorBasalEpi(1,2+3*i),nodeCoorBasalEpi

(1,1+3*i))*180/pi();
if angleV(i)<-170

angleV(i) = 180;
end

for j=1:length(nodeCoorBasalEpi)
defv(i,1) = nodeCoorBasalEpi(1,1)-nodeCoorBasalEpi(j,1+3*i);
defv(i,2) = nodeCoorBasalEpi(1,2)- nodeCoorBasalEpi(j,2+3*i);
angleDefV(i,j) = atan2(nodeCoorBasalEpi(j,2+3*i),

nodeCoorBasalEpi(j,1+3*i))*180/pi();
if (angleDefV(i,j)) < -170

angleDefV = angleDefV - 360*sign(angleDefV);
end
rot(i,j) = (angleDefV(i,j)-angleV(i));
end

end

%Average rotation of base at epicaridum

avgRotBasalEpi = -(rot(1,:)+rot(2,:)+rot(3,:)+rot(4,:))/4;
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%Caclulate rotation of base at endocardium

for i=1:4
angleV(i) = atan2(nodeCoorBasalEndo(1,2+3*i),nodeCoorBasalEndo

(1,1+3*i))*180/pi();
if angleV(i)<-170

angleV(i) = 180;
end

for j=1:length(nodeCoorBasalEndo)
defv(i,1) = nodeCoorBasalEndo(1,1)-nodeCoorBasalEndo(j,1+3*i);
defv(i,2) = nodeCoorBasalEndo(1,2)- nodeCoorBasalEndo(j,2+3*i)

;
angleDefV(i,j) = atan2(nodeCoorBasalEndo(j,2+3*i),

nodeCoorBasalEndo(j,1+3*i))*180/pi();
if (angleDefV(i,j)) < -170

angleDefV = angleDefV - 360*sign(angleDefV);
end
rot(i,j) = (angleDefV(i,j)-angleV(i));
end

end

%Average rotation of base at endocaridum

avgRotBasalEndo = -(rot(1,:)+rot(2,:)+rot(4,:))/3;

%Write out rotation at end-systole

avgRotApexEpi(length(nodeCoorApexEpi))
avgRotBasalEpi(length(nodeCoorBasalEpi))
avgRotApexEndo(length(nodeCoorApexEpi))
avgRotBasalEndo(length(nodeCoorBasalEpi))

%Plot rotatation of all frames for visual confirmation of
calculation

t=linspace(0,0.2,length(nodeCoorApexEpi));

figure()
plot(t, avgRotApexEpi(:), ’b’)
hold on
plot(t, avgRotApexEndo(:), ’r’)
plot(t, avgRotBasalEpi(:), ’m’)
plot(t, avgRotBasalEndo(:), ’g’)

xlabel(’Analysis time [s]’)
ylabel(’Rotation [ˆ{\circ}]’)
legend(’Apex Epi’, ’Apex Endo’, ’Basal Epi’, ’Basal Endo ’)
hold off
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