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Abstract

From the perspective of structural engineering, shells due to their spatial curvature, pos-
sess a structurally efficient way of carrying loads acting perpendicular to their surfaces.
However, the nature and geometry of shells makes them complicated to understand or
predict their structural behaviour. The structural analysis of thin concrete shells can
be conducted numerically using finite element analysis(FEA) or/and analytically on the
basis of classical theory of thin shells. As finite element software are increasingly be-
coming primary tools for performing structural analysis, the knowledge of the analytical
solution methods are becoming somehow less known among young structural engineers
today. Hence, this paper aims to revisit the analytical analysis methods for concrete shell
structures, and to investigate on how its results compare to that of the FEA. For a com-
plete investigation of the structural analysis of thin concrete shells, the design and the
accompanying verification by using nonlinear FEA is also briefly included. The study is
limited to structural static analysis.

A combination of both a brief review of the theoretical background and a number of il-
lustrative numerical examples are used as the basis for this study. Both the theory and
the examples are focused on some of the most commonly build concrete shell structures,
i.e axisymmetric shells and cylindrical shell roofs. Structural parts such as ring beams
and circular plates, which are normally associated with concrete shell structures are also
included. The finite element analysis of the structures is the numerical examples are per-
formed in a finite element software called DIANA. Following the linear FEA, some of the
structures in the numerical examples are designed accordingly, and analysed using nonlin-
ear FEA. The nonlinear FEA are performed with the main focus on material utilization
and verification of the load carrying capacity. Both the design and load calculations are
done on the basis of the Eurocodes.

In most of the numerical examples considered in this study, a relatively good agreement
between the solutions obtained from the FEA and the analytical method is found. In the
last example, where a simply supported circular cylindrical shell roof is considered, the
solutions from the FEA has shown some deviation of varying magnitude compared to the
analytical solutions. Some of the possible sources of this deviation concerning assumptions
and mesh density are discussed. The nonlinear FEA of the selected RC structures show
that all the considered structures has the necessary capacity to carry the applied loading.
Moreover the stress concentrations and crack patterns are relatively as one could expect
on the basis of the linear FEA.

Following this study it can be concluded that the analytical solution method provides
a relatively safe and independent way of verifying the results obtained from the FEA.
Moreover it provides a valuable insight into the structural behaviour of shells, which is
vital for objectively evaluating the accuracy of results obtained from FEA of any shell
structure. The computations involved in the analytical solution procedure of concrete
shell structures is however long and complicated thus it is highly exposed to calculation
errors. To avoid this errors it is advisable for structural engineers to make a script,
spreadsheet or a simple software that is based on the analytical method.
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Sammendrag

Sett fra et konstruksjonsteknisk perspektiv har skall, grunnet dets romslige kurvatur,
den egenskapen av å bære last som virker normalt p̊a overflaten p̊a en effektiv m̊ate. Den
naturlige egenskapen og geometrien til skall gjør at det er vanskelig å forutsi dets oppførsel
ved belastning. Konstruksjonsanalyse av tynne betongskall kan gjennomføres numerisk
ved bruk av elementmetoden og/eller analytisk p̊a bakgrunn av den klassiske teorien for
tynne betongskall. Elementprogrammer har stadig blitt mer brukt som hovedverktøy
for konstruksjonsanalyse. Dette har medført at den analytiske beregningsmetoden har
blitt mindre brukt og kjent blant dagens unge ingeniører. En del av formålet med denne
masteroppgaven er derfor å rette blikket tilbake p̊a den analytiske regnemetoden for tynne
betongskall. Det ble lagt mye fokus p̊a hvordan resultatene beregnet med denne metoden
sammenligner seg med det som er beregnet ved bruk av elementmetoden. Denne oppgaven
omfatter b̊ade lineær statisk og ikkelineær beregningsmetoder for tynne betongskall.

En grundig gjennomgang av den teoretiske bakgrunnen og flere regneksemepler er brukt
for å f̊a gjennomføre studie i den masteroppgaven. B̊ade den teoretiske gjennomgangen
og regneksemplene er gjennomført med hovedfokus p̊a noen av de mest brukte tynne skall
betongkonstruksjoner, som er aksesymmetrisk skall og sylindrisk skalltak. Konstruksjons-
deler som ringbjelker og sirkulære plater, som ofte er assosiert med betong skallkonstruk-
sjoner, er ogs̊a inkludert med i denne oppgaven. Alle elementanalyser i oppgaven er utført
i elementprogrammet DIANA. Først ble lineære beregningene gjennomført, deretter ble
noen av de konstruksjonene i regneksempelene dimensjonert. For å verifisere bæreevnen
og materialutnyttelsen til disse armerte betongskall konstruksjonene, ble en ikkelineære
analyse gjennomført. B̊ade lastberegning og dimensjonering er utført i henhold til gjeldene
norsk standarder.

I de fleste regneksemplene som er gjennomført i denne oppgaven, ble det funnet et relativt
godt samsvar mellom begge beregningsmetodene. I det siste regneksemplet, hvor et fritt
opplagt sylindrisk skalltak er beregnet, er det funnet noe avvik av varierende størrelse.
Mulige årsaker for dette avviket kan ha noe å gjøre med element inndeling og antakelser,
og dette er videre diskutert i oppgaven. Resultatene av ikkelinære beregningene har vist
at alle konstruksjonene klarer å bære den dimensjonerende lasten som er p̊asatt. I tillegg,
kan de spenningene og opprissingsmønstrene som er funnet sies å være som forventet
basert p̊a de lineære beregningene.

Fra dette arbeidet kan en konkludere med at den analytiske metoden er en relativ trygg
og uavhengige metode å kontrollere resultater fra en elementanalyse. I tillegg bidrar den
til mye verdifull kunnskap og forst̊aelse av bæresystemet til skallkonstruksjoner. Dette
er viktig n̊ar en vurderer gyldighet av resultater som er funnet fra en elementanalyse p̊a
ulike skallkonstruksjoner. Den analytiske regnemetoden er lang og komplisert slik at den
er veldig utsatt for regnefeil. Derfor er det anbefalt for byggingeniører å ha en regneark
eller brukervennlig program som er basert p̊a den analytiske metoden.
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Chapter 1

Introduction

1.1 Background

Concrete shell structures, often referred to as ’thin shells’ are suitable structural elements
for building spacious infrastructures. They are often economical and suitable solution for
different facility structures such as water tanks, large-span roofs, containment buildings,
and silos. Loads acting on the surface of shell structures are mainly carried by the so
called membrane action. This is a general state of stress consists of the in-plane normal
and shear stress resultants only. In comparison, other structural forms such as beams
and plates carry loads acting on their surfaces by bending action, which can be said is
structurally less efficient. Usually the in-plane stresses in shells are low such that with a
relatively small thickness it is possible to span over large distances. In addition, concrete
shell structures can have various shapes and geometries and that has contributed to them
often considered as visually attractive.

The structural analysis of thin concrete shells can be performed numerically using finite
element analysis and/or analytically by using classical theory of thin shells. While FEA
analysis is becoming increasingly prominent way of performing structural analysis, the
analytical solution procedure is somehow becoming less relevant and known among young
structures engineers today. This unfortunate development has the consequence of elimi-
nating the advantages which are associated with the knowledge and understanding of the
analytical method. Compared to structural elements such as beams, slab and walls, the
structural behaviour of shells in not easy to predict. Hence evaluating the accuracy of the
results obtained from FEA of shell structures is a challenging task. Having the knowledge
and understanding of the analytical solution method can provide the basis for this verifi-
cation and at the same time give a much needed insight into the structural behaviour of
shells.

1
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1.2 Aim and scope of the thesis

The aim of this paper is thus to revisit the analytical method for analysing thin concrete
shell structures, and to investigate on how its results compare to what is obtained from
the FEA. For a complete investigation of the structural analysis of thin concrete shells, the
design and the accompanying nonlinear FEA of the selected shell structures is also briefly
studied. The analytical solution procedure for shell structures of arbitrary geometry and
loading is complicated. However, for some of the most commonly constructed concrete
shell structures, a complete analytical solution procedure is available. The two types of
concrete shell structures considered in this paper are axisymmetric shells and cylindrical
shell roofs. Concrete structures that are made of axissymetrical shells include structures
such as containment buildings, tanks and silos. Similarly, cylindrical shell roofs are often
preferred structural elements for large span concrete roof structures. The analysis in this
study are mainly focused on static linear and nonlinear analysis, and ultimate limit design
on the basis of the Eurocode.

1.3 Structure of the report

The structure of the report is as follows:

Chapter 2:
A basic definition and classification of shell surfaces is presented. A qualitative descrip-
tion of the structural features of shells together with some insight into the history of thin
concrete shell structures is given.

Chapter 3:
The outline of the classical theory of thin shells which is the backbone behind the an-
alytical solution procedure is briefly introduced. The governing differential equations of
the general thin shell theory with its assumptions are presented. Furthermore the final
equations under the assumptions of shallow shells are derived.

Chapter 4:
The necessary derivations leading to the final expressions for analysing cylindrical con-
crete shells is presented. The general outline of the theory behind circular slabs which
are often associated with cylindrical shells is described. Example 1, a numerical example
of an idealized cylindrical water tank connected with a circular slab is presented. This
example is used to illustrate the practical application of the derived analytical solution
procedures. The chapter rounds off with some concluding remarks on the results of the
analytical calculations.

Chapter 5:
The necessary derivations leading to the final expressions for analysing shells of revolution
especially spherical concrete shells is presented. The general outline of the theory behind
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ring beams, which are often associated with spherical shells is included. Example 2, a
numerical example of an idealized pressure vessel which demonstrates the connection be-
tween a cylindrical shell, ring beam and spherical shell is presented. The chapter rounds
off with some concluding remarks on the results of the analytical calculations.

Chapter 6:
The necessary derivations leading to the final expressions for the analytical analysis of
conical shells is presented.

Chapter 7:
An introduction into the finite element method (FEM) and the finite element software
DIANA is presented. A linear FEA of both the structures in Example 1 and Example 2
with the emphasis on the choice of element type and mesh is performed. The results are
then compared to those obtained from the analytical calculations. A nonlinear FEA of the
structure in Example 1 with the main focus on design verification and material utilization
is performed. Moreover, the necessary description and choices of the input parameters for
the nonlinear FEA are presented. The chapter rounds off with some concluding remarks
and discussion on the results of the FEA and the accuracy of the comparison with the
corresponding analytical solutions.

Chapter 8:
The outline of the theory behind the analytical solution procedure and how it relates to
the general theory of thin shells in presented. Example 3, a linear and nonlinear analy-
sis of a numerical example of a fixed circular cylindrical shell is performed. Similarly in
example 4, a linear and nonlinear analysis of a numerical example of a simply supported
circular cylindrical shell with and without edge beams is performed. The chapter rounds
off with some concluding remarks and discussion on the results of the FEA and accuracy
of the comparison with the corresponding analytical solutions.

Chapter 9:
Main conclusion and some remarks about future works is presented.
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Chapter 2

Introduction to shells

2.1 Definition

A shell can be defined as a body that is bounded by two surfaces parallel to its middle-
surface, and is deformed in any arbitrary manner [11]. This is true for shells of a constant
thickness, which will mainly be considered in this study. Generally any surface which
is curved in one or more directions can be considered as a shell surface. This definition
highlights the diversity of surfaces which can be characterized as shells. Hence, there are
different ways of classifying shell surfaces. One particular way of classifying shell surfaces
is according to their Gaussian curvature. The Gaussian curvature of a curved surface is
a product of the two principal curvatures.

κg = κ1 · κ2 = 1
r1
· 1
r2

where r1 and r2 are the corresponding radii of curvatures. The radius of curvature of a
curve at a point is a measure of the radius of the circular arc that best approximates the
curve at that point [6]. The principal radii of curvatures are thus the absolute maximum
and minimum of the radius of curvatures. Based on the outcome of the above formula shell
surfaces can be categorized into three types. A positive Gaussian curvature characterizes
a clastic surface (a), a negative Gaussian curvature characterizes an anti-clastic surface
(b), while as cylindrical or plane surfaces have a Gaussian curvature of zero(c).

Figure 2.1: Classification according to the Gaussian curvature[8]

5
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From the perspective of structural engineering, the main difference between these three
types is the propagation of boundary effects in the shell. The effects tend to damp quick-
est for shells of positive Gaussian curvature and slowest for shells of negative Gaussian
curvature.

Another way of describing shell surfaces is according to how the surfaces are generated.
Using this method, in 1980 Heinz Isler classified shell surfaces into Geometric, Structural
and Sculptural surfaces[8]. Geometric shells are well defined mathematically and which
as a result can fairly be easily calculated analytically. These type of shells were quite
significant in the development of shell structures at the times where computer aided
calculation were not available. Structural shells which also are called experimental forms,
are shapes that are developed by the observation of different ’natural’ phenomena such
as air pressure, gravity, and material flow. These observations together with small scale
experiments were used in developing shell surfaces which behave accordingly. Structural
shells obey the laws of nature under their own weight (pure tension or compression),
unlike geometric shells which are based on approximations. The last type of shells are
sculptural shells, which, as their name indicates, are formed artistically. This shapes er
mostly modelled and calculated using computer programs.

In further discussions regarding the theory of thin shells, the classification method that
will be used is the one according to geometry or curvature of the surface. Thus, geomet-
rically shell surfaces can be classified as cylindrical shells, spherical shells, conical shells,
paraboloidal shells etc.

2.2 Shells as structural elements

The use of shells as structural elements has contributed to the development of several
different branches of engineering. Branches such as Architecture and Building, Power
and chemical engineering, Structural engineering, Vehicle body structures etc. has been
greatly influenced by the introduction of shell elements. The two essential features of shell
structures that had made an impact on the above mentioned branches are continuity and
curvature [2].

There are two ways of interpreting continuity, the first that might come to mind, is
continuity in the sense that it is generated in one piece without any explicit connections
or overlapping. This is among others important in the case with vessels containing fluid
at pressure. However, structural continuity, is the feature that has had a great impact in
structural engineering. This feature is better understood by the observation of an ancient
masonry dome or vault. These constructions are often composed of separate stone sub-
units which sometimes are not cemented to each other. However, they manage to hold the
structure intact without falling out. This is because the vault is in a state of compression
through out. Thus the sub-units are held in compression contact with each other. It is the
fact that shells, due to their spacial curvature, can efficiently transmit forces in different
directions in their surface that makes them structurally continuous.

The first shell structures were built long before the development of the shell theories. The
early engineers could have understood the properties of shells by conducting small-scale
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model tests. An important point that might have been clear for this engineers is that
the difference between closed and open shells. It can easily be determined that closed
surfaces are more rigid than open surfaces. This can for example be illustrated by the
fact that eggs (or egg shells) become rather flexible when they are opened compared to
their original state. In man made structures, openings are almost inevitable. Therefore
to achieve more rigidity the openings needs to be some how compensated. In structures
such as small boats this is done by adding stiffening ribs, large ships have decks and
the shell formed roofs of buildings are often supplemented by some reinforced ring beams.
Quantifying this difference in rigidity between closed and open shells, is one of the reasons
for the development of the shell theory. In addition, the theory of shell structures is needed
to insure precision, safety and economical design.

2.3 Thin shell concrete structures

From an architectural point of view, using concrete shells as roofing provides the possibility
of constructing spacious columnless buildings which are attractive in many ways. The
development of reinforced concrete has enhanced this possibility even further, and had a
great impact in stimulating interest in using thin shell structures for various purposes.

The oldest known concrete shell is the Pantheon in Rome, which was completed about
AD 125. It is a monolithic dome like structure with no reinforcement. However, modern
thin shell structures which are reinforced with steel bars were first produced in beginning
of the 1900s [7]. Concrete shells can be built by the assembly of several casted units or
casted in one piece (monolithic). Monolithic concrete shells are structurally stronger than
their counter parts. The two most well-defined systems of thin shell commonly used in
concrete structures are the dome and the cylinder.
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Figure 2.2: The Pantheon in Rome



Chapter 3

Classical theory of thin shells

3.1 General

In order to design any structure in detail, it is necessary to have some specific set of
guidelines based on scientific methods. As for any other structural element, the guidelines
for designing shell structures is provided by the branch of mechanics called structural
mechanics. Engineers are mainly concerned with the man-made structures. In order to
construct these structures, they are highly dependent on developing conceptual models
that rationalizes the phenomena of nature. The development of these models largely
depend on the understanding of mathematics, conducting experiments, assumptions and
approximations.

3.2 Background

The theory of thin shells is first formulated by L.E.H. Love in 1888 in his paper on thin
elastic shell theory. Love developed the shell theory on the basis of Kirchhoff hypothesis for
thin plate structures proposed in in the mid 1800s [18]. Since then, there has been several
shell theories developed with their own set of kinematic relations (strain - displacement
relations). The central idea it that the deformation of shells due to loading is resisted by
the membrane and bending effects, which can be separated.

The theory of structures often deals with idealized forms of the physical structures. A
beam is for example often represented as a line that possesses a certain mechanical prop-
erties. Similarly, a shell is represented by a surface that possesses a certain mechanical
properties like stiffness and strength. In this way load effects can be calculated easily,
however one has to be aware that for the design of local problems this idealization might
not be adequate. Further development of the theory employs Hooke’s law (elastic mate-
rial), equilibrium and compatibility. Hooke’s law relates strains with stresses, equilibrium
relates stress resultants with external loading and compatibility relates strains with defor-
mation/displacements. These three sets of equations together with appropriate boundary

9
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conditions make up the mathematical aspect of the problem. When dealing with dynamic
loading the equilibrium equation is represented by the equation of motion.

Compared to flat plates, the shell theory is more complicated due to the geometry of the
shell. It is possible to argue that the problem of shell structures is dominated by the
geometry of the surface of the shell [2]

3.3 Assumptions

The classical theory of shells deals with shells that can be characterized as thin. A thin
shell is a curved slab whose thickness h is small compared with its other dimensions and
compared with its principal radii of curvature rx and ry [1]. This can be quantified by the
ratio, radii of curvature to thickness of the shell, R

t
. It can be said that shells with the

ratio greater than 20 can be characterized as thin shells. In comparison, an egg shell has
a ratio of around 55 and an aluminium bear can has a ratio of around 325 [10, ch.4.8].
In further development of the theory, we will mainly be dealing with uniform shells.
The shells are uniform in the sense that the material properties do not vary through
the thickness. Reinforced concrete (RC) is a composite material consisting of steel and
concrete, nevertheless it is regarded as sufficiently uniform. This can be argued with the
fact that the difference in Young’s modulus between steel and concrete is not large enough
[1].

Other assumptions include:

• Small deflections, the equilibrium equations refer to the original geometry

• Linear elastic behaviour

• Shear deformation is neglected

• Plane section remain plane after bending

• The transverse normal stress is negligible

3.4 Definition and notation

The geometry of a shell is fully defined by its thickness and the form of its middle surface.
The middle surface is defined as the surface that bisects the thickness of the plate [19].
When analysing the shell, an infinitely small element which is defined by two pairs of
adjacent planes perpendicular to the middle surface is considered, see Figure 3.1. These
planes contain the principal radii of curvatures of the shell, rx and ry.
Further, the stresses and strains are denoted following their respective axes as σx, σy, τxy =
τyx and εx, εy, γxy. The resultant forces and moments per unit length of the middle surface
are shown in Figure 3.1 and are defined as follows [1]:
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Figure 3.1: Notations[1]

Nx =
∫ h/2

−h/2
σx

(
1− z

ry
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dz
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∫ h/2

−h/2
τxy

(
1− z

ry

)
dz

Qx =
∫ h/2

−h/2
τxz

(
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ry

)
dz

Mx =
∫ h/2

−h/2
σxz
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ry

)
dz
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∫ h/2

−h/2
τxyz

(
1− z

ry

)
dz

Ny =
∫ h/2

−h/2
σy

(
1− z

rx

)
dz

Nyx =
∫ h/2

−h/2
τyx

(
1− z

rx

)
dz

Qy =
∫ h/2

−h/2
τyz

(
1− z

rx

)
dz

Mx =
∫ h/2

−h/2
σyz

(
1− z

rx

)
dz

Myx =
∫ h/2

−h/2
τyxz

(
1− z

rx

)
dz

(3.1)

The expressions z
rx

and z
ry

comes from the trapezoidal shapes of the sides along planes xz
and yz. These expression will however be neglected due to the thin shell approximations.
As a result:

Nxy = Nyx and Mxy = −Myx

In addition σz, τxz and τyz are omitted due to the small thickness of the shell, and the
same goes with the twisting moments about the z-axis. Thus, there will be a state of
plane stress through out the shell. Derivation of the differential equations for the most
used concrete shell elements will be presented in the proceeding chapters. However, the
procedures for deriving the governing differential equation for a general shell element will
be presented in the following sections.



12 CHAPTER 3. CLASSICAL THEORY OF THIN SHELLS

3.5 The governing equation of the general linear shell
theory

3.5.1 Equilibrium

As for any other structural systems, the equilibrium conditions for the differential shell
element in Figure 3.2 must be met. The six equilibrium equations are:

ΣX = 0
ΣY = 0
ΣZ = 0

ΣMx = 0
ΣMy = 0
ΣMz = 0

(3.2)

Due to the simplification of thin shell element mentioned before, the equation ΣMz = 0
is omitted, thus five equations are remained. When setting up the equilibrium equations,
the external loads on the shell element must also be included in the form of pressure
components px, py, pz. The equilibrium equations are derived in Ref. [1], and are given

Figure 3.2: Forces on a shell element[1]
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by:
∂

∂αx
(Nxay)−Ny

∂ay
∂αx

+Nxy
∂ax
∂αy

+ ∂

∂αy
(Nyxax)−Qy

axay
rxy
−Qx

axay
rx

+ pxaxay = 0

∂

∂αy
(Nyax)−Nx

∂ax
∂αy

+Nyx
∂ay
∂αx

+ ∂

∂αx
(Nxyay)−Qx

axay
rxy
−Qy

axay
ry

+ pyaxay = 0

∂

∂αx
(Qxay) + ∂

∂αx
(Qyax) +Nx

axay
rx

+Nxy
axay
rxy

+Nyx
axay
rxy

+Ny
axay
ry

+ pzaxay = 0

− ∂

∂αy
(Myax) +Mx

∂ax
∂αy
−Myx

∂ay
∂αx

+ ∂

∂αx
(Mxyay) +Qyaxay = 0

− ∂

∂αx
(Mxay) +My

∂ay
∂αx

+Mxy
∂ax
∂αy
− ∂

∂αy
(Myxax) +Qxaxay = 0

(3.3)

where αx and αy are curvilinear coordinates along the respective sides, and ax and ay are
called Lamé parameters. The Lamé parameters are quantities which relate a change in
arc length on the surface to the corresponding curvilinear coordinates [21].

3.5.2 Strains

The deformation of a shell element consists of strains both due to a change in curvature
and axial deformation. The strains from the axial deformation are denoted as ε1 and
ε2 for the strains in x and y directions respectively, and the new radii of curvatures are
denoted as r′x and r′y, see Figure 3.3. The total expression for the strains, neglecting the
small terms, is then given by [19]:

εx = ε1 − z
(

1
r′x
− 1
rx

)

εy = ε2 − z
(

1
r′y
− 1
ry

)
γxy = γ − 2zχxy

(3.4)

where χxy represents the change in twisting curvature and γ is shear strain of the middle
surface.

3.5.3 Stress-strain relations

The stress-strain relations are based on the Hook’s law for flat plate element as shown in
Eq. 3.5. In addition to the material being linearly elastic, it is also assumed that it is
isotropic and homogeneous.

σx

σy

τxy

 =


E

1−ν2
νE

1−ν2 0
νE

1−ν2
E

1−ν2 0
0 0 E

2(1+ν)



εx

εy

γxy

 (3.5)
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Figure 3.3: Deformed shell element[1]

Thus, the resulting forces on the shell element are obtained by inserting stresses from Eq.
3.5 into the expressions in Eq. 3.1 and substituting strains from Eq. 3.4, and are readily
presented as:

Nx = Eh

1− ν2 (ε1 + νε2)

Mx = −D(χx + νχy)

Nxy = Nyx = γhE

2(1 + ν)

Ny = Eh

1− ν2 (ε2 + νε1)

My = −D(χy + νχx)
Mxy = −Myx = D(1− ν)χxy

(3.6)

where D is the bending stiffness of the shell given by:

D = Eh3

12(1− ν2)

and χ are the changes in curvature which are the terms in parentheses in Eq. 3.4.

3.5.4 Force-Displacement relations for shallow shells

The stress resultants in Eq. 3.6 are expressed in terms of the strains. Furthermore it
is possible to express the strains in terms of displacements, u, v, w. The expressions are
then further simplified by implementing shallow shell assumptions which are [1]:

• The slope of the shell is small compared with some reference plane.

• The curvature of the surface is small.

• The shell boundaries are such that the surface loads are carried primarily by the
membrane stresses.

• Transverse deflection is much higher that in-plane deflection.



CHAPTER 3. CLASSICAL THEORY OF THIN SHELLS 15

• The changes in curvature of the surface are small.

After applying this assumptions, it can be shown that the expressions in Eq. 3.6 become
further extended to the following set of equations.

Nx = Eh

1− ν2

[
1
ax

∂u

∂αx
− w

rx
+ ν

(
1
ay

∂v

∂αy
− w

ry

)]

Ny = Eh

1− ν2

[
1
ay

∂v

∂αy
− w

ry
+ ν

(
1
ax

∂u

∂αx
− w

rx

)]

Nxy = hE

2(1 + ν)

(
1
ax

∂v

∂αx
+ 1
ay

∂u

∂αy
− 2w
rxy

)

Mx = −D
(

1
a2
x

∂2w

∂α2
x

+ ν
1
a2
y

∂2w

∂α2
y

)

My = −D
(

1
a2
y

∂2w

∂α2
y

+ ν
1
a2
x

∂2w

∂α2
x

)

Mxy = D(1− ν)
(

1
axay

∂2w

∂αx∂αy

)

(3.7)

Similarly, in Equation 3.3 due to the shallow shell assumption, ax and ay can be taken
as constants, thus the terms like ∂ax

∂αy
are neglected. In addition, due to the assumption

that loads are primarily carried by the in-plane stresses, the terms containing Q in the
first two equations in Eq. 3.3 are small and therefore can be dropped. Applying this
changes, it is possible to rewrite Equation 3.3 and in combination with Eq. 3.7 arrive at
a single eight order partial differential equation for shallow shells, see [1, eq.1-28]. The
solution for this equation involves eight constants in the homogeneous solution in addition
to the particular solution. The homogeneous solution corresponds to the effect from the
boundary conditions, while as the particular solution comes from the surface loading. The
particular solution can usually, with a good accuracy, be substituted with the solutions
from the membrane theory.

Shallow shells

The theory of shallow shells has a wide application in analytical calculations of different
shell structures. Therefore, in this section a short description of shallow shells is presented.
A shell could be defined as shallow if at any point of its middle surface the following
inequalities hold [21]: (

∂z

∂x

)2

� 1
(
∂z

∂y

)2

� 1

where z(x, y) is the equation of the middle surface. Following Figure 3.4 the simplification
in shallow shells can be illustrated as follows:

ds ∼=

√√√√(dx)2 +
(
∂z

∂x

)2
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Figure 3.4: Shallow shell illustration

In shallow shells this is simplified to:

ds ≈ dx

i.e, the intrinsic geometry of a shallow shell is identical to the geometry of a plane of
its projection [21]. This implies that the curvelinear coordinates can be replaced by the
Cartesian coordinates x and y with Lamé parameters, ax and ay as 1.

3.6 Membrane theory

The membrane theory is based on the omission of the bending stresses [19]. This reduces
the equilibrium equations in Eq. 3.3 to only three unknowns, Nx, Ny and Nxy. Thus Eq.
3.3 is reduced to just the first three equations with the three variables as unknowns. The
problem is then statically determinate, and it can be easily solved for a given loading and
geometry. For example, the resulting in-plane force for a cylindrical shell that is loaded
with a constant pressure can be expressed as:

Nϕ = σt =
∫ π/2

0
pr cosϕdϕ = pr (3.8)

Which is derived from the vertical equilibrium of the half circle in Figure 3.5.

Figure 3.5: Cylinder shell with membrane theory [10]

Similarly for a sphere like structure loaded with a constant pressure, it can be shown that
the in-plane stresses are expressed as:

σx = σθ = pr

2t (3.9)
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The bending effects from the boundary conditions in shells tend to damp quickly, thus
a large portion of the shell surface is dominated by the membrane forces. Therefore,
the membrane theory can sometimes provide a reasonable basis for design. However, the
membrane theory can only be used upon the fulfilment of the following conditions [1]:

• The displacements from membrane forces do not give rise to bending stresses.

• The loading is distributed smoothly over the surface of the shell.

• The boundaries can supply the forces and permit the displacements required by the
membrane stress resultants.

• The stress is uniformly distributed through the thickness of the shell.
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Chapter 4

Cylindrical shells

4.1 General

Cylindrical shells are one of the most used structural elements in engineering. They are
used both as storage facilities for resources such as gas and water, and as roofing for
buildings. A cylindrical shell is an efficient structural form which is both easy to analyse
and construct. Analysing a cylindrical shell with constant thickness involves only a system
of equations with constant coefficients, thus it can be solved in a general manner.

4.2 Governing differential equation

The membrane theory which is presented in the previous chapter gives a sufficient solution
for a shell or part of a shell surface that is free to expand. However, in parts of the
shell close to a boundary were the free expansion is limited, bending stress will develop.
Considering the small thickness of the thin shells, even small moments can cause significant
stresses in the shell. Therefore, in order to fully analyse a shell structure, it is necessary
to use both the membrane and bending theories.

In further analysis of the cylindrical shell, the notation shown in Figure 4.1 will be used.

General circular cylindrical shells with arbitrary loading and boundary conditions can
only be fully analysed using FEM (finite element method). However, in some cases it is
possible to get a good approximation by dividing the problem into different known state
of stress [21]. In this thesis, only axisymmetrically loaded circular cylindrical shells will
be considered. The symmetric nature of the problem allows for neglecting the membrane
shear forces Nxϕ and Nϕx and the twisting moments Mxϕ and Mϕx. Thus, from the
remaining five equilibrium equations only three are left. These three equations adopting

19
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Figure 4.1: Forces on a cylindrical shell [20]

the notations in Figure 4.1 are as follows:
∑

Fx = 0 dNx

dx
+X(x) = 0

∑
Mtangential = 0 dMx

dx
− Vx = 0

∑
Fradial = 0 dVx

dx
+ 1
r
Nϕ = P (x)

(4.1)

From Eq. 4.1, it is clear that the first equation is not coupled with any of the two
equations, thus could be solved independently. Further by combining the two coupled
equations, the governing differential equation is found.

d2Mx

dx2 + 1
r
Nϕ = p(x) (4.2)

This can further be written in terms of displacements by employing strain-displacement
relations, thus

Nϕ = Eεϕh (4.3)
where εϕ comes from the deformation in the circumferential direction. It is straight
forward to show that the relationship between the hoop strain and the radial deformation
is given by:

εϕ = w

r
(4.4)

Furthermore, neglecting the change of curvature in the circumferential direction, from the
plate theory, it is known that:

Mx = D
d2w

dx2
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Substituting these equation into Eq. 4.2, leads to the following expression.

d4w

dx4 + Eh

Dr2w = p(x)
D

(4.5)

The particular solution of Equation 4.5 is the displacement from the membrane theory,
which by combining equations 4.4, 4.3 and 3.8 becomes:

wp = pr2

Eh
(4.6)

Equation 4.6 is valid for loading p expressed with up to a third degree polynomial. In
order to solve the homogeneous equation conveniently, a new expression called an elastic
length is defined [14].

Le =
√
rh

4
√

3(1− ν2)

and similarly a corresponding dimensionless coordinate ξ = x
Le

is introduced. Now, the
governing differential equation can be written as:

d4w

dx4 + 4
L4
e

w = 0 (4.7)

The solution of this equation, introducing ξ, is given by:

wh = C1e
−ξ cos ξ + C2e

−ξ sin ξ + C3e
ξ cos ξ + C4e

ξ sin ξ (4.8)

The four constants are found by considering the boundary conditions at both ends. The
boundary conditions correspond to the translational and rotational degree of freedoms at
each end.

4.2.1 Damping length

The necessary length in which the bending effects are sufficiently damped out is denoted
as damping length. Based on an acceptable error margin for the bending induced stresses,
this length could roughly be approximated as [14]:

Lc = 2.41
√
rh

This implies that a cylindrical shell with a length smaller than

2Lc = 4.82
√
rh

such that the bending effects overlap can be characterized as short.
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4.2.2 Analysis of long cylindrical shells

A cylindrical shell is characterized as long when boundary effects from one end doesn’t
overlap with the ones from the opposite end. When dealing with long cylindrical shells,
Equation 4.8 become reduced to only two terms. The last two terms of the equation are
multiplied by eξ which indicates an exponential increase in deflection when moving further
from the boundary. However, its known that the boundary effect damps out further up
the cylindrical wall. This leads to the conclusion that C3 and C4 must be zero. The
expression in 4.8 can now be written as:

wh = C1e
−ξ cos ξ + C2e

−ξ sin ξ (4.9)

The remaining task is to find C1 and C2 from a given set of boundary conditions. Fur-
thermore, the stress resultants can be found by differentiating the displacement. The
proceeding arrangement of the solutions is done differently among the different academi-
cians who had discussed this theorem, see Ref. [1, 2, 19, 21]. However, it is mostly about
presenting the solutions in the most convenient way. In order to shorten the expressions,
here the notation in Ref. [14] is followed, and accordingly define the following functions:

g1 =e−ξ cos ξ
g2 =e−ξ sin ξ
g3 =g1 + g2

g4 =g1 − g2

For a given M0 and V0 at the edge x = 0, the corresponding C1 and C2 can be found as:C1

C2

 = Le
2

2D

 1 1
−1 0


 M0

V0Le

 (4.10)

By differentiating and including the g − functions, the load effects can then readily be
presented as: 

w 2D
Le2

Nϕ
Le2

2r
dw
dx

2D
Le

Mx

VxLe


=



g4(ξ) g1(ξ)
g4(ξ) g1(ξ)
−2g1(ξ) −g3(ξ)
g3(ξ) g2(ξ)
−2g2(ξ) g4(ξ)



 M0

V0Le

 (4.11)

It should be noted that the total solution for the deformations and the circumferential force
(Nϕ) is found by the summation of both the homogeneous and the particular solution.

4.2.3 Analysis of short cylindrical shells

The difference when solving the equations for short cylindrical shells compared to the
long cylindrical shells is that one has to deal with four unknowns, two at each end. As a
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result the matrix in Equation 4.11 becomes a 4× 4 matrix. If the notation in Figure 4.2
is used, a new coordinate η that starts from the edge x = L is defined such that

η = L− x
Le

Equation 4.11 can be rewritten to:

w 2D
Le2

Nϕ
Le2

2r
dw
dx

2D
Le

Mx

VxLe


=



g4(ξ) g1(ξ) g4(η) g1(η)
g4(ξ) g1(ξ) g4(η) g1(η)
−2g1(ξ) −g3(ξ) 2g1(η) g3(η)
g3(ξ) g2(ξ) g3(η) g2(η)
−2g2(ξ) g4(ξ) 2g2(η) −g4(η)





M01

V01Le

M02

V02Le

 (4.12)

The positive directions are according to what is shown in Figure 4.3.

Figure 4.2: Definition of the coordinates

Figure 4.3: Illustration of the positive directions

So far the focus has been on finding the distribution of the load effects along the wall of
the cylindrical shell. However, cylindrical shells, specially those used for storage facilities
are often closed at both ends. Thus, for a complete analysis of the cylindrical shells, the
contact areas with other surfaces must be dealt with. Generally the problem is solved by
using compatibility requirements at the interface.
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4.3 Circular flat plates

Cylindrical shells are often enclosed by circular flat plates at the top or/and bottom edge.
The derivation of the governing differential equation for circular flat plates is similar to
that of a rectangular flat plate. Adopting a polar coordinate system and considering only
an axisymmetrical loading yields the following governing differential equation [21]:

d4w

dr4 + 2
r

d3w

dr3 −
1
r2
d2w

dr2 + 1
r3
dw

dr
= p

D
(4.13)

Having the following solution for solid plates:

w = C3r
2 + C4 + P0r

2

16D (3 + ν) (4.14)

Then the stress results can readily be found for different boundary conditions. Table 4.1
shows the expressions for the most common loading and boundary conditions.

Figure 4.4: Moments in a circular flat slab

Table 4.1: Expressions for symmetrical bending of circular plates [1]

General formulas

ω
qr4

64D + C1
r2

4 + C2log
r

a
+ C3

Ma

2D(1 + ν)(a2 − r2) q

64D (a2 − r2)2 q

64D (a2 − r2)(5 + ν

1 + ν
a2 − r2)

dω

dr

qr3

16D + C1
r

2 + C2
1
r

− Mar

D(1 + ν) − qr

16D (a2 − r2) − qr

16D (3 + ν

1 + ν
a2 − r2)

d2ω

dr2
3qr2

16D + C1

2 + C2
1
r2 − Ma

D(1 + ν) − q

16D (a2 − 3r2) − q

16D (3 + ν

1 + ν
a2 − 3r2)

C1 − 2Ma

D(1 + ν) −qa
2

8D −qa
2

8D
3 + ν

1 + ν

C2 0 0 0

C3
Maa

2

2D(1 + ν)
qa4

64D
qa4

64D
5 + ν

1 + ν

Mr −D(d
2ω

dr2 + ν

r

dω

dr
) +Ma

q

16[a2(1 + ν)− r2(3 + ν)] q

16(3 + ν)(a2 − r2)

Mt −D(1
r

dω

dr
+ ν

d2ω

dr2 ) +Ma
q

16[a2(1 + ν)− r2(1 + 3ν)] q

16[a2(3 + ν)− r2(1 + 3ν)]

Ma +Ma −qa
2

8 0

Mr,t(x = 0) +Ma
qa2

16 (1 + ν) qa2

16 (3 + ν)
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4.4 Example 1: Cylindrical water reservoir enclosed
by a circular flat plate

This numerical example will be used to illustrate the practical application of the analyt-
ical solution procedure involving cylindrical shells. The structure that is considered in
this example is an idealized water reservoir that has a form of a circular cylindrical shell.
The cylindrical shell is connected to a circular flat slab at the top edge and is considered
fully fixed a the bottom edge, see Figure 4.5.

Figure 4.5: Illustration of the structure in example 1

Geometry :
hc = 0.2 m

hp = 0.2 m

r = 6 m

L = 5 m

Material :

E = 2 · 107 kN

m2

ρ = 25 kN

m3

ν = 0.2

Stiffness:
Dc = Dp = Eh3

12(1− ν2) = 2 · 107 · 0.23

12(1− 0.22) = 1.389 · 104 kNm
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Load:
Snow
Following Eurocode 1 part 1-3 [15], and choosing an arbitrary location, snow load is given
by:

S = µCeCtSk = 0.8 · 1 · 1 · 3.5 = 2.8 kN

m2

Self weight
g = ρhp = 25 · 0.2 = 5 kN

m2

Using one of the Ultimate Limit State (ULS) combination from Eurocode 0 [17], the total
design load is given by:

qd = 1.2 · g + 1.5 · S = 1.2 · 5 + 1.5 · 2.8 = 10.2 kN

m2

Water pressure
The water pressure at the bottom of the tank (assuming load factor 1) is:

P0 = γwL = 10 · 5 = 50 kN

m2

If x axis is defined as a coordinate starting at the the bottom of the tank and upwards
along the side of the tank, the linearly varying water pressure is given by:

qw(x) = P0(1− x

L
) = 50(1− x

L
)

Elastic length:

Le =
√
rh

4
√

3(1− ν2
=

√
6 · 0.2

4
√

3(1− 0.22
= 0.841 m

Damping length:

2Lc = 4.82
√
rhc = 4.82

√
6 · 0.2 = 5.28 m

Since 2Lc > L, the boundary effects from both ends must be solved together.

4.4.1 Circular plate

Particular solution
First the connection between the circular plate and the cylindrical wall is considered as
pinned. Thus, the plate is simply supported with uniformly distributed load qd at the
top. From Table 4.1, with a = r, the rotation at the boundary is given by:

θq = dw

dr
= − qdr

3

16Dp

(3 + ν

1 + ν
− 1

)
= − 10.2 · 63

16 · 1.389 · 104

(3 + 0.2
1 + 0.2 − 1

)
= −0.0165

Homogeneous solution
Then a unit moment is applied along the boundary of the circular plate. This moment
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comes from the monolithic connection between the plate and the wall. The rotation of
the plate due to this unit moment is found from Table 4.1 as:

θM = dw

dr
= − Mar

Dp(1 + ν) = − Ma · 6
1.389 · 104(1 + 0.2) = −3.6 · 10−4Ma

4.4.2 Cylindrical wall

Particular solution
The radial displacement at the top edge due to the water pressure is given by Equation
4.6

wTp = qw(L)r2

Ehc
= 0

Similarly the radial displacement at the bottom edge is

wBp = qw(0)r2

Ehc
= 50 · 62

2 · 107 · 0.2 = 4.5 · 10−4 m

The rotation due to the linearly varying water pressure is constant and is given by:

θp = dwp
dx

= d

dx

(
qw(x)r2

Ehc

)
= − 50 · 62

5 · 2 · 107 · 0.2 = −9 · 10−5

Homogeneous solution
As previously mentioned, the homogeneous solution must be evaluated by taking in con-
sideration the edge effects from both ends, see Equation 4.12. First the values of the
g − functions at the lower and upper edges must be evaluated. Thus, for both ξ and η
equal to zero and L

Le
,

g1(0) = 1
g2(0) = 0
g3(0) = 1
g4(0) = 1

g1( 5
0.841) = 2.604 · 10−3

g2( 5
0.841) = 2.712 · 10−4

g3( 5
0.841) = 2.875 · 10−3

g4( 5
0.841) = 2.333 · 10−3

Inserting these values in Equation 4.12 for the corresponding values of ξ and η renders
the following set of equations:

wTh =5.94 · 10−8M01 + 6.63 · 10−8V01Le + 2.546 · 10−5M02 + 2.546 · 10−5V02Le

θTh =− 1.577 · 10−7M01 − 8.704 · 10−8V01Le + 6.055 · 10−5M02 + 3.027 · 10−5V02Le

wBh =2.546 · 10−5M01 + 2.546 · 10−5V01Le + 5.94 · 10−8M02 + 6.63 · 10−8V02Le

θBh =− 6.055 · 10−5M01 − 3.027 · 10−5V01Le + 1.577 · 10−7M02 + 8.704 · 10−8V02Le
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4.4.3 Compatibility requirements

Bottom edge displacement: wBh = −wBp
Bottom edge is fixed against displacement

2.546 ·10−5M01 +2.546 ·10−5V01Le+5.94 ·10−8M02 +6.63 ·10−8V02Le = −4.5 ·10−4 (4.15)

Bottom edge rotation: θBh = −θp
Bottom edge is fixed against rotation

−6.055 ·10−5M01−3.027 ·10−5V01Le+1.577 ·10−7M02 +8.704 ·10−8V02Le = 9 ·10−5 (4.16)

Top edge displacement: wTh + wTp = 0
The axial stiffness of the circular plate is considered infinite.

5.94 · 10−8M01 + 6.63 · 10−8V01Le + 2.546 · 10−5M02 + 2.546 · 10−5V02Le = 0 (4.17)

Top edge rotation: θp + θTh = θq + θM

− 1.577 · 10−7M01 − 8.704 · 10−8V01Le + 6.055 · 10−5M02 + 3.027 · 10−5V02Le

− 9 · 10−5 = −0.0165− 3.6 · 10−4Ma

(4.18)

Ma = M02

Inserting this in Equation 4.18 and rearranging gives:

− 1.577 · 10−7M01 − 8.704 · 10−8V01Le + 4.206 · 10−4M02 + 3.027 · 10−5V02Le = −0.0164
(4.19)

Equations 4.15, 4.16, 4.17 and 4.19 constitute a set of four linear equations with four
unknowns.

2.546 · 10−5 2.546 · 10−5 5.94 · 10−8 6.63 · 10−8

−6.055 · 10−5 −3.027 · 10−5 1.577 · 10−7 8.704 · 10−8

5.94 · 10−8 6.63 · 10−8 2.546 · 10−5 2.546 · 10−5

−1.577 · 10−7 −8.704 · 10−8 4.206 · 10−4 3.027 · 10−5





M01

V01Le

M02

V02Le

 =


−4.5 · 10−4

9 · 10−5

0
−0.0164


When the set of linear equations are solved for the stress resultants, and the value for Le
is inserted, the following results are obtained:

M01

V01

M02

V02

 =


14.61 kNm

m

−38.40 kN
m

−42.02 kNm
m

50.02 kN
m


Inserting these results into the different expressions for the load effects gives the distribu-
tion of the effects along the cylindrical wall and the circular slab.
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4.4.4 Distribution of the load effects

As mentioned earlier the total load effects are obtained by summing up both the particular
and homogeneous solutions.
Load effects in the circular slab
The expressions for both the radial and tangential moments are given in Table 4.1:

Mr =M02 + q

16(3 + ν)(a2 − (6− r)2) = −42.02 + 2.04(36− (6− r)2)

Mt =M02 + q

16(a2(3 + ν)− (6− r)2(1 + 3ν)) = −42.02 + 0.64(115.2− 1.6(6− r)2)
(4.20)

Notice that the axis is switched so that r starts at the edge and goes towards the center
of the slab. The distribution of both the moments in the slab are plotted in Figure 4.6.
Positive moment value results in tension stresses at the bottom of the slab. The red line
represents the center of the circular flat plate.

Figure 4.6: Slab moments

Due to symmetry conditions, the shear force Vt is neglected while as Vr is given by [21,
eq.4.22] with C2 = 0:

Vr = −q(6− r)2 = −10.2(6− r)
2 (4.21)
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Figure 4.7: Shear force in the slab

The corresponding shear force distribution in the slab is plotted in Figure 4.7
Load effects in the cylindrical wall
The expression for the moment Mx is given in Equation 4.12 as:

Mx =M01g3(ξ) + V01Leg2(ξ) +M02g3(η) + V02Leg2(η)
=14.61g3(ξ)− 32.29g2(ξ)− 42.02g3(η) + 42.07g2(η)

(4.22)

Similarly the expression for the shear force Vx is given by:

Vx =− 2M01

Le
g2(ξ) + V01g4(ξ) + 2M02

Le
g2(η)− V02g4(η)

=− 34.74g2(ξ)− 38.40g4(ξ)− 99.93g2(η)− 50.02g4(η)
(4.23)

The corresponding distributions are plotted in Figures 4.8 and 4.9 respectively. x = 0
corresponds to the bottom of the cylindrical wall which is assumed to be fully fixed. The
red line in the diagrams represent the center of the cylindrical wall.

The circumferential force Nϕ has contributions both from the particular and homogeneous
solutions. The particular solution is obtained from Equation 4.3 which by inserting the
value for ξϕ from the radial displacement, is given by:

N ′ϕ = E
wp
r
h = p(x)r = 6(50− 10x) (4.24)

The homogeneous solution is given in Equation 4.12 as:

Nh
ϕ =(M01g4(ξ) + V01Leg1(ξ) +M02g4(η) + V02Leg1(η)) 2r

L2
e

=247.88g4(ξ)− 547.92g1(ξ)− 712.93g4(η) + 713.72g1(η)
(4.25)
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Figure 4.8: Moment in the cylindrical wall

Figure 4.9: Shear force in the cylindrical wall

The total circumferential force is then given by:

Nϕ = 247.88g4(ξ)− 547.92g1(ξ)− 712.93g4(η) + 713.72g1(η) + 300− 60x (4.26)
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The distribution is plotted in Figure 4.10:

Figure 4.10: Circumferential force in the cylindrical wall

4.4.5 Remarks on the result from the analytical calculations

Both the moments in the circular slab changes from a positive value at the center to a
negative value at the edge. Due to the vertically downward directed loading on the slab
and the partially fixed edges, this result is as expected. From the diagrams for the stress
resultants in the cylindrical wall, it is evident that the boundary effects from both edges
are considered. The bending moment in the cylindrical shell is largest at the edges, and
it quickly decreases towards the center of the wall which is dominated by the particular
solution. The diagram for the circumferential force shows the presence of tension stresses
in the circumferential direction in the entire length of the wall except at the edges which
are zero. This agrees well with the type of edge constraints that are assumed.
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Shells of revolution

5.1 General

Shells of revolution, next to cylindrical shells, are one of the most practically used shell
surfaces in concrete structures. Some of the application of this types of shells are tanks,
containers, domes, and are often used in combination with cylindrical shells. Shells of
revolution are obtained by the rotation of a plane curve about the axis lying in the plane
of the curve [19]. The curve is called the meridian and its plane is denoted as the meridian
plane. In this section, only the spherical dome will be considered. A spherical dome has
a positive Gaussian curvature, thus the edge effects generally damp quickly.
A differential element shown in Figure 5.1 is cut out by two adjacent meridians and
parallel circles. The position of a meridian is defined by the angles θ and ϕ. The angle
θ is measured from a datum meridian plane, and the angle ϕ is made by the normal to
the surface and the axis of rotation. The meridian plane and a plane perpendicular to
the meridian are the planes of principal curvature at a given point on the surface. The
corresponding radii of curvatures are denoted as r1 and r2 respectively. Furthermore, the
radius of the parallel circle is denoted by:

r0 = r2 sinϕ
.

5.2 Membrane theory of shells of revolution

As mentioned earlier, neglecting the bending effects from the boundary conditions, a
membrane theory of shells can be developed. In membrane theory, the external load is
taken up by the in-plane forces Nθ and Nϕ as shown in Figure 5.1. For axisymmetrically
loaded shells, the in-plane shear forces are neglected and the external loading is decom-
posed into the local Y and Z axes only. The external load components in these directions,
following Figure 5.1, are expressed as:

pϕr1r0dϕdθ

pzr1r0dϕdθ
(5.1)

33
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Figure 5.1: Differential element of axisymmetric shells of revolution[19]

Similarly the in-plane forces can also be decomposed in Y and Z directions so that the
equilibrium equations, ∑Y = 0 and ∑Z = 0 are considered. This two equations are then
expressed as:

d(N ′ϕr0)
dϕ

−N ′θ
dr0

dϕ
+ pϕr0r1 = 0

N ′θ
r2

+
N ′ϕ
r1

+ pz = 0
(5.2)

where N ′θ and N ′ϕ denotes the membrane forces. These two equations can then be solved
with respect to these two unknowns. Next, doing some rearranging of the variables and
mathematical manipulations , the following two expressions for the two unknowns can be
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found [1].

N ′θ = − r0

sinϕ

(
N ′ϕ
r1

+ pz

)

N ′ϕ = − 1
2πr0 sinϕ

∫ ϕ

0
(pϕ sinϕ+ pz cosϕ)(2πr0)r1dϕ

(5.3)

The expression within the integral represents the total vertical load, which is summed up
over a complete parallel circle defined by ϕ and along the meridian. This is illustrated in
Figure 5.2.

Figure 5.2: Illustration of the equivalent vertical load [14]

Hence, N ′ϕ can be directly written as:

N ′ϕ = − R

2πr0 sinϕ

and therefore N ′θ as:

N ′θ = R

2πr1 sin2 ϕ
− pz

r0

sinϕ

Usually, for practical reasons, the meridional force N ′ϕ as shown in Figure 5.2, can not be
provided by support force in the same direction. Such structures are usually supported by
vertical walls and some kind of ring reinforcement at the edge to take up the horizontal
force:

Hϕ = N ′ϕ cosϕ

The hoop forces Nθ are usually not enough to offset the force Hϕ, thus bending stresses
along the meridian must develop. Such junctions will closely be discussed later in this
chapter.



36 CHAPTER 5. SHELLS OF REVOLUTION

5.2.1 Displacements from the membrane theory

The deformations w and v due to loads in Z and Y directions respectively are considered.
Thus, the total deformation of arc AB in Figure 5.3 can be written as:

dv

dϕ
dϕ− wdϕ

Dividing this by the initial length r1dϕ gives the strain of the shell in the meridional
direction as:

εϕ = 1
r1

dv

dϕ
− w

r1
(5.4)

The corresponding strain in the circumferential direction is proportional to the change of
radius r0. Thus it is given by:

εθ = v cosϕ− w sinϕ
r0

(5.5)

Figure 5.3: Displacements from the membrane theory [14]

Using Hooke’s law the strains can be written in terms of stresses/forces and are expressed
as:

εϕ = 1
Eh

(Nϕ − νNθ)

εθ = 1
Eh

(Nθ − νNϕ)
(5.6)
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Combining equations 5.4, 5.5 and 5.6, a differential equation that can be solved for v is
obtained.

dv

dϕ
− v cotϕ = 1

Eh
[Nϕ(r1 + νr2)−Nθ(r2 + νr1)] (5.7)

This has the general solution:

v = sinϕ
(∫ f(ϕ)

sinϕdϕ+ C

)
(5.8)

Where f(ϕ) is the expression on the right hand side of the differential equation in 5.7.
Then w can be found by differentiating v and inserting it into Eq. 5.4. Thus, substituting
εϕ from Eq. 5.6 w is given by:

w = v cotϕ− r2

Eh
(N ′θ − νN ′ϕ) (5.9)

Moreover, for the compatibility requirements with other surfaces, the horizontal displace-
ment and rotation at the edge is of concern. The relationship between radial displacement
and circumferential strain is as defined in Eq. 4.4. Thus,

∆H = r0εθ = r2 sinϕ
Eh

(N ′θ − νN ′ϕ) (5.10)

Assuming a rigid support at the edge, v = 0, the rotation could be written as:

∆ϕ = 1
r1

dw

dϕ
(5.11)

For a spherical dome like structure loaded under its own weight, the membrane solutions
from Eq. 5.10 and Eq. 5.11 are for example given by:

∆H = r2q

Eh

(
1 + ν

1 + cosϕ − cosϕ
)

∆ϕ = − rq

Eh
(2 + ν) sinϕ

(5.12)

5.3 Bending theory in shells of revolution

As stated earlier bending in shells occur due to the supporting conditions. In this section,
the governing differential equation will be developed, and its solution for spherical dome
shells will be presented.

5.3.1 Governing differential equation

For the development of the governing differential equations, the external loading is dropped
as it is already handled in the membrane theory. Furthermore, the reduction due to
symmetry is implemented. Thus three equilibrium equations are left and these will be
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Figure 5.4: Forces on a shell element [19]

developed for the element in Figure 5.4.
Equilibrium of forces in the direction of tangent and normal to the meridian are the same
as the first expression in Eq. 5.2 with an additional term due to the shear forces. The
resulting shear force is given by Qϕr0dθ, and its component in the direction of tangent to
the meridian is given by Qϕr0dθdϕ. Dropping the dθdϕ, the term −Qϕr0 is then added
to Eq. 5.2. Similarly d(Qϕr0)

dϕ
is added to the second equation.

d(Nϕr0)
dϕ

−Nθ
dr0

dϕ
−Qϕr0 = 0

Nθ

r2
+ Nϕ

r1
+ d(Qϕr0)

dϕ
= 0

(5.13)

The third equilibrium equation is obtained by taking moment equilibrium of the forces
on the element with respect to the tangent to the parallel circle. Thus after some simpli-
fications including elimination of small terms, this is given by:

d

dϕ
(Mϕr0)−Mθr1 cosϕ−Qϕr1r0 = 0 (5.14)

Following Figure 5.5, it is also possible to express Nϕ from vertical equilibrium similar as
it is done before

Nϕ = −Qϕ cotϕ (5.15)
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Figure 5.5: Vertical equilibrium [14]

Substituting Eq. 5.15 into the second equation of Eq. 5.13 and solving for Nϕ, the
following expression is obtained:

Nθ = − 1
r1 sinϕ

d(Qϕr0)
dϕ

+ Qϕr0 cotϕ
r1 sinϕ (5.16)

If the following two variables are introduced

V = 1
r1

(
v + dw

dϕ

)

U = r2Qϕ

(5.17)

The two equations can then be written as:

Nϕ = − 1
r2
U cotϕ

Nθ = − 1
r1

dU

dϕ

(5.18)

Then, differentiating Eq. 5.9 once and substituting it in the first of Eq. 5.17, the following
expression for V is obtained.

V = cotϕ
r1Eh

[(r1 + νr2)Nϕ − (r2 + νr1)Nθ]−
d

r1dϕ

[
r2

Eh
(Nθ − νNϕ)

]
(5.19)

Inserting Nϕ and Nθ from Eq. 5.18, and taking r1 = r2 = r, that is for a sphere like
structure, the first differential equation is found.

d2U

dϕ2 + dU

dϕ
cotϕ− U(cot2 ϕ− ν) = EhrV (5.20)

The second differential equation is found by expressing the bending moments in the third
equilibrium equation 5.14 with curvatures, see Eq. 3.6. It can be shown that the curva-
tures expressed in terms of V are given by:

χϕ = d

rdϕ
V

χθ = cotϕ
r

V

(5.21)
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Thus, the second differential equation becomes:

d2V

dϕ2 + dV

dϕ
cotϕ− V (cot2 ϕ+ ν) = −r

2

D
Qϕ (5.22)

The exact solution for these two simultaneous differential equations is fairly complicated.
However, there exists a simplified version of the equations that could be solved easily.
The assumption for this simplification is based on the bending deformation being small.
Thus, all functions characterizing the stress and strain components in a shell near its
edge, as well as their first derivatives, are small compared with their higher derivatives
[21]. This assumption is especially correct for shells that can’t be characterized as shallow.
Implementing this simplifications, the two equations are written as:

d2U

dϕ2 = EhrV

d2V

dϕ2 = −r
2

D
Qϕ

(5.23)

This can further be rewritten to a single differential equation as:

d4Qϕ

dϕ4 + 4λ4Qϕ = 0 (5.24)

where

λ4 = 3(1− ν2)
(
a

h

)2
(5.25)

The solution of this equation is similar to that of a cylindrical shell. Defining the angle
measured from the edge (ϕ = ϕ0) as:

ψ = ϕ0 − ϕ

The correctly damped solution is given by:

Qϕ = e−λψ(C1 cosλψ + C2 sin λψ) (5.26)

The term λψ is denoted as t and the g − functions are as defined before. Then, it is
possible to show that for a given M0 and horizontal force R0 at the edge ψ = 0, the
corresponding C1 and C2 can be expressed as:

C1

C2

 =

− sinϕ 0
sinϕ Ehr

2λ03D


R0

M0

 (5.27)
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By differentiating Eq. 5.26 and rearranging the variables, the load effects can readily be
found as [14]: 

Rϕ sinϕ
Mϕ

Ehr
2λ3D

Qϕ

Nϕ tanϕ
Nθ

1
λ

Mθ
Ehr

2νλ3D

∆ϕ
Eh
2λ2

∆H
Eh

λr sinϕ



=



g4(t) g2(t)
2g2(t) g3(t)
−g4(t) g2(t)
g4(t) −g2(t)
2g1(t) g4(t)
2g2(t) g3(t)
−g3(t) −g1(t)
2g1(t) g4(t)



R0 sinϕ
M0

Ehr
2λ3D

 (5.28)

Since R0 is introduced as an integration constant instead of Q0, the particular solution
needs to be modified. A term that corresponds to R0 = 0 must be added to the membrane
theory solutions. To so this, a horizontal component of the support force Nϕ must be
eliminated, thus a force H = Nϕ cosϕ is applied at the edge. Solving Eq. 5.28 for ∆ϕ

and ∆H with M0 = 0 and R0 = −H renders the following solutions:

∆R
H = λr sinϕ

Eh
2R0 sinϕ

∆R
ϕ = −2λ2

Eh
R0 sinϕ

(5.29)

Thus, the final particular solutions are obtained as

∆p
H = ∆H + ∆R

H

∆p
ϕ = ∆ϕ + ∆R

ϕ

(5.30)

It should again be noted that the total solution for deformation and membrane forces are
obtained by the summation of the homogeneous and particular solutions.

5.4 Ring beams

At a connection between a spherical shell roof and a circular cylindrical wall, there is often
an edge reinforcement in the form of a circular ring beam. In the following derivation of
the theoretical background for ring beams, it is assumed that the width of the beam b
is small compared to r, so that the ’curved-beam’ effect is neglected. It can be shown
that for any practical concrete structure, this assumption is justifiable [2]. First, the
deformations of a circular ring beam which is loaded by distributed force H acting in the
radial direction through the centroid of the cross section, is to be derived, see Figure 5.6
Similar as it is done in Eq. 3.8, that is equilibrium of the half circle, following Figure 5.6
the ring force T can be written as:

T = Hr
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Figure 5.6: Ring beam with distributed force the in radial direction

which gives a strain in circumferential direction

εθ = T

EA
Following Eq. 4.4 the radial deformation can now be expressed in terms of H as:

∆H = r2

EA
H (5.31)

Again, the same ring beam is loaded with distributed moment Mr acting in the radial
direction. Similarly the moment Mθ of the beam can be expressed as:

Mθ = Mrr

Figure 5.7: Ring beam with distributed moment in the radial direction

Following beam theory the corresponding stress is found as:

σ(y) = Mθ

I
y

Using Hook’s law the strains are obtained as

εθ = Mθy

EI
Thus,

∆H = r2y

EI
Mr (5.32)

And as rotation is defined by ∆ϕ = ∆H

y
, it follows that:

∆ϕ = r2

EI
Mr (5.33)
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5.5 Example 2: An idealized cylindrical concrete gas
vessel enclosed by a spherical shell at the top

In this example a connection between a spherical shell roof, a ring beam and a cylindrical
wall is to be illustrated. The structure that is to be analysed is an idealized concrete gas
pressure vessel that has a form of a circular cylindrical shell. The vessel is enclosed by a
spherical shell at the top, and it is considered fully fixed at the bottom, see Figure 5.8.

Figure 5.8: Illustration of the structure in example 2

Geometry :
hc = 0.2 m

hs = 0.2 m

r = 5 m

L = 6 m

hr = b = 0.3 m

r1 = r2 = R = 12 m

ϕ0 = 24.6o

Material :

E = 2 · 107 kN

m2

ρ = 25 kN

m3

ν = 0.2
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Stiffness:
Dc = Ds = Eh3

12(1− ν2) = 2 · 107 · 0.23

12(1− 0.22) = 1.389 · 104 kNm

EI = E
bh3

12 = 1.35 · 104 kNm2

Load:
Snow
Following Eurocode 1 part 1-3 [15], the snow load is given by:

S = µCeCtSk = 0.8 · 1 · 1 · 3.5 = 2.8 kN

m2

The snow load is given per square meter of of the plane in the horizontal projection, but
here for simplification it is considered to have the same distribution as self weight.
Self weight

g = ρhp = 25 · 0.2 = 5 kN

m2

Again, using one of the Ultimate Limit State (ULS) combination from Eurocode 0 [17]
the total design load is given by

qd = 1.2 · g + 1.5 · S = 1.2 · 5 + 1.5 · 2.8 = 10.2 kN

m2

Gas pressure
The gas pressure acts perpendicular to all the internal surfaces of the vessel. In this
example the following assumed design value is chosen.

pg = 150 kN

m2

As the gas pressure load acts against the snow load and the self weight, a design load
combination with the reduced partial safety factors should have been used. Since the gas
pressure is not explicitly given however this is not considered in here. All the external
loads on the spherical shell can now be decomposed in to the local Y and Z directions as:

pϕ =qd sinϕ = 10.2 sinϕ
pz =qd cosϕ− pg = 10.2 cosϕ− 150

Elastic length:

Le =
√
rh

4
√

3(1− ν2
=

√
5 · 0.2

4
√

3(1− 0.22
= 0.768 m

Damping length:

2Lc = 4.82
√
rhc = 4.82

√
5 · 0.2 = 4.82 m

Since 2Lc < L, the boundary effects from both ends can be treated separately.
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5.5.1 Cylindrical wall

Particular solution
The displacement from the gas pressure is constant and is given by Equation 4.6

wp = pgr
2

Ehc
= 150 · 52

2 · 107 · 0.2 = 9.375 · 10−4

The gas pressure doesn’t result into any rotation in the cylindrical wall, thus:

θp = dwp
dx

= 0

Homogeneous solution
The homogeneous solution is given by Equation 4.11. The numerical values of the relevant
g − functions at ξ equal to zero is one. Thus, inserting these values in Equation 4.11
renders the following set of linear equations:

wh = L2
e

2Dc

(M0c + V0Le) = 1.631 · 10−5V0 + 2.123 · 10−5M0c

θh = Le
2Dc

(−2M0c − V0Le) = −2.123 · 10−5V0 − 5.530 · 10−5M0c

5.5.2 Spherical shell

Particular solution
The expressions for the displacement and rotation at the sphere edge are functions of
the meridian and circumferential forces. Therefore, these forces must first be determined
using Equation 5.3.

N ′ϕ = − 1
2π · 122 sin 24.6

∫ ϕ0

0
(10.2 sin2 ϕ+ (10.2 cosϕ− 150) cosϕ)2π122 sinϕdϕ

= 835.891 kN

m

N ′θ = −835.891− 12 · (10.2 cos 24.6− 150) = 852.819 kN

m

The horizontal displacement is then found from Equation 5.10 as:

∆H = 12 sin 24.6
2 · 1070.2 (852.819− 0.2 · 835.891) = 8.563 · 10−4 m

And the rotation is given by Equation 5.11, from which by combining 5.7, 5.9 and 5.10
can be rewritten as:

∆ϕ = cotϕ
r1Ehs

[N ′ϕ(r1 + νr2)−N ′θ(r2 + νr1)] d

r1dϕ

(
∆H

sinϕ

)

= cot 24.6
12 · 2 · 107 · 0.2[12036.8− 12280.6] d

12dϕ(ϕ = 24.6)
(

∆H

sinϕ

)
= −2.802 · 10−5 rad
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The modification due to the actual support conditions is given by Equation 5.29

λ = 4

√
3(1− 0.22)

( 12
0.2

)2
= 10.09

∆R
H = 10.09 · 12 · sin 24.6

2 · 107 · 0.2 · 2(−835.891 cos 24.6) sin 24.6 = −0.0080 m

∆R
ϕ = − 210.092

2 · 107 · 0.2(−835.891 · 103 cos 24.6) sin 24.6 = 0.0161 rad

The total particular solution is then obtained by summing up both of the contributions.

∆p
H = 8.563 · 10−4 − 0.0080 = −0.0071 m

∆p
ϕ = −2.802 · 10−5 + 0.0161 = 0.01607 rad

Homogeneous solution
The deformations from the homogeneous solution are given in Equation 5.28

∆h
H =λr sinϕ

Eh
(2g1(t)R0 sinϕ+ g4(t)M0s

EhR

2λ3Ds

)

=1.0491 · 10−5R0 + 2.1195 · 10−5M0s

∆h
ϕ =2λ2

Eh
(−g3(t)R0 sinϕ− g1(t)M0s

EhR

2λ3Ds

)

=− 2.119 · 10−5R0 − 8.5622 · 10−5M0s

5.5.3 Ring beam

The radial displacement of the ring beam can be found by adding the contributions from
both the radial force and moment, Equations 5.31 and 5.32 respectively. First from
equilibrium, the radial force and moment are given by:

H =− (V0 +R0) + hrpg = 45− V0 −R0

Mr =M0s −M0c + (V0 −R0)hr2 = M0s −M0c + 0.15V0 − 0.15R0

Then, the radial displacements at the top and bottom of the ring beam are:

wtop = r2

EA
(45− V0 −R0) + r2hr

2EI (M0s −M0c + 0.15V0 − 0.15R0)

=− 5.5556 · 10−5R0 + 2.7778 · 10−4M0s + 2.7778 · 10−5V0

− 2.7778 · 10−4M0c + 6.25 · 10−4

wbottom = r2

EA
(45− V0 −R0)− r2hr

2EI (M0s −M0c + 0.15V0 − 0.15R0)

=2.7778 · 10−5R0 − 2.7778 · 10−4M0s − 5.5556 · 10−5V0

+ 2.7778 · 10−4M0c + 6.25 · 10−4
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The rotation of the beam is expressed in Equation 5.33

θring = r2

EI
(M0s −M0c + 0.15V0 − 0.15R0)

=− 2.7778 · 10−4R0 + 1.8519 · 10−3M0s + 2.7778 · 10−4V0 − 1.8519 · 10−3M0c

5.5.4 Compatibility requirements

Sphere shell/Ring beam:
The horizontal displacement at the top of the ring beam must be the same as the total
horizontal displacement at the edge of the sphere shell.

∆p
H + ∆h

H = wtop

− 0.0071 + 1.0491 · 10−5R0 + 2.1195 · 10−5M0s

=− 5.5556 · 10−5R0 + 2.7778 · 10−4M0s + 2.7778 · 10−5V0 − 2.7778 · 10−4M0c + 6.25 · 10−4

After rearranging the different terms, the first compatibility equation is obtained:

6.6047·10−5R0−2.5658·10−4M0s−2.7778·10−5V0 +2.7778·10−4M0c = 7.743·10−3 (5.34)

Similarly, requiring compatibility of the rotation between the two surfaces leads to the
second compatibility equation.

∆p
ϕ + ∆h

ϕ = ϕring

2.5658 · 10−4R0− 1.9375 · 10−3M0s− 2.7778 · 10−4V0 + 1.8519 · 10−3M0c = −0.016 (5.35)

Cylindrical shell/Ring beam:
Compatibility of the horizontal displacement gives:

wp + wh = wbottom

− 2.7778 · 10−5R0 + 2.7778 · 10−4M0s + 7.1839 · 10−5V0 − 2.5656 · 10−4M0c

= −3.125 · 10−4 (5.36)

And the last equations is obtained from requiring the compatibility of the rotation between
the cylindrical shell and the bottom of the ring beam.

θp + θh = −θring

2.7778 · 10−4R0 − 1.8519 · 10−3M0s − 2.5656 · 10−4V0 + 1.9071 · 10−3M0c = 0 (5.37)
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Equations 5.34, 5.35, 5.36 and 5.37 constitute a set of four linear equations with four
unknowns.

6.6047 · 10−5 −2.5658 · 10−4 −2.7778 · 10−5 2.7778 · 10−4

2.5658 · 10−4 −1.9375 · 10−3 −2.7778 · 10−4 1.8519 · 10−3

−2.7778 · 10−5 2.7778 · 10−4 7.1839 · 10−5 −2.5656 · 10−4

2.7778 · 10−4 −1.8519 · 10−3 −2.5656 · 10−4 1.9071 · 10−3





R0

M0s

V0

M0c



=


7.743 · 10−3

−0.016
−3.125 · 10−4

0


When the set of linear equations are solved , the following results are obtained:

R0

M0s

V0

M0c

 =


307.32 kNm

m

123.98 kN
m

−182.51 kNm
m

51.07 kN
m


Inserting these results into the different expressions for the load effects renders the distri-
bution of the effects along the cylindrical wall and the spherical shell.

5.5.5 Distribution of the load effects

Load effects in the spherical shell
The expressions for both the moment and shear force distribution are given in Equation
5.28:

Mϕ =2λ3Ds

EhR

(
2g2(t)(R0 −H)sinϕ+ g3(t)M0

EhR

2λ3Ds

)

Qϕ =2λ3Ds

EhR

(
−g4(t)(R0 −H)sinϕ+ g2(t)M0

EhR

2λ3Ds

)

Notice that the additional horizontal load H, which previously was applied at the edge
is also included here. The distribution of both the moment and the shear force in the
spherical shell are plotted in Figures 5.9 and 5.10 receptively. φ = 0 corresponds to the
center of the spherical shell.
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Figure 5.9: Meridian moment
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Figure 5.10: Shear force in the spherical shell
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The in-plane forces are found by adding the contributions from both the particular and
homogeneous solutions.

Nϕ = 1
tanϕ(g4(t)(R0 −H)sinϕ− g2(t)M0s

EhR

2λ3Ds

Nθ =λ(2g1(t)(R0 −H)sinϕ+ g4(t)M0s
EhR

2λ3Ds

The distribution of the in-plane forces are plotted in 5.11
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Figure 5.11: The in-plane forces
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Load effects in the cylindrical wall
The expression for the moment Mx is given in Equation 4.11 as:

Mx = M0cg3(ξ) + V0Leg2(ξ)

Similarly the expression for the shear force Vx is given by:

Vx = − 1
Le

(−2M0cg2(ξ) + V0Leg4(ξ))

The corresponding distributions are plotted in Figures 5.12 and 5.13 respectively. x = 0
corresponds to the the top of the cylindrical wall thus bottom of the ring beam.
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Figure 5.12: Moment in the cylindrical wall

Again the circumferential force Nϕ has contributions both from the particular and homo-
geneous solutions.

Nϕ = 2r
L2
e

(M0cg4(ξ) + V0Leg1(ξ)) + E
wp
r
h

The distribution is plotted in Figure 5.14:
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Figure 5.13: Shear force in the cylindrical wall
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Figure 5.14: Circumferential force in the cylindrical wall
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Since the cylindrical shell is long enough for the edge influences not to overlap, the load
effects from both edges are calculated separately. The cylindrical wall is considered fully
fixed at the bottom, thus both the rotation and the displacement is zero. Applying those
boundary conditions, and following the same procedures as it is done so far, it can be
shown that the load effects at the edge are as follows.

Mx0 =pgL
2
e

2 = 150 · 0.7682

2 = 44.24 kNm

m

Vx0 =− pgLe = −150 · 0.768 = −115.2 kN

m
Nϕ0 =0

5.5.6 Remarks on the result from the analytical calculations

The moment diagrams of the spherical shell show that there are large moments concen-
trated at the junction with the ring beam. As expected the bending effects in shells are
mainly associated with the boundary effects, this is illustrated in Figure 5.9. The mo-
ment diagram gets exponentially damped towards the center of the sphere. Due to the
internal uniform pressure, the in-plane forces in the sphere are relatively large, and so
are the circumferential force in the cylindrical wall. This in-plane forces result in tension
stresses in most of the structure, thus to take up these stresses a considerable amount of
steel reinforcement is required. Concrete cylindrical tanks are often used as storage tanks
for liquefied natural gas (LNG) and as containment vessels. However for such purposes
they are mostly reinforced by pre-stressing tendons. Moreover, they are internally sup-
plemented by several layers that consist of different materials that regulate temperature
and prevent leakage. From the circumferential (hoop) force both in the sphere and the
cylindrical wall, it is also evident that the ring beam is in the state of compression in the
ring direction.
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Chapter 6

Conical shells

6.1 General

The cone is another example of shells of revolution which is often used in concrete struc-
tures. Similar to cylindrical shells, conical shells have a zero Gaussian curvature. In
conical shells the meridional angle ϕ is constant, thus a new variable for the coordinate
of the meridian must be introduced. The new variable is denoted as y and it measures
the distance from the apex of the cone, See Figure 6.1.

Figure 6.1: Notations used in the description of conical shells [21]

55
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6.1.1 Membrane theory of conical shells

The equilibrium equations with membrane forces only are given by [21]:

∂

∂y
(Nyy) + 1

cosϕ
∂y

∂θ
−Nθ + ypy = 0

1
cosϕ

∂Nθ

∂θ
+ 1
y

∂

∂y
(Nθyy

2) + ypθ = 0

1
y

tanϕNθ + pz = 0

(6.1)

For axisymmetrically loaded conical shells, the shear forcesNθy, load pθ and all differentials
of ∂θ are neglected. Thus, the remaining set of equations are as follows:

∂

∂y
(Nyy)−Nθ = −ypy

Nθ = −pzy cotϕ
(6.2)

combining these two equations yields

∂

∂y
(Nyy) = −y(py − pz cotϕ) (6.3)

Equation 6.3 solved for Ny gives:

Ny = −
[

1
y

∫
(py + pz cotϕ)ydy + C

y

]
(6.4)

Furthermore the displacements can be found as before using strain-force relations. If it
is assumed a rigid support at the edge, it can be shown that the displacement w at the
edge is given by:

w = εθy cotϕ (6.5)
Substituting for εθ from Eq. 5.6 gives

w = y cotϕ
Eh

(Nθ − νNy) (6.6)

6.2 Bending theory of conical shells

The governing differential equation of conical shells is the same as the one that is developed
for general shells of revolutions. Introducing the notations and variables which are defined
for conical shells, the expressions in Eq. 5.23 are rewritten as [21, eq. 16.55]:

d2U

dy2 ≈
Eh

r2
V

d2V

dy2 ≈ −
U

Dr2

(6.7)
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Again, combining these two equations and introducing

β = 4

√
3(1− ν2)
r22h2 (6.8)

the simplified single differential equations (for ϕ > 35o) is given by

d4U

dx4 + 4β4U = 0 (6.9)

Expressing the integration constants in terms of edge loads M0 and Q0 as before, the
following solution is found.

U = ∓M02βr2e
−βx sin βx+Q0r2e

−βx(cos βx− sin βx) (6.10)

where x is the coordinate measured from the edge of interest. The upper and lower sign
refers to the top and bottom edge of the cone respectively.
The definition of x is following Figure 6.3 given by:

For the top edge: x = y − y1
For the bottom edge: x = y2 − y

The load effects can then be derived using the different relations developed in previous
chapter. If we denote βx = κ and then define g − functions as before, the load effects
can be written as: 

Ny
2β cotϕ
Nθ

2β2r2

My

dw
dy
βD


=



±g2(κ) −g4(κ)
g4(κ) ±2g1(κ)
g3(κ) ±2g2(κ)
±g1(κ) g3(κ)


M0

Q0
2β

 (6.11)

Together with

Mθ = νMy

∆H = r2 sinϕ 1
Eh

(Nθ − νNy)
(6.12)

The positive directions of the edge effects M0 and Q0 are as defined in Figure 6.2. The
total solution of a conical shell with external loading is the sum of the membrane and
homogeneous solution.
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Figure 6.2: Positive directions of the edge effects on a cone [21]

Figure 6.3: Illustration for the definition of x



Chapter 7

FEA

7.1 Analytical vs numerical solution

When different mathematical techniques, as it done so far in this paper, are used to
develop a response to a mathematical model of a structure, the solution is called an an-
alytical solution. This solution can represent the behaviour of that mathematical model
under any circumstances. While this kind of approach to finding a solution gives the
closest/exact results, it often tends to be tedious and time consuming when dealing with
complex models. This challenge is usually solved using another method called the numer-
ical analysis method. This method is based on discretization of the model into smaller
elements where the results are obtained by performing thousands of repetitive calculations
by utilizing computers. However it should be noted that the results obtained from the
numerical method are not exact, it’s an approximate solution that satisfies the equilib-
rium within a predefined tolerance. One of the most widely used numerical methods in
civil engineering is called finite element method (FEM). It utilizes displacements as basic
variables to calculate the strains and the stresses within the element. Even though FEM
provides an approximated solution, it is usually good enough for solving daily engineering
problems within an acceptable accuracy.

7.1.1 FEM

As mentioned above, finite element method (FEM) is one of the most used numerical
analysis methods. It gives an approximate solution to boundary values for a set of par-
tial differential equations which describes the equilibrium of the structure at hand. The
general idea behind this method is first to simplify the structure into a model which rep-
resents the structural behaviour correctly, thus has the appropriate boundary conditions
and material/physical properties. Then, discretize it into a finite number of simplified
elements where it is easier to find solutions to. In a displacement based FEM, first the
displacement field in each element is approximated by so called shape functions. Then
strains and stresses are calculated from this displacements. Performing structural analysis
using FEM can be summarized into the following steps[12]:

59
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• Pre-processing phase
Most commercial FEA programs offer a wide variety of design tools for modelling
and mesh generation algorithms.

– Design
Geometric properties, material properties, and boundary conditions of the
structure together with the applied loads on the structure are defined here.
Geometry property defines the outline of the structure and provides the geo-
metric data for the analysis. The geometry can be drawn with the provided
tools on the software or be imported from a CAD programs such as AutoCAD.

– Discretization
Discretizing the geometry by subdividing into small finite elements with sim-
ple shape, and creating a FE mesh with proper mesh density. The term finite
indicates the fact that these elements are not infinitesimally small but are rel-
atively small compared to the overall model size. Furthermore, an appropriate
element type is chosen and applied surface loads are discretized in to each el-
ement nodes. The mesh will then contain all the parameters needed for the
analysis. It is evident that the mesh formation and density will have an effect
on the final solutions.

• Solution phase
A set of linear algebraic equations that describes the force-displacement relation of
the structure are solved to obtain nodal results such as displacements and rotations.

• Post-processing phase
Here strains and stresses are computed from the obtained nodal displacements. Most
post-processors are able to present the analysis results graphically in the form of
contour plot, graphs, tables etc. Based on the obtained results the analyst can then
evaluate the accuracy of the FE-solution and apply the appropriate measures as
needed.
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The process is illustrated in the process diagram shown in Figure 7.1.

Figure 7.1: Finite element analysis procedures [12]
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To illustrate these summarized steps the following simple example of a cantilever beam
is considered [12].

Figure 7.2: A unifromly loaded cantilever beam

Pre-processing phase:
As it is shown in Figure 7.2, the beam has a linearly varying height, and it is made of a
linear-elastic material. The load is uniformly distributed on the top surface of the beam
and the beam is fixed at one end.

Figure 7.3: Discretized model

The model is then subdivided into 2×4 plane stress elements. Each element displacements
are described by nodal interpolation functions, the displacement of an arbitrary point
within the element can be determined uniquely by these nodal interpolation functions.
Solution phase:
Elements stiffness relationship can then be obtain by solving the governing differential
equation and the corresponding boundary conditions of the elements.

Se = KeVe + Soe (7.1)

where, Se is the element nodal forces, Ke is the element stiffness matrix, Ve is the ele-
ment nodal displacement and So is the consistent nodal force vector of the element. By
implementing nodal point compatibility for each element Ve = aer and the nodal point
equilibrium for all nodes R +∑

eRe = 0 the system stiffness relationship is found as

R = Kr +Ro (7.2)
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Where,

K =
∑
e

aTeKeae

Ro =
∑
e

aTe S
o
e

(7.3)

And,
R denotes the structure nodal point forces due to external loads
r denotes the structure nodal point displacements
K denotes the structure (system) stiffness matrix
Ro denotes the nodal point forces due to external loads
ae denotes the connectivity matrix
Applying boundary condition by suppressing restrained nodal displacements (setting the
corresponding ri = 0) gives the modified system stiffness relationship. The system dis-
placement can then be obtained by solving the modified system stiffness relationship:

r = K−1(R−Ro) (7.4)

Post-processing phase
The corresponding strains and stresses are computed as following:
Strain:

ε = d

dx
V = BV (7.5)

Stress:

σ = Eε = EBV = CBar (7.6)

7.2 DIANA

In this thesis, all the finite element analysis are performed in the FE-software DIANA.
DIANA (DIsplacement ANAlyzer) is a multi-purpose finite element analysis software
based on the displacement method. It has been under development at TNO DIANA in
Delft in the Netherlands since 1970s [5]. DIANA provides the possibility of modelling
in both 2D- and 3D-environment. Its capabilities of performing linear and nonlinear
analysis, together with its broad material models and element libraries has made DIANA
one of the most appealing software in the field of concrete and soil analysis. The different
activities in DIANA that corresponds to the three phases of FEA are as follows.

7.2.1 Pre-processing phase and Discretization

The pre-processing in DIANA is done in its designated pre-processor called iDIANA. The
pre-processor is equipped with some basic modelling tools. The modelling process starts
out in 1D where the user defines the necessary points that outlines the object. These
points can then be connected into 2D lines by using LINE command in iDIANA, and
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subsequently from lines one can constitute surfaces and 3D bodies. The model is then
meshed or discritized into the appropriate number of elements and the corresponding ele-
ment type. Then, the prescribed loads and material properties are attached to the model.
To finish the preprocessing phase the boundary condition are applied by restraining either
the rotational or/and translational degree of freedoms at specified nodes/points.

7.2.2 Solution phase

Following the Pre-processing phase, an input data file with the extension .dat is generated.
This file contains vital information such as the geometric data, element properties, load
cases, material properties and boundary conditions. When starting the analysis process
this file is first read and checked by DIANA. As shown in Figure 7.4, there are a number
of analysis types that can be performed in DIANA. In this study, the only analysis type
that will be used are the structural linear static and structural nonlinear.

Figure 7.4: FEA options in DIANA

7.2.3 Post-processing phase

DIANA has some standard output parameters associated with each analysis type, but the
user has also the possibility to specify the type of output he/she is interested in. Finally,
the FEA results in DIANA can be presented in the form of graphs, tables, contour plots
etc.

7.3 Linear static analysis in DIANA

For the purpose of the comparison with the previously obtained analytical solutions and
studying the way DIANA deals with axisymmetrical shells, the two previously calculated
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examples are analysed in DIANA. From the above presented theoretical background of
FEM, its clear that choosing the appropriate type of element and mesh density is impor-
tant. To do so an insight into the overall structural behaviour of shells which is gained
from the analytical method is useful. In DIANA, axisymmetric shells can be modelled
by using axisymmetric elements. For this elements only the cross-sectional geometry of
xy-plane is created and then it is rotated about the global y-axis to create the associated
full structure.

7.3.1 Axisymmetric elements in DIANA

DIANA has two classes of axissymmetric elements, solid rings and shells of revolution.

Displacement
Basic degrees of freedoms (DOF) for axisymmetric elements are Ux and Uy and they rep-
resent the translation of each node in global X- and Y-directions. The axisymmetric shell
elements however has an extra rotational degree of freedom ϕz.

Strains
The nodal displacements yield dux and duy of an infinitesimal part of the element defined
by dx, dy and a unit thickness in the tangential direction. From these deformations
DIANA derives the Green-Lagrange strains [5]:



εxx

εyy

εzz

γxy

 =



∂Ux
∂x

∂Uy
∂y

Ux
r

∂Ux
∂y

+ ∂Uy
∂x


(7.7)

and Cauchy stresses


σxx

σyy

σzz

σxy = σyz

 (7.8)

DIANA has basically two axissymmetric shell elements for modelling shells of revolution,
the L6AXI and the CL9AX. The L6AXI is a straight two-noded element with three degrees
of freedoms, Ux, Uy and ϕz at each node. The CL9AX on the other hand is a three-noded
curved element with the same degrees of freedoms as the L6AXI at each node. The
axissymmetric shell elements have a thickness which is small compared to their length,
i.e they are line shaped elements. In this example the analysis are done using both types
of elements. To study the convergence rate of both elements, the results of the FEA
are obtained for meshes going from the coarsest to the finest. Higher mesh densities
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(a) L6AXI (b) CL9AX

Figure 7.5: Axissymmetric elements in DIANA

are applied at the areas with high stress-concentrations on the basis of the analytical
solution. It should however be noted that the analysis is performed using iDIANA release
9.4.4 Teacher edition, which is among others limited to 50 elements per line segment and
1000 elements overall.

7.3.2 Example 1 analysed in DIANA

The results that are obtained from the linear finite element analysis of the cylindrical
water tank in example 1, using the two elements are presented in tables 7.1 and 7.2.

Table 7.1: Results from the linear FEA using L6AXI

Mesh size Element type M02 M01 V02 V01 Nϕ

Mesh 1 5000/20 L6AXI −36.1 10.3 −45.7 −32.4 263
Mesh 2 5000/40 L6AXI −38.9 12.1 −46, 5 −35, 3 261
Mesh 3 5000/80 L6AXI −40.4 13.2 −46, 7 −36, 8 261
Mesh 4 5000/100 L6AXI −40.7 13.4 −46, 7 −37, 7 261
Mesh 5 5000/160 L6AXI −41.1 13.8 −46, 7 −37, 6 261
Mesh 6 5000/200 L6AXI −41.3 13.9 −46, 6 −37, 7 261
Mesh 7 5000/500 L6AXI −41.6 14.2 −46, 6 −38, 1 261
Mesh 8 5000/800 L6AXI −41.7 14.2 −46, 6 −38, 2 261
Mesh 9 5000/980 L6AXI −41.7 14.3 −46, 6 −38, 2 261
Analytical solution −42.02 14.61 −50,02 −38,40 273.6

Percent deviation 0.76% 2.12% 6.84% 0.52% 4.61%

Again, M01 and V01 are given at the bottom of the cylindrical wall while as M02 and V02
are given at the junction with the circular flat plate. From the above results it can be said
that the linear FEA solutions from DIANA are fairly close to those solutions obtained
from analytical calculations. Furthermore, with finer meshes a more accurate result is
obtained as expected. It is also clear to see that even though one arrives at solutions with
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Table 7.2: Results from the liear FEA using CL9AX

Mesh size Element type M02 M01 V02 V01 Nϕ

Mesh 1 5000/20 CL9AX −41.8 14.1 −47.2 −38.2 263
Mesh 2 5000/40 CL9AX −41.8 14.3 −46, 7 −38.3 261
Mesh 3 5000/80 CL9AX −41.8 14.3 −46, 6 −38.4 261
Mesh 4 5000/100 CL9AX −41.8 14.3 −46, 6 −38.4 261
Mesh 5 5000/160 CL9AX −41.8 14.3 −46, 6 −38.4 261
Analytical solution −42.02 14.61 −50,02 −38,40 273.6

Percent deviation 0.52% 2.12% 6.84% 0% 4.61%

sufficient accuracy with both element types, the CL9AX element converges quicker than
the L6AXI. As CL9AX is a higher order element, this is usually to be expected. Moreover
the diagrams for some of the stress resultants are shown in Figure 7.6. Compared to the

(a) Deformation shape of the structure in ex-
ample 1

(b) Meridian moment

(c) Circumferential force (d) Shear force

Figure 7.6: Stress resultant diagrams from linear FEA of example 1

stress resultant diagrams obtained from the analytical calculations (figures 4.5 to 4.9),
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these diagrams are more or less the same. It should however be noted that the axial
stiffness which are not taken in to account in the analytical calculations are accounted for
in here. This is done to reflect the real structural behaviour of the system, and to include
the deviations that might come from the assumption.

7.3.3 Example 2 analysed in DIANA

Similarly, the results obtained from the linear finite element analysis of the cylindrical gas
vessel in example 2, using the two elements, are presented in tables 7.3 and 7.4.

Table 7.3: Results from the linear FEA using L6AXI

Mesh size Element type M0s M0c R0 V0 Nϕ

Mesh 1 5157/20 L6AXI 116 50.6 288 176 824
Mesh 2 5157/40 L6AXI 118 50 290 174 818
Mesh 3 5157/80 L6AXI 118 49.7 291 174 817
Mesh 4 5157/100 L6AXI 118 49.7 291 174 817
Mesh 5 5157/160 L6AXI 118 49.6 291 173 817
Mesh 6 5157/200 L6AXI 118 49.5 291 173 817
Mesh 7 5157/900 L6AXI 119 49.4 291 173 −
Analytical solution 123.98 51.07 307.32 182.51 819.30

Percent deviation 4.02% 3.27% 5.31% 5.21% 0.28%

Table 7.4: Results from the linear FEA using CL9AX

Mesh size Element type M0s M0c R0 V0 Nϕ

Mesh 1 5157/20 CL9AX 119 49.5 291 173 817
Mesh 2 5157/160 CL9AX 119 49.5 291 173 818
Mesh 3 5157/900 CL9AX 119 49.4 291 173 −
Analytical solution 123.98 51.07 307.32 182.51 819.30

Percent deviation 4.02% 3.27% 5.31% 5.21% 0.16%

Again, M0c and V0 are given at the bottom of the ring beam while as M0s and R0 are
given at the top of the ring beam in the junction with spherical shell. Nϕ is the largest
circumferential force in the cylindrical wall. The results from the linear FEA are again
fairly close to the results obtained from the analytical calculations. The highest deviation
that is found is 5.31% compared to the results obtained from the analytical solution. The
deformation shape shows that most of the spherical shell and the cylindrical wall deforms
outwards while as the ring beam is pressed inwards, see Figure7.7. This is analogous with
the type of loading applied, which is dominated by a uniform gas pressure load directed
outwards. From the diagrams for the bending moment and shear force, it can be seen
that the stress resultant from both ends more or less damps out toward the middle of the
cylindrical wall. This justifies the assumption of long cylindrical shell in the analytical
calculations.
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(a) Deformation of the structure in example 2 (b) Meridian moment

(c) Circumferential force (d) Shear force

Figure 7.7: Stress resultant diagrams from linear FEA of example 2

7.4 Nonlinear finite element analysis

To further study the response of structures when the linear range is exceeded, a nonlinear
analysis of the structure in example 1 is carried out. RC structures exhibit nonlinear
behaviour mainly due to the tensile cracking of concrete. Before cracking the concrete is
assumed to behave linear elastically until the ultimate tension strength is reached. After
this limit the stresses are mainly carried out by the reinforcement. Therefore, before
proceeding with the nonlinear analysis, the amount of necessary reinforcement is first
calculated. This reinforcement will then be included in the finite element model. In the
following subsections the different input parameters needed for the nonlinear FEA will be
presented.



70 CHAPTER 7. FEA

7.4.1 Reinforcement

Based on the load effects obtained from the analytical calculations, the necessary rein-
forcement is first calculated. The stress resultants in the shell are independent of each
other, therefore the design calculations are done as for one way slabs according and ac-
cording Eurocode 2. The detailed calculations can be found in Appendix A, here the
results are summarized in Table 7.5.

Table 7.5: Structurally required amount of steel reinforcement in example 1 [mm2

m
]

Circular slab Inner layer Outer layer Shear reinforcement
Radial 478.4 646.9 No needTangential 478.4 81.3
Cylindrical wall
Vertical 222.5 646.9 No needRing 314.6 314.64

Table 7.6: Final amount of reinforcement including minimum requirements according to
the Eurocodes [mm2

m
]

Circular slab Inner layer Outer layer Shear reinforcement
Radial 481.3 665.3 No needTangential 481.3 452.4
Cylindrical wall
Vertical 452.4 665.3 No needRing 452.4 452.4

7.4.2 Structural modelling

In order to include the steel reinforcement, the structural model first needs to be rebuilt
into 2D (two dimensional). The model is then discretized into isoparametric axissymmet-
ric regular solid ring elements. DIANA has total six types of such elements. Three of them
are triangular elements with 3 (T6AXI), 6 (CT12A) and 15 (CT30A) nodes, while as the
other three are quadrilaterals with 4 (Q8AXI) and 8 (CQ16A) nodes. The reinforcement
in DIANA can be modelled either using truss elements or as embedded reinforcement
which can be a bar or a grid. In the following example the 8-node quadrilateral element
CQ16A with embedded grid reinforcement is chosen. This element is a higher order el-
ement that is based on quadratic interpolation functions. This element is chosen such
that higher convergence rate could be achieved, and shear locking behaviour, which is
associated with linearly interpolated plane elements, could be avoided. Furthermore the
model is discretized into a uniform quadratic mesh with a chosen mesh size of 50 mm.
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7.4.3 Material models

In order to perform the nonlinear analysis, the constitutive relations (stress-strain dia-
grams) for both the concrete and reinforcement must first be determined. In DIANA there
are three material models available for modelling the reinforcement, the linear elasticity,
plasticity and a user specified model. The plasticity material model employs Von Mises
yield criterion. In the following example, the reinforcing steel is assumed to be elastic-
perfectly plastic (ideal plasticity) in both compression and tension with no hardening
effect.

The constitutive behaviour of concrete is characterized by tensile cracking, compressive
crushing and long terms effects like shrinkage and creep. The latter two will not be con-
sidered in this study. The constitutive relation of concrete is modelled using a multi-linear
diagram in compression similar to what is proposed in Eurocode 2, 3.1.5 [16], and a linear
diagram in tension. There are two types of crack models available in DIANA, the multi-

(a) Reinforcement in tension (b) Concrete in tension

(c) Reinforcement in com-
pression

(d) Concrete in compression

Figure 7.8: Material models that are applied [5]

directional fixed crack model and the total strain crack model. In the following example a
crack model based on total strain with rotating crack model is chosen. In this model the
tensile and compressive behaviours are described in one stress-strain relationship evalu-
ated in the principal directions of the strain vector. This model tends to give numerically
stable results, and according to the DIANA users manual [5], it is very well suited for
SLS and ULS analysis of RC structures . After the development of cracks in the concrete,
the tension stresses are carried by the reinforcement, however due to the bond between
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the steel reinforcement and the concrete, some tension is still existent between cracks.
This tension gradually decreases with increasing load, this can be modelled by adding a
tension softening/stiffening effect based on either ultimate strain or fracture energy. In
RC structures the ultimate crack strain can be taken as σsteel

Es
, where σsteel is the average

stress in the steel reinforcement. In the following example this is for simplification taken
as the design tensile strength of the steel reinforcement. Fracture energy Gf is the energy
required to form a crack and is given by:

Gf = 1
2ε

cr
y fth (7.9)

where εcry is the ultimate strain, ft the ultimate tensile strength and h is a crack bandwidth
which is related to the element size. However, with relatively coarse finite element meshes
this formulation has some shortcomings. The crack model that is used in this study is
based on smeared crack approach, that is cracks are in a way smeared over an element
instead of discrete cracks. Equation 7.9 is based on a uniform distribution of micro-
cracks in the element, while as the actual microcracks in a relatively large element are
concentrated in a small region of the element. Based on an exponential distribution
function of the crack region, a more generally applicable model has for example been
suggested by Kwak and Filippou [9].

Gf = 1
2ε

cr
y ft2

∫ b/2

0
f(x)dx (7.10)

where f(x) is given by
f(x) = e−

2
b
ln b3x

where b is the element width. This model converges to the previous model when the ele-
ment size is 3 inches (76.2 mm), that is three times the approximated maximum aggregate
size 1 inch (25.4 mm). Thus in SI units the function becomes:

f(x) = e−
2
b
ln b

76.2x

7.4.4 Solution procedure

Unlike in linear FEA, in nonlinear FEA the relationship between force vector and dis-
placement vector is not linear. Thus, a displacement vector that equilibrates the internal
and external forces must be found by using an incremental-iterative solution procedure.
In this procedure the load is applied successively in steps, and for each load step the equi-
librium equation is to be fulfilled within the convergence limit that is chosen by the user.
DIANA has different types of iteration methods and convergence criterion to choose from.
In the following analysis the regular Newton-Raphson method is chosen. It is based on
updating the stiffness matrix at each iteration rather than keeping it constant over several
iterative cycles. Both the force and displacement convergence criteria are also employed
so that they complement each other, as suggested in Ref. [4]. The solution procedure
employed in the following example is summarized in Table 7.7.
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Table 7.7: Solution procedure for the nonlinear FEA

Variable Chosen value/method

Nonlinearity Physical and Geometrical(Total Lagrange)

Load increment 0.1

Number of increments 30

Max. number of iterations 100

Iterative procedure Regular Newton-Raphson with arc length control

Convergence criterion Both force and displacement norm

Convergence Limit 0.01

7.4.5 Results from the Nonlinear FEA of the structure in ex-
ample 1

The load-deflection diagram for a node at the center of the circular plate is shown in Figure
7.9. The nonlinear FEA is first performed applying the structurally required amount of
steel reinforcement as shown in Table 7.5, this results in a load-deflections path plotted
by the blue line. The path reaches its first peak value at load step 10 before it drops back.
At this first peak the structure reaches a capacity of just over load factor one (1.02). The
load factor 1.0 corresponds to the applied loading. Figure 7.10 shows the stresses in the
concrete at load step 10, here it can be seen that the ultimate tension strength, which is
given as 2 N

mm2 , is reached in the global σxx, and σyy is about to approach this value.

Moreover, from the image with the crack patterns in Figure 7.11, one can see that the
crack patterns at the top of the cylindrical wall changes dramatically from load step 10
to 11. The stress in the reinforcement for the same two load steps is also presented in
Figure 7.12, the stresses in σyy jumps from 129 N

mm2 to just around the design strength of
the steel reinforcement 435 N

mm2 .

Nevertheless the structure is able to carry the design load or a load factor of 1.02 before it
drops back. However, to obtain a more ductile behaviour of the structure, the necessary
minimum reinforcement according to Eurocode 2 is applied. Now the load-deflection
diagram is plotted as it is presented by the red line in Figure 7.9. Here it can be seen
that the remaining path post the limit value also stays over the load factor one. As it is
shown in Figure 7.13, the stress in the reinforcement post the peak is 228 N

mm2 , which is
far from the design strength of the steel reinforcement.

Generally the crack patterns are as expected concentrated on the areas with high stress
concentrations. Similarly the stresses in the steel reinforcement reaches their maximum
values at this areas. For practical purposes the steel reinforcement bars are usually applied
with uniform distribution of the entire surface as it is done in this example. Therefore
the stresses in the reinforcement are generally low over a large portion of the structure.

The concrete stresses for this discussion are sampled at integration points which gives
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Figure 7.9: Load-deflection diagram at the center of the circular plate

(a) σxx in the concrete (b) σyy in the concrete

Figure 7.10: Stresses in the concrete at load step 10

highest accuracy for stresses. However it is possible to use some smoothing techniques
so that accurate stresses could also be found elsewhere within each element, which is not
done here.
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(a) Crack pattern at load step 10 (b) Crack pattern at load step 11

Figure 7.11: Crack patterns in example 1

(a) σyy in the reinforcement at load step 10 (b) σyy in the reinforcement at load step 11

Figure 7.12: Stresses in the reinforcement

(a) σyy in the reinforcement at load step 11 (b) σyy in the reinforcement at load step 30

Figure 7.13: Stresses in the reinforcement after including min. reinfrocement
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7.5 Discussion

The linear FEA using both the L6AXI and CL9AX axisymmetric elements gives relatively
good results as the mesh gets refined. From the tabulated valued in Tables 7.1 to 7.4, it can
be seen that the result from the linear FEA converges close to the analytical solutions. The
deviation at its highest is just less than 7% of the analytical solution. There are different
sources of errors that could add up and cause this deviation. Firstly there are lots of
computations and assumptions involved in the analytical solution procedure. On the
effort of avoiding calculation errors, the calculation are performed in the computational
software Matlab. However there might still be some minor input errors which together
with the assumptions made during the derivation of the procedure, could cause some
uncertainty on the analytical solutions. Secondly, modelling errors and errors in the
input parameters to the finite element model could also be sources of uncertainties in
the FEA solutions. However the results are good enough to confirm that both solution
methods give results in the vicinity of the same magnitude.

Following the linear FEA, the structure in example 1 is designed accordingly. The load
carrying capacity of the RC structure is then verified by performing a nonlinear FEA. It
should be noted that the combination of the material model and the solution procedure
applied in the nonlinear FEA is one of the many alternatives that are available in DIANA.
However based on the results obtained both in the form of stresses, crack patterns and
load-deflection curves, it can be said that the results are sensible to what could be expected
on the basis of the linear FEA. Moreover, based on the results, the structure is properly
designed to carry the applied design load. As the analysis is based on ultimate limit
state, the SLS requirements are not considered in the verification. Therefore the size of
the crack width and deflection at the ultimate capacity could possibly be in contradiction
to the SLS requirements.
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Cylindrical shell roofs

8.1 General

All of the previously discussed shell structures are axisymmetrical shells. However, cylin-
drical shell roofs are not, therefore in comparison, the computations involved in the an-
alytical solution procedure are more lengthy and complicated. The analytical solution
for cylindrical shell roofs is usually obtained using different approximation methods. In
this chapter, just the general outline of the theory behind the analytical solution will be
presented.

8.2 Background theory

Circular cylindrical shell roofs, which some times referred to as barrel shells, another type
of shell elements that are frequently used for concrete roof structures. This cylindrical
shell roofs are a part of a full cylindrical shell discussed in Chapter 4. Such open cylindrical
shells are usually supported along the curvilinear edges (diaphragms) or/and along the
longitudinal edges. The longitudinal edges are often stiffened by beams which act together
with the shells to transfer the loading to the supporting structures such as columns and
walls. If the shell is only continuously supported along the longitudinal edge, it acts like
a barrel arch and could be analysed as such.
The analytical solution procedure is similar to that of other shells discussed previously.
The combination of the membrane and bending theories are used to obtain the complete
analytical solution. Following the classical thin shell theory formulations presented in
Chapter 3, the membrane stress resultants adopting the notations in Eq. 8.2 are given
by:

N ′ϕ = −pzr

N ′xϕ = −1
r

∫ ∂N ′ϕ
∂ϕ

dx−
∫
pϕdx+ f1(ϕ)

N ′x =− 1
r

∫ ∂N ′xϕ
∂ϕ

dx−
∫
pxdx+ f2(ϕ)

(8.1)

77
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Figure 8.1: Notation and axis definition

The angle ϕ is measured from the longitudinal edge, and f1(ϕ) and f2(ϕ) are integration
constants that can be determined from the boundary conditions along the curved edge.
When the membrane stress resultants are determined, then the corresponding displace-
ment u, v, and w could be found. As for the previously discussed shell structures, the
membrane theory must be supplemented with compatible edge effects in order to represent
the internal stress resultants correctly.

For cylindrical shell roofs the solution of the bending theory is rather complicated. For
simplifying the mathematical difficulties involved in the bending theory, it is common
to represent both the loading and boundary conditions in terms of a Fourier series. For
example a uniform shell dead load could be represented as:

(pd)x = 4
π
pd

∞∑
n=1,3,5...

1
n

sin nπx
L

Similarly a reaction line load along the longitudinal edge could be written as:

(TL)x = 4
π
pd

∞∑
n=1,3,5...

1
n

sin nπx
L

Where Pd is the amplitude of the applied loading or forces. In the bending theory of
cylindrical shell roofs, the shallow shell simplification mentioned earlier in this paper are
commonly used. The eight order governing differential equation for cylindrical shell roofs
is first to be developed. In this paper we will follow a shorter version of the procedure
presented by David P. Billington [1]. The shallow shell simplifications has lead us to the
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formulation of the expression in Eq. 3.7. These equations are a combination of the deep-
beam and the slab equations. For shallow cylindrical shell roofs the different variables are
defined as follows:

αx = x

αy = ϕ

ax = 1
ay = r

rx =∞
ry = r

rxy =∞

Ny =Nϕ

Nxy =Nxϕ

(8.2)

Adopting this variables in to Equations 3.7 and 3.3, it is possible to differentiate and
arrive at the following single eight order differential equation for cylindrical shell roofs.

O8w + 12(1− ν2)
h2 O4

Rw = 1
D
O2
Rf(p) + O4f ′(p) (8.3)

where,

O4
Rw = ∂4w

r2∂x4

O8w =
(
∂2

∂x2 + ∂2

r2∂ϕ2

)4

w

f(p) = 1
r2

∫ ∂2px
∂ϕ2 dx+ r

∫ ∂2pϕ
∂x2 dϕ

f ′(p) = pz
D
− 1
D

∫
pϕdϕ

The particular solution of Eq. 8.3 can with a good accuracy be replaced by the membrane
theory. However the solution for the homogeneous term still need to be obtained. This
solution could be taken in the form:

w =
∞∑

n=1,3..
Ame

Mϕφ(k, x) (8.4)

Where k = nπ
L

and the term Am represent the eight constants that depends on the
boundary conditions along the longitudinal edge. Similarly, the function φ(k, x) depends
on the boundary conditions along the curved edge, for a simply supported edge it can
be taken as sin kx. Substituting Equation 8.4 in to the complementary part of Eq. 8.3
yields eight complex roots represented by the variable M in Equation 8.4. In the case
with symmetrical loading and geometry about the longitudinal axis, four unknowns are
remained, thus could be solved using four equations. By partially differentiating w, the
expression for the different stress resultants could be obtained. Applying the necessary
edge effects for this expression gives us the equations needed to solve for the unknown
constants. This procedure is suited for a tabulated solution, and one can find various
versions of such tables in different books.

8.2.1 Edge beams

The longitudinal edges of cylindrical roof shells are often stiffened using edge beams. Long
cylindrical roof shells are usually provided with high edge beams while as shorter shells are
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provided with horizontal beams. This has to do with the fact that the principal structural
action being in the longitudinal and transverse direction for long and short cylindrical
roof shells respectively. The analysis method when dealing with the interaction between
the shell and the edge beam is more or less similar to what is presented i chapter 5.
The solution procedure is based on first letting the structural parts deform unrestricted,
independent of each other, and then restoring compatibility at the interaction. These
compatibility equation could be set up both in terms of displacement or equilibrium of
forces. The set of equations are then to be solved for the unknowns.

8.3 Numerical examples analysed using linear and
nonlinear FEA

In this section, two numerical examples of circular cylindrical concrete shell roofs are
analysed. Linear and nonlinear FEA of both the examples is performed in DIANA.
Furthermore the results from the linear FEA are compared with their corresponding
analytical solutions. In the first example, a concrete shell roof structure which is fixed
along its longitudinal edge and that has a span of 25 m is considered. Similarly, in the
second example a concrete roof shell which is simply supported along its curved edge and
free along the longitudinal edge is analysed.

8.3.1 Linear FEA

The shell structures in the following two examples are modelled using regular curved
shell elements. This elements are based on isoparametric degenerated-solid approach
where transverse shear deformation is included according to Mindlin-Reissner theory [5].
DIANA has total six types of such elements. Three of them are triangular elements with
3 (T15SH), 6 (CT30S) and 15 (CT45S) nodes, while as the other three are quadrilaterals
with 4 (Q20SH, 8 (CQ40S) and 12 (CQ60S) nodes. In the following examples the 8
node quadrilateral element CQ40S is used. It is based on quadratic interpolation and
Gauss integration over the ξ η element area. The element has three translational DOFs
(Ux, Uy, Uz) and two rotational DOFs (φx, φy) at each node [5].

Figure 8.2: CQ40S
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8.3.2 Reinforcement

Before proceeding with the nonlinear analysis, the amount of necessary steel reinforcement
based on the stress resultants obtained from the linear FEA will be calculated. In general
the principal moment and membrane force directions in shells do not coincide. Therefore,
establishing bending and axial force interaction diagrams is not possible [20]. Usually a
design method based on the six moments and membrane forces is used to calculate the
amount of necessary reinforcement. In this paper, the so called Two layered approach
(Membrane method) as presented in Ref. [20] will be used. This is a simplified method
which is based on dividing the shell in to two layers (membranes) loaded with equivalent
membrane forces. This method is considered good enough for finding the amount of nec-
essary reinforcement that can be used as an initial input for more advanced computation
or analysis. The detailed reinforcement calculation according to this method can be found
in Appendix B.

8.3.3 Nonlinear FEA

Before conducting the nonlinear FEA, the calculated amount of steel reinforcement is
first included in the structural model as embedded steel reinforcement. To account for
the change of stresses across the thickness the number of integration points in ζ direction
(see Figure 8.2) is increased from the default 3 to 9. The overall material model is the
same as presented in Subsection 7.4.3. The ultimate crack strain of the RC structures is
taken as 2.17 · 10−3, which is the ultimate strain of the steel reinforcement.

8.3.4 Example 3: Circular cylindrical shell roof with fixed edges

Linear FEA

In this example a large RC shell roof structure loaded with a uniformly distributed exter-
nal load is considered. The roof structure covers a rectangular area of 25m x 55m. The
shape and support conditions are as the shown in Figure 8.3. Due to the symmetry of
the structure and the loading, only a quarter of the shell is analysed.

Analytical solution

In a paper written by Chandrasekaran, Gupta and Carnnante [3], some design aids based
on the analytical solution procedure for fixed support RC shells is proposed. In the same
paper the accuracy of the analytical solution is verified by performing FEA of a numerical
example in which a satisfactory comparison was achieved. The stress resultants from the
analytical method are given in a rather lengthy closed-form expressions. In this study
this expressions are implemented in the computational software Matlab so that for a
given set of input parameters the results from the analytical method could easily be
obtained (see script in Appendix D). Thus by applying the parameters from the current
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Table 8.1: Geometric and material properties of the RC shell

Description Value

Length 55 m
Width 25 m

Thickness (t) 0.176 m
Radius (R) 17.6 m

fck 30 N
mm2

ft 2 N
mm2

Esteel 2 · 105 N
mm2

Econcrete 3 · 104 N
mm2

Total load 9 kN
m2

Figure 8.3: Illustration of the structure in example 3

numerical example, the stress resultants from the analytical method are readily acquired.
In Figure 8.4, this results are plotted against the stress results from the linear FEA. As it
is shown in the diagrams, most of the stress results show good agreement except for Nx.
The longitudinal axial force Nx increasingly deviates from the analytical solution when
moving further from the fixed edge in ϕ direction towards the midspan. The analytical
solution method is based on the stress results varying only in ϕ direction. However, the
results from the FEA show the existence of variation of different magnitude along the
longitudinal axis. This variations could be due to the introduction of the discontinuities
at both curved edges of the shell which are not accounted for in the analytical method.
This is further investigated by adding an additional constraint in Z direction along the
curved edge, the result of this on the different stress resultants are presented in Appendix
C. Further from the curved edge, the disturbances of the edge gradually disappear and
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the result from the FEA gets very close to those obtained from the analytical method.
The results also show that there are large compression forces Nϕ in the structure, due to
the arch like structural behaviour of the shell most of the loading is carried in the arch
direction.

(a) Meridian moment (b) Longitudinal moment

(c) Meridian force (d) Longitudinal axial force

Figure 8.4: Comparison between analytical and FEA solutions

Nonlinear FEA

Again before proceeding to the nonlinear FEA the amount of required steel reinforcement
is calculated. Though small compared to the other stress resultants, the linear FEA results
shows the existence of the in-plane shear forces Nxϕ and twisting moment Mxϕ. Thus, the
two layered approach based on the six stress resultants is used to calculate the amount
of required reinforcement. The design calculation according to this membrane method is
shown in Appendix B. Here the amount of steel reinforcement that is to be applied are
summarized in Table 8.2. This is a very little amount of reinforcement, and less than the
minimum requirement according to the Eurocodes. However, for the purpose of studying
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Figure 8.5: Shape of the deformed element model

Table 8.2: Initial reinforcement input [mm2

m
]

Reinforcement Top bottom

Asϕ 78.5 231.49

Ax 78.5 115.75

the structural response this will be applied as it is.
This reinforcement is added to the model as embedded grid reinforcement. Furthermore
the solution procedure that is applied for the nonlinear FEA is as shown in Table 8.3.
The quarter of the shell is discritized into a 18×36 elements which gives a quadratic mesh

Table 8.3: Solution procedure for the nonlinear analysis

Variable Chosen value/method

Nonlinearity Physical and Geometrical

Load increment 0.2

Number of increments 40

Max. number of iterations 100

Iterative procedure Regular Newton-Raphson with arc length control

Convergence criterion Both force and displacement norm

Convergence Limit 0.01

with a mesh size of 771.1 mm. This is the finest mesh where this particular version of
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DIANA software is able to provide results for. As this is a relatively large element size,
the tension stiffening model according to Equation 7.10 should be considered. However,
when fracture energy is given as an input in DIANA, it calculates the ultimate crack strain
by using Equation 7.9. Therefore, the new model according to Eq. 7.10 is not easy to
implement when performing FEA with DIANA. The nonlinear FEA in this example will
therefore be analysed only with the fractures energy calculated by Eq. 7.9 as an input.
The results in the form of a load-deflection diagram at node 1 which is at the midspan is
shown in Figure 8.6.

Figure 8.6: Load-displacement curve at the midspan in example 3, R
t

= 100

The diagram shows that the structure has a sufficient capacity, which is more than three
times the applied loading. This can be due to the fact that most of the loading is taken
as compressive force in the circumferential direction. Therefore it is further possible to
optimize the structure by reducing the thickness of the shell.

The analysis is then performed again with a reduced thickness of the RC shell such that
R
t

= 150, but with the same amount of reinforcement. Again the force-deflection diagram
at the same node as previous is plotted and is shown in Figure 8.7. This time the maxi-
mum capacity is reduced to 1.04× applied load. Compared to the previous structure the
ultimate capacity is reduced by 70%.
As it can be seen from Figure 8.8, at the maximum capacity, the ultimate tension capacity
of the concrete (2 N

mm2 ) in the global Z and X directions are approached. The crack strain
vectors which act perpendicular to the crack patterns are shown in Figure 8.9. The cracks
are as expected, following the moment diagram, concentrated at the bottom surface near
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Figure 8.7: Load-displacement curve at the midspan in example 3, R
t

= 150

(a) σz in the concrete (b) σx in the concrete

Figure 8.8: Stresses in the concrete at the maximum capacity

the fixed edge and the crown, and at the top surface in between. Post the limit value
the load-deflection path goes downwards even when the stresses in the steel reinforcement
starts to increase significantly. As there are large compression stresses in the circumferen-
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(a) Crack strain vectors at the top surface (b) Crack strain vectors at the bottom surface

Figure 8.9: Crack strain vectors at load step 14

tial direction and the RC shell is relatively thin, buckling could be the failure mechanism.
To investigate this further the analysis is again performed without taking in account the
geometrical nonlinearity. This is because with the geometrically nonlinear analysis the
stiffness matrix (relationship between force and displacement vectors) is updated between
loading increments such that deformations which affect the structural behaviour could
be incorporated. The load-deflection diagram from the new analysis is shown in Figure
8.10. Here it is clear that the load-deflection path continues upwards until either the
compression strength limit in the concrete or tension strength of the steel reinforcements
is reached. This is different to what is obtained in Figure 8.6 where both the geometric
and material nonlinearity is considered.
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Figure 8.10: Load-deflection curve at midspan without geometical nonlinearities, R
t

= 150
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8.3.5 Example 4: A simply supported circular cylindrical shell
roof

Linear FEA

In this last example a simply supported cylindrical shell roof loaded with uniformly dis-
tributed external load is analysed. First a linear FEA of the structural model is performed.
Afterwards the shell will be stiffened by using edge beams along its longitudinal edge, and
analysed again. This is done to study the effect of the edge beam on the distribution of
the stress resultants in the structure. Due to symmetry conditions, only the quarter of
the shell will be modelled and analysed.

Table 8.4: Geometric properties of the RC shell

Description Value

Length 20.27 m
Width 11.46 m

Shell thickness 76.20 mm
Beam width 304.80 mm
Beam height 685.80 mm

Radius 8.11 m
fck 30 N

mm2

ft 2 N
mm2

Esteel 2 · 105 N
mm2

Econcrete 3 · 104 N
mm2

Total load 3.83 kN
m2

Analytical solution

This example is previously analytically calculated in the book called ’Thin concrete struc-
tures’ by Billington [1]. The structure is modelled in DIANA, as close as possible to what
was assumed in the analytical calculations. The geometry and loading is the same as
the analytical model. In Table 8.5 the results obtained from the FEA are compared with
the solutions obtained from the analytical calculations. The results show that there are
some deviations of varying magnitude between the analytical solutions and those from
the FEA. The overall deviation varies along the ϕ direction. There are good agreements
at certain locations while as there are significant deviations at others. In general some
deviation between the analytical and FEA solutions is expected due to for instance:

• The assumptions made in the derivation of the analytical solution such as:
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(a) Illustration of example 4

(b) Illustration of example 4 with edge beams

Figure 8.11: Illustrations of the structure in example 4

– The assumption of the external loading and boundary conditions only by the
first term of the Fourier series, that is half of a sinus curve.

– The Shallow shell assumption

• The applied meshing in the finite element model is not fine enough

• Other possible deviations between what is considered in the analytically calculated
example and the FEA model

To what extent the deviations are caused by the above reasons is difficult to conclude
without looking closer into each and every one of them.

Then, edge beams are added along the longitudinal edges of the cylindrical shell roof,
and the linear FEA is performed again. The results from this new FEA in comparison
with the previous results are shown in Table 8.6. ϕ = 0 corresponds to the junction
between the edge beam and the cylindrical shell roof. The edge beams are monolithically
casted together with the RC shell surface. Their main purpose is to take up the large
longitudinal tension stresses along the edge of the shell. This is well demonstrated in the
fact that the force Nx along the edge ϕ = 0◦ drops from 1430 kN

m
to 79 kN

m
. The edge
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Table 8.5: Comparison between the FEA and analytical solutions of the structure in
example 4

Loading
Angle ϕ (measured from edge)

45◦ 40◦ 30◦ 20◦ 10◦ 0◦

x = L/2, kN/m

Nx

Numerical 21.100 -11.131 -208.379 -346.091 26.826 1430.000
Analytical -4.918 -32.690 -208.945 -331.427 29,772 1445.234

x = L/2, kN/m

Nϕ

Numerical -44.200 -44.055 -41.341 -30.262 -10.898 0.153
Analytical -52.100 -52.246 -50.641 -40.133 -16.491 0.000

x = 0, kN/m

Nϕx

Numerical 0.025 2.761 -15.815 -88.294 -172.071 -5.520
Analytical 0.000 -1.605 -26.269 -89.898 -136.599 0.000

x = L/2, kNm/m

Mϕ

Numerical -11.900 -11.600 -9.427 -5.230 -0.918 0.004
Analytical -11.654 -11.432 -9.341 -5.204 -0.667 0.000

Table 8.6: Comparison between the results with and without edge beams

Loading
Angle ϕ (measured from edge)

45◦ 40◦ 30◦ 20◦ 10◦ 0◦

x = L/2, kN/m

Nx

With edge beam -105.000 -107.446 -119.322 -114.214 -55.967 79.100
Without edge beam 21.100 -11.131 -208.379 -346.091 26.826 1430.000

x = L/2, kN/m

Nϕ

With edge beam -36.800 -36.188 -31.941 -24.053 -13.691 -2.900
Without edge beam -44.200 -44.055 -41.341 -30.262 -10.898 0.153

x = 0, kN/m

Nϕx

With edge beam 0.004 -11.927 -39.196 -73.610 -105.817 -101.000
Without edge beam 0.025 2.761 -15.815 -88.294 -172.071 -5.520

x = L/2, kNm/m

Mϕ

With edge beam -1.750 -1.584 -0.452 1.080 1.602 -0.644
Without edge beam -11.900 -11.600 -9.427 -5.230 -0.918 0.004

beams has also some torsional stiffness which, as it can be seen in Table 8.6, contributes
to reduce the moment Mϕ.
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Nonlinear FEA

The simply supported shell roof structure with edge beams is then analysed using non-
linear FEA. The amount of steel reinforcement that is included in the structural model is
as shown in Table 8.7. The thickness of the concrete shell in this example is small such
that applying the minimum reinforcement cover according to Eurocode 2, together with
an ordinary bar reinforcement is impossible. Therefore, the reinforcement layout is done
on the basis of what is applied in the original numerical example [1]. The reinforcement
calculations in the book are based on the principal tension forces, and the layout of the
reinforcement is also done accordingly. Here, this is modified such that the orthogonal
layout of the reinforcement is chosen and the amount of steel reinforcement is modified
according to the material properties in Table 8.4. The solution procedure used is similar

Table 8.7: Amount of steel reinforcement [mm2

m
]

Reinforcement Grid Bar

Edge beam As,horizontal 226.19 490.87×3 mm2 (3ø25)

As,vertical 166.77 -

Shell Asϕ 146.73

Asx 146.73

to the previous example and is shown in Table 8.8. A quarter of the roof shell structure is
meshed into a uniform quadratic mesh with a mesh size of 378.7 mm. The load-deflection
diagram at a node in the midspan of the beam is shown in Figure 8.12. The diagram
shows that the capacity of the structure surpasses a load factor of one, which again rep-
resents the applied loading. The load-deflection diagrams shows that the path reaches its
first peak at load factor 1.24 before it drops back. The failure mechanism seems to be due
to the accumulation of tension stresses at the midspan of the edge beams. At this limit
point, both the tension stresses σxx and σzz has approached the tension strength of the
concrete, see Figure 8.14. Following this limit value the stresses in the steel reinforcement
dramatically changes from 221 N

mm2 to 437 N
mm2 , see Figure 8.15. Thus, the strength of

the steel reinforcement is reached. Post the peak value, it can be noticed that the analysis
takes several number of iterations to find convergence.
The crack patterns before and after the peak point are as shown in Figure 8.13. The
patterns are as expected concentrated at and around the midspan of the edge beam. Sim-
ilarly, the stresses in the concrete and the reinforcement in the global z direction before
and after the peak value are shown in Figures 8.14 and 8.15 respectively.
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Table 8.8: Solution procedure for the nonlinear analysis

Variable Chosen value/method

Nonlinearity Physical and Geometrical

Load increment 0.1

Number of increments 50

Max. number of iterations 100

Iterative procedure Regular Newton-Raphson with arc length control

Convergence criterion Both force and displacement norm

Convergence Limit 0.01

Figure 8.12: Load-displacement curve at the midspan of the edge beams
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(a) Crack strain vectors at load step 33 (b) Crack strain vectors at load step 34

Figure 8.13: Crack patterns in the concrete before and after the peak point

(a) σzz at load step 33 (b) σzz at load step 34

Figure 8.14: Stresses in the concrete before and after the peak point

(a) σzz in the reinforcement at load step 33 (b) σzz in the reinforcement at load step 34

Figure 8.15: Stresses in the reinforcement before and after the peak point
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8.4 Discussion

Generally, the analytical solution procedure of non axisymetrical thin shells involve long
computations. The circular cylindrical shell roof with symmetrical boundary conditions is
one of such shells where there exists a complete analytical solution procedure for. However,
the complete derivation of this doesn’t fall within the scope of this thesis, and therefore
is not included in here. The aim of the background theory presented in Section 8.2 is
to show that how the analytical solution procedure relates to the general formulation of
the theory of thin shells. The structural behaviour of such cylindrical shell roofs could be
approximated by using beam and arch theories. Looking at the two numerical examples
analysed in this chapter, one can draw some similarities.

In the first example the analytical solutions are obtained from the assumption that stress
resultants vary only in ϕ direction, which is more like an arch type behaviour. The
FEA however shows that there is some variation of the load effects along the longitudinal
axis, and at there are some additional in-plane shear force and torsional moment present.
When sampled further from the curved edge, the results of the linear FEA shows a good
agreement with the analytical solutions except for Nx. Following the investigation in
Appendix C, it has shown that adding horizontal constraint along the curved edge gives
the same distribution of the Nx as in the analytical solution. The distribution of the other
stress resultants remain the same. This confirms that the discontinuities at both ends of
the shell are not accounted for in the analytical solution and are sources for deviation.

The structural behaviour of structure in example 4 is analogous to those of a beam with s
hollow cross section. Similar to a simply supported beam the bending moment is highest at
the midspan which results in a maximum tension stress at the bottom and a compression
stress at the top of the cross-section. Hence, as it can be seen from Figure 8.14, at the
midspan the tension stresses are concentrated around the edge beams and compression
stresses are concentrated at the part of the shell around the crown. The analytical method
is based on the theory of thin shells, with the assumption of shallow shells. The results of
the anlaysis showed some deviation compared to the analytical solution. The sources of
this deviation could be one or more of the reasons mentioned before. The best agreement
is found for Mϕ while as the membrane forces show deviation of varying magnitude. At
certain locations however the results are very close to the analytical solutions. Therefore
it is difficult to conclude specifically on what could cause the deviation that are shown.

From the results in example 3, one can conclude that the design method according to the
two layered approach gives a good initial and conservative approximation for the required
amount of steel reinforcement. However for relatively very thin concrete shells, it is
difficult to design according to this method. Using ordinary bar reinforcement together
with the required minimum reinforcement cover makes it challenging to divide the shell
thickness into layers. In addition, casting such very thin RC shells with ordinary bar
reinforcement at the construction site could prove to be difficult. Hence, a fibre based
reinforcement could be a better suited alternative for very thin RC shells. However as
this is not within the scope of this thesis it is not considered in here.

The nonlinear FEA are overall a little more demanding than the linear FEA. The choices
of solution procedures and material models has a significant effect on the obtained results.
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The analyst needs to be aware of the input parameters and expected out come. Moreover
a good knowledge of the FE program at hand and its capabilities is necessary. In the
numerical examples, the material modelling and solution procedure that is chosen is just
one way of performing the nonlinear analysis. It should be noted that there are different
choices of material models and combinations of solution procedures that could be applied,
and might be better suited to the problem at hand. Based on the stress concentrations
and crack patterns that are obtained, the results are however as what could be expected
on the basis of the linear FEA. The effect of including geometrical nonlinearities is also
narrowly considered in Example 3. It has shown that there is a considerable difference
in the results with and without taking into account geometrical nonlinearities. Hence,
buckling analysis of thin shells should not be overlooked. However this is not within the
scope of this thesis, and therefore will not be discussed any further.

The finite element mesh used in both the examples is a relatively coarse mesh. This is
due to the limitations associated with the DIANA version used in this study. As the
element size is used to estimate the crack bandwidth and is included in the calculations
of the fracture energy, it has a direct effect on the material model. As the element size
used in both the examples is larger than the limit size suggested by Kwak and Filippou
[9] in their modified model, the new model should have been considered. However, as
DIANA uses the model given by Eq. 7.9 as default to calculate the ultimate crack strain,
we could not find any easy way to implement this model in DIANA. Therefore, this might
give rise to some uncertainty on the accuracy of the results obtained from the nonlinear
FEA. Moreover, specially in the last example, we have also noticed that the results of the
nonlinear FEA are sensitive to the size of load increment that is chosen.
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Conclusion

The classical theory of thin shells which is briefly reviewed in this paper provides the gen-
eral understanding behind the structural behaviour of shells. Loading on the surfaces of
shells is mainly taken up by the membrane forces, however bending effects are eventually
introduced for the compatibility of displacements and equilibrium of forces at the bound-
ary. For axisymetric shells, the general governing differential equations are significantly
reduced. As it is demonstrated in this paper, for such structures it is fully possible to
perform full analytical calculations. For shells of arbitrary geometry and loading however
the analytical calculations become complicated or impossible without taking significant
assumptions.

The first two examples in this paper illustrated the use of the analytical solution procedure
in a practical setting. From the results obtained in both the examples one can observe
that the moment and shear forces are highest at the edges and junctions as expected,
and damps exponentially towards the intermediate parts of the shell structures. The
cylindrical wall in example one is relatively short such that the boundary effects overlap
before they damp out. Thus the solutions had to be obtained by considering the boundary
effects from both edges simultaneously. This adds up to more computations, however
based on the results obtained it can be said that it was successfully done. The membrane
forces are almost solely dominated by the external loading, and they converge towards the
membrane solution when moving further from the edges. This demonstrates that further
from the boundary the membrane solution alone can give fairly accurate results.

The linear FEA analysis of the two examples in DIANA is performed by using both
the L6AXI and CL9AX axisymmetric elements. As the mesh become refined the results
obtained by using both elements converge close to the analytically obtained solutions. As
the CL9AX element is a higher order element it converges quicker than the L6AXI. The
comparison with the analytically obtained solutions is done with respect to the magnitude
of the stress resultants at the edges. The largest deviation was found to be less than 7%
compared to the analytical solutions. The general distribution of the stress resultant
over the structure are also fairly close to those obtained from the analytical calculations.
Following the linear FEA, the cylindrical wall with a circular plate on top in example
1 was designed in accordance with the Eurocodes. The accompanying nonlinear FEA
showed that the structure has the necessary capacity to carry 1.02 × the applied design

97
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load. The failure mechanism is the accumulation of tension stresses at the junction with
the circular slab.

Cylindrical shell roofs are the only non axisysmmetric structures considered in this study.
The linear and nonlinear FEA are performed by using the curved shell element CQ40S. In
the third example a circular cylindrical shell roof with fixed edges along its longitudinal
edge is considered. The results showed that a good agreement between the analytical
and FEA results is obtained. The accompanying nonlinear analysis has shown that the
structure is able to carry much more than the design load. This can indicate that the
design method applied which is according to the two layered approach is conservative.
When the thickness of the shell is reduced the ultimate capacity of the structure is reached
long before the compression failure in the concrete or tension failure in the reinforcement
is approached. Based on this and the arch like behaviour of the structure it has lead us
to the conclusion that buckling might be the failure mechanism. Thus buckling of thin
concrete shells is a significant structural behaviour that should not be overlooked.

In the fourth example a simply supported (along its curved edge) circular cylindrical shell
roof is considered. When the FEA results are compared to the analytically obtained
solutions a deviation of varying magnitude is observed. This deviation can be credited
to possible low mesh density used in the FEA or/and inaccurate assumptions. It has
also shown that the addition of edge beams considerably reduce the large tension stresses
accumulated along the longitudinal edges. The accompanying nonlinear analysis has
shown that the structure is able to carry 1.24 × the applied load. The failure mechanism
has shown to be the accumulation of stress at the bottom of the edge beams at the
midspan. Considering the beam like behaviour of the structure this is more or less as
what could be expected.

From this study it can be concluded that the analytical solution method is ,even for
the trivial geometries considered in this study, quite lengthy and demanding. The long
computations makes it highly exposed to calculation errors. Given the calculation are
done error free, it however compares well with the results obtained from the FEA. For
structural engineers dealing with such types of shells as considered in this study, it is
highly advisable to have a type of script, spreadsheet or simple software which is based
on the analytical solution method. The result from the analytical method can provide an
independent way of verifying results from FEA. Moreover it provides the understanding
and knowledge of the governing principles behind the structural behaviour of shells which
is vital for the evaluation of FEA results involving shells of any geometry. The FEA
is however still the most efficient and sometimes the only way of performing structural
analysis of thin concrete shells.
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9.1 Recommendation for future study

There are number of topics that are excluded from the scope of this paper. In addition
there has also been some topics that we become aware of during the course of this thesis.
Therefore we recommend the following topics to be the theme of future study papers.

• Stability (Buckling) analysis of thin concrete shells
Thin concrete shells are slender structural elements, therefore when exposed to
compressive inplane forces there is high possibility for buckling failure. A study
that will give an insight into the buckling behavior of thin concrete shells can be
very beneficial for structural engineers.

• Fiber-reinforced thin concrete shells
Fiber based reinforcement in concrete shells is an ideal solution for constructing
very thin concrete shells. It gives the possibility of easier casting process at the
building site and less environment related requirements compared to ordinary bar
reinforcement. Therefore the study of structural analysis involving fiber-reinforced
concrete shells can add some enlightenment to this particular field of study.

• Wind load on shells
Wind load is one of the most common design loads. How to handle wind load on
shell structures may not be a familiar knowledge to many structural engineers today.
A study could for example be performed on how to calculate wind load on concrete
shell structures according to the applicable codes and its corresponding load effects
on the structures.

• Creep and temperature effects on thin concrete shells
These are two loads which are common in concrete structures. Thin concrete shells
exposed to creep and temperature effects could be calculated analytically for some
shell structures, and it could also be simulated in FEA. A practical application
procedure of both methods could be an interesting topic to consider.
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Appendix A

RC design according to Eurocode 2

A.1 Design of the cylindrical water reservoir in ex-
ample 1

The design load effects for the cylindrical water tank calculated in example 1 are summa-
rized in the following table.

Cylindrical wall Circular plate

Inner layer Outer layer Inner layer Outer layer

Mx 14.61 kNm
m

42.02 kNm
m

- -

Mr - - 31.42 kNm
m

42.02 kNm
m

Mt - - 31.42 kNm
m

5.16 kNm
m

Shear force 50.02 kN
m

30.6 kN
m

Ring force 273.6 kN
m

-

Table A.1: Design values of the load effects in example 1

Geometry:

hc =200 mm

hp =200 mm

b =1000 mm
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Material:
Concrete

fck =30 N

mm2

γc =1.5
αcc =0.85

fcd =αcc
fck
γc

= 0.85 35
1.5 = 17 N

mm2

fctm =2.9 N

mm2

Reinforcement

fyk =500 N

mm2

γs =1.15

fyd =fyk
γs

= 500
1.15 = 434.78 N

mm2

E =2 · 105 N

mm2

Concrete cover
Following the guidelines in Eurocode 2 4.4.1.1(2) [13], the nominal concrete cover is defined
as:

cnom = cmin + ∆cdev = 25 + 10 = 35 mm

Minimum reinforcement for concrete slabs is given in Eurocode 2 9.2.1.1(1)

As,min = max(0.26
(
fctm
fyk

)
bwd, 0.0013bwd) = max(239.8, 206.7) = 239.8 mm2

m

Minimum required spacing is given in Eurocode 2 9.3.1.1(3)

smax,slab =min(2h, 250) = 250 mm in areas with maximum moment
smax,slab =min(3h, 400) = 400 mm in other areas

A.1.1 Circular plate

Flexual reinforcement
Assuming a steel reinforcement with a diameter 12 mm −→ Aø12 = 113.1 mm2, the
effective thickness of the plate becomes:

d = hp −
Ø
2 − cnom = 200− 12

2 − 35 = 159 mm

The bending moment capacity of the concrete is given by:

MRd = Kfcdbd
2 = 0, 275 · 17 · 1000 · 1592 · 10−6 = 118.2 kNm

m
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For more reading on the derivation of the above formula, the reader is recommended to
read a book called ’Beregning og dimensjonering etter Eurocode 2’ by professor Svein Ivar
Sørensen [13].

Reinforcement at the edge:

In the radial direction

Mr = 42.02 kNm

m

MRd > Mr −→ Partially utilized compression zone

Then the internal moment arm becomes:

z =
(

1− 0.17 Mr

MRd

)
d =

(
1− 0.17 · 42.02

118.2

)
· 159 = 149.39 mm

but less than 0.95 · d = 151.05 mm
Required reinforcement can then be calculated as:

As = Mr

zfyd
= 42.02 · 106

149.39 · 434.78 = 646.9 mm2

m

With Ø12 reinforcement, the required spacing becomes

s = Aø12

As
b = 113.1

646.9 · 1000 = 174.8 mm

If s = 170 mm is chosen, the final reinforcement is

Ø12s170 −→ As = 665.3
mm2

m

In the tangential direction

Mt = 5.16 kNm

m

MRd > Mr −→ Partially utilized compression zone

Then the internal moment arm becomes:

z =
(

1− 0.17 · 5.6
118.2

)
· (159− 12) = 146 mm

Required reinforcement can then be calculated as:

As = 5.16 · 106

146 · 434.78 = 81.3 mm2

m

As < As,min −→ As = As,min = 239.8mm
2

m
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With Ø12 reinforcement, the required spacing becomes

s = 113.1
239.8 · 1000 = 471.6 mm

If s = smax,slab = 250 mm is chosen, the final reinforcement is

Ø12s250 −→ As = 452.4
mm2

m

Reinforcement at the center:

In the radial and tangential directions

Mr = Mt = 31.42 kNm

m

MRd > Mr −→ Partially utilized compression zone

Then the internal moment arm becomes:

z =
(

1− 0.17 Mr

MRd

)
d =

(
1− 0.17 · 31.42

137.7

)
· 159 = 152.83 mm > 151.05 mm

Required reinforcement can then be calculated as:

As = Mr

zfyd
= 31.42 · 106

151.05 · 434.78 = 478.4 mm2

m

With Ø12 reinforcement, the required spacing becomes

s = Aø12

As
b = 113.1

472.9 · 1000 = 236.4 mm

If s = 235 mm is chosen, the final reinforcement is

Ø12s235 −→ As = 481.3
mm2

m

Shear reinforcement

Vr = 30.6 kN

m

First, the requirement for shear reinforcement is checked using the formula in Eurocode
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2 6.2.2(1)

VRd,c =max([CRd,ck(100ρ1fck)
1
3 + k1σcp]bwd , (vmin + k1σcp)bwd)

=max(88.68, 48.39) = 88.68 kN

m

k =min(1 +
√

200
d
, 2) = min(2.12, 2) = 2

ρ1 =min(Asl
bwd

, 0.02) = min(0.0042, 0.02) = 0.0042

σcp =0

CRd,c =k2

γc
= 0.18

1.5 = 0.12

vmin =0.035k 2
3f

1
2
ck = 0.304

Vr < VRd,c −→ No need for shear reinforcement

A.1.2 Cylindrical wall

Flexual reinforcement
Assuming a steel reinforcement with a diameter 12 mm −→ Aø12 = 113.1 mm2, the
effective thickness of the shell becomes:

d = hp −
Ø
2 − cnom = 200− 12

2 − 35 = 159 mm

The bending moment capacity of the concrete is given by:

MRd = Kfcdbd
2 = 0, 275 · 19.83 · 1000 · 1592 · 10−6 = 118.2 kNm

m

Outer layer

Mr = 42.02 kNm

m
MRd > Mr −→ Partially utilized compression zone

Then the internal moment arm becomes:

z =
(

1− 0.17 Mr

MRd

)
d =

(
1− 0.17 · 42.02

118.2

)
· 159 = 149.39 mm

Required reinforcement can then be calculated as:

As = Mr

zfyd
= 42.02 · 106

149.39 · 434.78 = 646.9 mm2

m

With Ø12 reinforcement, the required spacing becomes

s = Aø12

As
b = 113.1

646.9 · 1000 = 174.8 mm
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If s = 170 mm is chosen, the final reinforcement is

Ø12s170 −→ As = 665.3
mm2

m

Inner layer

Mx = 14.61 kNm

m
MRd > Mr −→ Partially utilized compression zone

Then the internal moment arm becomes:

z =
(

1− 0.17 Mr

MRd

)
d =

(
1− 0.17 · 14.61

118.2

)
· 159 = 155.66 mm > 151.05 mm

Required reinforcement can then be calculated as:

As = Mr

zfyd
= 14.61 · 106

151.05 · 434.78 = 222.46 mm2

m

As < As,min −→ As = As,min = 239.8mm
2

m
With Ø12 reinforcement, the required spacing becomes

s = 113.1
239.8 · 1000 = 471.6 mm

If s = smax,slab = 250 mm is chosen, the final reinforcement is

Ø12s250 −→ As = 452.4
mm2

m

Shear reinforcement

Vr = 50.02 kN

m
First, the requirement for shear reinforcement is checked using the formula in Eurocode
2 6.2.2(1)

VRd,c =max([CRd,ck(100ρ1fck)
1
3 + k1σcp]bwd , (vmin + k1σcp)bwd)

=max(77.99, 48.39) = 77.99 kN

m

k =min(1 +
√

200
d
, 2) = min(2.12, 2) = 2

ρ1 =min(Asl
bwd

, 0.02) = min(0.0028, 0.02) = 0.0028

σcp =0

CRd,c =k2

γc
= 0.18

1.5 = 0.12

vmin =0.035k 2
3f

1
2
ck = 0.304
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Vr < VRd,c −→ No need for shear reinforcement

Ring reinforcement
The circumferential force results in tension stresses through out the cylindrical shell.
Therefore, it is assumed that stresses will be taken up by reinforcement.

Nφ = 273.6 kN

m

Asφ = Nφ

fyd
= 273.6 · 103

434.78 = 629.28mm
2

m
(629.28

2 = 314.64mm
2

m
)

To avoid cracking of the concrete surface, the reinforcement is divided and placed in the
two layers. With Ø12 reinforcement, the required spacing becomes

s = 113.1 · 2
629.28 · 1000 = 359.46 mm

If s = 250 mm is chosen, the final reinforcement is

Ø12s250 −→ As = 452.4
mm2

m
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Appendix B

Reinforcement design according to
the two layered approach

B.1 Design of the cylindrical roof shell in example 3

The design loads for the cylindrical shell roof calculated in example 3 are summarized in
the following table.

Design forces Bottom layer (ϕ = 0o, x = 0) Top layer (ϕ = 15o, x = 0)

Nϕ −283 kN
m

−145 kN
m

Nx −49.2 kN
m

0 kN
m

Nxϕ 51.8 kN
m

0 kN
m

Mϕ 21.4 kNm
m

−9.42 kNm
m

Mx 4.12 kNm
m

−0.179 kNm
m

Mxϕ −0.635 0 kNm
m

Table B.1: Design values of the load effects in example 3

Geometry:

hc =176.78 mm

b =1000 mm
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Material:
Concrete

fck =30 N

mm2

γc =1.5
αcc =0.85

fcd =αcc
fck
γc

= 0.85 35
1.5 = 17 N

mm2

fctm =2.9 N

mm2

Reinforcement

fyk =500 N

mm2

γs =1.15

fyd =fyk
γs

= 500
1.15 = 434.78 N

mm2

E =2 · 105 N

mm2

Concrete cover
cnom=35 mm

B.1.1 The two layered approach

This approach, which is based on dividing the forces into two membranes, is an easy way of
doing first hand reinforcement calculation for shells. The method tends to underestimates
the capacity of concrete shells and gives higher amount of reinforcement than necessary.
However, using this approach for calculating the amount of steel reinforcement that can
be applied as a first input into a FEA is efficient and less time consuming. The procedure
for the following calculation is according to what is presented in the compendium for the
class concrete structures 3 at NTNU [13].
Assuming uncracked membranes, we start with

t1 = t2 = 0.5h = 0.0884 m

z = h− 0.5(t1 + t2) = 0.0884 m
(B.1)

then,

k1 = (h− t2)
(2h− t1 − t2) = 0.5

k2 = 1− k1 = 0.5
(B.2)
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Then the equivalent membrane forces become,

nx1 = k1nx + mx

z
= 0.5 · −49.2 + 4.12

0.0884 = 22.01 kN

nϕ1 = k1nϕ + mϕ

z
= 0.5 · −283 + 21.4

0.0884 = 100.61 kN

nxϕ1 = k1nxϕ + mxϕ

z
= 0.5 · 51.8 + −0.635

0.0884 = 18.72 kN

nx2 = k2nx + mx

z
= −71.21 kN

nϕ2 = k2nϕ + mϕ

z
= −383.6 kN

nxϕ2 = k2nxϕ + mxϕ

z
= 33.08 kN

(B.3)

The principal membrane forces are then calculated using

ni11 = nxi + nϕi
2 +

√(
nxi − nϕi

2

)2
+ n2

xϕi (B.4)

which for the two membranes becomes

n1
11 = 22.01 + 100.61

2 +
√(22.01− 100.61

2

)2
+ (18.72)2 = 104.84 kN

n2
11 = −71.21− 383.6

2 +
√(−71.21− 383.6

2

)2
+ (33.08)2 = −67.75 kN

(B.5)

Based on this results, new set of membrane thicknesses are chosen and the the calculations
are repeated.

n1
11 > 0 −→ t1 = 2 · cnom = 0.070 m(cracked)
n2

11 < 0 −→ t2 = 0.5h = 0.0884 m(uncracked)
(B.6)

thus, the new set of membrane forces become

nx1 = 19.94 kN

nϕ1 = 91.13 kN

nxϕ1 = 16.95 kN

nx2 = −69.14 kN

nϕ2 = −374.13 kN

nxϕ2 = 34.85 kN

(B.7)

The crack angle could be calculated based on yielding of the reinforcement

tan2 φ+
(
nx
nxϕ

− nϕ
nxϕ
· Asx
Asϕ

)
tanφ− Asx

Asϕ
= 0 (B.8)

If Asx
Asϕ

= 2 is chosen, the crack angles in the two membranes is given by:

tan2 φ+
(19.94

16.95 −
91.13
16.96 · 2

)
tanφ− 2 = 0 −→ φ1 = 60.82o

tan2 φ+
(−69.14

34.85 −
−374.13

34.85 · 2
)

tanφ− 2 = 0 −→ φ2 = 8.07o
(B.9)
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Then the internal forces in reinforcement and compression could be found as:

Fc = nxϕ
sinφ cosφ

Fsx = nx + nxϕ tanφ
Fsϕ = nϕ + nxϕ cotφ

(B.10)

Inserting the calculated values yields

Fc1 = 16.95
sin 60.82 cos 60.82 = 39.82 kN

Fsx1 = 19.94 + 16.95 tan 60.82 = 50.3
Fsϕ1 = 91.13 + 16.95 cot 60.82 = 100.59

Fc2 = 34.85
sin 8.07 cos 8.07 = 250.7 kN

Fsx2 = −69.14 + 34.85 tan 8.07 = −64.2 kN

Fsϕ2 = −374.13 + 34.85 cot 8.07 = −128.39 kN

(B.11)

The required reinforcement for the cracked membrane:

Asx1 = Fsx
fyd

= 50.3 · 103

435 = 115.62mm
2

m

Asϕ1 = 100.59 · 103

435 = 231.25mm
2

m

(B.12)

Control of concrete stress in compression
The concrete stresses in the compression field are given by:

VRd,max = 0.6v′fcd = 0.6
(

1− 30
250

)
· 17 = 8.98 N

mm2

σc1 = Fc1
t1

= 39.82 · 103

70 · 1000 = 0.5689 N

mm2 < VRd,max

σc2 = Fc2
t2

= 250.7 · 103

88.4 · 1000 = 2.836 N

mm2 < VRd,max

(B.13)

This procedure is again used for different set of loads obtained from other locations on
the shell surface. In this way the set of loads that result in the highest amount of required
reinforcement are found. The nature of this procedure is better suited for a computational
software, therefore we have scripted the procedure into Matlab. The above example is
just to show the outline of the general procedure used. The script is attached in Appendix
D.



Appendix C

Investigating the effect of the
constraint along the curved edge in
example 3

C.1 Additional constraint in Z direction

In this appendix, the previously mentioned deviation in the distribution of the force Nx

which is shown in example 3 is to be investigated. Based on the assumptions that are
made in the analytical calculation procedures, stress resultants vary only in ϕ-direction,
thus no variation of load effects in the longitudinal direction. Since in the analytical
method Nϕ is obtained by scaling Nϕ with Poisson’s ratio ν i.e. Nx is cause solely by
material compression/expansion in ϕ-direction. Thus the lack of restrain in both curved
edges might be the cause of the deviation with the FEA results. To verify this, an addi-
tional translational constraint in x-direction (global z direction in DIANA) is introduced
to this model as shown in figure C.1.
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Figure C.1: New translational constraint in z-direction

The results of the linear FEA of this modified model is compared to both the analytically
obtained solutions, and the FEA results from the original model, see Figure C.2. The
comparison shows that, after the additional constrain in Z direction along the curved edge
is applied, all the stress resultants including Nϕ agree well. This agreement is obtained
because the model for the FEA is now closer to what is assumed in the analytical method.
Similarly the variation of the stress resultants along the longitudinal axis is investigated.
From Figure C.3, it is evident that there are some variations in the distribution of the
stress resultants along the longitudinal direction, however drastic changes are located only
near the curved edges. The effect of the restraint in Z direction is also presented in the
figures, it has some contribution to the stability of the results along the longitudinal axis
but the variation near the edge are still present.
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(a) Comparison of Mϕ in ϕ-direction (b) Comparison of Nϕ in ϕ-direction

(c) Comparison of Mx in ϕ-direction (d) Comparison of Nx in ϕ-direction

Figure C.2: Variation of the stress resultants in ϕ direction
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(a) Comparison of Mϕ in longitudinal direction (b) Comparison of Nϕ in longitudinal direction

(c) Comparison of Mx in longitudinal direction (d) Comparison of Nx in longitudinal direction

Figure C.3: Variation of the stress resultants in x direction
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MatLab code
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%% Reinforcement design of shells according to Two layer approach 
clear all; close all; 
syms phi 
 

% Design load effects in kN and m 
n_x = 0;  
n_y = -145; 
n_xy = 0; 
m_x = -0.179; 
m_y = -9.42; 
m_xy = 0; 
 

% Material properties 
h = 0.117678; 
c = 0.035; 
f_yk = 500; 
f_ctm = 2.9; 
f_ck = 30; 
f_cd = 0.85*f_ck/1.5; 
f_yd = 435; 
 

% Assumption; Concrete uncracked 
t_1 = 0.5*h; 
t_2 = 0.5*h; 
z = h-0.5*(t_1+t_2) 
k_1 = (h-t_2)/(2*h-t_1-t_2) 
k_2 = 1-k_1; 
 

% Design membrane forces 
n_x1 = k_1*n_x+m_x/z 
n_y1 = k_1*n_y+m_y/z 
n_xy1 = k_1*n_xy+m_xy/z             % bottom layer 
n_x2 = k_2*n_x-m_x/z 
n_y2 = k_2*n_y-m_y/z 
n_xy2 = k_2*n_xy-m_xy/z             % top layer 
 

% Principal membrane force 
n_11=(n_x1+n_y1)/2+(((n_x1-n_y1)/2)^2+n_xy1^2)^0.5 
n_12=(n_x2+n_y2)/2+(((n_x2-n_y2)/2)^2+n_xy2^2)^0.5 
 

%% 
% Cracked >0 or uncracked <0 
p = 0.5;                            % A_sx/Asy 
 

% Crack angle 
A_1 = vpa(solve((tan(phi))^2+(n_x1/n_xy1-(n_y1/n_xy1)*p)*tan(phi)-

p==0)); 
A_2= vpa(solve((tan(phi))^2+(n_x2/n_xy2-(n_y2/n_xy2)*p)*tan(phi)-

p==0)); 
if (n_xy>0) ;phi_1=A_1(A_1>0) ;elseif (n_xy<0) ;phi_1=A_1(A_1<0) ;end 
if (n_xy>0) ;phi_2=A_2(A_2>0) ;elseif (n_xy<0) ;phi_2=A_2(A_2<0) ;end 
a_1 = vpa(phi_1*180/pi) 
a_2 = vpa(phi_2*180/pi) 
 

% Forces for reinforcement 
F_c1 = n_xy1/(sin(phi_1)*cos(phi_1)); 
F_sx1 = n_x1+n_xy1*tan(phi_1) 



%% Analytical solution in closed form for cylindrical shell roofs fixed 

along longitudinal edges and uniformly distributed loading. Taken from 

the paper by Srinivasan Chandrasekaran1, S.K.Gupta, Federico 

Carannante. 

  
clear all; close all; clc; 
syms phi  
f = pi/4              % Angle in circumferential direction measured 

from the edge 
L = 55.54;            % Length of the RC shell roof in longitudinal 

direction 
R = 17.6;             % Circumferential radius 
t = 0.176;            % Thickness of the RC shell roof 
p = 9;                % Uniform distributed load 
E = 30*10^6;          % Young's modulus 
v = 0.2;              % Poisson's ratio 

  
B = (p*R^2*(1-v^2))/(16*E*t^3*(2*t^2*f^2+24*R^2*(f^2-

1)+24*R^4*cos(2*f)+(12*R^2+t^2)*f*sin(2*f))); 

 
C_9 = (48*B*t^2*R^2*((t^2*(8*f^2-3)+12*R^2*(8*f^2-

1))*cos(f)+3*(4*R^2+t^2)*(cos(3*f)-4*f*sin(f))))/(12*R^2+t^2); 

 
C_12 = 4*B*((12*R^2+t^2)^2*f*((1+4*f^2)*cos(f)-

cos(3*f))+4*sin(f)*((12*R^2+t^2)^2*f^2+6*R^2*(36*R^2+5*t^2)*cos(2*f)-

6*(36*R^4+5*R^2*t^2))); 

 
C_14 = 8*B*f*sin(f)*(12*R^2+t^2)^2*((12*R^2*(2*f^2-5)+t^2*(2*f^2-

1))/(12*R^2+t^2)-cos(2*f))+96*R^2*B*(36*R^2+5*t^2)*sin(2*f)*sin(f); 

 
w = 1/(2*R*(12*R^2+t^2)*(v^2-1)); 

  
% Stress functions 
N_f = 4*w*E*t^3*(C_14*cos(phi)-C_12*sin(phi))+p*w*R^2*(v^2-

1)*(cos(f)*((12*R^2-t^2)*cos(phi)-2*(12*R^2-

t^2)*phi*sin(phi))+(2*(12*R^2+t^2)*phi*cos(phi)+(12*R^2-

t^2)*sin(phi))*sin(f)); 

 
M_f = (w*E*t)/(6*R)*(C_9*(12*R^2+t^2)^2+24*R^2*t^2*(C_14*cos(phi)-

C_12*sin(phi)))+p*w*R^3*(v^2-1)*(sin(f)*(2*(12*R^2+t^2)*phi*cos(phi)-

3*(4*R^2+t^2)*sin(phi))-

cos(f)*(3*(4*R^2+t^2)*cos(phi)+2*(12*R^2+t^2)*phi*sin(phi))); 

 
N_x = v*N_f; 

 
M_x = v*M_f 

  

 

 


