
Evaluering av utmattingsberegninger for
sveiser basert på DnV RP-C203

Remi Krister Sylvain Lanza

Produktutvikling og produksjon

Hovedveileder: Kjell Magne Mathisen, KT
Medveileder: Bjørn Haugen, IPM

Institutt for konstruksjonsteknikk

Innlevert: juni 2015

Norges teknisk-naturvitenskapelige universitet

NTNU

EVALUATION OF FATIGUE

CALCULATIONS OF WELDS BASED

ON DNV RP-C203

Remi Krister Sylvain Lanza

June 2015

MASTER’S THESIS

Faculty of Engineering Science and Technology
Department of Structural Engineerings

Supervisor : Assc. Professor Bjørn Haugen
Contact person : Tore Holmas (Aker Solutions)

Acknowledgment

This thesis was written for a master’s degree in Mechanical Engineering with spe-
cialization in Applied Mechanics.

I would like to thank my supervisor Bjørn Haugen for giving me the opportu-
nity to chose this specific thesis. He gave me a subject which included several of
the topics I am interested in, which lead me to enjoy the almost six months spent
on programing, analysing and writing. He was also a huge help by discussing with
me all the unclear issues encountered.
A special thanks is also owed to Tore Holm̊as, who has been part of the devel-
opment of the USFOS software. He has been able to answer all my questions
regarding technical problems.

The author of this work hereby declares that the work is made independently and
in accordance to the rules set down by ”Examination regulations” at the Norwegian
University of Science and Technology (NTNU), Trondheim.

Sammendrag

I strukturnanalyser er det alltid flere metoder for å estimere strukturens indre
spenninger. Noen er mindre nøyaktige, men og mindre komplekse, andre er mer
presise men ogs̊a mer tidskrevende.

I denne oppgave skal vi undersøke to forskjellige metoder p̊a å analysere spen-
ninger i rørknutepunkt. Disse metodene er foresl̊att av DNV i et dokument vi
følger gjennom denne rapporten.

Den første metoden, som vi kaller SCF-metoden, er basert p̊a spenninger bereg-
net fra en bjelkeelement-modell av strukturen. Den andre metoden er basert p̊a
skallelement-analyser av et enkelt rørknutepunkt. Vi kaller denne skallelement-
metoden.

For å utføre en sammenligning av de to metodene, lager vi først et program
som konverterer et knutepunkt fra en representasjon til en annen. Ved å gjøre
dette kan vi lettere analysere flere tilfeller med mindre arbeidstid.

Vi kommer til å se gjennom rapporten hvordan spenningsforskjellene mellom
de to metodene varierer sterkt p̊a geometrien av knutepunktet og de p̊avirkende
lastene. Disse spenningsvariasjonene er s̊a forstørret n̊ar vi sammenligner utmat-
tingsskaden for̊arsaket av bølgelaster. Vi ser deretter at skadene er meget sensitive
p̊a forandringer i spenninger.

Etter å ha sammenlignet spenninger og akkumulert skade, konkluderer rap-
porten med å beskrive årsakene til forskjellene og hvorfor de varierer. Fremtidig
arbeid er deretter foresl̊att for å komme til en mer generell konklusjon.

Summary

In structural analysis there are always several methods for estimating the struc-
tures internal stresses. Some of which are less accurate, but also less complex,
while others are precise but time consuming.

In this study we investigate two different methods of analysing stresses in tubular
joints in jacket structures. These methods are proposed from DNV through a
document which we will follow in this report.

The first method, which we will name the SCF method, is based on stresses cal-
culated from a beam model of the structure. The second method is based on a shell
element analysis of a singular tubular joint. We call this the shell element method.

To perform a comparison of the two methods, we first create a program which
will convert a tubular joint from one representation to the other. By doing this
we can more easily analyse multiple cases with less work.
We will see throughout the study how the stress difference between the two meth-
ods varies highly depending on geometrical parameters of the joints and loading
conditions. These variation of stresses are then magnified when we compare the
fatigue damage caused by wave loads on the structure. As we will see the damage
caused is highly sensitive to changes in stress.

After having compared the stresses and the accumulated fatigue damage, the
report concludes by describing some of the causes that make the differences vary.
Future work based on the methods used in this document is then suggested to
come to a more general conclusion.

Contents

Acknowledgment .
Sammendrag .
Summary .
List of Figures .
Abbreviations .

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Structure of Thesis . 3

2 Review of Literature 5
2.1 DNV - Fatigue Design of Offshore Steel Structures 5
2.2 USFOS . 5
2.3 Tubular joints . 6
2.4 Stress Concentration Factors (SCF) 7
2.5 Force to Stress Matrix . 8

2.5.1 Purpose . 8
2.5.2 Method . 8

2.6 Rainflow counting and Palmgen-Miners rule 10

3 Procedure and developed software 11
3.1 Chapter introduction . 11

3.1.1 Flow chart description . 13
3.2 Software summary . 14
3.3 beam2shell . 15

3.3.1 Why create the program . 15
3.3.2 Meshing . 17
3.3.3 Main program . 25

3.4 get stress . 31
3.5 read stress . 32

3.5.1 Purpose . 32
3.5.2 Stress Transformation . 32
3.5.3 Extrapolation . 34
3.5.4 Membrane, Upper and Lower side stresses 34
3.5.5 Steps . 35

3.6 shell vs beam . 36

3.7 dmg calc . 37
3.7.1 Procedure . 37
3.7.2 Rainflow counting . 38

4 Compare hotspot stresses 41
4.1 Introduction . 41

4.1.1 Load and geometry . 42
4.1.2 SCF Method . 43
4.1.3 Shell element analysis . 43

4.2 Example and procedure . 44
4.2.1 Step 1 - Create beam model 44
4.2.2 Step 2 - Define loads . 45
4.2.3 Step 3 - Extrapolation . 46
4.2.4 Step 4 - SCF method . 48

4.3 Results . 50
4.3.1 Presentation of Results . 50
4.3.2 Example of stress data output: 52
4.3.3 Result discussion 1 . 53
4.3.4 Result discussion 2 . 63
4.3.5 Forces not considered by the SCF method 63

5 Comparison of fatigue damage 65
5.1 Structure . 65
5.2 Results . 67
5.3 Result discussion . 68

6 Conclusion and future work 73

References . 75

Appendices 77
Appendix A - Meshing module code . 77
Appendix B - Rainflow algorithm code 85

List of Figures

2.1 Sub-joints . 6
2.2 Y-, K- and X-joint . 6
2.3 Forces defining K- or Y-connection 7
2.4 Unit loads and degrees of freedom 8
2.5 Hotspot elements . 9

3.1 Flow chart of procedure . 12
3.2 beam2shell flow chart . 16
3.3 Variables used for mesh creation . 17
3.4 Mesh: intersection layers (1) . 18
3.5 Mesh: intersection (2) . 19
3.6 Mesh: arcs . 19
3.7 Mesh: wrapping and unwrapping 20
3.8 Mesh: bottom and extended sides 21
3.9 Mesh: ellipses with deflection . 22
3.10 Mesh: branch . 22
3.11 Mesh: closing intersection . 23
3.12 Mesh: end beam elements . 23
3.13 Mesh: resulting mesh . 24
3.14 beam2shell: junction variables . 27
3.15 beam2shell: hotspots . 28
3.16 beam2shell: hotspot lengths . 28
3.17 beam2shell: beam unit vectors . 29
3.18 beam2shell: moment diagram . 30
3.19 element orientation . 32
3.20 element coordinates transformation 33
3.21 extrapolation sketch . 34
3.22 upper-, membrane- and lower element stress 34
3.23 FTS, F2S, STS illustration . 36
3.24 Rainflow: ”peaks and valleys” . 38
3.25 Rainflow: cycle definition . 38
3.26 Rainflow: iterations . 39

4.1 Junction geometry definition . 42
4.2 Load cases for analysis . 42
4.3 Hotspots SCF method . 43
4.4 F2S Matrix . 47

4.5 Load case example . 48
4.6 SCF’s geometric parameters . 48
4.7 Stress result variation example . 51
4.8 Stress difference caused by extrapolation lengths changes 53
4.9 Stress variation changes caused by chord forces 54

5.1 Structure to be analyzed . 65
5.2 First joint to be analyzed . 66
5.3 Second joint to be analyzed . 66
5.4 Damage results: amplitude SCF vs shell method 68
5.5 Damage results: Stress over time caused by different forces on junction 70
5.6 Damage results: Stress over time caused by different forces on junc-

tion (2) . 71
5.7 Damage results: Stress over time caused by different forces on junc-

tion (3) . 71

Abbreviations

d.o.f. Degree of Freedom
DNV Det Norske Veritas
F2S Force too Stress matrix
FEA Finite Element Analysis
FEM Finite Element Method
FTS Force Time Series matrix
GUI Graphical User Interface
ID Identity
SCF Stress Concentration Factor
STS Stress Time Series matrix

Chapter 1

Introduction

1.1 Motivation

In many structures the most important phase in the design process is to ensure
their ability to withstand the potential forces acting on them. This is usually done
by performing Finite Element Analysis (FEA), which discretize the structure in a
number of so called elements representing the full structure and thus converting it
to a solvable problem. A common decision structural engineers must make, is the
balance of the FEM models’ resolution (number of elements) and the cost of the
analysis. The higher the resolution the more accurate is the answer, but at the
expense of computational time and complexity.

This has led to multiple methods of improving the analyses’ methods for specific
structural cases, in the sense of using engineering experience together with FEM to
reduce the computational complexity. The goal is always to have the most precise
answer at the minimum cost. The specific case in this study is the fatigue analysis
of offshore jacket structures. They are composed of multiple pipes welded together,
and have to withstand the load of a platform or wind turbine together with the
dynamic loading of wind and waves. The structural analyses of these structures
are the basis for deciding the estimated lifetime of its usage and depending on the
method used, it could represent a difference of several years in lifetime.

In our jackets the weakest point are the welds connecting the pipes, and what
would break them is the fatigue damage caused by varying forces. This damage is
based on the resulting stresses over time acting on the welds. Thus, the jackets’
estimated lifetime will depend on how we calculate these stresses.

The design guide DNV RP-C203 describes several methods for estimating the
stress in welded tubular joints, and how to perform the fatigue analysis. The two
methods relevant to this study are using beam elements with stress concentration
factors (SCF) and using shell elements. The first mentioned method is based on
a “coarser” model, or one could say a model with less resolution. The second is
based on a high resolution model. In the nature of FEM analysis, and performing
the analyses correctly, a coarser model tends to give a less stiff solution and is
prone to give higher stresses than expected in reality. The second method would
give us a more precise solution, but at the expense of computation and modeling
time and complexity.

1

INTRODUCTION

1.2 Problem Statement

Using DNV’s guidelines [7] we will compare the two methods:

1) Using beam elements and stress concentration factors (SCF) from Appendix
B of RP-C203.
2) Using shell elements and computing stresses from extrapolation based on sec-
tions 4.2 of RP-C203.

The comparison will be based on the resulting stresses acting on the welds, and
how it affects the fatigue damage.

The first step would be to create a software with the following main capabili-
ties:

- Read an USFOS beam model input file and create a shell model input file of
a chosen tubular junction.
- Possibility of reading the forces acting on the junction over time.
- Automatically run several USFOS analysis.

Thereafter, by creating the required applications, compare the stresses result-
ing from the two different methods on a set of typical junctions.

On a typical jacket structure the fatigue damage difference will be analyzed for a
few junctions. The expected result of the study is that method 1) will give higher
stresses and fatigue damage than method 2). This is due to the model in method
1) being coarser than in method 2).

2

CHAPTER 1

1.3 Structure of Thesis

Chapter 2 Review of Literature
A brief review of some of the concepts used in this study.

Chapter 3 Procedure and developed Software
In this chapter the programs developed for completing the study are dis-
cussed together with the methods behind the calculations.

Chapter 4 Comparison of Stresses
Using some of the software discussed in the previous chapter we do an in
depth comparison of the two methods for calculating weld stresses. The
effect of geometrical change in the pipe junction on the results are analysed.
We use a set of typical geometries with different unit loads.
The chapter is composed of an explanation followed by an example before
the results are presented and discussed.

Chapter 5 Comparison of Fatigue Damage
A second study is done to see how the results found in chapter 4 will affect
the fatigue damage. Here we look at a realistic structure and load history.

Chapter 6 Conclusion and Future Work
A conclusion of the complete report and future work on the topic is suggested.

3

INTRODUCTION

4

Chapter 2

Review of Literature

2.1 DNV - Fatigue Design of Offshore Steel Struc-

tures

“Fatigue Design of Offshore Steel Structures” is the title of the document “DNV
RP-C203”. As DNV works with risk management, they give free access to some
of their practices so engineers can be prepared for what it requires to be licensed
by DNV.

This document contains a huge amount of practices for very specific cases,
which all involve fatigue and fracture assessment. For this report we are interested
in what involves weld stresses in tubular joints. We will use the section “3.3 Tubu-
lar joints and members” in “Chapter 3 - Stress Concentration Factors” together
with “Appendix B - SCF’s for tubular joints” for using the SCF method. Section
“4.2 Tubular joints” in “Chapter 4 - Calculation of hotspot stress by finite element
analysis” will be used for analysing hotspot stresses using shell elements.

2.2 USFOS

USFOS is a structural analysis software widely used to perform non-linear static
and dynamic analysis for offshore frame structures. It is used by oil companies and
consultants , for integrity assessment, collapse analyses and accidental load anal-
yses of offshore jacket structures, topsides, jack-ups and other frame structures,
intact or damaged [2].

In this report we will use USFOS for all our simulations. Most input and ouput
file read and written by USFOS can be edited by text editors. Throughout the
study we will base ourself on USFOS’ user’s manual [6] to create, edit and process
input and result files.

5

2.3 Tubular joints

The DNV RP-C203 document gives some definitions about the tubular joint clas-
sifications. Below is a short summary of what is important for this report:

Tubular joints in our case are defined by one or more tubular beams (braces)
welded to one larger tubular beam (chord) to form a joint.

A joint will always be composed of one chord and one or more braces. The joints
are then categorized in sub-joints. We define each sub-joints by braces, including
the chord, in the same plane (there is a tolerance of ± 15◦ to be considered the
same plane). These sub-joints can then be defined as Y-,K- or X-connections or
combinations of these.

Figure 2.1: One joint with three sub-joints in different planes.

Figure 2.2: From left to right; Y-, K- and X-joint.

The YKX connections depend not only on the sub-joints geometry, but also
on the axial loads the braces are carrying.

The cases we are interested in are sub-joints consisting of two braces on the
same side of the chord. In other words, Y- and K-connections. If the axial load is
balanced within 10% on both braces, it is considered K. Any other load conditions
mean the two braces are considered two Y-connections.

We will later in the report see that we are using two different sets of SCF
values. One set is for loads on one brace, while the other set is for the case of
balanced loads.

If: Fx1 = (1±0.1)Fx2, we consider the braces K, otherwise Y.

6

CHAPTER 2

Figure 2.3: Forces on a K -geometry defines if it’s a K- or Y-connection.

2.4 Stress Concentration Factors (SCF)

Stress concentration factors are used to simplify the process of calculating the
stress in complex locations. The SCF is multiplied by a stress value (hence factor)
often known as the nominal stress, calculated by a simplification of the problem or
taken from an area near the location of interest. It is usually defined as the ratio
between the real stress and the nominal stress. The SCF values are derived either
through analytical mechanics or experiments. They are widely used for cracks and
sharp corners, or any area where the shape of the model takes a sudden transition.
The stress resulting from using the SCF can represent either the real stress in the
same direction of the nominal stress, or a stress component in a different direction.

For our study we will use SCF factors formulated by the document DNV RP-
CP203 to estimate the stress in the area of transition between the brace and
chord (the weld). The nominal stresses in this case are the axial stresses due to
axial forces and moments in the brace. For different cases of geometry and load
conditions 8 SCF’s are given from a set of formulae. When using these factors we
get an estimation of the stresses at 8 different points (hotspots) around the weld.
How the SCF formulae are derived is not specified, neither is which directions these
resulting stresses are representing. What is known is that the stresses are used for
fatigue analysis on the weld. Considering that, we can assume their directions are
normal to the weld, as that would be the proper stress components for its purpose.

7

2.5 Force to Stress Matrix

2.5.1 Purpose

Stress Time Series (STS) [3] is a method with the main purpose of reducing com-
putation time. It will be used when comparing results from beam analysis and
shell element analysis. As discussed earlier a pipe junction taken from a beam
model will be modeled with shell elements. The beam model represents a larger
structure with multiple dynamical load cases. The computation time of the anal-
ysis is relatively low due to the simplicity of the model. The shell model of the
junction, which has a fine mesh, will consist of more degrees of freedom. Instead
of using the imported forces over time from the outer ends of the junction and
perform a long analysis, we will use the STS method.

2.5.2 Method

We start by executing a unit load analysis on each degree of freedom of the ends
of the shell model. For this to be possible we need to restrict displacement in
each degree of freedom once, either on one end point or dispersed on multiple end
points. In our case we restrict all displacement at the end point to the left of the
chord pipe, which leaves us with 18 degrees of freedom on a junction with two
braces as seen in figure 2.4.

Figure 2.4: The arrows shows the degrees of freedom. The left chord end is fixed.

The stresses of interest are located at so called hotspots (see figure 2.5). Our
hotspot stresses are the stresses normal to the weld at four spots on the brace, and
four spots on the chord. For each unit load analysis we collect the values of these
stresses and create the Force-to-Stress (F2S) matrix with dimensions number of
hotspots × degrees of freedom.

8

CHAPTER 2

Figure 2.5: Highlighted elements are used for calculating hotspot stresses.

The Force Time Series matrix (FTS) includes the forces at each degree of
freedom from the beams’ end points for a number of time points, which are taken
from the beam analysis result. The FTS matrix has dimensions degrees of freedom
× amount of time steps.
Using superposition and assuming linear behaviour we obtain the Stress Time
Series matrix (STS) by multiplying F2S by FTS. The STS matrix will then include
all the stresses at each hotspot for each time step.

9

2.6 Rainflow counting and Palmgen-Miners rule

Rainflow counting is an algorithm much used in fatigue analysis. It reduces a data
set of varying stresses to only the data needed for analyzing the amplitudes. It then
allows the Palmgen-Miner rule to be implemented to calculate fatigue damage.

The Palmgen-Miner rule (equation 2.2) can, according to DNV RP-C203, be
expressed as equation 2.1 under the assumption of linear cumulative damage, and
is derived from equation 2.2 and 2.3. It dictates that failure is achieved when D
reaches the value 1 (that value actually varies, but 1 is generally accepted as a
good estimate).

D =
1

ā

k
∑

i=1

ni(∆σi)
m (2.1)

D =
k

∑

i=1

ni

Ni

(2.2)

N =
ā

∆σm
(2.3)

ni is the number cycles with amplitude ∆σi in the total number of cycles k. Ni

is the number of cycles the given material with properties m and ā can sustain
with the amplitude ∆σi before failure. In our case of using the rainflow algorithm
we calculate the damage obtained after each cycles as they are found, and ni will
always be 1.

Equation 2.3 is based on the SN representation of cycles to failure of a given
material.

10

Chapter 3

Procedure and developed software

3.1 Chapter introduction

In this chapter we will go through the procedures followed to arrive at the final
comparison results at the end of the report. A few programs and scripts have been
created to reach the final goal and some of these will be described in details.
The comparison involves multiple steps of processing information and the use of
different software. This makes it complicated to create one application that per-
forms all steps. As we will see in this chapter the procedure uses several programs
and scripts created by the author. At the end of the report we will discuss possible
changes of how the process could be done to make it more automatic.

To first get a better understanding of every step, a flow chart on the next page
shows how each program, script, and file are connected. A short description of the
charts items is also included. Throughout the reading of this report, this flowchart
can be used to see where in the process things are happening.

11

Figure 3.1: Flow chart of the procedure

12

CHAPTER 3

3.1.1 Flow chart description

Files Description
beam model USFOS model file of beam element structure
head USFOS file describing the analysis type
beam results USFOS result file of the beam element analysis
settings contains parameters for the meshing module of beam2shell
input contains input information for beam2shell
fact data input file to run FACT, contains beam IDs
forces output file of FACT, contains all forces for each

time steps of the joints beams
FTS FTS matrix created from forces
shell model USFOS model file of shell element model
load case USFOS file containing the 18 load cases for unit loads
extrap dist contains element lengths of the elements near hotspots
shell results USFOS result files for each unit loads
shell stresses contains all the relevant stresses of elements near hotspots
F2S F2S matrix after processing shell stresses
beam dyn USFOS output file containing forces per time step,

required for FATAL to run
fatal FATAL input file contaning SCF values for damage calculation
damage FATAL output file containing total fatigue damage
Programs/Scripts
USFOS FEM software used for all FEM analysis in this report
BEAM2SHELL Program written mainly for creating a tubular joint

in shell elements
FACT From the USFOS package, used for extracting beam

forces to files
GET STRESS Script written for extracting hotspot stresses from

USFOS result files
READ STRESS Program written for processing the hotspot stresses

and creating the F2S matrix
SHELL VS BEAM Script written for comparing stresses from the shell

element and the SCF method
FATAL From the USFOS package, used for calculating accumulated

fatigue damage in a joint
DMG CALC Script created for comparing accumulated damage from

the shell element and the SCF method

13

3.2 Software summary

beam2shell.exe
This is the main program used in the thesis. It reads an USFOS beam
model file, and outputs a shell model file of a selected junction. It also reads
(through FACT) the forces acting on the junction to create the FTS matrix
to be used for calculating the STS matrix for fatigue analysis.

get stress.au
A script that reads the relevant stress results from a shell analysis. Used in
both Chapters 4 and 5 for creating the F2S matrix.

read stress.exe
As get stress.au has to be run for every unit load result files, read stress.exe
reads all the files created by get stress.au to form the final F2S matrix. Used
in both Chapters 4 and 5 for creating the F2S matrix.

shell vs beam.m
Reads the F2S matrices for several geometries to calculate the STS matrices,
then compare the results with the SCF method and prints out readable result
tables. Used in Chapter 4.

dmg calc.m
Reads a F2S and a FTS matrix, then using rainflow counting it calculates the
accumulated fatigue damage on one brace. These results are then compared
with the results from FATAL. Used in Chapter 5.

14

CHAPTER 3

3.3 beam2shell

3.3.1 Why create the program

There are two main reason for writing a program specifically for creating a pipe
intersection mesh; firstly the shape’s complexity and secondly the need of spe-
cific positions and orientation of certain elements. The intersection of two pipes or
cylinders is a relatively complex function. We also need the elements to be well ori-
ented to this function’s path in order to be able to perform the calculations needed.

Most FEA software have their own meshing modules. We can categorize ele-
ments, both in 2D and 3D in quadrilateral and triangular elements. The average
user of a FEA software would use the meshing module provided in the software
to automatically create a mesh of a model. These algorithms work very well for
triangular elements, which can easily form any model. But very often quadrilat-
eral elements are preferred, because they would reduce the amount of elements
required and thus decrease the analysis’ calculation time, and also tend to give
more accurate results. On the other hand, the algorithms for automatically mesh
with quad elements are less powerful. They cannot mesh any arbitrary shape
desired, and usually require human assistance to split and define the object in
simpler geometrical parts (circles, spheres, squares, cubes, arcs, etc. . .).

In the case of pipe intersections, it would be possible for a person to use a
normal FEA software to mesh the part although it is very time consuming to split
it up in quadifiable parts. There would also be the need of repeating this operation
if some geometrical variables are changed, for example the pipes radius or angle.
A significant amount of working hours can be saved in cases like this, by creating
a software able of handling it automatically.

The meshing module in this program is its main function, but it has two other
functions as well. We will later look at hotspot stresses and fatigue damage ac-
cumulation. To acquire correct stresses we will use extrapolation and beam2shell
will collect the needed element lengths for this purpose. For the fatigue damage
we also need the forces over time acting on the junction, and these are found by
implementing FACT in the program.

15

Figure 3.2: Flow chart showing the main components of what is done in beam2shell.

16

CHAPTER 3

3.3.2 Meshing

About meshing algorithms

Most quad mesh algorithms work in an iterative way by defining certain boundaries
and then starting to build elements along those. It then builds elements attached
to the previous ones, and fill a whole surface or volume. At last it iteratively refines
and fix distorted elements following certain algorithms. The procedure used in this
case is a lot more mathematical, in the sense that the whole model is described
in functions depending on the geometrical variables of the pipe. As there are no
iterations, the mesh is created very quickly, but at the cost of being limited to
specific tubular junctions.

The code behind the meshing module can be found in Appendix A.

Variables

We start by defining a few variables:

Rm Main pipe radius (chord radius)
Rb Branch pipe radius (brace radius)
φ Angle between branch and main pipe
x1 x-coordinate of the outer left part of main pipe
x3 x-coordinate of the outer right part of main pipe
lb length of branch pipes
n number of elements around intersection
t Angle vector [0,2π]
x,y,z Global coordinates with the origin in the junctions center
g Gap between the braces

Figure 3.3: Sketch of junction

17

Intersection

The two intersections are described by parametric functions which can be shown
to be:











y = Rb sin(t)

z =
√

|R2
m − y2|

x = Rb

cos(φ)
cos(t) + z tan(φ)

(3.1)

The gap between can be calculated from the geometry of the beam model, and
can be shown to be:

g

2
= 2Rm tan(φ)−

Rb

cos(φ)
(3.2)

This value is used if no other values are specified in the settings file.

Intersection layers

Both intersections are then surrounded by a number of layers defined by the same
function, but with different parameters to increase their perimeters gradually. We
can see the intersection functions as a distorted ellipse and introduce Rx and Ry
radii and the virtual angle α, which are functions of the layer number. These
values will be modified for each layers. The radii will increase, and the virtual
angle α will be decreased and replace φ. By doing this, the layers will increase
in size and morphing its shape from a distorted ellipse towards an ellipse (and
eventually a circle). We get:











y = Ry sin(t)

z =
√

|R2
x − y2|

x = Rx cos(t) + z tan(α)

(3.3)

At this stage we have well defined the important elements around the intersec-
tion.

Figure 3.4: Five intersection layers. Note that with more layers, the morphing to
an ellipse would be clearer.

18

CHAPTER 3

(a) 25 layers seen from front view (b) 25 layers seen from top view

Figure 3.5: The layers morphs gradually to an ellipse.

The use of many layers is very useful to obtain a clean mesh when using only
one brace. When two braces are used, multiple layers create complications for the
mesh connection between the braces (the gap). In the report we will only look at
junctions with two braces with 5 layers on each.

Arcs

The parts of the intersection’s outer layers facing each other are connected by arcs
with a node density which corresponds more or less to the density around the
intersections. The arcs are defined by circles intersecting the corresponding nodes
on the outer intersection layers, and an increasing radius. The user may change
parameters adjusting the radius of the inner and outer arcs, the node density per
arc and the amount of arcs.

Figure 3.6: Left: arcs in blue. Right: Resulting mesh.

19

Perimeter and border

Now we can define two vectors. Perimeter, which includes all the nodes around
the outer intersection layers and the outer arcs. And Border which includes nodes
on a rectangle projected on the main pipe. All the coordinates from these vectors’
nodes are then unwrapped from the pipes surface. For each of the nodes on the
perimeter we define a line connecting it to the corresponding node on the border.
Each line contains an amount of nodes. The dispersion of theses nodes are decided
through a function nonlinspace increasing the distance between the nodes nearer
to the outer border. Once all the coordinates are defined in the unwrapped space,
they are wrapped back on the pipes surface. The reason for doing this wrapping
and unwrapping, is that it is easier to define the node dispersion in a “flat” space.
The x-coordinates stay the same, and the y-coordinates can be found with equation
(3.4) and (3.5) [1]:

ywrapped = Rm sin(
yunwrapped

Rm

) (3.4)

yunwrapped = Rm arcsin(
ywrapped

Rm

) (3.5)

The z-coordinate is then found with equation (3.6):

zwrapped =
√

Rm2 − y2wrapped (3.6)

Figure 3.7: Left: Unwrapped nodes in blue and wrapped nodes in red. Right:
Resulting mesh.

20

CHAPTER 3

Completing the main pipe

The lower part of the main pipe, can easily be defined by half circles. The node
dispersion of these are such that the elements in this section have similar sizes as
the elements near the border. The pipe is also extended on both sides to reach
the desired size.

Figure 3.8: Resulting mesh after adding bottom and extended sides.

Branches

The mathematical modeling of the branches mesh is slightly more complicated.
First we define a function rot transl def ellipse. The function will create an ellipse
with radii matching an ellipse created by a cylinder cut, rotate the ellipse, translate
it and give it a deflection (see figure 3.9). The rotation is done by using Rodrigues’
rotation formula [4].

Xr = X cos(α) + k×X sin(α) + k(k ·X)(1− cos(α)) (3.7)

A function, deflection func is created to make a third order polynomial that
will have zero value and first derivative value at L1 and L2, and -1 value and
zero first derivative value at L1+p(L2-L1) where p∈[0,1]. This function is applied
on both sides of the ellipse using symmetry. Starting from the bottom a certain
amount of the deformed ellipses are placed over each other. The first ellipse will
have a deflection matching the intersections z-deflection. The location and value
of the maximum deflection depends on the branches angle and radius. For each
precedent ellipse the deflection value is decreased. For the mesh’s quality sake near
the intersection, the first ellipses are parallel to the intersection. The next ellipses
are rotated gradually such that they will end parallel to the circular top end of
the branch. Applying Rodrigues’ equation in our case gives us the position of the
ellipses:

21

Xr =





Rx cos(t)
Ry cos(t)
fdefl(t)



 cos(α)+





fdefl(t)
0

−Rx cos(t)



 sin(α)+





0
1
0



R2 sin(t)(1−cos(α))+





∆x+ fdefl(t)
sin(θ)
sin(φ)

0
∆z





(3.8)
Rx,Ry Ellipses radii depending on the branches angle and radius
fdefl(t) z-deflection
θ Angle between ellipses normal and branches angle
∆ x,∆ y, ∆ z Space translation

fdefl(t)
sin(θ)
sin(φ)

Correction in x-direction after z-deflection

α Orientation of ellipse

Figure 3.9: Ellipses with dimensions from a skewed cylinder cut gets a deflection
added.

Figure 3.10: Left: first layer of elements, made of deformed ellipses. Right: Start
of branch mesh.

22

CHAPTER 3

Closing the intersection hole

A similar method to the one adopted between the perimeter and projected border
in the previous section is used here. Each node inside the intersection is connected
to a node on a square inside the intersection. This way the intersection shape is
morphing to a square, and the hole can easily be closed off.

Figure 3.11: Resulting mesh after closing intersection.

Connection beams

To be able to add unit loads to the joints’ ends, all the end nodes are connected to
a common node. For the two chord and two brace ends, we add a beam to every
node. All beams have their second end connected to a node in the center (figure
3.12) . By then adding high stiffness properties to the beam, the center node will
act as a reference point for the loadings.

Figure 3.12: Beam elements connecting end nodes to one point.

23

Figure 3.13: Resulting mesh

24

CHAPTER 3

3.3.3 Main program

Input

The program has four methods of taking in the input:

load Main method, it reads an input.txt file created by the user.
manual The same input that would be in the input file is typed in the console.
create Geometric parameters are typed in the console to only create a mesh.
test A sample mesh is created.

Sample of the input file:

type: K K for two braces, Y for one brace
fem-file: beam model.fem Name of the beam input file
raf-file: results.raf Name of the USFOS result file
nodenumber: 2 Node ID of junctions center
chord id1: 1 Beam ID of junctions left chord part
chord id2: 2 Beam ID of junctions right chord part
beam id1: 3 Beam ID of junctions left brace
beam id2: 4 Beam ID of junctions right brace
step: 0 Last step for extracting forces (0 for all steps)
branch: 0 Override beam length of braces (0 for no change)
x1: 0 Override beam length of left chord (0 for no change)
x3: 0 Override beam length of right chord (0 for no change)
usfosrun: 1 1 for running unit load analyses, 0 for mesh creation only
factrun: 0 1 for running FACT and extracting junction forces

Defining geometry and material parameters

We define a set of matrices:

node id vec All node ID’s connected to the junction
beam id vec All beam ID’s connected to the junction
geo id vec All geometry ID’s of the beams
mat id vec All material ID’s of the beams
end np vec Defines which end of the beam is not at the junction’s center
node coords Coordinates of nodes in node id vec

mat prop Material properties of materials in mat id vec

rad vec Radii of chord and braces.
thick vec Pipe thicknesses of chord and braces.
The beam ID’s are given in the input file, and put in the beam id vec in the

following order: left chord beam, right chord beam, left brace beam, right brace
beam.

25

An extract of the beam model file can be seen below:

Elem ID np1 np2 mate r i a l geom l c o o r
BEAM 319 313 315 11 58 47
BEAM 320 315 316 11 58 53
BEAM 321 307 315 11 58 49
BEAM 322 303 315 11 58 55
BEAM 323 302 316 2 40 23
BEAM 324 303 316 2 40 38
BEAM 325 304 308 1 52 21

The beam input file is then being searched to locate all the relevant node ID’s.
Every beam ID is being checked if it is one of the ID’s in beam id vec. When a
correct beam ID is found, a check is done to see which node is not the junctions
center, and is saved in node id vec. We then specify the value in end np vec to
be the end point that is not the junction’s center (1 or 2). The material and
geometry ID’s are saved in their corresponding vectors. For all vectors the items
are arranged in the same order as described for beam id vec.
Thereafter we need to find the position of each node ID’s. They are described as
global x-,y-, z-coordinates in the same file as seen below:

Node ID X Y Z Boundary code
NODE 51 −27.000 −13.500 25 .000
NODE 52 27.000 −13.500 25 .000
NODE 53 27.000 13 .500 25 .000
NODE 54 −27.000 13 .500 25 .000
NODE 57 −10.000 −13.500 25 .000
NODE 58 10.000 −13.500 25 .000

As they are found, the coordinates are placed row-wise in node coords in the
same order of the previous vectors of the corresponding beams.
The geometry and material descriptions need to be found. The file is searched
again and the properties are placed in mat prop, rad vec and thick vec. Below is
an example of how the materials and geometries are defined:

Geom ID Do Thick Shear y Shear z
PIPE 7 1.800 .075
PIPE 8 1.800 .070
PIPE 9 1.800 .067
PIPE 10 1 .800 .062
PIPE 12 1 .650 .060

MatID E−mod Poi s s Yie ld Density Thermal
MISOIEP 1 2.000E+11 3 .000E−01 3 .550E+08 7 .850E+03 .000E+00
MISOIEP 2 1.800E+11 3 .000E−01 3 .400E+08 7 .850E+03 .000E+00
MISOIEP 3 2.100E+11 3 .000E−01 3 .200E+08 7 .850E+03 .000E+00
MISOIEP 4 2.100E+11 3 .000E−01 3 .100E+08 7 .850E+03 .000E+00

As the chord is supposed to be one pipe, and not composed of two parts like it
is represented in the beam model, a property check is performed. If the beams do
not have the same diameter, thickness or material properties, a warning is given to
the user, and the values are taken from the left chord. Because of the limitations
of the meshing procedure, both braces should also have the same diameter.

26

CHAPTER 3

We now want to find:

directions Matrix containing the direction vectors of each beam
lengths Vector containing the length of all beams
x1 Absolute value of local x-coordinate of left chord end

point and length of left chord part.
x3 Local x-coordinate of right chord end and length of right chord part
lb Length of braces
phi Brace angles

Figure 3.14: Pipe junction

We know the position of all the outer nodes of the junction, and as the
node coords matrix has these ordered like we defined earlier, we know which posi-
tions belong to which chord and brace part. By subtracting their position vectors
by the position vector of the center node, we get each beam’s direction vectors.
The beam lengths are then found by calculating the direction vectors’ lengths.
From these values, we get x1 and x3, the chord parts’ lengths, and lb the braces’
length. We want the braces to have the same lengths, and if they are different
the values are averaged. In our local coordinate system where we create our shell
model, the origin is located in the junction’s center. Thus, x1 and x3 are also the
x-coordinates (absolute value) of the chord’s end points.
If values for x1, x3 and lb are defined in the input file, the calculated values are
overwritten.

To find the brace angles we use the dot product:

A · B = ‖A‖‖B‖ cos(θ) (3.9)

This is done on the left brace and left chord part, and right brace and right chord
part. The two angles are defined as phi1 and phi2. Again, if they are different, we
average them to phi because of the limitations of the meshing procedure.

The geometric values found and calculated in this section are then sent to the
meshing module described earlier and the mesh file is created. The user has the
option to check the mesh, and make changes to the settings file and rerun the
process until the mesh is satisfying.

27

Extrapolation distances

After the mesh file is completed, beam2shell will find the lengths of the elements
around the hotspots. There are totally 8 hotspots, four on the brace, and four on
the chord. The stresses are taken from the elements, but the extrapolation lengths
are taken from the corresponding nodes.

Figure 3.15: Hotspot elements are shown in red.

Because we know how many elements and nodes are around the intersection,
and the method that is used to define the ID’s in the meshing module, we can
easily find the hotspots’ element and node ID’s.

The function used for this is separate from the meshing module, and will read
the final mesh file after it has been created. The nodes’ coordinates are defined
similarly as we saw earlier in the beam model file. After finding the coordinates of
each node, lengths are calculated by subtracting the coordinate of the neighbour
node.

Figure 3.16: We find the lengths between the nodes on the elements bi and ci

28

CHAPTER 3

Creating FTS

FACT, a utility software to USFOS is used to extract the forces going into the
junction over time from the USFOS result file. FACT requires an input text file
to run and beam2shell writes this file and runs FACT. The output file is a text
file which shows the forces for the six degrees of freedom of both end points of
the relevant beams, for every calculated time steps. This file is then read and
processed to create the FTS matrix.

A beam’s local coordinate system is defined by its x-axis going from end point
1 to end point 2. The other axes are defined from the x-axis and a unit vector ~u
described in the USFOS model file for each beam. The y- and z-axes are then:

~y = ~u× ~x (3.10)

~z = ~x× ~y (3.11)

If there is no defined unit vector, USFOS defines one through an algorithm. In
our case, to simplify the programing, we manually add unit vectors to the right
chord and the two braces. By defining them as seen on the figure below (all vectors
are in the plane of the junction), we force the z-axis to have the same direction as
the unit loads in the shell analysis (see figure 2.4).

Figure 3.17: Direction of unit vectors.

In the unit loads the positive x-direction is inwards towards the junctions cen-
ter. If end point 1 is then at the junction’s center, we switch the direction of the
forces in x and y direction to match the convention (in other words, rotating 180◦

around the z-axis). If end point 1 is at the opposite end, we leave the forces as
they are.

The SCF method is based on the beam forces at the end point located at the
junctions center. It will only use stresses originated from axial force and moment
in and out of plane. In the shell analysis we place all our loads at the outer end
of the braces and chord. What happens then, is that we get a moment from both
the moment force and the shear force. This will drastically increase the resulting
moment in the junction’s center. To address this problem and keep the shear effect
from the shear force, we subtract the moment caused by the shear force from the
moment force.

This will result in that the forces corresponding to Fy and Fz in the FTS
matrix will represent both moment and shear, while My and Mz will be the

29

remaining moment force. As Fx is axial force, and Mx is torsion, there is no need
for any corrections.

Figure 3.18: Top: resulting moment at the junction from the SCF method. Bot-
tom: resulting moment if no correction is done in the shell method.

Analysis

A load case file load cases.fem is written by the program. According to the brace
angles and the center beam nodes at the right chord end and both braces ends,
18 unit loads are defined in each degree of freedom. This can be seen in Chapter
2 figure 2.4. beam2shell will then run USFOS for each load cases, and for that it
creates a new head.fem file every run, defining the analysis and the corresponding
load case.

30

CHAPTER 3

3.4 get stress

After we have performed 18 unit load cases, there is an important amount of
information to extract. There are in all 8 hotspots we want to check, for each of
those we want the stresses at 5 different distances from the weld, and for some of
those we want the stress component in 3 directions. In addition we will extract all
the relevant stresses from both the middle and upper side of the elements (lower
side stress can be calculated from middle and upper). This makes a total of 140
stresses per load case, giving a total of 2720. The reason for extracting all this
information, and its significance will be discussed later in the report.
To extract it all, 3 possible methods were considered:

Manually: Manually enter the USFOS GUI and collect each values.

Unix shell script: Create a script using Unix shell, which should make it possible
to print all the needed values.

AutoIT script: Create a script in the AutoIT language, which will in some sense
do themanually method automatically with a macro, and pasting each values
in a text file.

While the second method would be the most effective, we have encountered
difficulties making it work properly due to lack of information on the scripting
method. The method used in the thesis was using AutoIT and is shortly described
below:

• The scripts need 2 input values, n, the amount of nodes around the brace
intersection, and B ID the last element number of the analyzed brace. Since
the method of creating the mesh is done in a very systematic way, we can
easily calculate the relevant element ID’s from only these two numbers.

• Using a loop going through the list of elements, AutoIT performs the steps
required to extract the stresses from the USFOS GUI and paste them in a
text file.

• This script is run for every load case, and we are left with 18 files that need
to be processed to create the F2S matrix.

31

3.5 read stress

3.5.1 Purpose

read stress.exe is written with C++ and reads the 18 result files created by get stress,
and extrap dist.txt created by the meshing module, which includes the respective
lengths of the relevant elements. We also need to input the brace angle, the element
layer numbers to extrapolate from and the type of stress considered (membrane
or upper side).

To better understand what happens in read stress.exe three concepts will be
briefly explained:

• Shell element stress transformation

• Stress extrapolation

• Shell stress types

3.5.2 Stress Transformation

As mentioned we want to access the stresses in the direction normal to the weld.
In USFOS we can extract the Sxx, Syy and Sxy stress of an element, which are, re-
spectively stress component in x-axis, y-axis and shear. If the element is a perfect
rectangle, the element’s local coordinate system has direction from node 1 to node
2 as x-axis and 1 to 4 as y-axis.

The elements around the intersection on the chord are part of the intersection
layers mentioned earlier. These elements are rectangular with their x-axis perpen-
dicular to the intersection. Thus we only need the Sxx stress. On the brace, the
mesh geometry is different, and the two non-horizontal lines are angled with the
brace’s angle. To find the component parallel to the intersection we need to use
Sxx, Syy and Sxy for each element and do a transformation.

Figure 3.19: Elements on the brace are angled. Elements on the chord are rectan-
gular.

32

CHAPTER 3

For non-rectangular quad elements, the local coordinate system is decided
through these steps:

1. Define directions node 1 to node 2 and node 1 to node 4 as temporary x-
and y axes.

2. Calculate the angle between the axes, θ

3. Calculate α = (π/4− θ)/2

4. Add α to both temporary axes making them perpendicular, and define them
as new local axes.

Figure 3.20: Element coordinate transformation

We can then find the component in Nweld direction as seen above, by doing
a clockwise rotation of α degrees. The component parallel to the brace has the
same direction as Xtemp, and require a counter-clockwise rotation of α degrees.
(Note that this rotation is for one side of the brace, on the other side, the elements
requires an opposite rotation.)

An arbitrary counter-clockwise rotation of β is done by using the transforma-
tion matrix and applying it to our stress tensor matrix:

T =

[

cos(β) − sin(β)
sin(β) cos(β)

]

(3.12)

[

Sxx Sxy

Sxy Syy

]

= T

[

Sxxtemp Sxytemp

Sxytemp Syytemp

]

T T (3.13)

The new Sxx can then be shown to be:

Sxx = Sxxtemp cos(β)
2 + Sxytemp cos(β) sin(β) + Syytemp sin(β)

2 (3.14)

33

3.5.3 Extrapolation

DNV’s procedure has defined the values for extrapolation lengths, which are de-
pendent on the thicknesses and radii of the model. In our case, as the program
beam2shell does not let us create elements at the exact positions desired, we will
not achieve the exact extrapolation lengths. Anyhow, the lengths are calculated
and can be accessed when the mesh is created and refinements can be done to
achieve values near the proposed ones. We can also access more than two differ-
ent extrapolation points, and will in some of the analyses compare the different
extrapolations lengths to see how it affects the result.

Figure 3.21: Extrapolation with element 1 and 4

3.5.4 Membrane, Upper and Lower side stresses

Shell elements are used for simplifying the simulation of thin objects by being
designed for taking the models full thickness in one element. As the stresses will
to a certain degree vary over the thickness, it can be useful to know the stresses
at different element heights. In USFOS we can chose to extract membrane, lower
side, upper side and bending stress. Membrane stress can be explained in two
different ways. Either as the average stress over the thickness, or the elements
stress without considering the bending effect. The membrane stress is the stress
at the center, so it will obviously not receive any effect from element bending.

Figure 3.22: Membrane, upper and lower stress due to axial force and moment.

34

CHAPTER 3

3.5.5 Steps

• Convert the element lengths from extrap dist.txt to distances from the brace
intersection to the extrapolation points. The element stresses represent the
stress value at the elements center and this needs to be accounted for when
calculating the distances.

• For each result file corresponding to each load case, the stresses (membrane
or upper side) are read and saved in matrices Sxxbrace, Sxxchord, Syychord and
Sxychord. The hotspots are then arranged row-wise, and the element layers
column-wise.

• Having all the values in matrices, we can easily perform extrapolations with
two of the columns to get the predicted stress at the weld.

• A transformation is done with the extrapolated values of Sxx, Syy and Sxy

on the brace to get the component Snorm, normal to the weld, and Sbrace

parallel with the brace.

• We end up with 4 stresses on the chord, 4 on the brace normal to the weld,
and 4 parallel with the brace. These are printed column-wise for each load
case and represents the F2S matrix

35

3.6 shell vs beam

shell vs beam.m is written in MATLAB and will read the F2S matrices for a num-
ber of geometries, and using a given load case from the user, compare the results
with the SCF method. The steps performed are described below:

• The load case chosen is represented in a column vector with the 18 degrees
of freedom of the junction, which is the equivalent of the FTS matrix (or
vector in this case, as we only have one time step).

• The SCF method considers only 6 degrees of freedom, axial force, moment
in plane and out of plane on both braces. The defined positive direction
of the forces in the SCF method and shell element method are different.
Considering this, a LOAD vector is created from the FTS vector, consisting
of the 6 loads for the SCF method.

• From the LOAD vector and the geometry of the junction the axial stresses
from each load are calculated. This information can then be used in the SCF
formulae given in DNV-RP C203 Appendix B. A check is done on whether or
not the loads are balanced in the braces, which will change the SCF formulae
used.

• The SCF formulae together with the calculated stresses and the equation
3.3.1 in DNV RP-C203 Chapter 3 give us the predicted weld stresses by the
SCF method.

• By multiplying the F2S matrix with the FTS vector we get the weld stresses
predicted by the shell element method.

• Both predicted stresses are then printed out, and are the values used in
chapter 4 to discuss the differences between the two methods.

Figure 3.23: Illustration of connection between F2S, FTS and STS

36

CHAPTER 3

3.7 dmg calc

3.7.1 Procedure

dmg calc is written in MATLAB, and is used to calculate the accumulated fatigue
damage on a brace. It then compares it with the damage calculated with FATAL
which is based on stresses from the SCF method.
The steps taken in this script:

• The FTS matrix which was created from beam2shell, and the F2S matrix
from read stress are read.

• The STS matrix is calculated similarly as in beam vs shell, but note that the
FTS and STS matrix will now have one column for each time steps in the
analysis. In the fatigue damage calculation we also look away from the four
hotspot stresses which are parallel with the brace, leaving us with only 8
hotspot stresses normal to the weld.

• A rainflow counting algorithm is then used on the time history of each
hotspots, in other words, on each row of the STS matrix. (This is described
in details in the next section).

• The rainflow algorithm delivers the accumulated damage for each hotspot.

• The accumulated damage for each hotspot as well as the sum of the damage
on brace and chord are compared with the results from FATAL.

37

3.7.2 Rainflow counting

As mentioned in Chapter 2, Rainflow counting is a method often used for estimat-
ing the fatigue damage from a stress history. A rainflow algorithm was written
and implemented in dmg calc and will briefly be explained. The code used for the
rainflow script can be found in Appendix B.

• For a stress history of a hotspot, which consists of one data point for each
time step, we check every point for being a turning point. All points which
are not, are removed.

Figure 3.24: The left graph shows a stress history. On the right, only the turning
points are left (”Peaks and Valleys”)

• As we use Palmgren-Miners Rule we need to find every full cycle, its ampli-
tude and then its damage. A full cycle is defined by the condition δ1 > δ2
and δ3 > δ2 on 4 consecutive points. The cycle’s damage is then:

δdamage =
1

ā
σm
amp; (3.15)

Figure 3.25: Definition of a cycle.

• After all the cycles are found we remove σ2 and σ3 for every cycle. As seen
in figure 3.26 we are then left with new cycles. This process is repeated until
there are no cycles left. (A special case is used when we are left with only
three points, but this will not be discussed.)

38

CHAPTER 3

Figure 3.26: The vertical lines shows the locations of each cycles found. These
are removed in the next iteration. The iterations are continued until there are no
more cycles.

• The damage for each cycle found are summed and give us the total damage
of one hotspot. The whole process is repeated for 8 hotspots.

39

40

Chapter 4

Compare hotspot stresses

4.1 Introduction

In this chapter we will investigate the stresses arising from the shell element and
the SCF method. We will look at how they compare to each other under the
same geometry and load conditions, and how the differences change with different
conditions.

On the figures below we see the Von Mises stress distribution of some of the
unit loads analysis used for creating the F2S matrix.

Fx chord My chord Mz chord

Fx brace My brace Mz brace

41

4.1.1 Load and geometry

To start with, we define 9 geometries with two-brace junctions. We limit ourselves
to equal angle and radius on both braces. All geometries will have a unit length
on both chord and brace beams, equal pipe thickness and material on the whole
model and equal gap between the braces. The variables which will change for each
geometry will be the radius ratio between the brace and chord pipes, and the brace
angles. To prevent free translations in any direction we fix all degrees of freedom
at the left end of the chord.

For each of the brace angles; 35◦, 55◦ and 75◦, we will do the analysis with
brace to chord radius ratio; 0.35, 0.55, 0.75

Figure 4.1: Definition of geometry. Left: Beam model. Right: Shell model

In addition to different geometries, we will for each of them look at different
load cases. An important fact to note is that the SCF values calculated from
DNV RP-C203 do not take all forces into the junction in account when they are
calculated. How these non-accounted for forces affect the shell element analysis
will be investigated further.

Below we can see the load cases we will analyze. Each one of them have
independent SCF formulae for the hotspots. In addition we will have a case where
we combine all loads.

Figure 4.2: Six load cases

42

CHAPTER 4

4.1.2 SCF Method

The approach DNV’s method calculates hotspot stresses is by using the axial stress
from axial loading and the axial stresses from in plane and out of plane bending
of the brace. These are then scaled with SCF values, which are dependent on
the junction’s geometry parameters and load conditions. The hotspot stresses
can be calculated for 8 points around the brace, for both the chord and brace.
As mentioned in Chapter 2, we assume the values calculated with this method
represent the stress components normal to the weld.

Figure 4.3: 8 hotspots around the brace

4.1.3 Shell element analysis

In the shell model analysis we will limit ourselves to 4 hotspots on the chord and
brace. The stresses we are interested in are the stress components normal to the
weld. For each analysis we will extract stresses from the brace and chord directed
to the weld, as well as parallel to the brace on the brace.

A well-known fact about FEM analysis is that stresses near corners tend to
reach unrealistic values and are very dependent on the mesh density. We will
work around that problem by using extrapolation of stresses. This is done by
looking at the stress values at two points away from the corner, and then do a
linear extrapolation. By extracting stresses for 5 elements per hotspots we can try
different extrapolation distances to observe the effect.

43

4.2 Example and procedure

Before proceeding to the results, an example will be shown to better understand the
method. For each step, the technique for doing the complete analysis is explained.

4.2.1 Step 1 - Create beam model

Example:

Create an USFOS input file beam model.fem defining the geometry of a pipe junc-
tion with brace angle 55◦ and radius ratio 0.55:

MODEL FILE , phi = 0.959931 , rad iu s r a t i o = 0.55 HEADER
2 2

Node ID X Y Z Boundary code NODE COORDINATES
NODE 1 −1 0 0 1 1 1 1 1 1
NODE 2 0 0 0
NODE 3 1 0 0
NODE 4 −0.573576 0 0.819152
NODE 5 0.573576 0 0.819152

ELEMID np1 np2 mat geo BEAM DEFINITIONS
BEAM 1 1 2 1 1
BEAM 2 2 3 1 1
BEAM 3 2 4 1 2
BEAM 4 2 5 1 2

Geom ID D Thick BEAM GEOMETRY DEFINTIONS
PIPE 1 0 .2 0 .005
PIPE 2 0 .11 0 .005

matno E−mod po i s s y i e l d dens i ty therm exp MATERIAL DEFINITIONS
MISOIEP 1 1e+014 0 .3 1e+008 1000 1e−5

It should be noted that it is not strictly necessary to create an USFOS input
file of the geometry, as for the purpose of this chapter we only look at unit loads.
The beam model will not be run in USFOS, the nominal stresses will be calculated
by classic mechanics. However, we create the input files to show how beam2shell
can read them and create the shell model form there.

Full analysis:

9 USFOS files are created with create beam model.exe written with C++ which
let’s the user choose an angle, a radius, an angle increment and a radius increment.
Giving us 9 models with combinations of angles=[35◦, 55◦, 75◦] and
radius ratio =[0.35, 0.55, 0.75].

44

CHAPTER 4

4.2.2 Step 2 - Define loads

Example:

Using beam2shell.exe we create an USFOS shell model input file. In beam2shell ’s
input file, we need to specify the beam model file we just created, and turn off
run usfos. In the settings file we specify the gap between the braces to be 0.05
and the number of intersection layers to be 5. The program will create a model
file shell model.fem, this file can be opened in USFOS to check the mesh. If the
mesh is not satisfactory we can change other parameters in the settings file and
create a new model file.
extrapol dist.txt will also be created and includes the lengths and ID’s of the po-
tential elements that can be used for extrapolation, together with the proposed
lengths from DNV. When the mesh is acceptable we proceed to manually write
a load case.fem and a header.fem file which defines a static analysis of one load.
We include only an axial load in the left brace. The load is defined in a global
coordinate system and a transformation is needed.

ID NodeID fx fy f z Mx My Mz USFOS LOAD CASE FILE

NODELOAD 1 22781 0.5736 0 −0.8192 0 0 0

Full analysis:

For each of the 9 beam model files, we run beam2shell.exe, but this time we turn on
usfos run. This way the program will automatically create a load case file including
18 unit loads (one for each d.o.f.). USFOS will be run 18 times, and for each time
the header file is updated to specify which load case to be performed. For each of
the 9 models we are left with 18 USFOS result files and the extrapolation data.

45

4.2.3 Step 3 - Extrapolation

Example:

In the result file from USFOS we can manually go in and check the relevant element
stresses. We want to check the stresses for hotspot 4 on the brace, parallel to its
direction. First we open extrapolation data.txt and get the data we need.
Chord element /node id s :
1 20 37 53

145 164 181 197
289 308 325 341
433 452 469 485
577 596 613 629
721 740 757 773
Brace element i d s :
9821 9840 9857 9873
9893 9912 9929 9945
9965 9984 10001 10017
10037 10056 10073 10089
10109 10128 10145 10161
Element widths ;
0 .0017578 0.00172524 0.001758 0.00169967
0.0017578 0.00174526 0.001758 0.0017203
0.0017578 0.00176688 0.001758 0.00174201
0.0017577 0.00178988 0.001757 0.00176546
0.0017578 0.00181469 0.001758 0.00179056
0.00259174 0.00280621 0.00259139 0.00280058
0.00256099 0.0027752 0.00256116 0.00276968
0.00253082 0.0027454 0.00253094 0.00273994
0.00250257 0.00271705 0.00250234 0.00271153
0.0024756 0.00270146 0.00247572 0.00270992

DNV proposed ex t r apo l a t i on l eng ths :
Brace : a = 0.00331662 b = 0.010779
Chord (crown) : a = 0.00331662 b = 0.00770257
Chord (sadd le) : a = 0.00331662 b = 0.00872665

b r a c e e l i d : 10054
brace node id : 10180
n : 72

We use element ID 10089 and 9945, which are the second and fourth nearest
elements to the weld line. The lengths given are defined as the length between
node 1 and node 2 in each element. And we calculate:

Distance a from center of element ID 10089 to the weld line =
0.0027099 + 0.0027115/2

Distance b from center of element ID 9945 to the weld line =
0.0027099 + 0.0027115 + 0.0027399 + 0.0027697/2

a = 0.004066 and b = 0.009546
We go in USFOS and collect Sxx and Syy from the two elements:

Sxx10089 = -4325.17 Sxx9945 = -3486.97
Syy10089 = -2935.24 Syy9945 = -2395.65
Sxy0089 = 1422.54 Sxy9945 = 859.79

46

CHAPTER 4

As mentioned earlier we need to do a transformation to find the stresses in the
correct directions. Using equation 3.14 we get:

Sweld10089 = -1720.2
Sweld9945 = -1531.4

The extrapolation is performed:

Sweld =
b

b− a
(Sweld10089 − Sweld9945) + Sweld9945 = -5856.6

Full Analysis:

For each of the 9 geometries we have 18 load cases with each 8 hotspots and 5 cor-
responding element layers to extract both membrane and upper side stresses from.
To extract all these stresses we use the program get stresses.au. The program has
to be run for each result file while the results.raf file is open in USFOS. It will
collect all the relevant stresses and print them out to a text file.

The program read stresses.exe can be run for each geometry and will read the
18 text files created by get stresses.au together with the geometries corresponding
extrapolation dist.txt file. The program asks for extrapolation layers and stress
type, and then performs the necessary calculations to create the F2S matrix.

We are left with a F2S matrix for each geometry, where we can read every
hotspot stress to each load case. The F2S matrix of the model considered in the
example is shown below. Notice that the 8th hotspot stress (row 8) in load case 7
(column 7) is the result from our example.

Figure 4.4: F2S Matrix

47

4.2.4 Step 4 - SCF method

Example:

We want to compare the result with DNV ’s guidelines. In the RP-C203 document
we go to Appendix B – SCF’s for tubular joints and find the case of axial load on
one brace only:

Figure 4.5: Axial load on one brace from RP-C203 corresponds to the negative of
load case 7 used in the F2S matrix.

The SCF for a saddle point (hotspots 2 and 4) on the brace is referred to
equation (3) in the DNV document:

SCF = 1.3 + γτ 0.52α0.1(0.187− 1.25β1.1(β − 0.96)) sin(θ)2.7−0.01α (4.1)

There are a few parameters we need to calculate first which are dependent on
the models geometry:

Figure 4.6: SCF’s geometric parameters

48

CHAPTER 4

θ = 55

γ =
D

2T
=

0.2

2 · 0.005
= 20

τ =
t

T
=

0.005

0.005
= 1

α =
2L

D
=

2 · 1

0.2
= 10

β =
d

D
=

0.11

0.2
= 0.55

From equation 4.4 we get: SCF = 8.0829

In the same document in 3.3 Tubular joints and members we find the equation
for hotspot 7, which will correspond to our hotspot 4:

Shs4 = SCFasσx + SCFmopσmx (4.2)

σmx is zero as we don’t have any moments. σx is the stress due to the axial
loading and can be calculated by:

σx =
F

Area
=

−1

πdt
=

1

π0.11 · 0.005
= −578.75 (4.3)

From equation 4.2 we get: Shs4 = -4678

Full analysis:

The MATLAB script shell vs beam.m will read the F2S matrix of all geometries
and apply the FTS matrix defined by the loading conditions in the script. STS
is then calculated for each geometry. It also calculates the corresponding stresses
from the DNV’s guidelines and prints out the results. In the next section we will
look at those results.

49

4.3 Results

4.3.1 Presentation of Results

The goal of this chapter is to see how hotspot stresses calculated from DNV ’s SCF
formulae differ from stresses acquired from extrapolated shell element analysis
results. We will see how these differences vary with geometry and loading and
determine which factors in the SCF formulae cause the variation.

The script beam vs shell.m was used and calculates the ratios between the two
methods for each hotspot for each geometric condition. The results are plotted to
get a better overview of the variations and eventually find some relations to the
geometric factors. This is done independently for every load case.

An example of all the data acquired from comparing the two methods is pre-
sented in section 4.3.2. Three stress ratios are shown, where the hotspot stress
from shell element analysis is divided by the corresponding stress from the SCF
method.

sh. chord / b. chord : hotspot stress ratio normal to weld on chord
sh. brace / b. brace : hotspot stress ratio normal to weld on brace
sh. brace (par) / b. brace : hotspot stress ratio parallel to brace on brace

The hotspot stress ratios are plotted against each other for either constant an-
gle and varying radius ratio, or the opposite. This will give a better overview of
how the two variables are affecting the results.
To analyze all this data, we will also calculate a few values that will measure the
behaviour of the stress ratios’ dependency of the angle and radius ratios.

50

CHAPTER 4

We define these terms, all regarding one specific hotspot:

Stress range : The smallest and largest stress ratio.
Max. var. ang. : Largest stress ratio variation caused

by change in angle (largest ei value)
Avg. var. ang. : The average of all ei values.
Max. var. rad.r. : Largest stress ratio variation caused

by change in radius ratio. (largest di value)
Avg. var. rad.r. : The average of all di values.

Figure 4.7: Stress ratios vs Angle and Radius ratio

Multiple plots like the two seen above will be used on the next pages. On both
graphs, the vertical axis shows the shell method to SCF method stress ratio. The
horizontal axis on the left and right figure are angle and radius ratio respectively.
While for each line the angle or radius ratio are kept constant.

51

4.3.2 Example of stress data output:

Axial loading on one brace, Upper stress, extrap. points 2 and 4

52

CHAPTER 4

4.3.3 Result discussion 1

Membrane vs Upper Side Stress

We choose to concentrate on the upper stress, as we can suppose it is on the surface
of the weld there could be cracks. (This is argued for and performed in an older
study [5]). The upper stress was checked vs the membrane stress for a few cases,
and as expected they are much higher. As an example hotspot 2 stresses under
axial loading was 80-120% of the SCF method, while membrane stress was as low
as 5-30%. Similar results were found for different hotspots and load cases.

Extrapolation points

Results have been checked for two sets of interpolation points for both type of
stresses. The first set is using the second and fourth layer of elements around the
intersections. This corresponds to extrapolation points that are off with around
up to 20% from DNV’s proposed values. The second set is using the element layer
1 and 2. These distances are around 25% of the proposed values. Interestingly,
results from both sets give very similar values.

Figure 4.8: *Stress differences are defined by (stress24-stress12)/stress12).

53

Reaction forces

The pipe joints presented in the example are only affected by the axial force in the
left brace and the boundary conditions in the left end of the chord. This is one
of the analysis used to calculate the F2S matrix. These load conditions would not
be very realistic as the right part of the chord is “loose”. In reality this end would
be affected by certain forces.

The SCF formulae are intended to be used for joints in real structures subjected
to realistic load conditions. To take this into account we will compare some of the
results above with results arising from the same conditions but with in addition a
half unit load in x - and z -direction at the chords right end. This would simulate
some reaction forces at the end.

The SCF formulae for axial loading on one brace has two alternatives for the
crown (hotspots 1 and 3) stresses on chord and brace. The first does not take into
account chord stresses (eq. 4.4), while the second varies with the ratio of chord
bending stress to brace axial stress (eq. 4.5).

γ0.2τ(2.65 + 5(β − 0.65)2) + τβ(C2α− 3) sin(θ) (4.4)

γ0.2τ(2.65 + 5(β − 0.65)2)− 3τβ sin(θ) +
σBendingChord

σAxialBrace

SCFatt (4.5)

The results presented earlier use the first alternative. When adding the forces
on the chord we also switch to the second alternative. One of the effects caused
by that is presented below:

Figure 4.9: Left: Without chord forces. Right: With chord forces.

We see the variations in stress ratio due to the brace angle is considerably
smaller when we include the chord forces. The same effect can also be shown for
changes in brace radius.

On the next pages stress ratio variations are analyzed. (When referred to *,
the SCF method gives zero stress value.)

54

LOAD CASE 1 - AXIAL FORCE ON ONE BRACE CHAPTER 4

HOTSPOT 1 CHORD Stress ratio vs. angle Stress ratio vs. radius ratio

Stress range : 97%-128%
Max/avg. var. ang. : 29%/18%
Max/avg. var. rad.r. : 16%/12%
Relatively good correlation
Increasing with higher angle

HOTSPOT 2 CHORD

Stress range : 74%-124%
Max/avg. var. ang. : 29%/22%
Max/avg. var. rad.r. : 34%/26%
Relatively good correlation
Decreasing with higher brace radius
Increasing with higher angle

HOTSPOT 3 CHORD

Stress range : 53%-79%
Max/avg. var. ang. : 23%/21%
Max/avg. var. rad.r. : 5%/3%
Slightly low stresses
Increasing with higher angle

HOTSPOT 1 BRACE

Stress range : 116%-186%
Max/avg. var. ang. : 51%/33%
Max/avg. var. rad.r. : 68%/53%
High stresses
Decreasing with higher angle
Decreasing with higher brace radius

HOTSPOT 2 BRACE

Stress range : 133%-167%
Max/avg. var. ang. : 26%/19%
Max/avg. var. rad.r. : 14%/11%
High stresses
Decreasing with higher angle

HOTSPOT 3 BRACE

Stress range : 54%-96%
Max/avg. var. ang. : 42%/21%
Max/avg. var. rad.r. : 31%/23%
No consistent variation

55

LOAD CASE 2 - AXIAL FORCE ON TWO BRACES

HOTSPOT 1 CHORD Stress ratio vs. angle Stress ratio vs. radius ratio

Stress range : 85%-109%
Max/avg. var. ang. : 20%/17%
Max/avg. var. rad.r. : 6%/6%
Good correlation

HOTSPOT 2 CHORD

Stress range : 80%-159%
Max/avg. var. ang. : 58%/56%
Max/avg. var. rad.r. : 25%/23%
Increasing with higher angle

HOTSPOT 3 CHORD

Stress range : 38%-91%
Max/avg. var. ang. : 50%/44%
Max/avg. var. rad.r. : 10%/8%
Low stress for small angle
Increasing with higher angle

HOTSPOT 1 BRACE

Stress range : 65%-109%
Max/avg. var. ang. : 42%/38%
Max/avg. var. rad.r. : 18%/12%
Relatively good correlation
Decreasing with higher angle

HOTSPOT 2 BRACE

Stress range : 77%-177%
Max/avg. var. ang. : 87%/64%
Max/avg. var. rad.r. : 56%/36%
High variation
Increasing with higher brace radius
Increasing with higher angle

HOTSPOT 3 BRACE

Stress range : 27%-51%
Max/avg. var. ang. : 13%/11%
Max/avg. var. rad.r. : 15%/11%
Low stresses

56

LOAD CASE 3 - MOMENT IN PLANE ON ONE BRACECHAPTER 4

HOTSPOT 1 CHORD Stress ratio vs. angle Stress ratio vs. radius ratio

Stress range : 73%-118%
Max/avg. var. ang. : 36%/30%
Max/avg. var. rad.r. : 17%/13%
Relatively good correlation
Increasing with higher angle

HOTSPOT 2 CHORD

Stress range : N/A
Max/avg. var. ang. : N/A
Max/avg. var. rad.r. : N/A
*

HOTSPOT 3 CHORD

Stress range : 92%-106%
Max/avg. var. ang. : 6%/4%
Max/avg. var. rad.r. : 13%/11%
Good correlation

HOTSPOT 1 BRACE

Stress range : 51%-97%
Max/avg. var. ang. : 44%/37%
Max/avg. var. rad.r. : 11%/6%
Low stress for small angle
Increasing with higher angle

HOTSPOT 2 BRACE

Stress range : N/A
Max/avg. var. ang. : N/A
Max/avg. var. rad.r. : N/A
*

HOTSPOT 3 BRACE

Stress range : 50%-88%
Max/avg. var. ang. : 21%/15%
Max/avg. var. rad.r. : 27%/22%
Slightly low stress

57

LOAD CASE 4 - MOMENT IN PLANE ON TWO BRACES

HOTSPOT 1 CHORD Stress ratio vs. angle Stress ratio vs. radius ratio

Stress range : 52%-118%
Max/avg. var. ang. : 61%/57%
Max/avg. var. rad.r. : 10%/6%
Low stress for small angle
Increasing with higher angle

HOTSPOT 2 CHORD

Stress range : N/A
Max/avg. var. ang. : N/A
Max/avg. var. rad.r. : N/A
*

HOTSPOT 3 CHORD

Stress range : 95%-132%
Max/avg. var. ang. : 28%/16%
Max/avg. var. rad.r. : 24%/15%
Relatively good correlation

HOTSPOT 1 BRACE

Stress range : 41%-107%
Max/avg. var. ang. : 57%/55%
Max/avg. var. rad.r. : 13%/9%
Low stresses for small angle
Increasing with higher angle

HOTSPOT 2 BRACE

Stress range : N/A
Max/avg. var. ang. : N/A
Max/avg. var. rad.r. : N/A
*

HOTSPOT 3 BRACE

Stress range : 61%-87%
Max/avg. var. ang. : 19%/11%
Max/avg. var. rad.r. : 21%/14%
Slightly low stresses

58

LOAD CASE 5/6 - MOMENT OUT OF PLANE ON ONE BRACE /
TWO BRACES

MOP ONE BRACE

HOTSPOT 2 CHORD Stress ratio vs. angle Stress ratio vs. radius ratio

Stress range : 98%-114%
Max/avg. var. ang. : 5%/3%
Max/avg. var. rad.r. : 14%/13%
Good correlation
Increasing with higher angle

HOTSPOT 2 BRACE

Stress range : 91%-126%
Max/avg. var. ang. : 15%/12%
Max/avg. var. rad.r. : 24%/21
Good correlation
Increasing with higher brace radius

MOP TWO BRACES

HOTSPOT 2 CHORD

Stress range : 101%-122%
Max/avg. var. ang. : 11%/8%
Max/avg. var. rad.r. : 16%/14%
Good correlation

HOTSPOT 2 BRACE

Stress range : 92%-130%
Max/avg. var. ang. : 20%/16%
Max/avg. var. rad.r. : 25%/20%
Good correlation

59

LOAD CASE 7 - MULTIPLE FORCES

HOTSPOT 1 CHORD Stress ratio vs. angle Stress ratio vs. radius ratio

Stress range : 53%-116%
Max/avg. var. ang. : 59%/55%
Max/avg. var. rad.r. : 9%/7%
Relatively good correlation
Slightly low stresses for small angle

HOTSPOT 2 CHORD

Stress range : 94%-104%
Max/avg. var. ang. : 5%/3%
Max/avg. var. rad.r. : 10%/8%
Good correlation

HOTSPOT 3 CHORD

Stress range : 100%-142%
Max/avg. var. ang. : 36%/20%
Max/avg. var. rad.r. : 27%/16%
Slightly high stresses

HOTSPOT 1 BRACE

Stress range : 42%-105%
Max/avg. var. ang. : 56%/52%
Max/avg. var. rad.r. : 11%/7%
Low stresses for small angle

HOTSPOT 2 BRACE

Stress range : 70%-108%
Max/avg. var. ang. : 21%/18%
Max/avg. var. rad.r. : 25%/20%
Relatively good correlation
Increasing with higher brace radius
Increasing with higher angle

HOTSPOT 3 BRACE

Stress range : 62%-91%
Max/avg. var. ang. : 19%/12%
Max/avg. var. rad.r. : 25%/17%
Slightly low stresses

60

CHAPTER 4

61

CHAPTER 4

4.3.4 Result discussion 2

As seen on the previous pages, every hotspot has been analysed individually. An
overall conclusion is not obvious. Some results are higher than the SCF method,
and some are lower, but an overall average would show that the shell analysis gives
slightly less stress.

What is observed the most often is that the shell analysis usually gives higher
stresses with higher angles than the SCF method predicts. This could hint to that
the way the brace angle affects the SCF formulae could be revised. The angle
affects most formulas with the factor sin(θ)n where n is varying for each formula.
Though, before considering any revision, a much broader analysis should be done.
In our case we have limited us to only two geometrical changes; the brace to
chord radius ratio and the brace angle. Other changes could be the brace to chord
thickness ratio and the gap distance between the braces. More variations of brace
radius and brace angle should also be applied and a more extensive analysis of the
effect of extrapolation distances would also be required.

4.3.5 Forces not considered by the SCF method

When using the SCF method the six force and moment components in the chord
are not considered. One exception, as we saw in section 4.3.3, is for the crown
hotspots’ SCF under axial load on one brace, where the SCF accounts for the
bending stress in the chord.

Without going to deeply in this matter, we will look at how chord forces affect
the hotspot stresses in a shell element analysis. We already have all the F2S
matrices for the different geometries, and from these we can see how much unit
loads in the chord affect the different hotspots.

To compare the values we take the stress value under axial loading on one
brace for hotspot 1. This value varies between -3.6e3 and -7.27e3. For the sake
of simplicity we average of these values to get C=-5e3.

Results in % for geometry 5 (angle=55, radius ratio=0.55)

Unit load in:
Fx Fy Fz Mx My Mz

Chord hotspot hotspotstress/C
1 3.70 -5.37 157.85 -1.17 155.35 5.07
2 0.13 5.19 -14.52 20.15 -14.10 -5.76
3 5.00 3.04 189.12 3.46 165.55 -3.64
4 -0.21 -2.39 -15.58 -35.11 -13.64 5.05

Brace hotspot hotspotstress/C
1 0.22 -1.69 23.63 0.91 25.39 1.26
2 3.53 -26.64 67.21 6.66 60.34 24.98
3 1.85 0.41 66.21 -3.69 58.91 0.05
4 3.27 26.58 67.04 -6.75 60.18 -25.11

63

The results were checked for all the 9 geometries, and agree very well with the
results above. The first thing to note is the stress caused by Fz and My. We see
that hotspot 1 and 3 on the chord gets highly affected. This agrees very well with
having a corrected SCF formula for axial loading on one brace.

In section 3.3.3, regarding the calculation of the FTS matrix, we mentioned a
subtraction of the moment caused by shear force. For the unit loads in this chapter
we neglect this contribution as we do not use shear force and its corresponding
moment force together. This is why on the previous page the results from Fy and
Mz, and Fz and My are very similar.

Other values are much smaller, but not necessarily neglectable. There are two
other factors not yet considered. Firstly, we compared the stresses with a stress
arising from axial loading, while a unit moment in the brace can give stresses 10-
50 times higher. This reduces highly the effect chord forces have on the hotspot
stresses. Secondly, and most importantly, we have only looked at unit loads in
every case. The pipe junctions are in reality part of bigger structures subjected
to wave loads. The loads acting on the brace may all have different magnitude
depending on where the junction is located in the structure. In the next chapter we
will look more into how different the forces are from each other in a real scenario.

64

Chapter 5

Comparison of fatigue damage

5.1 Structure

The structure chosen for this analysis is the jacket from an offshore windmill. It
is attached in the seabed and subjected to waves.

Figure 5.1: The joint we analyze is circled in red.

Taking a closer look at the first joint we are analyzing, we see there are 5
braces. As mentioned earlier we look at braces in the same plane. Our ”subjoint”
is a K-joint like seen in figure 5.2.

65

Figure 5.2: Beam model of full joint to the left. Shell model of ”subjoint” to the
right.

For a second analysis, a modification of the structure was done by adding a
few horizontal joints as seen in figure 5.3a.

(a) Beams were added to create new joints. (b) Mesh of new joint.

Figure 5.3: Joint in the horizontal plane.

66

CHAPTER 5

5.2 Results

With the FTS matrix from beam2shell and the F2S matrix from read stress, we use
dmg calc presented in section 3.7 to calculate the damage from the shell method.

With the results.dyn file from the beam structure USFOS analysis and FATAL
we get the damage calculated from the SCF method. The SCF values which can
vary depending on load on one brace only or balanced load on both, are not varying
through the analysis. The values need to be specified as constant throughout the
analysis. As seen in the results, the comparison is done for both sets of SCF values.
Where SCF1 and SCF2 corresponds to the SCF values from loading on one brace
and two braces respectively.

Joint analysis 1:
Hotspot Damage [·1e8] Ratio
chord Shell SCF1 SCF2 Shell/SCF1 Shell/SCF2
hs1: 0.4477 0.7009 0 63.88% N/A
hs2: 0.6393 10.0340 23.8350 6.37% 2.68%
hs3: 2.2060 3.0851 1.6912 71.50% 130.44%
hs4: 0.6295 2.3451 6.0373 26.84% 10.43%
Total: 3.9225 16.1651 31.5635 24.27% 12.43%
brace
hs1: 0.0758 0.3083 0 24.59% N/A
hs2: 2.7593 11.3150 21.9980 24.39% 12.54%
hs3: 1.2145 4.7268 2.8794 25.70% 42.18%
hs4: 2.1639 1.9785 30.7231 109.37% 37.02%
Total: 6.2135 18.3286 30.7231 33.90% 20.22%

Joint analysis 2:
Hotspot Damage [·1e8] Ratio
chord Shell SCF1 SCF2 Shell/SCF1 Shell/SCF2
hs1: 69.13 78.41 10.85 88.17% 637.11%
hs2: 832.99 351.57 882.08 236.93% 94.44%
hs3: 75.19 142.84 30.48 52.64% 246.66%
hs4: 876.58 639.27 1649.00 137.12% 53.16%
Total: 1853.89 1212.09 2572.41 152.95% 72.07%
brace
hs1: 14.42 0 0 N/A N/A
hs2: 185.98 87.67 181.37 212.14% 102.54%
hs3: 7.91 17.63 0.27 44.88% 2964.50%
hs4: 222.25 112.96 344.62 196.75% 64.491%
Total: 430.56 218.25 526.26 197.27% 81.81%

FATAL disregard damages smaller than a certain value, which is why we see some
of the values as zero in the tables above. The waves used in the analysis of the
second joint were much higher and frequent than in the first. This is why we see
a big difference in damage.

67

5.3 Result discussion

What is explained in this section is not meant as a method for understanding the
exact damage differences, but rather understand from where the differences of the
two methods lies, and how they could be quantified. (All the numbers in this
section are taken from the first analysis.)

As we have seen in the description of the Rainflow algorithm, the fatigue dam-
age is based on the stress amplitude, and is independent of the mean stress. We
also know that the two methods are proportional to the force applied. For example,
consider axial force on one brace, the resulting stress on a hotspot is:

σshell,i = F2S(i)F = aF (5.1)

σSCF,i = σxSCFi =
SCFi

A
F = bF (5.2)

Where a and b are constant for the analysis. We then define:

p =
σshell,i

σSCF,i

= constant (5.3)

The same can be shown for forces in other directions.
If we then have one stress cycle between σSCF1 and σSCF2 from the SCF method,
we can define the respective stresses from the shell element method as pσSCF1 and
pσSCF2, where p is the ratio between both stresses.

The amplitudes are then (figure 5.4):

σampSCF =
σSCF1 − σSCF2

2
(5.4)

σampshell = p
σSCF1 − σSCF2

2
(5.5)

Figure 5.4: Visualization of amplitude difference.

We understand that the amplitudes from the two methods are related with the
same proportions as the stresses.

68

CHAPTER 5

The rainflow algorithm calculates the damage from the STS matrix, where the
stresses from different forces are added together. So an actual amplitude will look
like:

σampshell =
1

2
(p1∆σ1SCF + p2∆σ2SCF + p3∆σ3SCF) + δσampshell (5.6)

δσampshell =
1

2
(∆σ4 + . . .∆σi . . .+∆σ18) (5.7)

Where i ∈ [1, 2, 3] correspond to Fx, My and Mz on the brace, accounted for
in the SCF method, and i ∈ [4, . . . , 18] to the other forces accounted for only in
the shell element method. For now we neglect δσ.

In the definition of cycle damage in equation 3.13 we see the amplitude is raised
to the m’th. m will generally be in the range 3-5, which means that a small differ-
ence in stress will lead to large change in damage. With the junctions F2S matrix
we can check how much these differences are.

shell / SCF (p)
chord brace

Axial

1 111.00% 151.00%
2 68.50% 51.00%
3 11.70% 41.40%
4 69.20% 51.00%

Mip
1 76.90% 76.90%
3 110.00% 83.00%

Mop
2 86.50% 90.00%
4 86.70% 90.00%

Averaging all the stress ratios we get approximately 75%. With a m value
of 3 this means a reduction of damage of almost 60%. This is a very rough
estimate. Depending on the loading case, the amplitudes of axial force might be
much higher than the momentum amplitudes, or vise-versa. Averaging the p values
will therefore not be the best estimate, but it will give an idea of the magnitude.

We can define ∆σSCF to be a constant stress amplitude for a hotspot from a
force F. We then define the other forces to give a stress amplitude with ratios qi
to ∆σSCF . The damage can then be expressed as:

Dshell =
1

2mā
(q1p1 + q2p2 + q3p3)

m∆σm
SCF + δD (5.8)

DSCF =
1

2mā
(q1 + q2 + q3)

m∆σm
SCF (5.9)

The idea is just to show that a stress ratio (pi) deviating from 1 affects the
total damage more if it corresponds to a force generating high stress amplitudes
(high qi)

69

As an example, the graphs below show the stress arising from Fx, Fz and My
on the joint. We must remember (from 3.3.3 on the FTS calculation) that Fz give
shear and momentum forces. (Fy and My are left out as they give much smaller
amplitudes.)

Figure 5.5: Stress on hotspots from specific forces (1)

70

CHAPTER 5

From this data a few points can be concluded:

• Fx gives relatively large amplitudes on brace hotspot 1, thus large q for a
high p

• Fx gives small amplitudes on hotspot 3, thus low q for a low p.

• Fz and My results in stress amplitudes on hotspot 1 which seems to be near
opposite of amplitudes from axial force, thus an opposite sign on q.

Figure 5.6: Hotspot 1 stress amplitudes seem to cancel each other.

To find out what lies in δσamplitude and δD we need to look at the forces not
accounted for by the SCF method. Checking the effect of these forces on the
different hotspots, we can see that it is only the axial force on the chord that gives
a non-neglectable amplitude. (This can be understood by the fact that the chord
is a vertical beam supporting the structure).

Figure 5.7: Stress amplitude caused by axial force on chord.

Considering this, we should suspect the large amplitudes on the chords hotspots
1 and 3 to give a bigger damage than the SCF method would predict. But as seen
in the results this is not the case. The shell method still gives only around 60-70%
of the SCF method damage. This could for example be due to other forces causing
amplitudes canceling some of the amplitudes we have looked at. But the same
hotspot numbers on the brace have considerably lower damage ratio (25%) and
much lower amplitudes caused by axial force on the chord.

As for the second joint, we can see some very high ratios, up to 637% for
hotspot 1 on the chord. Although they are high, the actual damage value is low
compared to the other hotspots (one order of magnitude) so it doesn’t affect the
total damage ratio of the joint.

71

72

Chapter 6

Conclusion and future work

As we have seen in Chapter 4, there are many factors affecting how the shell
element method compares to the SCF method. From our results the hotspot
stresses are on average very near the SCF method stresses. Still, we see some
large variations for specific hotspots.

We tried to see how the increase in brace angle and brace radius affected the
difference between the two methods. It seemed that in general, an increase in
angle leads to a larger difference between the methods while the change in radius
had in most cases a smaller effect.

We have also seen how the chord forces not accounted for in the SCF method,
affect the results. The in-plane moment can give large contribution to certain
hotspots, while the other forces had less effect.

The extrapolation distance didn’t highly change the stress results, but small
changes in stress could mean large changes in damage. A more extensive research
on this is recommended.

As for the accumulated damage in Chapter 5, we only tested two different
joints, but observed in general a smaller total damage with the shell element
method. What is important to note here, is that the damage is highly sensitive
to the stresses, which again are depending on the type of loads acting. The forces
acting on the joint from the structure can vary importantly depending on the
loading scenario and structure. The point being that it is difficult to pin down a
conclusion for how much difference there is between the two methods. There are
too many variables in place, and a more in depth analysis should be performed to
come to a more general conclusion.

Throughout this report, the methods used could be applied to create a more au-
tomatic process. This way more variables could be tested more efficiently and we
might find a more satisfying conclusion.

73

CONCLUSION

Suggested future work

• The meshing module used here creates the mesh automatically, but still
needs the user to intervene to perform final refinements through the settings
file. Creating a more efficient meshing program would be complicated, but
would enable the possibility to analyze a larger amount of different geome-
tries without refining every mesh.

• The meshing module should also be able to create elements at specific ex-
trapolation distances around the brace. We could then follow DNV ’s re-
quirements more correctly.

• The method that was used to extract the shell element stresses from USFOS
was quite tedious. It should be possible to create a script in Unix shell that
could perform this task much faster.

• Multiple scripts were used here, and the process was applied with many
steps. We might want to combine all these elements to one program that
does everything from reading an USFOS model and creating a mesh in order
to analyse and compare the stress and damage differences.

• Having done these changes, we could have two different modes on the pro-
gram. One performing multiple analyses on a set of predefined geometries
on a larger scale than the one we did in Chapter 4, and adding the variables
tube thickness and brace gap. Thereafter automatically compare the results
with the SCF method. A second mode to read a set of joints from an USFOS
structure model, mesh and analyse them and automatically go through the
steps required to compare the damage.

74

References

[1] Tom M. Apostol and Mamikon A. Mnatsakanian. “Unwrapping Curves from
Cylinders and Cones”. In: The Mathematical Association of America 114
(2007), pp. 388–392.

[2] USFOS Reality Engineering. 2015. url: www.usfos.no.

[3] Tore Holmas. FAT31 Theory. 2009.

[4] Don Koks. Explorations in Mathematical Physics. 2006. Chap. 4, p. 147.

[5] M.R. Morgan and M.M.K. Lee. “Stress Concentration Factors in Tubular K-
Joints under In Plane Moment Loading”. In: Journal of Structural Engineering
(1998), pp. 382–390.

[6] USFOS. USFOS User’s Manual. 2014. Chap. 6.

[7] Det Norske Veritas. DNV-RP-C203 - Fatigue Design of Offshore Structures.
2012.

75

www.usfos.no

76

APPENDIX A - Meshing module code

Appendix A - Meshing module code

Below is the code of the beam2shell ’s meshing module written in the C++ lan-
guage. Only the part which calculates the coordinates is included. The remaining
code which defines each element by each node numbers is left out.

1
2 #include "stdafx.h"

3 #include <iostream >

4 #include <cmath >

5 #include <Eigen/Dense >

6 #include <fstream >

7 #include <string >

8 #include <iomanip >

9 #include "calc_functions.h"

10
11 using namespace std;

12 using namespace Eigen;

13
14
15 VectorXd non_linspace (); // functions included

16 VectorXd center_spaced ();

17 pair <VectorXd , VectorXd > deflection_func ();

18 MatrixXd rot_transl_elps ();

19 MatrixXd rot_transl_defl_elps ();

20 MatrixXd rot_transl_defl_int ();

21
22
23
24
25 VectorXd calc(double x1,double x3 ,double phi ,double Rm , double Rb ,double l,

26 double thick_m ,double thick_bl , double thick_br , MatrixXd mat_prop)

27 {

28
29 //LOAD SETTING VALUES ::::::::::::::::::::::

30 int layers , abn , el, nr , nl ,n;

31 float drf , bbf , spcr_p , ref_b , rad1 , rad2 , gap , nb1_fac , nb2_fac , nb3_fac , dpos_inc , dpos_inc2 , p;

32 string skip;

33
34 ifstream settings;

35 settings.open("settings.txt"); // loading parameters from settings file

36 settings >> skip >> n >> skip >> layers >> skip >> drf >> skip >> bbf

37 >> skip >> abn >> skip >> rad1 >> skip >> rad2 >> skip >> el

38 >> skip >> spcr_p >> skip >> ref_b >> skip >> nr >> skip >> nl

39 >> skip >> gap >> skip >> nb1_fac >> skip >> nb2_fac >> skip >> nb3_fac

40 >> skip >> dpos_inc >> skip >> dpos_inc2 >> skip >> p;

41
42
43 settings.close ();

44
45 //some of the code is prepared for enabling the possibility of having different

46 //angle and radius on the braces.

47
48 //INPUT

49 float x2 , x4 , x5, Rb1 , Rb2 , z4 , z5;

50 float g0_1 , g0_2 , g1 , g2, dg, phi1 , phi2 , es;

51
52 x2 = 0; //x-coordinate of center node (junction center)

53 Rb1 = Rb; Rb2 = Rb;

54 if (!n % 8 == 0){ n = n - n % 8; }

55
56 es = 2 * M_PI*Rb1 / n; // approximate element size

57 phi1 = -phi; phi2 = phi; //left brace has "negative" angle

58
59 phi1 = -(M_PI / 2 - abs(phi1)); //angle is defined differently in intersection function

60 phi2 = (M_PI / 2 - abs(phi2));

61
62
63 z4 = cos(abs(phi1))*(l + Rm / cos(abs(phi1))); // coordinates of left brace end

64 x4 = -sin(abs(phi1))*(l + Rm / cos(abs(phi1)));

65
66 z5 = cos(phi2)*(l + Rm / cos(phi2)); // coordinates of right brace end

67 x5 = sin(phi2)*(l + Rm / cos(phi2));

68
69 if (gap == 0) { // calculating gap if no gap in setting file

70 g1 = Rm*tan(abs(phi1)) - Rb1/cos(abs(phi1));

71 g2 = Rm*tan(phi2) - Rb2/cos(phi2);

72 }

73 else {

74 g1 = gap / 2;

75 g2 = gap / 2;

76 }

77
78 // Printing out info to console

79 cout << "Original gap between intersections: " << g0_1 + g0_2 << endl;

80 cout << "New gap between intersections : " << g1 + g2 << endl;

81 cout << "Branch angle : " << phi * 180 / M_PI << endl;

82 cout << "Braces lengths : " << l << endl;

83 cout << "Left chord length : " << -x1 << endl;

84 cout << "Right chord length : " << x3 << endl;

77

APPENDIX A - Meshing module code

85 cout << "Main pipe radius : " << Rm << endl;

86 cout << "Branch pipe radius : " << Rb << endl;

87 cout << "Approximate element size : " << es << "\n" << endl;

88
89 if (g1 + g2 < 0){ cout << "Warning: Space between intersections is less than zero.\n" << endl; }

90
91
92
93 // SPACING CONSTANTS

94 int spc1 = 21; int spc2 = 8; int spc3 = 5; // spacing for file print out

95
96 // CREATE FILE

97 ofstream myfile;

98 myfile.open("shell_model.fem");

99
100 //NODE TITLE // print out to .fem file

101 myfile << "’" << setw(spc1) << "Node ID" << setw(spc1);

102 myfile << "" << "X" << setw(spc1) << "Y" << setw(spc1) << "Z";

103 myfile << setw(spc1) << "Boundary code" << endl;

104
105 int NodeID = 0;

106
107 // /////////////////////

108 // INTERSECTIONS INNER //

109 // /////////////////////

110 VectorXd ti1 , ti2 , Xi1 , Xi2 , Yi1 , Yi2 , Zi1 , Zi2;

111
112 ti1 = VectorXd :: LinSpaced(n,0,2* M_PI *(1-(double)1/n)); // angle vector for intersection

113 ti2 = VectorXd :: LinSpaced(n,0,2* M_PI *(1-(double)1/n));

114
115
116 //FIRST INTERSECTION

117 Yi1 = Rb1*ti1.array ().sin();

118 Zi1 = (pow(Rm , 2) - Yi1.array ().pow (2)). array (). pow (0.5);

119 Xi1 = (Rb1 / cos(phi1))*ti1.array ().cos() + tan(phi1)*Zi1.array ();

120
121 Xi1 = Xi1.array() - Xi1 (0);

122 Xi1 = Xi1.array() - g1;

123
124 for (int i = 0; i <= n-1; i++) //print out to .fem file

125 {

126 NodeID = NodeID + 1;

127 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

128 myfile << Xi1(i) << setw(spc1) << Yi1(i) << setw(spc1) << Zi1(i) << endl;

129
130 }

131 int nid1 = NodeID;

132
133 // SECOND INTERSECTION

134 Yi2 = Rb2*ti2.array ().sin();

135 Zi2 = (pow(Rm , 2) - Yi2.array ().pow (2)). array (). pow (0.5);

136 Xi2 = (Rb2 / cos(phi2))*ti2.array ().cos() + tan(phi2)*Zi2.array ();

137
138 Xi2 = Xi2.array() - Xi2(n / 2);

139 Xi2 = Xi2.array() + g2;

140
141 for (int i = 0; i <= n-1; i++) //print out to .fem file

142 {

143 NodeID = NodeID + 1;

144 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

145 myfile << Xi2(i) << setw(spc1) << Yi2(i) << setw(spc1) << Zi2(i) << endl;

146
147 }

148 int nid2 = NodeID;

149 cout << "- Intersections complete." << endl;

150
151
152 VectorXd Xi1_temp = Xi1; // saving node coordinates

153 VectorXd Xi2_temp = Xi2;

154 VectorXd Yi1_temp = Yi1;

155 VectorXd Yi2_temp = Yi2;

156 VectorXd Zi1_temp = Zi1;

157 VectorXd Zi2_temp = Zi2;

158
159 // /////////////////////

160 // INTERSECTION LAYERS //

161 // /////////////////////

162 float dR1 , dR2 , k1, k2, Ry1 , Rx1 , Ry2 , Rx2 , d_alpha1 ,d_alpha2 ,alpha1 ,alpha2;

163 float Xi1_start , Xi1_end , Xi2_start , Xi2_end;

164
165 Xi1_start = Xi1 (0); Xi1_end = Xi1(n / 2); // saving outer x-coordinates of intersection

166 Xi2_start = Xi2 (0); Xi2_end = Xi2(n / 2);

167
168 dR1 = drf*layers*es; // Total change in intersection radius left brace

169 dR2 = drf*layers*es; // Total change in intersection radius right brace

170 k1 = 2 * Rb1 / (Xi1_start - Xi1_end); //Ratio between X and Y radius of intersection

171 k2 = 2 * Rb2 / (Xi2_start - Xi2_end);

172
173 d_alpha1 = 0.15* phi1; d_alpha2 = 0.15* phi2; //angle change of "virtual" angle of new layers

174
175 for (int i = 1; i <= layers; i++)

176 {

177
178 //first intersection (left brace)

179 alpha1 = phi1 - d_alpha1 *((double)i / layers);

78

APPENDIX A - Meshing module code

180 Ry1 = Rb1 + dR1 *((double)i / layers);

181 Rx1 = Ry1 / k1;

182
183 Yi1 = Ry1*ti1.array ().sin();

184 Zi1 = (pow(Rm , 2) - Yi1.array ().pow (2)). array (). pow (0.5);

185 Xi1 = Rx1*ti1.array ().cos() + tan(alpha1)*Zi1.array ();

186
187 Xi1 = Xi1.array() - (Xi1(n / 2) + Xi1 (0)) / 2; // translation of layer to place it around

188 Xi1 = Xi1.array() + (Xi1_start + Xi1_end) / 2; // previous layer

189
190 for (int i = 0; i <= n - 1; i++)

191 {

192 NodeID = NodeID + 1;

193 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

194 myfile << Xi1(i) << setw(spc1) << Yi1(i) << setw(spc1) << Zi1(i) << endl;

195
196 }

197
198
199 // second intersection (right brace)

200 alpha2 = phi2 - d_alpha2 *((double)i / layers);

201 Ry2 = Rb2 + dR2*((double)i / layers);

202 Rx2 = Ry2 / k2;

203
204 Yi2 = Ry2*ti2.array ().sin();

205 Zi2 = (pow(Rm , 2) - Yi2.array ().pow (2)). array (). pow (0.5);

206 Xi2 = Rx2*ti2.array ().cos() + tan(alpha2)*Zi2.array ();

207
208 Xi2 = Xi2.array() - (Xi2(n / 2) + Xi2 (0)) / 2;

209 Xi2 = Xi2.array() + (Xi2_start + Xi2_end) / 2;

210
211 for (int i = 0; i <= n - 1; i++)

212 {

213 NodeID = NodeID + 1;

214 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

215 myfile << Xi2(i) << setw(spc1) << Yi2(i) << setw(spc1) << Zi2(i) << endl;

216
217 }

218
219 }

220 int nid3 = NodeID;

221 cout << "- Intersection layers complete." << endl;

222
223 // /////////////////

224 // BETWEEN ARCS /////

225 // /////////////////

226
227 int bp1 , bp2 , nid3sym;

228
229 bp1 = n/4 + abn; //bp1 and bp2 are node numbers of intersection

230 bp2 = round(bbf*abs(Xi1_start - Xi2_end) / es); //for first and last arc

231 VectorXd Xa, ta1 , ta2 , ta;

232 MatrixXd Ya, Za , XA(bp2 ,bp1), YA(bp2 ,bp1), ZA(bp2 ,bp1);

233 double r1, h;

234
235 // straight line (middle line between all arcs)

236 Xa = VectorXd :: LinSpaced(bp2 , Xi1(0), Xi2(n / 2));

237 Ya = MatrixXd ::Zero(bp2 ,1);

238 Za = (MatrixXd ::Ones(bp2 ,1))* Rm;

239
240 for (int j = 1; j <= bp2 - 2; j++)

241 {

242 NodeID = NodeID + 1;

243 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

244 myfile << Xa(j) << setw(spc1) << Ya(j) << setw(spc1) << Za(j) << endl;

245 }

246
247
248 //ARCS FIRST SIDE

249 double Ra1 = (12.5 + 12.5* rad1)*Rb , Ra2 = (15 + 10 * rad2)*Rb; //Arcs radius (first and last)

250
251 for (int i = 1; i <=bp1; i++)

252 {

253
254 r1 = Ra1+(Ra2 -Ra1)*((double)i / bp1); // radius changing for each arcs

255 alpha1 = M_PI / 2 + asin(abs(Xi1(i)) / r1);

256 alpha2 = M_PI / 2 - asin(Xi2(n / 2 - i) / r1); //alpha1 ,2 and h are parameters for getting

257 h = cos(M_PI / 2 - alpha1)*r1; // correct arc node coordinates.

258
259 ta = VectorXd :: LinSpaced(bp2 ,alpha1 ,alpha2); //ta - angle vector for arcs

260
261 Xa = r1*ta.array ().cos(); //arc coordinates

262 Ya = -(h - Yi1(n / 2 - i)) + r1*ta.array ().sin ();

263 Za = (pow(Rm, 2) - Ya.array (). pow (2)). array ().pow (0.5);

264
265
266 XA.col(i - 1) = Xa; // Needed for creating arcs on opposite

267 YA.col(i - 1) = Ya; //side with symmetry

268 ZA.col(i - 1) = Za;

269
270 for (int j = 1; j <= bp2 -2; j++)

271 {

272 NodeID = NodeID + 1;

273 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

274 myfile << Xa(j) << setw(spc1) << Ya(j) << setw(spc1) << Za(j) << endl;

79

APPENDIX A - Meshing module code

275
276 }

277 }

278
279
280 nid3sym = NodeID;

281
282 //ARCS OTHER SIDE (using symetry)

283 for (int c = 0; c <= bp1 -1; c++){

284 for (int j = 1; j <= bp2 - 2; j++)

285 {

286 NodeID = NodeID + 1;

287 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

288 myfile << XA(j,c) << setw(spc1) << -YA(j,c) << setw(spc1) << ZA(j,c) << endl;

289 }

290 }

291 int nid4 = NodeID;

292 cout << "- Arcs complete." << endl;

293
294
295 // /////////////////////////////

296 // CONNECT SUROUNDING NODE /////

297 // ///////////////////////////

298 int bp4 , N;

299 N = 2 * (n - 2 * bp1 + 1) + 2 * (bp2 - 2); //N - amount of nodes around full perimeter

300 VectorXd X_per(N), Y_per(N); //(part of last brace layers , and outer arcs)

301 bp4 = n / 2 - bp1+1;

302
303 X_per << Xi2.head(bp4), (Xa.segment(1, bp2 - 2)). reverse(), //X-per , Y-per , node coordinates of full perimeter

304 Xi1.segment(bp1 , n - (2 * (bp1 - 1) + 1)), Xa.segment(1, bp2 - 2),

305 (Xi2.segment(1, n / 2 - bp1)). reverse ();

306
307 Y_per << Yi2.head(bp4), ((Ya.col (0)). segment(1, bp2 - 2)). reverse(),

308 Yi1.segment(bp1 , n - (2 * (bp1 - 1) + 1)), -(Ya.col (0)). segment(1, bp2 - 2),

309 -(Yi2.segment(1, n / 2 - bp1)). reverse ();

310
311
312 // /////////////////////////////

313 ///UNWRAP PERIMETER NODES ///////

314 // ///////////////////////////

315 VectorXd Y_per_u;

316 Y_per_u = Rm*((1 / Rm)* Y_per).array (). asin (); // Unwrapping node coordinates to "flatspace"

317
318 // /////////////////////////////

319 // /////// BORDERS LIMITS ///////

320 // ///////////////////////////

321 double y_lim , x_lim_l , x_lim_r; // Defining limits to where to connect

322 double L1, L2,beta; // perimeter nodes

323 int n_end , n_side;

324
325 y_lim = 0.5* M_PI*Rm; // limits

326 x_lim_l = X_per(N / 2) - p*Rm / 2;

327 x_lim_r = X_per (0) + p*Rm / 2;

328
329 L1 = x_lim_r - x_lim_l; //side lengths

330 L2 = y_lim;

331
332 n_end = round ((double)N*L2 / (4 * L2 + 2 * L1)); // number of nodes at borders

333 n_side = 0.5 * ((double)N - 4*(double)n_end +2);

334 beta = (2*L1 + 4 * L2) / (double)N; // space between nodes

335
336 // /////////////////////////////

337 // /////// BORDERS NODES ///////

338 // ///////////////////////////

339 VectorXd y_end1 , y_end2 , y_end3 , x_side1 , x_side2 , Xborder_all(N),Yborder_all(N);

340 MatrixXd x_end1 , x_end2 , x_end3 , y_side1 , y_side2;

341
342 y_end1 = VectorXd :: LinSpaced(n_end ,0,y_lim); // calculating coordinates of nodes around border

343 x_end1 = x_lim_r*MatrixXd ::Ones(n_end ,1);

344 x_side1 = VectorXd :: LinSpaced(n_side ,x_lim_r -beta , x_lim_l+beta);

345 y_side1 = y_lim*MatrixXd ::Ones(n_side ,1);

346 y_end2 = VectorXd :: LinSpaced (2*n_end -1, y_lim , -y_lim);

347 x_end2 = x_lim_l*MatrixXd ::Ones (2*n_end -1,1);

348 x_side2 = x_side1.reverse ();

349 y_side2 = -y_side1;

350 y_end3 = VectorXd :: LinSpaced(n_end -1, -y_lim , 0-beta);

351 x_end3 = x_lim_r*MatrixXd ::Ones(n_end -1 ,1);

352
353 Xborder_all << x_end1 , x_side1 , x_end2 , x_side2 , x_end3;

354 Yborder_all << y_end1 , y_side1 , y_end2 , y_side2 , y_end3;

355
356 // //

357 // /////// CREATE WRAPED AND UNWRAPED LINES //////

358 // //

359 VectorXd Xs_u , Ys_u , Ys_w , Zs_w;

360 int ns;

361 ns =n / 4 + el;

362 for (int i=0; i <= N-1; i++)

363 {

364 // Unwrapped coordinates between perimeter and border

365 Xs_u = non_linspace(X_per(i), Xborder_all(i),spcr_p ,ns);

366 Ys_u = non_linspace(Y_per_u(i), Yborder_all(i), spcr_p , ns);

367
368 // Wrapped coordinates between perimerter and border

369 Ys_w = Rm*((1 / Rm)*Ys_u).array ().sin ();

80

APPENDIX A - Meshing module code

370 Zs_w = (pow(Rm , 2) - Ys_w.array ().pow (2)). array (). pow (0.5);

371
372
373
374 for (int j = 1; j <= ns -1; j++)

375 {

376 NodeID = NodeID + 1;

377 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

378 myfile << Xs_u(j) << setw(spc1) << Ys_w(j) << setw(spc1) << Zs_w(j) << endl;

379 }

380
381 }

382
383 int nid5 = NodeID;

384 cout << "- Wraped mesh complete." << endl;

385
386
387
388 // ::

389 //::: BRANCH PIPE MESH :::::::::::::::::::::::

390 // ::

391
392 double aphi1 ,aphi2 ,dLb , Lb, Lb3 , Lb2 , Lb1 , xpos0_l ,xpos0_r , d, dmax , dpos , dpos0 , R1l ,R1r , theta , spcr;

393 VectorXd angv_l ,angv_r , Zdef;

394 Vector3d pos0_l , pos0_r , pos , move_pos_r , move_pos_l;

395 MatrixXd XYZ;

396 int Nb1 , Nb2 , Nb3;

397
398 aphi1 = M_PI / 2 - phi1; // changing angle definition

399 aphi2 = M_PI / 2 - phi2;

400
401
402
403 Lb = pow(pow(x4 +Rm*tan(abs(phi1)), 2) + pow(z4 - Rm, 2), 0.5); //(this could possibly be changed to "lb" original branch length)

404 Lb2 = 0.80*Lb; //Lbi , different length parts of branch pipe

405 Lb3 = ref_b*Lb; //they have different mesh density

406 Lb1 = Lb - Lb2 - Lb3;

407
408 Nb1 = round(Lb1 / (nb1_fac * 3.00*es)); //Nbi , number of element layers on each branch parts

409 Nb2 = round(Lb2 / (nb2_fac * 2.00*es));

410 Nb3 = round(Lb3 / (nb3_fac * 1.00*es));

411
412 angv_l = non_linspace(M_PI / 2, aphi1 , 1.4, Nb2); // Vectors consisting of angle to which the ellipses will rotate

413 angv_r = non_linspace(M_PI / 2, aphi2 , 1.4, Nb2);

414 dmax = 1.0* abs(Zi1_temp (0) - Zi1_temp(n / 4)); //max deflection of first ellipse

415
416 // positions for translating ellipses

417 xpos0_l = (Xi1_start + Xi1_end) / 2; xpos0_r = (Xi2_start + Xi2_end) / 2;

418 pos0_l << xpos0_l , 0, Rm; pos0_r << xpos0_r , 0, Rm;

419 move_pos_l << cos(aphi1), 0, sin(aphi1); move_pos_r << cos(aphi2), 0, sin(aphi2);

420
421 dpos0 = (Xi1_temp(n / 4) - Xi1_temp (0)) / (Xi1_temp(n / 2) - Xi1_temp (0));

422
423 spcr = 1;

424
425
426 ///BRANCH LEFT //////////////////////////////////

427 // CREATE BEGINING OF PIPE WITH PARALLEL CIRCLES

428 for (int i = 0; i <= Nb1 - 1; i = i + 1)

429 {

430 dLb = (Lb - Lb1*(double)i / ((double)Nb1));

431 pos = dLb*move_pos_l + pos0_l;

432 MatrixXd XYZ = rot_transl_elps(Rb1 , Rb1 , (M_PI / 2 - aphi1), pos , n);

433
434 //FOR EACH NODES , WRITE COORDINATES ON FILE:

435 for (int j = 0; j <= (n - 1); j = j + 1){

436
437 NodeID = NodeID + 1;

438 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

439 myfile << XYZ(j, 0) << setw(spc1) << XYZ(j, 1) << setw(spc1) << XYZ(j, 2) << endl;

440 }

441 }

442
443 // CREATE REST OF BRANCH PIPE , USING ROTATED AND DEFLECTED ELLIPSES

444 for (int i = 0; i <= (Nb2 + Nb3 - 1); i = i + 1)

445 {

446 if (i >= Nb2)

447 {

448 R1l = Rb1 / sin(angv_l(Nb2 - 1));

449 theta = angv_l(Nb2 - 1) - aphi1;

450 dpos = 1 -((0.5 - 0.45) / (M_PI / 2 - M_PI / 16))*(angv_l(Nb2 - 1) - M_PI / 16) - 0.45 + dpos_inc;

451 dLb = Lb3 *(1 - pow(((double)i - (double)Nb2) / ((double)Nb3) ,0.65));

452
453 }

454 else

455 {

456 R1l = Rb1 / sin(angv_l(i));

457 theta = angv_l(i) - aphi1;

458 dpos =1 - ((0.5 - 0.45) / (M_PI / 2 - M_PI / 16))*(angv_l(i) - M_PI / 16) - 0.45 + dpos_inc;

459 dLb = Lb2 *(1 - pow((double)i / ((double)Nb2),.8)) + Lb3;

460 };

461
462
463 d = dmax*(double)i / ((double)Nb2 + (double)Nb3);

464

81

APPENDIX A - Meshing module code

465 pos = dLb*move_pos_l.array() + pos0_l.array ();

466
467
468 XYZ = rot_transl_defl_elps(R1l , Rb1 , d, dpos , theta , n, pos , spcr , aphi1);

469
470
471 //FOR EACH NODES , WRITE COORDINATES ON FILE:

472 for (int j = 0; j <= (n - 1); j = j + 1){

473
474 NodeID = NodeID + 1;

475 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

476 myfile << XYZ(j, 0) << setw(spc1) << XYZ(j, 1) << setw(spc1) << XYZ(j, 2) << endl;

477
478 }

479 }

480
481 int nid6 = NodeID;

482 cout << "- Left brace complete." << endl;

483
484 ///BRANCH RIGHT //////////////////////////////////

485 // CREATE BEGINING OF PIPE WITH PARALLEL CIRCLES

486 for (int i = 0; i <= Nb1 - 1; i = i + 1)

487 {

488 dLb = (Lb - Lb1*(double)i / (double)Nb1);

489 pos = dLb*move_pos_r + pos0_r;

490 MatrixXd XYZ = rot_transl_elps(Rb2 , Rb2 , (M_PI / 2 - aphi2), pos , n);

491
492 //FOR EACH NODES , WRITE COORDINATES ON FILE:

493 for (int j = 0; j <= (n - 1); j = j + 1){

494
495 NodeID = NodeID + 1;

496 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

497 myfile << XYZ(j, 0) << setw(spc1) << XYZ(j, 1) << setw(spc1) << XYZ(j, 2) << endl;

498 }

499 }

500
501 // CREATE REST OF BRANCH PIPE , USING ROTATED AND DEFLECTED ELLIPSES

502 for (int i = 0; i <= (Nb2 + Nb3 - 1); i = i + 1)

503 {

504 if (i >= Nb2)

505 {

506 R1r = Rb2 / sin(angv_r(Nb2 - 1));

507 theta = angv_r(Nb2 - 1) - aphi2;

508 dpos = ((0.5 - 0.45) / (M_PI / 2 - M_PI / 16))*(angv_r(Nb2 - 1) - M_PI / 16) + 0.45 - dpos_inc2;

509 dLb = Lb3 *(1 - pow(((double)i - (double)Nb2) / ((double)Nb3), 0.65));

510
511 }

512 else

513 {

514 R1r = Rb2 / sin(angv_r(i));

515 theta = angv_r(i) - aphi2;

516 dpos = ((0.5 - 0.45) / (M_PI / 2 - M_PI / 16))*(angv_r(i) - M_PI / 16) + 0.45 - dpos_inc2;

517 dLb = Lb2 *(1 - pow((double)i / ((double)Nb2), .8)) + Lb3;

518 };

519
520
521 d = dmax*(double)i / ((double)Nb2 + (double)Nb3);

522
523 pos = dLb*move_pos_r.array() + pos0_r.array ();

524
525
526 XYZ = rot_transl_defl_elps(R1r , Rb2 , d, dpos , theta , n, pos , spcr , aphi2);

527
528
529 //FOR EACH NODES , WRITE COORDINATES ON FILE:

530 for (int j = 0; j <= (n - 1); j = j + 1){

531
532 NodeID = NodeID + 1;

533 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

534 myfile << XYZ(j, 0) << setw(spc1) << XYZ(j, 1) << setw(spc1) << XYZ(j, 2) << endl;

535
536 }

537 }

538
539 int nid7 = NodeID;

540 cout << "- Right brace complete." << endl;

541
542 // ::

543 //::: HALF CIRCLES UNDER INTERSECTION ::::::::

544 // ::

545
546 int n_hc;

547 VectorXd t_hc , Y_hc , Z_hc;

548 double X_hc ,beta_2;

549
550 n_hc = 2*n_end -1; //n_hc - number of nodes on each half circle

551
552 t_hc = VectorXd :: LinSpaced(n_hc , -M_PI , 0); //angle vector

553 Y_hc = Rm*t_hc.array ().cos (); // coordinates of nodes on half circles

554 Z_hc = Rm*t_hc.array ().sin ();

555
556 beta_2 = L1 / (n_side + 1); // distance between each half circle (x-dir)

557
558 //FOR EACH HALF CIRCLE

559 for (int i = 1; i <= n_side +2; i = i + 1)

82

APPENDIX A - Meshing module code

560 {

561 X_hc = x_lim_r -(i-1)* beta_2; // increasing x-coordinate

562
563 //FOR EACH NODES , WRITE COORDINATES ON FILE:

564 for (int j = 1; j <= (n_hc - 2); j = j + 1){

565
566 NodeID = NodeID + 1;

567 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

568 myfile << X_hc << setw(spc1) << Y_hc(j) << setw(spc1) << Z_hc(j) << endl;

569 }

570
571 }

572
573 int nid8 = NodeID;

574 cout << "- Bottom complete." << endl;

575
576 // ::

577 //::: FILLING INTERSECTION ::::::::::::::::::: // filling the "holes" in the intersections

578 // ::

579 double qr, ql ,qy, xsql_l , xsqr_l ,ysq ,beta3 ,xsql_r ,xsqr_r;

580 VectorXd xsquare_l(n), ysquare(n), xsquare_r(n);

581
582 // square limits (defining a square geometry inside the intersection)

583 ql = 0.25; qr = 0.25; qy = 0.25;

584 xsql_l = Xi1_end + ql*abs(Xi1_end - Xi1_start);

585 xsql_r = Xi2_end + ql*abs(Xi2_end - Xi2_start);

586 xsqr_l = Xi1_start - qr*abs(Xi1_end - Xi1_start);

587 xsqr_r = Xi2_start - qr*abs(Xi2_end - Xi2_start);

588
589 ysq = ql*2*Rb1;

590 beta3 = abs(xsql_l - xsqr_l) / ((double)n / 4);

591
592 // square border node cooridinates

593 xsquare_l << xsqr_l *(MatrixXd ::Ones(n / 8 + 1, 1)), VectorXd :: LinSpaced(n / 4 - 1, xsqr_l -beta3 , xsql_l+beta3),

594 xsql_l *(MatrixXd ::Ones(n / 4 + 1, 1)), VectorXd :: LinSpaced(n / 4 - 1, xsql_l+beta3 , xsqr_l -beta3),

595 xsqr_l *(MatrixXd ::Ones(n / 8 , 1));

596
597 xsquare_r << xsqr_r *(MatrixXd ::Ones(n / 8 + 1, 1)), VectorXd :: LinSpaced(n / 4 - 1, xsqr_r - beta3 , xsql_r + beta3),

598 xsql_r *(MatrixXd ::Ones(n / 4 + 1, 1)), VectorXd :: LinSpaced(n / 4 - 1, xsql_r + beta3 , xsqr_r - beta3),

599 xsqr_r *(MatrixXd ::Ones(n / 8, 1));

600
601 ysquare << VectorXd :: LinSpaced(n / 8 + 1, 0, ysq), ysq*(MatrixXd ::Ones(n / 4 - 1, 1)),

602 VectorXd :: LinSpaced(n / 4 + 1, ysq , -ysq),-ysq*(MatrixXd ::Ones(n / 4 - 1, 1)),

603 VectorXd :: LinSpaced(n / 8, -ysq , 0 - 0.5* beta3);

604
605
606 // create nodes from intersection to square (left side)

607 int nsq = n / 8;

608 VectorXd Xsq , Ysq , Zsq;

609 for (int i = 0; i <= n-1; i++)

610 {

611 Xsq = VectorXd :: LinSpaced(nsq , Xi1_temp(i), xsquare_l(i));

612 Ysq = VectorXd :: LinSpaced(nsq , Yi1_temp(i), ysquare(i));

613 Zsq = (pow(Rm ,2)-Ysq.array (). pow (2)). array ().pow (0.5);

614
615 for (int j = 1; j <= (nsq - 1); j++){

616
617 NodeID = NodeID + 1;

618 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

619 myfile << Xsq(j) << setw(spc1) << Ysq(j) << setw(spc1) << Zsq(j) << endl;

620 }

621 }

622 int nid9 = NodeID;

623
624 VectorXd Ysq2 = VectorXd :: LinSpaced(n/4-1,ysq -0.5* beta3 ,-ysq +0.5* beta3);

625 VectorXd Xsq2 = VectorXd :: LinSpaced(n / 4 - 1, xsqr_l - 0.75* beta3 , xsql_l + 0.75* beta3);

626 VectorXd Zsq2 = (pow(Rm , 2) - Ysq2.array ().pow (2)). array (). pow (0.5);

627
628 // square fill (left side)

629 for (int i = 0; i <= (n / 4 - 2); i++){

630 for (int j = 0; j <= (n / 4 - 2); j++){

631
632 NodeID = NodeID + 1;

633 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

634 myfile << Xsq2(j) << setw(spc1) << Ysq2(i) << setw(spc1) << Zsq2(i) << endl;

635 };

636 }

637 int nid10 = NodeID;

638 cout << "- Left brace hole fill complete." << endl;

639
640 // create nodes from intersection to square (right side)

641 for (int i = 0; i <= n - 1; i++)

642 {

643 Xsq = VectorXd :: LinSpaced(nsq , Xi2_temp(i), xsquare_r(i));

644 Ysq = VectorXd :: LinSpaced(nsq , Yi2_temp(i), ysquare(i));

645 Zsq = (pow(Rm , 2) - Ysq.array ().pow (2)). array (). pow (0.5);

646
647 for (int j = 1; j <= (nsq - 1); j++){

648
649 NodeID = NodeID + 1;

650 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

651 myfile << Xsq(j) << setw(spc1) << Ysq(j) << setw(spc1) << Zsq(j) << endl;

652 }

653 }

654

83

APPENDIX A - Meshing module code

655 int nid11 = NodeID;

656
657 // square fill (right side)

658 Xsq2 = VectorXd :: LinSpaced(n / 4 - 1, xsqr_r - 0.75* beta3 , xsql_r + 0.75* beta3);

659
660 for (int i = 0; i <= (n / 4 - 2); i++){

661 for (int j = 0; j <= (n / 4 - 2); j++){

662
663 NodeID = NodeID + 1;

664 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

665 myfile << Xsq2(j) << setw(spc1) << Ysq2(i) << setw(spc1) << Zsq2(i) << endl;

666 };

667 }

668 int nid12 = NodeID;

669 cout << "- Right brace hole fill complete." << endl;

670
671
672 // ::

673 //::: MAIN PIPE SIDE EXTENSION ::::::::::::::: // extending chords at the outer ends with circles

674 // ::

675 int n_s1l = abs(x1 - x_lim_l) / beta + nl;

676 int n_s1r = abs(x3 - x_lim_r) / beta + nr;

677 int n_s2 = 2 * n_end - 1 + (n_hc - 2);

678 VectorXd Xs_l = VectorXd :: LinSpaced(n_s1l , x_lim_l - abs(x1 - x_lim_l)/n_s1l , x1);

679 VectorXd Xs_r = VectorXd :: LinSpaced(n_s1r , x_lim_r + abs(x3 - x_lim_r)/n_s1r , x3);

680
681 VectorXd t_s = VectorXd :: LinSpaced(n_s2 , 0, 2 * M_PI *(1 -1/(double)n_s2));

682 VectorXd Ys = Rm*t_s.array ().cos ();

683 VectorXd Zs = Rm*t_s.array ().sin ();

684
685 //LEFT SIDE

686 for (int i = 0; i <= n_s1l -1; i++)

687 for (int j = 0; j <= n_s2 -1; j++)

688 {{

689 NodeID = NodeID + 1;

690 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

691 myfile << Xs_l(i) << setw(spc1) << Ys(j) << setw(spc1) << Zs(j) << endl;

692 }}

693 int nid13 = NodeID;

694 cout << "- Left chord complete." << endl;

695
696
697
698 //RIGHT SIDE

699 for (int i = 0; i <= n_s1r - 1; i++)

700 for (int j = 0; j <= n_s2 - 1; j++)

701 {

702 {

703 NodeID = NodeID + 1;

704 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

705 myfile << Xs_r(i) << setw(spc1) << Ys(j) << setw(spc1) << Zs(j) << endl;

706 }

707 }

708 int nid14 = NodeID;

709 cout << "- Right chord complete." << endl;

710
711
712 // ::

713 //::: BEAM NODES ::::::::::::::::::::::::::::: // creating nodes at the center of each

714 // ::

715 VectorXd beamNid_x (4), beamNid_z (4);

716
717 beamNid_x << x1, x3 , x4+dg, x5-dg;

718 beamNid_z << 0, 0, z4, z5;

719
720
721 for (int i = 0; i <= 3; i++){

722 NodeID = NodeID + 1;

723 myfile << "NODE" << setw(spc1 - 2) << NodeID << setw(spc1);

724 myfile << beamNid_x(i) << setw(spc1) << 0.00 << setw(spc1) << beamNid_z(i);

725 if (i == 0) { myfile << setw (4) << " 1 1 1 1 1 1" << endl; } //BC on one end

726 else { myfile << endl; }

727 }

728 int nid15 = NodeID;

729 cout << "- Beam nodes complete." << endl;

730
731 u

84

APPENDIX B - Rainflow algorithm code

Appendix B - Rainflow algorithm code

Below is the MATLAB code for the rainflow algorithm used for calculating the
accumulated damage for each hotspots. It is used in the script dmg calc.

1
2 func t i on total damage=ra in f l ow (data , s t r e s s y i e l d , a bar ,m, p l o t t i n g)
3
4 %This func t i on reads a data s e t and mate r i a l p r op e r t i e s
5 %then performs a ra in f l ow ana l y s i s and c a l c u l a t e s the
6 %accumulated damage .
7
8 po in t s = length (data) ; %numb . or data po in t s
9 y = data ; %data

10 x = l i n s pa c e (1 , points , po in t s) ; %time s t ep s
11
12
13 i f p l o t t i n g == true ; %p lo t i n i t i a l data
14 p lo t (x , y , ’b−x ’) ;
15 g r id on ;
16 hold on ;
17 pause
18 end ;
19 % :
20
21 pv count = 1 ; %”peak and va l l e y ” counter
22
23 y PV(1) = y (1) ; %y PV and x PV are the vec to r s
24 x PV(1) = x (1) ; %conta in ing only the peaks and va l l e y s
25
26 %PEAKS AND VALLEYS
27 f o r i =2: points−1 %For each data point , except
28 %f i r s t and l a s t .
29 s1 = y(i −1) ;
30 s2 = y(i) ;
31 s3 = y(i +1) ;
32
33 d1 = s2−s1 ;
34 d2 = s3−s2 ;
35
36 i f abs (d1)>0 %In case two consecut ive va lues
37 de l ta1 = d1 ; %are the same (d1 or d2 = 0) . We
38 end %don ’ t updata de l t a 1 and 2
39 i f abs (d2)>0
40 de l ta2 = d2 ;
41 end
42
43 f = de l ta1 ∗ de l ta2 ; %Found a peak or va l l e y i f f i s negat ive
44
45 i f f<0
46 pv count = pv count + 1 ; %count peaks / v a l l e y s
47 y PV(pv count) = s2 ; %add point to new vec to r s
48 x PV(pv count) = x(i) ;
49 end
50 end
51 pv count = pv count + 1 ; %we add the l a s t po in t s to
52 y PV(pv count) = y(po in t s) ; %to the vec to r s
53 x PV(pv count) = x(po in t s) ;
54
55 % :
56
57 %MAX MIN POINTS
58 y max = max(y PV) ; %i t i s suggested to change the
59 y min = min (y PV) ; %change the f i r s t and l a s t po in t s
60 %in the peaks and va l eys to the min
61 %and max va lues o f the data s e t .
62
63 i f y PV(2)>y PV(1) %i f f i r s t peak or va l l e y i s a peak
64 y PV(1) = y min ; %we change f i r s t to po int to min point
65 e l s e
66 y PV(1) = y max ; %e l s e max point
67 end
68
69 i f y PV(pv count −1)>y PV(pv count) %same goes f o r l a s t po int
70 y PV(pv count) = y min ;
71 e l s e
72 y PV(pv count) = y max ;
73 end
74
75 i f p l o t t i n g == true ; c l f (’ r e s e t ’) ; p l o t (x PV , y PV , ’ r− ’) ; g r id on ; hold on ; pause ; end ;
76
77 % :
78
79
80 %CYCLES
81 po in t s 3 = f a l s e ; %true i f only 3 po in t s l e f t (s p e c i a l case)
82 rounds = 0 ; %counter f o r amount o f rounds removing cy c l e s
83 Dmg = 0 ; %damage f o r hotspot
84
85 whi le pv count >2 %CHECK A NEW ROUND OF CYCLE UNTIL 2 POINTS ARE LEFT
86 rounds = rounds + 1 ; %counting rounds o f removing c y c l e s

85

APPENDIX B - Rainflow algorithm code

87
88 y PV new = y PV ; %SAVING THE LAST POINTS AS A NEW VECTOR
89 x PV new = x PV ; %f o r every cy c l e search
90
91 cy c l e s = 0 ; %counter f o r amount o f c y c l e s per round
92 r i d = 1 ; %counter f o r po in t s (i d s) to remove
93 remove ids = [] ; %vector conta in ing po in t s (i d s) to remove
94
95 i f pv count == 3 %checking i f only 3 po in t s l e f t
96 po in t s 3 = true ;
97 i max = 1 ; %only one i t e r a t i o n i f 3 po in t s
98 e l s e
99 po in t s 3 = f a l s e ;

100 i max = pv count −3;
101 end
102
103 f o r i =1: i max %fo r each po in t s in peaks and va l l e y s
104
105 s1 = y PV new (i) ; %save 4 s t r e s s va lues
106 s2 = y PV new (i +1) ;
107 s3 = y PV new (i +2) ;
108
109 i f po in t s 3 == f a l s e
110 s4 = y PV new (i +3) ; %i f the re are only 3 po in t s l e f t , l e ave out s4
111 end
112
113
114 d21 = s2−s1 ; %3 s t r e s s d i f f e r e n c e s
115 d32 = s3−s2 ;
116 i f po in t s 3 == f a l s e %i f the re are only 3 po in t s l e f t , l e ave out d43
117 d43 = s4−s3 ;
118 end
119
120 i f po in t s 3 == true %sp e c i a l case i f only 3 po in t s l e f t
121 cyc amp = min ([abs (s2−s1) , abs (s3−s2)]) /4 ;
122 cyc mean = s2 − s i gn (d21) ∗cyc amp ;
123 po in t s 3 = true ;
124 end
125
126 %checking i f i t s a f u l l c y c l e
127 i f (abs (d43)>=abs (d32) && abs (d21)>=abs (d32)) | | po in t s 3==true
128
129 c y c l e s = cy c l e s + 1 ; %counting c y c l e s per round
130
131 i f po in t s 3 == f a l s e
132 cyc amp = abs (s3−s2) /2 ; %cy c l e s amplitude
133 cyc mean = min ([s2 , s3])+cyc amp ; %cy c l e s mean s t r e s s
134 end
135
136 cyc amp mod = cyc amp/(1−abs (cyc mean) / s t r e s s y i e l d) ;%Mod. amplitude (not used)
137 delta dmg = (1/ a bar) ∗cyc ampˆm; %Damage f o r cy c l e
138 Dmg = Dmg + delta dmg ∗1 e8 ; %Adding damage
139 %(1 e8 i s a s c a l i n g f a c t o r)
140
141
142 cyc amp M(rounds , c y c l e s) = cyc amp ; %saving c y c l e s amplitude
143 cyc mean M(rounds , c y c l e s) = cyc mean ; %saving c y c l e s mean s t r e s s
144
145 i f p l o t t i n g == true ;
146 %p lo t i ng a l i n e at each mean s t r e s s
147 p lo t ([x PV new (i +1) , x PV new(i +2)] , [cyc mean , cyc mean] , ’ black− ’)
148
149 %ca l c u l a t i n g the time value (x) at the cente r o f the cy c l e
150 x mid = x PV new(i +1)+(x PV new (i +2)−x PV new (i +1)) /2 ;
151
152 %p l o t t i n g a v e r t i c a l l i n e from min s t r e s s to mean s t r e s s
153 p lo t ([x mid , x mid] , [0 , cyc mean] , ’ c o l o r ’ , [0 . 2 0 .3 0 . 0 5] , ’ marker ’ , ’ ∗ ’)
154 end ;
155
156 i f po in t s 3 == f a l s e
157 remove ids ([r i d , r i d +1]) = [i +1, i +2] ; %adding po in t s to remove to remove ids

vec tor
158 r i d=r i d +2; %in c r e a s i n g counter with 2 (removing 2

po in t s)
159 e l s e
160 remove ids (r i d) = [i +1] ;
161 end
162 end
163 end
164
165 y PV(remove ids) = [] ; %remove s t r e s s va lues
166 x PV(remove ids) = [] ; %remove time va lues
167
168 pv count = length (y PV) ; %s e t t i n g the new amount o f po in t s
169
170 i f p l o t t i n g == true ;
171 pause
172 c l f (’ r e s e t ’) %r e s e t p l o t
173 gr id on ;
174 hold on
175 p lo t (x PV , y PV , ’ red−∗ ’) %p l o t t i n g new cy c l e s
176 d i sp ([’ Total damage : ’ , num2str (Dmg)])%d i sp l ay t o t a l damage f o r a round
177 end
178 end
179

86

APPENDIX B - Rainflow algorithm code

180 d i sp ([’TOTAL damage : ’ , num2str (Dmg)]) %d i sp l ay t o t a l f o r hotspot
181
182 total damage = Dmg; %return t o t a l damage f o r hotspot

87

APPENDIX B - Rainflow algorithm code

88

	Acknowledgment
	Sammendrag
	Summary
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Problem Statement
	Structure of Thesis

	Review of Literature
	DNV - Fatigue Design of Offshore Steel Structures
	USFOS
	Tubular joints
	Stress Concentration Factors (SCF)
	Force to Stress Matrix
	Purpose
	Method

	Rainflow counting and Palmgen-Miners rule

	Procedure and developed software
	Chapter introduction
	Flow chart description

	Software summary
	beam2shell
	Why create the program
	Meshing
	Main program

	get_stress
	read_stress
	Purpose
	Stress Transformation
	Extrapolation
	Membrane, Upper and Lower side stresses
	Steps

	shell_vs_beam
	dmg_calc
	Procedure
	Rainflow counting

	Compare hotspot stresses
	Introduction
	Load and geometry
	SCF Method
	Shell element analysis

	Example and procedure
	Step 1 - Create beam model
	Step 2 - Define loads
	Step 3 - Extrapolation
	Step 4 - SCF method

	Results
	Presentation of Results
	Example of stress data output:
	Result discussion 1
	Result discussion 2
	Forces not considered by the SCF method

	Comparison of fatigue damage
	Structure
	Results
	Result discussion

	Conclusion and future work
	References

	Appendices
	Appendix A - Meshing module code
	Appendix B - Rainflow algorithm code

