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Abstract

A common assumption for a structure that is subjected to an earthquake is that the
structure is considered fixed at the base. In this thesis, analyses where the soil is de-
formed and the foundation may be moved and rotate have been done, and it has been
investigated if this can reduce forces or displacements in the structure. This have been
done through the use of soil-structure interaction (SSI).

In this thesis well known beam-column element formulations will be presented, and
the benefits and disadvantages will be briefly explained. Formulations for elements
that are force-based and displacement-based with distributed plasticity are presented,
as well as concentrated plasticity elements with fiber discretization. Both the physi-
cal and numerical definition of localization are explained, and regularization methods
to prevent numerical localization have been discussed. A pushover analysis has been
done for each of the element formulation in SeismoStruct, such that the effect of change
in number of elements and spacing in stirrups could be examined. The pushover anal-
yses were done for load in both one and two directions. At last, a 3D-model was used
to see the effect of change in spacing in stirrups when excitation in two directions is
applied.

The attention is then brought over to use of SSI on structures, and the effect of apply-
ing this to a structure. An explanation on how to formulate SSI problem is given, and
how to apply this in SeismoStruct through the use of link elements. These elements
requires that a hysteresis curve is defined for each of the six degrees of freedom, and
suitable models are presented. To model the soil’s behavior, two models are used; the
Ramberg–Osgood model and a linear model. To see the effect of SSI, a parameter study
has been done. A study on how the results are changed by use of nonlinear horizon-
tal springs, linear rocking springs, increased acceleration, smaller foundation and both
linear horizontal and rocking springs have been done in SeismoStruct, by looking at one
parameter at a time. Analyses where the structure was expanded by one floor, were also
done, due to the possibility of seeing the effect of SSI in several places in the structure.

Through the analyses that is done, it has been observed that by taking the soil stiffness
into consideration, the forces and moments can be reduced. The best effect was shown
by decreasing the size of foundation, for both one and two stories.
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Sammendrag

En antagelse som ofte blir gjort under dimensjonering for jordskjelv er at bygningen
antas å være fast innspent. Det har i denne oppgaven blitt undersøkt om man, ved å
anta at jorden vil kunne deformeres, kan redusere krefter og forflytnigner i en bygning.
Dette har blitt gjort ved bruk av jord-struktur-interaksjon (SSI).

Oppgaven presenterer kjente bjelke-søyle elementformuleringer, og det blir kort fork-
lart deres fordeler og ulemper. Formuleringene som er i fokus er forskyvnings- og kraft-
baserte elementer med fordelt plastisitet, samt elementer med konsentrert plastisitet
med fiberdiskretisering. Både den fysiske og numeriske definisjonen av lokalisering
blir forklart, og ulike metoder for å korrigere numeriske feil, kalt regulering, er pre-
sentert. De ulike elementformuleringene har videre blitt brukt i en pushoveranalyse
i SeismoStruct. Dette ble gjort for å se på effekten av å modellere med forskjellig antall
elementer og ulik avstand i bøylearmering. Pushoveranalysen har blitt utført med last
påført i én og to retninger. Det har også blitt sett på hvordan resultatene påvirkes ved å
endre avstand i bøylearmering for en 3D-modell med eksitasjon i to retninger.

Fokuset har så blitt ført over til bruk av SSI, og hvilken effekt man oppnår ved å inn-
føre dette. Det blir forklart hvordan man bør formulere slike problemer, og hvordan
man kan innføre dette i SeismoStruct ved bruk av link elementer. For disse elementene
må det defineres hysteresekurver for alle seks frihetsgradene, og modeller som kan
brukes blir presentert i oppgaven. De to modellene som er brukt til å modellere jordens
oppførsel i denne oppgaven er Ramberg–Osgood og lineær modell. For å se effekten av
SSI har det blitt gjort et parameterstudie, hvor én og én parameter har blitt endret av
gangen. Det har blitt undersøkt hvordan resultatene blir påvirket av å modellere med
en ikkelineær horisontalfjær, linear rotasjonsfjær, økt akselerasjon, mindre fundament
og både lineære horisontal- og rotasjonsfjærer i SeismoStruct. Analyser hvor bygningen
ble utvidet med en etasje ble også gjort, da det gjør det mulig å se effekten av SSI på flere
steder enn ved bruk av en én-etasjes-bygning.

Fra de ulike analysene har det blitt observert at man kan redusere krefter og moment
ved å ta hensyn til stivheten i jord. Størst effekt ble oppnådd ved å minke
fundamentstørrelsen, både for én- og to etasjer.
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Chapter 1

Introduction

Dimensioning of a building requires that several factors are being taken into consider-
ation. One of these factors, that needs to be considered, is dynamic response due to an
earthquake. Even for regions where the chance that an earthquake will occur is small, it
is required that the building is dimensioned for an earthquake. The seismic design of a
structure is normally done by neglecting interaction between the soil and the structure,
and the assumption of a fixed structure is used to evaluate the dynamic response of the
structure (Pecker (2008)). Even though this assumption is frequently used, it does not
give an accurate dynamic response. During seismic loading the soil will deform and the
foundation may rotate and move horizontally. The interaction between the structure
and the soil is named soil-structure interaction (SSI).

Soil-structure interaction arises from two phenomenons: inertial and kinematic inter-
action. When a structure is being subjected to an earthquake, forces are formed at the
base of the structure. These forces generates internal forces in the superstructure, and
this interaction is named inertial interaction. Kinematic interaction, on the other hand,
arise from the difference in stiffness for the soil and the embedded part of the structure.
When the soil is deformed, the stiffness of the foundation tries to prevent it from fol-
lowing the displacements. The relative displacement of the structure is the sum of the
displacements imposed by the inertial and kinematic interaction, and gives a system of
differential equations that are used to formulate SSI problems.

Buildings are often strengthened at the most vulnerable junctions to withstand the
forces and moments that takes place during seismic loading. One method to make
junctions more solid, is to increase the amount of reinforcement. However, it is known
that the forces occurring for a fixed base structure is larger than for a structure where
the foundation is allowed to rotate and move horizontally. If it can be shown that SSI re-
duces forces and moments, it may lead to that a lower dimensioning force can be used
in the calculations. This also means that the amount of reinforcement can be reduced,
which again leads to lower costs. The main focus of this thesis is therefore to investigate
the effect of SSI, and how the response of the structure is influenced.
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CHAPTER 1. INTRODUCTION

This thesis is divided into 8 chapters, where Chapter 1 is the current chapter. Chapter 2
is presenting distributed plasticity elements. Displacement-based and force-based ele-
ments are discussed with focus on the formulations and the numerical issues that may
occur. In Chapter 3, the concentrated plasticity elements are introduced. The plastic
hinge elements are presented, and it is described how the force-based formulation can
be modified to include the fact that plastic hinges are formed. Chapter 4 focuses on
hysteresis models, and presents a selection of the most common models. In Chapter
5 soil-structure interaction is in focus, and it is explained how a SSI problem is formu-
lated. It is also discussed how SSI can be implemented in SeismoStruct through the use
of link elements. In Chapter 6 pushover analyses are done, with a focus on what effect
of changing the number of elements and changing the spacing in stirrups gives. For
the different spacings, both a uni- and bidirectional pushover were done. Chapter 7 de-
scribes the experiment which was the foundation of Gharakhanloo’s thesis (2014). The
same structure is used in this thesis, and the details of how it is modeled in SeismoStruct
is therefore given, in addition to the acceleration that is used. In the last chapter, which
is Chapter 8, the model is exposed to a ground acceleration. The effect of spacing in
stirrups has been examined, and a parameter study is done. Several parameters is re-
garded, such that the effect of SSI is seen for different situations.
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Chapter 2

Distributed Inelasticity Elements

2.1 Model Assumptions

In the following chapter, two different beam-column elements will be presented;
displacement- and force-based elements. Both of these elements are based on the
Euler–Bernoulli beam theory. The torsion is assumed to be uncoupled from the axial
and flexural response, and is therefore omitted from the models for simplicity. Figure
2.1 shows how the displacements, internal forces and deformations is defined within
an element.

y, v
x, u

z, w

My(x), κy(x)

Mz(x), κz(x)

N(x), ε(x)

Figure 2.1: Displacements, internal forces and deformations.

With these assumptions, the variables of the element displacement field can be de-
scribed by

u(x) =
u(x)

w(x)
v(x)

 (2.1)

where u(x) is the axial displacement, while v(x) and w(x) are the transverse displace-
ment in y- and z-direction. The corresponding deformation field is given by

e(x) =
εa(x)
κy (x)
κz (x)

=


∂u(x)
∂x + 1

2

(
∂2w(x)
∂x2

)2 + 1
2

(
∂2v(x)
∂x2

)2

− ∂2w(x)
∂x2

∂2v(x)
∂x2

 (2.2)
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The internal section force fields are defined as

s(x) =
 N (x)

My (x)
Mz (x)

 (2.3)

where s(x) contains the axial force, N (x), and the bending moments, My (x) and Mz (x).
Assuming that the constitutive relation

sn+1(x) = C[sn(x),en(x),en+1(x)] (2.4)

are known, and its linearization,

∆s(x) = ks (x)∆e(x) (2.5)

then the section stiffness matrix, ks , is given by

ks = ∂s

∂e
=


∂N
∂ε

∂N
∂κy

∂N
∂κz

∂My

∂ε

∂My

∂κy

∂My

∂κz
∂Mz
∂ε

∂Mz
∂κy

∂Mz
∂κz

 (2.6)

where n denotes the time. For simplicity the x-coordinate is left out of the expressions
in ks . The equations above form the force-deformation relations of a section.

2.2 Distributed Inelasticity Elements

The concentrated, or lumped, inelasticity elements consider an inner span of the ele-
ment as linearly elastic, and has a predefined length where inelasticity can occur. In
comparison, the distributed inelasticity elements lets inelastic behavior occur at any
section point throughout the whole length of the element. The section points is deter-
mined by the integration model that is used. Distributed inelasticity elements have the
disadvantage that it requires a higher computational cost, but on the other hand it gives
a more exact result than the concentrated inelasticity elements.

The fiber model is a common and useful approach to compute the sectional response.
It is done by a refined discretization of the section into small domains which have a
uniaxial inelastic behavior. For a structural member consisting of reinforced concrete,
the member will not behave homogeneous, and it is therefore very useful to discretize
the member and take the different properties of the materials into account. Figure 2.2
shows how a reinforced concrete beam can be divided into sections of confined core
concrete, unconfined cover concrete and steel bars. Thus, three different material mod-
els need to be defined to model the element. To reduce the computational cost for a
fiber model, the level of discretization should be evaluated. For instance, if the bend-
ing moment about the y-axis is significantly lower than the bending moment about the
z-axis, the number of fibers along the z-axis can be set much lower than the number of
fibers in the y-direction.
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Figure 2.2: Integration sections along the element’s length, x, and section fiber discretization (Cal-
abrese et al. (2010)).

The fiber model is normally modeled by the use of displacement-based or force-based
formulation. The main difference is if the formulation is based on the element’s stiff-
ness or the element’s flexibility.

2.2.1 Displacement-Based Element Formulation

For the displacement-based (DB) formulation, the displacement fields of the element
are discretized and interpolated in terms of the generalized degrees of freedom q. The
relation between the displacement field and the generalized degrees of freedom is given
as

u(x) = N(x)v (2.7)

where N(x) is a matrix containing the shape functions for the axial and transverse dis-
placements, Nu , Nw and Nv .

N(x) =
Nu(x) 0 0

0 Nw (x) 0
0 0 Nv (x)

 (2.8)

The elements are based on linear Lagrangian shape functions for the axial displace-
ments, and cubic Hermetian shape functions for the transverse displacement of the
member (Neuenhofer and Filippou (1997)). The deformation field is related to the gen-
eralized degrees of freedom through the strain-displacement transformation matrix,
B(x), which contains the first derivative of the axial shape function, and second deriva-
tive of the transverse shape functions

e(x) = B(x)v (2.9)

By using the incremental version of Equation (2.9), and the constitutive relation in
Equation (2.5) the following relation for the force field increment is found

∆s(x) = ks (x)∆e(x) = ks (x)B(x)∆v (2.10)

5



CHAPTER 2. DISTRIBUTED INELASTICITY ELEMENTS

From the principle of virtual displacement the equilibrium equation is derived:

q =
∫ L

0
BT (x)s(x)dx (2.11)

The element stiffness matrix is further derived by taking the derivative of q with respect
to the generalized degrees of freedom, v

k = ∂q

∂v
=

∫ L

0
BT (x)ks (x)B(x)dx (2.12)

Distribution of stresses in beam-column material sections often tend to be irregular and
discontinuous. For reinforced concrete, this may be inelasticity, which causes a non-
linear curvature. Equations (2.11) and (2.12) should therefore be solved by numerical
integration, and not classical integration. The discrete form of the equations becomes:

q =
∫ L

0
BT (x)s(x)dx ≈

Np∑
i=1

BT
i sωi (2.13)

and

k =
∫ L

0
BT (x)ks (x)B(x)dx ≈

Np∑
i=1

BT
i ks,i Biωi (2.14)

2.2.2 Force-Based Element Formulation

Instead of using shape functions for displacement, the force-based (FB) formulation
uses the shape functions for internal forces. The internal forces s(x) are related to the
generalized nodal forces q through the force interpolation functions, b(x)

s(x) = b(x)q (2.15)

In Equation (2.15), the matrix b(x) contains the interpolation functions that relates the
section and basic forces. The matrix describes the axial force and bending moments at
location x along an element with length L, and is given as

b(x) =
1 0 0 0 0

0 x
L −1 x

L 0 0
0 0 0 x

L −1 x
L

 (2.16)

The inverse form of Equation (2.5) with the incremental version of Equation (2.15) gives
the following incremental deformation field:

∆e(x) = k−1
s (x)∆s(x) = fs (x)∆s(x) = fs (x)b(x)∆q (2.17)

As seen from Equation (2.17), the section flexibility matrix is the inverse of the section
stiffness matrix, fs (x) = k−1

s (x).
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The compability condition

v =
∫ L

0
bT (x)e(x)dx (2.18)

is found through the principle of virtual forces, where v describes the element end dis-
placements. The flexibility matrix of the element is given by the derivative of v with
respect to q

f = ∂v

∂q
=

∫ L

O
bT (x)fs (x)b(x)dx (2.19)

To get a meaningful expression for f, it can only be derived for a beam-element that do
not have any rigid-body modes (Neuenhofer and Filippou (1997)). The discrete forms
of Equations (2.18) and (2.19) are written as

v =
∫ L

0
bT (x)e(x)dx ≈

Np∑
i=1

bT
i eiωi (2.20)

and

f =
∫ L

0
bT (x)fs (x)b(x)dx ≈

Np∑
i=1

bT
i fs,i biωi (2.21)

For a material with linear elastic behavior, the FB and DB formulation will give the same
results, provided that only nodal forces are acting on the element. On the contrary, for
an inelastic material, the curvature field may be nonlinear and it can be hard to capture
the real deformed shape due to an imposed displacement field. With a situation where
an inelastic material is used in combination with a DB formulation a refined meshing of
the structural member is required. This is due to the assumption that the inside of each
sub domain consists of a linear curvature field. The FB formulation, on the other hand,
does not restrain the element’s displacement field and is therefore always exact. Along
the length of the element, the integration sections are used for numerical integration.
This means that a member can be modeled with a single finite element. Due to the fact
that the force field is exact even if the level of inelasticity is high or low, each element
does not require meshing, regardless of the cross section of the element.

2.3 Numerical Issues in Distributed Inelasticity
Modeling

2.3.1 Localization

For structural members made of concrete, localization may occur. From a physical
point of view, the term localization refers to the fact that the descending part of the
stress-strain curve becomes dependent of the size of the specimen. That is, a concrete
specimen in compression will collapse, due to concentrated strains in a localized region
of the whole specimen. A stress-strain curve will therefore not depend on the concrete
properties, but rather depend on the size. The dependence of size is shown in Figure
2.3. Localization was first found to happen in tensile tests, where it occurs as a crack,
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and is well documented. For compression, the localization results in damage zones be-
ing formed. For the type of model used later in this thesis the main focus will be on
localization for compression. For a specimen being subjected to compression, local-
ization will take place after the peak point is reached (Hillerborg (1990)). To take the
physical definition of localization into account, one can adjust the structural element’s
stress-strain relationship. This, however, leads to a numerical problem.

Figure 2.3: The element’s dependence of size due to localization (Calabrese et al. (2010)).

From a numerical point of view, localization is related to the fact that the concentration
of inelasticity is dependent on the choice of mesh and numerical integration scheme
(Calabrese et al. (2010)). The numerical problems arises from the use of finite elements,
and refers to the computed damage that occurs. The numerical results for softening be-
havior does not converge to a stable solution, which is termed non-objective response.
While it, on the other hand, does converge for the hardening behavior, which is termed
objective response.

For displacement-based elements that show softening behavior, the strain localization
is forced to form in a single element by the displacement interpolation functions. The
mesh element with the highest bending moment is where localization occurs. On the
other hand, a force-based element will have the strain localized at one integration point
(Coleman and Spacone (2001)). The integration point where this occurs is, similar to
the displacements-based elements, at the point of highest bending moment.

Considering a cantilever with a axial load, and lateral displacement as in Figure 2.4, the
bending moment will always be highest at the base of the column. If modeled with
DB elements, the localization will always occur in the bottom element. By refining the
mesh, the strain will still localize in the same element, and this will increase the strains
within the element. By use of FB elements, localization will occur in the first integration
point. The FB element does only require one element per structural member, and an
increase of the strains at the bottom integration point will only be happen by increasing
the total number of integration points.
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Figure 2.4: Ojective and non-objective response of hardening and softening behavior (Calabrese
et al. (2010)).

2.3.2 Regularization Techniques

Force-Based Formulation

Constant fracture energy is a well used concept for DB elements in tension, but is also
applied to FB elements that soften in compression. Although the use is not as widely
accepted for compression as it is for tension, it is found through research (Jansen and
Shah (1997)) that the theory also holds for localization in compression. The constant
fracture energy concept is based on including an extra material parameter, the fracture
energy in compression, Gc

f , which is defined as

Gc
f =

∫
σdui = L I P

∫
σdεi (2.22)

The compressive strength is here written as σ, while ui is the inelastic displacement,
and εi is the inelastic strain. L I P represents the length of the integration point where
the localization takes place. In Figure 2.5 the regularization is applied to the Kent and
Park law used for the concrete fibers of the fiber section (Coleman and Spacone (2001)).
As seen from the figure, the prepeak behavior is given by a parabola. After the peak, the
softening-behavior will be linear until it reaches 20% of f

′
c . After this turning point, ε20,

the stress is assumed to be constant. From Figure 2.5, the following expression for ε20

is derived

ε20 =
Gc

f

0.6 f
′

c L I P
− 0.8 f

′
c

E
+ε0 (2.23)
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Figure 2.5: Kent–Park stress-strain law and compressive fracture energy (Coleman and Spacone
(2001)).

The values of Gc
f , f

′
c , E and ε0 are assumed to be constant. The only parameter varying

is the length of integration points, L I P , and to maintain a constant fracture energy it is
therefore necessary to adjust ε20 for each integration point.

In some cases, the constant fracture energy criterion is not sufficient. This occurs for
instance when the length of the first integration point does not correspond to the phys-
ical length of the plastic hinge. Coleman and Spacone(2001) suggested to use curvature
post processing to obtain objectivity in these cases. An illustration of a interior beam,
with plastic hinges at both ends, is depicted in Figure 2.6. The curvature of the plastic
hinge region is divided into an elastic and an inelastic component.

Figure 2.6: Plastic hinges formed at each end of a interior beam (Coleman and Spacone (2001)).
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The inelastic curvature component from the analysis is approximated as

φmodel
i

∼= δi

L I P

(
L
2 − LI P

2

) (2.24)

By substituting the length of integration point, L I P , with the actual length of the plastic
hinge, LP , an approximation for the inelastic curve based on the assumed length of the
plastic hinge is given as

φ
pr edi ct
i

∼= δi

LP

(
L
2 − LP

2

) (2.25)

The total curvature can be calculated by

φ=φe + (scale f actor )φmodel
i (2.26)

where φe is the elastic component of the total curvature. By solving for δi and combin-
ing Equation (2.24) and Equation (2.25), the scale factor is given by equation 2.28 for a
double-curvature case, as the one shown in Figure 2.6.

scale f actor = w I P L2 (1−w I P )

LP (L−LP )
(2.27)

For a single-curvature case, the scale factor expression will be

scale f actor = w I P L2 (2−w I P )

LP (2L−LP )
(2.28)

For both of the expressions above, w I P describes the weight of the extremal integration
point.

From this it is seen that if L I P = LP there will not be necessary to post-process the cur-
vature to obtain objectivity. Problems may occur by choosing the length of integration
points to correspond with the plastic hinge length. In most cases the length of the ele-
ments needs to be adjusted, which results in an extra element and increased computa-
tional costs.

Displacement-Based Formulation

For a DB element, a typical regularization technique is to use the length of the plastic
hinge as a base to assume the length of the element. Formerly it was common to believe
that localization was formed in a single element, and not in one integration point. With
that assumption, the length of the most strained element was defined by the length of
the plastic hinge. Through later work and research, it is found that localization occurs
in one integration point. This behavior is similar to the behavior of FB elements (Zeris
and Mahin (1988)). The length for the most strained integration point should be equal
to Lp , and for a element with two Gauss points, where each integration point is given
the same weight, the length of the most strained element should then be 2Lp . Lp is a
predetermined length and may be found through the following equation

Lp = 0.08L+0.022db fy (2.29)
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Equation (2.29) is said to give a good estimation of the effective plastic hinge length
and was found from observations from experiments (Paulay and Priestley (2009)). L is
the length of the member, while fy is the steel reinforcement’s yield stress and db is the
diameter of the longitudinal reinforcement.

Figure 2.7: Comparison between different DB element lengths and experimental data (Calabrese
et al. (2010)).

Results from experiments that have been done are compared to analysis results and
depicted in Figure 2.7. It is clear that an increased length of the element gives a better
approximation for the curvature of the member. The graph also shows that the principle
described above does not give a good estimation for the post-peak stage here. This is
due to the column’s total height for the example used here is 1.65m and the length of
the base element is 0.71m, which gives a ratio between them that is significantly higher
than encountered in practice.
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Chapter 3

Concentrated Plasticity Elements

3.1 Point Hinge Models

For a structure subjected to large lateral forces, the most significant inelastic deforma-
tions will form at the ends of the structural members. The largest bending moments
will also form at these points, and not at the mid-span of the members as moment from
dead and live loads do.

In 1965, Clough, Benuska and Wilson (Filippou (2013)) introduced the first model to
take hardening response in nonlinear structural analysis into consideration. The first
model was named the two-component model, and consists of two components in par-
allel. One of the components is modeled to be linear elastic-perfectly plastic, while the
other component is modeled to be linear elastic. An illustration of the model is given in
Figure 3.1. The interaction between the two components, results in a model that is able
to represent bilinear response.

Figure 3.1: Illustration of the two-component model (Filippou (2013)).

For both of the components, the axial stiffness is defined to be linear and uncoupled
from the flexural response. The stiffness for the linear elastic-perfectly plastic element
is (1−γ)E I , where γ is the ratio between the stiffness of the linear elastic flexural com-
ponent and the flexural stiffness of the element, E I . It is through the linear elastic com-
ponent that linear hardening behavior of the element is represented.
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As the components are parallel, the stiffness matrix is the sum of the stiffness matrices
for the two components. The elastic rotational stiffness, kel , before yielding will be E I .
Post yielding, the stiffness will be equal to only the stiffness of the linear elastic compo-
nent, since the upper component has zero stiffness as it has reached perfect plasticity.

In 1967 the one-component model was presented by Giberson (Filippou (2013)). This
model consist of a linear elastic beam element that is in series with nonlinear springs
at the ends of the beam. Despite the name of the model refers to one component, it
actually consists of three components, two nonlinear springs and one elastic beam.
The springs does only contribute to the stiffness when the plastic capacity is exceeded
at one of the ends of the beam. In Figure 3.2, the one-component model is illustrated.
The linear hardening force-deformation response in each spring is given by the linear
elastic stiffness under antisymmetric bending multiplied with the hardening stiffness
ratio, η.

Figure 3.2: Illustration of the one-component model (Filippou (2013)).

For a series model, the stiffness matrix is found by taking the inverse of the flexibility
matrix. The flexibility matrix is the sum of the components flexibilities, fel and fpl ,
where the elastic part is from the beam, and the plastic part from the nonlinear springs.
The matrices are given in Equation (3.1) and (3.2), and the variables ri and r j are set
to 1 or 0, depending on whether the corresponding beam end has reached the plastic
moment capacity, Mp .

fel =
L

6E I

[
2 1
1 2

]
(3.1)

fpl =
L

6ηE I

[
ri 0
0 r j

]
(3.2)

Both of the models above are based on concentrated plasticity theory, and have the ad-
vantage of being fundamentally simple. On the other hand, a disadvantage is that the
plastic hinges are concentrated at the end nodes. In addition, the concentrated plas-
ticity models separate axial-moment interaction from the element behavior. A calibra-
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tion is therefore necessary to find the correct interaction along the member (Scott and
Fenves (2006)).

To improve the concentrated integration methods for plastic hinge, fiber modeling at
specific lengths of the element members ends have been introduced. Since it is de-
sirable to achieve objectivity for softening response of FB elements, the fiber modeled
member ends are based on FB formulation. The interior part of these elements are said
to be linear elastic, while the outer parts are assumed to form plastic hinges. Thus, the
FB formulation from Subsection 2.2.2 needs some modifications to take this into con-
sideration.

The length of the plastic hinges at node i and j are denoted as lpi and lp j , and the
plastic hinge integration methods that will be presented are based on the assumption
that nonlinear behavior is restricted to occur in these regions. The compatibility re-
lationship in Equation (2.18) is rewritten as three separate integrals, where two of the
integrals represents the two hinge regions, while the third represents the interior region.
With these changes, the compatibility condition becomes

v =
∫ lpi

0
bT (x)e(x)dx +

∫ L−lp j

lpi

bT (x)e(x)dx +
∫ L

L−l p j
bT (x)e(x)dx (3.3)

Numerical integration is required to find the section deformations for the plastic hinge
regions, while the interior part is assumed to be linear elastic and is evaluated by the
flexibility of the interior region.

v =
Np∑
i=1

bT (x)ei (x)ωi + fel
i nt q (3.4)

In Equation (3.4), Np is the number of integration points in the plastic hinge region,

with the weightωi of the plastic hinge integration points. fel
i nt is the flexibility matrix for

the interior region of the element, which is given by the closed-form integral

fel
i nt =

∫ L−lp j

l pi
bT (x)fel

s b(x)dx (3.5)

The elastic flexibility coefficients at a cross section of the interior region are assembled
in the flexibility matrix, fel

s , which is given as

fel
s =

[ 1
E A 0
0 1

E I

]
(3.6)

Through linearization of Equation (3.4), the element flexibility is given as the sum of the
numerical integration over the hinge regions and the flexibility of the interior region

f =
Np∑
i=1

bT
i (x)fs bi (x)ωi + fel

i nt (3.7)

To represent strain softening as good as possible in the plastic hinge regions, the plas-
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tic hinge integration rule used in Equation (3.4) and (3.7) has to satisfy the criteria as
follows (Scott and Fenves (2006)):

1. To detect the largest bending moments, integration points should be located at
the element ends.

2. To provide the exact soultion for linear curvature distributions, quadratic poly-
nomials should be integrated exactly.

3. Deformations should be integrated over the plastic hinge lengths lpi and lp j by
use of one integration point in each hinge region.

By use of the Gauss-Lobatto integration rule, the first two criteria can be satisfied, but
because the plastic hinge lengths are defined through the number of integration points,
Np , it does not satisfy the third criterion. If an integration method fulfill all three cri-
teria, it means that strain hardening can be represented, but only in the defined plas-
tic hinge region. In search of an integration method that satisfy all criteria for strain-
softening response, three plastic hinge integration methods was investigated by Scott &
Fenves (2006).

3.2 Plastic Hinge Integration Methods

Midpoint Integration

Midpoint integration is based on that the integration points are located at the midpoint
of each plastic hinge region, and the weights equals the length of the plastic hinges,
as shown in Figure 3.3. This is the most accurate one-point integration method, but it
has some drawbacks. Since the integration points are located at the center of the plastic
hinge region, there will not be an integration point at the element ends where the largest
bending moment occurs. I.e. criterion (1) is not satisfied. In addition, the midpoint
integration method will only give exact integration for linear functions, which means
that criterion (2) is not satisfied either. The midpoint integration is therefore only able
to satisfy criterion (3).

Endpoint Integration

For the endpoint integration method, the integration weights are still equal to the plas-
tic hinge lengths, as it was for the midpoint integration method. The integration points,
on the other hand, are now located at the ends of the element. The major drawback of
this method is that the order of accuracy is reduced by one, which means that it only
have the ability to give exact results for integration of constant functions. Endpoint
integration meets the criteria (1) and (3), but is not able to satisfy criterion (2).

Two-Point Gauss–Radau Integration

From the two methods discussed above, it is found that it is not possible to satisfy all of
the three criteria by applying one-point integration in each of the plastic hinge regions,
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Figure 3.3: Midpoint and endpoint plastic hinge integration methods (Scott and Fenves (2006)).

and it is necessary to use at least one more integration point. Two-point integration
methods as Gauss–Legendre and two-point Gauss–Lobatto are not sufficient as they
are only able to either locate integration points at the element ends or give the desired
level of element integration accuracy, and not both. However, the advantages of both
these two-point integration methods are found in the Gauss–Radau quadrature. It has
an integration point at one end of the element, and an accuracy of 2Np −2, which is one
order higher than Gauss–Lobatto. This results in an integration method that, with two
integration points in each plastic hinge region, satisfies criteria (1) and (2).

The two-point Gauss–Radau integration rule places its integration points in the plastic
hinge region as illustrated in Figure 3.4 a). The locations of the integration points are
at {0, 2

3 } and the corresponding weights are { 1
4 , 3

4 }. The use of two-point Gauss–Radau
results in two noteworthy properties (Scott and Fenves (2006)). The first property is that
when the plastic hinge lengths sums up to be equal to the element length, the integra-
tion rule becomes a four point integration scheme. The second property is that when
the plastic hinge lengths are identical and equal to L/2, Simpson’s 3/8 rule is obtained,
and the accuracy is increased by one order.

Even though this method has its advantages, it does not satisfy all of the three criteria.
The localized deformations are integrated over an length equal to the integration weight
at the end point, lp /4, and not the plastic hinge length, lp , as criterion (3) states.

Modified Two-Point Gauss–Radau Integration

To make sure that the deformations are integrated over the whole plastic hinge lengths,
the location of the integration points is modified. The modified two-point Gauss–Radau
integration method have the integration points at {0, 8

3 lpi ,L − 8
3 lp j ,L} with the integra-
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CHAPTER 3. CONCENTRATED PLASTICITY ELEMENTS

Figure 3.4: Gauss–Radau and modified Gauss–Radau plastic hinge integration methods (Scott and
Ryan (2013))

tion weights {lpi ,3lpi ,3lp j , lp j }, as seen in Figure 3.4 b). In other words, the integration
rule is applied over a length of 4lpi and 4lp j , instead of lpi and lp j . With these modifica-
tions to the two-point Gauss–Radau integration method, all three criteria are satisfied,
and strain softening in the plastic hinge regions is well represented.
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Chapter 4

Hysteresis Models

For a reinforced concrete structure that is being exposed to an earthquake, nonlinear
deformations often will develop. The nonlinear behavior arises from the degradation
of the structure’s stiffness, and reduction in the energy absorption capacity. To take
such behavior into consideration a number of hysteresis models have been introduced.
Such models needs to be able to give information about the stiffness and resistance
under any displacement history (Otani (1980)). Some of the models are more intricate,
like the Q-Hyst and Takeda models, while the bilinear and elasto-plastic are examples
of more simple models. A brief introduction to the most common models will be given
in the following sections.

4.1 Elasto-Plastic Model

Figure 4.1: Elasto-plastic hysteresis model (Ruaumoko (2005)).

The elasto-plastic model uses an elastic force-deformation curve to represent the
cracked-section behavior. No incremental stiffness is assumed upon yielding, and the
unloading takes place with the same cracked-section stiffness. The hysteretic energy
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dissipation is not provided by this model during small-amplitude deformations, and at
the load reversal stage, the slope is not reduced at any point. The latter assumption is
in contrast with results from cyclic testing on reinforced concrete connections. Even
though the model has a poor correlation with observed hysteretic behavior, it is widely
used for response history analysis because it is simple.

4.2 Bilinear Model

Figure 4.2: Bilinear hysteresis model (Ruaumoko (2005)).

Similar to the elasto-plastic model, the bilinear model uses an elastic force-deformation
curve, but it additionally has a post-yield linear curve to take strain-hardening of the
steel into account. This makes the model more realistic than the elasto-plastic model,
but like the elasto-plastic model this model also fail to degrade the stiffness during load
reversal.
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4.3. CLOUGH MODEL

4.3 Clough Model

Figure 4.3: Clough hysteresis model (Ruaumoko (2005)).

To include degradation in the stiffness during load reversals, the Clough model was
introduced. It operates on a bilinear primary curve, with a post-yielding branch. With
a small modification from the elasto-plastic model, the Clough model is better suited
to simulate the flexural behavior of reinforced concrete. With this model, the energy
absorbed in each cycle beyond yielding, is less than what it is calculated to be with
the elasto-plastic model. Clough’s model has been widely used in nonlinear analysis
because it includes strain-hardening while it at the same time is a simple model.
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4.4 Takeda Model

Figure 4.4: Takeda hysteresis model (Ruaumoko (2005)).

One of the most complicated models, with most variables needed is the Takeda model.
It operates on a trilinear curve, which represents behavior for the uncracked, cracked
and post-yielding stages. Once the section starts cracking, deformations will be nonlin-
ear. This model also takes stiffness degradation into account, by reducing the stiffness
by an exponential function of the previous maximum deformation.
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4.5 Q-hyst Model

Figure 4.5: Q-hyst hysteresis model (Ruaumoko (2005)).

Like the Clough-model, the Q-hyst model (Saiidi and Sozen (1979)) consists of a bilin-
ear primary curve with an ascending post-yielding branch. It takes account of stiffness
degradation for both unloading and load reversal. Hysteretic energy dissipation during
low-amplitude deformation is also considered in this model. The model is relatively
simple, although it has have produced satisfactory results compared to experimental
data.
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Chapter 5

Soil-Structure Interaction

Normally a dynamic response of a structure is evaluated with the assumption of the
structure being fixed to the ground. However, this is not always a good assumption.
Soil-structure interaction (SSI) becomes important under some conditions, and this
chapter will highlight when it should be used, and some of the consequences using
SSI.

When a structure is exposed to an earthquake, inertia forces will arise in the superstruc-
ture, which will deform the soil. In addition, the soil is deformed by the seismic waves.
The total response can be divided into inertial and kinematic loading. The characteris-
tics of the foundation, and the nature of the wave field governs the importance of each
factor. During an earthquake the incoming waves is modified by the geometry, stiffness
and damping characteristics of the soil deposit (Pecker (2008)). This modified motion is
called the foundation input motion. Determining the free field motion includes several
assumptions and is complicated to do, and no satisfactory solution is available to date.

Figure 5.1: Illustration of foundation input motion and free-field motion.
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CHAPTER 5. SOIL-STRUCTURE INTERACTION

Focusing on the motion around a structure and its foundation during an earthquake,
it is normal that the deformation of the soil made by the seismic waves will make piles
and foundation to move. This will eventually lead to movement of the supported struc-
ture. Reflections and scattering of the waves by the piles and the foundation results
in differences between the motion of the foundation and the free field motion. Due to
stress in the piles and foundations, curvatures and bending moments will develop. This
is called kinematic interaction. The inertial interaction, on the other hand, is due to the
internal forces developed in the superstructure and the moments at its base. Because
of the motion at the foundation, oscillations are generated in the superstructure, which
causes additional dynamic forces and displacement in the foundation, piles and the
surroundings of the structure.

Through a simple illustration, the effect of SSI can be explained. Here, the model de-
picted in Figure 5.2 will be used. The figure illustrates a multistory structure. The foun-

Figure 5.2: Illustration of SSI.

dation of the structure rests on the soil, and the interaction between the soil and the
foundation is here modeled with springs and dashpots. The stiffness from the support-
ing mediums are represented by the spring, while the dissipated energy which comes
from the soil and radiation of the seismic waves is given through the modeled dashpot.
The material damping is neglected with respect to radiation damping for simplicity.

Pecker (2008) found the following equations:

1

ω̃2 = 1

ω2
s
+ 1

ω2
h

+ 1

ω2
θ

(5.1)

ξ̃= ω̃2

ω2
s
ξ+ ω̃2

ω2
h

ξh + ω̃2

ω2
θ

ξθ (5.2)

ũg = ω̃2

ω2
s

ug (5.3)
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where ωs is the natural frequency of the fixed base structure, while ωh and ωθ repre-
sents the natural frequency of the rigid structure with a horizontal and rocking spring,
respectively. ω̃ is the natural frequency of the whole system, and is given by Equation
(5.1).

From these equations, it is pointed out that the effect of soil-structure interaction is

• to decrease the frequency of vibration of the fixed base structure (ω̃<ωs )
• to increase the damping ratio of the system with respect to the fixed base struc-

ture (ξ̃> ξ)
• to decrease the amplitude of the effective motion at the base of the structure (ũg <

ug )

5.1 Formulation of SSI Problem

A well known way to formulate a SSI problem in a general sense is within the framework
of the finite element method. The mass, damping and stiffness matrices of the system
is denoted by [M],[C] and [K], and the dynamic equilibrium equations are:

[M]{ü}+ [C]{u̇}+ [K]{u} = {Q f } (5.4)

A decomposition of a SSI problem can be done as shown in Figure 5.3. The loading
vector {Q f } takes non-zero values along the boundary of the model. This is because the
source of the earthquake focus normally is excluded within the finite element model.
By omitting the structure and using the matrices related to the free field soil instead, the

Figure 5.3: Decomposition of a SSI problem (Pecker (2008)).

equations of motion becomes:

[M f ]{ü f }+ [C f ]{u̇ f }+ [K f ]{u f } = {Q f } (5.5)

The interaction displacement {ui } is defined by

{u} = {ui }+ {u f } (5.6)

27
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and the equation satisfied by the interaction displacement is written as

[M]{üi }+ [C]{u̇i }+ [K]{ui } =−{Qi } (5.7)

where
{Qi } = [

[M]− [M f ]
]

{ü f }+ [
[C]− [C f ]

]
{u̇ f }+ [[K]− [K]] {u f } (5.8)

From Equation (5.8) it is obtained that if there is a difference in stiffness or mass for the
soil and the structure, there will be interaction. For the following sections, the struc-
ture that is considered will be without damping. That is, only the mass and stiffness
contributes to the equations of motion.

Inertial Interaction

For a structure with an infinitely stiff foundation the last term from Equation (5.8) will
vanish, and the load vector will be

{Qi } = [
[M]− [M f ]

]
{ü f } (5.9)

The inertial force field that is generated in the superstructure arise from the forces at
the base of the structure, {Qi }. From Equation (5.9) it is obtained that interaction only
is generated by the inertial forces in the structure, which is called inertial interaction.

Kinematic Interaction

For an embedded structure that has a mass equal to the soil mass which also is equally
distributed, i.e. and no mass above the ground, the term including the mass matrix will
disappear from Equation (5.8). The remaining equation for the load vector is then

{Qi } = [
[K]− [K f ]

]
{u f } (5.10)

For this case, the forces will only appear if there is a difference in stiffness for the em-
bedded structure and the soil. The interaction is due to the displacements imposed by
the soil that the stiffness of the foundation tries to prevent. The mass does not matter in
this case, as interaction is possible even if the mass for the structure and the soil differs
or are the same. This interaction is termed kinematic interaction.

The relative displacement {u} can be defined as the sum of the kinematic and inertial in-
teraction displacements, respectively {uki n} and {ui ner }. By introducing this definition,
and substitute this relation into

[M]{ü}+ [K]{u} =−[M]{I}üg (5.11)

the following system of differential equations arises:

[MSoi l ]{üki n}+ [K]{uki n} =−[MSoi l ]{I}üg (5.12)

[M]{üi ner }+ [K]{ui ner } =−[MStr uctur e ]
[
{üki n}+ {I}üg

]
(5.13)
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where [M] = [MSoi l ]+ [MStr uctur e ]. [MSoi l ] is the mass matrix of the soil substructure,
and [MStr uctur e ] represents the mass matrix of the structure, while {I} is the vector
which gives the direction of the applied load and üg is the base acceleration.For a per-

Figure 5.4: Illustration of superposition theorem (Kausel et al. (1978)).

fectly rigid structure, the global problem may be divided into three sub-problems by
the use of the superposition theorem. It is necessary to (1) determine the motion of
the massless rigid foundation that is subjected to the acceleration üg , (2) determine
the impedance matrix of the foundation and (3) calculate the dynamic response of the
structure that is subjected to the kinematic interaction motion at its supports and con-
nected to the foundation impedances. The three sub-problems are schematically de-
picted in Figure 5.4.

5.2 SSI in SeismoStruct

Application of SSI to a model in SeismoStruct (SeismoSoft (2014b)), may be done
through the use of link element. It is necessary to define a structural node which ini-
tially coincides with the node where a soil spring is going to be applied. Soil spring is a
simple way of modeling the effect of the ground flexibility on the structure. By apply-
ing such springs to the model, the structure’s foundation may be modeled to be able to
move and rotate, depending on the given properties of the springs. In SeismoStruct soil
springs are modeled by link elements. The link element can then be given properties
for six degrees-of-freedom, i.e. rotation and translation in x-, y- and z-directions. Each
of these dofs must be given an independent response curve. In total there are 17 pre-
defined response curves in SeismoStruct for describing the behavior of each of the six
dofs in the link elements. Some of these curves are not very useful when it comes to de-
scribing behavior in soil, like the Takeda model and the Clough model. The Ramberg–
Osgood model is, on the other hand, a suitable response curve for SSI. In addition to
defining a response curve, damping may also be applied to the link element. The hys-
teretic response in nonlinear soil springs, however, generates damping which is often
large enough that does not require separate damping elements.
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Some changes to the model are necessary to be able to use link elements. Structural
nodes were created at bottom node of the columns, and non-structural nodes were
made to define the direction for the link elements. The bottom node of the
columns were changed such that they are no longer fixed, but restrained against move-
ment in z-direction and rotation about z. The SSI-nodes, on the other hand, were set to
be fixed and the acceleration is applied at these nodes.

To control if the link elements work as expected, an analysis was first done with very
stiff link elements. The link elements will then be so stiff that the column will be close
to fixed at the base. The results from the analysis with and without SSI is depicted in
Figure 5.5.

It is seen that both analyses gives exactly the same results, which indicates that the link
elements work as expected.
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Figure 5.5: Time-displacement curve for the 3D-model with and without SSI. With high stiffness
for the link elements.

Ramberg–Osgood Model

Some simple expressions may be used to find the soil spring stiffness, K , for a founda-
tion with radius a over a uniform elastic soil with shear modulus G , mass density ρ and
Possion’s ratio υ. As presented by Wolf (1988), the horizontal spring stiffness is given by
Equation (5.14)

Kh = 8Ga

2−υ (5.14)

while the rocking spring stiffness is found by Equation (5.15)

Kθ =
8Ga3

3(1−υ)
(5.15)

For a 1.5m ×1.5m foundation the equivalent radius will be a =
√

1.5×1.5
π = 0.85m. Usu-
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ally the shear modulus of the soil is somewhere between 0.01 to 0.001 times Gconcr ete .
Here, the relation in Equation (5.16) is used for soil, where τ is the shear strength of the
soil.

G = 1000×τ (5.16)

With a shear strength of τ = 10kPa, it is found that the shear modulus for the soil is
10000kPa. The horizontal and rocking stiffness is calculated below by inserting G and
a in Equation (5.14) and (5.15).

Kh = 8×10000×0.85

2−0.4
= 42500kN /m

Kθ =
8×10000×0.853

3(1−0.4)
= 27294kN m/r ad

In SeismoStruct, several parameters must be defined for the response curves. For the
Ramberg-Osgood model, four parameters are needed.

Table 5.1: Parameters that must be defined in SeismoStruct for the Ramberg–Osgood model (Seis-
moSoft (2014a)).

Parameters Default value
Yield strength - Fy 500
Yield displacement - D y 0.0025
Ramberg-Osgood-parameter - γ 1.5
Convergence limit for the Newton-Raphson procedure - β1 0.001

Figure 5.6: Ramberg–Osgood hysteresis model (SeismoSoft (2014a)).
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The loading curve is given by

D

D y
= F

Fy

(
1+

∣∣∣∣ F

Fy

∣∣∣∣(γ−1)
)

(5.17)

As seen in Figure 5.7, the curve changes with different γs. For a higher value of γ, the
curve approaches the elasto-plastic curve.
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Figure 5.7: Force-displacement curve for Ramberg-Osgood with different γs.

For γ > 1, the tangent of the curves near the origin are approximately the same. The

slope of the tangent is given by K = Fy

D y
. The yield strength, Fy , is equal to the lateral

capacity of the foundation, which is defined as

Fy = τ× A (5.18)

where A is the area of the foundation, and τ is the shear strength of the soil. The area
of the foundation is 2.25m2, and Fy = 1×10 = 22.5kN . With the data given above, the
displacement can be found by

D y =
Fy

K

With the horizontal stiffness calculated above, D y becomes

D y,h = 22.5kN

42500kN /m
= 5.294×10−4m

Usually horizontal springs becomes nonlinear, but rocking springs stays linear. Hence,
the rocking springs are modeled with linear hysteretic curves with the stiffness, Kθ.

A summary of the parameters used for the Ramberg-Osgood model in SeismoStruct are
given in Table 5.2.
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Table 5.2: Parameters used for the Ramberg–Osgood model.

Parameters Value
Fy 22.5

D y,h 0.0005294
γ 15
β1 0.001
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Chapter 6

Pushover Analysis

A pushover analysis is a nonlinear static analysis by which the seismic deformations
of structure is estimated using nonlinear techniques (Shinde et al. (2014)). During the
analysis, typically a horizontal load is applied at the top of a structure incrementally,
and the corresponding displacement and force are plotted at each increment until it
reaches a target displacement, or until the structure collapses. The load represents the
inertial forces and the target displacement is the maximum expected displacement dur-
ing the earthquake. In the analysis done in this thesis, the load applied for each incre-
ment results in a displacement of 0.02m.

Figure 6.1: Illustration of pushover analysis.

6.1 Effect of Change in Number of Elements

To verify that the elements behave the way that they are predicted to, a pushover anal-
ysis was done prior to the analyses where excitation was applied to the structure. The
analysis was done for DB, FB and PH elements. It turned out that SeismoStruct did not
give the expected results. For all elements, the column has been designed with shear
reinforcement consisting of Ø6c150, and longitudinal reinforcement of 8Ø14. All of the
element types have been modeled with 3% Rayleigh damping here, and for all analyses
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later in the thesis. The displacement target was set to 2m, and the columns have been
modeled with 1, 2, 4 and 6 elements.
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Figure 6.2: Force-displacement curve for different number of DB elements.
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Figure 6.3: Force-displacement curve for different number of FB elements.
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Figure 6.4: Force-displacement curve for different number of PH elements.

For the DB elements, the force-displacement curve from the pushover analysis is shown
in Figure 6.2. For all elements, the behavior is approximately the same up to 0.2m. After
that point, the behavior varies with the number of elements; few elements requires a
higher force to increase the displacement than a higher number of elements does.

By using FB elements, it is observed from Figure 6.3 that the analysis terminates for
a force equal to 16.6kN . On the contrary to the DB analysis, where all of the analy-
ses reaches the target displacement, it is not reached for the FB element. All analyses
reaches a point where the program no longer is able to apply the next load step. The
value of the displacement where the structure collapses varies with the number of ele-
ments; the less elements, the higher displacement before the column breaks.

At last, it is seen from Figure 6.4 that by changing number of elements for PH elements,
the results are varying a lot. This may probably be because of plastic hinges are formed
in the ends of each element. I.e. for a column consisting of 6 elements, plastic hinges
may form at twelve places, while only two plastic hinges will form in a column mod-
eled with one element. As for the FB elements, the number of PH elements decides at
which displacement the column collapses; the fewer elements, the higher displacement
is reached.

6.2 Effect of Different Spacing in Stirrups

6.2.1 Unidirectional Pushover Analysis

A pushover test was also done for different spacing between the stirrups. For this test,
the column is modeled with the same longitudinal reinforcement as above, and the
same diameter for the shear reinforcement. The only variable has been the spacing,
which was set to 50mm, 150mm, 300mm or 1000mm. All three element types have
been used, and the results from the analyses are shown in Figure 6.5, 6.6 and 6.7.
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Figure 6.5: Load-displacement curve for a column consisting of a DB element with different spac-
ings in stirrups.
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Figure 6.6: Load-displacement curve for a column consisting of a FB element with different spac-
ings in stirrups.
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Figure 6.7: Load-displacement curve for a column consisting of a PH element with different spac-
ings in stirrups.

It is noteworthy that the analysis for the FB element terminates earlier for 50mm and
150mm spacing, than for 300mm and 1000mm spacing. For all spacings, the behavior
is almost the same until a displacement of 0.7m. At this point the structure almost
collapses for a spacing of 300mm and 1000mm. For a spacing of 50mm and 150mm,
on the other hand, the analyses terminates for a displacement of 0.8m. For the DB
element, the analysis is completed for all spacings. The behavior is also here almost the
same up to the point where the displacement is 0.7m. After this point, the load required
to increase the displacement is considerable lower for the element with a spacing of
300mm and 1000mm, than for 50mm and 150mm. PH elements yields at the same
point as the force-based elements does, but as seen in Figure 6.7 the elements can resist
a larger displacement than the FB elements.

6.2.2 Bidirectional Pushover Analysis

An additional load has been applied to the column to see if the results are
influenced differently under bidirectional loading. The load which was applied in y-
direction is 30% of the load in x-direction. The target displacement is still set to be
2m in x-direction. Figure 6.8 shows that the extra load does not give any particular
change for the column modeled with DB elements. On the contrary, the FB element
is more affected by the additional load. The analyses are now running until the target
displacement is reached for all of the cases, as seen in Figure 6.9. Additionally can it be
seen that all of the analyses makes the column collapse after reaching a displacement
of 0.8m, and not only for the two largest spacings. The PH elements are also affected by
the additional load, as shown in Figure 6.10. The behavior is very similar to the force-
based elements, and the main difference is still that the PH elements lasts longer before
they break.
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Figure 6.8: Load-displacement curve for a column consisting of a DB element with different spac-
ings in stirrups, from bidirectional pushover analysis.
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Figure 6.9: Load-displacement curve for a column consisting of a FB element with different spac-
ings in stirrups, from bidirectional pushover analysis.

40



6.2. EFFECT OF DIFFERENT SPACING IN STIRRUPS

Displacement[m]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

L
o

a
d

[k
N

]

0

2

4

6

8

10

12

14

16

18

50mm

150mm

300mm

1000mm

Figure 6.10: Load-displacement curve for a column consisting of a PH element with different spac-
ings in stirrups, from bidirectional pushover analysis.

For comparison, the results from unidirectional and bidirectional pushover analyses
are plotted in the same graph in Figure 6.11. By applying a force in y-direction in ad-
dition to the pre-excisting force in x-direction, the column shows some changes in the
load-displacement curve. The column yields for a slightly lower force than for the uni-
directional case, and collapses when a displacement of 0.8m is reached.
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Figure 6.11: Results from uni- and bidirectional pushover analyses for a column consisting of a FB
element and a spacing of 150mm.

By varying the spacing between the stirrups, the confinement factor of the concrete is
influenced. For the Mander concrete model, the confining pressure is assumed to be
constant throughout the entire stress-strain range. The ratio between the confined and
unconfined compressive stress of the concrete, is defined as the confinement factor.
This factor is used to scale up the stress-strain relationship throughout the entire strain
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range (SeismoSoft (2014a)).

For the same unconfined strength, f
′

c , the stirrup spacing changes the confinement fac-
tor. The confinement factors for the different spacing are listed in Table 6.1. The table
shows that the closer the stirrups are placed, the higher is the confinement factor. In
Eurocode 2, section 3.1.9 (Standard Norge (2008)), a description of how confinement af-
fects the properties of the concrete is given: "Confinement of concrete results in a mod-
ification of the effective stress-strain relationship: higher strength and higher critical
strains are achieved". This means that when the stirrups are placed with 50mm spac-
ing, the strength of the concrete is effectively higher than when the spacing is 1000mm.
This is corresponding to the values obtained in SeismoStruct.

Table 6.1: Confinement factors for the different spacings.

Spacing Confined Unconfined
50mm 1.4590 1.0000

150mm 1.1058 1.0000
300mm 1.0094 1.0000

1000mm 1.0000 1.0000
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Chapter 7

Model Verification

7.1 Experimental Background

The Joint Research Centre has done many seismic experiments on behavior of differ-
ent structures. To see if the result SeismoStruct gives out is accurate, an examination
of a one-story RC industrial building was done. The structure was made of cast-in-situ
beams and columns, and consists of two two-bay frames, connected by a slab. It was de-
signed for a dead load of 27kN /m2, which includes the weight of the slab. The dimen-
sions of the columns were 300mm × 300mm, and the beams were 600mm × 300mm.
The thickness of the slab was 150mm. A picture of the prototype can be seen in Figure
7.1, while the geometry is shown in figure 7.2

Figure 7.1: Picture of the prototype (Ferrara and Negro (2004)).
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Figure 7.2: Geometry of the prototype (Ferrara and Negro (2004)).

The longitudinal reinforcement pattern can be seen in Figure 7.3, and consists of
8Ø14mm throughout the whole length columns. The transverse reinforcement varies
with the length of the column. In the critical zones, 1m from the top and bottom, the
stirrups were placed with a spacing of 50mm, while in the non-critical region, a spacing
of 150mm was used. The dimensions of the bars were 6mm, and the stirrups were
designed with 4 legs in both directions. The purpose of the transverse reinforcement
is both confinement and shear forces. For the beam, the experiment rapport does not
provide any specific information. It is only known that the beam is reinforced such that
plastic hinges will form in the columns, and the reinforcement of the beam is therefor
set to approximately 10 times the amount of the reinforcement in the columns.

The materials used for building the prototype were tested prior to the experiment. The
concrete was tested by cube specimen tests, and the cylindrical mean compressive
strength was found to be fcm = 42.74MPa for the columns, and fcm = 47.20MPa for
the beams. The steel in the longitudinal reinforcement had a yielding strength of fy =
550MPa and tensile strength of ft = 657MPa

Hydraulic jacks were used to apply the horizontal displacements to the structure. In
Figure 7.1, the jacks are seen connected to the beam at the right. In order to get the
wanted load on the slabs, vertical jacks were also used during testing. The load applied
through the vertical jacks were 600kN , including the slab self weight. The position of

44
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both the horizontal and vertical jacks is depicted in Figure 7.4.

Figure 7.3: Longitudinal reinforcement pattern (Ferrara and Negro (2004)).

Figure 7.4: Positioning of the hydraulic jacks (Ferrara and Negro (2004)).

The seismic ground motion that the structure was exposed to was simulated through an
artificial accelerogram. In Eurocode 8 (Standard Norge (2014)), several response spec-
trum is presented. The response spectrum used in the test was generated automatically
to be similar to what is given for a subsoil 2B. The accelerogram is shown in Figure 7.5,
and will be referred to as the base case ground acceleration in this thesis. Displace-
ment time-histories were made with different scaling; 0.05g , 0.32g , 0.64g and 0.80g .
To calibrate and test the devices, the 0.05g time-history was used, and it was not fur-
ther used in the test, nor included in the following analyses. The three displacement
time-histories used during the test is shown in Figure 7.7
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Figure 7.6: Response spectrum for acceleration in Figure 7.5.

From the displacement time-histories it is observed that the ground motion of 0.32g
gives few irregularities in the displacement, and is said to yield an elastic response. This
is depicted in Figure 7.7 a). In Figure 7.7 b) the displacement becomes more irregular,
i.e. some inelastic response. For the last case seen in Figure 7.7 c), the response is clearly
inelastic.
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7.2 Modeling in SeismoStruct

7.2.1 2D-Model

The model is made the same way as it was done in Gharakhanloo’s thesis (2014), where
analyses with FB elements, DB elements and plastic hinge elements for each intensity of
the ground motion has been done. For the columns, the number of integration points,
length of plastic hinge and number of elements for the different element types are listed
in Table 7.1.

Table 7.1: Values used to create the models (Gharakhanloo (2014)).

Element type Number of Number of Length of
integration points elements plastic hinge

DB 2 6 1.146m
FB 5 1 -

FB plastic hinge 2 4 0.573m

Figure 7.7: Time-histories for respectively 0.32g , 0.64g and 0.80g .

The plastic hinge length for the beams is not specified, but it is assumed over-strength
in the beam compared to the column. For the DB elements, it is used 4 elements in
the beam, while 2 elements are used for both the FB elements and the FB plastic hinge
elements. For the latter element type, the SeismoStruct default value for plastic hinge

47



CHAPTER 7. MODEL VERIFICATION

of 16.67% is kept unchanged. From the analyses done by Gharakhanloo (2014) it was
found that FB and plastic hinge elements gave the best results, and due to the lowest
number of elements needed, FB elements is used for all analyses in the last chapter in
this thesis.

In SeismoStruct it is necessary to choose a proper material model for the materials used
in the model. For the steel reinforcement, the Menegotto-Pinto model has been used,
while the Mander model has been used for the concrete.

In Gharakhanloo (2014), the analyses are run as static time-history analyses. The model
was subjected to a displacement in the top of the column, the same way as it was
done in the experiment. The displacement is a pseudo-dynamic displacement which
is found from performing a preliminary dynamic analysis of the prototype. In this the-
sis it is necessary to apply the earthquake through a ground acceleration. The analyses
will therefore change to dynamic time-history analyses. The ground motion shown in
Figure 7.5 is applied at the bottom node of the columns, as shown in Figure 7.8.

Figure 7.8: 2D-model in SeismoStruct, with acceleration applied at the bottom of each column.
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Figure 7.9: Displacements from static and dynamic analyses for the 2D-model with FB-elements.

It is worth mentioning that by applying the acceleration at the base nodes of the struc-
ture, instead of displacements at the top node of the columns, the measured displace-
ment differs. The displacements from the static and dynamic time-history analyses
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are compared in Figure 7.9. The displacements used in the experiment was found
by an analysis done in a program like SeismoStruct. It was necessary to find pseudo-
displacements due to the use of hydraulic jacks in the experiment, instead of a shaking
table. The report does not give information about which program that was used to find
the displacement, nor the choice of what kind of elements, number of elements, etc.
For the dynamic analysis, the acceleration is the same as the one used to find the dis-
placement used in the static analysis, but the output for the displacements does not
correspond. This must be due to choices made when making the model. This will not
be discussed any further in this thesis.

7.2.2 3D-Model

Due to symmetry of the building, it is only necessary to model one frame when the
ground motion is applied in one direction, while the full 3D-model is required for the
analyses where excitation is applied en both x- and y-direction. The 3D-model consist
of two identical frames, with constraints in form of master-slave nodes in the top of the
columns. These master and slave nodes represents the slab between the two frames. A
screen shot of the model in SeismoStruct can be seen in Figure 7.10.

Figure 7.10: Screen shot of the model in SeismoStruct.

For the 3D-model, the acceleration in x-direction is the same as for the 2D-model. In
y-direction the acceleration applied is 30% of what it is in x-direction, the same way
as for the pushover analysis. The difference in displacement for uni- and bidirectional
excitation is minimal. This is shown in Figure 7.11, and it is seen that the maximum
displacement in x-direction is slightly bigger for the bidirectional case, than when the
excitation is applied in one direction. The largest forces will always occur in x-direction,
and the forces and displacement presented in this thesis are obtained in that direction.
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The moments, on the other hand, will be largest about the y-axis, and there are these
moments that will be compared.
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Figure 7.11: Displacement for the 3D-model with excitation in one and two directions.
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Chapter 8

Results

8.1 Effect of Change in Spacing in Stirrups

In the experiment, the structure had reinforcement as described earlier in Chapter 7,
and the columns were strengthened at the base and top by increasing the amount of
stirrups. To see what effect this has on the structure, analyses have been done with
different spacing in the stirrups. These analyses are done with FB elements, and a
spacing of 50mm, 150mm, 300mm and 1000mm. The reinforcement in the beams
is unchanged in all of the analyses. The results from changing the spacing between
the stirrups are shown in Figure 8.1. From the figure, it is easy to see that the effect is
non-existing. All analyses gives the same displacements, and they are not depending
on the spacing at all. The maximum displacement that is reached during the analyses,
is approximately 0.12m. From the pushover analysis, it was found that the FB elements
could withstand a displacement of 0.70m before the column collapsed.
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Figure 8.1: Time-displacement curve for different spacing in stirrups for base case acceleration.
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One theory is that the size of the force that is obtained in each column is so low that the
shear reinforcement is not necessary, and hand calculation has been done to see if this
may be the reason why the displacement remains unchanged.

8.1.1 Hand Calculation of Shear Force

The hand calculation has been done as described in Eurocode 2, chapter 6.2 (Stan-
dard Norge (2008)). The following data is given by the dimensions and properties of
the cross-section of the columns:

Asl = 8×π×72 = 1231.5mm2

Ac = 300×300 = 90000mm2

fsd = 434MPa
fck = 40MPa

cnom = 25mm
bw = 300mm

275mm

25mm

300mm

Figure 8.2: Cross-section of the columns.

With these values, the dimensioning shear force is calculated by

VRd ,c =
[
CRd ,c k(100ρl fck )1/3]bw d (8.1)

where

k = 1+
√

200

d
= 1+

√
200

275
= 1.853 ≤ 2.0 (8.2)

ρl =
Asl

bw d
= 1231.5

300×275
= 0.0149 ≤ 0.02 (8.3)

CRd ,c =
0.18

γc
= 0.18

1.5
= 0.12 (8.4)

By inserting the values above into Equation (8.1), the value for the dimensioning shear
force is found to be

VRd ,c = 0.12×1.853× (100×0.0149×40)1/3 ×300×275 = 71.7kN (8.5)

This means that for a shear force less than 71.7kN , the stirrups are not necessary. From
the analyses the maximum total shear force observed is approximately 215kN , which is
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shown in Figure 8.3. Divided on the six columns, a force of about 36kN occurs in each
column. This is much less than the value that requires shear reinforcement. Later in the
thesis, the value from only one of the column is discussed and compared for different
cases. The base shear measured in the left column is therefore shown in Figure 8.4, and
will be used for comparison later.
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Figure 8.3: Total base shear against time for different spacing in stirrups for base case acceleration.
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Figure 8.4: Base shear against time for one column with 150mm spacing for base case acceleration.

The acceleration was multiplied by a factor of 5 and 10 to see if the displacement then
would be affected by changing the space between stirrups.

By multiplying the base case acceleration by 5, the displacement starts to show some
difference for the different spacings. The displacements and forces for 5×acceleration
is depicted in Figure 8.5 and 8.6.
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Figure 8.5: Displacement against time for different spacing in stirrups, with
5×acceleration applied.
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Figure 8.6: Total base shear against time for different spacing in stirrups, with 5×acceleration ap-
plied.

The maximum force that is observed is slightly higher than earlier, and by dividing
250kN on the six columns, the force in each column have now reached a maximum
of about 42kN . The force is still far from the calculated force when shear reinforcement
becomes necessary, but as seen in Figure 8.5 the increase of acceleration results in some
difference in the displacement for the different spacings.

To see what will happen in a even more extreme case, the acceleration was at last mul-
tiplied by 10. The results are shown in Figure 8.7 and 8.8. As mentioned earlier, the
response shows a nonlinear response for larger accelerations, which is seen in both
Figure 8.5 and 8.7. For the 10×acceleration, the displacement is clearly differing for the
four spacings. It seems like the two stiffest columns, collapses after approximately 13
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seconds, and gets a really large displacement, and then reaches a point where the anal-
yses no longer are able to continue at 20 seconds. The forces obtained in the columns
are almost the same for all four cases, until the point where the two stiffest columns col-
lapses. From Figure 8.8 it is seen that the forces for these two columns are quite low for
the time interval 13 to 20 seconds. With a large displacement obtained at the same time
as a low force, it is likely to believe that the columns collapses. In the time interval from
15 to 20 seconds, a displacement of about 3m takes place, while the force in this inter-
val does not show any drastic change. As the force has a quite small change, compared
to earlier in the analysis, at the same time as a major increase of the displacement, the
stiffness must have been reduced.
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Figure 8.7: Displacement against time for different spacing in stirrups with 10×acceleration ap-
plied.
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Figure 8.8: Force against time for different spacing in stirrups with 10×acceleration applied.
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8.2 Effect of Soil Springs for One Story Building

For the following analyses, the model has been modified, as described in Section 5.2,
such that SSI could be used. The structure has been modeled with FB elements, stir-
rups with a spacing of 150mm and the base case ground acceleration in the following
analyses. As shown in Figure 7.11, the excitation in y-direction does not affect the dis-
placement and forces obtained in the structure significantly. Due to this, the 2D-model
in Figure 7.8 is used in the current and the following section of this thesis.

As a base case, an analysis where the model is fixed has been done first. This base case
will be used for comparison to the results from the analyses with soil springs applied.
To see how the different parameters influences the results, the parameters have been
changed one at a time. For the link elements that have been used in the following anal-
yses, a stiffness-proportional damping of 1% is used. The different analyses have been
done for both a one- and two-story building, and are listed below:

i. Nonlinear horizontal springs and fixed rocking springs.
ii. Fixed horizontal springs and linear rocking springs.
iii. Fixed horizontal springs and linear rocking springs, with increased acceleration.
iv. Fixed horizontal springs and linear rocking springs, for a smaller foundation.
v. Linear horizontal springs and linear rocking springs, for a smaller foundation.

i. Nonlinear Horizontal Springs

While the rocking springs are still assumed to be fixed, a nonlinear model is given for
the horizontal springs. By doing this, the effect of soil-structure interaction due to hor-
izontal flexibility will be shown. The Ramberg–Osgood model is used for the horizontal
springs, and the foundation is modeled to be 1.5m ×1.5m, hence, the properties given
in Table 5.2 are used for the Ramberg–Osgood model.

From Figure 8.9 it is seen that the displacement is reduced at some points by use of hor-
izontal soil springs, but also increased at some places. Figure 8.10 and 8.11 shows the
base shear and moment at the base of the left column of the frame in Figure 7.8 when
the structure is fixed, and when it is modeled with soil springs. From these graphs, it
is observed that the maximum force and moment are slightly reduced. This may also
be seen in Figure 8.12 and 8.13 where the hysteretic curves for the structure are shown.
The figures shows that the maximum displacement and rotation are reduced by imple-
menting soil springs.

The maximum moment for the fixed structure is measured to be 96.9kN m, and it is
reduced to 96.1kN m by applying non-linear horizontal soil springs. This means that
horizontal flexibility in this case reduces the maximum moment by 0.8%.
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Figure 8.9: Displacements for structure with nonlinear horizontal springs applied.
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Figure 8.10: Shear force at base of column with nonlinear horizontal springs applied.
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Figure 8.11: Moment at base of column with nonlinear horizontal springs applied.
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Figure 8.12: Force-displacement response for structure with nonlinear horizontal
springs applied.
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Figure 8.13: Moment-rotation response at base of column with nonlinear horizontal springs ap-
plied.

In Figure 8.14, the hysteretic curve for the horizontal link element in x-direction is plot-
ted. It is clearly seen that the shape of the curve is the Ramberg-Osgood model, and this
means that the link element work as expected. The base shear in the hysteretic curve in
Figure 8.14 varies from −22kN to 26kN , while the base shear in Figure 8.10 varies from
−26kN to 36kN . This can be explained by that for a base element that is connected to
a support, the shear forces at the base element and the corresponding support might
differ under large displacements. This is due to the fact that the local axis system for the
base elements is heavily rotated, while the supports are defined in the global reference
system (SeismoSoft (2014a)).

From the same figure, it can also be seen that yield is reached for the link element,
which should reduce the shear force. This is because of when the link element yields,
less acceleration is transferred to the base node of the columns, hence reduced base
shear. An analysis that will not be shown here, has been done to see if this happens
for an even higher acceleration. The results showed that the base shear was clearly
reduced by using a higher acceleration, and the hysteretic curve showed that higher
deformations were reached during yielding, i.e. a higher possibility for fracture in the
structure.
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Figure 8.14: Force-displacement response for nonlinear horizontal spring.

ii. Linear Rocking Springs

To see the effect of soil-structure interaction because of rocking flexibility, the hori-
zontal springs have been modeled to have a high stiffness, i.e. assumed to be fixed.
The rocking springs have been modeled to be linear, with the stiffness found earlier,
Kθ = 27294kN m. The output from the analysis is given in Figure 8.15 to 8.20. Figure
8.15 shows that the roof displacement, as for the previous analysis, increases at some
points and decreases at others. Force-displacement response for the whole structure is
depicted in Figure 8.18, and the moment-rotation response at the base of the western
column is seen in Figure 8.19. By introducing linear rocking soil springs, the maximum
moment is reduced to 96.2kN , which means a reduction of 0.7%.
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Figure 8.15: Displacements for structure with linear rocking springs applied.
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Figure 8.16: Shear force at base of column with linear rocking springs applied.

Time[sec]

0 5 10 15 20 25 30

M
o

m
e

n
t[

k
N

m
]

-100

-80

-60

-40

-20

0

20

40

60

80

Fixed

Fixed horizontal springs, linear rocking springs

Figure 8.17: Moment at base of column with linear rocking springs applied.
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Figure 8.18: Force-displacement response for structure with linear rocking springs applied.
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Figure 8.19: Moment-rotation response at base of column with linear rocking springs applied.
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Figure 8.20: Moment-rotation response in rocking spring.

To check if the response in the rocking springs is linear, the moment-rotation hysteretic
curve for the rocking spring is depicted in Figure 8.20. The response is obviously linear,
and the link element behaves as expected.

iii. Increased Acceleration

To see the effect of soil-structure interaction under higher accelerations, the accelera-
tion has been changed from the base case acceleration of 0.32g to 0.5g . An analysis for
the fixed building was first done, such that the results that are compared, are both re-
sults from analyses with an excitation of 0.5g . The increased acceleration was applied
to the model where the horizontal springs are assumed fixed and rocking springs are
modeled to be linear, as in analysis ii. Results from the analysis with a higher excitation
are depicted in Figure 8.21 to 8.25

Maximum moment that occurs when the structure is fixed and exposed to an excitation
of 0.5g is 97.5kN m. This is reduced to 97.4kN m by the use of rocking soil springs,
which equals a reduction of 0.1%. For comparison, the reduction of maximum moment
for analysis ii was 0.7%.

63



CHAPTER 8. RESULTS

Time[sec]

0 5 10 15 20 25 30

R
o

o
f 

d
is

p
la

c
e

m
e

n
t[

m
]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Fixed - 0.5g

Fixed horizontal springs, linear rocking springs - 0.5g

Figure 8.21: Displacements for structure with linear rocking springs applied.
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Figure 8.22: Shear force at base of column with linear rocking springs applied.
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Figure 8.23: Moment at base of column with linear rocking springs applied.

Roof displacement[m]

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

B
a

s
e

 s
h

e
a

r[
k
N

]

-150

-100

-50

0

50

100

150

Fixed - 0.5g

Fixed horizontal springs, linear rocking springs - 0.5g

Figure 8.24: Force-displacement response for structure with linear rocking springs applied.

From Figure 8.24 it is seen that the hysteretic curve have gotten a more symmetric shape
than in Figure 8.18. This is because higher displacements are reached for this analysis.
The area under the load-deformation curve for one complete load cycle tells how much
energy the structure is capable to dissipate (Shing (2014)), which means that the struc-
ture absorbs a higher amount of energy in this analysis than in analysis ii.
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Figure 8.25: Moment-rotation response at base of column with linear rocking springs applied.

iv. Smaller Size of Foundation

The size of the foundation influences the response in the structure, as the stiffness are
reduced. To see how this affects the results, the foundation size has been set to 1m×1m.
For a foundation with an area of 1m2 the yield force and displacement, horizontal and
rocking stiffness are given in Table 8.1.

Table 8.1: Parameters for a foundation of 1m ×1m.

Parameters Value
a 1m

Fy 10kN
D y,h 0.0003571m
Kh 28000kN/m
Kθ 7805kNm/rad

The structure is modeled fixed in the horizontal directions and with linear rocking stiff-
ness. The results from the analysis is compared to the results from analysis ii, such that
the difference in the response is only due to change in size of foundation.

In Figure 8.26 to 8.30 the results are plotted. For the smaller size of foundation, the max-
imum moment is observed to be 75.1kN m. This corresponds to a reduction of 22.5%
compared to the maximum moment for the fixed structure. For the 1.5m ×1.5m foun-
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dation in analysis ii, the maximum moment for the fixed structure was only reduced by
0.7%.

Figure 8.29 shows the force-displacement response for the whole structure, and from
the figure it is clear that the maximum displacement of the roof is less for the smaller
foundation. It is also seen in Figure 8.30 that the maximum rotation at the base of the
left column is much smaller for the 1m×1m foundation. By introducing a flexible foun-
dation, through the use of a soil spring that is very flexible, the natural frequency of the
structure is decreased, which leads to an increased period. A higher period results in
lower forces, because earthquake is a high frequency response. From Figure 7.6 it is
seen that if the period increases, the corresponding acceleration will decrease. This
explains why the hysteretic curve in Figure 8.30 shows a smaller moment-rotation re-
sponse for the 1m ×1m foundation, than for the foundation of 1.5m ×1.5m.
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Figure 8.26: Displacements for structure with 1m ×1m and 1.5m ×1.5m foundation.

Time[sec]

0 5 10 15 20 25 30

B
a

s
e

 s
h

e
a

r[
k
N

]

-30

-20

-10

0

10

20

30

40

1mx1m foundation

1.5mx1.5m foundation

Figure 8.27: Shear force at base of column for structure with 1m×1m and 1.5m×1.5m foundation.
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Figure 8.28: Moment at base of column for structure with 1m ×1m and 1.5m ×1.5m foundation.
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Figure 8.29: Force-displacement response for structure with 1m×1m and 1.5m×1.5m foundation.
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Figure 8.30: Moment-rotation response at base of column for structure with 1m ×1m and 1.5m ×
1.5m foundation.

v. Linear Horizontal and Rocking Springs

From the previous analyses that have been done, it is seen that the effect of SSI is best
shown in analysis iv. The foundation of 1m × 1m is therefore used in an additional
analysis. In this analysis, both the horizontal and rocking springs have been modeled
to be linear. The results are shown in Figure 8.31 to 8.35, where they are compared to
the results from the structure when it is fixed.

From analysis iv it was found that the reduction of maximum moment was 22.5%. By
modeling the horizontal springs to be linear instead of fixed, the maximum moment is
reduced even more. The maximum value of the moment is now found to be 74.0kN m,
which is a reduction of 23.6%.
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Figure 8.31: Displacement of roof for structure with linear soil springs, and foundation of 1m×1m.
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Figure 8.32: Base shear at base of column with linear soil springs, and foundation of 1m×1m.
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Figure 8.33: Moment at base of column with linear soil springs, and foundation of 1m×1m.
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Figure 8.34: Force-displacement response for structure with linear soil springs, and foundation of
1m×1m.
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Figure 8.35: Moment-rotation response at base of column with linear soil springs, and foundation
of 1m×1m.

A summary of the results found from the different analyses for the one story building
are given in Table 8.2. It is obvious that analysis v gives the largest reduction of the
moment. The effect of SSI for analysis i-iii is close to none, and it may seem like the
stiffness for the foundation of 1.5m × 1.5m is so high that the introduction of springs
does not give any particular change in results.

As the stiffness is reduced, by using a smaller foundation, the effect of SSI is a lot bigger.
Compared to the moment for the fixed structure, the maximum moment is reduced
22.5% for analysis iv, and 23.6% for analysis v.

An important observation from all of the moment-rotation response curves, is that the
fixed structure seems to have rotated. This is shown in Figure 8.13, 8.19, 8.25, 8.30 and
8.35. This must mean that plasticity occurs in the concrete, and that a rotation takes
place. Since SeismoStruct does not completely restrain the columns from rotating, it
may lead to that the effect of SSI will not be as clear as expected. For a fixed structure
with no rotation at the base, the moment would probably be more affected by introduc-
tion of soil springs, than when a small rotation is already existing for the fixed structure.
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Table 8.2: Maximum moment for the different analyses for the one story building, and reduction of
maximum moment for the fixed structure in percent.

One story building
Boundary conditions Maximum moment Reduction

i. Fixed horizontal springs,
96.2kNm 0.8%

linear rocking springs
ii. Fixed rocking springs,

96.1kNm 0.7%
Nonlinear horizontal springs
iii. Fixed horizontal springs,

97.4kNm 0.1%
linear rocking springs - 0.5g
iv. Fixed horizontal springs,

75.1kNm 22.5%
linear rocking springs - 1m×1m foundation
v. Linear horizontal springs,

74.0kNm 23.6%
linear rocking springs - 1m×1m foundation

8.3 Effect of Soil Springs for Two Story Building

To get a better understanding on how SSI affects the forces and displacements for a
structure, it is interesting to take a look at a multistory building. For simplicity the mul-
tistory building was also made in 2D with a unidirectional excitation, as seen in Figure
8.36.

Figure 8.36: 2D model with two stories.

By expanding the model by one floor, it is possible to see the effect of SSI in several
junctions. As for the previous analyses, the structure is still modeled with FB elements,
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and the spacing in stirrups is set to 150mm.

As the vertical load increases with an additional story, due to increased self-weight, the
foundations are set to be 2m×2m, which will be the base case for the two story building.
This leads to some changes in the parameters used for the hysteresis curves for the link
elements. The new parameters are given in Table 8.3.

Table 8.3: Parameters for a foundation of 2m ×2m.

Parameters Value
a 1.13m

Fy 40kN
D y,h 0.0007080m
Kh 56500kN/m
Kθ 64129kNm/rad

Analyses i - v from Section 8.2 have been done for the two story building, with the same
parameter studies as for the one story building. An analysis where the structure is fixed
has been done first, and will be the basis for comparison of results.

i. Nonlinear Horizontal Springs

For the first parameter change, the results are given in Figure 8.37 to 8.43, and it is seen
that they do not differ particularly from the fixed structure’s results. However, the maxi-
mum moment observed is slightly reduced. The maximum moment for the fixed struc-
ture is 107.2kN m, while it for this case is found to be 106.3kN m. In percent, this is a
reduction of 0.8%, which is the same reduction as for the one story building. Because
an extra floor is added to the structure, an additional hysteresis curve is presented. The
hysteresis curve in Figure 8.42 shows the moment-rotation response in the left column
at the base of the first floor. From the hysteretic curves it is seen that more energy is
absorbed at the base of the column at the ground floor than at the first floor. This is an
observation that is as expected, as the moment will be higher at the ground floor than
at the first floor.
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Figure 8.37: Displacements for structure with nonlinear horizontal springs applied.
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Figure 8.38: Shear force at base of column with nonlinear horizontal springs applied
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Figure 8.39: Moment at base of column with nonlinear horizontal springs applied.
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Figure 8.40: Force-displacement response for structure with nonlinear horizontal springs applied.
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Figure 8.41: Moment-rotation response at base of column at ground floor. Nonlinear horizontal
springs applied at the base of the structure.
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Figure 8.42: Moment-rotation response at base of column in first floor. Nonlinear horizontal
springs applied at the base of the structure.
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Figure 8.43: Force-displacement response for nonlinear horizontal spring.

The hysteretic curve for the horizontal link element takes the shape of the Ramberg-
Osgood curve for the two story building as well. This is depicted in Figure 8.43.

ii. Linear Rocking Springs

To see the effect of rocking flexibility, the horizontal springs were again set to be fixed,
and the rocking stiffness defined linear. The rocking stiffness from Table 8.3 was used,
and the results are shown in Figure 8.44 to 8.49

For linear rocking springs applied to the two story structure, the results shows a small
difference from the results for the fixed building. A maximum moment of 104.1kN m
is measured, i.e. a reduction of 2.9% compared to the maximum moment for the fixed
structure. The results for the two story structure are also more similar to the response
for the fixed structure, than for the one story structure.
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Figure 8.44: Displacements for structure with linear rocking springs applied.
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Figure 8.45: Shear force at base of column with linear rocking springs applied.
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Figure 8.46: Moment at base of column with linear rocking springs applied.
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Figure 8.47: Force-displacement response for structure with linear rocking springs applied.
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Figure 8.48: Moment-rotation response at base of column at ground floor. Linear rocking springs
applied at the base of the structure.
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Figure 8.49: Moment-rotation response at base of column in first floor. Linear rocking springs ap-
plied at the base of the structure.

iii. Increased Acceleration

For the next analysis, the excitation has been set to 0.5g and the structure is modeled as
in analysis ii. From the results in Figure 8.50 to 8.55 it is seen that the variation between
the fixed structure and the structure with linear rocking springs is small. The maximum
measured moment is equal for the analyses in this case.
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Figure 8.50: Displacements for structure with linear rocking springs applied, and increased accel-
eration.
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Figure 8.51: Shear force at base of column with linear rocking springs applied, and increased ac-
celeration.
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Figure 8.52: Moment at base of column with linear rocking springs applied, and increased acceler-
ation.
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Figure 8.53: Force-displacement response for structure with linear rocking springs applied, and
increased acceleration.
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Figure 8.54: Moment-rotation response at base of column at ground floor. Linear rocking springs
applied at the base of the structure, and increased acceleration.

As for the one story structure, the hysteretic curve is changed when the acceleration
is increased. The area under the curve in Figure 8.54 and 8.55 is larger than in Figure
8.48 and 8.49, hence, a higher hysteretic damping and more energy absorbed by the
structure.
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Figure 8.55: Moment-rotation response at base of column in first floor. Linear rocking springs ap-
plied at the base of the structure, and increased acceleration.

iv. Smaller Size of Foundation

To see how the response is influenced by defining a smaller foundation for the two story
building, the foundation size has been set to 1.5m ×1.5m. The results from this analy-
sis are compared to the results where the foundation was defined to be 2m ×2m. Soil
springs in horizontal direction are still assumed to be fixed, and the rocking springs are
modeled linear. For the foundation with a size of 1.5m ×1.5m, the properties in Table
5.2 are used. The results are shown in Figure 8.56 to 8.61.

From analysis ii, it was found that the moment was reduced 2.9% for the original foun-
dation. By reducing the foundation size, the maximum moment is measured to be
99.5kN m, which is a reduction of 7.2%.

It is worth mentioning that it seems like the stiffness of the springs are not modified as
much in this analysis as it was in analysis iv for the one story building. Correspondingly
for this case, it looks like the natural frequency of the structure is approximately the
same regardless of the size of foundation.

85



CHAPTER 8. RESULTS

Time[sec]

0 5 10 15 20 25 30

R
o

o
f 

d
is

p
la

c
e

m
e

n
t[

m
]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1.5mx1.5m foundation

2mx2m foundation

Figure 8.56: Displacements for structure with linear rocking springs applied, and foundation of
1.5m×1.5m.
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Figure 8.57: Shear force at base of column with linear rocking springs applied, and foundation of
1.5m×1.5m.
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Figure 8.58: Moment at base of column with linear rocking springs applied, and foundation of
1.5m×1.5m.
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Figure 8.59: Force-displacement response for structure with linear rocking springs applied, and
foundation of 1.5m×1.5m.
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Figure 8.60: Moment-rotation response at base of column at ground floor. Linear rocking springs
applied at the base of the structure, and foundation of 1.5m×1.5m.
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Figure 8.61: Moment-rotation response at base of column in first floor. Linear rocking springs ap-
plied at the base of the structure, and foundation of 1.5m×1.5m.
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v. Linear Horizontal and Rocking Springs

For the last analysis, the foundation size of 1.5m × 1.5m is kept, and all soil springs
modeled to be linear. The results are shown in Figure 8.62 to 8.67.

From the analysis it was found that the maximum value of the moment is 98.9kN m.
This is a reduction of 7.7% compared to the maximum moment of 107.2kN m for the
fixed structure. The reduction for the maximum moment in analysis iv was 7.2%, which
as earlier shows that the change from fixed to linear horizontal springs does reduce the
moment more than in analysis iv, but the difference is small.
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Figure 8.62: Displacement of roof for structure with linear soil springs, and foundation of
1.5m×1.5m.
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Figure 8.63: Base shear at base of column with linear soil springs, and foundation of 1.5m×1.5m.
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Figure 8.64: Moment at base of column with linear soil springs, and foundation of 1m×1m.
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Figure 8.65: Force-displacement response for structure with linear soil springs, and foundation of
1.5m×1.5m.

90



8.3. EFFECT OF SOIL SPRINGS FOR TWO STORY BUILDING

Rotation[rad]

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

M
o

m
e

n
t[

k
N

m
]

-150

-100

-50

0

50

100

Fixed

Linear horizontal and rocking springs

Figure 8.66: Moment-rotation response at base of column at ground floor. Linear soil springs ap-
plied at the base of the structure, and foundation of 1.5m×1.5m.
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Figure 8.67: Moment-rotation response at base of column in first floor. Linear soil springs applied
at the base of the structure, and foundation of 1.5m×1.5m.
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In Table 8.4 a summary of the results from all of the analyses for the two story building
are given. It is clear that the results are most affected by the change of the foundation
size for the two story structure as well. However, the reduction is not of the same mag-
nitude as when the smaller foundation was used for the one story structure. There are
several factors that may be the reason why, but one worth mentioning is that the re-
duction of the foundation is not the same in percentage. The 2m × 2m foundation is
reduced by 43.8% while the 1.5m ×1.5m foundation is reduced by 55.6%.

Table 8.4: Maximum moment for the different analyses for the two story building, and reduction of
maximum moment for the fixed structure in percent.

Two story building
Boundary conditions Maximum moment Reduction

i. Fixed horizontal springs,
106.3kNm 0.8%

linear rocking springs
ii. Fixed rocking springs,

104.1kNm 2.9%
Nonlinear horizontal springs
iii. Fixed horizontal springs,

114.8kNm 0.0%
linear rocking springs - 0.5g
iv. Fixed horizontal springs,

99.5kNm 7.2%
linear rocking springs - 1.5m×1.5m foundation
v. Linear horizontal springs,

98.9kNm 7.7%
linear rocking springs - 1.5m×1.5m foundation
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8.4 Conclusions

Based on the analyses done, and the results presented in the previous chapters, some
conclusions can be drawn.

From the first set of analyses in Chapter 6 it was found that the effect of change in num-
ber of elements varies a lot for the three different element types. From the pushover
analyses it was seen that the DB elements yields for a different force for the different
analyses, the FB elements analyses terminates for different displacements and for the
PH elements, the different analyses collapses for different displacements. The effect of
different spacing in stirrups was also investigated in the same chapter, and was done by
pushover analyses as well. The effect of different spacing in the stirrups turned out to
be quite small under unidirectional loading. The bidirectional pushover, on the other
hand, gives results that varies for the different spacings for all element types. It was ob-
served that the column with a spacing of 50mm was able to withstand the largest force
for all elements.

In Chapter 8 the effect of change in stirrups was examined again, but this time through
the use of a 3D-model that is exposed to an excitation. From the analyses in Section 8.1
it was found that the change in spacing do not affect the displacement or base shear
in any way. A hand calculation was therefore done, to see if the force measured in the
structure was too low to see an effect of the stirrups. The hand calculations gave a di-
mensioning shear force of 71.7kN , while the observed force was 36.0kN . The acceler-
ation was increased to be 5 and 10 times higher to see if the spacing in stirrups then
would affect the results. From the analyses with a higher acceleration, the displace-
ments differed for the different spacings.

The last two sections of the thesis presents the effect of SSI, for respectively a one and
two story building. It has been observed that by changing different parameters, the
effect of SSI has varied. The maximum moment has been reduced within the range
from 0 to 23.6% for the different analyses.

From Section 8.2 with the one story building, the most significant effect of SSI was
found to be given through reduction of the foundation size. The use of nonlinear hor-
izontal springs or linear rocking springs did only give a slight change to the moment,
compared to the reduction of foundation size. From the hysteretic curves from the base
of the columns, it was observed that the program gave a moment-rotation response that
showed rotation for the fixed columns, i.e. plastic deformation. With rotation included
for the fixed structure, it is harder to see the effect of the soil springs, as plasticity in
the columns means that rotation already occurs, even when soil springs are not ap-
plied. This may be the reason why the response of including soil springs is smaller than
expected. The great reduction in moment due to reduced foundation size, must be be-
cause of a change of the natural frequency of the structure. As the period is increased,
the pseudo spectral acceleration will decrease, which causes lower moments and forces.

For the two story building in Section 8.3, the behavior was similar to the behavior the
one story building showed. The analyses gave results that showed the same trend as for
the one story building. The effect of SSI was still shown best when the foundation size
was decreased, but the reduction was not as good as for the one story structure. This is
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probably because the stiffness of the springs does not change the natural frequency the
same way as for the one story building. The change of foundation size is not the same
in percent for the one and two story building, and this may also be a reason why the
effect is more clear for the one story building.

As a concluding remark it can be said that SSI has an effect on the dynamic response of
a concrete structure, and that it is possible to reduce the measured maximum force and
moment for the modeled structure by use of SSI. It is shown that the effect depends on
the choice of hysteretic models in the soil springs, stiffness of the foundation and the
intensity of the ground motion.
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