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SUMMARY: 
The main objective of this thesis was to investigate the ballistic properties of an isotropic AlMgSi aluminium 
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micromechanical unit cells and existing material data, to model ductile fracture in the alloy.   
  
Ballistic impact experiments were conducted on 30 mm thick plates at the Departement of Structural 
Engineering at NTNU, using the steel core of 7.62 mm APM2 bullets. The Recht-Ipson model was used to 
obtain the ballistic limit curve, and good correspondence was seen between the curve and the experimental 
results. Ductile hole growth proved to be the dominant failure mechanism for all tests, with negligible 
fragmentation. 
 
Simplified two-dimensional micromechanical cells were analysed for different Lode parameters and 
triaxialities, to calibrate the Cockcroft-Latham, Johnson-Cook and Gurson-Tvergaard-Needleman (GTN) 
failure models. The calibrations were done with either a von Mises yield criterion or GTN in the matrix 
material, resulting in lower failure strains for the latter.  
 
Numerical analyses of the ballistic impacts were conducted in both IMPETUS Afea Solver and 
Abaqus/Explicit. A parameter study investigating the effects of strain rate, temperature and friction, concluded 
that friction had the largest influence on the ballistic limit velocity. Abaqus analyses gave the overall best 
correspondence with the experimental data, with only minor deviations between the fracture models. These 
deviations were probably due to the dominating temperature erosion criterion. Larger differences were seen 
between the models for the IMPETUS analyses. Both IMPETUS and Abaqus were able to recreate the 
deformation pattern seen in the experimental tests. The use of micromechanical cells for numerical modelling 
of ductile fracture is considered promising. 
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SAMMENDRAG: 
Hovedmålet med denne avhandlingen var å undersøke de ballistiske egenskapene til en isotrop AlMgSi-
aluminiumslegering, både eksperimentelt og numerisk. Ukoblede og koblede bruddmodeller ble kalibrert 
ved bruk av mikromekaniske enhetsceller og eksisterende materialdata, for å modellere duktilt brudd. 
 
Ballistiske tester ble utført på 30 mm tykke plater ved Institutt for konstruksjonsteknikk ved NTNU, hvor 
stålkjernen fra 7,62 mm APM2 kuler ble benyttet. Recht-Ipson modellen ble brukt for å finne den ballistiske 
grensekurven, og god korrespondanse ble sett mellom kurven og de eksperimentelle resultatene. Duktil 
hullutvidelse viste seg å være den dominerende bruddmekanismen for alle testene, med neglisjerbar 
fragmentering. 
 
Forenklede todimensjonale mikromekaniske celler ble analysert for ulike Lode-parametre og triaksialiteter, 
for å kalibrere bruddmodellene Cockcroft-Latham, Johnson-Cook og Gurson-Tvergaard-Needleman (GTN). 
Kalibreringene ble utført med enten et von Mises flytekriterium eller GTN i matriksmaterialet, som 
resulterete i lavere bruddtøyning for sistnevnte. 
 
Numeriske analyser av de ballistiske testene ble gjennomført i både IMPETUS Afea Solver og 
Abaqus/Explicit. Et parameterstudie som undersøkte effekten av tøyningsrate, temperatur og friksjon, 
konkluderte med at friksjonen hadde størst innflytelse på den ballistiske grensen. Abaqus-analysene ga den 
generelt beste korrespondansen med de eksperimentelle resultatene, med kun mindre avvik mellom 
bruddmodellene. Disse avvikene var sannsynligvis på grunn av det dominerende temperaturerosjonskriteriet. 
Større forskjeller ble sett mellom modellene i IMPETUS. Både IMPETUS og Abaqus var i stand til å 
gjenskape deformasjonsmønsteret sett i de eksperimentelle testene. Bruken av mikromekaniske celler for 
numerisk modellering av duktilt brudd vurderes som lovende. 
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1. INTRODUCTION 
 
CASA (Centre for Advanced Structural Analysis) is the new Centre for Research-based Innovation hosted by 
SIMLab and the Department of Structural Engineering at NTNU. The purpose of this research center is to 
create a platform for credible numerical simulations of structures for innovation and value creation in e.g. 
enterprises working with physical security through multi-scale testing, modelling and simulation. Coupling of 
the micro-scale (particle size) and the macro-scale (component size) is a central part of the research activities 
within CASA. The main idea with this master’s thesis project is to provide new insight into ductile fracture 
modelling. Isotropic aluminium made for SIMLab in cooperation with Norsk Hydro ASA will be used in this 
work since it is an ideal subject to couple micromechanical modelling with common phenomenological 
approaches used in structural problems such as impact events. 
 
2. OBJECTIVES 
 
The research project has three main objectives: (1) investigate experimentally the ballistic properties of a cast 
and homogenized AlMgSi aluminium alloy, (2) couple the micromechanical unit-cell approach and the 
Gurson porous plasticity model to the phenomenological descriptions of fracture commonly used in impact 
analyses, i.e., to calibrate the Cockcroft-Latham and the Johnson-Cook fracture criteria, (3) predict the 
behaviour of the plates under impact loading with the nonlinear finite element method through the use of the 
IMPETUS Afea Solver and Abaqus/Explicit. 
 
3. A SHORT DESCRIPTION OF THE RESEARCH PROJECT 
 
The main topics in the research project will be as follows; 
 
1. Plates are made of a cast and homogenized AlMgSi aluminium alloy. The size of the plates will be 

determined by numerical simulations.  
2. A literature survey is done to obtain a theoretical foundation in constitutive modelling, fracture 

modelling, porous plasticity and ballistic impact. 
3. Already available material data from tension tests are used to calibrate constitutive models and fracture 

criteria. The following approaches are suggested: 
a. Use a well-known technique to obtain the parameters in a Johnson-Cook type constitutive 

model and the Cockcroft-Latham fracture criterion from experimental data. 
b. Employ a unit-cell model to calibrate the Gurson porous plasticity model and subsequently 

calibrate typical fracture criteria.  
4. Ballistic tests are performed using 7.62 mm bullets to determine the ballistic properties of the alloy. 
5. Numerical simulations of the ballistic impact experiments are carried out in the IMPETUS Afea Solver 

and Abaqus/Explicit. 
6. The numerical results are compared and discussed in relation to the experimental findings. 
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Abstract

The main objective of this thesis was to investigate the ballistic properties of an isotropic
AlMgSi aluminium alloy both experimentally and numerically. Uncoupled and coupled
fracture models were calibrated using micromechanical unit cells and existing material
data, to model ductile fracture in the alloy.

Ballistic impact experiments were conducted on 30 mm thick plates at the Department
of Structural Engineering at NTNU, using the steel core of 7.62 mm APM2 bullets. The
Recht-Ipson model was used to obtain the ballistic limit curve, and good correspondence
was seen between the curve and the experimental results. Ductile hole growth proved to
be the dominant failure mechanism for all tests, with negligible fragmentation.

Simplified two-dimensional micromechanical cells were analysed for different Lode pa-
rameters and triaxialities to calibrate the Cockcroft-Latham, Johnson-Cook and Gurson-
Tvergaard-Needleman (GTN) failure models. The calibrations were done with either a
von Mises yield criterion or GTN in the matrix material, resulting in lower failure strains
for the latter.

Numerical analyses of the ballistic impacts were conducted in both IMPETUS Afea Solver
and Abaqus/Explicit. A parameter study investigating the effects of strain rate, temper-
ature and friction, concluded that friction had the largest influence on the ballistic limit
velocity. Abaqus analyses gave the overall best correspondence with the experimental
data, with only minor deviations between the fracture models. These deviations were
probably due to the dominating temperature erosion criterion. Larger differences were
seen between the models for the IMPETUS analyses. Both IMPETUS and Abaqus were
able to recreate the deformation pattern seen in the experimental tests. The use of mi-
cromechanical cells for numerical modelling of ductile fracture is considered promising.
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1 Introduction

Aluminium alloys are often used as an alternative to steel in protective structures due to
their good energy absorption capability, high specific strength, low density, good corrosion
resistance and good thermal conductivity [1]. Such alloys are particularly interesting in
the fields of engineering based on lightweight structures, e.g., the automotive, aviation
and military industries. The need for lightweight fortification for defence purposes is
increasing [2], and for the design to be optimal regarding energy absorption there is a
strong need of exact, efficient and robust constitutive equations and fracture models.

To fully elaborate the material properties of a given metal, extensive testing is needed
to account for different loading cases. Typically this includes subjecting the material
to tension, compression, shear, impact and explosion loading. It is therefore desirable to
simplify the preliminary structural design phase, by minimizing the need of comprehensive
material testing, and instead use existing data or simple material tests to establish the
material model.

Lightweight aluminium structures are often designed to absorb energy due to impact
loading, such as ballistic impacts. Previous research at SIMLab investigated the material
behaviour of different aluminium alloys subjected to impact loading [1, 3, 4]. It was
concluded that by taking areal mass into account, high-strength aluminium alloys may
have equally good or even better perforation resistance than steel. Other recent studies
indicated that the ballistic properties of plates are highly dependent on both material
strength and local ductility [5, 6].

Ductile fracture in metals is governed by void nucleation, growth and coalescence. For
high-strength aluminium alloys the strength is often obtained at the expense of ductility,
which makes modelling of ductile fracture important [7]. To properly investigate the
ductile fracture mechanism, micro-scale modelling has been used in several studies to
examine void growth especially [8–12]. The main idea of micro-scale modelling is to reduce
the number of material tests needed for determining a material’s fracture properties. A
reduction in number of extensive material tests will result in a more effective and profitable
design phase.

The study on micro-scale material behaviour used in the present investigation is based
on a review paper by Benzerga and Leblond [13]. The first analytical descriptions of void
growth were given in the late 60’s by McClintock [14] and Rice and Tracey [15]. The
porous plasticity model developed by Gurson [16] in 1977 founded the constitutive frame-
work on analysis of ductile fracture on a micro level. The Gurson model was later modified
by both Tvergaard and Needleman [17] and Nahshon and Hutchinson [18], amongst oth-
ers, to account for strain hardening, void interacting effects and softening due to shear.
A study was performed by Gao and Kim [19] regarding the effect of different void shapes,
which proved to be significant for void growth and coalescence.

1



2 CHAPTER 1. INTRODUCTION

To get a better understanding of how ductile fracture in aluminium alloys influences
the response of structures under impact loading, and what causes these fractures, it is
desirable to use micro-scale models to avoid comprehensive material testing. The mi-
cromechanical unit-cell approach and the Gurson porous plasticity model can be coupled
to give phenomenological descriptions of fracture commonly used in impact analyses, i.e.,
the Cockcroft-Latham and Johnson-Cook fracture models [20, 21]. This coupling between
micro- and macro analyses for ballistic impacts is a relatively unexplored field of science,
and this thesis will hopefully provide some new insight into ductile fracture modelling.

In this thesis, the ballistic properties of isotropic 30 mm thick circular AlMgSi-plates
are investigated both experimentally and numerically. This aluminium alloy is consid-
ered ideal for coupling of micromechanical modelling with common phenomenological
approaches used in structural problems such as impact events, due to its isotropic mate-
rial behaviour. The main objective is to calibrate different fracture models, both coupled
and uncoupled, using computational unit cells and existing material data. These fracture
models will be used in the numerical analyses for reproduction of the ballistic impacts.

This master thesis aims at using IMPETUS Afea Solver and Abaqus/Explicit to reproduce
ballistic impacts from experimental tests. To be able to properly describe the material be-
haviour, tensile tests are conducted and investigated. Numerical analyses on micro-scale,
using computational unit cells, are used to map the material behaviour by applying dif-
ferent loading cases. The microscopic unit cell results are to be connected to macroscopic
fracture models, using MATLAB for the calibration process. These calibrated fracture
models will further form the basis of the material used in the numerical analysis in IM-
PETUS. To verify the results from the IMPETUS analyses, an identical model is made
in Abaqus.

An overview of the different chapters in this thesis is presented below.

Chapter 2 - Theory: This chapter contains relevant theoretical background for this
thesis. It includes an introduction to impact dynamics, materials mechanics, microme-
chanical computational cells and some information on finite element analysis and codes.

Chapter 3 - Experimental Study: Describes the material at hand, the experimental
setup and results from both tensile tests and ballistic impact tests, as well as macro-and
microscopy of the target material.

Chapter 4 - Micromechanical Modelling: Description of the three different two-
dimensional computational unit cells studied in this thesis. The results from the analyses
are presented, as well as a comparison with three-dimensional cell data.

Chapter 5 - Calibration of Fracture Models: The results obtained from the tensile
tests and the computational unit cell study are used to calibrate the Cockcroft-Latham,
Johnson-Cook and Gurson-Tvergaard-Needleman fracture models. The fracture parame-
ters are calibrated using a non-linear least-square algorithm, and a thorough discussion
of the results is presented in the final section.

Chapter 6 - Preliminary Numerical Study: Description of the preliminary numerical
study executed to investigate the influence of different parameters on the perforation
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process. A pinhole study was conducted, as well as an investigation of different element
erosion techniques in IMPETUS Afea Solver. A limited mesh sensitivity study is also
presented.

Chapter 7 - Numerical Analyses of Ballistic Impacts: Presentation and discussion
of the results from numerical analyses using all three fracture models. A comparison of
the deformation pattern with the experimental tests studied in the macroscopy is also
presented.

Chapter 8 - Concluding Remarks: This chapter contains an assessment of the ex-
perimental and numerical results in this thesis.

Chapter 9 - Future Work: Suggestions for further work on the topic of full scale
modelling of aluminium is given.





2 Theory

In this chapter some relevant theoretical background is presented. First, an introduction
to impact dynamics is given, followed by a section presenting relevant relations of materials
mechanics. Further, a section is dedicated to the micromechanical unit cell modelling
approach. Lastly, a brief introduction to the finite element method, as well as IMPETUS
Afea Solver and SIMLab Metal Model, is given.

2.1 Impact Dynamics

”Structural impact is defined as the collision between two or more solids, where the inter-
action between the bodies may be elastic, plastic or fluid, or any combination of these”
[2]. There are two important features that distinguish impact dynamics from other disci-
plines of classical mechanics which operates under quasi-static conditions; inertia effects
and stress wave propagation. The governing equations, based on fundamental conser-
vation laws of mechanics and physics, must include inertia effects to properly describe
the structural impact problem. Stress wave propagation must be taken into account due
to the fact that most impact events are highly transient phenomena, which may not
have steady-state conditions. In addition, the short impact introduce effects that are
not observed in quasi-statically loaded materials, such as thermal softening, strain rate
dependency and hydrodynamic material behaviour.

An impact phenomenon may be influenced by several factors, such as impact angle, impact
velocity, target and projectile geometry and material characteristics. These factors may
yield different fracture modes in the target, which will be further discussed in Section 2.1.1
that presents some relevant definitions used in structural impact dynamics. Sections 2.1.2
and 2.1.3 present the ballistic limit velocity and the Recht-Ipson model, respectively.

2.1.1 Terminology

Ballistics is in modern science defined as the study of motion, forces and impact of free-
flying projectiles, especially those discharged from firearms or guns. The science of bal-
listics can be divided into three main research areas [2]:

1. Interior: Study of the motion and forces acting on an object when it is still inside
the launcher.

2. Exterior: Study of the motion and forces acting on an object during free flight.

3. Terminal: Study of the interaction between object and target during impact.

5



6 CHAPTER 2. THEORY

This thesis focuses only on terminal ballistics, since this is the area of interest in fortifi-
cation, i.e., structures used for additional strengthening [2].

Projectiles are according to Zukas [22] any item that can be launched. They can be
characterized as soft, semi-hard or hard depending on the degree of deformation during
impact and the material used. Figure 2.1 illustrates some typical projectiles with different
projectile nose shapes.

d

(a) Flat ended

d θ

(b) Conical ended

d

(c) Ogival ended

d
d/222/2/

(d) Hemispheri-
cal ended

d1

L

d2

(e) Truncated cone
ended

Figure 2.1: Different projectile nose shapes, adapted from Børvik [2].

The target can be defined as any object, moving or stationary, that is struck by the
projectile. Backman and Goldsmith classifies targets by its thickness in four different
categories [23]:

1. Semi-infinite: No influence of the distal boundary on the penetration process.

2. Thick: The distal boundary influence the penetration process only after substantial
travel into the target.

3. Intermediate: Rear surface exerts considerable influence on the deformation process
during nearly all of the penetrator motion.

4. Thin: Nonexisting stress and deformation gradients throughout the target thickness.

Penetration is defined as the entry of a projectile into any region of a target [2]. As
mentioned earlier in this section, several factors may affect the penetration and fracture
process, and hence result in different failure modes for the target material. The failure
mechanisms are highly dependent on variables such as the projectile impact velocity, ma-
terial properties and relative dimensions of projectile and target, as well as the target
support. The target impact response can be divided into non-perforating and perforating
failure modes, respectively. The non-perforating failure modes include elastic deforma-
tion, plastic deformation and cratering. These mechanisms do not result in complete
perforation of the target, and often occur for low impact velocities. There are two types
of transverse deformation caused by plastic deformation for thin plates; bulging and dish-
ing. Bulging is referred to as deformation that conforms with the procetile nose, while
dishing is bending of the plate caused by the impact. These two deformation modes
become less significant for thicker plates, where cratering is the dominant failure mode.
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Perforating failure modes occur in thin and intermediate plates where the impact velocity
is above a critical velocity, determined by the target material and geometry. The most
frequent fracture modes for thin and intermediate plates are illustrated in Figure 2.2,
adapted from Backman and Goldsmith [23]. These failure modes often have one dominant
failure mechanism, but may be a combination of several modes. The reader is referred to
Børvik [2] for further information regarding the perforating failure modes.

(a) Brittle fracture (b) Fragmentation (c) Plugging

(d) Ductile hole
growth

(e) Radial fracture (f) Petalling

Figure 2.2: Common failure modes in impacted target plates, adapted from Backman and Gold-
smith [23].

Although several factors affect the ballistic impact process, the impact velocity is consid-
ered the predominant factor. Backman and Goldsmith [23] classified the impact velocities
in the following regimes:

1. Low velocity regime (0-50 m/s): Elastic and plastic bending controls the deforma-
tion.

2. Sub-ordnance velocity regime (50-500 m/s): Hard projectiles behave elastically and
the target response is primarily plastic.

3. Ordnance velocity regime (500-1300 m/s): The material strength is an important
parameter, but the density gets gradually more important with increasing velocity.
This range is particularly interesting for military applications.

4. Ultra-ordnace velocity regime (1300-3000 m/s): The materials often behave like
fluids, hence a hydrodynamic description of the material behaviour is necessary.
The material density is a dominant parameter.

5. Hypervelocity regime (>3000 m/s): Both projectile and target behave like fluids,
and the material strength is no longer important.

Our problem operates with velocities in the sub-ordnance and ordnance regimes.
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2.1.2 Ballistic Limit Velocity

The ballistic limit velocity, vbl, is defined as the maximum velocity a projectile can have for
a given target to be able to withstand complete penetration. The ballistic limit velocity
can be estimated as the average of the highest velocity that only gives partial penetration,
and the lowest velocity that yields complete perforation.

Figure 2.3 illustrates a typical ballistic limit curve, limit velocity and limit line for a
penetration process of a thin plate. The ballistic limit curve is obtained by plotting
the initial/impact velocity against the residual velocity, and drawing a continuous line
between the points. This is often compared with the ballistic limit line, which represents
the ballistic limit curve for a target with zero thickness.
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Figure 2.3: Ballistic limit curve, ballistic limit velocity and ballistic limit line.

2.1.3 The Recht-Ipson Model

Recht and Ipson [24] proposed a model for the relationship between impact and resid-
ual velocities in 1963. The model is based on the concepts of energy and momentum
conservation, and includes the ballistic limit. The energy balance yields

1
2mpv

2
i = 1

2mpv
2
r +D (2.1)

where vi is the impact velocity, vr is the residual velocity, mp is the mass of the projectile
and D is the dissipated energy in the impact. Further in this derivation an ogival or
conical projectile is assumed. These projectiles are assumed to yield ductile hole growth,
hence no fragmentation. Setting the impact velocity equal to the ballistic limit velocity,
vbl, and the residual velocity equal to zero Equation 2.1 yields

D = 1
2mpv

2
bl (2.2)
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Assuming D constant for impact velocities different from the ballistic limit velocity, in-
serting Equation 2.2 into Equation 2.1 and rearranging yields the Recht-Ipson model for
ogival and conical projectiles.

vr = (v2
i − v2

bl)
1
2 (2.3)

A modified version of the Recht-Ipson model was established by Lambert and Jonas [22],
and is given as

vr = a(vpi − v
p
bl)

1
p (2.4)

where a and p are constants.

2.2 Materials Mechanics

In this section, some fundamental theories of mechanics of materials is presented. First,
a few sections are dedicated to experimental measures and stress invariants. Further, two
sections are devoted to ductile fracture and damage mechanics, respectively. Lastly, an
overview of three different fracture models used in this thesis is presented. Most of this
section is based on Hopperstad and Børvik [25].

2.2.1 Experimental Measures

To analyse data obtained from tensile tests, the Cauchy stress and logarithmic strain need
to be calculated. The Cauchy stress, σ, and logarithmic strain, εl, are defined as

σ = F

A
, εl = ln A0

A
(2.5)

where F is the force, A0 is the initial cross-sectional area and A is the current cross-
sectional area of the gauge section of the given test specimen. Small elastic strains are
assumed, hence the tensile test is presumed to be isochoric. This thesis focuses only on
smooth specimens with circular cross sections, cf. Section 3.2.1, hence the current area is
assumed to be elliptical. The area is calculated by using the following definitions

A0 = π

4D
2
0, A = π

4D1D2 (2.6)

where D0 is the initial diameter of the gauge section and D1,2 are measured diameters in
perpendicular directions. Plastic strain is calculated by using the following expression

εp = ε− σ

E
(2.7)

where ε is the total strain and E is Young’s modulus. After necking occurs, there is no
longer a uniaxial stress state in the test specimen, i.e., the true stress is not equal to the
equivalent stress after the point of necking. The equivalent stress after necking can be
calculated by using the Bridgman correction

σeq = σt

(1 + 2Ra )[ln(1 + a
2R )]

(2.8)
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where a is the specimen radius at the neck and R is the neck radius. Note that a number
of assumptions have been made to obtain the expression in Equation 2.8. The reader is
referred to Bridgman [26] for further information. An empirical expression for the ratio
a/R was proposed by Le Roy et al. [27]

a

R
= 1.1(εp − εu), εp > εu (2.9)

where εu is the equivalent plastic strain at necking.

2.2.2 Stress Invariants

For an isotropic material the following three stress invariants are important for describing
the stress state; the von Mises stress σV M , stress triaxiality ratio σ∗ and the Lode angle
θL. These invariants are defined in this section, and used later in the derivations of the
Cockcroft-Latham (CL) and Johnson-Cook (JC) fracture models presented in Sections
2.2.6.1 and 2.2.6.2, respectively. The stress tensor can be divided into a deviatoric and a
hydrostatic part

σij = σ
′

ij + σHδij , σH = 1
3σkk = 1

3(σI + σII + σIII) (2.10)

where σI ≥ σII ≥ σIII are the ordered principal stresses. From the deviatoric part of the
stress tensor the von Mises stress can be defined as

σV M ≡
√

3J2 =
√

3
2σ
′
ijσ
′
ij (2.11)

where J2, the second principal invariant of the deviatoric stress tensor σ′ , can be expressed
as

J2 = 1
2σ
′

ijσ
′

ij = 1
2

[
(σI − σH)2 + (σII − σH)2 + (σIII − σH)2

]
(2.12)

The stress triaxiality σ∗ is a non-dimensional parameter describing the ratio between the
hydrostatic and the von Mises stress, defined as

σ∗ ≡ Iσ

3
√

3J2
= σH

σV M

(2.13)

Figure 2.4 illustrates the Lode angle θL in the Π-plane in the Haigh-Westergaard space.
The angle is defined as

cos(3θL) ≡ J3

2
√

(J2/3)3
(2.14)

where J3 represents the third principal invariant of the deviatoric stress tensor σ′ . Hop-
perstad and Børvik [25] defines the Lode angle in the range from 0 < θL <

π
3 , while others

like Gao and Kim [19] use the range −π6 < θL < π
6 . In this thesis we have chosen the

former definition.
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(b)

Figure 2.4: (a) von Mises yield surface and (b) identification of generalized tension (GT),
generalized shear (GS), generalized compression (GC) and the Lode angle (θL) in the Π-plane in
the Haigh-Westergaard space, adapted from Hopperstad and Børvik [25].

2.2.3 Ductile Fracture

Anderson [28] characterises the ductile fracture process of metals by the following three
stages:

1. Formation of a free surface at an inclusion or second-phase particle by either inter-
face decohesion or particle cracking.

2. Growth of the void around the particle, by means of plastic strain and hydrostatic
stress.

3. Coalescence of the growing void with adjacent voids.

Figure 2.5 illustrates the complete process of ductile fracture, as described above. The
formation of micro voids, cf. Figures 2.5(a) and 2.5(b), occur when the interfacial bonds
between the particle and the matrix break. In order to achieve this, a sufficient amount of
stress must be applied. The critical step in ductile fracture is determined by the amount
of stress needed to break these interfacial bonds. If the bonds are strong, a high amount
of stress is needed for void nucleation and fracture will occur shortly after the voids form.
Weak interfacial bonds, on the other hand, will result in fracture properties that are
controlled by growth and coalescence of voids. Note that voids may be present in the
initial material.

Once voids have been formed, hydrostatic stress and further plastic straining cause void
growth and coalescence of adjacent voids. Coalescence takes place when neighbouring
voids join together and form macro-cracks in the material. It is considered a precursor
for failure, i.e., when the material suffers a total loss of load-carrying capacity [25]. These
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steps are shown in Figures 2.5(c)-2.5(f). Note that the orientation of the fracture path is
dependent on the stress state [28].

(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Void nucleation, growth and coalescence in ductile metals: (a) inclusions in a
ductile matrix, (b) void nucleation, (c) void growth, (d) strain localization between voids, (e)
necking between voids , and (f) void coalescence and fracture. Adapted from Anderson [28].

2.2.4 Damage Mechanics

Ductile fracture models should contain a criterion for void nucleation, an evolution equa-
tion for void growth and a criterion for void coalescence [29]. In damage mechanics the
damage parameter ω is introduced in the strain energy function for the elastic-plastic
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model as
U0(εe, ω) = (1− ω)1

2ε
e
ijCijklε

e
kl (2.15)

where the strain tensor ε is divided into an elastic part εe and a plastic part εp, and C is
the 4th order tensor of elastic constants. The Cauchy stress tensor σ can then be derived
from the strain energy function as

σij = ∂U0

∂εeij
= (1− ω)Cijklεekl (2.16)

The effective stress tensor σ̃ acting on the hypothetical undamaged part of the material
can be expressed as

σ̃ij = σij
1− ω = Cijklε

e
kl (2.17)

The yield function is defined as for rate independent plasticity without damage, but
instead of the Cauchy stress tensor, the effective stress tensor is now applied such that

f(σ̃, R) = ϕ(σ̃)− (σ0 +R(p)) ≤ 0 (2.18)

where σ0 is the initial yield stress and R the isotropic hardening variable depending on
the accumulated plastic strain, p. For a Voce hardening rule with two terms R(p) can be
expressed as

R(p) =
2∑
i=1

Qi(1− e−Cip) (2.19)

where Q1, Q2, C1 and C2 are material constants. The effective equivalent stress is given
as

σ̃eq = ϕ(σ̃) = ϕ(σ)
1− ω = σeq

1− ω (2.20)

By applying the von Mises yield criterion the effective equivalent stress can be expressed
as presented in Equation 2.20, where σeq = σV M , as defined in Equation 2.11. The
equivalent stress is conjugate in plastic power to the accumulated plastic strain, such
that σij ε̇pij = σeqṗ. Implementing an associated flow rule, the plastic strain rate can be
expressed as

ε̇pij = λ̇
∂f(σ̃, R)
∂σij

= λ̇

1− ω
∂f(σ̃, R)
∂σ̃ij

(2.21)

where the plastic multiplier λ̇ ≥ 0 is related to the accumulated plastic strain as

p =
∫

λ̇

1− ωdt (2.22)

In order to describe how the damage parameter evolves, a damage evolution rule needs
to be defined

ω̇ =
{

0 if p ≤ p0

Hωṗ if p > p0
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where Hω is the damage modulus and p0 is a characteristic strain where damage starts
to evolve. When the damage parameter reaches a critical value ωc ≤ 1 the material is
assumed to fail. The damage modulus Hω is often dependent on the effective stress tensor
σ̃ seen in the following sections.

When studying ductile fracture, one can choose between a coupled and an uncoupled
approach. In an uncoupled damage model, it is assumed that damage has a negligible
effect on the elastic-plastic constitutive equations, i.e., the yield condition, the plastic
flow and the strain hardening of the material.

For uncoupled models, the damage parameter ω is neglected, ergo set to zero in Equations
2.15-2.22. In practice, this implies that no damage occurs in the material prior to fracture.
Coupled damage models, on the other hand, account for material damage evolution prior
to fracture. The coupled models are assumed to be more accurate than the uncoupled,
but the identification of parameters from test data is more troublesome.

Section 2.2.6 presents two different uncoupled damage models, the Cockcroft-Latham
and Johnson-Cook fracture models. Further, a coupled model, the Gurson-Tvergaard-
Needleman (GTN) model, is described in Section 2.2.7.

2.2.5 Johnson-Cook Material Model

In 1983, Johnson and Cook [30] proposed a model for the von Mises flow stress expressed
as

σeq = [A+Bpn] [1 + C ln ṗ∗] [1− T ∗m] (2.23)

ṗ∗ = ṗ

ṗ0
, T ∗ = T − T0

Tm − T0

where ṗ∗ is the dimensionless plastic strain rate obtained from the plastic strain rate ṗ
and a reference plastic strain rate ṗ0. A, B, C, m and n are material constants. The ho-
mologous temperature T ∗ is given by the current temperature T, the melting temperature
Tm and the ambient temperature T0. Assuming adiabatic conditions, high plastic strain
rates in the material yield an increase in temperature. This increase can be calculated as

∆T =
∫ p

0
χ
σeqdp

ρCp
(2.24)

where ρ is the material density, Cp is the specific heat capacity at constant pressure and
χ is the Taylor-Quinney empirical coefficient that is often assigned the value 0.9 [31].

To avoid undesirable effects if ṗ < 1, Camacho and Ortiz [32] proposed a modification of
the strain rate term in the JC model (MJC) [31].

σeq = [A+Bpn] [1 + ṗ∗]C [1− T ∗m] (2.25)

As seen in Equation 2.25, the strain hardening is found using the Power law. The Voce
hardening law has proved better for describing the material behaviour for aluminium [33].
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By substituting the Voce hardening law presented in Equation 2.19 into Equation 2.25
one obtains the final expression for the MJC model

σeq =
[
A+

j∑
i=1

Qi(1− e−Cip)
]

[1 + ṗ∗]C [1− T ∗m] (2.26)

where j corresponds to the total number of Voce terms, and Qi and Ci are Voce hardening
parameters. In this thesis, we have used j = 2.

2.2.6 Fracture Models

When analysing the response of stuctures that exhibit large plastic deformations, a frac-
ture criterion is needed to accurately describe the material behaviour. This section de-
scribes two different uncoupled models for material failure; the Cockcroft-Latham and
Johnson-Cook fracture models.

2.2.6.1 Cockcroft-Latham Fracture Model

A phenomenological ductile fracture criterion was proposed by Cockcroft and Latham
[20] in 1968. This one-parameter criterion states that the damage parameter depends on
plastic straining, stress triaxiality and the Lode angle, through the maximum principal
stress.

The Cockcroft-Latham criterion is given by

ω = 1
Wc

∫ p

0
〈σI〉dp (2.27)

where Wc is a material constant that represents the ”plastic work” needed to reach failure
and σI is the maximum principal stress. 〈σI〉 is defined as

〈σI〉 =
{
σI if σI > 0
0 if σI ≤ 0

Fracture is assumed to occur when the dimensionless damage variable, ω, equals unity.
The real plastic work is calculated from the equivalent stress, but as stated, the CL-
criterion is based on the maximum principal stress, hence the quotation marks. The first
prinicpal stress can be expressed in terms of the triaxiality and Lode parameter as follows

σI =
(
σ∗ + 3− µσ

3
√

3 + µ2
σ

)
σeq (2.28)

where σeq equals the von Mises stress, σV M , and the Lode parameter is defined as

µσ =
√

3 tan
(
θL −

π

6

)
= 2σII − σI − σIII

σI − σIII

(2.29)
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From Equation 2.29, we obtain the following values for the Lode parameter for three
generalized stress states

µσ =

 +1 Generalized compression, σI = σII

0 Generalized shear
−1 Generalized tension, σII = σIII

By inserting the expression in Equation 2.28 into Equation 2.27, and assuming σI ≥ 0,
we get the following

ω = 1
Wc

∫ p

0

(
σ∗ + 3− µσ

3
√

3 + µ2
σ

)
σeqdp (2.30)

It is seen from Equation 2.30 that the CL-criterion depends on both the flow stress of the
material, the Lode parameter, the accumulated plastic strain and the stress triaxiality
[29]. As stated earlier in this chapter, fracture occurs at certain critical values of the
”plastic work” Wc and plastic strain pf , that yield ω = 1. The CL-criterion at fracture
can be expressed as

ω = 1
Wc

∫ pf

0
(σ∗ + µ̄) · (σ0 +R(p)) dp = 1 (2.31)

where pf is the plastic strain at fracture, σ0 is the yield stress of the material and R(p)
a work-hardening rule that is a function of the accumulated plastic strain. By using the
Voce hardening rule with two terms, and rearranging the expression in Equation 2.31, we
obtain the following expression for the relation between the stress triaxiality and plastic
strain at failure

σ∗ = Wc

H
− µ̄, µ̄ = 3− µσ

3
√

3 + µ2
σ

(2.32)

where H is given as

H = σ0pf +
2∑
i=1

(
Qipf + Qi

Ci
(e−Cipf + 1)

)
(2.33)

2.2.6.2 Johnson-Cook Fracture Model

Johnson and Cook [21] proposed an uncoupled fracture model that accounts for the effects
of temperature and plastic strain rate [25]. As for the CL-criterion, fracture is assumed
to occur when the damage variable ω equals unity. The damage variable is defined as
follows for the Johnson-Cook fracture model

ω =
∫ p

0

1
pf

dp (2.34)

where the fracture strain pf is defined for stress paths that have constant values for the
Lode angle and stress triaxiality, given an existing fracture surface. By introducing the



2.2. MATERIALS MECHANICS 17

Lode angle in the original JC fracture model [21], we obtain the extended JC fracture
model

pf (σ∗, θL, ṗ, T ) = [D1 +D2 exp(D3σ
∗)] (1 +D4 ln ṗ∗) (1 +D5T

∗) [1−D6κ(θL)] (2.35)

where D1,D2,...,D6 are model constants. κ is a stress-dependent parameter defined as

κ(θL) ≡ 1− cos2(3θL), 0 ≤ θL ≤
π

3 (2.36)

From Equation 2.36 it is seen that κ ∈ [0, 1], where κ = 0 represents all axisymmetric
stress states and κ 6= 0 all other stress states with a combination of hydrostatic and shear
stresses. The κ parameter was introduced by Nahshon and Huctchinson [18] regarding
shearing of voids in the coupled Gurson model. This modification of the GTN model is
presented in Section 2.2.7.2.

For a problem independent of both the plastic strain rate ṗ∗ and the temperature T ∗, the
corresponding model constants D4 and D5 are equal to zero. The relationship between
the Lode parameter and the Lode angle is given by Equation 2.29, and by using this we
can rewrite κ in terms of the Lode parameter as

κ(µσ) = 1− cos2
(

3 arctan
(
µσ√

3

)
+ π

2

)
(2.37)

By using the relation presented in Equation 2.37, Equation 2.35 can be written as

pf (σ∗, µσ) = (D1 +D2 exp(D3σ
∗))
[
1−D6

(
1− cos2

(
3 arctan

(
µσ√

3

)
+ π

2

))]
(2.38)

2.2.7 Porous Plasticity

Ductile fracture is, as mentioned in Section 2.2.3, characterized by three stages; nucle-
ation, growth and coalescence of voids and micro-cracks. ”In porous plasticity models,
a macroscopic material element is assumed to consist of a matrix material and voids”
[25]. Porous metals are characterised by pressure sensitivity and compressible plastic
flow. Both volumetric and deviatoric plastic strains develop under straining, and due to
occurring work-hardening under void growth and nucleation there is a continuous compe-
tition between isotropic work-hardening of the matrix and softening due to nucleation and
growth of voids [25]. Note that in a coupled damage model such as the Gurson-Tvergaard-
Needleman model presented in Section 2.2.7.1, the damage parameter is directly coupled
to the volume fraction of voids, i.e., ω = f .

2.2.7.1 The Gurson-Tvergaard-Needleman Model

Gurson [16] developed in 1977 a porous plasticity model based on micro-mechanics of
voided materials, that was later modified by Tvergaard and Needleman [9, 10, 17]. The
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Gurson-Tvergaard-Needleman (GTN) extension is valid for metallic materials that is con-
sidered to be porous and isotropic. The yield function is defined as

f(σ, ω, σM ) =
σ2
eq

σ2
M

+ 2ωq1 cosh
(
q2σkk

2σM

)
− 1− (ωq1)2 ≤ 0 (2.39)

where q1 and q2 are material constants, typically q1 = 1.5 and q2 = 1.0 [17], ω is the
void volume fraction, σM is the flow stress of the matrix material and σeq =

√
3
2σ
′
ijσ
′
ij is

the equivalent macroscopic Cauchy stress. It is easily seen that when ω = 1/q1, the yield
surface, expressed by Equation 2.39, collapse to a single point. The material then lose all
its load carrying capacity. The original Gurson model is obtained when q1 = q2 = 1.

By assuming associated plastic flow, the plastic strain rate can be divided into volumetric
and deviatoric parts as follows

ε̇pij = λ̇
∂f

∂σij
= λ̇

(
3
σ2

M

σ
′

ij + ωq1q2

σM

sinh
(
q2σkk

2σM

)
δij

)
(2.40)

where the first term on the right-hand side represents the deviatoric part and the second
term the volumetric part. Note that for the GTN model, the yield function is not a ho-
mogeneous function of order one, and hence the plastic multiplier, λ̇, is not dimensionless.

As described in Section 2.2.3, hydrostatic stress and plastic straining cause void nucleation
and growth. The change of the void volume fraction can be expressed as

ω̇ = ω̇n + ω̇g ∼= ω̇g (2.41)

where ω̇n and ω̇g represent void nucleation and growth, respectively. In this thesis the
statistical nucleation term in Equation 2.41 was neglected, i.e., it was assumed that all
change in void volume fraction was due to growth of existing voids. The reader is referred
to Hopperstad and Børvik [25] and Benzerga and Leblond [13] for further information
regarding the nucleation term.

The void growth equation, using the assumption in Equation 2.41, is given as

ω̇ ∼= ω̇g = λ̇ (1− ω) 3ωq1q2

σM

sinh
(
q2σkk

2σM

)
(2.42)

A simple fracture criterion for the GTN model is that fracture initiates at a critical value
of the void volume fraction, i.e., ω = ωC . For ω > ωC , a modified void volume fraction is
often used to simulate rapid loss of strength in the final stages of void coalescence. This
rapid loss of stress carrying capacity can be expressed in terms of an effective void volume
fraction, defined by Tvergaard and Needleman [17], as

ω∗(ω) =
{
ω for ω ≤ ωC

ωC + ωU −ωC

ωF −ωC
(ω − ωC) for ω > ωC

where ωU = 1/q1 and ω∗(ωF ) = ωU . ωF represents the void volume fraction where the
material has completely lost its load-carrying capacity.
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2.2.7.2 The Modified Gurson Model with Softening in Shear

To properly describe damage evolution for low triaxialities, such as shear-dominated stress
states, Nahshon and Hutchinson [18] proposed an extension of the Gurson model that
accounts for shear softening due to void distortion and inter-void linking. The void
growth equation for the modified Gurson model is expressed as

ω̇ = ω̇n + ω̇g + ω̇s ∼= ω̇g + ω̇s (2.43)

The evolution of shear damage ωs defined as

ω̇s = ksωκ(θL)
σ
′

ij
˙εpij

σeq
(2.44)

where ks is a constant and κ is defined as in Equation 2.36. Note that for the modified
Gurson model the damage variable accounts for softening of the material due to void
distortion and growth, ergo ω 6= f .

2.3 Micromechanical Computational Cells

As presented in Section 2.2.3, the ductile fracture process goes through three defined
stages where growth of voids and coalescence are essential parts. One way of calibrating
the fracture models presented in Sections 2.2.6.1 and 2.2.6.2 is to use micromechanical
computational unit cells. The cells can also be used for calibrating void growth models
such as the GTN model, presented in Sections 2.2.7.1 and 2.2.7.2.

The computational cells illustrated in Figure 2.6 are microscopic cells the macroscopic
continuum is composed of. Each cell represents a characteristic volume element. The
cell is composed of a single void or particle, and a surrounding ductile matrix. The
microscopic cell boundaries must be constrained to remain straight during deformation,
such that the cells fit together in an array.

2.3.1 Macroscopic versus Microscopic

The microscopic cell matrix is subjected to macroscopic stresses and strains, denoted by
capital Greek letters in this section. The von Mises equivalent stress defined in Section
2.2.2 can now be written in terms of the macroscopic quantities as

Σeq =
√

1
2

[
(Σ11 − Σ22)2 + (Σ22 − Σ33)2 + (Σ33 − Σ11)2

]
(2.45)

where Σ11,Σ22 and Σ33 are the stress components acting on the cell. The work conjugate
equivalent von Mises strain is defined as

Eeq = 2
3

√
1
2

[
(E11 − E22)2 + (E22 − E33)2 + (E33 − E11)2

]
(2.46)



20 CHAPTER 2. THEORY

Figure 2.6: Macroscopic continuum consisting of microscopic unit cells with a void or a particle.
Adapted from Benzerga and Leblond [13].

where E11, E22 and E33 are the logarithmic strains in the principal directions. The hy-
drostatic or mean stress can be defined, as in Section 2.2.2, for the macroscopic stresses
as

ΣH = 1
3(Σ11 + Σ22 + Σ33) (2.47)

Hence the triaxiality ratio can now be expressed as

σ∗ = ΣH

Σeq
(2.48)

The cell matrix is composed of an elastic-plastic material with isotropic hardening. The
microscopic stresses and strains inside the cell follow a von Mises yield criterion and an
associated flow rule.

2.3.2 Simplifications

The three-dimensional computational cell can be simplified in a number of ways. In this
section two such simplifications are presented; the axisymmetric cell and the plane strain
cell.

2.3.2.1 Axisymmetric Cell

In this section the axisymmetric computational cell is presented and important parameters
defined. For the axisymmetric cell, shown in Figure 2.7, the stresses and strains in the
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circumferential direction are equal to the ones in the radial direction, hence Σ22 = Σ11
and E22 = E11. Using this, Equations 2.45 - 2.48 can be simplified.

Σ22

Σ33

Σ11

(a)

r0

R0

H0

x3

x1

(b)

Figure 2.7: (a) Axisymmetric unit cell and (b) geometry of the axisymmetric cell model.
Adapted from Benzerga and Leblond[13].

The equivalent strain can now be written as

Eeq = 2
3 || E33 − E11 || (2.49)

where E11 and E33 are the logarithmic strains in the x1- and x3-directions, defined as

E11 = ln
( R
R0

)
, E33 = ln

( H
H0

)
(2.50)

The initial radius and height of the axisymmetric cell, R0 and 2H0, are illustrated in
Figure 2.7(b). R and 2H are the deformed radius and height of the cell, respectively. The
equivalent von Mises stress and the hydrostatic stress simplifies to

Σeq =|| Σ33 − Σ11 ||, ΣH = 1
3

(
Σ33 + 2Σ11

)
(2.51)

Inserting this into the definition of the stress triaxiality ratio yields

σ∗ = ΣH
Σeq

= 1 + 2ρ
3 || 1− ρ || , ρ = Σ11

Σ33
(2.52)

where Σ33 > 0 has been assumed. For ρ > 1, the principal stresses will be Σ11 = Σ22 >
Σ33 and the Lode parameter is

µσ = 2ΣII − ΣI − ΣIII

ΣI − ΣIII

= 2Σ11 − Σ11 − Σ33

Σ11 − Σ33
= Σ11 − Σ33

Σ11 − Σ33
= +1 (2.53)
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hence a generalized compression stress state. For ρ < 1, the principal stresses will be
Σ33 > Σ11 = Σ22 and the Lode parameter is

µσ = 2ΣII − ΣI − ΣIII

ΣI − ΣIII

= 2Σ11 − Σ33 − Σ11

Σ33 − Σ11
= Σ11 − Σ33

Σ33 − Σ11
= −1 (2.54)

hence a generalized tension stress state. The initial void volume fraction for the axisym-
metric cell can be determined by

f0 = Vv0

V0
=

4πr3
0

3
2πR2

0H0
= 2r3

0
3R2

0H0
(2.55)

where Vv0 is the initial void volume, V0 is the total initial volume of the cell and r0 is the
initial radius of the void.

2.3.2.2 Plane Strain Cell

As for the axisymmetric cell model, this section presents important parameters for the
plane strain cell model. Figure 2.8 shows the plane strain cell. Note that the void
has a cylindrical shape while the shape for the axisymmetric void is spherical. For the
plane strain cell, the strain in the x2-direction is zero, and hence E22 = 0 and Σ22 =
1
2 (Σ11 + Σ33). Equations 2.45 - 2.48 can again be simplified, here for the plane strain cell.

Σ11

Σ33

Σ22

(a)

r0

R0

H0

x3

x1

(b)

Figure 2.8: (a) Plane strain unit cell and (b) geometry of the plane strain cell model.

The equivalent strain simplifies to

Eeq = 2
3

√(
E33 − E11

)2
+ E11E33 (2.56)

E11 = ln
( R
R0

)
, E33 = ln

( H
H0

)
(2.57)
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The logarithmic strains are defined by the initial and deformed side lengths of the cell,
given as 2R0 and 2H0, and 2R and 2H, respectively. The plane strain cell is illustrated in
Figure 2.8(b). Again the equivalent von Mises stress and the hydrostatic stress simplifies
to

Σeq =
√

3
2 || Σ33 − Σ11 ||, ΣH = 1

2

(
Σ33 + Σ11

)
(2.58)

Now the stress triaxiality ratio can be expressed as

σ∗ = ΣH

Σeq
= 1 + ρ√

3 || 1− ρ ||
, ρ = Σ11

Σ33
(2.59)

assuming Σ33 > 0. For ρ 6= 1, the Lode parameter for the plane strain cell is

µσ = 2ΣII − ΣI − ΣIII

ΣI − ΣIII

= (Σ11 + Σ33)− Σ11 − Σ33

Σ11 − Σ33
= 0

Σ11 − Σ33
= 0 (2.60)

hence a generalized shear stress state. For the plane strain cell, the initial void volume
fraction can be determined from

f0 = Vv0

V0
= πr2

0
4R0H0

(2.61)

2.4 The Finite Element Method

The finite element method (FEM) is a numerical method used for solving boundary value
problems, where non-linear finite element analysis (NFEA) can be used for solving non-
linear problems. In solid mechanics, the continuum is discretized into elements where
the deformation of each element can be described by interpolation functions. Cook [34]
identified three different non-linearities in FEM for solid mechanics:

• Material non-linearity, in which material properties are functions of the state of
stress or strain. Examples include non-linear elasticity, plasticity and creep.

• Contact non-linearity, in which a gap between adjacent parts may open or close, the
contact area between parts changes as the contact force changes, or there is sliding
contact with frictional forces.

• Geometric non-linearity, in which deformation is large enough that equilibrium equa-
tions must be written with respect to the deformed structural geometry. Also, loads
may change direction as they increase, as when pressure inflate a membrane.

Ballistic impact is an example of an event with strong non-linearities, due to presence
of material non-linearities, complex contacts and large deformations. When solving such
non-linear problems, various integration methods that are classified into either implicit or
explicit schemes are available. Both methods have its advantages, but for high-speed non-
linear dynamic problems, explicit time integration is preferable [35]. The time-dependent
equilibrium equation of solid dynamics is given as:

MD̈ + CḊ + Rint = Rext (2.62)
where



24 CHAPTER 2. THEORY

M Mass matrix
C Damping matrix
Rint Internal forces
Rext External forces
D̈ Acceleration
Ḋ Velocity

2.4.1 Explicit Integration Methods

Explicit integration methods are used to solve the dynamic equilibrium equations (Equa-
tion 2.62) based on information that is already known, i.e., information that is directly
obtained at preceding time steps. This implies that no equation solving or equilibrium
iterations are needed to achieve convergence, and the computational time can be rela-
tively low compared to implicit methods for given problems. The main disadvantage with
an explicit method is that it is only conditionally stable, which requires very small time
steps in order to obtain convergence.

”The time step must be small enough such that information does not propagate more than
the distance between two adjacent nodes during a single time step”[35]. For a damped
system, the critical time step is defined as:

∆tcr ≤
2

ωmax

(√
1− ξ2 − ξ

)
(2.63)

where ωmax is the highest natural frequency and ξ represents the damping ratio corre-
sponding to ωmax of the system given in Equation 2.62. A special case of Equation 2.63,
is given as

∆tcr = Le

cd
, cd =

√
E

ρ
(2.64)

where Le is the characteristic length of the smallest element in the FE-mesh and cd is
the dilatational wave speed given in terms of the Young’s modulus and density of the
material. This equation apply for a one-dimensional system without damping and with
a Poisson’s ratio equal to zero.

2.4.2 IMPETUS Afea Solver

”IMPETUS Afea Solver is a software package for non-linear computational mechanics.
It is primarily developed to predict large deformations of structures and components
exposed to extreme loading conditions” [36]. The software package is composed of several
solver modules; the Finite Element module, the Discrete Particle module, the Smoothed
Particle Hydrodynamics module and the WELDSIM module. The Finite Element module
is primarily a non-linear explicit finite element code and is the one used in this thesis.

IMPETUS offers higher order solid elements, with no zero energy modes, that can handle
large deformations. The 64-node hexahedral elements used in IMPETUS are shown in
Figure 2.9.
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Figure 2.9: 64-node hexahedron used in IMPETUS. Adopted from Olovsson [37].

IMPETUS has the option to select graphical processing unit (GPU) parallelization, which
enables the use of thousand of threads such that relatively large analyses can be computed
on a standard computer or workstation. The solver offers only penalty contact and uses
a Lagrangian formulation of motion. The mesh creator is very basic, and can only create
simple geometric shapes. More complex geometries need to be created with a third party
software and the mesh imported to IMPETUS.

2.4.2.1 Element Erosion

Impetus offers the following four ways to deal with damage and element erosion [37]:

1. Failed element is not eroded at material failure but loses its deviatoric properties
and are still able to take hydrostatic stresses.

2. Failed element is eroded at material failure.

3. Node splitting at failure (crack plane orthogonal to max principal strain).

4. Node splitting at failure (crack plane orthogonal to max principal stress).

This thesis focuses only on element erosion of 64-node hexahedra.

For erosion technique 1, the integration points successively lose their deviatoric strength
when they reach the critical damage [38]. The element is not eroded before the critical
time step for the element drops below a predefined value.

Concerning erosion technique 2, the element is eroded when 16 out of the 64 integration
points reach the critical damage [38].

For erosion techniques 3 and 4, the nodes at the element boundary are split or divided in
two to allow for crack propagation and fragmentation. The element is not eroded before
the critical time step for the element drops below a predefined value.

2.4.3 SIMLab Metal Model

The Structural Impact Laboratory (SIMLab) at the Norwegian University of Science and
Technology (NTNU) has over the last years developed several material models that can
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be used in combination with FEA-software, such as Abaqus, LS-DYNA and IMPETUS.
The SIMLab Metal Model (SMM), which is developed for metals and alloys, has been
used in this thesis to describe the AlMgSi material behaviour when performing ballistic
analyses with Abaqus.

The SMM is developed for use with both solid and shell elements, and is particularly useful
when applying different features such as e.g. plasticity, viscoplasticity and thermo(visco)-
plasticity, non-linear isotropic and kinematic hardening as well as criteria for ductile
failure. It is based on several assumptions, such as; small elastic deformations, isotropic
elastic behaviour and isochoric plastic deformation. The reader is referred to the SMM
manual [39] for further information regarding features and assumptions.

The most important features for this thesis are adiabatic heating and criteria for ductile
failure based on damage and temperature. Adiabatic heating of the material yields a
temperature increase in the material that causes thermal softening. This feature was
applied due to use of the JC material model, cf. Section 2.2.5, where the equivalent stress
is a function of the temperature. When applying a fracture criteria, an uncoupled damage
evolution was chosen, i.e., the Cockcroft-Latham fracture criteria, cf. Section 2.2.6.1.

Regarding element erosion for describing fracture and crack propagation in the material,
the SMM presents three possibilities [39]:

1. Critical damage: An integration point fails when the damage variable D reaches its
critical value Dc < 1.

2. Critical temperature: An integration point fails when the temperature reaches a
critical temperature Tc.

3. Critical stress: Fracture occurs if the maximum principal stress σI stays larger than
the critical stress σC during a critical time interval ∆tC .

The three fracture criteria described above can be combined, such that if one of the
applied criteria is reached in an integration point, the stress tensor is set to zero and the
load-carrying capacity of the integration point is gone. The element is eroded when a
user-defined number of integration points of a finite element has failed. For hexahedral
elements in Abaqus, the element is eroded when one integration point fails [40]. In this
thesis a combination of uncoupled damage evolution and the temperature based fracture
criteria was used.



3 Experimental Study

To verify the numerical results presented in Chapter 7, an experimental study of ballistic
impacts was conducted with the main goal of identifying the ballistic limit curve for the
target material. 7.62 mm APM2 bullets were fired into an AlMgSi target plate at multiple
initial velocities. The introductory section in this chapter presents the properties of the
target and bullet materials. The subsequent sections are dedicated to the tensile tests of
the target material and a preliminary numerical study. Further, two sections present the
experimental setup and experimental results from the ballistic impact study. Lastly, a
section is devoted to investigation of the target plate’s macro- and microstructure.

3.1 Target and Bullet Materials

30 mm thick plates of a homogenised aluminium alloy (AlMgSi) were used as targets
during the ballistic impact experiments. The material was provided as a DC-cast (direct
chilled) extrusion ingot with a diameter of 100 mm, produced at the laboratory of casting
facilities at Hydro Aluminium R&D Sunndal [41]. The ingot was cut into 30 mm plates
in the laboratory at the Department of Structural Engineering at NTNU. The dimensions
of the target plate are shown in Figure 3.1.

D = 100 mm

t = 30 mm

Figure 3.1: Geometry of the AlMgSi target plate.

Some physical constants and common model parameters, as well as the chemical composi-
tion of the AlMgSi-alloy are given in Tables 3.1 and 3.2, respectively. The homogenisation
procedure, presented in Table 3.3, changed the mechanical properties of the material while
maintaining the grain structure, and resulted in an approximately T4-tempered AA6060
aluminium alloy [42]. The AlMgSi-alloy is assumed to be strain rate independent at room
temperature (RT), but some strain rate dependence may occur during the ballistic im-
pacts due to high temperatures in the impact zone. This is further discussed in Section
6.1.

27
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Table 3.1: Physical constants and model parameters for the AlMgSi-alloy, adopted from Holmen
et al. [42].

E [MPa] ν [-] ρ [kg/m3] α [K−1] Cp [J/kgK] ṗ0 [s−1] c [-] χ [-] Tr [K] Tm [K] m [-]

70000 0.3 2700 2.3 · 10−5 910 5 · 10−4 0.001 0.9 293 893 1.0

Table 3.2: Chemical composition in weight% of the AlMgSi-alloy, adopted from Westermann et
al. [41].

Fe Mg Si Al

0.2 0.5 0.4 Balance

Table 3.3: Homogenisation procedure for the AlMgSi-alloy, adopted from Westermann et al.
[41].

Heating rate [C◦/h] Holding temperature [C◦] Holding time [h] Cooling rate to RT [ C◦/h]

100 585 2.5 300

Table 3.4: Yield strength and work-hardening properties of the AlMgSi-alloy, adopted from
Westermann et al. [41].

σ0 [MPa] Q1 [MPa] C1 Q2 [MPa] C2 σ0.2 [MPa]

66.26 62.00 32.36 126.46 4.21 71.21

The yield strength and work-hardening parameters for a Voce hardening rule with two
terms are presented in Table 3.4, and is obtained from Westermann et al. [41]. The main
reason for using this particular alloy is due to its isotropic material behaviour, which yields
a clean material response that are especially beneficial when studying ductile fracture at
the micro level. In addition, an isotropic material is needed for using the Gurson model
in the numerical analyses.

Only the hardened steel core of the 7.62 mm APM2 bullet was used during the impact
tests. It has a mass of 5 ± 0.25 g, a calibre-radius-head of 3 and a Rockwell C hardness
of 63. The geometry of the hardened steel core, and the accessory parts of the APM2
bullet not used in these experiments, are presented in Figure 3.2. By using only the steel
core of the bullet, a cleaner material response is ensured, such that implementation of
an additional fracture criterion for the brass jacket is avoided. The reader is referred to
Børvik et al. [43] for further information regarding the bullet material.



3.2. TENSILE TESTS 29

Lead cap

Hard steel
core

Brass jacket

End cap

6.
1

7.
9

27.6
34.9

Figure 3.2: Geometry of the 7.62 mm APM2 bullet. Adopted from Holmen et al. [42].

3.2 Tensile Tests

3.2.1 Experimental Setup

To verify the material data given by Westermann et al. [41], tensile tests were executed
at the Departement of Structural Engineering at NTNU by The Foundation for Scientific
and Industrial Research (SINTEF). The geometry of the smooth test specimens is shown
in Figure 3.3. Three tests were carried out at room temperature (T=293K), and all
specimens were cut out from the AlMgSi extrusion ingot delivered by Hydro.

(a) Nominal geometry. Dimensions in mm. Adopted from
Westermann et al. [41]

(b) Actual test spciemen.

Figure 3.3: Tensile test specimen.

The test specimens were mounted in a Zwick Roell Z030 - 30kN test machine. An
AEROEL XLS 13XY laser micrometer was used to continously measure the diameter
reduction of the specimen in two perpendicular directions during loading. These two
orthogonal lasers resulted in a box of laser light of 13 · 13 · 0.1 mm3 around the mini-
mum specimen cross section [41]. The test setup is shown in Figure 3.4. To ensure that
the diameter measurements were taken at the minimum cross-sectional area, the laser
micrometer was able to move vertically such that the whole specimen length could be
investigated. The measured diameters from the two lasers are denoted D1 and D2 in
this thesis, cf. Section 2.2.1. The cross-head velocity of the test machine was 1.2 mm/min,
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Figure 3.4: Tensile machine with laser micrometer.

which corresponds to a nominal strain rate of 5 · 10−4 s−1 over the 40 mm gauge length
of the specimen.

3.2.2 Experimental Results

Based on the measured diameters and the equations presented in Section 2.2.1, the equiva-
lent stress-plastic strain curves for the three tensile tests were established. A large amount
of similar tests on the same material have been conducted earlier, e.g. by Westermann
et al. [41]. The results, as well as data from Westermann et al., are presented in Figures
3.5 and 3.6. Note that the curves in Figure 3.5 have been corrected using the Bridgman
correction expressed in Equation 2.8.

As seen in Figure 3.6 there are large deviations between the three tests conducted for
this thesis, namely tests number 1, 2 and 3. In addition the test results show bad corre-
spondance with the data from Westermann et al., represented by tests number 4, 5 and
6, performed by SINTEF at an earlier point in time. The reason for these discrepancies
is unknown. The previous tests performed on the exact same material showed negligible
deviations [44]. This indicates that something did go wrong either during preparation of
the test specimens or during the actual test.

The fact that there is negligible discrepancy between the earlier tests, while our tests show
large deviations not only from the Westermann et al. data but also between themselves,
may indicate that an error was made while preparing the specimens. A calibration error
in the test machine is believed to give small discrepancies between the given tests, which
was not the case. This consolidates the information given by Børvik. Based on this
we have chosen to use the data from Westermann et al. [41], presented in Figure 3.5,
throughout this thesis.

Figures 3.7, 3.8 and 3.9 illustrate the three test specimens after fracture. As seen in the
figures, both test specimen 1 and 2 have a relatively clean shear fracture mode, while test
specimen 3 exhibits a cup-and-cone type fracture. Close examination of the necking area
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Figure 3.5: Equivalent stress vs. plastic strain for the three tensile tests compared to the Voce
curve from Westermann et al. [41].

−0.2 0 0.2 0.4 0.6 0.80

100

200

300

Plastic Strain,p

Tr
ue

St
re

ss
,σ

t
[M

Pa
]

Test no. 1
Test no. 2
Test no. 3
Test no. 4
Test no. 5
Test no. 6
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4, 5 and 6 represent data from Westermann et al. [41].
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reveals that test 3 has less area where the surface structure of the material has changed,
compared to the two other tests. The significance of this is unknown.

Figure 3.7: Test specimen 1 after fracture.

Figure 3.8: Test specimen 2 after fracture.
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Figure 3.9: Test specimen 3 after fracture.

3.3 Preliminary Study

A preliminary study concerning the plate thickness was conducted due to limitations
regarding both initial velocity and material. Only a certain amount of the AlMgSi-
material was available, and it was therefore desirable to use as little material as possible,
but still have a ballistic limit velocity within the range of the firing velocities available
for this particular experimental setup. The impact velocity was adjusted such that the
bullet impacted the aluminium plate at different velocities to obtain the ballistic limit of
the material for various plate thicknesses.

The non-linear finite element code IMPETUS Afea Solver was used to model the ballistic
impact. Only half of the bullet and target were modelled to save computational time
(CPU-time), as shown in Figure 3.10. A tiny pinhole with a diameter of 1 mm was used
in the target centre as a simplification, to avoid implementation of a fracture criterion
this early in the study.

As seen in Figure 3.10, the regions that exhibit large plastic deformations have a finer
mesh. These regions were modelled by using fully integrated third-order 64-node hexahe-
dra, while first-order 8-node hexahedra were used for the outer region to save CPU-time.
The bullet was modelled as a rigid body with density ρ = 7850 kg/m3, and Figure 3.11
shows the mesh with third-order 64-node hexahedra. Figure 3.12 shows the target and
bullet assembly, before and during impact.

A node-to-surface penalty contact formulation with a penalty factor of 1015 was imple-
mented with the keyword *CONTACT in IMPETUS. The penalty factor of 1015 leads to
a contact pressure of 1 GPa if the penetration is 0.001 mm. The thermal properties of
the material were included to account for thermal softening of the material, due to high
temperatures in the impact zone. The MJC material model, cf. Section 2.2.5, was used.
Friction was omitted in these simulations, but will be investigated in Section 6.1.
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(a)

(b)

Figure 3.10: Target mesh for a 30 mm thick plate: (a) showing target from above and (b)
showing the cross-section.

Figure 3.11: Bullet mesh, adopted from Holmen [38].

Regarding the use of boundary conditions, a symmetry plane was established. The pe-
riphery of the target was initially fixed, and a small study was conducted to investigate
the effect of the periphery boundary condition. The results showed a negligible influence,
but the boundary condition was applied in the final preliminary study model to obtain
good correspondence with the actual test setup in the laboratory. The reader is referred
to Holmen and Johnsen [33] for a more thorough study on the topic.

The Recht-Ipson model, presented in Section 2.1.3, was used to estimate the ballistic limit
curves from the numerical results. Figure 3.13 presents the ballistic limit curves for the
two considered plate thicknesses. As seen in the figure, the 25 mm and 30 mm plates have
predicted ballistic limits of 383 m⁄s and 428 m⁄s, respectively. Based on the range of the
modified Mauser rifle used in the experiments, cf. Section 3.4, the 30 mm was considered
the best choice.
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(a) (b)

Figure 3.12: 3D solid element model of both bullet and target with mesh for a 30 mm thick
plate: (a) before impact and (b) during impact. vi = 700 m⁄s and vr = 551.1 m⁄s.
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Figure 3.13: Predicted ballistic limit curves for plate thicknesses 25 mm and 30 mm, respec-
tively. The solid lines represent the Recht-Ipson model fitted to the data points shown.

3.4 Experimental Setup

The ballistic impact tests were conducted in a compressed gas-gun facility at the Departe-
ment of Structural Engineering at NTNU. A 7.62 x 63 mm smooth-bored Mauser rifle
with a barrel length of 1 m, located inside an impact chamber of 16 m3, was used to fire
the APM2 bullets. The setup is illustrated in Figure 3.14. The rifle was mounted in a rigid
rack to ensure precise impact points, and was fired from a safe distance using a magnetic
trigger. The velocity area for the Mauser rifle is in the range of 300m⁄s < vi < 1150m⁄s,
when using only the hardened steel core of the bullet.

A Phantom V1610 high-speed camera with a frame rate of 70000 fps was used to capture
the penetration process. The camera was triggered when the bullet penetrated a metal
sheet placed in front of the muzzle of the barrel. Figure 3.15 shows several of the men-
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tioned parts of the experimental setup. A more detailed description of the ballistic test
rig is presented in Børvik et al. [45, 46].

Laser curtains

High-speed camera

Reinforcement

Rag-box

Residual velocity
measurement

Target plate/clamping rig

Trigger/velocity measurement

Sabot trap

Mauser gun

Figure 3.14: Schematic of the experimental setup, adapted from Børvik et al. [45].

(a) (b)

(c) (d)

Figure 3.15: (a)The high-speed camera, (b) the trigger device for the high-speed camera, (c)
the remote, magnetic trigger for the rifle, and (d) target plate and steel frame attached to the
clamping rig. (a)-(c) are adopted from Holmen and Johnsen, and Orthe and Thorsen [33, 47].
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The target plate was fixed in a rigid steel frame that was specially designed and produced
at NTNU for these tests, shown in Figure 3.16(a). The frame was attached to a clamping
rig by four screws, which ensured fixed horizontal boundaries, as shown in Figure 3.15(d).
The target plates tended to expand during the tests due to large plastic deformations.
This made it difficult to loosen and adjust the plates to the desired points of impact. All
plates were therefore turn-milled to be more operable.

To fire the hardened steel core of the APM2 bullets, a specially designed plastic sabot of
0.39 ± 0.005 g, shown in Figure 3.16(b), was used to fasten the core in the cartridge. A
press was needed to properly unite the parts.

(a) (b)

Figure 3.16: (a) AlMgSi target plate and steel frame, and (b) plastic sabot, hardened steel core
in sabot and cartridge.

The impact velocities of the bullets were tuned by adjusting the amount of powder in
the cartridge. Different initial velocities were desirable for identifying the ballstic limit
curve of the target material. The diameter of the sabot was almost identical to the bullet
casing diameter, and inconsistencies could form when uniting the parts. In addition, the
bottom of the sabot was quite thin, which resulted in some failed sabots during assembly.

Figure 3.17 shows the impact locations on the target plates. The locations were chosen
such that the total amount of 20 shots were spread among the four target plates, without
getting any interaction or influence from the other locations. The tests were conducted
as presented in Table 3.5.
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Figure 3.17: Schematic of the target impact locations. Dimensions in mm.

3.5 Experimental Results

This section presents the results obtained from the ballistic experiments. A total amount
of 18 out of 19 shots were successful, and the results from these are presented in Table
3.5. The fifth test gave no measurements due to an error in the camera triggering device.
Pictures of the target plates after testing, as well as close up photos of all entry and exit
holes, are presented in Appendices A and B, respectively.

Table 3.5: Tabulated results from ballistic experiments. Impact locations are illustrated in Figure
3.17.

Plate Impact location Test no. Gunpowder [grain] vi [m/s] vr [m/s] Comment

1

1 (Center) 1 40.0 790.5 591.6 OK
2 2 30.0 562.9 243.5 OK
3 3 28.0 572.9 248.2 OK
4 8 27.0 477.0 0.0 No exit
5 9 45.0 788.0 609.5 Projectile split in three

2

1 (Center) 4 26.0 512.6 0.0 No exit
2 5 27.0 - - No measurements
3 6 32.0 647.4 399.5 OK
4 10 45.0 810.7 640.3 OK
5 11 50.0 1028.7 891.8 OK

3

1 (Center) 7 34.0 637.0 372.8 OK
2 12 37.0 764.4 573.7 OK
3 13 35.0 605.9 345.4 OK
4 14 36.0 639.8 392.0 OK
5 15 29.0 531.6 128.3 OK

4
1 (Center) 16 36.5 701.3 477.4 OK

2 17 36.5 718.7 513.7 OK
3 18 36.5 721.9 513.7 OK
4 19 36.5 731.7 525.8 OK
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The ballistic limit curve, presented in Figure 3.18, was obtained by using a least-squares
method and the Recht-Ipson model presented in Section 2.1.3. The Recht-Ipson param-
eters were determined to:

a = 0.9851
p = 2.1072
vbl = 517.5 m⁄s
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Figure 3.18: Ballistic limit curve for the AlMgSi plates.

The a-parameter is very close to unity, which indicates that the plates mainly failed
by ductile hole growth without any plugging. This is in good correspondance with the
observed failure mode for the relatively ductile AlMgSi target material. A p-parameter of
p ≈ 2 shows that no plug or fragments were knocked out of the plates. The ballistic limit
at 517.5 m⁄s is much higher than what was expected based on the preliminary study, cf.
Section 3.3, which resulted in a ballistic limit velocity of 428.0 m⁄s. Possible reasons for
this discrepancy of approximately 90 m⁄s are friction and strain rate dependency at high
temperatures, which are further discussed in Section 6.1.

Figures 3.19, 3.20 and 3.21 show the penetration process for three different shots with
different residual velocities. Test number 15, shown in Figure 3.19, had an initial velocity
close to the ballistic limit, while tests number 1 and 11 had velocities well above the
ballistic limit velocity.

A general tendency was that all shots went relatively straight, with a negligible pitch
angle. If the pitch angle had been larger than 3% - 5%, it could have reduced the
penetration capacity of the bullet [48]. Note that some fragmentation occur on the back
side of the plates for all tests, though more is seen for higher initial velocities. It is
although hard to determine if these fragments originate from the target plates or the
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plastic sabot. According to Børvik [44], this fragmentation is negligible compared to
similar tests conducted on other materials.

Figures 3.19(b)-(c), 3.20(b)-(c) and 3.21(b)-(c) show the entry and exit holes in the target
plates. When investigating the entry holes, it can be seen that more severe deformation
occur during impact for tests with high initial velocity. For instance, it is seen that test
number 11 exhibits much more deformation than test number 15.

t = 0 µs

t = 42.9 µs

t = 71.4 µs

t = 157.1 µs

t = 257.1 µs

t = 442.9 µs

(a) Time-lapse.

(b) Entry hole.

(c) Exit hole.

Figure 3.19: Time-lapse, entry and exit hole for test number 15, presented in Table 3.5. vi =
531.6m⁄s, vr = 128.3m⁄s.

The tendency for the exit holes is that high residual velocities yield local deformation
with more rifts along the edge. When comparing the exit holes for tests number 15 and
11, shown in Figures 3.19(c) and 3.21(c), it is seen that more deformation occur around
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the exit hole for test number 15 than for test number 11. This indicates that low residual
velocities yield deformation in a larger area around the hole than higher residual velocities,
which exhibit more local deformation. Test number 1, shown in Figure 3.20(c) has an
exit hole that is somewhat in between the two others. Considering the residual velocity of
test 1, this deformation seems reasonable. Generally, it can be established that all three
tests yield ductile hole growth, and that this is the dominating failure mechanism for the
AlMgSi-alloy.

t = 0 µs

t = 42.9 µs

t = 71.4 µs

t = 128.6 µs

t = 171.4 µs

t = 228.6 µs

(a) Time-lapse.

(b) Entry hole.

(c) Exit hole.

Figure 3.20: Time-lapse, entry and exit hole for test number 1, presented in Table 3.5. vi =
790.5m⁄s, vr = 591.6m⁄s.
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t = 0 µs

t = 28.6 µs

t = 57.1 µs

t = 85.7 µs

t = 114.3 µs

t = 157.1 µs

(a) Time-lapse.

(b) Entry hole.

(c) Exit hole.

Figure 3.21: Time-lapse, entry and exit hole for test number 11, presented in Table 3.5. vi =
1028.7m⁄s, vr = 891.8m⁄s.

3.6 Investigation of Macro- and Microstructure

To investigate the surface and grain structure of the bullet holes, plate number 2 was cut
in half to reveal the cross section of the hole perpendicular to the trajectory. Half of the
plate is shown in Figure 3.22. Both macroscopy and light optical microscopy were used
to examine the surface for the left- and rightmost bullet holes shown in the picture.

For the macroscopy, one half of the bulk material was investigated in a Leitz Wild Pho-
tomacroscope M400. No further sample preparation was required for the macroscopy
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technique [49].

In order to use light optical microscopy for examining the grain structure around the
holes, samples were cut from the bulk material and mounted in epoxy. The preparation
of the samples consisted of mechanical grinding to ASTM mesh 4000 and polishing with
3 µm and 1 µm diamond paste. The samples were further chemically polished for 4
minutes using a 10% OP-U dissolution, followed by 1 minute of polishing using plenty of
water. Finally, the samples were anodized in a 5% HBF4 aqueous at 20V for 120 seconds
to reveal the microstructure under polarized light. To investigate the microstructure, a
Leica MEF4M light optical microscope equipped with a sub-parallel λ-plate was used [49].

Figure 3.22: Cross section of plate 2 after experimental tests. Test data is presented in Table
3.5. The leftmost hole, the center hole and the rightmost hole correspond to tests number 11, 4
and 10, respectively.

Figure 3.23 shows the two epoxy test samples made for studying the microscopic structure
of the material. Both samples are taken from plate number 2, where test sample 1
corresponds to test number 10 and test sample 2 corresponds to test number 11 presented
in Table 3.5.

(a) Test sample 1. vi = 810.7m⁄s, vr =
640.3m⁄s.

(b) Test sample 2. vi = 1028.7m⁄s, vr =
891.8m⁄s.

Figure 3.23: Epoxy test samples for microscopic study.

Figures 3.24 and 3.25 present photos of the bullet holes obtained from the macroscopy.
Each figure displays an overview of the bullet hole as well as three photos taken at 20x
magnificiation. These magnified photos, taken from the entry, middle and exit parts of
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the hole, show the macrostructure in more detail. As seen in Figure 3.24, there are severe
deformations near both entry and exit. The surface of the hole is relatively smooth, which
indicates ductile hole growth. This is as expected for the ductile AlMgSi material and this
plate thickness, and was confirmed by the experiments. In addition, it can be seen that
the hole shows signs of petalling near the exit side. Note that this is not the dominant
fracture mode for the whole trajectory, but the large deformations at the exit will result
in a local petalling deformation mode where some rifts appear.

Test sample 2, presented in Figure 3.25, has a similar surface to test sample 1. Since both
tests were conducted at high initial velocities this was as expected. The dominant failure
mechanism is ductile hole growth, but this test shows more severe deformations near the
front side of the plate. As seen in the leftmost of the magnified pictures, a band has
formed across the surface in the trajectory. This may be due to the high kinetic energy
of the bullet, which is believed to be supported in Figure 3.21(a), where a flash of light is
seen as the bullet exits the target. In addition, it can be observed that the trajectory path
gets narrower farther away from the entry. This tendency can also be seen for sample 1,
although not as clearly. This is most likely caused by askew cutting during preparation.

Figure 3.24: Macrostructure of test sample 1. Photos at bottom are taken at 20x magnification.

The optical micrograph of the grain structure in the bulk material is shown in Figure
3.26. It can be seen that the alloy has relatively large grains, with an approximate size
of 65 µm. In addition, the area fraction of constituent particles is rather low [41].

Figures 3.27 and 3.28 show the microsctructure of the bulk material close to the trajectory
path for samples 1 and 2, respectively. The upper rows show the microstructure at 2.5x
magnification, while the lower rows show the microstructure at 10x magnification. The
lower edge in the pictures correspond to the edge of the bullet hole. It can be seen that
both samples get severe deformations in the grain structure close to the edge, and the
deformation is clearest in the area up to 1.5 mm from the edge. The grains have been
considerably deformed, compared to the grain structure shown in Figure 3.26. At the
entry and exit of the hole it is seen that the material has large deformations, that have
resulted in the distinct shapes seen in the figures.
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Figure 3.25: Macrostructure of test sample 2. Photos at bottom are taken at 20x magnification.

Figure 3.26: Microstructure of the bulk material.

Although it was expected that some of the material would have melted due to plastic
dissipation, signs of this was not found in the microscopy. If the material had melted,
recrystallization would have occurred in the melted region, which would have been clearly
visible in the images. The recrystallized structure would look similar to the grain structure
shown in Figure 3.26. There is a possibility though, that some material may have melted
very locally in the trajectory region, but since the recrystallization process only occurs if
the temperature is above the melting temperature of the material for approximately 0.5
seconds, this is not visible in the microscopy [49]. Since the penetration process only takes
roughly 90 µs, this could mean that the recrystallization does not have time to occur. In
addition, the impact zone is quite small compared to the target, which means that the
target will cool down the impact area rather quickly due to high heat transfer capacity.
If the material had melted this could possibly be seen in a SEM microscope. Based on
the images in Figures 3.27 and 3.28 one cannot confirm that the material melted.
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(a) Entry. (b) Path. (c) Exit.

(d) Entry. (e) Path. (f) Exit.

Figure 3.27: Microstructure at three different locations in the trajectory path for two different
magnifications for test sample 1. The upper row has a 2.5x magnification, while the lower row
correspond to a 10x magnification. The leftmost pictures show the entry, the middlemost the path
and the rightmost the exit of the bullet hole.

(a) Entry. (b) Path. (c) Exit.

(d) Entry. (e) Path. (f) Exit.

Figure 3.28: Microstructure at three different locations in the trajectory path for two different
magnifications for test sample 2. The upper row has a 2.5x magnification, while the lower row
correspond to a 10x magnification. The leftmost pictures show the entry, the middlemost the path
and the rightmost the exit of the bullet hole.



4 Micromechanical Modelling

This chapter presents the computational cell study, conducted to investigate coalescence
of voids on a microscale level. First, a section is dedicated to the numerical unit cell
models studied in this thesis; the axisymmetric cell, the plane strain tension cell and the
plane strain shear cell models. Further, two sections present the results from analyses
using these models. Lastly, a discussion of the three two-dimensional models, as well as
a comparison with three-dimensional cell data, is presented.

4.1 Numerical Micromechanical Cell Models

Numerical micromechanical unit cell models were made in Abaqus to study the growth and
coalescence of voids on a microscale level. It was desirable to apply different triaxialities
to be able to calibrate a fracture model that can be used for large scale simulations. All
analyses were run for triaxiality ratios, σ∗, in the range between 0.65 and 2.00. According
to Hopperstad [50], low triaxialities are expected for the experimental tests. Due to an
asymptote in σ∗ = 1/3 it was not possible to get good numerical results for triaxialities
close to this value. In addition, the Gurson model overestimates the rate of void growth
for triaxialities of σ∗ = 1/3 and lower [13]. Therefore, σ∗ = 0.65 was chosen as the lowest
triaxliality in this thesis. The reader should note that further in this chapter the plane
strain tension model and the plane strain shear model is referred to as the plane strain
model and shear model, respectively.

One half and one quarter of the cells were modelled to save computational time for the
axisymmetric and the two plane strain models, respectively. The initial radius of the
void for the axisymmetric model is r0 = 0.1957, while both the plane strain and shear
models have an initial void radius of r0 = 0.0798. Note that these radii correspond to
spherical and cylindrical voids, respectively, and are relative to the initial cell radius and
height, R0 = 1 and H0 = 1. All three models have the same initial void volume fraction of
f0 = 5 ·10−3, obtained from Westermann et al. [41]. The meshes used for all three models
are illustrated in Figure 4.1. The entire shear cell was modelled, including a particle inside
the void modelled as an elastic inclusion with ordinary steel material parameters. The
main reason for this is to properly show the shear deformation mode. Note that the
particle is not included in the mesh presented in Figure 4.1(b).

The axisymmetric model was made as a deformable axisymmetric part, while the plane
strain and shear cells were made as 2D deformable parts. In all three models, the upper
edge of the cell was constrained, to ensure periodic boundary conditions. The reader is
referred to Section 2.3 for further information regarding the array of microscopic cells.
For the shear cell, additional constraints were applied along the vertical edges in both

47



48 CHAPTER 4. MICROMECHANICAL MODELLING

(a) Axisymmetric and plane strain
tension unit cells.

(b) Plane strain shear unit cell, ex-
cluding the particle.

Figure 4.1: Mesh for the unit cell models.

the horizontal and vertical directions, to ensure that the egdes remained straight during
deformation until coalescence. Figure 4.2 illustrates the shear unit cell with nodes along
the vertical edges. The following constraint equations were applied for each node pair:

uright

1 − uleft

1 − uA

1 + uB

1 = 0 (4.1)

uright

3 − uleft

3 = 0 (4.2)

AB

x1

x3

left right

Figure 4.2: Illustration of node pair constraints for the shear unit cell.

Figure 4.3 shows the boundary and loading conditions for the different cells. The axisym-
metric cell, seen in Figure 4.3(a), have symmetry boundary conditions along the left and
bottom edges. Note that the axisymmetric cell, which represents both generalized tension
and generalized compression, was established using a Python script made by Dæhli [51].
User subroutines in Fortran were used to describe the material behaviour, using a von
Mises yield criterion with a Voce hardening rule, as well as the displacement of the refer-
ence node shown in the figure [51]. Note that for some analyses of the axisymmetric cell
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in generalized tension and compression, the GTN model was applied in the matrix using
the built-in GTN model in Abaqus. These analyses are presented in Sections 4.2.1.1 and
4.2.2.1.

The deformation of the axisymmetric cell is driven by a displacement applied in a reference
node north-east of the upper right corner of the cell, as shown in Figure 4.3(a). The upper
right corner node was constrained to the reference node by the multi-point constraint
subroutine.

The boundary conditions of the plane strain cell is identical to the axisymmetric cell.
Unlike the axisymmetric model, loading was applied by surface tractions on the upper
and right edges using the static Riks algorithm, as illustrated in Figure 4.3(b). The ratio
between the tractions in the x1- and x3-directions was calculated such that the triaxiality
was held at a constant value during deformation.

For the shear unit cell, periodic boundary conditions were applied on the vertical edges.
In addition, the bottom edge was fixed. A displacement was applied on the upper edge,
as shown in Figure 4.3(c), to get a shear deformation mode.

One major difference between the shear cell model and the two other models is the use
of a particle inside the void. This was done to ensure void growth and coalescence. The
shear cell model yield a triaxiality approximately equal to zero [50]. For low triaxialities
the void will simply close as a result of shear deformation unless a particle is included in
the void. This is shown in Figure 4.4.

Figure 4.5 shows the mesh of the shear unit cell closest to the void, including the particle.
A surface-to-surface contact formulation with Coloumb friction of µ = 0.1 was used
between the cell matrix and the particle, and a surface-to-surface algorithm with self
contact was used for the matrix.



50 CHAPTER 4. MICROMECHANICAL MODELLING

RP-1

(a) Axisymmetric unit cell. RP-1 annotates the
reference node.

(b) Plane strain tension unit cell.

(c) Plane strain shear unit cell.

Figure 4.3: Boundary and loading conditions for the three unit cells.
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Figure 4.4: Section showing the deformed void of the shear unit cell without a particle.

Figure 4.5: Mesh closest to the void of the shear unit cell, including the particle.
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4.2 Axisymmetric Cell

This section presents the results from the axisymmetric unit cell analyses. The reader is
referred to Section 2.3.2.1 for some fundamental theory on the simplified axisymmetric
unit cell. Analyses were performed for two different loading cases; generalized tension
and generalized compression, which correspond to Lode parameters µσ = −1 and µσ = 1,
respectively. Some results from the two loading cases with the GTN model used in the
matrix are presented in Sections 4.2.1.1 and 4.2.2.1.

4.2.1 Generalized Tension

For generalized tension, the cell is deformed by applying a displacement in the reference
node, as illustrated in Figure 4.3(a). The deformation process for σ∗ = 2 is shown in
Figure 4.6. As seen in the pictures, the aspect ratio of the cell changes during deformation.
When coalescence occurs, the vertical edges remain fixed in the horizontal direction while
the cell continues to deform in the vertical direction and the void takes on an oblate
shape. Hence, coalescence is defined once a uniaxial deformation mode occurs, cf. Figure
4.7. Picture number three from the left, in Figure 4.6, is taken right after coalescence.

Figure 4.6: Deformation of the axisymmetric unit cell in generalized tension for triaxiality ratio
σ∗ = 2.

Figure 4.7 shows the magnitude of the macroscopic strain in the x1-direction, ‖E11‖,
versus the macroscopic equivalent strain, Eeq, for different triaxiality ratios. As seen
in the figure, all curves have an ascending gradient before they flatten out at a given
value of ‖E11‖. The crosses mark the points of coalescence, i.e., when we get a uniaxial
deformation mode. Figure 4.8 shows the point of coalescence in a void volume fraction
versus equivalent strain plot. For all triaxiality levels, an exponential growth in void
volume fraction is observed. The void volume fraction curve has a distinct bend near the
point of coalescence for low triaxialities.

The relationship between the macroscopic stress and the macroscopic equivalent strain
is plotted in Figure 4.9. It is seen that coalescence occurs after the point of maximum
equivalent stress. The stress-strain response is determined by material strain hardening
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Figure 4.7: Strain in the x1-direction vs. equivalent strain for generalized tension. The crosses
represent the points of coalescence.
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Figure 4.8: Void volume fraction vs. equivalent strain for generalized tension. The crosses
represent the points of coalescence.

and softening induced by the void. At high triaxialities, the softening of the void is more
prominent, causing lower fracture strain values.

Figure 4.10 shows the critical void volume fraction for the given triaxiality ratios. As seen
in the figure, the value is relatively constant for all triaxialities. This indicates that the
critical void volume fraction is relatively independent of the triaxiality ratio for µσ = −1.
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Figure 4.9: Equivalent stress vs. equivalent strain for generalized tension. The crosses represent
the points of coalescence.
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Figure 4.10: Critical void volume fraction vs. triaxiality ratio for generalized tension.

The critical equivalent strain is plotted for all triaxialities in Figure 4.11. It is seen that
low triaxialities yield high critical strains, while higher triaxiality ratios have relatively
low critical strains.
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Figure 4.11: Critical equivalent strain vs. triaxiality ratio for generalized tension.

4.2.1.1 Gurson-Tvergaard-Needleman in the Matrix

The Gurson-Tvergaard-Needleman porous plasticity model, presented in Section 2.2.7.1,
was used in the matrix for the axisymmetric unit cell in generalized tension. This was
done to achieve a more realistic material behaviour, as the AlMgSi-alloy is considered a
porous material. A typical volume element is therefore assumed to consist of numerous
smaller voids and particles, in addition to the large primary void. The critical equivalent
strain, Eceq, obtained from the analyses presented in Section 4.2.2 with a von Mises matrix
material, was considered high. Implementation of GTN in the matrix was believed to
decrease the critical equivalent strain. Standard Tvergaard parameters, q1 = 1.5 and
q2 = 1.0, as well as a void volume fraction of 5 · 10−4, was used in the matrix. This void
volume fraction constitute 1/10 of the large primary void with initial void volume fraction
of f0 = 5 · 10−3.

Figure 4.12 illustrates the void volume fraction in the unit cell matrix for σ∗ = 2, after
coalescence. As seen, the void volume fraction is large along the horizontal ligament. The
highest value is observed to be approximately equal to the critical void volume fraction
presented in Figure 4.10.

The critical primary void volume fraction with GTN in the matrix is presented in Figure
4.13, together with the results from the von Mises analyses in Figure 4.10. The general
tendency is lower critical void volume fractions with GTN in the matrix, but the value
is not constant for all triaxialities, such as for von Mises. Note that the curves only
represent the void volume fraction of the large void, i.e., they do not include the void
volume fraction in the matrix. Ergo, the tendency seen for the curve with GTN in the
matrix is not entirely correct. The void volume fraction in the matrix may be large, such
that the total void volume fraction for the different triaxiality ratios may be relatively
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constant. It is difficult to account for the void volume fraction in Abaqus, hence this has
not been verified.

Figure 4.12: Void volume fraction for the axisymmetric unit cell in generalized tension with
GTN in the matrix for triaxiality ratio σ∗ = 2.
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Figure 4.13: Critical void volume fraction vs. triaxiality ratio for generalized tension with GTN
in the matrix.

Figure 4.14 shows a comparison of the critical equivalent strain for analyses with and
without GTN in the matrix. By including GTN, we get lower values for the critical
equivalent strain, as expected. Lower critical strain yields earlier onset of coalescence,
i.e., less deformation, which is believed to be more realistic for the AlMgSi-alloy.
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Figure 4.14: Critical equivalent strain vs. triaxiality ratio for generalized tension with GTN in
the matrix.

4.2.2 Generalized Compression

As for generalized tension, cf. Section 4.2.1, the deformation is controlled by applying
a displacement in the reference node. For generalized compression, the cell is stretched
in the opposite direction of generalized tension. The stages of deformation for triaxiality
ratio σ∗ = 2 are shown in Figure 4.15. Compared to the deformation in generalized
tension, cf. Figure 4.6, a uniaxial deformation mode is not reached. Hence, no distinct
point of coalescence can be established by studying the deformation. This is further
illustrated in Figure 4.16, that show the magnitude of the macroscopic strain in the x3-
direction, ‖E33‖, versus the equivalent strain, Eeq, for different triaxiality ratios. The
curves do not flatten out as for generalized tension, which means that coalescence cannot
be defined on the same basis for generalized compression.

Figure 4.15: Deformation of the axisymmetric unit cell in generalized compression for triaxiality
ratio σ∗ = 2.
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Figure 4.16: Strain in the x3-direction vs. equivalent strain for generalized compression. The
crosses represent the points of coalescence.

For generalized compression, a coalescence criterion was established by studying the gra-
dient of the ligament thickness, where the ligament represents the vertical edge of the
half-axisymmetric unit cell. Coalescence was defined at the point where a characteristic
bend occurs. These points are illustrated with crosses in Figure 4.17. The same ten-
dency is seen on the gradient of the ligament for generalized tension near the point of
coalescence.
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Figure 4.17: Change in ligament thickness vs. equivalent strain for generalized compression.
The crosses represent the points of coalescence.
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Figure 4.18 shows the void volume fraction versus equivalent strain. No distinct bend
near the point of coalescence can be spotted in the curves for generalized compression.
The equivalent stress versus equivalent strain curves in Figure 4.19 show that the point of
coalescence is defined at higher strains for generalized compression than for generalized
tension. The difference is especially clear for high triaxialities.
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Figure 4.18: Void volume fraction vs. equivalent strain for generalized compression. The crosses
represent the points of coalescence.
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Figure 4.19: Equivalent stress vs. equivalent strain for generalized tension. The crosses repre-
sent the points of coalescence.
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The critical void volume fractions corresponding to given triaxiality ratios are shown in
Figure 4.20. It is seen that the value increases with higher triaxialities. This indicates
that the critical void volume fraction is highly dependent on the triaxiality ratio for
µσ = 1. The critical equivalent strain is plotted for all triaxialities in Figure 4.21. As
for generalized tension, low triaxialities yield high critical strains, while higher triaxiality
ratios have a relatively low critical strain.
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Figure 4.20: Critical void volume fraction vs. triaxiality ratio for generalized compression.
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Figure 4.21: Critical equivalent strain vs. triaxiality ratio for generalized compression.
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4.2.2.1 Gurson-Tvergaard-Needleman in the Matrix

As for generalized tension, GTN was used for generalized compression to achieve a more
realistic material behaviour. Standard Tvergaard parameters and a void volume fraction
of 5 · 10−4 were used. Note that the GTN extension has a singularity when the void
volume fraction reaches a critical value fC = 1/q1, cf. Section 2.2.7.1. At this critical
value, the yield surface collapses to a point and the analyses abort. Coalescence has
therefore been defined where the local void volume fraction in the matrix reaches the
critical value fC = 1/q1. Note that this void volume fraction is unrealistically large [52].

The void volume fraction is shown in Figure 4.22 for the deformed unit cell with σ∗ = 2.
As seen in the figure, high void volume fractions occur in the vertical ligament, and coa-
lescence of secondary voids in these regions is very likely. This indicates that coalescence
between cells, and eventually failure, will initiate along this ligament.

Figure 4.22: Void volume fraction for the axisymmetric unit cell in generalized compression
with GTN in the matrix for triaxiality ratio σ∗ = 2.

Figure 4.23 presents the critical void volume fraction both with and without GTN in
the matrix. It is seen that the value decreases with increasing triaxiality ratio, as for
generalized tension with GTN in the matrix. As described in Section 4.2.1.1 this tendency
is not entirely correct, since only the void volume fraction of the primary void is accounted
for. Despite this, it can be established that GTN in the matrix lowers the critical void
volume fraction, also in the case of generalized compression.
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Figure 4.23: Critical void volume fraction vs. triaxiality ratio for generalized compression with
GTN in the matrix.

As expected, the effects of increased triaxiality on the critical equivalent strain for gen-
eralized compression and generalized tension, seen in Figures 4.24 and 4.14, are similar
when GTN is included in the matrix. The figures reveal, however, a larger difference
between the von Mises and GTN curves for generalized compression.

This discrepancy is believed to be a result of the high void volume fraction in the matrix.
This may indicate that secondary voids is of greater importance for generalized compres-
sion than for generalized tension. These secondary voids may yield coalescence at lower
strains since GTN collapses when fc = 1/q1. The analyses with GTN in the matrix cannot
be run past this point and coalescence is therefore defined earlier with GTN in the matrix
for generalized compression. The curves in Figure 4.24 can therefore not be compared
directly. By studying Figures 4.12 and 4.22 it is seen that the void volume fraction in the
matrix is approximately ten times higher for generalized compression than for generalized
tension.

Figure 4.25 shows some microscopic measures for the critical element in the matrix having
the largest void volume fraction. The element is located in the critical area along the
vertical ligament, shown in Figure 4.25. The development of the void volume fraction in
the element is presented in Figure 4.25(c). A void volume fraction of 0.66 is considered
high. Figure 4.25(b) shows the local Lode parameter which is seen to be relatively constant
and approximately equal to the macroscopic value of one. The triaxiality decreases in
the element as the cell is deformed. This is shown in Figure 4.25(a). The rapid growth
in void volume fraction is most likely due to the large local plastic strain. By studying
Figure 4.25(d) it is seen that the local plastic strain increases faster than the macroscopic
strain.
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Figure 4.24: Critical equivalent strain vs. triaxiality ratio for generalized compression with
GTN in the matrix.
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Figure 4.25: Local measures for the critical element in the matrix for generalized compression
with GTN in the matrix. The macroscopic triaxiality ratio equals σ∗ = 2.
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4.3 Plane Strain Cells

This section presents the results from the two plane strain unit cells; the plane strain
tension cell and the plane strain shear cell. Fundamental theory on the plane strain unit
cell is presented in Section 2.3.2.2. Note that the plane strain cells correspond to a Lode
parameter, µσ, equal to zero, and hence generalized shear.

4.3.1 Plane Strain Tension Cell

The structure of the plane strain tension cell is quite similar to the axisymmetric cell,
described in Section 4.1. One important difference is the applied load, which for the
plane strain cell consists of surface tractions that ensure µσ = 0, and hence plane strain
conditions. The surface tractions are shown in Figure 4.3(b). Equation 2.59 in Section
2.3.2.2 was used to calculate the tractions in the x1- and x3- directions for the given
triaxiality ratios.

Figure 4.26 illustrates the deformation of the plane strain unit cell in tension for triaxiality
ratio σ∗ = 2. The third picture from the left is taken right after coalescence, when the
cell is in a uniaxial deformation mode. As for the axisymmetric cell in generalized tension
there is a disctinct point of coalescence. This is clearly seen in the curves presented in
Figure 4.27. Therefore, the same coalescence criterion was used for the plane strain cell
as for the axisymmetric cell in generalized tension.

Figure 4.26: Deformation of the plane strain unit cell in tension for triaxiality ratio σ∗ = 2.
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Figure 4.27: Strain in the x1-direction vs. equivalent strain for the plane strain cell in tension.
The crosses represent the points of coalescence.
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Figure 4.28: Void volume fraction vs. equivalent strain for the plane strain cell in tension. The
crosses represent the points of coalescence.

The void volume fraction versus equivalent strain curves for the plane strain cell are
presented in Figure 4.28. It is seen that the shape of the plane strain curve has a distinct
kink at the point of coalescence for low triaxialities. The same tendency is spotted in
the equivalent stress versus equivalent strain curve in Figure 4.29. Figures 4.30 and 4.31
present the critical void volume fraction and critical equivalent strain versus triaxiality
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ratio, respectively. The critical void volume fraction is observed to be relatively constant,
with a slightly increasing value for increased triaxiality ratio. The equivalent strain has
an exponentially decreasing curve for increased triaxiality, which is as expected.
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Figure 4.29: Equivalent stress vs. equivalent strain for the plane strain cell in tension. The
crosses represent the points of coalescence.
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Figure 4.30: Critical void volume fraction vs. triaxiality ratio for the plane strain cell in
tension.
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Figure 4.31: Critical equivalent strain vs. triaxiality ratio for the plane strain cell in tension.

4.3.2 Plane Strain Shear Cell

A plane strain shear unit cell model was established to achieve information on coalescence
for very low triaxialities. The shear cell yield a triaxiality ratio σ∗ ' 0 [50], and will
therefore only give one additional point to the critical equivalent strain curves presented
in the previous section.

The deformation of the shear unit cell is illustrated in Figure 4.32. The growth of the
void is more evident in Figure 4.33, that shows the section closest to the particle. As
mentioned in Section 4.1, the vertical edges remain linear before coalescence. When
approaching coalescence, a shear band form around the middle of the vertical edges. This
is clearly seen in the rightmost picture in Figure 4.32. Regarding the void growth, it is
seen that the void deforms along a shear band similar to what is presented in Figure 2.5
in Section 2.2.3.

Figure 4.32: Deformation of the shear unit cell. Triaxiality ratio σ∗ ' 0.
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Figure 4.33: Void growth for the shear unit cell. The pictures show a magnification of the
section closest to the particle.

The coalescence criterion for the shear cell was established on the basis of the formed
shear band, as shown in Figure 4.34. The displacement in the x1-direction was extracted
for two nodes along the vertical edge. These nodes are marked with red dots in the figure.
Coalescence is defined when ∆ is larger than 10 % of the side length, i.e., ∆ > 0.2 yield
coalescence. The equivalent strain is calculated by using the following expression

Eeq = 1√
3
γ (4.3)

where γ is the shear strain, illustrated in Figure 4.34.

γ

∆

x3

x1

Figure 4.34: Coalescence criterion for the shear cell.

Figure 4.35 illustrates the critical equivalent strain for the plane strain cells. The value
for σ∗ = 0 is given from the shear cell analysis, and the remaining represents the plane
strain cell analyses. As seen in the figure, the critical equivalent strain for σ∗ = 0 is
situated below higher triaxiality ratios, and does not follow the same exponential path as
the results from the plane strain cell. This is in agreement with a study by Nahshon and
Hutchinson [18].
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Figure 4.35: Critical equivalent strain vs. triaxiality ratio for the two plane strain cells.

4.4 Discussion

By studying the deformation of the different cells it is seen that the cells subjected to
tension get similar deformation modes. Coalescence is fairly easy to define, both from
the deformation itself and by studying the development of strains. The axisymmetric cell
in generalized compression on the other hand, does not yield a deformation mode similar
to the other axisymmetric loading case, and coalescence cannot be defined on the same
basis. The shear cell yields a typical shear deformation mode, and cannot be directly
compared with the other unit cell deformations.

By including GTN in the matrix for both axisymmetric loading cases, the critical void
volume fraction and the critical equivalent strain decreases. This is considered realistic
since a larger volume fraction in the matrix will yield coalescence for lower strains. When
comparing the change in the critical equivalent strain for the same loading cases with
GTN in the matrix, presented in Figures 4.14 and 4.24, relatively good correspondence is
observed. For both loading cases, the curve with GTN in the matrix is situated below the
von Mises curve and have the same shape. There is however larger discrepancy between
the curves for generalized compression.

The reason for this discrepancy may be that high void volume fractions occur in the unit
cell matrix relatively early in the deformation process, for generalized compression. This
is clearly shown in Figure 4.22. This means that secondary voids form in the matrix
before coalescence of primary voids occur. In reality, it is believed that secondary voids
coalesce in the matrix where the void volume fraction is approximately equal to 0.66. One
reason for the rapid growth in void volume fraction in the matrix is the values of the GTN
parameters q1 and q2. As mentioned, standard Tvergaard parameters were used for these
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analyses. It was discovered that by decreasing q1, the secondary void growth decreased
and the cell could be stretched further. This may indicate that the use of the standard
Tvergaard parameters is not optimal for generalized compression. In addition, it may
seem like secondary voids are more significant for generalized compression, as discussed
in Section 4.2.2.1.
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Figure 4.36: Critical void volume fraction vs. triaxiality ratio for generalized tension (µσ =
−1), plane strain (µσ = 0) and generalized compression (µσ = 1), with von Mises in the matrix.

Figure 4.36 presents the critical void volume fraction for generalized tension, plane strain
and generalized compression unit cells with a von Mises matrix material. As seen in
the figure, both generalized tension and plane strain yield a relatively constant critical
value, while generalized compression have an increasing value with increasing triaxiality
ratios. These discrepancies for high triaxialities may be due to a physical phenomenon
for generalized compression, or discrepancies between the coalescence criteria.
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Figure 4.37: Critical equivalent strain vs. triaxiality ratio for generalized tension (µσ = −1),
plane strain tension (µσ = 0) and generalized compression (µσ = 1), with von Mises in the
matrix.

When comparing the critical equivalent strain versus triaxiality ratio curves for the three
cells, presented in Figure 4.37, it is seen that the plane strain cell yield much lower critical
equivalent strains than the other cases. A triaxiality of σ∗ = 0.65 results in an equivalent
strain of approximately 0.6 for the plane strain cell, while the axisymmetric cell give 1.3
and 1.6 for generalized tension and compression, respectively. The tendency of the curves
are the same for all loading cases. This is as expected, based on a preliminary study by
Dæhli [51] using 3D cells. One major difference is that the curve for generalized shear is
situated below the generalized tension curve.

Figure 4.38 compares the 2D cell analyses presented in this chapter with data obtained
from 3D unit cell analyses. As seen in the figure, there are only small discrepancies
between the 2D and 3D curves for generalized tension and compression. The 2D curve for
plane strain is observed to be situated below the curves for the axisymmetric cell. This
is not in accordance with Dæhli’s study, where the curve for µσ = 0 is situated between
µσ = −1 and µσ = 1. Note that the value given by the 2D shear cell is almost identical
to the 3D cell.

The reason why the 2D curve for µσ = 0 is situated below the curve for µσ = −1 is
believed to be due to the properties of the plane strain cell. As mentioned in Section
4.1 the plane strain cell has a cylindrical void, while the axisymmetric and 3D unit cell
voids are spherical. Gao and Kim [19] studied the effect of different void shapes, and
concluded that the shape of the void had a significant influence on the critical equivalent
strain. Since the void in our plane strain cell has a different shape than the axisymmetric
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cells, the data cannot be directly compared. The plane strain cell corresponds to an
infinitely long hexahedron with an infinitely long cylindrical void. The cells can therefore
not be assembled in an array, and hence the plane strain cell cannot be considered a real
computational cell. The data from the 2D plane strain cell is not comparable with the
3D cell in this case.
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Figure 4.38: Comparison of critical equivalent strain vs. triaxiality ratio for generalized tension
(µσ = −1), generalized shear (µσ = 0) and generalized compression (µσ = 1) in 2D and 3D, with
von Mises in the matrix. The 3D cell data is obtained from Dæhli [51].

Regarding the point given by the shear cell analysis, it is seen that the value is below
what could be expected, based on the exponential trend of the curve. As mentioned, this
tendency is in agreement with earlier published studies [18, 53, 54]. The values given
from the generalized shear cells in 2D and 3D, with triaxiality σ∗ = 0, are in accordance.
The same cannot be seen for other triaxialities.



5 Calibration of Fracture Models

In this chapter, three different fracture models are calibrated with the main purpose of
connecting the results from the microscopic unit cell study, presented in Chapter 4, with
macroscopic fracture models. First, a section is dedicated to calibration of the Cockcroft-
Latham fracture model, based on both computational cells and tensile tests. Further, two
sections present calibration of the Johnson-Cook fracture model from the computational
cells, as well as a comparison of the CL and JC models for tensile tests. Additionally,
calibration of the Gurson-Tvergaard-Needleman fracture model to the computational cell
data is presented. Lastly, a section is devoted to discussion of the results.

5.1 The Cockcroft-Latham Fracture Model

The Cockcroft-Latham fracture model was calibrated using both results from the com-
putational cell study, as well as data from tensile tests adopted from Westermann et al.
[41].

5.1.1 Calibration based on Computational Cells

Figures 5.1 and 5.2 illustrate the fracture surfaces obtained by using a least-square algo-
rithm to fit the Cockcroft-Latham fracture model to the computational cell data. Note
that H(pf ) is defined as in Equation 2.33. The surface in Figure 5.1 represents all in-
vestigated Lode parameters, while the data for µσ = 0 have been excluded in Figure 5.2.
The reason why a comparison of fracture surfaces with and without the data for µσ = 0
was conducted, has to do with the properties of the two-dimensional plane strain unit
cell. This is discussed in Section 5.5.

By investigating the figures, it is seen that the two cases yield close to identical fracture
surfaces. The surface including the data for µσ = 0 is observed to have better corre-
spondence with the cell data for high triaxialities, while the data excluding µσ = 0 show
better agreement for low triaxialities. This is a result of the downward translation of the
fracture surface, due to lower critical equivalent strains for µσ = 0 than for µσ = −1 and
µσ = 1.

Equations 2.32 and 2.33 in Section 2.2.6.1 were used to calibrate the fracture parameters.
Some deviation is observed between the cases, with Wc = 318.9 MPa including µσ = 0
and Wc = 364.3 MPa excluding µσ = 0. This discrepancy indicates that by including
µσ = 0 we obtain both lower Wc and an overall lower critical equivalent strain Eceq. Based
on the results presented in Chapter 4, this is as expected.

73
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Figure 5.1: Fracture surface for the Cockcroft-Latham fracture model calibrated to the compu-
tational cell data with a von Mises yield criterion. Wc = 318.9 MPa.
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Figure 5.2: Fracture surface for the Cockcroft-Latham fracture model calibrated to the compu-
tational cell data with von Mises yielding, excluding the data for µσ = 0. Wc = 364.3 MPa.

5.1.2 Calibration based on Computational Cells with GTN

The Cockcroft-Latham fracture model was also calibrated to the computational cell data
with GTN in the matrix. The three-dimensional fracture surface is shown in Figure 5.3.
Note that this calibration does not include values for generalized shear, i.e., µσ = 0.
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Figure 5.3: Fracture surface for the Cockcroft-Latham fracture model calibrated to the compu-
tational cell data with GTN in the matrix. Wc = 281.7 MPa.

The shape of the fracture surfaces is almost identical for all cases; the only difference
being the elevation of the surface which is controlled by the fracture parameter Wc.
Implementation of GTN in the matrix results in a lower fracture parameter Wc = 281.7
MPa, which is as expected based on the results presented in Chapter 4. Comparison
with the fracture surfaces shown in Figures 5.1 and 5.2, reveals that the surface for
GTN calibration is translated downwards. This corresponds to lower critical equivalent
strains. As for the fracture surface with the von Mises yield criterion excluding µσ = 0,
better correspondence with the cell data is seen for lower triaxialities. Note that the
computational cells with GTN in the matrix does not include triaxiality σ∗ = 0.65.

5.1.3 Calibration based on Tensile Tests

To calibrate the Cockcroft-Latham fracture model to the experimental tensile test data,
a model was made of the test specimen illustrated in Figure 3.3 in Section 3.2.1 using
IMPETUS Afea Solver. One eighth of the three-dimensional specimen was modelled to
save computational time. Figures 5.4 and 5.5 illustrate the mesh of the whole specimen
and the cross-sectional mesh at two locations, respectively. Note that the specimen shown
in Figure 5.4 is mirrored about the x-, y- and z-axes. 64-node cubic hexahedral elements
were used in the gauge section, and linear 8-node hexahedral elements for the remaining
parts. The analysis was performed using an explicit integration scheme with time scaling.
To ensure quasi-static loading conditions as in the real experiments the kinetic energy
was checked, and observed to be considerably lower than the plastic work. This indicates
that there were no unwanted dynamic effects in the analysis, and the time scaling used
was therefore considered reasonable.
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Figure 5.4: Mesh of the tensile specimen in IMPETUS.

(a) Grip section. (b) Gauge section.

Figure 5.5: Mesh of the tensile specimen cross-section at two different locations.

Figure 5.6 shows a comparison of the force-displacement data obtained from the IMPE-
TUS analysis and the experimental data. As seen, the correspondence between the two
curves is good. The purpose of this comparison was to establish the point of fracture, as
this was needed further to calibrate the Cockcroft-Latham fracture model.
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Figure 5.6: Comparison of data from tensile test in IMPETUS and experimental data given by
Westermann et al. [41]. The point of fracture is marked by a cross.

The curve presented in Figure 5.7 shows the development of the maximum principal stress
in the critical element in the tensile specimen. The critical element is shown in Figure
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5.8. The point of fracture, obtained from the force-displacement curve in Figure 5.6, was
used to determine failure in the IMPETUS model. The area below the curve represents
the fracture parameter Wc, which for the tensile test equals Wc = 174.1 MPa. This value
is considerably lower than the values obtained from the computational cell study.
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Figure 5.7: Development of the maximum principal stress in the critical element from the tensile
test in IMPETUS. The area below the curve yield a fracture parameter Wc = 174.1 MPa. The
point of fracture is marked by a cross.

Figure 5.8: Critical element in the necked region during tensile test analysis in IMPETUS.



78 CHAPTER 5. CALIBRATION OF FRACTURE MODELS

5.2 The Johnson-Cook Fracture Model

The Johnson-Cook fracture model was calibrated using results from the computational
cells, both with and without GTN in the matrix. One of the main objectives of this thesis
was to calibrate the fracture models without extensive material testing. Therefore, no
calibration was done using tensile test data, since the JC model needs to be calibrated
using a variety of tensile tests to achieve data for several triaxialities and Lode parameters.

5.2.1 Calibration based on Computational Cells

Figures 5.9 and 5.10 illustrate the fracture surface for the Johnson-Cook fracture model
with and without data for µσ = 0, respectively. The surfaces were obtained by using
a least-square algorithm. By investigating the surfaces, it is clear that the data for the
plane strain cell have considerable influence on the shape of the fracture surface.

As seen in Figure 5.9, which include data from all three computational cells, the JC
fracture surface is highly dependent on the Lode parameter. By studying Equations 2.35
and 2.36 in Section 2.2.6.2, it is seen that the Johnson-Cook model is symmetric about
µσ = 0. If the data from µσ = 0 is excluded, as in Figure 5.10, the fracture surface is seen
to be independent of the Lode parameter. The surfaces show equally good correspondence
with the cell data for µσ = −1 and µσ = 1 for all triaxialities, which is as expected.
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Figure 5.9: Fracture surface for the Johnson-Cook fracture model calibrated to the computational
cell data with a von Mises yield criterion. Fracture parameters: D1 = 0.2894, D2 = 5.9502,
D3 = −2.5746, D4 = D5 = 0 and D6 = 0.5592.

The fracture parameters for the two cases are presented in Table 5.1. The major difference
is seen in the value of D6, which is equal to zero if the data for µσ = 0 are excluded. This
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Figure 5.10: Fracture surface for the Johnson-Cook fracture model calibrated to the compu-
tational cell data with a von Mises yield criterion, excluding the data for µσ = 0. Fracture
parameters: D1 = 0.2894, D2 = 5.9502, D3 = −2.5746 and D4 = D5 = D6 = 0.

verifies the Lode independence mentioned above. Note that the parameters connected
to the temperature and strain rate terms in the Johnson-Cook model, D4 and D5, are
set to zero since the computational cells are modelled using temperature and strain rate
independent data. Hence, the fracture surface is independent of these parameters.

Table 5.1: Johnson-Cook fracture parameters from calibration to the computational cells.

D1 D2 D3 D4 D5 D6

With µσ = 0 0.2894 5.9502 -2.5746 0 0 0.5592
Without µσ = 0 0.2915 6.5091 -2.6940 0 0 0

5.2.2 Calibration based on Computational Cells with GTN

The fracture surface for calibration of the JC model to the computational cell data with
GTN in the matrix is shown in Figure 5.11. Note that the calibration was done to the
axisymmetric cells only, ergo µσ = 0 has not been included.

By studying the fracture surface, it is seen that the surface is similar to the one with the
von Mises yield criterion, excluding µσ = 0, shown in Figure 5.10. The same tendency
is seen as for CL regarding lower critical strains and lower values for the JC fracture
parameters with GTN in the matrix. Note that even though the fracture surfaces in
both Figures 5.10 and 5.11 are Lode independent, the slopes and the accumulated plastic
strains at failure are different. The discrepancies observed in the slopes may be due to
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Figure 5.11: Fracture surface for the Johnson-Cook fracture model calibrated to the computa-
tional cell data with GTN in the matrix, excluding the data for µσ = 0. Fracture parameters:
D1 = 0.1023, D2 = 4.1555, D3 = −2.0653 and D4 = D5 = D6 = 0.

the fact that σ∗ = 0.65 was not included for the analyses with GTN in the matrix. The
fracture parameters are presented in Table 5.2.

Table 5.2: Johnson-Cook fracture parameters from calibration to the computational cells with
GTN in the matrix.

D1 D2 D3 D4 D5 D6

GTN without µσ = 0 0.1023 4.1555 -2.0653 0 0 0

5.3 Tensile Test Comparison

To compare the CL and JC fracture models, tensile tests were conducted using IMPETUS
and the calibrated fracture parameters. The force-displacement curves from the tensile
tests are presented in Figure 5.12.

As shown in the figure, CL with Wc = 174.1 MPa, obtained from calibration to the tensile
tests, shows good correspondence with the experimental results from Westermann et al.
[41]. This is as expected, since the calibration was done against the data from Westermann
et al. Both the curve for CL with Wc = 364.3 MPa and JC with a von Mises yield criterion
in the computational cell matrix have fracture occurring at a later time. This is due to the
magnitude of the fracture parameters, which yield larger critical equivalent strains. There
is, although, relatively good correspondence between the models. This is as anticipated,
since both models have been calibrated to the same computational cell data.
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Figure 5.12: Comparison of the Cockcroft-Latham and Johnson-Cook fracture models for tensile
tests, with experimental data from Westermann et al. [41]. The crosses represent the points of
failure.

Investigation of the curves reveals that the JC curves have failure occuring at a later
time than CL both with von Mises and GTN in the computational cell matrix. The
small discrepancies observed with von Mises is probably due to different definitions of the
fracture surface. The curves for GTN in the matrix are observed to have failure at lower
strains for both fracture models. As mentioned, this in accordance with the tendency
seen in the computational cell study in Chapter 4. There is although larger discrepancies
between CL and JC with GTN in the matrix than with von Mises. One possible reason
for this is that the triaxiality ratio σ∗ = 0.65 was not included in the analyses with GTN,
which may lead to a larger difference for lower triaxialities, such as for a tensile test.

5.4 The Gurson-Tvergaard-Needleman Model

The GTN model was calibrated to the computational cell data with the main goal of using
GTN in the ballistic impact analyses in IMPETUS and Abaqus. The GTN parameters,
presented in Equation 2.39 in Section 2.2.7.1, were only calibrated for an axisymmetric
cell in generalized tension.

The analyses were run using a one-element axisymmetric model made in Abaqus, with
an 8-node quadratic axisymmetric element with full integration. The Voce parameters of
the AlMgSi-alloy were used, as well as an initial void volume fraction of f0 = 5 · 10−3.
The GTN model in Abaqus was used to vary the void growth parameters q1 and q2. The
element, with boundary and loading conditions, is shown in Figure 5.13. As seen, the left
and bottom edges were fixed, while surface tractions were applied on the top and right
edges, using the static Riks algorithm in Abaqus. Constraints were applied on the top
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and right edges, by constraining all nodes to the top right node, to ensure straight edges
during deformation. Note that unlike the unit cell models presented in Chapter 4, this
model does not include a primary void in the centre.

Figure 5.13: Boundary and loading conditions for the one-element model used in calibration of
the GTN parameters.

Figure 5.14 illustrates the deformed cell for triaxiality ratio σ∗ = 2, using standard
Tvergaard parameters q1 = 1.5 and q2 = 1.0. The third picture from the left is taken
right after coalescence. It is observed that the deformation is similar to the deformation of
the axisymmetric unit cell in generalized tension, presented in Figure 4.6 in Section 4.2.1.
Considering that the one-element model also is an axisymmetric model in generalized
tension makes this deformation reasonable. Coalescence has therefore been defined on
the same basis for this one-element model, i.e., once a uniaxial deformation mode occurs.

Figure 5.14: Deformation of the one-element model with GTN in the matrix for triaxiality ratio
σ∗ = 2. q1 = 1.5 and q2 = 1.0.
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5.4.1 Calibration of the Gurson-Tvergaard-Needleman Model

To get good correspondence between the GTN model and the computational cell data, the
GTN parameters were varied separately to investigate the influence of each parameter. It
was concluded that it was most important to get good correspondence with the cell data
for low triaxialities, since very low triaxialities are expected for the experimental tests.

By studying Equation 2.42 in Section 2.2.7.1, it is seen that both parameters influence the
void growth. The equation contains a hyperbolic sine function that includes the second
GTN parameter q2 and the triaxiality ratio σ∗, which means that the value of q2 governs
the change in void growth for different triaxialities. It can also be seen that several
combinations of q1 and q2 may give relatively good correspondence with the cell data for
a given triaxiality. Note that what may be a good combination for low triaxialities not
necessarily yield good correspondence for high triaxialities, and vice versa. It is therefore
desirable to find a combination of the parameters that give good match with the cell data
for all triaxialities, with the main focus on the lower triaxialities.

Figure 5.15 illustrates the void volume fraction versus equivalent strain for various values
of q1 for triaxiality ratio σ∗ = 1 and q2 = 1.00. As seen in the figure, lower values of q1
give better correspondence with the computational cell data. Quite large discrepancies
are seen between the curves for q1 = 1.75 and q1 = 0.80. Observations reveal that the
Tvergaard parameters of q1 = 1.50 and q2 = 1.00 are not optimal for this computational
cell study.

The curve for q1 = 1.16 is considered the best option, due to good correspondence with
the cell data for low strains as well as an intersection close to the point of coalescence.
Note that the void volume fraction presented in the figure represents the average value of
the void volume fraction in all nine integration points.

By studying the curves in Figure 5.15 it is seen that the computational cell curve has
a rather gentle incline up to the point of coalescence, and a low value of q1 is therefore
desirable. Figure 5.16 illustrates the effect of the q2 parameter for triaxiality ratio σ∗ = 1.
The lowest value for q1 presented in Figure 5.15 was chosen to better illustrate the effect
of a change in q2. By increasing q2, more rapid increase in the slope is seen and quite
good correspondence with the cell data can be achieved. This is as expected, based on
Equation 2.42. For a value of q1 = 0.80, the curve for q2 = 1.15 is considered to have the
best fit to the cell data.
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Figure 5.15: Influence of GTN parameter q1 for triaxiality ratio σ∗ = 1.
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Figure 5.16: Influence of GTN parameter q2 for triaxiality ratio σ∗ = 1.
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Based on the curves presented in Figures 5.15 and 5.16, the following combinations of
GTN parameters were considered the best fit for σ∗ = 1; q1 = 1.16 and q2 = 1.00 and
q1 = 0.80 and q2 = 1.15. Figure 5.17 illustrates the development in void volume fraction
for triaxiality ratios in the range 0.75 < σ∗ < 2.00 for q1 = 1.16 and q2 = 1.00. The
dashed lines represent the computational cell data for the given triaxiality. It is seen
that all curves lie on the left side of the corresponding computational cell curves before
coalescence, and relatively good correspondence is achieved for all triaxialities. This is
considered good. Note that triaxiality ratio σ∗ = 0.65 has not been included, because
coalescence could not be reached within acceptable straining.

Figure 5.18 shows the void volume fraction for all triaxialities for q1 = 0.80 and q2 =
1.15. Only small discrepancies are observed, and all curves lie on the left side of the
computational cell curves before coalescence.

When comparing the curves presented in Figures 5.17 and 5.18 it is seen that the overall
best fit was obtained with GTN parameters of q1 = 1.16 and q2 = 1.00. The main
arguments for this are better correlation for higher triaxialities, as well as intersection
points closer to the point of coalescence for low triaxialities.
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Figure 5.17: Development in void volume fraction with GTN parameters q1 = 1.16 and q2 =
1.00, compared to computational cells, for triaxialities in the range 0.75 < σ∗ < 2.00.
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Figure 5.18: Development in void volume fraction with GTN parameters q1 = 0.80 and q2 =
1.15, compared to computational cells, for triaxialities in the range 0.75 < σ∗ < 2.00.

5.4.2 Calibration of the Modified Gurson Model with Shear Soft-
ening

The perforation process is believed to be highly sensitive to shear, such that to properly
model the penetration of the AlMgSi-target using an ogival shaped bullet, the effects of
shear softening should be included. The modified Gurson model, presented in Section
2.2.7.2, was calibrated to the computational cell data to obtain the value of the shear
constant ks. The shear constant was found using the following expression proposed by
Nahshon and Hutchinson [18]

ks = 1
Eceq

ln
(
fc
f0

)
(5.1)

Naturally, the model was calibrated using only the plane strain shear cell data. The shear
cell analysis resulted in a critical equivalent strain of Eceq = 0.4659, and a critical void
volume fraction for µσ = 0 equal to fc = 0.0578. Note that the critical void volume
fraction is the average value for all tested triaxialities for the plane strain cell. With an
initial void volume fraction f0 = 0.005, this resulted in a shear parameter ks = 5.25.
An appropriate value for the shear constant lies in the range 1 ≤ ks ≤ 3 for many
structural alloys [18]. The value obtained from these computational cell analyses is above
the suggested range. Since only small discrepancies are seen between the 2D and 3D
shear cells, as presented in Figure 4.38, the value for the shear constant is assumed to be
sufficiently accurate.
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5.5 Discussion

Table 5.3 presents the calibrated fracture parameters for the three fracture models studied
in this thesis.

Table 5.3: Fracture parameters for the Cockcroft-Latham, Johnson-Cook and Gurson-Tvergaard-
Needleman fracture models, calibrated to both computational cell data (CC) and tensile tests. The
calibration to computational cells with GTN does not include µσ = 0.

CL JC GTN

Wc [MPa] D1 D2 D3 D4 D5 D6 q1 q2

CC with µσ = 0 318.9 0.2894 5.9502 -2.5746 0 0 0.5592 - -
CC without µσ = 0 364.3 0.2915 6.5091 -2.6940 0 0 0 1.16 1.00

CC with GTN 281.7 0.1023 4.1555 -2.0653 0 0 0 - -
Tensile test 174.1 - - - - - - - -

By studying the calibration of CL to the computational cell data, it is seen that although
the values for µσ = 0 do not affect the shape of the fracture surface, they have an influence
on the fracture parameter Wc. By including data for µσ = 0 we get a decrease in the
fracture parameter from Wc = 364.3 MPa to Wc = 318.9 MPa. Lower value for the
critical plastic work Wc yield failure at lower strains.

When comparing the fracture parameters obtained from the computational cell study and
the tensile test, it is seen that Wc for the cell data is approximately twice the value of
Wc from the tensile tests. The parameter obtained from the tensile tests is considered
to be more realistic due to the fact that the tensile test calibration is based on actual
experimental test data, while the simplified cell models only have Voce hardening given
by material tests.

According to Hopperstad, a triaxiality ratio of approximately σ∗ = 1/3 can be expected
for tensile tests [50]. Low triaxialities are also anticipated for the ballistic impacts. As
seen in Figure 4.38, σ∗ = 0 yield low critical strain. Despite the fact that the tensile test
is not directly comparable with the ballistic impacts, a fracture parameter of Wc = 174.1
MPa seems reasonable.

As mentioned, the fracture parameters obtained from the computational cell study are
considered somewhat high, compared to the tensile tests. This may be due to several
reasons. First, the computational cell models are two-dimensional simplified models.
Furthermore, the cells are modelled including one large primary void, which is not believed
to be as realistic for the AlMgSi-alloy. A more reasonable model is believed to include
secondary voids in the matrix, and one way of adding this is by including GTN in the
matrix. It was shown that GTN in the matrix resulted in lower critical equivalent strains,
hence it reduced the value of Wc. This value of Wc = 281.7 MPa is believed to be more
realistic than with the von Mises yield criterion, but the calibration will not be entirely
accurate due to the use of a simplified two-dimensional cell.

The data for µσ = 0 had significant influence on the fracture surface for the Johnson-Cook
model. By excluding the plane strain cell data, the problem becomes independent of the
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Lode parameter, and D6 = 0. Only small discrepancies are observed between the other
parameters.

The standard Tvergaard parameters were seen to yield relatively poor correspondence
with the computational cells, compared to other combinations of q1 and q2. It was con-
cluded that several combinations of GTN parameters could give good correspondence
with the cell data. Due to a rather gentle incline in the computational cell curve prior to
coalescence, lower values of q1 and q2 were desirable.

In Chapter 4 it was concluded that a comparison of the two-dimensional axisymmetric and
plane strain cells would not be correct, due to the difference in void shapes. Therefore the
values from the plane strain cells, i.e., µσ = 0, has not been included in further analyses
in this thesis, except for the GTN model with shear softening. It was, although, included
in the calibration of the CL and JC fracture models in this chapter, to investigate the
influence of µσ = 0. When referring to different fracture parameters in Chapters 6 and 7,
the values presented in Table 5.4 apply.

Table 5.4: Cockcroft-Latham, Johnson-Cook and Gurson-Tvergaard-Needleman fracture param-
eters used in the numerical analyses in Chapters 6 and 7.

Fracture criterion Fracture parameter
Cockcroft-Latham Wc = 364.3 MPa and Wc = 174.1 MPa

Johnson-Cook D1 = 0.2915, D2 = 6.5091, D3 = −2.6940,
D4 = D5 = D6 = 0

Gurson-Tvergaard-Needleman q1 = 1.16, q2 = 1.00
Modified Gurson ks = 5.25



6 Preliminary Numerical Study

In this chapter important parameters are studied, element erosion techniques compared
and the size of the FE mesh investigated. These factors are discussed in the final section,
and form the basis for the numerical model that is established in Chapter 7.

The IMPETUS analyses presented in this thesis were run on a server at NTNU. The
IMPETUS server utilizes both GPU and CPU parallelization, and the specifications are
presented in Table 6.1. Analyses in Abaqus were run on the computer cluster Snurre at
NTNU, with the specifications shown in Table 6.2. Note that the computer cluster Snurre
utilizes only CPU parallelization.

Table 6.1: IMPETUS server specifications.

Component Specification
CPU Intel Xeon E5 quadcore, 3.70 GHz
GPU Two Nvidia Tesla Keplar K20C, 5 GB GDDR5, with 2496 cores each
RAM 16 GB DDR3 @ 1866 MHz

Table 6.2: Computer cluster Snurre specifications.

Component Specification
CPU 5 computer nodes each with two six-core Intel X5680 @ 3.33-3.6 GHz
GPU -
RAM 5 computer nodes each with 24GB

6.1 Pinhole Study

Before a complete model of the ballistic test was created in IMPETUS, a pinhole study
was conducted to investigate the effects of friction, temperature and strain rate. The
numerical model presented in Section 3.3 is also used in this section, and was modified to
include friction, with Coulomb friction factors of µ = 0, 0.05 and 0.10.

The material response of aluminium is almost independent of strain rate at room temper-
ature, but for temperatures above 50% of the melting temperature it has shown significant
strain rate dependency [55]. During impact, the maximum temperatures observed in the
target plate, for the pinhole model, is larger than 80% of the melting temperature, and
depend on the impact velocity of the bullet. Figure 6.1 shows the temperature in one of

89
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the pinhole analyses with initial velocity of 700 m⁄s, and c, m and µ parameters corre-
sponding to the first row in Table 6.3. The maximum temperature is 819 K and is located
in the entry of the penetration channel. In the interior of the penetration channel, the
temperature is seen to be about 700 K. Therefore the strain rate parameter c and tem-
perature parameter m in the MJC-model were investigated. Values of c = 0.001, 0.005
and 0.010 and m = 0.5, 1.0, 2.0 and 4.0 were tested. The ballistic limit curves are shown
in Figure 6.2.

Figure 6.1: Temperature in the penetration channel, given in Kelvin [K]. vi = 700 m⁄s, vr =
551.1 m⁄s, µ = 0, m = 1.0 and c = 0.001.

Table 6.3 presents the ballistic limit velocities for all tests, which are fitted to the points
using the Recht-Ipson model with a = 1 and p = 2. From Figure 6.2 one can see that
the Coulomb friction factor has the most influence on the ballistic limit. There is a
23.9% increase in the ballistic limit between the highest and lowest friction coefficients.
A Coulomb friction factor of µ = 0.05 was selected based on a proposed value by Ravid
and Bodner [56].

Table 6.3: Ballistic limit velocities for various combinations of the Coulomb friction factor µ,
the temperature parameter m and the strain rate parameter c, for the pinhole study.

Coulomb friction factor, µ Temperature parameter, m Strain rate parameter, c vbl [m/s] Rel. Diff.
0 1.0 0.001 429.1 Ref.

0.05 1.0 0.001 494.3 +15.2%
0.10 1.0 0.001 531.8 +23.9%

0 1.0 0.005 443.0 +3.2%
0 1.0 0.010 460.6 +7.3%
0 0.5 0.001 402.8 -6.1%
0 2.0 0.001 437.8 +2.0%
0 4.0 0.001 439.2 +2.4%

The strain rate parameter has a minor influence on the ballistic limit velocity, with a
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7.3% increase for the highest strain rate parameter c = 0.010. According to Hopperstad
and Børvik [44, 50], c = 0.010 is too large for this AlMgSi-alloy. Therefore, c = 0.001 was
chosen based on material data at room temperature. Note that the strain rate parameter
might be higher for temperatures close to the melting temperature. The temperature
parameter has almost no influence on the ballistic limit for m ≥ 1. Only 2.4% increase
is seen between m = 1 and m = 4. For m = 0.5, a decrease of 6.1% was observed in
the ballistic limit. m = 1 was selected and is used in the following models. Temperature
dependency of these parameters are not tested, and may lead to deviations from the
experimental results.
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Figure 6.2: Ballistic limit curves for the pinhole study: (a) Strain rate parameter c is varied,
(b) temperature parameter m is varied, (c) Coulomb friction factor µ is varied.
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6.2 Element Erosion Study

In this section the element erosion techniques introduced in Section 2.4.2.1 are studied
and discussed. A preliminary numerical model in IMPETUS was established for this
purpose only. The Cockcroft-Latham criterion was utilized to compare the techniques,
using the two parameters presented in Table 5.4.

6.2.1 Numerical Model

The preliminary numerical model does not include a pinhole, and a failure criterion is
therefore needed to perforate the target. As mentioned above, the Cockcroft-Latham
criterion was implemented using the *PROP DAMAGE CL command in IMPETUS. Half of
the target was modelled, a symmetry condition was used and the periphery was fixed.
The bullet mesh used in the pinhole study is identical to the one presented in Section 3.3.

The target mesh, shown in Figure 6.3, was created in Abaqus and made compatible with
IMPETUS using MATLAB. As seen in the figure, the mesh was refined in the impact
zone. 60 elements were used over the thickness in a radius of 4 mm from the centre of
the impact zone, resulting in an element size of 0.5 · 0.5 · 0.5 mm3. Cubic hexahedra were
applied in the centre with a radius of 12 mm, while linear hexahedra were used further
away from the impact zone.

(a)

(b)

Figure 6.3: Target mesh: (a) showing target from above and (b) showing the cross-section.
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The contact between the target and bullet was implemented using the new and unverified
penalty contact algorithm in IMPETUS, with the keyword *CONTACT SUPER. A penalty
factor of 1015 was used. The modified Johnson-Cook material model was applied with
the material parameters introduced in Sections 3.1 and 6.1. The penetration process
is considered extremely fast, and therefore the process is assumed adiabatic and the
temperature increase is calculated using a Taylor-Quinney coefficient of χ = 0.9.

6.2.2 Erosion Techniques

The element erosion techniques introduced in Section 2.4.2.1 is repeated below. In this
thesis techniques 1, 2 and 3 were studied. Technique 4 is believed to behave similar to
technique 3 for an ogival shaped bullet and was therefore omitted.

1. Failed element is not eroded at material failure but loses its deviatoric properties
and are still able to take hydrostatic stresses.

2. Failed element is eroded at material failure.

3. Node splitting at failure (crack plane orthogonal to max principal strain).

4. Node splitting at failure (crack plane orthogonal to max principal stress).

The initial velocity of the bullet is 700 m⁄s for all tests in this study. All ballistic limit
velocities are predicted based on this initial velocity and the residual velocities from all
tests, using the Recht-Ipson model with a = 1 and p = 2.

Table 6.4 shows the results using erosion technique 1, the pinhole study and only time
step erosion. For the bullet to be able to penetrate the target, some of the elements
in front of the bullet have to be removed. Therefore an erosion time step needs to be
established for erosion techniques 1 and 3. The erosion time step should be small enough
such that the element reaches material failure before it is eroded, but big enough for the
GPU/CPU-time to be reasonable.

Analyses with only time step erosion was used to study the effect of the erosion time step.
For these analyses no damage rule were applied, and hence all elements were eroded due
to dropping time steps. This corresponds to an infinite fracture strain. The predicted
ballistic limits are nearly identical for the three erosion time steps studied, and an erosion
time step of 3·10−9 seconds is considered sufficient for the element size used in this model.

It was established early in the study that technique 1 is not the best option for this
particular target thickness. Since the target is relatively thick, the target thickness being
larger than the bullet length, the effect of friction cannot be neglected. Friction forces
are applied as shear tractions between the bullet and target.

When an element in the target reaches material failure it loses its deviatoric properties
and are unable to withstand the friction forces. This results in non-physical deformation
if the erosion time step is too small. Friction no longer has any purpose since the failed
elements act as a thin sheet of friction free surface in the penetration channel. Analyses
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with erosion technique 1 and smaller erosion time steps were tested. This resulted in
non-physical deformation in failed elements and a bad energy balance.

From Table 6.4 one can see that the two different CL parameters yield different predicted
ballistic limits using erosion technique 1. These results are as expected.

Table 6.4: Comparison of erosion technique 1, pinhole study and erosion using only time step.

Erosion technique Elements Element ∆terode [s] Wc [MPa] GPU/CPU-time vbl [m/s]over thickness size [mm]
Pinhole 30 1.0 0 ∞ 1h 27min 480.7

1 60 0.5 3 · 10−9 364.3 4h 18min 466.2
1 60 0.5 3 · 10−9 174.1 4h 10min 448.6

Only time step 60 0.5 3 · 10−9 ∞ 3h 48min 480.9
Only time step 60 0.5 2 · 10−9 ∞ 6h 22min 480.5
Only time step 60 0.5 1 · 10−9 ∞ 14h 8min 478.3*

* Bad energy balance, see Section 6.2.2.1.

t = 103.5 µs

t = 81.0 µs

t = 58.5 µs

t = 36.0 µs

t = 13.5 µs

t = 0 µs

Figure 6.4: Time-lapse showing the penetration process with erosion technique 1. vi = 700 m⁄s

and vr = 537.4 m⁄s.
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Figure 6.4 shows the penetration process for the test in row 3 in Table 6.4, using erosion
technique 1. One can see that some of the remaining elements in the penetration channel
have sharp pointed edges. This is believed to be because of the above mentioned friction
problem. The rest of the penetration channel is relatively smooth.

Table 6.5 summarizes the analyses run with erosion technique 2. Since technique 2 erode
elements at material failure, the erosion time step is not needed here and is therefore set
to zero. Erosion technique 2 was also tested with two other mesh sizes. Based on the
results, technique 2 seems to be more mesh size dependent than techniques 1 and 3. In
Figure 6.5, one can see the element boundaries forming a staircase like shape in front of
the bullet as it travels through the target. This effect smooths out for decreasing element
size.

Table 6.5: Erosion technique 2.

Erosion technique Elements Element ∆terode [s] Wc [MPa] GPU/CPU-time vbl [m/s]over thickness size [mm]
2 90 0.33 0 364.3 11h 51min 440.4
2 60 0.50 0 364.3 2h 30min 425.4
2 30 1.00 0 364.3 1h 11min 439.1
2 90 0.33 0 174.1 7h 28min 402.1
2 60 0.50 0 174.1 2h 6min 427.8
2 30 1.00 0 174.1 28min 423.7

Erosion technique 2 also yield different predicted ballistic limits for the two CL param-
eters, but the limits are lower for technique 2 than technique 1. These lower predicted
ballistic limits are probably because of a too coarse mesh. The mesh size dependency will
be investigated further in Section 6.3.

Figure 6.5 shows the penetration process for the test in row 5 in Table 6.5. The element
boundaries can be seen clearly in the penetration channel and is not as smooth as for
erosion technique 1. In the middle of the channel a few elements were eroded even further
into the target material. This is probably due to the frictional forces and a too coarse
mesh.
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t = 103.5 µs

t = 81.0 µs

t = 58.5 µs

t = 36.0 µs

t = 13.5 µs

t = 0 µs

Figure 6.5: Time-lapse showing the penetration process with erosion technique 2. vi = 700 m⁄s

and vr = 554.1 m⁄s.

Table 6.6 shows the results from the analyses with erosion technique 3. Also for this
technique an erosion time step is needed. The GPU/CPU-time needed to run an anal-
ysis without an erosion time step would be too great, if not impossible. Both erosion
techniques 1 and 2 can only accumulate damage until the damage parameter is equal to
one, but for technique 3 it can become larger. The element boundaries are separated
when the damage parameter reaches one, but the element properties are unaffected. This
results in nearly no difference between the two CL parameters on the predicted ballistic
limits, but a visual difference is seen, as more fragmentation occurs for lower Wc. The
GPU/CPU-time is also increased because of more fragmentation.

Erosion technique 3 was tested with a coarser mesh to study the effect of mesh dependency.
The increase in mesh size resulted in less fragmentation and larger fragments, but a small
difference in the predicted ballistic limit.

The energy balance for tests with erosion time step of 1·10−9 seconds was bad. Holmen [38]
proposed to include an erosion criterion based on the geometric strain and geometric strain
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Table 6.6: Erosion technique 3.

Erosion technique Elements Element ∆terode [s] εerode Wc [MPa] GPU/CPU-time vbl [m/s]over thickness size [mm]
3 60 0.5 3 · 10−9 1020 364.3 15h 26min 480.7
3 60 0.5 2 · 10−9 1020 364.3 22h 24min 478.4
3 60 0.5 1 · 10−9 1020 364.3 48h 460.3*
3 30 1.0 3 · 10−9 1020 364.3 3h 8min 482.1
3 30 1.0 2 · 10−9 1020 364.3 5h 50min 487.0
3 30 1.0 1 · 10−9 1020 364.3 16h 55min 484.6*
3 60 0.5 1 · 10−9 5 364.3 48h 481.5
3 60 0.5 1 · 10−9 5 174.1 72h 475.9

* Bad energy balance, see Section 6.2.2.1.

increment to fix the problem. Including deletion of elements with a greater geometric
strain than εerode = 5 fixed the energy balance. Later it was found that the problems
with the energy balance were due to the new and unverified *CONTACT SUPER algorithm
in IMPETUS.

The analyses with the *CONTACT SUPER algorithm used much longer GPU/CPU-time than
the standard *CONTACT algorithm. The tests with an erosion time step of 1 · 10−9 sec-
onds were rerun using the standard *CONTACT algorithm, and a comparison with the
corresponding *CONTACT SUPER analyses is presented in Section 6.2.2.1.

In Figure 6.6, the deformation time-lapse of the test in the bottom row of Table 6.6 with
erosion technique 3 can be seen. A lot of fragments is seen in the penetration channel,
which is not as smooth as for erosion techniques 1 and 2.

A small amount of fragmentation was observed in the experimental tests, and the domi-
nating phenomenon was ductile hole growth. Erosion technique 3 is believed to be better
for problems involving thin target plates and brittle materials. Erosion Technique 1 is
thought to be the best for ductile materials if frictional forces can be neglected. Erosion
technique 2 is assumed to behave better for the target thickness in this thesis, when the
mesh size is reduced.
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t = 103.5 µs

t = 81.0 µs

t = 58.5 µs

t = 36.0 µs

t = 13.5 µs

t = 0 µs

Figure 6.6: Time-lapse showing the penetration process with erosion technique 3. vi = 700 m⁄s

and vr = 513.3 m⁄s.

In Figure 6.7, the entry and exit holes of the tests presented in Figures 6.4, 6.5 and 6.6 are
shown. For erosion technique 1, one can see some elements with sharp edges around the
entry and exit holes. These elements have lost their deviatoric properties but not been
eroded. For erosion technique 2 one can see that more elements were eroded around both
entry and exit holes. Erosion technique 3 yield a lot of fragmentation, and the element
boundaries have been separated. One can see this clearly in the entry hole. The exit hole
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is not as smooth as for erosion techniques 1 and 2, and crack propagation is seen.

(a) Erosion technique 1 (b) Erosion technique 2 (c) Erosion technique 3

(d) Erosion technique 1 (e) Erosion technique 2 (f) Erosion technique 3

Figure 6.7: Entry and exit holes with different erosion techniques in IMPETUS; (a), (b) and
(c) show the entry holes, (d), (e) and (f) show the exit holes.

6.2.2.1 Energy Balance

As mentioned earlier the *CONTACT SUPER algorithm caused bad energy balance in the
analyses with an erosion time step of 1 · 10−9 seconds. These were re-tested using the
*CONTACT algorithm, and a comparison with the results from the *CONTACT SUPER algo-
rithm is presented in Table 6.7. An excellent energy balance is seen for *CONTACT. The
other analyses run with *CONTACT SUPER is believed to be reasonable and the predicted
ballistic limits are within 2 m⁄s of the *CONTACT algorithm.

Table 6.7: Contact algorithm comparison: *CONTACT versus *CONTACT SUPER.

Erosion technique Elements Element Contact algorithm Wc [MPa] GPU/CPU-time vbl [m/s]over thickness size [mm]
Only time step 60 0.5 *CONTACT SUPER ∞ 14h 8min 478.3
Only time step 60 0.5 *CONTACT ∞ 8h 23min 485.8

3 60 0.5 *CONTACT SUPER 364.3 48h 460.3
3 60 0.5 *CONTACT 364.3 20h 5min 480.4
3 30 1.0 *CONTACT SUPER 364.3 16h 55min 484.6
3 30 1.0 *CONTACT 364.3 8h 39min 485.3

From Table 6.7 one can see that the GPU/CPU-time needed to run the analyses with
*CONTACT SUPER is almost the double of *CONTACT. The predicted ballistic limit for the
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bottom tests are almost identical, but for the ones in the middle of Table 6.7 a large
difference can be seen.

In Figure 6.8, the energy balance of the middle tests, with erosion technique 3 and 0.5
mm elements, are shown. One can see that the energy balance is not constant with the
*CONTACT SUPER algorithm. The ”Contact - damping energy” and ”Kinetic - energy of
free nodes” are also much higher than with the *CONTACT algorithm. From this one can
conclude that *CONTACT SUPER yields suboptimal results and needs further verification.
All further analyses will therefore be run with the standard *CONTACT algorithm.

0 0.2 0.4 0.6 0.8 1

·10−4

0

200

400

600

800

Integration time, t [s]

E
ne

rg
y

[N
m

]

Internal - elastic energy
Internal - plastic and viscous work
Internal - thermal energy
Kinetic - rigid bodies
Kinetic - physical energy of deformable bodies
Kinetic - energy of free nodes
Contact - friction energy
Contact - damping energy
Energy balance

(a)

0 0.2 0.4 0.6 0.8 1

·10−4

0

200

400

600

800

Integration time, t [s]

E
ne

rg
y

[N
m

]

Internal - elastic energy
Internal - plastic and viscous work
Internal - thermal energy
Kinetic - rigid bodies
Kinetic - physical energy of deformable bodies
Kinetic - energy of free nodes
Contact - friction energy
Contact - damping energy
Energy balance

(b)

Figure 6.8: Energy balance: (a) with the *CONTACT algorithm, (b) with the *CONTACT SUPER
algorithm.
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6.3 Mesh Sensitivity Study

The cubic hexahedral elements in IMPETUS, using erosion technique 2, are compared to
linear elements in Abaqus. To reduce the GPU/CPU-time needed to run an analysis a
new numerical model was established, modelling only a five degree slice of the bullet and
target.

6.3.1 Numerical Model

The numerical model in IMPETUS was modelled in a similar fashion as in Section 6.2.1,
where the half model was exchanged with a five-degree model, and a symmetry plane was
added. A penalty factor of 1015 was used for the standard penalty *CONTACT algorithm.
The IMPETUS mesh, created in Abaqus, with 150 elements over the thickness is presented
in Figure 6.9.

An element size of 0.2 · 0.2 · (πr/36) mm3 was used in the inner part of the target with
a radius of 10 mm, i.e., 150 elements over the thickness and one in the circumferential
direction. A coarser mesh was used farther from the impact zone, and in the centre of
the target, cubic elements were used in a radius of 16 mm. The bullet was modelled as a
rigid part and the mesh is shown in Figure 6.10.

(a)

(b)

Figure 6.9: Target mesh in IMPETUS using cubic hexahedrons in the impact area: (a) showing
target from above and (b) showing the cross-section.
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Figure 6.10: Bullet mesh.

In Abaqus, the numerical model was made to resemble the IMPETUS model as precisely
as possible. The SIMLab Metal Model was used to be able to apply a CL damage
criterion, adiabatic heating and a rate dependent MJC material model. To get the bullet
to penetrate in Abaqus, a supplementary failure criterion was established. In addition to
the CL criterion, an element was deleted if the temperature in the element was higher
than 90% of the melting temperature, i.e., Tc = 804 K.

A general contact algorithm was used with a Coulomb friction factor of 0.05, as in the
IMPETUS model. The bullet was modelled as an analytical rigid surface, and unlike the
rigid IMPETUS bullet, the analytical rigid surface has no mesh. Abaqus/Explicit offers
only first order linear elements, and these have been used with reduced integration in the
target mesh shown in Figure 6.11. The figure shows the Abaqus mesh with 150 elements
over the thickness. A three-dimensional picture of the five-degree model in Abaqus is
shown in Figure 6.12.

(a)

(b)

Figure 6.11: Target mesh in Abaqus using linear hexahedrons in the impact area: (a) showing
target from above and (b) showing the cross-section.
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Figure 6.12: Five-degree model in 3D from Abaqus.

6.3.2 Results

The results from the mesh sensitivity study are presented in Tables 6.8 and 6.9, and
plotted in Figure 6.13 for better visualization. An initial velocity of 700 m⁄s was used for
all tests. The ballistic limit velocities are predicted based on this initial velocity and the
residual velocities using the Recht-Ipson model with a = 1 and p = 2.

Table 6.8 shows the results for the IMPETUS model. The model was run with the two
different CL parameters to compare the convergence, and to see if there was any difference
in the predicted ballistic limits for the two. For the IMPETUS model, a clear difference
is seen between the two CL parameters, but the same is not seen for the Abaqus model,
presented in Table 6.9.
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One reason for the small difference between the two CL parameters in Abaqus may be
due to the temperature erosion criterion. Without this criterion the analyses crash due to
excessively distorted elements. The same tendency can be seen in IMPETUS with linear
elements. Linear elements were tested in IMPETUS, but this resulted in elements being
eroded because of negative volume due to the S/R integration in IMPETUS [37].

Table 6.8: Mesh sensitivity results from IMPETUS analyses.

Elements over thickness Element size [mm] Wc [MPa] GPU/CPU-time vbl [m/s] Rel. Diff.
Experiment - - - 517.5 Ref.

30 1.000 364.3 11min 436.8 -15.6%
60 0.500 364.3 38min 407.9 -21.2%
90 0.333 364.3 1h 51min 420.7 -18.7%
150 0.200 364.3 4h 14min 437.4 -15.5%
300 0.100 364.3 40h 37min 451,0 -12.9%
405 0.075 364.3 5days 454.3 -12.2%
30 1.000 174.1 8min 368.2 -28.9%
60 0.500 174.1 31min 364.0 -29.7%
90 0.333 174.1 1h 29min 366.1 -29.3%
150 0.200 174.1 3h 27min 391.6 -24.3%
300 0.100 174.1 10h 45min 412.3 -20.3%
405 0.075 174.1 35h 51min 424.6 -17.9%

The three mesh sizes studied in Table 6.5 in Section 6.2.2, with erosion technique 2 are
here retested with the new numerical model in IMPETUS. The predicted ballistic limits
are lower for the five-degree model than for the half model. The reason for this is probably
that the five-degree model resembles a 2D axisymmetric model more than a 3D model.
According to Børvik [44], a 2D model often needs a finer mesh than a 3D model to obtain
convergence.

Table 6.9 presents the data from the Abaqus analyses. Note that the Abaqus model uses
linear elements versus cubic elements in IMPETUS. The node spacing is therefore three
times as high in Abaqus for the same element size. One analysis with 1200 elements over
the thickness was tested in Abaqus to give approximately the same node spacing as for
the finest mesh in IMPETUS. The analysis used 10 days on the supercomputer Vilje, and
based on this analysis it is believed that the Abaqus mesh has converged.
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Table 6.9: Mesh sensitivity results from Abaqus analyses.

Elements over thickness Element size [mm] Wc [MPa] CPU-time vbl [m/s] Rel. Diff.
Experiment - - - 517.5 Ref.

30 1.000 364.3 1min 504.0 -2.6%
60 0.500 364.3 2min 479.2 -7.4%
90 0.333 364.3 6min 474.9 -8.2%
150 0.200 364.3 1h 35min 492.0 -4.9%
300 0.100 364.3 8h 57min 478.5 -7.5%
405 0.075 364.3 16h 38min 477.6 -7.7%
1200 0.025 364.3 10days* 478.2 -7.6%
30 1.000 174.1 1min 493.4 -4.6%
60 0.500 174.1 2min 477.8 -7.7%
90 0.333 174.1 4min 473.3 -8.5%
150 0.200 174.1 1h 20min 488.3 -5.6%
300 0.100 174.1 8h 24min 477.1 -7.8%
405 0.075 174.1 13h 5min 475.7 -8.1%

* The analysis was run on the supercomputer Vilje at NTNU.
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Figure 6.13: Mesh sensitivity study showing the data in Tables 6.8 and 6.9, comparing IMPE-
TUS and Abaqus analyses with different CL parameters.
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Figure 6.14: Mesh sensitivity study showing the data in Tables 6.8 and 6.9 with the number of
nodes over the target thickness.

Figures 6.13 and 6.14 presents the results obtained from the sensitivity study. The men-
tioned difference in CL parameter is visualized, and IMPETUS is compared to Abaqus.
In these figures, one can clearly see that IMPETUS and Abaqus converge towards a bal-
listic limit from different sides; IMPETUS converges from below and Abaqus converges
from above. Based on the trend of the curves it is not possible to determine whether they
converge towards the same value or not. Investigation of the curves in Figure 6.14 reveals
that Abaqus converges faster than IMPETUS for the same node spacing.

There are several possible reasons for this. One cause may be the use of cubic elements
and exact integration in IMPETUS, versus linear elements with reduced integration in
Abaqus. IMPETUS erodes an element when 16 out of 64 integration points reach material
failure, while an element in Abaqus only has one integration point. The temperature
erosion criterion in Abaqus, which is not needed in IMPETUS, may be another factor.

From Figure 6.13, it can be seen that although the element size is 75 µm, close to the
65µm grain size of the AlMgSi-alloy seen in Section 3.6, the FE solution has not yet
converged.
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Figure 6.15: Total eroded target mass in IMPETUS.

For the IMPETUS model, the eroded mass versus number of elements over the thickness
is plotted in Figure 6.15. One can see that the eroded mass converges towards a finite
value, and has the same trend as the ballistic limit in Figure 6.13. For the coarser mesh,
too much mass is eroded and there is no longer contact between the bullet and target
surface, seen in Figure 6.16(a). The finer mesh in Figure 6.16(b) does not have this
problem.

(a) (b)

Figure 6.16: Comparison of the penetration process for different mesh sizes: (a) element size
0.5 mm and (b) element size 0.075 mm.

The penetration channel for the Abaqus model is smooth for both mesh sizes and does
not seem to be as mesh sensitive as the IMPETUS model. To erode an element when
16 out of 64 integration points reach material failure, may not be sufficient. Some of
the mesh size dependency seen for the IMPETUS model might change if the number of
integration points needed to erode an element is increased.
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(a) Entry (b) Path (c) Exit

Figure 6.17: Penetration channel magnification in IMPETUS.

(a) Entry (b) Path (c) Exit

Figure 6.18: Penetration channel magnification in Abaqus.

Figures 6.17 and 6.18 illustrate the deformation of three important locations after perfo-
ration. The element size shown is 0.075 mm, both for the IMPETUS and Abaqus model.
The figures resemble those in Figure 3.27 in Section 3.6, especially for the IMPETUS
model. The cubic elements in IMPETUS is superior to the linear elements in Abaqus
when it comes to the deformation in the entry of the penetration channel.

6.4 Discussion

In this chapter, we have studied the effects of the MJC parameters, friction coefficient,
erosion techniques and mesh size. These parameters were studied to be able to model the
experimental tests as accurately and realistically as possible.

Although aluminium is more strain rate dependent for temperatures close to the melting
temperature, this was not tested for the AlMgSi-alloy, and a value for the strain rate
parameter c was selected based on data available at room temperature. This may lead
to some deviation from the experimental tests, but the effect of the strain rate parameter
was minor and an increase by a factor 10 resulted in a 7.3% increase in the ballistic limit.

It is believed that erosion technique 2 is the one best suited for this particular target
thickness. This technique predicted a different ballistic limit for the two different CL
parameters tested, and is suitable for testing different failure criteria. Technique 2 also
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allowed for friction to be used in the analyses. The energy balance problems encountered
in the early tests proved to be due to the new and unverified *CONTACT SUPER algorithm
in IMPETUS, and the standard *CONTACT algorithm was used in later analyses.

The mesh size sensitivity study concluded that the solution had not yet converged for the
IMPETUS model, but due to limitations in computing capacity, an element size smaller
than 0.075 mm was not possible. The IMPETUS analyses were compared to Abaqus
analyses, and they were seen to converge from different sides. Greater mesh sensitivity
was seen for the IMPETUS analyses, and the number of integration points needed to
reach material failure before element erosion was discussed as a probable cause. It was
not possible to change the number of integration points needed for erosion in IMPETUS,
and as a results, this effect was not possible to investigate further.





7 Numerical Analyses of Ballistic
Impacts

In this chapter the numerical ballistic impact results are presented. Three different dam-
age evolution models, calibrated in Chapter 5, are used, and the results compared to the
experimental results.

7.1 Numerical Model

The numerical models used in this chapter are based on the result of the preliminary
numerical study in Chapter 6. All analyses were run using the five-degree model presented
in Section 6.3.1. Erosion technique 2 and the MJC parameters selected in Section 6.1,
were used for the IMPETUS model. The SIMLab Metal Model was used to describe the
material behaviour for the Abaqus model with the Cockcroft-Latham fracture criterion.
For the Gurson analyses, the GTN model in Abaqus was tested. A material subroutine
by Dæhli [51] was used to add adiabatic heating effects, and was later modified to include
the shear softening term in the GTN model, introduced in Section 2.2.7.2.

A mesh with element size of 0.2 mm was selected for both models based on GPU/CPU-
times presented in Tables 6.8 and 6.9. The GPU/CPU-times were based on an initial
velocity of 700 m⁄s and an integration time of 1.5 ·10−4 seconds. For lower initial velocities
the GPU/CPU-times will be greater due to longer integration times. The mesh is the
same as presented in Figures 6.9 and 6.11 in Section 6.3.1.

The analyses were run with initial velocities in the range 450 - 900 m⁄s, and the ballistic
limits were fitted using a non-linear least-square method. The values for a and p in the
Recht-Ipson model were fitted with the ballistic limits from the analyses.

7.1.1 Rigid Steel Core vs. Johnson-Cook Steel Core

A small study was conducted to quantify the importance of a Johnson-Cook steel core
versus a rigid steel core for the bullet. The material properties of the steel core was
adopted from Børvik [57], and are presented in Table 7.1.

Table 7.1: Johnson-Cook steel core material properties, adopted from Børvik [57].

E [MPa] ν ρ [kg/m3] Cp [J/(kg K)] σ0 [MPa] B [MPa] n ṗ0 [1/s] c Tr [K] Tm [K] m
210 000 0.33 7850 452 1200 50 000 1.0 5 · 10−4 0 293 1800 1.0

111
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Analyses with an initial velocity of 700 m⁄s and a CL parameter of Wc = 364.3 MPa
were conducted. The simulation using a JC steel core resulted in a residual velocity
of vr = 542.4 m⁄s, while the analysis with a rigid steel core had a residual velocity of
vr = 546.6 m⁄s. The difference in residual velocities for the two cases were only 0.8%, and
hence the effect was negligible. The computational time needed for one analysis with the
JC steel core was 11 hours and 53 minutes, and with the rigid steel core it was 3 hours
and 59 minutes. The computational time with the JC steel core was almost three times
as long.

The experiments showed that the bullet was nearly unaffected by the impact, and therefore
it was assumed that the deformation of the bullet could be neglected. Based on this, it
was considered a reasonable assumption to model the bullet as a rigid part, which was
done in both IMPETUS and Abaqus.

7.2 Impact with the Cockcroft-Latham Model

In this section the results from the impact analyses with the Cockcroft-Latham model
are presented. The two parameters calibrated in Section 5.1 were used and compared for
both the IMPETUS and Abaqus analyses. The keyword *PROP DAMAGE CL was used in
IMPETUS to add the CL criterion, while the SIMLab Metal Model was used in Abaqus.

7.2.1 Impacts Analysed in IMPETUS

Table 7.2 presents the Recht-Ipson parameters and the ballistic limit velocities for the
analyses run with the Cockcroft-Latham criterion in IMPETUS. The ballistic limits are
compared to the experimental results, and the relative difference is given. The CL pa-
rameter calibrated from the computational cells yields the best result compared with
the experiments, with a 9.7% lower ballistic limit. As observed, the difference in CL
parameters yields a large difference in ballistic limit velocities.

Note that the mesh selected has not converged, and both the differences between the two
analyses and the deviation from the experimental results are considered too large. The
differences in ballistic limit velocity for the selected mesh and the finest mesh presented
in Section 6.3 were 6.4% and 3.3% for the lower and higher CL parameters, respectively.
Hence, the analyses with the lower CL parameter is more mesh sensitive.

Table 7.2: Recht-Ipson parameters for analyses with the Cockcroft-Latham fracture criterion in
IMPETUS.

Wc [MPa] a p vbl [m/s] Rel. Diff.
Experiment 0.9851 2.1072 517.5 Ref.

174.1 0.9248 2.4825 384.4 -25.7%
364.3 0.9424 2.4882 467.2 -9.7%
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Figure 7.1 shows the ballistic limit curves fitted to the points from the analyses with
different CL parameters. The experimental results are shown for comparison. The ballistic
limits with the CL fracture criterion are observed to be conservative to the experimental
results.
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Figure 7.1: Ballistic limit curves with two different CL parameters in IMPETUS.

Figure 7.2 shows the penetration process in IMPETUS with the two different CL pa-
rameters for an initial velocity of 700 m⁄s. The dominating fracture mechanism for the
deformation process is observed to be ductile hole growth, with some petalling in the exit
area. An overall small difference is seen in the deformation. The largest difference is ob-
served near the exit region, where the deformation is smaller for the lower CL parameter.
The reason for this is probably that more mass is eroded for the analyses with lower CL
parameter, as shown in Figure 6.15 in Section 6.3.
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WC = 364.3 MPa WC = 174.1 MPa

t = 0 µs

t = 21.0 µs

t = 43.5 µs

t = 66.0 µs

t = 88.5 µs

t = 111.0 µs

Figure 7.2: Time-lapse illustrating the penetration process with two different CL parameters in
IMPETUS for vi = 700 m⁄s. Wc = 364.3 MPa yields vr = 546.6 m⁄s, and Wc = 174.1 MPa yields
vr = 580.2 m⁄s.

7.2.2 Impacts Analysed in Abaqus

Table 7.3 presents the Recht-Ipson parameters and the ballistic limits for the analyses
with the Cockcroft-Latham criterion performed in Abaqus. The analysis with the higher
CL parameter is the one closest to the experimental results, with a relative difference
of only 4.3%. A minimal difference is observed between the different CL parameters, in
contrast to the IMPETUS results.

The reason for the negligible difference in ballistic limit between the two CL parameters is
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probably the temperature erosion criterion needed in the Abaqus analyses. The SIMLab
Metal Model does not allow one to check if the elements were eroded on temperature or
the CL criterion. Therefore, the amount of elements eroded on the temperature criterion
is uncertain.

Table 7.3: Recht-Ipson parameters with the Cockcroft-Latham fracture criterion in Abaqus.

Wc [MPa] a p vbl [m/s] Rel. Diff.
Experiment 0.9851 2.1072 517.5 Ref.

174.1 0.9943 2.0450 491.4 -5.0%
364.3 0.9990 2.0247 495.0 -4.3%

Figure 7.3 shows the ballistic limit curves from the Abaqus analyses with the Cockcroft-
Latham criterion. One can see the minimal difference between the two CL parameters,
and the Abaqus results are observed to be conservative to the experimental results.

300 400 500 600 700 800 900 1,0000

200

400

600

800

Initial velocity, vi [m/s]

R
es

id
ua

lv
el

oc
ity

,v
r

[m
/s

]

CL with Wc = 174.1 MPa
CL with Wc = 364.3 MPa
Experimental data

vbl=517.5 m/s

vbl=495.0 m/s

vbl=491.4 m/s

Figure 7.3: Ballistic limit curves with two different CL parameters in Abaqus.

The penetration process for the two CL parameters in Abaqus is shown in Figure 7.4,
and the same phenomenon can be seen as for the IMPETUS analyses regarding presence
of petalling in the exit region. Slightly smaller deformation is observed around the exit
region for the lower CL parameter analysis, and the edge is not as sharp. Around the
entry region, no difference is seen for the Abaqus analyses, unlike the IMPETUS analyses
where the lower CL parameter showed less deformation.
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WC = 364.3 MPa WC = 174.1 MPa

t = 0 µs

t = 21.0 µs

t = 43.5 µs

t = 66.0 µs

t = 88.5 µs

t = 111.0 µs

Figure 7.4: Time-lapse illustrating the penetration process with two different CL parameters in
Abaqus for vi = 700 m⁄s. Wc = 364.3 MPa yields vr = 498.0 m⁄s, and Wc = 174.1 MPa yields
vr = 501.6 m⁄s.
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7.3 Impact with the Johnson-Cook Model

Impact analyses with the Johnson-Cook fracture model are presented in this section.
Parameters calibrated in Chapter 5 were used in IMPETUS, and compared with the
experimental results. The JC fracture model in IMPETUS does not include the last
term in Equation 2.35 in Section 2.2.6.2, and the influence of the Lode parameter on the
fracture surface could therefore not be investigated. The keyword *PROP DAMAGE JC was
used to add the JC fracture model in IMPETUS.

The SIMLab Metal Model does not have the JC fracture model implemented, thus the
built-in JC model in Abaqus was tested, but the bullet was unable to perforate the target
without the temperature erosion criterion. Therefore, the JC model was only investigated
using IMPETUS.

7.3.1 Impacts Analysed in IMPETUS

The Recht-Ipson parameters, as well as the ballistic limits from the CL and JC fracture
models in IMPETUS, are presented in Table 7.4. A notable difference is seen between the
two fracture models, although they are calibrated to the same computational cell data.

Table 7.4: Recht-Ipson parameters with the Cockcroft-Latham and Johnson-Cook fracture models
in IMPETUS.

Fracture model a p vbl [m/s] Rel. Diff.
Experiment 0.9851 2.1072 517.5 Ref.

CL with Wc = 174.1 MPa 0.9248 2.4825 384.4 -25.7%
CL with Wc = 364.3 MPa 0.9424 2.4882 467.2 -9.7%

JC 0.9482 2.2175 419.2 -19.0%

The ballistic limit curve for the JC fracture model is shown in Figure 7.5, and the result is
seen to be conservative, as for the two CL parameters. This is preferable when designing
and dimensioning protective structures. Figure 7.6 shows the ballistic limit curves for the
IMPETUS analyses with both the JC and CL fracture criteria presented in Table 7.4.
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Figure 7.5: Ballistic limit curve with the JC fracture model in IMPETUS.
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Figure 7.6: Ballistic limit curves with the CL and JC fracture models in IMPETUS.

The penetration process for an analysis with the JC fracture model is shown in Figure
7.7. Investigation of the perforation reveals a similar deformation pattern to the one with
the higher CL parameter, presented in Figure 7.2. The difference in residual velocity for
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these two analyses is only 7.3 m⁄s for an initial velocity of 700 m⁄s. No noticeable difference
is seen in the deformation pattern.

t = 0 µs

t = 21.0 µs

t = 43.5 µs

t = 66.0 µs

t = 88.5 µs

t = 111.0 µs

Figure 7.7: Time-lapse illustrating the penetration process with the JC fracture model in IM-
PETUS for vi = 700 m⁄s, yielding a residual velocity vr = 553.9 m⁄s.

A considerable difference is seen in the ballistic limit curves for the JC and CL fracture
criteria calibrated to the computational cells, cf. Figure 7.6 , in contrast to the results
presented in Section 5.3 regarding the tensile test comparison. Therefore an element in
the exit region of the target plate was selected, and is shown in Figure 7.8, to compare the
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response from the different fracture criteria. The maximum accumulated plastic strain in
the element is plotted in Figure 7.9.

Figure 7.8: Selected element used to compare the accumulated plastic strain for the Cockcroft-
Latham and the Johnson-Cook fracture criteria in IMPETUS.

The element is eroded in the penetration process, and one can see in Figure 7.9 that the
plastic strain at failure is considerable lower for the JC criterion than for the CL criterion
with the higher parameter. An initial velocity of 700 m⁄s was chosen for this investigation.
Note that a similar difference is seen for all initial velocities.
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Figure 7.9: Accumulated plastic strain in the selected element comparing the Cockcroft-Latham
and the Johnson-Cook fracture criteria in IMPETUS.
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7.4 Impacts with the Gurson Model

In this section the ballistic impact response with the Gurson-Tvergaard-Needleman model
is presented. The Gurson parameters calibrated in Sections 5.4.1 and 5.4.2 were used, and
the analyses run using Abaqus. A temperature erosion criterion was needed to perforate
the target. A user-subroutine adopted from Dæhli [51] was used to include adiabatic
heating, and was later modified to add the shear softening term in the GTN model.
As the GTN model is not available in IMPETUS, only Abaqus have been used for the
analyses in this section.

7.4.1 The GTN Model in Abaqus

The built-in GTN model in Abaqus was tested with the calibrated parameters of q1 = 1.16
and q2 = 1.00. Figure 7.10 shows a contour plot of the void volume fraction for the last
converged state. The compressive forces in front of the bullet makes the initial voids in
the target close. Naturally, this results in no void growth, and hence ductile fracture
cannot occur. When the voids close and the void volume fraction becomes zero, the GTN
yield surface develops into a von Mises yield surface, and the bullet is unable to perforate
the target.

Figure 7.10: Penetration with the GTN model in Abaqus, presented as a void volume fraction
contour plot. The compressive forces in front of the bullet closes the initial voids.

7.4.2 The GTN Model with Adiabatic Heating

To see if the bullet was able to penetrate with the temperature erosion criterion, the user-
subroutine with the GTN model and adiabatic heating was tested. This was also done
to see if the later stages of the penetration process would yield void growth or not, since
the exit area showed a tendency of petalling in previous analyses and in the experiment.
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Figure 7.11: Time-lapse illustrating the penetration process with the GTN model and adiabatic
heating in Abaqus. The legend shows the void volume fraction. vi = 700 m⁄s and vr = 500.5 m⁄s.

Figure 7.11 shows the void volume fraction contour plot for the penetration process with
GTN and adiabatic heating. Observations reveal that the voids are closing right in front
of the bullet, and the bullet is able to perforate the target due to the temperature erosion
criterion. Note that the void volume fraction is equal to the damage parameter, i.e.,
f = ω. One can see that as the bullet penetrates the target, the voids grow near the exit
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region, and a few elements are eroded due to the high void volume fraction. A critical void
volume fraction of fc = 0.0470 was used, as this value is the average of the critical void
volumes for the computational cells with µσ = −1. Note that this is the lowest critical
void volume fraction of the different Lode parameters from the computational cells, and
it should therefore be the most conservative.

The results from the analyses with the GTN model with adiabatic heating and temper-
ature erosion is presented, and compared to the CL analyses in Abaqus, in Table 7.5.
Small differences are observed between the two failure models. Although some elements
are eroded on the critical void volume fraction, the temperature erosion criterion is be-
lieved to dominate the results.

Table 7.5: Recht-Ipson parameters with the Cockcroft-Latham and Gurson-Tvergaard-
Needleman fracture models in Abaqus.

Fracture model a p vbl [m/s] Rel. Diff.
Experiment 0.9851 2.1072 517.5 Ref.

CL with Wc = 174.1 MPa 0.9943 2.0450 491.4 -5.0%
CL with Wc = 364.3 MPa 0.9990 2.0247 495.0 -4.3%

GTN 0.9810 2.0980 497.6 -3.8%
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Figure 7.12: Ballistic limit curves with the CL and GTN fracture models in Abaqus.

Figure 7.12 presents the ballistic limit curves corresponding to Table 7.5. The curves are
hard to distinguish, and only small differences can be seen.
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7.4.3 The Modified Gurson model with Softening in Shear

The ballistic impact is believed to be dominated by shear, and the shear softening term
in the GTN model was therefore implemented in the user-subroutine. First, the effect
of the shear softening term in the GTN model is investigated in Section 7.4.3.1, using
different values of the shear softening parameter ks. Further, Section 7.4.3.2 presents the
results from analyses using the parameters calibrated from the computational cells. Note
that the void volume fraction is no longer equal to the damage parameter, i.e., f 6= ω.

7.4.3.1 The Effect of Shear Softening

Figure 7.13 shows the contribution to the damage parameter from the shear softening
term in the GTN model. The largest influence is seen around the exit region, to the right
in the figure. A smaller contribution is seen near the entry region. Although the shear
softening term contributes to an increase in the damage parameter, the void growth term
may be negative and result in no increase or a decrease in the overall damage parameter.
This can be seen by comparing Figures 7.13 and 7.14, especially in the entry region.

Figure 7.13: Contribution to the damage parameter from the shear softening term, ωs, for
ks = 1. vi = 700 m⁄s and vr = 500.9 m⁄s. Entry from the left.

The effect of the shear softening parameter can be seen in Figure 7.14, where two different
values for ks are shown. Note that a value of 10 might be unreasonably high. Nahshon
and Hutchinson [18] identified a reasonable range for the shear softening parameter, with
1 ≤ ks ≤ 3. For ks = 1, one can see that a small amount of elements have been eroded in
the exit region, and no one in the entry region, due to material failure. A larger amount
of elements can be seen to have eroded for ks = 10. A few have eroded in the entry region,
and the exit region is highly effected.
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ks = 1 ks = 10

Figure 7.14: Comparison of different shear softening parameters effect on the damage param-
eter, ω, for vi = 700 m⁄s. ks = 1 yields vr = 500.9 m⁄s and ks = 10 yields vr = 504.4 m⁄s. Entry
from the left.

The shear softening parameter was further increased to see if the entry region and the
penetration channel could be influenced. Figure 7.15 shows the effect with ks = 50. This
is an unrealistic high value only used to illustrate the effect of softening in shear. In
front of the bullet, the region with dark blue colour in the figure, is compressed and no
increase in damage parameter occur. The area just outside seems to be affected by the
shear forces between the compressed material in front of the bullet and the surrounding
material, forming shear bands in the direction of the penetration process where elements
are eroded.

Figure 7.15: Influence of the shear softening term with ks = 50.

7.4.3.2 Results

Parameters calibrated in Sections 5.4.1 and 5.4.2 are used to obtain the final result with
the GTN model with softening in shear. Figure 7.16 shows the penetration process. An
increase in the damage parameter is observed in both the entry and exit regions, but
a larger influence is seen near the exit. When comparing Figures 7.11 and 7.16 one can
observe the influence of the shear softening term through the whole penetration process. A
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clear difference is seen, and the damage parameter is higher during the whole penetration
process when shear softening is included.

t = 0 µs

t = 21.0 µs

t = 43.5 µs

t = 66.0 µs

t = 88.5 µs

t = 111.0 µs

Figure 7.16: Time-lapse illustrating the penetration process with the GTN model and softening
in shear in Abaqus, with the calibrated shear parameter ks = 5.25. The legend shows the damage
parameter, with a critical value of ωc = 0.0470. vi = 700 m⁄s and vr = 503.5 m⁄s.

In the entry region, a small amount of elements have been eroded due to the failure
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criterion. A greater amount of elements are eroded in the exit region which is observed
to be more affected. The residual velocity is larger for the analyses with shear softening
included. It is therefore concluded that the penetration process is affected by shear
softening. The process is probably not as dependent on the temperature criterion, but
this is still needed to perforate the target.

Table 7.6 presents all results from Abaqus, and compares the results from the CL criterion
with the GTN model. The shear softening term in the GTN model reduces the ballistic
limit by 4.2 m⁄s, which is a larger difference than between the two CL parameters.

Table 7.6: Recht-Ipson parameters with the Cockcroft-Latham and Gurson-Tvergaard-
Needleman fracture models in Abaqus, including the shear softening term.

Fracture model a p vbl [m/s] Rel. Diff.
Experiment 0.9851 2.1072 517.5 Ref.

CL with Wc = 174.1 MPa 0.9943 2.0450 491.4 -5.0%
CL with Wc = 364.3 MPa 0.9990 2.0247 495.0 -4.3%

GTN 0.9810 2.0980 497.6 -3.8%
GTN with shear softening 0.9893 2.0643 493.4 -4.7%
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Figure 7.17: Ballistic limit curves with the GTN model in Abaqus.

The two ballistic limit curves from the analyses with the GTN model is shown in Figure
7.17, together with the experimental results. A small difference can be seen between the
two curves with the GTN model.
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7.5 Comparison of Deformation Pattern

Two selected tests with initial velocities vi = 810.7m⁄s and vi = 1028.7m⁄s from the ex-
perimental results presented in Table 3.5 in Section 3.5, were analysed to compare the
deformation pattern. The selected tests correspond to the two tests studied in the macro-
and microscopy, presented in Section 3.6. Simulations were run in both Abaqus and
IMPETUS using a CL parameter of Wc = 364.3 MPa, in addition to a pinhole analysis.
The residual velocities from the analyses are presented in Table 7.7.

As seen in the table, there is overall good correspondence between the analyses and
the experimental data. The results for the highest initial velocity are observed to give
generally better agreement than the lower. One possible reason for this is that for higher
initial velocities, the ballistic limit curve lies closer to the ballistic limit line, and hence
the relative difference will be smaller. The reader is referred to Section 2.1.2 for further
information regarding the ballistic limit line.

Table 7.7: Residual velocities for analyses in Abaqus and IMPETUS with CL parameter Wc =
364.3 MPa and pinhole analyses, compared with experimental results.

Analysis Initial velocity vi [m/s] Residual velocity vr [m/s] Rel. Diff.
Experiment

810.7

640.3 Ref.
Abaqus 643.6 +0.5%
Pinhole 659.3 +3.0%

IMPETUS 677.9 +5.9%
Experiment

1028.7

891.8 Ref.
Abaqus 903.1 +1.3%
Pinhole 913.0 +2.4%

IMPETUS 915.6 +2.7%

Figure 7.18 shows the penetration channel for the three analyses run with initial velocity
vi = 810.7 m⁄s and the corresponding experimental test. Note that the entry is located at
the top of the picture. The deformation pattern is observed to be close to identical for
all four cases. Smooth surfaces are seen in the penetration channel, in addition to some
petalling in the exit. This indicates that all the analyses are capable of re-creating the
ballistic impact.
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Pinhole IMPETUSAbaqusExperiment

Figure 7.18: Deformation pattern comparison of Abaqus, pinhole and IMPETUS analyses with
an initial velocity of vi = 810.7m⁄s. Entry from above.

The deformation pattern for the three analyses run with initial velocity vi = 1028.7 m⁄s

is shown in Figure 7.19. The extreme deformation seen in the entry for the experiment
cannot be seen as clearly for the numerical analyses. Since vi = 1028.7 m⁄s lies in the
upper range of the ordnance velocity regime, density is of greater importance, and a
hydrodynamic description of the material is probably necessary to properly recreate the
experiment. Although no hydrodynamic description was implemented in the numerical
models, the pinhole model shows signs of a conical entry as for the experimental test. The
analyses in Abaqus and IMPETUS do not exhibit this deformation in the same extent as
the pinhole analysis.

Pinhole IMPETUSExperiment Abaqus

Figure 7.19: Deformation pattern comparison of Abaqus, pinhole and IMPETUS analyses with
an initial velocity of vi = 1028.7m⁄s. Entry from above.
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The IMPETUS analysis show best correspondence with the experiment in the exit area.
This is clearly seen by studying the pictures from the microscopy, shown in Figure 3.28
in Section 3.6.

Comparison of the deformation patterns presented in Figures 7.18 and 7.19 reveal that
for lower initial velocities in the ordnance velocity regime, all three numerical models
recapture the deformation from the experiments. For velocities close to the ultra-ordnance
velocity regime, a hydrodynamic material description may be necessary to properly re-
create the deformation pattern seen in the experiments. Only the test with the highest
initial velocity, vi = 1028.7m⁄s, exhibited extreme deformation in the entry. By studying
all entry and exit holes presented in Appendices A and B, the deformation patterns are
similar to the ones presented in Figure 7.18, the only exception being the test with initial
velocity vi = 1028.7m⁄s.

7.6 Discussion

In this chapter, we have investigated the results from the numerical analyses in IMPE-
TUS and Abaqus with different fracture criteria. The ballistic limits for the analyses are
summarised in Table 7.8. Unfortunately, some of the criteria were unavailable either in
IMPETUS or Abaqus, and could therefore not be compared. It would have been partic-
ularly interesting to see how the GTN model with shear softening would have behaved
in IMPETUS, compared to the CL and JC fracture criteria commonly used in impact
analyses, but this was not possible.

Table 7.8: Ballistic limit velocities for analyses in Abaqus and IMPETUS using the Cockcroft-
Latham, Johnson-Cook and Gurson-Tvergaard-Needleman models.

FEM model Fracture model vbl [m/s] Rel. Diff.
Experiment Experiment 517.5 Ref.

Abaqus

CL with Wc = 174.1 MPa 491.4 -5.0%
CL with Wc = 364.3 MPa 495.0 -4.3%

GTN 497.6 -3.8%
GTN with shear softening 493.4 -4.7%

IMPETUS
CL with Wc = 174.1 MPa 384.4 -25.7%
CL with Wc = 364.3 MPa 467.2 -9.7%

JC 419.2 -19.0%

Analyses run with Abaqus gave the best compliance to the experimental results, but the
fracture criteria are seen to have minor influence on the response. The IMPETUS results
are highly affected by the fracture criteria, but the deviations from the experimental
results are large.
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The negligible differences between the Abaqus results are believed to be due the tem-
perature erosion criterion needed for the Abaqus model. Børvik [44] pointed out that
a temperature erosion criterion is as valid as any other erosion criterion. The physical
nature of the problem is dominated by temperature and material softening. The bullet
holes from the experiments, investigated in Section 3.6, showed no sign of any melted
material, but the temperatures were undoubtedly high.

Temperature erosion was not needed in IMPETUS, probably because of how the third-
order elements and erosion technique 2 behave together. The other erosion techniques
in IMPETUS, presented in Section 6.2.2, needed a critical time step erosion criterion.
Erosion technique 2 is believed to be most similar to the erosion technique in Abaqus.

The results from the IMPETUS analyses showed a large difference between the fracture
criteria, and the JC fracture criterion gave a much lower ballistic limit than the CL
criterion fitted to the same computational cells, presented in Chapter 5. This difference
was not seen in Section 5.3 for the tensile test comparison. Therefore an element in
the target was selected, and the accumulated plastic strain was investigated, revealing
a much lower failure strain for the JC criterion. One possible reason for this difference
is believed to be the nature of the two fracture criteria. Cockcroft-Latham is driven by
plastic straining, but the damage parameter only increase when the maximum principal
stress is positive. The Johnson-Cook criterion is also driven by plastic straining, but the
fracture strain is only a function of the stress state. Therefore, the damage parameter
will always increase for increasing plastic strain with the Johnson-Cook model.

The discrepancies between the IMPETUS analyses and the experimental results are af-
fected by the FE mesh. In Chapter 6, the IMPETUS analyses proved to be highly mesh
sensitive, and a mesh was selected based on computational time. The IMPETUS results
would therefore have been more accurate, and a better compliance to the experimental
results could have been achieved, if more computing power had been available.

Other factors influencing the results are the parameters for strain rate, temperature soft-
ening and friction, investigated in Section 6.1.

All results from Abaqus are considered good and Abaqus predicts the ballistic limit with
little error. The IMPETUS results on the other hand deviates more, and the CL criterion
calibrated from the computational cells are the only one that is within 10% of the ex-
perimental results. According to Børvik [44], prediction within 10% of the experimental
results is considered good. All analyses in both Abaqus and IMPETUS were conservative
with respect to the experimental results.

The small study conducted to investigate the deformation pattern for Abaqus, pinhole
and IMPETUS analyses showed that all models were able to recreate the experimental
test for initial velocities well within the ordnance velocity regime. The only exception
was the test with initial velocity vi = 1028.7m⁄s, which is believed to be highly affected by
hydrodynamic like forces. It was therefore hard to properly reproduce the deformation
pattern for this velocity.





8 Concluding Remarks

In this thesis, ballistic impact experiments were conducted on isotropic AlMgSi target
plates using the steel core of 7.62 APM2 bullets. The ballistic limit curve was obtained
from the experimental results. Numerical analyses of micromechanical computational
unit cells were used to calibrate different macro-scale fracture models, i.e., the Cockcroft-
Latham, Johnson-Cook and Gurson-Tvergaard-Needleman models. The fracture criteria
were used in numerical analyses in both IMPETUS and Abaqus, to investigate the im-
portance of ductile fracture for the AlMgSi-alloy and to recapture the same deformation
trends seen for the ballistic impact experiments.

The most important results and conclusions from the work with this thesis are presented
in the following.

Experimental Results

The three tensile tests performed to verify the material data by Westermann et al. [41],
gave unexpected results, and was therefore not used. The data points from the ballistic
experiments, on the other hand, gave good correspondence with the Recht-Ipson curve.

In the light optical microscope, no signs of melted material was found even though this
was expected, for some of the tests, due to high initial velocities and large plastic strains.
The numerical analyses in Abaqus proved to be highly dependent on temperature erosion
of elements. There exists a possibility that the material has melted even though this
could not be confirmed by the rather limited microscopical investigations.

The preliminary numerical study proved to give lower ballistic limit velocity than the ex-
perimental results, with vbl = 428.0m⁄s versus vbl = 517.5m⁄s. Reasons for this discrepancy
seemed to be significant friction forces, as well as strain rate dependency at high temper-
atures, which were not included in the preliminary model. These effects were studied and
included in the final numerical model.

All plates experienced ductile hole growth, which was the dominant failure mechanism.
Minimal fragmentation and small degrees of petalling near the exit holes were observed,
with higher occurrence for tests with high initial velocities.

Micromechanical Computational Unit Cells

When studying the computational cells, some differences were observed between the gen-
eralized tension and generalized compression loading cases. It was harder to determine
coalescence for generalized compression, µσ = 1, and it was eventually decided to use
the change in ligament thickness to establish the point of coalescence since a uniaxial
deformation mode did not occur as for generalized tension, µσ = −1. The trend observed
regarding change in ligament thickness for µσ = 1 was also observed for µσ = −1 near
coalescence.

133
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Inclusion of the Gurson-Tvergaard-Needleman model in the unit cell matrix resulted in
lower critical equivalent strains for both generalized tension and generalized compression,
which was as expected. For generalized compression, coalescence was defined when the
void volume fraction in the matrix was equal to f = 1/q1, due to collapse of the yield
surface. Two different ways were used to define coalescence for the von Mises yield
criterion and GTN in the matrix, and the results from the two generalized compression
cases were therefore not directly comparable. It is believed that inclusion of a secondary
void in the critical region in the matrix could have solved this problem.

It was observed that the correspondence between the two-dimensional and three-dimensio-
nal cells were overall good for the axisymmetric cells, but the plane strain cells only gave
acceptable agreement for triaxiality ratio σ∗ = 0. This discrepancy is probably a result of
the use of different void shapes. The plane strain cells have a cylindrical void instead of a
spherical void. This does not affect the shear cell with σ∗ = 0 as much, since coalescence
is defined using another criterion than the occurrence of a uniaxial deformation mode.
Due to the difference in void shape, the plane strain cell could not be compared with the
axisymmetric cells.

Calibration of Fracture Models

The Cockcroft-Latham, Johnson-Cook and Gurson-Tvergaard-Needleman fracture models
were calibrated to the computational cell data. The CL model was additionally calibrated
to experimental tensile test data. Quite large discrepancies were seen for the CL fracture
parameters, where Wc for the computational cells were approximately twice the value of
Wc from the tensile tests. The simplified two-dimensional cells with only one initial void
in the matrix is believed to be too stiff, and hence result in a too large value for Wc. By
including GTN in the matrix, the parameters for both the CL model and the JC model
decreased.

The different fracture parameters for CL and JC were compared by executing numerical
tensile tests in IMPETUS. It was observed that fracture occurred later for CL calibrated
to the computational cells, which was expected due to higher fracture parameter Wc. The
overall correspondence between the two fracture models were relatively good, but larger
discrepancies were seen when the models were calibrated to computational cell data with
GTN in the matrix.

The GTN model was only calibrated to the axisymmetric cell in generalized tension, µσ =
−1, due to the troublesome determination of coalescence for generalized compression. The
results would probably have been insignificantly affected if the calibration were done to
µσ = 0 or µσ = 1. It was shown that for a given triaxiality ratio, several combinations of
the GTN parameters q1 and q2 could yield good correspondence. Note that when taking
several triaxialities into account, only one set of values gave the best fit.

Calibration of the shear softening term in the modified Gurson model was done using the
data from the two-dimensional plane strain shear cell. The parameter was a bit higher
than what was suggested by Nahshon and Hutchinson [18].
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Preliminary Numerical Study

The effects of strain rate, temperature and friction were studied. Both strain rate and fric-
tion proved to be significant for the ballistic limit, with friction being the most important.
The temperature parameter did only have a consequential influence for m ≤ 1.

Different element erosion techniques were studied in IMPETUS, and the final choice fell
on a method that clearly showed a difference between the two CL parameters and allowed
for the use of friction.

The *CONTACT SUPER algorithm resulted in problems for some analyses regarding the
energy balance. These analyses were rerun using the standard *CONTACT algorithm, which
fixed the problem.

The mesh sensitivity studies did only achieve convergence for the analyses in Abaqus.
0.2 mm elements were chosen since they gave good correspondence with experimental
tests, and had an acceptable CPU-time. It was discovered that by using a lower fracture
parameter in IMPETUS, the analyses seemed to become more mesh sensitive.

Numerical Analyses

The three calibrated fracture models were used in the penetration analyses in IMPETUS
and Abaqus. A distinct difference were seen between the models in IMPETUS, but in
Abaqus they gave almost identical results. The reason for the negligible differences in
Abaqus is probably due to temperature erosion.

Analyses were run with the GTN model, both with and without the shear softening term.
It was discovered that the effects of shear softening were significant. Different shear
parameters were investigated, and proved to affect element erosion. With only the GTN
model, merely a few elements near the exit were eroded due to the fracture criterion. By
including, and varying, the shear softening term more elements were eroded due to the
fracture criterion, also in the entry of the penetration channel.

The numerical analyses show ductile hole growth as the dominating failure mechanism,
with only small amounts of fragmentation near the exit region. This indicates that the
model recaptures the ballistic perforation mode from the experiments.

From Table 7.8, it is seen that the Abaqus analyses had better agreement with the exper-
imental results than the IMPETUS analyses. The main reason for this is probably that
most elements were eroded due to temperature, and not the fracture criterion. This ba-
sically means that the fracture criterion is of less importance for the analyses in Abaqus.
The discrepancies seen between the IMPETUS analyses and experimental results are be-
lieved to be due to the selected element size and the erosion technique. Note that all
results are conservative with respect to the experiments, which is preferable when design-
ing protective structures.

Generally it can be concluded that the CL, JC and GTN model with shear softening work
for penetration problems. GTN without the shear term resulted in closing of the initial
voids due to large pressure forces in front of the bullet. Although the results with this
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method gave the best correspondence with the experimental ballistic limit velocity, it is
believed that the other methods are better at describing the ductile fracture process.

Due to the inconsistencies seen between Abaqus and IMPETUS, it is hard to determine the
importance of a ductile fracture criterion for the AlMgSi-alloy in ballistic impacts. In the
IMPETUS analyses, it was observed that the fracture criteria had a significant influence
on the penetration process, while the Abaqus analyses were not as affected. It was believed
that by doubling the fracture parameter, a clear difference would be seen in the ballistic
limit velocity, which was only observed for the IMPETUS analyses. It is therefore hard
to determine which solver that gives the most accurate results. Nevertheless, calibration
based on micromechanical unit cells is considered promising.



9 Future Work

New experimental tests
The tensile tests conducted for this thesis gave very unexpected results. It would therefore
be desirable to execute new tensile tests. In addition, it would have been interesting to
perform experimental tests to investigate the shear properties of the AlMgSi-alloy. This
is believed to be particularly interesting for calibration of the shear softening term in the
modified Gurson model.

Experimental tests at elevated temperatures
Vilamosa et al. [55] showed that aluminium is rate dependent at temperatures above 50%
of the melting temperature. Experimental tests at elevated temperatures should therefore
be performed to obtain the strain rate properties of the AlMgSi-alloy.

Ballistic impact with blunt projectiles
An investigation of the material behaviour during ballistic impacts with flat ended pro-
jectiles could be valuable. It is believed that the blunt projectile is better at capturing
the shear phenomenon.

Ballistic impact using thinner plates
Some numerical difficulties have been present for the analyses of the perforation of the 30
mm thick plates in Abaqus, regarding temperature erosion. Due to high pressure forces
in front of the bullet, most of the elements are eroded due to temperature. The fracture
criteria have therefore minor influence. It is believed that use of thinner plates may solve
this problem. Thin plates will result in a different deformation pattern where the rear
surface of the plate is affected earlier in the perforation process, which is believed to make
it easier to see the effects of the fracture models.

Investigation of microstructure in SEM (fractography)
It was desirable to investigate the impacted target plates in a scanning electron microscope
(SEM), to see if the material actually had melted locally. No signs of melted material
were present in the light optical microscope.

Calibration of fracture models using data from three-dimensional computa-
tional cells
It was concluded that the plane strain cell could not be compared to the axisymmetric
cell due to different void shapes, and the data obtained from analyses of µσ = 0 were
only used to calibrate the shear softening term in Gurson. It was shown that the data
for µσ = 0 affected both fracture parameters and fracture surfaces, and it is believed that
calibration of the fracture models to three-dimensiontal cell data would have been more
accurate.

Implementation of GTN for µσ = 0
If a 3D computational cell had been used for the microscopic analyses, or if the 2D data
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for plane strain had been comparable to the axisymmetric, GTN should have been used
for µσ = 0, such that the calibration of the fracture models included the three Lode
parameters studied.

Investigating more Lode parameters
Another point of interest is an expansion of the computational cell analyses to include
more Lode parameters. This would most likely result in more accurate calibration of the
fracture models due to more calibration points.

Micromechanical computational cell analyses for low triaxialities
Since low triaxialities are expected for the experimental tests, it is of current interest to
study computational cells with triaxialities in the range 0 < σ∗ < 1/3. It is believed that
the results would look similar to the fracture strain-stress triaxiality curve presented in
Nahshon and Hutchinson [18]. To obtain coalescence without infinite stretching, it would
be necessary to include a particle to avoid closing the void.

Inclusion of secondary voids
One subject of particular interest is the inclusion of secondary voids in the matrix in
addition to the primary void, and to compare the results with the analyses with GTN
in the matrix. It was seen, especially for generalized compression, that with GTN in the
matrix, a very high void volume fraction occured in a concentrated area. If this area
was replaced with a void, the analyses could probably be run farther than in the study
presented in this thesis. This means that it could actually be possible to directly compare
data for generalized tension. Note that this inclusion of secondary voids is likely to reduce
the material strength.

Mesh sensitivity study in IMPETUS
A more thorough study of the mesh sensitivity in IMPETUS should be conducted, since
convergence was not achieved for the investigated mesh sizes. Analyses with even finer
mesh should be performed. This will although demand a better IMPETUS computer
server than the one used for this thesis.

Implementation of Johnson-Cook in Abaqus
The Johnson-Cook model in Abaqus did not work for the penetration analysis, and to
be able to compare with the IMPETUS analyses a user-subroutine that accounts for
adiabatic heating and temperature erosion will be needed. Note that since elements are
eroded due to temperature, there will probably be negligible difference between the JC
and CL fracture models in Abaqus.

Implementation of GTN in IMPETUS
It is desirable to use GTN for the analyses in IMPETUS, but at the moment there is no
simple way of accomplishing this. No Gurson model is implemented in the IMPETUS
code, and the Porous Plasticity Model developed at SIMLab is not up and running or
compatible with IMPETUS. This should be looked into when the model is working.

Numerical analyses of ballistic impacts including data for generalized shear
It would be interesting to investigate the effects of including the computational cell data
for µσ = 0 in the penetration analyses. Another aspect that should be looked into is
running analyses for the CL and JC models calibrated to the cell data with GTN in the
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matrix. In this thesis, only parameters calibrated to cell data excluding µσ = 0, as well
as tensile test data, have been used.

Element erosion in IMPETUS
Element erosion techniques proved significant for the perforation process. For erosion
technique 2, an element is eroded when 16 out of 64 integration points reach the critical
damage. If it was possible to control the critical number of integration points, this could
be an interesting study.
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A Front and Back side of All Tar-
get Plates

A.1 Plate 1

(a) Front. (b) Back.

Figure A.1: Impacted target plate.
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A.2 Plate 2

(a) Front. (b) Back.

Figure A.2: Impacted target plate.
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A.3 Plate 3

(a) Front. (b) Back.

Figure A.3: Impacted target plate.
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A.4 Plate 4

(a) Front. (b) Back.

Figure A.4: Impacted target plate.



B Entry and Exit Holes from Bal-
listic Experiments

B.1 Plate 1

Entry Exit

1(C)

2

3

4

5

Figure B.1: Entry and exit holes for plate 1 after ballistic impact. Locations correspond to
impact locations illustrated in Figure 3.17, and Figure A.1 in Appendix A.
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B.2 Plate 2

Entry Exit

1(C)

2

3

4

5

Figure B.2: Entry and exit holes for plate 2 after ballistic impact. Locations correspond to
impact locations illustrated in Figure 3.17, and Figure A.2 in Appendix A.
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B.3 Plate 3

Entry Exit

1(C)

2

3

4

5

Figure B.3: Entry and exit holes for plate 3 after ballistic impact. Locations correspond to
impact locations illustrated in Figure 3.17, and Figure A.3 in Appendix A.
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B.4 Plate 4

Entry Exit

1(C)

2

3

4

5

Figure B.4: Entry and exit holes for plate 4 after ballistic impact. Locations correspond to
impact locations illustrated in Figure 3.17, and Figure A.4 in Appendix A.



C Matlab Code

C.1 Ballistic Limit Curves

clc
clf
close all
clear

FontSize=16;
color={'c','m','g','k','r','b'};

%% Lab Data
Vi lab=[790.5;562.9;572.9;512.6;647.4;637.0;477.0;788.0;810.7;1028.7;...

764.4;605.9;639.8;531.6;701.3;718.7;721.9;731.7];
Vr lab=[591.6;243.5;248.2;0.0;399.5;372.8;0.0;609.5;640.3;891.8;573.7;...

345.4;392.0;128.3;477.4;513.7;513.7;525.8];

%% Base Model Data IMPETUS
Vi=[450,500,550,600,650,700,800,900];
Vr Cell=[0,225.41,329.08,416.96,488.66,546.55,667.59,777.05];
Vr JC=[171.35,295,364.41,434.65,494.28,553.94,671.12,780.67];
Vr Strekk=[259.62,348.47,414.7,472.93,525.94,580.23,687.76,792.99];

%% Base Model Data ABAQUS
Vr Cell ABA=[0,70.983,243.280,344.222,425.093,497.971,630.750,755.739];
Vr Strekk ABA=[0,96.937,251.341,349.655,432.167,501.570,635.332,756.719];
Vr GTNSS=[0,87.692,250.023,346.069,429.136,503.536,633.325,754.229];
Vr GTN=[0,57.374,244.204,342.484,426.053,500.483,630.016,750.277];

%% Curve Fit
% Fitting Lab data
n=0;
for i=1:length(Vi lab)

if Vr lab(i)~=0
n=n+1;
vi lab(n)=Vi lab(i);
vr lab(n)=Vr lab(i);

end
end

[Vbl lab,~]=RI Fit(vr lab,vi lab);
a lab=Vbl lab.a;
p lab=Vbl lab.p;
Vbl lab=Vbl lab.Vbl;

vi lab=linspace(Vbl lab,max(Vi lab),1000)';
vr lab=a lab*(vi lab.ˆp lab-Vbl labˆp lab).ˆ(1/p lab);

153



154 APPENDIX C. MATLAB CODE

%% Fitting IMPETUS data
[fitresult,~]=RI Fit(Vr Cell(2:end),Vi(2:end));
a Cell=fitresult.a;
p Cell=fitresult.p;
Vbl Cell=fitresult.Vbl;

[fitresult,~]=RI Fit(Vr Strekk,Vi);
a Strekk=fitresult.a;
p Strekk=fitresult.p;
Vbl Strekk=fitresult.Vbl;

[fitresult,~]=RI Fit(Vr JC,Vi);
a JC=fitresult.a;
p JC=fitresult.p;
Vbl JC=fitresult.Vbl;

%% Fitting Abaqus data
[fitresult,~]=RI Fit(Vr Cell ABA(2:end),Vi(2:end));
a Cell ABA=fitresult.a;
p Cell ABA=fitresult.p;
Vbl Cell ABA=fitresult.Vbl;

[fitresult,~]=RI Fit(Vr Strekk ABA(2:end),Vi(2:end));
a Strekk ABA=fitresult.a;
p Strekk ABA=fitresult.p;
Vbl Strekk ABA=fitresult.Vbl;

[fitresult,~]=RI Fit(Vr GTNSS(2:end),Vi(2:end));
a GTNSS=fitresult.a;
p GTNSS=fitresult.p;
Vbl GTNSS=fitresult.Vbl;

[fitresult,~]=RI Fit(Vr GTN(2:end),Vi(2:end));
a GTN=fitresult.a;
p GTN=fitresult.p;
Vbl GTN=fitresult.Vbl;

%% Creating Recht-Ipson Curves
vi Cell ABA=linspace(Vbl Cell ABA,max(Vi lab),1000);
vi Cell=linspace(Vbl Cell,max(Vi lab),1000);
vi JC=linspace(Vbl JC,max(Vi lab),1000);
vi Strekk=linspace(Vbl Strekk,max(Vi lab),1000);
vi Strekk ABA=linspace(Vbl Strekk ABA,max(Vi lab),1000);
vi GTNSS=linspace(Vbl GTNSS,max(Vi lab),1000);
vi GTN=linspace(Vbl GTN,max(Vi lab),1000);
vr Cell ABA=a Cell ABA.*(vi Cell ABA.ˆp Cell ABA-...

Vbl Cell ABA.ˆp Cell ABA).ˆ(1./p Cell ABA);
vr Cell=a Cell.*(vi Cell.ˆp Cell-Vbl Cell.ˆp Cell).ˆ(1./p Cell);
vr JC=a JC.*(vi JC.ˆp JC-Vbl JC.ˆp JC).ˆ(1./p JC);
vr Strekk=a Strekk.*(vi Strekk.ˆp Strekk-Vbl Strekk.ˆp Strekk).ˆ(1./p Strekk);
vr Strekk ABA=a Strekk ABA.*(vi Strekk ABA.ˆp Strekk ABA-...

Vbl Strekk ABA.ˆp Strekk ABA).ˆ(1./p Strekk ABA);
vr GTNSS=a GTNSS.*(vi GTNSS.ˆp GTNSS-Vbl GTNSS.ˆp GTNSS).ˆ(1./p GTNSS);
vr GTN=a GTN.*(vi GTN.ˆp GTN-Vbl GTN.ˆp GTN).ˆ(1./p GTN);

%% Plotting
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%% IMPETUS
% Plot fit with data.
h=figure('name','IMPETUS');
plot(Vi,Vr Strekk,'bd','MarkerFaceColor','b')
hold on
plot(Vi,Vr Cell,'ks','MarkerFaceColor','k')
plot(Vi lab,Vr lab,'ro','MarkerFaceColor','r')
plot(Vi,Vr JC,'m<','MarkerFaceColor','m')
plot(vi Cell,vr Cell,'k')
plot(vi JC,vr JC,'m')
plot(vi Strekk,vr Strekk,'b')
plot(vi lab,vr lab,'r')
% Legends
legend('CL with W {c} = 174.1 MPa','CL with W {c} = 364.3 MPa',...

'Experimental data','JC','location','northwest');
legend('boxoff')
% axis limits
axis([300,max(Vi lab),0,900])
% Label axes
xlabel('Initial velocity, v i [m/s]','FontSize',FontSize)
ylabel('Residual velocity, v r [m/s]','FontSize',FontSize)
set(gca,'FontSize',FontSize)
hold off
% Saving as pdf
saveas(h,'..\..\..\LaTex\figures\BallisticLimit\BaseModelIMPETUS','pdf')
% matlab2tikz('..\..\..\LaTex\figures\BallisticLimit\BaseModelIMPETUS.tikz',...
% 'width','\figurewidth','height','\figureheight')

%% Abaqus
h=figure('name','Abaqus');
plot(Vi,Vr Strekk ABA,'bd','MarkerFaceColor','b')
hold on
plot(Vi,Vr Cell ABA,'ks','MarkerFaceColor','k')
plot(Vi lab,Vr lab,'ro','MarkerFaceColor','r')
plot(vi Cell ABA,vr Cell ABA,'k')
plot(vi Strekk ABA,vr Strekk ABA,'b')
plot(vi lab,vr lab,'r')
% Legends
legend('CL with W {c} = 174.1 MPa','CL with W {c} = 364.3 MPa',...

'Experimental data','location','northwest');
legend('boxoff')
% axis limits
axis([300,max(Vi lab),0,900])
% Label axes
xlabel('Initial velocity, v i [m/s]','FontSize',FontSize)
ylabel('Residual velocity, v r [m/s]','FontSize',FontSize)
set(gca,'FontSize',FontSize)
hold off
% Saving as pdf
saveas(h,'..\..\..\LaTex\figures\BallisticLimit\BaseModelAbaqus','pdf')
% matlab2tikz('..\..\..\LaTex\figures\BallisticLimit\BaseModelAbaqus.tikz',...
% 'width','\figurewidth','height','\figureheight')

%% Plotting IMPETUS
% Plot fit with data.
h=figure('name','IMPETUS CL');
plot(Vi,Vr Strekk,'bd','MarkerFaceColor','b')
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hold on
plot(Vi,Vr Cell,'ks','MarkerFaceColor','k')
plot(Vi lab,Vr lab,'ro','MarkerFaceColor','r')
plot(vi Cell,vr Cell,'k')
plot(vi Strekk,vr Strekk,'b')
plot(vi lab,vr lab,'r')
% Legends
legend('CL with W {c} = 174.1 MPa','CL with W {c} = 364.3 MPa',...

'Experimental data','location','northwest');
legend('boxoff')
% axis limits
axis([300,max(Vi lab),0,900])
% Label axes
xlabel('Initial velocity, v i [m/s]','FontSize',FontSize)
ylabel('Residual velocity, v r [m/s]','FontSize',FontSize)
set(gca,'FontSize',FontSize)
hold off
% Saving as pdf
saveas(h,'..\..\..\LaTex\figures\BallisticLimit\BaseModelIMPETUSCL','pdf')
% matlab2tikz('..\..\..\LaTex\figures\BallisticLimit\BaseModelIMPETUSCL.tikz',...
% 'width','\figurewidth','height','\figureheight')

%% Plotting IMPETUS
% Plot fit with data.
h=figure('name','IMPETUS JC');
plot(Vi,Vr JC,'m<','MarkerFaceColor','m')
hold on
plot(Vi lab,Vr lab,'ro','MarkerFaceColor','r')
plot(vi JC,vr JC,'m')
plot(vi lab,vr lab,'r')
% Legends
legend('JC','Experimental data','location','northwest');
legend('boxoff')
% axis limits
axis([300,max(Vi lab),0,900])
% Label axes
xlabel('Initial velocity, v i [m/s]','FontSize',FontSize)
ylabel('Residual velocity, v r [m/s]','FontSize',FontSize)
set(gca,'FontSize',FontSize)
hold off
% Saving as pdf
saveas(h,'..\..\..\LaTex\figures\BallisticLimit\BaseModelIMPETUSJC','pdf')
% matlab2tikz('..\..\..\LaTex\figures\BallisticLimit\BaseModelIMPETUSJC.tikz',...
% 'width','\figurewidth','height','\figureheight')

%% Abaqus
h=figure('name','Abaqus GTN');
plot(Vi,Vr GTN,'ks','MarkerFaceColor','k')
hold on
plot(Vi,Vr GTNSS,'bd','MarkerFaceColor','b')
plot(Vi lab,Vr lab,'ro','MarkerFaceColor','r')
plot(vi GTN,vr GTN,'k')
plot(vi GTNSS,vr GTNSS,'b')
plot(vi lab,vr lab,'r')
% Legends
legend('GTN','GTN with shear softening','Experimental data','location','northwest');
legend('boxoff')
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% axis limits
axis([300,max(Vi lab),0,900])
% Label axes
xlabel('Initial velocity, v i [m/s]','FontSize',FontSize)
ylabel('Residual velocity, v r [m/s]','FontSize',FontSize)
set(gca,'FontSize',FontSize)
hold off
% Saving as pdf
saveas(h,'..\..\..\LaTex\figures\BallisticLimit\BaseModelAbaqusGTN','pdf')
% matlab2tikz('..\..\..\LaTex\figures\BallisticLimit\BaseModelAbaqusGTN.tikz',...
% 'width','\figurewidth','height','\figureheight')

%% Abaqus
h=figure('name','Abaqus compare');
plot(Vi,Vr Strekk ABA,'bd','MarkerFaceColor','b')
hold on
plot(Vi,Vr Cell ABA,'ks','MarkerFaceColor','k')
plot(Vi,Vr GTN,'m<','MarkerFaceColor','m')
plot(Vi lab,Vr lab,'ro','MarkerFaceColor','r')
plot(vi Cell ABA,vr Cell ABA,'k')
plot(vi Strekk ABA,vr Strekk ABA,'b')
plot(vi GTN,vr GTN,'m')
plot(vi lab,vr lab,'r')
% Legends
legend('CL with W {c} = 174.1 MPa','CL with W {c} = 364.3 MPa','GTN',...

'Experimental data','location','northwest');
legend('boxoff')
% axis limits
axis([300,max(Vi lab),0,900])
% Label axes
xlabel('Initial velocity, v i [m/s]','FontSize',FontSize)
ylabel('Residual velocity, v r [m/s]','FontSize',FontSize)
set(gca,'FontSize',FontSize)
hold off
% Saving as pdf
saveas(h,'..\..\..\LaTex\figures\BallisticLimit\BaseModelAbaqusCompare','pdf')
% matlab2tikz('..\..\..\LaTex\figures\BallisticLimit\BaseModelAbaqusCompare.tikz',...
% 'width','\figurewidth','height','\figureheight')

C.2 Numerical Micromechanical Unit Cell

clc
clf
close all
clear

FontSize=16;
color={[1,0.6,0.1],'c','m','g','k','r','b'};

% Triaxiality ratios
Tstr={'0,65','0,75','1,0','1,25','1,5','1,75','2,0'};
% Triaxiality ratios in Text string
T=[0.65,0.75,1.0,1.25,1.5,1.75,2.0];
% Triaxiality ratios
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N 1=[5,3,4,2,2,2,1];
% Adjusting failure point
N 2=[25,25,25,25,25,25,25];
% Adjusting failure point
N 3=[1,2,2,1,2,2,0];

%% Finding critical void volume fraction and Critical Equivalent Strain for
%% each Triaxiality ratio
% Defining variables
f c 1=zeros(1,length(Tstr));
f c 2=f c 1;
f c 3=f c 1;
Eeq c 1=f c 1;
Eeq c 2=f c 1;
Eeq c 3=f c 1;
Seq c 1=f c 1;
Seq c 2=f c 1;
Seq c 3=f c 1;
pl=f c 1;
pl2=f c 1;
pl3=f c 1;
pl4=f c 1;

startRow=2;
% Row to start importing data
endRow=inf;
% Row to end importing data

[~,T 3D,Eeq c 3D]=Results3D();

for i=1:length(Tstr)
%% Loading Data from File
%% L=-1
filename 1=['..\..\Abaqus\AxSymm L=-1\DAT-filer\AlMgSi f0=0,005 T=',...

Tstr{i},'.dat']; % File name to load
[~,~,Seq 1,Eeq 1,E1 1,~,f 1]=importfile(filename 1,startRow,endRow);
% Importing data from file

%% L=0
filename 2=['..\..\Abaqus\PlaneStrain\TXT-FILES\AlMgSi f0=0,005 T=',...

Tstr{i},'.txt']; % File name to load
[~,~,Seq 2,Eeq 2,E1 2,~,f 2]=file 2(filename 2,startRow,endRow);
%Importing data from file

%% L=1
filename 3=['..\..\Abaqus\AxSymm L=1\DAT-Files\AlMgSi f0=0,005 T=',...

Tstr{i},' L=1,0.dat']; % File name to load
[~,~,Seq 3,Eeq 3,~,E2 3,f 3]=importfile(filename 3,startRow,endRow);
% Importing data from file
[t,L3 3,DL3 3]=Ligament(Tstr{i});

%% Finding critical/failure point
% L=-1
[M 1,~]=min(E1 1);
% Finding min value of E1
M 1=0.99*M 1;
% Setting 99% of max as critical point
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[~,n 1]=min(abs(E1 1-M 1));
% Finding entry nr. of critical point
n 1=n 1+N 1(i);
% Adjusting critical point
% L=0
[M 2,~]=min(E1 2);
% Finding min value of E1
M 2=0.99*M 2;
% Setting 99% of max as critical point
[~,n 2]=min(abs(E1 2-M 2));
% Finding entry nr. of critical point
n 2=n 2+N 2(i);
% Adjusting critical point
% L=1
[M 3,~]=min(E2 3);
% Finding min value of E2
M 3=0.95*M 3;
% Setting 99% of max as critical point
[~,n 3]=min(abs(E2 3-M 3));
% Finding entry nr. of critical point
n 3=n 3+N 3(i);

%% Plotting failure point
% Strain in radial direction vs. Equivalent Strain
figure(1);
pl(i)=plot(Eeq 1,abs(E1 1),'color',color{i});
% Plotting Equivalent Strain vs. Strain in r-direction
hold on
plot(Eeq 2,abs(E1 2),'color',color{i});
plot(Eeq 3,abs(E2 3),'color',color{i});
plot(Eeq 1(n 1),abs(E1 1(n 1)),'kx','MarkerFaceColor','k','MarkerSize',...

8,'LineWidth',1.5) % Plotting critical point as X
plot(Eeq 2(n 2),abs(E1 2(n 2)),'kx','MarkerFaceColor','k','MarkerSize',...

8,'LineWidth',1.5) % Plotting critical point as X
plot(Eeq 3(n 3),abs(E2 3(n 3)),'kx','MarkerFaceColor','k','MarkerSize',...

8,'LineWidth',1.5) % Plotting critical point as X
% Stress vs. Strain
figure(2);
pl2(i)=plot(Eeq 1(1:n 1+5),Seq 1(1:n 1+5),'color',color{i});
% Plotting Equivalent Strain vs. Equivalent Stress
hold on
plot(Eeq 2(1:n 2+100),Seq 2(1:n 2+100),'color',color{i});
plot(Eeq 3,Seq 3,'color',color{i});
plot(Eeq 1(n 1),Seq 1(n 1),'kx','MarkerFaceColor','k','MarkerSize',...

8,'LineWidth',1.5) % Plotting critical point as X
plot(Eeq 2(n 2),Seq 2(n 2),'kx','MarkerFaceColor','k','MarkerSize',...

8,'LineWidth',1.5)
plot(Eeq 3(n 3),Seq 3(n 3),'kx','MarkerFaceColor','k','MarkerSize',...

8,'LineWidth',1.5)
% Void Volume fraction vs. Equivalent Strain
figure(3);
pl3(i)=plot(Eeq 1(1:n 1+5),f 1(1:n 1+5),'color',color{i});
hold on
plot(Eeq 2(1:n 2+100),f 2(1:n 2+100),'color',color{i});
plot(Eeq 3,f 3,'color',color{i});
plot(Eeq 1(n 1),f 1(n 1),'kx','MarkerFaceColor','k','MarkerSize',...

8,'LineWidth',1.5) % Plotting critical point as X
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plot(Eeq 2(n 2),f 2(n 2),'kx','MarkerFaceColor','k','MarkerSize',...
8,'LineWidth',1.5)

plot(Eeq 3(n 3),f 3(n 3),'kx','MarkerFaceColor','k','MarkerSize',...
8,'LineWidth',1.5)

figure(4)
pl4(i)=plot(Eeq 3,DL3 3,'color',color{i});
hold on
plot(Eeq 3(n 3),DL3 3(n 3),'kx','MarkerFaceColor','k','MarkerSize',7.5)

%% Volume fraction ( f ) at failure +++
% L=-1
f c 1(i)=f 1(n 1);
% Critical void volume fraction for each triaxiality ratio
Eeq c 1(i)=Eeq 1(n 1);
% Critical Equivalent Strain for each triaxiality ratio
Seq c 1(i)=Seq 1(n 1);
% L=0
f c 2(i)=f 2(n 2);
% Critical void volume fraction for each triaxiality ratio
Eeq c 2(i)=Eeq 2(n 2);
% Critical Equivalent Strain for each triaxiality ratio
% L=1
f c 3(i)=f 3(n 3);
% Critical void volume fraction for each triaxiality ratio
Eeq c 3(i)=Eeq 3(n 3);
% Critical Equivalent Strain for each triaxiality ratio
Seq c 3(i)=Seq 3(n 3);

end

%% Calibrating Cockcroft-Latham
% Calculating accumulated plastic strain at fauilure
E=70000;
% Young's modulus
p f 1=Eeq c 1-Seq c 1/E;
% accumulated plastic strain at fauilure
p f 2=Eeq c 2-Seq c 2/E;
p f 3=Eeq c 3-Seq c 3/E;

mu sig=[-1,0,1];
H 1=66.26*p f 1+62*p f 1+62/32.36*(exp(-32.36*p f 1)+1)+126.46*p f 1+...

126.46/4.21*(exp(-4.21*p f 1)+1);
H 2=66.26*p f 2+62*p f 2+62/32.36*(exp(-32.36*p f 2)+1)+126.46*p f 2+...

126.46/4.21*(exp(-4.21*p f 2)+1);
H 3=66.26*p f 3+62*p f 3+62/32.36*(exp(-32.36*p f 3)+1)+126.46*p f 3+...

126.46/4.21*(exp(-4.21*p f 3)+1);

H=[H 1;H 2;H 3]';

[fitresult,~]=CL Fit(mu sig,T,H,FontSize);
Wcr=fitresult.Wcr;

%% Calibrating Johnson - Cook
pf=[p f 1;p f 2;p f 3]';

[fitresult,~]=JC Fit(mu sig,T,pf,FontSize);
D1=fitresult.D1;
D2=fitresult.D2;
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D3=fitresult.D3;
D6=fitresult.D6;

%% Calibrating Cockcroft-Latham without L=0
mu sig=[-1,1];
H 1=66.26*p f 1+62*p f 1+62/32.36*(exp(-32.36*p f 1)+1)+126.46*p f 1+...

126.46/4.21*(exp(-4.21*p f 1)+1);
H 3=66.26*p f 3+62*p f 3+62/32.36*(exp(-32.36*p f 3)+1)+126.46*p f 3+...

126.46/4.21*(exp(-4.21*p f 3)+1);

H=[H 1;H 3]';

[fitresult,~]=CL Fit uten(mu sig,T,H,FontSize);
Wcr utenL0=fitresult.Wcr;

%% Calibrating Johnson - Cook without L=0
pf=[p f 1;p f 3]';

[fitresult,~]=JC Fit uten(mu sig,T,pf,FontSize);
D1 utenL0=fitresult.D1;
D2 utenL0=fitresult.D2;
D3 utenL0=fitresult.D3;

%% Plotting
Tstr={'\sigma* = 0.65','\sigma* = 0.75','\sigma* = 1.00','\sigma* = 1.25',...

'\sigma* = 1.50','\sigma* = 1.75','\sigma* = 2.00'};
%% Edit figure 1
h=figure(1);
% Legends
legend(pl,Tstr,'location','southeast')
legend('boxoff')
% axis limits
% Label axes
xlabel('Equivalent strain, E {eq}','FontSize',FontSize)
ylabel('Strain, | | E {1} | | ','FontSize',FontSize)
set(gca,'FontSize',FontSize)
% Saving as pdf
saveas(h,'..\..\LaTex\figures\CelleSim\Cellefailure ALL','pdf')
matlab2tikz('..\..\LaTex\figures\CelleSim\Cellefailure ALL.tikz',...

'width','\figurewidth','height','\figureheight')

%% Edit figure 2
h=figure(2);
% Legends
legend(pl2,Tstr,'location','southeast')
legend('boxoff')
% axis limits
% Label axes
xlabel('Equivalent strain, E {eq}','FontSize',FontSize)
ylabel('Equivalent stress, \Sigma {eq} [Mpa]','FontSize',FontSize)
set(gca,'FontSize',FontSize)
% Saving as pdf
saveas(h,'..\..\LaTex\figures\CelleSim\StressStrain ALL','pdf')
matlab2tikz('..\..\LaTex\figures\CelleSim\StressStrain ALL.tikz',...

'width','\figurewidth','height','\figureheight')

%% Edit figure 3
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h=figure(3);
% Legends
legend(pl3,Tstr,'location','northeast')
legend('boxoff')
% axis limits
% Label axes
xlabel('Equivalent strain, E {eq}','FontSize',FontSize)
ylabel('Void volume fraction, f','FontSize',FontSize)
set(gca,'FontSize',FontSize)
% Saving as pdf
saveas(h,'..\..\LaTex\figures\CelleSim\VoidVolumeFraction ALL','pdf')
matlab2tikz('..\..\LaTex\figures\CelleSim\VoidVolumeFraction ALL.tikz',...

'width','\figurewidth','height','\figureheight')

%% Edit figure 4
h=figure(4);
% Legends
legend(pl4,Tstr,'location','southeast')
legend('boxoff')
% axis limits
% Label axes
xlabel('Equivalent strain, E {eq}','FontSize',FontSize)
ylabel('Change in ligament thickness, \partialL {33}/\partialt','FontSize',FontSize)
set(gca,'FontSize',FontSize)
% Saving as pdf
saveas(h,'..\..\LaTex\figures\CelleSim\Ligament All','pdf')
matlab2tikz('..\..\LaTex\figures\CelleSim\Ligament All.tikz',...

'width','\figurewidth','height','\figureheight')

%% Plotting critical void volume fraction vs. Triaxiality ratio
h=figure(5);
B(1)=plot(T,f c 1,'bs:','MarkerFaceColor','b');
hold on
B(2)=plot(T,f c 2,'rd:','MarkerFaceColor','r');
B(3)=plot(T,f c 3,'mo:','MarkerFaceColor','m');
% Legends
legend(B,{'\mu {\sigma} = -1','\mu {\sigma} = 0','\mu {\sigma} = 1'},...

'Location','northwest')
legend('boxoff')
% axis limits
axis([min(T),max(T),min(min([f c 1,f c 2,f c 3]))/...

3,1.1*max(max([f c 1,f c 2,f c 3]))])
% Label axes
xlabel('Triaxiality ratio, \sigma*','FontSize',FontSize)
ylabel('Critical void volume fraction, f c','FontSize',FontSize)
set(gca,'FontSize',FontSize)
hold off
% Saving as pdf
saveas(h,'..\..\LaTex\figures\CelleSim\VoidFraction ALL','pdf')
matlab2tikz('..\..\LaTex\figures\CelleSim\VoidFraction ALL.tikz',...

'width','\figurewidth','height','\figureheight')

%% Plotting Critical Equivalent Strain vs. Triaxiality ratio
C=0.2;
[Shear c 2D,Shear c 3D]=ShearCell(C);
h=figure(6);
B(1)=plot(T,Eeq c 1,'bs:','MarkerFaceColor','b');
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hold on
B(2)=plot([0,T],[Shear c 2D,Eeq c 2],'rd:','MarkerFaceColor','r');
B(3)=plot(T,Eeq c 3,'mo:','MarkerFaceColor','m');
% 3D values
% Legends
legend([B(1),B(2),B(3)],{'\mu {\sigma} = -1','\mu {\sigma} = 0',...

'\mu {\sigma} = 1'},'Location','northeast')
legend('boxoff')
% axis limits
xlim([min([0,T]),max([0,T])])
% Label axes
xlabel('Triaxiality ratio, \sigma*','FontSize',FontSize)
ylabel('Critical equivalent strain, E {eq}ˆ{c}','FontSize',FontSize)
set(gca,'FontSize',FontSize)
hold off
% Saving as pdf
saveas(h,'..\..\LaTex\figures\CelleSim\EquivalentStrain ALL','pdf')
matlab2tikz('..\..\LaTex\figures\CelleSim\EquivalentStrain ALL.tikz',...

'width','\figurewidth','height','\figureheight')

%% Plotting Critical Equivalent Strain vs. Triaxiality ratio Compared to 3D
h=figure(7);
B(1)=plot(T,Eeq c 1,'bs--','MarkerFaceColor','b');
hold on
B(2)=plot(T 3D{1},Eeq c 3D{1},'bd--','MarkerFaceColor','b');
B(3)=plot([0,T],[Shear c 2D,Eeq c 2],'rs-.','MarkerFaceColor','r');
B(4)=plot([0;T 3D{2}],[Shear c 3D;Eeq c 3D{2}],'rd-.','MarkerFaceColor','r');
B(5)=plot(T,Eeq c 3,'ms:','MarkerFaceColor','m');
B(6)=plot(T 3D{3},Eeq c 3D{3},'md:','MarkerFaceColor','m');
% Legends
legend(B,{'2D Cell, \mu {\sigma} = -1','3D Cell','2D Cell, \mu {\sigma} = 0',...

'3D Cell','2D Cell, \mu {\sigma} = 1','3D Cell'},'Location','northeast')
legend('boxoff')
% axis limits
xlim([min([0,T]),max([0,T])])
% Label axes
xlabel('Triaxiality ratio, \sigma*','FontSize',FontSize)
ylabel('Critical equivalent strain, E {eq}ˆ{c}','FontSize',FontSize)
set(gca,'FontSize',FontSize)
hold off
% Saving as pdf
saveas(h,'..\..\LaTex\figures\CelleSim\EquivalentStrain ALL Compare 3D','pdf')
matlab2tikz('..\..\LaTex\figures\CelleSim\EquivalentStrain ALL Compare 3D.tikz',...

'width','\figurewidth','height','\figureheight')

%% Plotting Critical Equivalent Strain vs. Triaxiality ratio
h=figure(99);
plot([0,T],[Shear c 2D,Eeq c 2],'ks:','MarkerFaceColor','k');
% 3D values
% Legends
% axis limits
ylim([0,0.6])
xlim([min([0,T]),max([0,T])])
% Label axes
xlabel('Triaxiality ratio, \sigma*','FontSize',FontSize)
ylabel('Critical equivalent strain, E {eq}ˆ{c}','FontSize',FontSize)
set(gca,'FontSize',FontSize)
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hold off
% Saving as pdf
saveas(h,'..\..\LaTex\figures\CelleSim\L=0\CriticalEquivalentStrainShear','pdf')
matlab2tikz('..\..\LaTex\figures\CelleSim\L=0\CriticalEquivalentStrainShear.tikz',...

'width','\figurewidth','height','\figureheight')



D FEM Input Files

D.1 IMPETUS Input File

*UNIT SYSTEM
# Defines the Unit System: SI Units
SI

*INCLUDE
# Importing the Bullet Mesh Created in Abaqus
Bullet 5.k
1, 1, 1, 100000, 100000
0, 0, 0, -28e-3, 0, 0
0,-1,0,1,0,0

*INCLUDE'
# Importing the Target Mesh Created in Abaqus
Target.k
1e-3, 1e-3, 1e-3, 0, 0
0, 0, 0, 0, 0, 0
0,-1,0,1,0,0

*PARAMETER
# Parameters used
%A = 66.26e6 # Initial yield Stress, Sigma 0
%Q1 = 62.00e6 # Voce Hardening Parameter
%C1 = 32.36 # Voce Hardening Parameter
%Q2 = 126.46e6 # Voce Hardening Parameter
%C2 = 4.21 # Voce Hardening Parameter
%Wcr = 364.3e6 # Critical Plastic Work, CL Criterion
%Vi=700 # Initial Velocity
%endtime=1.5e-4 # Integration Time
%mu=0.05 # Friction Coef.
%terode=0 # Time Step to Erode Elements
%tikk=1 # 0,1 or 2, for failed elements is not eroded,

# is eroded or nodesplitting

*TIME
# Integration Time is Determined
[%endtime]

*INITIAL TEMPERATURE
# Initial Temperature in the model is Determined
# by *FUNCTION 999. Hence T i = 293 K
ALL, 0, 999

*FUNCTION
999
293

*PART
# Creates parts
"Plate Part"
1,1 , , , ,[%terode]

*PART

165
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"Kule Part"
3,3

*MAT METAL
# Target Material
1,2700,70.0e9,0.3,1,1
1,0,0,0.001,5.0e-4,1,293,893

*MAT RIGID
# Bullet Material
3,7850

*FUNCTION
# Voce Hardening Curve
1
%A + %Q1*(1 - exp(-%C1*epsp)) + %Q2*(1 - exp(-%C2*epsp))

*PROP DAMAGE CL
# Cockcroft-Latham Fracture Criterion
1,[%tikk]
[%Wcr]

*PROP THERMAL
# Termal Propeties for the target
1,2.3e-5,910,0,0.9,293

*GEOMETRY PIPE
# Change the Polynomial Order of the Elements in the Center to 3.
2
-1,0,0,1,0,0,16.0e-3

*CHANGE P-ORDER
ALL,0,3,2

*BC SYMMETRY
# Boundary Conditions
0,1,2

*COORDINATE SYSTEM FIXED
1,0,0,0
0,0,1

*COORDINATE SYSTEM FIXED
2,0,0,0
0,[sin(5)],[-cos(5)]

*BC MOTION
987
G,56,xyz,0

*GEOMETRY PIPE
56
-1,0,0,1,0,0,55e-3,49e-3

*INITIAL VELOCITY
# Initial Velocity of the Bullet
P,3,[%Vi]

*CONTACT
# Contact
"General contact"
123
ALL,0,ALL,0,[%mu],1e15
1,,,,,1e-8

*END
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D.2 Abaqus Input Files

D.2.1 Abaqus Model

*Heading

** Job name: SMM Model name: BaseModel

** Generated by: Abaqus/CAE 6.14-1

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**
** PARTS

**
*Part, name=Bullet

*End Part

**
*Part, name=Target

*End Part

**
**
** ASSEMBLY

**
*Assembly, name=Assembly

**
*Instance, name=Target-1, part=Target

*Node
#
# NODE INFORMATION NOT INCLUDED
#

*Element, type=C3D8R
#
# ELEMENT INFORMATION NOT INCLUDED
#

*Elset, elset= PickedSet38, internal, instance=Target-1, generate
1, 8057, 1

*Nset, nset= PickedSet39, internal, instance=Target-1
#
# NOT INCLUDED
#

*Elset, elset= PickedSet39, internal, instance=Target-1, generate
7908, 8057, 1

*Nset, nset= PickedSet40, internal
1,

*Nset, nset= PickedSet41, internal
1,

*Nset, nset=" T-Datum csys-2", internal
PickedSet38,

*Transform, nset=" T-Datum csys-2"
0.996194698091745,0.,-0.0871557427476581,0.,1.,0.

** Constraint: Bullet

*Rigid Body, ref node= PickedSet32, analytical surface=Bullet-1.RigidSurface

*Element, type=MASS, elset= PickedSet42 Inertia-1 MASS
1, 1

*Mass, elset= PickedSet42 Inertia-1 MASS
7.2078e-08,

*Element, type=ROTARYI, elset= PickedSet42 Inertia-1 ROTI
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2, 1

*Rotary Inertia, elset= PickedSet42 Inertia-1 ROTI
1., 1., 1., 0., 0., 0.

*End Assembly

**
** MATERIALS

**
*include, input=mat Heidi new.inp

**
** INTERACTION PROPERTIES

**
*Surface Interaction, name=IntProp-1

*Friction
0.05,

*Surface Behavior, pressure-overclosure=HARD

**
** BOUNDARY CONDITIONS

**
** Name: BulletFixed Type: Displacement/Rotation

*Boundary
PickedSet40, 1, 1
PickedSet40, 3, 3
PickedSet40, 4, 4
PickedSet40, 5, 5
PickedSet40, 6, 6

** Name: Center Type: Displacement/Rotation

*Boundary
PickedSet39, 1, 1
PickedSet39, 3, 3

** Name: Fixed Type: Displacement/Rotation

*Boundary
PickedSet37, 1, 1
PickedSet37, 2, 2
PickedSet37, 3, 3

** Name: Sym1 Type: Symmetry/Antisymmetry/Encastre

*Boundary
PickedSet36, ZSYMM

** Name: Sym2 Type: Symmetry/Antisymmetry/Encastre

*Boundary
PickedSet38, ZSYMM

**
** PREDEFINED FIELDS

**
** Name: InVel Type: Velocity

*Initial Conditions, type=VELOCITY
PickedSet41, 1, 0.
PickedSet41, 2, 700000.
PickedSet41, 3, 0.

** ----------------------------------------------------------------

**
** STEP: Load

**
*Step, name=Load, nlgeom=YES

*Dynamic, Explicit, scale factor=0.9
, 0.00015

*Bulk Viscosity
0.06, 1.2



D.2. ABAQUS INPUT FILES 169

**
** INTERACTIONS

**
** Interaction: Int-1

*Contact, op=NEW

*Contact Inclusions, ALL EXTERIOR

*Contact Property Assignment
, , IntProp-1

**
** OUTPUT REQUESTS

**
*Restart, write, number interval=1, time marks=NO

**
** FIELD OUTPUT: F-Output-1

**
*Output, field, number interval=100

*Node Output
A, RF, U, V

*Element Output, directions=YES
EVF, LE, PE, PEEQ, PEEQVAVG, PEVAVG, S, SDV, STATUS, SVAVG

*Contact Output
CSTRESS,

**
** HISTORY OUTPUT: H-Output-1

**
*Output, history, variable=PRESELECT, time interval=1.5e-06

**
** HISTORY OUTPUT: Mass

**
*Output, history

*Integrated Output, elset=Target
MASS,

**
** HISTORY OUTPUT: Vel

**
*Output, history, time interval=1.5e-07

*Node Output, nset=Bullet
V2,

*End Step

D.2.2 SIMLab Metal Model Material Input

************************************************************************
** Material card for ABAQUS explicit

** von Mises yield surface

** Isotropic hardening

** Visco-plasticity

** Thermo-plasticity

** Cockcroft-Latham

************************************************************************
** The name of the material card must start with SMM when used with solid elements

************************************************************************
*Material, name=SMM AlMgSi original

*Density
2.7E-9,
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************************************************************************
** This file (DEPVAR SMM.inc) is used to specify the names of the history

** variables to the ABAQUS output file

*INCLUDE,INPUT=./DEPVAR SMM.inc

************************************************************************
*USER MATERIAL,CONSTANTS=41

** EFLAG, YFLAG, RMAPFLAG, HFLAG, VFLAG, TFLAG, DFLAG, SFFLAG
1, 1, 4, 1, 1, 12, 12, 0

** STFLAG, E, NU, SIGMA0, KSI, THETAR1, QR1, THETAR2
0, 70000, 0.3, 66.26, 0.1, 2006.32, 62, 532.39

** QR2, THETAR3, QR3,dRdpmin, CS, PDOT, TI, T0
126.4, 0, 0, 0, 0.001, 0.0005, 293, 293

** TM, RHO, CP, BETATQ, MS, DINIT, DCRIT, WC
893, 2.7E-9, 910E6, 0.9, 1, 0, 1, 364.3

** PHI, GAMMA, Tc,
1, 1, 804,
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