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Abstract

In this thesis the geometrically exact 3D shear-flexible beam model is discretized with the
Lagrangian and the NURBS basis functions, and has been used as a basis to develop a family of
locking-free NURBS-based elements. This beam model has no restrictions with respect to the
size of displacements, rotations and deformations, and is thus well accommodated for large
deformation analyses.

In the C°-continuous Lagrange element, numerical locking is overcome by reduced
integration. However, for the higher continuous NURBS elements, there exists at the present
time no element-by-element Gaussian quadrature rule which effectively alleviates locking.
Instead, by a patch-wise approach a selective reduced integration rule has been proposed, and
the resulting elements are free for transverse shear and membrane locking.

The performance is evaluated on a range of numerical tests and compared to the conventional
reduced integration rule. For comparison, also the standard Lagrange interpolated elements

have been tested in parallel.
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Chapter 1

Introduction

The finite element method has been widely used in computational mechanics, engineering
and sciences for several decades, but unfortunately, the traditional Lagrangian approximation
functions are unable to represent many common geometries in an exact manner. With the
introduction of isogeometric analysis (IGA), Lagrangian polynomials are replaced with
non-uniform rational B-splines (NURBS), which may represent geometries exactly by the same
approximation functions used to discretize the solution space. Due to their ability to describe
exact geometries even for coarse discretizations, NURBS constitute today the most commonly

used technology in computer-aided design (CAD).

Hughes et al. [22] introduced in 2005 the concept of using NURBS as interpolation functions in
numerical analyses. They called the framework isogeometric analysis, and their motivation
was to describe and simplify mesh refinement by eliminating the need for communication
with the CAD geometry once the initial mesh was defined. Since its conception, IGA has
penetrated many areas of computational mechanics, and in many cases shown improved
performance over the traditional finite element method. In the area of structural and solid
mechanics IGA has been successfully employed in computation of cable structures [34], 2D
and 3D solids, including large deformations, incompressibility, near-incompressibility and

plasticity [18, 28], contact problems [29, 30], fracture [8] and fluid-structure interaction [42].
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Implementation of NURBS-based discretizations does however bring some challenges, and has
been subject to a lot of research in recent years. One of them is shear-flexible beams, which
suffer from the same locking phenomena as the Lagrangian-based finite element analysis
(FEA), as pointed out by e.g. Echter and Bishoff [16] and Bouclier et al. [9]. This imply
transverse shear locking in straight beams, and transverse shear and membrane locking in
initially curved beams [41]. An element subjected to locking becomes unable to reproduce
bending properly in the Kirchoff limit, i.e. when the thickness become very small compared to
the length of the beam (or the curvature radius for curved beams). Several remedies to alleviate
the occurrence of locking in IGA has been successfully applied: 1) Reduced and selective
reduced integration [1, 2, 10], 2) NURBS-based discrete shear gap (NURBS DSG) methods
(16, 17], 3) B and F projection techniques [9, 10, 11, 18], 4) assumed natural strain methods
[12], 5) hybrid-mixed methods [17], and 6) collocation methods [4, 6]. However, apart from the
B and F projection methods proposed by Elguedj et al. [18] and Bouclier et al. [9], these works

were limited to linear elastic analyses.

In this context, the objective with this thesis is to develop a family of NURBS-based
geometrically exact 3D shear-flexible beam elements which are free of numerical locking for
analyses of geometrically non-linear finite deformation curved beam systems. In order to do
that, the beam model proposed in [38, 39, 40], extended to an arbitrary order discretization of
geometry, displacement and rotation fields with Lagrangian and NURBS are implemented in
MATLAB®, and verified through a range of numerical tests. For non-linear analyses the
FENRIS® solver is used. To alleviate locking, a lower order, patch-wise Gaussian quadrature
rule for selective reduced integration of the stiffness matrix has been implemented and

carefully tested on the verified code.

This thesis is outlined as follows. Chapter 2 gives an introduction to B-splines and NURBS and
how these are used to describe geometric objects. The basic strategies for enrichment of the
approximation space is also presented. In Chapter 3, a linear, straight beam formulation of the
shear-flexible beam element is derived and verified through a few numerical examples for

Lagrange and NURBS discretizations. Transverse shear locking is also highlighted in this
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chapter. In Chapter 4, the geometrically exact 3D beam model is firstly presented at a
continuous level, and then given on discrete form with both the Lagrangian and the NURBS
basis. A presentation of the membrane locking phenomenon is also given here. The
geometrically exact beam model is verified through a range of numerical examples in Chapter
5, where the impact of exact and conventional reduced integration on the convergence and
thickness dependency has been emphasized. In Chapter 6 a study of the constraint ratio results
in two new quadrature rules, which are carefully tested and compared on a selection of
numerical examples. In Chapter 7 the performance of selective reduced integration has been

studied in the non-linear regime, and finally, in Chapter 8 conclusions are drawn.
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Chapter 2

NURBS-based geometries

NURBS curves and surfaces are, because of their ability to describe geometries in an exact
manner, standard in computer-aided design (CAD) and computer-aided modeling (CAM)
today. However, it is not until recently that NURBS has entered area of computational
mechanics, engineering and sciences, which since its development in the late 50s and early 60s
have been the property of Lagrangian polynomials [7].

In the area of solid and structural mechanics the NURBS-based isogeometric analysis has in
many cases shown improved performance over the traditional FEA, due to the increased
accuracy of the approximated geometry and the higher inter-element continuity. IGA does also
bring the branches of CAD and FEA closer.

This chapter presents the basic definitions and properties of the NURBS basis, and how this is
used for geometry modeling. In Section 2.1, the history of NURBS is briefly presented. In
Section 2.2 the parameter space is defined, and derivation of the basis functions are shown in
Section 2.3. Finally, in Section 2.4 it is described how the basis functions are used in geometry
modeling, and how the approximation space may be enriched without changing the geometry
or the parameterization.

For further details on geometry modeling with NURBS, the reader is referred to [19, 32].
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2.1 History

NURBS have their origin in Bézier curves. These were originally developed by Bézier in the 60s
[15] to give a parametric description of curves and surfaces. Unlike interpolation polynomials,
the geometry could now be changed without changing the properties of the basis functions.
The main drawback with Bézier curves are their global support, which was resolved by
Riesenfield in the early 70s with introduction of the B-splines [36]. B-splines with their
compact support enable local shape modifications. Another benefit with B-splines is that the
degree of continuity between the curve segments can be controlled.

Rational B-splines were introduced in 1975 by Versprille [45]. These were denoted NURBS, and
allowed an exact formulation of circles and cones. Today NURBS are standard in CAD and

CAM.

The concept of using NURBS in numerical analyses, instead of Lagrangian polynomials, was
proposed by Hughes et al. in 2005 [22], and have since then been of large interest as an

alternative to FEA.

2.2 Parameter space

As in FEA, NURBS-geometries are utilizing isoparameterization. With this concept, an object
has a parametric formulation in a parameter space, which is connected to the physical space by
a transformation (mapping).

A parametric representation is independent of the axes and uses the same set of shape functions,
which offers a straightforward definition of free-form shapes and easily computed derivatives.
In addition, there exist a lot of stable and efficient algorithms for parametric formulations, which

is why they are preferred in IGA.

Knot vectors

For NURBS-geometries, the parameter space is local to patches (rather than elements in FEA).

A patch is related to a knot vector, Z. For each dimension this is a non-decreasing sequence of
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numbers, written:

2= (1,82, Entpa1] @.1)

which directly determines the properties of the basis functions, and thus the NURBS-geometry,
which is constructed from a linear combination of the basis functions and their associated
control points. The length of the knot vector, n + p + 1, matches the polynomial degree, p, and
the number, n, of the basis functions. A nonzero knot span, ;4 — ¢;, partition the patch into
elements.

A knot vector is referred to as open if the first and last value appear p + 1 times, and have the
essential property of being interpolatory at the endpoints. Therefore open knot vectors are
standard in IGA. Further, a knot vector can be uniform or non-uniform. In uniform knot
vectors the knot spans are equal, and each interior knot may only appear once. Non-uniform
knot vectors are not restricted to equal knot spans and may have repeated knot values, which
allows much richer behavior, such as corners, sharper curves, local refinement, etc.

As an example, two knot vectors for computing quadratic basis functions are shown below:

21=100,0,0,3,%,1,1,1]
2,=10,0,0,4,%,%,1,1,1] 2.2)

Because the first and the last knot values appear p + 1 times, they are both open. In E,, the knot
spans are equidistant and the interior knots {4 = % and &5 = % appear only once. Therefore, this

is a uniform knot vector. By the same argument, Z; is obviously nonuniform.

2.3 Basis functions

NURBS are built from the non-rational B-splines, and are constructed from linear combinations
of a set of basis functions, uniquely defined by the knot vector, which represents the parameter
space. This is for curves one-dimensional and thus function of the parameter ¢ only.

The basis functions may be thought of as shape functions in FEA, and are recursively computed
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from piecewise constants in each knot spans, expressed as:

1 for fi S6<fi
No = Nio(é) = ! 2.3)

0 otherwise

For p = 1 the functions are expressed in terms of the lower order ones:

f—fi éﬂi+p+1_ér

N, =N; =—N; ,_ +
P @ Eivp—& P &) Sivpr1—Cit+1

Ni1,p-1(8) (2.4)

To avoid singularity in Equation 2.4, g is defined to be zero.
Figure 2.1 illustrates the recursive structure of the basis functions, and from which lower order

functions they are constructed.

Figure 2.1: Recursive computation of basis functions, taken from [32].

The B-splines basis functions satisfy the following important properties:

They are nonnegative over the entire domain, Z: N; , =0, V< € [{,$napr1]-

Partition of unity, 1" | N, =1, V¢ € ({1, ny pa1l-

Infinitely continuously differentiable between the knots, C”~""i-continuous at interior

knots (where m; is the knot multiplicity).

Each basis function has support over the half-open interval, [{;, iy p+1)-
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* Non-interpolatory: N; ,(¢;) # 1, except for the end knots or knots with multiplicity m; =
p-1.

* For p=0and p =1, B-spline and Lagrangian basis functions coincide.

To illustrate the development of these basis functions, they will be recursively computed from

0th to 2nd order for the knot vectors in Equation 2.2.

Basis functions for Z; = 0,0,0,3,%,1,1,1]

According to Equation 2.3, the constant functions are computed:

N1,0:N2’0:01—OO<€<OO

1
1 :0=sé<-=
N3 = 3
0 :otherwise
1 2
1 (—==sé<-—
Nyo = 3 3
0 :otherwise
2
1 :=—=<é<1
N5 = 3
0 :otherwise

N6'0:N7,0:02—OO<€<OO

and plotted in Figure 2.2.
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3,0 4,0 5,0

0 13 2/3 1

Figure 2.2: Constant basis functions for Z;.

With the constant functions at hand, the linear and quadratic basis functions (N;; and N; ») are

computed from Equation 2.4:

NL1:OZ—OO<£<OO

1
1-3f :0s&<g

Ny =
0 : otherwise
3¢ '0<€<1
T 3
1 2
N3i=4 2-3¢ :Z<é<=
¢ 3 ¢ 3
0 : otherwise
1 2
-1+3¢ 1-={<—
¢ 3 ¢ 3
2
Ny1=4 3-3¢ :§§€<1
0 : otherwise

2
-2+3¢ :5s6<1

0 : otherwise

N61:05—OO<<:<OO
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0.5

13 2/3 1

Figure 2.3: Linear basis functions for =;.

1

(-1438)2% :0<é<-=

Ny = 3
0 : otherwise

27 1
68 — —¢&2 0<é< =
¢ 26 ¢ 3

1 1 2
Nop=<4 Z(_ 2 .2 =
2( 2+3¢) FEIE

3
0 : otherwise
9., 1
— 0<sé< =
2(;T d 3
3 1 2
—=+96-98% -<é<=
N3, = 92 g 3
2
- -1+ —=<é<1
2( é) 3 ¢
0 : otherwise
1 2 1 2
—(-1+3 =< =
2( é) 3 ¢ 3
15 27 2
Nyp=4 24016202 2
2 ¢ 2(f 3_6
0 : otherwise

(=2 +3&)? :gs§<1
N5 =< 3

0 : otherwise

11
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3,2

06 N2,2 l l N4,2

04

02

0
€,70£,20 £,=0 ¢,=1/3 £=23 £=16,71¢6,=1

3

Figure 2.4: Quadratic basis functions for E;.

It is confirmed that the 0t/ and 1s¢ degree basis functions coincide with the Lagrangian basis.
For higher orders, the B-spline basis are more homogeneous and do not show the oscillatory
properties as the Lagrangian basis.

Other properties of the basis functions can be seen in Figure 2.4. While the polynomials are
completely differentiable in the knot spans (C*°-continuous), the continuity at the interior knots
are CP~™i = C!. Further, each basis function has support over the interval [;,{;+p+1). E.g. N2 2

is nonzero on the interval [¢5, &5) = [0, 2).

Basis functions for Z, = [0,0,0, },%,%,1,1,1]

The basis functions for this open non-uniform knot vector are computed the same way as for
Z,, and shown in Figures 2.5 to 2.7. The length of the vector, n+ p+1 =9, indicates n = 6
quadratic shape functions, and C°-continuity at ¢ = 2/3 due to the repeated knot, which is

easily recognized as a corner.
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1 N3,O N4,0 NG,O
08r
0.6
04
0.2
0
0 1/6 2/3 1
£
Figure 2.5: Constant basis functions for =,.
1
08 Va4 Ny Ny Ng 3 Ne.1
06
04
02r
0
0 1/6 2/3 1
13
Figure 2.6: Linear basis functions for Z,.
CO
1 ) % N
c N, ,
N1,2 ¢ i
08+t c® N4_2
N2,2
06 c”
N3,2 ﬁ
04t 52
0.2 \
0 \
€=0£,=0£=0 ¢,=1/6 £.7213 £,=2/3

Figure 2.7: Quadratic basis functions for Z,.

&1 6716571
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Derivatives of basis functions

Derivatives of quantities are essential in numerical analyses. The variable in NURBS-geometries
is found in the basis functions, and the derivatives of these are given in terms of the lower order

basis functions. For shape function i and polynomial degree p, the kth derivative is gives as:

dkN; d*¥IN; - AN, p-
Lp p ( i,p 1) p ( i+L,p 1) 2.5)

dek Enp—&i\ dEEl | & —&in | dekl

Figures 2.8 and 2.9 show the 1s¢ derivatives of the two bases. Note the continuity across ¢ =2/3

for the two bases.

dN dN dN

52

—hL

d¢

0 1/3 2/3 1
¢

Figure 2.8: 1st derivative of the =, -basis.
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10 - dNZ2
dé
d':GZ
51 3
dN,, dN,, /
d¢ dé
0 N
dN, >
5r dé
dN,
d¢
10 -
0 1/6 2/3 1

13

Figure 2.9: 1st derivative of the E,-basis.

2.4 NURBS geometry

A NURBS geometry in R is obtained by a projective transformation of a B-spline geometry in
R4+, Therefore, a natural starting point understanding NURBS geometries is to look into B-

spline geometries. It will be focused on curves, as this thesis is limited to beam elements.

2.4.1 B-spline curves

As in standard FEA, a B-spline curve is constructed from a linear combination of the basis
functions and a set of vector-valued coefficients, called control points in IGA.
Given n basis functions, N;, and their corresponding control points, B;, i = 1,2,...,n, a

B-spline curve, consisting of piecewise polynomials connected at the knot values, is given by:

ClE =) Nip@B; (2.6)
i=1

The control points, whose piecewise linear interpolation is called the control polygon, are

analogous to nodes in FEA. However, an important difference is that they are in general
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non-interpolatory.
The curve in Figure 2.10 are constructed from the quadratic =;-basis. The control points are

denoted by @, and the knot locations, which partition the curve into elements, are denoted M.

(a) Curve and control polygon (b) Curve and knot locations

Figure 2.10: Quadratic B-spline curve in R? constructed from =;
and B = [(0,0), (1,3), (2,-2), (3,0), (4,0)].

Another curve, constructed from the Z,-basis are shown in Figure 2.11. Note that at the
Co-continuity at ¢ = 2/3, the element boundary coincides with the control point, B4, which
becomes interpolatory. Another important property of B-spline curves (and NURBS curves) is

that at the control polygon coincides with the endpoint tangents of the curve [26].
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(a) Curve and control polygon (b) Curve and knot locations

Figure 2.11: Quadratic B-spline curve in R? constructed from =,
and B = [(O)O)y (O~5r _]-)) (1)3)y (2, _2)) (3y 1)) (47 ]-)]-

2.4.2 Refinement

An important aspect of IGA, as well as FEA, is how the basis may be enriched without changing
the geometry or the parameterization, allowing control of the discrete solution space. In
addition to order elevation and h-refinement, which are known mechanisms from FEA, one
may also control the continuity of the basis. This makes the refinement space of IGA much
richer.

In IGA, there are three basic refinement mechanisms:
e Knotinsertion
¢ Order elevation
e k-refinement

which in this section are briefly presented. For more detailed descriptions and algorithms, the

reader is referred to [32, 25].
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Knot insertion

Recalling that element boundaries are found at the knots, insertion of new knots partition the
domain into several elements. This is known as knot insertion, and is similar to h-refinement
in FEA. It differs, however, in the continuity across the element boundaries created (C"~1). To
perfectly replicate h-refinement, the new knot would have to be inserted p times, so that
CY-continuity is obtained.

Insertion of new knots requires recomputation of both the basis functions and the control

points. Having an original knot vector, £ = [{1,{2,...,¢n+p+1], an extended knot vector,

[1]

= [61,32,...,Em+n+p+1 = {n+p+1] is introduced, such that E c Z. The basis is still formed by
equations 2.3 and 2.4. To leave the geometry geometrically and parametrically unchanged, the
new control points, B;, i = 1,..., n+ m, must satisfy the condition:
n n+m_ _
CE =) Nip@Bi= )Y N;,&B; (2.7)
i=1 i=1
Which will lead to system of linear combinations of the original control points. For a knot

which has an initial multiplicity of s and is to be inserted r times, the ith control point in the

rth insertion, denoted B; ,, is given as:

Bi,=a;,Bir-1+(1—a;)Bi_1,1 (2.8)
where B; o = B; and
1 istk-p+r-1)
ajr= ﬁ (k—p+r)<si<(k-ys)
0 i=(k—s+1)

k represents the position index of the new knot. An efficient algorithm for Equation 2.8 is given
in Piegl and Tiller [32], A5.1.

In Figure 2.12, knot insertion is performed on the curve from Figure 2.10. In the new knot vector,
E:=100,0,0,%,%,3,%,3,1,1,1], the knot spans in Z is split in half by introducing the knots &, =

%»Ee = %, and Eg = %. The curves are clearly identical, but the refined curve has got more degrees

of freedom and thus a richer solution space.
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A,

(a) Original curve and B (b) Refined curve and B
(c) Original mesh (d) Refined mesh
\ [\

\

0,0,0 13 2/3 11,1 00,0 1/6 2/6

. / \
3/6 4/6

5/6 1,11

(e) Original basis functions (f) Refined basis functions

Figure 2.12: Knot insertion: &; = [0,0,0,%,%,1,1,1]1 — £, =[0,0,0,¢,%,3,%,2,1,1,1].

Order elevation

Another mechanism to enrich the basis is by order elevation (p- refinement in FEA). Recalling
that the first and last knot value appears p + 1 times for open knot vectors, the order is raised by
adding new knots here. To preserve the C”~"-continuity, the existing knots must be repeated
simultaneously.

In short, order elevation is done by increase the multiplicity of each knot. No new knot values
are introduced.

The higher order curve, Cj,1, is simply computed by embedding the lower order curve, C,, to

a higher dimensional space. Thus, there must exist control points, B, and a knot vector, E, such
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that: -
Cp(©) =) Nip@B;i=Cps1() = Y Nj p+1(©)B; (2.9)
i=1 i=1

Order elevation requires computation of the new basis functions, N. The new control points, B,
are obtained in a similar way as for knot insertion.

A detailed description can be read in [32], where also the implemented algorithm A5.9 is given.

Figure 2.13 illustrates this refinement method. Again, the =Z; basis and geometry from Figure
2.10 is used. Increasing the knot multiplicity by 1, the new knot vector becomes

£1=100,0,0,0,%,1,2,21,1,1,1].

(a) Original curve and B (b) Refined curve and B
(c) Original mesh (d) Refined mesh
0,0, ><\ ><11 1 0,000 1/3,1/3 2/3,2/3 41 1
(e) Original basis functions (f) Refined basis functions

Figure 2.13: Order elevation: ; = [0,0,0,%,,1,1,1]1 — £, =1[0,0,0,0,1,1,2 £/1,1,1,1].
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k- refinement

It is observed that knot insertion generates more elements while keeping the polynomial order
constant, and that order elevation raise the polynomial order while keeping number of
elements and the continuity constant. k -refinement mixes these two methods such that the
order is raised while having the maximum continuity available. This method has no analogue
in FEA.

The strategy for k-refinement is to first perform order elevation to the desired degree, and then
insert additional knot values. For pure p -refinement, these operations are done in the opposite
order. Figure 2.14 compares these methods for a case where one linear element shall be refined
to three 4th order elements. Note that the number of new shape functions generated is

significantly lower with k -refinement.

Hughes et al. [22] has shown that k-refinement has advantages of robustness and efficiency

over p-refinement.
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Figure 2.14: p-refinement (left) compared to k-refinement (right). Both ending with three 4¢h

order elements.
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2.4.3 NURBS curves

Having defined the non-rational B-spline curves, non-uniform rational B-splines (NURBS) are
now introduced. The motivation is that NURBS allow high geometrical flexibility, such as an
exact representation of circular shapes.

From a geometric point of view, a NURBS curve in R? is obtained by a projective
transformation of a B-spline curve in R%*! onto a hyperplane H = 1 in R%. This is easily
interpreted for a curve in R? constructed from a B-spline curve in R3. The transformation is
then applied by projecting the curve onto the z =1 plane by a ray through the origin, as shown

in Figure 2.15. Here, the z- components represents the weights, denoted w;.

Projective B-spline curve
NURBS curve
I z=1 plane

Figure 2.15: A quarter of a circle in R? constructed by the projective transformation of a non-
rational B-spline curve in R3

This projection is expressed mathematically by introducing a weighting function, W (¢), given as

the sum of the basis functions multiplied with their associated weight:

n
W) =) Nip@w; (2.10)
i=1
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where N ;, is the B-spline basis functions. The NURBS curve, C(¢) is then given as:

CY ()
W()

C©) = (2.11)

where C% (¢) refers to a projective B-spline curve from Equation 2.6.
For IGA, it is more effective to compute the basis for the NURBS space directly. The NURBS basis

is given by the B-spline basis and the weights:

N; () w;
mmwz—ﬁﬁg— 2.12)

which leads to the equation for the NURBS curve:
n
C) =) Rip@)P; (2.13)
i=1

where P; are the NURBS control points, obtained by the relation: P; = B;/ w;.

All the essential properties discussed earlier are retained in NURBS (linear independence, local

support, etc.).
Derivatives of NURBS basis functions

The derivatives of the non-rational basis given in Equation 2.5 are still valid, but as the rational

basis contains the weighting function W (¢), the chain rule must be applied:

e o _ WO N, (€)

2.14
(W(f))2 ®19

d
ZeRip©=w

where

dWG) de@

-y

i=1

(2.15)

Effective algorithms for computing first and higher order derivatives of the rational basis

functions are given in [32].
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2.4.4 Circular curves

Due to the non-interpolatory properties of NURBS-geometries, obtaining control points and
weights for general shapes are not straight forward, and not emphasized in this thesis. However,
as circular shapes frequently show up in numerical analyses, a brief description of how these
may be modeled in R? is given.

Circular arcs with a sweep angle less than 180° may be constructed from one quadratic element,
built from the knot vector Z = [0, 0,0, 1, 1, 1], giving three basis functions control points. Recalling
that the first and the last control point is interpolatory and that the end tangents coincide with
the control polygon, the control points are easily obtained. For the weights, they are given as
w; =[1,cos g, 1], where f is the sweep angle [17]. Figure 2.16 illustrates this for f = 90°. The third

coordinate in P refers to the weight number.

Figure 2.16: 90 °circular arc in R? with associated control points and weights, constructed from
one quadratic NURBS element.
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Refinement of NURBS-geometries

The refinement strategies presented in Section 2.4.2 may also be used NURBS geometries.
However, in addition to the new control points, new weights must also be computed.
Having a curve in R? from Equation 2.13 to be refined, conditions in Equations 2.8 and 2.9 are

valid if the weights are treated as component number d + 1 in the control polygon.

The code in Appendix D performs k-refinement of a 90° circular arc. It may also be used for

other NURBS (and B-spline) geometries by changing the initial geometry.



Chapter 3

Timoshenko beam theory

In contrast to Euler-Bernoulli beam theory, Timoshenko (often referred to as Mindlin-Reissner)
beam theory includes shear deformations, which become more significant as the slenderness
ratio, (L/h), decreases.

In this chapter a linear, straight beam element is derived from the classical Timoshenko beam
theory [43, 44] in Section 3.1, and discretized with the Lagrangian and the NURBS basis in
Sections 3.2 and 3.3, respectively. In Section 3.4 the beam elements are implemented and
verified through a few numerical examples. Lastly, transverse shear locking is highlighted in
Section 3.5.

Note that this element is restricted to linear analyses and linear geometries.

3.1 Governing equations

The displacement based theory assumes independent fields for rotations, 6;, and translations,
u;, I = x,y, z. According to the fundamental hypothesis for beams, it is assumed that the cross-
section remain plane under deformation, but not necessarily normal to the line of centroids.
The difference between the rotation of the cross-section and the slope defines the transverse

shear strains. For a beam with the local axis in x-direction and a cross-section symmetric about

27
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the y- and z-axis, the transverse shear strains are defined as:

Yxz = Uzx + Qy 3.1)
Yxy = Uyx — 0. 3.2)
. .. ou; e g .
where 6; denotes the rotation about axis i, and u; x = % the slope in j- direction wrt. to the

local coordinate x. This is illustrated for the xz- plane in Figure 3.1. The minus-sign in

Equation 3.2 comes from the definition of the right-handed coordinate system.

0 Yxz
y
\ uzjx
7
— /
- /
- N,
\\\/ >
Z, U, <
/ ou,
y x| e
Y, uy // X
Xy Uy ’

Figure 3.1: Transverse shear strain in the xz- plane, ;.

Restricting the model to double-symmetric cross-sections, such that the shear center coincides
with the cross-section centroid, axial force is decoupled from bending moments and torsional
moment decoupled from shear forces and can thus be handled independently. The other strain

components: axial strain, torsional strain and bending strains are given respectively as:

Ex = Uxx

¢ =0xx
Ky =0, (3.3)
Kz =0y

Assuming a linear elastic material with Young’s modulus, E, and shear modulus, G, the
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corresponding forces and moments are given:

N = EAe,

Vz = GAszsz

T = GIT(/)
M, = Elx, (3.5)

where A denotes the cross-section area, Ag; the reduced cross-section shear area in the direction
of i. I is the torsional stiffness and I; is the cross-section second moment of area about axis i.

The forces and moments are illustrated in Figure 3.2.

Figure 3.2: Forces and moments from Eqgs. 3.3 and 3.4.

The total strain energy, U, may then be expressed as:

U:UN+UVy+UVZ+UT+UMy+UMZ:

1
—(EAf gidx+GAsyfyiydx+GAszfyizdx+GITf(p2dx+ElyfKidx+EIZf1<§,dx)
2 L L L L L L

(3.6)
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3.2 Linear FEA of straight Timoshenko beams

For comparison and reference, the Timoshenko beam has been implemented using the
standard Lagrangian shape functions for discretization. As this is a well known element, only a
brief summary of the derivation is given. For more details, see [7].

This element has six unknown fields: translations, u, and rotations, @, written as:

Uy 0,
Uy 0,

with the indices x, y, z referring to the local axes of the element.

Using Galerkin’s method, the weak formulation of these fields are obtained by interpolation

between the nodal degrees of freedom, v:

uhzﬁovu (3.8)
0" =Novp (3.9)
where
N O O Vy Vo,
No=|0 N of, vu=|vy |, Vo = |vp, 3.10)
0 0N v, Vo

z

and N = [N}, N,...N,] are the Lagrangian interpolation functions. u” represents the weak form

approximation of u, such that u” c u (and similar for 0.

By introducing

No O

2
Il
<)
Il

,and

Vu
] (3.11)

0 NO Vo
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the interpolation may be expressed in compact form:
~h Qe

The displacement fields are obviously uncoupled, due to the diagonal properties of N. Thus, the
strain energy contributions can be computed separately.

Using Equations 3.8 and 3.9 the integrands (strains and curvatures) in Equation 3.6 become:

Ex=Uxx=|N, 0 0 0 0 O]V:BNV (3.13)
ny=uy,x—6z=[o 0 N, 0 -N o]V:vaV (3.14)
sz:uz,x+6y:[0 N, 000 N]V:Bvﬁ (3.15)
¢=0.:=[0 0 0 N, 0 0|9=B¥ 3.16)
Ky=0yx=10 0 0 0 N, 0|V=BpV (3.17)
Kz=0,x=10 0 0 0 0 N,|V=By, v (3.18)

Where B is the strain-displacement matrix. Inserting these in Eq. 3.6, the strain energy for the

weak formulation in terms of the element stiffness matrix, k becomes:

1
U= EvT(EA f B! Bydx+GA,, f

B{ By, dx+ GAszf B By, dx
Le Lo 7 Lo °

+GITf B%Bde+Eny B{,IyBMydx+EIZf B}, B, dx|v
L, Le L,

vikv (3.19)

N =

The same shape functions are used to distribute the loads. This consistent element load vector,

8°, is given as:

§0=— f Nq(x)dx (3.20)

where q(x) is the load function.

By equilibrium considerations, the well known element stiffness relation is obtained:
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kv+8°=8§ (3.21)

which is finally assembled to the global system.

3.3 Linear IGA of straight Timoshenko beams

The element derived in Section 3.2 is now discretized with the NURBS basis. Most of the steps
are identical as for the Lagrange basis, but a distinct difference, however, is that the parameter
space is no longer local to elements, but rather to patches. Furthermore, the control points

(analogue to nodes in FEA) are in general not interpolatory.

Starting from the continuous displacement fields in Equation 3.7, they are now discretized by

the definition of NURBS-curves from Equation 2.13, written on matrix form as:

u’' =Rd (3.22)

which is identical to Equation 3.12 for FEA, apart from R, which is a diagonal matrix containing
the NURBS basis functions, R = [Ry,p,Ro,p,... Rnpl, and d = [dy,dy,d;,dg,,dg,,dg,17,

representing the control point displacements.

The strain-displacement relations are obtained from Equations 3.13 - 3.18 by replacing the
Lagrange basis with the NURBS basis. Because the Gaussian quadrature rule for numerical
integration is convenient for knot spans (or spline elements) [25], the stiffness matrix and
consistent load vector are computed knot span-wise. As with FEA, these contributions are
finally assembled to a global system (i.e. the patch). For the assembly, it is important to
remember that each basis function has support over the half-open interval [{;,{;+p+1), and the

elements may thus "overlap’ each other. Connectivity arrays can be found in Hughes et al.[25].
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3.4 Verification of the straight Timoshenko beam element

To verify the implementation of the Timoshenko theory for linear analyses of straight beams, a
few classical numerical tests have been carried out, where the Lagrangian and the NURBS
elements (referred to as FEA and IGA) have been tested in parallel. The errors in displacements
are expected to be in the range of e = @(h”*!). Furthermore, the discretizations should predict
the analytical solution exactly if the solution space is contained within the approximation
space, i.e. i c @'

The impact of full and reduced integration has also been studied. Full, or exact integration
corresponds to an element-wise Gaussian quadrature rule of order p + 1, and reduced
integration to one order lower, i.e. p Gauss points per element.

As the displacements directly determine strains and forces, only convergence of the
displacements are investigated. On the horizontal axis in the convergence plots, "nDOFS”
refers to the number of free DOFs, i.e. 3 per free node for planar beams.

For the 2D straight beam problems considered in this section, the analytical solutions are

computed from a superposition of the Euler- Bernoulli solution, solved from the differential

equation:

d? ( du,

pre yﬁ) = q,(%) (3.23)

and the shear deformation d, given as:

dx (3.24)

5. = fx V. (x)(4+5v) k. h?
o 24EI,

where V,(x) is the shear force distribution.

With the analytical solution at hand, the relative error of « is computed either pointwise as:

|.exact__.h|

led = ———— (3.25)

| eexact |



CHAPTER 3. TIMOSHENKO BEAM THEORY 34

or over a domain, L, in terms of the classical L?-norm:

2
Ji(+x ) = o)) ax
el 2 = (3.26)

Ju [+ ) dx

3.4.1 Cantilever beam subjected to tip shear

The first example is a straight cantilever beam subjected to a transverse load at the free end.

Input data is given in Table 3.1.

—

= L "

Figure 3.3: Cantilever beam

Length Young's modulus Poisson’sratio Width Thickness Load
L=10 E=1000 v=0 b=1 h=1 pP=1

Table 3.1: Geometry and material data for cantilever beam subjected to tip shear.

The analytical solution for the displacements, including shear deformations is given:

P
~ BEI,

k. hx

U, (BL—x)x*>+ (4+5V) (3.27)

The beam is discretized with linear and quadratic basis functions for both FEA and IGA. The
cubic displacement field is exactly reproduced with elements of equal order. With exact, or full
integration, the relative error in displacements in terms of the L%-norm, computed from

Equation 3.26, is shown in Figure 3.4.
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Figure 3.4: L?>-norm of the relative error in displacements for IGA and FEA with exact integration.

IGA coincides with FEA for p = 1 as the linear bases are identical. Further, they produce the
same convergence rates with quadratic elements, but for IGA the absolute error is

approximately one order less.

For reduced integration, the relative error in the displacement field is shown in Figure 3.5. As
for full integration, quadratic IGA produce the same convergence rate and less absolute error

than FEA. All elements exhibit optimal convergence.
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Figure 3.5: L?-norm of the relative error in displacements for IGA and FEA with reduced
integration.

3.4.2 Cantilever beam subjected to distributed load

The cantilever beam from Section 3.4.1 is now subjected to a uniformly distributed load,

q = 0.1, taken into account with a consistent load vector.

R R R R LN
—

Figure 3.6: Cantilever beam subjected to distributed load

Here, the analytical solution for the transverse displacements is given:

2 2(4 2
qx qk.h”(4+5v) (Lx X )

U, = 20 + 2L-x)?| + 3.28
‘ 24E1y( ( ) ) 24FT, (5.28)

The convergence is studied for FEA and IGA for elements up to cubic order. Quartic elements
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produce the analytical solution. As error measurement, the L?-norm of the relative error in
transverse displacements has been computed from Eqgs. 3.28 and 3.26. The results are reported
in Figures 3.7 and 3.8 for full and reduced integration, respectively.

Again it is confirmed that the linear bases coincide. For p = 2, IGA produce errors
approximately one order less than FEA for both integration regimes. With reduced integration,
the errors from the linear basis is shifted approximately two orders, which indicates presence
of transverse shear locking with full integration. This phenomenon is discussed in Section 3.5.
The errors are also shifted with quadratic and cubic elements, but not nearly as significantly as

for the linear elements.

10° =
102t .
1074+ i
e
BEREE T )
@
108+ - i
—+—FEA, p =1, fullint.
—¥— FEA, p = 2, full int.
—=—FEA, p = 3, full int.
10-10 L —+—IGA, p =1, full int. s
—%—IGA, p = 2, full int.
——IGA, p = 3, full int.
-12 I |
10
10’ 102
nDOFS

Figure 3.7: L?-norm of the relative error in displacements for FEA and IGA with full integration.
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Figure 3.8: L?-norm of the relative error in displacements for FEA and IGA with reduced
integration.

3.4.3 Double cantilever beam subjected to transverse point load

In the next example, a beam is clamped in both ends and subjected to a transverse point load at
the center, as shown in Figure 3.9a. Geometry and material data are given in Table 3.2. Due to

symmetry, only half of the beam is considered. Zero rotation and no shear are assumed at the

midspan. Figure 3.9b shows the problem setup.

Length Young’s modulus Poisson’sratio Width Thickness Load
L=10 E=1000 v=0 b=1 h=1 pP=1

Table 3.2: Geometry and material data for clamped beam subjected to transverse load at the

center.
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(b) Idealized system

Figure 3.9: Double cantilever beam subjected to transverse point load.

Again the L?-norm of the relative error in transverse displacements is used as measure. For this

problem, the analytical solution is given:

Uz

2
4+5v)k,h x) (3.29)

_ 2
((3L 2%) %% + .

12E1,

Figures 3.10 and 3.11 compare FEA and IGA for full and reduced integration, respectively. In
Figure 3.12, IGA with both integration regimes is compared. For this beam the convergence rates
for p = 2 are initially higher with full integration, but as seen from Figure 3.12, they converge
towards the same rate and errors as reduced integration. Otherwise the behavior is similar as

the previous tests.
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Figure 3.10: L?-norm of relative error in transverse displacements for FEA and IGA with full
integration.
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Figure 3.11: L2-norm of relative error in transverse displacements for FEA and IGA with reduced
integration.
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Figure 3.12: L?-norm of relative error in transverse displacements for IGA with full and reduced
integration.

3.4.4 Double cantilever beam subjected to distributed load

The beam from Section 3.4.3 is now subjected to a uniformly distributed transverse load, g = 0.1.
Due to symmetry, only half the beam is considered. Problem setup is shown in Figure 3.13, and

the analytical solution is given:

G o1 2y TRSEEH5Y) (Lx- xz)

_ (3.30)
24EI, 24EI,

Uz

from which the L?-norm of the relative error is computed and used as measure.

RN R R L'
‘0o

L !

X

Figure 3.13: Double cantilever beam subjected to uniformly distributed load.
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As the strong form solution is of 4t/ order, the convergence study is carried out for elements
up to cubic order. Figures 3.14 and 3.15 compare FEA and IGA for full and reduced integration,
respectively. The same results are shown in Figures 3.16 and 3.17, but now full and reduced

integration are compared for the Lagrangian and the NURBS bases, respectively.

For p = 2 IGA still produces errors approximately one order less than FEA. Furthermore, both
bases have initially faster convergence with full integration, but they seem to stabilize to the
same rates and errors as with reduced integration. Lastly, it is observed that the errors with FEA

is shifted slightly more than for IGA with reduced integration.
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Figure 3.14: L?-norm of relative error in transverse displacements for FEA and IGA with full
integration.
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Figure 3.15: L2-norm of relative error in transverse displacements for FEA and IGA with reduced
integration.
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Figure 3.16: L2-norm of relative error in transverse displacements for FEA and IGA with reduced
integration.
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Figure 3.17: L?-norm of relative error in transverse displacements for FEA and IGA with reduced
integration.

3.4.5 Concluding remarks

The numerical tests have shown that both IGA and FEA exhibit optimal convergence and
produce the exact solution when the approximation space is a superset of the solution space,
i c @". Thus, the implementation of the Lagrangian and the NURBS discretizations to the
straight, linear Timoshenko beam has been successful.

The numerical results suggest that for p = 2, IGA produce errors approximately one order less
than FEA for linear, straight beam problems. Furthermore, it has been observed that reduced
integration has slightly more impact on FEA than IGA, as seen from e.g. Figure 3.16 and 3.17.
For all analyses reduced integration shows less errors than exact integration, which indicates

presence of spurious strains and numerical locking.
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3.5 Locking effects in straight beam elements

It may turn out that the numerical analyses provide slow convergence and large errors due to
strains which are not present in the analytical solution. These spurious strains will absorb
strain energy and give artificial stiffness, which in literature is referred to as locking. For this
thesis, the relevant locking phenomena are transverse shear locking and membrane locking.
The latter will only occur in curved beam elements and is described in Section 4.5. Other types

of locking, as poisson locking and volumetric locking are not discussed any further here.

Transverse shear locking may appear in both IGA and FEA for displacement-based straight

EI
GA,’

Timoshenko beam elements. The ratio between bending and shear stiffness, is
proportional to the square of the thickness, h. As the thickness decreases, this ratio converges
quadratically towards zero and the response becomes dominated by bending. However, if
spurious shear strains are produced under deformation, these will absorb strain energy and

consequently give over-stiffening behavior. This is known as transverse shear locking.

Recalling from Section 3.1 the kinematic equations for curvature and transverse shear strain

are given in terms of the independent fields for rotation and displacement as:

Ky =0y

Yxz=Uzx— Hy

respectively. Interpolated with equal order, the highest order term in 6, cannot be balanced by
Uz x in the expression for y,.. This is illustrated in Figure 3.18, where the transverse strain field,
yi’y, for the beam in Figure 3.19 discretized with 5 quadratic elements. The unbalanced term is
of equal order and turns up as parabolas in the strain field. It does not coincide with the

analytical solution, yy,, and hence, spurious shear strains are present.
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Figure 3.18: Spurious transverse shear strains.

An analytical study of transverse shear locking is carried out for the cantilever beam from
section 3.4.1, keeping the thickness symbolic. For v = 0 and A, = A, the analytical solution for

the displacement and rotation can be written respectively as:

_ _ 2? 2 2
U, = w—E—b((3L—x)x +xh) (3.31)
6P
g, =0 = —ﬁ((ZL - x)x) (3.32)

Where P is scaled with h® such that the bending part of the displacements become
independent of the thickness. Note that in the Kirchhoff limit, i.e. # — 0, the Euler-Bernoulli

solution is obtained.

The beam is now discretized with one isogeometric element. Starting with p = 1 the reduced

equation system becomes:

Eb | 6h —3hL wo Ph3
— = (3.33)
12L | _3pr 2nI2+ 13| | 6, 0

which gives the displacements at the free control point:
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Wy 1 h%(h+200)
2
Vo = — 50 (h?+50) (3.34)
12 0 3 h2
2 "5 (h2+50)

where it is obvious that for & — 0, the displacements [w, 0] — 0 and consequently, the element

locks.

Solving for one quadratic and cubic isogeometric element, the free control point

displacements become respectively:

o 2
, w2 150
1 h2(h?+60) _2
wa 100 72+10 62 5
3 K245 h?
02 T 5210 w3 7512
w 1 h*+210h2+1500 ) 3
3 50 h2+10 3 5
2
63 —% Wy g— +4
3
(04 | -5 |

The rotation at the tip becomes independent of & for quadratic elements, but the interior knot
and tip displacement is still dependent of h. Thus, locking effects are still present, but
increasing the polynomial order drastically reduces the impact of locking.
For this beam, the analytical solution is exactly reproduced with one cubic elements, and is for
that reason locking-free. However, as seen in Figure 3.20, higher order elements also reveal
locking.
As a numerical test, the clamped beam subjected to a transverse distributed load shown in
Figure 3.19 is considered. The load is increasing linearly from zero in x = 0 to g in x = L.
Otherwise it is identical as the beam in Section 3.4.4. The 5" order analytical solution for
transverse displacements reads:

g x* Lx® 5L%x?

Uz(x) = — - +
0 EI|120L 12 48

(3.36)

12EIL 3

Gk:h? [sz_ %
3

where § = gh®.
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— o

Figure 3.19: Clamped beam subjected to linearly increasing pressure

The beam is discretized with 5 equally sized NURBS elements with the highest continuity
available. To include locking of interior control points, the relative error is measured in terms of

the L?-norm of the displacement field, computed from Equation 3.26.

The results for p = 1,2, 3,4 with exact integration is reported in Table 3.3 and Figure 3.20. p =5

produces the analytical solution.

Jh 101 10% 10° 10* 10°

0.631994 0.994148 0.999941 0.999999 1.000000
0.014023 0.559620 0.992066 0.999920 0.999999
0.000050 0.002836 0.038994 0.045177 0.045253
0.000002 0.000024 0.001184 0.002688 0.002719

T T T T~
[T |
B W N -

Table 3.3: L?-norm of the relative error in displacements for p = 1,2, 3,4 with exact integration.
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Figure 3.20: Logarithmic plot of relative error in terms of the L?-norm with respect to the
slenderness for the clamped beam subjected to a linearly increasing pressure with exact

integrated IGA.

Thickness dependency in all elements are revealed, and linear and quadratic elements lock
completely, even for moderate slendernesses.

For the same setup, the effect of reduced integration is studied. The results are reported in
Table 3.4 and Figure 3.21. Except for p = 1, whose basis is identical as the Lagrangian, the
elements still show thickness dependency. Quadratic elements performs better and do not lock

completely with reduced integration, but on higher order elements, the impact of reduced

integration is vanishingly small.

102
Slenderness, L/h

10°

10*

10°

L./h 10! 10° 10° 104 10°

p=1 0.068498 0.069789 0.069803 0.069803 0.069802
p=2 0.001039 0.022783 0.044860 0.045302 0.045310
p=3 0.000045 0.001945 0.036229 0.045137 0.045254
p=4 0.000002 0.000024 0.001122 0.002685 0.002715

Table 3.4: L?>-norm of the relative error in displacements for p = 1,2,3,4 with reduced

integration.
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Figure 3.21: Logarithmic plot of relative error in terms of the L?>-norm with respect to the
slenderness for the clamped beam subjected to a linearly increasing pressure with reduced

integrated IGA.



Chapter 4

The geometrically exact 3D Timoshenko

beam model

The element derived in Chapter 3 is limited to linear analyses of straight beams, which limits its
versatility. However, it is a good starting point understanding the structure of numerical

analyses, and sufficient for many academic purposes.

In this chapter the geometrically exact 3D beam model, proposed by Simo [38], Simo and
Vu-Quoc [39, 40] and Ibrahimbegovi¢ [23] based on Reissner’s 3D beam theory [35], is
presented. This beam model is able to accommodate large displacements, finite rotations and
finite strains, and is thus suitable for not only linear analyses, but also non-linear and dynamic

analyses.

In Sections 4.1 and 4.2, the governing kinematic and equilibrium equations are considered at a
continuous level. The problem will be discretized using the Lagrangian and the NURBS basis
functions in Sections 4.3 and 4.4, respectively. Lastly, in Section 4.5, membrane locking which

may occur in initially curved beams is described.

51
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4.1 Governing kinematic equations

A local curvilinear coordinate system is chosen where ¢;(f) is the parametric variable used to
define the reference axis of the beam. ¢ is the time parameter. Let X(¢;) and x(¢;) denote the
coordinates of the beam reference axis in the initial, 6y, and current, %6,, configuration,

respectively.

In accordance with standard hypothesis for beam,

(i) astraightline thatisinitially normal to the reference axis remains straight in the deformed
configuration, but not necessarily normal to the deformed axis (since transverse shear

deformations are considered), and
(ii) the cross-section remain plane and undeformed in the deformed configuration.

The orientation of the cross-section in the initial configuration is defined by the local Cartesian
basis vector, i{(¢1), and the two cross-section axes iy (§1) and i3 (¢1).

Without loss of generality, the cross-section is chosen to be initially normal to the beam
reference axis, hence:

(&N =Xy, 4.1)

The position of the local Cartesian bases in the current configuration, i;(¢1, ), can be defined

via the product of the two orthogonal tensors R and R:
. .0 _ 0 _ D
i;=Ri; =RR"I; =RI; (4.2)

where R = R(¢,1) represents the rotation of the local Cartesian basis from its initial
configuration i? to its current (deformed) configuration, i;, whereas R? = R%(&,) is the rotation
tensor representing the position of the local Cartesian basis, i? with respect to the fixed, global
Euclidean base vectors, I;, respectively.

These relations are illustrated in Figure 4.1.
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®=x;R, R=RR’

Current
configuration, €,

Initial
configuration, %

X&), R%(é))

x=X+d

Il X,x

Figure 4.1: Beam segment in initial and current configuration with its governing kinematic
relations.

4.2 Governing equilibrium equations

As shown by Antmann [3], Reissner [35], Simo [38] and Ibrahimbegivi¢ [24], the beam balance
equations can be obtained without introducing any simplifying hypothesis regarding its
geometry or size of the displacement and rotation. Hence, this theory is referred to as
geometrically exact.

The linear and angular momentum balance equations for the geometrically exact 3D beam for

statics reads:
ng +n=0 (4.3)

mg +Xg xn+m=0 (4.4)
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where n and m are the spatial stress resultants and stress couples (moments), and n and m are

the externally applied forces and moments.

It may be shown (Helgedagsrud et al. [20]) that the corresponding conjugate axial, shear and

bending strain measures can be obtained, respectively, as:

E=X¢ — i (4.5)

K=w (4.6)
where w is the axial vector of the skew-symmetric tensor €2, defined as:
Q=R; R’ 4.7)

Assuming a linear elastic material, the spatial stress resultants are related to the finite strain

measures through the constitutive equations:

n=RCRT¢; C =diag(EA, GAs, GA3) (4.8)

m=RDRx; D =diag(Gl, EIL,, EI3) (4.9)
The potential energy of the beam can then be written:
1
H:—f(£n+1<m)ds—l'[ex[ (4.10)
2JL
The weak form of the equilibrium equation now reads:

6H:f(6£n+6xm)ds—f(6xﬁ+6wﬁ)ds (4.11)
L L

where 6x and w are the vectors of virtual displacements and rotations, respectively.

As shown by Reissner [35], the explicit forms of the virtual displacements may be obtained
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from:

0e=0x; —0wxXg, (4.12)

0K =0wy, (4.13)

4.3 FE-approximation

Let the domain L be approximated with piecewise polynomial functions, i.e. L = L" = Z'Zfl Le,
and:

Nen

Y N;i()x; = Nx° (4.14)

J| -
L i3

where Nj;(¢) are the standard Lagrange-type polynomials and x; are vectors of nodal
coordinates.

Similarly the virtual rotations are also obtained by isoparametric interpolation:

Nen

sw"| =) Ni(©ow; =Now* (4.15)
i=1
The matrix component of the discrete form of the weak form now becomes:

Tl ox*
) 6d°(r* %) =0; 6d° = (4.16)
e=1 ow®

where ZZ;’l denotes the FE assembly procedure accounting for the topology, or the connectivity

of the FE-matrices. f¢ denotes the external load vector, r¢ the element residual, and the latter

n
rf :f ds 4.17)
¢ m

Using the Gaussian quadrature rule for numerical integration, the components in the element

reads:
T

Nvfl erl X N

0 N ¢

residual, r{, is given as:

T

Ngp Nge Iz Xe x Ngls n
re=Y ju@p | : (4.18)
g:1 Na,EII?)

m
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where j, () = det(J)w(¢) is the product of the Jacobian determinant and the weight number

for Gaussian quadrature, and X ¢, is the skew-symmetric tensor of x ¢, .

The material part of the tangent stiffness now reads:

T

N: x; xN| |RTCR 0 N: x¢ xN
Kem — ‘[ rél vfl !El >€1 (4.19)
‘1l 0 Ng 0 R'DR[| 0 Ng
written on component form as:
d T
N, , 13 ﬁye x NN, 13 R‘CR 0 Nb, 13 ﬁy X Nblg
Kr%ab: a1 1 a & 1 (4.20)

0 Ny Is 0 R’DR 0 Npe 15

4.4 Isogeometric approximation

The domain, L, is now approximated using NURBS. For single-patch problems, the parameter

space is relative to the entire domain. Thus, the weak form now reads:

ncpe
x" =) N;(é)p; =Np 4.21)
i=1

where N;(¢) are the NURBS basis functions (denoted R; ;, in Chapter 3 and 2), and p; are vectors
of weighted control point coordinates.

Similarly, the virtual rotations are obtained using the NURBS basis functions for interpolation:

ncpep
Sw" =) N;jé)éx; =Noéw 4.22)
i=1

Apart from the topology, the IGA-approximation is from this point identical to the
FE-approximation, and the element residual, r;, and the tangent stiffness, Kﬁ,ab, are computed

from Equations 4.16 to 4.20.
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4.5 Locking effects in curved beam elements

Using the same notation as in Chapter 3, initial curvature is taken into account by an additional

term in the kinematic equations from Egs. 3.1 to 3.3, which in 2D now reads:

£ = Uy +-B (4.23)
1=t )
Y13 =ug1 —0- (4.24)

Uy
Kop=001— —— 4.25
2=b21—— ( )

where 1, 2 and 3 refer to the local axes. Recalling from Section 3.5, the curved element will also
be sensible to transverse shear locking, seen from the same inconsistency in polynomial terms
in the expression for y;,. In a similar way the introduced %-term gives rise to membrane
locking, which may take place in curved elements with both membrane and bending action.

As for the shear stiffness, the ratio between bending and axial stiffness, %, converges
quadratically towards zero. For high slendernesses the beam will then exhibit inextensional

bending, giving the inextensibility conditition:

Us
E1=U1+ E =0 (4.26)

A linear beam with curvature % is now considered with the following interpolation:

uy=a+axs (4.27)
us=by+bsys (4.28)
92 =C+CS (4.29)

where a;, b;,c; are generalized DOFs, and s the mid-line coordinate. The inextensibility

condition then reads:

ez b2 (4.30)
1 — U2 R R — .
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The constraint b, — 0 implies from Equation 4.28 that u3; — 0. From the Kirchoff limit for
slender beams, y13 = u3; — 0, =0, it is then seen that 8, — 0, and thus the element tend to lock.

This locking phenomenon is referred to as membrane locking.

The same field-inconsistency may cause locking in higher order elements. For a quadratic

element with curvature %, the interpolation reads:

u = 6l1+d28+6l3$2 (4.31)
us = bl + ng + ngz (4.32)
0> = c1 + Co5+ C35° (4.33)

giving the inextensibility condition:

b 2
$*=0 (4.34)

b b
(‘i‘lzclg-l-—l-|-(2613+—2)S-|-E3

R R

The spurious constraint is now b3 — 0, which from Equation 4.32 implies that u3 ;; — 0. By the
derivative of the Kirchhoff limit, yy3; = 13,11 —02,1 =0, itis seen that 8,; — 0, and locking is also

present in quadratic elements.

A spurious constraint will in fact appear in all higher order elements and give excessive
stiffness in bending action. However, as the spurious constraint increases with one order per
order elevation, the corresponding effect will be reduced by approximately two orders (since

Kf, , o [i.€%ds). For more details on membrane locking, the reader is referred to [14, 33].



Chapter 5

Verification of spatial Timoshenko beam

The element derived in Chapter 4 is tested through a number of numerical tests with different
load types and boundary conditions. The aim is to verify that the elements provide the expected
convergence, study the impact of full and reduced integration and determine any locking or
other weaknesses of the isogeometric elements.

The number of elements are chosen to give approximately the same number of nodes for the
different element types. This relation is given in Appendix A.

For comparison, the tests have also been analyzed with standard Lagrangian finite elements.
Note that in this chapter "7nDOFS” in the convergence plots refers to the total number of degrees

of freedom (i.e. 6(n,;s + p) for IGA).

5.1 Curved cantilever subjected to axial tip load

Figure 5.1 shows geometry and material data for a planar 90° circular cantilever beam
subjected to an axial tip load, Fx. The load is proportional to the bending stiffness, such that

the bending part of the response is independent of the thickness.
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—
Fy, uy
Young’s modulus: E = 1000
7 Poisson’s ratio: v=0
R Radius: R=10

Width: b=1

Thickness: h=1
Y Shear factor: ks=6/5
i . Load: P=0.1h°

X

Z

Figure 5.1: Geometry and material data for curved beam subjected to axial tip load.

From Roark et al. [37], the analytical solution for the tangential tip displacement, u,({ = 1),
which is energy conjugate with the imposed load, is given:
_ FcR*[3n

Uy = ——2]+
T EI La

F R
EA

8
2k(1—v)+——1 (5.1)
A

which evaluated for the input data reads: u, = 0.4313798673. However, they have used a
simplified expression for the radial shear force and the solution will consequently not coincide
with Timoshenko theory. Therefore, a reference solution is computed from 32 quintic
Lagrangian elements with reduced integration which gives u, = 0.4301037419. The relative
error, |e, |, is then computed from Eq. 3.25.

Firstly, a convergence study is carried out for a fixed thickness of & = 1. The beam is discretized
with equally sized knot-span elements and the highest continuity available. The number of
elements is chosen in accordance with Table A.1 in order to keep the number of unknowns
(nearly) equal. The results for full and reduced integration is reported in Table 5.1. 1,94, refers

to the (approximate) number of free nodes or control points.
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Nnodes

4

8

16

32

64

FEA

0.711296
0.036070

0.145560
0.004564
0.000270

0.011335
0.000245
0.000002

0.000743
0.000004
0.000000

0.000047
0.000000

IGA

0.394649
0.083866

0.019841
0.000272
0.000020

0.000929
0.000001
0.000000

0.000051
0.000000

0.000003

FEA
p =3, red. int.
p =4, red. int.

0.003702
0.000025

0.000234
0.000003
0.000000

0.000015
0.000000

0.000001

0.000000

IGA p =2, red. int.
p =3, red. int.

p =4, red. int.

0.086941
0.047582

0.000786
0.000199
0.000020

0.000010
0.000001
0.000000

0.000000
0.000000

Table 5.1: Relative error in axial tip displacement for full and reduced integration

61

The logarithmic plots in Figures 5.2 and 5.3 show the convergence for IGA and FEA with full and

reduced integration, respectively.
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Figure 5.2: Relative error in axial tip displacement for IGA and FEA with full integration.
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nDOFS
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10°
102 .
107 1
3
@ 10° 1
108 H ——FEA, p=2, red. int. .
—O—FEA, p=3, red. int.
—8—FEA, p=4, red. int.
—o—IGA, p=2, red. int.
1010 H —— IGA, p=3, red. int. b
—&=—IGA, p=4, red. int.
10’ 102 10°

nDOFS

Figure 5.3: Relative error in axial tip displacement for IGA and FEA with reduced integration.

For full integration, FEA exhibits optimal convergence. IGA performs significantly better with
less error and faster convergence for p = 3 and p = 4. Quadratic elements converge with the
same speed, but the errors for IGA is approximately one order less.

With reduced integration, cubic and quartic Lagrangian elements show slightly slower
convergence, but the absolute errors are considerably reduced. Convergence rates are
maintained with IGA, but only the quadratic elements show less errors. It is also observed that

with IGA and reduced integration, the errors increase going from 1 to 2 elements for p = 2.

Thickness dependency is now studied for a fixed number of 5 elements, varying the
slenderness ratio, R/h, from 10° to 10°. Figure 5.4 shows the tangential tip displacement for

IGA and FEA with both integration regimes together with the Kirchhoff solution.
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Figure 5.4: Thickness dependency of tangential tip displacement: a) FEA, full int., b) FEA, red.
int., ¢) IGA, full int., d) IGA, red. int.

IGA shows more severe locking than FEA, and while reduced integration appear to make FEA

completely locking-free, only the quadratic IGA-element show any significant improvement.

The amount of locking in isogeometric elements emphasize the severity of membrane locking.

5.2 45° bend subjected to an out-of-plane load

To check the implementation for a spatial response, a circular 45° bend is subjected to an out-

of-plane end load, P = 60, as shown in Figure 5.5. The bend has an average radius, R, of 100 and

a cross-sectional area of 1.
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bt 1

64

R =100.0
v=0.
E=10"

BEAM CROSS -SECTICON

Figure 5.5: Geometry and material data for a circular 45° bend [5].

The convergence of the displacement parallel to P is studied for quadratic to quintic order IGA

and FEA. A reference solution is computed from 32 quintic Lagrangian elements with reduced

integration and reads u; = 11.27509000, from which the relative errors are computed and

reported in Table 5.2.

Nnodes 4 8 16 32

FEA p=2 0.042591 0.010477 0.002406 0.000452
p=3 0.002902 0.000048 0.000006 0.000000
p=4 0.000077 0.000001 0.000000

IGA p=2 0.140419 0.028865 0.001708 0.000096
p=3 0.001093 0.000028 0.000000
p=4 0.000079 0.000000

FEA  p=2,red.int. 0.000495 0.000031 0.000002 0.000000
p=3,red.int. 0.000086 0.000001 0.000000
p=4,red.int. 0.000001 0.000000

IGA  p=2red.int. 0.000546 0.000044 0.000001 0.000000
p=3,red.int. 0.001052 0.000019 0.000000
p=4,red.int. 0.000002 0.000000

Table 5.2: Relative error in u,(¢ = 1) for full and reduced integration.

Figures 5.6 and 5.7 show convergence plots for full and reduced integration. respectively.



CHAPTER 5. VERIFICATION OF SPATIAL TIMOSHENKO BEAM

10t
I
:N

@
10 .
——FEA, p=2
N —*—FEA, p=3 |
p=4 '
102

10710 1
10

nDOFS

Figure 5.6: Convergence of tip displacement for full integration.
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Figure 5.7: Convergence of tip displacement for reduced integration.



CHAPTER 5. VERIFICATION OF SPATIAL TIMOSHENKO BEAM 66

FEA exhibit optimal convergence except for cubic and quartic order with reduced integration,
which converge one order slower. For IGA, convergence rates are contained with reduced
integration. However, only the quadratic NURBS elements show significantly better
performance with reduced integration, while Lagrangian elements are improved for all p. This

is clearly seen in Figure 5.8, where IGA with full and reduced integration are compared.

10° .

—+—1GA,
sl ——1GA,
1071 1A,
——IGA, p=2, red. int.
—©—IGA, p=3, red. int.
—5—IGA, p=4, red. int.
10—10 I
10’ 102

T T T
A~ ON

11 mn

Figure 5.8: Convergence of tip displacement for isogeometric elements.

5.3 Pipe subjected to internal pressure

A pipe with infinitely extent in z-direction subjected to an internal pressure, g, is considered.
With Poisson’s ratio equal to zero, the problem can be idealized with beam elements. Further,
by utilizing the polar symmetry, only a quarter of the pipe is considered, using shear-free
boundaries. The pipe cross-section and its calculation model is shown in figure 5.9. Input data
is given in Table 5.3.

From [37], the reference solution for axial force and radial displacement is given respectively as:

qR*

Nyg=¢gR, and u,=—
0=4d r Eh

(5.2)
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a) b)

Figure 5.9: Pipe subjected to internal pressure: a) xy- plane, b) Idealized system.

Radius Young’s modulus Poisson’sratio Width Thickness Pressure
R=10 E=1e5 v=0 b=1 h=1 q =1000h

Table 5.3: Geometry and material data for pipe subjected to internal pressure.

Firstly, the thickness dependency has been investigated. For this study, the model is discretized
with 8 equally sized elements with a slenderness, R/h varying from 10° to 10%. The radial
displacements is reported in Table 5.4 for quadratic to quartic order FEA and IGA with full and

reduced integration.

R/h 10° 10! 102 103 104
FEA p=2 0.999995 0.999995 0.999995 0.999995 0.999995
FEA p=3 1.000001 1.000001 1.000002 1.000002 1.000000
FEA p=4 1.000000 1.000000 1.000000 1.000000 0.999996
IGA p=2 1.000000 0.999999 0.999980 0.999974 0.999974
IGA p=3 1.000000 1.000000 1.000000 0.999993 0.999992
IGA p=4 1.000000 1.000000 1.000000 1.000000 1.000000

FEA p=2,red.int. 1.000004 1.000004 1.000004 1.000004 1.000004
FEA p=3,red.int. 1.000001 1.000001 1.000019 1.001780 1.177838
FEA p=4,red.int. 1.000000 1.000000 1.000000 1.000001 1.000062
IGA p=2,red.int. 1.000021 1.000353 1.023155 1.072501 1.074081
IGA p=3,red. int. 1.000000 1.000003 1.000296 1.007236 1.009394
IGA p=4,red.int. 1.000000 1.000000 1.000000 1.000037 1.000782

Table 5.4: FEA and IGA of pipe under internal pressure: radial displacement varying the
slenderness and polynomial order.
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Under pure axial loading, the pipe (beam) does not show any thickness dependency. However,
with reduced integration both IGA and FEA show a rather unexpected softening behavior.

The slenderness is now kept fixed to R/h = 10, and the convergence of the radial displacement
is studied. Numerical results for u, are reported in Tables 5.5 and 5.6 for full and reduced

integration, respectively.

Mnodes 4 8 16 32
FEA 0.998785 0.999918 0.999995 1.000000
1.006896 1.000071 1.000007 1.000000
0.999163 0.999985 1.000000
0.999913 0.999998 1.000000
0.999928 1.000000

0.998988 1.000000

IGA

T I T/ T T
I
L\ I CU R\

Table 5.5: Radial displacement for fully integrated elements with FEA and IGA.

Mnodes 4 8 16 32

FEA  p=2red.int. 1.000917 1.000058 1.000004 1.000000
p=3,red.int. 1.065975 1.000106 1.000008 1.000000
p=4,red.int. 1.001538 1.000007 1.000000

IGA  p=2red.int. 1.010557 1.000616 1.000027 1.000001
p=3,red.int. 1.004127 1.000018 1.000000
p=4,red. int. 1.086771 1.000000

Table 5.6: Radial displacement for reduced integrated elements with FEA and IGA.

Figures 5.10 and 5.11 show convergence plots for the relative error in radial displacement, |e,, |,
for full and reduced integration, respectively. With no locking, FEA performs similar with both

integration rules. IGA, however shows better results with full integration.
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Figure 5.10: Relative error in radial displacement for IGA and FEA, full integration
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Figure 5.11: Relative error in radial displacement for IGA and FEA, reduced integration
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5.4 Cantilever circular arch under tip shear at the free end

A circular arch is subjected to a unit tip shear, P. Geometry and material data are given in
Figure 5.12. Depicted in [13], the analytical solution, governed from equilibrium and kinematic
compatibility equations for the Timoshenko beam problem, is given in terms of the radial

angle, v, as:
U =—P(ci(siny +ycosy) + cpsiny), u,=Pcwysiny, 0=-Pcssiny (5.3)

for the tangential displacement, radial displacement and cross-section rotation, respectively.

The compliance coefficients, ¢, ¢; and c3, are given as:

:%(R R RS), ZZ(R 33), . R?

C1 (5.4)

—+ +— +—], =—
EA GA, EI GA; EI EI

Young’s modulus: E =80GPa

Poisson’s ratio: v=0.2
Radius: R=2m
Width: b=02m
Thickness: h=0.01m

N
(] «&\
— <
R !
4
T

Figure 5.12: Geometry and material data for cantilever circular arch subjected to tip shear.

For the convergence study, Tables 5.7 and 5.8 report the vertical (radial) displacement at the free
end uy, | /20 for full and reduced integration, respectively. The analytical solution for vertical tip

displacement reads u¢*| ., =4.712427mm.
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Nnodes 4

8

16

32

64

FEA 0.004961
3.428906
4.550928

0.074084
4.601622
4.702476

0.951099
4.679388
4.711904

3.775064
4.710067
4.712417

4.639796
4.712377
4.712427

IGA 0.020455
1.717781

4.544019

T T TIT TS T
Il
=W N s W N

0.561629
4.487901
4.697776

3.484100
4.710410
4.712419

4.622241
4.712406
4.712427

4.707040
4.712427

71

Table 5.7: Radial tip displacement, u, (¢ = n/2) [mm], for FEA and IGA with full integration.

Nnodes 4

8

16

32

64

FEA 4.705746
4.723278
4.712932

4.712002
4.712588
4.712435

4.712400
4.712448
4.712427

4.712425
4.712428

4.712427
4.712427

IGA 3.057595
2.642291

4.712629

T T TIT TS T
Il
= W N s W

4.297819
4.543190
4.698559

4.702897
4.711010
4.712418

4.712300
4.712413
4.712427

4.712425
4.712426

Table 5.8: Radial tip displacement, u, (¢ = n/2) [mm], for FEA and IGA with reduced integration.

The relative error, computed from Equation 3.25, is shown with respect to the number of

degrees of freedom in Figures 5.13 and 5.14 for FEA and IGA, respectively. Again, FEA with full

integration exhibit the optimal congvergence rates. With reduced integration, cubic or higher

order Lagrangian elements converge one order slower, similarly as in Sections 5.1 and 5.2. For

IGA, the convergence rates are maintained with reduced integration, but again, FEA shows

better performance here, indicating that they are free for locking. As in Section 5.1, IGA with

reduced integration show increasing errors going from 1 to 2 elements, but now for all

polynomial orders.

The same results are presented in Figures 5.15 and 5.16, but here IGA and FEA is compared

with full and reduced integration, respectively.
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Figure 5.13: Relative error in vertical tip displacement for FEA with full and reduced integration.
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Figure 5.14: Relative error in vertical tip displacement for IGA with full and reduced integration.
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Figure 5.16: Relative error in tip displacement: comparison of FEA and IGA with reduced

integration.
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Thickness dependency is now studied for a uniform mesh of 5 elements, using the thickness, ,
as variable. The relative error in radial tip displacement is reported in Tables 5.9 and 5.10 for
full and reduced integration, respectively. The results are also illustrated in logarithmic plots in
Figure 5.17. FEA with reduced integration appears to be locking free. The disorders for high
slendernesses are due to computer precision and a worsen condition of the stiffness matrix.
With full integration, locking is revealed in both IGA and FEA. However, the latter shows less
sensibility. For IGA with reduced integration, any noticeable improvement is only seen in

quadratic elements.

R/h

10!

102

10°

10%

10°

FEA

0.0635
0.0002
0.0000
0.0000

0.8661
0.0047
0.0000
0.0000

0.9985
0.0083
0.0001
0.0000

1.0000
0.0084
0.0000
0.0000

1.0000
0.0084
0.0011
0.0059

o
>
TTT T[T | T T
I
QL = W N[O = WY

0.0726
0.0007
0.0000
0.0000

0.8793
0.0399
0.0011
0.0000

0.9986
0.3211
0.0230
0.0010

1.0000
0.9587
0.1289
0.0094

1.0000
0.9996
0.2499
0.0337

Table 5.9: Relative error in tip displacement w.r.t the slenderness, full integration

R/h

10!

102

10°

10%

10°

FEA

0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000

0.0001
0.0001
0.0001
0.0001

0.0000
0.0000
0.0000
0.0000

0.0002
0.0003
0.0002
0.0008

@)
>

T T T TI(T T T T
Il

G W N[O W

0.0039
0.0005
0.0000
0.0000

0.1203
0.0297
0.0010
0.0000

0.3979
0.2734
0.0222
0.0010

0.9763
0.9349
0.1257
0.0093

0.9998
0.9993
0.2520
0.0338

Table 5.10: Relative error in tip displacement w.r.t the slenderness, reduced integration
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Figure 5.17: Thickness dependency of vertical tip displacement: a) FEA, full int., b) FEA, red int.,
c) IGA, full. int., d) IGA, red. int.



CHAPTER 5. VERIFICATION OF SPATIAL TIMOSHENKO BEAM 76

5.5 Pinchedring

In this example a pinched ring is considered. Due to double symmetry, only one quarter of the
structure is modeled. The problem setup is shown in Figure 5.18 and the input data is given in
Table 5.11 From [27] the analytical solution for displacements in point A and B is given

respectively as:

PR3 (7‘[2 - 8) nPR 7mPR

Vg=— - - (5.5)
EI\ 47 ) 4GA, 4EA
PR3(4—my PR PR
up=——(——)+ - (5.6)
EI\2n ] 2GA, 2EA
Equilibrium considerations give the corresponding bending moments:
2PR
My=—— (5.7)
b/
2
Mj = PR(= 1] (5.8)
/2

Evaluated for the input data, the analytical solution reads:

v4q =-1.520035 up =-1.386732

M4 =6.366198 Mp =3.633802

However, the displacements do not converge towards this solution. Lee and Sin [27], explain
this by that Castigliano’s theorem, from which the analytical solution obtained, is in a thickness
range there the response is not entirely beam-like. Therefore, a reference solution is computed

from 32 quintic Lagrangian elements with reduced integration:

va=-1.513964 up =—1.374531
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a)

Figure 5.18: Pipe subjected to internal pressure: a) xy- plane, b) Problem setup.

b)

Raduis Young's modulus

Poisson’s ratio

Width Thickness Load

R=10 E=1200

v =0.25

b=1

h=1

pP=1

Table 5.11: Geometry and material data for the pinched ring problem.
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The numerical results for the vertical displacement and its corresponding relative error in pt. A,

v4 and |e,,|, and the bending moment in pt. A and B, M4 and Mp, are reported in Tables 5.12

and 5.13 for FEA, and in 5.14 and 5.15 for IGA with full and reduced integration, respectively.

p Nels Npodes VA ley,l My Mp

2 2 4 -0.429556 0.716271 6.336564 3.663436
4 8 -1.276267 0.157003 6.364202 3.635798
8 16 -1.494466 0.012879 6.366070 3.633930
16 32 -1.512662 0.000860 6.366190 3.633810

3 1 3 -0.249262 0.835358 6.231203 3.768796
3 9 -1.497760 0.010703 6.365382 3.634617
5 15 -1.513099 0.000571 6.366150 3.633850
10 30 -1.513950 0.000009 6.366197 3.633802

4 2 8 -1.512600 0.000901 6.365652 3.634348
4 16 -1.513956 0.000005 6.366195 3.633805
8 32 -1.513964 0.000000 6.366198 3.633802

Reference - - -1.513964 - 6.366198 3.633802

Table 5.12: FEA of pinched ring, full integration
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p Nels  Nnodes VA ley,| My Mg
2 2 4 -1.501941 0.007941 6.367055 3.632945
4 8 -1.513201 0.000504 6.366251 3.633749
8 16 -1.513916 0.000032 6.366201 3.633799
16 32 -1.513961 0.000002 6.366198 3.633802
3 1 3 -1.515118 0.000762 6.371934 3.628066
9 -1.514011 0.000031 6.366271 3.633728
5 15 -1.513970 0.000004 6.366207 3.633792
10 30 -1.513964 0.000000 6.366198 3.633801
4 2 8 -1.513967 0.000002 6.366201 3.633799
4 16 -1.513964 0.000000 6.366198 3.633802
Reference - - -1.513964 - 6.366198 3.633802

Table 5.13: FEA of pinched ring, reduced integration

p Nels  Nnodes VA ley,l My Mg
2 3 4 -0.806318 0.467413 6.309809 3.690191
9 8 -1.478345 0.023527 6.363465 3.636535
15 16 -1.512351 0.001066 6.366090 3.633910
31 32 -1.513877 0.000058 6.366192 3.633808
3 2 4 -1.188560 0.214935 6.328144 3.671856
6 8 -1.512890 0.000709 6.366038 3.633962
14 16 -1.513958 0.000004 6.366196 3.633803
30 32 -1.513963 0.000000 6.366198 3.633802
4 1 4 -1.429186 0.055997 6.322715 3.677284
5 8 -1.513880 0.000055 6.366180 3.633820
13 16 -1.513964 0.000000 6.366198 3.633802
Reference - - -1.513964 - 6.366198 3.633802

Table 5.14: IGA of pinched ring, full integration

78
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p Nels  Nnodes VA ley,| My Mg

2 3 4 -1.183452 0.218309 6.343344 3.656655
9 8 -1.510913 0.002015 6.365881 3.634119
15 16 -1.513929 0.000023 6.366196 3.633804
31 32 -1.513963 0.000000 6.366198 3.633802

3 2 4 -1.313656 0.132307 6.327180 3.672820
6 8 -1.513176 0.000520 6.366078 3.633921
14 16 -1.513960 0.000003 6.366197 3.633803
30 32 -1.513964 0.000000 6.366198 3.633802

4 1 4 -1.513083 0.011247 6.366745 3.633254
5 8 -1.513882 0.000053 6.366180 3.633819
13 16 -1.513964 0.000000 6.366198 3.633802

Reference - - -1.513964 - 6.366198 3.633802

Table 5.15: IGA of pinched ring, reduced integration

For the displacements, FEA and IGA behave as in the previous examples. Comparison of FEA
and IGA is illustrated in Figures 5.19 and 5.20 for full and reduced integration, respectively. In

Figure 5.21, IGA is shown with both integration schemes.
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Figure 5.19: Relative error in displacement in A, full integration
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Figure 5.20: Relative error in displacement in A, reduced integration
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Figure 5.21: Relative error in displacement in A, IGA

Figures 5.22 - 5.24 show convergence plots for the relative error in bending moment in point A.

Firstly, FEA is compared to IGA for full integration. As for the displacements, IGA shows better
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performance and faster convergence than FEA for higher order elements. Secondly, in the
comparison of reduced integration, convergence rates for cubic and quartic FEA is reduced,
but they show small errors and perform better than IGA for coarse discretizations.

Lastly, isogeometric elements with full and reduced integration is shown in the same figure,

and again, significant improvements are only seen in quadratic elements.
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Figure 5.22: Relative error in bending moment in A, full integration
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Figure 5.23: Relative error in bending moment in A, reduced integration
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Figure 5.24: Relative error in bending moment in A, IGA
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5.6 Hinged arc under self-weight

The hinged arch in Figure 5.25 is taken into consideration with the data given in Table 5.16. The
self-weight is applied as a uniformly distributed load, gy, per unit arc length. Utilizing the
symmetry, only half the structure, A— C, is considered. The imposed boundary conditions

assume moment-free hinges and no shear force in the arch tip, C.

Figure 5.25: Hinged arch under self-weight, taken from [13].

Raduis Young's modulus Poisson’s ratio Width Thickness Self-weight
R=1m E=1GPa v=0.2 b=02m h=0.0lm qo=-1kN/m

Table 5.16: Geometry and material data for the beam in Figure 5.12.
From [13], the analytical solution for vertical displacement, v, is given:

v=v(y) =A1[-aysiny + csR(1 —cosy)| — Agsiny+

Az |1 (pcosy —siny) + cosiny — csRsiny | + AgRsiny+
2

o[ e Ry cosy —siny) — clRw? siny + c3R* (siny —  cos ) (5.9)

4
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where c; is given in Equation 5.4, and the constants A;, A2, A4 and Ag reads:

T
A]. = QORZ;
4 =qoR(1- ),
V8
A4 :qu[2C3R+ (CZ ; Cl)],
7'[2 \/E T T VA 7T2 V4 \/z
Ag=— Clo[Clg +(a —cz)(7 - Z) —(ee) o+ c3R(1 TR 7)] (5.10)

Evaluated in ¢ = 7, the reference solution for the vertical displacement in point C reads
v, = —5.4780240mm. Further, by equilibrium considerations of the statically determined
system, the reactions in point A gives H4 = 0.1107207kN and V4 = 0.7853982k N for horizontal

and vertical force components, respectively.

The numerical results for H4 and relative error in v, are reported in Tables 5.17 and 5.18 and in

5.19 and 5.20 for FEA and IGA with full and reduced integration, respectively.

p Nels  MNpodes €.l Hx
2 2 4 0.918832 0.1107427
4 8 0.503512 0.1107221
8 16 0.066682 0.1107208
16 32 0.005719 0.1107207
32 64 0.000469 0.1107207
3 1 3 0.184135 0.1106743
9 0.031595 0.1107201
5 15 0.002568 0.1107207
10 30 0.000054 0.1107207
20 60 0.000001 0.1107207
4 1 4 0.156950 0.1107202
2 8 0.007100 0.1107207
4 16 0.000061 0.1107207
8 32 0.000000 0.1107207
Analytical - - - 0.1107207

Table 5.17: FEA of hinged arch, full integration
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p Nels  Mpodes lev,l Hy

2 2 4 0.013407 0.1107115
4 8 0.000753 0.1107202
8 16 0.000046 0.1107207
16 32 0.000003 0.1107207
32 64 0.000000 0.1107207

3 1 3 0.029763 0.1106690
3 9 0.000176 0.1107201
5 15 0.000021 0.1107207
10 30 0.000001 0.1107207
20 60 0.000000 0.1107207

4 1 4 0.000084 0.1107202
2 8 0.000002 0.1107207
4 16 0.000000 0.1107207

Analytical - - - 0.1107207

Table 5.18: FEA of hinged arch, reduced integration

p Nels  Mnodes |€y.| Hy
2 3 4 0.772983 0.1107207
7 8 0.154730 0.1107207
15 16 0.010898 0.1107207
31 32 0.000632 0.1107207
63 64 0.000037 0.1107207
3 2 4 0.161980 0.1107207
6 8 0.004274 0.1107207
14 16 0.000030 0.1107207
30 32 0.000000 0.1107207
4 1 4 0.157484 0.1107207
8 0.000125 0.1107207
13 16 0.000000 0.1107207
Analytical - - - 0.1107207

Table 5.19: IGA of hinged arch, full integration
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p Nels  Mpodes lev,l Hy
2 3 4 0.151605 0.1107206
2 7 8 0.016941 0.1107207
15 16 0.000240 0.1107207
31 32 0.000003 0.1107207
63 64 0.000000 0.1107207
3 2 4 0.157414 0.1107207
6 8 0.002761 0.1107207
14 16 0.000020 0.1107207
30 32 0.000000 0.1107207
4 1 4 0.000127 0.1107208
8 0.000116 0.1107207
13 16 0.000000 0.1107207
Analytical - - - 0.1107207

Table 5.20: IGA of hinged arch, reduced integration
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Convergence plots for displacement in C are shown in Figures 5.26 to 5.28 and for horizontal

reaction forces in A in Figures 5.29 and 5.30.
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Relative error in vertical displacement for full integration.
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Figure 5.27: Relative error in vertical displacement reduced integration.
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Figure 5.28: Relative error in vertical displacement for IGA, full and reduced integration.
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FEA and IGA behave as in the previous examples for the displacements. In Figures 5.29 and

5.30, where the relative error in horizontal reaction forces in A are shown for full and reduced
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integration, respectively, IGA outperforms FEA with both less errors and faster convergence. As
in Section 5.5, cubic Lagrangian elements shows slightly larger errors than the quadratic ones

for this problem. Note that the convergence is terminated by the computer precision.

5.7 Straight beam subjected to distributed moment

In the last example, a straight beam subjected to a sinusoidally distributed moment
m(s) = h¥sin(ws/2L), as shown in Figure 5.31, is analyzed with the spatial beam element.
Unlike the numerical tests in Chapter 3, the closed form solution for the sinusoidal loading is

not contained within the approximation space.

m(s)
NN ’ Y01.1ng’s mod.ulus: E =1000
Poisson’s ratio: v=0
a Length: L=
. Width: b=0.2
S= L S=| L Thickness: h=0.01
|

Ny

Figure 5.31: Geometry and material data for a straight beam under sinusoidally moment
loading.

The analytical solution is given by [1, 9]:

u,(s) = @(1 —cos(ls)) (5.11)
= Ebns 2L '
u(s)=0 (5.12)
4812 . (7
0(s) = = —sin (5] (5.13)

for the vertical and horizontal displacement and rotation fields, respectively.

The convergence is studied for elements up to 5t/ order. As the initial geometry is linear, also
linear elements are included in the analysis. The relative error is in terms of the L?-norm of the

vertical displacements, computed from Eq. 3.26, are shown in Figure 5.32 for IGA and FEA with
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full and reduced integration.
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Figure 5.32: Convergence plots of straight beam under sinusoidally moment loading: a) FEA,
full. int., b) FEA, red int., ¢) IGA, full int., d) IGA, red. int.

Unlike the initially curved beams, FEA does not show slower convergence with reduced
integration here. The shift in absolute errors for all element orders indicate presence of
transverse shear locking. For IGA, the convergence rates are also maintained, but only linear
and quadratic order elements show less error, indicating presence of spurious shear strains in
higher order elements.

Further, the thickness dependency is investigated with a uniform mesh of 5 elements, shown in
Figure 5.33. The same error measurement as for the convergence study is used. All elements

show thickness dependency with exact integration. Locking is however more severe in IGA. As
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expected, FEA with reduced integration is locking-free, while IGA show the same thickness

dependency. Note that for p = 1, IGA is equivalent to FEA and thus locking-free with reduced

Integration.
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i \ 7
107 10
= i B
o K o
10 10
. —<—FEA, p=1 s —B—FEA, p =1, red. int.
108 —+—FEA, p=2 10 —6—FEA, p=2,red. int.| |
—*%—FEA,p=3 —6—FEA, p = 3, red. int.
4 —>—FEA p=4 R —8—FEA, p=4,red. int.
—A—FEA,p=5 —7— FEA, p =5, red. int.
10-10 L 1 L 10-10 L L 1
10 10? 10° 10* 10° 10’ 102 10° 10 10°
Slenderness, L/h Slenderness, L/h
a) b)
0 < <F < < <} < < <t < 0
10— G Gt < 10

—£—IGA, p =1, red. int.

—$—IGA, p = 2, red. int.
—S—IGA, p = 3, red. int.
—5—IGA, p = 4, red. int.
—7—IGA, p = 5, red. int.

-8 .
10

10° 10 10°

Slenderness, L/h

L

10 102 10°
Slenderness, L/h

c) d)

Figure 5.33: Thickness dependency in a straight beam under sinusoidally moment loading: a)
FEA, full int., b) FEA, red int., ¢) IGA, full int., d) IGA, red. int.
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5.8 Concluding remarks

Through the numerical tests in this chapter, it has been proven that the implementation of the
geometrical exact 3D Timoshenko beam has been successfully implemented using Lagrangian
and NURBS basis functions for discretization. The latter has shown superior performance for
exact integration of the stiffness matrix, producing both less errors and faster convergence, see
e.g. Figures 5.2, 5.15 and 5.26.

Reduced integration, which has proven to eliminate (or at least alleviate) numerical locking in
FEA, does however not remove locking in the NURBS elements (except for p = 1). Improvements
are seen for quadratic elements, but for higher order elements, the impact is negligible (see
Figures 5.4, 5.17 and 5.33). This confirms that IGA with reduced integration still capture spurious
strains.

An interesting feature of IGA with reduced integration is that 1 element produce less errors than
2, which may indicate that the equation system becomes over-constrained: The ratio between
free nodes and Gauss points for a single-element patch is % = 1. Adding one C”~!-continuous

p+1

element will add 1 node and p Gauss points, and the ratio now becomes S <1 and thus over-

constrained for p = 2. For C°-elements however, there will be added p free nodes and the ratio

remains constant.



Chapter 6

Locking removal

From the verification tests in Chapter 5 it was proven that isogeometric elements suffer from
the same locking phenomena as Lagrangian elements, and that they do not resolve with the
conventional element-wise reduced integration rule. As a consequence, the elements fail to
reproduce bending properly approaching the Kirchhoff limit.

One remedy to overcome this problem is to apply reduced and selective reduced integration
rules by a patch-wise approach, which has recently been successfully applied by Adam et al. [1]
and Bouclier et al. [9]. However, these studies were limited to linear elastic analyses and
polynomial orders, p < 3, while the geometrically exact beam formulation presented herein is
able to accommodate large displacement analyses and is valid for all polynomial orders.

In this chapter, the connection between spurious strains and locking will be highlighted in
Section 6.1 In Section 6.2 follows an investigation of one elements propensity to lock, resulting
in two proposed integration schemes, which are implemented and tested on a selection of
numerical examples in Section 6.3. Section 6.4 summarize the observations from the

numerical tests.

93
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6.1 Spurious strains and locking

In curved beams, there exists an interrelationship between transverse shear and membrane
locking, as pointed out in [41]. Thus, these locking phenomena must be considered
simultaneously.

Recalling from Section 3.5 and 4.5, spurious axial and transverse shear strains, or membrane
strains, may rise from the unbalanced terms in the interpolation functions in the translational
part. However, the strains do have the correct value in a discrete set of points with in the patch
(or between two C°-continuities [1]), and if these coincide with the integration points, locking
may be avoided.

To show how the strains may reveal locking, the 90° bend subjected to a axial load at the free
end from Section 5.1 is considered again. Figure 6.1 shows the resulting distribution of axial
strains obtained with 3 C° Lagrangian and 5 C! NURBS elements of quadratic order (and thus
an equal number of unknowns) with full and reduced integration. It is clearly seen that with the
Gaussian quadrature rule corresponding to full integration, both elements sample the strains
erroneously, and thus reveal locking. The Lagrangian element with reduced integration,
however, which has proven to be locking free, shows perfect match between the Gauss points
and the reference solution. This cannot be said for IGA with the same integration rule.
Improvements are seen, but spurious strains are still captured. The verification tests in Section

3.4 and Chapter 5 support this.
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Figure 6.1: Axial strain distribution with the corresponding quadrature points for: a) 3 Lagrange
elements with full integration, b) 3 Lagrange elements with reduced integration, c) 5 NURBS
elements with full integration and d) 5 NURBS elements with reduced integration.

6.2 Selective Gaussian-based integration

In order to evaluate an element’s propensity of locking, Hughes [21] introduced a heuristic
approach, the so-called constraint count method. This method relies on the constraint ratio, r,
which is defined as the ratio between the total number of equilibrium equations, n., and the

total number of constraint equations, n.:

r=— (6.1)
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To investigate whether an element is prone to locking, the constraint ratio for the continuous
problem is compared with the constraint ratio of the discretized problem, r”, in the limit of an

infinite number of elements, n, — oo:
. n;
r‘*= lim — (6.2)

Here n¢, denotes the number of unknowns added to the system by adding one more element to
an infinitely large mesh, while n{ is the corresponding number of constraints introduced by
this element. Thus, n¢ is related to the number of quadrature points, ngp, where the
constraints are evaluated.

For an element with r" < r, and especially with r" <1 (which implies that there are added more

h

constraints than unknowns), the propensity of locking is high. In contrast when r" > r, this

indicate that there are too few constraints to approximate the equations accurately.
Consequently, the optimal element satisfy the criterion r" = r.

Without loss of generality a 2D beam is considered, for which the constraint ratio for the
continuous problem is

3
Fop = — 6.3
2D =5 (6.3)

If the beam is discretized with C°- Lagrange elements and C”~! NURBS elements, the constraint
ratio becomes respectively
h 3p h 3

T =—— and r =
2DL™ 5pen 2DN = o

(6.4)

from which it is seen that the optimal constraint ratio is obtained with ngp = p for Lagrange
elements. For NURBS however, there should be added only one Gauss point per added element

in order to obtain the optimal constraint ratio.

Recalling from Chapter 4 and Equation 4.10, the strain energy of the beam consist of one
membrane part, % J; €nds, and one bending part, % J; xmds, each contributing to the material
part of the stiffness matrix, K;,:

K =K, +Kp (6.5)
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K, and K; denote the membrane and the bending stiffness matrix, respectively. To avoid zero-
energy modes, the global stiffness matrix must be rank sufficient. If the number of free DOFs is
nr, the rank of K, is given:

rank(K;;,) = min(ng, n:ngp) (6.6)

where n, represents the number of strain components, which for this beam is 6. I.e. each Gauss
point adds 7, to rank(K,,) up to the maximum number og nr. To solve a system of nf free
DOFs, K;,, must be of equal rank. Otherwise the system is rank deficient and becomes singular.

While the number of Gauss points corresponding to the optimal constraint ratio with
Lagrangian elements may be achieved without rank deficiency, applying only one Gauss point
on all elements will not give a sufficient number of constraints, and thus produce zero-energy
modes in the analysis. However, using a patch-wise approach, rather than evaluating the
integrals element-by-element, the zero-energy modes may be stabilized by adding Gauss
points to some elements. Governed by Eq. 6.6, rank-sufficiency is obtained with a total number

of ngp = neis + p — 1 Gauss points within the patch.

The above investigation has resulted in two proposed integration schemes, reported in Table
6.1, which will be referred to as SRI-1 and URI-1, and SRI-2 and URI-2, respectively. In URI-1
and URI-2, both the membrane and the bending stiffness matrix is integrated with the
proposed rule, while for SRI-1 and SRI-2, the integration scheme is applied to the membrane
stiffness matrix only and the bending stiffness is integrated with ngp = p per NURBS element.
URI and SRI refer to uniform and selective reduced integration, and unless URI is labeled with a
number, it refers to the conventional reduced integration rule. The motivation for using SRI is

that the terms giving rise to locking occur in the translational part.

p SRI-1/URI-1 SRI-2/URI-2

1 TZGPII TZGPZI

2 | ngp=1\e=(1+n,)/2:ngp=2 ngp=1l\e=ne:ngp=2
3 nGP:I\e:Z,ne—l:ngp:Z nszl\ezl,neinszz
4 | ngp=1\e=2,(1+n.)/2,n,—1:ngp=2 ng=1\e=1,n,:ngp=3
5 | ngp=1\e=2,n,—1:ngp=2ne=0+n.)/2:ngp=3 | ngp=1\e=1,n.:ngp=4

Table 6.1: Selective reduced integration schemes.



CHAPTER 6. LOCKING REMOVAL 98

6.3 Numerical tests

The purpose of the numerical tests is to study how isogeometric analysis performs with the
different integration regimes for uniform and selective reduced integration. They are also
compared with standard Lagrangian finite elements and NURBS elements with conventional
reduced integration.

Comparison of the strain fields obtained from the numerical analyses with their respective
Gauss points and the analytical fields has been emphasized, as locking occurs from incorrectly
sampled strains. Convergence and thickness dependency are also studied.

The strain components are computed from the Lagrangian and the NURBS basis functions
using the kinematic equations presented in Chapter 3 and Chapter 4 for straight and curved
beams, respectively. However, all analyses are performed using the geometrically exact beam
model, including the straight beams. Note that when this non-linear beam model is used to
compute the strains, they are given in the current configuration and will consequently not

show the linear solution exactly.

6.3.1 Cantilever beam subjected to tip shear

The first test is a straight cantilever beam subjected to a transverse tip load, similar as in
Section 3.4.1. The material and cross-section properties are given in Table 6.2. The thickness is
expressed in terms of a slenderness parameter, p, such that the slenderness, L/h is given as

10°. Furthermore, the dimensionless load is scaled with the bending stiffness.

Young’s modulus Poisson’sratio Length Width Thickness Load,
E =4000 v=0 L=10 b=1 h=L/10° P=Eh3/400L

Table 6.2: Geometry and material data for cantilever beam subjected to tip shear at the free end.
The analytical solution for the transverse displacement field, w(x), is given in Equation 3.27,

-(7) +o(3) -2

The analytical solution for the rotation field, 6(x), may be found from the unit-load method.

and may be written:

==
Y =%
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Note that the rotations are independent of the transverse shear stiffness, GA;:

2
o< 5B ][] e

From the kinematic equations, the nonzero strain components, vy, and k., are obtained:
Yay=Wx+0= 53{; zb (6.9)
Ky=0 = S—L(%—l) (6.10)

The beam is discretized with 5 equally sized NURBS elements, and the strain fields for €, (axial
strain), yy, (transverse shear strain) and x. (bending strain) are studied for the different
integration models.

Firstly, the strains obtained with conventional reduced integration (URI) are compared for
quadratic Lagrangian and isogeometric elements. In order to keep the number of
approximation functions n equal for Lagrange (n « n.p) and NURBS (n « n.+ p —1) based
solutions, a uniform mesh of 3 quadratic Lagrange elements is used. The strains are reported in
Figure 6.2 for slendernesses of p = 1 and p = 3. Both elements sample the strains correctly, and
thus appear to be locking free. NURBS elements with URI seem to be able to produce a
constant membrane strain distribution correctly.

With a fixed slenderness of p = 3, the beam is now analyzed with the proposed integration
regimes. Figure 6.3 shows the strain fields obtained with SRI-1 and SRI-2, and Figure 6.4 with
URI-1 and URI-2 for quadratic elements. Similarly, Figures 6.5 and 6.6 show the strains for
p = 3, and Figures 6.7 and 6.8 for p = 4,5. Note the scale of the vertical axis! For p = 2, the
membrane part is sampled with good accuracy for all integration regimes, while they show
increasing errors and divergence for higher order elements with SRI-1 and URI-1. The
rotational part is represented with good accuracy for quadratic SRI-1 and all orders of SRI-2,

while it is more inaccurately represented with URI-1 and URI-2.
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Figure 6.2:

100

Comparison of Lagrange (FEA) and NURBS (IGA) based solutions applying

conventional reduced integration (URI) for p = 2: a) Axial strain, p = 1, b) axial strain, p = 3,
¢) transverse shear strain, p = 1, d) transverse shear strain, p = 3, e) bending strain, p = 1, and f)
bending strain, p = 3.
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Figure 6.3: Strain fields obtained with SRI-1 and SRI-2 for p = 2 and p = 3 compared with the
analytical solutions: a) Axial strain (SRI-1), b) axial strain (SRI-2), ¢) transverse shear strain (SRI-
1), d) transverse shear strain (SRI-2), e) bending strain (SRI-1), and f) bending strain (SRI-2).
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Figure 6.4: Strain fields obtained with URI-1 and URI-2 for p = 2 and p = 3 compared with the
analytical solutions: a) Axial strain (URI-1), b) axial strain (URI-2), c) transverse shear strain
(URI-1), d) transverse shear strain (URI-2), e) bending strain (URI-1), and f) bending strain (URI-

2).
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Figure 6.5: Strain fields obtained with SRI-1 and SRI-2 for p = 3 and p = 3 compared with the
analytical solutions: a) Axial strain (SRI-1), b) axial strain (SRI-2), ¢) transverse shear strain (SRI-

1), d) transverse shear strain (SRI-2), e) bending strain (SRI-1), and f) bending strain (SRI-2).
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Figure 6.6: Strain fields obtained with URI-1 and URI-2 for p = 3 and p = 3 compared with the
analytical solutions: a) Axial strain (URI-1), b) axial strain (URI-2), c) transverse shear strain
(URI-1), d) transverse shear strain (URI-2), e) bending strain (URI-1), and f) bending strain (URI-

2).
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Figure 6.7: Strain fields obtained with SRI-1 and SRI-2 for p = 4,5 and p = 3 compared with the
analytical solutions: a) Axial strain (SRI-1), b) axial strain (SRI-2), ¢) transverse shear strain (SRI-

1), d) transverse shear strain (SRI-2), e) bending strain (SRI-1), and f) bending strain (SRI-2).
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Figure 6.8: Strain fields obtained with URI-1 and URI-2 for p = 4,5 and p = 3 compared with
the analytical solutions: a) Axial strain (URI-1), b) axial strain (URI-2), c) transverse shear strain
(URI-1), d) transverse shear strain (URI-2), e) bending strain (URI-1), and f) bending strain (URI-

2).
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Furthermore, a convergence study is carried out to see how the various quadrature rules affect
the accuracy. For error measure, the L? relative error norm of the displacement field, computed
from Eq. 3.26, is used. Note that cubic elements with conventional reduced integration produce
the exact solution. The convergence plots in Figure 6.9 reveal slower convergence with the new
quadrature rules. Further, it is observed that quadratic elements with SRI and URI behave very
similar as linear elements with reduced integration. The slow convergence and large absolute
errors with URI-1 and URI-2 may be due to their inaccurate representation of the rotations. The
strong form solution is also lost with the proposed integration rules.

Higher order elements with SRI-1 and URI-1 are omitted due to divergent solutions.
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Figure 6.9: L?-norm of relative error on displacements for the various quadrature rules and p = 3:
a) Conventional reduced integration (URI), b) SRI-1 c) SRI-2, d) URI-1 (p = 2) and URI-2
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Finally, in Figure 6.10 the thickness dependency is studied. For this analysis, the L?-norm of the
relative error in displacements is computed with respect to the slenderness parameter, p which
is varied from 1 to 5 with a fixed number of 5 elements. Conventional reduced integrated
elements (URI) are included for comparison. It appears that all elements (URI included) are
locking-free. Cubic elements with URI, whose solution space is a superset of the analytical
solution, serve here as a measure of the condition of the stiffness matrix. As the slenderness

increases and the equation system becomes more badly scaled, the computational precision

decreases.
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Figure 6.10: L?-norm of relative error on displacements with respect to slenderness for the

various quadrature rules and p = 3: a) SRI-1, b) SRI-2, c¢) URI-1, d) URI-2.
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6.3.2 Clamped beam subjected to linearly distributed transverse load

As the previous example, with constant membrane strain distributions, already was
locking-free for the conventional quadrature rule, it did not serve as a very good test for
transverse shear locking. Therefore, a straight beam with a higher order solution space has
been analyzed.

Figure 6.11 shows the geometry and material data for the clamped beam with linearly
increasing pressure from Section 3.5. Again, the thickness is expressed in terms of the
slenderness parameter, p, and the load is scaled with the bending stiffness.

Governed from the unit-load method, the vertical displacements and rotations are given

respectively as:

gr x° Lx* 5I%x? +quh2[L2x x3]

w=wx)=— - + — (6.11)
EIL120L 12 48 12EIL 3
4 3 2
X Lx 5L°x
aze(x):i[— L ] 6.12)
EI 24L 4 24

from which the strains may be computed.
m q Young’s modulus: E =1000
b Poisson’s ratio: v=0
= Length: L=10
[]ln Width: b=1
Thickness: h=L/10°P

sk ~ Load: q="

Figure 6.11: Geometry and material data for the clamped beam subjected to linearly increasing
pressure.

Comparison of transverse shear and bending strains obtained with Lagrange and NURBS-
elements with conventional reduced integration is shown in Figure 6.12 for p = 1 and p = 3.
While Lagrangian elements sample the transverse shear strains correctly, they are slightly

wrong with IGA, causing increasing errors in the curvatures.
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Figure 6.12: Comparison of Lagrange (FEA) and NURBS (IGA) based solutions applying
conventional reduced integration (URI) for p = 2: a) Transverse shear strain, p = 1, b) transverse
shear strain, p = 3, ¢) bending strain, p = 1, and d) bending strain, p = 3.

The transverse shear and curvature fields are now analyzed with the different integration rules
for a fixed slenderness of p = 3. The axial strains become exactly zero for all analyses, similar as
in Section 6.3.1, and are therefore not shown.

The quadratic elements are depicted in Figures 6.13 and 6.14 for the selective and uniform
integration rules, respectively. URI-1 and URI-2 do not represent the bending strains
accurately. Otherwise the strains are represented with good accuracy. For p = 2, adding Gauss
points near the center of the patch leads to less amplitudes in strains and a better conditioned
system, and consequently better accuracy.

Cubic elements are shown in Figure 6.15, and quartic and quintic in Figure 6.16. Only SRI-2
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and URI-2 are considered, as the oscillations in strains leads to unstable systems for higher
order elements with SRI-1/URI-1. As for quadratic elements, the strains are represented with

good accuracy, except for URI-2, which leaves the rotational part incorrectly.
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Figure 6.13: Strain fields obtained with SRI-1 and SRI-2 for p = 2 and p = 3 compared with
the analytical solutions: a) Transverse shear strain (SRI-1), b) transverse shear strain (SRI-2),
¢) bending strain (SRI-1), and d) bending strain (SRI-2).



CHAPTER 6. LOCKING REMOVAL 112

0.05 T T T 1 0.05
Analytical solution Analytical solution
L ——1IGA, p=2, URIH L ——IGA, p=2, URI-2
0.04 X IGA, p =2, URI-1 GP 0.04 X IGA, p =2, URI-2 GP
0.03 § 0.03
0.02 § 0.02 -
Z o001t 1 Z o001t
0 A 0
-0.01F 1 -0.01F 1
-0.02 1 -0.02
.0.03 . . . . 0.03 . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Local coordinate, & = x/L Local coordinate, £ = x/L
a) b)
0.4 T T T T 0.4
Analytical solution Analytical solution
——IGA, p =2, URI-1 ——IGA, p=2, URI-2
03F X IGA p=2,UR-GP| A 03F X IGA p=2 URI-2 GP

L L

03 I I 1 .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Local coordinate, ¢ = x/L Local coordinate, ¢ = x/L

c) d)

Figure 6.14: Strain fields obtained with URI-1 and URI-2 for p = 2 and p = 3 compared with
the analytical solutions: a) Transverse shear strain (URI-1), b) transverse shear strain (URI-2), c)
bending strain (URI-1), and d) bending strain (URI-2).
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Figure 6.15: Strain fields obtained with SRI-2 and URI-2 for p = 3 and p = 3 compared with
the analytical solutions: a) Transverse shear strain (SRI-2), b) transverse shear strain (URI-2), c)
bending strain (SRI-2), and d) bending strain (URI-2).
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Figure 6.16: Strain fields obtained with SRI-2 and URI-2 for p = 4,5 and p = 3 compared with
the analytical solutions: a) Transverse shear strain (SRI-2), b) transverse shear strain (URI-2), c)
bending strain (SRI-2), and d) bending strain (URI-2).
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Convergence of the L?-norm of the relative error in transverse displacements is now studied
with a slenderness of p = 3, reported in Figure 6.17. Similar behavior as for the tip-loaded
cantilever beam is seen: slower convergence, loss of strong form (5¢/ order for this beam) and
poor performance of higher order elements with URI-2.

Thickness dependency is studied with a uniform mesh of 5 elements. Figure 6.18 reveals that

unlike the elements with conventional reduced integration, SRI and URI show no thickness

dependency and are thus free of transverse shear locking.
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Figure 6.17: L?>-norm of relative error in displacements for the different quadrature rules, p = 3:
a) Conventional reduced integration (URI), b) SRI-1 and URI-1 for p =2, c¢) SRI-2, and d) URI-2.
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6.3.3 Curved beam subjected to sinusoidally distributed moment

Figure 6.19 shows geometry and material properties for a planar 90° circular arc subjected to a
sinusoidally distributed moment m(s) = h3sin (ws/2L). This load imposes a state of pure
bending with no membrane and transverse shear energy and is therefore a severe test for
membrane and transverse shear locking. Also note that by choosing a sinusoidally distributed
moment, the closed form solution is obviously not contained in the approximation space. The
load is proportional with the bending stiffness such that the displacements and rotations are

independent of the thickness.

Young’s modulus: E = 1000

Poisson’s ratio: v=0
Radius: R=1
Width: b=0.2
Thickness: h=R/10°

Figure 6.19: Geometry and material data for a curved beam under sinusoidally moment loading.

Denoting u(s) and uy,(s) displacements parallel to the local Cartesian bases, i? and ig,
respectively, the analytical solution may be obtained by solving the strong form governed by

Egs. 4.3 and 4.4, and is given by [1, 9]:

R2

Up(s) = Essin(%) (6.13)
R . (s s s

ui(s) = E sm(ﬁ) - E cos (E)] (6.14)

0(s) = 121;2 sin(%) (6.15)

The three nonzero strain fields, €3, y12, and k3, for the different integration models are studied
for the slenderness ratios p = 1 and p = 3, using a mesh of n, = 5 equally sized knot-span

elements with the maximum continuity available. Since the strains are now computed in the
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current configuration and consequently not show the linear solution, the analytical solution is
approximated with a reference solution obtained with 32 quintic isogeometric elements each
integrated with p Gauss points (ngp = p). The sinusoidally varying moment is taken into

consideration with a consistent load vector, numerically integrated with ngp = 5p.

Firstly, the beam has been analyzed and compared with quadratic C°-continuous Lagrangian
elements applying the conventional uniform reduced integration rule (URI). The strain fields
for €1, 712 and k3, reported in Fig. 6.20, confirms that the strains sampled at the Gauss points
for the Lagrangian elements coincide with the reference solution for both p =1 and p = 3 for all
strain fields, and thus appear to be locking-free. However, for the NURBS elements of equal
order and with the same quadrature rules, i.e. URI with ngp = p within each element, it is
observed that all of the three strain fields when sampled at the Gauss points deviate from the
reference solution. Further, the deviation increase with increased slenderness, and thus, the

elements reveal both membrane and transverse shear locking.
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Figure 6.20: Comparison of Lagrange (FEA) and NURBS (IGA) based solutions applying
conventional URI for p = 2: a) Axial strain, b) transverse shear strain, and c) bending strain.

With a fixed slenderness of p = 3, the beam is now analyzed with the proposed integration
rules. The strain fields obtained with quadratic and cubic NURBS elements with the two SRI
rules are depicted in Figures 6.21 and 6.22, respectively. Now all three strain fields coincide
with the reference solution when sampled at the Gauss points for both SRI-1 and SRI-2, and
consequently yields a precise approximation of the corresponding curvature field. These
observation are also valid for higher order elements (see Fig. 6.23). However, for SRI-1, where
the additional Gauss points are not located at the boundary elements, the translational strains

show oscillations when the polynomial order is increased.
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Figure 6.21: Comparison of the solutions obtained with the various SRI rules applied to the
translational part only, for p = 2: a) Axial strain (SRI-1), b) axial strain (SRI-2), c) transverse shear
strain (SRI-1), d) transverse shear strain (SRI-2), e) bending strain (SRI-1), and f) bending strain
(SRI-2).
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Figure 6.22: Comparison of the solutions obtained with the various SRI rules applied to the
translational part only, for p = 3: a) Axial strain (SRI-1), b) axial strain (SRI-2), c) transverse shear
strain (SRI-1), d) transverse shear strain (SRI-2), e) bending strain (SRI-1), and f) bending strain
(SRI-2).
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Figure 6.23: Comparison of the solutions obtained with the various SRI rules applied to the
translational part only, for quartic and quintic order elements: a) Axial strain (SRI-1), b) axial
strain (SRI-2), c) transverse shear strain (SRI-1), d) transverse shear strain (SRI-2), e) bending

strain (SRI-1), and f) bending strain (SRI-2).
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The beam is analyzed once more applying the proposed integration schemes on both the
translational and rotational parts (URI-1 and URI-2). The corresponding strain field solutions
are reported in Figs. 6.24 and 6.25 for the quadratic and cubic elements, respectively. For p =3
or higher, the solution is not convergent unless the additional Gauss points are added to the
boundary elements (URI-2). Results obtained for the quartic and quintic order elements are
not reported here, but they behave similar to the cubic elements.

Again, strains sampled at the Gauss points coincide with the reference solution for the
translational strains. However, applying less than ngp = p on the rotational part does not

produce accurate results for the bending strains.
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Figure 6.24: Comparison of solutions obtained with the various URI rules applied to both

124

the

translational and the rotational parts, for p = 2: a) Axial strain (SRI-1), b) axial strain (SRI-2), c)
transverse shear strain (SRI-1), d) transverse shear strain (SRI-2), e) bending strain (SRI-1), and

f) bending strain (SRI-2).
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Figure 6.25: Comparison of solutions obtained with the URI-2 rule applied to both the
translational and the rotational parts, for p = 3: a) Axial strain, b) transverse shear strain, and
¢) bending strain.

Furthermore, a convergence study is carried out to study the impact of the various reduced
quadrature rules on accuracy. The tangential tip displacement is chosen as measurement, and
the relative error is computed from Eq. 3.25, where u®”* represents u(s = L) from Eq. (6.14).

Figures 6.26 and 6.27 show convergence plots for the various reduced integration rules with
NURBS, for p = 1 and p = 3, respectively. Firstly, it is seen that the absolute errors from the
conventional URI elements shift with approximately 4 orders, going from p =1 to p = 3 which
strongly indicate locking. Elements with SRI provide slower convergence, but the absolute
errors are small for coarse discretizations and they are not shifted with p. Apparently, quadratic

elements integrated with URI-1 or URI-2 performs similar to the associated SRI-1 and SRI-2
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elements for which the reduced quadrature rules are only applied to the translational part,
while the associated cubic and higher order elements has rather poor performance with slow

convergence and large errors.

Lastly the thickness dependency is studied. For this analysis, p is varied from 1 to 5, keeping a
fixed number of 5 NURBS elements. Figures 6.28 and 6.29 show logarithmic plots of the relative
error and the numerical values for tangential tip displacements and tip rotations for the
various reduced integration regimes, respectively. Elements with conventional reduced

integration (URI) are included for comparison.

10° ‘ 10°
—%—p=2,URI
—o—p=3,URI

102 f —8—p=4,URI b 102
—%—p=5URI

107 & q0®
> B
o o
108 , 108
10710 \\ ] 10710
——p =2, SRI-1
—#—p =3, SRI-1
10? 10° 10? 10°
nDOFS nDOFS
a) b)
10° 10°

—&—p=2,URI1
—+—p=2URI2

L |—*%—p=3, URI2

—&—p=4,SRI-2 —&—p=4,URI-2
—%—p=5,SRI-2 —%—p=5,URI-2
102 10° 10°
nDOFS nDOFS
c) d)

Figure 6.26: Relative error in tangential tip displacement for the various reduced quadrature
rules with NURBS, for p = 1: a) URI, b) SRI-1, ¢) SRI-2, d) URI-1 and URI-2.
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Figure 6.27: Relative error in tangential tip displacement for the various reduced quadrature
rules with NURBS, for p = 3: a) URI, b) SRI-1, ¢) SRI-2, d) URI-1 and URI-2.

Apart from p =5, all elements appear to be locking-free. The slight thickness dependency of the
quintic elements may be due to the fact that the proposed quadrature rule adds two more Gauss
points than needed to avoid rank deficiency and thus creates an over-constrained system. Note
how this curved beam locks completely with URI, even with cubic elements. The dotted line in
Fig. 6.29 represents the limit in computer precision.

A closer investigation of the kink in 4t/ order elements with URI is carried out in Appendix B,

where also the thickness dependency of the L? relative error norm is considered.
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Figure 6.28: Convergence of the tangential tip displacement with respect to the slenderness of
the beam for NURBS: a) Relative error (SRI-1), b) displacement (SRI-1), c) relative error (SRI-2),
d) displacement (SRI-2), e) relative error (URI-1 and URI-2), and f) displacement (URI-1 and
URI-2).
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Figure 6.29: Convergence of the tip rotation with respect to the slenderness of the beam for
NURBS: a) Relative error (SRI-1), b) rotation (SRI-1), c) relative error (SRI-2), d) rotation (SRI-2),
e) relative error (URI-1 and URI-2), and f) rotation (URI-1 and URI-2).
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6.3.4 Curved beam subjected to tip shear

In this last example, the beam from Section 5.4 is analyzed with the proposed integration
regimes in Table 6.1. Figure 6.30 shows geometry and material properties. Unlike the moment
loaded beam from the previous section, this load imposes strain energy contributions from not

only bending, but also axial- and transverse shear strains.

Young’s modulus: E = 1000

Poisson’s ratio: v=0
Radius: R=10
Width: b=1
Thickness: h=R/10°
Load: P=0.14%

e
——

Figure 6.30: Geometry and material data for a curved beam under sinusoidally moment loading.

Again, the nonzero strain fields, €, y12 and x3, which may be computed from the analytical
solution given in Eq. 5.3 have been studied with the different integration regimes. A
comparison of Lagrange and NURBS elements of quadratic order and conventional reduced
integration (URI) is shown in Figure 6.31 for slendernesses of p = 1 and p = 3. In order to match
the number of unknowns, a uniform mesh of 3 and 5 elements is used for FEA and IGA,
respectively. The strains are obtained from the current configuration, and for that reason the
analytical (linear) solution is approximated with a reference solution obtained with 32 quintic
isogeometric elements each integrated with p Gauss points (ngp = p). These figures confirm
that URI removes locking of the Lagrangian elements, while IGA, on the other hand, show

increasing errors with the slenderness and consequently tends to lock.
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Figure 6.31: Comparison of Lagrange (FEA) and NURBS (IGA) based solutions applying
conventional URI for p = 2: a) and b) Axial strain, p = 1 and p = 3, c¢) and d) transverse shear
strain, p =1 and p = 3 and e) and f) bending strain, p =1 and p = 3.
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The slenderness is now kept fixed to p = 3 and the beam is analyzed using selective reduced
integration, SRI-1 and SRI-2. The strain fields obtained with 5 equally sized 2nd and 3rd order
elements are depicted in Figures 6.32 and 6.33, respectively. For the quadratic elements all
three strain fields sample the reference solution with good accuracy, yielding an accurate
approximation of the corresponding curvature field. However, for cubic elements with SRI-1,
instabilities in the translational strains at the boundaries leads and incorrect representation of
the curvatures. For SRI-2, where the Gauss points are located at the boundary elements, these

instabilities are avoided.

The proposed integration schemes are now applied to the entire stiffness matrix (URI-1 and
URI-2), and the corresponding strain fields are reported in Figures 6.34 and 6.35 for quadratic
and cubic elements, respectively. For p = 2, the translational strains are sampled with fair
accuracy, but the rotational part is left incorrect. For p = 3, the solution is not convergent
unless the additional Gauss points are added to the boundary elements (URI-2), and these
behave similar as for p = 2: fair accuracy for the translational part, incorrect representation of

the curvatures.

Figure 6.36 shows the strains obtained for p = 4 and p = 5 with SRI-2 and URI-2. Due to
oscillating strain fields and non-convergent solution with SRI-1/URI-1, these are omitted. Note

how the curvatures for URI-2 are inaccurately represented even for quintic order elements.
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Figure 6.32: Solutions obtained with SRI rules applied to the translational part only, for
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Figure 6.33: Solutions obtained with SRI rules applied to the translational part only, for p = 3
and p =3:a) €1, SRI-1, b) €1, SRI-2, ¢) 712, SRI-1, d) y12, SRI-2, e) k3, SRI-1 and f) k3, SRI-2.
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Figure 6.34: Solutions obtained with URI rules applied to both the translational part and the
bending part, for p =2 and p = 3: a) €;, URI-1, b) &1, URI-2, ¢) y;2, URI-1, d) 712, URI-2, e) k3,

URI-1 and f) x3, URI-2.
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Figure 6.35: Solutions obtained with URI rules applied to both the translational part and the
bending part, for p = 3 and p = 3: a) €;, URI-1, b) &1, URI-2, ¢) y;2, URI-1, d) y12, URI-2, e) k3,

URI-1 and f) x3, URI-2.
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Figure 6.36: Solutions for 4¢h and 5¢h order elements with SRI and URI, for p = 3: a) €, SRI-2,
b) €1, URI-2, ¢) 712, SRI-2, d) 712, URI-2, e) k3, SRI-2 and f) k3, URI-2.



CHAPTER 6. LOCKING REMOVAL 138

For the convergence study the relative error in normal tip displacement is chosen as
measurement, as it is the only contribution to the external energy. Figures 6.37 and 6.38 show
convergence plots for the various reduced integration rules, for p = 1 and p = 3, respectively.
Once again, it is seen that the proposed integration rules provide slower convergence than
conventional reduced integration. However, the absolute errors are small for coarse
discretizations and they are not shifted with the slenderness, p. URI-1 and URI-2 for cubic or

higher order elements has rather poor performance with slow convergence and large errors.
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