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Abstract

In this thesis the geometrically exact 3D shear-flexible beam model is discretized with the

Lagrangian and the NURBS basis functions, and has been used as a basis to develop a family of

locking-free NURBS-based elements. This beam model has no restrictions with respect to the

size of displacements, rotations and deformations, and is thus well accommodated for large

deformation analyses.

In the C 0-continuous Lagrange element, numerical locking is overcome by reduced

integration. However, for the higher continuous NURBS elements, there exists at the present

time no element-by-element Gaussian quadrature rule which effectively alleviates locking.

Instead, by a patch-wise approach a selective reduced integration rule has been proposed, and

the resulting elements are free for transverse shear and membrane locking.

The performance is evaluated on a range of numerical tests and compared to the conventional

reduced integration rule. For comparison, also the standard Lagrange interpolated elements

have been tested in parallel.
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Chapter 1

Introduction

The finite element method has been widely used in computational mechanics, engineering

and sciences for several decades, but unfortunately, the traditional Lagrangian approximation

functions are unable to represent many common geometries in an exact manner. With the

introduction of isogeometric analysis (IGA), Lagrangian polynomials are replaced with

non-uniform rational B-splines (NURBS), which may represent geometries exactly by the same

approximation functions used to discretize the solution space. Due to their ability to describe

exact geometries even for coarse discretizations, NURBS constitute today the most commonly

used technology in computer-aided design (CAD).

Hughes et al. [22] introduced in 2005 the concept of using NURBS as interpolation functions in

numerical analyses. They called the framework isogeometric analysis, and their motivation

was to describe and simplify mesh refinement by eliminating the need for communication

with the CAD geometry once the initial mesh was defined. Since its conception, IGA has

penetrated many areas of computational mechanics, and in many cases shown improved

performance over the traditional finite element method. In the area of structural and solid

mechanics IGA has been successfully employed in computation of cable structures [34], 2D

and 3D solids, including large deformations, incompressibility, near-incompressibility and

plasticity [18, 28], contact problems [29, 30], fracture [8] and fluid-structure interaction [42].
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CHAPTER 1. INTRODUCTION 2

Implementation of NURBS-based discretizations does however bring some challenges, and has

been subject to a lot of research in recent years. One of them is shear-flexible beams, which

suffer from the same locking phenomena as the Lagrangian-based finite element analysis

(FEA), as pointed out by e.g. Echter and Bishoff [16] and Bouclier et al. [9]. This imply

transverse shear locking in straight beams, and transverse shear and membrane locking in

initially curved beams [41]. An element subjected to locking becomes unable to reproduce

bending properly in the Kirchoff limit, i.e. when the thickness become very small compared to

the length of the beam (or the curvature radius for curved beams). Several remedies to alleviate

the occurrence of locking in IGA has been successfully applied: 1) Reduced and selective

reduced integration [1, 2, 10], 2) NURBS-based discrete shear gap (NURBS DSG) methods

[16, 17], 3) B and F projection techniques [9, 10, 11, 18], 4) assumed natural strain methods

[12], 5) hybrid-mixed methods [17], and 6) collocation methods [4, 6]. However, apart from the

B and F projection methods proposed by Elguedj et al. [18] and Bouclier et al. [9], these works

were limited to linear elastic analyses.

In this context, the objective with this thesis is to develop a family of NURBS-based

geometrically exact 3D shear-flexible beam elements which are free of numerical locking for

analyses of geometrically non-linear finite deformation curved beam systems. In order to do

that, the beam model proposed in [38, 39, 40], extended to an arbitrary order discretization of

geometry, displacement and rotation fields with Lagrangian and NURBS are implemented in

MATLAB®, and verified through a range of numerical tests. For non-linear analyses the

FENRIS® solver is used. To alleviate locking, a lower order, patch-wise Gaussian quadrature

rule for selective reduced integration of the stiffness matrix has been implemented and

carefully tested on the verified code.

This thesis is outlined as follows. Chapter 2 gives an introduction to B-splines and NURBS and

how these are used to describe geometric objects. The basic strategies for enrichment of the

approximation space is also presented. In Chapter 3, a linear, straight beam formulation of the

shear-flexible beam element is derived and verified through a few numerical examples for

Lagrange and NURBS discretizations. Transverse shear locking is also highlighted in this
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chapter. In Chapter 4, the geometrically exact 3D beam model is firstly presented at a

continuous level, and then given on discrete form with both the Lagrangian and the NURBS

basis. A presentation of the membrane locking phenomenon is also given here. The

geometrically exact beam model is verified through a range of numerical examples in Chapter

5, where the impact of exact and conventional reduced integration on the convergence and

thickness dependency has been emphasized. In Chapter 6 a study of the constraint ratio results

in two new quadrature rules, which are carefully tested and compared on a selection of

numerical examples. In Chapter 7 the performance of selective reduced integration has been

studied in the non-linear regime, and finally, in Chapter 8 conclusions are drawn.
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Chapter 2

NURBS-based geometries

NURBS curves and surfaces are, because of their ability to describe geometries in an exact

manner, standard in computer-aided design (CAD) and computer-aided modeling (CAM)

today. However, it is not until recently that NURBS has entered area of computational

mechanics, engineering and sciences, which since its development in the late 50s and early 60s

have been the property of Lagrangian polynomials [7].

In the area of solid and structural mechanics the NURBS-based isogeometric analysis has in

many cases shown improved performance over the traditional FEA, due to the increased

accuracy of the approximated geometry and the higher inter-element continuity. IGA does also

bring the branches of CAD and FEA closer.

This chapter presents the basic definitions and properties of the NURBS basis, and how this is

used for geometry modeling. In Section 2.1, the history of NURBS is briefly presented. In

Section 2.2 the parameter space is defined, and derivation of the basis functions are shown in

Section 2.3. Finally, in Section 2.4 it is described how the basis functions are used in geometry

modeling, and how the approximation space may be enriched without changing the geometry

or the parameterization.

For further details on geometry modeling with NURBS, the reader is referred to [19, 32].

5



CHAPTER 2. NURBS-BASED GEOMETRIES 6

2.1 History

NURBS have their origin in Bézier curves. These were originally developed by Bézier in the 60s

[15] to give a parametric description of curves and surfaces. Unlike interpolation polynomials,

the geometry could now be changed without changing the properties of the basis functions.

The main drawback with Bézier curves are their global support, which was resolved by

Riesenfield in the early 70s with introduction of the B-splines [36]. B-splines with their

compact support enable local shape modifications. Another benefit with B-splines is that the

degree of continuity between the curve segments can be controlled.

Rational B-splines were introduced in 1975 by Versprille [45]. These were denoted NURBS, and

allowed an exact formulation of circles and cones. Today NURBS are standard in CAD and

CAM.

The concept of using NURBS in numerical analyses, instead of Lagrangian polynomials, was

proposed by Hughes et al. in 2005 [22], and have since then been of large interest as an

alternative to FEA.

2.2 Parameter space

As in FEA, NURBS-geometries are utilizing isoparameterization. With this concept, an object

has a parametric formulation in a parameter space, which is connected to the physical space by

a transformation (mapping).

A parametric representation is independent of the axes and uses the same set of shape functions,

which offers a straightforward definition of free-form shapes and easily computed derivatives.

In addition, there exist a lot of stable and efficient algorithms for parametric formulations, which

is why they are preferred in IGA.

Knot vectors

For NURBS-geometries, the parameter space is local to patches (rather than elements in FEA).

A patch is related to a knot vector, Ξ. For each dimension this is a non-decreasing sequence of
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numbers, written:

Ξ= [ξ1,ξ2, ...,ξn+p+1] (2.1)

which directly determines the properties of the basis functions, and thus the NURBS-geometry,

which is constructed from a linear combination of the basis functions and their associated

control points. The length of the knot vector, n +p +1, matches the polynomial degree, p, and

the number, n, of the basis functions. A nonzero knot span, ξi+1 − ξi , partition the patch into

elements.

A knot vector is referred to as open if the first and last value appear p + 1 times, and have the

essential property of being interpolatory at the endpoints. Therefore open knot vectors are

standard in IGA. Further, a knot vector can be uniform or non-uniform. In uniform knot

vectors the knot spans are equal, and each interior knot may only appear once. Non-uniform

knot vectors are not restricted to equal knot spans and may have repeated knot values, which

allows much richer behavior, such as corners, sharper curves, local refinement, etc.

As an example, two knot vectors for computing quadratic basis functions are shown below:

Ξ1 = [0,0,0, 1
3 , 2

3 ,1,1,1]

Ξ2 = [0,0,0, 1
6 , 2

3 , 2
3 ,1,1,1] (2.2)

Because the first and the last knot values appear p +1 times, they are both open. InΞ1, the knot

spans are equidistant and the interior knots ξ4 = 1
3 and ξ5 = 2

3 appear only once. Therefore, this

is a uniform knot vector. By the same argument,Ξ2 is obviously nonuniform.

2.3 Basis functions

NURBS are built from the non-rational B-splines, and are constructed from linear combinations

of a set of basis functions, uniquely defined by the knot vector, which represents the parameter

space. This is for curves one-dimensional and thus function of the parameter ξ only.

The basis functions may be thought of as shape functions in FEA, and are recursively computed
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from piecewise constants in each knot spans, expressed as:

N0 = Ni ,0(ξ) =
 1 for ξi ≤ ξ< ξi+1

0 otherwise
(2.3)

For p ≥ 1 the functions are expressed in terms of the lower order ones:

Np = Ni ,p (ξ) = ξ−ξi

ξi+p −ξi
Ni ,p−1(ξ)+ ξi+p+1 −ξ

ξi+p+1 −ξi +1
Ni+1,p−1(ξ) (2.4)

To avoid singularity in Equation 2.4, 0
0 is defined to be zero.

Figure 2.1 illustrates the recursive structure of the basis functions, and from which lower order

functions they are constructed.

Figure 2.1: Recursive computation of basis functions, taken from [32].

The B-splines basis functions satisfy the following important properties:

• They are nonnegative over the entire domain,Ξ: Ni ,p ≥ 0, ∀ξ ∈ [ξi ,ξn+p+1].

• Partition of unity,
∑n

i=1 Ni ,p = 1, ∀ξ ∈ [ξi ,ξn+p+1].

• Infinitely continuously differentiable between the knots, C p−mi -continuous at interior

knots (where mi is the knot multiplicity).

• Each basis function has support over the half-open interval, [ξi ,ξi+p+1〉.
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• Non-interpolatory: Ni ,p (ξ j ) 6= 1, except for the end knots or knots with multiplicity mi =
p −1.

• For p = 0 and p = 1, B-spline and Lagrangian basis functions coincide.

To illustrate the development of these basis functions, they will be recursively computed from

0th to 2nd order for the knot vectors in Equation 2.2.

Basis functions forΞ1 = [0,0,0, 1
3 , 2

3 ,1,1,1]

According to Equation 2.3, the constant functions are computed:

N1,0 = N2,0 = 0 : −∞< ξ<∞

N3,0 =

 1 : 0 ≤ ξ< 1

3
0 : otherwise

N4,0 =

 1 :
1

3
≤ ξ< 2

3
0 : otherwise

N5,0 =

 1 :
2

3
≤ ξ< 1

0 : otherwise

N6,0 = N7,0 = 0 : −∞< ξ<∞

and plotted in Figure 2.2.
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Figure 2.2: Constant basis functions forΞ1.

With the constant functions at hand, the linear and quadratic basis functions (Ni ,1 and Ni ,2) are

computed from Equation 2.4:

N1,1 = 0 : −∞< ξ<∞

N2,1 =

 1−3ξ : 0 ≤ ξ< 1

3
0 : otherwise

N3,1 =


3ξ : 0 ≤ ξ< 1

3

2−3ξ :
1

3
≤ ξ< 2

3
0 : otherwise

N4,1 =


−1+3ξ :

1

3
≤ ξ< 2

3

3−3ξ :
2

3
≤ ξ< 1

0 : otherwise

N5,1 =

 −2+3ξ :
2

3
≤ ξ< 1

0 : otherwise

N6,1 = 0 : −∞< ξ<∞
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Figure 2.3: Linear basis functions forΞ1.

N1,2 =

 (−1+3ξ)2 : 0 ≤ ξ< 1

3
0 : otherwise

N2,2 =


6ξ− 27

2
ξ2 : 0 ≤ ξ< 1

3
1

2

(−2+3ξ
)2 :

1

3
≤ ξ< 2

3
0 : otherwise

N3,2 =



9

2
ξ2 : 0 ≤ ξ< 1

3

−3

2
+9ξ−9ξ2 :

1

3
≤ ξ< 2

3
9

2

(−1+ξ)2 :
2

3
≤ ξ< 1

0 : otherwise

N4,2 =



1

2

(−1+3ξ
)2 :

1

3
≤ ξ< 2

3

−15

2
+21ξ− 27

2
ξ2 :

2

3
≤ ξ< 1

0 : otherwise

N5,2 =

 (−2+3ξ)2 :
2

3
≤ ξ< 1

0 : otherwise
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Figure 2.4: Quadratic basis functions forΞ1.

It is confirmed that the 0th and 1st degree basis functions coincide with the Lagrangian basis.

For higher orders, the B-spline basis are more homogeneous and do not show the oscillatory

properties as the Lagrangian basis.

Other properties of the basis functions can be seen in Figure 2.4. While the polynomials are

completely differentiable in the knot spans (C∞-continuous), the continuity at the interior knots

are C p−mi = C 1. Further, each basis function has support over the interval [ξi ,ξi+p+1〉. E.g. N2,2

is nonzero on the interval [ξ2,ξ5〉 = [0, 2
3〉.

Basis functions forΞ2 = [0,0,0, 1
6 , 2

3 , 2
3 ,1,1,1]

The basis functions for this open non-uniform knot vector are computed the same way as for

Ξ1, and shown in Figures 2.5 to 2.7. The length of the vector, n + p + 1 = 9, indicates n = 6

quadratic shape functions, and C 0-continuity at ξ = 2/3 due to the repeated knot, which is

easily recognized as a corner.
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Figure 2.5: Constant basis functions forΞ2.

Figure 2.6: Linear basis functions forΞ2.

Figure 2.7: Quadratic basis functions forΞ2.
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Derivatives of basis functions

Derivatives of quantities are essential in numerical analyses. The variable in NURBS-geometries

is found in the basis functions, and the derivatives of these are given in terms of the lower order

basis functions. For shape function i and polynomial degree p, the kth derivative is gives as:

d k Ni ,p

dξk
= p

ξi+p −ξi

(
d k−1Ni ,p−1

dξk−1

)
− p

ξi+p+1 −ξi+1

(
d k−1Ni+1,p−1

dξk−1

)
(2.5)

Figures 2.8 and 2.9 show the 1st derivatives of the two bases. Note the continuity across ξ= 2/3

for the two bases.

Figure 2.8: 1st derivative of theΞ1-basis.
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Figure 2.9: 1st derivative of theΞ2-basis.

2.4 NURBS geometry

A NURBS geometry in Rd is obtained by a projective transformation of a B-spline geometry in

Rd+1. Therefore, a natural starting point understanding NURBS geometries is to look into B-

spline geometries. It will be focused on curves, as this thesis is limited to beam elements.

2.4.1 B-spline curves

As in standard FEA, a B-spline curve is constructed from a linear combination of the basis

functions and a set of vector-valued coefficients, called control points in IGA.

Given n basis functions, Ni ,p and their corresponding control points, Bi , i = 1,2, ...,n, a

B-spline curve, consisting of piecewise polynomials connected at the knot values, is given by:

C(ξ) =
n∑

i=1
Ni ,p (ξ)Bi (2.6)

The control points, whose piecewise linear interpolation is called the control polygon, are

analogous to nodes in FEA. However, an important difference is that they are in general
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non-interpolatory.

The curve in Figure 2.10 are constructed from the quadratic Ξ1-basis. The control points are

denoted by , and the knot locations, which partition the curve into elements, are denoted �.

(a) Curve and control polygon (b) Curve and knot locations

Figure 2.10: Quadratic B-spline curve in R2 constructed fromΞ1

and B = [(0,0), (1,3), (2,−2), (3,0), (4,0)].

Another curve, constructed from the Ξ2-basis are shown in Figure 2.11. Note that at the

C 0-continuity at ξ = 2/3, the element boundary coincides with the control point, B4, which

becomes interpolatory. Another important property of B-spline curves (and NURBS curves) is

that at the control polygon coincides with the endpoint tangents of the curve [26].
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(a) Curve and control polygon
(b) Curve and knot locations

Figure 2.11: Quadratic B-spline curve in R2 constructed fromΞ2

and B = [(0,0), (0.5,−1), (1,3), (2,−2), (3,1), (4,1)].

2.4.2 Refinement

An important aspect of IGA, as well as FEA, is how the basis may be enriched without changing

the geometry or the parameterization, allowing control of the discrete solution space. In

addition to order elevation and h-refinement, which are known mechanisms from FEA, one

may also control the continuity of the basis. This makes the refinement space of IGA much

richer.

In IGA, there are three basic refinement mechanisms:

• Knot insertion

• Order elevation

• k-refinement

which in this section are briefly presented. For more detailed descriptions and algorithms, the

reader is referred to [32, 25].
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Knot insertion

Recalling that element boundaries are found at the knots, insertion of new knots partition the

domain into several elements. This is known as knot insertion, and is similar to h-refinement

in FEA. It differs, however, in the continuity across the element boundaries created (C
p−1). To

perfectly replicate h-refinement, the new knot would have to be inserted p times, so that

C 0-continuity is obtained.

Insertion of new knots requires recomputation of both the basis functions and the control

points. Having an original knot vector, Ξ = [ξ1,ξ2, ...,ξn+p+1], an extended knot vector,

Ξ = [ξ1,ξ2, ...,ξm+n+p+1 = ξn+p+1] is introduced, such that Ξ ⊂ Ξ. The basis is still formed by

equations 2.3 and 2.4. To leave the geometry geometrically and parametrically unchanged, the

new control points, Bi , i = 1, ...,n +m, must satisfy the condition:

C(ξ) =
n∑

i=1
Ni ,p (ξ)Bi =

n+m∑
i=1

N i ,p (ξ)Bi (2.7)

Which will lead to system of linear combinations of the original control points. For a knot

which has an initial multiplicity of s and is to be inserted r times, the i th control point in the

r th insertion, denoted Bi ,r , is given as:

Bi ,r =αi ,r Bi ,r−1 + (1−αi ,r )Bi−1,r−1 (2.8)

where Bi ,0 = Bi and

αi ,r =


1 i ≤ (k −p + r −1)

ξ−ξi
ξi+p−r+1−ξi

(k −p + r ) ≤ i ≤ (k − s)

0 i ≥ (k − s +1)

k represents the position index of the new knot. An efficient algorithm for Equation 2.8 is given

in Piegl and Tiller [32], A5.1.

In Figure 2.12, knot insertion is performed on the curve from Figure 2.10. In the new knot vector,

Ξ1 = [0,0,0, 1
6 , 2

6 , 3
6 , 4

6 , 5
6 ,1,1,1], the knot spans in Ξ1 is split in half by introducing the knots ξ4 =

1
6 ,ξ6 = 3

6 ,and ξ8 = 5
6 . The curves are clearly identical, but the refined curve has got more degrees

of freedom and thus a richer solution space.
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(a) Original curve and B (b) Refined curve and B

(c) Original mesh (d) Refined mesh

(e) Original basis functions (f) Refined basis functions

Figure 2.12: Knot insertion:Ξ1 = [0,0,0, 2
6 , 4

6 ,1,1,1] −→Ξ1 = [0,0,0, 1
6 , 2

6 , 3
6 , 4

6 , 5
6 ,1,1,1].

Order elevation

Another mechanism to enrich the basis is by order elevation (p- refinement in FEA). Recalling

that the first and last knot value appears p +1 times for open knot vectors, the order is raised by

adding new knots here. To preserve the C p−mi -continuity, the existing knots must be repeated

simultaneously.

In short, order elevation is done by increase the multiplicity of each knot. No new knot values

are introduced.

The higher order curve, Cp+1, is simply computed by embedding the lower order curve, Cp , to

a higher dimensional space. Thus, there must exist control points, B̂, and a knot vector, Ξ̂, such
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that:

Cp (ξ) =
n∑

i=1
Ni ,p (ξ)Bi = Cp+1(ξ) =

n̂∑
i=1

N̂i ,p+1(ξ)B̂i (2.9)

Order elevation requires computation of the new basis functions, N̂. The new control points, B̂,

are obtained in a similar way as for knot insertion.

A detailed description can be read in [32], where also the implemented algorithm A5.9 is given.

Figure 2.13 illustrates this refinement method. Again, the Ξ1 basis and geometry from Figure

2.10 is used. Increasing the knot multiplicity by 1, the new knot vector becomes

Ξ̂1 = [0,0,0,0, 1
3 , 1

3 , 2
3 , 2

3 ,1,1,1,1].

(a) Original curve and B (b) Refined curve and B̂

(c) Original mesh (d) Refined mesh

(e) Original basis functions (f) Refined basis functions

Figure 2.13: Order elevation:Ξ1 = [0,0,0, 2
6 , 4

6 ,1,1,1] → Ξ̂1 = [0,0,0,0, 1
3 , 1

3 , 2
3 , 2

3 ,1,1,1,1].
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k- refinement

It is observed that knot insertion generates more elements while keeping the polynomial order

constant, and that order elevation raise the polynomial order while keeping number of

elements and the continuity constant. k -refinement mixes these two methods such that the

order is raised while having the maximum continuity available. This method has no analogue

in FEA.

The strategy for k-refinement is to first perform order elevation to the desired degree, and then

insert additional knot values. For pure p -refinement, these operations are done in the opposite

order. Figure 2.14 compares these methods for a case where one linear element shall be refined

to three 4th order elements. Note that the number of new shape functions generated is

significantly lower with k -refinement.

Hughes et al. [22] has shown that k-refinement has advantages of robustness and efficiency

over p-refinement.
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Initial basis,Ξ= [0,0,1,1]

Ξ= [0,0, 1
3 , 2

3 ,1,1] Ξ= [0,0,0,1,1,1]

Ξ= [0,0,0, 1
3 , 1

3 , 2
3 , 2

3 ,1,1,1] Ξ= [0,0,0,0,1,1,1,1]

Ξ= [0,0,0,0, 1
3 , 1

3 , 1
3 , 2

3 , 2
3 , 2

3 ,1,1,1,1] Ξ= [0,0,0,0,0,1,1,1,1,1]

Ξ= [0,0,0,0,0 1
3 , 1

3 , 1
3 , 1

3 , 2
3 , 2

3 , 2
3 , 2

3 ,1,1,1,1,1] Ξ= [0,0,0,0,0 1
3 , 2

3 ,1,1,1,1,1]

Figure 2.14: p-refinement (left) compared to k-refinement (right). Both ending with three 4th
order elements.
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2.4.3 NURBS curves

Having defined the non-rational B-spline curves, non-uniform rational B-splines (NURBS) are

now introduced. The motivation is that NURBS allow high geometrical flexibility, such as an

exact representation of circular shapes.

From a geometric point of view, a NURBS curve in Rd is obtained by a projective

transformation of a B-spline curve in Rd+1 onto a hyperplane H = 1 in Rd . This is easily

interpreted for a curve in R2 constructed from a B-spline curve in R3. The transformation is

then applied by projecting the curve onto the z = 1 plane by a ray through the origin, as shown

in Figure 2.15. Here, the z- components represents the weights, denoted wi .

Figure 2.15: A quarter of a circle in R2 constructed by the projective transformation of a non-
rational B-spline curve in R3

This projection is expressed mathematically by introducing a weighting function, W (ξ), given as

the sum of the basis functions multiplied with their associated weight:

W (ξ) =
n∑

i=1
Ni ,p (ξ)wi (2.10)
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where Ni ,p is the B-spline basis functions. The NURBS curve, C(ξ) is then given as:

C(ξ) = Cw (ξ)

W (ξ)
(2.11)

where Cw (ξ) refers to a projective B-spline curve from Equation 2.6.

For IGA, it is more effective to compute the basis for the NURBS space directly. The NURBS basis

is given by the B-spline basis and the weights:

Ri ,p (ξ) = Ni ,p (ξ)wi

W (ξ)
(2.12)

which leads to the equation for the NURBS curve:

C(ξ) =
n∑

i=1
Ri ,p (ξ)Pi (2.13)

where Pi are the NURBS control points, obtained by the relation: Pi = Bi /wi .

All the essential properties discussed earlier are retained in NURBS (linear independence, local

support, etc.).

Derivatives of NURBS basis functions

The derivatives of the non-rational basis given in Equation 2.5 are still valid, but as the rational

basis contains the weighting function W (ξ), the chain rule must be applied:

d

dξ
Ri ,p (ξ) = wi

W (ξ)
d Ni ,p (ξ)

dξ − dW (ξ)
dξ Ni ,p (ξ)

(W (ξ))2
(2.14)

where
dW (ξ)

dξ
=

n∑
i=1

d Ni ,p (ξ)

dξ
wi (2.15)

Effective algorithms for computing first and higher order derivatives of the rational basis

functions are given in [32].
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2.4.4 Circular curves

Due to the non-interpolatory properties of NURBS-geometries, obtaining control points and

weights for general shapes are not straight forward, and not emphasized in this thesis. However,

as circular shapes frequently show up in numerical analyses, a brief description of how these

may be modeled in R2 is given.

Circular arcs with a sweep angle less than 180° may be constructed from one quadratic element,

built from the knot vectorΞ= [0,0,0,1,1,1], giving three basis functions control points. Recalling

that the first and the last control point is interpolatory and that the end tangents coincide with

the control polygon, the control points are easily obtained. For the weights, they are given as

wi = [1,cos β2 ,1], where β is the sweep angle [17]. Figure 2.16 illustrates this for β= 90°. The third

coordinate in Pw
i refers to the weight number.

Figure 2.16: 90 °circular arc in R2 with associated control points and weights, constructed from
one quadratic NURBS element.
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Refinement of NURBS-geometries

The refinement strategies presented in Section 2.4.2 may also be used NURBS geometries.

However, in addition to the new control points, new weights must also be computed.

Having a curve in Rd from Equation 2.13 to be refined, conditions in Equations 2.8 and 2.9 are

valid if the weights are treated as component number d +1 in the control polygon.

The code in Appendix D performs k-refinement of a 90° circular arc. It may also be used for

other NURBS (and B-spline) geometries by changing the initial geometry.



Chapter 3

Timoshenko beam theory

In contrast to Euler-Bernoulli beam theory, Timoshenko (often referred to as Mindlin-Reissner)

beam theory includes shear deformations, which become more significant as the slenderness

ratio, (L/h), decreases.

In this chapter a linear, straight beam element is derived from the classical Timoshenko beam

theory [43, 44] in Section 3.1, and discretized with the Lagrangian and the NURBS basis in

Sections 3.2 and 3.3, respectively. In Section 3.4 the beam elements are implemented and

verified through a few numerical examples. Lastly, transverse shear locking is highlighted in

Section 3.5.

Note that this element is restricted to linear analyses and linear geometries.

3.1 Governing equations

The displacement based theory assumes independent fields for rotations, θi , and translations,

ui , i = x, y, z. According to the fundamental hypothesis for beams, it is assumed that the cross-

section remain plane under deformation, but not necessarily normal to the line of centroids.

The difference between the rotation of the cross-section and the slope defines the transverse

shear strains. For a beam with the local axis in x-direction and a cross-section symmetric about

27
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the y- and z-axis, the transverse shear strains are defined as:

γxz = uz,x +θy (3.1)

γx y = uy,x −θz (3.2)

where θi denotes the rotation about axis i , and u j ,x = ∂u j

∂x the slope in j - direction wrt. to the

local coordinate x. This is illustrated for the xz- plane in Figure 3.1. The minus-sign in

Equation 3.2 comes from the definition of the right-handed coordinate system.

Figure 3.1: Transverse shear strain in the xz- plane, γxz .

Restricting the model to double-symmetric cross-sections, such that the shear center coincides

with the cross-section centroid, axial force is decoupled from bending moments and torsional

moment decoupled from shear forces and can thus be handled independently. The other strain

components: axial strain, torsional strain and bending strains are given respectively as:

εx = ux,x

ϕ= θx,x

κy = θz,x (3.3)

κz = θy,x

Assuming a linear elastic material with Young’s modulus, E , and shear modulus, G , the
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corresponding forces and moments are given:

N = E Aεx

Vy =G As yγx y (3.4)

Vz =G Aszγxz

T =G ITϕ

My = E Izκz (3.5)

Mz = E Iyκy

where A denotes the cross-section area, Asi the reduced cross-section shear area in the direction

of i . IT is the torsional stiffness and Ii is the cross-section second moment of area about axis i .

The forces and moments are illustrated in Figure 3.2.

Figure 3.2: Forces and moments from Eqs. 3.3 and 3.4.

The total strain energy, U , may then be expressed as:

U =UN +UVy +UVz +UT +UMy +UMz =
1

2

(
E A

∫
L
ε2

xd x +G As y

∫
L
γ2

x y d x +G Asz

∫
L
γ2

xzd x +G IT

∫
L
ϕ2d x +E Iy

∫
L
κ2

zd x +E Iz

∫
L
κ2

y d x

)
(3.6)
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3.2 Linear FEA of straight Timoshenko beams

For comparison and reference, the Timoshenko beam has been implemented using the

standard Lagrangian shape functions for discretization. As this is a well known element, only a

brief summary of the derivation is given. For more details, see [7].

This element has six unknown fields: translations, u, and rotations, θ, written as:

u =


ux

uy

uz

 , θ =


θx

θy

θz

 (3.7)

with the indices x, y, z referring to the local axes of the element.

Using Galerkin’s method, the weak formulation of these fields are obtained by interpolation

between the nodal degrees of freedom, v:

uh = N̂0vu (3.8)

θh = N̂0vθ (3.9)

where

N̂0 =


N 0 0

0 N 0

0 0 N

 , vu =


vx

vy

vz

 , vθ =


vθx

vθy

vθz

 (3.10)

and N = [N1, N2, ...Nn] are the Lagrangian interpolation functions. uh represents the weak form

approximation of u, such that uh ⊂ u (and similar for θh).

By introducing

ûh =
uh

θh

 , N̂ =
N̂0 0

0 N̂0

 ,and v̂ =
vu

vθ

 (3.11)
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the interpolation may be expressed in compact form:

ûh = N̂v̂ (3.12)

The displacement fields are obviously uncoupled, due to the diagonal properties of N̂. Thus, the

strain energy contributions can be computed separately.

Using Equations 3.8 and 3.9 the integrands (strains and curvatures) in Equation 3.6 become:

εx = ux,x =
[

N,x 0 0 0 0 0
]

v̂ = BN v̂ (3.13)

γx y = uy,x −θz =
[

0 0 N,x 0 −N 0
]

v̂ = BVy v̂ (3.14)

γxz = uz,x +θy =
[

0 N,x 0 0 0 N
]

v̂ = BVz v̂ (3.15)

ϕ= θx,x =
[

0 0 0 N,x 0 0
]

v̂ = BT v̂ (3.16)

κy = θy,x =
[

0 0 0 0 N,x 0
]

v̂ = BMy v̂ (3.17)

κz = θz,x =
[

0 0 0 0 0 N,x

]
v̂ = BMz v̂ (3.18)

Where B is the strain-displacement matrix. Inserting these in Eq. 3.6, the strain energy for the

weak formulation in terms of the element stiffness matrix, k becomes:

U = 1

2
v̂T

(
E A

∫
Le

BT
N BN d x +G As y

∫
Le

BT
Vy

BVy d x +G Asz

∫
Le

BT
Vz

BVz d x

+G IT

∫
Le

BT
T BT d x +E Iy

∫
Le

BT
My

BMy d x +E Iz

∫
Le

BT
Mz

BMz d x
)
v̂

= 1

2
v̂T kv̂ (3.19)

The same shape functions are used to distribute the loads. This consistent element load vector,

S0, is given as:

S0 =−
∫

Le

N̂q(x)d x (3.20)

where q(x) is the load function.

By equilibrium considerations, the well known element stiffness relation is obtained:



CHAPTER 3. TIMOSHENKO BEAM THEORY 32

kv̂+S0 = S (3.21)

which is finally assembled to the global system.

3.3 Linear IGA of straight Timoshenko beams

The element derived in Section 3.2 is now discretized with the NURBS basis. Most of the steps

are identical as for the Lagrange basis, but a distinct difference, however, is that the parameter

space is no longer local to elements, but rather to patches. Furthermore, the control points

(analogue to nodes in FEA) are in general not interpolatory.

Starting from the continuous displacement fields in Equation 3.7, they are now discretized by

the definition of NURBS-curves from Equation 2.13, written on matrix form as:

ûh = R̂d̂ (3.22)

which is identical to Equation 3.12 for FEA, apart from R̂, which is a diagonal matrix containing

the NURBS basis functions, R = [R1,p ,R2,p , ...,Rn,p ], and d̂ = [dx ,dy ,dz ,dθx ,dθy ,dθz ]T ,

representing the control point displacements.

The strain-displacement relations are obtained from Equations 3.13 - 3.18 by replacing the

Lagrange basis with the NURBS basis. Because the Gaussian quadrature rule for numerical

integration is convenient for knot spans (or spline elements) [25], the stiffness matrix and

consistent load vector are computed knot span-wise. As with FEA, these contributions are

finally assembled to a global system (i.e. the patch). For the assembly, it is important to

remember that each basis function has support over the half-open interval [ξi ,ξi+p+1〉, and the

elements may thus ’overlap’ each other. Connectivity arrays can be found in Hughes et al.[25].
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3.4 Verification of the straight Timoshenko beam element

To verify the implementation of the Timoshenko theory for linear analyses of straight beams, a

few classical numerical tests have been carried out, where the Lagrangian and the NURBS

elements (referred to as FEA and IGA) have been tested in parallel. The errors in displacements

are expected to be in the range of e = O (hp+1). Furthermore, the discretizations should predict

the analytical solution exactly if the solution space is contained within the approximation

space, i.e. û ⊂ ûh .

The impact of full and reduced integration has also been studied. Full, or exact integration

corresponds to an element-wise Gaussian quadrature rule of order p + 1, and reduced

integration to one order lower, i.e. p Gauss points per element.

As the displacements directly determine strains and forces, only convergence of the

displacements are investigated. On the horizontal axis in the convergence plots, ”nDOFS”

refers to the number of free DOFs, i.e. 3 per free node for planar beams.

For the 2D straight beam problems considered in this section, the analytical solutions are

computed from a superposition of the Euler- Bernoulli solution, solved from the differential

equation:

d 2

d x2

(
E Iy

duz

d x2

)
= qz(x) (3.23)

and the shear deformation δs , given as:

δs =
∫ x

0

Vz(x)(4+5ν)kzh2

24E Iy
d x (3.24)

where Vz(x) is the shear force distribution.

With the analytical solution at hand, the relative error of • is computed either pointwise as:

|e•| = |•exact −•h |
| •exact | (3.25)
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or over a domain, L, in terms of the classical L2-norm:

||e•||L2 =

√√√√√√
∫

L

(
•ex (x)−•h(x)

)2
d x∫

L

(
•ex (x)

)2
d x

(3.26)

3.4.1 Cantilever beam subjected to tip shear

The first example is a straight cantilever beam subjected to a transverse load at the free end.

Input data is given in Table 3.1.

Figure 3.3: Cantilever beam

Length Young’s modulus Poisson’s ratio Width Thickness Load
L = 10 E = 1000 ν= 0 b = 1 h = 1 P = 1

Table 3.1: Geometry and material data for cantilever beam subjected to tip shear.

The analytical solution for the displacements, including shear deformations is given:

uz = P

6E Iy

[
(3L−x)x2 + (4+5ν)

kzh2x

4

]
(3.27)

The beam is discretized with linear and quadratic basis functions for both FEA and IGA. The

cubic displacement field is exactly reproduced with elements of equal order. With exact, or full

integration, the relative error in displacements in terms of the L2-norm, computed from

Equation 3.26, is shown in Figure 3.4.
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Figure 3.4: L2-norm of the relative error in displacements for IGA and FEA with exact integration.

IGA coincides with FEA for p = 1 as the linear bases are identical. Further, they produce the

same convergence rates with quadratic elements, but for IGA the absolute error is

approximately one order less.

For reduced integration, the relative error in the displacement field is shown in Figure 3.5. As

for full integration, quadratic IGA produce the same convergence rate and less absolute error

than FEA. All elements exhibit optimal convergence.
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Figure 3.5: L2-norm of the relative error in displacements for IGA and FEA with reduced
integration.

3.4.2 Cantilever beam subjected to distributed load

The cantilever beam from Section 3.4.1 is now subjected to a uniformly distributed load,

q = 0.1, taken into account with a consistent load vector.

Figure 3.6: Cantilever beam subjected to distributed load

Here, the analytical solution for the transverse displacements is given:

uz = qx2

24E Iy

(
2L2 + (2L−x)2

)
+ qkzh2(4+5ν)

24E Iy

(
Lx − x2

2

)
(3.28)

The convergence is studied for FEA and IGA for elements up to cubic order. Quartic elements
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produce the analytical solution. As error measurement, the L2-norm of the relative error in

transverse displacements has been computed from Eqs. 3.28 and 3.26. The results are reported

in Figures 3.7 and 3.8 for full and reduced integration, respectively.

Again it is confirmed that the linear bases coincide. For p ≥ 2, IGA produce errors

approximately one order less than FEA for both integration regimes. With reduced integration,

the errors from the linear basis is shifted approximately two orders, which indicates presence

of transverse shear locking with full integration. This phenomenon is discussed in Section 3.5.

The errors are also shifted with quadratic and cubic elements, but not nearly as significantly as

for the linear elements.

Figure 3.7: L2-norm of the relative error in displacements for FEA and IGA with full integration.
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Figure 3.8: L2-norm of the relative error in displacements for FEA and IGA with reduced
integration.

3.4.3 Double cantilever beam subjected to transverse point load

In the next example, a beam is clamped in both ends and subjected to a transverse point load at

the center, as shown in Figure 3.9a. Geometry and material data are given in Table 3.2. Due to

symmetry, only half of the beam is considered. Zero rotation and no shear are assumed at the

midspan. Figure 3.9b shows the problem setup.

Length Young’s modulus Poisson’s ratio Width Thickness Load
L = 10 E = 1000 ν= 0 b = 1 h = 1 P = 1

Table 3.2: Geometry and material data for clamped beam subjected to transverse load at the
center.
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(a) Problem

(b) Idealized system

Figure 3.9: Double cantilever beam subjected to transverse point load.

Again the L2-norm of the relative error in transverse displacements is used as measure. For this

problem, the analytical solution is given:

uz = P

12E Iy

(
(3L−2x)x2 + (4+5ν)kzh2x

2

)
(3.29)

Figures 3.10 and 3.11 compare FEA and IGA for full and reduced integration, respectively. In

Figure 3.12, IGA with both integration regimes is compared. For this beam the convergence rates

for p = 2 are initially higher with full integration, but as seen from Figure 3.12, they converge

towards the same rate and errors as reduced integration. Otherwise the behavior is similar as

the previous tests.
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Figure 3.10: L2-norm of relative error in transverse displacements for FEA and IGA with full
integration.

Figure 3.11: L2-norm of relative error in transverse displacements for FEA and IGA with reduced
integration.
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Figure 3.12: L2-norm of relative error in transverse displacements for IGA with full and reduced
integration.

3.4.4 Double cantilever beam subjected to distributed load

The beam from Section 3.4.3 is now subjected to a uniformly distributed transverse load, q = 0.1.

Due to symmetry, only half the beam is considered. Problem setup is shown in Figure 3.13, and

the analytical solution is given:

uz = qx2

24E Iy
(2L−x)2 + qkzh2(4+5ν)

24E Iy

(
Lx − x2

2

)
(3.30)

from which the L2-norm of the relative error is computed and used as measure.

Figure 3.13: Double cantilever beam subjected to uniformly distributed load.
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As the strong form solution is of 4th order, the convergence study is carried out for elements

up to cubic order. Figures 3.14 and 3.15 compare FEA and IGA for full and reduced integration,

respectively. The same results are shown in Figures 3.16 and 3.17, but now full and reduced

integration are compared for the Lagrangian and the NURBS bases, respectively.

For p ≥ 2 IGA still produces errors approximately one order less than FEA. Furthermore, both

bases have initially faster convergence with full integration, but they seem to stabilize to the

same rates and errors as with reduced integration. Lastly, it is observed that the errors with FEA

is shifted slightly more than for IGA with reduced integration.

Figure 3.14: L2-norm of relative error in transverse displacements for FEA and IGA with full
integration.
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Figure 3.15: L2-norm of relative error in transverse displacements for FEA and IGA with reduced
integration.

Figure 3.16: L2-norm of relative error in transverse displacements for FEA and IGA with reduced
integration.
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Figure 3.17: L2-norm of relative error in transverse displacements for FEA and IGA with reduced
integration.

3.4.5 Concluding remarks

The numerical tests have shown that both IGA and FEA exhibit optimal convergence and

produce the exact solution when the approximation space is a superset of the solution space,

û ⊂ ûh . Thus, the implementation of the Lagrangian and the NURBS discretizations to the

straight, linear Timoshenko beam has been successful.

The numerical results suggest that for p ≥ 2, IGA produce errors approximately one order less

than FEA for linear, straight beam problems. Furthermore, it has been observed that reduced

integration has slightly more impact on FEA than IGA, as seen from e.g. Figure 3.16 and 3.17.

For all analyses reduced integration shows less errors than exact integration, which indicates

presence of spurious strains and numerical locking.
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3.5 Locking effects in straight beam elements

It may turn out that the numerical analyses provide slow convergence and large errors due to

strains which are not present in the analytical solution. These spurious strains will absorb

strain energy and give artificial stiffness, which in literature is referred to as locking. For this

thesis, the relevant locking phenomena are transverse shear locking and membrane locking.

The latter will only occur in curved beam elements and is described in Section 4.5. Other types

of locking, as poisson locking and volumetric locking are not discussed any further here.

Transverse shear locking may appear in both IGA and FEA for displacement-based straight

Timoshenko beam elements. The ratio between bending and shear stiffness, E I
G As

, is

proportional to the square of the thickness, h. As the thickness decreases, this ratio converges

quadratically towards zero and the response becomes dominated by bending. However, if

spurious shear strains are produced under deformation, these will absorb strain energy and

consequently give over-stiffening behavior. This is known as transverse shear locking.

Recalling from Section 3.1 the kinematic equations for curvature and transverse shear strain

are given in terms of the independent fields for rotation and displacement as:

κy = θy,x

γxz = uz,x −θy

respectively. Interpolated with equal order, the highest order term in θy cannot be balanced by

uz,x in the expression for γxz . This is illustrated in Figure 3.18, where the transverse strain field,

γh
x y , for the beam in Figure 3.19 discretized with 5 quadratic elements. The unbalanced term is

of equal order and turns up as parabolas in the strain field. It does not coincide with the

analytical solution, γx y , and hence, spurious shear strains are present.
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Figure 3.18: Spurious transverse shear strains.

An analytical study of transverse shear locking is carried out for the cantilever beam from

section 3.4.1, keeping the thickness symbolic. For ν= 0 and Asz = A, the analytical solution for

the displacement and rotation can be written respectively as:

uz = w = 2P̂

Eb

(
(3L−x)x2 +xh2

)
(3.31)

uθy = θ =−6P̂

Eb

(
(2L−x)x

)
(3.32)

Where P̂ is scaled with h3 such that the bending part of the displacements become

independent of the thickness. Note that in the Kirchhoff limit, i.e. h → 0, the Euler-Bernoulli

solution is obtained.

The beam is now discretized with one isogeometric element. Starting with p = 1 the reduced

equation system becomes:

Eb

12L

 6h −3hL

−3hL 2hL2 +h3

w2

θ2

=
Ph3

0

 (3.33)

which gives the displacements at the free control point:
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vp=1 =
w2

θ2

=
 1

50
h2(h2+200)

(h2+50)

−3
5

h2

(h2+50)

 (3.34)

where it is obvious that for h → 0, the displacements [w,θ] → 0 and consequently, the element

locks.

Solving for one quadratic and cubic isogeometric element, the free control point

displacements become respectively:

vp=2 =



w2

θ2

w3

θ3

=



1
100

h2(h2+60)
h2+10

−3
5

h2+5
h2+10

1
50

h4+210h2+1500
h2+10

−3
5

 vp=3 =



w2

θ2

w3

θ3

w4

θ4


=



h2

150

−2
5

h2

75 +2

−3
5

h2

50 +4

−3
5


(3.35)

The rotation at the tip becomes independent of h for quadratic elements, but the interior knot

and tip displacement is still dependent of h. Thus, locking effects are still present, but

increasing the polynomial order drastically reduces the impact of locking.

For this beam, the analytical solution is exactly reproduced with one cubic elements, and is for

that reason locking-free. However, as seen in Figure 3.20, higher order elements also reveal

locking.

As a numerical test, the clamped beam subjected to a transverse distributed load shown in

Figure 3.19 is considered. The load is increasing linearly from zero in x = 0 to q in x = L.

Otherwise it is identical as the beam in Section 3.4.4. The 5th order analytical solution for

transverse displacements reads:

uz(x) = q̂

E I

[
x5

120L
− Lx3

12
+ 5L2x2

48

]
+ q̂kzh2

12E I L

[
L2x − x3

3

]
(3.36)

where q̂ = qh3.
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Figure 3.19: Clamped beam subjected to linearly increasing pressure

The beam is discretized with 5 equally sized NURBS elements with the highest continuity

available. To include locking of interior control points, the relative error is measured in terms of

the L2-norm of the displacement field, computed from Equation 3.26.

The results for p = 1,2,3,4 with exact integration is reported in Table 3.3 and Figure 3.20. p = 5

produces the analytical solution.

Le /h 101 102 103 104 105

p = 1 0.631994 0.994148 0.999941 0.999999 1.000000
p = 2 0.014023 0.559620 0.992066 0.999920 0.999999
p = 3 0.000050 0.002836 0.038994 0.045177 0.045253
p = 4 0.000002 0.000024 0.001184 0.002688 0.002719

Table 3.3: L2-norm of the relative error in displacements for p = 1,2,3,4 with exact integration.
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Figure 3.20: Logarithmic plot of relative error in terms of the L2-norm with respect to the
slenderness for the clamped beam subjected to a linearly increasing pressure with exact
integrated IGA.

Thickness dependency in all elements are revealed, and linear and quadratic elements lock

completely, even for moderate slendernesses.

For the same setup, the effect of reduced integration is studied. The results are reported in

Table 3.4 and Figure 3.21. Except for p = 1, whose basis is identical as the Lagrangian, the

elements still show thickness dependency. Quadratic elements performs better and do not lock

completely with reduced integration, but on higher order elements, the impact of reduced

integration is vanishingly small.

Le /h 101 102 103 104 105

p = 1 0.068498 0.069789 0.069803 0.069803 0.069802
p = 2 0.001039 0.022783 0.044860 0.045302 0.045310
p = 3 0.000045 0.001945 0.036229 0.045137 0.045254
p = 4 0.000002 0.000024 0.001122 0.002685 0.002715

Table 3.4: L2-norm of the relative error in displacements for p = 1,2,3,4 with reduced
integration.
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Figure 3.21: Logarithmic plot of relative error in terms of the L2-norm with respect to the
slenderness for the clamped beam subjected to a linearly increasing pressure with reduced
integrated IGA.



Chapter 4

The geometrically exact 3D Timoshenko

beam model

The element derived in Chapter 3 is limited to linear analyses of straight beams, which limits its

versatility. However, it is a good starting point understanding the structure of numerical

analyses, and sufficient for many academic purposes.

In this chapter the geometrically exact 3D beam model, proposed by Simo [38], Simo and

Vu-Quoc [39, 40] and Ibrahimbegović [23] based on Reissner’s 3D beam theory [35], is

presented. This beam model is able to accommodate large displacements, finite rotations and

finite strains, and is thus suitable for not only linear analyses, but also non-linear and dynamic

analyses.

In Sections 4.1 and 4.2, the governing kinematic and equilibrium equations are considered at a

continuous level. The problem will be discretized using the Lagrangian and the NURBS basis

functions in Sections 4.3 and 4.4, respectively. Lastly, in Section 4.5, membrane locking which

may occur in initially curved beams is described.

51
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4.1 Governing kinematic equations

A local curvilinear coordinate system is chosen where ξ1(t ) is the parametric variable used to

define the reference axis of the beam. t is the time parameter. Let X(ξ1) and x(ξ1) denote the

coordinates of the beam reference axis in the initial, C0, and current, Cn , configuration,

respectively.

In accordance with standard hypothesis for beam,

(i) a straight line that is initially normal to the reference axis remains straight in the deformed

configuration, but not necessarily normal to the deformed axis (since transverse shear

deformations are considered), and

(ii) the cross-section remain plane and undeformed in the deformed configuration.

The orientation of the cross-section in the initial configuration is defined by the local Cartesian

basis vector, i 0
1 (ξ1), and the two cross-section axes i 0

2 (ξ1) and i 0
3 (ξ1).

Without loss of generality, the cross-section is chosen to be initially normal to the beam

reference axis, hence:

i 0
1 (ξ1) = X,ξ1 (4.1)

The position of the local Cartesian bases in the current configuration, ii (ξ1, t ), can be defined

via the product of the two orthogonal tensors R and R0:

ii = R i 0
i = RR0 Ii = R Ii (4.2)

where R = R(ξ1, t ) represents the rotation of the local Cartesian basis from its initial

configuration i 0
i to its current (deformed) configuration, ii , whereas R0 = R0(ξ1) is the rotation

tensor representing the position of the local Cartesian basis, i 0
i with respect to the fixed, global

Euclidean base vectors, Ii , respectively.

These relations are illustrated in Figure 4.1.
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Figure 4.1: Beam segment in initial and current configuration with its governing kinematic
relations.

4.2 Governing equilibrium equations

As shown by Antmann [3], Reissner [35], Simo [38] and Ibrahimbegivić [24], the beam balance

equations can be obtained without introducing any simplifying hypothesis regarding its

geometry or size of the displacement and rotation. Hence, this theory is referred to as

geometrically exact.

The linear and angular momentum balance equations for the geometrically exact 3D beam for

statics reads:
n,ξ1 +n = 0 (4.3)

m,ξ1 +x,ξ1 ×n+m = 0 (4.4)
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where n and m are the spatial stress resultants and stress couples (moments), and n and m are

the externally applied forces and moments.

It may be shown (Helgedagsrud et al. [20]) that the corresponding conjugate axial, shear and

bending strain measures can be obtained, respectively, as:

ε= x,ξ1 − i1 (4.5)

κ=ω (4.6)

whereω is the axial vector of the skew-symmetric tensorΩ, defined as:

Ω= R,ξ1 RT (4.7)

Assuming a linear elastic material, the spatial stress resultants are related to the finite strain

measures through the constitutive equations:

n = R C RT ε ; C = diag(E A,G A2,G A3) (4.8)

m = R D RT κ ; D = diag(G It ,E I2,E I3) (4.9)

The potential energy of the beam can then be written:

Π= 1

2

∫
L

(
εn+κm

)
d s −Πext (4.10)

The weak form of the equilibrium equation now reads:

δΠ=
∫

L

(
δεn+δκm

)
d s −

∫
L

(
δx n+δωm

)
d s (4.11)

where δx andω are the vectors of virtual displacements and rotations, respectively.

As shown by Reissner [35], the explicit forms of the virtual displacements may be obtained
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from:

δε= δx,ξ1 −δω×x,ξ1 (4.12)

δκ= δω,ξ1 (4.13)

4.3 FE-approximation

Let the domain L be approximated with piecewise polynomial functions, i.e. L ' Lh = ∑nel
e=1 Le ,

and:

xh
∣∣∣
Le

=
nen∑
i=1

Ni (ξ)xi = Nxe (4.14)

where Ni (ξ) are the standard Lagrange-type polynomials and xi are vectors of nodal

coordinates.

Similarly the virtual rotations are also obtained by isoparametric interpolation:

δωh
∣∣∣
Le

=
nen∑
i=1

Ni (ξ)δκi = Nδωe (4.15)

The matrix component of the discrete form of the weak form now becomes:

nel∑
e=1

δde(re − fe)= 0; δde =
δxe

δωe

 (4.16)

where
∑nel

e=1 denotes the FE assembly procedure accounting for the topology, or the connectivity

of the FE-matrices. fe denotes the external load vector, re the element residual, and the latter

reads:

re =
∫

Le

N,ξ1 x,ξ1 ×N

0 N,ξ1

T  n

m

d s (4.17)

Using the Gaussian quadrature rule for numerical integration, the components in the element

residual, r e
a , is given as:

r e
a =

ng p∑
g=1

jw (ξg )

Na,ξ1 I3 x̂,ξ1 ×NaI3

0 Na,ξ1 I3

T  n

m

 (4.18)
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where jw (ξ) = det(J )w(ξ) is the product of the Jacobian determinant and the weight number

for Gaussian quadrature, and x̂,ξ1 is the skew-symmetric tensor of x,ξ1 .

The material part of the tangent stiffness now reads:

Ke
m =

∫
Le

N,ξ1 x,ξ1 ×N

0 N,ξ1

T RT C R 0

0 RT D R

N,ξ1 x,ξ1 ×N

0 N,ξ1

 (4.19)

written on component form as:

K e
mab

=
Na,ξ1 I3 x̂,ξ1 ×NaI3

0 Na,ξ1 I3

T RT C R 0

0 RT D R

Nb,ξ1 I3 x̂,ξ1 ×NbI3

0 Nb,ξ1 I3

 (4.20)

4.4 Isogeometric approximation

The domain,L, is now approximated using NURBS. For single-patch problems, the parameter

space is relative to the entire domain. Thus, the weak form now reads:

xh =
nC P∑
i=1

Ni (ξ)pi = Np (4.21)

where Ni (ξ) are the NURBS basis functions (denoted Ri ,p in Chapter 3 and 2), and pi are vectors

of weighted control point coordinates.

Similarly, the virtual rotations are obtained using the NURBS basis functions for interpolation:

δωh =
nC P∑
i=1

Ni (ξ)δκi = Nδω (4.22)

Apart from the topology, the IGA-approximation is from this point identical to the

FE-approximation, and the element residual, r e
a , and the tangent stiffness, K e

mab
, are computed

from Equations 4.16 to 4.20.
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4.5 Locking effects in curved beam elements

Using the same notation as in Chapter 3, initial curvature is taken into account by an additional

term in the kinematic equations from Eqs. 3.1 to 3.3, which in 2D now reads:

ε1 = u1,1 + u3

R
(4.23)

γ13 = u3,1 −θ2 (4.24)

κ2 = θ2,1 −
u1,1

R
(4.25)

where 1, 2 and 3 refer to the local axes. Recalling from Section 3.5, the curved element will also

be sensible to transverse shear locking, seen from the same inconsistency in polynomial terms

in the expression for γ12. In a similar way the introduced 1
R -term gives rise to membrane

locking, which may take place in curved elements with both membrane and bending action.

As for the shear stiffness, the ratio between bending and axial stiffness, E I
E A , converges

quadratically towards zero. For high slendernesses the beam will then exhibit inextensional

bending, giving the inextensibility conditition:

ε1 = u1,1 + u3

R
= 0 (4.26)

A linear beam with curvature 1
R is now considered with the following interpolation:

u1 = a1 +a2s (4.27)

u3 = b1 +b2s (4.28)

θ2 = c1 + c2s (4.29)

where ai ,bi ,ci are generalized DOFs, and s the mid-line coordinate. The inextensibility

condition then reads:

ε1 = a2 + b1

R
+ b2

R
s = 0 (4.30)
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The constraint b2 → 0 implies from Equation 4.28 that u3,1 → 0. From the Kirchoff limit for

slender beams, γ13 = u3,1 −θ2 = 0, it is then seen that θ2 → 0, and thus the element tend to lock.

This locking phenomenon is referred to as membrane locking.

The same field-inconsistency may cause locking in higher order elements. For a quadratic

element with curvature 1
R , the interpolation reads:

u1 = a1 +a2s +a3s2 (4.31)

u3 = b1 +b2s +b3s2 (4.32)

θ2 = c1 + c2s + c3s2 (4.33)

giving the inextensibility condition:

ε1 = a2 + b1

R
+

(
2a3 + b2

R

)
s + b3

R
s2 = 0 (4.34)

The spurious constraint is now b3 → 0, which from Equation 4.32 implies that u3,11 → 0. By the

derivative of the Kirchhoff limit, γ13,1 = u3,11−θ2,1 = 0, it is seen that θ2,1 → 0, and locking is also

present in quadratic elements.

A spurious constraint will in fact appear in all higher order elements and give excessive

stiffness in bending action. However, as the spurious constraint increases with one order per

order elevation, the corresponding effect will be reduced by approximately two orders (since

K e
m11

∝ ∫
Le ε2

1d s). For more details on membrane locking, the reader is referred to [14, 33].



Chapter 5

Verification of spatial Timoshenko beam

The element derived in Chapter 4 is tested through a number of numerical tests with different

load types and boundary conditions. The aim is to verify that the elements provide the expected

convergence, study the impact of full and reduced integration and determine any locking or

other weaknesses of the isogeometric elements.

The number of elements are chosen to give approximately the same number of nodes for the

different element types. This relation is given in Appendix A.

For comparison, the tests have also been analyzed with standard Lagrangian finite elements.

Note that in this chapter ”nDOFS” in the convergence plots refers to the total number of degrees

of freedom (i.e. 6(nel s +p) for IGA).

5.1 Curved cantilever subjected to axial tip load

Figure 5.1 shows geometry and material data for a planar 90° circular cantilever beam

subjected to an axial tip load, Fx . The load is proportional to the bending stiffness, such that

the bending part of the response is independent of the thickness.
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Young’s modulus: E = 1000
Poisson’s ratio: ν= 0
Radius: R = 10
Width: b = 1
Thickness: h = 1
Shear factor: ks = 6/5
Load: P = 0.1h3

Figure 5.1: Geometry and material data for curved beam subjected to axial tip load.

From Roark et al. [37], the analytical solution for the tangential tip displacement, ux(ξ = 1),

which is energy conjugate with the imposed load, is given:

ux = FxR3

E I

[3π

4
−2

]
+ FxR

E A

[
2ks(1−ν)+ 8

π
−1

]
(5.1)

which evaluated for the input data reads: ux = 0.4313798673. However, they have used a

simplified expression for the radial shear force and the solution will consequently not coincide

with Timoshenko theory. Therefore, a reference solution is computed from 32 quintic

Lagrangian elements with reduced integration which gives ux = 0.4301037419. The relative

error , |eux |, is then computed from Eq. 3.25.

Firstly, a convergence study is carried out for a fixed thickness of h = 1. The beam is discretized

with equally sized knot-span elements and the highest continuity available. The number of

elements is chosen in accordance with Table A.1 in order to keep the number of unknowns

(nearly) equal. The results for full and reduced integration is reported in Table 5.1. nnodes refers

to the (approximate) number of free nodes or control points.
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nnodes 4 8 16 32 64
FEA p = 2 0.711296 0.145560 0.011335 0.000743 0.000047

p = 3 0.036070 0.004564 0.000245 0.000004 0.000000
p = 4 0.000270 0.000002 0.000000

IGA p = 2 0.394649 0.019841 0.000929 0.000051 0.000003
p = 3 0.083866 0.000272 0.000001 0.000000
p = 4 0.000020 0.000000

FEA p = 2, red. int. 0.003702 0.000234 0.000015 0.000001 0.000000
p = 3, red. int. 0.000025 0.000003 0.000000
p = 4, red. int. 0.000000

IGA p = 2, red. int. 0.086941 0.000786 0.000010 0.000000
p = 3, red. int. 0.047582 0.000199 0.000001 0.000000
p = 4, red. int. 0.000020 0.000000

Table 5.1: Relative error in axial tip displacement for full and reduced integration

The logarithmic plots in Figures 5.2 and 5.3 show the convergence for IGA and FEA with full and

reduced integration, respectively.

Figure 5.2: Relative error in axial tip displacement for IGA and FEA with full integration.
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Figure 5.3: Relative error in axial tip displacement for IGA and FEA with reduced integration.

For full integration, FEA exhibits optimal convergence. IGA performs significantly better with

less error and faster convergence for p = 3 and p = 4. Quadratic elements converge with the

same speed, but the errors for IGA is approximately one order less.

With reduced integration, cubic and quartic Lagrangian elements show slightly slower

convergence, but the absolute errors are considerably reduced. Convergence rates are

maintained with IGA, but only the quadratic elements show less errors. It is also observed that

with IGA and reduced integration, the errors increase going from 1 to 2 elements for p = 2.

Thickness dependency is now studied for a fixed number of 5 elements, varying the

slenderness ratio, R/h, from 100 to 105. Figure 5.4 shows the tangential tip displacement for

IGA and FEA with both integration regimes together with the Kirchhoff solution.
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a) b)

c) d)

Figure 5.4: Thickness dependency of tangential tip displacement: a) FEA, full int., b) FEA, red.
int., c) IGA, full int., d) IGA, red. int.

IGA shows more severe locking than FEA, and while reduced integration appear to make FEA

completely locking-free, only the quadratic IGA-element show any significant improvement.

The amount of locking in isogeometric elements emphasize the severity of membrane locking.

5.2 45° bend subjected to an out-of-plane load

To check the implementation for a spatial response, a circular 45° bend is subjected to an out-

of-plane end load, P = 60, as shown in Figure 5.5. The bend has an average radius, R, of 100 and

a cross-sectional area of 1.
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Figure 5.5: Geometry and material data for a circular 45° bend [5].

The convergence of the displacement parallel to P is studied for quadratic to quintic order IGA

and FEA. A reference solution is computed from 32 quintic Lagrangian elements with reduced

integration and reads uz = 11.27509000, from which the relative errors are computed and

reported in Table 5.2.

nnodes 4 8 16 32
FEA p = 2 0.042591 0.010477 0.002406 0.000452

p = 3 0.002902 0.000048 0.000006 0.000000
p = 4 0.000077 0.000001 0.000000

IGA p = 2 0.140419 0.028865 0.001708 0.000096
p = 3 0.001093 0.000028 0.000000
p = 4 0.000079 0.000000

FEA p = 2, red. int. 0.000495 0.000031 0.000002 0.000000
p = 3, red. int. 0.000086 0.000001 0.000000
p = 4, red. int. 0.000001 0.000000

IGA p = 2, red. int. 0.000546 0.000044 0.000001 0.000000
p = 3, red. int. 0.001052 0.000019 0.000000
p = 4, red. int. 0.000002 0.000000

Table 5.2: Relative error in uz(ξ= 1) for full and reduced integration.

Figures 5.6 and 5.7 show convergence plots for full and reduced integration. respectively.
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Figure 5.6: Convergence of tip displacement for full integration.

Figure 5.7: Convergence of tip displacement for reduced integration.
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FEA exhibit optimal convergence except for cubic and quartic order with reduced integration,

which converge one order slower. For IGA, convergence rates are contained with reduced

integration. However, only the quadratic NURBS elements show significantly better

performance with reduced integration, while Lagrangian elements are improved for all p. This

is clearly seen in Figure 5.8, where IGA with full and reduced integration are compared.

Figure 5.8: Convergence of tip displacement for isogeometric elements.

5.3 Pipe subjected to internal pressure

A pipe with infinitely extent in z-direction subjected to an internal pressure, q , is considered.

With Poisson’s ratio equal to zero, the problem can be idealized with beam elements. Further,

by utilizing the polar symmetry, only a quarter of the pipe is considered, using shear-free

boundaries. The pipe cross-section and its calculation model is shown in figure 5.9. Input data

is given in Table 5.3.

From [37], the reference solution for axial force and radial displacement is given respectively as:

Nθ = qR, and ur = qR2

Eh
(5.2)
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a) b)

Figure 5.9: Pipe subjected to internal pressure: a) x y- plane, b) Idealized system.

Radius Young’s modulus Poisson’s ratio Width Thickness Pressure
R = 10 E = 1e5 ν= 0 b = 1 h = 1 q = 1000h

Table 5.3: Geometry and material data for pipe subjected to internal pressure.

Firstly, the thickness dependency has been investigated. For this study, the model is discretized

with 8 equally sized elements with a slenderness, R/h varying from 100 to 104. The radial

displacements is reported in Table 5.4 for quadratic to quartic order FEA and IGA with full and

reduced integration.

R/h 100 101 102 103 104

FEA p = 2 0.999995 0.999995 0.999995 0.999995 0.999995
FEA p = 3 1.000001 1.000001 1.000002 1.000002 1.000000
FEA p = 4 1.000000 1.000000 1.000000 1.000000 0.999996
IGA p = 2 1.000000 0.999999 0.999980 0.999974 0.999974
IGA p = 3 1.000000 1.000000 1.000000 0.999993 0.999992
IGA p = 4 1.000000 1.000000 1.000000 1.000000 1.000000
FEA p = 2, red. int. 1.000004 1.000004 1.000004 1.000004 1.000004
FEA p = 3, red. int. 1.000001 1.000001 1.000019 1.001780 1.177838
FEA p = 4, red. int. 1.000000 1.000000 1.000000 1.000001 1.000062
IGA p = 2, red. int. 1.000021 1.000353 1.023155 1.072501 1.074081
IGA p = 3, red. int. 1.000000 1.000003 1.000296 1.007236 1.009394
IGA p = 4, red. int. 1.000000 1.000000 1.000000 1.000037 1.000782

Table 5.4: FEA and IGA of pipe under internal pressure: radial displacement varying the
slenderness and polynomial order.
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Under pure axial loading, the pipe (beam) does not show any thickness dependency. However,

with reduced integration both IGA and FEA show a rather unexpected softening behavior.

The slenderness is now kept fixed to R/h = 10, and the convergence of the radial displacement

is studied. Numerical results for ur are reported in Tables 5.5 and 5.6 for full and reduced

integration, respectively.

nnodes 4 8 16 32
FEA p = 2 0.998785 0.999918 0.999995 1.000000

p = 3 1.006896 1.000071 1.000007 1.000000
p = 4 0.999163 0.999985 1.000000

IGA p = 2 0.999913 0.999998 1.000000
p = 3 0.999928 1.000000
p = 4 0.998988 1.000000

Table 5.5: Radial displacement for fully integrated elements with FEA and IGA.

nnodes 4 8 16 32
FEA p = 2, red. int. 1.000917 1.000058 1.000004 1.000000

p = 3, red. int. 1.065975 1.000106 1.000008 1.000000
p = 4, red. int. 1.001538 1.000007 1.000000

IGA p = 2, red. int. 1.010557 1.000616 1.000027 1.000001
p = 3, red. int. 1.004127 1.000018 1.000000
p = 4 , red. int. 1.086771 1.000000

Table 5.6: Radial displacement for reduced integrated elements with FEA and IGA.

Figures 5.10 and 5.11 show convergence plots for the relative error in radial displacement, |eur |,
for full and reduced integration, respectively. With no locking, FEA performs similar with both

integration rules. IGA, however shows better results with full integration.
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Figure 5.10: Relative error in radial displacement for IGA and FEA, full integration

Figure 5.11: Relative error in radial displacement for IGA and FEA, reduced integration
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5.4 Cantilever circular arch under tip shear at the free end

A circular arch is subjected to a unit tip shear, P . Geometry and material data are given in

Figure 5.12. Depicted in [13], the analytical solution, governed from equilibrium and kinematic

compatibility equations for the Timoshenko beam problem, is given in terms of the radial

angle, ψ, as:

ut =−P (c1(sinψ+ψcosψ)+ c2 sinψ), un = Pc1ψsinψ, θ =−Pc3 sinψ (5.3)

for the tangential displacement, radial displacement and cross-section rotation, respectively.

The compliance coefficients, c1,c2 and c3, are given as:

c1 = 1

2

( R

E A
+ R

G As
+ R3

E I

)
, c2 =

( R

G As
+ R3

E I

)
, c3 = R2

E I
(5.4)

Young’s modulus: E = 80GPa
Poisson’s ratio: ν= 0.2
Radius: R = 2m
Width: b = 0.2m
Thickness: h = 0.01m

Figure 5.12: Geometry and material data for cantilever circular arch subjected to tip shear.

For the convergence study, Tables 5.7 and 5.8 report the vertical (radial) displacement at the free

end un
∣∣
π/2, for full and reduced integration, respectively. The analytical solution for vertical tip

displacement reads uex
n

∣∣
π/2 = 4.712427mm.
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nnodes 4 8 16 32 64
FEA p = 2 0.004961 0.074084 0.951099 3.775064 4.639796

p = 3 3.428906 4.601622 4.679388 4.710067 4.712377
p = 4 4.550928 4.702476 4.711904 4.712417 4.712427

IGA p = 2 0.020455 0.561629 3.484100 4.622241 4.707040
p = 3 1.717781 4.487901 4.710410 4.712406 4.712427
p = 4 4.544019 4.697776 4.712419 4.712427

Table 5.7: Radial tip displacement, un(ψ=π/2) [mm], for FEA and IGA with full integration.

nnodes 4 8 16 32 64
FEA p = 2 4.705746 4.712002 4.712400 4.712425 4.712427

p = 3 4.723278 4.712588 4.712448 4.712428 4.712427
p = 4 4.712932 4.712435 4.712427

IGA p = 2 3.057595 4.297819 4.702897 4.712300 4.712425
p = 3 2.642291 4.543190 4.711010 4.712413 4.712426
p = 4 4.712629 4.698559 4.712418 4.712427

Table 5.8: Radial tip displacement, un(ψ=π/2) [mm], for FEA and IGA with reduced integration.

The relative error, computed from Equation 3.25, is shown with respect to the number of

degrees of freedom in Figures 5.13 and 5.14 for FEA and IGA, respectively. Again, FEA with full

integration exhibit the optimal congvergence rates. With reduced integration, cubic or higher

order Lagrangian elements converge one order slower, similarly as in Sections 5.1 and 5.2. For

IGA, the convergence rates are maintained with reduced integration, but again, FEA shows

better performance here, indicating that they are free for locking. As in Section 5.1, IGA with

reduced integration show increasing errors going from 1 to 2 elements, but now for all

polynomial orders.

The same results are presented in Figures 5.15 and 5.16, but here IGA and FEA is compared

with full and reduced integration, respectively.
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Figure 5.13: Relative error in vertical tip displacement for FEA with full and reduced integration.

Figure 5.14: Relative error in vertical tip displacement for IGA with full and reduced integration.
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Figure 5.15: Relative error in tip displacement: comparison of FEA and IGA with full integration.

Figure 5.16: Relative error in tip displacement: comparison of FEA and IGA with reduced
integration.
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Thickness dependency is now studied for a uniform mesh of 5 elements, using the thickness, h,

as variable. The relative error in radial tip displacement is reported in Tables 5.9 and 5.10 for

full and reduced integration, respectively. The results are also illustrated in logarithmic plots in

Figure 5.17. FEA with reduced integration appears to be locking free. The disorders for high

slendernesses are due to computer precision and a worsen condition of the stiffness matrix.

With full integration, locking is revealed in both IGA and FEA. However, the latter shows less

sensibility. For IGA with reduced integration, any noticeable improvement is only seen in

quadratic elements.

R/h 101 102 103 104 105

FEA p = 2 0.0635 0.8661 0.9985 1.0000 1.0000
p = 3 0.0002 0.0047 0.0083 0.0084 0.0084
p = 4 0.0000 0.0000 0.0001 0.0000 0.0011
p = 5 0.0000 0.0000 0.0000 0.0000 0.0059

IGA p = 2 0.0726 0.8793 0.9986 1.0000 1.0000
p = 3 0.0007 0.0399 0.3211 0.9587 0.9996
p = 4 0.0000 0.0011 0.0230 0.1289 0.2499
p = 5 0.0000 0.0000 0.0010 0.0094 0.0337

Table 5.9: Relative error in tip displacement w.r.t the slenderness, full integration

R/h 101 102 103 104 105

FEA p = 2 0.0000 0.0000 0.0001 0.0000 0.0002
p = 3 0.0000 0.0000 0.0001 0.0000 0.0003
p = 4 0.0000 0.0000 0.0001 0.0000 0.0002
p = 5 0.0000 0.0000 0.0001 0.0000 0.0008

IGA p = 2 0.0039 0.1203 0.3979 0.9763 0.9998
p = 3 0.0005 0.0297 0.2734 0.9349 0.9993
p = 4 0.0000 0.0010 0.0222 0.1257 0.2520
p = 5 0.0000 0.0000 0.0010 0.0093 0.0338

Table 5.10: Relative error in tip displacement w.r.t the slenderness, reduced integration
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a) b)

c) d)

Figure 5.17: Thickness dependency of vertical tip displacement: a) FEA, full int., b) FEA, red int.,
c) IGA, full. int., d) IGA, red. int.
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5.5 Pinched ring

In this example a pinched ring is considered. Due to double symmetry, only one quarter of the

structure is modeled. The problem setup is shown in Figure 5.18 and the input data is given in

Table 5.11 From [27] the analytical solution for displacements in point A and B is given

respectively as:

v A =−PR3

E I

(π2 −8

4π

)
− πPR

4G As
− πPR

4E A
(5.5)

uB = PR3

E I

(4−π
2π

)
+ PR

2G As
− PR

2E A
(5.6)

Equilibrium considerations give the corresponding bending moments:

MA = 2PR

π
(5.7)

MB = PR
( 2

π
−1

)
(5.8)

Evaluated for the input data, the analytical solution reads:

v A =−1.520035 uB =−1.386732

MA = 6.366198 MB = 3.633802

However, the displacements do not converge towards this solution. Lee and Sin [27], explain

this by that Castigliano’s theorem, from which the analytical solution obtained, is in a thickness

range there the response is not entirely beam-like. Therefore, a reference solution is computed

from 32 quintic Lagrangian elements with reduced integration:

v A =−1.513964 uB =−1.374531
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a)
b)

Figure 5.18: Pipe subjected to internal pressure: a) x y- plane, b) Problem setup.

Raduis Young’s modulus Poisson’s ratio Width Thickness Load
R = 10 E = 1200 ν= 0.25 b = 1 h = 1 P = 1

Table 5.11: Geometry and material data for the pinched ring problem.

The numerical results for the vertical displacement and its corresponding relative error in pt. A,

v A and |ev A |, and the bending moment in pt. A and B , MA and MB , are reported in Tables 5.12

and 5.13 for FEA, and in 5.14 and 5.15 for IGA with full and reduced integration, respectively.

p nel s nnodes v A |ev A | MA MB

2 2 4 -0.429556 0.716271 6.336564 3.663436
4 8 -1.276267 0.157003 6.364202 3.635798
8 16 -1.494466 0.012879 6.366070 3.633930
16 32 -1.512662 0.000860 6.366190 3.633810

3 1 3 -0.249262 0.835358 6.231203 3.768796
3 9 -1.497760 0.010703 6.365382 3.634617
5 15 -1.513099 0.000571 6.366150 3.633850
10 30 -1.513950 0.000009 6.366197 3.633802

4 2 8 -1.512600 0.000901 6.365652 3.634348
4 16 -1.513956 0.000005 6.366195 3.633805
8 32 -1.513964 0.000000 6.366198 3.633802

Reference - - -1.513964 - 6.366198 3.633802

Table 5.12: FEA of pinched ring, full integration
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p nel s nnodes v A |ev A | MA MB

2 2 4 -1.501941 0.007941 6.367055 3.632945
4 8 -1.513201 0.000504 6.366251 3.633749
8 16 -1.513916 0.000032 6.366201 3.633799
16 32 -1.513961 0.000002 6.366198 3.633802

3 1 3 -1.515118 0.000762 6.371934 3.628066
3 9 -1.514011 0.000031 6.366271 3.633728
5 15 -1.513970 0.000004 6.366207 3.633792
10 30 -1.513964 0.000000 6.366198 3.633801

4 2 8 -1.513967 0.000002 6.366201 3.633799
4 16 -1.513964 0.000000 6.366198 3.633802

Reference - - -1.513964 - 6.366198 3.633802

Table 5.13: FEA of pinched ring, reduced integration

p nel s nnodes v A |ev A | MA MB

2 3 4 -0.806318 0.467413 6.309809 3.690191
9 8 -1.478345 0.023527 6.363465 3.636535
15 16 -1.512351 0.001066 6.366090 3.633910
31 32 -1.513877 0.000058 6.366192 3.633808

3 2 4 -1.188560 0.214935 6.328144 3.671856
6 8 -1.512890 0.000709 6.366038 3.633962
14 16 -1.513958 0.000004 6.366196 3.633803
30 32 -1.513963 0.000000 6.366198 3.633802

4 1 4 -1.429186 0.055997 6.322715 3.677284
5 8 -1.513880 0.000055 6.366180 3.633820
13 16 -1.513964 0.000000 6.366198 3.633802

Reference - - -1.513964 - 6.366198 3.633802

Table 5.14: IGA of pinched ring, full integration
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p nel s nnodes v A |ev A | MA MB

2 3 4 -1.183452 0.218309 6.343344 3.656655
9 8 -1.510913 0.002015 6.365881 3.634119
15 16 -1.513929 0.000023 6.366196 3.633804
31 32 -1.513963 0.000000 6.366198 3.633802

3 2 4 -1.313656 0.132307 6.327180 3.672820
6 8 -1.513176 0.000520 6.366078 3.633921
14 16 -1.513960 0.000003 6.366197 3.633803
30 32 -1.513964 0.000000 6.366198 3.633802

4 1 4 -1.513083 0.011247 6.366745 3.633254
5 8 -1.513882 0.000053 6.366180 3.633819
13 16 -1.513964 0.000000 6.366198 3.633802

Reference - - -1.513964 - 6.366198 3.633802

Table 5.15: IGA of pinched ring, reduced integration

For the displacements, FEA and IGA behave as in the previous examples. Comparison of FEA

and IGA is illustrated in Figures 5.19 and 5.20 for full and reduced integration, respectively. In

Figure 5.21, IGA is shown with both integration schemes.

Figure 5.19: Relative error in displacement in A, full integration
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Figure 5.20: Relative error in displacement in A, reduced integration

Figure 5.21: Relative error in displacement in A, IGA

Figures 5.22 - 5.24 show convergence plots for the relative error in bending moment in point A.

Firstly, FEA is compared to IGA for full integration. As for the displacements, IGA shows better
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performance and faster convergence than FEA for higher order elements. Secondly, in the

comparison of reduced integration, convergence rates for cubic and quartic FEA is reduced,

but they show small errors and perform better than IGA for coarse discretizations.

Lastly, isogeometric elements with full and reduced integration is shown in the same figure,

and again, significant improvements are only seen in quadratic elements.

Figure 5.22: Relative error in bending moment in A, full integration
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Figure 5.23: Relative error in bending moment in A, reduced integration

Figure 5.24: Relative error in bending moment in A, IGA
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5.6 Hinged arc under self-weight

The hinged arch in Figure 5.25 is taken into consideration with the data given in Table 5.16. The

self-weight is applied as a uniformly distributed load, q0, per unit arc length. Utilizing the

symmetry, only half the structure, A −C , is considered. The imposed boundary conditions

assume moment-free hinges and no shear force in the arch tip, C .

Figure 5.25: Hinged arch under self-weight, taken from [13].

Raduis Young’s modulus Poisson’s ratio Width Thickness Self-weight
R = 1m E = 1GPa ν= 0.2 b = 0.2m h = 0.01m q0 =−1kN /m

Table 5.16: Geometry and material data for the beam in Figure 5.12.

From [13], the analytical solution for vertical displacement, v , is given:

v = v(ψ) =A1
[− c1ψsinψ+ c3R(1−cosψ)

]− A4 sinψ+
A2

[
c1(ψcosψ− sinψ)+ c2 sinψ− c3R sinψ

]+ A6R sinψ+

q0

[ (c2 − c1)

4
R(2ψcosψ− sinψ)− c1R

ψ2

2
sinψ+ c3R2(sinψ−ψcosψ)

]
(5.9)
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where ci is given in Equation 5.4, and the constants A1, A2, A4 and A6 reads:

A1 =−q0R
π

4
,

A2 =q0R
(
1− πp

8

)
,

A4 =q0R
[

2c3R + (c2 − c1)

4

]
,

A6 =−q0

[
c1
π2

8
+ (c1 − c2)

(p2

2
− π

4

)
− (c1 + c2)

π

4
p

2
+ c3R

(
1+ π

4
+ π2

16
− π

2
p

2
+
p

2

2

)]
(5.10)

Evaluated in ψ = π
4 , the reference solution for the vertical displacement in point C reads

vc = −5.4780240mm. Further, by equilibrium considerations of the statically determined

system, the reactions in point A gives HA = 0.1107207kN and VA = 0.7853982kN for horizontal

and vertical force components, respectively.

The numerical results for HA and relative error in vc are reported in Tables 5.17 and 5.18 and in

5.19 and 5.20 for FEA and IGA with full and reduced integration, respectively.

p nel s nnodes |evc | HA

2 2 4 0.918832 0.1107427
4 8 0.503512 0.1107221
8 16 0.066682 0.1107208
16 32 0.005719 0.1107207
32 64 0.000469 0.1107207

3 1 3 0.184135 0.1106743
3 9 0.031595 0.1107201
5 15 0.002568 0.1107207
10 30 0.000054 0.1107207
20 60 0.000001 0.1107207

4 1 4 0.156950 0.1107202
2 8 0.007100 0.1107207
4 16 0.000061 0.1107207
8 32 0.000000 0.1107207

Analytical - - - 0.1107207

Table 5.17: FEA of hinged arch, full integration
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p nel s nnodes |evc | HA

2 2 4 0.013407 0.1107115
4 8 0.000753 0.1107202
8 16 0.000046 0.1107207
16 32 0.000003 0.1107207
32 64 0.000000 0.1107207

3 1 3 0.029763 0.1106690
3 9 0.000176 0.1107201
5 15 0.000021 0.1107207
10 30 0.000001 0.1107207
20 60 0.000000 0.1107207

4 1 4 0.000084 0.1107202
2 8 0.000002 0.1107207
4 16 0.000000 0.1107207

Analytical - - - 0.1107207

Table 5.18: FEA of hinged arch, reduced integration

p nel s nnodes |evc | HA

2 3 4 0.772983 0.1107207
7 8 0.154730 0.1107207
15 16 0.010898 0.1107207
31 32 0.000632 0.1107207
63 64 0.000037 0.1107207

3 2 4 0.161980 0.1107207
6 8 0.004274 0.1107207
14 16 0.000030 0.1107207
30 32 0.000000 0.1107207

4 1 4 0.157484 0.1107207
5 8 0.000125 0.1107207
13 16 0.000000 0.1107207

Analytical - - - 0.1107207

Table 5.19: IGA of hinged arch, full integration
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p nel s nnodes |evc | HA

2 3 4 0.151605 0.1107206
2 7 8 0.016941 0.1107207

15 16 0.000240 0.1107207
31 32 0.000003 0.1107207
63 64 0.000000 0.1107207

3 2 4 0.157414 0.1107207
6 8 0.002761 0.1107207
14 16 0.000020 0.1107207
30 32 0.000000 0.1107207

4 1 4 0.000127 0.1107208
5 8 0.000116 0.1107207
13 16 0.000000 0.1107207

Analytical - - - 0.1107207

Table 5.20: IGA of hinged arch, reduced integration

Convergence plots for displacement in C are shown in Figures 5.26 to 5.28 and for horizontal

reaction forces in A in Figures 5.29 and 5.30.

Figure 5.26: Relative error in vertical displacement for full integration.
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Figure 5.27: Relative error in vertical displacement reduced integration.

Figure 5.28: Relative error in vertical displacement for IGA, full and reduced integration.
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Figure 5.29: Relative error in horizontal reaction force, full integration.

Figure 5.30: Relative error in horizontal reaction force, reduced integration.

FEA and IGA behave as in the previous examples for the displacements. In Figures 5.29 and

5.30, where the relative error in horizontal reaction forces in A are shown for full and reduced
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integration, respectively, IGA outperforms FEA with both less errors and faster convergence. As

in Section 5.5, cubic Lagrangian elements shows slightly larger errors than the quadratic ones

for this problem. Note that the convergence is terminated by the computer precision.

5.7 Straight beam subjected to distributed moment

In the last example, a straight beam subjected to a sinusoidally distributed moment

m(s) = h3 sin(πs/2L), as shown in Figure 5.31, is analyzed with the spatial beam element.

Unlike the numerical tests in Chapter 3, the closed form solution for the sinusoidal loading is

not contained within the approximation space.

Young’s modulus: E = 1000
Poisson’s ratio: ν= 0
Length: L = 1
Width: b = 0.2
Thickness: h = 0.01

Figure 5.31: Geometry and material data for a straight beam under sinusoidally moment
loading.

The analytical solution is given by [1, 9]:

uz(s) = 96L3

Ebπ3

(
1−cos

( π
2L

s
))

(5.11)

ux(s) = 0 (5.12)

θ(s) = 48L2

Ebπ2
sin

( π
2L

s
)

(5.13)

for the vertical and horizontal displacement and rotation fields, respectively.

The convergence is studied for elements up to 5th order. As the initial geometry is linear, also

linear elements are included in the analysis. The relative error is in terms of the L2-norm of the

vertical displacements, computed from Eq. 3.26, are shown in Figure 5.32 for IGA and FEA with
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full and reduced integration.

a) b)

c) d)

Figure 5.32: Convergence plots of straight beam under sinusoidally moment loading: a) FEA,
full. int., b) FEA, red int., c) IGA, full int., d) IGA, red. int.

Unlike the initially curved beams, FEA does not show slower convergence with reduced

integration here. The shift in absolute errors for all element orders indicate presence of

transverse shear locking. For IGA, the convergence rates are also maintained, but only linear

and quadratic order elements show less error, indicating presence of spurious shear strains in

higher order elements.

Further, the thickness dependency is investigated with a uniform mesh of 5 elements, shown in

Figure 5.33. The same error measurement as for the convergence study is used. All elements

show thickness dependency with exact integration. Locking is however more severe in IGA. As
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expected, FEA with reduced integration is locking-free, while IGA show the same thickness

dependency. Note that for p = 1, IGA is equivalent to FEA and thus locking-free with reduced

integration.

a) b)

c) d)

Figure 5.33: Thickness dependency in a straight beam under sinusoidally moment loading: a)
FEA, full int., b) FEA, red int., c) IGA, full int., d) IGA, red. int.
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5.8 Concluding remarks

Through the numerical tests in this chapter, it has been proven that the implementation of the

geometrical exact 3D Timoshenko beam has been successfully implemented using Lagrangian

and NURBS basis functions for discretization. The latter has shown superior performance for

exact integration of the stiffness matrix, producing both less errors and faster convergence, see

e.g. Figures 5.2, 5.15 and 5.26.

Reduced integration, which has proven to eliminate (or at least alleviate) numerical locking in

FEA, does however not remove locking in the NURBS elements (except for p = 1). Improvements

are seen for quadratic elements, but for higher order elements, the impact is negligible (see

Figures 5.4, 5.17 and 5.33). This confirms that IGA with reduced integration still capture spurious

strains.

An interesting feature of IGA with reduced integration is that 1 element produce less errors than

2, which may indicate that the equation system becomes over-constrained: The ratio between

free nodes and Gauss points for a single-element patch is p
p = 1. Adding one C p−1-continuous

element will add 1 node and p Gauss points, and the ratio now becomes p+1
2p ≤ 1 and thus over-

constrained for p ≥ 2. For C 0-elements however, there will be added p free nodes and the ratio

remains constant.



Chapter 6

Locking removal

From the verification tests in Chapter 5 it was proven that isogeometric elements suffer from

the same locking phenomena as Lagrangian elements, and that they do not resolve with the

conventional element-wise reduced integration rule. As a consequence, the elements fail to

reproduce bending properly approaching the Kirchhoff limit.

One remedy to overcome this problem is to apply reduced and selective reduced integration

rules by a patch-wise approach, which has recently been successfully applied by Adam et al. [1]

and Bouclier et al. [9]. However, these studies were limited to linear elastic analyses and

polynomial orders, p ≤ 3, while the geometrically exact beam formulation presented herein is

able to accommodate large displacement analyses and is valid for all polynomial orders.

In this chapter, the connection between spurious strains and locking will be highlighted in

Section 6.1 In Section 6.2 follows an investigation of one elements propensity to lock, resulting

in two proposed integration schemes, which are implemented and tested on a selection of

numerical examples in Section 6.3. Section 6.4 summarize the observations from the

numerical tests.

93
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6.1 Spurious strains and locking

In curved beams, there exists an interrelationship between transverse shear and membrane

locking, as pointed out in [41]. Thus, these locking phenomena must be considered

simultaneously.

Recalling from Section 3.5 and 4.5, spurious axial and transverse shear strains, or membrane

strains, may rise from the unbalanced terms in the interpolation functions in the translational

part. However, the strains do have the correct value in a discrete set of points with in the patch

(or between two C 0-continuities [1]), and if these coincide with the integration points, locking

may be avoided.

To show how the strains may reveal locking, the 90° bend subjected to a axial load at the free

end from Section 5.1 is considered again. Figure 6.1 shows the resulting distribution of axial

strains obtained with 3 C 0 Lagrangian and 5 C 1 NURBS elements of quadratic order (and thus

an equal number of unknowns) with full and reduced integration. It is clearly seen that with the

Gaussian quadrature rule corresponding to full integration, both elements sample the strains

erroneously, and thus reveal locking. The Lagrangian element with reduced integration,

however, which has proven to be locking free, shows perfect match between the Gauss points

and the reference solution. This cannot be said for IGA with the same integration rule.

Improvements are seen, but spurious strains are still captured. The verification tests in Section

3.4 and Chapter 5 support this.
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a) b)

c) d)

Figure 6.1: Axial strain distribution with the corresponding quadrature points for: a) 3 Lagrange
elements with full integration, b) 3 Lagrange elements with reduced integration, c) 5 NURBS
elements with full integration and d) 5 NURBS elements with reduced integration.

6.2 Selective Gaussian-based integration

In order to evaluate an element’s propensity of locking, Hughes [21] introduced a heuristic

approach, the so-called constraint count method. This method relies on the constraint ratio, r,

which is defined as the ratio between the total number of equilibrium equations, neq and the

total number of constraint equations, nc :

r = neq

nc
(6.1)
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To investigate whether an element is prone to locking, the constraint ratio for the continuous

problem is compared with the constraint ratio of the discretized problem, r h , in the limit of an

infinite number of elements, ne →∞:

r h = lim
ne→∞

ne
u

ne
c

(6.2)

Here ne
u denotes the number of unknowns added to the system by adding one more element to

an infinitely large mesh, while ne
c is the corresponding number of constraints introduced by

this element. Thus, ne
c is related to the number of quadrature points, nGP , where the

constraints are evaluated.

For an element with r h < r , and especially with r h < 1 (which implies that there are added more

constraints than unknowns), the propensity of locking is high. In contrast when r h > r , this

indicate that there are too few constraints to approximate the equations accurately.

Consequently, the optimal element satisfy the criterion r h = r .

Without loss of generality a 2D beam is considered, for which the constraint ratio for the

continuous problem is

r2D = 3

2
(6.3)

If the beam is discretized with C 0- Lagrange elements and C p−1 NURBS elements, the constraint

ratio becomes respectively

r h
2D,L = 3p

2nGP
and r h

2D,N = 3

2nGP
(6.4)

from which it is seen that the optimal constraint ratio is obtained with nGP = p for Lagrange

elements. For NURBS however, there should be added only one Gauss point per added element

in order to obtain the optimal constraint ratio.

Recalling from Chapter 4 and Equation 4.10, the strain energy of the beam consist of one

membrane part, 1
2

∫
L εnd s, and one bending part, 1

2

∫
Lκmd s, each contributing to the material

part of the stiffness matrix, Km :

Km = Kn +Kb (6.5)
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Kn and Kb denote the membrane and the bending stiffness matrix, respectively. To avoid zero-

energy modes, the global stiffness matrix must be rank sufficient. If the number of free DOFs is

nF , the rank of Km is given:

rank(Km) = min(nF , nεnGP ) (6.6)

where nε represents the number of strain components, which for this beam is 6. I.e. each Gauss

point adds nε to rank(Km) up to the maximum number og nF . To solve a system of nF free

DOFs, Km must be of equal rank. Otherwise the system is rank deficient and becomes singular.

While the number of Gauss points corresponding to the optimal constraint ratio with

Lagrangian elements may be achieved without rank deficiency, applying only one Gauss point

on all elements will not give a sufficient number of constraints, and thus produce zero-energy

modes in the analysis. However, using a patch-wise approach, rather than evaluating the

integrals element-by-element, the zero-energy modes may be stabilized by adding Gauss

points to some elements. Governed by Eq. 6.6, rank-sufficiency is obtained with a total number

of nGP = nel s +p −1 Gauss points within the patch.

The above investigation has resulted in two proposed integration schemes, reported in Table

6.1, which will be referred to as SRI-1 and URI-1, and SRI-2 and URI-2, respectively. In URI-1

and URI-2, both the membrane and the bending stiffness matrix is integrated with the

proposed rule, while for SRI-1 and SRI-2, the integration scheme is applied to the membrane

stiffness matrix only and the bending stiffness is integrated with nGP = p per NURBS element.

URI and SRI refer to uniform and selective reduced integration, and unless URI is labeled with a

number, it refers to the conventional reduced integration rule. The motivation for using SRI is

that the terms giving rise to locking occur in the translational part.

p SRI-1/URI-1 SRI-2/URI-2
1 nGP = 1 nGP = 1
2 nGP = 1 \ e = (1+ne )/2 : nGP = 2 nGP = 1 \ e = ne : nGP = 2
3 nGP = 1 \ e = 2,ne −1 : nGP = 2 nGP = 1 \ e = 1,ne : nGP = 2
4 nGP = 1 \ e = 2,(1+ne )/2,ne −1 : nGP = 2 ng = 1 \ e = 1,ne : nGP = 3
5 nGP = 1 \ e = 2,ne −1 : nGP = 2∧e = (1+ne )/2 : nGP = 3 nGP = 1 \ e = 1,ne : nGP = 4

Table 6.1: Selective reduced integration schemes.
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6.3 Numerical tests

The purpose of the numerical tests is to study how isogeometric analysis performs with the

different integration regimes for uniform and selective reduced integration. They are also

compared with standard Lagrangian finite elements and NURBS elements with conventional

reduced integration.

Comparison of the strain fields obtained from the numerical analyses with their respective

Gauss points and the analytical fields has been emphasized, as locking occurs from incorrectly

sampled strains. Convergence and thickness dependency are also studied.

The strain components are computed from the Lagrangian and the NURBS basis functions

using the kinematic equations presented in Chapter 3 and Chapter 4 for straight and curved

beams, respectively. However, all analyses are performed using the geometrically exact beam

model, including the straight beams. Note that when this non-linear beam model is used to

compute the strains, they are given in the current configuration and will consequently not

show the linear solution exactly.

6.3.1 Cantilever beam subjected to tip shear

The first test is a straight cantilever beam subjected to a transverse tip load, similar as in

Section 3.4.1. The material and cross-section properties are given in Table 6.2. The thickness is

expressed in terms of a slenderness parameter, ρ, such that the slenderness, L/h is given as

10ρ. Furthermore, the dimensionless load is scaled with the bending stiffness.

Young’s modulus Poisson’s ratio Length Width Thickness Load,
E = 4000 ν= 0 L = 10 b = 1 h = L/10ρ P = Eh3/400L

Table 6.2: Geometry and material data for cantilever beam subjected to tip shear at the free end.

The analytical solution for the transverse displacement field, w(x), is given in Equation 3.27,

and may be written:

w(x) = L

20

[
−

(x

L

)3
+3

(x

L

)2
+ 6

5

(x

L

)(h

L

)2
]

(6.7)

The analytical solution for the rotation field, θ(x), may be found from the unit-load method.
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Note that the rotations are independent of the transverse shear stiffness, G As :

θ(x) = P x2

2E I
− PLx

E I
= 6P

E A

[( x

h

)2
−2

(L

h

)( x

h

)]
= 3

20

[(x

L

)2
−2

(x

L

)]
(6.8)

From the kinematic equations, the nonzero strain components, γx y and κz , are obtained:

γx y = w,x +θ = 3h2

500Lb
(6.9)

κz = θ,x = 3

10L

(x

L
−1

)
(6.10)

The beam is discretized with 5 equally sized NURBS elements, and the strain fields for εx (axial

strain), γx y (transverse shear strain) and κz (bending strain) are studied for the different

integration models.

Firstly, the strains obtained with conventional reduced integration (URI) are compared for

quadratic Lagrangian and isogeometric elements. In order to keep the number of

approximation functions n equal for Lagrange (n ∝ ne p) and NURBS (n ∝ ne + p − 1) based

solutions, a uniform mesh of 3 quadratic Lagrange elements is used. The strains are reported in

Figure 6.2 for slendernesses of ρ = 1 and ρ = 3. Both elements sample the strains correctly, and

thus appear to be locking free. NURBS elements with URI seem to be able to produce a

constant membrane strain distribution correctly.

With a fixed slenderness of ρ = 3, the beam is now analyzed with the proposed integration

regimes. Figure 6.3 shows the strain fields obtained with SRI-1 and SRI-2, and Figure 6.4 with

URI-1 and URI-2 for quadratic elements. Similarly, Figures 6.5 and 6.6 show the strains for

p = 3, and Figures 6.7 and 6.8 for p = 4,5. Note the scale of the vertical axis! For p = 2, the

membrane part is sampled with good accuracy for all integration regimes, while they show

increasing errors and divergence for higher order elements with SRI-1 and URI-1. The

rotational part is represented with good accuracy for quadratic SRI-1 and all orders of SRI-2,

while it is more inaccurately represented with URI-1 and URI-2.
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a) b)

c) d)

e) f)

Figure 6.2: Comparison of Lagrange (FEA) and NURBS (IGA) based solutions applying
conventional reduced integration (URI) for p = 2: a) Axial strain, ρ = 1, b) axial strain, ρ = 3,
c) transverse shear strain, ρ = 1, d) transverse shear strain, ρ = 3, e) bending strain, ρ = 1, and f)
bending strain, ρ = 3.
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a) b)

c) d)

e) f)

Figure 6.3: Strain fields obtained with SRI-1 and SRI-2 for p = 2 and ρ = 3 compared with the
analytical solutions: a) Axial strain (SRI-1), b) axial strain (SRI-2), c) transverse shear strain (SRI-
1), d) transverse shear strain (SRI-2), e) bending strain (SRI-1), and f) bending strain (SRI-2).
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a) b)

c) d)

e) f)

Figure 6.4: Strain fields obtained with URI-1 and URI-2 for p = 2 and ρ = 3 compared with the
analytical solutions: a) Axial strain (URI-1), b) axial strain (URI-2), c) transverse shear strain
(URI-1), d) transverse shear strain (URI-2), e) bending strain (URI-1), and f) bending strain (URI-
2).
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a) b)

c) d)

e) f)

Figure 6.5: Strain fields obtained with SRI-1 and SRI-2 for p = 3 and ρ = 3 compared with the
analytical solutions: a) Axial strain (SRI-1), b) axial strain (SRI-2), c) transverse shear strain (SRI-
1), d) transverse shear strain (SRI-2), e) bending strain (SRI-1), and f) bending strain (SRI-2).
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a) b)

c) d)

e) f)

Figure 6.6: Strain fields obtained with URI-1 and URI-2 for p = 3 and ρ = 3 compared with the
analytical solutions: a) Axial strain (URI-1), b) axial strain (URI-2), c) transverse shear strain
(URI-1), d) transverse shear strain (URI-2), e) bending strain (URI-1), and f) bending strain (URI-
2).
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a) b)

c) d)

e) f)

Figure 6.7: Strain fields obtained with SRI-1 and SRI-2 for p = 4,5 and ρ = 3 compared with the
analytical solutions: a) Axial strain (SRI-1), b) axial strain (SRI-2), c) transverse shear strain (SRI-
1), d) transverse shear strain (SRI-2), e) bending strain (SRI-1), and f) bending strain (SRI-2).
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a) b)

c) d)

e) f)

Figure 6.8: Strain fields obtained with URI-1 and URI-2 for p = 4,5 and ρ = 3 compared with
the analytical solutions: a) Axial strain (URI-1), b) axial strain (URI-2), c) transverse shear strain
(URI-1), d) transverse shear strain (URI-2), e) bending strain (URI-1), and f) bending strain (URI-
2).
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Furthermore, a convergence study is carried out to see how the various quadrature rules affect

the accuracy. For error measure, the L2 relative error norm of the displacement field, computed

from Eq. 3.26, is used. Note that cubic elements with conventional reduced integration produce

the exact solution. The convergence plots in Figure 6.9 reveal slower convergence with the new

quadrature rules. Further, it is observed that quadratic elements with SRI and URI behave very

similar as linear elements with reduced integration. The slow convergence and large absolute

errors with URI-1 and URI-2 may be due to their inaccurate representation of the rotations. The

strong form solution is also lost with the proposed integration rules.

Higher order elements with SRI-1 and URI-1 are omitted due to divergent solutions.

a) b)

c) d)

Figure 6.9: L2-norm of relative error on displacements for the various quadrature rules andρ = 3:
a) Conventional reduced integration (URI), b) SRI-1 c) SRI-2, d) URI-1 (p = 2) and URI-2
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Finally, in Figure 6.10 the thickness dependency is studied. For this analysis, the L2-norm of the

relative error in displacements is computed with respect to the slenderness parameter, ρ which

is varied from 1 to 5 with a fixed number of 5 elements. Conventional reduced integrated

elements (URI) are included for comparison. It appears that all elements (URI included) are

locking-free. Cubic elements with URI, whose solution space is a superset of the analytical

solution, serve here as a measure of the condition of the stiffness matrix. As the slenderness

increases and the equation system becomes more badly scaled, the computational precision

decreases.

a) b)

c) d)

Figure 6.10: L2-norm of relative error on displacements with respect to slenderness for the
various quadrature rules and ρ = 3: a) SRI-1, b) SRI-2, c) URI-1, d) URI-2.
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6.3.2 Clamped beam subjected to linearly distributed transverse load

As the previous example, with constant membrane strain distributions, already was

locking-free for the conventional quadrature rule, it did not serve as a very good test for

transverse shear locking. Therefore, a straight beam with a higher order solution space has

been analyzed.

Figure 6.11 shows the geometry and material data for the clamped beam with linearly

increasing pressure from Section 3.5. Again, the thickness is expressed in terms of the

slenderness parameter, ρ, and the load is scaled with the bending stiffness.

Governed from the unit-load method, the vertical displacements and rotations are given

respectively as:

w = w(x) = q

E I

[ x5

120L
− Lx3

12
+ 5L2x2

48

]
+ qκy h2

12E I L

[
L2x − x3

3

]
(6.11)

θ = θ(x) = q

E I

[
− x4

24L
+ Lx3

4
− 5L2x

24

]
(6.12)

from which the strains may be computed.

Young’s modulus: E = 1000
Poisson’s ratio: ν= 0
Length: L = 10
Width: b = 1
Thickness: h = L/10ρ

Load: q = h3

Figure 6.11: Geometry and material data for the clamped beam subjected to linearly increasing
pressure.

Comparison of transverse shear and bending strains obtained with Lagrange and NURBS-

elements with conventional reduced integration is shown in Figure 6.12 for ρ = 1 and ρ = 3.

While Lagrangian elements sample the transverse shear strains correctly, they are slightly

wrong with IGA, causing increasing errors in the curvatures.
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a) b)

c) d)

Figure 6.12: Comparison of Lagrange (FEA) and NURBS (IGA) based solutions applying
conventional reduced integration (URI) for p = 2: a) Transverse shear strain, ρ = 1, b) transverse
shear strain, ρ = 3, c) bending strain, ρ = 1, and d) bending strain, ρ = 3.

The transverse shear and curvature fields are now analyzed with the different integration rules

for a fixed slenderness of ρ = 3. The axial strains become exactly zero for all analyses, similar as

in Section 6.3.1, and are therefore not shown.

The quadratic elements are depicted in Figures 6.13 and 6.14 for the selective and uniform

integration rules, respectively. URI-1 and URI-2 do not represent the bending strains

accurately. Otherwise the strains are represented with good accuracy. For p = 2, adding Gauss

points near the center of the patch leads to less amplitudes in strains and a better conditioned

system, and consequently better accuracy.

Cubic elements are shown in Figure 6.15, and quartic and quintic in Figure 6.16. Only SRI-2
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and URI-2 are considered, as the oscillations in strains leads to unstable systems for higher

order elements with SRI-1/URI-1. As for quadratic elements, the strains are represented with

good accuracy, except for URI-2, which leaves the rotational part incorrectly.

a) b)

c) d)

Figure 6.13: Strain fields obtained with SRI-1 and SRI-2 for p = 2 and ρ = 3 compared with
the analytical solutions: a) Transverse shear strain (SRI-1), b) transverse shear strain (SRI-2),
c) bending strain (SRI-1), and d) bending strain (SRI-2).
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a) b)

c) d)

Figure 6.14: Strain fields obtained with URI-1 and URI-2 for p = 2 and ρ = 3 compared with
the analytical solutions: a) Transverse shear strain (URI-1), b) transverse shear strain (URI-2), c)
bending strain (URI-1), and d) bending strain (URI-2).
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a) b)

c) d)

Figure 6.15: Strain fields obtained with SRI-2 and URI-2 for p = 3 and ρ = 3 compared with
the analytical solutions: a) Transverse shear strain (SRI-2), b) transverse shear strain (URI-2), c)
bending strain (SRI-2), and d) bending strain (URI-2).
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a) b)

c) d)

Figure 6.16: Strain fields obtained with SRI-2 and URI-2 for p = 4,5 and ρ = 3 compared with
the analytical solutions: a) Transverse shear strain (SRI-2), b) transverse shear strain (URI-2), c)
bending strain (SRI-2), and d) bending strain (URI-2).
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Convergence of the L2-norm of the relative error in transverse displacements is now studied

with a slenderness of ρ = 3, reported in Figure 6.17. Similar behavior as for the tip-loaded

cantilever beam is seen: slower convergence, loss of strong form (5th order for this beam) and

poor performance of higher order elements with URI-2.

Thickness dependency is studied with a uniform mesh of 5 elements. Figure 6.18 reveals that

unlike the elements with conventional reduced integration, SRI and URI show no thickness

dependency and are thus free of transverse shear locking.

a) b)

c) d)

Figure 6.17: L2-norm of relative error in displacements for the different quadrature rules, ρ = 3:
a) Conventional reduced integration (URI), b) SRI-1 and URI-1 for p = 2, c) SRI-2, and d) URI-2.
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a) b)

c) d)

Figure 6.18: L2-norm of relative error in displacements with respect to ρ: a) SRI-1, b) SRI-2, c)
URI-1, and d) URI-2.
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6.3.3 Curved beam subjected to sinusoidally distributed moment

Figure 6.19 shows geometry and material properties for a planar 90° circular arc subjected to a

sinusoidally distributed moment m(s) = h3 sin(πs/2L). This load imposes a state of pure

bending with no membrane and transverse shear energy and is therefore a severe test for

membrane and transverse shear locking. Also note that by choosing a sinusoidally distributed

moment, the closed form solution is obviously not contained in the approximation space. The

load is proportional with the bending stiffness such that the displacements and rotations are

independent of the thickness.

Young’s modulus: E = 1000
Poisson’s ratio: ν= 0
Radius: R = 1
Width: b = 0.2
Thickness: h = R/10ρ

Figure 6.19: Geometry and material data for a curved beam under sinusoidally moment loading.

Denoting ut (s) and un(s) displacements parallel to the local Cartesian bases, i 0
1 and i 0

3 ,

respectively, the analytical solution may be obtained by solving the strong form governed by

Eqs. 4.3 and 4.4, and is given by [1, 9]:

un(s) = 6R2

Eb
s sin

( s

R

)
(6.13)

ut (s) = 6R3

Eb

[
sin

( s

R

)
− s

R
cos

( s

R

)]
(6.14)

θ(s) = 12R2

Eb
sin

( s

R

)
(6.15)

The three nonzero strain fields, ε1, γ12, and κ3, for the different integration models are studied

for the slenderness ratios ρ = 1 and ρ = 3, using a mesh of ne = 5 equally sized knot-span

elements with the maximum continuity available. Since the strains are now computed in the
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current configuration and consequently not show the linear solution, the analytical solution is

approximated with a reference solution obtained with 32 quintic isogeometric elements each

integrated with p Gauss points (nGP = p). The sinusoidally varying moment is taken into

consideration with a consistent load vector, numerically integrated with nGP = 5p.

Firstly, the beam has been analyzed and compared with quadratic C 0-continuous Lagrangian

elements applying the conventional uniform reduced integration rule (URI). The strain fields

for ε1, γ12 and κ3, reported in Fig. 6.20, confirms that the strains sampled at the Gauss points

for the Lagrangian elements coincide with the reference solution for both ρ = 1 and ρ = 3 for all

strain fields, and thus appear to be locking-free. However, for the NURBS elements of equal

order and with the same quadrature rules, i.e. URI with nGP = p within each element, it is

observed that all of the three strain fields when sampled at the Gauss points deviate from the

reference solution. Further, the deviation increase with increased slenderness, and thus, the

elements reveal both membrane and transverse shear locking.
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a) b)

c)

Figure 6.20: Comparison of Lagrange (FEA) and NURBS (IGA) based solutions applying
conventional URI for p = 2: a) Axial strain, b) transverse shear strain, and c) bending strain.

With a fixed slenderness of ρ = 3, the beam is now analyzed with the proposed integration

rules. The strain fields obtained with quadratic and cubic NURBS elements with the two SRI

rules are depicted in Figures 6.21 and 6.22, respectively. Now all three strain fields coincide

with the reference solution when sampled at the Gauss points for both SRI-1 and SRI-2, and

consequently yields a precise approximation of the corresponding curvature field. These

observation are also valid for higher order elements (see Fig. 6.23). However, for SRI-1, where

the additional Gauss points are not located at the boundary elements, the translational strains

show oscillations when the polynomial order is increased.
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a) b)

c) d)

e) f)

Figure 6.21: Comparison of the solutions obtained with the various SRI rules applied to the
translational part only, for p = 2: a) Axial strain (SRI-1), b) axial strain (SRI-2), c) transverse shear
strain (SRI-1), d) transverse shear strain (SRI-2), e) bending strain (SRI-1), and f) bending strain
(SRI-2).
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a) b)

c) d)

e) f)

Figure 6.22: Comparison of the solutions obtained with the various SRI rules applied to the
translational part only, for p = 3: a) Axial strain (SRI-1), b) axial strain (SRI-2), c) transverse shear
strain (SRI-1), d) transverse shear strain (SRI-2), e) bending strain (SRI-1), and f) bending strain
(SRI-2).
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a) b)

c) d)

e) f)

Figure 6.23: Comparison of the solutions obtained with the various SRI rules applied to the
translational part only, for quartic and quintic order elements: a) Axial strain (SRI-1), b) axial
strain (SRI-2), c) transverse shear strain (SRI-1), d) transverse shear strain (SRI-2), e) bending
strain (SRI-1), and f) bending strain (SRI-2).
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The beam is analyzed once more applying the proposed integration schemes on both the

translational and rotational parts (URI-1 and URI-2). The corresponding strain field solutions

are reported in Figs. 6.24 and 6.25 for the quadratic and cubic elements, respectively. For p = 3

or higher, the solution is not convergent unless the additional Gauss points are added to the

boundary elements (URI-2). Results obtained for the quartic and quintic order elements are

not reported here, but they behave similar to the cubic elements.

Again, strains sampled at the Gauss points coincide with the reference solution for the

translational strains. However, applying less than nGP = p on the rotational part does not

produce accurate results for the bending strains.
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a) b)

c) d)

e) f)

Figure 6.24: Comparison of solutions obtained with the various URI rules applied to both the
translational and the rotational parts, for p = 2: a) Axial strain (SRI-1), b) axial strain (SRI-2), c)
transverse shear strain (SRI-1), d) transverse shear strain (SRI-2), e) bending strain (SRI-1), and
f) bending strain (SRI-2).
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a) b)

c)

Figure 6.25: Comparison of solutions obtained with the URI-2 rule applied to both the
translational and the rotational parts, for p = 3: a) Axial strain, b) transverse shear strain, and
c) bending strain.

Furthermore, a convergence study is carried out to study the impact of the various reduced

quadrature rules on accuracy. The tangential tip displacement is chosen as measurement, and

the relative error is computed from Eq. 3.25, where uex represents ut (s = L) from Eq. (6.14).

Figures 6.26 and 6.27 show convergence plots for the various reduced integration rules with

NURBS, for ρ = 1 and ρ = 3, respectively. Firstly, it is seen that the absolute errors from the

conventional URI elements shift with approximately 4 orders, going from ρ = 1 to ρ = 3 which

strongly indicate locking. Elements with SRI provide slower convergence, but the absolute

errors are small for coarse discretizations and they are not shifted with ρ. Apparently, quadratic

elements integrated with URI-1 or URI-2 performs similar to the associated SRI-1 and SRI-2
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elements for which the reduced quadrature rules are only applied to the translational part,

while the associated cubic and higher order elements has rather poor performance with slow

convergence and large errors.

Lastly the thickness dependency is studied. For this analysis, ρ is varied from 1 to 5, keeping a

fixed number of 5 NURBS elements. Figures 6.28 and 6.29 show logarithmic plots of the relative

error and the numerical values for tangential tip displacements and tip rotations for the

various reduced integration regimes, respectively. Elements with conventional reduced

integration (URI) are included for comparison.

a) b)

c) d)

Figure 6.26: Relative error in tangential tip displacement for the various reduced quadrature
rules with NURBS, for ρ = 1: a) URI, b) SRI-1, c) SRI-2, d) URI-1 and URI-2.
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a) b)

c) d)

Figure 6.27: Relative error in tangential tip displacement for the various reduced quadrature
rules with NURBS, for ρ = 3: a) URI, b) SRI-1, c) SRI-2, d) URI-1 and URI-2.

Apart from p = 5, all elements appear to be locking-free. The slight thickness dependency of the

quintic elements may be due to the fact that the proposed quadrature rule adds two more Gauss

points than needed to avoid rank deficiency and thus creates an over-constrained system. Note

how this curved beam locks completely with URI, even with cubic elements. The dotted line in

Fig. 6.29 represents the limit in computer precision.

A closer investigation of the kink in 4th order elements with URI is carried out in Appendix B,

where also the thickness dependency of the L2 relative error norm is considered.
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a) b)

c) d)

e) f)

Figure 6.28: Convergence of the tangential tip displacement with respect to the slenderness of
the beam for NURBS: a) Relative error (SRI-1), b) displacement (SRI-1), c) relative error (SRI-2),
d) displacement (SRI-2), e) relative error (URI-1 and URI-2), and f) displacement (URI-1 and
URI-2).



CHAPTER 6. LOCKING REMOVAL 129

a) b)

c) d)

e) f)

Figure 6.29: Convergence of the tip rotation with respect to the slenderness of the beam for
NURBS: a) Relative error (SRI-1), b) rotation (SRI-1), c) relative error (SRI-2), d) rotation (SRI-2),
e) relative error (URI-1 and URI-2), and f) rotation (URI-1 and URI-2).
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6.3.4 Curved beam subjected to tip shear

In this last example, the beam from Section 5.4 is analyzed with the proposed integration

regimes in Table 6.1. Figure 6.30 shows geometry and material properties. Unlike the moment

loaded beam from the previous section, this load imposes strain energy contributions from not

only bending, but also axial- and transverse shear strains.

Young’s modulus: E = 1000
Poisson’s ratio: ν= 0
Radius: R = 10
Width: b = 1
Thickness: h = R/10ρ

Load: P = 0.1h3

Figure 6.30: Geometry and material data for a curved beam under sinusoidally moment loading.

Again, the nonzero strain fields, ε1, γ12 and κ3, which may be computed from the analytical

solution given in Eq. 5.3 have been studied with the different integration regimes. A

comparison of Lagrange and NURBS elements of quadratic order and conventional reduced

integration (URI) is shown in Figure 6.31 for slendernesses of ρ = 1 and ρ = 3. In order to match

the number of unknowns, a uniform mesh of 3 and 5 elements is used for FEA and IGA,

respectively. The strains are obtained from the current configuration, and for that reason the

analytical (linear) solution is approximated with a reference solution obtained with 32 quintic

isogeometric elements each integrated with p Gauss points (nGP = p). These figures confirm

that URI removes locking of the Lagrangian elements, while IGA, on the other hand, show

increasing errors with the slenderness and consequently tends to lock.
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a) b)

c) d)

e) f)

Figure 6.31: Comparison of Lagrange (FEA) and NURBS (IGA) based solutions applying
conventional URI for p = 2: a) and b) Axial strain, ρ = 1 and ρ = 3, c) and d) transverse shear
strain, ρ = 1 and ρ = 3 and e) and f) bending strain, ρ = 1 and ρ = 3.
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The slenderness is now kept fixed to ρ = 3 and the beam is analyzed using selective reduced

integration, SRI-1 and SRI-2. The strain fields obtained with 5 equally sized 2nd and 3r d order

elements are depicted in Figures 6.32 and 6.33, respectively. For the quadratic elements all

three strain fields sample the reference solution with good accuracy, yielding an accurate

approximation of the corresponding curvature field. However, for cubic elements with SRI-1,

instabilities in the translational strains at the boundaries leads and incorrect representation of

the curvatures. For SRI-2, where the Gauss points are located at the boundary elements, these

instabilities are avoided.

The proposed integration schemes are now applied to the entire stiffness matrix (URI-1 and

URI-2), and the corresponding strain fields are reported in Figures 6.34 and 6.35 for quadratic

and cubic elements, respectively. For p = 2, the translational strains are sampled with fair

accuracy, but the rotational part is left incorrect. For p = 3, the solution is not convergent

unless the additional Gauss points are added to the boundary elements (URI-2), and these

behave similar as for p = 2: fair accuracy for the translational part, incorrect representation of

the curvatures.

Figure 6.36 shows the strains obtained for p = 4 and p = 5 with SRI-2 and URI-2. Due to

oscillating strain fields and non-convergent solution with SRI-1/URI-1, these are omitted. Note

how the curvatures for URI-2 are inaccurately represented even for quintic order elements.
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a) b)

c) d)

e) f)

Figure 6.32: Solutions obtained with SRI rules applied to the translational part only, for p = 2
and ρ = 3: a) ε1, SRI-1, b) ε1, SRI-2, c) γ12, SRI-1, d) γ12, SRI-2, e) κ3, SRI-1 and f) κ3, SRI-2.



CHAPTER 6. LOCKING REMOVAL 134

a) b)

c) d)

e) f)

Figure 6.33: Solutions obtained with SRI rules applied to the translational part only, for p = 3
and ρ = 3: a) ε1, SRI-1, b) ε1, SRI-2, c) γ12, SRI-1, d) γ12, SRI-2, e) κ3, SRI-1 and f) κ3, SRI-2.
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a) b)

c) d)

e) f)

Figure 6.34: Solutions obtained with URI rules applied to both the translational part and the
bending part, for p = 2 and ρ = 3: a) ε1, URI-1, b) ε1, URI-2, c) γ12, URI-1, d) γ12, URI-2, e) κ3,
URI-1 and f) κ3, URI-2.



CHAPTER 6. LOCKING REMOVAL 136

a) b)

c) d)

e) f)

Figure 6.35: Solutions obtained with URI rules applied to both the translational part and the
bending part, for p = 3 and ρ = 3: a) ε1, URI-1, b) ε1, URI-2, c) γ12, URI-1, d) γ12, URI-2, e) κ3,
URI-1 and f) κ3, URI-2.
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a) b)

c) d)

e) f)

Figure 6.36: Solutions for 4th and 5th order elements with SRI and URI, for ρ = 3: a) ε1, SRI-2,
b) ε1, URI-2, c) γ12, SRI-2, d) γ12, URI-2, e) κ3, SRI-2 and f) κ3, URI-2.
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For the convergence study the relative error in normal tip displacement is chosen as

measurement, as it is the only contribution to the external energy. Figures 6.37 and 6.38 show

convergence plots for the various reduced integration rules, for ρ = 1 and ρ = 3, respectively.

Once again, it is seen that the proposed integration rules provide slower convergence than

conventional reduced integration. However, the absolute errors are small for coarse

discretizations and they are not shifted with the slenderness, ρ. URI-1 and URI-2 for cubic or

higher order elements has rather poor performance with slow convergence and large errors.

a) b)

c) d)

Figure 6.37: Relative error in tangential tip displacement for the various reduced integration
rules, for ρ = 1: a) URI, b) SRI-1, c) SRI-2 and d) URI-1 and URI-2.
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a) b)

c) d)

Figure 6.38: Relative error in tangential tip displacement for the various reduced integration
rules, for ρ = 3: a) URI, b) SRI-1, c) SRI-2 and d) URI-1 and URI-2.

In Figure 6.39 the thickness dependency is studied. The same error measurement is now

computed with respect to the slenderness, varying ρ from 1 to 5 with a uniform mesh of 5

elements. Conventional reduced integration is included for comparison. Again the integration

models show locking free behavior up to 4th order elements. The slight increase in errors for

high slendernesses seen in Figure c), might be computational errors, due to an ill-conditioned

stiffness matrix.
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a) b)

c) d)

e) f)

Figure 6.39: Convergence of the normal tip displacement with respect to the slenderness of the
beam: a) Relative error (SRI-1), b) displacement (SRI-1), c) relative error (SRI-2), d) displacement
(SRI-2), e) relative error (URI-1 and URI-2) and f) displacement (URI-1 and URI-2).
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6.4 Concluding remarks

Through the numerical examples it has been proven that a lower order, patch-wise integration

rule may be used to alleviate both membrane and transverse shear locking of NURBS elements.

The strains obtained from the different integration models indicate that for higher order

elements, adding the Gauss points to the boundary elements at both ends stabilize, or support

the strain field between. By the same argument, the quadratic elements with only one

additional Gauss point are given the best support when it is added near the center, as

SRI-1/URI-1 suggests.

Further it is seen that while selective reduced integration (SRI-1 and SRI-2) sample all strain

fields with good accuracy, the uniform reduced integration rules (URI-1 and URI-2) leave the

rotational part incorrectly, resulting in large errors and slow convergence.

Unfortunately, the convergence rates are reduced with the proposed integration rules, and for

cubic and higher order elements, they are also depending on the slenderness. Higher

proportion of membrane stiffness gives slower convergence, see e.g. Figure 6.37c and 6.38c. A

closer investigation of the thickness dependent convergence rates is carried out in Appendix C.

The initial instabilities seen in the convergence for p = 2 with the proposed integration

schemes, as seen in e.g. Figures 6.9d and 6.37d, is also studied in Appendix C. Furthermore, any

strong form solution is lost with the integration schemes, even if the polynomial order is

sufficient.

Note that for p = 4 and p = 5, the system is still over-constrained by 1 and 2 Gauss points,

respectively, which may explain the hint of locking seen for p = 5 in e.g. Figure 6.28c.
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Chapter 7

Non-linear analysis with SRI

It was proven in Chapter 6 that the patch-wise selective reduced integration rule resulted in a

locking-free NURBS element, and the performance in linear analyses was investigated. In this

chapter the integration rules which showed the best performance in the linear analyses (i.e. SRI-

1 for p = 2 and SRI-2 for p ≥ 3) will be tested in the non-linear regime.

For this study the curved beam subjected to a sinusoidally distributed moment loading, from

Section 6.3.3, will be analyzed with the geometry and material data given in Figure 7.1. The red

line shows the final configuration.
Tore A. Helgedagsrud, Siv B. Raknes and Kjell M. Mathisen
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The numerical study shows that applying conventional URI with ng = p per knot-span
element, locking is revealed in all strain fields. In contrast, applying conventional URI
to both the translational and rotational part of the residual and the tangent stiffness are
the best quadrature rules for C0-continuous Lagrange Timoshenko beam elements based
on the geometrically exact beam model.

Our study has proven that SRI of the translational part may be used to alleviate both
membrane and transverse shear locking for the NURBS discretizations. The numerical
results also show that: 1) For all polynomial orders p, the rotational part of the residual
and tangent stiffness should be integrated with ng = p, 2) for all polynomial orders p, the
translational part should be integrated with a one-point quadrature rule except; a) for
p = 2, an extra Gauss point should be added to an element near the center, and b) for
p ≥ 3, the two boundary elements that should be integrated with ng = p− 1.

Note that for NURBS of cubic order and larger we recommend to add extra Gauss
points to the two boundary elements to stabilize and support the strain fields within the
patch. However, for quadratic NURBS the best support is obtained by adding an extra
Gauss point near the center. This also complies with the scheme proposed by Bouclier et
al. [8] for quadratic elements, but while we recommend this rule only for the translational
part, they used the same rule for both the translational and the rotational part. The
above recommended scheme also comply with that proposed by Adam et al. [1], but only
for NURBS of cubic order.

We have also applied the above recommended quadrature rules for both the transla-
tional and rotational parts, which turns out to sample the translational part of the strain
fields accurately, however, leaving the rotational part incorrect. Also note that for NURBS
the convergence rates are reduced with SRI, and for cubic and higher order elements they
are also depending on the slenderness ratio.
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Young’s modulus: E = 12
Poisson’s ratio: ν= 0
Radius: R = 1
Width: b = 1
Thickness: h = R/10ρ

Moment loading: m(s) = h3 sin
(
πs
2L

)

Figure 7.1: Geometry and material data for a curved beam under sinusoidally moment loading.

The non-linear analysis has been performed with the FENRIS® solver, using 100 load steps. The

large number of load steps is chosen to avoid introducing any errors due to path dependency.

The convergence of the displacement and the bending moment in terms of the relative L2 error
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norm is studied for quadratic to quartic elements, where the reference solution is computed

from 48 octic Lagrangian elements.

Convergence of the displacement is shown in Figures 7.2 and 7.3, where SRI is compared to

IGA and FEA with conventional reduced integration, respectively. Figures 7.4 and 7.5 show the

corresponding convergence plots for the bending moments.

Figure 7.2: Comparison of IGA with URI and SRI for displacement relative error in the L2-norm
for the non-linear analysis.
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Figure 7.3: Comparison of IGA with SRI and FEA for displacement relative error in the L2-norm
for the non-linear analysis.

Figure 7.4: Comparison of IGA with URI and SRI for the bending moment relative error in the
L2-norm for the non-linear analysis.
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Figure 7.5: Comparison of IGA with SRI and FEA for the bending moment relative error in the
L2-norm for the non-linear analysis.

Also in the non-linear regime, SRI yields improved accuracy for all polynomial orders, and the

behavior is very similar as in the linear regime. For the displacements, SRI shows precise results,

but the convergence is slower than with conventional URI. Compared to FEA, only the cubic

NURBS with SRI show significantly better performance.

For the bending moments, SRI does not only show improved accuracy but the convergence rates

are also contained, and for p ≤ 3 NURBS with SRI outperforms Lagrange.



Chapter 8

Summary and Conclusions

This thesis is concerned with locking-free methods for isogeometric analysis of the

geometrically exact shear-flexible 3D beam model, and a family of locking-free NURBS-based

elements has been developed.

In Chapter 3 the Lagrangian and the NURBS basis were used to discretize a linear Timoshenko

beam. A few numerical tests prove that the implementation was successful, and that IGA

performed well compared to the standard FEA. It was also proven that NURBS elements are

prone to transverse shear locking, even with the conventional reduced integration rule which

unlocks the Lagrangian elements.

In the next step, the geometrically exact 3D beam model, presented in Chapter 4, was

discretized with Lagrangian polynomials and NURBS. With no restrictions with respect to the

size of the displacements, rotations and deformations, this beam model is well accommodated

for large deformation analyses. However, as the focus has been on unlocking the NURBS

element by a lower order integration rule, the beam model has mostly been studied in the

linear regime.

A range of numerical examples in Chapter 5 verified the implementation of the beam model. A

closer study of the impact of reduced integration on IGA was also carried out, and it was found

that: 1) For p = 1, whose basis is identical to the Lagrangian, reduced integration removes both

transverse shear and membrane locking, 2) for p = 2, IGA with reduced integration show faster

convergence and less errors than IGA with exact integration, and the impact of locking are

reduced but not removed, and 3) for cubic and higher order elements, the impact of reduced
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integration is negligible. Furthermore, the discretizations with only one element (i.e. p + 1

control points and p Gauss points) showed less errors than those with two elements (i.e. p +2

control points and 2p Gauss points), and thus indicated an over-constrained equation system

for ne ≥ 2. The standard Lagrangian elements, which were tested in parallel showed, as

expected, locking free behavior with reduced integration.

In Chapter 6, a study of the constraint ratio and the minimum number of Gauss points needed

for a rank sufficient stiffness matrix resulted in two patch-wise reduced integration schemes,

shown in Table 6.1. These were applied to the translational part only (selective reduced

integration), using nGP = p on the bending part, and to both the translational and the bending

part (uniform reduced integration). The proposed integration rules were carefully tested

through a selection of numerical tests with various geometries, loads and boundary conditions.

Studies of the strain fields were emphasized, from which locking and the condition of the

equation system may be seen. Convergence with respect to the number of degrees of freedom

and the slenderness were also investigated.

It was proven that a lower order, patch-wise integration rule may be used to alleviate both

transverse shear and membrane locking of the NURBS elements. The study also revealed that

the additional Gauss points stabilize the strain amplitudes (and thus improve the condition

number), which determine their optimal placement. The best support is given when the

additional Gauss point(s) are added: 1) Near the center of the patch for p = 2, and 2) to the two

boundary elements for p ≥ 3.

Further it was seen that while selective reduced integration sample all strain fields with good

accuracy, the uniform reduced integration rules leave the rotational part incorrectly, resulting

in large errors and slow convergence.

The numerical study therefore points out the following integration rule:

• ∀p, the bending stiffness matrix should be integrated with nGP = p Gauss points.

• ∀p, the membrane stiffness matrix should be integrated with nGP = 1 Gauss point, except

for:

1. p = 2: one extra Gauss point should be added near the center, and

2. p ≥ 3: the two boundary elements should be integrated with nGP = p−1 Gauss points.
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This complies with the scheme proposed by Bouclier et al. [9] for p = 2. However, they

recommend it for both the translational and the bending part, while it is here only

recommended for the translational part. The integration scheme also comply with that

proposed by Adam et al. [1], but only for p = 3.

Unfortunately, the convergence rates are reduced and thickness dependent with the proposed

integration rule. High proportion of membrane stiffness slows down the convergence.

Furthermore, any strong form solution is also lost, even if the polynomial order is sufficient.

The convergence study in Appendix C suggests that the convergence rates for the

displacements are bound within a lower limit, e = O (h1), and upper limit, e = O (hp+1).

However, these limits are not sufficiently studied to draw any conclusions.

In Chapter 7 a non-linear, large displacement analysis with the selective reduced integration

rule was carried out, and it was proven that the elements perform likewise or even better in the

non-linear regime.

To conclude, the patch-wise selective reduced integration rule proposed in this thesis has

proven to be a good candidate to alleviate transverse shear and membrane locking in the

NURBS-based geometrically exact 3D Timoshenko beam. The technique is not only easy to

implement (see Appendix E), but less integration points do also have a significant impact on

the computational efficiency, which is especially beneficial for non-linear analyses.

The study of alleviating locking in NURBS-based beam elements is by no means complete. For

this framework open questions remain concerning: 1) Effect of lower regularity within the

patch, 2) computational efficiency compared to uniform reduced integration rules, and also

the standard FEA and 3) extension to multi-dimensional formulations, such as shells.

Furthermore, selective reduced integration is only one of many promising alternatives to

overcome numerical locking. Linked interpolation, proposed for FEA by e.g. Xu [46], which to

the author’s knowledge has not yet been proposed for IGA at the present time, and B and F

projection methods proposed by Elguedj et al. [18] and Bouclier et al. [9], which has been

successfully applied in linear analyses but not yet tested in the non-linear regime, may be

potential competitors for a locking-free NURBS-based geometrically exact 3D beam element.
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Appendix A

Relation between nel s and nnodes

To give a fair comparison of the different element types, the number of DOFs (ndo f s) or

number of nodes (nnodes) are matched. The relation between number of nodes and number of

elements (ne ) vary with the polynomial order and continuity across elements. Table A.1 shows

this relation.

FEA

p = 2
ne 1 2 4 8 16 32 64
nnodes 2 4 8 16 32 64 128
ndo f s 12 24 48 96 192 384 768

p = 3
ne 1 2 3 5 10 20 40
nnodes 3 6 9 15 30 60 120
ndo f s 18 36 54 90 180 360 720

p = 4
ne 1 2 4 8 16 32
nnodes 4 8 16 32 64 128
ndo f s 24 48 96 192 384 768

IGA

p = 2
ne 1 3 7 15 31 63 127
nnodes 2 4 8 16 32 64 128
ndo f s 12 24 48 96 192 384 768

p = 3
ne 1 2 6 14 30 62 126
nnodes 3 4 8 16 32 64 128
ndo f s 18 24 48 96 192 384 768

p = 4
ne 1 5 13 29 61 125
nnodes 4 8 16 32 64 128
ndo f s 24 48 96 192 384 768

Table A.1: Relation between ne and nnodes .
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Appendix B

Curved beam under distributed moment

loading: An investigation of 4th order

elements with URI.

A closer investigation of the kink that appeared for 4th order elements in Figure 6.28 has been

carried out. The aim is to find out whether there is a bug in the code, or if the elements behave

like this. The kink in question is pointed out in Figure B.1.

Figure B.1: Convergence of tangential tip displacement with respect to the slenderness for
NURBS elements with conventional reduced integration.
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The measurement for this study was the relative error in tangential tip displacement,

computed from Eqs. 6.14 and 3.25. A more refined analysis has been carried out with uniform

meshes of 3, 5, 7 and 9 quartic NURBS elements, and reported in Figure B.2. For the same

analysis, the relative error in normal tip displacement and tip rotation is reported in Figures B.3

and B.4, respectively.

Apparently, the kink does only appear for the tangential tip displacement. The two other

measurements also lock in two steps (most significantly for the rotations), but the errors do

never decrease along the horizontal axis. All discretizations show the same behavior.

It is shown by Prathap [33] and pointed out by Adam et al. [1], that the two-step locking

distinguishes between transverse shear and membrane locking, where the latter dominates for

higher slendernesses.

As the rotations, which is energy conjugate with couples, replicate this behavior, and that the

kink smoothen out with a refined analysis and show the same behavior for several meshes, it is

most likely only some transition effect between transverse shear and membrane locking. This

is supported by Figure B.5, where the L2-norm of the magnitude in the displacement fields (Eq.

B.1) is computed.

Figure B.2: Relative error in tangential tip displacements for various discretizations with quartic
elements.
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Figure B.3: Relative error in normal tip displacements for various discretizations with quartic
elements.

Figure B.4: Relative error in tip rotation for various discretizations with quartic elements.
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a) b)

c)

Figure B.5: L2-norm of relative error in the magnitude of the displacement field with respect to ρ
for the various integration rules with quadratic to quintic elements: a) SRI-1, b) SRI-2, c) URI-1
and URI-2.
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Appendix C

Convergence study of elements with SRI and

URI.

The curved cantilever beam subjected to a transverse tip load at the free end, analyzed in

Section 6.3.4 has been subject to a closer study of the convergence rates with the proposed

selective and uniform reduced integration regimes from Table 6.1.

It was proven through the numerical examples in Section 6.3 that the convergence rates for

p = 3 or higher depend on the slenderness. The aim with this study is to investigate if there

exists an upper and lower bound for the convergence rates with SRI-2, which has shown the

best results for higher order elements. Furthermore, the instabilities seen with quadratic

elements and coarse discretizations (see e.g. Figure 6.38) have also been investigated in this

Appendix.

The convergence is studied for slendernesses from ρ =−1 to ρ = 4, and are reported in Figures

C.1 to C.3 for p = 3 to p = 5, respectively. Unfortunately, the convergence of the slender beams

is terminated when the floating-point accuracy in MATLAB® becomes equal to the 1-norm of

the stiffness matrix [31], ||K||1 , recognized from the vibrations and increasing errors. For that

reason any upper bound cannot be seen for p = 4 and p = 5. However, for p = 3 the initial

convergence for ρ ≥ 2 is of 4th order, i.e. eu = O (hp+1). Further, it seems that the final

convergence for all slendernesses is linear, i.e. eu = O (h1), which is also the lower bound. The

latter observation is also valid for p = 4 and p = 5.
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Figure C.1: Convergence of normal tip displacement for p = 3 and SRI-2 for various
slendernesses.

Figure C.2: Convergence of normal tip displacement for p = 4 and SRI-2 for various
slendernesses.
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Figure C.3: Convergence of normal tip displacement for p = 5 and SRI-2 for various
slendernesses.

Furthermore, a refined analysis of the quadratic elements with the different integration models

has been carried out in order to investigate the zig-zag pattern that turns up especially for URI-1

and URI-2. Figure C.4 shows convergence plots for all integration models with ρ = 1. Together

with Figure C.5, showing the sampling points for transverse shear strains for ne = 5,6,7,8,9, it is

seen that some discretizations give a more accurate representation of the strains in the element

with nGP = 2 than others, which causes the oscillating convergence. Nevertheless, all integration

models show quadratic convergence in average, independent of the slenderness.
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Figure C.4: Convergence of normal tip displacement p = 2 for the different integration models.

Figure C.5: Transverse shear strain Gauss points for a various number of quadratic NURBS
elements with URI-1.



Appendix D

k-refinement of circular arc

This code perform k-refinement of a 90° arc up to a desired number of elements and polynomial

order. The code may be used to any NUBRS-geometry by changing the initial geometry.

% Purpose: Generate knot vector and Control Points for a given polynomial

% order and number of NURBS elements for a 90 deg. circular arc from

% (0,0,0) to (1,1,0).

%

% Input: p = pol. order

% nELS = number of spline elements

% Output: C0 = Control points and weights

% Xi = Knot vector

%

% Nested functions:

% DegreeElevateCurve.m

% Algorithm A5.9, s207, Piegl: the NURBS-book

%

% knot_insertion.m

% Algorithm A5.1, s151, Piegl: the NURBS-book

%

% Coding:

% Tore Helgedagsrud, 2/2-15
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function [C0,Xi]=NURBS_knots_CP_QCircle(p,nELS)

% Initial geometry

c45=cos(pi()/4);

C0=[0 0 1;0 1 1;0 0 0;1 c45 1];

Xi=[0 0 0 1 1 1];

% Create weighted control points for p=2

C0w=C0;

for i=1:3

C0w(1:3,i)=C0w(1:3,i).*C0w(4,i);

end

% ORDER ELEVATION

if p>=3

for i=1:p-2

[~,C0w,Xi] = DegreeElevateCurve(i+1,C0w,Xi,1);

if i==1 % adjust points and weights for p=3

C0w(4,2:3)=C0w(2,end-1);

C0=C0w;

[~,l]=size(C0);

for j=1:l

C0(1:3,j)=C0(1:3,j)./C0(4,j);

end

nweight=C0(4,2);

elseif i==2 % adjust points and weights for p=4

C0w(4,2:4)=C0w(2,end-1);

C0w(4,3)=nweight;

C0=C0w;

[~,l]=size(C0);

for j=1:l

C0(1:3,j)=C0(1:3,j)./C0(4,j);

end
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nweight=C0(4,3);

else% adjust points and weights for p>=5

C0=C0w;

[~,l]=size(C0);

for j=1:l

C0(1:3,j)=C0(1:3,j)./C0(4,j);

end

end

if i<p-1

% Weigh points at end of loop

C0w=C0;

[~,l]=size(C0w);

for j=1:l

C0w(1:3,j)=C0(1:3,j).*C0(4,j);

end

end

end

end

% KNOT INSERTION

% weigh control points

C0w=C0;

[~,l]=size(C0w);

for j=1:l

C0w(1:3,j)=C0w(1:3,j).*C0w(4,j);

end

%Parametric knot values:

if nELS>=2

kv=linspace(0,1,nELS+1);

for i=nELS:-1:2

[~, Xi, C0w]=knot_insertion(p,Xi,C0w,kv(i),p+1,0,1);
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end

% Back to control points and weights

C0=C0w;

[~,l]=size(C0);

for j=1:l

C0(1:3,j)=C0(1:3,j)./C0(4,j);

end

end % function



Appendix E

Implementation of patch-wise selective

reduced integration

The patch-wise integration rule proposed in this thesis may be implemented by adding the

following if-statements when the element loop is entered (i_el =Z ∈ [1,ne ]):

% BEGIN SELECTIVE INTEGRATION SCHEME

% nGP = number of Gauss points for bending part

% nGPm = number of Gauss points for translational part

if p==1

nGP=1; % Conventional reduced integration

nGPm=1;

elseif p==2

nGP=2;

if i_el==ceil((1+nELS)/2);

nGPm=2;

else

nGPm=1;

end
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else

nGP=p;

if i_el==nELS;

nGPm=p-1;

elseif i_el==1

nGPm=p-1;;

else

nGPm=1;

end

end

% END SELECTIVE INTEGRATION SCHEME



Appendix F

Report for MekIT’15

The following report, "On Locking-free Methods for Isogeometric Large Deformation Analysis of

Geometrically Exact 3D Beams", was written with Siv Bente Raknes and Kjell Magne Mathisen

for the MekIT’15 Eight National Conference on Computational Mechanics in Trondheim May

18th-19th, 2015.
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Abstract. In this work the geometrically exact three-dimensional beam theory has been
used as basis for development of a family of isogeometric large deformation curved beam
elements. Geometrically exact three-dimensional beam theory has no restrictions with re-
spect to size of displacements, rotations and deformations. While reduced integration may
be used to alleviate transverse shear and membrane locking in standard C0-continuous
Lagrange elements, this does not automatically extend to isogeometric elements. In this
study we investigate how uniform and selective reduced patch-wise numerical quadrature
rules may be used to obtain locking-free isogeometric large deformation geometrically ex-
act curved beam elements. A carefully selected numerical example serves to illustrate and
assess the performance of the various quadrature regimes.

1 INTRODUCTION

The finite element (FE) method has been widely used in nonlinear analysis of three-
dimensional (3D) curved beam-like structural systems subjected to large displacements
and large strains for several decades. Numerous approaches have been proposed, but
the vast majority of them have been limited to considering the beam element reference
geometry being a straight line. In this work we aim to extend the geometrically exact
beam model (GEBM) (see Simo [33] and Simo and Vu-Quoc [34, 35]) based on Reissner’s
3D beam theory [31], to model arbitrary shaped curved beam geometry. Several authors,
e.g., Stolarski and Belytschko [36] and Ibrahimbegović [22], have observed that increasing
the accuracy of the approximated curved beam geometry entails a significant increase
in accuracy. The curved 3D geometrically exact beam formulation presented herein is

1
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able to accommodate large displacements, finite rotations and finite strains. In contrast
to the corotational-type of beam elements (see, e.g., Crisfield [15] and Mathisen and
Bergan [24]), it can be easily extended to higher-order beam elements. Saje [32] extended
the GEBM to higher-order two-dimensional (2D) curved beams and Ibrahimbegović [22]
to 3D curved beams. However, the latter work was restricted to quadratic hierarchical
displacement interpolation. To our knowledge the current work represent the first attempt
to extend the GEBM to an arbitrary order formulation. Also our extension of the linearly
interpolated straight beam formulation proposed by Simo and Vu-Quoc [34] follows more
closely the corotational approach since we derive the energy-conjugate strains from a
polar decomposition of the deformation tensor rather than defining stress resultants and
couples a priori and achieving energy-conjugate strain measures through the variational
formulation which was employed in the original work.

With the introduction of isogeometric analysis (IGA) [14, 20], the exact geometry of
the structure may be represented by the same approximation functions used to discretize
the solution space. Thus, Lagrange polynomials are replaced by non-uniform rational B-
splines (NURBS) functions, which today constitute the most commonly used technology
in computer-aided design (CAD). An inherent property of NURBS functions of order
p is that they have higher continuity, Cp−1 at interior knots, compared to C0 at nodal
points for Lagrange. Patch-wise discretizations with NURBS in combination with the
use of the well-known k-refinement and smooth order elevation (see, e.g., [14, 28]), result
in improved accuracy and robustness compared to conventional C0-continuous Lagrange
polynomials. Since its conception, IGA has penetrated many areas of computational
mechanics, engineering and sciences, in many cases showing improved performance over
the standard FE method (FEA). In the area of structural and solid mechanics IGA has
been successfully employed in the computation of cable structures [29], 2D and 3D solids,
including large deformation, incompressibility, near-incompressibility and plasticity [18,
25], contact [26, 27], fracture [8] and fluid–structure interaction [7].

Unfortunately, as shown by, e.g., Echter and Bishoff [16] and Bouclier et al. [9], NURBS-
based IGA suffer from the same locking pathologies as FEA. For curved beams this
imply that both transverse shear and membrane locking [36] may appear as well with
NURBS-based discretizations. Both transverse shear and membrane locking have been
attributed to the inability of the interpolation functions to reproduce bending properly in
the Kirchhoff limit, i.e., when the thickness becomes very small compared to the length
of the beam (or radius of curvature for curved members). The proposed remedies to
overcome locking in FEA has recently been applied successfully to eliminate (or at least
alleviate) the occurrence of the various locking phenomena also for IGA: 1) Reduced and
selective reduced integration [1, 2, 9], 2) NURBS-based discrete shear gap (NURBS-DSG)
methods [16, 17], 3) B and F projection techniques [9, 10, 11, 18], 4) assumed natural
strain methods [13], 5) hybrid-mixed methods [17], and 6) collocation methods [5, 6].
Apart from the B and F projection methods proposed by Elguedj et al. [18] and Bouclier
et al. [11], these works were limited to linear elastic analysis.

2
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In this context, our aim is to develop a family of NURBS-based geometrically exact 3D
beam elements free of locking for the analysis of geometrically nonlinear finite deformation
curved beam-like structural systems. In order to do that, we propose an extension of the
GEBM presented in [33, 34, 35], to IGA with higher-order NURBS-based discretization
of both the geometry, displacement, and the rotational fields. To alleviate locking, we
have proposed and validated various quadrature rules based on either uniform or selective
reduced integration of the translational and rotational part of the beam model.

This paper is outlined as follows. In Section 2, an interpretation of the GEBM due to
Simo [33] and Simo and Vu-Quoc [34, 35] is presented at the continuous level. Section 3
gives an overview of the discretization with B-splines and NURBS. In Section 4, the
discrete form of the isogeometric beam element is presented. Section 5 highlight locking
effects in curved beams together with a presentation of the various reduced quadrature
regimes proposed to alleviate locking. In Section 6, the various proposed integration
schemes are tested and compared on a carefully selected curved beam problem. Finally,
in Section 7 we draw conclusions.

2 A GEOMETRICALLY EXACT BEAM MODEL

In this section we consider the continuum basis for a geometrically exact beam theory
that is optimally suited for computational solution by the finite element method. Geo-
metrically exact beam theory is sometimes referred to as the Reissner’s beam theory [31],
but strictly speaking, the latter is only exact for a planar beam [30]. The theory presented
herein is based on the pioneering work of Simo [33] and Simo and Vu-Quoc [34, 35], that
in [35] introduced the still-used terminology GEBM to indicate that Reissner’s theory was
recasted in a form which is valid for finite rotations. The GEBM has later been revisited
and further developed by numerous authors over more than two decades, e.g., Cardona
and Géradin [12] and Ibrahimbegović [22], in which the latter extended the theory to
handle curved reference geometry.

2.1 Beam geometry in 3D space

The beam is viewed as a 3D body, whose material placement can be described by the
line of centroids B0 ⊂ R3, that has attached at each point a planar non-deformable cross
section A0 in the reference configuration. A local curvilinear coordinate system is chosen
to parameterize this line through an arc-length coordinate S along B0 in the reference
configuration. Let {ii(S, t)}i=1,2,3 represent a local Cartesian moving frame whose origin
is fixed at the centroid at all times, i1(S, t) remains perpendicular to A and {iα(S, t)}α=2,3

span the cross section of the beam in the current configuration. Henceforth, we use the
summation convention with Latin indices ranging from 1 to 3 and with Greek indices
ranging from 2 to 3. In the reference configuration the orthonormal basis vectors are
denoted i0i (S) = ii(S, 0) and the associated set of cross section coordinates x0

α (see Fig. 1).
Let X(S) and x(S, t) define the position of B0 and B in the 3D space in the reference

3
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X,Λ0

u,Λ

A0

A

Figure 1: Definition of the various frames and configurations for the geometrically exact beam model.

and current configuration, respectively:

x(S, t) = X(S) + u(S, t), (1)

where u(S, t) denote the displacement of B0 at any time t. We assume that the length of
the line of centroids B0 and B is L0 and L, respectively.

Without loss of generality, we assume that; (1) the beam has uniform cross sections,
i.e., cross-sectional properties remain constant along the entire length of the beam, (2)
the beam is unstrained and unstressed in the reference configuration, and (3) the cross
sections are initially normal to B0, hence:

i01(S) =
dX(S)

dS
= X ′(S), (2)

where prime denotes the derivative with respect to the arc-length coordinate S.
In accordance with standard hypothesis for beams, we further assume that:

(i) The cross sections remain plane and undeformed in the current configuration, i.e.,
warping effects are not accounted for.

(ii) The cross sections that initially are normal to B0 do not necessarily remain normal
to the deformed line of centroids B in the current configuration, i.e., transverse
shear deformations are accounted for; hence i1(S, t) remain normal to A but not
necessarily tangent to B.
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The orientation of the moving local Cartesian frame ii(S, t) along S ∈ [0, L], and
through time t ∈ [0, T ] is governed by the orthogonal two-point tensor Λ(S, t) such that

ii(S, t) = Λ(S, t)i0i (S)⇒ Λ(S, t) = ii ⊗ i0i ; ‖ ii ‖=‖ i0i ‖= 1⇒ ΛTΛ = ΛΛT = I, (3)

where I denote the identity tensor. Defining the reference and current configurations with
respect to a global Cartesian frame Ii, the above transformation reads:

ii(S, t) = Λ(S, t)Λ0(S)Ii ⇒ Λ0(S) = i0i ⊗ Ii, (4)

where Λ0(S) defines the orientation of the local Cartesian frame i0i (S) in the reference
configuration. The current configuration C of the 3D beam at any time t will then be
uniquely determined by the current position and the rotation of the centroid of the cross
section, i.e., the origin of the moving frame:

C = {ϕ = (x,Λ) : [0, L]× [0, T ] −→ R3 × SO(3)}, (5)

where SO(3) represents the special orthogonal (Lie) group, i.e., the group of all rotations
about the origin of R3 under the operation of composition. As a consequence, the 3D
kinematic description of the beam is reduced to a 1D kinematic description with the arc-
length coordinate S as the only parameter. With these definitions, the 3D beam geometry
in the current configuration may be defined as

x3D(S, x0
α, t) = x(S, t) + p(S, x0

α, t), (6)

where
p(S, x0

α, t) = Λ(S, t)p0(S, x0
α) = Λ(S, t)x0

αi
0
α(S). (7)

p and p0 denotes the cross section position vector along B, i.e., the position of a point P
relative to the centroid within a cross section, in the current and reference configuration,
respectively. Herein, we only consider quasi-static analysis of beam problems, however,
the kinematic description presented in this section is identical for static and dynamic
problems. For that reason, ”time” and ”pseudo-time” as well as ”time step”, ”incremental
step” and ”load step” are used as equivalents throughout this work.

2.2 Parameterization of finite 3D rotations

The principal difficulty by representing 3D finite rotations by an orthogonal tensor Λ
is due to the fact that SO(3) is not a linear (vector) space, but rather a manifold, hence
consistent linearization and update procedures are no longer straightforward. In the
context of time-independent (static) analysis Ibrahimbegović [23] overcame this problem
by reparameterizing the configuration space of the beam by making use of the so-called
rotation vector θ, defined by

θ = θn, (8)

5
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where n is a unit vector defining the axis of rotation and θ =
√
θ2

1 + θ2
2 + θ2

3 is the
magnitude of the rotation vector. The relation between Λ and θ is governed by the
Rodriguez formula which represents a closed form solution of the exponential mapping

Λ = exp[θ̃] = I +
sin θ

θ
θ̃ +

1− cos θ

θ2
θ̃θ̃, (9)

where θ̃ denote the skew-symmetric tensor for which θ is the axial vector, i.e.:

θ = [θ1, θ2, θ3]⇒ θ̃ = skew[θ] =




0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0


 . (10)

With such a parameterization, the configuration space C becomes a linear space:

C = {ϕ = (x,Λ) : [0, L]× [0, T ] −→ R3 × R3}. (11)

The admissible variation δΛ of the orthogonal tensor of finite rotations can be con-
structed by making use of the exponential mapping

δΛ = δ̃wΛ = Λδ̃ψ. (12)

Physically, δ̃w and δ̃ψ represent infinitesimal spatial and material rotations superposed
onto the existing rotation Λ. The spatial spin variables, δw, are also related to the
variation of the rotational vector through [23]

δw = Ts (θ) δθ, (13)

where

Ts (θ) = I +
1− cos θ

θ2
θ̃ +

θ − sin θ

θ3
θ̃θ̃. (14)

If the rotational vector is used as parameterization, the rotations become additive and
are updated at each iteration. However, the relation in Eq. (13) cease to be bijection
respectively for θ = 2nπ. Consequently, with the parameterization using the rotational
vector the angle of rotation is limited to 2π. In large deformation analysis, and especially
in dynamic large deformation analysis, angles of rotation can become much larger than
2π. In order to overcome this limitation, Cardona and Géradin [12] and Ibrahimbegović et
al. [23] proposed to apply Eq. (13) only within an increment and introduced the concept
of incremental rotation vector, based on the following update procedure:

(i) At the beginning at the time step (n + 1), i.e., for iteration i = 0, the incremental
rotation vector is set to zero:

θ0
n+1 = 0. (15)

6
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(ii) At the ith iteration the incremental rotation vector is updated additively

θin+1 = θi−1
n+1 + ∆θ, (16)

where ∆θ represents the iterative change of the incremental rotation vector.

(iii) The corresponding orthogonal tensor Λ is updated using exponential mapping

Λi
n+1 = exp[θ̃in+1]Λn. (17)

Hence, additive updates still apply within each time step and the amplitude of the rota-
tions are thus just limited within each time step. Alternatively, if the spatial spin variables
are used to parameterize the finite rotations, the update is performed according to

Λi
n+1 = exp[∆̃w]Λi−1

n+1, (18)

where ∆w denote the corresponding iterative change of the spatial spin variables.

2.3 Strain measures

In contrast to previous works [12, 22, 23, 30, 31, 33, 34, 35], where energy-conjugate
strain measures were based on stress resultants defined a priori, Auricchio et al. [3] derived
a GEBM in which proper strain measures at any point of the beam in C were obtained
by a polar decomposition of the deformation gradient F . With the definition of the 3D
geometry in C, see Eq. (6), the deformation gradient may be expressed as

F =
∂x3D

∂x0
i

⊗ i0i =
(
x′ + Λ′x0

αi
0
α

)
⊗ i01 + iα ⊗ i0α. (19)

Utilizing Eq. (12), the derivative of the rotation tensor Λ with respect to S may be
expressed as

Λ′ = κ̃Λ⇔ κ̃ = Λ′ΛT , (20)

where κ̃ = κ̃(S) is a skew-symmetric tensor represented by the axial vector κ denoting the
spatial rotational (torsional and bending) strains, i.e., the spatial curvature. Furthermore,
adding and subtracting the tensor i1 ⊗ i01 to the right-hand-side and recognizing that
ii ⊗ i0i = Λ, we may rewrite Eq. (19) and make a material polar decomposition of F

F = Λ
{
I +

[
ΛT (x′ − i1) + ΛT κ̃x0

αi
0
α

]
⊗ i01

}
= ΛU . (21)

In Eq. (21) U defines the right (current local) stretch tensor from which we may derive
the Biot strain measure B (often referred to as the Jaumann strains), that are objective
corotated engineering strains independent of rigid body displacements

B = ΛTF − I = U − I = ε⊗ i1 with ε = ΛT (γ + κ̃p) = Γ + K̃p0, (22)

7
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where ε represents a generalized convected strain measure, γ the translational (axial
and transverse shear) spatial strains and κ the rotational (torsional and bending) spatial
curvature strain vector. The corresponding convected material strains are represented by
upper case letters Γ and K. The relationship between the material and spatial form may
then be expressed as

Γ = ΛTγ with γ = x′ − i1,
K = ΛTκ with κ = Ts(θ)θ′.

(23)

A physical interpretation of the spatial strain measures is that the components of γ
represent the true axial and transverse shear strain measures with respect to the current
moving frame ii(S, t), e.g., γ1 represents the elongation of an infinitesimal fiber in the
direction normal to the cross section while γ2 and γ3 are the corresponding transverse
shear strains. Similarly, the three components of κ, represents the true torsional (κ1) and
bending strain measures (κ2 and κ3) with respect to the moving frame.

In order to establish an expression for the internal virtual work, we have to establish
the (virtual) variation of the strain measures established above. To do so, we introduce
the corotational or Lie variation for the current spatial strain measure, defined as

δL(·) = Λδ[ΛT (·)], (24)

in which the quantity first goes trough a pull-back rotation from the current to the refer-
ence configuration, followed by the virtual variation and finally by a push-forward rotation
to the current configuration, for more details see, e.g., Cardona and Géradin [12]. The
Lie derivative of the translational part of the current strain measure is obtained as

δL(γ) = Λδ(ΛTγ) = ΛδΓ, (25)

where

δΓ = δ(ΛTγ) = δΛTγ + ΛT δγ = ΛT (δx′ − δ̃wx′) = ΛT (δx′ + x′ × δw). (26)

After a push-forward rotation to the current configuration we obtain the Lie variation of
the translational spatial strain measure

δL(γ) = Λδ(ΛTγ) = ΛΛT (δx′ + x′ × δw) = δx′ + x′ × δw. (27)

The variation of the rotational strain parameter can be obtained similarly by utilizing
once again the variation of a rotation tensor (see Eq. (12)), and applying the chain rule
for partial derivatives. Recall the definition of the skew-symmetric of the curvature tensor
from Eq. (20), its variation may now be obtained as

δκ̃ = δ(Λ′ΛT ) = δΛ′ΛT + Λ′δΛT = (δ̃wΛ)′ΛT −Λ′(ΛT δ̃w)

= δ̃w
′
ΛΛT + δ̃wΛ′ΛT −Λ′ΛT δ̃w = δ̃w

′
+ δ̃wκ̃− κ̃δ̃w.

(28)

8
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Utilizing Lie algebra, ãc̃ − c̃ã = (̃ãc), the expression for the variation of the axial (cur-
vature) vector may be written

δκ = δw′ + δ̃wκ. (29)

With this result in hand we obtain the following expression for the variation of the cur-
vature K

δK = δ(ΛTκ) = δΛTκ+ ΛT δκ = (δ̃wΛ)Tκ+ ΛT (δw′ + δ̃wκ) = ΛT δw′. (30)

Using the expression for the Lie derivative the variation of the rotational spatial strain
now take the form

δL(κ) = Λδ(ΛTκ) = Λδ(K) = δw′. (31)

2.4 Stress resultants, constitutive equations and balance laws

Work conjugate with the strain measures in Eq. (23), we define material and spatial
stress resultants and couples, N ,M and n,m, where the latter are obtained by a push-
forward of the convected resultants and couples:

n = ΛN and m = ΛM . (32)

The first component of the force resultants n,N denotes the axial force in the direction
of i1, i

0
1, while component 2 and 3 denote the transverse shear forces in the directions of

iα, i
0
α, respectively. Similarly, the first component of the stress couples m,M denotes the

torsional moment in the direction of i1, i
0
1, while component 2 and 3 denote the bending

moments in the directions of iα, i
0
α, respectively. The stress resultants and couples may

be obtained by integrating the first Piola–Kirchhoff stress tensor P and the Biot stress
tensor TB over the reference cross section A0, respectively.

For a hyperelastic material the convected resultants may be obtained from a strain
energy function Ψ(Γ, K) through the relations

N =
Ψ(Γ, K)

Γ
and M =

Ψ(Γ, K)

K
. (33)

In our study we assume that we have a linear isotropic relation between stresses and
strains. This results in a St. Venant–Kirchhoff-type constitutive relation that may be
expressed in terms of E and G, denoting the Young’s and the shear modulus, respectively.
The corresponding resultant constitutive laws reads

N =



N1

N2

N3


 =



EA0 0 0

0 GĀ02 0
0 0 GĀ03






Γ1

Γ2

Γ3


 = CNΓ with

N i = N · i0i
Γi = Γ · i0i

, (34)

and

M =



M1

M2

M3


 =



GIT 0 0

0 EI33 −EI32

0 −EI23 EI22





K1

K2

K3


 = CMΓ with

M i = M · i0i
Ki = K · i0i

, (35)
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where GĀ0α denotes the reduced cross section shear area in the direction of i0α, IT the
torsional stiffness and Iαβ =

∫
A0
x0
αx

0
βdA the cross section second moment of area.

The corresponding relation between the spatial stress resultants and couples energy
conjugate to γ and κ may be obtained by combining Eqs. (23), (32), (34) and (35)

n = ΛCNΛTγ and m = ΛCMΛTκ. (36)

As shown by Reissner [30, 31], Simo [33] and Simo and Vu-Quoc [34, 35] , the beam bal-
ance equations can be obtained without any simplifying hypothesis regarding geometry,
and size of displacements and rotations, hence, this theory is referred to as geometri-
cally exact. If we consider n̄ and m̄ to be the externally applied force and moment per
unit length the time-independent linear and angular momentum balance (strong form)
equations for the GEBM reads:

n′ + n̄ = 0 and m′ + x′ × n+ m̄ = 0. (37)

A unique strong form solution must satisfy the balance equations stated in Eq. (37)
supplemented with the boundary conditions:

x = x̄ on Bϕx and Λ = Λ̄ on BϕΛ,
n = n̄ on Bσn and m = m̄ on Bσm,

(38)

where Bϕx , BϕΛ, Bσn and Bσm denote the part of the beam where displacements, rotations,
stress resultants and couples are prescribed, respectively.

2.5 Variational equations

The variational or weak form of the static equilibrium equations states that the solution
to the beam problem (37) with the associated boundary conditions (38) is the motion
ϕ = (x,Λ) ∈ V that satisfies the principle of virtual work, which states that

δW = δW int + δW ext, (39)

for all admissible virtual variations δϕ = (δx, δw). The internal virtual work carried out
by the spatial stress resultants and couples over the associated admissible variations in
the current configuration is given by:

δW int = δW int(ϕ, δϕ) =

∫

L

{δLγ·n+δLκ·m}d` =

∫

L

{(δx′+x′×δw)·n+δw′·m}d`. (40)

The external virtual work due to the distributed externally applied force and moment per
unit length may be expressed as:

δW ext = δW ext(δϕ) = −
∫

L

{δx · n̄+ δw · m̄}d`. (41)

10
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Combining the internal and external virtual work terms, we obtain the following spatial
form of the variational formulation of the GEBM: Find ϕ = (x,Λ) ∈ S, such that
∀δϕ = (δx, δw) ∈ V :

∫

L

{(δx′ + x′ × δw) · n+ δw′ ·m}d` =

∫

L

{δx · n̄+ δw · m̄}d`. (42)

In the formulation, S and V are suitable defined trial and test function sets for the geo-
metrically exact beam problem. Strictly speaking, the space of kinematically admissible
variations for the GEBM is the tangent space at ϕ to the abstract configuration manifold
C, which is denoted TϕC. Hence, in general δϕ must be a member of the tangent space
TϕC. However, as pointed out in Section 2.2, when δw is an infinitesimal rotation super-
posed on the finite rotation Λ and the update is performed as an exponential map, the
space of admissible variations is defined as:

V = {δϕ = (δx, δw) : [0, L]×[0, T ] ∈ R3×R3|δx = 0 on Bϕx and δw = 0 on BϕΛ}. (43)

2.6 Linearized variational equations

The virtual work equations for the finite deformation GEBM are in general highly non-
linear. For this reason the problem is reduced to a set of nonlinear algebraic equations,
whose solution is obtained utilizing an incremental-iterative Newton–Raphson approach.
In order to obtain the consistent tangent of Newton’s method, i.e., the tangent granting
quadratic convergence rate, a consistent linearization of the associated variational equa-
tions must be performed. Denoting L[δW (ϕ, δϕ,∆ϕ)] the linear part of the virtual work
δW (ϕ, δϕ) at the current configuration ϕ = (x,Λ), by definition we have

L[δW (ϕ, δϕ,∆ϕ)] = δW (ϕ, δϕ) + ∆[δW (ϕ, δϕ,∆ϕ)], (44)

where δW (ϕ, δϕ) evaluated at ϕ = (x,Λ) gives rise to the internal and external forces,
whose difference yield the so-called unbalanced or residual forces, whereas ∆[δW (ϕ, δϕ,
∆ϕ)] is the incremental virtual work depending linearly on the configuration increments
∆ϕ = (∆x,∆w), yield the so-called consistent tangent stiffness.

When performing the consistent linearization of the variational equations, it is impor-
tant to recall that the space of finite rotations is not linear, but a manifold, TϕC. However,
as pointed out in the previous section, when applying appropriate parameterization of the
finite rotations the consistent linearized weak form is calculated with the directional rather
than the covariant derivative of the variational equations. Hence the admissible space for
the incremental displacements is defined as:

V = {∆ϕ = (∆x,∆w) : [0, L]× [0, T ] ∈ R3 × R3|∆x = 0 on Bϕx and ∆w = 0 on BϕΛ}.
(45)

The incremental spatial strain measures are obtained similarly to the variational spatial
strain measures defined in Eqs.(27) and (31)

∆L(γ) = ∆x′ + x′ ×∆w and ∆L(κ) = ∆w′. (46)
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The linearized virtual spatial strain measures may now be obtained by taking the direction
derivative of the variational spatial strain measures defined in Eqs.(27) and (31)

∆LδL(γ) = (δx′ + x′ × δw)×∆w − δw ×∆x′ and ∆LδL(κ) = δw′ ×∆w. (47)

The incremental virtual work results in two contributions to the tangent stiffness, the
material and geometrical part. With the expressions for the incremental and linearized
virtual spatial strain measures at hand the material part is obtained by keeping the
geometry constant varying the material resultants

∫

L

{(δx′ + x′ × δw) ·ΛCNΛT (∆x′ + x′ ×∆w) + (δw′) ·ΛCMΛT∆w′}d`, (48)

whereas the geometric part is obtained keeping the material properties constant while
varying the geometry

∫

L

{[(δx′ + x′ × δw)×∆w − δw ×∆x′] · n+ (δw′ ×∆w) ·m}d`. (49)

3 DISCRETIZATION WITH B-SPLINES AND NURBS

The continuous formulation presented in the previous section is discretized using either
B-splines or NURBS. For B-splines or NURBS basis functions of order p ≥ 2 this provides
among others, the advantage of higher inter-element continuity within patches which
ensures smooth representation without kinks between the elements. In what follows,
some basic concepts for B-spline and NURBS curves are briefly reviewed, the reader is
referred to [14, 20, 28] for further details.

Geometrical objects are in general defined by explicit, implicit or parametric equations.
NURBS curves, surfaces and volumes belong to the latter category, as they depend on a set
of continuous parameters. NURBS are a generalization of B-splines and are constructed
by projective transformation of B-spline basis functions. Contrary to the Lagrange basis
functions that are local to elements, the B-spline parametric space is local to “patches”.
Patches are subdomains within which polynomial order of the basis functions and material
parameters are assumed to be kept constant.

Univariate B-spline basis functions are defined by a knot vector Ξ, which is a set of
non-decreasing parametric coordinates. The parameter space is the space where the basis
functions are defined, and is partitioned into knot spans between the knots. The knot
vector is written as:

Ξ = {ξ1, ξ2, . . . , ξn+p+1} , (50)

where ξi is the ith knot value, i is the knot index, i = 1, 2, . . . , n+p+1, p is the polynomial
order, and n is the number of basis functions. If a knot ξi is placed mi times at the same
location in the parametric space, the multiplicity of knot ξi is mi, and the functions are
Cp−mi continuous at that location. If the knot vector has no repeated interior knots
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ξi, it defines n − p non-zero knot spans (elements). If the knots are equally spaced;
ξi+1 − ξi = const.,∀i ∈ [1, n+ p], the knot vector is said to be uniform, otherwise it is
denoted as non-uniform. Furthermore Ξ is termed an open knot vector if the first and last
entries have multiplicity p+ 1. In what follows we assume that Ξ is an open non-uniform
knot vector.

B-spline basis functions for a given order are defined recursively by the Cox-de Boor
recursion formula:

N0
i (ξ) =

{
1, if ξi ≤ ξ < ξi+1,
0, otherwise,

(51)

and

Np
i (ξ) =

ξ − ξi
ξi+p − ξi

Np−1
i (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Np−1
i+1 (ξ), ∀p ≥ 1. (52)

The order of the basis functions is equal to its polynomial degree, i.e., p = 0, 1, 2, 3, etc.,
describes constant, linear, quadratic, cubic, etc., piecewise polynomials, respectively. The
B-spline basis functions satisfy the following important properties:

1. Partition of unity:
∑n

i=1N
p
i (ξ) = 1, ∀ξ ∈ [ξ1, ξn+p+1].

2. Local support: ∀i the support of Np
i is compact and contained in the interval

[ξi, ξi+p+1].

3. Non-negativeness: Np
i (ξ) ≥ 0, ∀ξ ∈ [ξi, ξi+p+1].

4. Continuity: ∀i each Np
i is Cp−mi continuous in the interval [ξi, ξi+p+1].

5. Non-interpolatory: Except for the end knots or knots where the multiplicity mi =
p− 1, Np

i (ξj) 6= δij.

6. For p = 0 and p = 1, B-spline and Lagrange basis functions coincide.

A B-spline curve in Rnsd can be expressed as a linear combination of the basis functions
Np
i with the spatial coordinates Pi of the control points:

C(ξ) =
n∑

i=1

Np
i (ξ)Pi, (53)

where nsd denotes the number of spatial dimensions and Pi ∈ Rnsd . What separates
B-spline curves from curves constructed from a linear combination of the Lagrange basis
functions with the nodal point coordinates, is that B-spline curves are related to a set
of control point coordinates. These control points are the equivalent to the nodes, but
B-spline curves will generally not pass through the control points.
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NURBS curves can be constructed analogously to B-spline curves by replacing Np
i with

rational basis functions Rp
i :

C(ξ) =
n∑

i=1

Rp
i (ξ)Pi, (54)

where the rational basis functions are obtained from a weighted linear combination of the
B-spline functions by

Rp
i (ξ) =

Np
i wi∑n

j=1N
p
j (ξ)wj

=
Np
i wi

W (ξ)
. (55)

where wi is the weight associated with the ith control point Pi. The weights normally
have to fulfil the condition

wi > 0 ∀i ∈ [1, n] . (56)

As a NURBS curve does not necessarily interpolate control points, the weights can be
used to influence the shape of the curve independently from the position of the control
points. If the weights are increased, the curve approaches the shape of the control poly-
gon, containing all the control points. While B-spline curves in general are not able to
represent conic sections, by selecting appropriate values for the weights NURBS curves
may represent conic sections, like circles, exactly. Provided that all of the weight func-
tions are unity, NURBS basis functions are identical to B-spline functions. Thus, NURBS
inherits the fundamental properties of the B-spline basis functions.

4 ISOGEOMETRIC GEOMETRICAL EXACT BEAM FORMULATION

Following the concept of isogeometric analysis [20], the continuous formulation pre-
sented in Section 2 is discretized using NURBS basis functions. We assume that NURBS
of order p and continuity Cp−1 are used to discretize both the geometry in the reference
and the current configuration, X and x, and the virtual and incremental displacement
and rotational fields, δϕ = (δx, δw) and ∆ϕ = (∆x,∆w), of the centroidal line B:

Xh =

ncp∑

A=1

RAXA, xh =

ncp∑

A=1

RAxA, δxh =

ncp∑

A=1

RAδxA,

δwh =

ncp∑

A=1

RAδwA, ∆xh =

ncp∑

A=1

RA∆xA and ∆wh =

ncp∑

A=1

RA∆wA,

(57)

where ncp is the number of control points associated with B0, RA is the NURBS basis
function accompanying control point A, whereas XA, xA, δxA, δwA, ∆xA and ∆wA are
the corresponding reference and current coordinate, virtual and incremental displacement
and rotation parameter, respectively.

14



Tore A. Helgedagsrud, Siv B. Raknes and Kjell M. Mathisen

The above parameterization also applies to each individual knot span element of B0:

Xh
e =

ne∑

a=1

RaXa, xhe =
ne∑

a=1

Raxa, δxhe =
ne∑

a=1

Raδxa,

δwh
e =

ne∑

a=1

Raδwa, ∆xhe =
ne∑

a=1

Ra∆xa and ∆wh
e =

ne∑

a=1

Ra∆wa,

(58)

where ne is the number of control points whose basis functions have support on a single
knot span element of B0.

Analogous interpolations are used for the Lagrange polynomial discretization, where
standard Lagrangian basis functions and nodal points are used in place of NURBS basis
functions and control points, respectively.

4.1 Discrete formulation

The Galerkin formulation of Eq. (42) is obtained by restricting the trial and test func-
tion sets to their finite dimensional counterpart comprised of NURBS or Lagrange suitable
basis functions as: Find ϕh = (xh,Λh) ∈ Sh, such that ∀δϕh = (δxh, δwh) ∈ Vh:

∫

L

{[δ(xh)′ + (xh)′ × δwh] · nh + δ(wh)′ ·mh}d` =

∫

L

{δxh · n̄+ δwh · m̄}d`, (59)

where nh and mh, are the current spatial stress resultants and couples derived from the
discretized solution ϕh = (xh,Λh). The matrix counterpart of the discrete form of the
variational equations may be written on compact form as:

ncp∑

A=1

δdA(Fint
A − Fext

A ) = 0, (60)

where dA = [xA,wA]T denotes the vectors of NURBS control-point displacement and
rotation unknowns, and Fint

A and Fext
A the vectors of internal and external control-point

forces related to control point A, respectively:

Fint
A =

∫

L

BT
Ard` with BA =

[
R′AI3 0
RAx̃

′ R′AI3

]
and r =

{
nh

mh

}
, (61)

and

Fext
A =

∫

L

RAI6r̄d` with r̄ =

{
n̄
m̄

}
, (62)

where RA is the NURBS basis function accompanying control point A, Ik = d1, 1, . . . , 1c
is a diagonal unit matrix of dimension k, and x̃′ is a skew-symmetric matrix whose axial
vector is x′.
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Similarly, the incremental solution, ∆ϕh = (∆xh,∆wh) ∈ Vh, of the Galerkin for-
mulation associated with the linearized form (44) is found from its associated discrete
approximation that on matrix form can be written:

ncp∑

A=1

ncp∑

B=1

δdA{(Fint
A − Fext

A ) + (Km
AB −Kg

AB)∆dB} = 0. (63)

The material and geometric stiffness matrices, Km
AB and Kg

AB, are obtained by substituting
the discrete approximation counterparts of the virtual and incremental displacements from
Eq.(57) into Eqs. (48) and (49):

Km
AB =

∫

L

BT
ACBBd` with C =

[
CN 0
0 CM

]
, (64)

and with some manipulations (see, e.g., Simo and Vu-Quoc [34, 35])

Kg
AB =

∫
L

GT
AHGBd` with GA =



R′AI3 0

0 R′AI3

0 RAI3




and H =




0 0 −ñh
0 0 −m̃h

ñh 0 (nh ⊗ x′ − x′nhI3)


 .

(65)

We recall again that in the expression for H, ñh and m̃h are the skew-symmetric matrices
whose axial vectors are nh and mh, respectively.

It is noted that the final form of the tangent stiffness Kt = Km + Kg, in general, is
nonsymmetric. Since symmetry of the material part follows from the symmetry of the
constitutive matrix C, the lack of symmetry stems from the geometric part. As pointed
out by Simo and Vu-Quoc [34, 35], for conservative loading at an equilibrium state:

L[δW (ϕ, δϕ,∆ϕ)] = δW (ϕ, δϕ) + ∆[δW (ϕ, δϕ,∆ϕ)] = 0, (66)

the tangent stiffness is symmetric. However, in general, at nonequilibrated configurations,
the tangent stiffness is nonsymmetric. The reason for that is that the configuration space,
TϕC, is a manifold. Numerical studies has revealed that replacing the nonsymmetric geo-
metric stiffness by its symmetric counterpart will not jeopardize the quadratic convergence
rate expected in the Newton iterations.

Parameterizing the finite rotations with the incremental rotation vector, θ (see Section
2.2), rather than the spatial spin tensor, w, yields similar expressions for the tangent
stiffness matrices and the out of balance force vector, and may be found in Ibrahimbegović
et al. [23].
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5 LOCKING EFFECTS IN CURVED BEAMS

It is well-known that purely displacement-based isoparametric, especially low-order,
elements are often affected by spurious strains and stresses which lead to an overestima-
tion of the stiffness. As a consequence, the primary variables like displacements will be
underestimated. In the context of curved beam elements, this implies that both spurious
transverse shear and axial (membrane) strains may develop in bending dominated prob-
lems, consequently the element will have no ability to capture the state of (transverse)
shear-free or inextensional bending. The corresponding locking phenomena denoted trans-
verse shear and membrane locking, in general reduces the accuracy and slow down the
convergence as the ratio between thickness to length (for straight members) or thickness
to radius of curvature (for curved beams) approaches zero.

C0

C

From the definition of the
translational spatial strains (23) we observe that γh is obtained by subtracting the normal
to the cross section ih1 from the arc-length derivative of the discrete line of centroids Bh
in the current configuration. In the following, we investigate whether γh, i.e., the axial
and the transverse shear strains may vanish when the element is subjected to a state of
pure bending. Without loss of generality we consider an initially 2D straight beam of
length L with a rectangular cross section (A = bh, with b = 1 and h = 10−ρ) clamped
at one end and subjected to a concentrated moment M at the free end (see Fig. 2). We
assume that L = 1, ρ = 3, E = 24 × 109 and M = πEI/2L = π, for which the closed
form solution is represented by a quarter of a circle. For simplicity all discrete unknowns
are prescribed to the corresponding analytical solution of the problem. Fig. 3 shows the
resulting distribution of axial and transverse shear strains obtained when the beam is
discretized with a uniform mesh of one and two quadratic C0 Lagrange and C1 NURBS-
elements, respectively. We observe that, while Lagrange discretizations sample the exact
solution (γ = 0) at the two Gauss points (ng = p = 2) corresponding to uniform reduced
integration (URI), the NURBS-based solutions do not vanish at the sampling points cor-
responding to ng = p within each knot-span element. The ability of the curved Lagrange

 

 

M  

L  

2LR
π

=  

 

Figure 2: Initial and deformed configuration of a cantilever subjected to a concentrated end moment.
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Figure 3: Discrete translational strain fields obtained with quadratic basis functions in a cantilever
beam subjected to a concentrated end moment with one and two elements, respectively: a) Lagrange C0

solutions, and b) NURBS-based C1 solutions.

C0 isoparametric beam elements to alleviate spurious transverse shear and axial strains
with URI was first explored and reported by Stolarski and Belytschko [36] for quadratic
and cubic interpolated elements.

In order to evaluate an elements propensity of locking, Hughes [19] introduced an
heuristic approach, the so-called constraint count method. This method relies on the con-
straint ratio, r, which is defined as the ratio of the total number of equilibrium equations
(neq) to the total number of constraint equations (nc):

r =
neq
nc
. (67)

In order to investigate whether an element is prone to locking, the constraint ratio, r,
of the continuous problem is compared with the constraint ratio, rh, of the discretized
problem in the limit of infinite number of elements, ne →∞:

rh = lim
ne→∞

neu
nec
. (68)

Here neu denotes the number of unknowns added to the system by adding one more element
to a uniform mesh of an infinite number of elements, while nec is the corresponding number
of constraints added by this element. Thus, nec is related to the number of quadrature
points, ng, where the constraints are to be evaluated.

For an element with rh < r, and especially with rh < 1 (which implies that there are
more constraints added than unknowns), the propensity of locking is high. In contrast
when rh > r, this indicate that there are too few constraints to approximate the constraint
accurately. Consequently, the optimal element satisfy the criterion rh = r.
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As pointed out in [36], when investigating the locking behavior of curved C0 beams
for higher-order elements there exists an interrelationship between transverse shear and
membrane locking. Thus, transverse shear and membrane locking must be considered
simultaneously. Again, for simplicity, we consider a 2D GEBM, for which we have three
unknowns per control point (node) and two new constraints per Gauss point. The optimal
constraint ratio for the 2D continuous problem is

r2D =
3

2
= 1.5. (69)

For the discrete problem we distinguish between C0 Lagrange and Cp−1 NURBS-based
discretization. Let us first consider the discrete constraint ratio for the C0 Lagrange
discretization:

rh2D,L =
3p

2ng
. (70)

Thus, applying URI with ng = p yields an optimal constraint ratio for the Lagrange 2D
beam. The corresponding discrete constraint ratio for NURBS reads:

rh2D,N =
3

2ng
. (71)

In order to obtain the optimal constraint ratio for NURBS, we should apply one single
Gauss point per added new element.

While applying URI to the Lagrange elements implies that the rank of the global tan-
gent stiffness is equal to the total number of unknowns, the above optimal quadrature rule
for NURBS is not sufficient to guarantee rank-sufficiency and thus produce zero-energy
modes which need to be stabilized. Adam et al. [1, 2] have studied the use of reduced and
selective reduced integration rules for higher-continuity NURBS-based analysis. Rather
than evaluating the integrals element-by-element, the authors suggest using patch-wise
optimal integration schemes, which accounts for the smoothness of the approximation
space Vh. However, the optimal quadrature points and weights may only be obtained
by solving non-linear equation systems, thus, may compromise the overall computational
efficiency.

The above investigation has resulting in two proposed integration schemes which will
be referred to as URI-1 and SRI-1, and URI-2 and SRI-2, respectively. In URI-1 and
URI-2, both the translational and the rotational part is integrated with the proposed
rule, while for SRI-1 and SRI-2, only the translational parts are integrated with the rules
in Tab. 1, while the rotational part is integrated with ng = p per NURBS element.

6 NUMERICAL RESULTS

The purpose of the numerical tests is to study the performance of isogeometric el-
ements with the selective and uniform reduced integration regimes proposed in Tab. 1,
and compare them for Lagrange and NURBS-based elements integrated with conventional
reduced integration.
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p SRI-1/URI-1 SRI-2/URI-2
1 ng = 1 ng = 1
2 ng = 1 \ e = (1 + ne)/2 : ng = 2 ng = 1 \ e = ne : ng = 2
3 ng = 1 \ e = 2, ne − 1 : ng = 2 ng = 1 \ e = 1, ne : ng = 2
4 ng = 1 \ e = 2, (1 + ne)/2, ne − 1 : ng = 2 ng = 1 \ e = 1, ne : ng = 3
5 ng = 1 \ e = 2, ne − 1 : ng = 2 ∧ e = (1 + ne)/2 : ng = 3 ng = 1 \ e = 1, ne : ng = 4

Table 1: Selective reduced integration schemes.

6.1 Curved beam subjected to distributed moment

Fig. 4 shows geometry and material properties for a planar 90◦ circular arch subjected
to a sinusoidally distributed moment m(s) = h3 sin (πs/2L). This load imposes a state
of pure bending with no membrane and transverse shear energy and is therefore a severe
test for membrane and transverse shear locking. Also note that by choosing a sinusoidally
distributed moment, the closed form solution is obviously not contained in the approx-
imation space Vh. The load is proportional with the bending stiffness such that the
displacements and rotations are independent of the thickness. Introducing the thickness
parameter ρ, the slenderness is defined as: R/h = 10ρ. We also observe that the geometry
of the circular arch cannot be represented exactly by Lagrange polynomials, while with
NURBS, one single quadratic element can exactly represent the initial geometry. This
problem has also been studied by Adam et al. [1] and Bouclier et al. [9], however they
both applied a small strain curved linear Timoshenko beam formulation.

Denoting the displacements parallel to the local Cartesian bases, i01 and i02, ut(s) and
un(s), respectively, the analytical solution for the corresponding linear problem may be

Young’s modulus: E = 1000
Poisson’s ratio: ν = 0
Radius: R = 1
Width: b = 0.2
Thickness: h = R/10ρ

Figure 4: Geometry and material data for a curved beam under sinusoidally moment loading.
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obtained by solving the strong form governed by Eq. (37), and is given by [1, 9]:

un(s) =
3πR3

Eb
sin
( s
R

)

ut(s) =
6R3

Eb

[
sin
( s
R

)
− s

R
cos
( s
R

)]
(72)

θ(s) =
12R2

Eb
sin
( s
R

)

The three nonzero strain fields, ε1 = γ1 (axial strain), γ12 = γ2 (transverse shear strain),
and κ3 (bending strain), for the different reduced integration models are studied for the
slenderness ratios ρ = 1 and ρ = 3, using a mesh of ne = 5 equally sized knot-span
elements with the maximum continuity available. Note that for the GEBM the strains
are computed in the current configuration and will consequently not coincide with the
linear solution that may be derived from Eq. (72). For this reason the analytical solution
is approximated with a reference solution, obtained with 32 quintic isogeometric elements
each integrated with p Gauss points (ng = p). The sinusoidally varying moment is taken
into consideration with a consistent load vector, integrated numerically with ng = 5p.

For comparison, the beam is also analyzed with quadratic C0-continuous Lagrangian
elements applying uniform reduced integration (URI). In order to keep the number of
approximation functions n equal for Lagrange (n ∝ nep) and NURBS (n ∝ ne + p − 1)
based solutions, a uniform mesh of three quadratic Lagrange elements is used. The strain
fields for ε1, γ12 and κ3, reported in Fig. 5, confirm that the strains sampled at the Gauss
points for the Lagrangian elements coincide with the reference solution for both ρ = 1
and ρ = 3 for all strain fields, and thus appear to be locking-free. However, for the
isogeometric elements of equal order and with the same quadrature rule, i.e., URI with
ng = p within each knot-span element, we observe that all of the three strain fields when
sampled at the Gauss points deviate from the reference solution. We also observe that
the deviation increases with increased slenderness, and thus, the elements reveal both
membrane and transverse shear locking.

With a fixed slenderness of ρ = 3, the beam is now analyzed with the two different selec-
tive reduced integration regimes proposed above, denoted SRI-1 and SRI-2, respectively,
on the translation part of the residual and tangent stiffness only, while the rotational part
is integrated with ng = p. The strain fields obtained with quadratic and cubic NURBS
elements with the various SRI rules are depicted in Figs. 6 and 7, respectively. It is ob-
served that all three strain fields coincide with the reference solution when sampled at the
Gauss points for both SRI-1 and SRI-2, and consequently yield a precise approximation of
the corresponding curvature field. This observation is also valid for higher order elements
(see Fig. 8). However, for SRI-1, where the additional Gauss points are not located at
the boundary elements, the translational strains show oscillations when the polynomial
order is increased.

The beam is analyzed once more applying SRI-1 and SRI-2 on both the translational
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a) b)

c)

Figure 5: Comparison of Lagrange (FEA) and NURBS (IGA) based solutions applying conventional
URI for p = 2: a) Axial strain, b) transverse shear strain, and c) bending strain.
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a) b)

c) d)

e) f)

Figure 6: Comparison of the solutions obtained with the various SRI rules applied to the translational
part only, for p = 2: a) Axial strain (SRI-1), b) axial strain (SRI-2), c) transverse shear strain (SRI-1),
d) transverse shear strain (SRI-2), e) bending strain (SRI-1), and f) bending strain (SRI-2).
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a) b)

c) d)

e) f)

Figure 7: Comparison of the solutions obtained with the various SRI rules applied to the translational
part only, for p = 3: a) Axial strain (SRI-1), b) axial strain (SRI-2), c) transverse shear strain (SRI-1),
d) transverse shear strain (SRI-2), e) bending strain (SRI-1), and f) bending strain (SRI-2).
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a) b)

c) d)

e) f)

Figure 8: Comparison of the solutions obtained with the various SRI rules applied to the translational
part only, for quartic and quintic order elements: a) Axial strain (SRI-1), b) axial strain (SRI-2), c)
transverse shear strain (SRI-1), d) transverse shear strain (SRI-2), e) bending strain (SRI-1), and f)
bending strain (SRI-2). 25
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and rotational parts. Since we apply the same reduced rules on all strain fields, they are
denoted URI-1 and URI-2, to distinguish them from the SRI quadrature rules. Applying
URI-1 or URI-2, thus represent the lowest number of integration points needed to keep
the correct rank of the global matrix, which is similar to applying conventional URI to
the Lagrangian elements. The corresponding strain field solutions are reported in Figs. 9
and 10 for the quadratic and cubic elements, respectively. For p = 3 or higher, we observe
that the solution is not convergent unless the additional Gauss points are added to the
boundary elements (SRI-2). Results obtained for the quartic and quintic order elements
are not shown here, but they behave similar to the cubic elements. Again, strains sampled
at the Gauss points coincide with the reference solution for the translational strains.
However, applying less than ng = p on the rotational part does not produce accurate
results for the bending strains.

Furthermore, a convergence study is carried out to study the impact of the various
reduced quadrature rules on accuracy. The tangential tip displacement is chosen as mea-
surement, and the relative error is computed from Eq. (73), where uex represents ut(s = L)
from Eq. (72).

|eu| =
|uex − uh|
|uex| (73)

Figs. 11 and 12 show convergence plots for the various reduced integration rules with
NURBS, for ρ = 1 and ρ = 3, respectively. Firstly, it is seen that the absolute errors
from the conventional URI elements shift with approximately 4 orders, going from ρ = 1
to ρ = 3 which strongly indicate locking. Elements with SRI provide slower convergence,
but the absolute errors are small for coarse discretizations and they are not shifted with ρ.
We observe that quadratic elements integrated with URI-1 or URI-2 performs similar to
the associated SRI-1 and SRI-2 elements for which the reduced quadrature rules are only
applied to the translational part, while the associated cubic and higher order elements
has rather poor performance with slow convergence and large errors.

In Fig. 13 the thickness dependency is studied. For this analysis, ρ is varied from 1 to
5, keeping a fixed number of five NURBS elements. Fig. 13 shows logarithmic plots of the
relative error and tangential tip displacements for the various reduced integration regimes.
Elements with conventional reduced integration (URI) are included for comparison. Apart
from p = 5, all elements appear to be locking-free. The slight thickness dependency of the
quintic elements may be due to the fact that the proposed quadrature rule adds two more
Gauss points than needed to avoid rank deficiency and thus creates an over-constrained
system.

7 CONCLUDING REMARKS

The study reveals that the chosen numerical quadrature scheme significantly impacts
not only the computational efficiency but also the propensity of membrane and transverse
shear locking in NURBS-based geometrically exact curved Timoshenko beam elements.
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a) b)

c) d)

e) f)

Figure 9: Comparison of solutions obtained with the various URI rules applied to both the translational
and the rotational parts, for p = 2: a) Axial strain (URI-1), b) axial strain (URI-2), c) transverse shear
strain (URI-1), d) transverse shear strain (URI-2), e) bending strain (URI-1), and f) bending strain
(URI-2). 27
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a) b)

c)

Figure 10: Comparison of solutions obtained with the URI-2 rule applied to both the translational and
the rotational parts, for p = 3: a) Axial strain, b) transverse shear strain, and c) bending strain.
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a) b)

c) d)

Figure 11: Relative error in tangential tip displacement for the various reduced quadrature rules with
NURBS, for ρ = 1: a) URI, b) SRI-1, c) SRI-2, d) URI-1 and URI-2.
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a) b)

c) d)

Figure 12: Relative error in tangential tip displacement for the various reduced quadrature rules with
NURBS, for ρ = 3: a) URI, b) SRI-1, c) SRI-2, d) URI-1 and URI-2.
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a) b)

c) d)

e) f)

Figure 13: Convergence of the tangential tip displacement with respect to the slenderness of the beam
for NURBS: a) Relative error (SRI-1), b) displacement (SRI-1), c) relative error (SRI-2), d) displacement
(SRI-2), e) relative error (URI-1 and URI-2), and f) displacement (URI-1 and URI-2).
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The numerical study shows that applying conventional URI with ng = p per knot-span
element, locking is revealed in all strain fields. In contrast, applying conventional URI
to both the translational and rotational part of the residual and the tangent stiffness are
the best quadrature rules for C0-continuous Lagrange Timoshenko beam elements based
on the geometrically exact beam model.

Our study has proven that SRI of the translational part may be used to alleviate both
membrane and transverse shear locking for the NURBS discretizations. The numerical
results also show that: 1) For all polynomial orders p, the rotational part of the residual
and tangent stiffness should be integrated with ng = p, 2) for all polynomial orders p, the
translational part should be integrated with a one-point quadrature rule except; a) for
p = 2, an extra Gauss point should be added to an element near the center, and b) for
p ≥ 3, the two boundary elements that should be integrated with ng = p− 1.

Note that for NURBS of cubic order and larger we recommend to add extra Gauss
points to the two boundary elements to stabilize and support the strain fields within the
patch. However, for quadratic NURBS the best support is obtained by adding an extra
Gauss point near the center. This also complies with the scheme proposed by Bouclier et
al. [9] for quadratic elements, but while we recommend this rule only for the translational
part, they used the same rule for both the translational and the rotational part. The
above recommended scheme also comply with that proposed by Adam et al. [1], but only
for NURBS of cubic order.

We have also applied the above recommended quadrature rules for both the transla-
tional and rotational parts, which turns out to sample the translational part of the strain
fields accurately, however, leaving the rotational part incorrect. Also note that for NURBS
the convergence rates are reduced with SRI, and for cubic and higher order elements they
are also depending on the slenderness ratio.
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Appendix G

Presentation for MekIT’15 and IGA2015

The following presentation, "On Locking-free Methods for Isogeometric Large Deformation

Analysis of Geometrically Exact 3D Beams", was held on the MekIT’15 Eight National

Conference on Computational Mechanics in Trondheim May 18th-19th 2015, and on the

IGA2015 III International Conference on Isogeometric Analysis in Trondheim June 1st-3rd,

2015.
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Motivation

Geometrically exact 3D curved Timoshenko elements considering

large displacements/finite rotations have been proposed earlier:

Linearly interpolated C 0-element: Simo & Vu-Quoc (CMAME 86), and

Cardona and Géradin (IJNME 88).

Hierarchical quadratic C 0-element: Ibrahimbegovic (CMAME 95).

Previous proposed formulations are utilizing Lagrange polynomials:

Curved geometry cannot be represented exactly.

C 0-continuity between elements.

Utilizing NURBS basis functions:

Curved geometry can be exactly represented.

C p−k -continuity between elements.

Challenge: Numerical transverse shear and membrane locking !!!
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Geometrically exact beam model – Kinematics
Tore A. Helgedagsrud, Siv B. Raknes and Kjell M. Mathisen
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Figure 1: Definition of the various frames and configurations for the geometrically exact beam model.

and current configuration, respectively:

x(S, t) = X(S) + u(S, t), (1)

where u(S, t) denote the displacement of B0 at any time t. We assume that the length of
the line of centroids B0 and B is L0 and L, respectively.

Without loss of generality, we assume that; (1) the beam has uniform cross sections,
i.e., cross-sectional properties remain constant along the entire length of the beam, (2)
the beam is unstrained and unstressed in the reference configuration, and (3) the cross
sections are initially normal to B0, hence:

i01(S) =
dX(S)

dS
= X ′(S), (2)

where prime denotes the derivative with respect to the arc-length coordinate S.
In accordance with standard hypothesis for beams, we further assume that:

(i) The cross sections remain plane and undeformed in the current configuration, i.e.,
warping effects are not accounted for.

(ii) The cross sections that initially are normal to B0 do not necessarily remain normal
to the deformed line of centroids B in the current configuration, i.e., transverse
shear deformations are accounted for; hence i1(S, t) remain normal to A but not
necessarily tangent to B.

4

3D beam geom.: x3D(S , x0α, t) = x(S , t) + Λ(S , t)x0αi
0
α(S).

Position of B: x(S , t) = X(S) + u(S , t).

Reference frame: i0i (S , t) = Λ0(S)Ii with i01(S) = dX(S)
dS = X′(S).

Moving frame: ii (S , t) = Λ(S , t)i0i (S) with i1(S , t) ⊥ A ∧ ∦ x′(S).
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Geometrically exact beam model – Strain measures

Deform. gradient: F = ∂x3D

∂x0i
⊗ i0i .

Biot strains: B = ΛTF− I = ε⊗ i1.

Convected strain: ε = ΛT (γ + κ̃p).

Cross-section pos.: p(S , x0α, t) = Λ(S , t)p0(S , x0α) = Λ(S , t)x0αi
0
α(S).

Spatial true strain measures:

γ = x′ − i1 : Translational strains.

κ̃ = Λ′ΛT → κ : Curvature.

Helgedagsrud and Mathisen (NTNU) Locking-free NURBS Timoshenko beams IGA 2015 – Trondheim 4 / 25



Locking in curved Timoshenko beams

Numerical locking: Spurious strains and stresses:

⇒ Stiffness overestimated.

⇒ Displacements underestimated.

Transverse shear and membrane locking in Timoshenko beams:

Element cannot capture the state of shear-free and inextensional

bending due to spurious transverse shear and axial (membrane) strains

developing in bending dominated problems.

Reduces accuracy and slow down convergence as:

h/L→ 0 for straight beams, or

h/R → 0 for curved beams.

In curved Timoshenko beams, transverse shear and membrane locking

must be considered simultaneously (Stolarski and Belytschko, 1983).
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Cantilever subjected to a concentrated end moment

 

 

M  

L  
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π

=  

 

C0

C

Width: b = 0.2
Thickness: h = 0.001
Length: L = 1
Young’s mod.: E = 24× 109

Moment: M = πEI/2L = π
Radius: R = 2/π

Investigate whether Lagrange and NURBS discretization of the
Timoshenko beam capture the state of shear-free and inextensional
bending, i.e. do transverse shear and axial strains vanish for a
quadrature rule corresponding to Gauss points ng = p = 2 (URI):

γh = (xh)′ − ih1
!

= 0.
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Cantilever subjected to a concentrated end moment
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NURBS
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C 0 Lagrange sample the exact solution at URI points ⇒ γhL = 0.

C 1 NURBS do not vanish at sampling points corresponding
to ng = p within each NURBS element ⇒ γhN 6= 0.
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Constraint count method

Constraint count method (heuristic approach):
Evaluate an elements propensity of locking (Hughes 1987).

2D curved Timoshenko beam:

Optimal constraint ratio r2D = 3
2 .

C 0 Lagrange: rh2D,L = 3p
2ng
⇒ ng = p.

C 1 NURBS: rh2D,N = 3
2ng
⇒ ng = 1.

URI (ng = p) for Lagrange ⇒ rank(KT ) = nu.

Optimal rule: ng = 1 for NURBS ⇒ rank(KT ) < nu
⇒ zero-energy-modes need to be stabilized.
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Proposed integration schemes for NURBS

p SRI-1/URI-1

1 ng = 1
2 ng = 1 \ e = (1 + ne)/2 : ng = 2
3 ng = 1 \ e = 2, ne − 1 : ng = 2
4 ng = 1 \ e = 2, (1 + ne)/2, ne − 1 : ng = 2
5 ng = 1 \ e = 2, ne − 1 : ng = 2 ∧ e = (1 + ne)/2 : ng = 3

p SRI-2/URI-2

1 ng = 1
2 ng = 1 \ e = ne : ng = 2
3 ng = 1 \ e = 1, ne : ng = 2
4 ng = 1 \ e = 1, ne : ng = 3
5 ng = 1 \ e = 1, ne : ng = 4

URI-1/URI-2: Translational and rotational part same rule.

SRI-1/SRI-2: Only translational part with proposed rule.
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Numerical example: Curved beam under moment loadingTore A. Helgedagsrud, Siv B. Raknes and Kjell M. Mathisen
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n

The numerical study shows that applying conventional URI with ng = p per knot-span
element, locking is revealed in all strain fields. In contrast, applying conventional URI
to both the translational and rotational part of the residual and the tangent stiffness are
the best quadrature rules for C0-continuous Lagrange Timoshenko beam elements based
on the geometrically exact beam model.

Our study has proven that SRI of the translational part may be used to alleviate both
membrane and transverse shear locking for the NURBS discretizations. The numerical
results also show that: 1) For all polynomial orders p, the rotational part of the residual
and tangent stiffness should be integrated with ng = p, 2) for all polynomial orders p, the
translational part should be integrated with a one-point quadrature rule except; a) for
p = 2, an extra Gauss point should be added to an element near the center, and b) for
p ≥ 3, the two boundary elements that should be integrated with ng = p− 1.

Note that for NURBS of cubic order and larger we recommend to add extra Gauss
points to the two boundary elements to stabilize and support the strain fields within the
patch. However, for quadratic NURBS the best support is obtained by adding an extra
Gauss point near the center. This also complies with the scheme proposed by Bouclier et
al. [8] for quadratic elements, but while we recommend this rule only for the translational
part, they used the same rule for both the translational and the rotational part. The
above recommended scheme also comply with that proposed by Adam et al. [1], but only
for NURBS of cubic order.

We have also applied the above recommended quadrature rules for both the transla-
tional and rotational parts, which turns out to sample the translational part of the strain
fields accurately, however, leaving the rotational part incorrect. Also note that for NURBS
the convergence rates are reduced with SRI, and for cubic and higher order elements they
are also depending on the slenderness ratio.
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Young’s modulus: E = 1.2× 104 (LFEA)
E = 1.2× 101 (NFEA)

Poisson’s ratio: ν = 0
Radius: R = 1
Width: b = 1
Thickness: h = R/10ρ

Moment loading: m(s) = h3 sin
(
πs
2L

)

Inextensional bending with no membrane and transverse shear strains.

Analytical solution: ϕ = (x,Λ) /∈ Sh.

Strong form solution for LFEA (Adam et al., Comp. Mech., 2014).

NFEA reference solution obtained with 48 octic elements (Q8L).
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URI: FEA/IGA, p = 2 – Transverse shear strain: γ12

⇒ FEA sample reference solution exactly

⇒ IGA do not sample reference solution

⇒ IGA is also thickness dependent
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URI: FEA/IGA, p = 2 – Bending strain: κ3

h/R → 0⇒ bending locked out with IGA
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SRI-1 vs URI: IGA, p = 2, ρ = 3 – Axial strain: ε1

SRI-1 ⇒ εh1 sample εref1 at Gauss points

j j j
j

j
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SRI-1 vs URI: IGA, p = 2, ρ = 3 – Trans. shear strain: γ12

SRI-1 ⇒ γh12 also sample γref12 at Gauss points

j j j j j j
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SRI-1 vs URI: IGA, p = 2, ρ = 3 – Bending strain: κ3

Fortunately SRI-1 ⇒ κh3 sample κref3 at GP

j j j j j
j

j j
j
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URI-1: IGA, p = 2, ρ = 3 – Axial strain: ε1

URI-1 ⇒ εh1 sample εref1 exactly at GP

j j j j j j
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URI-1: IGA, p = 2, ρ = 3 – Transverse shear strain: γ12

URI-1 ⇒ γh12 also sample γref12 exactly at GP

j j j j j
j
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URI-1: IGA, p = 2, ρ = 3 – Bending strain: κ3

In contrast, URI-1 ⇒ κh3 cannot sample κref3 at GP

j j
j j

j

j
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SRI: IGA, p = 4, 5, ρ = 3 – Trans. shear strain: γ12

SRI-1

OscillationsXXy 

�

SRI-2

SupportXXy 

�

Add gauss points adjacent to C 0-continuities to support the strain
fields.
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Thickness dependency – L2-norm of error in displacements

SRI URI

Locking-free up to 4th order.

URI cannot sample bending accurately ⇒ shift in absolute errors.

Equation system slightly over-constrained with quintic elements.
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Displacement relative error in L2-norm (LFEA)

NURBS – URI vs SRI
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NURBS vs Lagrange
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NURBS: The low accuracy obtained with conventional URI reduced
several orders with SRI.

Conventional URI: Lagrange outperforms NURBS.

Cubic NURBS-SRI exhibit superb performance and outperforms Lagrange.
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Bending moment relative error in L2-norm (LFEA)

NURBS – URI vs SRI
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NURBS vs Lagrange
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The low accuracy obtained with conventional NURBS-URI reduced several
orders with SRI.

Lagrange outperforms NURBS with conventional URI.

NURBS-SRI exhibit superb performance and outperforms Lagrange.
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Displacement relative error in L2-norm (NFEA)

NURBS – URI vs SRI
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NURBS vs Lagrange
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NURBS: The low accuracy obtained with conventional URI reduced
several orders with SRI also for NFEA.

Conventional URI: Lagrange outperforms NURBS.

Cubic NURBS-SRI exhibit superb performance and outperforms Lagrange.
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Bending moment relative error in L2-norm (NFEA)

NURBS – URI vs SRI
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NURBS vs Lagrange
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The low accuracy obtained with conventional NURBS-URI reduced several
orders with SRI.

Lagrange outperforms NURBS with conventional URI.

NURBS-SRI exhibit superb performance and outperforms Lagrange.
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Concluding remarks

Quadrature rule significantly impacts not only the computational efficiency but
also propensity of locking in NURBS-based curved Timoshenko elements.

Applying conventional URI with ng = p per NURBS element, locking is revealed in
all strain fields for NURBS.

Our study has revealed that SRI of the translational part may be used to alleviate
both membrane and transverse shear locking for NURBS.

The numerical results also show that:
1) ∀p, the rotational part should be integrated with ng = p,

2) ∀p, the translational part should be integrated with ng = 1, except;
a) p = 2, an extra GP should be added to an element near the center.
b) p ≥ 3, the two boundary elements that should be integrated with ng = p − 1.

Applying recommended quadrature rules for all parts, sample the translational part
of the strain fields accurately, however, leaving the rotational part incorrect.

The recommended SRI quadrature rules for NURBS yields improved accuracy for
all polynomial orders for both LFEA and NFEA.

Recommended quadrature rules for cubic interpolated NURBS yields superb
accuracy in both displacements and stress resultants and outperform Lagrange for
both LFEA and NFEA.

Thank you for your attention!
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