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1. INTRODUCTION 
 

Centre for Advanced Structural Analysis (CASA) is the new Centre for Research-based Innovation hosted by 

SIMLab/ Department of Structural Engineering at NTNU. The research within CASA is aimed at creating a 

platform for credible numerical simulations of structures for innovation and value creation in industry 

through multi-scale testing, modelling and simulation. Thus, the coupling of physical phenomena at the 

micro-scale (e.g., grain or particle size) and the macro-scale (specimen or component size) is an important 

part of the research in CASA and the background for this research project. It has been observed in several 

experiments that the plastic behaviour of materials may exhibit size dependence: the smaller the size, the 

stronger the resistance of the material. There are several examples: the indentation hardness of a metal 

typically increases as the indenter size decreases; the particle strengthening of alloys is stronger for small 

particles than for large when the volume fraction of hard particles remains the same; a metal gets stronger as 

the grain size is reduced. The size effect becomes significant as the indenter size, particle spacing or grain 

size is below about 10 µm. To describe this size effect, it is necessary to include a length scale into the 

elastic-plastic material models. Based on physical considerations, this is achieved by making the flow stress 

dependent of the plastic strain gradient; i.e., the higher the plastic strain gradients the higher the strength. The 

plasticity theory thus obtained is denoted strain gradient plasticity. 

 

2. OBJECTIVES 
 

The research project has three main objectives: (1) to implement selected strain gradient plasticity models in 

the nonlinear finite element code ABAQUS; (2) to verify and validate the implementation against analytical 

results from the literature; (3) to apply the strain gradient plasticity models in simulations of various 

problems such as particle strengthening and void growth. 

 

3. A SHORT DESCRIPTION OF THE RESEARCH PROJECT 
 

The main topics in the research project will be as follows; 
 

1. Literature review on the experimental background for strain gradient plasticity, the physical mechanisms 

responsible for gradient effects and the various mathematical formulations of strain gradient plasticity.  

2. Solution of analytical problems using strain gradient plasticity. 

3. Implementation of lower-order strain gradient plasticity in ABAQUS. 

4. Verification and validation of the strain gradient plasticity implementation using the analytical solutions 

from 2). 

5. Numerical study of selected problems (particle strengthening and void growth) where gradient effects 

are assumed of importance. 
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SUMMARY: 
 
A finite element method implementation of lower-order strain gradient plasticity is developed. Its validity is 
checked against known analytical solutions. The implementation gives expected trends when applied to 
particle strengthening and void growth. 
 
During implementation, stability issues are encountered. The instability is denoted the tower/canyon defect, 
and traced back to nodal averaging as a basis for strain gradient computation. A conservative stability 
criterion for stability is developed, and within the stability limit given by the criterion, no tested models are 
unstable. Instabilities are shown to appear under a combination of (a) large plastic strains, (b) small length 
scale and (c) fine element mesh. Nodal averaging underestimates the strain gradient at boundaries. 
 
An alternative to nodal averaging is developed, denoted \emph{nodal contributions}. Nodal contributions has 
not been implemented for use in finite element simulations, but analytical verification indicates that nodal 
contributions is resilient to previously encountered stability issues. Nodal contributions is shown to represent 
strain gradients exactly for linear strain fields, even at boundaries. 
 
The exact, mathematical solution to the applied lower-order strain gradient plasticity theory is shown to be 
singular given a prescribed stress field. Iterative solutions based on load incrementation choose one of the 
possible resulting strain distributions. Nodal averaging is biased towards small strain gradients at boundaries. 
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SAMMENDRAG: 
 
En elementmetodeimplementasjon av lavere ordens tøyningsgradientplastisitet har blitt utviklet. Validitet er 
sjekket mot kjente analytiske løsninger på enkle problemer. Implementasjonen gir forventede resultater når 
anvendt på partikkelforsterkning og sporevekst. 
 
Under implementasjonen ble stabilitetsproblematikk avdekket. Instabiliteten, kalt tårn/juv-defekten, ble sporet 
tilbake til nodeglatting av det plastiske tøyningsfeltet for utregning av gradienten av plastiske tøyninger. Et 
konservativt stabilitetskriterium har blitt utviklet, og ingen ustabile resultater er blitt observert så lenge 
stabilitetskriteriet er overholdt. Instabiliteter er vist til å forekomme under en kombinasjon av (a) store 
plastiske tøyninger, (b) liten lengdeskala og (c) fint elementnett. Nodeglatting underestimerer 
tøyningsgradienten i grensesjikt. 
 
Et alternativ til nodeglatting er blitt utviklet, kalt nodebidrag. Nodebidrag har ikke blitt implementert til bruk i 
elementmetode, men analytisk verifikasjon tilsier at at nodebidrag ikke er utsatt for instabiliteter. Nodebidrag 
er vist å gjengi tøyningsgradienten eksakt for lineære tøyningsfelt, inkludert i grensesjikt. 
 
Den eksakte, matematiske løsningen til den anvendte lavere ordens tøyningsgradentplastisitetsteorien er vist 
å være singulær gitt spenningsfelt. Iterative løsninger basert på spenningsinkrementer velger ett av gyldige 
tøyningsfelt. Nodeglatting tenderer mot løsninger med små tøyningsgradienter i grensesjikt. 
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Abstract

A finite element method implementation of lower-order strain gradient plasticity
is developed. Its validity is checked against known analytical solutions. The
implementation gives expected trends when applied to particle strengthening
and void growth.

During implementation, stability issues are encountered. The instability is
denoted the tower/canyon defect, and traced back to nodal averaging as a basis
for strain gradient computation. A conservative stability criterion for stability
is developed, and within the stability limit given by the criterion, no tested
models are unstable. Instabilities are shown to appear under a combination of
(a) large plastic strains, (b) small length scale and (c) fine element mesh. Nodal
averaging underestimates the strain gradient at boundaries.

An alternative to nodal averaging is developed, denoted nodal contributions.
Nodal contributions has not been implemented for use in finite element simu-
lations, but analytical verification indicates that nodal contributions is resilient
to previously encountered stability issues. Nodal contributions is shown to rep-
resent strain gradients exactly for linear strain fields, even at boundaries.

The exact, mathematical solution to the applied lower-order strain gradient
plasticity theory is shown to be singular given a prescribed stress field. Itera-
tive solutions based on load incrementation choose one of the possible resulting
strain distributions. Nodal averaging is biased towards small strain gradients
at boundaries.
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Preface

This thesis is based on a well defined task description with well defined tasks.
These define the narrative of the thesis. Through work with these tasks, how-
ever, other topics arose, starting out with the stability limitation. The stability
limitation was found fairly early in the verification of the finite element im-
plementation, and has thus been integrated well into the thesis. It fits the
narrative.

During the final weeks of work, foundation for the content of the appendices
was found. These findings bear resemblance to non-directional research, and
fit badly within the narrative of this thesis, where claims are backed by data
from numerical analysis. This is why they are organized into appendices, and
not as main parts of this master’s thesis. It is not because I believe they are
less important—but because their foundations are analytical arguments, and not
finite element simulations.

On a personal note, ideas have been conceived on the weirdest of places.
In the shower (nodal contribtions), during failed attempts to sleep (the tow-
er/canyon defect) and after a day’s distance from the material (ambiguity of
lower-order theories) are examples. As Nassim Taleb repeatedly recommends in
“Antifragile”; long, slow walks are good for the brain.

Finally—this material is at times rather abstract. Please take your time. I
have.

Teodor Lunaas Heggelund
June 10, 2015
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Chapter 1

Introduction

1.1 Background and motivation

Conventional continuum theories of plasticity have no intrinsic length scale. The
material behaviour depends on geometric shape, but hardening is independent
of size. This coincides well with experiments for significant length scales down
to approximately 100 µm. At 10 µm there is clear evidence that the material
hardens as the length scale decreases, for cases of non-constant plastic strain
distribution, such as bending of thin beams [21] and torsion of thin wires [9].
To explain these effects, micro-scale models of plasticity are examined.

The source of conventional isotropic hardening in plasticity is random im-
perfections. The crystal lattice of the material contains defects, and when the
material is strained, the defects move. When they randomly (statistically) block
each other, they give rise to material hardening. These dislocations are denoted
statistically stored dislocations.

Another source of dislocation of the crystal lattice is special strain condi-
tions that require dislocations. An example is plastic bending of a beam, where
new crystal planes must be “inserted” into the lattice on the side in tension, and
“removed” on the side in compression. These dislocations are denoted geomet-
rically necessary dislocations, and appear when there is a change of plastic
strain; a non-zero plastic strain gradient.

When accounting for these effects, two possible approaches have been dis-
cussed extensively in literature. The first was used by Fleck et al. in 1994 [9].
They create an augmented equivalent plastic strain measure depending on both

1
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regular equivalent strain and equivalent plastic strain gradient. The equivalent
plastic strain gradient is expressed from the curvature tensor, which depends
linearly on the plastic strain gradient. An augmented strain tensor is defined
consisting both of strains and strain derivatives. The augmented stress ten-
sor is work-conjugate to the augmented strain tensor, and must contain higher
order stresses work conjugate to the stain derivatives. Equilibrium equations
are obtained requiring the virtual work from augmented strain and augmented
stresses to be zero. The resulting higher-order strain gradient theory requires
additional boundary conditions, and in a finite element implementation, addi-
tional degrees of freedom. This may be achieved by implementation of a user
element [16]. Theories based on augmented stresses and strains requiring higher
order stresses and boundary conditions are denoted higher-order theories.

An alternative approach is to instead augment the hardening function, so
that the hardening depends on the plastic strain and the plastic strain gradi-
ent. The alternative approach does not modify equilibrium equations. Plastic
strain gradient hardening may taken into account by modification of the flow
stress. The modified flow stress depends on both the plastic strain and the
plastic strain gradient. Theories that only modify the material hardening and
do not introduce higher-order boundary conditions or higher-order strains are
denoted lower-order theories. Lower order theories may be derived from
higher-order theories aiming to give the same incremental moduli as higher or-
der theories [2] or through direct consideration of dislocations as a source for
material hardening [13].

1.2 Objectives and scope

First, the correctness of the current lower-order strain gradient plasticity model
must be verified. This is done by comparing response predicted by the finite el-
ement implementation to known analytical solutions. The finite element strain
gradient plasticity implementation uses a different measure of the equivalent
plastic strain gradient ηp, defined in Section 3.2, than has been used in previous
literature, and whether the current measure is sufficient must be investigated.
Predicted response for two cases will then be discussed, first particle strengthen-
ing, then void growth. Both produce non-uniform equivalent plastic strain fields
εp(x, y), and accounting for strain gradient effects is expected to add hardening.

Chosen theories are not sensitive to load rate, hence there is no time de-
pendence, and analyses are static or quasi-static. Hence, viscoplastic effects are
outside the scope of this thesis. Analytical solutions are produced with small
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deformation theory. The finite element implementation, however, is valid for
large deformations, case studies are done without small deformation and small
strain limitations.

1.3 Terminology
Mathematical modelling of strain gradient plasticity is done using higher- or
lower-order theories. Each model gives a precise mathematical formulation,
similar to that there is only one solution to a meshed, linear finite element
problem with sufficient boundary conditions. This thesis examines three overall
procedures to solving the problem lower-order formulations. First, analytical
solutions are examined. This is meant as calculating the stress or strain field
form the formulation. Discretization is then done over time and space. Spatial
discretization allows for numerical computation of the plastic strain gradient,
and loading or displacement is incremented over time. Then, finite element
solutions are presented. These are found by extending Abaqus with a user
subroutine for material behaviour sensitive to strain gradient hardening. Finally,
an exact mathematical solution is presented in Appendix C. This solution
does not discretize, neither in space nor in time. A continuous plastic strain field
that satisfies the lower-order strain gradient plasticity model is found directly
through the solving of a differential equation. No time steps are needed.
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Chapter 2

Theory

This chapter will introduce the theoretical background for strain gradient plas-
ticity. For a thorough explanation, see textbooks by François et al. [10], on ma-
terial behaviour, specifically chapter 3 on plasticity; and by Hull and Bacon [14],
on dislocation theory. The latter is recommended for excellent use of figures; dis-
locations are inherently three dimensional, and good three-dimensional figures
are essential for a spatial understanding.

2.1 Motivation for plasticity theory

The early 20th century saw advances in the theoretical explanation to plasticity.
In 1926 the Russian physicist Yakov Frenkel (Яков Френкель) calculated the
theoretical critical shear stress τc based on material crystal structure. Assume
that the structure is perfect, and two layers of atoms lie on top of each, illus-

a

b

a

x

b

Figure 2.1: Shear on a slip plane where the atoms are perfectly aligned. Slip begins on
the figure to the right. x is the movement of the top plane with respect to the lower,
coloured blue.

5



6 CHAPTER 2. THEORY

trated left in Figure 2.1. To the right in Figure 2.1, the top atom layer is sheared
with respect to the bottom atom layer. Assume the energy per volume E to be
periodic over length x. When the energy is periodic, so must the shear stress
τ = dE

dγ . The energy is minimal in the default configuration, maximum when
x = b/2, and again minimal at x = b, where x is the movement of the top plane
with respect to the lower, and b is defined in Figure 2.1. This gives a periodic
function for the shear stress as

τ(x) = τc sin

(
2π

b
x

)
, (2.1)

where τc is a constant. Its maximum value is τc, and its derivative in the origin is
dτ
dx = τc

2π
b . Another way to measure the initial stress is using linear elasticity, so

that τ = µγ, where µ is the shear modulus and shear strain is γ = tan x
a ≈ x/a

for small deformations.
Equating the two expressions for the derivative of the shear stress in the

origin1, we have 2π
b τc = µ

a , which solved for the critical shear stress gives

τc =
µb

2πa
. (2.2)

This gives the order of the critical shear stress as τc ≈ µ/10, which is far
from measured data. Compare this to S355 steel, where the shear modulus
is µ = 80 000MPa and the yield shear stress is τy = 205MPa ≈ µ/400. This
discrepancy between theory and data led Sir Geoffrey Ingram Taylor to question
the assumed perfect crystalline shape, and in the 1930s develop plasticity theory
based on dislocation theory—which did not assume perfectly shaped crystals.

2.2 Dislocation theory

What differentiates elastic and plastic strains at a fundamental level is change
of the crystal structure. Whereas elastic deformations leave the crystal lattice
structure unchanged after unloading, plastic deformations changes this structure
permanently. When a beam is bent plastically so that its top is in tension,
additional half-planes of atoms are inserted into the crystal lattice of the top
part of the beam. This change in the crystal structure is a dislocation.

1 This approach is inaccurate, but its inaccuracy negligible is compared to the (order of)
error that appears between theory and experimental data.
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⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Figure 2.2: Beam in bending. Dislocations are illustrated as ⊥. The dislocation
symbol ⊥ can be understood as the end of a crystal plane. For each ⊥ pictured, there
is a half-plane of atoms that ends in the vertical line. Therefore, in the pictured beam,
new planes are introduced from the top.

Dislocations are categorized into geometrically necessary dislocations (GNDs)
and statistically stored dislocations (SSDs). Geometrically necessary disloca-
tions arise from kinematics that require dislocations for continuity. The beam
in Figure 2.2 is an example. Statistically stored dislocations are distributed
randomly through the material.

Taylor’s work on dislocations as an explanation for material plasticity is
based on the mathematical foundation laid by the Italian mathematician and
physicist Vito Volterra in 1905. Volterra’s definition of dislocations follows.

Imagine first the beam before bending, illustrated in Figure 2.3. We examine

F
A1 A2

Figure 2.3: Beam before bending. F is the yellow area. A is the red area A = A1∪A2.
The dashed line is the new atom layer.
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M N

OPQ

R S

A1 A2

Figure 2.4: Area A before bending.

M N

OPQ

R S

A2A1

b

Figure 2.5: Area A after bending.

a cut in the beam. On the cut, we define an area A. When the beam is bent
plastically, a new layer of atoms will be inserted on F , separating previously
touching areas A1 and A2. Figure 2.4 shows the closed loop l = MNOPQRS
before bending. Each of the nodes in the loop is an atom in the crystal lattice,
and M is connected to S.

After bending, the loop is no longer closed, as shown in Figure 2.5. The
Burgers vector b of length b is defined as the displacement needed to reconnect
the now disconnected nodes S and M . Note that the direction of b depends
on order of the nodes in l, as the Burgers vector reconnects the first node to
the last. Positive l into the plane, as shown on Figure 2.4; MNOPQRS (right
hand rule) gives b pointing left, reconnecting M to S. Choosing positive l out
of the plane, not illustrated; SRQPONM gives b pointing right, reconnecting
S to M .

In this example of a beam in bending, the dislocations give a Burgers vector
parallel to the curve b||l. This is the case for edge dislocations. For a wire
exposed to plastic twist, the Burgers vector would be perpendicular to the curve
b⊥l; twist induces screw dislocations. Twist gives rise to shear strains, and slip
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will occur parallel to the wire axis. To “catch” the twist dislocation of the wire,
A is chosen as the cross section area, and the slip is normal to the area and its
bounding curve l. An example of screw dislocations arising from twisting of a
wire is given in the textbook by François et al. [10]. Generally, edge and screw
dislocations can occur at the same time.

The distribution of dislocations over a volume is described by the dislocation
density ρD, which is the total length of dislocations over a volume, divided by
the volume V

ρD =
NL

V
, (2.3)

where N2 is the number of dislocations and L the average dislocation length.
For the two-dimensional case, if a circuit can be chosen so that the dislocation
density inside the circuit is equal to the total dislocation density, the dislocation
density is

ρD =
N

A
, (2.4)

where A is the area of the circuit. The dislocation density ρD is of unit m
m3 = 1

m2 .
The dislocation density of the beam in Figure 2.6 is used as an example.

An infinitesimal angle is chosen so that the geometry is linear, θ ≈ 0. ABCD
is chosen as a Brugers circuit, giving the magnitude of the Brugers vector b =
D′D/N , when there are N dislocations. The area of the circuit is AB×BC for
small deformations. Inserting into Equation 2.4 gives

ρD =
D′D

bAB ×BC
. (2.5)

Using that AD = BC = Rθ and AD′ = (R + AB)θ, the dislocation density
simplifies to

ρD =
(R+AB)θ −Rθ

bAB ×Rθ
=

1

bR
. (2.6)

To sum up, the dislocation density increases when the average dislocation size
is small, because there must be more dislocations to account for the same de-
formation. The dislocation density is also proportional to the curvature κ = 1

R ,
as larger curvatures require more dislocations.
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C

D′

B

A

θ

R

D

⊥

⊥ ⊥

Figure 2.6: Beam in bending gives dislocations. Because of symmetry, only the top
part of the beam is considered. The bottom part of the beam has not been drawn
here.

2.3 Dislocations in crystals

Aluminium alloys form face centered cubic (FCC) crystal structures, illustrated
in Figure 2.7. In addition to atoms on the corner nodes, FCC crystals have
atoms on the centre of each face, giving the figure in in total 16 atoms. These
atoms are shared between two or more crystals, giving each crystal 4 atoms.
This can be visualized as the number of nodes added to an element mesh when
each new element is added.

A dislocation has been defined as the slip of a lattice plane. The direction
of the slip depends on the crystal structure. When two atoms are far apart, the
forces between them are low. This causes slips to happen so that the distance
between two slip planes is as long as possible. Equivalently, the distance between
atoms in the slip plane is minimized.

Possible slip planes depend on the crystal structure. Planes are characterized
by their normal, and described using Miller indices. Miller indices can in general
describe crystal structures irregular in size, so that a crystal has different sizes

2 N will later be used as an exponent in the material power law. N is used to denote
number of dislocations in this chapter only.
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Figure 2.7: Crystal structure for a face-centered cubic crystal. The dots are atoms.
Atoms in FCC structure are placed on corners and on the centre of faces.

in x, y and z-directions, even crystal structures with more than three unit axes.
This thesis will give a brief introduction to the case where the sides of the crystal
are of equal length, and the x, y and z-axes are axes of symmetry.

Miller indices for the yellow plane in Figure 2.8 are calculated as follows.

1. Let the plane of symmetry cross the unit axes in A, B and C

2. Arrange the inverted lengths of the distances along the unit axes as
(
a
OA ,

a
OB ,

a
OC

)
=(

a
2a ,

a
3a ,

a
3a

)
3. Multiply with least common multiple, and remove commas to get (322)

Bar above numbers denotes negation:
(

a
−2a ,

a
3a ,

a
3a

)
= (3̄22). Using curly braces

allows negation to be interchanged, such that (322), (3̄22), (32̄2), ... ∈ {322}.
In FCC crystal structures, {111}-planes are close packed, and slip is likely

to happen along these planes.

2.4 The Taylor dislocation model
As the plastic strain increases, so does the dislocation density, which increases
the amount of “obstacles” in the crystal lattice. The textbook Mechanical Be-
havior of Materials [10] describes how this gives an expression for the critical
shear stress required for slip as

τc = αµb
√
ρD, (2.7)

where α ∈ (1/3, 1/4) depending on the crystal structure, µ is the shear modulus
and b is the length of the Brugers vector. This procedure is based on Taylor’s
work in the 1930s.
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x

y

z

a

a
a

A (x = 2a)

B (y = 3a)

C (z = 3a)

O

Figure 2.8: Miller indices example.

For small dislocation densities, a good approximation of the the total dis-
location density is the sum of statistically stored dislocation and geometrically
necessary dislocation densities

ρD = ρSSD + ρGND. (2.8)

For calculating the density of geometrically necessary dislocations ρGND, a more
general measure is needed. This density is related to the spatial change of plastic
strain; the plastic strain gradient. Plastic strain is a 2nd tensor εpij , making its

gradient a 3rd order tensor εpij,k =
∂εp

ij

∂xk
. Nye [19] and Ashby [1] related the

density of the geometrically necessary dislocations to the effective plastic strain
gradient ηp

ρGND = r̄
ηp

b
, (2.9)

where r̄ ≈ 1.9 for face centred cubic crystals.
Let us compare this to the dislocation density calculated for the beam in Fig-

ure 2.6. Neglecting elastic strains, the non-zero component of the plastic strain
gradient tensor is dεp

x

dy = κ = 1
R . Taking the effective plastic strain gradient ηp

as the l2 norm of the plastic strain gradient tensor, the dislocation density is
ρGND = r̄ η

p

b = r̄ 1
bR , which differs by a factor of r̄. The previous manual cal-

culation did not take crystal structure and lattice orientation into account, and
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using the l2 norm of the plastic strain gradient tensor is an arbitrary measure
of the strain gradient. It is concluded that Nye and Ashby’s measure is in the
correct order of magnitude.

The critical shear stress on a slip is related to the flow stress as

σflow = Mτc, (2.10)

where M ≈ 3.06 for isotropic FCC crystals [4,15]. The flow stress is the (hard-
ened) yield limit of the material, and yielding occurs when the equivalent von
Mises stress exceeds the flow stress σe =

√
3
2σ
′
ijσ
′
ij > σflow.

With the foundation in place, insert for ρD = ρSSD + ρGND into equations
2.10 and 2.7 to get

σflow = Mαµb

√
ρSSD + r̄

ηp

b
, (2.11)

a hardening function taking into account plastic strain εp and plastic strain
gradient ηp, used by Huang et al. [13]. The density of statistically stored dis-
location can be found from tensile tests without strain gradient. This thesis
will adopt a power law, so that the hardened flow stress without strain gradient
effects is σflow = σyf(εp), where σy is the yield stress before hardening, and
f(εp) an isotropic hardening power-law, function of the equivalent plastic strain
εp =

∫ t
0
ε̇p dt, where ε̇p =

√
2
3 ε̇
p
ij ε̇

p
ij . This way, we can determine the density of

statistically stored dislocations as ρSSD = (σyf(εp)/Mαb)2, and the flow stress
becomes

σflow = Mαµb

√(
σyf(εp)

Mαµb

)2

+ r̄
ηp

b

= σy
√
f(εp)2 + lηp where l =

(
Mαµ

σy

)2

r̄b.

(2.12)

l is of unit length and can be found directly from experiments, as done by
Stölken and Evans [21]. The length scale is of the order of 1× 10−6 m = 1 µm,
and strain gradient effects are notable when there is notable change in plastic
strain within this length scale.
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Chapter 3

Material model and
parameters

This chapter explains the material model used in this thesis. Two alternative
formulations are presented. Traditional J2 plasticity modified to take strain
gradient effects into account, described in Section 3.1 is used for the finite el-
ement implementation. For the analytical solutions, an alternative approach
without a yield surface is used. This approach is described in Section 3.3. Both
formulations take strain gradient effects into account. Measures of the effective
strain gradient ηp are given in Section 3.2. Material parameters are listed in
Section 3.4.

3.1 J2 yield surface plasticity

The material model implemented in the finite element method is based on stan-
dard J2 plasticity as described in this section. Associated flow rule is adopted.
Strain rates are divided into elastic and plastic ε̇ij = ε̇eij + ε̇pij . Elastic and
plastic strain rates are expressed from stress rates and equivalent plastic strain

15
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rate as
ε̇eij =

1

2µ
σ̇′ij︸ ︷︷ ︸

deviatoric

+
σ̇kk
9K

δij︸ ︷︷ ︸
hydrostatic

ε̇pij =
∂F

∂σij
ε̇p =

3ε̇p

2σe
σ′ij︸ ︷︷ ︸

plastic

.

(3.1)

εeij is the elastic strain tensor, εpij is the plastic strain tensor, ε̇p =
√

2
3 ε̇
p
ij ε̇

p
ij is

the effective plastic strain rate, µ the shear modulus and K the bulk modulus.
σ′ij = σij − 1

3σkk is the deviatoric stress tensor, and the equivalent stress is

the von Mises stress given by the deviatoric stress tensor σe =
√

3
2σ
′
ijσ
′
ij . The

Kronecker delta δij is

δij =

{
1 if i = j

0 if i 6= j
. (3.2)

The yield function F is given by the equivalent stress and the flow stress

F (σe) = σe − σflow, (3.3)

and is restricted by the Kuhn-Tucker conditions

F ≤ 0, ε̇p ≥ 0 and ε̇pF = 0. (3.4)

The Kuhn-Tucker conditions imply that there can only be yield (ε̇p > 0) on the
yield surface when the yield function is zero F = 0. The yield function F gives
its partial derivative with respect to strains in Equation 3.1. The flow stress is
the hardened yield stress with contributions from the equivalent plastic strain
εp and the effective plastic strain gradient ηp

σflow = σy
√
f(εp)2 + lηp where f(εp) =

(
1 +

Eεp

σy

)N
. (3.5)

Note that F is the yield function, and f is a non-dimensional isotropic power
law-based hardening function. E is Young’s modulus, which can be expressed
from µ and K, and N1 a non-dimensional material parameter 0 ≤ N < 1. The

1 N is now used as an exponent in the material power law. This is the case for the rest of
the thesis.
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effective plastic strain gradient ηp is defined in Section 3.2, and the characteristic
material length scale l was defined in Equation 2.12. l is later taken as a material
parameter.

3.2 Effective plastic strain gradient
Huang et al. examine two different definitions of the effective plastic strain
gradient ηp. This thesis introduces one more. The partial derivatives of the
plastic strain tensor are denoted using comma notation as

εpij,k =
∂εpij
∂xk

.

Huang et al.’s first measure [13] is from work by Fleck and Hutchinson [8], which
was determined using three models of geometrically necessary dislocations, and
is defined as

ηp,A =

√
1

4
ηp,Aijk η

p,A
ijk where ηp,Aijk = εpki,j + εpjk,i − εpij,k. (3.6)

Huang et al.’s second measure of the effective strain gradient is based on a
tensor of geometrically necessary dislocations expressed from the plastic defor-
mation gradient tensor, based on work by Steinmann [20] and Cermelli and
Gurtin [5]. The total deformation gradient can be decomposed into elastic and
plastic parts F = Fe · Fp. The tensor of geometrically necessary dislocations
becomes 1

detFp Fp · (∇× Fp), which reduces to −εp ×∇ for infinitesimal defor-
mations, where εp is the plastic strain tensor. Note the difference between the
(boldface) plastic strain tensor εp and the effective plastic strain (scalar) εp.
The l2-norm of the tensor of geometrically necessary dislocations then becomes

ηp,B =
√

(εp ×∇) : (εp ×∇) = ‖εp ×∇‖ . (3.7)

In addition, this thesis examines the norm of the gradient of the equivalent
plastic strain

ηp,C =

√
∂εp

∂xi

∂εp

∂xi
= ‖∇εp‖ . (3.8)

The new measure of the effective plastic strain gradient ηp,C has the advantage of
depending only on the equivalent plastic strain εp, and not on the plastic strain
tensor components εpij . This makes finite element implementation straightfor-
ward. The new measure ηp,C is path dependent, in contrast to measures from
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literature ηp,A and ηp,B . ηp,C is path dependent because it is derived from the
equivalent plastic strain εp =

∫
t
ε̇p dt instead of the path-independent plastic

strain tensor εpij , as is the case for ηp,A and ηp,B . A discussion of whether the
plastic strain gradient measure should be path independent can be based on
dislocation theory, and is outside of the scope of this thesis.

A, B and C have been introduced to differentiate between the different
measures of the effective plastic strain gradient, and thereby prevent confusion
in equations of which measure of the effective plastic strain gradient ηp is being
used.

3.3 An alternative viscoplastic-like formulation
Huang et al. [13] introduced alternative viscoplastic-like formulation to the J2

yield surface theory in Section 3.1. This alternative formulation does not have
a yield surface, and does therefore not need loading/unloading conditions, re-
sulting in simpler analytical solutions.

Equation 3.3 defining the yield surface and Equation 3.4 giving the Kuhn-
Tucker conditions are replaced with the alternative plastic flow formulation

ε̇p = ε̇

(
σe

σflow

)m
. (3.9)

The equivalent plastic strain rate is given from the equivalent deviatoric strain
rate ε̇ =

√
2
3 ε̇
′
ij ε̇
′
ij , where ε′ij = εij − 1

3εkk. The flow stress gives the limit
between elastic-dominated strains (σe < σflow) and plastic-dominated strains
(σe > σflow). m is a high non-dimensional exponent. In the limit of m → ∞,
Equation 3.9 is indistinguishable from the yield surface formulation. Lower ex-
ponents give good correspondence without numerical instability. The difference
in material response when increasing the exponent m > 20 is small. This thesis
uses m = 20 or m→∞, implying σe = σflow for analytical solutions.

It is worth noting that if we divide the equivalent deviatoric strain rate into
an elastic and a plastic part ε̇ = ε̇e + ε̇p, the plastic strain rate is

ε̇p =

(
σe

σflow

)m
1−

(
σe

σflow

)m ε̇e. (3.10)

An interesting limit of this equation is limσe→σflow
ε̇p = ∞. This means that

the equivalent stress will never reach the flow stress, σe < σflow, and puts a
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stability limit on solutions based on stress-incrementation, where stresses very
close to the yield stress may produce very large plastic strain increments ∆εp.
If the stress increment is so large that the equivalent stress exceeds the flow
stress σe > σflow, the plastic strain increment becomes (non-physically) negative
ε̇p < 0. An alternative formulation that does not exhibit this behaviour is

ε̇p = ε̇e
(

σe
σflow

)m
. (3.11)

This formulation does not guarantee σe < σflow. In the analytical solutions,
sufficiently small increments are chosen, so that the stability limit is not an
issue, and the formulation from Huang et al. [13] in Equation 3.9 is used.

Huang et al.’s viscoplastic-like formulation, Equation 3.9, has another attrac-
tive property, namely rate insensitivity. Introducing the equivalent deviatoric
strain rate ε̇, the loading speed does not affect the material response. Another
effect is that if there is no change in elastic strain, ε̇eij = 0; there is no change in
plastic strain, ε̇pij = 0. In other words, the plastic flow is similar to a viscoplastic
formulation, yet does not exhibit rate sensitivity.

3.4 Material parameters
For analytical and finite element solutions in this thesis, the following material
parameters are used:

E = 210 GPa

σy = 420 MPa

ν = 0.3

N = 0.2.

These are compatible with the paper by Huang et al. [13], where σy/E = 0.2%,
ν = 0.3 and N = 0.2. The flow rule exponent is taken as m = 20 for the
formulation without a yield surface. In the limit m→∞, it is indistinguishable
from a formulation with a yield surface.

In the case study, different material parameters are used. These are specified
in the before the case study, in Chapter 8.
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Chapter 4

Analytical solutions

This chapter presents analytical solutions a selection of problems presented by
Huang et al. [13]. The problems represent fundamental loading cases. Uniaxial
tension is studied in Section 4.1, where the strain gradient effect is induced using
a gravitational body force. Second, shear is examined in Section 4.2. The strain
gradient effect is induced using a prescribed plastic strain field. This problem is
also useful for stability discussion. Thirdly, a thin beam in bending is analysed
in Section 4.3, which naturally shows a difference in strain gradient effects in
the height direction.

The chosen problems are simple. Changes are one-directional, and ana-
lytical solutions of the strain field, except for a final numerical integration to
account for load incrementation and strain gradient effects, is straightforward.
Straightforward analytical solutions allows for checking the correctness of the
FEM implementation, which is done in Chapter 6.

4.1 Bar in uniaxial tension subject to gravity

Perhaps the simplest problem possible that shows strain gradient effects is a bar
in linear uniaxial tension. The only non-zero stress is the normal stress in the
x1-direction σ11, which depends only on the x1 coordinate. For example, the
magnitude of the gradient of the equivalent plastic strain is simply the size of
its derivative in the x1-direction, ηp,C = ||∇εp||= | ∂∂x1

εp|.
The bar is loaded by gravity and end tension at the bottom (x1 = 0), and

constrained from moving at the top (x1 = L), as shown in Figure 4.1. This

21
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x1

x2

L

σ11 = σy

σ11 = 2σy

Figure 4.1: Uniaxial tension due to constant body force and end load. Coordinate
system, load, boundary conditions and resulting stress field.

loading gives a stress field of σ11(x1) = gx1 + σbottom. Choosing σbottom = σy
and g = σy/L produces the linear stress field σ11(x1) = (1 + x1

L )σy.

To obtain the range of results we should be seeing, take the hardening func-
tion in Equation 3.5 and apply it to the top of the bar. At the top edge of
the bar, the stress is double the yield stress σ11(x1 = L) = 2σy, implying
σflow = σyf(εp) = 2σy and f(εp) = 2 when strain gradient effects are neglected.
Solved for equivalent plastic strain, εp = 0.062 is obtained. This is shown to be
accurate in Figure 4.2, where the maximum strain is 0.062 (l/L = 0).

4.1.1 Analytical solution

The only non-zero stress is σ11, giving deviatoric stress tensor components σ′11 =
2
3σ11 and σ′22 = σ′33 = − 1

3σ11. The equivalent stress is σe = σ11. Inserted into
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l/L = 0, current solution
l/L = 0, Huang et al.
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l/L = 10, Huang et al.

Figure 4.2: Plastic strain distribution in bar. Correspondence with results presented
by Huang et al. [13]. ηp = ηp,A. Huang’s plot is extracted using image recognition
from his paper, introducing slight inaccuracy.

the constitutive equation (3.1) gives strain rates

ε̇11 = ε̇e11 + ε̇p11 =
σ̇11

E
+ ε̇

(
σe

σflow

)m
(4.1a)

ε̇22 = ε̇33 = ε̇e22 + ε̇p22 = −ν σ̇11

E
− ε̇

2

(
σe

σflow

)m
. (4.1b)

Dependence on the equivalent strain rate ε̇ in equations 4.1 is eliminated by
inserting for the strains in directions x2 and x3. Deviatoric strains ε′ij = εij −
εkk/3 are ε′11 = 2

3 (ε11 − ε22) and ε′22 = 1
3 (−ε11 + ε22), giving the equivalent
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strain rate ε̇ =
√

3
2 ε̇
′
ij ε̇
′
ij = 2

3 (ε11 − ε22), and the strain rates become

ε̇11 =
σ̇11

E
+

2

3
(ε̇11 − ε̇22)

(
σe

σflow

)m
(4.2a)

ε̇22 = −ν σ̇11

E
− 1

3
(ε̇11 − ε̇22)

(
σe

σflow

)m
. (4.2b)

Eliminating ε̇22 from the two equations, ε̇11 is isolated,

ε̇11 =

1 +
2

3
(1 + ν)

(
σe

σflow

)m
1−

(
σe

σflow

)m
 σ̇11

E
. (4.3)

Inserting the equivalent strain rate ε̇ = 2
3 (ε̇11− ε̇22) into the equation for plastic

flow 3.9 gives the plastic strain rate. A less tedious approach is subtracting
Equation 3.9 from Equation 4.1a, giving ε̇11− ε̇p = σ̇11

E . The explicit expression
for the plastic strain rate becomes

ε̇p =
2

3
(1 + ν)

(
σe

σflow

)m
1−

(
σe

σflow

)m σ̇11

E
. (4.4)

With change only in the x1-direction, the strain gradient for each of the cases
can be expressed with the effective plastic strain’s derivative in the x1-direction
∂εp

∂x1
. The different measures of the effective strain gradient ηp become

ηp,A =

√
5

8

∣∣∣∣∂εp∂x1

∣∣∣∣ ≈ 0.79

∣∣∣∣∂εp∂x1

∣∣∣∣ (4.5a)

ηp,B =

√
3

2

∣∣∣∣∂εp∂x1

∣∣∣∣ ≈ 0.87

∣∣∣∣∂εp∂x1

∣∣∣∣ (4.5b)

ηp,C =

∣∣∣∣∂εp∂x1

∣∣∣∣ . (4.5c)

The differential equation is solved explicitly: the plastic strain of the last
step is used to compute hardening, both isotropic and strain gradient related.
The change of plastic strain in the x1-direction is computed using the central
difference method for internal elements and using skew differences for the edges
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Figure 4.3: Plastic strain distribution in bar; different measures of ηp. As expected,
smaller length scale, thereby larger l/L gives stiffer results. Results with different
strain gradient measures ηp are similar.

dεp

dx1

∣∣∣∣
x1=0

=
−εp(2∆x1) + 4εp(∆x1)− 3εp(0)

2∆x1
(4.6a)

dεp

dx1

∣∣∣∣
x1=L

=
εp(L− 2∆x1)− 4εp(L−∆x1) + 3εp(L)

2∆x1
(4.6b)

dεp

dx1

∣∣∣∣
otherwise

=
εp(x1 + ∆x1)− εp(x1 −∆x1)

2∆x1
. (4.6c)
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x2

x1

2D

τ

τ

γpinitial =
[
1−

(
x1

D

)2]
γy

Figure 4.4: Coordinate definition, load and initial plastic strain distribution for the
infinite shear layer. Note that the x1-direction points up. The layer is infinitely long in
the x2-direction, thus there are no bending effects. Strain gradient effects arise solely
due to initial plastic strain, and disappears when the strain increases.

4.1.2 Results and discussion

The analytical solution produced for this thesis corresponds well with Huang et
al.’s plot, as shown in Figure 4.2. The results of using different measures of the
effective plastic strain gradient is shown in Figure 4.3.

Correspondence with Huang et al.’s plots is good. Increasing the material
length scale l increases hardening, as is expected.

4.2 Shear of an infinite layer

Testing how the current strain gradient plasticity theory handles shear strain is
relevant, and the chosen example problem provides simple geometry. There is
change only in the x1-direction, and the only nonzero stresses and strains are
σ12 = σ21 and ε12 = ε21. Using a prescribed, non-uniform, smooth residual plas-
tic shear strain introduces strain gradient effects with minimal complications.
As stresses increase, the strain distribution should become uniform.

The second problem used for verification is a sheared infinite layer, visualized
in Figure 4.4. The infinite length prevents bending effects, and the result is pure
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shear.
The initial plastic shear strain is distributed in the layer as the parabola

γpinitial =

[
1−

(x1

D

)2
]
γy, (4.7)

where γy is equal to the elastic engineering shear strain at yielding γy = τy/µ =
σy/(
√

3µ). This differs from Huang et al.’s paper [13], which is discussed in
Section 4.2.2. Only half the layer is analysed because of symmetry. The top and
bottom edges are sheared, leading to a uniform stress distribution σ12 = σ21 = τ .

4.2.1 Analytical solution
For a stress field where the only non-zero stress is the shear stress σ12 = σ21 = τ ,
the only strain rates will be the shear strain rates

ε̇12 = ε̇21 =
1

2
γ̇. (4.8)

The constitutive Equation 3.1 for pure shear becomes

ε̇12 =
σ̇′12

2µ
+

3ε̇p

2σe
σ′12. (4.9)

The equivalent strain rate is ε̇ =
√

2
3 ε̇
′
ij ε̇
′
ij = 1√

3
γ̇, giving the equivalent plastic

strain rate ε̇p = ε̇(σe/σflow)m = γ̇√
3
(σe/σflow)m. Using σe =

√
3τ , Equation

4.9 can be written

γ̇ =
τ̇

µ
+

(
σe

σflow

)m
γ̇, (4.10)

which solved for γ̇ gives

γ̇ =
1

1−
(

σe

σflow

)m τ̇

µ
. (4.11)

As for the uniaxial case, Equation 3.9 gives the plastic flow from the equivalent
strain rate as

ε̇p =
1√
3

(
σe

σflow

)m
1−

(
σe

σflow

)m τ̇

µ
. (4.12)

Given that γp =
√

3εp and τy = 1√
3
σy, plotting normalized equivalent plastic

strain is equivalent to normalized plastic shear strain εp/εy = γp/γy.
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Figure 4.5: Analytical solution: distribution of normalized engineering plastic shear
strain for l/D = 3, using Huang et al.’s definition of ηp = ηp,A.

The effective plastic strain gradient is the same for Huang et al.’s measures
ηp,A = ηp,B =

√
3

2 |
dεp

dx1
|. The measure introduced here is ηp,C = ||∇εp||= |dε

p

dx1
|.

4.2.2 Results and discussion

Note first that this example shows no plastic strain gradient hardening. The only
part of the model with a nonzero plastic strain gradient is in the prescribed field.
Here, however, there is no yield until the plastic strain field smooths out, and
γp > γy for the whole model. Yielding is initiated close to the edge x1 = D, and
as strains increase, yielding moves closer and closer to the centre x1 = 0. Strain
gradient effects are thus only relevant in the intersection between yielding and
not yielding. Here, however, the strain gradient is singular. How this should be
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Figure 4.6: Illustration of Niordson and Hutchinson’s argument for the smoothness of
strain gradient plasticity hardening. The smooth distribution is considered physical,
the jagged non-physical. Note that the whole domain has been plotted to illustrate
the need of dγp

dx1
|x1=0= 0, as symmetry requires γp(x1) = γp(−x1). In addition, the

strain gradient in the origin, with contribution from ∂γp

∂x1
(x1 = 0), is undefined.

handled is discussed in Appendix A.
Results of the analytical solution are plotted in Figure 4.5. The initial plas-

tic shear distribution is shown for the plot where τ = 0. As the shear stress
increases, additional plastic shear is accumulated, hardening the layer. Due to
the viscoplastic-like formulation 3.9, plastic flow is present as long as there is
elastic flow, which is seen left in the figure, where x1 ≈ 0. Increased loading pro-
duces increased hardening, and gradient effects smooth out the response. Over
time, the less pre-strained region (x1 ≈ D) hardens more than the pre-strained
center (x1 ≈ 0), and for large stresses (τ > 1.16τy), the strain distribution is
practically constant, and strain gradient effects vanish.

This problem was not originally chosen by Huang et al. for its demonstration
of strain gradient effects on shearing, but to check for defects previous lower-
order strain gradient plasticity models have been prone to.

Niordson and Hutchinson [18] used this example to illustrate bad behaviour
of a lower order strain gradient theory presented by Bassani [2]. The current
strain gradient theory does not involve any stresses work-conjugate to the strain
gradient, and is therefore a lower order theory. The ill-behaved strain gradient
plasticity theory showed a vertex at the centre, x1 = 0, which is fundamen-
tally different from what we expect from a strain gradient theory. When the
hardness depends on the plastic strain gradient in addition to the plastic strain,
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the resulting strain distribution is expected to be smoother than the resulting
plastic strain distribution without taking strain gradient theory into account.
Bassani [2] formulated the material hardening as

τ̇y = h(γp, α)γ̇p (4.13a)

h(γp, α) = h0

(
γp

γ0
+ 1

)N−1
√

1 +
(lα/γ0)2

1 + c(γp/γ0)2
. (4.13b)

Here, variables (with units) are, h0 (MPa) is a reference tangent modulus, N ≈
0.15 (−) a non-dimensional parameter, c = 1 or c = 0 (−) a non-dimensional
parameter, γ0 (−) a reference plastic shear strain and α (m−1) a measure of
the strain gradient ηp based on the curvature tensor introduced by Fleck [9].
The incremental hardening formulation makes hardening path dependent in the
space of the plastic strain and the plastic strain gradient. Two different loading
procedures will produce different hardening depending on how the strain is
applied. Incrementing first the plastic strain gradient and then the plastic strain
(a) will produce the the most hardening, as the term under the root is as large
as possible when increasing the plastic strain. In contrast, first incrementing
the plastic strain and then increasing the strain gradient (b) produces no strain
gradient effect at all! Under the current theory of hardening as a function of
dislocation density, this makes no sense.

In the current shear problem, the gradient is initially larger close to the edge
x1 = D. This leads to a larger incremental hardening for the same increase in
effective plastic strain when the strain gradient is higher, and the effect is close
to (a). For the centre of the bar, the opposite is the case (b). Plastic strain is
incremented first, and there is less increase in hardening for the same increase
in plastic strain. Using the current 1-1 correspondence between εp, and ηp; and
the actual hardening alleviates this problem.

The problem is worsened when N → 0. Niordson and Hutchinson argue
that a parabolic strain distribution should show the most hardening at a local
maximum of the equivalent plastic strain εp, given smooth loading and smooth
boundary conditions. The current analytical hardening function satisfies this re-
quirement (dγp

dx1
|x1=0= 0). Niordson and Hutchinson give an extensive discussion

of these issues [18].
Huang et al.’s figure 7 [13] uses a wrongly normalized shear stress. The

figure gives the impression that the normalized shear stress tau0 is the actual
yield shear stress τy. The correct yield shear stress is found calculating the von
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Mises equivalent stress from pure shear, yielding

τy =
1√
3
σy

where σy is the uniaxial normal yield stress. Huang et al. derive the normalized
shear stress from a normalized shear strain

τ0 = µγ0 where γ0 =
√

3
σy
E
.

Inserting for γ0 and using µ = E
2(1+ν) the normalized shear is obtained in terms

of the yield stress

τ0 =
E

2(1 + ν)
×
√

3
σy
E

=

√
3

2(1 + ν)
σy 6= τy.

Using correct yield shear stress τy and engineering shear yield strain γy =
τy/µ, the plots from Huang et al.’s report may be reproduced. Note that the
ratio of engineering plastic shear strain to engineering shear yield strain, is the
same as the ratio of effective plastic strain to yield strain γp

γy
= εp

εy
. Correctly

normalized plots are presented in Figure 4.5.

4.3 Bending of thin beams
Bending of thin beams has previously been used by Stölken and Evans [21] to
find the material length scale l for Nickel, using strain gradient theory based
on work by Fleck and Hutchinson [8]. This theory accounts for strain gradi-
ent effects by augmenting the effective strain with contributions from the strain
gradient εij,k and the curvature tensor. Using virtual work or minimal potential
energy, equilibrium equations are obtained. The equilibrium equations neces-
sitate higher order strains work-conjugate to the strain gradient components.
Huang et al. [13] later applied lower-order strain gradient plasticity theory to
the same problem, which is again done in this section.

Figure 4.7 shows the problem with loads and coordinate system. The beam
is very thin, making strain gradient effects relevant. Huang et al. assume the
beam to be incompressible (ν = 0.5). This is also assumed in the current solu-
tion, but through incompressible plastic deformation. The beam is bent about
the x3-axis, and is in a plane strain state, so that the only non-zero strains
are ε11 and ε22 = −ε11 from incompressibility, where the strain in the beam
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h

ε11 = κx2

Figure 4.7: Coordinate definition for the thin beam problem. The applied moment
gives tension in the top area and compression in the bottom area.

direction is given by the curvature as ε11 = κx2. Incompressibility combined
with plane strain gives non-zero stresses σ11 and σ22 = 1

2σ11, and the equivalent

stress becomes σe =
√

3
2σ
′
ijσ
′
ij =

√
3

2 |σ11|. The top of the beam is in tension,
and the bottom in compression. If we had not constrained the strains in the
x3-direction, the beam cross section area would change significantly, and an an-
alytical solution would have to take non-linear geometric effects into account.
The top area, in tension, and the neutral axis would move down, as the bottom
area increased in compression. In the examination of thin beam bending, large
strains are assumed, so that εeij ≈ 0 and εij ≈ εpij . This alleviates the need for a
viscoplastic-like formulation: when only plastic strains are taken into account,
there are no loading-unloading conditions, and the yield surface variant of the
material model from Equation 3.5 is used. This gives a simple hardening formu-
lation where the stresses are given explicitly from the equivalent plastic strain,
σe = σflow = σy

√
f(εp)2 + lηp.

4.3.1 Analytical solution
These simplifications allow for a time and loading-independent solution of the
beam bending problem. Huang et al. plot a non dimensional bending moment
M

σyh2b
1 vs non dimensional curvature κh. The bending moment on the surface

1Huang et al. [13] write M
σyh2

. This is equal to the current expression for a beam of unit
width b = 1.
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Figure 4.8: Bending of thin beams. Analytical solution, non-dimensional moment
versus non-dimensional curvature. l/h ∈ [0, 1, 10].

with normal e1 is the integral of stresses in the x1 direction times its distance
to the neutral axis over the area M =

∫
A
σ11x2 dA. Normal stress σ11 can be

expressed from the flow stress. The flow stress depends on the equivalent plastic
strain εp and the effective plastic strain gradient ηp, giving the normal stress

σ11 =
2√
3
σe (4.14)

=
2√
3
σy
√
f(εp)2 + lηp. (4.15)

As elastic strains are neglected, the effective plastic strain varies linearly over
the area εp = 2√

3
κx2, thus its only non-zero gradient component is dεp

dx2
= 2√

3
κ.

Inserting for isotropic hardening (f(εp)) and plastic strain gradient harden-
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ing (lηp), we get non-dimensional moment M̃ = M
σyh2b as a function of non-

dimensional curvature κ̃ = κh as

M̃ =

∫ 1
2

− 1
2

2√
3
x̃2

√√√√(1 +
2E√
3σy

κ̃x̃2

)2N

+
l

h

∣∣∣∣dεpdx̃2

∣∣∣∣ dx̃2 (4.16)

where x̃2 = x2

h , for the case of ηp = ηp,C . This is formulation is path inde-
pendent, and response at a given curvature can be calculated directly without
incrementation. All rate variables, such as ε̇p and σ̇11, have been eliminated.
The result is similar for plane stress2. Other definitions of ηp give different
factors in front of the partial derivative of the equivalent plastic strain. The re-
sulting expression can be integrated for any choice of curvature κh and material
length scale l

h .

4.3.2 Results and discussion
Huang et al. chose very large values for the curvature, so that κh ∈ [0, 10].
In this range, the elastic domain is negligible, and it is impossible to separate
his plot from the y-axis. Strains of this magnitude, however, are impossible to
obtain. The maximum possible physical solution is the limit κh → 2. Beam
theory then gives the length change ratio

∆l

l0
= κx2.

In the bottom of the beam, the length change is

∆l

l0 bottom

= κ
−h
2

= −1. (4.17)

The logarithmic strain becomes

εlbottom = lim
∆l→−l0

ln
l0 + ∆l

l0
= −∞. (4.18)

In conclusion, requiring non-negative mass in the bottom of the beam limits the
curvature to κh < 2.

2For plane stress, σ11 = σe, which gives the non-dimensional moment M̃ =∫ 1
2

− 1
2

x̃2

√(
1 + 2E√

3σy
κ̃x̃2

)2N

+ l
h

dεp

dx̃2
dx̃2. Changes in cross section area are neglected.
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Results are shown in Figure 4.8, and match Huang et al.’s results very well,
when using ηp = ηp,A =

√
3

2 |
dεp

dx2
|, given the assumption of εeij ≈ 0 and differences

in curvature domain.
In the experiments by Stölken and Evans [21], surface strains are in the

range of εmax ∈ (0.02, 0.09). Kinematics give the relation between curvature
and bending strains as εmax = 2 hR = 2κh, so that the non-dimensional curvature
κh is in the range of κh ∈ (0.04, 0.18).

This problem shows that in Huang et al.’s formulation, when the plastic
strain gradient increases proportionally to the plastic strain, the effect of the
plastic strain gradient dominates the effect of the equivalent plastic strain. This
comes from the formulation of the hardening, which (inserted for N = 0.2) is

σflow = σy

√(
1 +

Eεp

σY

)0.4

+ lηp. (4.19)

The hardening term from the plastic strain is raised to a “total” power of 0.2,
whereas the hardening term from the plastic strain gradient is raised to a “total”
power of 0.5.
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Chapter 5

Finite element
implementation

This chapter gives the foundation of the numerical strain gradient plasticity
implementation used in the finite element simulations.

In each time increment, the effective plastic strain gradient ηp is calculated
from the field of equivalent plastic strain εp(x, y, z) from the previous increment.
This procedure is described in Section 5.3. Then, an iterative strain increment
is calculated using iterative radial rate of return [11]. Iterative radial rate of
return is not described in detail in this thesis, and is not a necessary requirement
for understanding the strain gradient implementation.

In the following chapter, analytical expressions are presented for 3D analysis.
Specialization to 2D is straightforward. Figures are in 1D and 2D for ease.

5.1 Finite element method notation

This section does not seek to teach the finite element method, but to estab-
lish the notation used. Comprehensive theory is available in literature. FEM
notation in this chapter is taken from lecture notes by Odd Sture Hopperstad
and Tore Børvik [12], which describes implementation of non-linear material
behaviour using the finite element method. Linear theory and different element
types is described in detail by Kolbein Bell [3], and for general non-linear finite
element theory not restricted to the material level, see Cook et al.’s textbook [6].

The finite element method translates material continuum equations to a
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discrete set of equations. In linear finite element method, the set of equations
is linear. Introduction of non-linear effects on the material level, for example
plasticity, makes the set of equations non-linear. Following is a summary of the
derivation of the finite element method using the principle of virtual work. For
a complete derivation, see Hopperstad and Børvik’s lecture notes [12], chapter
4.5.

Let the volume of the body be divided into ne element volumes V =
∑ne

1 Ve.
Approximate the displacement within an element volume as an interpolation of
displacements in the element nodes

u(x, t) = Ne(x)ve(t) where x ∈ Ve. (5.1)

It is noted that the interpolation functions N(x) depend on space only, whereas
the nodal degrees of freedom ve(t) depend on time. For simplicity, the space
and time parameters are omitted. Here, x =

[
x1 x2 x3

]T are coordinates in
the undeformed configuration, u =

[
u1 u2 u3

]T is the displacement vector
with components in x, y and z-directions. The nodal degrees of freedom ve =[
ve,x ve,y ve,z

]
are displacements in each of the dimensions, in each of the

element nodes. The components of Ne are nodal interpolation functions creating
a continuous displacement field from the nodal degrees of freedoms. These are
taken as polynomials.

To avoid fourth order tensors, strain and stress tensors are lumped into
vectors. The strain vector ε (in contrast to the strain tensor εij) is

ε =


ε1

ε2

ε3

ε4

ε5

ε6

 =


ε11

ε22

ε33

γ23

γ31

γ12

 =


ε11

ε22

ε33

2ε23

2ε31

2ε12

 . (5.2)

Abaqus/Explicit indexes in a different order1. The stress vector is

σ =


σ1

σ2

σ3

σ4

σ5

σ6

 =


σ11

σ22

σ33

τ23

τ31

τ12

 . (5.3)

1 In the Abaqus/Explicit solver, the order of the shear strains is γ12, γ23, γ31. Abaqus/Im-
plicit uses the same ordering as presented in this text.
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The strains are given from displacements as

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (5.4)

which in vector/matrix notation is

ε = ∆u where ∆ =



∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

0 ∂
∂x3

∂
∂x2

∂
∂x3

0 ∂
∂x1

∂
∂x2

∂
∂x1

0


. (5.5)

Displacements can be expressed in global degrees of freedom r

u = Nr where N =

ne∑
e=1

Neae and ve = aer. (5.6)

Strains are now given in terms of global degrees of freedom

ε = ∆Nr = Br. (5.7)

Let b be body forces, S the surface of the body and t̄ surface traction. The
principle of virtual work becomes∫

V

δεTσ dV︸ ︷︷ ︸
internal virtual work

=

∫
V

δuTbdV +

∫
S

δuT t̄ dS︸ ︷︷ ︸
external virtual work

. (5.8)

Virtual strains δε and displacements δu are expressed in terms of virtual nodal
displacements δr, and the set of equations become∫

V

BTσ dV︸ ︷︷ ︸
Rint

=

∫
V

NTbdV +

∫
S

NT t̄ dS︸ ︷︷ ︸
Rext

. (5.9)

For the case of a linear-elastic material, the stress-strain relation is given by
Hooke’s law σ = Cε and prescribed, conservative external loads, this simplifies
to [12]

Kr = Rext where K =

∫
V

BTCBdV. (5.10)
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Bell [3] uses a Taylor expansion of the displacement field to produce asymptotic
bounds for displacements, stresses, strains and energy. It follows that the error
eα of a value α, which is a linear combination of mth derivatives of u, where u
has been interpolated with polynomials of order p is bounded by

eα ∈ O(hp−m+1), (5.11)

where h is the size of the largest element in the mesh. Asymptotic upper-bound
notation (O-notation) is defined by Cormen et al. [7] as a set of functions

f(n) ∈ O(g(n)) ⇐⇒ ∃c, n0 ∈ R+, ∀n > n0, 0 ≤ f(n) ≤ cg(n). (5.12)

Here the logic notation ∃ denotes “there exists some” and ∀ means “for all”.
Equation 5.12 in plain English becomes “The function f(n) is in the set O(g(n))
if and only if there exists some non-negative, real constants c and n0 such that
for all n greater than n0, f(n) is smaller than or equal to g(n)”. A simplified
way of thinking about upper bound notation is as a rough less, or a measure of
growth. For example h(x) = 100x log x grows slower than i(x) = x2 for large
values of x, therefore h(x) ∈ O(i(x)). This is shown by inserting n = 1 and
c = 100 into Equation 5.12. Other choices of values, for example n = 20 and
c = 1, are also possible.

5.2 Plastic strain gradient from integration points
Let ∆η be a linear operator containing constants and first order direction deriva-
tives. We can then express the components contributing to the strain gradient
as

η = ∆ηε = ∆η∆Nv. (5.13)

In other words, the strain gradient vector depends on second order derivatives
of the interpolation functions. Its error from Equation 5.11 is O(h1−2+1) =
O(h0) for full linear polynomials, in Table 5.1; and O(h2−2+1) = O(h1) for
full quadratic elements polynomials, in Table 5.2. In other words, to have an
upper bound on the strain gradient, elements need to be interpolated with full
polynomials of second order, and inter-element C1 continuity. Using linear
2D interpolation, the single contribution to the plastic strain gradient would
stem from the cross term xy. The strain gradient requires differentiating the
displacement field twice. Components of the full 2D interpolated rectangle are
shown in Table 5.1, and when differentiating with twice with respect to x or
y, both 1, x and y disappear, and the single non-zero component of the strain
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Table 5.1: Linear 2D interpolation.

1
x y

xy

Table 5.2: Quadratic 2D interpolation.

1
x y

x2 xy y2

x2y xy2

x2y2

gradient comes from the cross term xy, as ∂2xy
∂x∂y = 1. Variations in plastic strains

over the x- and y-axes would be incorrectly represented.
C1 continuous plane and solid elements, however, bring large challenges. For

instance, each node would need 3 translational degrees of freedom for u and 9
for its gradient ∇u, a second order tensor. In addition, such theory would be
unfit for explicit solvers, where lower-order elements are preferred. Higher order
elements, in addition, are not often implemented adding degrees of freedom for
derivatives of displacements, ∇u, instead by adding new nodes, which does not
guarantee C1 continuity.

Note that this section has considered the calculation of the strain gradient for
the case of linear finite element analysis. The argument is also valid for the non-
linear case of the plastic strain gradient, which is in general more complicated
and less certain, and the error bounds will not be tighter than for the linear
case.

A less formal argument is that if a value shall converge when using the
finite element method, its potential must be continuous. Section 5.3 presents a
solution.

5.3 Plastic strain gradient from nodal averaging

A simple way to ensure continuity of an otherwise discontinuous field in the
finite element solution, is to require fixed values of the fields in nodes. If the
surrounding element all agree on the same nodal field value, the field is continu-



42 CHAPTER 5. FINITE ELEMENT IMPLEMENTATION

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

Figure 5.1: Element mesh, reduced integration. Integration points are marked ×.
Nodes are circles .
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×

Figure 5.2: Nodal averaging applied to a one-dimensional discontinuous plastic strain
field εp(x).

ous. This can be achieved using average values from the surrounding nodes, and
is similar to how modern finite element analysis software presents discontinuous
fields that are discontinuous as a result of finite element method discretization,
namely stress- and strain fields.

Instead of calculating the plastic strain gradient on the basis of a single
element, calculate all the element contributions from integration points × to
the plastic strain at corner nodes . Node- and integration point positions for a
two-dimensional mesh are shown in Figure 5.1 Then, average the contributions
to the nodes, and use the averaged values of the plastic strain to compute the
plastic strain gradient within an element. The averaged strain field is illustrated
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as the blue line in Figure 5.2.
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Chapter 6

Verification study

This chapter presents finite element solutions to the reference problems from
Chapter 4, and compares the finite element solutions to the analytical solu-
tions. When comparing the bar loaded by gravity and the shear of the infinite
layer, some difference is expected. Here, the analytical solutions are based on
the viscoplastic-like formulation where ε̇p = ε̇( σe

σflow
)m, where m = 20, in con-

trast to the finite element solution, in which m → ∞. In other words, the
analytical solutions have no yield surface, and some degree of flow is expected
even if the stress is lower than the yield stress. The analytical solution to the
bending problem, however, uses a yield surface, but assumes elastic strains to
be negligible.

Analytical solutions in Chapter 4 were compared to solutions by Huang et
al., who used the effective plastic strain gradient measure ηp = ηp,A. The finite
element implementation supports ηp = ηp,C , and finite element solutions are
compared to analytical solutions with the same effective plastic strain gradient
measure ηp = ηp,C .

6.1 Bar loaded by gravity

The first model for finite element analysis is the bar loaded by uniaxial tension
and gravity, first analysed analytically in Section 4.1. Monotonically increasing
load over the height of the bar gives a smooth strain response, and there is no
“trigger” to numerical instabilities.
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Z

Y X

XY

Z

Figure 6.1: Finite element model for the bar loaded by gravity. Note that the finite
element model shows x3 as the height direction, whereas x1 is used for the height
direction for the rest of this section.

6.1.1 Finite element model
Figure 6.1 shows the finite element model used for analysing the bar loaded
by gravity. 100 elements was used in the height, and a single element in the
thickness direction.

In the analytical model, the bar is pinned at x = L. For the finite element
model, this is achieved restricting u1 = 0. Movement in sideways directions
y and z is constrained requiring symmetry boundary conditions for the side
surfaces of the bar. This prevents spurious movement and kinetic energy.

Non-linear geometry is neglected, as it is in the analytical solution. Including
non-linear geometry effects gives a slightly softer result, as the plastic strain
gradient ηp is calculated from the actual length instead of the initial length.

6.1.2 Results and discussion
Figure 6.2 show that the finite element solution matches the analytical solution
very well except for close to the boundary. This is an artefact produced by
Abaqus’ plot smoothing. The plot has been extracted defining a path in Abaqus
from x = 0 to x = L in the centre of the bar. The finite element model has
produced strain data for the integration point in the centre of each element.
When asked for strain values not in the centre of elements, Abaqus calculates a
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Figure 6.2: Bar loaded by gravity. ηp = ηp,C has been used. The finite element mesh
has 100 elements in the x-direction.

weighted average from surrounding integration points. For the top of the bar,
there are no bordering elements to smooth with, and the strains are taken from
the top element only, giving a dip in the curve.

The finite element implementation supports ηp = ηp,C , and the finite element
solution in this chapter was compared to an analytical solution using the same
measure. Overall results for this model are good, and support the correctness
of the finite element implementation.
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6.2 Shear of an infinite layer

This section analyses the thin layer in shear first discussed in Section 4.2. The
initial distribution of plastic strains is prone to the numerical instability, later
discussed in Chapter 7. 50 elements are used over the length D, D/l = 50;
giving the stability requirement (developed in Section 7.3)

l

le
< 259

l/D < 259/50 = 5.17,

(6.1)

and the problem is analysed with relative material length scale l/D = 3, which
is within the stability limit.

6.2.1 Finite element model

The shear model is a single row of elements in the x1-direction. Bending effects
are suppressed prescribing u1 = 0 in the whole model, as Mikkelsen did for his
shear model [16]. The bending is loaded in the centre x1 = 0 and constrained
on the edge u2(x1 = D) = 0. This produces a pure shear state with constant
shear σ12(x1, x2) = τ .

6.2.2 Results and discussion

The shear model shows more of a difference between the viscoplastic-like for-
mulation and the yield surface formulation. This is visualized in Figure 6.3.
Viscoplastic-like behaviour gives more flow in all parts of the model, and smooths
out the difference between the part where there is little flow (left, σe < σflow)
and the part with substantial flow (right, σe ≈ σflow). The strain gradient
effect is observed as a tiny dent in the FEM plots in the intersection where the
flow starts, where the prescribed shear strain distribution provides some strain
gradient hardening. This is a result of the finite element discretization. An ad-
absurdum proof that this cannot be the case given a continuous, differentiable
equivalent plastic strain. In the following, let x be the first axis, x = x1.

1. Assume that there is a local minimum in the distribution of plastic strain
for the given shear example. Denote this the “dent” of the strain field.
Assume also that the plastic strain field is continuous and one time differ-
entiable, and that the stress field is constant σij(x) = σij
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Figure 6.3: Comparison of selected analytical and numerical solutions: distribution of
normalized engineering plastic shear strain for l/D = 3.

2. Since the plastic strain field is continuous and one time differentiable,
there exists a place xdent where the derivative of the plastic strain field is
zero ∂εp

∂x = 0

3. Since the plastic strain at the “dent”, εp(x), is a local minimum and the
strain gradient is zero, it will be less hard σflow(εp, ∂ε

p

∂x ) than all its sur-
roundings

4. When the stress is incremented, the plastic strain increment in the “dent”
will therefore always be bigger than its surroundings, given that the stress
causes a non-zero plastic strain increment ∆εp > 0, and its strain incre-
ment ∆εp(x) will be larger than the strain increments of all its surround-
ings

5. “Dents” can therefore never grow in continuous strain gradient implemen-
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Figure 6.4: FEM solution compared to calculated plastic strain given prescribed
stresses.

tations

As x1/D → 1, plastic strain from the FEM calculation converges to the plastic
strains calculated directly from the loading.

γp is calculated from the hardening formulation

τ

τy
=
σflow
σy

=

(
1 +

εp

εy

)N
=

(
1 +

γp

γy

)N
, (6.2)

which inverted is
γp

γy
(τ) =

(
τ

τy

) 1
N

− 1. (6.3)

For the prescribed shear stresses, the plastic strains become γp(τ = 1.08 τy) =
0.4693 γy and γp(τ = 1.12 τy) = 0.7623 γy. As shown in Figure 6.4, the FEM
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h = 1

Figure 6.5: FEM mesh for bending model. Curvature is controlled using prescribed
displacements. 100 elements are used.

model yields exactly where it should, and there is no yield before reaching the
yield surface, as shown further left on the plot.

6.3 Thin beam bending

The thin beam in bending, previously handled in Section 4.3 is now examined
using the finite element method. Controlling curvature, and thereby strains,
suppresses the tower/canyon effect, which will be introduced in Section 7. Com-
puting the plastic strain gradient from nodal averaging is shown to produce an
anomaly in stress/strain distributions close to the boundary of the beam.
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Figure 6.6: Bending of thin beams. Comparison between analytical and finite element
solutions.

6.3.1 Finite element model
The finite element model is illustrated in Figure 6.5. A single row of elements is
sufficient to produce the desired bending effect, where 2D plane strain elements
(CPE4R) are used. The beam is constrained in x2 in the two bottom elements,
and strains in the x1-direction are prescribed to simulate curvature. A thin beam
is chosen so that large curvatures may be reproduced with minimal change in ge-
ometry. The beam has dimensions of (L1, L2, L3) = (L, h, d) = (0.01, 1.00, 1.00).

6.3.2 Results and discussion
Analysis results of the bending problem are represented in Figure 6.6. The
correspondence is decent, but there are two notable differences.

1. Analytical response is stiffer for small curvatures
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Table 6.1: Assumptions for analytical solution vs FEM solution for bending problem

Analytical solution FEM solution

Elastic strains are neglected Elastic strains are not neglected
Strain gradient calculated based
on initial geometry

Strain gradient calculated based
on deformed geometry

Otherwise linear geometry Otherwise linear geometry

2. FEM response is stiffer for the combination of large curvatures and large
material length scale l

These differences can be understood from different assumptions in the analytical
solution and the FEM implementation, which are given in Table 6.1.

In the analytical solution, assuming εij ≈ εpij allows for an explicit solution.
This causes the analytical responses to immediately rise, with no elastic loading.
The FEM solution, in contrast, first experiences elastic loading, shown by the
initial linear response, before plastic strains start dominating.

For very large strains, when strain gradient effects are included, the FEM
results are stiffer than the analytical results. This is caused by the fact that the
strain gradient is calculated based on deformed geometry. It is noted that linear
geometric analysis is chosen in this example for the sole purpose of comparing
finite element solutions to analytical solutions.

When the curvature induces large strains, they notably deform the cross
section. Since the beam is in plane strain, plastic strains in the y-direction
are given from plastic strains in the x-direction as εp22 = −εp11. Abaqus results
were calculated using linear geometry and engineering strains. Kinematics give
ε11 = κx2, resulting in ε11 = 0.5 and ε22 = −0.5 in x2/h = 0.5 when κh = 1.
On other words, strains are completely linear, and are not a source for difference
in results between analytical and finite element solutions.

The strain gradient in the finite element implementation, however, is calcu-
lated based on deformed geometry. Consequently, the strain gradient contribu-
tion in the top of the beam (x2 > 0) is larger than in the bottom of the beam
(x2 < 0). This gives larger stresses in the top, and lower stresses in the bottom
than if the strain gradient had been calculated based on initial geometry. Figure
6.7 illustrates that the stress distribution is antisymmetric, as expected, when
there are no strain gradient effects (l/h = 0), and non-symmetric for large strain
gradient effects (l/h = 10). Smaller strain gradient effects (l/h = 1), not shown
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Figure 6.7: Finite element results for the thin beam in bending, when κ̃ = κh = 1.
Difference in symmetry between strain gradient response (l/h = 10) and conventional
response (l/h = 0).

here, shows the same trend. Hence, results will diverge when the curvature is
increased further.

The overestimation of the plastic strain gradient in the top of the beam
is larger than the underestimation of the strain gradient in the bottom of the
beam. This can be understood looking at the calculation of the plastic strain
gradient over an element. In the top of the beam (x2 = h/2), the element length
is cut in half l′e,top = (1 + ε22,top)le,top = 1

2 le,top. In the bottom of the beam, the
element length is increased, but not doubled le,botl = (1 + ε22,bot)le,bot = 3

2 le,bot.
The increase in strain gradient calculation is ηpnonlin/η

p
lin = le/l

′
e, increasing the

calculated strain gradient in the upper part of the beam by a factor of 2, whereas
the calculated strain gradient for the lower part of the beam is decreased, and
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strain gradient calculated based on deformed geometry is 0.66 times the strain
gradient calculated based on initial geometry. In addition, this effect produces
axial forces, which are not corrected for. It is concluded that verification of
the FEM solution using the analytical solution should be done where non-linear
effects are negligible; where κh� 1, and here the analytical solution corresponds
well with the finite element solution.

Finally, the jagged ends of the stress distributions should be explained. The
end elements, where x2 = −h/2 and x2 = h/2 gain less strength from the
plastic strain gradient due to nodal averaging. The element on the edge where
x2 = h/2 is denoted e1 and its neighbour e2. e1 is then the element on the
edge, and e2 the element second closest to the edge. The nodes on the top and
bottom ends of the beam only gain plastic strain contribution from lumping
of the end element. Therefore, using nodal averaging gives the plastic strain
gradient over e1 as half the correct value. This produces a significant reduction
in strain gradient hardening, which is seen on the figure.

The tiny increase in capacity of e2; the element next to the edge element, sees
a slight increase in capacity. Every element has a prescribed total strain from
the curvature of the beam. Its split into elastic and plastic strains εij = εeij+εpij
depends on the material hardening. The elastic strain is derived from the total
strain using the stress, as described in Equation 3.1: the higher the stress, the
higher the elastic strain. When a large contribution to the material hardening
comes from the strain gradient, for a prescribed total strain, a larger portion
is elastic. Similarly, if there is little material strain gradient hardening, the
portion of elastic strain is smaller. Therefore, e1 has a larger portion of its
total strain plastic then it would have had without the boundary effect. For
element e2, this causes an increased difference in plastic strain, which gives
an increased plastic strain gradient, and increased material hardening. With
increased material hardening, the stress is more than for an ideal, continuous
model, and it is observed as a dent.

Understanding exactly why the finite element solution produces this defect
is less important than the implications of the defect. Lower-order strain gradi-
ent plasticity theories have an advantage over higher order theories in simpler
boundary conditions. However, they introduce possible defects, such as the one
documented in the previous paragraph.
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Chapter 7

Stability of numerical
solutions

Stability challenges were first observed in the shear problem, using nodal aver-
aged values of the equivalent plastic strain. Instabilities are strongly related to
the ratio of the material length scale to the element length l/le. Large material
length scale produces instabilities, and a coarse element mesh smooths out the
response.

Section 7.1 introduces the instability phenomenon, before sections 7.2 and
7.3 give a theoretical explanation and a theoretical stability criterion. In Section
7.4, the developed theoretical stability criterion is tested against the instability
data from Section 7.1. The reader is encouraged to review the figures in Section
7.1 after the theoretical foundation is in place, this time as an application of the
theory, and not as the first time as an introduction to the stability phenomenon.

An alternative way of sampling the plastic strain gradient does not give the
stability defects found in this chapter is given in Appendix A.

7.1 Evidence of instability

Instability was first encountered during work on Section 6.2, where an increased
non-dimensional material length scale l/D = 5 was employed for an element
mesh of 100 elements, which is plotted in Figure 7.1. In Figure 7.2, l/D = 4,
and instabilities are slower to appear. All other parameters of the model are
left unchanged.
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Figure 7.1: Instability evolution for the infinite shear layer. 100 elements are used,
l/D = 5 and shear strains are incremented up to τ = 1.2τy, as in the verification in
Section 6.2. Instabilities emerge at εp = 0.0010 ≈ 1

2
εy at τ = 1.09τy. Same colours

for different plots is of no significance. Increasing stresses give increasing strains.

The defects across the layer are similar in shape. Denote local maximum at
the centre a tower. On both sides of the tower, the local minima are canyons.
Canyons are a more serious version of the defect encountered in Subsection 6.2.2,
and the proof that the local minima of plastic strain are non-physical applies
here.

Higher material length scale to element length l/le causes the instability to
emerge earlier, and for l/D ≈ 8, instabilities emerge at εp = 0. For l/D = 4,
instabilities emerge at εp ≈ 1.1εy, and l/D = 2 gives a stable response for
stresses τ ≤ 1.2τy.

The same test was conducted for a randomly pre-strained field, where insta-
bilities for l/D = 4 were observed at εp ≈ εy.

Instabilities can also be produced in the gravity example. Whereas in the
shear example, the volume of the elements is left unchanged, as in the bending
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Figure 7.2: Instability evolution for the infinite shear layer. 100 elements are used,
l/D = 4 and shear strains are incremented up to τ = 1.20τy, as in the verification in
Section 6.2. Instabilities emerge at εp ≈ 1.10εy, when loaded by τ = 1.16τy. Same
colours for different plots is of no significance. Increasing stresses give increasing
strains.

example, normal stresses cause volume change. The original gravity model, as
investigated in Section 6.1, shows no instability. The reason is twofold.

1. The applied gravity load produces a monotonically increasing stress field,
giving a monotonically increasing strain field

2. The model is in tension

The tower/canyon defect occurs as a larger value of plastic strain, the tower;
surrounded by smaller values of plastic strain, the canyons. A monotonically
increasing strain field never sets up these preconditions1.

1 Unless strain increments are very large.
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Figure 7.3: Instability of bar under constant compression, l/L = 3.

Tension produces the same effect as observed in the finite element analysis of
the thin beam in bending: the elements increase in volume, reducing the strain
gradient.

The following modifications are made to the bar gravity model to demon-
strate instabilities:

• The gravity load is removed to allow for a non-monotonically increasing
stress field

• The end tension is changed to compression and doubled in magnitude;
σbottom = −2σy (compression)

• A predefined plastic strain field is introduced to start the instabilities

Figure 7.3 shows the response for the modified bar gravity model. Compression,
in contrast to shear, causes causes normal strains, which change element lengths.
Large compression reduces the element length significantly, and amplifies strain
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gradient effects. Compression also, however, gives a somewhat stabilizing effect.
The largest strain gradient amplification is in elements where isotropic hardening
dominates. Strain gradient hardening in elements where the strain gradient
dominates is amplified less because of smaller normal strains.

It is also observed that in contrast to the shear example, both the local
minima of equivalent plastic strains (later denoted canyons) and the central
local maximum of equivalent plastic strain (later denoted tower) are flowing
plastically. This does not mean that inhomogeneities are smoothed out; the
parts of the bar with the most plastic strain (x ≈ 0 and x ≈ L) flow more than
the central part experiencing instability (x ≈ L/2), which does not catch up.
This gives a good foundation for why Niordson and Hutchinson would choose a
shear example for their stability criticism of lower order strain gradient plasticity
theories [18].

In contrast to the shear example, no new instabilities arise across the bar.
Testing with the predefined field of the shear example did not give rise to insta-
bilities for the bar.

The beam bending problem is incremented by prescribing displacements;
total strains εij = εeij + εpij are given. When the total strain is given, there is
little room for the plastic strain to destabilize. Bad behaviour is still observed
in a thin layer close to the boundary, as discussed in Subsection 6.3.2.

For both instability examples presented, kinetic energy is very small com-
pared to the strain energy, Ek < Es× 10−3, thus dynamic effects are negligible.

Following is a summary of the phenomena observed in this section.

• The cause of the instability is that an element may harden more from not
flowing plastically than flowing

• The rise in hardening of the element where there is no equivalent plastic
strain increment, ε̇p = 0, is more than the rise in hardening of surrounding
elements, where there is a positive equivalent plastic strain increment ε̇p >
0

• For the current strain gradient plasticity model, strain gradient hardening
becomes more important relative to the equivalent plastic strain hardening
as strains increase. This is generally the case, as the hardening modulus
h(εp) =

dσflow

dεp generally decreases as plastic strains increase

• In uniform stress σe(x, y, z), there should be no local minima or maxima
of the equivalent plastic strain field εp(x, y, z). Inaccuracy in effective
plastic strain gradient ηp calculation may allow local minima or maxima
to develop
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• For very large material length scales and a given element mesh, instability
occurs before there is any increase in plastic strain

• Otherwise, instabilities may occur further “down the road”, as strain gra-
dient hardening becomes more important relative to isotropic hardening.
Plastic strain gradient hardening increases proportional to the root of the
strain gradient. For the chosen power law, where N = 0.2, plastic strain
hardening increases proportional to the rise of plastic strain raised to a
power of 0.2, which is less than 0.5

• Instabilities may be prevented by enforcing a monotonically increasing
plastic strain. If the “natural” increase in plastic strain is enforced, such
as in the bar in tension from Section 4.1, instabilities may be suppressed.

• The stability phenomenon may be described analytically by comparing
contributions to hardening from equivalent plastic strain εp to hardening
contributions from the effective plastic strain gradient ηp

• Very large strains may cause significant changes to the plastic strain gradi-
ent. Compressing elements decreases the element length, and the gradient
increases. If an element is in tension, the length increases, and the gradient
decreases

7.2 The tower/canyon defect

In the previous section, the defects witnessed in the shear of an infinite layer
model were denoted towers and canyons. Why these defects arise is explained
in this section.

Figure 7.4 demonstrates the plastic strain distribution for a fully developed
tower/canyon defect. This plot is partially smoothed, as the ones outputted by
Abaqus2. A non-smoothed example is given in Figure 7.5. Uniform equivalent
stress ∂σe

∂xi
= 0 and zero normal strains ε11 = ε22 = ε33 = 0 are relevant

properties of the infinite shear layer model, which are not fulfilled for neither the
2 In reality, the strain distribution is jagged, because of the use of lower order elements,

and the strains are most accurate in integration points within the element. However, when
plotting strain data over a path, Abaqus outputs strain data in nodes. If the strains in the
surrounding elements are similar, an average value is taken. Otherwise, both values of the
strain are outputted for the same coordinate. The strain discontinuity around the tower
element is large, giving vertical lines in the equivalent plastic strain distribution in Figure 7.4
around the “tower”.
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x

εp

εp0

Figure 7.4: The tower/canyon effect illustrated for a one-dimensional model with
length coordinate x, constant equivalent stress σe = σ0 from pure shear, therefore
zero normal strains ε11 = ε22 = ε33 = 0. Element mesh is yellow. The tower element
is purple, canyon elements are orange. Nodal averaged values of the equivalent plastic
strain εp are circles . Fundamental for this stability criterion is that a constant stress
field may produce a non-constant strain field, even when strain boundary conditions
encourage a constant strain field.

uniaxial stress model in Section 4.1 nor the bending model in Section 4.3. With
a monotonically increasing equivalent stress, the tower/canyon defect would be
avoided, as discussed in Section 7.1. Zero normal strains prevent change of
element size, which affects the strain gradient effect: compression increases the
strain gradient, whereas tension decreases the strain gradient effect.

The largest witnessed plastic strain is εp = εp0, the dashed line in Figure 7.4.
The tower has two equal nodal averaged equivalent plastic strain values, thus no
strain gradient effect ηpt = 0. The plastic strain of the tower must therefore be
εpt = εp0. The canyon, on the other hand, has zero equivalent plastic strain in its
integration point εpc = 0, and large variation of plastic strain between its nodal
averaged values, and therefore a large effective plastic strain gradient ηp > 0.
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Figure 7.5: Actual non-smoothed strain distribution to illustrate the tower/canyon
effect. Element 5 is the tower element, and elements 4 and 6 are canyon elements.
Strain data lumped from integration points, marked ×, to the whole element. Mag-
nitudes are chosen arbitrarily to illustrate the tower/canyon effect. The tower has
a large strain in the integration point εpt = εp0, whereas the canyons have no plastic
strain εpc = 0. Elements far from the tower have equivalent plastic strain εp ≈ εp0.

7.3 Stability criterion

This section develops a stable material length scale based on the tower/canyon
defect documented in Section 7.2.

Assume a uniform equivalent stress σe, which should develop a uniform
equivalent plastic strain εp, therefore zero strain gradient ηp = 0. Assume
further a fully developed tower/canyon defect: the tower has a large equivalent
plastic strain εpt = εp0, and the canyon has no equivalent plastic strain εpc = 0.
The case is assumed to be one-dimensional, with variation in the x-direction,
giving the expression for the effective plastic strain gradient used in the finite
element implementation as ηp = ηp,C =

∣∣∂εp

∂x

∣∣.
Denote normalized hardening for the tower ft =

σflow

σy
and normalized hard-

ening for the canyon fc =
σflow

σy
, where uniform equivalent stress and plastic

yield implies constant flow stress σflow = σe. A stable response is guaranteed
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Figure 7.6: Comparison of strain field based on lumping of integration point data
to the element (integration point equivalent plastic strain values marked ×, as in
Figure 7.5) and strain field based on linear interpolation between nodal average values
(nodal averaged values marked ).

when a prescribed tower/canyon distribution smooths out. For the tower/-
canyon defect to smooth out, the canyons must be filled. This happens when
tower hardening is larger than the canyon hardening, giving the stability crite-
rion

ft > fc. (7.1)

For strain gradient calculation, nodal averaging is used. Strain fields based on
integration point lumping and nodal averaging are visualized in Figure 7.6. The
nodal averaged value of the equivalent plastic strain between the canyon and
the tower is εptc =

ε
p
0+0
2 = 1

2ε
p
0. The canyon element has two neighbour element,

the tower element and another element with small plastic strain. The nodal
averaged value of the canyon element and its non-tower neighbour is therefore
small, but non-negative, εpcc > 0.

This gives the effective plastic strain gradient of the tower calculated based
on its nodal values ηpt = |ε

p
tc−ε

p
tc

∆x |= 0, and a bound for the effective plastic strain

gradient of the canyon ηpc = |ε
p
tc−ε

p
cc

∆x |< |
1
2ε

p
0−0

∆x |=
ε
p
0

2∆x , as the equivalent plastic
strain is positive εp0 > 0 and the length difference is assumed positive ∆x > 0.
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Inserting the equivalent plastic strain and the effective plastic strain gradient
into the material hardening formulation gives

ft =

(
1 +

εp0
εy

)N
(7.2a)

fc <

√
1 + l

1

2

εp0
∆x

. (7.2b)

Inserting equations 7.2 into the inequality of Equation 7.1 gives the inequality(
1 +

εp0
εy

)N
>

√
1 + l

1

2

εp0
∆x

. (7.3)

Equation 7.2 does not imply Equation 7.3! On the other hand, Equation 7.3
implies Equation 7.2. Equation 7.2 is a tighter bound than the actual stability
limit. Stability conditions derived from the tighter bound are valid, even though
they give more restrictive conditions than the exact limit. Requiring Equation
7.3 for all elements gives the global bound on the smallest element with element
length ∆x = le, and solving for the material length scale gives the stability
requirement

l < lc where
lc
le

=
2

εp0

[(
1 +

εp0
εy

)2N

− 1

]
, (7.4)

and lc is denoted the critical material length scale3. Note that this stability
criterion is too tight, with two causes:

1. The problem is assumed stable when it can recover from instability. Sim-
ulations show that certain preconditions, certain randomness is required
for this to be the case4, and the requirement is in general too tight

2. Inaccuracy based on the inequality of Equation 7.2b

Concluding, the stability criterion guarantees stability; it is conservative.

3 As the material length scale is given in real life applications, a more physical stability
limit would be the critical element length. However, when modelling strain gradient effects,
modifying the material length scale l is a simpler way of accounting for length scale changes
than changing the entire model. Therefore, the stability limit is imposed on the material
length scale.

4 The discussion of the bar problem in Section 7.1 provides evidence that randomness or
certain preconditions may be necessary to initiate the instability.
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Figure 7.7: Stable material length scale as a function of plastic strain increment.
Material parameters are as in previous problems εy = 0.002 and N = 0.2. For εp0 �
εy = 2 × 10−3, lc/le ≈ 400. Note the logarithmic x-axis. The dashed red line marks
εp0 = εy.

7.4 Stability criterion verification

This section will apply the stability criterion developed in Section 7.3 to the
finite element model that produced the strongest instability to check its validity.

The stability criterion in Equation 7.4 depends on the plastic strain that
gives equilibrium with external stresses without any strain gradient hardening
εp0. Figure 7.7 plots this limit for the material parameters used throughout this
thesis (εy = 0.002, N = 0.2).

The stability criterion is then applied to the unstable shear responses in
figures 7.1 and 7.2. In the first case, yielding occurs at εp0 = 0.5εy. The critical
material length becomes lc/le = 352, and for a 100 element mesh, lc/D = 3.52.
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The prescribed material length scale is over this limit l/D = 5. As expected,
the criterion is conservative, and instability occurs after passing the stability
limit.

In the second case, εp0 = 1.1εy, giving lc/le = 314 and lc/D = 3.145 Response
for l/D = 4, which exceeds the stability limit, is known to produce instabilities,
and the stability criterion is conservative.

5No relation to famous number of approximately equal magnitude.



Chapter 8

Case study

In this chapter, the developed strain gradient plasticity implementation is ap-
plied to selected problems: cylindrical particle strengthening and cylindrical
material void growth. Huang et al. also studied void growth [13], but applied
stresses radially. In this thesis, end displacements are prescribed. If the model
had consisted of a single material, and not have a void or particle, the result
would be uniaxial tension. Results from this chapter are thus not directly com-
parable to results by Huang et al., where tension is radial.

The developed strain gradient plasticity implementation differs from tradi-
tional plasticity theory in its length scale. For traditional plasticity, scaling
the length up and down yields zero difference, which is not the case for strain
gradient plasticity theories. Length scaling in the implemented strain gradient
plasticity theory can be done in two ways. First, the intuitive way, is to scale the
size of the model, and keep the material parameters constant. This approach
makes the most sense physically: if small-scale phenomena are to be modelled,
small models are used. l is a material parameter, and cannot just be changed:
size effects are because of changes in size of the physical problem or model.
The material parameters include the characteristic length scale l, and when l
changes relative to model size, previously l/L, l/D or l/h, strain gradient effects
are scaled.

The other way of observing size effects is modifying the characteristic length
scale l directly, which is the method used in this chapter. Assuming l to be
a single micron l = 1 µm1, the size of the model can be calculated. For the

1 Huang et al. [13] found l to be “on the order of microns”, l ∈ [1 µm, 10µm].
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Figure 8.1: Finite element model used for analysis of particle (yellow) strengthening
and void growth. Mesh is approximate, see output from Abaqus for accurate mesh
close to the particle/void. Element size le ≈ R/5. In the finite element model, R = 5
and le ≈ 1. s ∈ [0, 25] is the length coordinate on the red path, along which stresses
and strains are later plotted.

particle strengthening in Section 8.1 and the void growth in Section 8.2, the
initial particle radius or the initial void radius from R = 5 µm (l/R = 0.2) to
R = 0.1 µm (l/R = 10). In other words—the larger material length scale with
respect to model size, the smaller the model.

8.1 Particle strengthening

Figure 8.1 shows the finite element model used for the case of particle strength-
ening. The particle is purely elastic steel,

Eparticle = 210 GPa

νparticle = 0.3



8.1. PARTICLE STRENGTHENING 71

whereas the matrix is strain gradient sensitive aluminium alloy,

Ematrix = 70 GPa

σy = 420 MPa

νmatrix = 0.3

N = 0.2,

which gives the yield strain εy = (420MPa)/(70 000MPa) = 0.006, larger than
the material used in analytical solutions in Chapter 4 and by Huang et al.

The particle is modelled as a cylinder, and occupies a fraction

πR2/4

4R× 5R
= 3.92 %

of the volume. Displacement in y-direction of the top edge vtop is prescribed.
Bottom and right edges are pinned, vbottom = uleft = 0. The right edge is
allowed to move freely.

8.1.1 Unconditionally stable results
The top displacement is now prescribed, and incremented in the range of vtop ∈
[0, R/5]. Without strain gradient effects, the largest equivalent plastic strains
observed are εp0 = 0.073, which inserted into the stability limit, Equation 7.4,
gives the the critical material length scale lc/le = 49.5. Increasing the material
length scale smooths out the equivalent plastic strain distribution, and running
the analysis with l/le = 50, the maximum equivalent plastic strain is εp0 = 0.067,
for which the critical material time scale is lc/le = 51.24. Choosing the element
length as in Figure 8.1, the relative critical material length scale becomes

lc
R

=
lc
le
× le
R

= 51.24× 0.2 = 10.25,

and choosing l/R < 10.25 will never produce the tower/canyon defect for the
given element mesh. As expected, no instabilities are observed when l/R ≤ 10.

Figure 8.2 gives the equivalent plastic strain field without strain gradient
effects, and Figure 8.3 shows the equivalent plastic strain field with large strain
gradient effects. Introducing strain gradient effects reduces the maximum equiv-
alent plastic strain and smooths the equivalent plastic strain field, as is ex-
pected [16]. The plot also helps understand how the strain gradient effect in-
creases the particle-matrix interaction. The simulation without strain gradient
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Figure 8.2: Particle strengthening. Equivalent plastic strain field. l/R = 0.
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Figure 8.3: Particle strengthening. Equivalent plastic strain field. l/R = 10.
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Table 8.1: True stress increase of particle model depending on length scale where the
particles occupy 3.92 % of the total volume

l/R Force increase (%)

0.0 0.000
0.2 0.067
2.0 0.600
5.0 1.438
10.0 2.873

effects shows a local maximum of equivalent plastic strain around coordinates
(X,Y ) = (0, 1.6R). Including strain gradient effects increases the hardening of
this region additionally, causing a redistribution of load to softer regions.

Figure 8.4 shows the true strain-true stress curve for different length scales.
Increases in force applied to the top boundary from decreases in length scale
are presented in Table 8.1. Plastic strain distribution over the coordinate s (the
bottom row of elements parallel to the x-axis) is plotted in Figure 8.5, and shows
smoothing of the plastic strain distribution. The stiffening provided by strain
gradient effects gives better interaction between the particle and the matrix,
and particle normal stresses increase notably (Figure 8.6).

The strain gradient contribution to the hardening of the model is small,
which is expected when the particle occupies a small fraction of the total volume.
Decreasing the particle radius R (or equivalently, increasing material length
scale l) gives additional hardening, which is expected.

8.1.2 Beyond unconditional stability

Even smaller length scales have been examined for instabilities. This model is
dominated by tension, stabilizing the model, for which an argument is given
in Section 7.1. However, the argument from Section 7.1 is based on a one-
dimensional model. Two-dimensional models are not expected to yield the same
defects.

Non-smoothed results for a sub-micron length scale are shown in Figure 8.7.
This is far past the stability limit, yet no tower/canyon defects are observed. The
tower/canyon defect is based on a two-dimensional derivation. Contributions
to the canyon stiffness from the strain gradient is lower in a three-dimensional
unstable field. More elements with lower equivalent plastic strains contribute to
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Figure 8.4: Particle. True stress-true strain curve. l/R ∈ [0, 10].

an overall lower equivalent plastic strain in nodal points, canyon elements receive
significantly less hardening than in the one-dimensional case. This is explained
by the fact that they get their strain gradient stiffness from the neighbouring
tower, and nodal strains surrounding the tower are now averaged from more
neighbouring elements. Random- or unstable preconditions for the instability as
was required for instability the uniaxial bar in compression are neither present.

True stress-strain curve on the top surface2 for l/R = 100 is given in Figure
8.8. Further hardening is observed, as is expected. Kinetic energy is negligible
compared to strain energy, Ek < 10−3Es. The observed jaggedness of the curve
is due to explicit time integration. Increasing the strain gradient hardening
contribution causes jaggedness to increase hardening, even though the tower/-
canyon defect never develops. Using smaller increments helps avoids this. The

2 The bottom is more interesting with respect to necking stress. Elements in the bottom
of the beam are, however, more distorted, and the resulting averaged stress would be less
accurate unless it took element distortion into account. For analysis of strain gradient effects,
stresses from the top surface suffice.
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Figure 8.5: Particle strengthening. Plastic strain over the matrix with varying length
scale l.

case is similar for the analytical solutions (Chapter 4). The tower/canyon stabil-
ity criterion is too conservative in this regard, as it considers recovery of defects,
and not their emergence, which is step-size dependent.

The purpose of this subsection is to illustrate potential consequences of cross-
ing the stability limit. It does, however, also illustrate the increased particle-
matrix interaction. Compare the equivalent plastic strain distribution of Figure
8.7 (l/R = 100) to figures 8.3 (l/R = 10) and 8.2 (l/R = 0). Increasing the
strain gradient contribution pushes the plastic strains up from the particle, and
the result is a high-stress region connecting the particle to the top surface.

Pushing the length scale even further, a two-dimensional occurrence of the
tower/canyon defect is found. Observe in Figure 8.9 elements in the top-right
corner of the model with virtually no plastic strain. These are analogous to
canyons. Due to significant strain gradient hardening, they do not flow as the
surrounding elements.
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Figure 8.6: Particle strengthening. Normal stress over the matrix with varying length
scale l.

8.2 Void growth

A central part of fracture mechanics is void growth. Experiments have shown
that void growth is size-dependent; the smaller the void, the slower the void
growth. Applying strain gradient plasticity theories to void growth has given
good results for voids of order microns. Sub-micron length scales exhibit even
more hardening than predicted by strain gradient theories, and is outside the
scope of the strain gradient theory this thesis is based on work done by Huang
et al. [13].

Void growth is simulated using the same model as for the particle strength-
ening model, where the void is modelled as a particle with negligible stiffness

Evoid = 0.1MPa
νvoid = 0.3,

and the geometry is the same as in Section 8.1, so that the void covers what
used to be the particle.
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Figure 8.7: Particle strengthening. Non-smoothed equivalent plastic strain field.
l/R = 100.

Simulating void growth with reasonable accuracy within limits of uncondi-
tional stability is not feasible with the current theory and model. Prescribing
the top displacements as in the particle model in the range vtop ∈ [0, R/5] yields
a maximum plastic strain εp0 = 0.242 when l/R = 0 and 0.185 when l/R = 10.
Inserting the smallest strain (non-conservative) into the stability limit of Equa-
tion 7.3 gives a critical relative material length lc/le = 32. With the current
mesh R = 5le, and

lc
R

=
lc
le
∗ le
R

= 32 ∗ 1

5
= 6.5.

In addition, void growth is more interesting with significant changes in void
volume. For the above model, volumes increased with εV = 15.8% (l/R = 0) or
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Figure 8.8: Particle strengthening. True stress-true strain curve. l/R ∈ [0, 100].

εV = 11.4% (l/R = 10), and effects of larger changes in volume size are subject
for investigation.

Figure 8.10 shows void growth as a function of average true strain in the
displaced direction εl22. Plastic, non-volumetric deformation dominates the ma-
trix, giving the volume fraction f is approximately linearly dependent on the
relative volume change

f =
Vvoid
Vtot

=
Vvoid

Vvoid + Vmatrix

≈ Vvoid
Vmatrix

=
Vvoid,0
Vmatrix

Vvoid
Vvoid,0

=
πR2/4

4R× 5R− πR2/4

Vvoid
Vvoid,0

.

Given prescribed displacements, the strain gradient implementation predicts
smaller relative void growth for smaller voids, which is consistent with physical
observations and expectations for strain gradient theories.

Prescribed displacements are however only one side of the case. Small scale
analysis l/R = 2 also produces significantly larger stresses. This is shown in
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Figure 8.9: Particle strengthening. Equivalent plastic strain field. l/R = 230.

Figure 8.11. The effect of larger stresses per volume growth and larger volume
growth per prescribed displacement leads to necking for the large scale model
(l/R = 0) long before the small scale model (l/R = 2), and combining the data
from figures 8.10 and 8.11, Figure 8.12 is obtained.

Maximum equivalent strains (for l/R = 2.0) are εp0 = 1.137, giving a stability
limit of lc/le = 12.6. Severely distorted element lengths give the minimum
element to void radius ratio le/R = 0.0544, and relative critical length lc/R =
0.685. This severe distortion is localized, and decreases monotonically in all
directions away from the localization. No instability defects were observed.

When using large strains in the void model, some remarks must be made.
First, the void volume is calculated under the assumption that the void stays
ellipse-shaped, so that the change of volume can be described form the horizontal
displacement of the left part of the void, and the vertical displacement of the
top of the void. The assumption is accurate up to Vvoid/Vvoid,0 ≈ 2. For
larger displacements, the edge of the void becomes straighter, and the ellipse-
assumption over-estimates the volume change. Second, elements close to the
left side of the volume are severely distorted, reducing their performance [3].
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Figure 8.10: Void growth. Relative void volume increase vs. average logarithmic
strain.

Figure 8.13 shows the large scale model (l/R = 0) with large element distortion.
The small scale model (l/R = 2) shows less distortion for the same prescribed
displacements, shown in Figure 8.14. Note also the increased stress values right
of the particle, (X,Y ) ≈ (0, 1.1R), and higher overall stresses.

Void growth shows significantly larger increase in hardening than particle
strengthening. Under particle strengthening, perfect compatibility between the
particle and the matrix results in small strains around the particle, seen in
equivalent plastic strain plots. This is not the case with void growth. The void
boundary is strained the most and has the largest strain gradients.

It is later shown that nodal averaging underestimates the strain gradient for
the boundary elements. Comparing void growth when using nodal averaging to
use of higher-order theories or by use of the method outlined in Appendix A
would be interesting.
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Figure 8.11: Void growth. Top surface average true strain vs. average logarithmic
strain.
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Figure 8.12: Void growth. Top surface average true strain vs. relative void volume
increase.
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Figure 8.13: Von mises-stress distribution when εl = 0.18. l/R = 0.
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Figure 8.14: Von mises-stress distribution when εl = 0.18. l/R = 2.
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Chapter 9

Discussion

This chapter discusses major topics of interest and relevant trends observed
throughout the previous chapters, and connects them to the following appen-
dices.

9.1 Effective plastic strain gradient measure

In this thesis, three measures of the effective plastic strain gradient have been
discussed, with definitions given in Section 3.2, in summary

ηp,A =

√
1

4
ηp,Aijk η

p,A
ijk where ηp,Aijk = εpki,j + εpjk,i − εpij,k,

ηp,B =
√

(εp ×∇) : (εp ×∇) = ‖εp ×∇‖ , and

ηp,C =

√
∂εp

∂xi

∂εp

∂xi
= ‖∇εp‖ .

For the problems analysed analytically and later with the finite element im-
plementation for verification, the measures of the effective strain gradient are
compared in Table 9.1.

The table shows that for the models tested, the new measure depends linearly
on one of the alternative measures, ηp,C = 2/

√
3ηp,B , and the difference between

the two previous measures ηp,A and ηp,B is small: their respective difference is
less than 10% for all models. Problems examined in this thesis therefore do not
give any evidence that the simple new measure ηp,C is an over-simplification.
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Table 9.1: Comparison of measures of the effective plastic strain gradient ηp

Gravity, of unit
∣∣∣∂εp

∂x1

∣∣∣ Shear, of unit
∣∣∣∂εp

∂x1

∣∣∣ Bending, of unit
∣∣∣∂εp

∂x2

∣∣∣
ηp,A

√
5/8 ≈ 0.79

√
3/2 ≈ 0.87

√
3/2 ≈ 0.87

ηp,B
√

3/2 ≈ 0.87
√

3/2 ≈ 0.87
√

3/2 ≈ 0.87
ηp,C 1 1 1

Comparison of strain gradient measures has only been done for one-dimensional
case. In all cases, the relative size of the plastic strain components εpij have been
the same. For the bar in gravity, εp22 = εp33 = − 1

2ε
p
11. Shearing of the infinite

layer has only plastic shear strains εp12 = εp21. In the incompressible beam in
bending, for the plane strain state, εp11 = −εp22. In all cases, the plastic strain
decomposition is uniform, it is coordinate independent. The new, simple mea-
sure ηp,C is able to represent such cases well, but will diverge from the above
cases when the plastic strain components change with respect to each other, as
may be the case in two- or three-dimensional models.

9.2 Strain gradient from integration points

Computing the strain gradient based on strain data from a single element re-
quires inter-element continuous plastic strain. This requirement is not fulfilled
for the vast majority of elements in finite element implementations, and is not
suitable for explicit analysis. Strain gradient implementations based on element
integration points when the inter-element plastic strain produces results that do
not converge to the correct solution, because of under-estimation of the plastic
strain gradient.

9.3 Strain gradient from nodal averaging

Calculating the plastic strain gradient based on nodal averaged values of the
plastic strain has been shown to produce correct results in simple models that
have previously been solved using analytical solutions, and case studies have
the expected trend: given non-uniform plastic strain, decreasing the length
scale increases hardening.



9.3. STRAIN GRADIENT FROM NODAL AVERAGING 89

Nodal averaging introduces error in strain gradient computation near bound-
aries. Plastic strain at noes between the boundary element and inner element is
approximated using plastic strains at integration points from boundary elements
and inner elements. In contrast, nodes on the boundary will have contributions
solely from the boundary element. This estimates the strain gradient as half
the exact value for a linear strain field. Consequences of this include the jagged
response on top and bottom edges of the beam discussed in Section 6.3.2.

The tower/canyon defect documented in Chapter 7 has been an issue pri-
marily in the shear problem. This problem was proposed by Niordson and
Hutchinson [18], as an argument against lower order strain gradient theories.
Huang et al. [13] argue that the material model used in this thesis is not prone
to the documented class of issues. Other issues with Huang et al.’s model have
been found for the shear problem, documented in Appendix B.

The most unwanted property of the tower/canyon defect, is that the defect
worsens as the element size decreases: it may destroy mesh convergence. Direct
evidence of the tower/canyon defect is observed in the shear problem. Other
models also show undesired behaviour when strain gradient effects become very
large. This means that when going beyond unconditional stability, results must
be checked for defects. For the simple problems analysed in this thesis, checking
for defects is feasible. For large, complicated three-dimensional models, it is not.

The author has not been able to find direct evidence of the tower/canyon
defect in literature. Niordson and Hutchinson [18], however, discuss the lower-
order theory postulated by Bassani [2], and give general issues with with lower
order strain gradient theories. Niordson and Hutchinson’s implementation is
explicit, forward Euler-based. The hardening formulation, however, is quite
different than what is used in this thesis, and instabilities may naturally take a
different form. This thesis discusses Bassani’s formulation in the Section 4.2.2.

Most interesting in Niordson and Hutchinson’s paper is when the defect
arises. From their Figure 6, a combination of a 40 × 40 mesh, l/D = 0.5 and
εp0/εy = 12 gives non-monotonic decrease in regions that should be decreasing
monotonically. Blatantly inserting Niordson and Bassani’s yield strain εy = 0.01
and maximum strain εp0 = 0.12 into the stability criterion developed for Huang’s
power hardening model1 (Equation 7.4), gives the relative critical length scale

lc
D

= 0.75,

1 ε
p
0 and εy are taken from Niordson and Hutchingson’s paper. N = 0.2 is assumed.

Further issues with Bassani’s model are discussed in Subsection 4.3.2, and the author finds
no reasons his model should be more stable than Huang et al.’s model.
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which is not much different from l/D = 0.5, considering vastly different hard-
ening formulations.

Niordson and Hutchinson found that a combination of three factors produces
instability,

1. Small scale: large l/D

2. Fine element mesh: small le/D

3. Large deformation U : large maximum plastic strain εp0.

These are the exact three conditions that have been documented in Chapter 7
to give rise to instabilities. All three contribute to the possibility of large strain
gradient hardening compared to isotropic hardening. Niordson and Hutchinson
analysed the same problem using higher order strain gradient plasticity [17],
which did not show instabilities.

Evidence suggests that the tower/canyon defect arises only for lower-order
strain gradient theories which use nodal averaging for strain gradient computa-
tion. An alternative to nodal averaging is given in Appendix A.

9.4 Strain gradient from nodal contributions
Using nodal averaging (Chapter 7) or finite differences (Appendix B) for strain
gradient computation is prone to the tower/canyon defect, and unconditional
stability depends on small strain gradient hardening relative to isotropic hard-
ening. A solution to these problems is proposed in Appendix A, denoted nodal
contributions. Preliminary studies of nodal contributions shows promise. Strain
gradient computation from nodal contributions is not prone to the tower/canyon
defect. Linear strain fields produces exact strain gradient computation, includ-
ing near boundaries.

9.5 Limit of application for lower-order theories
The fundamental advantage of lower-order strain gradient plasticity theories
is their simplicity. Only the hardening formulation has to be modified, and
changes with respect to traditional non-gradient-sensitive plasticity are small.
The degrees of freedom are nodal displacements, and isotropic hardening is
calculated from the spacial derivatives of the displacement field. For continuous
displacement fields, strains converge linearly. Traditional finite element method
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gives no obvious way of calculating the strain gradient. Using integration point
data is insufficient, and does not converge at all for lower-order C0 continuous
elements. The plastic strain gradient must then be calculated based on not only
the local element, but also the surrounding elements.

Elastic-plastic strain decomposition is computed locally; on the basis of a
single element. A given strain increment is decomposed into elastic and plastic
parts so that it hits the yield surface. In this process, by the very nature
of the solution, strain gradient effects from the current increment cannot be
taken into effect. The traditional “solution” to this problem [18, 22] is to use
the strain gradient from the previous increment. Computation of strain gradient
hardening based on the previous time step is a viable option when strain gradient
hardening small compared to hardening from isotropic hardening. When strain
gradient hardening dominates, this attempt to hit the yield surface may miss
completely, as the radius of the yield surface (in the space of principal stresses)
depends strongly on the strain gradient and weakly on the plastic strain. This
argument also applies to the procedure proposed in Appendix A. In other words:
strain gradient hardening does not depend on a single element, but also its
neighbours. It is a non-local measure. Non-local effects in the finite element
method are taken into account by introducing unknowns, or as they are better
known, degrees of freedom.

9.6 Higher order theories

Current lower-order strain gradient plasticity theories [18, 22] find the plastic
strain gradient as a derived measure using data from previous time steps. At-
tempting to avoid this is difficult. The way to impose a continuous plastic strain
field, is by adding the nodal plastic strain as a degree of freedom. This is how
higher-order strain gradient plasticity theories are implemented in the finite el-
ement method [16, 17]. The global stiffness matrix is now sensitive to changes
in plastic strain gradient, and the yield surface is hit exactly in each time step.

Appendix C illustrates that the the mathematical solution to lower-order
strain gradient plasticity problems is ambiguous: several material configurations
may be valid solutions to the same problem. Lower order theories produce a
singular problem. In higher-order theories, additional boundary conditions make
the problem non-singular.
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9.7 Further work
This thesis has extensively examined computation of the plastic strain gradient
based on nodal averaging of plastic strains, especially with regard to stability.
The new proposed measure, nodal contributions, has not been implemented for
use in finite element simulations. Several tasks and questions naturally arise.

1. A finite element implementation of strain gradient plasticity based on
nodal contributions

2. Comparison of nodal averaging results and nodal contributions results un-
der stable conditions. Is the conservative material hardening significant?
Confirm that the conservativeness of nodal contributions converges with
mesh size. Compare nodal contributions to nodal averaging near bound-
aries, such as the beam in bending, the particle and the void

3. Comparison of nodal averaging results and nodal contributions results
under unstable conditions, beyond the stability limit. Does nodal contri-
butions solve the tower/canyon defect?

4. Is a finite element strain gradient plasticity implementation based on nodal
contributions prone to the issues discussed in Section 9.5? How large is
then the (incremental or total) strain gradient hardening compared to
isotropic hardening? Are strain increments computed approximately cor-
rectly, or do they miss the yield surface completely?
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Conclusions

No evidence has been found to imply that the new, simple effective plastic strain
gradient measure ηp = ηp,C is insufficient at representing strain gradient effects.
Its behaviour in two and three dimensions, however has not been examined.

Strain gradient computation based on element integration points is not viable
for use with the vast majority of elements, as these are in general do not predict
continuous plastic strain fields.

Nodally averaging the plastic strain from surrounding element integration
points is a way of enforcing a continuous strain field. Nodal strain gradient
computation is shown to converge to the exact solution for simple problems.
For case studies of particle strengthening and void growth, expected trends
are observed: increasing strength with decreasing particle/void size. However,
it may develop instability in the plastic strain field, denoted the tower/canyon
defect. This instability develops for a combination of (a) large plastic strains, (b)
small model length scale (equivalently, large material length scale) and (c) fine
element mesh. Niordson and Hutchinson’s results [18] show similar trends for a
different lower-order strain gradient theory with nodal averaging. A conservative
stability criterion based on the tower/canyon defect has been developed, and
staying within its limits, no instabilities have been observed. Of the tested
models; uniform, pure shear is most prone to development of instabilities. Nodal
averaging gives wrong strain gradient estimations close to model boundaries.

An alternative to nodal averaging, denoted nodal gradient contributions, has
been proposed. The plastic strain gradient is computed in each node based on
surrounding element integration point strains. Elemental plastic strain gradient
is then taken as the minimum possible strain gradient from interpolation of
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surrounding nodal strain gradients. Nodal gradient contributions is not prone
to the tower/canyon defect, and measures the plastic strain gradient exactly
near boundaries for linear plastic strain fields.

When strain gradient hardening dominates equivalent plastic strain harden-
ing, higher order strain gradient plasticity theories are necessary for reasonable
strain incrementation. Increasing the plastic strain to reach the yield surface,
as done in lower-order theories, when strain gradient hardening dominates, is
questionable at best. In addition, the mathematical solution to the examined
lower-order strain gradient theory is shown to be singular. Mathematical solu-
tion of the examined lower-order strain gradient theory partial differential equa-
tion leaves unresolved constants, which are normally determined by boundary
conditions.



Appendix A

Nodal gradient contributions

This appendix gives an alternative to nodal averaging of the plastic strain field
for plastic strain gradient computation. The alternative procedure has been put
in an appendix to differentiate it from the thoroughly tested nodal averaging
procedure.

Nodal gradient contributions is computing the gradient in nodes, and choos-
ing elemental gradients based on quality of nodal gradients and minimum prin-
ciples. This is in contrast to the conventional notion of nodal averaging, by
which is meant lumping strain contributions to nodes, and then finding the el-
emental strain gradient from nodal values of the plastic strain, as explained in
Section 5.3. It is shown that the suggested alternative procedure is not prone
to the tower/canyon defect in one-dimensional models.

A.1 Issues with nodal averaging

Nodal averaging find nodal values of the plastic strain by means of smoothing.
The nodal plastic strain is computed based on plastic strains in surrounding
element integration points. In essence, nodal averaging starts out by removing
information.

The first issue of the information removal is along the boundaries of the
model. In centre nodes, contributions are made from integration points with
spacial offsets in all directions, and the resulting estimate is quite accurate. On
boundaries, this estimate is bad. Only integration points within the boundary
are used for the lumping. For a linear strain field, this leads to an underesti-
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mation the strain gradient by a factor of 0.5. When strain gradient hardening
dominates, the error in hardening is vast, as encountered in the bending prob-
lem.

The second issue of the information removal is masking of jaggedness in the
strain field. This leads to that towers receive no strain gradient hardening, and
grow uncontrollably, as canyons receive strain gradient hardening, and are not
filled. Niordson and Hutchinson [18] called for a solution to just this problem
of lower order theories. The following passages from their 2003 paper on lower
order plasticity theories are relevant:

The evolution of the effective plastic strain profile is rather insensi-
tive to mesh refinement for the conventional material with l/D = 0.
By contrast, the peak value of effective plastic strain increases sig-
nificantly upon mesh refinement when l/D = 0.25, and even more
so when l/D = 0.5. Furthermore, for the most highly refined mesh
for l/D = 0.5, it is evident that the plastic strain profile becomes
increasingly non-smooth with increasing deformation. As the vertex
develops, the numerical method has increasing difficulty rendering
an accurate solution. If one were interested in following the develop-
ment much further than that shown, a method specialized to cope
with vertex-like behavior would have to be developed, but that is
not our objective.

This chapter proposes a solution. It is noted that whereas Niordson and Hutchin-
son attributed the non-physical behaviour to the towers, this chapter counteracts
the instability by removing the preconditions for canyons.

In conclusion, nodal averaging under-estimates boundary strain gradients
by a factor of approximately 0.5 and may prevent plastic flow in elements that
must have zero strain gradient somewhere within the element.

A.2 Nodal contributions principles

The following argument is made for a single dimension x for simplicity. A
derivative f ′(x) of a function f(x) is measured well in the middle of two known
values. This fact is well known in the field of finite element analysis, and the
numerical foundation of the accuracy of reduced integration. Strains are com-
puted based on derivatives (f ′(x)) of displacements (f(x)). Accurate values
of displacements are found in nodes, hence good approximations of strains are
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found in the middle of two nodes: in the gauss point1. In conclusion: for regular
meshes of not-severely-distorted elements, nodes are good places to sample the
strain gradient. Now, let us handle the issues postulated in the previous section.

For elements on boundaries we now have optionality. Several nodes on the
element have estimated nodal values of the strain gradient, but their quality
differs. Typical bad-quality nodal gradient computations are on boundaries
of the model. What do these have in common? Boundary nodes base their
estimations of the strain gradient on few integration point samples. The number
of integration points used for the nodal strain gradient computation, denoted
ni, is taken as a quality measure of the nodal strain gradient.

Large strain gradient hardening has been shown to yield unstable results
for lower-order strain gradient theories. This implies that the strain gradient
should not be overestimated. A conservative measure of the strain gradient is
therefore adopted. It is later shown that the conservative measure of the plastic
strain gradient is not prone a range of one-dimensional defects.

A.3 Nodal contributions procedure
This section gives the nodal gradient procedure for computation of the elemental
strain gradient. For simplicity, the effective plastic strain gradient measure
ηp = ηp,C = ||∇εp|| is adopted.

Nodal contribution computation is the process of computing the plastic
strain gradients in nodes. Nodal values of the plastic strain gradient are first
computed based on surrounding integration points. A robust way of doing this
is fitting a linear strain field

εp = a0 + a1x1 + a2x2 + a3x3 (A.1)

to surrounding integration points using least-squares. Its gradient becomes

ηp = ||∇εp||=
∥∥a1 a2 a3

∥∥ =
√
a2

1 + a2
2 + a2

3. (A.2)

In directions s where no information is found, assume no change

∂εp

∂xs
= 0. (A.3)

1 For simple, constant strain elements, the gauss point used for reduced integration is in
the centre of the element. Only constant strain elements are discussed here.
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Figure A.1: Nodal gradient ηp,ni for the blue node (coordinate (1,1)) is computed on
the basis of surrounding integration points (touching the yellow background). Equiv-
alently, nodal values for the red, brown and green nodes are computed based on their
neighbour elements, respectively. Integration points are crosses ×. Nodes are circles
.

An example of this is the bending problem. The mesh is one-dimensional in x2.
Therefore, assume ∂εp

∂x1
= ∂εp

∂x3
= 0. Where nodal gradients sample strains for a

small two-dimensional problem is shown in Figure A.1.
An alternative is defining a virtual element with nodes in integration points.

The plastic strain gradient can then be computed from the elemental B-matrix
applied to plastic strain values.

Nodal gradient contribution filtering is the solution to the varying quality
of the different nodal gradients. The number of integration points contributing
to a nodal gradient estimation ni is adopted as the quality measure of the nodal
gradient. Then, simply base the elemental nodal gradient on high-quality nodal
gradient computations. For any element, find the nodal contribution with the
highest ni, denoted nmax. In the elemental strain gradient computation, use
only nodal contributions where ni = nmax.

The previously examined beam in bending is a case of linear strain distri-
bution. Its boundary behaviour is now taken as an example of nodal gradient
contribution filtering. The mesh is one-dimensional. In the one-dimensional
case, nodal gradient contribution filtering reduces to a simple principle: always
use nodal gradient computed from two integration points. Nodes are divided
into two classes. Central nodes are in contact with two elements. Boundary
nodes are in contact with a single element. Thus, central nodal gradient con-
tributions are the only contributions taken to elemental strain gradients. These
represent the linear strain field exactly.

Now take a two-dimensional example. Computed values of ni for a small
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Figure A.2: Illustration of number of element integration points contributing to a
nodal gradient. Integration points are crosses ×. Nodes are circles .
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Figure A.3: Element gradient ηp,ei for the yellow (central) element in computed based
on nodal contributions (blue, green, red and brown. Integration points are crosses ×.
Nodes are circles .

2D mesh is given in Figure A.2. Figure A.3 shows that the central element
will receive contributions from all surrounding nodal points, as they are all
of “quality” 4. Element on boundaries will also stick to central nodal gradient
values, as these are of higher quality (4 > 2, 4 > 1). Nodal strain gradient values
sampled on the boundary are never used, and a linear strain field is represented
exactly. Boundary behaviour is comparable to that of skew differences, though
not of second order accuracy.

Nodal gradient contribution combination is the combination of nodal
strain gradients to an elemental strain gradient. To differentiate the nodes n1,
n2, n3, ..., denote each nodal contribution ηp,nj

i , so that j gives the node nj and
i the gradient component ∂εp

∂xi
. The elemental strain gradient is ηp,ei , again with

i as gradient component. An intuitive procedure is to simply pick the smallest
equivalent nodal strain gradient. Simply picking the lowest equivalent strain



100 APPENDIX A. NODAL GRADIENT CONTRIBUTIONS

value, however, ignores that fact that the gradient may change sign (1D) or
direction (2D, 3D) inside the element, and single canyons will not be smoothed
out. A different possibility, that favours accuracy over conservativeness, is tak-
ing the elemental strain gradient as the average nodal strain gradient. This
procedure is also prone to the tower/canyon defect: towers receive no harden-
ing, but canyons harden significantly.

A more robust procedure is given. For each possible index i of the strain
gradient, collect nodal values into a vector such that

vi =
[
vn1
i vn2

i vn3
i . . .

]
where v

nj

i = η
p,nj

i . (A.4)

Now, use the “smallest” value of the vector in the elemental strain gradient

ηp,ei = fieldmin(vi), (A.5)

where

fieldmin(v) =


min v if ∀vi ∈ v, vi > 0

max v if ∀vi ∈ v, vi < 0

0 otherwise.
(A.6)

Or, equivalently, pick the value v0 of smallest possible magnitude |v0| bounded
by the smallest and largest elements in v, vmin ≤ v0 ≤ vmax.

Some example applications are

fieldmin
[
4 8 3 12

]
= 3,

fieldmin
[
−4 −8 −12

]
= −4, and

fieldmin
[
4 8 3 −12

]
= 0.

A reference implementation of fieldmin in the programming language Haskell
is listed below.

f ie ldminR y [ ] = y
f ie ldminR y (x : xs )

| y > 0 && x > 0 = fie ldminR (min x y ) xs
| y < 0 && x < 0 = fie ldminR (max x y ) xs
| o therw i se = 0

f i e l dm in (x : xs ) = f ie ldminR x xs
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Figure A.4: Tower/canyon defect. Step 1.

A.4 Analytical verification
In this section, the procedure is verified analytically for one-dimensional strain
fields. Four problems are examined. First the previously documented tower/-
canyon defect. Then lone towers and lone canyons. Representation of a linear
plastic strain field near boundaries is next shown to be exact, before finally,
handling of a singular strain gradient is explored.

A.4.1 Tower/canyon defect

A forward Euler scheme is used: strain and strain gradient values from the
previous time increment are used for the next. First, the previously encountered
tower/canyon defect, illustrated in Figure A.4. Let, as in previous stability
examination, pure shear cause uniform equivalent stress σe(x) = σe. The model
is flowing plastically, such that in the absence of strain gradient effects, σe =
σflow = σyf(εp0).

Element numbering is given in Figure A.4, and nodes nodes are indexed
doubly: node 56 connects element 5, e5; and element 6, e6. Element lengths
are le. As the model is one-directional in the x-direction, the directional index
i is dropped. Relevant nodal plastic strain gradient values are ηp,56 = −ε

p
0

le
and

ηp,67 =
ε
p
0

2le
.

The canyon elemental plastic strain gradient is

ηp,6 = fieldmin
[
ηp,56, ηp,67

]
= fieldmin

[
−εp0
le
,
εp0
2le

]
= 0.

This causes both canyons to flow up, illustrated in Figure A.5.
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Figure A.5: Tower/canyon defect. Step 2.

0 1 2 3 4 5 6 7 8 910
0

0.5

1

Element numbering in the x-direction

ε
p
/
ε
p 0

Integration point lumping
Nodal gradient

Figure A.6: Tower/canyon defect. Step 3.

Now, neither e6 or e7 gets gradient contributions, and flow up with their
symmetric counterparts, shown in Figure A.6. This trend continues until the
strain field is completely smooth.

A.4.2 Single tower
Consider a prescribed strain of a single tower with plastic strain εp = εp0, and
loading in pure shear as in the previous example. Prescribed strains are shown
in Figure A.7. As all non-tower elements are connected to nodes with zero
plastic strain gradient ηp,n = 0, and all will flow equally until the plastic strain
distribution is uniform of εp(x) = εp0.

A.4.3 Single canyon
Again, consider the previously used stress state, but the initial plastic strain
distribution, as shown in Figure A.8. The tower element e5 has nodal contri-
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Figure A.7: Strain distribution, single tower.
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Figure A.8: Strain distribution, single canyon.

butions from nodal plastic strain gradients ηp,45 =
−εp

0

le
and ηp,56 =

ε
p
0

le
. As the

nodal contributions have different signs, the gradient must be zero somewhere
in the element, which is given when inserting into the fieldmin function

ηp,5 = fieldminn

{
−εp0
le

,
εp0
le

}
= 0.

The canyon must have a zero-valued gradient somewhere between its nodes. It
gets no strain gradient hardening contribution, and fills up.

A.4.4 Boundary conditions
The thin beam in bending has been shown to give a jagged response near its
boundaries. For a prescribed linear plastic strain, the plastic strain gradient
is constant. Computed plastic strain gradient from nodal contributions then
computes the plastic strain gradient exactly, as shown in Figure A.9. Close
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Figure A.9: Linear plastic strain distribution from prescribed curvature.

to boundaries, using nodal contributions through fieldmin, the sampled plastic
strain gradient will be similar to that of skew differences: when an element is on
a boundary, its nodal gradient will simply be taken from the node in contact with
one or more other elements. This is better than the case for nodal averaging,
where the strain gradient computation was smoothed off close to the boundary,
resulting in non-physical jaggedness in the stress distribution.

A.4.5 Handling of singular strain gradients

The shear problem showcases an important issue to handle in lower-order strain
gradient theories. Traditional scale-independent plasticity theories may natu-
rally yield non-differentiable equivalent plastic strain fields εp(x, y, z). Strain
gradient computation based on nodal averaging of the equivalent plastic strain
does not take this into account, and a value of the plastic strain gradient is sim-
ply picked without further consideration of smoothing effects. This issue arises
in the shear example, where the plastic strain gradient is singular in the inter-
section between yielding and no yielding. Possible choices of tangent by nodal
averaging for the element containing the singularity are shown in Figure A.10.

Nodal gradient contributions, on the other hand, by use of the fieldmin
function, chooses the smallest possible value of the equivalent plastic strain,
illustrated in Figure A.11. The element containing the singular plastic strain
gradient is denoted the singular element. The singular element will always chose
the nodal gradient contribution from its right node, where the strain gradient is
smaller. This prevents the defect proved non-physical in Subsection 6.2.2 from
arising. Whether the right node has a non-zero strain gradient contribution
depends on the location of the integration point in the model.

Denote the singular element s, its neighbour n and the node separating the
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Figure A.10: Illustration of possible choices of plastic strain gradient from nodal av-
eraging. All tangents are possible choices.

two elements sn. The problem is again one-dimensional, and we can therefore
drop the directional index i. Assume that the integration point is not in yield,
therefore the strain in the singular element is larger than in its neighbour

εps > εpn

The singular element gradient contribution from its right node sn is its smallest
strain gradient contribution, and will be chosen by the fieldmin function

ηp,s = ηp,sn =
εp,s − εp,n

le
< 0.

Given a non-zero strain gradient contribution from the right node, strain gra-
dient hardening will kick in, and the element will have a lower plastic strain
increment ∆εp than the neighbouring elements. Should the defect of Subsec-
tion 6.2.2 arise, the nodal strain gradient from its right node will switch sign

ηp,sn =
εp,s − εp,n

le
> 0

and by use of the fieldmin function, as nodal contributions from left and right
nodes have different signs, there is no strain gradient, and the defect vanishes.
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Figure A.11: Illustration of possible choices of plastic strain gradient from nodal con-
tributions through fieldmin. Only a single tangent is a valid choice of equivalent plastic
strain gradient.

A.5 On conservative strain gradient estimation

Whereas nodal contributions yield exact hardening for linear strain fields, hard-
ening for non-linear strain fields is underestimated. When strain fields are non-
linear, the strain gradient is non-uniform, and the value of the strain gradient
is taken from the smallest nodal value.

Using nodal averaging, results are destabilized with decreasing mesh size.
This is not the case for nodal contributions. On the other hand, the strain
gradient under-estimation diminishes as the mesh size goes to 0.

This conservative approach to element hardening is not necessary when using
higher-order theories, which are not prone to instabilities.

A.6 Concluding discussion

It has been observed that computing the plastic strain gradient at nodes, fol-
lowed by using the minimum value of the strain gradient over elements produces
stable results in one-dimensional cases where nodal averaging caused instability.
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Boundaries are naturally represented correctly, and require no special care.
The measure is conservative for initially jagged strain fields that cause in-

stabilities when using nodal averaging, and represents linear strain distributions
exactly. For non-linear strain distributions, the strain gradient measure is con-
servative.

The strain gradient computation procedure has, however, has not been im-
plemented, and correctness of behaviour when applied to three-dimensional
problems remains to be tested.
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Appendix B

Stability of analytical
solutions

This appendix documents stability issues encountered using Huang et al.’s yield
surface-less formulation, with the strain gradient calculated using finite differ-
ences for central points and skew differences for border points.

The purpose of this appendix is not to criticise Huang et al.’s formulation.
On the contrary, it is to show that the tower/canyon defect is neither specific
to the analytical solution nor the nodal average-based finite element solution.

B.1 Tower/canyon defect

Figure B.1 shows that finite differences are prone to the tower/canyon defect.
Skew differences are not shown. The tower/canyon defect can emerge when
canyons harden more than towers. Comparing the figure showing strain field
assumed by finite differences here with the strain field assumed by nodal aver-
aging in Figure 7.6, finite differences should be more prone to the tower/canyon
defect than using nodal averaging.
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Figure B.1: Finite difference strain gradient approximation for the tower/canyon de-
fect. Crosses are integration point data for equivalent plastic strains, circles strain
distribution assumed by finite difference formulae.

B.2 Negative plastic strain increments
Attempting to reproduce the tower/canyon defect using Huang et al.’s viscoplastic-
like flow formulation, another issue was encountered. Equation 3.9 repeated as

ε̇p = ε̇

(
σe

σflow

)m
with equivalent plastic strain isolated as

ε̇p =

(
σe

σflow

)m
1−

(
σe

σflow

)m ε̇e.

In contrast to conventional plasticity, strain gradient plasticity allows the ma-
terial capacity to decrease, σ̇flow < 0, as σ̇flow =

∂σflow

∂εp ε̇p +
∂σflow

∂ηp η̇p, and η̇p
can be negative. If the capacity drops such that σe < σflow, the plastic strain
increment becomes negative ε̇p < 0, and results are useless. Figure B.2 shows
results where the strain increments have turned negative. The issue of negative
plastic flow is counteracted by using the suggested non-negative flow rule of
Equation 3.11, repeated

ε̇p = ε̇e
(

σe
σflow

)m
.
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Figure B.2: Distribution of normalized engineering plastic shear strain for l/D = 10.
Negative equivalent plastic strain increments ∆εp < 0 arise.

B.3 Evidence of instabilities
The analytical solution to the shearing of the infinite layer was found using
explicit stress incrementation. The layer was discretized into 100 elements
(∆x = 0.01D), and loading incremented in 2400 increments (∆τ = 0.0005τy,
τ ≤ 1.2τy). Increasing the relative material length scale from l/D = 3 to
l/D = 10 produces unstable results presented in Figure B.2.

Imposing the positive plastic strain rate (Equation 3.11), the equivalent plas-
tic strain distribution εp(x) is smooth, shown in Figure B.3. For the lower
curves, strain gradient effects come into play. Further cranking up the strain
gradient effect, (l/D = 100, Figure B.4), a vertex arises in the symmetry plane,
before jaggedness takes over.

Increasing l further produces different effects similar to the ones discussed
in Appendix C. The tower/canyon defect is instead imposed by decreasing the
element length le = ∆x = dx = 0.004. Decreasing the element length requires
decreasing of the stress increment ∆τ = 0.0001τy, as the solution procedure is
explicit. Large strains also contribute to the tower/canyon defect, and larger
stresses are used (τ < 2.4τy). The result is shown in Figure B.5.
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Figure B.3: Distribution of normalized engineering plastic shear strain for l/D = 10.
Equivalent plastic strain is positive.
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Figure B.4: Distribution of normalized engineering plastic shear strain for l/D = 100.
Equivalent plastic strain is positive.
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Appendix C

Ambiguity of lower-order
theories

This appendix documents a concrete difference between lower-order and higher
order plasticity theories: the ambiguity of solutions to lower-order plasticity
problems. Niordson and Hutchinson [18] pointed out both specific problems
(vertices and instability) and a rather vague, more general criticism on the na-
ture of lower-order plasticity theory formulations. This appendix aims to sep-
arate the general criticism from implementation-specific details, such as ques-
tionable hardening formulation (see Section 4.2.2) and jagged strain solution
(analogous to the tower/canyon defect).

C.1 Introduction

Most space in Niordson and Hutchinson’s paper [18] is allocated to numerical
study. They conclude, however, on a more general note, and the following
passages are highly relevant for this chapter (numbering added).

(1) Although the two problems investigated here are fairly simple,
it is unlikely that they are exceptional as far as the behavior they
reveal. The unusual behavior is a consequence of the mathemati-
cal formulation of the lower order gradient theories. [...] (2) How-
ever, the strain gradients introduced into the tangent moduli result
in terms in the total (or integrated) quantities appearing in these
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equations are more more highly differentiated than any that appear
in conventional theory.

Niordson and Hutchinson first (1) comment on the general nature of lower-order
strain gradient theories. In essence, exact solutions to lower-order strain gradi-
ent plasticity can differ from exact solutions to higher-order plasticity problems.
The difference, will be shown to lie in boundary conditions—ironically brought
forward as an advantage of lower-order theories.

They then (2) attribute the unusual behaviour to what in this thesis was
denoted path dependence in the space of the equivalent plastic strain εp and
the effective plastic strain gradient ηp (or α, as in the lower-order formulation
discussed by Niordson and Hutchinson). The underlying issue of lower-order
theories was left untouched.

The fundamental problem of lower-order strain gradient theories is that they
may be ambiguous in the exact, mathematical solution to a problem1. In case of
ambiguity, which solution is chosen depends on how the load is applied. For the
problem of the sheared infinite bar, the expected solution is that the equivalent
plastic strain distribution evens out as stresses increase. It will be shown that
it is not guaranteed that the equivalent plastic strain distribution smooths out,
and that other configurations satisfy the lower-order theory material equations.

C.2 Ambiguity of lower-order theories
The shear model has two valuable properties that make theoretical analysis
feasible:

1. Only non-zero shear strains ε12 = ε21

2. Constant flow stress σflow.

Only shear strains present implies zero volumetric change, and the geometry
is linear. The constant flow stress makes analytical solution possible. The
hardening formulation is repeated from Equation 3.5,

σflow = σy
√
f(εp)2 + lηp where f(εp) =

(
1 +

Eεp

σy

)N
.

1 This appendix illustrates that ambiguity arises in formulations similar to that proposed
by Huang et al. General proof that this problem applies to all lower-order theories is not
given, but no reason that this is not the case is neither found. It is proposed that lower-order
theories must be treated critically unless there is proper ground to believe that they are not
prone to ambiguous solutions.
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Using the simple effective strain gradient measure ηp = ηp,C , hardening expo-
nent N = 0.5 and assuming non-negative plastic strain derivative dεp

dx ≥ 0, this
simplifies to

1 +
εp

εy
+ l

dεp

dx
=

(
σflow
σy

)2

,

after some reordering,

dεp

dx
+

1

lεy
εp =

1

l

[(
σflow
σy

)2

− 1,

]

and a differential equation solvable through use of integrating factor emerges

dy(x)

dx
+ py(x) = q,

where y(x) = εp(x), p = 1
lεy

and q = [(σflow/σy)2−1]/l. The integrating factor
when p is constant is

v(x) =

∫
p(x) dx = px

giving the solution

y(x) = e−v(x)

∫
ev(x)q(x)

= e−px
(
q

p
epx + C

)
where C is a constant.

Back-substitute the original variables to obtain the solution

εp(x) = εy

[(
σflow
σy

)2

− 1

]
+ Ce−x/(lεy).

What is the value of the constant? Lower-order theory gives no direction on
what to pick. In mathematics, the constants in differential equations are defined
through boundary conditions. Higher order theory provides these. Lower-order
theory does not.

To get rid of absolute values, the strain derivative was assumed non-negative
dεp

dx ≤ 0. This restricts the constant to non-positive values C ≤ 0. The right side
of a tower/canyon defect is a concrete visualization of this shape, if N = 0.5.
Assuming dεp

dx ≤ 0 yields the strain field left of a tower/canyon defect.
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Figure C.1: Mathematical solutions to shear problem, given σflow/σy = 2 and N =
0.5.

Different curves predicted by the mathematical solution to the shear problem
are plotted in Figure C.1. Increasing the material length scale increases the
strain gradient contribution to hardening. Thus, for equilibrium to be obtained,
larger l allows the gradient dεp

dx to be lower for the same total hardening.
The correct, absolute-value sensitive solution resembles a superpositioning

of two solutions of the differential equation, where the strain derivative dεp

dx
is assumed to be positive and negative, respectively. This yields a solution
sensitive to prescribed strain on both boundaries, and the plastic strain field is

εp(x) = εy

[(
σflow
σy

)2

− 1

]
+ C1e

−x/(lεy) + C2e
−(1−x)/(lεy).
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Figure C.2: Mathematical solutions to shear problem, given σflow/σy = 2 and N =
0.5. Superposition of sensitivity to positive and negative plastic strain derivatives.

Superpositioning of solutions is reasonable as strains are near-constant in the
centre region. For larger material length scales, if the two not-near-constant
curves meet, the above solution is invalid and individual cannot be combined.

Both constants must be non-positive to satisfy initial assumptions, C1 ≤ 0
and C2 ≤ 0. Again, the first term that depends on the flow stress gives the
response without strain gradient effects. The second term controls the plastic
strain on the left boundary, εy − εp(x/D = 0) = −C1, and the third term
the right boundary εy − εp(x/D = 1) = −C2. Figure C.2 plots this solution
for different values of C1, C2 and l. C1 = C2 = −εy is equivalent to the
prescribed boundary conditions εp(0) = εp(D) = 0, which may be obtained by
prescribing boundary conditions in higher-order theories, as done by Niordson
and Hutchinson [17].
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C.3 Boundary conditions
In conclusion, lower-order theories do not have a one-to-one correspondence be-
tween problems and solutions. An analogy to traditional finite element method
is useful for illustration. Traditional finite element bases material response on
strains. For a well-defined response, strains must be derived from a continu-
ous field (displacements). On boundaries, displacements or stresses must be
prescribed. Strain gradient plasticity theories derive material response from
strains and the strain gradient. A one-to-one correspondence between problem
and solution therefore requires calculating the strain gradient from a continu-
ous field (strains). On boundaries, strains or the quantity work-conjugate to
strain gradients must be defined. Higher-order strain gradient theories denote
the quantity work-conjugate to strain gradients higher-order stresses.

A final question arises. How does lower-order strain gradient plasticity the-
ories handle this ambiguity? Nodal averaging under-estimates the strain gra-
dient over boundaries and is biased towards dεp

dn = 0, where n is the direction
normal to the boundary. For cases of linear strain, this produces undesired be-
haviour. Nodal contributions and finite differences take the gradient from the
one computed based on the two closest integration points. This is a much more
accurate estimation of the strain gradient, but still not exact. Efforts have been
made to reproduce responses where C1 6= 0 or C2 6= 0 in the analytical shear
example, where finite- and skew differences are used. Different initial strain
fields εp(x)|t=0 and different length scales l/D where attempted. Figure C.3
shows results where non-zero strain gradient over boundaries were encountered.
The slope is significantly less steep because of different values of N . In exact,
mathematical solutions (figures C.1 and C.2), N = 0.5. In iterated, Forward
Euler-based solutions (Figure C.3), N = 0.2. When N is large, plastic strain
hardening is large. Lower values of N give larger relative strain gradient hard-
ening, and a less steep curve still gives a large contribution to total hardening.
Out of 109 total runs actively prescribing initial strains attempting to produce
non-zero boundary strain gradients, 8 showed trends similar to Figure C.3. The
rest produced uniform plastic strains.

Why were solutions with non-zero strain gradient over boundaries hard to
produce?

1. The solution procedure is iterative

2. Finite differences underestimates exponential functions

First, an exponential strain field similar to those of Figure C.1 was prescribed.
The iterative solution procedure for each step calculates the strain gradient
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Figure C.3: Distribution of normalized engineering plastic shear strain for l/D = 10,
N = 0.2. Rare occurrence of non-zero boundary strain gradient.

based on two points (finite difference) or three points (skew difference). Take the
end point with lower equivalent plastic strain. If the strain distribution had been
quadratic, the strain gradient would have been estimated exactly. Fitting three
points from an exponential curve to a parabola, however, underestimates the
derivative at the edge. Underestimation of the strain gradient underestimates
total hardening, and flow follows.

The possibility of multiple solutions to lower-order strain gradient plasticity
problems is not unique to Huang et al.’s theory. Volokh and Hutchinson [23]
previously showed the same ambiguity for Bassani’s lower order theory [2].
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