
Robotsveising med korreksjon fra
3D-kamera

Eirik Bjørndal Njåstad

Master i produktutvikling og produksjon

Hovedveileder: Olav Egeland, IPK

Institutt for produksjons- og kvalitetsteknikk

Innlevert: juni 2015

Norges teknisk-naturvitenskapelige universitet

i

Preface

This is the concluding Master’s thesis of the study programme in Mechanical Engineering at

NTNU. The work was carried out between January and June 2015.

As an apprentice for craft certificate in a manufacturing company, I was, among other things,

assigned the task of programming a welding robot. This was the origin of my interest in the

robotics field, and I remember spending much time back then pondering over how such robotic

systems could be further improved.

Several years of studies later, it was fulfilling to get the opportunity to complete my degree by

a contribution that might be used for improving robotic systems. A computer vision course

and many good discussions resulted in the topic "Robotic welding with correction from a 3D

camera" for this final Master’s thesis.

Trondheim, June 10, 2015

Eirik Bjørndal Njåstad

ii

iii

Acknowledgment

I would like to express my gratitude to my supervisor Professor Olav Egeland for the useful com-

ments, remarks and engagement through the learning process of this master thesis. I am also

very grateful for the opportunity he has given me to work on such a topic and be able to im-

plement the system on actual robots. Furthermore, I would like to thank PhD candidate Lars

Tingelstad for his cooperation and help along the way. His involvement in the work has been

very helpful in selecting the right tools and software for the experiment. He also did a lot of

work on the setup of the interface between the welding machine and robot controller.

The workshop employees at the lab have done a very good job making the parts that have been

welded together. Thank you for this important contribution.

I would like to thank my friends and fellow students for a very pleasant and motivating working

environment. And finally I would like to thank my loved ones, who have supported me through-

out the entire process.

E.B.N.

v

Summary

Robotic welding systems are widely used in manufacturing of many kinds. This thesis looks into

the possibility of integrating a 3D camera into a robotic welding system, with the intention of

improving the programming process for welding robots. The approach is to utilize data from the

3D camera for correcting offline programmed welding paths. The results were implemented in

a robotic welding system demonstrator at the robot laboratory at the Department of Production

and Quality Engineering (IPK), NTNU.

Computer vision for 3D data is a large part of the thesis. The 3D data acquisition, processing,

and the different camera parameters are described. Various algorithms used for estimating the

pose of the component to be welded are explained, and their performance is evaluated through

a series of tests. The robustness and quality of the achieved results were of particular inter-

est, and the time needed for estimating the component pose has also been evaluated for the

different algorithms. Based on test results, the Nonlinear Iterative Closest Point algorithm was

considered most suitable for this application.

The 3D camera was interfaced to the robot controller through a developed software application

which estimates the correct object pose from a model of the object and 3D data from the camera.

The corrected pose is communicated to the robot controller via a client-to-server connection

over a computer network. A graphical representation of the information flow in the system is

made, showing all steps from a CAD model and 3D data to the robotic welding process.

The results were demonstrated by programming the robot to perform welding on a section of

a thruster tunnel for ships, and then estimate corrections for the welding paths based on data

from the Kinect ™ sensor from Microsoft, a consumer grade 3D camera. The demonstration

illustrates how the developed system is able to detect and correct the welding paths for both

translated and rotated objects. There are however some variations in the output from the object

pose estimation. This causes inaccurate correction of the welding paths. By collecting 3D data

for a longer time period and filtering the data, it was possible to reduce these variations but not

eliminate them.

The resulting welding paths are presented as plots where the offline programmed, the camera

vi

corrected, and optimal welding paths are shown.

vii

Sammendrag

Robotisert sveising benyttes for tilvirkning av mange slags produkter. I denne masteroppgaven

har muligheten for å integrere et 3D kamera i et sveiserobotsystem blitt vurdert, med sikte på

å forbedre programmeringsprosessen for sveiseroboter. Data fra et 3D kamera ble her anvendt

for korreksjon av offline programmerte baner for sveiseroboter. Dette ble demonstrert ved å

implementere metoden i robotlaboratoriet ved Institutt for produksjons- og kvalitetsteknikk,

NTNU.

Beskrivelser av datasyn ved bruk av 3D data utgjør en stor del av innholdet i denne oppgaven.

Ervervelse av 3D data, prosessering, og de forskjellige kameraparametrene er noe av det som er

beskrevet. Et utvalg algoritmer som benyttes for å estimere posituren til komponenten som skal

sveises forklares, og ytelsen til disse algoritmene er evaluert gjennom en rekke tester. Det var av

interesse å undersøke hvor robust algoritmene er i ulike situasjoner, og å undersøke kvaliteten

på estimatet fra de ulike algoritmene. Et annet vurderingskriterie var hvor lang tid som behøvdes

for å estimere komponentens positur. Testresultatene viste at algoritmen Nonlinear Iterative

Closest Point var best egnet for bruk i dette systemet.

3D kameraet ble knyttet til sveiserobotens styreenhet gjennom et program som ble spesielt

utviklet for dette prosjektet. Programmet beregner komponentens positur ved hjelp av en mod-

ell av komponenten og 3D data fra kameraet. Denne korrigerte posituren formidles til robotens

styreenhet via en klient til tjener-tilkobling over et standard datanettverk. Et diagram som viser

all informasjonsflyt i systemet har blitt utarbeidet. Dette diagrammet viser alle steg i prosessen,

fra CAD modell og 3D data til en korrigert sveiseprosess.

Resultatene ble demonstrert ved å programmere sveiseroboten til å sveise en seksjon av en

thrustertunnel for skip. Data fra et Microsoft Kinect™ kamera benyttes så til å estimere kor-

reksjoner av sveisebanene. Demonstrasjonen illustrerer hvordan systemet som er utviklet er i

stand til å detektere og korrigere sveisebanene for objekter som er flyttet på både ved rettlinjet

bevegelse og ved rotasjon. Det oppsto imidlertid noen variasjoner ved estimering av objektets

positur, som igjen førte til unøyaktige korreksjoner av sveisebanene. Det var mulig å redusere

disse variasjonene ved å samle 3D data i et litt lenger tidsrom og å implementere et filter.

viii

Robotens sveisebaner er illustrert som grafer hvor offline programmerte, kamerakorrigerte, og

optimale sveisebaner er vist.

ix

Glossary and Acronyms

CAD Computer-aided design is the use of computer systems to assist in the creation, modifica-

tion, analysis, documentation, or optimization of a design.

CMOS/CCD Charge-Coupled Devices (CCD) or Complementary Metal–Oxide–Semiconductors

(CMOS) are sensors that detects and conveys the information that constitutes an image,

i.e, an image sensor.

CW-ToF Continuous-Wave Time-of-Flight cameras are 3D imaging sensors which consists of a

pixel array together with an active modulated light source.

GMAW Gas metal arc welding is a welding process in which an electric arc forms between a

consumable wire electrode and the workpiece metal, causing them to melt and join.

GUI A graphical user interface or GUI is a type of interface that allows users to interact with

electronic devices through graphical icons and visual elements, as opposed to text-based

interfaces.

ICP Iterative Closest Point is an algorithm employed to minimize the difference between two

clouds of points, often used for aligning point clouds.

KR C5 Controller The standard KUKA robot controller used for control of the KR5 robot.

MAG Metal Active Gas welding is a subtype of GMAW welding. A large area of application is for

manufacturing of steel structures of thin and medium thick plates.

MLS Moving Least Squares is a method of reconstructing continuous functions from a set of

unorganized point samples by calculating a weighted least squares measure.

PCL The Point Cloud Library is an open-source library of algorithms for point cloud processing

tasks and 3D geometry processing.

Pixel In digital imaging, a pixel (picture element) is a physical point in an image.

PLC A Programmable Logic Controller is a digital computer typically used for automation of

industrial processes.

x

Point Cloud A point cloud is a set of points in a coordinate system. In a three-dimensional

coordinate system, these points are usually defined by X, Y, and Z coordinates, and often

represents the surface of an object.

RANSAC RAndom SAmple Consensus is an iterative method for estimating a mathematical

model from a data set that contains outliers.

RGB A three number color model, in which red, green, and blue light are added together in

various ways to reproduce a broad array of colors.

RSI Robot Sensor Interface used for external sensor input by KUKA robots.

SAC-IA SAmple Consensus Initial Alignment is a method for aligning point clouds.

SDK A Software Development Kit is a set of software development tools that allows for creating

applications for a certain system or platform.

SVD Singular Value Decomposition is a factorization of a real or complex matrix in linear alge-

bra.

TCP The Tool Center Point is a point in relation to which robot positioning could be defined.

ToF Time of Flight describes a methods that measure the time that it takes for an object or wave

to travel a distance through a medium.

Voxel A voxel represents a value on a regular grid in three-dimensional space. Voxel is a port-

manteau for "volume" and "pixel".

VRC Virtual Robot Controller. A simulated version of the KR C4 robot controller used for pro-

gramming KUKA robots.

Contents

Acknowledgment . iii

Summary . v

Sammendrag . vii

Glossary and Acronyms . ix

List of Figures . xv

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 2

1.3 Approach . 2

1.4 Structure of the Report . 5

2 Robot Programming 7

2.1 Introduction . 7

2.2 Offline Robot Programming . 8

3 Computer Vision 15

3.1 Introduction . 15

3.2 Point Cloud Acquisition . 16

xi

xii CONTENTS

3.2.1 Depth images and Point Clouds . 16

3.2.2 Time-of-Flight Cameras . 17

3.2.3 Camera Calibration . 22

3.3 Point Cloud Processing . 26

3.3.1 Down-Sampling . 27

3.3.2 Statistical Outlier Removal . 27

3.3.3 Moving Least Squares Smoothing . 28

3.3.4 Estimating Surface Normals . 29

3.4 Object Alignment . 30

3.4.1 Iterative Closest Point . 31

3.4.2 Sample Consensus Initial Alignment . 34

3.4.3 Algorithm Performance . 35

3.4.4 Representing the Estimation Results . 38

4 Practical Setup 41

4.1 Robot Cell . 41

4.2 Information Flow . 43

4.2.1 Offline Programming of Welding Sequence . 44

4.2.2 Robot Program . 46

4.2.3 Point Cloud Capturing . 46

4.2.4 Representing the CAD model . 47

4.2.5 Object Alignment and Calculations . 48

4.2.6 Visualizations . 48

4.2.7 TCP/IP Communication . 48

4.2.8 Fronius TransSteel to Robot Interface . 51

CONTENTS xiii

5 Results 53

5.1 Simple Welding Joints . 53

5.1.1 Case I: No Object Alignment . 54

5.1.2 Case II: 2D Object Alignment . 55

5.1.3 Case III: 3D Object Alignment . 56

5.1.4 Case IV: 3D Object Alignment from Several Point Clouds 56

5.2 System Performance . 57

5.3 Thruster Tunnel Welding . 60

5.4 Video . 62

6 Concluding Remarks 63

6.1 Discussion . 63

6.2 Conclusion . 65

6.3 Recommendations for Further Work . 66

Bibliography 68

A Source Code 75

A.1 Main C++ application . 76

A.2 Communication Client . 91

B Digital Appendix 95

xiv CONTENTS

List of Figures

2.1 The Offline Programming Concept. 9

2.2 Offline Programming Process Flow. 11

3.1 A sample Point Cloud. 17

3.2 ToF operating principle. 18

3.3 Multi-frequency technique. 20

3.4 Microsoft Kinect for Xbox One. 21

3.5 Amplitude image of checkerboard. 23

3.6 3D position of the ToF camera. 23

3.7 Coordinate frame relations. 25

3.8 Voxel grid filtering. 28

3.9 Moving least squares smoothing. 29

3.10 Iterative Closest Point alignment of the Stanford 3D bunny. 32

3.11 Robustness and quality of alignments. 37

3.12 Running time for the various algorithms. 39

4.1 The robot cell at IPK, NTNU . 42

4.2 Robot and welding machine setup. 43

xv

xvi LIST OF FIGURES

4.3 System information flow . 45

4.4 CAD model and point cloud representation. 47

4.5 Visualization of the Kinect data stream. 49

4.6 Effects of ICP. 49

5.1 Welding joints used for testing the system. 54

5.2 Welding paths without corrections. 55

5.3 Welding paths with 2D corrections. 56

5.4 Welding paths with 3D corrections. 57

5.5 Welding paths with 3D corrections from several point clouds. 58

5.6 Absolute error of pose estimations. 59

5.7 Object alignment of rotated component. 59

5.8 A model of the thruster tunnel. 61

5.9 Thruster tunnel section after welding. 62

6.1 Sketch of a Kinect 3D camera mounted on a KR 5 robot. 66

Chapter 1

Introduction

1.1 Background

Robotic welding is a major field of application for industrial robots. Using robots in welding pro-

cesses helps to give industries a competitive advantage by increasing their productivity, quality

and flexibility. It also reduces the discomfort and significant health hazards associated with

manual welding. Most types of welding requires motion control, sensor integration, and co-

ordination with an external welding power source. The industrial robot manipulators are thus

an almost perfect match for the vast majority of welding processes. Currently, spot resistance

welding is the most common robotic welding method, followed by arc welding which is spread-

ing faster than the former [1].

The automotive industry has traditionally been a driving force and the largest consumer of weld-

ing robots. Besides further development in this segment, enterprises with significantly lower

production volumes will within a few years benefit from robots as much as the the automotive

industry does today [2]. For enterprises with small batch production such automation is largely

a matter of investment costs and programming ability. With continuously changing production

patterns, it is likely that the cost of reprogramming will exceed the investment costs by a large

margin [3]. It is thus a great potential for improving the robot programming process, enabling

cost-effective production of high quality welds at shorter cycle times.

1

2 CHAPTER 1. INTRODUCTION

Robotic welding assures high repeatability of the trajectories, as robots performs well in con-

stant processes. Due to tolerances in the work piece geometries and other offsets, the real weld-

ing situation will vary from time to time. In contrast to manual welders, the robot is not able to

modify the welding path continuously by itself. To make robotic welding systems more flexible

in dealing with varying work pieces, external inputs such as computer vision are introduced.

Computer vision can be used for detecting and measuring the physical location and orientation

of the work piece to be welded. This could improve the efficiency of welding processes by offline

programmed robots, and the required level of competence for using a robotic welding system

could potentially be lowered. This will allow many more enterprises to benefit from robotic

welding systems.

1.2 Objectives

The main objectives of this Master’s project are

1. To provide a brief overview of methods for programming of welding robots.

2. To describe robotic vision by means of 3D cameras.

3. Explaining how a 3D camera can be used for correcting the programmed paths of welding

robots.

4. To program and simulate a welding operation applicable in thruster production by using

the KUKA.Sim software application.

5. Implementation of the welding operation with correction from 3D camera in the robot

laboratory at the Department of Production and Quality Engineering (IPK), NTNU.

1.3 Approach

The objectives in this project has been of both theoretical and practical nature. Literature and

articles have been studied in order to answer the theoretical aspects, but also in preparation for

1.3. APPROACH 3

and as a support when solving the practical challenges at hand.

The undersigned participated in the basic robot course at KUKA college in Göteborg. This was

an important introduction to the KUKA control system and manual robot programming via the

KR C4 controller.

Objective 1

The overview of methods for programming welding robots is given in Chapter 2. Offline Pro-

gramming of robots has been subject to the most detailed explanation as this method was ap-

plied for the developed system. A brief state of the art analysis is performed, where the typical

workflow of todays offline programming systems is explained. A list of the available offline robot

programming software is also provided.

Objective 2

Robotic vision by means of 3D cameras is described in Chapter 3. In this project, a Microsoft

Kinect™ which contains a time-of-flight camera was used for sensor input. Describing the op-

erational principle of this type of camera has therefore been given priority. The structure of 3D

images is also explained, along with descriptions of common processing steps required for using

3D data in robotic vision.

Objective 3

This project has culminated in a practical demonstrator where a 3D camera is used for correct-

ing the programmed paths of a welding robot. The practical setup described in Chapter 4 is an

example of how such a system can be configured. Various approaches for correcting robot paths

from 3D data have been explained in Chapter 3.

Development and implementation of the program that calculates the necessary corrections

based on data from the 3D camera has been the largest and most demanding part of this project.

4 CHAPTER 1. INTRODUCTION

C++ is the programming language used in the development, with the additional Point Cloud Li-

brary used for implementation of most algorithms used. Microsoft Visual Studio 2013 has been

used for developing the program.

Two object aligning algorithms, three versions of one of them, have been tested and the perfor-

mance evaluated for use in correction of welding robot paths.

Objective 4

A graphical model has been created in KUKA.Sim. Mounting location and orientation of the

welding robot manipulator and equipment are the same as in the robot cell at Department of

Production and Quality Engineering (IPK), NTNU. Welding operations applicable in thruster

production have been programmed and simulated by using the created model.

Robotic movements in KUKA.Sim are programmed in almost the same way as on the KR C4

controller. This makes the tool great for testing of robot positions and trajectories before im-

plementation on the robot. It is also a good way of testing different welding path correction

scenarios, where the welding operations is corrected by using a simulated 3D camera.

Objective 5

The programmed welding operation was implemented in the demonstrator at the robot labora-

tory at IPK. In the demonstrator, a CAD model of a thruster tunnel section is used for aligning

the offline programmed welding operation to the physical object orientation and location. The

location is determined by data from a Kinect 3D camera. The corrected pose is communicated

to the robot controller via a client-to-server connection over Ethernet. System performance has

been evaluated in Chapter 5.

Literature

Textbooks on computer vision, robotics, welding robots, and programming topics have been

used to a large extent during the project. The main books are:

1.4. STRUCTURE OF THE REPORT 5

• Introductory Techniques for 3-D Computer Vision by Emanuele Trucco and Alessandro

Verri [4].

• Computer Vision: A Modern Approach (2nd Edition) by David A. Forsyth and Jean Ponce

[5].

• Robotics, Vision and Control by Peter Corke [6].

• Welding Robots: Technology, System Issues and Application by J. Norberto Pires, Altino

Loureiro, and Gunnar Bölmsjo [7].

• Absolute C++ by Walter Savitch [8].

In addition, the KUKA manual "Operating and Programming Instructions for System Integrators"

and other documentation for the KUKA KR C4 controller, Fronius welding machine, and Ether-

Cat has been used. Relevant scientific articles was also studied, especially on the time-of-flight

cameras and object alignment subjects.

1.4 Structure of the Report

The report is focused on the development of this exact demonstrator, with a broader focus where

this is found relevant. The experiment setup, depth data acquisition, object alignment, transfor-

mation estimation, and information flow is explained for this exact experiment. Most features

will also function in other systems without further customization, but the total arrangement is

customized for this exact equipment.

• In Chapter 2, a brief overview of robot programming is provided, with emphasis on offline

robot programming. A survey of available offline programing software is also included.

• Chapter 3 describes the computer vision and depth data, with camera calibration, object

alignment and transformation calculations.

6 CHAPTER 1. INTRODUCTION

• Chapter 4 presents the practical setup of the demonstrator, and explains the information

flow and necessary elements in a system for correcting the programmed paths of welding

robots.

• In Chapter 5, the results from the experiments are presented, along with some suggestions

for improving the system performance.

• Chapter 6, summarize the work with a discussion, conclusion and recommendations for

future work and implementations.

• Source code of the program calculating necessary corrections and of the communication

client can be studied in the appendix.

• The digital appendix includes all source code written for this project. A video showing the

system used for welding a thruster tunnel section is also found here.

Chapter 2

Robot Programming

2.1 Introduction

Robot programming is the process of determining a robot’s interaction with its environment,

usually in terms of generating a set of robot instructions and poses that will accomplish the

desired task. Robot programming is often characterized as tedious and time-consuming, with a

lack of intuitive tools for interaction. Many small and medium-sized enterprises (SMEs) are not

using robots in their facilities because the configuration and programming process of this type

of equipment is time-consuming and requires workers with a high level of expertise in the field

[9]. Thus, there is a great potential for improvements in programming that enable cost-effective

production of high quality welds at shorter cycle times.

The American Occupational Safety and Health Administration (OSHA) defines three ways of

programming industrial robots: Lead-through programming, Walk-through programming, and

Offline programming [10].

1. Lead-Through Programming or Teaching is a method involving the use of a proprietary

teach pendant to physically guide the robot through the desired sequence of events. The

programming is performed by trained personnel working within the robot’s working en-

velope.

7

8 CHAPTER 2. ROBOT PROGRAMMING

2. Walk-Through Programming or Teaching is similar to the lead-through method, but is

characterized by the programmer interacting physically with the robot, guiding it through

the desired positions within the working envelope. While programming, the robot con-

troller is recording the coordinate values on a fixed time basis.

3. Offline Programming is the process of creating a robot program without using a real

robot. CAD systems are used to model the particular robot, workpiece, tool, and workspace.

The models are then used to perform the robot tasks and path planning, and to automat-

ically generate programs that are downloaded to and executed by the robot controller.

Before the program can be executed, it is usually necessary to perform verification and

small changes to the program. This part of the process is called program touch-up and is

typically performed as Lead-Through or Walk-Through programming.

If the Lead-Through or Walk-Through programming method is used, it is clear that the robot can

not be used for production while programming. These programming methods can be classified

as online programming. Offline programming is the only method where the robot can work

uninterrupted while it is being remotely programmed for new tasks. This facilitates using robots

for single piece manufacturing, in contrast to batch production which is a common application

for robots today. It is thus of interest to improve the method further.

2.2 Offline Robot Programming

Offline programming shifts the tedious work of programming the robot from the operator in

the workshop to the engineer in the office. The concept of offline programming is shown in

Figure 2.1. By this method, it is beneficial to develop and configure a virtual model of the robot

cell, providing the ability to simulate the process while programming. The various software

solutions for offline robot programming largely follows the same key steps of creating the model

and programming the robot [11]. These steps are summarized in Figure 2.2.

It is usually required to have 3D CAD models of the workpiece, all fixtures in the cell, and of the

particular robot manipulator to be used. Products usually have a CAD model, it can be more

2.2. OFFLINE ROBOT PROGRAMMING 9

Figure 2.1: The Offline Programming Concept [9].

challenging to model fixtures in the cell. Models of robots are for the most part included in the

software packages, or can be purchased as extensions. The wide range of different CAD formats

being used leads to a frequent need for converting to a compatible format. Conversion between

different types of CAD files is usually a straightforward task [12].

When an adequate model of the workspace and components are built, the programming can

commence. Clicking and dragging the computer mouse replaces jogging with the teach pedant

in the physical welding cell. Specification of robot positions are generally either done manu-

ally by point and click, or automatically by the software, which generates them when the de-

sired welding paths are highlighted. Assisting robot positions such as home position, approach

points, and retreat points can also be specified.

The inverse kinematics of industrial articulated robots have multiple solutions in Cartesian

space. One of these solutions, the robot configuration, is usually selected manually because

most of the offline robot programming tools can not automatically select an optimal solution

[11].

Programming of welding robots also means selection of welding parameters such as current,

voltage, and travel speed. The post-processing stage includes adding these and other necessary

I/O control signals to the program, as well as necessary fine adjustments of the robot paths. If

10 CHAPTER 2. ROBOT PROGRAMMING

using generic software, the program must be converted into the language of the specific robot

type.

The robot motions can be simulated and tested while programming and when finished. The

programmed instructions is used for emulating robot motions and to determine whether each

movement can be successfully executed. Possible collisions, areas associated with problems

for achieving the correct welding angle, and cycle times can be detected by the software. The

leading software solutions also checks whether there are any violations of the robot joint limits,

in terms of displacement or velocity.

After programming and offline testing is completed, the program is exported to the physical

robot controller. This can be done by using a memory stick or by transmitting over Ethernet. It is

usually necessary to do a manual touch-up of the points created by offline programming before

the program can be executed in production mode. By current methods, the robot programs

is about 75 percent completed before manual touch-up [7]. This is just one way to calibrate

the program towards the real the robot cell. Other methods includes using a set of calibration

points within the cell, or compensating for the discrepancies through the use of sensors on the

real robot.

Available Software

Simulation and programming software is a fundamental tool for robot and system designers,

manufacturing companies, students of the field, and other users. This has motivated the de-

velopment of a variety of software. The range of software environments originate from various

academic research, robot manufacturers, and other developers.

Table 2.1 gives an overview of the available software for offline programming of robots. The

table shows that nearly all major robot manufacturers provides extensions of their offline pro-

gramming software aimed at arc welding.

Most robot manufacturers provide proprietary software for offline programming that includes

accurate CAD models of their own robots. There are however software vendors offering solu-

tions that allow simultaneous programming and provides accurate CAD models of robots from

2.2. OFFLINE ROBOT PROGRAMMING 11

3
D

 C
A

D
M

o
d

el
C

al
ib

ra
ti

on
/

To
u

ch
-u

p
R

o
b

ot
P

ro
gr

am
P

ro
ce

ss
P

la
nn

in
g

T
ra

je
ct

o
ry

 P
la

n
n

in
g

T
o

o
l p

o
si

ti
o

n
T

o
o

l o
ri

en
ta

ti
o

n
R

o
b

o
t

co
n

fi
gu

ra
ti

o
n

R
ea

ch
a

b
ili

ty
...

Tu
n

in
g

an
d

P
o

st

P
ro

ce
ss

in
g

W
el

di
ng

 p
ar

am
et

er
s

M
ot

io
n

pa
ra

m
et

er
s

O
pt

im
iz

at
io

n
S

I/
O

 C
on

tr
ol

Tr
an

sf
er

 p
ro

gr
am

...

Si
m

u
la

ti
o

n

F
ig

u
re

2.
2:

T
h

e
va

ri
o

u
s

st
ep

s
in

th
e

o
ffl

in
e

p
ro

gr
am

m
in

g
p

ro
ce

ss
o

fa
w

el
d

in
g

ro
b

o
t.

12 CHAPTER 2. ROBOT PROGRAMMING

numerous manufacturers. The manufacturer-specific software offers perhaps the finest control

over the programming, and often have more adapted functionality.

The majority of the programming software features cycle time calculations, import of 3D CAD

files, 3D simulation with collision detection, and a component and robot library of a varying

extent. Among the robot manufacturer-specific software, it is popular to provide more accurate

simulations by connecting to a Virtual Robot Controller (VRC). This controller usually contains

a virtual version of the teach pedant associated with the particular robot make.

2.2. OFFLINE ROBOT PROGRAMMING 13

Software Provider Utilities for Arc Welding

OLP software by robot manufacturers

AX On Desk Nachi Yes
DTPS-G3 Panasonic Yes
K-ROSET, KCONG Kawasaki Yes
KUKA-Sim, CAMrob KUKA Yes
MELFA WORKS Mitsubishi Electric No
MotoSim EG VRC Motoman (Yaskawa) Yes
Roboguide (WeldPRO) Fanuc Yes
RobotStudio ABB Yes
Stäubli Robotics Suite Stäubli No
Wincaps III Denso No

Generic OLP software

CimStation Robotics Applied Computing & Engineering Yes
Delfoi ARC, AutoARC Delfoi Yes
DELMIA Robotics Dassault Systèmes Yes
Arc Welding (ARW)
EASY-ROB EASY-ROB No
FAMOS robotic Carat Robotic Innovation No
Robcad Technomatix, Siemens PLM Yes
Robotmaster Jabez Technologies Inc. No
RobotWorks, Robotics Compucraft Ltd Yes
Interface for Solidworks
Workspace 5 WAT solutions No

Table 2.1: Available Offline Programming Software (OLP). Most robot manufacturers provides
their own programming solution. In addition, there are several other developers providing soft-
ware for OLP.

14 CHAPTER 2. ROBOT PROGRAMMING

Chapter 3

Computer Vision

3.1 Introduction

Humans are extremely good at identifying objects and estimating their pose in the scene. By

using the visual input, useful decisions can be made about real physical objects and their sur-

roundings from a distance. Vision guided robotics is a topic of continued interest. A lot of po-

tential opens up in industrial processes by allowing for robots to see. Vision sensors are thus

increasingly being utilized in industrial robotic systems.

There is a wide range of RGB cameras available at low cost. However, developing robust and

efficient vision guided robotic systems can be a challenging task to accomplish when using 2D

images that inherently only captures a projection of the 3D world. The recent arrival of Time-

of-Flight (ToF) depth cameras and the even more recent introduction of the Microsoft Kinect™

depth camera (Kinect in the sequel) has made 3D data streams at video rate widely available.

This enables new methods for helping the robot making useful decisions.

The focus in this project is on the use of depth data from a Kinect for correcting offline pro-

grammed welding paths. After acquisition and some processing, the depth data is input to an

algorithm that estimates the 3D object pose, before the necessary corrections of the welding

paths are calculated. The various steps are explained in the following sections.

15

16 CHAPTER 3. COMPUTER VISION

The computer vision methods applied are mainly based on the features of Point Cloud Library

[13] (PCL) and Peter Corke’s Robotics, Vision and Control [6].

3.2 Point Cloud Acquisition

Point clouds can be acquired from various hardware sensors such as stereo RGB cameras, 3D

scanners, or time-of-flight cameras, or be synthetically generated by a computer program. Sec-

tion 3.2.1 briefly explains how depth data is represented. The technology behind the time-of-

flight cameras and the Kinect is described in Section 3.2.2.

3.2.1 Depth images and Point Clouds

Depth images are a special class of digital images where each pixel expresses the distance between

a known reference frame and a visible point in the scene. Therefore, a depth image reproduces the

3D structure of a scene, and is best thought of as a sampled surface [4]. The direct encoding of

surfaces makes depth images more useful for measuring distances than common intensity RGB

and grayscale images. This is because in intensity images, the pixel values are only indirectly

related to the surface geometry through optical and geometrical properties as well as lighting

conditions. Depth images are also referred to as range images, depth maps, x y z maps, surface

profiles, 2.5D images, and point clouds. An example of a depth image is shown in Figure 3.1.

There are two basic ways of representing depth images. The organized form is a matrix of depth

values of points along the directions of the x, y image axes. The alternative is in its simplest

form a list of 3D coordinates in a given reference frame, where no specific order is required. The

unorganized representation is referred to as a point cloud. In this project the depth images have

been represented by point clouds with the RGB color value of each 3D point included.

Depth images can be acquired from a variety of different sensors. A distinction is made between

active and passive sensors. The active type is projecting energy (e.g. a pattern of light) on the

scene in order to determine its 3D structure, while the passive type rely only on intensity images

of the scene [4]. The time-of-flight camera used in this project is of the active type.

3.2. POINT CLOUD ACQUISITION 17

Figure 3.1: A point cloud representation of an office desk and a bookshelf. This unfiltered point
cloud is acquired from the Kinect 3D camera with color information included for each of the
217.088 points.

3.2.2 Time-of-Flight Cameras

Optical time-of-flight (ToF) cameras measures the depth of a scene by illuminating the scene

with a modulated light source, and observing the reflected light. The modulated light is typi-

cally emitted from a solid-state laser or a LED operating in the near-infrared range (≈ 850 nm)

[14], [15]. ToF methods can be classified in two subcategories: 1) Pulsed Modulation and 2) Con-

tinuous Wave Modulation. Most commercial ToF solutions are based on the latter method [16],

and it is hence described in most detail here.

Pulsed Modulation ToF methods measure the distance to objects by measuring the absolute

time a light pulse needs to travel from a source into the scene and back, after reflection. This

can be achieved by integrating photoelectrons from the reflected light, or by the stopwatch tech-

nique, where a fast counter is used for measuring round-trip time of the single light pulse. The

latter method is commonly implemented using single-photon avalanche diodes (SPADs) [17],

and this technique gives a direct measurement of ToF with low influence of background illumi-

nation [18]. A drawback of the technique is its dependence on fast electronics, since achieving

1 millimeter accuracy requires timing a pulse of 6.6 picoseconds in duration [14]. Moreover, on-

18 CHAPTER 3. COMPUTER VISION

Figure 3.2: ToF operating principle [17].

chip converters required for this approach can use a significant pixel area, which can limit pixel

array sizes [17].

In Continuous Wave Modulation ToF (CW-ToF) methods, the phase difference between the mod-

ulated emitted light wave and the detected wave reflected off the scene is measured. This is

illustrated in Figure 3.2. The modulation is typically done by varying the frequency and ampli-

tude of sinusoidal or square waves. Square wave modulation is more common because it can be

easily realized using digital circuits [16]. The detected wave after reflection is phase shifted pro-

portional to the distance of the reflecting object. Specialized CMOS/CCD sensors are used for

integrating the photo-generated charges over a relatively long period of time, and the distance

to the object is computed from the integrated signal. The depth resolution increases with the

light source modulation frequency.

Calculation of the distance to a object when using CW-ToF methods is done by cross-correlating

the received signal with the emitted signal. If the emitted signal is sinusoidal with modulation

frequency ω= 2π f , it can be described as

g (t) = cos(ωt)

3.2. POINT CLOUD ACQUISITION 19

and the received signal after reflection from object surface as

s(t) = b +a cos(ωt +φ)

where b is a constant bias and a is the wave amplitude. φ = 2zω/c is the phase shift with the

distance z to the object, where c is the speed of light in air. Cross-correlation of both signals

with the offset τ leads to

c(τ) = s ∗ g =
∫ ∞

−∞
s(t) · g (t +τ)d t

which can be simplified to

c(τ) = a

2
cos(ωτ+φ)+b

The CW-ToF methods takes multiple samples per measurement, with each sample phase-stepped

by the offset τ for a total of four samples

Ai = c

(
i ·π

2

)
, i = 0, ...,3

The phase shift and amplitude can be directly obtained:

φ= arctan2(A3 − A1, A0 − A2) (3.1)

a = 1

2

√
(A3 − A1)2 + (A0 − A2)2 (3.2)

Likewise the distance to the object:

d = c

4πω
φ (3.3)

The distance measurement accuracy is influenced by the reflected pixel intensity (amplitude),

reflected pixel offset, and how well the ToF sensor separates and collects the photoelectrons.

The reflected intensity is a function of the optical power, while the reflected offset is a function

of the ambient light and residual system offset. High amplitude, high modulation frequency

and high modulation contrast will increase accuracy, while high offset can lead to saturation

20 CHAPTER 3. COMPUTER VISION

Figure 3.3: Multi-frequency technique [14].

and reduce the overall accuracy [14]. In practice, the CW-ToF methods requires integration over

time to reduce noise. Long integration times reduces the possible frame rates, and can cause

motion blur.

The fact that the CW measurement is based on phase, which wraps around every 2π, causes

each distance measurement to have an aliasing distance. Advanced ToF systems deploy multi-

frequency techniques to avoid this ambiguity, where each modulation frequency will have a

different aliasing distance, see Figure 3.3. The true object location is the one where the different

frequencies coincide.

Microsoft Kinect (tm)

Introduced in November 2013, the Kinect for Xbox One (Figure 3.4) is the second generation of

sensor input devices developed for the Microsoft Xbox video game console systems. With the

Kinect, state of the art depth sensing technology is available at a low cost. This version of Kinect

consists of a 512 x 424 pixel wide-angle ToF camera, a high definition (1920 x 1080) RGB camera,

and a four microphone array operating at 48 kHZ.

The ToF camera is of the Continuous Wave Modulation type, with 70◦ horizontal and 60◦ vertical

3.2. POINT CLOUD ACQUISITION 21

Figure 3.4: Microsoft Kinect(tm) for Xbox One Systems. The origin and axes of the camera space
coordinate system are marked [19].

field of view. It has a very unique sensor where the pixel array is divided into a top and bottom

half each driven by separate clock drivers. After several milliseconds of exposure, the two to-

tal amounts of photons recorded by the two halves are compared. This process of indirectly

measuring the light wave time of flight allows for each pixel to independently measure distance,

which results in a sensor that offers high degree of depth precision.

The modulation frequency and relative phase of each pixel clock, the light source modulation

signal, as well as the gain for each pixel column are all programmable [17]. This functionality,

combined with its high pixel resolution, allows for high-dynamic-range (>64 dB) operation at

distances between 0.8 - 4.2 meters. Its depth uncertainty is below 0.5 % of the range, and the

accuracy error is below 1 %. Higher accuracy can be achieved by taking the average of many

frames at a near distance from the sensor. The Kinect has the highest pixel resolution with the

smallest pixel pitch (10 µm x 10 µm) among all currently published ToF sensors (January 2015)

[17].

A Microsoft Windows-compatible version of the Kinect, Kinect for Windows v2, was released in

mid-2014 along with the Kinect for Windows software development kit (SDK) 2.0 [19]. It differs

from the Kinect for Xbox One in that it includes an external power adapter and a USB 3.0 con-

nection. This version is intended for developing Kinect-enabled software for Windows 8 and

Windows 8.1, and is the version implemented in this work.

22 CHAPTER 3. COMPUTER VISION

3.2.3 Camera Calibration

Since commercial ToF cameras uses standard optics and their image formation can be modeled

by perspective projection, the ToF camera calibration is strongly reminiscent of standard cam-

era calibration. Instead of standard color (or gray-level) images, the amplitude image is used for

ToF camera calibration. The geometrical camera calibration is of greatest interest here, where

the relationship between sensor pixels and relative points in the scene are estimated. When

using the pinhole camera model, this relationship is called a perspective projection and is de-

scribed in terms of a set of physical parameters, subdivided in intrinsic and extrinsic camera

parameters.

Calibration of the Kinect ToF camera in this project is performed by using the Camera Calibra-

tion Toolbox for MATLAB® [20], which is an implementation of Z. Zhang’s [21] method from

1999. This method takes as input a series of pictures of a checkerboard in various positions and

orientations. After the checkerboard image corners have been extracted by manual tagging, the

toolbox calculates all camera parameters of interest by minimizing the reprojection error. Fig-

ure 3.5 shows the amplitude image of a checkerboard taken by the Kinect ToF camera with the

corners detected. The detected location and orientation of the chekerboard in various poses are

shown in Figure 3.6.

Intrinsic Parameters

The intrinsic camera parameters describe internal optical, geometric, and digital characteristics

of the camera, such as the focal length of the lens and position of the camera principal point.

Real cameras also have some radial and tangential distortions due to the lens curvature. The

focal length (fx , fy) and camera principal point (cx ,cy) forms the camera matrix. By calibration

of the Kinect ToF camera, the camera matrix was found to be:

A =

fx 0 cx

0 fy cy

0 0 1

=

361.7 0 253.8

0 362.2 202.7

0 0 1

 (3.4)

3.2. POINT CLOUD ACQUISITION 23

Figure 3.5: Example amplitude image of a checkerboard acquired by a Kinect ToF camera. The
detected corners are marked "⊕".

Figure 3.6: 3D position of the Kinect ToF camera with respect to the calibration checkerboards.

24 CHAPTER 3. COMPUTER VISION

The calibration toolbox also calculates radial and tangential distortion coefficients, using a dis-

tortion model called "Plump Bob" (radial polynomial + "thin prism"). This model was intro-

duced by Brown [22] in 1966. The radial distortion arises from the symmetry of a photographic

lens, while the tangential distortion is due to imperfect centering of the lens components and

other manufacturing defects. Distortion parameters are presented as a vector of five elements.

Radial factors are denoted with k and tangential with p. Distortion vector for the Kinect ToF

camera was found to be:

kc =
[

k(1) k(2) p(1) p(2) k(3)

]
=

0.06646

−0.02316

−0.00224

−0.00370

0.00000

T

(3.5)

The distortion parameters turned out to be of little importance in order to achieve good mea-

surements, thus the Kinect ToF camera appeared to be well calibrated out of the box. It also

seemed to be most distortions at the image edges, which had little significance in this project

where the middle part was mostly used.

Extrinsic Parameters

The extrinsic parameters indicate the external position and orientation of the camera in the 3D

world or in relation to a known coordinate frame. In this project the camera has been fixed with

its field of view from above over a worktable, on which the robot is welding the component parts

together. Figure 3.7 shows the various coordinate frames and the relations between them.

The Kinect ToF camera is calibrated in relation to a coordinate frame originating from the corner

of the worktable. CξB is the transformation from the camera coordinate frame to the worktable

3.2. POINT CLOUD ACQUISITION 25

{O}

{TCP}
{B}

{C}

OξB

OξTCP
CξB

CξO

Figure 3.7: The relation between camera (C), world/robot (O), worktable (B), and Tool Center
Point (TC P) coordinate frames.

26 CHAPTER 3. COMPUTER VISION

coordinate frame. By using the Calibration Toolbox, this transformation was found to be:

CξB =
R t

0 1

=

−0.217295 0.975797 −0.024544 97.813596

0.976069 0.217000 −0.014146 −291.230500

−0.008478 −0.027031 −0.999599 1391.410813

0 0 0 1

 (3.6)

The transformation OξB is extracted from the KUKA controller after defining the coordinate

frame at the worktable as a Robot Base Frame in the controller. This transformation is in the

robot controller defined by X ,Y , Z , A,B ,C values, but can be described in the form of a square

rigid transformation matrix:

OξB =
R t

0 1

=

−0.2074 −0.9783 0 702.0100

0.9783 −0.2074 0 1449.0900

0 0 1 −17.2500

0 0 0 1

 (3.7)

The pose of the robot relative to the fixed camera is thus given by

CξO = CξB ⊕ (OξB
)−1

. (3.8)

3.3 Point Cloud Processing

Point Cloud Processing involves steps such as point cloud preprocessing and 3D feature estima-

tion. The purpose of this processing is to enhance the quality of the data obtained in the point

cloud acquisition step. When acquired, the point clouds are often degraded due to distortion

and noise in the camera system. Another problem is the massive amount of data captured in

each point cloud, which can greatly reduce the effect of recognition and alignment algorithms.

Down-sampling, smoothing, and estimating local surface geometry are all examples of opera-

tions necessary to make the data in point clouds more meaningful.

3.3. POINT CLOUD PROCESSING 27

3.3.1 Down-Sampling

In order to reduce the computation time and improve the efficiency of subsequent algorithms, it

is necessary to reduce the overall size of the data set. A naive approach for reducing the density

of point clouds is to down-sample by randomly selecting points. This can be done by using

Algorithm A from Vitter [23], which is random sampling with uniform probability.

To preserve more of the information while reducing overall size of the data set, a voxelized grid

approach can be used rather than random sampling. The term voxel is short for "volume pixel",

which can be thought of as a tiny box in three-dimensional space. In the voxelized grid ap-

proach, a 3D voxel grid is created over the input point cloud data. Each voxel then represents a

group of points that are close enough to each other to be approximated (i.e., down-sampled) by

a single point. This point is the arithmetic mean of the group of points, thus their centroid. The

approach is illustrated in Figure 3.8.

An advantage of the voxelized grid method is that the filter is easily parameterized by choosing

the size of the voxels, making it easy to align the density of point clouds from different sources.

The centroid is chosen instead of the center of the voxel because it represents the real environ-

ment more accurately. This is a bit slower than approximating with the center of the voxel, but

it represents the underlying surface more accurately.

3.3.2 Statistical Outlier Removal

Acquired point clouds typically have varying point densities. Measurement errors and noise

can also lead to sparse outliers, which could corrupt and degrade the results from alignment

algorithms. By performing a statistical analysis on each point’s neighborhood, and reject those

which do not meet a certain criteria, some of these problems can be solved.

The outlier removal performed in this project is based on computing the average distance each

point has to its nearest k neighbors. A distance threshold is then determined based on the mean

and standard deviation of all the point-to-neighbors distances. Finally, all of the points are clas-

sified as inlier or outlier according to the threshold, and the outliers are rejected.

28 CHAPTER 3. COMPUTER VISION

Figure 3.8: Voxel grid filtering. The initial points (grey dots) in each voxel with sides r are approx-
imated and replaced by their centroid (red dots).

3.3.3 Moving Least Squares Smoothing

The acquired point cloud can be thought of as a series of implicitly defined surfaces. Although

the point cloud is down-sampled and outliers are removed, these surfaces may still contain im-

perfections and errors. These errors mainly originate from noise intrinsic to the camera and

its interaction with the surfaces being acquired [24]. By locally approximating the surface with

polynomials using moving least squares (MLS), it is possible to achieve a smoother and more

accurate representation.

The MLS method was proposed by Lancaster and Salkauskas in 1981 [25] for smoothing and

interpolating irregularly distributed data. A MLS surface provides an interpolating surface for

a given point cloud by fitting higher order bivariate polynomials to each point neighborhood

locally [26]. MLS is initialized with a weighted least squares formulation for a single point. It is

then moved over the entire domain, computing and evaluating a weighted least squares fit for

each point. A more detailed description of MLS may be found in [27] and is beyond the scope of

this thesis. Figure 3.9 shows an acquired point cloud before and after MLS smoothing.

3.3. POINT CLOUD PROCESSING 29

Figure 3.9: The effect of moving least squares (MLS) smoothing. The left side shows a unfiltered
point cloud where the surface micro structure is revealed. The right side shows the same point
cloud after MLS smoothing.

3.3.4 Estimating Surface Normals

Some of the algorithms evaluated in this work require information about the normal at each of

the points in the point cloud. The local surface around a query point can be represented by a

estimation of a local feature using the neighboring points. An important problem in describing

the geometry of the surface is to first infer its orientation in a coordinate system, that is, estimate

its normal [26]. Surface normals contains a lot of information about the underlying surface and

are heavily used in many areas such as rendering, making visibility computations, answering

inside-outside queries, etc. [28]

The simplest method for estimating surface normals is based on the first order 3D plane fitting

as proposed by [29]. Determining the normal to a point on an estimated surface can be ap-

proximated by the normal of a plane tangent to the surface, thus becoming a least-square plane

fitting estimation for the neighboring points. The tangent plane is represented by a point x and

a normal vector ~n. The query point is denoted p i , the neighboring points Pk . The distance

between a point p i ∈ Pk and the plane is defined as di = (p i − x) ·~n. The x and ~n values are

30 CHAPTER 3. COMPUTER VISION

computed in a least-square sense so that di = 0. If

x = p = 1

k
·

k∑
i=1

p i (3.9)

is the centroid of Pk , the solution for ~n is found by analyzing the eigenvectors and eigenvalues

of the covariance matrix C ∈R3×3 of Pk , expressed as:

C = 1

k

k∑
i=1

ξi ·
(
p i −p

) · (p i −p
)T , C · ~v j =λ j · ~v j , j ∈ {0,1,2} (3.10)

The term ξi is representing a weight for p i , and is usually equal to 1. The eigenvalues of C

are real numbers λ j ∈ R, and the eigenvectors ~v j form an orthogonal frame, corresponding to

the principal components of Pk . If 0 ≤ λ0 ≤ λ1 ≤ λ2, the eigenvector ~v0 corresponding to the

smallest eigenvalue λ0 is approximating +~n or −~n.

3.4 Object Alignment

Object Alignment is the problem of finding a transformation that takes one object pose to an-

other. The goal is to align the objects so that they both share the same coordinate system. In the

most straightforward form, the transformation between the objects consists of rotation, trans-

lation, and perhaps scale. For point clouds, object alignment means to find correct point cor-

respondences in a given dataset, and estimating transformations that can rotate and translate

each individual dataset into a consistent coordinate framework.

The various methods for aligning point clouds can be divided into two main approaches [5].

One is to search for the right transformation by estimating correspondences, then estimating

a transformation given a correspondence, and repeating. Such approaches can be classified as

local optimization methods, and in this category the most popular method is indubitably the

Iterative Closest Point (ICP) algorithm [30]. A global alternative for alignment optimization is

based on searching for small groups of points that correspond, and then use them to estimate

the transformation. SAmple Consensus Initial Alignment (SAC-IA) is an example of the latter.

Development of an offline programmed robotic welding sequence includes establishing the

3.4. OBJECT ALIGNMENT 31

pose of a simulated representation (i.e., a CAD model) of the object to be welded. This pose

usually provides a good initial guess of the true physical object pose, and serves as a good start-

ing point for object aligning by local approaches. The initial alignment is relatively easy to ob-

tain for applications described in this work. ICP, which is considered a fine tuning alignment

method [13], then emerges as an appealing alternative for object alignment. ICP is thus subject

to a more thorough evaluation than SAC-IA, which provides a second point of comparison.

Iterative Closest Point and Sample Consensus Initial Alignment are explained in Section 3.4.1 and

Section 3.4.2 respectively. Due to numerous proposed versions, three different ICP approaches

are evaluated.

3.4.1 Iterative Closest Point

One of the most popular methods for aligning unorganized point clouds is the Iterative Closest

Point (ICP) algorithm, which aims to find the best transformation between two point clouds by

minimizing the distance between corresponding entities. ICP starts with a target and a model

point cloud, and usually an initial guess for the rigid-body transformation between them. The

algorithm then iteratively tries to find the optimal transformation by generating pairs of corre-

sponding points and minimizing an error metric. The correspondences are thus continuously

reconsidered as the solution comes closer to the error metric local minimum. Since the model

cloud points usually are matched to their nearest 3D point in the target cloud in a linear way, ICP

can be considered a brute force method. An example of the ICP method is shown in Figure 3.10.

The ICP algorithm was introduced by Chen and Medioni [33] and Besl and McKay [34] in the

early 90s, but many variations on the basic ICP concept have later been introduced. Most of the

approaches can be summarized in six steps [35]:

1. Selecting a set of points in one of the clouds.

2. Matching these points to samples in the other cloud.

3. Weighting the corresponding point pairs.

4. Rejecting certain pairs.

32 CHAPTER 3. COMPUTER VISION

(a) (b)

Figure 3.10: Iterative Closest Point alignment for the 3D bunny data set originating from Stan-
ford 3D scanning repository [31]. The scene is shown in red, and the model set is shown in blue.
(a) Initial configuration. (b) Result of the ICP algorithm. Figure from [32]

.

5. Assigning an error metric based on the point pairs.

6. Minimizing the error metric.

The standard ICP algorithm aims to find the transformation consisting of a rotation R and a

translation t which minimizes a cost function E(R, t). Given two independent point clouds,

M (model cloud) and D (target or data cloud) describing the same shape, the associated cost

function is as follows:

E(R, t) =
|M |∑
i=1

|D|∑
j=1

wi , j
∣∣∣∣mi − (Rd j + t)

∣∣∣∣2 . (3.11)

Where wi , j is 1 if the i -th point of M describes the same 3D point as the j -th point of T , and

0 otherwise [36]. The various points in the model cloud is denoted mi (i = 1, . . . , |M |), and d j

(i = 1, . . . , |T |) denotes the points in the target cloud [37].

The optimal transformation E(R, t) has to be computed for every iteration. Sine the point corre-

spondence matrix can be represented by a vector containing the point pairs, the cost function

(Eq. 3.11) can be reduced to

E(R, t) ∝ 1

N

N∑
i=1

||mi − (Rd i + t)||2 , (3.12)

3.4. OBJECT ALIGNMENT 33

where N =Σ|M |
i=1Σ

|D|
j=1wi , j .

ICP is applicable when a rough initial alignment is available, due to its susceptibility to local

minima. The algorithm is also time-consuming when applied to large datasets, and it generally

needs many iteration steps until convergence is reached. Various efforts to reduce the extent

of these problems have led to different ICP versions. In this work, three of these contributions

have been tested and evaluated for use in object alignment.

ICP by Singular Value Decomposition

A simple but robust version of the ICP algorithm is based on the work of Arun et al [38] from

1987, where the transformation is estimated by Singular Value Decomposition (SVD). It is shown

by [36] that the error function (Eq. 3.12) for this ICP version becomes:

E(R, t) ∝
N∑

i=1

∣∣∣∣m′
i −Rd ′

i
∣∣∣∣2 with t = c m −Rc t (3.13)

The centroids of the points,

c m = 1

N

N∑
i=1

mi and c t = 1

N

N∑
i=1

d j , (3.14)

is used to decouple the calculation of the rotation R from the translation t .

The algorithm minimizes the error function until the difference between the previous trans-

formation and the current estimated transformation is smaller than an user imposed value. It

is also possible to terminate the algorithm by setting a threshold for how small the sum of Eu-

clidean squared errors should be, or by setting the maximum number of iterations the algorithm

can run.

ICP with Normals

In the standard ICP algorithm as described above, each point in a cloud is paired with the closest

point in another cloud with a point-to-point error metric. Another approach is to use a point-to-

plane error metric, where the sum of squared distance between a point and a tangent plane at its

34 CHAPTER 3. COMPUTER VISION

corresponding point is minimized. The point-to-point error metric has a closed-form solution,

while the point-to-plane metric can be solved by using nonlinear least squares methods, such

as the Levenberg-Marquardt method [39]. The point-to-point ICP is generally iterating faster

than the point-to-plane version, but [35] observed significantly better convergence in the latter,

making the version worthy of being tested in this project.

In this version of the ICP algorithm, the error metric is minimized along surface normals, and

is thus taking advantage of more information at each point. This improvement can be imple-

mented by changing the inner part of the cost function (Eq. 3.12) to

E(R, t) ∝ 1

N

N∑
i=1

∣∣∣∣∣∣ηi

(
mi −

(
Rd i + t

))∣∣∣∣∣∣2
, (3.15)

where ηi is the surface normal at mi .

The algorithm termination criteria corresponds to those of the standard ICP version.

3.4.2 Sample Consensus Initial Alignment

The Sample Consensus Initial Alignment (SAC-IA) algorithm estimate transformations between

point clouds by using geometric point features. The method was proposed by Rusu et al [30],

and is a variant of the Random Sample Consensus (RANSAC) algorithm [40]. SAC-IA uses Fast

Point Feature Histograms (FPFH) as descriptors, which is computed using the estimated surface

normals ni = (nx ,ny ,nz).

The main steps of the algorithm are as follows:

1. Randomly selection of point samples from the model dataset M , at a minimum distance

between points.

2. For each sample, find the most similar samples in the target dataset D by comparing point

features.

3. In case of multiple matches, randomly choose one for each sample.

3.4. OBJECT ALIGNMENT 35

4. Compute the transformation between sample points in M and their correspondences in

D , and evaluate a registration error metric.

The main steps are repeated for a predefined number of iterations, before the best transforma-

tion is chosen and refined by using the Levenberg-Marquardt algorithm.

The accuracy of the SAC-IA alignment depends on point cloud characteristics and the quality

of the computed descriptors. Robust descriptors should lead to good transformation estimates,

descriptors with poor quality may cause unpredictable results.

Fast Point Feature Histograms

Geometrical properties of point cloud points at different surfaces can produce unique signa-

tures when represented by histograms. These signatures provide a good basis for comparisons

in alignment methods like SAC-IA.

FPFH descriptors are pose-invariant local features which represent the underlying surface prop-

erties for all the elements composing a point cloud. These features form a full description of a

point cloud, and can thus be used for several tasks, like aligning a model point cloud to a target

cloud. FPFH descriptors are computed for each point in the given point cloud, and are gen-

erated by comparing the estimated surface normals of a specific point with the normals of the

points within a user-defined search radius. The relation between each point in the surface is

a triplet of angles, {α,φ,θ}. The angles spans between the point normals and d , the Euclidean

distance between points in the surface.

3.4.3 Algorithm Performance

Three variants of ICP and SAC-IA have been tested in order to find the best object aligning algo-

rithm for this project. The robustness and quality of the achieved alignment was of particular

interest. Time needed for estimating a transformation has also been evaluated for the different

algorithms.

36 CHAPTER 3. COMPUTER VISION

Two objects of different complexity have been studied when evaluating the algorithms. The

first object is a simple rectangular steel tube, the second and more complex one is a corner-like

object made up of three thick steel plates. The complex object is shown in Figure 5.1.

For effective comparison of the algorithms robustness and achieved alignment quality, an error

metric called fitness score is calculated for all object alignments. The fitness score represents

the distance error between the aligned clouds after the registration process, and is found by

calculating the sum of squared distances from source points to the corresponding target points.

It is desirable to minimize the fitness score, as a low distance error value represents a closer

pointwise alignment. The robustness can be evaluated by studying the fitness score variation. A

robust algorithm has only minor variations in the achieved fitness scores.

Evaluation of the algorithms have been performed by translating and rotating the components

in small steps. For every step, the fitness score have been calculated and elapsed time measured.

Calculations have been carried out on a computer running Windows 8.1 with a 3.4 Ghz Intel i7

processor. The translations and rotations have been conducted from various starting points on

the worktable. The physical setup is explained in more detail in Chapter 4.

Figure 3.11 shows the fitness score for translations in X and Y directions, and rotation about

the Z axis for the two objects. When evaluating the robustness and accuracy of the algorithms,

it was observed that the standard ICP and nonlinear ICP appeared to have highest accuracy for

translations and rotations of the complex object. This was seen especially for translations up

to about 130 mm, and rotations between −30 and 30 degrees. SAC-IA and ICP with normals

turned out to perform better for the less complex object, and by the SAC-IA method the ob-

ject could be adequately aligned from significantly longer distances. More accurate alignments

from relatively short distances were given higher priority in this work, and from that perspective

the nonlinear ICP version was considered the most useful method, with results slightly better

than the standard ICP. An interesting observation is that all methods seem to perform better

for translations in X than Y direction. This might be a result of the specific setup for the tests

carried out here.

In Figure 3.12 the elapsed alignment times of the four methods are compared for the two objects.

SAC-IA is clearly the slowest by running for more than a second in most cases. ICP with normals

3.4. OBJECT ALIGNMENT 37

0 0,5 1 1,5 2 2,5

0

75

150

Euclidean fitness score [mm]

Tr
an
sl
at
io
n
[m
m
]

0 0,5 1 1,5 2 2,5
0

150

Euclidean fitness score [mm]

Tr
an
sl
at
io
n
[m
m
]

75

(a) (b)

0 0,5 1 1,5 2 2,5

0

50

100

Euclidean fitness score [mm]

Tr
an
sl
at
io
n
[m
m
]

0 0,5 1 1,5 2 2,5
0

150

Euclidean fitness score [mm]

Tr
an
sl
at
io
n
[m
m
]

75

(c) (d)

0 0,5 1 1,5 2 2,5

-‐90

-‐30

30

90

Euclidean fitness score [mm]

Ro
ta
tio
n
[d
eg
]

0 0,5 1 1,5 2 2,5
-‐45

-‐25

0

25

45

Euclidean fitness score [mm]

Ro
ta
tio
n
[d
eg
]

(e) (f)

Figure 3.11: The achieved fitness score for the transformation estimations. In (a), (c), and (e),
transformation of a simple rectangular steel tube is estimated. (b), (d), and (f) is estimations
for a more complex object. Low values represent better estimation, bars running off the chart
represents a failed transformation estimation. In (a) and (b), a X translation is performed. In (c)
and (d), a Y translation, and a rotation about the Z axis is performed in (e) and (f).

38 CHAPTER 3. COMPUTER VISION

is also a relatively slow method, requiring 689 milliseconds on average for all alignments. Stan-

dard ICP is the fastest method at 201 milliseconds on average, with nonlinear ICP just behind

at 256 milliseconds on average. Faster runtimes can be achieved by further preprocessing and

down-sampling of the point clouds. With limited computational resources, these results are a

trade-off between accuracy and speed.

These tests show that SAC-IA is a good method for achieving a rough and initial alignment from

relatively long distances, but is outperformed by the standard ICP and nonlinear ICP methods

when it comes to quality and robustness of the alignment. The tests also show that nonlinear

ICP performs slightly better than standard ICP in terms of alignment robustness, although the

former requires a bit more time. For use in aligning offline programmed welding paths, non-

linear ICP will probably be the best solution given that a good initial alignment is available.

Nonlinear ICP was therefore used in the practical experiments described in Chapter 5.

It must be emphasized that these are just brief tests of the algorithm performances. More thor-

ough evaluations and different conditions might get different results.

3.4.4 Representing the Estimation Results

The resulting transformation estimation from the object alignment has the form of a square

rigid transformation matrix:

T =
R t

0 1

=

r11 r12 r13 px

r21 r22 r23 py

r31 r32 r33 pz

0 0 0 1

 . (3.16)

In this project, the commands are sent to the robot as cartesian corrections. The KUKA KR5

robot system describes orientations by Tait-Bryan angles, using the Yaw Pitch Roll (Z Y X) com-

posite rotation convention. The notation is as follows:

• A represents rotation about the Z -axis.

3.4. OBJECT ALIGNMENT 39

(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Running time for the various algorithms. In (a), (c), and (e), running times of a
simple rectangular steel tube is measured. (b), (d), and (f) is the same measures for a more
complex object. In (a) and (b), a X translation is performed. In (c) and (d), a Y translation, and
a rotation about the Z axis is performed in (e) and (f)

40 CHAPTER 3. COMPUTER VISION

• B represents rotation about the Y -axis.

• C represents rotation about the X -axis.

The rotation matrix R from Eq. 3.16 is thus composed by:

R =

cos(A)cos(B) cos(A)sin(B)sin(C)− sin(A)cos(C) cos(A)sin(B)cos(C)+ sin(A)sin(C)

sin(A)cos(B) sin(A)sin(B)sin(C)+cos(A)cos(C) sin(A)sin(B)cos(C)−cos(A)sin(C)

−sin(B) cos(B)sin(C) cos(B)cos(C)

The ABC angles can be extracted from the estimated transformation in Eq. 3.16:

If (r11 = r21 = 0 ⇔ cosB = 0), then

A = 0,

B = π
2 ,

C = tan2
−1 (r12,r22)

Else, then

A = tan2

−1
(
−r31,

√
r 2

11 + r 2
21

)
,

B = tan2
−1 (r12,r11) ,

C = tan2
−1 (r32,r33)

Chapter 4

Practical Setup

4.1 Robot Cell

The KUKA KR 5 robot used for the welding operations is part of a larger cell containing four

KUKA robots in total. Besides the KR 5 robot, the cell consists of a KR 16 and two KR 120 robots.

All of them are equipped with their own KUKA KR C4 robot controller. Safety features like emer-

gency stop and door switch connects to a common safety PLC over ProfiNET.

Figure 4.1 illustrates the cell layout for this project. The illustration is created by using the

3DAutomate software by VisualComponents and KUKA.Sim.

A Fronius TransSteel 5000 welding machine is also part of the system. It is physically attached

to the KR 5 robot manipulator and communicates with the KR C4 robot controller. Figure 4.2

shows how robot and welding machine are physically connected.

41

42 CHAPTER 4. PRACTICAL SETUP

Figure 4.1: Graphical model of the test cell layout at Department of Production and Quality
Engineering, NTNU. The Kinect is mounted over the worktable, looking down at the table.

4.2. INFORMATION FLOW 43

Figure 4.2: A model showing how the KUKA KR 5 robot is setup and connected to a Fronius
TransSteel 5000 welding machine. Figure from [41].

The welding machine is with the current configuration set up for metal active gas (MAG) weld-

ing. The welding rod thickness is 1.0 mm, and the power source supports welding with currents

up to 500 A [41]. Setup and testing of the welding equipment was carried out in the first period

of the project.

4.2 Information Flow

The system combines data from the depth camera with prior knowledge from a CAD model

and an offline programmed welding sequence to determine where the robot will weld. Existing

KUKA infrastructure has been the basis for the distribution of data in the system. In addition, a

multithreaded C++ program was developed in Microsoft Visual Studio 2013. The C++ program

serves as an interface between the Kinect and the robot, and handles the different algorithms

and calculations. Source code for this program is provided in Appendix A. Requirements for

the interface to work are a computer running Windows 8.1 (due to Kinect driver support) and

a working installation of Point Cloud Library (PCL). By installing the prebuilt binaries from the

44 CHAPTER 4. PRACTICAL SETUP

PCL website all other dependencies are automatically included and installed.

Figure 4.3 gives an overview of the information flow in the system. The purple box contains

the C++ program where the various sub-components and information flow between them are

shown. The CAD model is part of the information flow both through offline programming of the

welding sequence and as input to the object adjustment process. The desired translation and

rotation of welding sequences are sent to the robot controller as X ′,Y ′, Z ′, A′,B ′,C ′ values.

4.2.1 Offline Programming of Welding Sequence

KUKA.Sim is used for both building a 3D model of the robot cell and for developing welding

sequences. When developing these sequences it is required to have a CAD model of the compo-

nent to be welded and the model of the physical robot cell. KUKA.Sim has the ability to import

CAD models from a variety of different 3D computer-aided design applications. In this project,

AutoCAD from Autodesk has been used.

When the welding sequences are developed it is necessary to perform accurate and realistic sim-

ulations of the welding operations. By using the Virtual Robot Controller (VRC) KUKA.OfficeLite

from KUKA, the programming and optimizations can be made on a system that is nearly iden-

tical to the system software for the KR C4 robot controller. The robot application program se-

quences is executed in real time by the VRC, making cycle time optimizations possible.

KUKA.OfficeLite is also a necessity in order to perform post-processing of weld sequences and

generating programs for the robot to execute.

The simulated 3D position and orientation of the component to be welded is required input

parameters for the object alignment. It represents the system’s initial guess for the pose of the

physical component, and any deviations are measured relative to this pose. The input parame-

ters are represented in terms of X ,Y , Z , A,B ,C values.

4.2. INFORMATION FLOW 45

CAD-‐model

Offline Programming
KUKA.Sim & KUKA.OfficeLite

Robot program

KR 5 ARC manipulator,
KUKA KR C4 controller,
Fronius TrS5000 welder

KR C4
Robot Controller

Ku
ka
Va
rP
ro
xy

TC
P/
IP
 S
er
ve
r

C++ Application

OpenShowVar
TCP/IP Client

Object Alignment
&

Calculations

Visualizations

Point Cloud
Grabber

3D camera

CAD ⇾ Point Cloud
Conversion

Programmed
model pose

(X, Y, Z, A, B, C)

Pose corrections
(X’, Y’, Z’, A’, B’, C’)

Welding
parameters

Figure 4.3: Information flow of the developed system. A CAD model and data from the Kinect 3D
camera is the basis for all activities. The developed C++ application estimates a corrected com-
ponent pose, and communicates the pose to the KRC4 robot controller. Offline programmed
welding paths are then performed by the robot, based on the corrected component pose.

46 CHAPTER 4. PRACTICAL SETUP

4.2.2 Robot Program

The programmed robot welding sequence is the main output from the offline programming

process, containing all information necessary for the robot to perform the desired welding op-

erations. In addition to information about planned positions, velocities, and accelerations, the

sequence also includes welding parameters such as current and weaving data for each weld.

The 3D points of the offline programmed robot welding sequence originates from a coordi-

nate frame located on the worktable. If the system detects deviations from the programmed

and simulated component pose, the sequence points are transformed into the new location

and orientation. This transformation is performed by the robot controller at program runtime,

by transforming the origin of the coordinate frame. The new pose is represented in terms of

X ,Y , Z , A,B ,C values and comes from the C++ program.

4.2.3 Point Cloud Capturing

The depth stream from the Kinect 3D camera is running at 30 frames per second. This stream

is captured and converted to point clouds in the C++ application by using the standard driver

provided by Microsoft and the Point Cloud Library framework. The Kinect often require a few

seconds to start and to calibrate itself to give accurate depth measurements, so the depth stream

is started with the C++ program and continues for as long as the program runs.

Capturing and converting the depth stream into point clouds are performed in real time in a

separate thread. The point cloud is also transformed from Kinect’s coordinate frame to the co-

ordinate frame located on the worktable.

It is possible to retrieve two kinds of point clouds from the Kinect, with or without color infor-

mation for each point. If just the depth information is retrieved, the point cloud is stored in

the form PointXYZ. The alternative is PointXYZRGBA, which will give depth data aligned to RGB

data from the high definition RGB camera on the Kinect.

4.2. INFORMATION FLOW 47

Figure 4.4: A CAD model of the KUKA KR5 robot and its resulting point cloud. The CAD model
is here converted to 50 000 points.

4.2.4 Representing the CAD model

A 3D CAD model and information about its pose in the offline programming environment is

required in order to do object alignments. It is preferable to import a CAD model file directly

without having to convert it into another file format or perform other processing. On the other

hand, the object aligning algorithms can only evaluate point clouds. The solution is to import

the file as a CAD model and then convert it to a point cloud by sampling a specified number

of points on all surfaces of the model. This is done by applying a variety of built in methods in

PCL, as well as methods and data structures from the Visualization Toolkit [42] (VTK). Figure

4.4 illustrates a CAD model represented by the initial mesh and its corresponding point cloud.

The developed C++ application has the ability to import CAD files of STereoLithography (STL)

format in ASCII representation. The STL format is also know as Standard Tesselation Language

and is widely used for rapid prototyping, 3D printing and computer-aided manufacturing [43].

It is also a file format supported by most CAD drawing programs, including AutoCad [12] from

Autodesk, which was used to create models and drawings for this project.

48 CHAPTER 4. PRACTICAL SETUP

4.2.5 Object Alignment and Calculations

Object alignment and calculation of the desired corrections of object pose are the core func-

tions in the developed C++ program. Point Cloud Library has several methods and algorithm

implementations for aligning objects. As described in Chapter 3.4.3, the Iterative Closest Point

(ICP) algorithm has been used for the alignment in this project. More specifically, the nonlinear

implementation of ICP with Levenberg-Marquardt optimization backend. If the algorithm has

converged towards a possible solution, it returns a 4×4 transformation matrix. This matrix must

be converted to a representation that the robot controller can utilize when correcting the pose,

i.e., X ,Y , Z , A,B ,C values.

4.2.6 Visualizations

Good visualizations are necessary to assess the results of the object alignment, as ICP can con-

verge to false matches for some challenging poses. Visualizations are also needed for verifying

proper representation of the imported CAD model. Point Cloud Library comes with its own vi-

sualization library, based on VTK [42]. This library allows for interactive rendering of the data

stream from Kinect, the imported CAD model, and the results of the alignment algorithms. Fig-

ure 4.5 shows how the data from Kinect is visualized together with the CAD model. Figure 4.6

shows a captured point cloud and the point cloud representation of the CAD model before and

after alignment.

4.2.7 TCP/IP Communication

Several alternatives were considered for passing information between the KR C4 robot controller

and the computer hosting the Kinect and C++ program. Supplementary software packages pro-

vided by KUKA such as KUKA.RobotSensorInterface (RSI) or KUKA.Ethernet KRL XML [44] makes

it possible to externally influence the program execution. However, these methods are intended

for communicating with sensors in a direct manner, and were considered too complex and time-

consuming to implement for this application.

4.2. INFORMATION FLOW 49

Figure 4.5: The implemented visualization of the Kinect depth data stream with a CAD model
inserted. The calibrated camera coordinate frame origin is marked by the 3D origin marker in
red (X), green (Z), and blue (Z).

Figure 4.6: Object alignment by Iterative Closest Point (ICP). The left side shows the acquired
point cloud and the point cloud representation of the CAD model. The right side shows how
ICP aligns the CAD model to the acquired data.

50 CHAPTER 4. PRACTICAL SETUP

The cross-platform communication interface OpenShowVar is an open-source alternative that

makes it possible to read and write to all global variables of the KR C4 robot controller. The in-

terface is based on a server-client architecture and communicates over TCP/IP. OpenShowVar is

the client side and the server side is KukaVarProxy, a software application installed in the win-

dows backbone of the KR C4 controller. KukaVarProxy can serve up to 10 clients simultaneously

[45] and is implemented through KUKA CrossCom, an internal software interface of the robot

controller.

OpenShowVar is designed as a standalone GUI application. In order to implement it in the

C++ application developed in this project, it became necessary to completely rewrite it as a

pure communication client. The result is a simplified and platform independent C++ client

for KukaVarProxy based on the Boost C++ Library [46]. The Boost library is also one of the PCL

dependencies. The client is written as a simple C++ header file, "BoostClientCross.h", and is

inspired by a corresponding program written in Java, JOpenShowVar [45]. Source code for the

client is provided in Appendix A.

The communication client allows for interaction with the realtime control process of the robot

through KukaVarProxy and KUKA CrossCom. Operations that can be performed includes selec-

tion or cancellation of a specific program, renaming program files, detecting errors and faults,

saving programs, resetting I/O drivers, and reading and writing variables [45]. The latter oper-

ation is the primary application area for this project. Access to a variable is obtained by speci-

fying whether to make a read or write operation, the variable name, and optionally any value to

be written to the variable.

In this project, the communication is based on updating user-defined global variables in the

robot controller. The variables are defined with data type REAL, an approximation of a real

number [44]. A separate variable is defined for each transformation parameter.

4.2. INFORMATION FLOW 51

4.2.8 Fronius TransSteel to Robot Interface

PhD candidate Lars Tingelstad and the undersigned have established the communication be-

tween the KR C4 robot controller and the Fronius TransSteel 5000 welding machine. The Ethernet-

based fieldbus system EtherCAT from Beckhoff Automation is used.

The robot-to-welder interface allows for programming of the welding machine directly in the

robot program sequence. Welding parameters such as welding current, torch speed, weaving

patterns, and pre- and post-flow of the shielding gas can thus be set and adjusted from the

robot programming system.

52 CHAPTER 4. PRACTICAL SETUP

Chapter 5

Results

The system has been evaluated by performing welding operations at various component posi-

tions and orientations. The first step was to test two simple welding operations. A fillet weld

was performed in both horizontal and vertical position for various poses and transformation

estimations. The next step was to conduct a case study where the system is used for welding

together parts of a thruster tunnel.

5.1 Simple Welding Joints

To evaluate the potential of the system in a manner that facilitates good comparisons, a series

of simple welding tests were performed. The main objective was to test the capabilities of the

object alignment process for ordinary welding operations.

The tests have been conducted for two different welding joints, fillet weld in horizontal position

and fillet weld in vertical position. In Figure 5.1, the two welding paths are marked on a sample

component. The horizontal welding joint is performed by following an edge through a 90 degree

corner, and therefore runs in both directions of the XY plane. The vertical welding joint is carried

out almost straight down along the Z axis.

In all tests, the performance have been evaluated by comparing the translated offline programmed

welding path to an optimized welding path. The optimized path was made by manual correc-

53

54 CHAPTER 5. RESULTS

Figure 5.1: The simple welding joints used for testing system performance. Fillet weld in hori-
zontal position is illustrated by brown arrows, fillet weld in vertical position by a blue arrow.

tion of the programmed welding paths. Thus, the measured deviations are found by using the

robot end-effector, i.e., the tip of the welding electrode.

5.1.1 Case I: No Object Alignment

As a reference for the comparisons, the system was first tested without corrections from the

Kinect camera. This corresponds to normal offline robot programming, where welding se-

quences are programmed based on pre-measured or assumed values for the component lo-

cation and orientation.

The results achieved from this method were for the most part an unfinished welding program.

The precision obtained were not good enough to perform welding directly, it was necessary

to adjust the program by updating the programmed points. Programmed and adjusted robot

trajectories for the two welding sequences are shown in Figure 5.2.

5.1. SIMPLE WELDING JOINTS 55

Figure 5.2: The offline programmed welding paths achieved when corrections from the 3D cam-
era are not used.

5.1.2 Case II: 2D Object Alignment

The first test including object alignment was performed with limitations in the estimation of

the object pose. The Kinect camera is placed over the worktable with its field of view oriented

towards the table. Because the camera Z axis is perpendicular to the table surface, a simple 2D

rigid transformation (X ,Y ,Rz) could be estimated as a first step.

When comparing the reference test without corrections with the results from the 2D object

alignment, the latter showed clearly improved welding paths. As shown in Figure 5.3, the ad-

justed trajectories are close to those of the desired welding paths. The accuracy in Z direction is

equivalent of that achieved in the reference test. Correcting the vertical position of the welding

joints are thus necessary.

This limited test method proved to be a good basis for testing and adjusting the point cloud

processing algorithms, and to test the camera calibration.

56 CHAPTER 5. RESULTS

Figure 5.3: The offline programmed, transformed, and optimized welding paths achieved by
using only 2D (X ,Y ,Rz) corrections.

5.1.3 Case III: 3D Object Alignment

In this case, a full 3D transformation (X ,Y , Z ,Rx ,Ry ,Rz) is estimated. The offline programmed

and resulting transformed welding paths are illustrated in Figure 5.4. The transformation esti-

mations are in this case close to the optimized welding paths, although some deviations can be

observed.

Compared to the 2D object alignment, the full 3D alignment shows slightly inferior results for

estimations in X and Y directions. However, the full 3D alignment performs much better in Z

direction and for rotations.

5.1.4 Case IV: 3D Object Alignment from Several Point Clouds

It was observed that the object alignment differed slightly for consecutive estimations of sta-

tionary objects. A solution based on using the pointwise median value of several point clouds

was attempted in order to stabilize the results. A good result which did not take too long were

5.2. SYSTEM PERFORMANCE 57

Figure 5.4: The offline programmed, transformed, and optimized welding paths achieved by
using 3D (X ,Y , Z ,Rx ,Ry ,Rz) corrections.

observed by combining from 7 to 12 point clouds. This solution proved to be relative efficient,

but requires approximately 2 - 5 seconds longer than what was observed in Case III.

The offline programmed and resulting transformed welding paths for this method are illustrated

in Figure 5.5. As in the previous case, a full 3D transformation (X ,Y , Z ,Rx ,Ry ,Rz) is estimated.

Compared to the previous object alignments, this solution performs similar to the 2D object

alignment for estimations in X and Y directions. It is also slightly better than the 3D object

alignment in Case III for estimations in Z direction and for rotations. Of the achieved transfor-

mation estimations, the results form this solution are closest to the optimized welding paths.

5.2 System Performance

In order to better reflect the quality of the results, the absolute errors for the simple welding

joints in Case I to IV (Section 5.1) are shown in Figure 5.6. For the final solution in Case IV, a

mean absolute error of approximately 2.43 mm with a maximum of approximately 5.70 mm was

58 CHAPTER 5. RESULTS

Figure 5.5: The offline programmed, transformed, and optimized welding paths achieved by
using 3D corrections (X ,Y , Z ,Rx ,Ry ,Rz) from 10 point clouds.

achieved. This is not ideal, but it is an acceptable deviation for many welding applications and

promising for future work.

The objects to be aligned in this setup are located on a work table, a surface which is relatively

straight and even along the X and Y directions relative to the camera coordinate system. Con-

sequently, it has for common object poses not been estimated significant rotation of objects

around the X and Y axes (Rx ,Ry). Various object poses with such rotations have been tested,

the results corresponded to transformation estimates for object poses without said rotation. An

example of a transformation estimate of an object rotated about all axes are shown in Figure 5.7.

It can sometimes take a while to grab point clouds from the stream. This is probably because of

the limited computing power in this setup. The Kinect camera generates vast data streams, and

the applied computer fulfills the minimum hardware requirements only by a small margin.

The implemented communication interface is fast. Tests have shown that the robot controller

variables is updated in a few milliseconds. Updating 6 variables (X ,Y , Z ,Rx ,Ry ,Rz) usually takes

less than 20 ms. By using variable arrays, this process could probably be performed even faster.

5.2. SYSTEM PERFORMANCE 59

Figure 5.6: Absolute error observed for the simple welding joint tests. The errors were found
by comparing the offline programmed and transformed welding paths to an optimized welding
path. The optimized path was made by manual correction of the programmed welding paths.

Figure 5.7: Object alignment of component rotated about X ,Y , and Z axes (Rx ,Ry ,Rz). The left
image shows the initial model placement (white) and point cloud data from the Kinect. In the
right image, a successful object alignment has been performed and the resulting pose is shown
in yellow.

60 CHAPTER 5. RESULTS

It is thus a promising interface for future use in a more real-time system.

5.3 Thruster Tunnel Welding

The demonstrator setup has also been tested under conditions similar to what is found in indus-

trial applications. Robotic welding is an important process in the fabrication of components for

the shipbuilding industry. By using a section of a thruster tunnel, the system performance has

been examined for manufacturing actual ship components. The relation between the complete

thruster tunnel and extracted section is shown in Figure 5.8. The section consists of three steel

plates perpendicular to one another.

The thruster section was joined together by tack welding before it was fully welded. All welds

were programmed offline and performed by the robot. The component pose was changed both

before and after tack welding, with the new transformation estimated for each pose.

The experiments performed in the demonstrator have shown that the system functionality is as

expected;

• the point cloud processing finds adequate representations of the object of interest

• the 3D object alignment procedure calculates an updated object pose

• the updated pose is sent to the robot control system

• the robot follows the joints of the object accordingly, and with adequate accuracy.

The final result of the welding process is shown in Figure 5.9. The tack welding was performed

with a welding current of about 160 ampere. When fully welding the component, the current

was about 230 ampere.

5.3. THRUSTER TUNNEL WELDING 61

Figure 5.8: A model of the thruster tunnel. The tunnel section used for system testing is shown
in a magnified view.

62 CHAPTER 5. RESULTS

Figure 5.9: Thruster tunnel section after welding. The welding parameters applied (Current,
waving parameters) are not optimal, but the precision of the welding paths is acceptable.

5.4 Video

A video showing the object alignment and welding of the thruster tunnel section has been pro-

duced and placed in the digital appendix. The video begins by explaining the physical setup in

the robot cell. The following section shows how the object aligning algorithm performs for var-

ious scenarios. This part is a screen recording from the computer, and it displays the graphical

interface of the developed C++ application.

Part three of the video shows how the offline robot programming and welding simulations is car-

ried out. This is also a screen recording of a computer, but this time KUKA.Sim and KUKA.OfficeLite

are demonstrated.

The final part of the video is a recording of the final welding process. Individual parts of the

thruster tunnel are first assembled by spot welding. The component pose is then changed before

the thruster tunnel part is fully welded.

Chapter 6

Concluding Remarks

6.1 Discussion

During the work in this project, it has been noted that planning of experiments ahead in time

had a valuable impact on the flow of the experiments that were carried out. Some of the prob-

lems which came up during the experiments were of such a nature that we were unable to affect

in advance, and what were initially thought to be small obstacles has often turned out to need

more attention and effort than planned. Some of the noted difficulties were related to the de-

livery of necessary equipment for the welding machinery. In addition, some problems were en-

countered during the image processing stage. The Kinect camera generates vast data streams,

and deciding on processing steps that make the data manageable while preserving the essential

information turned out to be time consuming.

Starting out with a barely used robot manipulator and an unused welding machine, and ending

up with a working robotic welding system, has been an interesting journey. The objective of

creating a working system was always the main focus, and has taken up most of the time. The

lack of background knowledge in necessary concepts and software like Microsoft Visual Studio,

Point Cloud Library, C++ and Point Clouds has been a challenge from the start-up. The first

part of the project was almost exclusively spent getting to know the software and programming

interfaces.

63

64 CHAPTER 6. CONCLUDING REMARKS

Implementing the client-server communication between the robot controller and the devel-

oped point cloud acquisition and object alignment application turned out to be a major task.

Several alternatives were considered and examined before OpenShowVar was chosen, which

had to be rewritten in C++ in order to be implemented. With more background knowledge in

C++ programming, this would probably not be such a demanding task to perform.

Perhaps the biggest advantage of using a 3D camera and CAD model for correcting robot pro-

grams is the versatility. This type of system can very easily be reprogrammed for new welding

operations, or it can even be used for other industrial processes such as material handling (pick

and place).

If the developed system were to be used for welding large and complex components, it could

be necessary to estimate the object pose several times throughout the welding operation. The

object alignment algorithms is in its current form probably not performing fast enough for use

in such a near real-time system. Some solutions have been proposed, and with the adequate

time it would be very interesting to implement these in order to achieve higher speed of the

pose estimation. A faster system could potentially also be used for visual servoing and other

autonomous systems.

The comprehensive practical part has seized most of the available time. The theory section

has consequently been limited to some background information and explaining the work per-

formed. In addition to the objectives, a brief comparison between various object aligning al-

gorithms has been performed. With the initial problem formulations fulfilled, the undersigned

believes that the project is successfully completed.

6.2. CONCLUSION 65

6.2 Conclusion

In this thesis, a 3D computer vision solution was developed and used for improving the process

of offline programming a welding robot. The results were demonstrated by programming and

welding a section of a thruster tunnel for ships with corrections from a consumer grade 3D cam-

era. The system is able to detect and correct the welding paths for both translated and rotated

objects.

The results show small variations in the corrected object pose estimation. This appeared to

originate from random variations in the depth data from the Kinect 3D camera, and led to inac-

curate object pose estimations which were not very robust. A solution based on using the point-

wise median value of several point clouds for estimating the object pose proved to be relative

efficient. For this solution, a mean absolute error of approximately 2.43 mm with a maximum of

approximately 5.70 mm was achieved. Whether this is a sufficiently accurate solution will dif-

fer from operation to operation, but for the tasks studied in this project it resulted in adequate

welds.

The speed of the object pose estimation is not very high, but it is believed to be more than

adequate for correcting offline programmed welding paths. Compared to manual correction

of the welding paths, the amount of time saved is noticeable and could facilitate single piece

manufacturing. It is possible to further improve the speed of the pose estimation, and potential

solutions have been proposed.

66 CHAPTER 6. CONCLUDING REMARKS

Figure 6.1: Sketch illustrating how a Kinect 3D camera could be mounted on a KR5 welding
robot manipulator.

6.3 Recommendations for Further Work

It is yet to be tested how the object pose estimation performs if the 3D camera view is partially

blocked, e.g. by the robot arm. Different camera positions and orientations should also be tested

in order to evaluate the system robustness. Mounting the Kinect 3D camera on the robot arm

itself or on a dedicated robot manipulator would allow for estimating object pose from different

point of views, and would make it possible to perform welding on significantly larger objects. A

graphical illustration of how this system might look is given in Figure 6.1.

In order to improve the system without updating the hardware, it is necessary to reduce the

search area of the object aligning algorithms. A possible solution could be to use segmentation

methods for estimating the region of interest. A segmentation algorithm based on colorimetric

similarity and spatial proximity proposed by Zhan et al [47] could be useful in this work.

The CAD model is in the current system converted to a point cloud directly, with all visible and

invisible surfaces represented by points. When comparing the point cloud acquired from the 3D

6.3. RECOMMENDATIONS FOR FURTHER WORK 67

camera with the point cloud converted from the CAD model, the points converted from model

features invisible to the camera can contribute to degrading the object pose estimation. A better

way to represent the model would be to only convert the surfaces visible from the 3D camera’s

point of view. This could be achieved by using the initial guess for object pose and a simulated

camera, and then sample points on the CAD model by ray tracing.

Physical components are rarely a proportionally perfect version of the CAD model it originates

from. Deformations, lengths and angle deviations should be taken into account in the object

pose estimations. A possible solution could be to divide the object into smaller parts, and es-

timate poses at a lower level. Introducing object scale as a factor to estimate would also be

beneficial.

68 CHAPTER 6. CONCLUDING REMARKS

Bibliography

[1] I. Karabegović, E. Karabegović, S. Pašić, and S. Isić, “Worldwide trend of the industrial robot

applications in the welding processes,” International Journal of Engineering and Technol-

ogy, vol. 12, no. 01, 2012.

[2] R. D. Schraft and C. Meyer, “The need for an intuitive teaching method for small and

medium enterprises,” in 2006 ISR Robotik, (Munich, Germany), May 2006.

[3] B. Akan, Human Robot Interaction Solutions for Intuitive Industrial Robot Programming.

Västerås: Mälardalen University, 2012.

[4] E. Trucco and A. Verri, Introductory techniques for 3-D computer vision, vol. 201. Prentice

Hall Englewood Cliffs, 1998.

[5] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach 2nd Ed. Pearson Edu-

action, Inc., 2 ed., 2012.

[6] P. Corke, Robotics, vision and control: fundamental algorithms in MATLAB, vol. 73. Springer

Science & Business Media, 2011.

[7] J. N. Pires, A. Loureiro, and G. Bölmsjo, Welding robots: technology, system issues and appli-

cation. Springer Science & Business Media, 2006.

[8] W. J. Savitch, Absolute C++. Pearson Education, 2006.

[9] P. Neto and N. Mendes, “Direct off-line robot programming via a common cad package.,”

Robotics and Autonomous Systems, vol. 61, no. 8, pp. 896–910, 2013.

69

70 BIBLIOGRAPHY

[10] OSHA, OSHA directive of 1987, Part II-E. Occupational Safety and Health Administration,

OSHA, 1987.

[11] Z. Pan, J. Polden, N. Larkin, S. V. Duin, and J. Norrish, “Recent progress on programming

methods for industrial robots,” in Robotics (ISR), 2010 41st International Symposium on

and 2010 6th German Conference on Robotics (ROBOTIK), June 2010.

[12] Autodesk, Autodesk AutoCAD. Autodesk, 1982-2015.

[13] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl).,” in ICRA, IEEE, 2011.

[14] L. Li, “Time-of-flight camera–an introduction,” Technical White Paper, May, 2014.

[15] F. Brunet, “Contributions to parametric image registration and 3d surface reconstruction,”

University of Auvergne, 2010.

[16] C. Dal Mutto, P. Zanuttigh, and G. M. Cortelazzo, Time-of-flight cameras and microsoft

Kinect™. Springer Science & Business Media, 2012.

[17] A. Payne, A. Daniel, A. Mehta, B. Thompson, C. S. Bamji, D. Snow, H. Oshima, L. Prather,

M. Fenton, L. Kordus, et al., “7.6 a 512× 424 cmos 3d time-of-flight image sensor with multi-

frequency photo-demodulation up to 130mhz and 2gs/s adc,” in Solid-State Circuits Con-

ference Digest of Technical Papers (ISSCC), 2014 IEEE International, pp. 134–135, IEEE, 2014.

[18] V. Castaneda and N. Navab, “Time-of-flight and kinect imaging,” Kinect Programming for

Computer Vision, 2011.

[19] Microsoft, Kinect for Windows SDK. Microsoft, October 2014.

[20] J.-Y. Bouguet, “Camera calibration toolbox for matlab,” 2004.

[21] Z. Zhang, “Flexible camera calibration by viewing a plane from unknown orientations,” in

Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on,

vol. 1, pp. 666–673, IEEE, 1999.

[22] D. C. Brown, “Decentering distortion of lenses,” Photometric Engineering, vol. 32, no. 3,

pp. 444–462, 1966.

BIBLIOGRAPHY 71

[23] J. S. Vitter, “Faster methods for random sampling,” Communications of the ACM, vol. 27,

no. 7, pp. 703–718, 1984.

[24] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva, “Computing and

rendering point set surfaces,” Visualization and Computer Graphics, IEEE Transactions on,

vol. 9, no. 1, pp. 3–15, 2003.

[25] P. Lancaster and K. Salkauskas, “Surfaces generated by moving least squares methods,”

Mathematics of computation, vol. 37, no. 155, pp. 141–158, 1981.

[26] R. B. Rusu, “Semantic 3d object maps for everyday manipulation in human living environ-

ments,” KI-Künstliche Intelligenz, vol. 24, no. 4, pp. 345–348, 2010.

[27] P. Lancaster and K. Salkauskas, Curve and surface fitting. Academic press, 1986.

[28] N. J. Mitra, A. Nguyen, and L. Guibas, “Estimating surface normals in noisy point cloud

data,” International Journal of Computational Geometry & Applications, vol. 14, no. 04n05,

pp. 261–276, 2004.

[29] J. Berkmann and T. Caelli, “Computation of surface geometry and segmentation using

covariance techniques,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,

vol. 16, no. 11, pp. 1114–1116, 1994.

[30] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms (fpfh) for 3d reg-

istration,” in Robotics and Automation, 2009. ICRA’09. IEEE International Conference on,

pp. 3212–3217, IEEE, 2009.

[31] M. Levoy, J. Gerth, B. Curless, and K. Pull, “The stanford 3d scanning repository,”

www.graphics.stanford.edu/data/3dscanrep, 2005.

[32] L. Ding, Y. Peng, C. Shen, and Z. Hu, “Affine registration for multidimensional point sets

under the framework of lie group,” Journal of Electronic Imaging, vol. 22, no. 1, pp. 013022–

013022, 2013.

72 BIBLIOGRAPHY

[33] Y. Chen and G. Medioni, “Object modeling by registration of multiple range images,”

in Robotics and Automation, 1991. Proceedings., 1991 IEEE International Conference,

pp. 2724–2729, IEEE, 1991.

[34] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in Robotics-DL tentative,

pp. 586–606, International Society for Optics and Photonics, 1992.

[35] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algorithm,” in 3-D Digital Imag-

ing and Modeling, 2001. Proceedings. Third International Conference on, pp. 145–152, IEEE,

2001.

[36] A. Nuchter, K. Lingemann, and J. Hertzberg, “Extracting drivable surfaces in outdoor 6d

slam,” VDI BERICHTE, vol. 1956, p. 189, 2006.

[37] Z. Zhang, “Iterative point matching for registration of free-form curves and surfaces,” In-

ternational journal of computer vision, vol. 13, no. 2, pp. 119–152, 1994.

[38] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two 3-d point sets,”

Pattern Analysis and Machine Intelligence, IEEE Transactions on, no. 5, pp. 698–700, 1987.

[39] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Numerical recipes in c: the

art of scientific computing,” Cambridge University Press, Cambridge, MA,, vol. 131, pp. 243–

262, 1992.

[40] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting

with applications to image analysis and automated cartography,” Communications of the

ACM, vol. 24, no. 6, pp. 381–395, 1981.

[41] F. GMBH, Fronius TransSteel Robotics. Fronius GMBH, 2015.

[42] W. J. Schroeder, B. Lorensen, and K. Martin, The visualization toolkit. Kitware, 2004.

[43] C. L. CHUA, K. LIM, and C. R. Prototyping, Principles and Applications. World Scientific,

2003.

[44] K. R. GmbH, KUKA System Software 8.2. KUKA Roboter GmbH, Zugspitzstraße 140, D-

86165 Augsburg, Germany, kss 8.2 si v4 en ed., July 2012.

BIBLIOGRAPHY 73

[45] F. Sanfilippo, L. I. Hatledal, H. Zhang, M. Fago, and K. Y. Pettersen, “Jopenshowvar: an open-

source cross-platform communication interface to kuka robots,” in Proc. of the IEEE Inter-

national Conference on Information and Automation (ICIA), Hailar, China, pp. 1154–1159,

2014.

[46] Boost, “Boost c++ libraries,” http://www.boost.org, 2015.

[47] Q. Zhan, Y. Liang, and Y. Xiao, “Color-based segmentation of point clouds,” Int Arch Pho-

togrammetry, Remote Sens Spat Inf Sci, vol. 38, pp. 248–252, 2009.

74 BIBLIOGRAPHY

Appendix A

Source Code

75

76 APPENDIX A. SOURCE CODE

A.1 Main C++ application

Listing A.1: Source code of main.cpp.

1 /*

2 Source code for Point cloud capturing, CAD-to-Point Cloud conversion,

3 object pose estimatation, and communication with KUKA robot controller.

4

5 Author: Eirik B. Njaastad.

6 NTNU 2015

7 */

8 #include " stdafx . h"

9 #include <ctime>

10 #include <iostream >

11 #include <fstream >

12 #include " BoostClientCross . h" // For communication with the KUKA robot controller

13 #include " kinect2_grabber . h" // Grabber for the Kinect, made by Tsukasa SUGIURA (MIT License)

14 #include <boost / interprocess /sync/ scoped_lock . hpp>

15 #include <Eigen/Core>

16 #include <pcl / io /pcd_io . h>

17 #include <pcl / io / v t k _ l i b _ i o . h>

18 #include <pcl / point_types . h>

19 #include <pcl /common/common. h>

20 #include <pcl / f i l t e r s /passthrough . h>

21 #include <pcl / f i l t e r s / voxel_grid . h>

22 #include <pcl / f i l t e r s / median_fi lter . h>

23 #include <pcl / f i l t e r s / s t a t i s t i c a l _ o u t l i e r _ r e m o v a l . h>

24 #include <pcl / f i l t e r s / extract_indices . h>

25 #include <pcl / features / fpfh . h>

26 #include <pcl / features /normal_3d . h>

27 #include <pcl / features / vfh . h>

28 #include <pcl / features /normal_3d_omp . h>

29 #include <pcl / features /fpfh_omp . h>

30 #include <pcl / kdtree / kdtree_flann . h>

31 #include <pcl / octree / octree . h>

32 #include <pcl / r e g i s t r a t i o n / icp . h>

33 #include <pcl / r e g i s t r a t i o n / icp_nl . h>

34 #include <pcl / r e g i s t r a t i o n / transformation_estimation_2D . h>

35 #include <pcl / r e g i s t r a t i o n / ia_ransac . h>

36 #include <pcl / surface /mls . h>

37 #include <pcl / surface /vtk_smoothing/ v t k _ u t i l s . h>

38 #include <pcl / v i s u a l i z a t i o n / p c l _ v i s u a l i z e r . h>

39 #include <pcl / v i s u a l i z a t i o n / histogram_visualizer . h>

40 #include <vtkTriangle . h>

A.1. MAIN C++ APPLICATION 77

41

42 // Conversion from radians to degrees:

43 #define RADTODEG(rad) (rad * (180/M_PI))

44

45 using namespace std ;

46 using namespace pcl ;

47

48 typedef PointXYZRGB PointT ;

49 typedef PointCloud<PointT> PointCloudT ;

50 typedef pcl : : PointCloud<pcl : : Normal> SurfaceNormalsT ;

51 typedef pcl : : search : : KdTree<pcl : : PointXYZRGB> SearchMethodT ;

52

53 // Booleans for keeping track of what has happened and not:

54 bool saveTargetCloud (false) ;

55 bool loadCADmodel(false) ;

56 bool runICP (false) ;

57 bool ICPRunning (false) ;

58 bool targetCloudPresent (false) ;

59 bool socketConnected (false) ;

60 bool commRob(false) ;

61 bool f i rstRun (true) ;

62 bool cloudNormalsPresent (false) ;

63

64 // Settings for the robot controller communication:

65 BoostClientCross boostcl ientcross ;

66 s t r i n g ip = " 192.168.251.5 " ;

67 s t r i n g port = "7000" ;

68

69 // Name of variables in the robot controller to update:

70 vector <unsigned char> translX = { ’T ’ , ’R ’ , ’A ’ , ’N’ , ’ S ’ , ’L ’ , ’X ’ } ;

71 vector <unsigned char> translY = { ’T ’ , ’R ’ , ’A ’ , ’N’ , ’ S ’ , ’L ’ , ’Y ’ } ;

72 vector <unsigned char> translZ = { ’T ’ , ’R ’ , ’A ’ , ’N’ , ’ S ’ , ’L ’ , ’Z ’ } ;

73 vector <unsigned char> rotateA = { ’R ’ , ’O’ , ’T ’ , ’A ’ , ’T ’ , ’E ’ , ’A ’ } ;

74 vector <unsigned char> rotateB = { ’T ’ , ’R ’ , ’A ’ , ’N’ , ’ S ’ , ’L ’ , ’B ’ } ;

75 vector <unsigned char> rotateC = { ’T ’ , ’R ’ , ’A ’ , ’N’ , ’ S ’ , ’L ’ , ’C ’ } ;

76

77 // Name of the CAD model to import:

78 s t r i n g cadName = "CADmodel . s t l " ;

79 PolygonMesh mesh ;

80

81 // The two viewports in the ICP viewer

82 int v1 (0) ;

83 int v2 (1) ;

84

85 // Creating pointers for the point clouds:

78 APPENDIX A. SOURCE CODE

86 PointCloudT : : Ptr cloud_model (new PointCloudT) ;

87 PointCloudT : : Ptr cloud_target (new PointCloudT) ;

88 PointCloudT : : Ptr cloud_ICP (new PointCloudT) ;

89 // Temporary point clouds for filtering and transformations:

90 PointCloudT : : Ptr downsamplingCloud (new PointCloudT) ;

91 PointCloudT : : Ptr outlierRemovedCloud (new PointCloudT) ;

92 PointCloudT : : Ptr cloud_transformed (new PointCloudT) ;

93 // Point Cloud for holding the CAD mesh:

94 PointCloud<PointXYZ > : : Ptr pointCloudFromMESH(new PointCloud<PointXYZ >) ;

95 // Matrices for holding the camera calibration values and estimated transformation:

96 Eigen : : Matrix4f cal ibrationMatrix = Eigen : : Matrix4f : : I d e n t i t y () ;

97 Eigen : : Matrix4f transformationMatrix = Eigen : : Matrix4f : : I d e n t i t y () ;

98

99 class SimpleViewer {

100 private :

101 v i s u a l i z a t i o n : : PCLVisualizer * KinectStreamVisualizer ;

102 v i s u a l i z a t i o n : : PCLVisualizer * ICPVisualizer ;

103

104 boost : : mutex cloud_mutex_ ;

105 PointCloudT : : ConstPtr cloud_ ;

106 bool r e c i e v e d _ f i r s t _ ;

107

108 public :

109 void run () ;

110 void I terat iveClosestPointfunct ion () ;

111 void OutlierRemovalFilter (const PointCloudT : : ConstPtr& inCloud , int nNeighbors) ;

112 void DownsamplingFilter (const PointCloudT : : ConstPtr& inCloud , const float voxel_grid_size) ;

113 void cloudCB (const PointCloudT : : ConstPtr& cloud) ;

114 void updatePointCloud (const PointCloudT : : ConstPtr& cloud) ;

115 void print4x4Matrix (const Eigen : : Matrix4d & matrix) ;

116 } ;

117

118 // Function for estimating the surface normals for points:

119 PointCloud<PointNormal > : : Ptr estimateSurfaceNormals (const PointCloud<PointNormal > : : ConstPtr& input_cloud , float

radius)

120 {

121 PointCloud<PointNormal > : : Ptr cloud_normals (new PointCloud<PointNormal >) ;

122 copyPointCloud (* input_cloud , * cloud_normals) ; // Make a copy to work on

123

124 NormalEstimation<PointNormal , PointNormal> normal_estimation ;

125

126 // Create an empty kdtree representation, and pass it to the normal estimation object.

127 // Its content will be filled inside the object, based on the given input dataset.

128 pcl : : search : : KdTree<PointNormal > : : Ptr tree (new pcl : : search : : KdTree<PointNormal >()) ;

129 normal_estimation . setSearchMethod (tree) ;

A.1. MAIN C++ APPLICATION 79

130 // Set search radius for neighboring points:

131 normal_estimation . setRadiusSearch (radius) ;

132 normal_estimation . setInputCloud (input_cloud) ;

133 // Computing the normals:

134 normal_estimation . compute (* cloud_normals) ;

135 return (cloud_normals) ;

136 }

137

138 // Function performing the Iterative Closest Point algorithm

139 void SimpleViewer : : I terat iveClosestPointfunct ion () {

140

141 //

142 // This function contains 3 versions of ICP,

143 // only the nonlinear version is currently activated

144 //

145

146 boost : : posix_time : : seconds workTime (3) ;

147 ICPRunning = true ;

148 s t r i n g modelCloudname_ICP = "modelCloud_ICP" ;

149

150 // Optional 2D transformation estimation:

151 //registration::TransformationEstimation2D<PointT, PointT>::Ptr est;

152 //estNorm.reset(new registration::TransformationEstimation2D<PointT, PointT>);

153

154 //

155 // STANDARD ICP

156 //

157 /*

158 cout << "\n\nStarting standard ICP \n";

159 IterativeClosestPoint<PointT, PointT> icp;

160 // Optional 2D transformation estimation:

161 //icp.setTransformationEstimation(est);

162 icp.setInputSource(cloud_model);

163 icp.setInputTarget(cloud_target);

164 //icp.setEuclideanFitnessEpsilon(1e-8); // optional convergence criteria

165 icp.align(*cloud_model);

166

167 if (icp.hasConverged())

168 {

169 cout << "\nStandard ICP converged:" << icp.hasConverged() <<

170 " with the score: " << icp.getFitnessScore() << endl;

171 transformationMatrix = icp.getFinalTransformation().cast<double>();

172 SimpleViewer::print4x4Matrix(transformationMatrix);

173 }

174 else

80 APPENDIX A. SOURCE CODE

175 {

176 PCL_ERROR("\nStandard ICP did NOT converge!");

177 }

178 // VISUALIZING STANDARD ICP:

179 visualization::PointCloudColorHandlerCustom<PointT> single_colorStandardICP(cloud_model, 200, 200, 0);

180 ICPVisualizer->updatePointCloud<PointT>(cloud_model, single_colorStandardICP, modelCloudname_ICP);

181 */

182

183 //

184 // NONLINEAR ICP

185 //

186

187 cout << " \n\n S t a r t i n g NonLinear ICP \n" ;

188 IterativeClosestPointNonLinear <PointT , PointT> NLicp ;

189 // Optional 2D transformation estimation:

190 //NLicp.setTransformationEstimation(est);

191 NLicp . setInputSource (cloud_model) ;

192 NLicp . setInputTarget (cloud_target) ;

193 NLicp . al ign (* cloud_model) ;

194

195 if (NLicp . hasConverged ())

196 {

197 cout << " \nNonLinear ICP converged : " << NLicp . hasConverged () <<

198 " with the score : " << NLicp . getFitnessScore () << endl ;

199 transformationMatrix = NLicp . getFinalTransformation () . cast <double> () ;

200 SimpleViewer : : print4x4Matrix (transformationMatrix) ;

201 }

202 else

203 {

204 PCL_ERROR(" \nNonLinear ICP did NOT converge ! ") ;

205 }

206 // Visualization of nonlinear ICP:

207 v i s u a l i z a t i o n : : PointCloudColorHandlerCustom<PointT> single_colorNonlinearICP (cloud_model , 200 , 200 , 0) ;

208 ICPVisualizer−>updatePointCloud<PointT >(cloud_model , single_colorNonlinearICP , modelCloudname_ICP) ;

209

210 //

211 // ICP WITH NORMALS

212 //

213 /*

214 cout << "\nEstimating target Surface Normals";

215 pcl::PointCloud<pcl::PointNormal>::Ptr normals_target;

216 pcl::PointCloud<pcl::PointNormal>::Ptr normals_model;

217 normals_target = estimateSurfaceNormals(cloud_targetICPwn, 0.005f);

218 cout << "\nEstimating model Surface Normals";

219 normals_model = estimateSurfaceNormals(cloud_modelICPwn, 0.005f);

A.1. MAIN C++ APPLICATION 81

220 // Visualizing the normals:

221 if (!cloudNormalsPresent){

222 ICPVisualizer->addPointCloudNormals<PointNormal>(normals_target, 10, 0.05, "normals", 1);

223 ICPVisualizer->addPointCloudNormals<PointNormal>(normals_model, 10, 0.05, "normals2", 1);

224 cloudNormalsPresent = true;

225 }

226 cout << "\n\nStarting ICP with normals\n";

227 IterativeClosestPointWithNormals<PointNormal, PointNormal> icpWN;

228 // Optional 2D transformation estimation:

229 //registration::TransformationEstimation2D<PointNormal, PointNormal>::Ptr estNorm;

230 //estNorm.reset(new registration::TransformationEstimation2D<PointNormal, PointNormal>);

231 //icpWN.setTransformationEstimation(estNorm);

232 icpWN.setInputSource(normals_model);

233 icpWN.setInputTarget(normals_target);

234 icpWN.align(*normals_model);

235 if (icpWN.hasConverged())

236 {

237 cout << "\nICP with normals converged:" << icpWN.hasConverged() <<

238 " with the score: " << icpWN.getFitnessScore() << endl;

239 transformationMatrix = icpWN.getFinalTransformation().cast<double>();

240 SimpleViewer::print4x4Matrix(transformationMatrix);

241 }

242 else

243 {

244 PCL_ERROR("\nICP with normals did NOT converge!");

245 }

246 // Visualization of ICP with normals:

247 visualization::PointCloudColorHandlerCustom<PointNormal> single_colorICPwn(normals_model, 0, 225, 0);

248 ICPVisualizer->updatePointCloud<PointNormal>(normals_model, single_colorICPwn, modelCloudname_ICP);

249 */

250 ICPRunning = false ;

251 boost : : this_thread : : sleep (workTime) ;

252 }

253

254 // Filter for statistically removing outlier points:

255 void SimpleViewer : : OutlierRemovalFilter (const PointCloudT : : ConstPtr& inCloud , int nNeighbors) {

256 Statist icalOutl ierRemoval <PointT> sor ; // Create the filtering object

257 sor . setInputCloud (inCloud) ;

258 sor . setMeanK (nNeighbors) ; // Sets the number of neighboring points

259 sor . setStddevMulThresh (0 . 1 5) ; // Sets a standard deviation threshold value

260 sor . f i l t e r (* outlierRemovedCloud) ;

261 }

262

263 // Filter for reducing (down-sampling) the number of points in a point cloud:

264 void SimpleViewer : : DownsamplingFilter (const PointCloudT : : ConstPtr& inCloud , const float voxel_grid_size) {

82 APPENDIX A. SOURCE CODE

265 pcl : : VoxelGrid <PointT> vox_grid ; // Using a voxel grid filter

266 vox_grid . setInputCloud (inCloud) ;

267 // The size of the voxels (Equal sided cubes in this case):

268 vox_grid . setLeafSize (voxel_grid_size , voxel_grid_size , voxel_grid_size) ;

269 PointCloudT : : Ptr tempCloud (new PointCloudT) ;

270 vox_grid . f i l t e r (* tempCloud) ; // Performs the filtering

271 downsamplingCloud = tempCloud ;

272 }

273

274 // This function runs continuously, updating the Kinect stream and controlling the other functions:

275 void SimpleViewer : : updatePointCloud (const PointCloudT : : ConstPtr& skyen) {

276

277 // Transforming the grabbed point cloud to the calibrated values:

278 pcl : : transformPointCloud (* skyen , * cloud_transformed , cal ibrationMatrix) ;

279

280 // Setting names for point clouds added to the visualizer:

281 s t r i n g streamCloudname = "streamCloud" ;

282 s t r i n g modelCloudname = "modelCloud" ;

283 s t r i n g modelCloudname_ICP = "modelCloud_ICP" ;

284 s t r i n g targetCloudname = " targetCloud " ;

285 s t r i n g targetCloudnameV2 = " targetCloudV2 " ;

286

287 if (! r e c i e v e d _ f i r s t _) {

288 r e c i e v e d _ f i r s t _ = true ;

289 return ;

290 }

291

292 // Color handler for the current grabbed cloud:

293 v i s u a l i z a t i o n : : PointCloudColorHandlerRGBField<PointT> rgb_s (cloud_transformed) ;

294 if (f i rstRun) {

295 // If first run, add the current grabbed cloud to the Kinect data stream visualizer:

296 KinectStreamVisualizer−>addPointCloud<PointT >(cloud_transformed , rgb_s , streamCloudname , 0) ;

297 firstRun = false ;

298 }

299

300 else {

301 // Update the current grabbed cloud in the Kinect data stream visualizer:

302 KinectStreamVisualizer−>updatePointCloud<PointT >(cloud_transformed , rgb_s , streamCloudname) ;

303 // Saving the grabbed cloud as target cloud for the transformation estimation:

304 if (saveTargetCloud) {

305 * cloud_target = * cloud_transformed ;

306

307 // Filtering the grabbed cloud:

308 SimpleViewer : : DownsamplingFilter (cloud_target , 0.008 f) ; //0.008

309 cout << " Voxel Grid f i l t e r − " ;

A.1. MAIN C++ APPLICATION 83

310 SimpleViewer : : OutlierRemovalFilter (downsamplingCloud , 50) ;

311 cout << " Outl iers removal − " ;

312 SimpleViewer : : DownsamplingFilter (outlierRemovedCloud , 0.004 f) ; //0.005

313 cout << " Voxel Grid f i l t e r − " ;

314 * cloud_target = *downsamplingCloud ;

315

316 // Moving least squares (MLS) filter:

317 pcl : : search : : KdTree<pcl : : PointXYZRGB > : : Ptr MLStree (new pcl : : search : : KdTree<pcl : :

PointXYZRGB>) ; // Create a KD-Tree

318 PointCloud<PointXYZRGB> MLScloud ;

319 MLScloud = * cloud_target ;

320 // Init object (second point type is for the normals, even if unused)

321 pcl : : MovingLeastSquares<pcl : : PointXYZRGB , pcl : : PointXYZRGB> mls ;

322 // Set MLS parameters

323 mls . setInputCloud (cloud_target) ;

324 mls . setPolynomialFit (true) ;

325 mls . setSearchMethod (MLStree) ;

326 mls . setSearchRadius (0 . 0 2) ;

327 // Reconstruct

328 mls . process (MLScloud) ;

329 * cloud_target = MLScloud ;

330 cout << " Least squares smoothing − Done ! " ;

331

332 // Add the filtered cloud to the ICP visualizer viewports:

333 if (! targetCloudPresent) {

334 v i s u a l i z a t i o n : : PointCloudColorHandlerRGBField<PointT> rgb_sveis (cloud_target) ;

335 ICPVisualizer−>addPointCloud<PointT >(cloud_target , rgb_sveis , targetCloudname ,

v1) ;

336 ICPVisualizer−>setPointCloudRenderingProperties (v i s u a l i z a t i o n : :

PCL_VISUALIZER_POINT_SIZE , 5 , targetCloudname) ;

337 ICPVisualizer−>addPointCloud<PointT >(cloud_target , rgb_sveis , targetCloudnameV2

, v2) ;

338 ICPVisualizer−>setPointCloudRenderingProperties (v i s u a l i z a t i o n : :

PCL_VISUALIZER_POINT_SIZE , 5 , targetCloudnameV2) ;

339 targetCloudPresent = true ;

340 }

341 v i s u a l i z a t i o n : : PointCloudColorHandlerRGBField<PointT> rgb_extracted_target (cloud_target

) ;

342 ICPVisualizer−>updatePointCloud<PointT >(cloud_target , rgb_extracted_target ,

targetCloudname) ;

343 ICPVisualizer−>updatePointCloud<PointT >(cloud_target , rgb_extracted_target ,

targetCloudnameV2) ;

344

345 // If ICP is used and model is moved, this resets the model cloud in ICP window

346 v i s u a l i z a t i o n : : PointCloudColorHandlerRGBField<PointT> rgb_model_reset (cloud_model) ;

84 APPENDIX A. SOURCE CODE

347 ICPVisualizer−>updatePointCloud<PointT >(cloud_model , rgb_model_reset ,

modelCloudname_ICP) ;

348

349 saveTargetCloud = false ;

350 }

351 // Loading the CAD model into the scene:

352 if (loadCADmodel) {

353 // Load file

354 pcl : : io : : loadPolygonFileSTL (cadName, mesh) ;

355

356 // Scale the cloud, since the PCL visualizer uses meters and not millimeters as unit:

357 PointCloud<PointXYZ> temp_trans_cloud ;

358 fromPCLPointCloud2 (mesh . cloud , temp_trans_cloud) ;

359 Eigen : : Matrix4f scaleCAD = Eigen : : Matrix4f : : I d e n t i t y () ;

360 float scaleFactor = 0 . 0 0 1 ;

361 scaleCAD (0 , 0) = scaleFactor ;

362 scaleCAD (1 , 1) = scaleFactor ;

363 scaleCAD (2 , 2) = scaleFactor ;

364 pcl : : transformPointCloud (temp_trans_cloud , temp_trans_cloud , scaleCAD) ;

365 toPCLPointCloud2 (temp_trans_cloud , mesh . cloud) ;

366

367 // Add the scaled CAD model mesh to the Kinect stream visualizer:

368 KinectStreamVisualizer−>addPolygonMesh (mesh) ;

369

370 // Sampling 5000 points on the CAD model:

371 vtkSmartPointer <vtkPolyData > meshVTK;

372 VTKUtils : : convertToVTK (mesh, meshVTK) ;

373 uniform_sampling (meshVTK, 5000 , *pointCloudFromMESH) ;

374

375 // Copies the CAD sampled cloud into the model cloud:

376 copyPointCloud (* pointCloudFromMESH , *cloud_model) ;

377

378 // Add the sampled point cloud to the ICP visualizer:

379 ICPVisualizer−>addPointCloud<PointT >(cloud_model , modelCloudname , v1) ;

380 ICPVisualizer−>setPointCloudRenderingProperties (v i s u a l i z a t i o n : :

PCL_VISUALIZER_POINT_SIZE , 5 , modelCloudname) ;

381

382 loadCADmodel = false ;

383 }

384 // This starts the ICP pose estimation:

385 if (runICP) {

386 if (! ICPRunning) {

387 boost : : thread workerThread(&SimpleViewer : : I terat iveClosestPointfunction , this) ;

388 runICP = false ;

389 }

A.1. MAIN C++ APPLICATION 85

390 else {

391 cout << " \ nProcess running , wait a minute . . \ n" ;

392 runICP = false ;

393 }

394 }

395 // Communicating the updated pose to the robot controller:

396 if (commRob) {

397 std : : vector <unsigned char> formatedMessage , receivedMessage ;

398 s t r i n g newVarValueStr ;

399

400 // Open the socket connection if not connected already:

401 if (! socketConnected) {

402 boostcl ientcross . connectSocket (ip , port) ;

403 socketConnected = true ;

404 }

405

406 // Communicating the updated XYZ-ABC values:

407 cout << "X−translat ion , " ;

408 newVarValueStr = boost : : l e x i c a l _ c a s t <str ing >(1000 * transformationMatrix (0 , 3)) ;

409 vector <unsigned char> newVarValueX (newVarValueStr . begin () , newVarValueStr . end ()) ;

410 formatedMessage = boostcl ientcross . formatWriteMsg (translX , newVarValueX) ;

411 receivedMessage = boostcl ientcross . sendMsg(formatedMessage) ;

412

413 cout << "Y−translat ion , " ;

414 newVarValueStr = boost : : l e x i c a l _ c a s t <str ing >(1000 * transformationMatrix (1 , 3)) ;

415 vector <unsigned char> newVarValueY (newVarValueStr . begin () , newVarValueStr . end ()) ;

416 formatedMessage = boostcl ientcross . formatWriteMsg (translY , newVarValueY) ;

417 receivedMessage = boostcl ientcross . sendMsg(formatedMessage) ;

418

419 cout << "Z−translat ion , " ;

420 newVarValueStr = boost : : l e x i c a l _ c a s t <str ing >(1000 * transformationMatrix (2 , 3)) ;

421 vector <unsigned char> newVarValueZ (newVarValueStr . begin () , newVarValueStr . end ()) ;

422 formatedMessage = boostcl ientcross . formatWriteMsg (translZ , newVarValueZ) ;

423 receivedMessage = boostcl ientcross . sendMsg(formatedMessage) ;

424

425 cout << "A−rotation , " ;

426 double Aangle = atan2 (transformationMatrix (1 , 0) , transformationMatrix (0 , 0)) ;

427 newVarValueStr = boost : : l e x i c a l _ c a s t <str ing >(RADTODEG(Aangle)) ;

428 vector <unsigned char> newVarValueA (newVarValueStr . begin () , newVarValueStr . end ()) ;

429 formatedMessage = boostcl ientcross . formatWriteMsg (rotateA , newVarValueA) ;

430 receivedMessage = boostcl ientcross . sendMsg(formatedMessage) ;

431

432 cout << "B−rotation , " ;

433 double Bangle = atan2(−transformationMatrix (2 , 0) , transformationMatrix (0 , 2)) ;

434 newVarValueStr = boost : : l e x i c a l _ c a s t <str ing >(RADTODEG(Bangle)) ;

86 APPENDIX A. SOURCE CODE

435 vector <unsigned char> newVarValueB (newVarValueStr . begin () , newVarValueStr . end ()) ;

436 formatedMessage = boostcl ientcross . formatWriteMsg (rotateB , newVarValueB) ;

437 receivedMessage = boostcl ientcross . sendMsg(formatedMessage) ;

438

439 cout << "C−rotation , " ;

440 double Cangle = atan2 (transformationMatrix (2 , 1) , transformationMatrix (2 , 2)) ;

441 newVarValueStr = boost : : l e x i c a l _ c a s t <str ing >(RADTODEG(Cangle)) ;

442 vector <unsigned char> newVarValueC (newVarValueStr . begin () , newVarValueStr . end ()) ;

443 formatedMessage = boostcl ientcross . formatWriteMsg (rotateC , newVarValueC) ;

444 receivedMessage = boostcl ientcross . sendMsg(formatedMessage) ;

445

446 cout << " \nRobot var iables updated ! " << endl ;

447 commRob = false ;

448 }

449 KinectStreamVisualizer−>spinOnce (1 , true) ;

450 ICPVisualizer−>spinOnce (1 , true) ;

451 }

452 }

453

454 // A function for printing out the alignment results:

455 void SimpleViewer : : print4x4Matrix (const Eigen : : Matrix4d & matrix) {

456 p r i n t f (" Rotation matrix : \ n") ;

457 p r i n t f (" | %6.3 f %6.3 f %6.3 f | \n" , matrix (0 , 0) , matrix (0 , 1) , matrix (0 , 2)) ;

458 p r i n t f ("R = | %6.3 f %6.3 f %6.3 f | \n" , matrix (1 , 0) , matrix (1 , 1) , matrix (1 , 2)) ;

459 p r i n t f (" | %6.3 f %6.3 f %6.3 f | \n" , matrix (2 , 0) , matrix (2 , 1) , matrix (2 , 2)) ;

460 p r i n t f (" Translation vector : \ n") ;

461 p r i n t f (" t = < %6.3f , %6.3f , %6.3 f >\n" , matrix (0 , 3) , matrix (1 , 3) , matrix (2 , 3)) ;

462 }

463 // Function for registering keyboard inputs from user:

464 void keyboardEventOccurred (const v i s u a l i z a t i o n : : KeyboardEvent& event , void* nothing) {

465 if (event . getKeySym () == "n" && event . keyDown ()) {

466 saveTargetCloud = true ;

467 cout << " \nKey ’n ’ pressed , saving a t a r g e t cloud . \n" ;

468 }

469 if (event . getKeySym () == "k" && event . keyDown ()) {

470 loadCADmodel = true ;

471 cout << " \nKey ’ k ’ pressed , loading CAD model into scene . \n" ;

472 }

473 if (event . getKeySym () == "m" && event . keyDown ()) {

474 runICP = true ;

475 cout << " \nKey ’m’ pressed , s t a r t i n g ICP . \n" ;

476 }

477 if (event . getKeySym () == " l " && event . keyDown ()) {

478 cout << " \nKey ’ l ’ pressed , sending corrected pose to robot " ;

479 commRob = true ;

A.1. MAIN C++ APPLICATION 87

480 }

481 }

482

483 void SimpleViewer : : run () {

484 // Creating the two visualizers

485 KinectStreamVisualizer = new v i s u a l i z a t i o n : : PCLVisualizer (" Kinect Stream Viewer") ;

486 ICPVisualizer = new v i s u a l i z a t i o n : : PCLVisualizer (" Point Cloud and ICP Viewer") ;

487

488 // Setting the viewer colors

489 float bckgr_gray_level = 1 . 0 ; // Black

490 float t x t _ g r a y _ l v l = 1.0 − bckgr_gray_level ;

491

492 // Add a coordinate system

493 KinectStreamVisualizer−>addCoordinateSystem (1 . 0) ;

494

495 // Set the desired camera poses

496 KinectStreamVisualizer−>setCameraPosition (2 . 4 7 , 3.20 , 1.80 , −0.26 , −0.31 , 0.91 , 0) ;

497 ICPVisualizer−>setCameraPosition (2 . 4 7 , 3.20 , 1.80 , −0.26 , −0.31 , 0.91 , 0) ;

498

499 // Register keyboard callback

500 KinectStreamVisualizer−>registerKeyboardCallback (keyboardEventOccurred , (void *)&KinectStreamVisualizer) ;

501 ICPVisualizer−>registerKeyboardCallback (keyboardEventOccurred , (void *)&ICPVisualizer) ;

502

503 // Create two verticaly separated viewports for ICPVisualizer

504 ICPVisualizer−>createViewPort (0 . 0 , 0 . 0 , 0 . 5 , 1 . 0 , v1) ;

505 ICPVisualizer−>createViewPort (0 . 5 , 0 . 0 , 1 . 0 , 1 . 0 , v2) ;

506

507 // Calibration values from camera calibration:

508 // Rotation matrix:

509 cal ibrationMatrix (0 , 0) = −0.002569;

510 cal ibrationMatrix (0 , 1) = 0.999933;

511 cal ibrationMatrix (0 , 2) = 0.011321;

512 cal ibrationMatrix (1 , 0) = 0.999570;

513 cal ibrationMatrix (1 , 1) = 0.002898;

514 cal ibrationMatrix (1 , 2) = −0.029180;

515 cal ibrationMatrix (2 , 0) = −0.029211;

516 cal ibrationMatrix (2 , 1) = 0.011241;

517 cal ibrationMatrix (2 , 2) = −0.999510;

518 // Translation vector:

519 cal ibrationMatrix (0 , 3) = 0.176108833 − 0.01326875;

520 cal ibrationMatrix (1 , 3) = 0.260746314 + 0.04710675;

521 cal ibrationMatrix (2 , 3) = 1.364965019;

522

523 while (! KinectStreamVisualizer−>wasStopped ()) {

524 if (cloud_ ! = NULL) {

88 APPENDIX A. SOURCE CODE

525 boost : : interprocess : : scoped_lock<boost : : mutex> lock (cloud_mutex_) ;

526 updatePointCloud (cloud_) ;

527 cloud_ . reset () ;

528 }

529 if (r e c i e v e d _ f i r s t _) KinectStreamVisualizer−>spinOnce (30 , false) ;

530 }

531 }

532

533 void SimpleViewer : : cloudCB (const PointCloudT : : ConstPtr& cloud) {

534 boost : : interprocess : : scoped_lock<boost : : mutex> lock (cloud_mutex_) ;

535 cloud_ = cloud ;

536 }

537

538 //

539 // The following four functions are used for converting the CAD model,

540 // into a point cloud. They are adopted from PCL’s mesh_sampling.cpp

541 //

542

543 // Generates random numbers in a specified range:

544 inline double uniform_deviate (int seed)

545 {

546 double ran = seed * (1 . 0 / (RAND_MAX + 1 . 0)) ;

547 return ran ;

548 }

549

550 // Draw a Sierpinski Triangle by plotting random points:

551 inline void randomPointTriangle (float a1 , float a2 , float a3 , float b1 , float b2 , float b3 , float c1 , float c2 ,

float c3 , Eigen : : Vector4f& p)

552 {

553 float r1 = static_cast<float> (uniform_deviate (rand ())) ;

554 float r2 = static_cast<float> (uniform_deviate (rand ())) ;

555 float r1sqr = s q r t f (r1) ;

556 float OneMinR1Sqr = (1 − r1sqr) ;

557 float OneMinR2 = (1 − r2) ;

558 a1 *= OneMinR1Sqr ;

559 a2 *= OneMinR1Sqr ;

560 a3 *= OneMinR1Sqr ;

561 b1 *= OneMinR2 ;

562 b2 *= OneMinR2 ;

563 b3 *= OneMinR2 ;

564 c1 = r1sqr * (r2 * c1 + b1) + a1 ;

565 c2 = r1sqr * (r2 * c2 + b2) + a2 ;

566 c3 = r1sqr * (r2 * c3 + b3) + a3 ;

567 p [0] = c1 ;

568 p [1] = c2 ;

A.1. MAIN C++ APPLICATION 89

569 p [2] = c3 ;

570 p [3] = 0 ;

571 }

572

573

574 inline void randPSurface (vtkPolyData * polydata , std : : vector <double> * cumulativeAreas , double totalArea , Eigen

: : Vector4f& p)

575 {

576 float r = static_cast<float> (uniform_deviate (rand ()) * totalArea) ;

577

578 std : : vector <double> : : i t e r a t o r low = std : : lower_bound (cumulativeAreas−>begin () , cumulativeAreas−>end () ,

r) ;

579 vtkIdType e l = vtkIdType (low − cumulativeAreas−>begin ()) ;

580

581 double A[3] , B[3] , C[3] ;

582 vtkIdType npts = 0 ;

583 vtkIdType * ptIds = NULL;

584 polydata−>GetCellPoints (el , npts , ptIds) ;

585 polydata−>GetPoint (ptIds [0] , A) ;

586 polydata−>GetPoint (ptIds [1] , B) ;

587 polydata−>GetPoint (ptIds [2] , C) ;

588 randomPointTriangle (float (A [0]) , float (A [1]) , float (A [2]) ,

589 float (B [0]) , float (B [1]) , float (B [2]) ,

590 float (C[0]) , float (C[1]) , float (C[2]) , p) ;

591 }

592

593 // The main function for sampling points on a mesh surface:

594 void uniform_sampling (vtkSmartPointer <vtkPolyData > polydata , s i z e _ t n_samples , pcl : : PointCloud<pcl : : PointXYZ> &

cloud_out)

595 {

596 polydata−>BuildCells () ;

597 vtkSmartPointer <vtkCellArray > c e l l s = polydata−>GetPolys () ;

598

599 double p1 [3] , p2 [3] , p3 [3] , totalArea = 0 ;

600 std : : vector <double> cumulativeAreas (c e l l s −>GetNumberOfCells () , 0) ;

601 s i z e _ t i = 0 ;

602 vtkIdType npts = 0 , * ptIds = NULL;

603 for (c e l l s −>I n i t T r a v e r s a l () ; c e l l s −>GetNextCell (npts , ptIds) ; i ++) {

604 polydata−>GetPoint (ptIds [0] , p1) ;

605 polydata−>GetPoint (ptIds [1] , p2) ;

606 polydata−>GetPoint (ptIds [2] , p3) ;

607 totalArea += vtkTriangle : : TriangleArea (p1 , p2 , p3) ;

608 cumulativeAreas [i] = totalArea ;

609 }

610

90 APPENDIX A. SOURCE CODE

611 cloud_out . points . r e s i z e (n_samples) ;

612 cloud_out . width = static_cast<pcl : : uint32_t > (n_samples) ;

613 cloud_out . height = 1 ;

614

615 for (i = 0 ; i < n_samples ; i ++) {

616 Eigen : : Vector4f p ;

617 randPSurface (polydata , &cumulativeAreas , totalArea , p) ;

618 cloud_out . points [i] . x = p [0] ;

619 cloud_out . points [i] . y = p [1] ;

620 cloud_out . points [i] . z = p [2] ;

621 }

622 }

623

624 int _tmain (int argc , _TCHAR* argv [])

625 {

626 // Starting the viewer windows

627 SimpleViewer viewer ;

628

629 // Connect to grabber

630 Grabber * grab = new Kinect2Grabber () ;

631

632 // Make callback function from member function

633 boost : : function <void (const PointCloudT : : ConstPtr&)> callbackFunct =

634 boost : : bind(&SimpleViewer : : cloudCB , &viewer , _1) ;

635

636 // Connect callback function

637 grab−>registerCal lback (callbackFunct) ;

638

639 // Start receiving point clouds

640 grab−>s t a r t () ;

641

642 // Check if grabber started successfully

643 if (! grab−>isRunning ()) {

644 cout << " \ nFailed to s t a r t Kinect v2 \n" ;

645 }

646 else {

647 cout << " \ nSuccessfully started Kinect v2 \n" ;

648 }

649

650 viewer . run () ;

651

652 boostcl ientcross . disconnectSocket () ; // Disconnects from robot socket connection

653

654 return 0 ;

655 }

A.2. COMMUNICATION CLIENT 91

A.2 Communication Client

Listing A.2: Source code of the robot communication client based on the Boost C++ library.

1 /*

2 Source code for the KUKA robot controller communication client.

3 Author: Eirik B. Njaastad.

4 NTNU 2015

5

6 Communicates with the KUKAVARPROXY server made by

7 Massimiliano Fago - massimiliano.fago@gmail.com

8 */

9

10 #ifndef BOOSTCLIENTCROSS

11 #define BOOSTCLIENTCROSS

12

13 #include <iostream >

14 #include <boost / array . hpp>

15 #include <boost / asio . hpp>

16 #include <boost / foreach . hpp>

17 #include <boost / l e x i c a l _ c a s t . hpp>

18

19 boost : : asio : : io_service iosClientCross ;

20 boost : : asio : : ip : : tcp : : socket socketClientCross (iosClientCross) ;

21 boost : : system : : error_code socketError ;

22

23 class BOOSTCLIENTCROSS{

24 public :

25 // Function for opening a socket connection and initiate the server connection:

26 void connectSocket (std : : s t r i n g ipAddress , std : : s t r i n g portNumber) {

27 socketClientCross . connect (

28 boost : : asio : : ip : : tcp : : endpoint (boost : : asio : : ip : : address : : from_string (ipAddress) ,

29 boost : : l e x i c a l _ c a s t <unsigned>(portNumber))) ;

30 }

31 // For writing a variable to the robot controller, the message to send must contain

32 // a variable name (varName) and a value to write (varValue).

33 std : : vector <unsigned char> formatWriteMsg (std : : vector <unsigned char> varName , std : : vector <unsigned char

> varValue) {

34 std : : vector <unsigned char> header , block ;

35 int varNameLength , varValueLength , blockSize ;

36 int messageId ;

37 BYTE hbyte , lbyte , hbytemsg , lbytemsg ;

38

39 varNameLength = varName . s i z e () ;

92 APPENDIX A. SOURCE CODE

40 varValueLength = varValue . s i z e () ;

41 messageId = 05;

42

43 hbyte = (BYTE) ((varNameLength >> 8) & 0 x f f 0 0) ;

44 lbyte = (BYTE) (varNameLength & 0 x 0 0 f f) ;

45

46 block . push_back ((unsigned char) 1) ;

47 block . push_back ((unsigned char) hbyte) ;

48 block . push_back ((unsigned char) lbyte) ;

49

50 for (int i = 0 ; i != varNameLength ; ++ i) {

51 block . push_back (varName[i]) ;

52 }

53

54 hbyte = (BYTE) ((varValueLength >> 8) & 0 x f f 0 0) ;

55 lbyte = (BYTE) (varValueLength & 0 x 0 0 f f) ;

56

57 block . push_back ((unsigned char) hbyte) ;

58 block . push_back ((unsigned char) lbyte) ;

59

60 for (int i = 0 ; i != varValueLength ; ++ i) {

61 block . push_back (varValue [i]) ;

62 }

63

64 blockSize = block . s i z e () ;

65 hbyte = (BYTE) ((blockSize >> 8) & 0 x f f 0 0) ;

66 lbyte = (BYTE) (blockSize & 0 x 0 0 f f) ;

67

68 hbytemsg = (BYTE) ((messageId >> 8) & 0 x f f 0 0) ;

69 lbytemsg = (BYTE) (messageId & 0 x 0 0 f f) ;

70

71 header . push_back ((unsigned char) hbytemsg) ;

72 header . push_back ((unsigned char) lbytemsg) ;

73 header . push_back ((unsigned char) hbyte) ;

74 header . push_back ((unsigned char) lbyte) ;

75

76 block . i n s e r t (block . begin () , header . begin () , header . end ()) ;

77 return block ;

78 }

79 // For reading a variable from the robot controller, the message to send must contain

80 // the desired variable name (varName).

81 std : : vector <unsigned char> formatReadMsg (std : : vector <unsigned char> varName) {

82 std : : vector <unsigned char> header , block ;

83 int varNameLength , blockSize ;

84 int messageId ;

A.2. COMMUNICATION CLIENT 93

85 BYTE hbyte , lbyte , hbytemsg , lbytemsg ;

86

87 varNameLength = varName . s i z e () ;

88 messageId = 05;

89

90 hbyte = (BYTE) ((varNameLength >> 8) & 0 x f f 0 0) ;

91 lbyte = (BYTE) (varNameLength & 0 x 0 0 f f) ;

92

93 block . push_back ((unsigned char) 0) ;

94 block . push_back ((unsigned char) hbyte) ;

95 block . push_back ((unsigned char) lbyte) ;

96

97 for (int i = 0 ; i != varNameLength ; ++ i) {

98 block . push_back (varName[i]) ;

99 }

100

101 blockSize = block . s i z e () ;

102

103 hbyte = (BYTE) ((blockSize >> 8) & 0 x f f 0 0) ;

104 lbyte = (BYTE) (blockSize & 0 x 0 0 f f) ;

105

106 hbytemsg = (BYTE) ((messageId >> 8) & 0 x f f 0 0) ;

107 lbytemsg = (BYTE) (messageId & 0 x 0 0 f f) ;

108

109 header . push_back ((unsigned char) hbytemsg) ;

110 header . push_back ((unsigned char) lbytemsg) ;

111 header . push_back ((unsigned char) hbyte) ;

112 header . push_back ((unsigned char) lbyte) ;

113

114 block . i n s e r t (block . begin () , header . begin () , header . end ()) ;

115 return block ;

116 }

117 // Send the formatted message and recieve server response:

118 std : : vector <unsigned char> sendMsg(std : : vector <unsigned char> message) {

119 // Send message:

120 const s i z e _ t bytes = boost : : asio : : write (socketClientCross , boost : : asio : : buffer (message)) ;

121

122 // Read answer:

123 boost : : array <unsigned char , 7> recheader ;

124 s i z e _ t sendLen = socketClientCross . read_some (boost : : asio : : buffer (recheader) , socketError) ; //

Header

125 int messageLength = recheader [3] − 6 ;

126 std : : vector <unsigned char> recblock (messageLength) ;

127 s i z e _ t recLen = socketClientCross . read_some (boost : : asio : : buffer (recblock) , socketError) ; //

Message

94 APPENDIX A. SOURCE CODE

128

129 // Error handling:

130 if (socketError == boost : : asio : : error : : eof)

131 std : : cout << "Connection closed cleanly by peer " << std : : endl ;

132 else if (socketError)

133 throw boost : : system : : system_error (socketError) ; // Some other error.

134

135 // Print results (alternative):

136 // std::cout << "received:: " << std::endl;

137 // for (int i = 0; i != recLen; ++i){

138 // std::cout << recblock[i];

139 }

140 }

141 // Function for terminating the socket and thus disconnect from server:

142 void disconnectSocket () {

143 socketClientCross . shutdown (boost : : asio : : ip : : tcp : : socket : : shutdown_both , socketError) ;

144 socketClientCross . close () ;

145

146 // Error handling:

147 if (socketError)

148 throw boost : : system : : system_error (socketError) ;

149 }

150 } ;

151

152 #endif

Appendix B

Digital Appendix

A .zip file is included as digital appendix. This contains:

• The video Kinect_corrected_welding_demo.mp4 showing the welding of a thruster tunnel

section at Department of Production and Quality Engineering, NTNU.

• Source code and a Windows build of the main developed C++ application in this project.

The build requires a Kinect camera and Point Cloud Library 1.7.2 in order to run.

• Source code for the developed communication client, BoostClientCross.h.

• KUKA robot program files for welding, configured for cartesian pose corrections.

• KUKA WorkVisual configuration files for the EtherCat fieldbus used for setup of the robot-

welding machine interface.

• Files for the KUKA.Sim robot cell layout.

95

	Acknowledgment
	Summary
	Sammendrag
	Glossary and Acronyms
	List of Figures
	Introduction
	Background
	Objectives
	Approach
	Structure of the Report

	Robot Programming
	Introduction
	Offline Robot Programming

	Computer Vision
	Introduction
	Point Cloud Acquisition
	Depth images and Point Clouds
	Time-of-Flight Cameras
	Camera Calibration

	Point Cloud Processing
	Down-Sampling
	Statistical Outlier Removal
	Moving Least Squares Smoothing
	Estimating Surface Normals

	Object Alignment
	Iterative Closest Point
	Sample Consensus Initial Alignment
	Algorithm Performance
	Representing the Estimation Results

	Practical Setup
	Robot Cell
	Information Flow
	Offline Programming of Welding Sequence
	Robot Program
	Point Cloud Capturing
	Representing the CAD model
	Object Alignment and Calculations
	Visualizations
	TCP/IP Communication
	Fronius TransSteel to Robot Interface

	Results
	Simple Welding Joints
	Case I: No Object Alignment
	Case II: 2D Object Alignment
	Case III: 3D Object Alignment
	Case IV: 3D Object Alignment from Several Point Clouds

	System Performance
	Thruster Tunnel Welding
	Video

	Concluding Remarks
	Discussion
	Conclusion
	Recommendations for Further Work

	Bibliography
	Source Code
	Main C++ application
	Communication Client

	Digital Appendix

