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Abstract 

To meet the growing demand of energy consumption, oil companies are trying their best to 

produce oil. However, in the past few years, the oil price has kept going down and dampened the 

whole industry. On one side, oil companies need to satisfy the requirement from the market, on 

the other hand, they have to keep proper focus on their own growth. Drilling operations, 

especially offshore are costly. Reducing non-productive time (NPT) will save money. The NPT is 

influenced by downhole restrictions during tripping in and out. Real time drilling data (RTDD) is 

used to monitor the drilling operations. According to the information obtained through RTDD, 

downhole restrictions can be detected in advance. Taking proper counter measures as early as 

possible will avoid restrictions and decrease NPT, thus decrease the cost.  

Hookload (HKL) is an important RTDD parameter. This parameter tells us that how much force in 

total is applied on the hook. Especially while tripping out through curved sections, HKL is an 

important parameter for monitoring downhole restriction such as stuck pipe and uncleaned 

borehole. Predicting normal HKL in curved section with side forces is the topic of this thesis. To 

reach this goal, both experiment and simulation work will be performed and evaluated. 

In the experimental part, a well in the real world, the oil field, was downscaled to lab scale so 

that a proper physical model could be installed in the workshop. Based on the downscaling 

calculation, the setup is designed and a 2D setup draft was drawn. This setup could satisfy current 

experimental requirements. Meanwhile, the design also considered future research. With proper 

adjustment, the setup can test HKL with circulation, cutting transportation, and 3D tripping out. 

In the simulation part, several friction models and torque-drag models were investigated and 

introduced. The mechanism of side force was also analyzed based on soft string model and stiff 

string model. A 2D discrete static model was derived. This model could calculate drag force in 

tripping out considering side force in curved pipe. This static model had a general formula which 

could be applied in arbitrary well sections. A case study showed it had the same accuracy as 

classic soft string models. A 2D discrete dynamic model was derived. This model also considered 

side force in curved section. A case study showed that this dynamic model was valid and could 
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create reasonable simulated HKL. A future step will be to use experimental results for adjusting 

and verifying this mathematical model. 
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1. Introduction 

Energy supply keeps increasing all over the world. Meanwhile, energy demand increases even 

more. How to fill the gap between the supply and the demand is always a tough issue. Different 

solutions are proposed to solve this problem, but none of them have made revolutionary 

breakthrough. In current situation, the fossil fuel occupies the largest fraction of the energy 

consumption. To fill the gap between oil supply and demand, one solution could be to drill more 

wells and produce more crude oil. However, most of the easy and large reservoirs have already 

been produced. We have to search into deep water and in the Arctic area to explore new oilfields. 

The drilling operations in these regions will cost more due to harsh environment and insubstantial 

infrastructure. Therefore, how to control the investment during drilling operation? One 

important method is to reduce the non-productive time (NPT). Real Time Drilling Data (RTDD) 

includes stored information and becomes quite important. Hook Load (HKL) is one of many 

parameters among the RTDD data, especially when tripping in or out of the drillstring. Downhole 

restrictions often become an issue during this operation. By analyzing the abnormal behavior of 

HKL, restrictions can be identified. Operators can provide remedies to prevent downhole 

incidents as early as possible. In order to analyze downhole restrictions and abnormal behavior, 

first we need to understand the normal behavior of tripping-out. 

Both experiment and numerical simulation can help us reaching the goal mentioned above. The 

experimental design is one important task. Currently, the research focuses on the influence of 

the side force during tripping-out of the drillstring. According to theoretical analysis, the side 

force is activated in the curved section. A closer evaluation of the build-up section is thus 

reasonable. Based on a real well drilled in the North Sea, the build-up section is chosen and 

downscaled to laboratory level. The downscaling calculation follows the general downscaling 

principle and considers limitations in lab. The whole setup is also designed with the consideration 

of possible applications and further requirements in future.  

Simulation is another important task in present thesis. For better simulation, different friction 

models and torque-drag models must be investigated. Previous work at the department did not 

consider bend forces very well in the static or dynamic models. The mathematical model applied 
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in this master thesis will consider this issue in a proper way. Based on this mathematical model, 

a simulator will be created. This simulator will test cases based on the experimental design. The 

mechanisms of side forces will also be discussed. High stiffness is an additional reason of side 

force acting in the bottom hole assembly (BHA) when moving it through curved sections. 
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2. Previous work relevant with HKL 

Present chapter will introduce previous work. Many approaches were trying to reveal the 

physical mechanism of HKL, including theoretical analysis, mathematical model, and laboratory 

work. The previous work will be introduced chronologically. 

Johancsik, Friesen, and Dawson (1984) presented the soft string model, which was the first step 

of a full torque and drag model. This model assumed that the drag force should conquer gravity 

and sliding friction along axial direction of the drillstring. This model did not consider other forces 

such as viscous fluid forces. At that time, this model was widely used in the industry. 

Eric Edgar Maidla (1987) finished the dispute about borehole friction assessment, and applied 

friction in a new manner for casing design. Laboratory experiments were executed to evaluate 

the friction factor. Test with water-based mud and three oil-based muds showed that the most 

common friction factor values were between 0.2 and 0.3.  

Ho (1988) modified Johancsik’ soft string model (Johancsik et al., 1984). The improved model 

considered drillstring stiffness, stabilizer placement, and borehole clearance. The model also 

combined high stiffness in the BHA. Therefore, this model could predict torque and drag more 

precisely. 

Falconer, Belaskie, and Variava (1989) noticed that in deviated wells, the surface measured WOB 

and torque could be different from the downhole-measured parameters, and provided two 

equations describing wellbore rotary friction factor and sliding friction factor individually.  

Eric E Maidla and Wojtanowicz (1990) set up a medium-scaled borehole friction simulator that 

had the capabilities to test dynamic filtration. The experiment showed that friction coefficients 

were affected by mud type, mud cake, lubricant addition in low-solid drilling fluid, and so on. The 

experiment also proved as for previously stated findings that the friction factor fell in between 

0.2 and 0.3.  

Quigley, Dzialowski, and Zamora (1990) set up a full-scaled simulator to test wellbore friction in 

high angle holes. In the appendix A in their paper, the friction coefficient model was introduced. 

This model developed two formulas of friction coefficient. One coefficient was for calculating 
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drag force, and the other one was for calculating torque. These two formulas were quite simple. 

Their paper could provide some suggestions for the later experimental design. 

Cordoso Jr, Maidla, and Idagawa (1995) provided the concept of ‘pseudo’ mechanical borehole 

friction factor to detect early borehole problems. For analytical purpose, HKL curves during 

tripping-out in different downhole situations were introduced. The standard HKL tripping curve 

and the problem-free on-site HKL observation both indicated that the HKL initial peak existed. 

The HKL curves mentioned in this paper were very good suggestions for future work.  

B. Aadnoy and Andersen (1998); (2001) presented a set of explicit analytical equations to model 

drillstring tension for hoisting and lowering of the drillstring based on the soft string model. These 

explicit equations could only be applied on specific well profiles. Using these equations, the total 

drag force in a well could be derived by summing drag forces from each section. 

McSpadden, Brown, and Davis (2001) introduced a 3D model for tripping downhole tools in and 

out on a cable. Since the cable was relatively soft, this model was an alternative form of soft 

string drag-torque model. Five real cases were introduced in this paper, all of them showed that 

this method could predict drag force for tripping in and out with cables such as wireline and 

slickline very well. 

Polak and Lasheen (2001) presented a paper about mechanical modelling of pipes in horizontal 

wells. This model was a stiff string model and considered pipe deformation based on the theory 

of large deflections of flexible bars. This model was used to study stresses and strains on two 

pipes that were tested in the field. The theoretical results were compared with the strains 

measured in the field. The comparison between mathematical model and theoretical model were 

in reasonable agreement. 

Andersson, Söderberg, and Björklund (2007) collected several different friction models for sliding 

contacts, like dry, boundary and mixed lubricated contacts. These models could satisfy different 

conditions. This paper separated all the mentioned friction models into two categories. One 

category was for common friction models such as pure sliding and oscillating sliding contacts. The 

other category was for friction at small displacement between sliding contacts. 
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Mason and Chen (2007) improved the previous stiff string model by considering buckling and 

tortuosity effects, and obtained a relatively realistic model. However, these factors were only 

considered with very simple mathematical models.  

Cayeux and Daireaux (2009) developed a new computer system for monitoring friction. This 

system would be used for early downhole problem detection. The RTDD would update 

automatically during the drilling process. This system also calculated HKL using the torque and 

drag model. This system were applied on site, and the result showed very good performance that 

some downhole problems could be predicted in time.  

Mitchell and Samuel (2009) presented a comprehensive review of torque-drag models. This 

paper discussed why the torque-drag model worked well in most cases but no so well in other 

cases. It was determined that the soft string model should consider viscous shear forces. 

B. S. Aadnoy, Fazaelizadeh, and Hareland (2010) presented a new 3D friction model. This model 

only contained two equations. One was for straight-inclined well section. The other one was for 

arbitrary curved well sections. When azimuth did not change, this 3D model could be applied into 

2D case. 

Fazaelizadeh, Hareland, and Aadnoy (2010) presented a paper about the application of a new 3D 

model by B. S. Aadnoy et al. (2010). This paper focused on different effects on the new 3D model. 

Some real cases were also analyzed. 

Wu, Hareland, and Fazaelizadeh (2011) applied the finite element method to the analysis of 

torque and drag. The FEA program developed in this paper was verified by analyzing HKL and 

torque against several real cases. The result showed that the HKL calculation was accurate, and 

the torque calculation was acceptable. 

Cayeux, Daireaux, Dvergsnes, and Saelevik (2012a); (2012b) developed a software for monitoring 

well behavior during drilling operations. This software kept calculating various physical forces 

acting on drillstring. This software collected RTDD data and compared the estimated factors. If 

the calculated physical forces did not agree with the observation from RTDD, it indicated that the 
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well situation had changed. This paper also introduced several real cases. All of these cases 

showed that this software exhibited successful applications on site. 

Glomstad (2012) delivered in her master thesis some interesting HKL analysis. Her workout 

included two parts. Firstly, she programmed a mathematical simulator based on mass-spring 

model simulating tripping-out in problem-free wellbores. Secondly, a laboratory experiment 

involving tripping-out in horizontal wellbore was set up, and tested with different downhole 

situations, for example with or without circulation and washout geometry. By comparing the 

results from experiment and simulation, they matched with each other sufficiently well in 

trouble-free condition. With circulation, the results did not match with each other very well. 

Mme, Skalle, Johansen, and Sangesland (2012) applied a similar mass-spring mode as Glomstad. 

In this model, the drillstring was idealized as a mass-spring chain. All the weight were 

concentrated in mass blocks and the springs were weightless. The mass blocks represented the 

initial force, weight, friction force and so on, while the springs represented the elasticity of the 

drillstring. The detailed mathematical model will be introduced in later chapter. The mass-spring 

model was also the foundation of the mathematical model applied in present thesis. 

Bjerke (2013) analyzed in her master thesis downhole restriction based on HKL signatures in 

RTDD. Her work was based on the work by Cordoso Jr et al. (1995) concerning theoretical HKL 

curve during tripping. She suggested a new system of category to simplify HKL signatures in two 

types; fixed and moveable restrictions. Bjerke’s thesis indicated it was important to divide HKL 

signatures based on physical explanations rather than restrictions. 

Kristensen (2013) provided a HKL mathematical model in his master thesis, which was quite 

different from Bjerke (2013). This model focused on three forces acting on drillpipe. They were 

tension, friction, and acceleration. According to normal tripping-out HKL, the coefficient of each 

force was determined firstly, and then the model could predict HKL for a specific case with proper 

coefficient determined in previous step. This mathematical model was a semi-empirical model. 

The result showed the simulation did not match field data well. It was hard to observe the initial 

HKL peak.  
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Kamel and Yigit (2014) presented their research about rotary drilling in oil well. The mathematical 

model in this paper was a dynamic mathematical model considering Newton’s second law. This 

model was a good example of the mathematical model applied in present thesis. The simulation 

results agreed with observation on site very well. Therefore, the model could optimize drilling 

parameters. 

Sjøberg (2014) finished his master thesis on extending and testing HKL rig on bases of the already 

existing setup. The setup consisted of hoist system, normal-pressured mud circulation system, 

drillstring and BHA, cutting injection system, and control-monitor system. The experiment result 

showed that the setup simulated initial peak of HKL successfully in normal downhole situation. 

This HKL rig provided a very solid foundation for future tests. 

Swahn, Johansen, Hovda, and Skalle (2014) wrote an unpublished document to introduce 

dynamic drag force model. This model consisted of a set of coupled second order nonlinear 

differential equations.  

Xie (2014) improved the existing mathematical model of Swahn et al. (2014) to simulate tripping-

out operations in deviated well, and focused on the initial peak sometimes observed in the HKL. 

The synthetic generated data points had higher data frequency than the real BPOS, thus 

generating smoother curves and making curve fit operations more reliable. With the real BPOS 

as input in the mathematical model, the output, i.e. the simulated HKL curve, was not satisfactory.  

Mitchell, Bjorset, and Grindhaug (2015) presented a new stiff string model. This model 

considered that the drillstring position corresponded with the minimum-curvature wellbore only 

at tool joints. Therefore, the drillstring obtained an additional degree of freedom (DOF). This 

additional freedom could describe bending moment. This paper also provided a real torque case. 

It indicated the result was fair. 
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3. Experimental design 

One purpose of present thesis is to design an experimental test of HKL involving side forces. Two 

steps are necessary for this purpose. First, downscale the buildup section in a real wellbore to 

laboratory scale. Second, design the setup based on the dimensions and practical limitations of 

the laboratory wellbore. 

3.1. Real case for experimental design 

The real case we are interested in is a deviated well C-47 in Gullfask C. The relevant report was 

presented by Christophersen, Gjerde, and Valdem (2007). Figure 1 is the 2D well trajectory 

calculated on basis of survey data. This figure shows that the well trajectory includes four sections: 

vertical, buildup, tangent, and horizontal. Table 1 shows the main survey parameters of these 

four sections.  

 

Figure 1: C47 well trajectory separated into 4 different sections based on the inclination. 

 

Table 1: C47 well trajectory parameters. 

Section Horizontal Slant Buildup Vertical 
Section begin (m) 3238 1408.5 670 0 
Section end (m) 4337.6 3238 1408.5 670 

Section length (m) 1099.7 1829.5 738.5 670 
Inclination lower end (◦) 91.5 63.3 61 1.3 
Inclination upper end (◦) 91.5 63.3 1.3 0 
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Table 2 shows the detailed information about the drillstring. The real drillstring in well C-47 

includes BHA, heavy pipe and normal drillpipe. 

Table 2: C47 drillstring parameters drilling through the horizontal section. 

Section 
Horizontal 

BHA 
Horizontal 

5-in 
Tangent 

5-in 
Tangent 
6-5/8-in 

Buildup 
6-5/8-in 

Vertical 
6-5/8-in 

Section length (m) 128.5 971.2 1150.5 679 738.5 670 
Linear density (kg/m) 72.52 31.06 31.06 43.76 43.76 43.76 

Section weight (kg) 9317 30165 35734 29714 32316 29319 
Cross section (mm2) 8106 3401 3401 4593 4593 4593 
Elastic factor (N/m) 13881217 770432 650355 1488115 1368279 1508149 

 

3.2. Downscaling the buildup section in a real wellbore 

The experimental setup in the lab is based on the well defined above. For experimental design 

purpose and due to the space limitation in the laboratory workplace, Well C-47 have to be 

downscaled to proper dimensions so that the equipment in the workspace can be set up. 

Meanwhile, the experiment in the lab should simulate what happens in field as accurate as 

possible. The experiment will be designed to simulate tripping the drillstring out through the 

buildup section. The downscaling calculation and experimental design focus only on the buildup 

section. The following description is about the major equipment in this experiment, and about 

how these equipment simulate components in a real case. 

 A bent steel pipe in the lab represents the buildup section in a cased hole. A casing with 

relatively small diameter can be processed with bending machine to create the curvature. 

 A mass-spring chain in the lab represents the real drillpipe in the buildup section including 

elasticity. A drillpipe with smaller diameter can be cut into several pieces of mass blocks. 

The mass blocks simulate weight and inertia force of the drillpipe, and springs with proper 

stiffness linked between two neighboring mass blocks simulate elasticity. The mass blocks 

and springs can be welded together or linked with some kind of mechanical gadget.  

 Wirelines will be attached at the upper and the lower end of this mass-spring chain, 

representing the remaining part of drillstring. The wireline will simulate the elasticity of 

the drillstring. At the upper end, the wireline will be linked to the mass-spring chain and 
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the winch providing the drag force. At the lower end, the wireline will be linked to the 

mass-spring chain and a huge mass block. 

 A huge mass block represents the weight of drillstring below the buildup section. 

 A winch represents the top drive system which is responsible for tripping out the 

drillstring. 

The downscaling result is calculated both in a spreadsheet and in MATLAB program. The 

spreadsheet is used for pre-processing the wellbore trajectory data. Programming in MATLAB 

calculates the pulling-out force based on classic soft string model and a discrete static model 

which is going to be introduced in Chapter 5.2.1. The following bullets introduce the detailed 

procedures and the relevant explanations. 

1. Obtaining original information 

The first step is to obtain the relevant information of the buildup section in Well C47 and create 

a new spreadsheet. The relevant information includes survey data along the buildup section, 

dimensions of the wellbore, type of the casing cemented in this section, and type of the drillpipe 

being tripped through this casing. The relevant information is listed in Table 3. 

Table 3: Basic information of the buildup section of Well C47. 

OpenHole 
MD 668 m 

hole size 24 in 
Casing 

OD 20 in 
Grade N-80 grade 

Weight 133 ppf 
ID 18.73 in 

DP 6-5/8 in  
OD 6.625 in 

Weight 29.41 ppf 
ID 5.965 in 
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2. Calculating the 2D well trajectory 

Based on the survey points obtained in the first step, a 2D well trajectory is calculated, i.e. expand 

the 3D well trajectory into a vertical plane along the wellbore. There are two reasons for only 

considering the 2D well trajectory. 

 Azimuth almost keeps constant in the buildup section in this case.  

 The mathematical model applied in present thesis is a 2D dynamic model.  

Therefore, it is reasonable to keep the experiment and the mathematical model in 2D so that 

they can easily verify each other. This mathematical model will only simulate tripping out 

operations. 

3. Downscaling the wellbore to proper dimensions 

This section demonstrates how to downscale the full-size wellbore to a proper dimension so that 

this wellbore, i.e. a bent steel pipe, can be assembled in the lab. After downscaling, the steel pipe 

assembled in lab is around 10 meters with the same shape as in the full-size wellbore. The 

downscaling factor equals to 10-meter bent pipe divided by the measured depth of the buildup 

section on site. In this case, the downscaling factor is 66.8 . Figure 2 shows the well trajectory 

after downscaling. 

 

Figure 2: Lab well trajectory after downscaling. 
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The general principle of downscaling or upscaling requests changing all dimensions 

simultaneously. For a cubic model, if the length of this model decreases 10  times, then the height 

and width should also decrease 10 times. In this case, the diameter of casing is too small 

compared with the length. If the diameter of the casing decreases with the same downscaling 

factor, the pipe will be so small that nothing can pass through it, not to mention a proper mass-

spring chain. Therefore, the experimental design only consider downscaling the casing and the 

drillpipe in length, not in other dimensions. This simplification will bring some challenges and it 

will be discussed later. 

4. Downscaling the drillstring to proper dimensions 

Applying the same downscaling factor, the drillpipe and the casing will have the same length. It 

will cause the mass-spring chain to move out of the casing at the beginning of the tripping out 

operation. The normal situation on site is that only one stand will be tripped out in one operation, 

i.e. around 30 meters. Apply the same downscaling factor to the tripping-out distance, a 

reasonable tripping-out distance in the lab should be 0.5  meter. Therefore, we would better 

decrease the length of the mass-spring chain so that after tripping out the mass-spring chain is 

still inside the bended pipe.  

With the same downscaling factor, the mass-spring chain will have the same length as the casing. 

If the mass-spring chain becomes shorter, a heavier drillpipe should be applied, because the total 

weight of mass-spring chain should be kept constant. For example, a 680-meter 2-3/8 inch 

drillpipe is downscaled to a 10-meter drillpipe. If a 2-7/8 inch drillpipe substitutes this 2-3/8 inch 

drillpipe, 7.1-meter 2-7/8 inch drillpipe will be enough to keep the total weight constant. 

5. Downscaling the elasticity coefficient 

The correct elasticity coefficient of a drillstring after downscaling equals to the original elasticity 

coefficient divided by the downscaling factor. Based on this principle, the spring with the correct 

elasticity coefficient can be calculated. Elasticity coefficient is an external parameter evaluating 

the rigidity of an object. According to the explanation in previous steps, only the length of 

drillpipe need to be downscaled. If we only do so, the elasticity coefficient of this drillpipe will 

increase a lot, since the cross sectional area is still very large. This parameter is not consistent as 
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in the field conditions. An available solution is like this: Since the elasticity coefficient of the 

drillpipe increases a lot, it is reasonable to regard the drillpipe with high elasticity coefficient as 

a rigid body, then the drillpipe can be cut into several pieces as the ‘mass’ in mass-spring chain. 

Springs with proper elasticity coefficient compensate the rigidity of ‘mass’, and finally form the 

mass-spring chain. 

6. Calculating the static drag force 

This step calculates the static drag force in the field and in the lab. Since the drillpipe is only 

downscaled in length and the well trajectory does not change, the drag force in the lab should 

equal to the field drag force divided by the downscaling factor. 

7. Calculating the normal force 

This step calculates the normal force on site and in the lab. In previous step, drag forces at the 

upper and the lower ends are calculated, then the normal force can be calculated on basis of well 

trajectory. This calculation is programmed in MATLAB. The purpose of this calculation is to verify 

the direction of the normal force. If the resultant normal force is negative in the buildup section, 

it indicates that the drillstring is attached to the upper side of the casing and thus indicates the 

side force exists, and vice versa. The calculation shows that the resultant normal force is negative, 

i.e. the mass-spring chain is attached to the upside of the casing. The experimental model can 

test the side force in the bent pipe. 

8. Calculating the weight of mass block 

This step calculates how heavy a huge mass black should be to generate enough tension at the 

lower end. Depending on how the pulley system is, the mass block should at least generate 

enough tension equal to the calculation in step 6. In the spreadsheet, a suggested weight of mass 

block is given assuming a mass block is suspended at the lower end of a fixed pulley as shown in 

Appendix A. 

9. Calculating the tripping-out distance 

Generally, one stand will be dragged out in one tripping-out operation. The length of a real stand 

is about 30 meters. Considering the model only shrinks in length, the tripping distance in the lab 
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equals to the tripping out distance in the field divided by the downscaling factor. The result is 

about 0.5  meter in this case. 

10. Calculating the tripping out velocity 

A reasonable average tripping out velocity recorded in RTDD is about 0.2  m/s. Based on the 

principle mentioned in previous step, an average velocity in lab should be about 0.003  m/s. 

The above procedures are the details and explanations of how to downscale a drillstring and a 

casing in the buildup section. Based on this procedure, all the calculations are performed in the 

spreadsheet and programmed in MATLAB. In Appendix D, the calculations consider five 

drillstrings with different grades while tripping-out in a cased hole in the buildup section. 

3.3. Experimental setup and illustration 

Experimental design is the main task of this thesis. The purpose of this experiment is to test HKL 

during tripping-out operations in bended sections. This experiment will also be used to verify the 

improved mathematical model in present thesis. Furthermore, the experiment should have 

potential for future research. With proper adjustment, the setup can test HKL in different 

scenarios. Currently, the setup is a little bit redundant for this experiment. 

The setup has been downscaled on basis of the previous introduction. The experimental setup 

draft is attached in Appendix A. All the parts in this draft are marked with numbers. This 

subchapter will introduce the details and explanations about every part mentioned in the setup 

draft. Students who responsible for assembling equipment will have a better understanding after 

reading through this subchapter. The explanation for each component will be in numerical order, 

consistent with the serial numbers in the draft. 

1. Curved pipe 

The curved pipe simulates the buildup section. The length and the inclination of this pipe are 

designed based on the previous downscaling calculation. In reality, the buildup section in Well 

C47 is a cemented casing. A casing with proper diameter and curvature is therefore the choice. 

Picking out a casing with proper diameter is not a difficult task. The difficulty is that this casing 

should be bended by means of the bending machine. The bending will change the curvature of 
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the casing into the predicted value. If the casing after the metalwork cannot have exactly the 

same inclination as predicted, the inclination should be measured again, and then updated in the 

simulator. 

2. Transition pipe 

The transition pipe is a short pipe connecting the curved pipe and the horizontal pipe. According 

to the calculation, the inclination at the lower end of curved pipe is not horizontal. The short 

transition pipe will turn the inclination into horizontal and then connect to the horizontal pipe.  

Another function of this transition pipe is to avoid unnecessary friction between the wireline and 

the pipe. An ideal scenario is that only the mass-spring chain is in contact with the upper side of 

the buildup section. However, as can be seen in Appendix A, the wireline may contact the upper 

side of the transition pipe during tripping-out. If the normal force in this section is high enough, 

it will generate high friction. This high friction is difficult to simulate since the mathematical 

model applied in present thesis can only simulate the friction created by the mass rather than 

the spring. 

3. Horizontal pipe 

The horizontal pipe is an extension of the curved pipe. Currently, it has no contribution to this 

experiment, but will be meaningful in future research. So far, the experiment and mathematical 

model only consider about 2D scenario, i.e. only consider inclination change. In reality, azimuth 

change must be a factor to be considered, because the azimuth change will also contribute to 

the side force. A horizontally curved pipe to test side force caused by azimuth change in future 

research will substitute this existing straight horizontal pipe.  

4. Mass-spring chain 

How to make the mass-spring chain and the relevant calculations have already been introduced 

in Chapter 3.2. It will not be repeated here. 

5. Fixed pulley system assembled on scaffold 

There are two sets of fixed pulley system in the draft. One set is assembled on a scaffold marked 

as term No. 18 in Appendix A, which is close to the upper end of the curved pipe. It will change 
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the wireline direction and guide the wireline back to the winch on the floor. The other one is 

installed on a scaffold marked as term No. 19 hoisting the mass block marked as term No. 11. The 

pulley in the draft is a fixed pulley system. Depending on detailed requirement, the fixed pulley 

system can be substituted into a travelling pulley system. 

6. Velocity gauge 

Two velocity gauges will be installed in the setup. One is close to the winch marked as term No. 

17, and the other one is close to the mass block marked as term No. 11. The one close to the 

winch will test tripping-out velocity at surface, and then transfer it into tripping-out distance, i.e. 

the BPOS. The other velocity gauge will only record the velocity of the huge mass block. The 

record from this velocity gauge will not be used as the input, but will be compared with the 

simulated velocity at this point to verify the mathematical model.  

7. Load cell 

Similar to the velocity gauge, two load cells will be installed in the setup. The one close to the 

winch marked as No. 17 will test tripping-out load at surface, i.e. simulating the HKL in reality. 

The other one close to the huge mass block will test the tripping-out load at bottom. The records 

from both load cells will be compared with the simulated load to verify the mathematical model.  

8. Fixed pulleys assembled on surface 

Just as the fixed pulley system assembled on the scaffold marked as term No. 18, the surface 

pulley are responsible for changing the direction of the wireline. 

9. Wireline with specific elasticity 

The main function of the wireline is to pull the mass-spring chain and the mass block. Meanwhile, 

the elasticity of the wireline should be considered. These two wirelines can be regarded as two 

very long springs. The elasticities have to be measured correctly as the input to the simulator. 

10. Fluid piping 

The fluid pipes connect all the circulation equipment. It will not attribute to this experiment, but 

will be necessary in future research when the experiment considers tripping-out combined with 

the circulation or the cutting transportation. 
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11. Mass block 

The mass block simulates the rest of the drillstrings below the buildup section. The weight of this 

mass block has been calculated based on the downscaling principle. In fact, the weight of this 

block should not be exactly same as calculated value, but should be close. The mass block should 

be heavy enough to create enough tension so that the mass-spring chain will be forced in contact 

with the upper side in the curved pipe. 

12. Flowmeter 

The flowmeter is for future research. When drilling fluid circulation is considered in the wellbore, 

fluid flow rate should be recorded. 

13. Two-phase separator 

This equipment is for future research. When considering borehole-cleaning issues, cuttings will 

be added into the circulation. After circulation, the separator will filter the cuttings from the 

drilling fluid. 

14. Mud tank 

After the separator, the drilling fluid will be stored and mixed with the rest of the mud. 

15. Cuttings tank 

After the separator, the cuttings will be stored in a tank. 

16. Mud Pump 

The mud pump provides liquid mass flow. 

17. Winch & Motor 

The winch and the motor have the same function as the drawworks on a drilling rig. It provides 

hoisting power for tripping out the drillstring. The motor should have the ability of adjusting the 

output power so that the tripping-out velocity can be controlled precisely. 

18. Scaffold supporting curved pipe 

The scaffold is a huge steel frame that is strong enough to support the curved pipe, and to 

decrease the vibration caused by the tripping-out operation. The scaffold can be wide enough so 
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that several pipes with different shapes can be assembled in parallel, which is convenient for 

future tests. 

19. Scaffold supporting mass block 

The scaffold supports the pulley system for hoisting the mass block. 

20. Pipe T & seal 

In future research, when fluid circulation is considered, the pipe T and the seal should be 

assembled at the upper and the lower ends of the curved pipe. The pipe T has three outlets. One 

connects the end of pipe, the second one connects the circulation pipe, and the third one is 

plugged with a seal to avoid drilling fluid leaks. A proper hole with isolation material through this 

seal allows wireline move freely. 

This subchapter concludes the detailed instruction for every part mentioned in the setup draft. 

It will be helpful for setting up more experiments in future research. 
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4. Friction model and side force analysis 

This chapter will focus on different friction models and the mechanism behind the side force. 

How to calculate the friction is always important in torque-drag models. Most commonly, a 

constant friction coefficient, i.e. Coulomb friction model, is applied. Besides the constant friction 

model, other friction models will be introduced in this chapter, which can be applied in future 

research. In the last part of this chapter, the side force is briefly analyzed and discussed. 

4.1. Friction models 

The friction always have strong impact on the drilling operation. This brief introduction is mainly 

based on the discussion by Andersson et al. (2007) and on other models applied in the industry. 

At the end of this section, a friction correction factor for tripping-out operations through a cased 

hole will be introduced. 

4.1.1. Coulomb friction model with dynamic and static friction coefficients 

The Coulomb friction model is always applied in dry friction scenarios. This model only considers 

a constant friction coefficient. The HKL should overcome the static friction and enable the 

drillstring to move upwards. With a specific HKL, the velocity of the drillstring is either constant, 

in acceleration, or in deceleration. Equation (1) and (2) are the Coulomb friction model in static 

and dynamic scenarios respectively. 

  NF fF sign v    (1) 

  NF f F sign v     (2) 

 sign v in Equation (2) is the sign function of the tripping-out velocity defined as follow: 

  

1     if 0

0       if 0

1        if 0

v

sign v v

v

 


 
 

  (3) 

In mathematics, the sign function is an odd mathematical function that extracts the sign of a real 

number. This function indicates that the direction of the friction is always opposite to the 

direction of the velocity. Figure 3 shows that the  sign v  function is not a continuous function. 
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Figure 3: Discontinuous sign function (Wikipedia, 2015). 

 

The difference between the dynamic friction coefficient f   and the static friction coefficient f  

is seen in Equation (4) and in Figure 4. 

 f f     (4) 

 

  

Figure 4: The static and the dynamic friction coefficients (Glomstad, 2012). 
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Vibration causes the sliding direction change, which in tern leads to change in the direction of 

friction. The  sign v  function in the Coulomb friction model is used for describing friction 

direction change. The disadvantage of this function is that the simulator will be unstable since 

the function is not continuous. The continuous function  tanhtanh k v  can be applied to solve this 

problem with the disadvantage of increasing the computing time. 
tanhk  determines how quickly 

this function reaches 1  or 1  with respect to the velocity. 

The literature published over the last five years showed that the Coulomb friction model is still 

the primary friction model applied in the torque-drag model. The friction coefficient should first 

match the field observation, and can then be input into the simulator. Another interesting issue 

is that the running-in friction coefficient always differ from the tripping-out friction coefficient. 

This fact indicates that the constant friction coefficient is a very general parameter to describe 

the overall friction situation in the wellbore. The constant friction coefficient does not necessarily 

indicate that the friction follows the Coulomb friction behavior.  

4.1.2. Viscous friction model 

The dynamic friction model is more or less nonlinear. In a dynamic situation, the viscous friction 

model can be applied. This model is described through Equation (5) by Andersson et al. (2007). 

 vF k v    (5) 

Generally, the validity of the viscous friction model is doubtful except for some specific cases. In 

full film contact, the viscous model might represent the friction behavior reasonably. While in 

other situations, it is difficult to describe the friction acceptably with this viscous model. 

4.1.3. Combining the Coulomb friction model and the viscous friction model 

Both the Coulomb friction model and the viscous friction model have their own limitations. A 

combination of these two models is a reasonable choice, expressed through Equation (6). 

 
 

 

min ,1         if 0

min , 1      if 0

c sat

c sat

F k v v
F

F k v v


 

 
   (6) 
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Andersson et al. (2007) used MATLAB/Simulink to test this model. The result shows that this 

model is a good friction model for sliding and oscillating modes. 

4.1.4. The Stribeck friction model 

Drilling operations always require fluid circulation. In such situations, the sliding contact, i.e. the 

interface between drillstring and wellbore, is lubricated with the drilling fluid. This friction model 

is developed by Stribeck (1903) and the detailed description of this model is presented as follow: 

The friction decreases as the sliding velocity increases at the initial moment. Then the sliding 

contact changes into the mixed or full film condition. In this stage, the friction can be constant, 

increased or decreased depending on sliding velocity and on basis of viscous and thermal effects.  

The Stribeck friction model is still very popular nowadays even though other breakthroughs have 

been made in this area. Therefore MathWorks (2015) developed a toolbox for this classic method. 

The typical formula can be written as: 

       vc v

c break cF F F F e sign v fv


       (7) 

Just like the discussion in the Coulomb friction model, the function  sign v  can be replaced by 

the function  tanhtanh k v  to accommodate the sliding direction change. With the proper 

parameters, the Stribeck friction model can describe the relation between the friction and the 

sliding velocity very well. The Coulomb friction model with the constant dynamic and static 

friction coefficients can be regarded as a simplification of the Stribeck friction model. Figure 5 is 

presented by MathWorks (2015), and shows the detailed friction change with respect to the 

increase of the sliding velocity. 
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Figure 5: Stribeck friction model (MathWorks, 2015). 

4.1.5. Friction factor defined by Maidla and Wojtanowicz 

Eric E Maidla and Wojtanowicz (1990) developed a definition of the borehole friction factor. With 

the HKL observed on site and the calculation based on the well trajectory, this borehole friction 

coefficient can be expressed by Equation (8). 

 

 

V D

B D

N

HKL W F

w l dl


 




   (8) 

4.1.6. Friction with the stochastic process 

All the friction models mentioned above consider that the contact surfaces is smooth. However, 

the contact surface in any wellbore is quite complex. From downhole videologs in Figure 6, it is 

clear to see how tough the naked wellbore is. Even in a cased hole, considering cutting 

transportation, the contact surface is not always as smooth as in ideal situations. Friction on this 

contact surface is caused by stochastic interactions between rubbing asperities. Rubbing asperity 

means the contact surface is not absolute smooth, and leads to friction by shearing the surface 

materials, coating, or lubricants (Andersson et al., 2007).  
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Figure 6: Wellbore is not ideally smooth ("Well Integrity Inspection," 2015). 

 

Actually, in most real cases, the friction is more or less stochastic, but most of the friction models 

just use the average friction values to instead of the stochastic values. The stochastic friction 

model can be derived by adding a stochastic friction term to the smooth friction model. The 

general model is presented in Equation (9). 

  ,stoc smoothF F S A frq     (9) 

The stochastic friction term can be determined experimentally. 

4.1.7. Effect of Contact Surface 

Eric E Maidla and Wojtanowicz (1990) discussed the contact surface correction factor during 

tripping-out operations. When a drillpipe moves through a curved surface such as a buildup 

section of a well, the drag force caused by the normal force applied on the contact surface can 

be determined by Equation (10). 

 D s nF C F    (10) 

For approximate evaluation, the correction factor can be defined in Equation (11). 
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4

sC


    (11) 

The correction factor sC  varies between 1 and 4   depending on the contact surface angle  . 

Equation (12) presents the correction factor based on the surface angle. 

 
2 4

1 1sC 
 

 
   

 
   (12) 

The detailed derivation of 
sC  was presented by Eric E Maidla and Wojtanowicz (1990). The 

contact surface is defined by the length of an arc between interception points of the two circles.  

The larger circle is the casing or the formation. The smaller circle is the tubing or the drillstring. 

Initially, these two circles are internally tangent with each other, and then the smaller circle such 

as the drillstring will be deformed by the side force. Figure 7 is presented by Eric E Maidla and 

Wojtanowicz (1990) and shows the physical meaning of the surface contact. 

 

 

Figure 7: Surface of contact (Eric E Maidla & Wojtanowicz, 1990). 

 

4.2. Discussion about the side force 

4.2.1. Geometry stiffness 

The mathematical model applied in present thesis is a combination of the mass-spring model and 

the force analysis with orthogonal decomposition. The drillstring is regarded as a soft string. It 
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means the stiffness of the drillstring will not be considered, i.e. the drillstring is soft. In most of 

the real cases, this assumption is correct, because the drillstring is thousands of meter long and 

the azimuth and inclination change seldom abruptly. The string tension will be the only reason 

causing side force when the well path changes its orientation. Figure 8 is an illustration of this 

theory by Larsen (2015). 

 

Figure 8: Drag force causes side force considering soft drillstring (Larsen, 2015). 

 

From Figure 8, we can derive the geometric stiffness factor. The side force F  at the lateral 

direction is the resultant of the tension or drag force P . When the deflection angel   is known, 

F  can be written as 

 2 sinF P     (13) 

Consider the deflection angel is very small, the following assumption is reasonable. 

 sin     (14) 

And  is defined as 

 
l


     (15) 

Therefore, the side force becomes 

 
2

2 G

P
F P K

l l


       (16) 

Where the geometry stiffness is defined as 
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2

G

P
K

l
    (17) 

Similar analysis has been applied in the mathematical model of this thesis. 

4.2.2. Bending force 

The BHA always has high stiffness. The high stiffness indicates that this part of the drillstring is 

not ‘soft’. It is reasonable to consider bending forces in the high-stiffness string such as in the 

BHA. The textbook, Mechanics of Materials by Hibbeler (2010), presented the beam stiffness 

theory. One scenario of this theory shown in Figure 9 describes that the concentrated normal 

force applied in the middle of the beam.  This scenario is quite similar with what happens in the 

drillstring when the drillstring is forced to attach the wall of the wellbore during the tripping 

through a bend or a dog-leg. P  in Figure 9 is the concentrated normal force. In the beam stiffness 

theory, the maximum deflected angel is derived from the concentrated normal force. For a 

drillstring, the survey data measures the inclination change. According to the inclination change, 

the maximum deflected angel for a specific drillpipe can be determined, then the normal force 

P  will be derived accordingly. 

 

 

Figure 9: Concentrated bending force causes beam bent (Hibbeler, 2010). 

 

The following equations are the detailed derivation in the 2D situation: 

The inclination change between two neighboring survey points is as follows: 

 2 1        (18) 
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Assume the side force is concentrated in the middle of this string, and then the maximum 

inclination changes at the two ends are equal to each other. 

 int
2

endpo





    (19) 

The deflection angel in this scenario. 

 

2

int
16

endpo

PL

EI



    (20) 

Because intendpo is known, the normal force caused by bending is: 

 
int

2

16 endpo EI
P

L





   (21) 

Here we only consider the absolute value, and substitute the expression for the maximum 

deflection angel. The side force is: 

 2

8 EI
P

L





   (22) 

When any part of a drillstring with high stiffness is forced to attach the wall of the well, the 

additional side force in Equation (21) can be considered. In normal situations, i.e. in the soft string 

model, only the side force caused by the geometry stiffness need to be considered. 
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5. Mathematical models 

This chapter will introduce several torque-drag models developed in the recent thirty years, and 

then introduce the models applied in present thesis. All of these mathematical models can solve 

the drag force during tripping operations. For the models developed in previous works, a brief 

introduction with important formulas will be shown. For the models applied in present thesis, a 

detailed explanation and derivation will be given. The mathematical models applied in present 

thesis are the fundament of the programming in Chapter 6. The author will introduce all the 

models chronologically. 

5.1. Torque and drag models developed previously 

5.1.1. Soft string model 

Johancsik et al. (1984) introduced a soft string model. This model assumed that the axial friction 

and the weight of the drillstring were causing the drag force and the side force. The axial friction 

is induced by gravity, normal force and tension caused by gravity. An equation to calculate the 

3D normal force was also provided in their paper. This method is one of the first contributions to 

understand the drag force in an arbitrary wellbore. Figure 10 shows the forces applied in the soft 

string model including the drag forces at the two ends, the normal force, and the friction force 

caused by the normal force. The side force part comes in Chapter 4.2.1. 

 

Figure 10: The forces applied in a soft string model (Johancsik et al., 1984). 
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As can be seen in Figure 10, the pipe represents one joint of the drillstring. In order to calculate 

the total force during tripping-out, i.e. the HKL, it is better to calculate the drag force from the 

bottom to the top of the well. The resultant force at any section is governed by the Equation ((23). 

 
 cost t t nF F F W F     

   (23) 

Equation (24) defines the normal force. 

 

   
2 2

sin sin

2

n t t

t t t

t t t

t t t

F F W F   

 


  

  







       
   




  

  
   (24) 

This model is simpler than the later developed mathematical models, but the concept of the soft 

string developed in this model is meaningful for future research and application in the industry. 

5.1.2. 2D and 3D borehole friction model developed by Maidla 

Eric Edgar Maidla (1987) presented a general method to predict the drag force. This method has 

two sets of equations applied in the 2D and the 3D case, separately. Both sets are based on the 

analytical description of the well profile. The following factors are considered in this model: 

 Spatial changes 

 Buoyancy effect 

 Coulomb friction model 

 Hydrodynamic friction 

 Effect of the pipe-borehole contact surface 

However, the torsion and the spring effects are not considered in this model. The 3D model is 

like this: 

      A
U B S N

dF
q l C l q l

dl
     (25) 

and 
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      
 

 

2

2 A

N b p

F l
q l q l q l

R l

 
   

  
   (26) 

where 

 

   

   

   

U

b

p

q l q u l

q l q b l

q l q p l

 

 

 

   (27) 

  
1

1 1 1arccos cos sin sin cos cos

i i

i i i i i i

l l
R

     


  




      
   (28) 

The positive sign indicates upward movement, and vice versa. The vector products indicate that 

the pipe weight distribution on the trihedron coordinator at any point are based on the well 

trajectory. It is reasonable to apply the above 3D formulas at any survey point. 

For the 2D case, the vector products in the above formulas will be simplified to become the 

explicit algebraic function, and the relevant equation is as follows: 

     
1 1 1 2 11 sin sin 2 cos cos

1i iA A B i i B i i

B

qR
F AF C A C A     

          
   (29) 

 1exp B i iA         for tripping-out operations and  1exp B i iA        for tripping-in 

operations. The constant 1C  and 2C  represent the sign functions depending on the location of 

the pipe in the build-up or the drop-off section. The radius of the bended section is as follows: 

 
1

1

i i

i i

l l
R

 








   (30) 

During the well planning stage, this 2D model is accurate enough for the casing design. It is the 

first time that a torque-drag model provided a method to analyze forces based on trihedron 

coordinator. 

5.1.3. The explicit analytical model based on different well sections 

B. Aadnoy and Andersen (1998) presented an explicit method for torque-drag calculation based 

on the soft string model. This method finally derived the different analytical equations for the 

different well trajectories with the different operations, for example, a specific equation for the 
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pulling force in the build-up section. Figure 11 and Figure 12 presented the forces and geometries 

in a straight hole and in a build-up section. 

 

 

Figure 11: Forces and geometry in straight hole (Aadnøy & Andersen, 2001). 

 

 

Figure 12: Forces and geometry in build-up section (Aadnøy & Andersen, 2001). 

 

The formula for the pulling force in a straight inclined section is presented in Equation (31). This 

equation is also valid for the vertical section. 

  2 1 cos sinF F w s          (31) 

For the build-up section, Equation (32) is applied, which is: 

 
   2 1 2 1

2 1 2 1sin sinF Fe wR e
     

 
      

     (32) 
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Notice that this equation cannot be simplified into Equation (31), if the inclination at the upper 

end and the lower end are the same. It indicates that these two formulas only suit their own 

situation. Other equations in this model will not be presented here since they are not relevant to 

this thesis. 

5.1.4. 3D analytical model for the wellbore friction 

B. S. Aadnoy et al. (2010) developed a 3D model on basis of their previous work (1998). This 

model can predict the drag force in an arbitrary wellbore trajectory depending on two general 

equations. We will not express the torque equations (not relevant in present thesis). This model 

requires that the dogleg should be calculated first. 

  1 2 1 2 1 2cos sin sin cos cos cos            (33) 

The equation of the drag force in straight inclined wellbores is the same as the equation used in 

the previous model, which is: 

  2 1 cos sinF F lw          (34) 

For the curved trajectories, a general equation will be applied. 

 
2 1

2 1

2 1

sin sin
F F e w L

   


 

  
     

 
   (35) 

where the positive sign indicates tripping-out, and vice versa. 

5.1.5. Mass-spring model 

Mme et al. (2012) and Glomstad (2012) developed this mass-spring model. They tried to create 

a reliable mathematical model matching field observations considering drillstring elasticity. 

The mass-spring model discretizes the drillstring as a series of the mass components linked by 

springs between each pair of neighboring mass components. The mass components simulate the 

forces like gravity, friction, inertial force, buoyancy and fluid drag force, and the springs provide 

the elasticity. The physical model is described in Figure 13 by Glomstad (2012). 
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Figure 13: The draft of mass-spring model (Glomstad, 2012). 

 

The upper string in Figure 13 describes the initial state of the drillstring, and the lower string 

describes the state after the first three mass components have been activated. During tripping-

out, the drillstring is elongated due to the elasticity. The following set of equations represents 

the mass-spring model. 
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   (36) 

In Equation (37), the acceleration term is derived from the second derivative with respect to the 

position of the mass block. x  denotes the position of specific mass block. 

 

2

2

v x
a

t t

 
 
 

   (37) 

Hook’s Law describes the spring force in Equation (36). 1 2 ( 2)( 1)n n n nx x      indicates the spring 

displacement. fF  indicates the frictional force. DnF  indicates the fluidic drag force. Taking all the 

forces into the consideration, the HKL at time t  is 

 ,

1

N
t t t t

weight spring f n D BHAn

n

HKL F F F F


       (38) 
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Glomstad (2012) derived Equation (38) on basis of the same assumptions, such as the spring 

elasticity is always a constant, and the fluidic drag force only influences the BHA. 

The author of this thesis also tried to derive an expression of the HKL from Equation (36). The 

method is to sum up all the equations, and then separate the term of HKL. 
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  

  

   (39) 

The acceleration changes in different mass components reflect the influence of the elasticity. The 

spring force is still there, just as the inner force. However, this model has a disadvantage. The 

gravity is the only reason for the friction. The well trajectory is not considered in this model.  

5.1.6. Basic 2D discrete model 

Sangesland (2012) presented a model in his lecture. In 2D situation, Sangesland developed one 

method with the orthogonal decomposition along the radial and the tangent direction, and 

established the force equilibrium in an infinitesimal drillstring element. Figure 14 illustrates the 

force decomposition. 

 

Figure 14: Force in a curved borehole (Sangesland, 2012). 
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This model decomposes the forces along x  and z  direction. Equation (40) describes the 

equilibrium along x  direction. 

    cos  cos  0
2 2

x

d d
F F dF F Q P

 
         (40) 

Along z direction, the equilibrium equation is 

  sin   sin 0
2 2

z

d d
F N O F dF F

 
         (41) 

The following equations define the terms in above two equations. 
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   (42) 

For this infinitesimal drillstring element, the inclination change should be very small; therefore, 

some reasonable assumptions will be 

 

cos 1   
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2 2
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 
 

 

 
 

 



   (43) 

The above equations can be solved by substituting Equation (41) into Equation (40) to cancel 

term N . 

There are two disadvantages in this discrete soft string model: 

1. This model is a pure static analysis with the orthogonal decomposition. It does not include 

the acceleration of the drillstring. However, the tripping-out operation should be a 

dynamic process. Previous static torque-drag models also have this disadvantage. 

2. This model does not consider elasticity. 
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5.1.7. 2D dynamic model considering drillstring elasticity 

Swahn et al. (2014) developed a dynamic model considering the drillstring movement and the 

elasticity. This dynamic model is a hybrid of the soft string model and the mass-spring model. Like 

the mass spring model, this model discretizes the drillstring into mass blocks connected with the 

springs between each pair of blocks. For each mass block, this model utilizes orthogonal 

decomposition mentioned previously to analyze the forces. With the orthogonal decomposition, 

the resultant force along the radial direction is in an equilibrium condition. Along the tangent or 

axial direction, the resultant force will follow the Newton’s second law, which is just like the left 

hand side in the mass-spring model in Equation (36). Therefore, this model can simulate the 

elasticity and have the ability to simulate side force in the buildup section. Figure 15 is the 

physical model. 

Nk

Gk
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Fk

Fk-1

Z

X
 

Figure 15: Schematic and stress analysis of dynamic model. 
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Equations (44) describe the result of the orthogonal decomposition at the component k . 
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   (44) 

The terms cos 1 
2

k 
 

 
 and sin

2 2

k k
  


 
 
 

 have been approximated. Substitute zkF  into 

xkF  to cancel kN , and then obtain Equation (45). 

         
2

1 1 2
cos sin

2

k k
f k k k k k k k k

u
B m g F F F F m

t


    

 
     


   (45) 

The components  1k k kF F    is assumed small and  1 0k k kF F    . Then simplify the 

Equation (45) and move the acceleration term to the left hand side. 

       
2

1 2
1 cos sin 0k

k k k f k k k k

u
F F B m g m

t
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
       


   (46) 

Define the displacement from the equilibrium position in each spring as kx  and the spring force 

follows the Hooke’s law. For this dynamic model, it is: 

 k k kF K x    (47) 

The measurement depth of the component k  is: 

  
1n

k j

j k

u D n k x b




       (48) 

In Equation (48), downwards along the wellbore trajectory is the positive direction. The block 

position b  is defined as the negative value. Rotary Kelly Bushing (RKB) is the zero level. At the 

initial moment, assume the springs are all at their own balanced positions, i.e. 0jx  . ku  will be: 

  ku D n k b      (49) 

According to the position change during tripping-out, i.e. the change of ku , the Equation (50) can 

estimate the acceleration. The second derivative of Equation (48) is: 
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Substitute the Equation (50) into Equation (45) or Equation (46). In general, the resultant force 

will be: 

       
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For the travelling block, i.e. the component n , the equation is: 
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   (52) 

nF  is the simulated HKL. For the first component such as BHA, the equation is: 
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Equation (51) to Equation (53) are a set of nonlinear ordinary differential equations. The 

equations use the travelling block position b  and the initial displacement of the spring from the 

equilibrium position kx  as the inputs to solve the HKL nF . 

5.2. Mathematical model applied in present thesis 

The following two mathematical models are the fundaments of the simulation in present thesis. 

The first model is a static model. It can calculate the drag force at the static condition with the 

consideration of the side force, and then the static drag force can calculate the initial 

displacement in each section. The second model is designed for the dynamic simulation. This 

model utilizes the initial displacement calculated from the first model and utilizes the block 

position as the inputs to simulate the HKL. This model also considers the side force. Figure 15 is 

available to illustrate the following mathematical models. 

5.2.1. 2D discrete static model 

This model is a discrete model and has the ability to evaluate the influence of side forces when 

the drillpipe is forced to the ceiling of the wellbore. Based on force analysis in Figure 15, the 

forces can be decomposed along x  and z  direction. The red solid arrows indicate the x  axis and 
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the z  axis individually. Since this is a static analysis, the resultant forces along x  and z  direction 

are in balance. 

The resultant force along x  direction can be written as follows. 

    1cos cos 0
2

k
xk f k k k k kF B m g N F F


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   (54) 

The resultant force along z  direction can be written as follows. 
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Derive the normal force kN  from Equation (54): 
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Substitute kN  into Equation (54). kN  has the absolute value sign and it contains the unknown 

term kF  which is what we are going to solve. Therefore, assume kN  to be positive first. The 

positive kN  means this part of the drillstring is attached at the lower side of the wellbore. Then 

Equation (54) becomes: 
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Rearrange Equation (57) 
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Finally, derive an expression for kF . 
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   (59) 

For the deepest section, if the bit is off the bottom, then the drag force can be simplified as: 
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   (60) 

Then assume the normal force kN  is negative, it means the drillstring is clinging to the ceiling of 

the wellbore. The resultant force, i.e. the side fore, is downward, and then the equation will be: 
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Rearrange the above equation. 

      1

sin sin
2 2

cos sin 0

cos cos
2 2

k k

f k k k k k

k k

B m g F F

 
 

  
 



        
      

         
       
       

      

   (62) 

Finally, derive an expression for kF . 
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   (63) 

For the lowest section at the end of the drillstring, if the bit is off the bottom, then the drag force 

can be simplified as: 
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   (64) 

So far, two drag forces for the same section are calculated, but only one should be included. 

During tripping-out, the resultant normal force will always generate friction no matter which side 

of the drillstring is attached to and the friction always resists the hook pulling out the drillstring. 

Therefore, the largest value of kF  should be the right one. The flow chart in Appendix B shows 

the detailed procedure. 
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5.2.2. Modified 2D dynamic model 

Some challenges were discovered when programming the model in subchapter 5.1.7 with 

MATLAB. The following three points are the major challenges. 

1. It is difficult to implement this model. The equation for each component contains 

different numbers of the acceleration term. The different numbers of the acceleration 

term in each equation require rearranging and solving the set of the equations in a specific 

order. In each time step, the equations solved have to be substituted into the equation 

being solved currently. The position of each component defined in Equation (48) is the 

sum of the spring displacement, the initial length of the components, and the BPOS. When 

calculating the second order derivative in Equation (50), it contains different numbers of 

the acceleration terms for a specific component. When the location of a specific 

component is very deep in the hole, Equation (50) will contain more acceleration terms 

than for the shallower components. In order to solve the unknown acceleration term, the 

equations should be solved from the top to the bottom. At the top component, it contains 

only one term of the acceleration. Substitute this solved acceleration term into the 

second top component, which then will contain two acceleration terms. Repeat this 

procedure for the rest of the components. Finally, all the acceleration terms can be solved.  

Theoretically, this method is feasible, but if the drillstring is divided into many 

components, the deepest component will contain many acceleration terms. It is difficult 

to solve with the high computation efficiency. 

2. The model is difficult to converge, i.e. hard to provide good results. The simulation shows 

that the result is very different from the observed value on site. 

3. The side force included in the previous model is improper. When the value of the normal 

force is positive such as when the drillstring is clinging to the upper side of the wellbore, 

this model can give the right answer. When the value of the normal force is negative such 

as the drillstring is clinging to the lower side of the wellbore, the model will give the 

improper result. 

Aiming at solving the challenges in the original model, the following aspects are the 

improvements in this modified model. 
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1. Abandon the approximation in the original model, for example cos 1 
2

k 
 

 
 and 

sin
2 2

k k   
 

 
. Because the mathematical model is solved by the computer, there is 

no necessity to make such an approximation, which will take errors into the modified 

model. 

2. Define the acceleration term in a new way, which is easy to implement in the simulator. 

Same definition mentioned in Mass-spring model is applied. With this definition, every 

equation has only one acceleration term. 

3. Redefine the meaning of 
kx . 

kx  indicates the position of the lower end at each 

component. The first component is the BHA, so 1x  indicates the position of the lower end 

of BHA, i.e. the measured depth of the drill bit. 

4. Add an absolute value sign beside the normal force. No matter if the drillstring is attached 

at the lower or the upper side in the wellbore, the friction is always acting downwards 

during the tripping-out. 

5. Consider damping. 

The following parts are the detailed derivation of this mathematical model. 

We define the measured depth at the initial condition as kinitialx  and the current position is kx , 

then the elastic force is defined as: 

     1 1k k k k k k initial
F K x x x x        (65) 

The first component is the deepest one, so  1k kx x   should always be positive. For the last 

component, the spring force is defined as: 

     n n n n initial
F K x BPOS x BPOS       (66) 

For the first component, the spring force is defined as: 

     1 1 1 2 1 2 initial
F K x x x x       (67) 

No approximation is added in the derivation. For the first component such as the BHA: 
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Substitute the spring force in to Equation (68), the equation will then be: 
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Separate the acceleration term: 
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The general components, after separating the acceleration term, will become: 
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For the last component, i.e. the part of the drillstring near the wellhead, the equation is 
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   (72) 

Equations (71) and (72) are identical with each other, and contain the same terms. Equation (68) 

is derived only for the deepest component. Therefore, it will be easier to program with such a set 

of equations. If this set of equations contains many components, it will be quite convenient to 

program by means of a loop. 
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Above is the introductions of the mathematical models. We have reviewed all the models and 

their disadvantages and advantages. In the next chapter, the simulation result will be delivered 

to prove that this mathematical model is valid. A detailed input case for the simulator is 

manufactured based on the experimental design. 
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6. Simulation and result 

The previous chapters introduced the experimental design and the mathematical models. 

Technically, to verify the correctness of the mathematical models, both the experiment and the 

simulation should be performed and be compared with each other. However, the experiment 

has not been set up yet due to technical challenges, but especially the time limitation. A feasible 

solution to validate the mathematical model is to manufacture fictive parameters, which are 

based on the experimental design, and then test the mathematical model with the manufactured 

inputs. If the model is valid, the simulated result should be reasonable, for example, at least the 

simulated result has a similar pattern as the observed result on site. 

In Chapter 5.2, two mathematical models have been developed. The one is a static model and 

the other one is a dynamic model. In the first subchapter, the drag force will be calculated with 

the discrete static model developed in chapter 5.2.1 and the classical soft string model developed 

by B. Aadnoy and Andersen (1998). The results calculated from these two methods will be 

compared. In the second subchapter, the dynamic model will be tested against the manufactured 

inputs. 

6.1.  Test of the discrete static model 

A new mathematical model was developed to calculate the drag force in static condition. This 

model also considers the side force in the curved section. The classical soft string model 

developed by B. Aadnoy and Andersen (1998) will be used as the comparison. 

The test case is based on Well C47. The detailed information about this well is introduced in 

Chapter 3.1. The drillstring tested in present subchapter is simplified by only using a uniform 

drillstring rather than an assembly of the different drill pipes. Table 4 shows the drillstring 

parameters, which will be tested in present subchapter. 

The static drag forces at the two ends in each section are calculated with these two methods. 

Table 5 only shows the static drag force at the upper end of the buildup section and the normal 

force at this buildup section. 
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Table 4: Input drillstring parameters to be tested. 

OD ID Weight  Cross section 

inch inch ppf kg/m mm2 

2-3/8 1.995 4.85 7.22 842 

2-7/8 2.441 6.85 10.19 1169 

3-1/2 2.992 9.50 14.14 1671 

4 3.478 11.85 17.63 1984 

4-1/2 3.958 13.75 20.46 2322 

 

Table 5: Calculated static drag force and normal force with different models. 

Type of drillpipe 
inch 

Drag force at upper end in bended section Normal force in bended section 

Classic Discrete Error Classic Discrete Error 

N N % N N % 

2-3/8 132340 123531 6.66 -90265 -85888 4.85 

2-7/8 186780 174346 6.66 -127396 -121218 4.85 

3-1/2 259182 241929 6.66 -176780 -168207 4.85 

4 323153 301641 6.66 -220412 -209723 4.85 

4-1/2 375026 350061 6.66 -255793 -243388 4.85 

 

The classical method has been applied in industry for many years, and the calculation shows that 

the discrete model gives the similar result as the classical model. Therefore, the discrete model 

is also a valid model to calculate drag force during tripping operation. Two additional comments 

should be added here. 

 The classic model requires identifying the well trajectory before applying the correct 

equation. Without the correct identification, it is not possible to utilize the classic model. 

The discrete method does not require identifying the well trajectory. The equation 

mentioned in the discrete model is a general model and can be applied in arbitrary 

sections. The discrete model avoids the error by choosing the improper equation in the 

classic method. 

 The result in Table 5 considers the whole buildup section as one segment. However, the 

discrete model can be applied between any two arbitrary survey points. In this case, the 

buildup section contains 25 survey points. When applying the discrete method in these 

24 segments rather than only one long segment, the model should deliver higher accuracy. 

The classic method is difficult to apply between any two survey points, especially two 

neighboring survey points, because the length is too short, and it is relatively difficult to 

identify the well trajectory type when the inclination and the azimuth change slowly. 
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6.2. Test of the 2D modified dynamic model 

In present subchapter, the test case will be introduced first, and then the simulation result will 

be presented. 

6.2.1. Test case 

The test case is designed based on Chapter 3. BPOS is the important input in this dynamic model. 

The BPOS in this case is downscaled based on the real case. Some parameters such as the average 

velocity and the acceleration have been mentioned in Chapter 3.2. The block position used in this 

test can be defined in three stages. 

1. Static stage. In this stage, the mass-spring chain is static. The BPOS will be at its initial 

position. The purpose of this stage is to let the system be still. This stage could last 10 to 

15 seconds. 

2. Acceleration stage. In this stage, the mass-spring chain accelerates with a constant 

acceleration. The velocity will increase from zero to a specific velocity. This stage lasts 

several seconds. 

3. Constant velocity stage. In this stage, the mass-spring chain has finished the acceleration. 

The velocity is now constant. 

Figure 16 shows the detailed information about the block position applied in this case. 
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Figure 16: BPOS vs. time applied in the test. 

 

What kind of mass-spring chain applied in the experiment is another issue. A simple mass-spring 

chain can be like this:  

 Four mass blocks linked together with four springs.  

 The lowest mass block is a huge block representing the drillpipe below the buildup section. 

The remaining three mass blocks consist of a 2-7/8 inch drillpipe cut into three pieces. 

 A spring (wireline) connects the upper end of this chain and the winch. Another spring 

(wireline) connects the huge block and the lower end of this chain to the curved pipe. The 

next two normal springs connect three neighboring mass blocks to the buildup section. 
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If the total length of this chain is constant and consists smaller pieces of mass blocks, then the 

springs will lead to more accurate simulation result. It also indicates that the simulation will be 

more time-consuming. To validate this dynamic model, the mass-spring chain does not have to 

be too complex. Table 6 presents the detailed information about this chain. 

Table 6: Detailed information about this chain. 

Mass blocks 
Length Weight 

Springs 
Length Elasticity 

meter kg meter N/m 

1-lowest - 2000 1-wireline 5 277310 

2-in buildup 2.36 20.38 2-normal spring 0.48 4151 

3-in buildup 2.36 20.38 3-normal spring 0.48 4151 

4-in buildup 2.36 20.38 4-wireline 5 277310 

 

With the determined mass-spring chain, the well trajectory data at each mass block can be 

determined. Based on the survey data, Table 7 shows the inclination change and the average 

inclination at each mass block. 

Table 7: Survey data at each mass block. 

Mass block 
incl_average incl_change 

rad rad 

1-lowest 1.57 0.00 

2-in buildup 1.32 0.25 

3-in buildup 0.84 0.22 

4-in buildup 0.31 0.31 

 

Except for the parameters mentioned above, other information shown in Table 8 are necessary. 

Now the mathematical model can be validated. 

Table 8: Other parameters as inputs. 

damping 
Ns/m 

buoyancy 
factor 

Friction 
coefficient 

Gravity 
m/s2 

300 0.79 0.25 9.81 
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6.2.2. Test result 

The simulation result will be presented based on the above case. Figure 17 shows the simulated 

HKL. This curve is similar to the observed result in the real case presented by Xie (2014). It must 

be stated here that the string is in neutral tension only due to gravity. The friction due to tripping-

in or out has been neutralized (through drillstring rotation for instance). The HKL indicates the 

static drag force in the first ten seconds. The next three seconds is the acceleration stage; the 

simulated HKL increases linearly since the acceleration is a constant. The last stage is the constant 

velocity stage. The initial HKL peak can be observed at the beginning of this stage. In the real case, 

this initial peak also exists. Depending on the specific downhole situation, the value of the initial 

peak could be even larger. 

Figure 18 shows the displacement at each section. During tripping-out, the drillstring is not 

influenced by historical friction in the axial direction. From this figure, it can be observed that the 

deepest mass block (section 1) moves only 31.56 mm , and the shallowest mass block (section 4) 

moves 55.09 mm . The BPOS shows that the maximum travelling distance is 55.50 mm . The 

simulation shows that the drillstring is extended during the tripping-out operation. A brief 

explanation will be mentioned in Chapter 7.3. 
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Figure 17: Simulated HKL vs. time. 
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Figure 18: Displacement for each section after pulling the string 55.5 mm. 

 

Figure 17 and Figure 18 are the main output of this dynamic mathematical model. Meanwhile, 

Figure 19 and Figure 20 give a close observation at one time interval, and will be helpful to 

understand what happens in each time interval. In this case, the time interval is 0.1 s . These two 

figures show that all the sections behave normally except section 4. The velocity and acceleration 

in section 4 indicate that this section vibrates severely. This observation will be discussed in 

Chapter 7.4. 
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Figure 19: Displacement in each section at one time interval. 
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Figure 20: Velocity in each section at one time interval at four different temporal spots. 

 

Above all this is the simulation result for the two models introduced in Chapter 5.2. In Chapter 7, 

some issues about the experimental design and the mathematical model will be discussed. 
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7. Technical Discussion 

In previous chapters, the experimental design, the mathematical models, and the simulation 

results were introduced. Several technical issues about the previous content will be discussed 

here. 

7.1. Is downscaling calculation a compulsory step or not? 

In Chapter 3.2 Experimental design, the downscaling calculation was presented. The purpose of 

the downscaling calculation was to downsize the real well trajectory to the lab scale, so the 

proper components could be chosen and installed in the workshop. The downscaling calculation 

was indeed helpful for the experimental design. However, this step cannot be compulsory for 

these two reasons: 

1. The purpose of the experiment was to repeat what happens on site, and to verify the 

correctness of the mathematical models. The mathematical models applied in present 

thesis were two general models, which can calculate the HKL under static and dynamic 

situations, separately. A well-developed general mathematical model should have the 

ability to simulate any specific cases. Therefore, the experiment did not have to follow 

the real case strictly. In this research, the experimental design was based on a specific real 

case. If the mathematical model was correct, the simulation should follow the 

experimental result for this specific well. 

2. Even if the experiments were designed to follow a real specific case, in the process of 

assembling in the workshop, some limitations prevented assembling the setup exactly as 

the design in the setup draft predicted. For example, when manufacturing the curved pipe 

with the bending machine, it is difficult to create exactly the same inclination as calculated 

based on the survey data. After machine bending, the new inclination should be 

measured again and then the inclination should be updated in the simulator. 
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7.2. Application of the friction models and the effect of the contact surface 

The friction models and the effect of contact surface were introduced in Chapter 4, but not all of 

these friction models have been applied in the simulation. Currently, the mathematical model 

applied in the simulation only considered the classic Coulomb friction model due to two reasons: 

1. In present thesis, the most important task about the simulation was to validate the 

models. This aim was reached so far. According to the simulation by Xie (2014), the 

friction model indeed influenced the curve of the HKL, but the magnitude of the HKL was 

not influenced much. An interface for different friction models can easily be set up based 

on the current MATLAB code. Different friction models can be tested in future research 

on basis of the experimental results. 

2. These friction models could be tested in present thesis, but no experimental results was 

available for comparing with the simulation result to verify which friction model would fit 

the experiment best. Therefore, testing with different friction models can be delivered in 

future research after the experimental result has been obtained. 

7.3. Explanation about the drillstring elongation 

The simulation result is Chapter 6.2.2 shows that the drillstring was extended during tripping-out. 

A brief explanation is given about this phenomenon. 

At the initial moment of tripping-out, upward movement of the mass-spring chain led to elastic 

tension increase. The additional elastic force led to additional normal force, because the direction 

of the elastic force kF  was not collinear with the x  direction in the buildup section shown in 

Figure 15. The additional normal force led to axial friction increase based on the Coulomb friction 

model. The additional axial friction led to elastic force increase during tripping-out. Based on 

Hook’s Law, the drillstring was elongated. Now a loop feedback is formed, until the drillstring 

reaches an equilibrium state such as tripping-out at constant velocity. 

If the explanation follows what happens on site, it indicates that the mathematical model is valid. 

The next step is to set up the experiment and verify the mathematical model based on the 

experimental result. 



58 
 

7.4. Explanation about the vibration in section 4 

Figure 19 and Figure 20  showed that the displacement curve and the velocity curve vibrate 

severely at one time spot in section 4. With the literature investigation and the simulations with 

different inputs, damping is the most likely reason behind the vibration. 

During tripping-out, the friction between the wellbore and the drillstring will transfer kinetic 

energy into thermal energy, so the drillstring vibration will finally stop. Kamel and Yigit (2014) 

presented a reasonable damping level in their study case, which is around 20000 Ns m  for a real 

case. Since the magnitude of the drag force was decreased in the experiment, damping should 

also decrease. The damping applied in Chapter 6.2.2 was 300 Ns m  for every section. The 

severe vibration indicates that the damping was too small. A case with 5000 Ns m  damping in 

section 4 was tested. The result in Figure 21 shows that section 4 still vibrates during tripping-

out, but with less magnitude.  
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Figure 21: Displacement and velocity in section 4 with 5000 Ns/m of damping. 
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8. Self-evaluation 

This chapter will analyze the possible sources of poor quality in the experimental part and in the 

simulation. Some suggestions for the future work will consider these issues. 

8.1. Sources of poor quality in the experiments 

The experiments are not always as accurate as we think. The defect of the equipment, the 

limitation of the installation, and the data collection during the test often lead to deviation from 

reality in the experiment. Some possible reasons are mentioned here. 

1. Defects in the equipment 

In the experimental design, all the equipment are regarded as perfect products. For example, the 

equipment can run like what the designer wants. In reality, the equipment often have defects 

more or less during the process of manufacture. These defects will induce errors in the 

experiment. 

 A bending machine will manufactured the curved pipe mentioned in Chapter 3.3. If the 

bending machine used to manufacture this curved pipe does not have enough accuracy, 

the curvature of the pipe will deflect from the initially designed curvature. This deflection 

will bring errors in the experiment if no proper rectification is performed. 

 The motor should have the ability to control the output power precisely. Figure 16 

indicates that the motor should be able to generate a BPOS with slow and smooth 

acceleration and velocity. BPOS is the most important input in the experiment and the 

simulation. If the motor-generated BPOS is not smooth enough or the BPOS changes 

abruptly, the results will be severely influenced. 

 In the experimental design, no friction is considered in the pulley system. In reality, when 

the wireline with high drag force travels through the pulley system and the pulley system 

changes the direction of the wireline, the HKL could take additional friction into the 

experiment. This additional friction cannot be measured specifically in the experiment. 

The additional friction in the pulley system is also not considered in the mathematical 
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model. It might cause the simulation result and the experimental result not to be 

consistent with each other. 

 Two scaffolds are used to support the curved pipe and the huge mass block separately. 

Especially during tripping-out, the friction will cause the equipment to vibrate, and then 

influence the data collection if the vibration is severe. Based on this consideration, a 

sufficiently strong scaffold should be applied. 

2. Limitation in the process of the installation 

Even through the equipment has been downsized based on the downscaling calculation, the 

whole setup is still very large in lab scale. For example, the curved pipe is 10-meter long. To 

assemble such a big pipe on the scaffold, proper tools are needed. Two issues should be 

considered in this process. 

 The purpose of the experiment is to verify the 2D mathematical model, so the curved pipe 

should be installed vertically, i.e. without azimuth change. In the case of azimuth change, 

the simulation result will not be consistent with the experimental result, since the 2D 

mathematical model cannot simulate the scenario with azimuth change. 

 How to fix the curved pipe on the scaffold is another issue. The curved pipe and the 

scaffold can be fixed together by welding. The welding can fix the pipe firmly on the 

scaffold, but will prevent replacing the curved pipe easily when another experiment with 

different curved pipe should be required in future research. Pipe fastener is another 

method to fix the curved pipe and the scaffold. This method is convenient to operate but 

untight fastener will induce additional vibration during the test, which may take errors 

into the experiment. 

3. Data collection during the test 

The velocity gauge and the load cell should have enough sensitivity and should not be influenced 

by other electrical equipment. Sjøberg (2014) mentioned when the winch was running, the noise 

could be observed in the data collected by the load cell. The winch generated electrical pulses 

when running. If pulses were observed in the data, some counter measurements had to be taken, 
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such as grounding the electrical equipment. Filters can also be applied in the LabVIEW to reduce 

noise. 

8.2. Sources of errors in the simulation 

Generally, the error of the simulation have to be analyzed when the numerical method is applied 

to evaluate the mathematical model. Some possible sources of errors in the simulation are 

mentioned here. 

1. Improper friction model 

The friction model applied in the simulator was the Coulomb friction model. Based on the 

discussion in Chapter 4.1.1, the friction behavior may not follow the Coulomb friction model in 

wellbores while circulating. Therefore, when applying the Coulomb friction model the simulation 

result could contain error caused by improper friction model. 

Even if the Coulomb friction model is proper both in the simulation and in the experiment, how 

to determine the Coulomb friction coefficient is an important issue. This coefficient has to be 

determined by the specific experiment or tests. 

2. Improper dampening 

Dampening is another parameter which has to be determined experimentally or based on the 

on-site observation. Just like the friction coefficient, improper dampening will induce errors in 

the simulation. 

3. Influence of the section length 

The static model and the dynamic model are both discrete models. Compared with the analytical 

model, the discrete model is born with errors. To apply the discrete model, the drillstring has to 

be discretized into small sections. In Chapter 6, the mass-spring chain was discretized into four 

sections. The simulation would therefore be influenced with relatively big error. If the mass-

spring chain can be discretized into more sections, the simulation result will be closer to the 

analytical result and the error will be smaller. The downside is that more time is required with 

more sections. 
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4. Inaccurate inputs 

The inputs of the simulation is based on measurements from real experiments. During measuring, 

the errors will be created even with correct operations. It is called system error. System error 

cannot be avoided since it is the feature of the measuring apparatus. For example, the minimum 

scale of the ruler is centimeter, it is not possible to measure millimeter with this ruler. System 

errors will also influence the simulation. What the researcher can do is to avoid accidental errors 

by calibrating the measurement. 

8.3. Potential improvements for the future work 

There are still a lot of work to do on this topic. Some interesting areas are listed here. 

1. 3D mathematical models  

Azimuth is another important parameter in the survey data. Azimuth change will also create side 

forces and thus influence the HKL. The static and dynamic models developed in present thesis 

are 2D models. In future research, 3D static and dynamic models should be developed. At that 

time, experiments for 3D scenario should be delivered by testing the HKL with azimuthal change. 

2. Consideration of the drillpipe stiffness 

Currently, the mathematical models applied in present thesis are all based on the soft string 

model, i.e. the stiffness of the drillstring will not contribute to the side force. In Chapter 4.2.2, a 

model to calculate the side force was developed with the consideration of pipe stiffness. Side 

forces can be included in future simulation when high stiffness pipes are applied in the 

experiment. 

3. Solve the dynamic mathematical model with different methods 

In present research, the dynamic mathematical model is a set of ODEs. Runge-Kutta method is 

applied to solve this kind of mathematical model, which is a widely applied iterative method with 

high accuracy in a single step calculation. When the model contains more equations, i.e. more 

sections, the Runge-Kutta method is still available but with higher time consumption. Other 

methods can be tried to solve this mathematical model such as the finite differential method or 

the finite element method.  
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4. Test more scenarios in the experiment 

The experiment to be performed in the next step is tripping-out operation through a 2D curved 

pipe. Since the experimental design in present thesis also considers even more scenarios, more 

cases can be tested in future research: 

 Test tripping-out HKL with azimuth change. 

 Test tripping-out HKL with circulation. 

 Test tripping-out HKL with the issue of cutting transportation. 

 Combination of the above three scenarios. 
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9. Conclusion 

Both the experiment, the mathematical model and the simulation will be developed continuously 

in future research. Currently, we can deliver the following conclusions. 

1. Based on downscaling calculations for Well C47, the experiment is designed with a setup 

draft. Currently, the experiment considers the influence of side forces in the buildup 

section. The setup also has the potential to support future research. 

2. Mechanisms of side forces are analyzed based on both the soft string and the stiff string 

model. An equation to calculate side forces is derived based on the bending force of a 

beam. 

3. A 2D static discrete mathematical model is derived. This model can calculate static drag 

forces considering side forces. This model can be applied on any well trajectory by means 

of only one general equation. The case study shows that this model is as accurate as the 

classic soft string model. 

4. A 2D dynamic discrete mathematical model is developed based on previous work. This 

model considers side forces in the buildup section. An artificial case study shows that the 

simulation provides reasonable results, thus proving that this model is valid. Experiments 

are required to verify the correctness of this model in future research.  
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Nomenclature 

Abbreviations 

BHA Bottom Hole Assembly 
BPOS Block Position 
DOF Degree of Freedom 
HKL Hook Load 
MD Measured Depth 
NPT Non-Productive Time 
ODE Ordinary Differential Equations 
RTDD Real Time Drilling Data 
WOB Weight on Bit. 
 

Parameters 

A  Amplitude   

csA  Area of material cross section 2mm  

B  Buoyancy factor   

sC  Correction factor   

D  Distance between the centers of cylinders (mass components) m  

Dmp  Damping Ns m  

E  Young’s model MPa  
F  Static friction or friction N  
F   Dynamic friction N  

breakF  Breakaway friction or maximum static friction force N  

cF  Coulomb friction N  

DF  Fluid drag force or drag force N  

,

t

D BHAnF  Fluidic drag force for BHA at time t  N  

DnF  Fluidic drag force for the mass n  N  
t

DnF  Fluidic drag force for general mass n at time t  N  

NF  Normal force applied on the interface N  
t

f nF  Friction force for mass n  at time t  N  

fnF  Frictional force for the mass n  N  

kF  Spring force N  

nF  Normal force along the radial direction N  
t

springF  Total spring force at time t  N  

smoothF  Smooth friction force N  

stocF  Stochastic friction force N  
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tF  Drag force at the lower end N  

t tF   Drag force at the upper end N  

weightF  Drillstring weight considering buoyancy at time t  N  
tHKL  HKL at time t during tripping out N  

GK  Geometric stiffness N m  

L  Length for each section m  

elementL  Length of component m  

stringL  Drill string length m  

N  Normal force resultant N  
O  Gravity force along z direction N  
P  Gravity force along x  direction N  
Q  Resultant friction caused by normal force resultant N  

S  General stochastic friction function   
W  Drillstring weight submerged in mud N  

VW  The vertical projected buoyant weight of pipe N  

na  Acceleration of drillstring at mass n  2m s  

b  Position of travelling block m  

vc  Reverse of sliding speed coefficient s m  

hd  Diameter of borehole in  

sd  Diameter of drillstring in  

f  Static friction coefficient   

f   Dynamic friction coefficient   

frq  Frequency Hz  

g  Gravity 2m s  

k  Elasticity coefficient N m  

( 1)n nk   Elasticity coefficient between mass 1n  and n  N m  

satk  Constant coefficient to determine Coulomb and viscous friction model kg s  

vk  Friction coefficient   

m  Linear mass for each section kg  

pumpq  Volume flow rate defined by the pump 3m s  

ku  Measure depth for the component k  m  

v  Relative velocity between drillstring and drilling fluid m s  

dsv  Speed of tripping out m s  

mudv  Fluid velocity in the annulus m s  

unitw  Linear density of the drillstring kg m  

Nw  Unit buoyant weight projection on the normal direction kg m  

x  Elongated part of the drill string due to the HKL increase m  
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kx  Displacement from equilibrium position in the spring m  

nx  Position of the drillstring at mass n  m  

L  Deformation along the force direction m  

( 1)n n  Initial distance between elements 1n  and n  m  

  Azimuth change   
  Inclination change   

  Azimuth   
  Strain   
  Inclination at mass n    

  Average inclination of the component   
  Elastic modulus MPa  
  Friction factor, not indicated it is dynamic or static   

  density of drilling mud and steel 
3

kg m  

  Stress MPa  
  Shear stress at the surface of pipe MPa  
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B. Flow chart to calculate static drag force 
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C. Programming (MATLAB code) 

1. Main program: Simulation 

clear 

clc 

%% inputs 

load('section.mat') % name of each section 

  

%% tripping out parameters 

%create simulated block position with specific average velocity and 

%acceleration 

v0 = 0; % m/s 

a = 0.005; % m/s2 

t0 = 10; %s 

t1 = 13; %s 

t2 = 30; %s 

dt = 0.1; %s 

[ BPOS, time, v_avg ] = simulated_BPOS( v0,a,t0,t1,t2,dt ); 

  

%% calculate static drag force 

%load the input data, which is copied from excel and pre-processed in 

the  

%spreadsheet 

%New static model to calculate drag force is applied in this 

simulator. 

%This model considers bend force when the drillpipe is attaching at 

%the upper side of wellbore. 

F_static = static_drag_force; 

  

%% calculate displacement in each section 

disp = displacement( F_static ); 

  

%% calculate length in each section 

sec_lgth = section_length( disp ); 

  

%% calculate lower position of each section 

pst_lwr = position_lower( sec_lgth ); 

  

%% define the input vector 

  

%This function implements Runge-Kutta method. In this method, we 

transfer 

%the second order derivative to the first order derivative. 

  

%such as: 

%Section_end(1)=x(1) 

%x(1)'=x(2) 

%x(2)'=the detailed equation in odedisplacement.m 

  

%Now we can define the input vector. The odd elements are the 

%displacement. the even elements are first derivative of displacement, 



 

%i.e., velocity. In the static situation, the velocity is 0, so we use 

0 as 

%the initial value for the even elements. 

  

xinitial=zeros(2*length(section),1); 

for i=1:length(section) 

    xinitial(i*2-1)=pst_lwr(i); 

end 

  

%% define a XX matrix to store all the position change during 

simulation 

XX(1,:)=pst_lwr; %at initial moment 

  

%% define a HKL matrix to store all the HKL change during simulation 

%define HKL. In our model, the HKL is the drag force at the upper 

%end of drillstring, which is most close to the travelling block. It 

equals  

%to  

n=length(section); 

hkl(1)=F_static(n); 

  

%% damping 

load('dampen.mat') %Consider the damping 

  

%% main simulation: dynamic simulation 

%This is the main part of simulation. All equations are stored in 

function  

%odedisplacement.m.  

%One thing must be noticed, the second order derivative of block 

position 

%is also an input which is the function of time. We have to update the 

block 

%acceleration i.e., the second order derivative before put equations 

%into ode45 to calculate in a specific timespan. We use the 

acceleration 

%at the beginning of the time span as the representative in this 

section. 

%So we build a 'for' loop. for each time interval. We use the 

acceleration  

%and displacement as the input to calculate the displacement at the 

end of 

%each timespan, then the new timespan will be used as the input for 

the 

%next loop. 

  

% load('BPOS.mat') %block position 

% load('time.mat') %time record with BPOS 

load('elasticity') % elasticity in each section, i.e. K in hook's law 

  

for i=1:(length(BPOS)-1) 

    i 

    BPOS_current=BPOS(i); 



 

    timespan=[time(i) time(i+1)]; 

    [T,X]=ode45(@(t,x) 

odedisplacement(t,x,BPOS_current,dampen,pst_lwr,disp),timespan,xinitia

l); 

    xinitial=X(end,:); 

    hkl(i+1)=elasticity(n)*((xinitial(2*n-1)+BPOS(i+1))-

(pst_lwr(n)+BPOS(1)-disp(n))); 

    for j=1:n 

        XX(i+1,j)=xinitial(2*j-1); 

    end 

end 

  

%% draw the figure 

draw_plot( hkl,time,XX,X,T,dampen,a,v_avg,t0,t2,dt,section ) 

%% warning 

warning('It is done!') 

  



 

2. Function: displacement 

function [ disp ] = displacement( F_static ) 

  

load('elasticity.mat') % elasticity in each section, i.e. K in hook's 

law 

  

disp = F_static./elasticity; 

  

  

  

end 

  



 

3. Function: odedisplacement 

function [ dx ] = 

odedisplacement( t,x,BPOS_current,dampen,pst_lwr,disp) 

%% some inputs 

load('section.mat') % name of each section 

load('ds.mat') % length of each section 

load('incl.mat') % inclination at two ends, totally 7 points for 6 

sections 

load('incl_avg.mat') % average inclination for each section 

load('incl_dlt.mat') % inclination change for each section 

load('bf.mat') % calculated buoyance factor 

load('ff.mat') % friction factor 

load('g.mat') % gravity 

load('w.mat') % unit weight for each section 

load('elasticity.mat') % elasticity in each section, i.e. K in hook's 

law 

load('BPOS.mat') % block position 

  

%% define the derivative vector 

n = length(section); 

dx = zeros(2*n,1); 

%displacement 

%t is the time 

%dx is the first order derivative 

%% with positive sign function 

% dx(1)=x(2); 

% dx(2)=1/(w(1)*ds(1))... 

%     *(bf*w(1)*ds(1)*g*cos(incl_avg(1))+ff*sign(x(2))... 

%     *abs(bf*w(1)*ds(1)*g*sin(incl_avg(1))... 

%     -elasticity(1)*((x(1)-x(3))-(pst_lwr(1)-pst_lwr(2)-

disp(1)))*sin(incl_dlt(1)/2))... 

%     -elasticity(1)*((x(1)-x(3))-(pst_lwr(1)-pst_lwr(2)-

disp(1)))*cos(incl_dlt(1)/2)... 

%     -dampen*x(2)); 

% dx(3)=x(4); 

% dx(4)=1/(w(2)*ds(2))... 

%     *(bf*w(2)*ds(2)*g*cos(incl_avg(2))+ff*sign(x(4))... 

%     *abs(bf*w(2)*ds(2)*g*sin(incl_avg(2))... 

%     -elasticity(2)*((x(3)-x(5))-(pst_lwr(2)-pst_lwr(3)-

disp(2)))*sin(incl_dlt(2)/2)... 

%     -elasticity(1)*((x(1)-x(3))-(pst_lwr(1)-pst_lwr(2)-

disp(1)))*sin(incl_dlt(2)/2))... 

%     -elasticity(2)*((x(3)-x(5))-(pst_lwr(2)-pst_lwr(3)-

disp(2)))*cos(incl_dlt(2)/2)... 

%     +elasticity(1)*((x(1)-x(3))-(pst_lwr(1)-pst_lwr(2)-

disp(1)))*cos(incl_dlt(2)/2)... 

%     -dampen*x(4)); 

% dx(5)=x(6); 

% dx(6)=1/(w(3)*ds(3))... 

%     *(bf*w(3)*ds(3)*g*cos(incl_avg(3))+ff*sign(x(6))... 

%     *abs(bf*w(3)*ds(3)*g*sin(incl_avg(3))... 



 

%     -elasticity(3)*((x(5)-x(7))-(pst_lwr(3)-pst_lwr(4)-

disp(3)))*sin(incl_dlt(3)/2)... 

%     -elasticity(2)*((x(3)-x(5))-(pst_lwr(2)-pst_lwr(3)-

disp(2)))*sin(incl_dlt(3)/2))... 

%     -elasticity(3)*((x(5)-x(7))-(pst_lwr(3)-pst_lwr(4)-

disp(3)))*cos(incl_dlt(3)/2)... 

%     +elasticity(2)*((x(3)-x(5))-(pst_lwr(2)-pst_lwr(3)-

disp(2)))*cos(incl_dlt(3)/2)... 

%     -dampen*x(6)); 

% dx(7)=x(8); 

% dx(8)=1/(w(4)*ds(4))... 

%     *(bf*w(4)*ds(4)*g*cos(incl_avg(4))+ff*sign(x(8))... 

%     *abs(bf*w(4)*ds(4)*g*sin(incl_avg(4))... 

%     -elasticity(4)*((x(7)+BPOS_current)-(pst_lwr(4)+BPOS(1)-

disp(4)))*sin(incl_dlt(4)/2)... 

%     -elasticity(3)*((x(5)-x(7))-(pst_lwr(3)-pst_lwr(4)-

disp(3)))*sin(incl_dlt(4)/2))... 

%     -elasticity(4)*((x(7)+BPOS_current)-(pst_lwr(4)+BPOS(1)-

disp(4)))*cos(incl_dlt(4)/2)... 

%     +elasticity(3)*((x(5)-x(7))-(pst_lwr(3)-pst_lwr(4)-

disp(3)))*cos(incl_dlt(4)/2)... 

%     -dampen*x(8)); 

%% with negative sign fuction, this should be the right one!!! 

% dx(1)=x(2); 

% dx(2)=1/(w(1)*ds(1))... 

%     *(bf*w(1)*ds(1)*g*cos(incl_avg(1))-ff*sign(x(2))... 

%     *abs(bf*w(1)*ds(1)*g*sin(incl_avg(1))... 

%     -elasticity(1)*((x(1)-x(3))-(pst_lwr(1)-pst_lwr(2)-

disp(1)))*sin(incl_dlt(1)/2))... 

%     -elasticity(1)*((x(1)-x(3))-(pst_lwr(1)-pst_lwr(2)-

disp(1)))*cos(incl_dlt(1)/2)... 

%     -dampen*x(2)); 

% dx(3)=x(4); 

% dx(4)=1/(w(2)*ds(2))... 

%     *(bf*w(2)*ds(2)*g*cos(incl_avg(2))-ff*sign(x(4))... 

%     *abs(bf*w(2)*ds(2)*g*sin(incl_avg(2))... 

%     -elasticity(2)*((x(3)-x(5))-(pst_lwr(2)-pst_lwr(3)-

disp(2)))*sin(incl_dlt(2)/2)... 

%     -elasticity(1)*((x(1)-x(3))-(pst_lwr(1)-pst_lwr(2)-

disp(1)))*sin(incl_dlt(2)/2))... 

%     -elasticity(2)*((x(3)-x(5))-(pst_lwr(2)-pst_lwr(3)-

disp(2)))*cos(incl_dlt(2)/2)... 

%     +elasticity(1)*((x(1)-x(3))-(pst_lwr(1)-pst_lwr(2)-

disp(1)))*cos(incl_dlt(2)/2)... 

%     -dampen*x(4)); 

% dx(5)=x(6); 

% dx(6)=1/(w(3)*ds(3))... 

%     *(bf*w(3)*ds(3)*g*cos(incl_avg(3))-ff*sign(x(6))... 

%     *abs(bf*w(3)*ds(3)*g*sin(incl_avg(3))... 

%     -elasticity(3)*((x(5)-x(7))-(pst_lwr(3)-pst_lwr(4)-

disp(3)))*sin(incl_dlt(3)/2)... 



 

%     -elasticity(2)*((x(3)-x(5))-(pst_lwr(2)-pst_lwr(3)-

disp(2)))*sin(incl_dlt(3)/2))... 

%     -elasticity(3)*((x(5)-x(7))-(pst_lwr(3)-pst_lwr(4)-

disp(3)))*cos(incl_dlt(3)/2)... 

%     +elasticity(2)*((x(3)-x(5))-(pst_lwr(2)-pst_lwr(3)-

disp(2)))*cos(incl_dlt(3)/2)... 

%     -dampen*x(6)); 

% dx(7)=x(8); 

% dx(8)=1/(w(4)*ds(4))... 

%     *(bf*w(4)*ds(4)*g*cos(incl_avg(4))-ff*sign(x(8))... 

%     *abs(bf*w(4)*ds(4)*g*sin(incl_avg(4))... 

%     -elasticity(4)*((x(7)+BPOS_current)-(pst_lwr(4)+BPOS(1)-

disp(4)))*sin(incl_dlt(4)/2)... 

%     -elasticity(3)*((x(5)-x(7))-(pst_lwr(3)-pst_lwr(4)-

disp(3)))*sin(incl_dlt(4)/2))... 

%     -elasticity(4)*((x(7)+BPOS_current)-(pst_lwr(4)+BPOS(1)-

disp(4)))*cos(incl_dlt(4)/2)... 

%     +elasticity(3)*((x(5)-x(7))-(pst_lwr(3)-pst_lwr(4)-

disp(3)))*cos(incl_dlt(4)/2)... 

%     -dampen*x(8)); 

%% without sign function, and the positive sign 

dx(1)=x(2); 

dx(2)=1/(w(1)*ds(1))... 

    *(bf*w(1)*ds(1)*g*cos(incl_avg(1))+ff... 

    *abs(bf*w(1)*ds(1)*g*sin(incl_avg(1))... 

    -elasticity(1)*((x(1)-x(3))-(pst_lwr(1)-pst_lwr(2)-

disp(1)))*sin(incl_dlt(1)/2))... 

    -elasticity(1)*((x(1)-x(3))-(pst_lwr(1)-pst_lwr(2)-

disp(1)))*cos(incl_dlt(1)/2)... 

    -dampen*x(2)); 

dx(3)=x(4); 

dx(4)=1/(w(2)*ds(2))... 

    *(bf*w(2)*ds(2)*g*cos(incl_avg(2))+ff... 

    *abs(bf*w(2)*ds(2)*g*sin(incl_avg(2))... 

    -elasticity(2)*((x(3)-x(5))-(pst_lwr(2)-pst_lwr(3)-

disp(2)))*sin(incl_dlt(2)/2)... 

    -elasticity(1)*((x(1)-x(3))-(pst_lwr(1)-pst_lwr(2)-

disp(1)))*sin(incl_dlt(2)/2))... 

    -elasticity(2)*((x(3)-x(5))-(pst_lwr(2)-pst_lwr(3)-

disp(2)))*cos(incl_dlt(2)/2)... 

    +elasticity(1)*((x(1)-x(3))-(pst_lwr(1)-pst_lwr(2)-

disp(1)))*cos(incl_dlt(2)/2)... 

    -dampen*x(4)); 

dx(5)=x(6); 

dx(6)=1/(w(3)*ds(3))... 

    *(bf*w(3)*ds(3)*g*cos(incl_avg(3))+ff... 

    *abs(bf*w(3)*ds(3)*g*sin(incl_avg(3))... 

    -elasticity(3)*((x(5)-x(7))-(pst_lwr(3)-pst_lwr(4)-

disp(3)))*sin(incl_dlt(3)/2)... 

    -elasticity(2)*((x(3)-x(5))-(pst_lwr(2)-pst_lwr(3)-

disp(2)))*sin(incl_dlt(3)/2))... 



 

    -elasticity(3)*((x(5)-x(7))-(pst_lwr(3)-pst_lwr(4)-

disp(3)))*cos(incl_dlt(3)/2)... 

    +elasticity(2)*((x(3)-x(5))-(pst_lwr(2)-pst_lwr(3)-

disp(2)))*cos(incl_dlt(3)/2)... 

    -dampen*x(6)); 

dx(7)=x(8); 

dx(8)=1/(w(4)*ds(4))... 

    *(bf*w(4)*ds(4)*g*cos(incl_avg(4))+ff... 

    *abs(bf*w(4)*ds(4)*g*sin(incl_avg(4))... 

    -elasticity(4)*((x(7)+BPOS_current)-(pst_lwr(4)+BPOS(1)-

disp(4)))*sin(incl_dlt(4)/2)... 

    -elasticity(3)*((x(5)-x(7))-(pst_lwr(3)-pst_lwr(4)-

disp(3)))*sin(incl_dlt(4)/2))... 

    -elasticity(4)*((x(7)+BPOS_current)-(pst_lwr(4)+BPOS(1)-

disp(4)))*cos(incl_dlt(4)/2)... 

    +elasticity(3)*((x(5)-x(7))-(pst_lwr(3)-pst_lwr(4)-

disp(3)))*cos(incl_dlt(4)/2)... 

    -dampen*x(8)); 

%% with negative tanh function 

% dx(1)=x(2); 

% dx(2)=1/(w(1)*ds(1))... 

%     *(bf*w(1)*ds(1)*g*cos(incl_avg(1))-ff*tanh(10000*x(2))... 

%     *abs(bf*w(1)*ds(1)*g*sin(incl_avg(1))... 

%     -elasticity(1)*((x(1)-x(3))-(pst_lwr(1)-pst_lwr(2)-

disp(1)))*sin(incl_dlt(1)/2))... 

%     -elasticity(1)*((x(1)-x(3))-(pst_lwr(1)-pst_lwr(2)-

disp(1)))*cos(incl_dlt(1)/2)... 

%     -dampen*x(2)); 

% dx(3)=x(4); 

% dx(4)=1/(w(2)*ds(2))... 

%     *(bf*w(2)*ds(2)*g*cos(incl_avg(2))-ff*tanh(10000*x(4))... 

%     *abs(bf*w(2)*ds(2)*g*sin(incl_avg(2))... 

%     -elasticity(2)*((x(3)-x(5))-(pst_lwr(2)-pst_lwr(3)-

disp(2)))*sin(incl_dlt(2)/2)... 

%     -elasticity(1)*((x(1)-x(3))-(pst_lwr(1)-pst_lwr(2)-

disp(1)))*sin(incl_dlt(2)/2))... 

%     -elasticity(2)*((x(3)-x(5))-(pst_lwr(2)-pst_lwr(3)-

disp(2)))*cos(incl_dlt(2)/2)... 

%     +elasticity(1)*((x(1)-x(3))-(pst_lwr(1)-pst_lwr(2)-

disp(1)))*cos(incl_dlt(2)/2)... 

%     -dampen*x(4)); 

% dx(5)=x(6); 

% dx(6)=1/(w(3)*ds(3))... 

%     *(bf*w(3)*ds(3)*g*cos(incl_avg(3))-ff*tanh(10000*x(6))... 

%     *abs(bf*w(3)*ds(3)*g*sin(incl_avg(3))... 

%     -elasticity(3)*((x(5)-x(7))-(pst_lwr(3)-pst_lwr(4)-

disp(3)))*sin(incl_dlt(3)/2)... 

%     -elasticity(2)*((x(3)-x(5))-(pst_lwr(2)-pst_lwr(3)-

disp(2)))*sin(incl_dlt(3)/2))... 

%     -elasticity(3)*((x(5)-x(7))-(pst_lwr(3)-pst_lwr(4)-

disp(3)))*cos(incl_dlt(3)/2)... 



 

%     +elasticity(2)*((x(3)-x(5))-(pst_lwr(2)-pst_lwr(3)-

disp(2)))*cos(incl_dlt(3)/2)... 

%     -dampen*x(6)); 

% dx(7)=x(8); 

% dx(8)=1/(w(4)*ds(4))... 

%     *(bf*w(4)*ds(4)*g*cos(incl_avg(4))-ff*tanh(10000*x(8))... 

%     *abs(bf*w(4)*ds(4)*g*sin(incl_avg(4))... 

%     -elasticity(4)*((x(7)+BPOS_current)-(pst_lwr(4)+BPOS(1)-

disp(4)))*sin(incl_dlt(4)/2)... 

%     -elasticity(3)*((x(5)-x(7))-(pst_lwr(3)-pst_lwr(4)-

disp(3)))*sin(incl_dlt(4)/2))... 

%     -elasticity(4)*((x(7)+BPOS_current)-(pst_lwr(4)+BPOS(1)-

disp(4)))*cos(incl_dlt(4)/2)... 

%     +elasticity(3)*((x(5)-x(7))-(pst_lwr(3)-pst_lwr(4)-

disp(3)))*cos(incl_dlt(4)/2)... 

%     -dampen*x(8)); 

end 

  

  



 

4. Function: position_lower 

function [ pst_lwr ] = position_lower( sec_lgth ) 

  

sec_lgth = flip(sec_lgth); 

sec_lgth = cumsum(sec_lgth); 

pst_lwr = flip(sec_lgth); 

  

% finally, we can calculate the cumulative length, i.e. the position 

of  

% lower in each section.  

  

% assume the upper point of drillstring is fixed, and the lower 

% point is free, so the drillstring will elongate downward. 

  

% For the top section, the length only counts its own displacement. 

  

% For the lower section, the length only counts its own length 

% and the length above this section. 

  

% For the lowest section, the length equals to sum of the length in 

% all sections. 

  

end 

  



 

5. Function: section_length 

function [ sec_lgth ] = section_length( disp ) 

  

load('sprg.mat') % length of each spring or wireline in mass-spring 

chain 

load('ds.mat') % length of each drillpipe, i.e. the mass in mass-

spring chain 

  

sec_lgth = sprg + ds + disp; 

  

%we add the spring length in each section, drillstring length (mass 

%block) length in each section, and the displacement in each section 

%together, then we obtain the total length in each section. 

end 

 

  



 

6. Function: simulated_BPOS 

function [ BPOS, time, v_avg ] = simulated_BPOS( v0,a,t0,t1,t2,dt ) 

  

%example simulated_BPOS( 0,0.0067,10,25,100,0.1 ) 

  

%This function can calculate a series of simulated BPOS and time. 

%v0 is the initial velocity. In our research, initial velocity should 

be 

%zero. 

%a is the acceleration, we assume the acceleration is a constant for 

%convenience. 

%From t0 to t1, the drillstring is still to make the simulator be 

stable. 

%t1 is the acceleration time. From t0 to t1, the drillstring is 

experiencing 

%acceleration state. 

%t2 is the constant velocity time. From t1 to t2, the drillstring is 

%tripped out with constant velocity. 

%the time interval is also a constant. for example 0.1 sec. 

  

T0 = (0:dt:(t0-dt))'; 

T1 = (0:dt:(t1-t0))'; 

T2 = (dt:dt:t2-t1)'; 

  

BPOS0 = zeros(length(T0),1); 

BPOS1 = v0*T1+0.5*a*T1.^2; 

BPOS2 = (v0+a*(t1-t0))*T2+BPOS1(end); 

  

v_avg = a*(t1-t0); 

  

time = (0:dt:t2)'; 

BPOS = [BPOS0;BPOS1;BPOS2]; 

  

plot(time,BPOS); 

  

end 

 

  



 

7. Function: static_drag_force 

function [ F ] = static_drag_force() 

% 1. Use the modified mathematical model mentioned in semester 

project. 

% 2. Derive two expressions for calculate the drag force at the upper 

point in each section 

% 3. Calculate the results and choose the larger value as the drag 

force. 

% The reason why I choose the larger value as the drag force: 

% During tripping out, friction is always opposite to drag force, so 

the  

%larger result indicates drag force and friction are opposite. 

  

% load the input data, which is copied from excel and pre-processed 

load('section.mat') % name of each section 

load('ds.mat') % length of each section 

load('incl.mat') % inclination at two ends, totally 7 points for 6 

sections 

load('incl_avg.mat') % average inclination for each section 

load('incl_dlt.mat') % inclination change for each section 

load('bf.mat') % calculated buoyance factor 

load('ff.mat') % friction factor 

load('g.mat') % gravity 

load('w.mat') % unit weight for each section 

  

% define unit weight manually 

% w = Bf*7.22; % kg/m 2-3/8 

% w = Bf*10.19; % kg/m 2-7/8 

% w = Bf*14.14; % kg/m 3-1/2 

% w = Bf*17.63; % kg/m 4 

% w = Bf*20.46; % kg/m 4-5 

  

%from the bottom, calculate the forces in each section at the static 

state 

  

% For the first component, there is no force at the lower end because 

% the lower end is off the bottom. 

% Therefore, the equation is a little bit different, so we solve it 

first. 

% Define matrix f is N by 2, N is the total number of sections in 

system. 

% For each section, two force will be calculated, then pick the bigger 

one 

% as the real drag force and stored in F, which is N by 1. 

f = zeros(length(section),2); %store drag force for two scenarios 

F = zeros(length(section),1); %store correct drag force 

f(1,1) = bf*w(1)*ds(1)*g*(cos(incl_avg(1))+ff*sin(incl_avg(1)))/... 

    (ff*sin(incl_dlt(1)/2)+cos(incl_dlt(1)/2)); 

f(1,2) = bf*w(1)*ds(1)*g*(cos(incl_avg(1))-ff*sin(incl_avg(1)))/... 

    (-ff*sin(incl_dlt(1)/2)+cos(incl_dlt(1)/2)); 

F(1) = max(f(1,:)); 



 

  

% for rest pipe, we have general equations which can be applied, 

% and the procedure is the same as the first section. 

for i = 2:length(section) 

    for j = 1:2 

        if j == 1 

            f(i,j) = 

(bf*w(i)*ds(i)*g*(cos(incl_avg(i))+ff*sin(incl_avg(i)))... 

                -F(i-1)*(ff*sin(incl_dlt(i)/2)-

cos(incl_dlt(i)/2)))/... 

                (ff*sin(incl_dlt(1)/2)+cos(incl_dlt(1)/2)); 

        elseif j == 2 

            f(i,j) = (bf*w(i)*ds(i)*g*(cos(incl_avg(i))-

ff*sin(incl_avg(i)))... 

                +F(i-

1)*(ff*sin(incl_dlt(i)/2)+cos(incl_dlt(i)/2)))/... 

                (-ff*sin(incl_dlt(1)/2)+cos(incl_dlt(1)/2)); 

            F(i) = max(f(i,:)); 

        end 

    end 

end 

% Horizontal section_drillpipe 

  

%Calculate the normal force for each section based on the modified 

%mathematical model in specialization project. For the negative normal 

%force, it indicates that drillstring attaches at the upper side of 

the 

%wellbore. In buildup section, it is the side force. 

  

N(1) = bf*w(1)*ds(1)*g*sin(incl_avg(1))-F(1)*sin(incl_dlt(1)/2); 

  

for i = 2:length(section) 

    N(i) = bf*w(i)*ds(i)*g*sin(incl_avg(i))-(F(i-

1)+F(i))*sin(incl_dlt(i)/2); 

end 

  

end 

 

  



 

8. Function: draw plot 

function draw_plot(  hkl,time,XX,X,T,dampen,a,v_avg,t0,t2,dt,section ) 

%This function will draw all the necessary figures about results. 

n = size(XX,2); 

%% 

figure(1) 

  

plot(time,hkl,'LineWidth',3) 

title({['\fontsize{15}Simulated HKL vs. Time'];... 

    ['\fontsize{10}Dampen: ',num2str(mean(dampen)),' N/(m/s)',... 

    '  \fontsize{10} Acceleration: ',num2str(a),' 

\fontsize{10}m/s2',... 

    '  \fontsize{10} Average velocity: ',num2str(v_avg),' m/s']}) 

  

xlabel('Time (sec)','FontSize',14) 

ylabel('Hook load (N)','FontSize',14) 

  

grid on 

  

xlim([t0-5,t2]) 

  

%% 

figure(2) 

for i=1:n 

    subplot(ceil(n/ceil(sqrt(n))),ceil(sqrt(n)),i); 

    plot(time,XX(:,i),'LineWidth',2) 

    title({['\fontsize{15}Displacement of section: 

',num2str(cell2mat(section(i)))];... 

        ['\fontsize{10}Tripping out distance: ',num2str(1000*(XX(1,i)-

XX(end,i))),' mm']}) 

    xlabel('Time (sec)','FontSize',10) 

    ylabel('MD (m)','FontSize',10) 

    grid on 

    set(gca,'YDir','reverse') 

    xlim([t0-5,t2]) 

end 

  

%% 

figure(3) 

for i=1:n 

    subplot(ceil(n/ceil(sqrt(n))),ceil(sqrt(n)),i); 

    plot(T,X(:,2*i-1),'LineWidth',2) 

    title({['\fontsize{15}Disp at last ',num2str(dt),' s in section 

',... 

        num2str(cell2mat(section(i)))];... 

        ['\fontsize{10}Tripping out distance: ',num2str(1000*(X(1,2*i-

1)-X(end,2*i-1))),' mm']}) 

    xlabel('Time (sec)','FontSize',10) 

    ylabel('MD (m)','FontSize',10) 

    grid on 

    set(gca,'YDir','reverse') 



 

    xlim([T(1),T(end)]) 

end 

%% 

figure(4) 

for i=1:n 

    subplot(ceil(n/ceil(sqrt(n))),ceil(sqrt(n)),i); 

    plot(T,X(:,2*i),'LineWidth',2) 

    title({['\fontsize{15}Velocity at last ',num2str(dt),' s in 

section ',... 

        num2str(cell2mat(section(i)))];... 

        ['\fontsize{10}Velocity: ',num2str(1000*(mean(X(:,2*i)))),' 

mm/s']}) 

    xlabel('Time (sec)','FontSize',10) 

    ylabel('Velocity (m/s)','FontSize',10) 

    grid on 

    set(gca,'YDir','reverse') 

    xlim([T(1),T(end)]) 

end 

  

end 

 

 

 

 

  



 

D. Spreadsheet of the downscaling calculation 

 

 



 

 

 



 

 

  



 

E. Risk analysis of laboratory activities 

 



 

 



 

 



 

 

 



 

 


