
Reservoir Uncertainty Evaluation
A Producing Gas Field Case Study

Brit Elise Melhus

Petroleum Geoscience and Engineering

Supervisor: Jon Kleppe, IPT
Co-supervisor: Knut Ingvar  Nilsen, Eni Norge

Lars  Rasmussen , Eni Norge

Department of Petroleum Engineering and Applied Geophysics

Submission date: June 2015

Norwegian University of Science and Technology



 



i 

 

Abstract 

Once a field starts to produce, new information becomes available in terms of production data and 

measurements. By integrating this information to a reservoir model through a history matching 

process, an updated uncertainty evaluation of the reservoir can be formed. In the history matching 

process the current reservoir simulation model will be calibrated to match the new information. 

This is done to be able to represent the true dynamic behavior in the reservoir, hence get reliable 

predictions of the future reservoir behavior. The history matching problem is a non-unique 

problem, meaning that it has multiple solutions. This thesis presents a case study where history 

matching is applied to a producing gas field, through an assisted history matching process by the 

use of MEPO software (Schlumberger). The aim of the study is to get an updated uncertainty 

evaluation of the reservoir, three years after production start. The thesis will investigate the key 

uncertainties associated with the dynamic reservoir behavior in the field of study. To be able to 

capture and mitigate the uncertainties related to reservoir parameters, the ensemble based method 

Markov chain Monte Carlo is used with Bayesian updating. Utilizing the Bayesian framework 

imply to take a probabilistic approach to uncertainty. The probabilistic theory and its application 

to mitigate reservoir uncertainty through a history matching process, are reviewed and further 

applied in the thesis.  

In the study, the gas volume in place and the influence from the aquifer, in addition to the internal 

communication in the reservoir are considered the key uncertainties. The reservoir is divided into 

regions to be able to capture the uncertainty in different areas. Pore volume- and permeability 

multipliers for the regions are chosen as uncertain parameters in the study. The pressure in the field 

are matched by letting the algorithm sample the parameter values from the prior distributions for 

the uncertain parameters. The sensitivity simulations show the parameter influence on the bottom 

hole pressures in the wells and on the gas volume. The results show that the pore volume multipliers 

are the most influential parameters on the match. History matching is carried out in three scenarios. 

The ensemble of the sufficient history matches makes up the posterior distributions of the uncertain 

parameters. By analyzing them, it is found; presence of a possible barrier, influence from a small 

aquifer and a dominating parameter in terms of a pore volume multiplier. Further, the lack of 

convergence in the Markov chain is tested, the results did not imply lack of convergence in the 

sufficient scenarios, hence predictions are simulated. The field gas in place for the best matches 
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are found to be in the range between 6.5 and 8 GSm3. The predictions show a total production 

period of 8-9 years before abandonment pressure is reached.   

Even though it is important to obtain a reasonable history match, it is at least just as important with 

a geologically truthful simulation model to be able to obtain reliable predictions. This is why a 

geologist’s evaluation is essential to include in the study. Discussions with a geologist lead to 

geological interpretations from the results in the study that should be implemented and tested in a 

further study. The recommendations for future work are; (1) implement the suggested faults, (2) 

divide the dominating region into multiple regions, and further, depending on the previous results, 

(3) reduce the net-to-gross parameter values in the initial model. 
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Sammendrag 

Når et felt begynner å produsere blir ny informasjon tilgjengelig i form av produksjonsdata og 

målinger. Ved å integrere denne informasjon i reservoar modellen gjennom historietilpasning får 

man resultater som kan føre til en oppdatert usikkerhets evaluering av reservoaret. I 

historietilpasnings prosessen vil den nåværende reservoar simuleringsmodellen bli kalibrert til å 

samsvare med den nye informasjonen. Dette blir utført for å få en modell som kan representere den 

korrekte dynamiske oppførselen i reservoaret, og dermed gi pålitelige prognoser av fremtidig 

reservoaroppførsel og produksjonsforløp. Historietilpasning er et ikke-unikt problem, noe som 

betyr at det finnes flere løsninger på problemet. I denne oppgaven vil det bli utført historietilpasning 

for et produserende gassfelt, ved bruk av assistert historietilpasning som simuleres i  programvaren 

MEPO (Schlumberger). Studien gjennomføres for å få en oppdatert usikkerhets evaluering av 

reservoaret, tre år etter produksjonsstart. De viktigste usikkerhetene knyttet til den dynamiske 

reservoaroppførselen vil bli undersøkt. For å fange opp og redusere usikkerheten knyttet til 

reservoarparametere, er metoden Markov chain Monte Carlo benyttet i en iterativ Bayesian 

oppdatering. Det å benytte et Bayesiansk rammeverk innebærer å benytte sannsynlighets teori i 

behandlingen av usikkerhet. Sannsynlighets teori, og hvordan den blir benyttet til å redusere og 

behandle reservoarusikkerhet gjennom en historietilpasnings-prosess blir gjennomgått i teoridelen 

i oppgaven. 

I studien er gassvolumet, påvirkningen fra akviferen og kommunikasjonen i reservoaret betraktet 

som de viktigste usikkerhetene i reservoaret. Reservoaret er blitt delt inn i regioner for å kunne 

fange opp usikkerheten i forskjellige områder av reservoaret. Porevolums- og permeabilitets 

multiplikatorer for regionene er benyttet for å kunne representere de usikre parameterne i studien. 

Trykket i feltet blir historietilpasset ved å la algoritmen plukke parameterverdier fra de valgte 

distribusjonene for de usikre parameterne. En sensitivitets studie gir resultater som viser 

parameternes innflytelsen på bunnhullstrykket i brønnene og påvirkningen i gassvolumet. 

Resultatene viser at porevolums multiplikatorene er de mest innflytelsesrike parameterne. Det er 

utført tre historietilpasnings scenarier. De gode historietilpasnings simuleringene utgjør 

«posterior» distribusjoner av de usikre parametrene. Disse er nøye studert og analysert før følgende 

er funnet; tilstedeværelse av en mulig transmissibilitets barriere, påvirkning av en liten akvifer og 

en dominerende region i historietilpasningen. Det fantes tvil om optimeringsmetoden hadde 



iv 

 

konvergert, og dermed om den gir riktige resultater. Det finnes ingen gode måter å teste algoritmens 

konvergens på, men mangelen på konvergens i Markov kjeden er testet. Resultatene antyder ikke 

manglende konvergens. Dermed er prognoser for fremtidig produksjon blitt simulert, basert på de 

gode historietilpasningene. Gassvolumet i reservoaret er funnet til å være mellom 6.5 og 8 GSm3. 

Prediksjonene viser an total periode på 8-9 år før man når nedstegningstrykket.  

Selv om det er viktig å få en god historietilpasning, er det minst like viktig med geologisk korrekte 

tolkninger og en simuleringsmodell som kan gi pålitelige prognoser. Dette er grunnen til at en 

geologs evaluering er viktig å ta med i studien. Etter diskusjon av resultatene sammen med en 

geolog er det funnet geologiske tolkninger og anbefalinger som bør implementeres og testes videre 

i usikkerhets evalueringen. Anbefalingene for det videre studiet er; (1) implementere de foreslåtte 

forkastningene, (2) dele den dominerende regionen inn i flere regioner, og videre, avhengig av 

resultatene av de første anbefalingene, (3) redusere net-to-gross verdiene i reservoar modellen. 
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1 INTRODUCTION 

1.1 Background and Objective 

Uncertainty is a result of little knowledge, or lack of information related to a certain situation. The 

complexity in reservoirs and the variations in parameters throughout reservoirs, makes it difficult 

to create a clear picture of it and its properties. Hence, the uncertainty in the reservoir description 

is a result of subsurface complexity and limited data to describe it. 

By acknowledging the uncertainties related to the description of the reservoir, quantifying and 

handling of uncertainty are necessary. It is difficult to know all static and dynamic properties of 

the reservoir, hence a perfect reservoir model is close to impossible to obtain. Reservoir simulation 

is important as it gives an idea of how the dynamic behavior will evolve during production 

scenarios in a fields’ lifetime. Good predictions of future dynamic behavior will help to optimize 

the development and management of a field in terms of economy and recovery. To improve the 

model and to generate reliable predictions of future production, history matching is fundamental. 

History matching is known as the process of calibrating the reservoir model to match historical 

data. 

The goal of this thesis is to make an updated uncertainty evaluation of a producing gas field, three 

years after production start. The thesis will investigate the key uncertainties associated with the 

dynamic reservoir behavior and recovery of the field. The dynamic reservoir behavior may be 

challenging to predict and require use of simulation programs to be evaluated. A reservoir model 

that previously have been used to represent the reservoir will be calibrated to the new production 

data, through a history matching process. The history matching problem is a non-unique problem, 

which means it has multiple solutions. To be able to capture and mitigate the reservoir uncertainties 

the ensemble based method Markov chain Monte Carlo is used in a Bayesian updating. Utilizing a 

Bayesian framework imply to take a probabilistic approach to uncertainty. Several authors have 

demonstrated that a probabilistic approaches can be beneficial in uncertainty quantification among 

others; McVay and Dossary (2014) and, Bickel and Bratvold ( 2007). 
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In the study MEPO software (Schlumberger) will be used to perform an assisted history match, to 

mitigate the uncertainties related to reservoir parameters and dynamic behavior, as well as give 

(expected) production forecasts. The following tasks are to be considered: 

 Introduce probability theory and its application in a reservoir description context. 

 Literature review of the uncertainties related to reservoir description and approaches to 

uncertainty. 

 Present history matching theory and theory of the algorithm that will be applied. 

 Apply the history matching process to the field of study.  

 Discuss the results and findings.  

1.2 Approach and Structure 

The thesis is an uncertainty evaluation of a producing gas field. As a basic understanding of the 

concepts and methodology is important the thesis start with reviewing relevant theory and 

literature, before the field of study is presented. Further is the study carried out through; three 

history match scenarios, one sensitivity study and two prediction scenarios. In the end the results 

and findings are discussed and put in to context with each other. The thesis consists of six chapters. 

The following is an overview of the structure in the thesis:  

 Chapter 2 introduces terms and concepts used in probability theory. Further, the 

probabilistic approach to handle and understand the uncertainty in the subsurface are 

reviewed. The last part of the chapter discuss how to create value from uncertainty.   

 Chapter 3 presents the history matching theory and process, including the Bayesian 

formulation of updating the prior uncertainty by utilizing the algorithm Markov chain 

Monte Carlo.  

 Chapter 4 introduces the reservoir that will be studied. The general field information, 

geological interpretations, and uncertainties related to the reservoir are discussed. Further 

is the reservoir model that will be used described in brief.  

 Chapter 5 describes the implementation to, and the results of; three history match scenarios, 

one sensitivity study, and two prediction scenarios. There is a brief discussion of the results 
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within the different sections describing the results, before the last section combines the 

results and discuss the important findings.  

 Chapter 6 gives the concluding remarks from the study and recommendations for further 

work.  

 

 

  



4 

 

  



5 

 

2 QUANTIFYING UNCERTAINTY 

This chapter is divided in to three main subsections. The first main subsection presents the basics 

of probability theory, which can be used to quantify and capture uncertainties. Basic statistic 

principles and definitions are presented to create a basis for the further uncertainty study. The 

second subsection discuss how the reservoir parameters are found and how their uncertainty may 

be presented in probability distributions. In the study is taken a probabilistic approach as a reservoir 

cannot be described deterministically because of the complexity in the subsurface and limited data 

from measurements. The parameter values will vary throughout the reservoirs’ extent which makes 

it difficult to give a prediction of the parameters. This is why the parameter values may be presented 

by probability distributions. The third main subsection discuss different approaches to uncertainty, 

in addition to illustrate why managing uncertainties in reservoirs can be useful in decision analysis. 

From a reservoir (engineers’) standpoint, it is not enough that the project is economic, it is equally 

important to find the development and management that is optimal for the field and will give the 

highest economic return. Good estimates of the reservoir parameters such as hydrocarbon volume 

and predictions of the dynamic behavior will lead to identifications of the possible outcomes. This 

may again lead to more beneficial decisions. This chapter is based on the project thesis “A 

Literature Review of Uncertainties Related to Reservoir Parameters” (Melhus, 2014). 

2.1 A Probabilistic Approach 

2.1.1 Definitions  

Certain words that are used in uncertainty quantification and decision analysis have different 

meanings within different disciplines which can lead to misunderstandings. This section will 

discuss and define words that are frequently used throughout the thesis.  

Event, Outcome and Probability  

Probability is the chance of a specific outcome taking place. The probability that describes how 

likely it is that an outcome will occur, is assigned by people, and should only be based on all 

available information and knowledge. Bratvold and Begg (2010) explains probability by the 

following statement: “Probability is an individual’s or group’s assessment of uncertainty and 

represents a state of mind. There is no predefined probability that can be recommended for any 

particular uncertain situation. It always depends on the assessor’s state of knowledge.”  To be able 
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to assign probabilities it is important to have a precise description of the outcome. There are certain 

rules that applies to assigning probabilities that always are valid. One of them are that the 

probabilities should range on a scale from zero to one (or 0 to 100 %). Where zero is indicating an 

outcome that will not happen, and one indicates an outcome that will happen with certainty. A 

second rule is that the sum of the probabilities of all the possible outcomes should equal to one. 

From this it is clear that one of the outcomes must happen.  

It may be useful to distinguish an event from an outcome. An event can be looked at as the process 

of obtaining an observation. An example of this can be to drill a well or to shoot seismic. An 

outcome is the specific observation or happening (of the event). For example, the drilled well can 

be dry or wet.  

Uncertainty and Risk 

It is important to distinguish between what one know about the reservoir, and the actual reservoir. 

The actual physical reservoir will never be exactly the same as a proposed model of the reservoir. 

A model is an approximation of the real reservoir by the use of available information and 

knowledge. It is the lack of information, or knowledge, which creates the uncertainty in the 

reservoir model.  

Uncertainty is defined as the range of possible values, or outcomes, for an event. It is important to 

find every possible outcome of an event and assign a probability of occurrence to quantify 

uncertainty. Bratvold and Begg (2010) discuss that since the uncertainty is a consequence that 

comes from lack of knowledge, uncertainty is personal. All information need to be interpreted and 

put in-to context by someone. Furthermore, the assigned probability of an outcome will differ from 

person to person, due to its dependence on that person’s experience, assumptions, and interpretation 

of the available information. One could therefore argue that there does not exist any precise 

uncertainty for a given outcome.  

Risk can be defined as the chance or probability of something happening, times the consequence 

of it. It is often used when the outcome of the event is undesirable. Risk in a project will be the 

downside probability of the possible outcomes. Examples may be outcomes where the cost is more 

than the revenue, or when there is no revenue at all in a project. 
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2.1.2 Probabilistic Method 

Probability Models 

For an uncertain event, a probability distribution may describe the possible outcomes and their 

probability of taking place. A probability distribution can be discrete or continuous. A discrete 

probability distribution is used to describe the uncertain events that only can take a fixed number 

of outcomes. In a discrete probability distribution, each outcome have a specific probability. An 

example can be rolling a dice, the event has six possible outcomes with an equal probability of 

occurring (one sixth). Figure 1 shows an example of a discrete probability distribution with eight 

different outcomes that are assigned with individual probabilities.   

A continuous probability distribution is used to represent an uncertain event that can take any value 

(or outcome) over a possible range. The vertical scale of continuous probability distributions are 

defined as the probability density. Because of this, the functions are referred to as probability 

density functions, often shortened to PDF’s. The probability of a parameter to be within an interval 

is defined by the area under the probability density function, f(x), for the defined interval. The 

probability, P, of the continuous variables can only be specified for the outcomes defined over an 

interval. Mathematically it can be shown by: 

 

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑥) 𝑑𝑥

𝑏

𝑎

 

 

(1) 

Which gives the probability of the variable X ranging in the interval from value a to b. The area 

under the curve represent the likelihood of a continuous random variable X, to take a value in the 

range from a to b. Figure 2 pictures a continuous probability distribution, where the grey shaded 

part in the figure shows the area under the PDF defined by the interval from a to b. The total area 

under the continuous probability distribution will always be equal to one. This is because any 

outcome must be captured by the range of the distribution by definition in Equation 2. By the 

definition of a continuous distribution, the probability of getting a single outcome is equal to zero. 

This can be shown, by integration over the same point the mathematically expression becomes zero 

as in Equation 3. The probability density function defined as non-negative everywhere expressed 

mathematically by Equation 4.  
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 𝑓(𝑥) ≥ 0     ∀ 𝑥 (2) 

 

 

∫ 𝑓(𝑥) 𝑑𝑥 = 1

∞

−∞

 

(3) 

 

 𝑃(𝑎 < 𝑋 ≤ 𝑎) = ∫ 𝑓(𝑥) 𝑑𝑥 = 0
𝑎

𝑎
    Where a represents any given value (4) 

  

Cumulative Distributions  

A Cumulative density function, CDF, represented by F(X), is another way to express probability 

density functions. This distribution gives the probability, P, for an uncertain outcome X to be less 

than or equal to a specific value. It can be described mathematically by:  

 𝐹(𝑥) =  𝑃(𝑋 ≤ 𝑥) (5) 

The cumulative distribution describes the area under the probability density function from a 

minimum to the given point, x. In other words, it describes the “accumulated” probability “up to 

x”. For a continuous variable, the PDF and CDF are related by Equation 6:  

 

𝐹(𝑥) =  𝑃(𝑋 ≤ 𝑥) =  ∫ 𝑓(𝑡) 𝑑𝑡

𝑥

−∞

 

(6) 

 
 

Figure 1 An example of a Discrete Probability 

Distribution, where the vertical axis show the probability 

density, and horizontal axis show the outcome. 

Figure 2 A Continuous Probability Distribution, where 

the vertical axis show the probability density, and 

horizontal axis show the outcome. 



9 

 

Where “t” is used as an integrand variable. By the Fundamental Theorem of Calculus: 

 𝐹′(𝑥) =  𝑓(𝑥)    (7) 

Figure 3 and Figure 4 show how discrete and continuous probability density functions can be 

shown as cumulative density functions. In certain cases it may be more convenient to think of the 

CDF in terms of a probability of an outcome exceeding a value, instead of being below it, this is 

termed as a reverse, survival or exceedance CDF (Bratvold and Begg, 2010).  

  

 

 

 

 

 

 

 

Expected Value, Standard Deviation and Covariance 

Expected value, EV, and standard deviation, SD, are useful parameters that are frequently used to 

describe probability distributions. In addition can covariance describe the relation between 

variables. In the petroleum industry, EV is often noted as EMV, which is shortened for expected 

monetary value. Their meaning are the same and the notation EV and expected value will be used 

further in this thesis.  

Figure 4 A continuous probability density function transformed to a cumulative density function. 

Figure 3 A discrete probability density function transformed to a cumulative density function. 
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The expected value, which also is referred to as the average or mean, can be considered as a 

measure of the center in a probability distribution. The EV is found by multiplying each of the 

possible outcomes with the likelihood of the occurrence of the individual outcome, and summing 

the values. In other words, the expected value is the sum of the probability-weighted outcomes 

(Bratvold and Begg, 2010). For discrete distributions, EV can be found mathematically by: 

𝐸[𝑋] = 𝑥1𝑃(𝑋 = 𝑥1) + 𝑥2𝑃(𝑋 = 𝑥2) + ⋯ + 𝑥𝑛𝑃(𝑋 = 𝑥𝑛) 

 
= ∑ 𝑥𝑖𝑃(𝑋 = 𝑥𝑖)

𝑛

𝑖=1

 
(8) 

For continuous distributions, EV is found by integrating the continuous probability density 

function, f(x) as showed by Equation 9:  

 
𝐸[𝑋] = ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥

∞

−∞

 
(9) 

As the expected value does not provide any information about the variation in a distribution, it is 

common to use the parameters variance and standard deviation to describe the variability of a 

distribution. The variance is the squared deviations around the expected value. (Bratvold and Begg, 

2010). For a discrete PDF, the variance can be described mathematically as: 

 
𝑉𝑎𝑟[(𝑋)] = 𝐸[(𝑋 − 𝜇)2] =  ∑ 𝑝𝑖

𝑛

𝑖=1

(𝑥𝑖 − 𝜇)2 
(10) 

 

The symbol 𝜇  is commonly used in mathematical expressions for the expected value. For a 

continuous PDF the variance is described mathematically by Equation 11: 

 
𝑉𝑎𝑟[(𝑋)] =  ∫  (𝑥 − 𝜇)2𝑓(𝑥)𝑑𝑥

∞

−∞

 
(11) 

 

The variance is a number that is difficult to relate to when discussing uncertainty, as the dimension 

of the variance is the square of the dimension of the original variable. Standard deviation are 

therefore much used in describing the dispersion of the values in distribution functions (Bratvold 

and Begg, 2010). The standard deviation is defined as the square root of the variance: 

 𝜎(𝑋) =  √𝑉𝑎𝑟(𝑋) (12) 
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Figure 5 show PDFs with different standard deviations; zero, small and large that all have the same 

EV. 

Covariance describe how two random variables are related. If the variables move in the same 

direction they are positively related. When the variables move in opposite directions they are 

inversely related. The inverse- and positive relations are often referred to as correlations, ranging 

from -1 to 1, respectively, where 1 represents perfect correlation. The covariance of the variables 

X and Y is defined by: 

 𝐶𝑜𝑣(𝑋, 𝑌) =  𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌])] (13) 

In the cases where both the variables, X and Y takes a value that both are greater, or smaller than 

their respective means, the covariance take a positive value.  

Probability Definitions 

In probability theory it is important to distinguish between mode, median and mean outcomes or 

values. Mode or most likely is the peak in a probability distribution, which is the most likely value. 

Median is the point in a probability distribution where the area under the curve is equal on both 

sides. This will equal the value of 50 percent also written as P50. The mean or average is equal to 

the expected value. It is important to note that these values, mode, median and mean will be overlap 

for a symmetric probability distribution, for unsymmetrical distributions they will differ (Bratvold 

and Begg, 2010). Figure 6 show, an unsymmetrical distribution where mode, median and mean are 

found at different frequencies.  

 

 
Figure 5 Variable standard deviation -Zero/Small/Large 

(Bratvold, 2014). 
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Marginal-, joint- and conditional probabilities are common probability terms. They are defined as 

follows:  

Marginal probability, also referred to as total probability, is defined as the probability of an 

outcome, irrespective of any other outcomes. The marginal probability of outcome A is noted as: 

 P(A) (14) 

Joint probability is defined as the probability of two outcomes (A and B) happening together, and 

is commonly notes as: 

Conditional probability describes how the probability is changed by the occurrence of another 

outcome. The conditional probability of A happening by the occurrence of B, are noted by: 

 P(A|B) (16) 

Probability Density Functions 

The probability density functions has a certain distribution which can be defined by its properties, 

typically expected value and standard deviation. The Gaussian distribution, also called normal 

distribution, is one of the most common probability distributions (Begum, 2009). A Gaussian 

function is the probability function of the normal distribution, it can be expressed mathematically 

by: 

 
𝑓(𝑥) =

1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

(𝑥 − 𝜇𝑥)2

2𝜎2
) 

(17) 

 

 𝑃(𝐴 ∩ 𝐵) (15) 

Figure 6 Log normal distribution with the points 

Mode, Median and Mean (Bratvold, 2014). 
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The Gaussian function is characteristic by its bell shape and symmetry around its mean value. Other 

commonly used probability distributions in the oil and gas industry and their corresponding 

properties can be seen in Figure 7. 

 

 

 

 

 

 

 

 

 

Figure 7 Commonly used probability distributions and their corresponding properties, 

in the oil and gas industry (Bratvold and Begg, 2010). 
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2.1.3 Practical use of Cumulative Probability Distributions  

There are two approaches of constructing a cumulative density function, CDF, depending on if the 

cumulative probability is given in terms of 𝑃(𝑋 ≤ 𝑎), which gives the probability for an uncertain 

outcome X to be less than or equal to a specific value, or by plotting  1- 𝑃(𝑋 ≤ 𝑎). The first 

approach describes the probability of an uncertain outcome to be less than or equal to a specific 

value. This can be described as “at most” probabilities, the cumulative distribution starts at zero 

and sums up to one. Figure 8 illustrate this approach. The second approach, describes the 

probability of an uncertain outcome that is greater than a specific value, it yields the “at least” 

probabilities. This CDF will start at one and decrease to zero al illustrated in Figure 9. The second 

approach can be described as a more optimistic way of presenting the probability of outcomes, as 

it is presenting “at least” probabilities instead of “at most”. This can have a certain psychological 

effect, and may the reason why it widely used in the oil and gas industry.  

Certain probability percentiles are commonly referred to when describing parameter distributions 

or computed values such as volumes and reserves. Probability percentiles are often used to provide 

estimates that are described to be pessimistic, optimistic or most likely. P50 represents the most 

likely outcome, based on the probability of the value of occurring. P10 and P90 represents the 10 % 

and 90 % percentiles which are defined depending on the CDF approach used.  

 
Figure 8 The CDF represents the probability of getting a value or less, and correspondingly “at most” percentiles 

(Bratvold, 2014). 
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2.2 Uncertainties in Reservoir Parameters  

2.2.1 Key Uncertainties in Reservoir Parameters 

Ma (2011) states that there is no uncertainty in a reservoir, it is the limited data to describe the 

reservoir that leads to uncertainty, hence uncertainty only exists in our understanding and 

description of it. This means that there is only one way the real reservoir is composed, consequently 

uncertainty in description of the reservoir may be seen as lack of knowledge about it. A reservoir 

was once geologically deposited, during the burial process multiple forces acted upon it and caused 

mechanical and chemical changes to the geological formation. The deposition environment and the 

natural changes to the formation in the subsurface are the main reasons why a reservoir deposit is 

quite complex. Limited data, interpretations of the measurements, upscaling and inaccuracy in the 

measurements leads to uncertainty in reservoir description. The complexity in a reservoir leads to 

variation of several parameters throughout the reservoir. It can be a challenge to measure this 

variation correctly, and local measurements may not capture the real variations. The normal 

procedure of gathering information about the parameters in addition to the uncertainty in the data 

measurements will be presented in brief detail in this section. 

The structural trap and the fluid contacts, which define the boundaries of the reservoir, make up 

the structural framework of a reservoir. The structural framework includes faults and surfaces 

which can be detected by seismic data- and interpretations. In recent years, recently developed 

seismic surveys can provide data about rock types and give porosity estimates. Though, there are 

several uncertainties linked to seismic, Ringrose and Bentley (2015) states several incidents where 

 
Figure 9 The CDF represents the probability of getting a certain value greater than, and correspondingly “at least” 

percentiles (Bratvold, 2014). 
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possible faults within and around the structural framework that are difficult to detect and may lead 

to the wrong assumptions from trusting the seismic.  

 Faults tend to be missing in areas of poor seismic quality. 

 Seismic noise makes it difficult to identify fault intersections. 

 Faults may be interpreted on seismic noise. 

 Horizon interpretations may be extended down fault planes.  

Within the structural framework different lithologies and facies will lead to internal layering and 

differences. Identification of the reservoir deposit environment may lead to a better understanding 

of the stratigraphic trends. Though, it is necessary to go through with multiple measurements to get 

as much information as possible from different sources about the reservoir parameters. Rock and 

fluid parameters can be found by either direct or indirect measurements. Direct measurements are 

typically laboratory measurements using core samples from the reservoir. Indirect measurements 

can be petrophysical logs, well testing and seismic mapping. The area the measurements cover 

varies from very small areas for cores to larger areas from seismic. Core samples, logs and well 

tests provides information of the parameters near the measurement pint the reservoir. This means 

that the properties such as stratigraphy, lithology, facies, net-to-gross, porosity, permeability and 

PVT properties can be determined at certain points in the reservoir, namely where wells are drilled. 

Elsewhere, one will have to predict the trends by interpolate interpretations from seismic and well 

data information. To get a full reservoir description the parameters will have to be up-scaled. 

Upscaling of a parameter refers to applying the results from fine scale observations or 

measurements to a larger scale. Upscaling may be the biggest uncertainty concern in the reservoir 

description, as parameter values are assigned to unexplored areas. 

Core analysis will usually give accurate descriptions of fluid and rock parameters, as they are part 

of the reservoir. The fluid properties are commonly found in laboratory experiments. Many 

methods are developed and used to get an accurate description of the fluid properties. There will 

still be some inaccuracy in the laboratory experiments that leads to uncertainty in the estimates. 

With regard to uncertainties in the fluid properties, it is important to notice that the Lee-Gonzales 

gas viscosity correlation which, according to Whitson and Brulé (2000), is used by most PVT 

laboratories when reporting gas viscosities, can lead to an error up to 20 % for rich gas condensates. 

The largest concern about core analysis, typically concerning rock parameters, is that the 
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measurement of the parameters are very locally and any upscaling of these values introduces a 

great deal of uncertainty (Skogen, 2014). Core samples does not yield any information about the 

surrounding rocks. Nevertheless, core analysis can be used to calibrate petrophysical logs.  

Petrophysical log data acquire typically parameters such as; porosity, water saturation, 

permeability, fluids contacts, N/G and mineral content (e.g. clay content). The well logging tools 

detect response signals from their measurements, e.g. gamma ray, sonic, resistivity, neutron, 

density and image logs to mention a few well known log measurements. New and better 

measurement tools constantly evolve with technology. When investigating uncertainties, one 

important factor is that the reservoir parameters of interest are not measured directly by well-

logging tools. The parameters have to be derived through processes, including data-, processing, 

interpretation, and calibration. This is done to reduce any systematic errors caused by borehole 

effects, tool interference, resolution differences, depth shifts and other acquisition interferences, in 

addition to perform a consistent analyze between wells. Each of these steps involves uncertainties 

which lead to the resultant petrophysical data will have uncertainty and limitations in the data 

accuracy (Moore et al., 2011). As already stated parameters will vary throughout the reservoir, 

hence measurements will give a spatial variance of the measured values. The log data 

measurements are limited to relatively small parts of the reservoir, even though the measurements 

capture the variation within wells they may not capture other variations in the measured properties 

throughout the reservoir. Identification of the good reservoir rock areas, and the clay or shaley parts 

of the reservoir is important as it affects the net-to-gross value. This property will typically have a 

high uncertainty in early field developments (Ma, 2011).  

A well test can provide estimates about the product of the permeability and the thickness of the 

reservoir. A well test will get the response from a larger volume of the reservoir than the other well 

data. 

In the subsurface, many parameters vary throughout the reservoir as discussed. Petrophysical logs 

and core samples from the reservoir will give local variations in the parameters, and may detect 

different lithologies and facies, it is therefore common to create histograms which shows the 

variability in the detected data for a certain area or facies. The histograms shows the variation in 

the specific properties as the reservoir has natural variety, there is no probability involved. 

Nevertheless when several measurements are made, and variation is plotted the different data 
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measurements should be used in combination with other available information, interpretations and 

knowledge to assess an appropriate probability distribution of the parameters in a given region. It 

is important to take into account the uncertainty of the upscaling of the parameters as the real trends 

throughout the reservoir may not be captured by a few wells. 

2.2.2 Combining Reservoir Parameters and Probability Distributions 

As this section will discuss further, and Ma (2011) writes: Uncertainties will always exist in 

reservoir characterization, and probabilistic methods provide viable tools for uncertainty analysis 

and quantification. A probability distribution should give a complete picture of an unknown event 

as it describes the outline for the possible outcomes. Probability distributions are used capture and 

communicate the uncertainty in the parameters, where the most frequent or probable outcomes 

yields a higher probability density relative to the other possible outcomes. The probability 

distributions for a particular parameter or function of them will take certain forms related based on 

what is found to be the appropriate probability distribution for the parameter uncertainty. It is 

important to capture all possible outcomes for the parameters with respect to the information 

already available and represent it in the probability distribution. When more information about the 

reservoir is collected and taken into consideration in the uncertainty assessment, the number of 

possible outcomes should decrease, hence the prior probability density function will be transformed 

to a posterior probability density function. 

The resulting probability distribution for combined uncertain parameters (e.g. the function that 

describes pore volume), will take a particular form based on the relationship between the 

uncertainties in the applicable parameters. When the uncertain parameters are added, the resulting 

distribution often tends to be a normal distribution, likewise, when the uncertain parameters are 

multiplied the resulting curve it tends to be log-normally distributed (Bratvold and Begg, 2010).  

McVay and Dossary (2014) discuss if a “true” probability distribution exists. They find that an 

appropriate way of defining a “true” probability distribution as the resulting distribution, from 

unlimited resources applied to existing data. However, the “true” probability distribution may not 

be the same for different companies or individuals. As discussed by several authors, uncertainty is 

personal, and is a result of different knowledge, expertise, and assessment processes (Bratvold and 

Begg, 2010). Hence, different companies can have different “true” distributions. Common for the 

“true” distributions is that they should be perfectly calibrated. This means that for similar 
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evaluation cases the frequency of realized outcomes should correspond with the assigned 

probability for those outcomes. This implies that an outcome with P50 should happen 50 % of the 

time and similar with the other assigned probabilities (McVay and Dossary, 2014).  

It can be important to understand what the probability distribution of the parameters will be used 

to in further analysis, and how any wrong assessments may affect the results. One way to 

investigate this is to do sensitivity analysis to find which parameters that have the largest impact 

on the resulting distribution. Sensitivity analysis can indicate how sensitive the results are with 

respect to small changes in the input parameters. 

2.3 Creating Value from Uncertainty  

2.3.1 Approaches to Uncertainty 

The ability to handle reservoir uncertainty is a very important factor which will, to a large extent, 

determine the economic feasibility of a field development. All measurements and information 

gathered from a reservoir is the foundation in any field development and management project. The 

goal is that the development and management is optimal for the particular field in the most 

economically feasible way. Before making a decision concerning the field development, a better 

understanding of the uncertainty may lead to a change in the decision one would otherwise do. 

Bratvold and Begg (2010) consider this the main reason to assess uncertainty, and further that any 

decision should be changed in such a way that it creates value to the project.  

In field development and operations the early investment phases contains a higher level of 

uncertainty. Figure 10 illustrates how uncertainty decreases as a function of decisions that are taken 

in a field development project during different investment phases. The exploration phase contains 

the highest level of uncertainty as seismic is often the only data available at this time. By collecting 

information from further sources such as; appraisal drilling, logging, well testing, reservoir 

simulation studies, price studies and so on, the information will reduce the uncertainty to acceptable 

levels for field development evaluations  (Simpson et al., 2000). After the field development phase, 

most of the decisions with high uncertainty in the outcomes are made, however there are still 

multiple uncertainties related to the future reservoir behavior and production.  
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There are several ways to approach uncertainty in projects where decisions need to be taken. The 

following are common approaches: 

1. Ignore uncertainty. 

2. Reduce uncertainty by gathering information. 

3. Develop a flexible response to uncertainty. 

The first attitude, to ignore uncertainty, is historically common in the petroleum industry. Also in 

reservoir modelling, it is often the case that reservoir modelling is used to hide uncertainty rather 

than illustrate it (Ringrose and Bentley, 2015). This approach will in the long run result in that 

projects are making less value than possible (Bratvold and Begg, 2010).  

The second approach, which is to reduce uncertainty by gathering information, may lead to 

decisions are made with better chances for a good outcome. There are multiple ways of reducing 

uncertainty by gathering information, some of them are listed below. 

 Logging surveys 

 Appraisal drilling 

 Core samples 

 Seismic study 

 Well test analyses 

 Reservoir simulation studies (e.g. history matching) 

 

Figure 10 Level of uncertainty related to decision making development during the investment phases 

(Behrenbruch, 2014). 
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 Analyze trends in similar fields 

 Implement new technology to “old” fields  

The goal of doing these analyses and tests is to reduce the economic risk in a development, but to 

go through with the analyses and tests are costly. To quantify uncertainty should not be an end to 

itself, as reducing uncertainty is not the final objective. The goal should be to make a good decision 

in form of evaluating a development (Bickel and Bratvold, 2007). The handling and understanding 

of the uncertainties proves to be important to make better decisions related to field development 

and operations (Ma, 2011), (Bratvold and Begg, 2010). To decide if the information gathering is 

worth its cost a method called Value-of-Information, VoI, can be applied. It is a consistent and 

auditable criterion in decision making (Demirmen, 2001). 

The third approach, which is to develop a flexible response to uncertainty, can be used to reduce 

any negative aspect such as the risk or “down sides” of uncertainty. On the other hand, it can also 

give room for positive outcomes of uncertainty by capture an upside. The flexibility of a field can 

be in form of the following: 

 Prepare room for extra injection wells in a case where the field needs extra pressure support. 

 Make room for extra production wells in case the reserves are higher than expected or a 

well becomes damaged. 

 Arrange facilities suited for higher production rates. 

 Use equipment with possibilities for modifications to meet changes in the production, 

which gives room for flexibility. 

The flexibility is designed to reduce risk or to capture an opportunity. To determine if the flexibility 

is worth its cost, one can carry out an analysis called Value-of-Flexibility, VoF.  

2.3.2 VoI and VoF 

VoI and VoF analyses are useful evaluations that finds if reducing uncertainty, respond to 

uncertainty or a combination of these gives the highest value to a project. 

VoI will give an answer to if the cost of gathering information will be worth the potential reduction 

in the uncertainty. The procedure to calculate VoI is to look at the scenarios of a project with or 

without the extra information.  
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First, one need to find the expected value of the project, a “base case”, EV1. Then one can find the 

expected value of the project with any specific additional information, EV2. By subtracting EV1 

from EV2 the value of information can be found.  

 𝑉𝑂𝐼 = 𝐸𝑉2 − 𝐸𝑉1 (18) 

   

The decision criterion says that if VoI has a higher value than the cost of the gathering of 

information, the action to get the additional information should be carried out. For a case where 

the additional information is useful in multiple decision evaluations, EV2 should then be the sum 

of the expected values for each of the decisions it influences. Sometimes it may be difficult to 

predict the expected value for a project, especially with additional information taken into 

consideration. Therefore the following framework is a quick evaluation can be used to decide if a 

VoI analysis is worth performing. By collecting any new information and the decision 

determination remains the same as without the information, the new information has zero expected 

value, hence a VoI of zero, which is the lower bound. On the other extreme, is a case where the 

gathered information is 100 % reliable, and once collecting the information the outcome of the 

decision will be clear. Thus, once knowing the outcome, it is possible to choose the optimal 

decision with confidence. Information that is 100 % reliable is called perfect information, and in 

decision making it can be very useful to compute the expected value of perfect information, EVPI. 

EVPI represents the highest price any decision maker should be willing to pay for any information 

to reduce the outcomes of an uncertain event (Bratvold and Begg, 2010). If the cost of any 

information gathering exceeds the EVPI value, it is no point in to investigate the proposal further 

as the EVPI represents the value of perfect information.  

VoI analysis does not take into account the potential value of using flexibility to manage the 

uncertainty. As mentioned flexibility may reduce risk or capture opportunities, and it can be 

interesting to evaluate VoF to find if the benefit of flexibility is superior to its cost. Begg et al. 

(2002) have found several circumstances where flexibility may be beneficial:  

 When it is impossible to reduce uncertainty. 

 When it is cheaper than collecting information. 

 When managing residual uncertainty, after already collected information. 

 When flexibility will create additional value.  
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VoF increases with higher uncertainty and greater capability to respond to it. VoF will in general 

be well suited for events that are unlikely to happen but will have a high consequence when 

occurring. It is important to note that by adding flexibility to the field development it builds an 

opportunity to create value.  VoF gives room for creative thinking by investigating the possibilities 

where the goal is to find a solution which will maximize the value.  

When making decisions based on the expected value it is important to understand that the EV is 

used as an indication of the best opportunities for the project. For any single investment case, it is 

unlikely that the EV will be the actual outcome value. However, a consistent use of EV as a decision 

criterion has showed to be the most profitable (Bratvold and Begg, 2010). It might be that the extra 

cost for acquiring information or installing flexibility will not pay off for a project, even though it 

is the best choice in the long run from a company’s standpoint. To handle the uncertainty in the 

best possible way, it is necessary to reduce the uncertainty to the extent it makes economic sense, 

and then plan for remaining consequences or risk by creating a flexible framework.  

2.3.3 Relevant Approach: Reduce Uncertainty by History Matching 

As described in Chapter 1, the goal of the thesis is to reduce uncertainty in a specific field by going 

through with a history match study. The next chapter will introduce and discuss history matching. 

The last decades a large amount of work and time have been spent on history match studies. At the 

time of study, a quick search on onepetro searching for “History” AND “Matching” returns 11 317 

results. On google scholar the search word “History Matching” returns 14 900 results. Figure 11 

indicates a growing interest in research about history matching through the last decade.  

 

Figure 11 The approximately amount of papers published on history matching between 1990 and 2010 

(Rwechungura et al., 2011). 
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From discussions earlier in this chapter, one can imply that the history match itself is of no value 

unless the information from the study can be used in a decision context. Such a decision can be 

related to: the drilling of extra wells (producers or injectors), well locations, and other field or 

recovery decisions. By performing a history match in a situation where decisions are not existent 

or planned, the only advantage is to reduce the uncertainty in the volume estimates and predictions. 

This action by itself does not add any value as the project profitability will stay the same as the 

hydrocarbon volumes does not (physically) change with assigned probabilities. However it might 

be desirable to go through with the history match study, as uncertainty reduction might add 

flexibility for the company and shareholders, where accurate predictions of reserves is necessary 

in order to support other projects (Reitan, 2012).  

The increased accuracy of the model (a result of history matching, see chapter 3) comes with the 

price of going through with the history match and the cost of gaining the information. In a history 

match study the expenses will be the cost be from gaining the data measurements, the time invested 

in the history match study and the software and licenses that are used. By improving the history 

matching process, the cost of the study will decrease. Assisted history matching (further discussed 

in Section 3.3) is a step in this direction.  

The reliability of the new information is an important factor to consider. As the next chapter will 

discuss, history matching is a complex inverse problem, with a non-unique solution. Measurements 

done in the subsurface, and the mathematically model that describes the reservoir is with few 

exceptions imperfect representations of the real world. However, this does not mean that imperfect 

information is not as useful as perfect information as the VoI is only dependent on a change in 

decision.  
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3 HISTORY MATCHING: APPLICATION OF MCMC 

Reservoir simulation is important as it gives an indication of how the dynamic behavior will evolve 

during a fields’ lifetime. Good predictions of future dynamic behavior will help to optimize the 

development and management of a field in terms of profitability and recovery. It is difficult to 

know all static and dynamic properties of the reservoir, hence a perfect reservoir model is close to 

impossible to create. To improve the model and to generate reliable predictions of the future 

production, “History Matching” (HM) is fundamental, as it is used to calibrate the reservoir model 

to match historical data. This chapter will discuss the history matching process and uncertainty 

reduction. After going through the basics the history matching process, the Bayesian framework is 

presented. The Bayesian framework is a statistically formulation which through an objective 

function can combine the predefined uncertain parameters in the reservoir model (prior 

uncertainty), with the new information in form of historical data, to get an updated uncertainty 

picture (posterior uncertainty). The application of the Bayesian framework require an optimization 

algorithm to be able to update the uncertainty picture. The optimizing algorithm Markov Chain 

Monte Carlo (MCMC) is presented and discussed as it will be used in further application. Finally, 

the chapter gives an overview of the possible errors induced in a history match study.  

3.1 History Matching in General 

History matching is defined as the act of adjusting a reservoir model until it closely reproduces the 

past behavior of the physical reservoir (SchlumbergerGlossary, 2015). Once a field starts to 

produce, new data that describes the past reservoir behavior is available in form of; observed 

production rates, measured gas-oil-ratio (GOR) and pressures among others. The measured field 

data is taken into consideration trough a history match study. A history match is mainly carried out 

to be able to obtain reliable predictions of future reservoir behavior, this is done by improve the 

geological- and reservoir models. In general, the aim of history matching is to match observed data 

with calculated data from the model (Dadashpour, 2009). By doing this the reservoir model is 

conditioned to match the historical data. History matching is an important factor that can act as a 

decision basis for further development and management of petroleum reservoirs. 
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3.2 Inverse Modeling 

A mathematical model is constructed in the modelling of static and dynamic parameters to 

represent a reservoir system. Static parameters are defined as parameters that are not related to the 

fluid flow and movement, which typically represents parameters related to geology, geophysics 

and petrophysics. Dynamic parameters include parameters related to fluid flow, movement and 

transmissibility. Mathematical models are based on fundamental physical laws in order to predict 

the behavior of a physical system with a sensible accuracy (Dadashpour, 2009). Dynamic reservoir 

behavior can be very complex as it consists of different physical effects. The more detailed the 

mathematical model is, the slower will a computer be able to calculate the solutions. The 

mathematical model required in this thesis is a reservoir simulator which describes the fluid flow 

and dynamic behavior in the reservoir. A reservoir simulator is a computer program which use 

numerical solution techniques to solve reservoir flow problems. In the model the number of grid 

cells will to a large extent determine the amount of calculations required. The simulator is based 

on relevant physical laws that are combined to a system of differential equations and matrices, 

typical physical laws that are combined are the following (Dadashpour, 2009) : 

 Mass conservation law 

 Darcy’s law 

 Equation of state 

 The capillary pressure and  relative permeability relationships 

The model may be used in forward modeling or inverse modeling. To illustrate this let F represent 

the mathematical equations, and a set of known model parameters denoted as m. Further, let OBS 

describes the observed data. Then the following equation can describe the forward problem:  

 𝐹(𝑚) = 𝑂𝐵𝑆 (19) 

The predicted observable data is found by running a numerical reservoir simulator that calculate a 

solution by numerical approximation by a set of partial differential equations (Mohsen, 2011). By 

changing the model input parameters in the parameter set m, different solutions will be found. The 

numerical simulator for a forward problem can also be used as a “process investigator” in an inverse 

problem, where the observable data are known, and the reservoir parameter values are of interest. 

History matching may be used to investigate and give better estimates of uncertain parameters in a 
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reservoir model by solving an inverse problem. An inverse problem exists when the dependent 

variable is the best known aspect of a system and the independent variable must be determined 

(Dadashpour, 2009). In an inverse problem such as history matching, the observed data in form of 

production rates, pressures etc. are known, and the static and dynamic parameters in the reservoir 

system are varied. The procedure of solving the inverse problem is to start with initial guesses of 

the parameters and after a certain amount of iterations the best fit between the observed and 

calculated data are obtained.  

Note that the forward model has a unique solution for a given set of parameters. The inverse 

problem has a non-unique solution as the inverse problem may have several different combinations  

of the parameter values that give the same solution. Figure 12 illustrates the process of forward 

modeling and inverse modeling.  

 

 

 

Figure 12 Process of Forward Modeling and Inverse modeling. 
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3.3 Manually and Assisted History Matching 

History matching can be performed “manually” or “assisted”. The latter is a method which is more 

used in the later years, and will be performed in this thesis.  

Manual history matching is also called traditional history matching and considers a deterministic 

reservoir model. Manual history matching is basically an update of the model by manually varying 

different reservoir parameters, such as; permeability, porosity, fluid contacts and so on. One or a 

few parameters are changed at a time to keep track of which parameters are influencing the 

calculated results. By trial and error parameters are changed in order to improve the match between 

the observed data and the model results. The goal is to find which parameters that have the largest 

influence on the match, and to find the parameter values that give an acceptable match. A simple 

sensitivity analysis of chosen parameters is often the objective with a manual history match. The 

manual history match is commonly updated in two steps, one pressure match and one saturation 

match (Rwechungura et al., 2011).  As described, a history match is an inverse problem which are 

non-unique due to the fact that multiple solutions can be found. The quality of a manual history 

match will to a large extent depend on the engineers’ that are performing the history match, earlier 

experience, knowledge of the field, and the time dedicated to the study. For a field associated with 

many uncertainties there are a great flexibility to which parameters to update, for such a case 

manual history matching is not an optimal technique. On the basis of the above descriptions manual 

history matching is in general associated with many uncertainties and is today typically used as a 

guide or a starting point for an assisted history match (Mohsen, 2011).  

Assisted history matching (AHM), sometimes referred to as automatic history matching, is used to 

make multiple of the manual tasks done automatically, in order to make the procedure of history 

matching less time consuming. The most important tasks that are automated are; the simulation 

runs, the comparison of observed data to the simulated data, modifications to the model based on 

the matching results and the basis establishment for future predictions. In assisted history matching 

it is necessary to apply optimization algorithms to mathematically describe and iteratively 

minimize the mismatch between the observed data and the simulated data. The updating procedure 

is done by updating predefined uncertain parameters in the reservoir model. The amount of 

deviation, or mismatch, between the observed data and the simulated data is represented by the 

objective function (further discussed in the next section). The uncertainty in the parameters to be 
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changed in a reservoir model is often defined by the user in form of probability density functions, 

in addition correlation between parameters may be added. It is important to recognize that the 

subjectivity from the user plays a major role in defining the parameter uncertainties. In an assisted 

history matching problem it is important that the following are properly defined: 

 A reservoir model (forward model) which describe the physics of the system in the 

best possible way from available information. 

 An objective function which represents the mismatch between observed and 

calculated data. 

 An optimization algorithm which provides the values of the uncertain parameters 

that minimizes the objective function, hence gives the best representation of the 

physical system when taking observed data into consideration. 

To solve the inverse problem by assisted history matching, the following algorithm can be applied  

(Dadashpour, 2009) :  

1. Make an initial guess of the uncertain parameters, based on available information.  

2. Simulate the model response. 

3. Calculate the objective function. 

4. Parameters are updated by minimizing of the objective function (by the use of an 

algorithm). 

5. If the mismatch expressed by the objective function is not sufficient or correct return to step 

2.  

Assisted history matching speed up the history matching process, and gives much quicker 

convergence to minimal mismatch between the model performance and the observed data than by 

performing manual history matching. In addition will the study from an assisted history match 

provide room for uncertainty analysis, which is not captured by manually history matching.  

3.4 The Objective Function 

The objective function is defined as the amount of discrepancy, or mismatch, between the observed 

data and the simulated response from the reservoir model for a given set of parameters. One may 

say that the objective function evaluates how well a model reproduces the observed data from a 
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field. The least square formula, the weighted least square formula and the generalized least square 

formula are well known methods used for calculating the objective function. 

Last-Square formula: 

 𝐹 (𝑚) = (𝑑𝑜𝑏𝑠 − 𝑑𝑐𝑎𝑙(𝑚))𝑇 (𝑑𝑜𝑏𝑠 − 𝑑𝑐𝑎𝑙(𝑚)) (20) 

Weighted Last-Square Formula: 

 𝐹(𝑚) = (𝑑𝑜𝑏𝑠 − 𝑑𝑐𝑎𝑙(𝑚))𝑇 𝑤(𝑑𝑜𝑏𝑠 − 𝑑𝑐𝑎𝑙(𝑚)) (21) 

Generalized Last-Square Formula: 

 𝐹(𝑚) =
1

2
(1 − 𝛽){(𝑑𝑜𝑏𝑠 − 𝑑𝑐𝑎𝑙(𝑚))𝑇𝐶𝑑

−1 (𝑑𝑜𝑏𝑠 − 𝑑𝑐𝑎𝑙(𝑚))}

+
1

2
𝛽{(𝑚 − 𝑚𝑝𝑟𝑖𝑜𝑟)𝑇𝐶𝑚

−1 (𝑚 − 𝑚𝑝𝑟𝑖𝑜𝑟)}   

 

(22) 

Where 𝑑𝑜𝑏𝑠 represents the observed data, 𝑑𝑐𝑎𝑙(𝑚) represents the calculated data predicted by the 

forward model. m represents a set of model parameters e.g. m = (k, phi, N/G, Sg,….).  w is a 

diagonal matrix which contains individual weighting coefficients for each measurement. The 

weighting is assigned on the basis of number of data points in a set and the degree of uncertainty 

associated with the individual measurement. In the Generalized Last-Square Formula covariance 

as regularization is included. The first term represents the data mismatch (the discrepancy between 

the calculated and the observed data) weighted by the inverse of the covariance of noise in the data 

𝐶𝑑
−1. The second term represents the model mismatch deviation from the prior model parameters, 

where the deviation is measured by the covariance of the model parameters, 𝐶𝑚.  𝛽 is a weighting 

factor that represents the degree of belief in the initial model. 

When correlation effects between measurements data are not considered, as in the case when they 

are assumed to be independent, the covariance matrix 𝐶𝑖 reduces to a diagonal matrix which include 

the variance of the measurement errors, 𝜎2. The Objective function is then simplified and can be 

written as: 

 

𝐹(𝑚) = ∑
𝑤𝑖

𝑁𝑖
𝑖

∑ 𝑤𝑖
𝑗

𝑁𝑖

𝑗

( 
𝑑𝑐𝑎𝑙

𝑗 (𝑚) − 𝑑𝑜𝑏𝑠
𝑗

𝜎𝑖
 )2 

(23) 
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Where weight 𝑤𝑖 can be used to favor certain wells or datatypes and 𝑤𝑖
𝑗
 can be used to emphasize 

data in specific intervals. i represents an objective element,  i.e. production and pressure data for 

specific wells. j references a specific measurement time step, where an observed value exists. 𝑁𝑖 

represents the number of objective elements, and 𝑁𝑖 represents number of measurement times in 

each response parameter. The minimization of the objective function is often defined as the sum of 

squared errors between observed values and calculated results.  

3.5 OPTIMIZATION METHODS 

Optimization can be formulated as the act, or methodology, of finding the maximum or minimum 

of a function iteratively. In assisted history matching the aim of an optimization algorithm is to 

minimize the objective function. This is done by iteratively changing the model parameter set till 

an optimum solution is found, namely the minimization of the objective function, this can be 

expressed by the following expression: 

 𝐹𝑂𝑝𝑡𝑖𝑚𝑢𝑚 = 𝑀𝑖𝑛(𝐹(𝑘, 𝜑, 𝐺𝑊𝐶, 𝑆𝑔 … )) (24) 

There are multiple different algorithms and methods for optimization (or minimization). The 

optimization can either be applied with a deterministic or stochastic approach. A deterministic 

approach require calculations of Jacobian or Hessian gradient matrices to find a solution. While 

stochastic approaches does not require the use of gradients. Generally, the algorithms are classified 

as gradient based methods and non-gradient based methods, depending on whether the methods 

use the gradient of an objective function in the optimization process. The gradient of the objective 

function can be defined as: 

 
∇𝐹 = (

𝜕𝐹

𝜕�⃗�
)𝑇  

(25) 

The most common gradient based algorithms that are the following; The steepest descent, Gauss-

Newton, Lovenberg-Marquardt, Singular Value Decomposition, and Conjugate Gradient. In 

practice, the algorithms are run until ||𝐹|| <  휀 , where  휀  is a small positive number which 

represents the acceptable mismatch error (Dadashpour, 2009). There are some disadvantages by 

using gradient-based methods: 
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 There is a possibility of converging to a local minimum in the objective function. (While it 

is desirable to converge to the global minimum). 

 The algorithm provide a single solution, even though multiple solutions are possible. Hence 

the methods will not present a basis for estimating parameter uncertainties. 

 The gradient calculation requires long computing time.  

 If it is noise in the observed data measurements it needs to be filtered out.  

 Functions to be minimized can be difficult or impossible to differentiate. 

Non-gradient methods are the alternative to gradient-based, they do not require information about 

the gradient (hence the name). They are relatively simple to implement. Non-gradient based 

methods can be divided into different categories: Direct Search-Methods, Proxy-Based Methods 

and Ensemble-Based Methods. 

Direct Search Methods are iteration based and consist of Search-and-Test-Algorithms which of 

some have local- and some have global search properties. Common Direct Search Methods are: 

Evolutionary Algorithms, Genetic Algorithm, Hooke-Jeeves, General Pattern Search and Mesh 

Adaptive Direct Search. 

Proxy-Based Methods generates proxy models that substitutes any response derived from a full 

field simulator. It is a function which replicates the simulation model output for selected input 

parameters (Azad and Chalaturnyk, 2013). In a proxy model, the most common underlying 

algorithms are kriging, polynomial interpolation or regression. There are challenges related to the 

creating of high quality proxy models as they are related to the quality of the input data set. In 

addition it is time consuming to create the proxies. With increasing complexity and numbers of 

uncertain parameters the proxy methodology is not recommended (Azad and Chalaturnyk, 2013).  

The propagation of uncertainties from history to prediction is commonly investigated by the use of 

ensemble-based approaches or a combination between ensemble-based and proxy-based 

approaches. This is done by generating posterior distributions of the reservoir uncertainties as a 

basis for estimating prediction forecasts (Schulze-Riegert et al., 2013). Known Ensemble Based 

Methods are Markov chain Monte Carlo (MCMC) and Ensemble Kalman filter (EnKF). EnKF is 

a technique which is based on both the original Kalman Filter and sequential Monte Carlo method. 

An ensemble of realizations is employed to represent multiple models, the technique assimilates 
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the observed data and update the models simultaneously, in each update the mean and variance is 

reported. The mean represents the most probable model and the variance is a measure of the 

uncertainty. EnKF generates multiple history matched models and allows the user to characterize 

the uncertainty in reservoir description and future performance (Emerick and Reynolds, 2010). The 

theoretical formulation of the EnKF includes assumptions of system linearity and that the 

uncertainties can be described by the use of Gaussian probability distributions. On the basis of this, 

the use of standard EnKF to reservoir models can give poor characterization of the uncertainty. 

Nevertheless, multiple algorithms are based on the standard EnKF and are much used in history 

matching. As the MCMC method will be used further in the case study, the Bayesian framework 

and the MCMC method will be described more in detail in the following section.  

3.6 Markov Chain Monte Carlo in a Bayesian Framework 

MCMC is in general Monte Carlo integration using Markov chains. The MCMC method is based 

on random walk and will produce a sequence of models from the model space through a Bayesian 

update. The Markov chain characteristic is that when generating a new model, it is conditional on 

the previous model, and only this. The basics when using MCMC in history matching is to begin 

with a reservoir model which have prior defined distributions for the uncertain parameters. During 

the MCMC optimization the uncertainty is continuously updated, and will in the end yield the 

stationary posterior distributions that describe the updated uncertainty, and can further be used to 

calculate the predictions.   

3.6.1 Bayesian Formulation 

Bayesian framework is a statistically formulation which involve statistical methods that assign 

prior probabilities to parameters (or events) based on best guesses from limited information, before 

collecting new information, and by applying Bayes’ theorem1, revise the prior probabilities to 

obtain posterior probabilities. 

The Bayesian formulation defines the relationship between the prior probability, the posterior 

probability and the likelihood. The posterior probabilities of the different parameters can be 

                                                 
1 Bayes’ theorem is named after Thomas Bayes (1702-1761), who was an English minister and mathematician. An 

early attempt to establish what today is referred to as Bayes theorem was done in his work “Essay Toward Solving a 

Problem in the Doctrine of Chance”. BRATVOLD, R. B. & BEGG, S. 2010. Making good decisions, Richardson, TX, 

Society of Petroleum Engineers. 
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estimated after conditioning the prior data to the likelihood. Bayes’ theorem is fundamental in 

Exploration and Production phase’s uncertainty analysis and history matching as it can be used to 

capture prediction uncertainties, which is one of the main goals of history matching. In a history 

matching context the prior probabilities are updated by maximizing the likelihood (minimizing the 

objective function) in several sets of models constructed by combinations of prior parameters. The 

likelihood represents the probability of that the data in the model matches the observed data. In 

other words, it represents the degree of match between the observed behavior and the model 

behavior. Prior probability distributions, which represents the reservoir uncertainties should consist 

of all possible descriptions of the reservoir uncertainties from a geological perspective and based 

on available data. The prior probabilities will change with new data that becomes available when 

starting up production from a field (or further appraisal). The posterior probabilities which are 

gained from Bayes’ theorem will lead to mitigation of the uncertainty in the parameter distributions 

and can be used to update the reservoir model which will lead to better understanding of the 

prediction uncertainties. 

Bayes’ theorem can be written as: 

 𝑃(𝑚, 𝑑𝑜𝑏𝑠) = 𝑃 (𝑚|𝑑𝑜𝑏𝑠)𝑃(𝑑𝑜𝑏𝑠) =  𝑃 (𝑑𝑜𝑏𝑠|𝑚)𝑃(𝑚) (26) 

 

Dividing by 𝑃(𝑚) and rearranging, yields the following: 

 
𝑃 (𝑚|𝑑𝑜𝑏𝑠) =  

𝑃 (𝑑𝑜𝑏𝑠|𝑚) 𝑃(𝑑𝑜𝑏𝑠)

𝑃(𝑚)
 

(27) 

In Bayesian probability theory and history matching the variable 𝑚  represents the uncertain 

parameters, 𝑃(𝑚) represents the prior probability distribution of the uncertain parameters and 𝑑𝑜𝑏𝑠 

represents the observed data. Further, the updated probability, 𝑃 (𝑚|𝑑𝑜𝑏𝑠), is termed the posterior 

probability, and 𝑃 (𝑑𝑜𝑏𝑠|𝑚) represents the likelihood and describe the probability of making the 

observation, or matching the observed data. From Bayes’ theorem the posterior probability is the 

updated probability found by considering the new information.  

The mathematical description of a probability distribution for model parameters under the 

condition of measurement data is derived from Bayes’ statistics (Schulze-Riegert et al., 2013). 

When the history matching problem is framed in a context where the model variables are 
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represented by prior probability distributions, a likelihood function for the model variables given 

the prior data and the computation of posterior probability distributions and generating samples 

from the posterior PDF’s are of interest, Markov chain Monte Carlo methods are well suited for 

the problem (Oliver and Chen, 2011). The posterior probability left side in Equation 27 can be 

computed numerically by MCMC integration by combining the prior information with observed 

information, right side equation 27. The MCMC in a Bayesian framework is in general formulated 

in terms of probability distributions. Due to its Bayesian interpretations the objective functions 

defined in Section 3.4 are often used as objective functions in MCMC simulations. MCMC 

approach is as mentioned in Section 3.5 a known ensemble based optimization technique and will 

be further explained in the following sections.  

3.6.2 Monte Carlo  

When a deterministic model is turned into a probabilistic model it is in general referred to as a 

stochastic model. Monte Carlo Simulation is a stochastic technique, which is used to combine 

multiple uncertainties to calculate any expected outcomes. The method randomly picks samples 

from the for uncertain variables probability distributions, multiple times, and by forming sample 

averages the method approximates the expected output. More frequently samples are generated for 

the more probable variables. Predefined PDF’s for parameter uncertainties are used as inputs, the 

Monte Carlo model combines the input uncertainties to a calculated output, by and hence a 

distribution of possible outcomes for the output variable is generated. A concern about the use of 

Monte Carlo sampling is that the low probability areas, typically in the end of the distributions, 

may not be sufficient sampled if they are fairly flat. One solution to this can be to use stratified 

sampling, where the distribution is split in to a number of equal probability intervals. Each interval 

is then sampled randomly. One method that employs this is Latin Hypercube (LH) sampling, which 

commonly is used for screening and uncertainty quantification.  

Latin Hypercube sampling consider the parameter distribution when picking parameter values for 

the parameter sets in the experiments. The parameter distribution is divided into equally large 

compartments, further will Latin Hypercube pick randomly from each interval and more probable 

parameter values are picked more frequently. The numbers of intervals to sample is divided into 

the same number as iterations required, and each interval is only used once. Figure 13 shows a 
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typically Gaussian distribution for a parameter distribution (red curve) and the Latin Hypercube 

sampling of the parameter values form equally large compartments (blue).  

 

3.6.3 Markov Chain 

Suppose a series of random variables: {𝑋0, 𝑋1,𝑋2, … … 𝑋𝑛,}, that for each iteration (or time step), n, 

the next state, 𝑋𝑛+1  has a conditional probability distribution which only is dependent on the 

current state of the chain 𝑋𝑛. Mathematically this can be expressed by the following:  

 𝑃(𝑋𝑛+1 | 𝑋𝑛, 𝑋𝑛−1, … , 𝑋1,, 𝑋0, ) = 𝑃(𝑋𝑛+1 |  𝑋𝑛 ) (28) 

The expression in Equation 28 show that for a given state 𝑋𝑛 the next state, 𝑋𝑛+1 does not depend 

on the history of the chain, but only on the current step, this series or sequence is called a Markov 

chain. P(.|.) is called the transition kernel of the chain. Due to regularity conditions the chain will 

eventually “forget” its initial state  𝑃(. |  𝑋0 ) , and will gradually converge to a unique stationary 

distribution that will not be dependent on time or the initial variable set (Gilks, 1996). A stationary 

distribution is a distribution that persists forever once it is reached. In a Markov chain it is possible 

to have several stationary distributions. A finite Markov chain does always have at least one 

stationary distribution (Zhang and Srinivasan, 2003). 

3.6.4 The Metropolis-Hastings Sampler 

Markov chain Monte Carlo picks samples from the distributions by running a cleverly constructed 

Markov chain for a long time. For every iteration a criterion will decide whether to replace the 

current model with the proposed model. The criterion can be constructed several ways, nonetheless 

all of them are based on the general framework of Metropolis and Hastings, including Gibbs 

 

Figure 13  The Latin Hypercube sampling method applied to a typical Gaussian parameter distribution.  
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sampler (Geyer, 2011). The Metropolis-Hastings method evaluates the proposed models and then 

accept or reject them as the next model. The Metropolis-Hastings finds an “acceptance ratio” for 

the proposed parameter values to the current parameter set in the model, and then evaluates the 

probability of acceptance. The Metropolis-Hastings method has a notable property, which is that 

the proposal distribution q, is arbitrary (Geyer, 2011), and means that the distribution may be un-

normalized.  Say that the distribution (the desired probability distribution of the MCMC sampler) 

has an un-normalized density h. h is a positive constant times a probability density which represents 

the prior value times the likelihood for the specific state (Geyer, 2011). At each iteration step the 

next state j is proposed based on the current state i. The proposal probability matrix is denoted q (j 

| i) (Zhang and Srinivasan, 2003). Calculating the Hasting ratio, also called the acceptance ratio: 

 
𝑟(𝑖, 𝑗) =

ℎ(𝑗)𝑞(𝑖 | 𝑗)

ℎ(𝑖)𝑞(𝑗 | 𝑖)
 

(29) 

A criterion is defined that decide if to accept or reject the proposed transition from state i to state j 

(Zhang and Srinivasan, 2003). If the new step is accepted, the chain moves to state j. If it is rejected 

the chain remains in state i.  The probability of acceptance is given by:  

 𝛼(𝑖, 𝑗) = min (1, 𝑟(𝑖, 𝑗)) (30) 

The next iteration 𝑋𝑛+1  equals j, with a probability of 𝛼 and remains equal to i with a probability 

of 1- 𝛼. When having a calculated value for 𝛼, a random number from a uniform distribution from 

0 to 1 is generated, noted as u. If u > 𝛼 reject the proposed model, and continue with the current, if   

𝛼 > u, accept the proposed model and continue with this. By this constraint, a proposed model that 

gives a better fit to the observed data than the current model will always be accepted, hence the 

current model will be replaced. If the proposed model gives a worse fit to the observed data it is 

accepted with a probability which is proportional to the ratio, r ( i, j ) which basically represents 

the ratio of the likelihoods of the new and old models.  

Gibbs sampler is a distinct case of Metropolis-Hastings, where the acceptance probability is 1, the 

iterations are always accepted. In order for Gibbs elementary to be useful, it must be combined 

with other updates (Geyer, 2011). 

A fully review of the MCMC algorithm can be found in the book, Markov chain Monte Carlo in 

practice (Gilks, 1996). 
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3.6.5 Application of MCMC in MEPO 

The software MEPO2, which is further described in Section 5.1.1, is used in the execution of the 

case study in this thesis. In MEPO, the Ensemble Based Method, MCMC, is used in combination 

with integrated proxy building, where the proxies are used as support material. By the software the 

MCMC method may be applied in two modes: optimization for history matching and sampling for 

predictions. Both methods are applying MCMC in combination with proxy modelling. This section 

will cover the procedure of applying MCMC and the basic theory applied in the software. 

Introducing Proxy Modeling 

A proxy model attempts to mimic the reservoir simulation model, based on existing simulation 

data. Proxies act as a simulator model but are using simple equations, allowing a large number of 

simulations to run within a short time period (SPT Group, 2014). A proxy can be created by 

interpolation techniques that are used to transform the individual reservoir models into proxy 

models that contain information of all relationships from input parameters and output space (Zangl 

et al., 2006). A proxy model is typically built by the use of a proxy generation algorithm such as 

kriging, regression or other interpolation techniques. In an iterative refinement process, such as 

MCMC, optimal sets of simulation experiments for improved history matched cases are sampled 

and proxy models that represent key responses from the full field simulator can be generated. A 

good proxy model should represent the observed variations by using as little information as 

possible. Proxy models can be useful in multiple areas: 

 They may be used as a response surface model to identify the most influential uncertainty 

parameters on chosen responses, viewed in Figure 14. By doing this they are able to 

calculate approximate responses from the reservoir model very quickly.  

 A proxy can be used to optimize responses e.g. total production (Zangl et al., 2006). 

 They can be used to cover the uncertainty spread in predictions from an approximation to 

the posterior distributions (Zangl et al., 2006). 

Figure 14 illustrates a response surface model that approximates a number of data points as a 

function of three given uncertainty parameters. 

                                                 
2 MEPO (Schlumberger), Multipurpose Environment for Parallel Optimization. 
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The History Matching Procedure 

By doing an assisted history match study by the use of an MCMC approach a certain procedure 

need to be followed. Figure 15 shows the process included in an assisted history matching study. 

The steps in the procedure are the following: 

1. Sampling from prior distribution. 

2. Launching multiple realizations. 

3. Calculating the model discrepancy to history data. 

4. Generate posterior distributions. 

5. Optimization method repeat the process to improve the history match. 

6. Predictions are run. 

As seen from Figure 15 the first step in the procedure, is to sample from the prior distributions, as 

mentioned these can have any probability distributions. Then multiple model realizations are 

calculated (by a proxy) before the accepted sample sets are used in full field simulations. In the 

third step, the model response from these experiments is compared to history data to evaluate the 

mismatch. Posterior distributions are updated (4) as the procedure is repeated (5). When stationary 

posterior distributions are generated, predictions can be run (6) by sampling from the posterior 

distributions. 

 

 

Figure 14 An example of a response surface model. 
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MCMC Optimization for History Matching  

As the process of the sampling algorithms require numerous of function evaluations and 

calculations to explore the full probability distributions, it will be unfeasible to use full field 

simulations for all samples. This is solved by building proxy (response surface) models that 

embody information of all uncertain parameters and responses represented by the objective 

function. In the MCMC optimization workflow the global objective function is used, which means 

that all objective response parameters are considered. When the numbers of response parameters 

and match points (further explained in Section 5.1.1) becomes large, it is essential with automatic 

proxy modelling techniques.   

After the burn-in period and several iterations of gradually improvements in the Markov chain, the 

chain will contain optimal sets of values for the uncertain parameters, this ensemble of accepted 

values makes up the posterior distributions and are included in the proxy model (Gallagher et al., 

2009). Note that a proxy model is made after each chain iteration, this means that the quality of the 

proxy will gradually improve as the chain is getting closer to its stationary state.  

When in optimization mode the MCMC experiment generator produces a number of experiments 

by sampling from the proposal distributions. The best experiments of the Markov chain are 

automatically picked as the current parameter sets. In the optimization workflow (it is 

recommended that) each chain delivers one best candidate. The best candidate from each chain are 

added to the experiment list to go through a full field simulation. By doing this the best candidate 

 

Figure 15 Process in an assisted history matching case (Schulze-Riegert et al., 2013). 
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will improve the proxy for the next loop of chain evaluations. Before going to the next chain step, 

the new sample sets need to be generated, this is done by an evaluation based on Metropolis-

Hastings method explained in Section 3.6.4. To be thorough, the evaluation used in MEPO is 

described in the following section. 

The chain moves from a sample set 𝑚𝑖 to a new sample set 𝑚𝑖+1, by drawing new samples from 

the proposal distribution. By definition the update in the Markov chain depends only on the 

previous realization. This leads to the following expression: 

 𝑚𝑖+1 = 𝑚𝑖 + 𝛿 (31) 

Where 𝛿 represents the change in the parameter set. The new samples need to be accepted by the 

test, based on Metropolis-Hastings method, to be used further as a new sample set. MEPO uses the 

following test to sample new experiments (Schulze-Riegert, 2015): 

 

𝛼 =
𝑃(𝑚𝑖+1|𝑑)

𝑃(𝑚𝑖|𝑑)
 {

𝛼 ≥ 1 𝑎𝑐𝑐𝑒𝑝𝑡                                                  

   𝛼 < 1                  {
𝑎𝑐𝑐𝑒𝑝𝑡 𝑖𝑓 𝛼 > 𝑟𝑛𝑑(0,1)

𝑟𝑒𝑗𝑒𝑐𝑡
 

 

(32) 

Equation 32 shows the procedure of how new candidates are picked. A proxy model is used to 

calculate the global mismatch value for each sample set, this is included in the 

probability 𝑃(𝑚𝑖+1|𝑑).  𝑃(𝑚|𝑑) represents the probability of matching the observed data with the 

chosen samples in the candidate set m. i represents the iteration or time step. Based on the 

conditional probabilities new samples are picked for the next experiments. If the new sample set 

has an equal or better probability of matching the observed data (𝛼 ≥ 1), it will be accepted 

forthwith. If the new samples have a lower probability of matching (𝛼 < 1) it can be accepted only 

if the threshold, 𝛼, is higher than a random number the program picks between 0 and 1. By using 

this regulation, MCMC can explore sample sets as well as having a higher probability of getting a 

good match. Note that every time a proposed model set is rejected, it is added a copy of the current 

model set to the ensemble. The best model set at the end of the simulation will represent the next 

𝑚𝑖 value. This process is continuously updating the posterior distribution. Figure 17 show how a 

probability distribution is updated by applying the MCMC algorithm that iteratively improves the 

history match in Figure 16. The green probability distribution in Figure 17 represents the prior 

distribution which leads to the highest uncertainty in estimating the reservoir response seen in 

Figure 16. As the MCMC algorithm conditions the model to the observed data (black line in Figure 
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16), the prior probability distribution gradually transforms to a posterior distribution, hence the 

uncertainty decreases in the reservoir response. In the MCMC optimization process the history 

match is gradually improved and the parameter uncertainty decreased. 

MCMC Sampling for Predictions  

After obtaining a sufficient history match, prediction forecasts can be run. In MEPO the MCMC 

sampling method is applied for prediction simulations. MCMC sampling is similar to the MCMC 

optimizing method, the difference is that the sampling is done by is using a unique proxy that are 

made in the history matching process (often the last one from the last chain). MCMC sampling 

generates experiments from the posterior distributions given by the proxy to explore the prediction 

uncertainties. In a MCMC sampling only one Markov chain is run as one proxy is chosen. 

Sometimes it may be more interesting to run the predictions from the whole range of history 

matched models, rather than sampling from the posterior distributions (Gallagher et al., 2009). This 

can for instance be for a case for the models that contain the most likely uncertain parameter values. 

This can be accomplished by first filtrating the experiments which gives a sufficient history match 

and then run predictions for the experiments with given parameter sets.  

3.6.6 Markov Chain Monte Carlo in Practice  

As described in brief, the basic scheme of MCMC is to draw arbitrary samples from the prior 

distributions. By the Markov chain update, after a sufficient number of iterations, the sample pick 

behave as if drawn from the posterior distributions. When this is the case, the MCMC algorithm 

 

Figure 16 Iterative process of approximating the 

observed data (black curve). 

 

Figure 17 The Prior distribution (green) iteratively 

transforms to the posterior distribution (red 

distribution). 
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has converged (Ferrero and Gallagher, 2002). It is difficult to determine if and when the MCMC 

has converged to the true posterior distribution. In practice there are only rules of thumbs, such as 

sufficient burn-in-time, and simulation runs that are relied on to assume convergence. This means 

that there are a possibility of gaining a posterior distribution representing the uncertainty which 

may differ from the true uncertainty. If the probability distributions have not converged it may lead 

to suboptimal predictions. However, studies show that the by applying MCMC correctly the 

method is in most cases reliable (Salakhutdinov and Mnih, 2008). 

The construction of the MCMC algorithm requires certain predefined values, typically: number of 

chains, start values in the prior distributions, and the burn in time. The importance of these 

predefined values are discussed and tested multiple times by literature. Some conclusions and 

discussions from research are taken into consideration in the case study and are presented below.   

Number of Chains 

The recommendations of number of chains have been fairly inconsistent in literature. Some 

research suggest many short chains, while others are debating several long chains to one very long 

chain (Gilks, 1996). According to Gilks (1996) it has been generally agreed that running several 

short chains is misguided, and the debate between several long chains and one very long chain is 

set to continue. Adrian E. Raftery and Steven M. Lewis (1992) have showed that one long run is 

not always good enough, if the starting values are poorly chosen, the simulation of one single chain 

may not reach convergence. Comparison between chains cannot prove convergence. Nevertheless 

can comparison between chains that seemingly have converged, reveal differences if there chains 

not have approached their stationary state (Gilks, 1996).  

Starting Values 

It is important to know if the starting values should be chosen carefully and time should be spent 

on finding the right starting values. Gilks (1996) have found that rapidly mixing chains quickly 

will find its way from poorly chosen starting values. For slow mixing chains it may be more 

important to carefully choose starting values. Raftery and Lewis (1992) have calculated the 

importance of starting values to be small, given that there is launched a realistically large number 

of iterations and more than one chain.  
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Burn in time 

It is important that the chains run long enough so they are not dependent on the initial sample. To 

ensure this, the initial period of sampling, which is known as the burn-in time, need to be set to an 

appropriate time. If extreme starting values are avoided, it is recommended to set the burn in time 

between 1% and 2% of the simulation run time (Gilks, 1996). 

3.6.7 Advantages and Disadvantages by using MCMC  

All optimization algorithms have individual advantages and disadvantages. These can be beneficial 

to recognize before application. The most important advantages and disadvantages of the MCMC 

method are the following: 

 The main disadvantage of MCMC method it that it may require several iterations to 

converge to the correct distributions, which lead to the method can be time consuming. 

 In addition it may be difficult to identify when it has converged.  

 A great advantage of using MCMC, is that it permits a huge amount of model flexibility.  

 Another advantage of the MCMC approach is that it in combination with Bayesian 

framework, it enables analysis of all desirable uncertain parameters, or functions of them. 

(O’Neill, 2002). 

 

 

 

 

 

  



45 

 

3.7 Errors in the History Matching Process 

In the process of constructing a mathematically model, including uncertain parameters that describe 

the physical reservoir, use a numerical simulator to simulate the reservoir behavior, apply the 

theory of an inverse problem including the construction of an objective function and finally apply 

an optimization algorithm by a optimization program, several errors may occur. The most essential 

causes to the errors are mentioned here.  

Reservoir Model 

In a mathematical model relevant physical laws and flow equations are combined to a system of 

differential equations that are used to describe the physical system mathematically. Several 

assumptions are done to be able to make the mathematical model. The reservoir model is a 

computer model that uses numerical solution techniques to solve reservoir flow problems. The 

model is divided in to a grid system and the equations are solved numerically. The model errors is 

to a certain degree dependent on the choice of numerical simulator, i.e., mass balance or streamline, 

finite element or finite difference (Saleri, 1993). Finite-difference methods are numerical methods that 

are used to solve the differential equations. These will give approximates of the solutions of the flow 

equations, which means that the procedure automatically introduces errors in the computations. The 

mathematical models are simplified as that the more detailed the mathematical model is, the slower 

will a computer calculate the solutions. 

Model Input Parameters 

When introducing real numbers to the mathematical model, further errors may be introduced. The 

reservoir model is in general divided into a grid system, where each grid block is homogeneous. 

Every grid cell in the model need to contain multiple specified parameters for it to be representable 

of the real system. To get an accurate reservoir model, numerous parameters need to be close to 

the real values to give a good representation of the actual reservoir system. This can be very 

challenging with little information of the reservoir. When applying specific parameter values to the 

reservoir model, it is important to take into consideration the spatial variance and measurements 

errors. To get the most accurate model of the reservoir, all data measurements need to be used in 

relation to each other. Well log data should be calibrated to, and integrated with other 

measurements, such data from cores, pressures, and well flow tests, when this data is available and 

appropriate (Moore et al., 2011). In addition, impermeable barriers interpreted from seismic should 
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be integrated and tested. As it is expensive to gather information, limited measurements will lead 

to upscaling of the parameters to be able to represent the whole reservoir. Upscaling can cause 

major errors, as interpolations of parameters often are based on (personal) interpretations. A fine 

grid can help to give an approximation to the heterogeneities in a reservoir. Each single cell has a 

set of assigned properties, hence is homogeneous. Large grid blocks (used to reduce simulation 

time) will lead to loss of local information when assigning cell properties.  

Data Quality 

Data from measurement tools have in many cases a known uncertainty, it is important that the data 

measured is calibrated correctly according to this. The measured data need to be treated 

consistently in such a way that limits the errors. If the input data to a reservoir study is wrong, the 

results from the study will be wrong. Production data smoothing can be an important step in 

reducing observable deviations (Begum, 2009). 

Optimization Program and Algorithm 

The optimization software may induce errors either through computational tasks or user mistakes. 

The algorithm applied trough the software may induce incorrect results, e.g. the MCMC method 

may require several iterations to converge to the correct distribution, if it has not had the time to 

converge to the correct distribution, the results will not be correct.  

Uncertain Parameters in the History Match 

In an uncertainty study, the most uncertain parameters in the model are studied closely, and possible 

values and combinations of these should be tested to get an updated uncertainty picture. Sensitivity 

studies may help the user to find the most uncertain parameters. In a history matching process, 

most of the parameters are fixed. Only a limited numbers of parameters are varied, these should 

represent the most uncertain parameters. If these parameters are not chosen correctly hence does 

not represent the largest uncertainties in the reservoir, the study will not give the correct results. 
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4 CASE STUDY  

This chapter introduces the reservoir that will be studied. General field information are presented 

in addition to the geological interpretations of the reservoir deposition environment. The key 

uncertainties in the reservoir are presented and discussed. Further, is the reservoir model that will 

be used in this study introduced. This chapter is based on information given by confidential 

documents and personal communication provided by the company the author is in collaboration 

with (Eni Norge, 2015). 

4.1 General Field Information 

The case study concerns a relatively small field that produces from a gas condensate reservoir. The 

reservoir which consists of Cretaceous sands, and is located at a depth where the structural top is 

at 2750 m TVDSS (true vertical depth subsea) and the gas-water contact is at 2843 m TVDSS. The 

reservoir formation have a variation in thickness from 5 to 20 m. A cross section graphic of the 

reservoir is shown in Figure 18, as viewed the reservoir is tilted. The important reservoir properties 

are showed in Table 1.   

 

Figure 18 This graphic visualizes the cross section of the tilted reservoir. 

Table 1 Reservoir properties. 

Tres  [°C] 101 

Pres [Bar] 374.4 

GOR [Sm3/Sm3] 11 524 

Dew Point [Bar] 373.5 

Bg [Rm3/Sm3] 0.00353 

Average NTG 0.70 

Average PHI 0.23 

Average k [mD] 200 

Sg 0.1 

μg [cP] 0.029 

Gas Specific Gravity (air=1) 0.68 
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The field is produced by natural depletion by gas expansion. There are two producing wells, Well 

A and Well B, due to flow assurance issues only one well produce at the time. This allows the non-

producing well to observe the pressure in the reservoir. The buildup pressures, that are measured 

while a well is shut-in, are important as the reservoir response is reflected. At the time of study the 

field has been operative for just over three years. Approximately half a year after the production 

startup, the wells were shut-in for a year due to technical concerns. After this shut-in period the 

producers have been producing sequentially. At the time of study around 2.3 GSm3 gas has been 

produced. Figure 19 shows the bottom hole pressure in the wells and the production rate over the 

time of production. 

At time of the development phase the field gas in place (FGIP) were estimated to be between 10-

17 GSm3, with a most likely value of 15 GSm3. By taking the production information into 

consideration in an uncertainty study, the uncertainty spread of the volume estimates may change. 

To better quantify the uncertainty will in many cases improve a decision making process. In this 

case study further information of the reservoir uncertainties may help deciding a few decisions that 

need to be considered in the near future. They are as follows:  

 Drill a third well. 

A potential third well was discussed at field development time. 

 Continue production for a longer period, hence pay for equipment upgrade or infrastructure.   

 

Figure 19 Field Pressure and Rate Plot. 



49 

 

After production for a certain time period, it might be necessary with upgrade of 

certain equipment or infrastructure, hence it need to be determined if it is 

economically feasible to do these changes to continue production.  

 Update the predicted volume in place distribution.  

4.2 Deposition Environment and Reservoir Geology 

The reservoir trap is formed by a Cretaceous dome structure above a Jurassic horst block. The 

reservoir is deposited in what can be described as an intra-slope turbidite basin. A turbidite deposit 

is a sedimentary deposit formed by a turbidity current (Dictionary.com, 2002). Usually will these 

deposits consist of sequential sediment layers, where the bottom layers contain the coarsest gains, 

and the upper layers contain the finer grain. The turbidite deposit system is imaged by amplitude 

and coherency maps from 3D seismic illustrated in Figure 20. The high amplitude areas are showed 

as red, orange and yellow (by decreasing amplitude) on the map, before the amplitudes are showed 

as green, light blue and then dark blue with respect to decreasing amplitudes. By taking well data 

into consideration it is found that the system mainly consists of a unit with a fining-upward stacking 

pattern where channel-fill and channel-lobe transition facies are overlain by lobe deposits. 

Sediments have hit the structural high and deposited to what became an area with thin fine sands 

on the structural heightening and a thicker central zone with coarser sands. In the areas close to the 

fault, flow interference with the syndepositional high lead to sudden deceleration and rapid 

sedimentation, generating sand liquefaction and large clay clasts (Eni Norge, 2015).  
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The reservoir, outlined in Figure 21, extends approximately 9 kilometers from the south (-west) to 

the north (-east). It has an average width of around 3 kilometers. In the field area a total of six wells 

have been drilled, including the two producers. The placement of the four first wells can be seen 

in Figure 21. The southernmost well “Well 1” was drilled below the contact prior to the discovery 

well being drilled. The field was first discovered by the discovery well “Well 2” which was 

penetrated the gas-condensate sands. A dry well, “Well 3”, located in a different structure east, was 

drilled after the discovery. The last well to be drilled before development was “Well 4”, which also 

penetrated the saturated reservoir. After deciding to develop the field, two production wells were 

drilled, “Well A” and “Well B”. Figure 22 shows the wells penetrating the gas reservoir; the 

discovery well “Well 2”, the appraisal well “Well 4” and the two production wells (and their pilots) 

“Well A” and “Well B”. The distance between the production wells are approximately 2.7 

kilometers.  

 

Figure 20 The amplitude map shows the geological 

environment and interpreted system. North is up and 

south is down . (Eni Norge, 2015). 

 

Figure 21 The outlined reservoir and the wells 1-4 in the 

amplitude map (Eni Norge, 2015). 
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Figure 22 The reservoir with drilled wells and GWC (Eni Norge, 2015). 

The wells confirmed the geologists, sedimentologists and geophysicists interpretations from the 

seismic amplitude map. Based on this it was seen a correlation between the seismic amplitude 

frequency and the reservoir thickness and facies quality. From well logs and amplitude map four 

different facies were identified and categorized:  

 Log facies 1: Clean sandstone, high quality. This is the best reservoir facies, and consists 

of very high to high quality sandstone. 

 Log facies 2: Sandstone with residual structures, high to medium quality. Reservoir facies 

consisting of massive sandstone which is locally and reasonably well sorted, the facies 

contains water escape structures.  

 Log facies 3: Sandstone that is poor sorted and laminated, medium to low quality. Minor 

reservoir facies, the sandstone is locally laminated with increasing amount of silty layers.  

 Log facies 4: Laminated fine sandstone, siltstone and mudstone, low quality sandstone. 

This is a low quality facies, none reservoir facies as only locally massive mudstone is 

present.  
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Figure 23 show a picture of the cores from the four different facies. Figure 24 shows the 

percentage of the different sandstone facies in the drilled wells. 

 

 

It has been done thorough work with probability modelling of facies distributions based on 

amplitude maps and well data. In addition it has been created parameter distribution maps for 

porosity and permeability based on the facies quality. Further, bodies’ dimensions and structure 

analysis were carried out before these were used as a basis of the geological reservoir model.  

 

 

Figure 23 Cores of the different facies (Eni Norge, 2015). 

 

Figure 24 The percent of the different facies in each well. 
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4.3 Key Reservoir Uncertainties 

The uncertain parameters to consider is decided based on earlier uncertainty and sensitivity studies 

including a manual history match. They are as follows: 

1. Drainage volume (pore volume). 

2. Effects from an aquifer. 

3. Internal communication. 

Drainage Volume  

Volume in place is the most important uncertain factor as it to a large extent determine the 

profitability of the field. Earlier studies indicate a volume in place between 10 to 15 GSm3. The 

gas volume is also important to find as it is desirable to get an estimate for how long the field can 

continue to produce.  

The author did an individual uncertainty study for the field in the project thesis carried out autumn 

2014. By the use of given information from PDO time and Monte Carlo simulations the author 

found a P50 value of the volume to be 11.76 GSm3. 

Effects from an Aquifer 

Another uncertain factor is the aquifer, there are uncertainties related to the size and contribution 

from the aquifer. Before production, it is difficult to know the dynamic response from the reservoir, 

hence determine the effects from an aquifer. The hydrocarbon accumulation in a reservoir is often 

hydraulically connected (in pressure communication) with the water surrounding it, which is called 

an aquifer. The inflow of water to the reservoir as the pressure declines due to depletion is called 

water drive or water influx. The effect from an aquifer depends mainly on the aquifer permeability, 

aquifer size, initial reservoir pressure and water and rock compressibility (Bruns et al., 1965).   

A good connection between the aquifer and the hydrocarbon-filled reservoir is caused by a high 

permeability in the layer connecting them, and it means that fluids easily can flow between the 

contacts. By depletion, the pressure near the wells will decrease faster than in the rest of the 

reservoir, and fluids will start to flow towards the lower pressure zones. An aquifer in good 

connection with the reservoir will start to expand into the reservoir region, by fast response of 

inflow of water the reservoir pressure will to a large extent be maintained. If the connectivity 
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between the aquifer and the reservoir is limited, it will take a longer time for the aquifer to react 

upon the depleted reservoir. A pressure decline in the reservoir will indicate limited connection. 

For very low aquifer permeabilities, (less than 1 mD) the reservoir behavior can be described as a 

constant volume reservoir, because inflow of water is so limited that the reservoir behaves 

independent of the aquifer (Fevang, 1995). (Melhus, 2014). 

The aquifer contribution can be correlated to the uncertainty in volume in place as discussed further 

in next section. 

Internal Communication  

There are uncertainties related to internal transmissibility features, due to possible continuous shale 

layers or other sub seismic features. Though evidence of reservoir barriers are limited, seismic may 

not capture the true picture of the subsurface as there is a chance it is not detecting faults. Shale 

layers which are dividing the reservoir zone are observed in Well A, the horizontal well have 

perforations over and under the shale layers. This can be a factor that potentially can complicate 

the pressure relief when producing. Shale layers are not observed near Well B, this implies that the 

layers are not continuous over a longer distance. Discontinuities in the reservoir may reduce the 

pressure communication hence give a delayed pressure response in the field. If there are gaseous 

areas bounded by faults, the gas may be may be trapped. Then the reserves that are not in contact 

with the gas volume surrounding the wells, will not affect the pressure measurements.  

4.3.1 Indications of Gas Volume from Material Balance p/z-Plots 

An interpolation of the straight line p/z vs cumulative produced gas plot, has traditionally been 

used to estimate the original gas in place for depletion-drive gas reservoirs (Elahmady and 

Wattenbarger, 2007). A reservoir depleted only by gas expansion will in general give a straight line 

curve, this volumetric behavior is commonly used to quantify the in place volume. If a reservoir is 

affected by an aquifer, it is expected that the p/z curve in the plot will deviate from the straight line 

by certain trends. Figure 25 show the typically p/z curve behavior of different aquifer strengths 

ranging from weak to very strong in gas reservoirs. In general, a gas reservoir with water influx 

will have a lower ultimate recovery. A certain amount of the gas is trapped behind the water, and 

will be unrecoverable after a water breakthrough. According to Fevang (1995) the trapped 

saturation is dependent on rock properties, initial water saturation and is correlated to the trapping 

constant Ct. (Further information of Ct can be found in in (Ringrose and Bentley, 2015)) (Melhus, 
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2014). The recovery for a gas reservoir with no connection to an aquifer, namely, a volumetric gas 

reservoir, is commonly over 80 %. Even though it is expected to get a curved line in a reservoir 

influenced by an aquifer,  Elahmady and Wattenbarger (2007) have found that for a gas reservoir 

with water influx in transient phase (unsteady state) and producing under a certain rate schedule 

(not a constant rate) the p/z curve can still be plotted as a straight line on a p/z-plot masking the 

existence of the aquifer. This will cause significant overestimation in gas reserves.  

Figure 26 shows the straight line p/z curve (blue) that is expected for a reservoir depleted only by 

gas expansion, and the deviated trend (the black dots) from the p/z curve that is expected if the 

reservoir is influenced by an aquifer. Figure 27 show the misleading straight line that may occur 

for wells with special rate schedules and will mask the existence of an aquifer. G represents the 

real volume, G’ represents the wronged volume.  

 

Figure 25 Effects of water influx on a p/z curve (Fevang, 1995).  
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This means that for a case where the reservoir producing with a special rate schedule and it is 

uncertain if the reservoir is influenced by an aquifer or just depleted by gas expansion, a straight 

line plot can be misleading in quantifying the original gas in place volume. Early curvature 

behavior can in the cases where the reservoir is affected by the water influx, be more reliable in 

volume predictions. In Figure 28 it can be observed reliable early curvature behavior, by the points 

before the point M, where the misleading effects starts showing. In most cases the early time 

behavior is not observed, due to it is not conventional with such early pressure measurements 

(Elahmady and Wattenbarger, 2007). 

 

Figure 26 Typically expected behavior when 

influenced by an aquifer (Elahmady and 

Wattenbarger, 2007). 

 

Figure 27 Misleading straight line behavior when 

influenced by an aquifer (Elahmady and Wattenbarger, 

2007). 

 

 

Figure 28 Early curvature and following misleading line when aquifer affects the measurements (Elahmady 

and Wattenbarger, 2007). 
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Case Study Observations 

In the case study both the volume and the influence from an aquifer are major uncertain factors. In 

general, a minimum of 10 to 20 % of the in-place volume must have been produced before there is 

sufficient data to identify a trend and reliably extrapolate to the original in-place volume through 

material balance. At the time of study the field has produced approximately 2.3 GSm3, which from 

the time of development estimates should range between 15 and 23 % of the in-place volume. As 

the produced volume should be sufficient, a p/z-plot has been made for the production time and 

can be seen in Figure 30. 

As the producers are producing in sequence, the individual wells may or may not go under what 

Elahmady and Wattenbarger (2007) describes as a “certain rate schedule”.  On the basis of this the 

p/z plot should be carefully used as it may give misleading results. As the producers are producing 

one at the time, and one is always acting like an observer, continuous pressure data are measured. 

This might lead to an opportunity of capturing responses from the early time period not affected 

by a potential aquifer.  

After analyzing the p/z plot in Figure 30 carefully, especially the early behavior, measured after 

the long shut in period of one year, showed in Figure 31, two extrapolated curves have been drawn 

as seen in the plot, p/z and p/z’. The first linear curve, p/z’, is plotted to only take into consideration 

the early reservoir response, assuming that the pressure in the early period (of measurements) are 

not affected by an aquifer which is captured by the later responses. This scenario represent a case 

where the volume is in a lower range than predicted. The p/z’ curve extrapolates to a gas in place 

volume to be around 6.7 GSm3. The second curve, p/z t is made to consider the later reservoir 

response, the plotting of this curve is done assuming no influence from the aquifer. This 

interpolation indicate a gas in place volume to be approximately 10 GSm3. An assumption is 

required for the interpretation to be valid. The long shut-in of the wells of approximately one year 

should be able to cause the reservoir pressure to stabilize at a new initial state. Figure 29 shows 

how the interpretation can be valid. There is no data of the early production period before the long 

shut in. The blue curve represent how thought measurements of the earliest field behavior may 

have been. The red curve shows that after the long shut-in the reservoir has reached a stabilized 

pressure, possibly close to the reservoirs initial pressure, that again might reveal the unaffected 
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early period, before any misleading behavior occurs. Both curves show how only the early behavior 

represents the actual field gas in place.  

As mentioned earlier, the wells produce sequentially, this is an important factor that allows for 

analyzing of the early period after the shut-in. In the early period after shut-in Well A is producing, 

and Well B acts as an observer and maps the early pressure response from the field. As seen in 

Figure 30, the p/z curve indicates a gas volume to be around 10 GSm3 with a cumulative production 

of almost 8 GSm3. The p/z’ curve indicates a gas volume to be around 6.5 GSm3 and cumulative 

production to be slightly over 5.1 G Sm3.  

Other literature argue about and doubts the reliability of the p/z plots to give a valid representation 

of the volume in place. Some state that the problem with the interpretation is that the pressure at 

the end of the buildup is not representative of the average pressure for the drainage area of the well 

(Ross, 2014). Payne (1996) states that a straight-line p/z decline cannot be used to conclude that 

the reservoir behaves like a tank, and that the p/z curve may or may not point to the true gas in 

place.  

 

Figure 29 The p/z interpretation of initial state stabilizing after one year of shut-in wells. 
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Remarks 

 An aquifer influence will normally increase the pressure in the reservoir by water influx. 

Therefore the early period not affected by the reservoir will show a steeper pressure decline 

trend.  

 In the case study, the historical data from the early period the p/z curve does not seem to 

increase similar to the trend viewed in Figure 28, but a more rapid decrease in pressure 

from the early period is observed.  

 The later period trend shows a gentler pressure decline than the early period.  

 

Figure 30 p/z plot after producing approximately 2.3 GSm3, including two extrapolated curves. 

 

Figure 31 p/z plot which shows the early field behavior. 



60 

 

4.4 Reservoir Model 

4.4.1 The Base Case Reservoir Simulation Model 

The base case model is the simulation model that represent the reservoir before any production 

information is introduced. By the use of history matching the model will be calibrated by changing 

the most uncertain properties. The reservoir simulation model is modelled in Eclipse 100. Eclipse 

100 is a fully-implicit, three phase black oil simulator, and is using a finite volume method to solve 

material and energy equations. The base case reservoir model is designed based on earlier studies 

and includes information in from of: 

 Static data. 

 Dynamic well test data. 

 PVT studies. 

 SCAL: Relative permeability and J-function. 

The reservoir model has grid dimensions of 109x203x16 cells, which makes the total number of 

grid cells 354 032 of which 231940 cells are active. The lateral dimension of each cell in the 

reservoir area is approximately 100 x 100 meters. The reservoir is divided into 16 layers in the z-

direction. As the hydrocarbon zone has a thickness variation from 5 to 20 meters the vertical 

resolution of a cell is defined according to the thickness. Each cell in the model has individually 

assigned properties, assigned by facies. There is correlation between the properties; permeability, 

porosity and saturation in the different facies. The grid cells properties are based on a static 

geological model from Petrel (2009.2 software). The following are implemented in the model: 

 Faults 

In the simulation model there are implemented faults that were observed on seismic. 

There is one major sealing fault which bounds the reservoir extending from north 

towards north south. In addition there are some minor sealing faults in the reservoir, 

where the most important and largest is a fault south for Well A. Sensitivity studies 

have showed that the sealing faults have negligible impact on the dynamic behavior in 

the reservoir.  
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 J-Function 

The gas water capillary pressure is calculated by Eclipse by using the J-function curve 

and the keyword JFUNC.  

 Wells 

Two horizontal production wells are integrated in the reservoir model.  

4.4.2 Regions 

The reservoir model is divided into regions to be able to express the parameter uncertainties in the 

different parts of the reservoir. The boundaries and the extending of the regions are decided based 

in the seismic interpretation of the amplitude map. In the low amplitude the reservoir thickness and 

the facies quality are in general lower than in the high amplitude areas. The regions are constructed 

in Petrel, and imported to Eclipse.  A total of 6 regions are defined, these can be seen in Figure 32. 

The average assigned properties in each of the regions in the base case model can be seen in Table 

2. The following gives an overview of the regions: 

 Region 1 (blue) and 6 (red) are mainly low amplitude areas. The properties in Table 2 show 

that the average N/G, average porosity and average permeability is lower than the other 

regions, this implies lower quality of the reservoir properties in these regions.  

 Region 2 (light blue) represents a transition zone between the low amplitude and the high 

amplitude areas. An idea about having a transition zone is that it can be used as a flow 

barrier between the zones.  

 Region 3 (purple) represents the medium to high amplitudes and represents the main 

reservoir area which is of high reservoir quality. The two producers are located in this 

region.  

 Region 4 (light pink) represents a near well area, the region is located around Well B. The 

reason to have a region around Well B is to evaluate the flow around and between the wells. 

Note that this instead could have been implemented by specific well adjustments for the 

well.  

 Region 5 (pink) represents an aquifer surrounding the reservoir. As the presence of an 

aquifer is rather uncertain, the region is created to be able to determine the influence caused 

by an aquifer.   
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Dividing the model into regions allows the user to assign different uncertainty ranges and 

distributions for the parameters for each region. As the regions are mainly divided according to the 

response from the amplitude map, as it is believed that the response from the amplitude map is 

consistent with the reservoir parameters. It is important to remember that in the base case model, 

each cell has assigned properties. A multiplier for a region will take into account the differences in 

the individual cells.  

The regions may also be important as certain parts of the reservoir are better explored than other 

parts. By dividing the reservoir into regions the PDF’s for the uncertain parameters can have, a 

limited range for the more explored parts, that contains relatively less uncertainty, and a wider 

Figure 32 The reservoir model and the defined regions 1-6. 

 

Average Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 

Porosity 0.19 0.19 0.21 0.19 0.19 0.15 

Permeability XY[mD] 165 169 191 155 157 126 

N/G 0.74 0.91 0.97 0.92 0.92 0.76 

 

Table 2 Average parameter properties in the reservoir model. 
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range for the unexplored parts of the reservoir. By applying the regions in the uncertainty study the 

user can easily change the properties in the cells in one region independent of the other regions. 

The use of regions in this study is a simplification, the thought is use the regions to explore the 

influence from each region, and find the most influential parameters. The results from the study 

will have be communicated back to the geologists to discuss if the combined results of the regions 

are realistic based on the geological knowledge of the field.   
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5 RESULTS AND DISCUSSION 

This chapter presents the implementation to the software, in addition to the results obtained from 

the uncertainty study of the field presented in the previous chapter. The ensemble based method 

MCMC is applied in a history matching process (as viewed in Figure 15), the method yields an 

updated uncertainty picture of the parameters. Analyzing the results is important to be able to 

evaluate the reliability of the updated uncertainty. History matching is emphasized as the main 

focus is on capturing and mitigate the uncertainty in the reservoir by the historical data taken into 

consideration. In addition is a brief sensitivity study carried out to find the influence from the 

different parameters that are used in the study. Further predictions are simulated to find the future 

behavior and the production time. Some results are discussed during the different scenarios, before 

the Section 5.5 summarizes and discuss the results in relation to each other. 

5.1 MEPO Introduction 

MEPO (Schlumberger), Multipurpose Environment for Parallel Optimization tool, is the software 

used in this study. MEPO is a flexible framework for assisted history matching and is based on an 

input reservoir model. To perform a HM study certain steps need to be followed. Uncertain input 

parameters need to be defined by the user, in addition, field history data to be matched will have to 

be introduced. Different optimization techniques can be utilized to minimize the objective function 

through multiple simulation runs to find the solutions that best matches the history data. When the 

user is satisfied with the matching results, the parameter uncertainties can be reviewed and 

analyzed. Further predictions can be simulated based on the history matching results.  

Workflow in MEPO 

To be able to work in MEPO, the user have to create a project, this is a file that contain information 

about the multiple cycles, where in each created cycle one can import data, decide 

sampling/optimizing algorithms, run simulations, and review the results. A project will typically 

contain several cycles, where the cycles may have different cycle objectives, such as history 

matching, sensitivity and forecasting. Depending on the choice of cycle objective the following 

need to be defined by the user: input variables, variable ranges and distributions, response 

parameters such as mismatch parameters or watch parameters, simulation algorithm, number of 
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simulation runs and so on. Since the further study will mainly focus on history matching and 

prediction, only these procedures are explained in further detail.  

5.2 History Matching  

5.2.1 MEPO Implementation – History Matching  

The procedure carried out to prepare the history match runs are explained as follows. The base case 

model in an Eclipse data file is uploaded to the project, this is done in the input parameters panel. 

When the data file is added to MEPO, the user is able to view and make changes to it. Parameters 

in the data file can be selected by the user and made Design Parameters in the Input Parameters 

option. The Design Parameters represent the uncertain parameters in the reservoir model, and will 

be represented probabilistically. The user can manually apply a range, start value and distribution 

for each of the Design Parameters to represent the uncertainty. The number of uncertain parameters 

will impact the simulation time. Thus it can be necessary in the cases with many uncertainties to 

identify which parameters that have large impact on the results, and which that have little or no 

impact and can be excluded. This can be done through sensitivity analysis where the goal is to 

determine the most influencing parameters. In this study the uncertain parameters are decided based 

on earlier sensitivity studies, hence a selection process is not necessary. 

5.2.1.1 Input Parameters 

In general are the input parameters defined based on prior knowledge that comes from geological 

information and the understanding of the reservoir. The uncertain parameters to consider in this 

study is already decided based on earlier sensitivity studies including a manual history match. As 

the volume in place, water influx and internal communication are the largest uncertainties, the input 

parameters should be able to capture this uncertainty. As the simulation time increases with the 

number of input parameters, a limited amount of input parameters have been created to capture the 

uncertainty that is present. In this case study two kinds of input parameters have been considered 

uncertain parameters: pore volume multipliers and permeability multipliers.  

The pore volume multipliers represent the uncertainty in the parameters defining the pore volume. 

Pore volume multipliers for the different regions (previously defined in Section 4.4.2) have been 

implemented to the data file by the use of the keyword MULTREGP. A total of four pore volume 

multipliers are defined: 
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 MPV1- multiplier for the pore volume in region 1. 

 MPV3- multiplier for the pore volume in region 3 and 4. 

 MPV5- multiplier for the pore volume in region 5. 

 MPV6- multiplier for the pore volume in region 6. 

Pore volume multipliers will only affect at the actual volume calculated in each cell of the reservoir 

model. The parameters concerning the volume will when combined (in the pore volume 

calculation) have to give the same answer as the volume presented by the application of the 

multiplier. The use of a pore volume multiplier will not capture the individual parameter 

uncertainty. The multipliers can only be used as an indication of the pore volume range for a certain 

region. Further individual parameter uncertainties will have to be discussed with a geologist 

depending on the results.  

The second input parameters are permeability multipliers, which represent the transmissibility of 

fluids in the different regions. Permeability multipliers are implemented by the keywords MULTX 

and MULTY, and represent the permeability in the X- and Y-direction, namely the horizontal 

permeability. The multiplier are applied for region 1, 2, 4 and 6 with the keyword MULTIREG. In 

MEPO they are defined as: 

 MULTX1- multiplier for horizontal permeability in region 1. 

 MULTX2- multiplier for horizontal permeability in region 2. 

 MULTX4- multiplier for horizontal permeability in region 4. 

 MULTX6- multiplier for horizontal permeability in region 6. 

It is important to understand that the multipliers on the pore volume and the permeability may yield 

the same result as by only using one or the other. A pore volume multiplier controls the actual 

volume that can be produced, the permeability multiplier will keep the volume in the base model 

but will affect the flow in the reservoir and to the wells. Applying both multipliers to the most 

uncertain parts of the reservoir gives MEPO greater flexibility. This is the case for region 1 and 6 

where both multipliers are applied. Region 2 does not have an assigned pore volume multiplier as 

the few cells in region 2 would not give a considerable impact on the result. The region is mainly 

made to be able to influence the flow between the regions.  
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Input Ranges and Distributions 

The chosen input parameters, which all are multipliers, should represent and capture the true 

uncertainty of the specified region. As described before, some regions contain more uncertainty 

than other parts that are better explored. It is desirable that the ranges and distributions of the input 

parameters reflect this. The ranges that are assigned as prior distributions are mainly ranging from 

a lower limit, zero, to an upper limit of one which represents the value in the base case model. The 

reason that the multipliers are assigned by this range is that earlier studies imply that the properties 

in the base case reservoir model may be “too good” to get a sufficient history match. The 

permeability multipliers ranges are implemented as log values, the actual multiplier value these 

represent (that will be applied to the reservoir parameters in the model) can be seen in Table 3. 

Figure 33 shows the Uncertainty Parameter Panel and gives an overview of the input parameters 

and ranges. Region 3 has a lower boundary of 0.3 as it is the most explored region, where the values 

to a larger extent are based on observed data. The permeability multiplier for region 4 has the same 

limited lower value of 0.3, as region 4 is included in the same area. As discussed, the purpose of 

region 4 is mainly to regulate the inflow to Well B and the flow between the wells, hence has a 

specified permeability multiplier. The pore volume in region 4 is included in the MPV3 parameter. 

The aquifer is a key uncertainty and for the region to act like an aquifer a larger pore volume range 

need to be applied, the range for region 5 is set to range from 0 to 10. Start values should, based on 

literature, not have much to say, they are chosen based on what is believed to be a most likely 

value. 

 

Figure 33 The Uncertain Parameter Panel showing the 8 input parameters. 
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The distributions are used in the Monte Carlo and Latin Hypercube sampling process and are 

chosen to be truncated normal for all uncertain parameters. By using truncated normal distributions 

the expected value does not necessarily need to be the midpoint in the assigned distribution range. 

The start value acts like the most likely point. The input distributions for the different input 

parameters can be seen in Figures 34-41.  

 

  

Table 3 Permeability multiplier values. 

 Log(x) Log(x) Log(x)    

  Low Start Value Upper Low Start Value Upper 

MULTX1 -2.00 -1.00 0.00 0.01 0.10 1.00 

MULTX2 -2.00 -0.52 0.00 0.01 0.30 1.00 

MULTX4 -0.52 -0.40 0.00 0.30 0.40 1.00 

MULTX6 -2.00 -1.00 0.00 0.01 0.10 1.00 
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Figure 34 MPV1. 

 

Figure 35 MPV3. 

 

Figure 36 MPV5. 

 

Figure 37 MPV6. 

 

Figure 38 MULTX1. 

 

Figure 39 MULTX2. 

 

 

Figure 40 MULTX4. 

 

 

Figure 41 MULTX6. 
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5.2.1.2 Response Parameters 

In the Response Parameter Panel the user defines the key parameters of interest that are directly 

related to the simulation data. In the response parameter panel data history to be matched is added 

typically from the files .SMSPEC and .UNSMRY that contain production history and model output 

information of the base case model. Field history to match is defined as mismatch parameters, and 

the useful results to acquire as an output after the simulation may be added as watch parameters. 

Important parts of the history data can be emphasized by applying weighting terms in the mismatch 

parameters. 

The measured pressures from Well A and Well B are historical data that will be matched. A total 

of four mismatch parameters are created. Two for each well, as build up periods and flowing 

periods are considered in different mismatch parameters. The mismatch parameters can be 

evaluated as series (match series), where all data is matched, or as points (match points), where the 

user manually picks the points of interest to match. In this study the latter is used as it gives more 

control of the data points matched in addition to favor the simulation time. The mismatch 

parameters that are added are M1 and M2 that are empathizing only the buildup pressures in 

respectively Well A and Well B. In addition to M3 and M4 which empathizes the flowing periods 

respectively in Well A and Well B. 

The response parameter panel in Figure 42 shows the four mismatch parameters that are chosen as 

inputs to the response modelling process. For the response parameters it is possible to select 

“active” and “objective”. By selecting active means that the specified parameter should be 

calculated. Objective means that the parameter is taken into consideration when calculating the 

 

Figure 42 The Response Parameter Panel viewing the Mismatch Parameters. 
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objective function. As it is desirable to view the history match cases and to include the pressures 

in the objective function, both are ticked on. A Global Weight of 1 is used for all mismatch 

parameters, which means that all mismatch parameters are evaluated with equal importance in the 

objective function. A Standard Deviation of 1 is applied, by this it is assumed that there is no 

measurement errors in the historical data that are used. The Base Value represents the base case 

mismatch for the individual mismatch parameter which is given by summation of the mismatch for 

the match points. The total global value will be the sum of these including any assigned weighting.  

Weighting Strategy 

Equation 23 in Section 3.4 shows the objective function with weighting properties. The 

optimization algorithm will focus on minimizing the objective function. When a mismatch 

parameter or a mismatch point is multiplied by the individually assigned weight the objective 

function get a higher discrepancy at the point and will focus on minimizing the discrepancy where 

it is highest. The weighting applied to certain wells or datatypes is called the global weight. 

Nevertheless, as the Well A and Well B are equally important the global weight of 1 is assigned. It 

is also possible to apply weighting to emphasize data in specific intervals considered as important 

periods. This is done by assigning weight to the individual mismatch points. As the buildup periods 

will provide the reservoir response it is desirable with main emphases on the buildup periods in the 

mismatch parameters. On the basis of this, additional weighting are applied for buildup periods 

only. As the base case model does not match the response in the most recent time very well, it is 

applied increasing weighting with time. Weights that are applied to the mismatch points are ranging 

from 1 to 8. Each buildup period has at least three match points to capture the curvature. To match 

the important last point in the buildup this has been given the highest weight. The weighting has 

been applied by trial and error (e.g. if discrepancy is observed at important parts in the buildup that 

are desirable to match better, additional weighting are applied).  

The mismatch parameters M1-M4 are explained and viewed in the Figures 42 - 45. In the figures 

the green curve represents the base case model response with the initial parameter values and the 

black line represents the historical data. The red dots are the chosen match points to be included in 

the objective function. The mismatch parameters are described as follows: 
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M1: Mismatch parameter for Well A, where only the buildup pressures are empathized with match 

points. A total of 26 match points are added, where there are at least 3 points on each buildup period 

that captures the curvature. Weighting are applied in accordance with the weighting strategy. M1 

is showed in Figure 43. 

 

Figure 43 M1:The red dots show the chosen match points for the buildup periods in Well A. 

M2: Mismatch parameter for Well B, where only the buildup pressures are empathized. A total of 

22 match points are added. Weighting strategy are applied. M2 is showed in Figure 44. 

 

Figure 44 M2: The red dots show the chosen match points for the buildup periods in Well B. 
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M3: Mismatch parameter for Well A, where only flowing (drawdown) pressures are empathized 

with match points. A total of 18 match points are added. No additional weighting are applied, which 

means that each match point has a standard weight of 1. M3 is showed in Figure 45. 

 

Figure 45 M3: The red dots shows the chosen match points for the flowing periods in Well A. 

M4: Mismatch parameter for Well B where only the flowing (drawdown) pressures are empathized 

with match points, showed in Figure 46. A total of 24 match points are added. No additional 

weighting are applied, thus each point have a standard weight of 1. 

 

Figure 46 M4: The red dots shows the chosen match points for the flowing periods in Well B. 
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Watch Parameters 

The variables included in the summary file from the base case model, which are uploaded in the 

response parameter panel, are possible to choose as watch parameters. Figure 47 show the watch 

parameters in the Response Parameter Panel. The watch parameters are not included in the 

matching process and in the objective function, thus they are not marked as objective. The 

following watch parameters are added: 

 W1: FGIP, the field gas in place. The parameter will show gas in place at production start, 

and how the FGIP decreases with production time. The starting point of this watch 

parameter is of great interest.  

 W2: Well bottom hole pressure for Well A. 

 W3: Well bottom hole pressure for Well B.  

 W4: Time Vector. To include a watch parameter of the TIME vector makes it easy to find 

how many days the simulation has run, and if the simulation has run through the history 

period.  

5.2.1.3 Simulation Control Centre 

In the Simulation Control Centre panel the user decide which algorithm that should be applied in 

the process of minimizing the objective function. The optimization direction is set to minimize as 

the global objective function should be minimized to get a match. Sampling methods that will be 

used in the history matching process are: 

 

Figure 47  The Response Parameter Panel viewing the Watch Parameters. 
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 Latin Hypercube, this sampling method is used as initial screening by scanning the search 

space. 

 MCMC optimization algorithm, which will minimize the objective function. The method 

is based on the results from the screening method.  

Both methods require the maximum number of simulations to be specified by the user. By the use 

of MCMC optimization method, certain additional specifications need to be defined by the user, 

they are as follows: 

 Number of samples. 

 Burn in time. 

 Proxy building method. 

 Proxy training set size. 

 Number of chains (which in practice means number of experiments in each chain). 

In general, for history matching cycles in this study the number of samples are set to 1, the burn in 

time set to 1000, proxy building method set to Regression-Automatic, the proxy training set size is 

set to 200 and the number of chains are varied. As this is the recommended procedure (SPT Group, 

2014). The number of simulations has been varied both for the screening and for the MCMC 

optimization. A procedure of starting simple and adding complexity and number of simulations has 

been followed. By “staring simple and adding complexity” means that a first attempt should be run 

with few simulations to see if everything is working properly, and to verify if the set-up can give a 

good match. The second attempt will be a long simulation, which will give proper results that can 

be used in further analysis. This procedure is put into practice to save simulation time. 

Advanced Task Manager Panel 

Before running the simulation the user will have to set up the workflow that MEPO will perform 

for each simulation, this is done in the Advanced Task Manager Panel. The workflow set up used 

for the study is shown in Figure 48. Each of the workflow tasks are explained in brief below (SPT 

Group, 2014) : 
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 Create directory 

Within the cycle folder for the project a directory is created for each experiment, this                    

is where the simulations will be run.  

 Pre-processor 

Pre-processing is typically used to prepare a simulation run. MEPO will make a copy 

of the input files and modify the values of the defined input parameters.  

 Eclipse Simulation 

The Eclipse Simulation task is used to launch Schlumberger’s Eclipse simulator. A 

queuing system can be applied which will allow MEPO to use available Eclipse licenses 

and not occupy them when the licenses is needed elsewhere. This is applied in the study. 

 Post-processor 

A post processor typically reads the results of the simulation run. It extracts the response 

parameter values from the simulation results. In addition will the post-processor 

calculate the global value for each experiment. 

 Save results 

The save results task saves important files produced by the simulator. For the study the 

files *.SMSPEC,*.UNSMRY and *.OBI are saved. The archived files are used by 

MEPO for data analysis and plotting.  

 Remove directory 

The remove directory task will remove the folder containing the simulation data. In the 

beginning of a project, or if errors occurs when launching the simulations, it may be 

helpful to keep the directory to be able to check the certain files in the directory. E.g. the 

print file may contain more information about the errors that occurs than what the MEPO 

log window shows.   
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A maximum simulation time for each experiment is set to 7200 seconds, from the start of launching 

the experiment. This is done to get more efficient simulations by the use of sequential MCMC 

iterations. The time is set based on the model and complexity in the cycle. Most of the simulations 

are finished within a good margin to the maximum time set. The maximum simulation time is set 

as sometimes a few experiments are taking a very long time to finish, these will slow down the 

process of going to the next step in the chain. By having a time limit the possibility of a few 

unfinished simulations should be taken into consideration when deciding the number of 

experiments in each chain.  

The Simulation Analysis Panel and the Global Value 

The Simulation Analysis Panel allows the user to select specific history matches and view the 

results in multiple different plots, in addition the user can view the sampled parameter values for 

the experiments from the prior distribution. The user may filter out simulation runs and analyze the 

desired experiments. In addition the user can view the frequency of the parameter samples in 

posterior distributions. When analyzing the results the Global Value is useful. The global value 

represents the final value calculated by the objective function, which is the sum of all the objective 

points in each response parameter as showed in the expression bellow.  

 

𝐺𝑙𝑜𝑏𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 =  ∑ 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒𝑖

𝑁

𝑖

 

 

(33) 

 

 

Figure 48 The Simulation Workflow in the Advanced Task Manager Panel. 



79 

 

Where N is the number of response parameters set to objective. Each response parameter has an 

objective value that is calculated individually by the objective function which includes the defined 

match points and assigned weights. The global value is calculated for each experiment after a 

simulation. For simulations done in different cycles but with identical weighting and mismatch 

parameters the global values can be compared and used to evaluate the history match scenarios. 

The global value describes how well a model reproduces the historical data. The objective function 

used in this study will provide values that, by dividing the global value by the total number of 

match points, will give the average mismatch value for each match point.  

Figure 49 summarizes the workflow that will be used for the HM simulation cases in MEPO in a 

flowchart. The specified numbers of experiments are typically numbers for a final study (with 

“added complexity”). 
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Figure 49 Flowchart of the workflow that will be used for a history matching simulation case in MEPO. 
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5.2.2 History Matching - Scenario 1 

It is desirable to determine if it is possible to get a sufficient history match without applying any 

changes to region 3. This will be examined in this scenario. Region 3 is the most explored region, 

thus should contain the least uncertainty. The grid cells in region 3 in the reservoir model has been 

assigned the properties based on observed data from the drilled wells, and further has the properties 

been up scaled throughout the high amplitude area defined as region 3. The high amplitude areas 

are interpreted to be areas of high quality facies. By keeping the parameters defined in the base 

case model for region 3, only the defined uncertainty in the surrounding regions will be taken into 

consideration to get a history match. This is done to evaluate and get a picture of the uncertainty in 

the surrounding regions and to test if the assigned parameter values in region 3 can match the 

reservoir response. 

The following changes and regulations are done in the history match cycle:  

 In the input parameter panel the design parameter, MPV 3, is made inactive.  

 Note that the input parameter MULTX4 (the permeability multiplier surrounding Well B in 

region 3) is active but that the uncertainty range is limited compared to the other 

permeability multipliers as viewed in Figure 33. 

 An initial sample period by the use of Latin Hypercube is set to 100 experiments.  

 The number of simulations in MCMC has been set to maximum 200 and it is chosen to 

launch 10 experiments in each chain. 

If the simulations gives a sufficient history match longer chains will be run to get reliable results 

and more likely convergence in the posterior distributions.  

The plot in Figure 50 shows the global value calculated for each of the simulated experiments. In 

the plot, the x-axis displays the number of the experiments in the order that they are launched, 

while the y-axis shows the calculated global value from the objective function (from Equation 23 

in Section 3.4) for each experiment. The first 100 experiment simulations contain parameter value 

sets that are picked by the Latin Hypercube method, where the goal is to scan the search space. 

Note that there is no minimization of the objective function in the LH simulations, hence the 

experiments yields high global values. After the screening period, MCMC is applied and includes 

the minimization process. As discussed, the MCMC algorithm is continuously trying to minimize 

the objective function by picking the right input parameter values for the experiments, this process 
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improves the history match. Figure 51 shows the improvement in the global value by the MCMC 

optimization simulations. It is observed that in the MCMC process the global value is minimized 

until it reaches a minimum global value of approximately 550. The global values for the 

experiments in seven chains (with ten experiments in each chain) can be seen in the figure, it is 

observed limited improvements in the last chains before the simulations were stopped. 

 

As global value is the summation of the discrepancy between the calculated pressure and the 

observed pressure for all the match points in the response parameters, the global value is a direct 

reflection of the pressure match. The global value plots did give an indication of the pressure 

matches by the global value ranging around 550-600. Figure 52 and Figure 53 shows the plotted 

pressure matches for all experiments for Well A and B respectively, including the LH experiments. 

In the figures are the black curve representing the historical data, and the colored curves 

representing the reservoir model response from the different experiments. This format will be the 

same for all further pressure match figures. It can be observed that the experiments does not match 

the historical data very well, especially after the second year of production. From the plotted 

experiments it seems like it is not possible to get a good match with the chosen input parameters 

and distributions.    

 

Figure 50 Global values are plotted for all the 

simulations in Scenario 1. 

 

Figure 51 Global values plotted for the MCMC 

simulations in Scenario 1. 
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Figure 52 Pressure Match for all experiments for Well A. 

 

Figure 53 Pressure Match for all experiments for Well B. 

As Figure 51 shows, the best MCMC simulations matches have a global value ranging between 

650 and 550. These experiments will give the pressure matches with least discrepancy in the 

pressure match. As the best matches will be the matches that represents the reservoir behavior best, 

only these will be examined more closely. The pressure matches that have a global value lower 

than 600 has been chosen as the “best matches”. Figure 54 and Figure 55 show the best pressure 

matches for Well A and Well B, respectively. The chosen “best matches” are in total 26 experiment 

simulations, where the lowest global value is 548.9. For both Well A and Well B the model 

response is lower than the observed data until approximately two years after production, 

approaching the second year of production the match looks good for a short period of time. After 

this period the simulated model response gives a higher pressure than the measured pressure for 

both wells, it seems like the mismatch is increasing with time.  
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Figure 54 The best Pressure Matches for Well A. 

 

Figure 55 The best Pressure Matches for Well B. 

As the model responses and the observed data are not in agreement with each other the volume 

result is unlikely to represent the true value in the field. Nevertheless, the volume and posterior 

distributions from the simulations are presented in the following figures as they may be interesting 

in further discussions and analysis. The field gas in place for the best matches are displayed in 

Figure 56. The plot shows that the FGIP (before production start) is ranging between 11.1 GSm3 

and 11.2 GSm3.  

 

Figure 56 FGIP for the best matches in Scenario 1.  
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Figure 57-62 show the posterior distributions (in blue compartments) compared to the prior 

distributions (red line) for the 26 best matches. Where the x-axis represents the multiplier value for 

the uncertain parameter, and the y-axis represents the frequency of the chosen values in the 

considered experiment ensemble. The posterior distributions illustrates the sampling of the 

parameter values for the best matches. It seems like the aquifer is the only parameter that can have 

a high multiplier in the chosen matches. The pore volume- and permeability- multipliers are 

reduced towards the lower part of the prior distributions. This may illustrate that the MCMC 

algorithm is not working properly because the match most likely is outside the initial prior 

distribution range. An enlargement in the distribution range may in cases like this be useful to 

improve the match. As the posterior distributions of the parameters are sampled in the lower range, 

and close to the limit of 0, it is physical impossible to reduce the prior limit further (permeability 

and pore volume cannot be negative). Region 3 which is the main reservoir area with good facies, 

are not taken into consideration as an uncertain parameter in the match, this may have led to the 

need to condition the available uncertain parameters to reach their physical limits to compensate 

for the lack of possible adjustments in region 3. 
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Remarks based on Scenario 1 

It is found that the best history matches are not sufficient as they do not capture the later reservoir 

response in the match. Based on this there is no need to go through with a longer simulation and 

further predictions. By the registration of the posterior distributions sampling of low values for the 

input variables it was decided to add an uncertain parameter to region 3 in form of a pore volume 

multiplier. This is done in hope of getting a better match, as the current base case model is not able 

to match the historical data.  

  

  

  

 

 

Figure 57 Prior and Posterior distribution MPV1. Figure 58 Prior and Posterior distribution MPV5. 

Figure 59 Prior and Posterior distribution MPV6. Figure 60 Prior and Posterior distribution MULTX1. 

Figure 61 Prior and Posterior distribution MULTX2. 
Figure 62 Prior and Posterior distribution MULTX4. 

Figure 63 Prior and Posterior distribution MULTX6. 
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5.2.3 History Matching - Scenario 2 

As the concluding remark from Scenario 1 were to take into account the pore volume multiplier 

for region 3 as an uncertainty in the reservoir model, MPV3 is added in this scenario. Region 3 is 

the most explored region and represents the high amplitude area on the seismic that are interpreted 

to reflect the best reservoir properties, the good reservoir properties were confirmed by the wells. 

Based on this, the uncertainty spread is not as large as the other regions, hence it is desirable to 

limit the reduction of the parameter values. This is done by setting the lower limit of the uncertainty 

range to 0.3. The input parameters are chosen to be as shown in Figure 33, where MPV3 is set 

active. After a good first simulation attempt with the specified input parameters, a longer simulation 

was run and will be reviewed here as Scenario 2.   

The following changes and regulations are done in the history match cycle:  

 An initial sample period by the use of Latin Hypercube is set to 250 simulations, as it should 

be sufficient to thoroughly scan the search space.  

 MCMC has been set to maximum 600 simulations and 50 experiments should be launched 

in each chain step.  

Figure 64 shows the number of the launched experiments and their respective global value. After 

a long screening period it is observed that the MCMC quickly reaches a low global value. Figure 

65 show that after approximately the third step in the Markov chain, the global value has reached 

a constant low value where all further experiments have a global value under 50. The simulations 

are stopped after 550 experiment simulations when there is insignificant improvements in the 

global value in the chain.   
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Before choosing the best matches based on the global value, the pressure matches and FGIP 

estimates for all the experiments will be reviewed. It may be interesting to see what results the 

reservoir model gives for the whole defined range of the input parameters that is explored in the 

Latin Hypercube simulations. Figure 66 and Figure 67 show the pressure response in Well A and 

B respectively for all simulated experiments.  

 

Figure 66 Pressure matches for all simulated 

experiments in Scenario 2 for Well A. 

 

Figure 67 Pressure matches for all simulated 

experiments in Scenario 2 for Well B. 

 

 

Figure 64 Global values for the simulations in Scenario 2. 

 

Figure 65 Global values for the MCMC simulations in 

Scenario 2. 
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The pressure matches show that by sampling from the prior distributions, most of the model results 

yields a higher pressure response than the observed pressure. It seems like the curvature of the 

observed pressure is adapted to the experiments for most of the production period, the exception 

may be the long build up period from the first year of production to the beginning of the second 

year, where the curvature may be a bit different for some of the visible matches. Note that when 

viewing 550 matches, multiple of them overlays and the best curvature matches may not be easy 

to spot from the plots showed.  

The field gas in place for all experiments can be seen in Figure 68. The prior distributions yields 

FGIP values ranging from 6 GSm3 to 13.5 GSm3. This means that no matter which values are 

picked from the input distributions, the FGIP will be within this range for all experiments. Table 4 

show the percentiles for the 250 Latin Hypercube experiments that are only based on the prior 

probability distributions.   

 

Figure 68 FGIP for all experiments in Scenario 2. 

 

Table 4 Latin Hypercube FGIP Percentiles for Scenario 2. 

    FGIP [GSm3]   Uncertainty range 

Latin Hypercube P10 P50 P90 P10-P90 

Scenario 2 9.92 11.14 12.29 19 % 
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 To be able to find the matches that can represent the historical data and the mitigated uncertainty 

in the reservoir, the non-representable matches have to be filtered out. From Figure 65 it seems like 

the MCMC has reached convergence at a global value under 50. Figure 69 and Figure 71 show the 

pressure match in Well A and Well B respectively, for the matched experiment with a global value 

under 50. Figure 70 and Figure 72  show a close-up of the pressure match for the last year of history 

data. In the buildup periods it seems like the experiments matches the observed data well, with 

approximately +- 4 bars for the last build up sections.  

 

Figure 69 Pressure match for Well A for the matches 

with a global value under 50. 

 

Figure 70 Close-up of the pressure match for Well A 

for the matches with a global value under 50. 

 

Figure 71 Pressure match for Well B for the matches 

with a global value under 50. 

 

Figure 72  Close-up of the pressure match for Well B 

for the matches with a global value under 50. 
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The field gas in place percentiles for the MCMC experiments with different cutoffs on the global 

value is presented in Table 5. By filtering on a high global value matches with a larger discrepancy 

from the observed data are taken into consideration. In most cases by allowing a higher mismatch, 

a higher uncertainty will be taken into consideration in the results. Table 5 show how the global 

value cutoff changes the percentiles of the estimated FGIP. The percentiles for the higher global 

value are to a certain degree capturing more uncertainty. The results stay within a volume change 

of + - 4 % within each percentile.  

 

Further, the experiments represented by a maximum global value of 10 is chosen as the “best 

matches” as most of the experiments from last chain contain global values under this value. There 

are approximately 80 simulated experiments in total with a global value under 10, where the lowest 

global value is found to be 6.16. The pressure match for the best matches for Well A and Well B 

can be seen in Figure 73 and Figure 75 respectively. For both wells the pressure match looks very 

good. The close-up views in the plots in Figure 74 and Figure 76, show that the buildup pressures 

are matched better than the flowing periods, this is a result of the weighting of the important build 

up periods.   

 

 

 

Table 5 FGIP percentiles for different filtering on the global value. 

Filter on   FGIP [GSm3]   Uncertainty range 

Global Value: P10 P50 P90 P10-P90 

8 6.95 7.23 7.41 6 % 

10 6.95 7.2 7.44 7 % 

15 6.92 7.16 7.43 7 % 

20 6.92 7.14 7.43 7 % 

50 6.84 7.12 7.41 8 % 

All MCMC 6.70 7.09 7.40 9 % 
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Figure 73 Pressure match for the best matches in Well 

A. 

 

Figure 74 Close-up of the pressure matches for the 

last year in Well A. 

 

Figure 75 Pressure match for  the best matches in Well 

B. 

 

Figure 76 Close-up of the pressure matches for the 

last year in Well B. 
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The field gas in place for the best matches is showed in Figure 77.  The FGIP mainly ranges from 

6.85 GSm3 to 7.5 GSm3 in addition to a few experiments that calculates the FGIP to be 7.8 GSm3.  

When comparing the pressure match and the FGIP of the good matches to the matches from the 

screening period it is observed that by filtering out the experiments that gives high discrepancy in 

the pressure match, also the high volume estimates are gone. Only the lowest FGIP estimates 

remains after the filtering. From this it can be found that the high pressure matches in Figure 66 

and Figure 67 represented the high FGIP in Figure 68. The percentiles for the matches with a global 

value of 10 is showed in Table 5.  

The posterior distributions will show the updated uncertainty in the parameters that represent the 

uncertainty picture for the best matched experiments. The posterior distributions for the best 

matches are showed in Figure 78-84. These will be discussed further in Section 5.5. As the 

distributions are based on the 80 best matches, there are some uncertainties related to if they have 

reached their stationary state. This may be desirable to test.  

 

 

Figure 77 FGIP for the 80 best matches in Scenario 2. 
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Remarks Scenario 2 

The history match is found to be sufficient, but as the posterior distributions for further analysis 

are of interest it is desirable to find if it is possible that they have converged to their stationary 

distribution. The posterior distributions should represent the uncertainty in the reservoir and yield 

a complete uncertainty picture. From this scenario there is still doubts about whether the 

uncertainty range is represented properly. 

  

  

 

Figure 82 Prior and posterior distributions MULTX1. 

 

 

Figure 84  Prior and posterior distributions MULTX4. 

 

Figure 85  Prior and posterior distributions MULTX6. 

Figure 78 Prior and posterior distributions MPV1. Figure 79 Prior and posterior distributions MPV3. 

Figure 80 Prior and posterior distributions MPV5. Figure 81 Prior and posterior distributions MPV6. 

Figure 83  Prior and posterior distributions MULTX2. 
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5.2.4 History Matching - Scenario 3: Investigating Convergence  

After viewing the resulting posterior distributions in Scenario 2, it was decided that it was desirable 

to find if the MCMC has been running long enough for the posterior distributions to reach 

convergence. This is difficult to determine as discussed in Section 3.6.1. It is made an attempt, at 

least, to find if the distributions not have reached convergence. This is done by keeping the same 

set-up as in Scenario 2 with approximately twice as many simulation runs.  

After the simulations have been run in a new cycle, it is found that the number of sufficient matches 

has increased significantly. By choosing the experiments with a global value under 10 (to be 

consistent with Scenario 2), there are approximately 550 matches, compared to 80 in Scenario 2. 

The lowest global value is found to be 5.88. By choosing the same upper limit of the global values 

in Scenario 2 it is assumed that the posterior distributions should be the same if they have 

converged.    

The pressure matches for Well A and Well B can be seen in Figure 86 and Figure 88 with a close-

up of the last time period in Figure 87 and Figure 89. They look similar to the matches in Scenario 

2, but there are multiple times additional experiments overlaying.  

 

Figure 86 Pressure Match Well A. 

 

Figure 87 Pressure Match Well A. 
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The field gas in place for the 550 best matches can be seen in Figure 90. By comparing the plot to 

Figure 77, it is observed that the 550 cases gives a more complete picture than the 80 experiments 

in Scenario 2 as all gaps are filled. The upper and lower boundaries are observed to be 

approximately the same.   

 

Figure 88 Pressure Match Well B. 

 

Figure 89 Pressure Match Well B. 

 

Figure 90 FGIP for the 550 sufficient matches. 
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Table 6 show the FGIP percentiles; P10, P50 and P90, for filtering on different global values. It is 

observed very little change in the percentiles. This is mainly because the majority of the matches 

contain a low global value hence is dominating a certain uncertainty interval on the FGIP. As 

described approximately 550 matches have a global value under 10, this is exceeding half of all the 

MCMC experiments in the cycle. As there are high frequency of the matches giving a certain 

volume, the experiments with a higher global value, that may have different volume estimates, does 

not influence the percentiles as much as they would in a scenario with fewer experiments.    

 

The posterior distributions for the experiments with a global value under 10 are shown in Figure 

91-97. Comparing the posterior distributions from the two cycles it is observed that they are 

reasonable comparable as there are not much differences in the distributions.  

 

Table 6 FGIP for different global values. 

Filter on   FGIP [GSm3]   Uncertainty range 

Global Value: P10 P50 P90  P10-P90 

8 6.94 7.15 7.38 6 % 

10 6.92 7.17 7.4 6 % 

15 6.91 7.17 7.43 7 % 

20 6.91 7.17 7.43 7 % 

50 6.91 7.17 7.43 7 % 

All MCMC 6.9 7.17 7.43 7 % 
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Figure 91  Prior and posterior distributions MPV1. 

 

Figure 92 Prior and posterior distributions MPV3. 

 

Figure 93 Prior and posterior distributions MPV5. 

 

Figure 94 Prior and posterior distributions MPV6. 

  

Figure 96  Prior and posterior distributions MULTX2. 

  

Figure 98  Prior and posterior distributions MULTX6. 

Remarks Scenario 3 

The long simulation of MCMC yields a large increase of the experiments with low global values, 

hence a good history matches. Compared to Scenario 2 the long simulations yields a fuller picture 

of the FGIP. The posterior distributions seem to cover the same range and are to a large extent 

similar to the ones in Scenario 2.  

From this it seems like the “best” experiments in Scenario 2 captures the same uncertainty as 

Scenario 3, in particular in terms of the parameter uncertainty represented by the posterior 

distributions. The longer simulation in this scenario verifies the posterior distributions in Scenario 

Figure 97  Prior and posterior distributions MULTX4. 

Figure 95  Prior and posterior distributions MULTX1. 
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2, however this is not a proof on convergence. Nevertheless, literature have found that if the chain 

did not reach convergence, it is likely that this could be found by comparing the results from a 

simulation as in this scenario. 

What is to discuss further is if the uncertainty picture from the posterior distributions are able 

represent the uncertainty in the reservoir, and what interpretations to be tested further.  

5.3 Sensitivity 

A sensitivity simulation has been carried out to be able to find how the input parameters, defined 

by their prior uncertainty range, will influence the pressure match. In addition it is of great interest 

to find the influence of the different pore volume parameters on the gas in place.  

The method one-variable-at-a-time (OVAT) has been utilized for the sensitivity study of the prior 

parameter distributions. The OVAT method is fairly simple. The method does only calculate the 

states for the endpoint values, for each of the parameter distributions, by varying one value at a 

time and keeping the other parameter values constant at their chosen start values. By applying this 

method the number of states tested, and experiments that are launched are two times the number 

of input parameters plus one. Where the last experiment is calculated by keeping all the parameter 

values at their start points. The same sensitivity results have been confirmed by the experimental 

design method; Plackett-Burman (Plackett and Burman, 1946), as the method yields the same 

results as OVAT method. 

Figure 99 and Figure 100 presents the results from the sensitivity study in tornado charts with 

descending parameters based on their influence on the pressure calculated by the reservoir model. 

The parameter influence on the pressure in Well A is shown by Figure 99. The parameter influence 

on the pressure in Well B is presented in Figure 100. From the tornado chart it is found that by 

picking the lowest boundary value from the MPV3 distribution, the pressure reduction is around 

20 % in both wells. (Note that this is by holding the other values constant at their start values). The 

MPV6 lower boundary can decrease the pressure by around 7 %, MPV5 by approximately 5 %, 

MPV1 by 2.5 %, and the permeability multipliers with under 2 %. The total pressure reduction or 

increase in an experiment is reflected by the sum of the influence of the parameter values that are 

in the parameter set for the experiment.  
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Figure 101 shows the parameter influence on the field gas in place. MPV3 is dominating with the 

input parameter range are able to decrease the gas pore volume by over 40 % and increase it by 

almost 20 % from its starting point. MPV6 can adjust the pore volume by around 13 % in either 

direction and MPV 1 can adjust it by around 5 %. Region 5 does only contain water, hence there 

are no pore volume that can contribute in the FGIP volume.  

 
Figure 99 Tornado chart showing pressure match  

influence for different input parameters, Well A. 

 
Figure 100  Tornado chart showing pressure match  

influence for different input parameters, Well B. 

 
Figure 101 Tornado chart showing the pore volume multiplier sensitivity for the FGIP. 



101 

 

5.4  Predictions 

When a history match is sufficient the next step is to simulate how the results gained from the HM 

will affect the future production. In the history matching process performed in the previous 

sections, the prior distributions are transformed to posterior distributions. The posterior 

distributions should represent the mitigated uncertainty after conditioning the model to the 

historical data. The posterior distributions may be used to explore the possible responses in the 

future production. As Section 3.6.5 discuss, the MCMC sampling method should give a picture of 

the uncertainty spread in the predictions by independent sampling from the posterior distributions, 

which further are used to simulate future reservoir responses. This f will address the procedure of 

setting up a prediction cycle in MEPO, before the MCMC Sampling method is applied. 

5.4.1 MEPO Implementation - Prediction Cycle 

As the predictions need to be simulated in separate cycles from the history match cycles, the first 

step is to copy the HM cycle which gives a sufficient HM to a new cycle. The new cycle objective 

is changed to history conditioned forecasting (which will recommend the prediction methods in 

the simulation control center panel). Further changes to the cycle are described in the following 

sections.  

Input Parameter Panel 

As the predictions are run for a certain future time period this period need to be defined in the 

simulation runs. This is done by modifying the schedule section in the data file to include 

production in the future for the desired time period. The production rates for given time periods are 

implemented in the data file in the input parameter panel, where planned downtime also are taken 

into consideration. Instead of implementing the sequential production, both wells are producing 

half of the required production rate. The schedule section is modified to cover a total time period 

of 19 years after production startup. This means that each simulation will predict responses for this 

time period.  
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Response Parameters Panel 

Any new response parameters of interest may be added to the list created in the history match cycle. 

In the prediction cycle the total field gas produced is of interest, hence is added as a watch 

parameter, W1 FOPT. The cycle now have five watch parameters in the Response Parameter Panel 

as viewed in Figure 102.  

 

Simulation Control Center 

In the Simulation Control Center the MCMC Sampling method is added. This method will sample 

from the posterior distributions by using the selected proxy model (often the last proxy) from the 

history match cycle. As mentioned in Section 3.6, after each Markov chain iteration a proxy model 

is created and saved in the proxy parameter panel. As the MCMC leads to an iterative refinement 

process the proxy models gradually improved and becomes of higher quality. Based on this, the 

last proxy is often chosen as the proxy to use in the MCMC Sampling method for predictions. 

In the MCMC sampling task panel the user needs to define the number of experiments, the specific 

proxy to use from the copied history match cycle, the number of chains and the burn in time as 

shown in Figure 103 and Figure 104. The last proxy from the history match cycle is chosen, number 

of chains are chosen to be 1 as one proxy is added, and the burn-in set to be 1000.  

 

 

Figure 102 Watch Parameters for the prediction cycle. 



103 

 

 

 

Figure 103 MCMC Sampling task panel. 

 

Figure 104 Manual settings panel in the MCMC Sampling task. 

These are the changes applied to history match cycle to be able to run the predictions in a new 

prediction cycle. Settings not mentioned in this section including the workflow, remains the same 

as in the history match cycle.  

5.4.2 Prediction - Scenario 1 

As multiple of the history matches in HM Scenario 3 are sufficient, this scenario cycle is chosen 

for further prediction simulations. The cycle set up is done as described in Section 5.4.1. In the 

further specification in the MCMC simulation task, the number of simulations is defined to be 100, 

and the last proxy from the last iteration in the HM in Scenario 3 is chosen as the proxy model as 

seen in Figure 103. 

After running the MCMC sampling simulations it was observed that the global value would 

increase to large values for multiple experiments. This act is unexpected as the global value 

calculation include the same objectives as the history match cycle, hence the global value should 

be in the same range as the experiments in the last iteration which makes up the proxy. The highest 

global value of all the experiments that make up the proxy if found to be 23. As the chosen proxy 

contains the posterior distributions created by the experiments it is expected that the further 
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experiments in MCMC sampling are given parameter values from these, thus will give a similar 

global value and match in the period that is history matched. However after the MCMC Sampling 

simulations the global values are ranging between 7 and 2967, which means that the history 

matched period is not history matched anymore for most of the experiments. When viewing the 

pressure prediction plot, multiple experiments shows a large mismatch in the history matched 

period, as presented in Figure 105 and Figure 106.  

From the results it appears like the MCMC sampling method are not taking the posterior 

distributions that should be integrated in the proxy into consideration. Multiple attempts were tested 

by using the “Filter on Global” in the MCMC Sampling panel. As the “Filter on Global” did not 

seem to influence in the resulting matches, the experiments were filtered on the global value in the 

simulation analysis panel.  

The matches with a global value lower than 50 where chosen to use in further analysis as reasonable 

matches were obtained. Approximately 50 experiments contain a global value lower than 50. 

Figure 107 and Figure 109 show the pressure predictions obtained from the chosen experiments. 

The history matched period is showed in Figure 108 and Figure 110, it is observed that the match 

is not as good as the original match presented in Scenario 3, this is also reflected by the global 

value.  

 

Figure 105 Pressure Prediction plot Well A for all 

simulations from MCMC Sampling. 

 

Figure 106 Pressure Prediction plot Well B for all 

simulations from MCMC Sampling. 
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The pressure prediction plots shows a rapid decrease in the pressures in both wells until 

approximately 6 years of production. This is the time the reservoir is allowed to produce at plateau 

rate. After this the figures show a slowly decrease until almost 8 years of production, this period 

represents a reduction of the rate to compensate for reduced pressure, and is termed the tail 

production. Production is stopped when a well is watered out or the abandonment pressure is 

reached. The minimum tubing head pressure is 65 bar, this will lead to abandonment pressure in 

the bottom hole (the when including the pressure drop) is around 80 bar. After reaching the 

abandonment pressure, the wells are shut-in, hence the plots show a buildup period for the rest of 

 

Figure 107 Pressure Predictions Well A. 

 

Figure 108 The period of history data in the Pressure 

Predictions plot for Well A. 

 

Figure 109 Pressure Predictions Well B. 

 

Figure 110 The period of history data in the Pressure 

Predictions plot for Well B. 
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the prediction time. There are observed a large spread in how the buildup pressure are acting. The 

highest build up pressures represent a model that is influenced by an aquifer. While the experiments 

with little buildup represents models with little or no aquifer influence. When the buildups are 

leveling off the reservoir pressure is stabilized.  

Figure 111 show that total field gas produced for the experiments. The FGPT is observed to be 

ranging between 5 GSm3 and 6.5 GSm3.  

Figure 112 shows the FGIP distribution, for the 50 chosen experiments. The y-axis show how many 

experiments that yields the resulting value showed by the x-axis in the unit Sm3. Figure 113 shows 

the cumulative probability density, where the y-axis gives the probability ranging from 0 to 100 % 

of the FGIP to be less than or equal to the values on the x-axis. The percentiles of the field gas in 

place are found from the plots and are shown below the figures. According to the results P10 is 

found to be 6.78 GSm3, P50 is 7.42 GSm3 and P90 is 7.96 GSm3.  

 

 

 

Figure 111 Total field gas produced for Prediction Scenario 1. 
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Figure 112 FGIP density distribution for Prediction Scenario 1. 

 

Figure 113 FGIP cumulative density distribution for Prediction Scenario 1. 
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Remarks Prediction Scenario 1 

As the results from the MCMC Sampling were a bit unexpected, the author contacted MEPO 

costumer support to discuss the MCMC sampling results. It was confirmed that the MCMC 

Sampling method in MEPO at the date of usage were affected by a bug, and it did not sample 

properly from the posterior distributions in the proxy (MEPO, 2015). A different procedure to 

estimate the predictions should be performed to avoid the deficiency in the MCMC sampling and 

compare the results with. 

5.4.3 Prediction - Scenario 2 

A second prediction approach is carried out as the MCMC sampling contains some sampling errors. 

The approach involves to use the best matches from the history matching cycle and further simulate 

predictions for the same sets of parameter values. This is done by exporting the best matches in the 

HM cycle in an .EDM file and further import the .EDM file to the prediction cycle.  

The experiments to export are chosen from the longest history match simulation described in 

Scenario 3. The experiments with a global value under 8 is chosen as the experiments for running 

the predictions, as these provide the best matches. There are 174 experiments that contain a global 

value under 8. By choosing these experiments it is assumed that a better match is more likely to 

reflect the true reservoir behavior.  

After the setup of a prediction cycle as described in Section 5.4.1, the 174 experiments are exported 

from the HM cycle and imported to a new prediction cycle in an .EDM file. By importing these 

files into a prediction cycle, the experiments still contain the specific parameter value sets from the 

HM cycle. Once the .EDM file is imported to the prediction cycle, the experiments appear in the 

simulation analysis panel, after reassuring that all the chosen experiments are imported, they are 

selected and rerun. Further the results are reviewed.  

The pressure predictions for Well A and Well B are viewed in Figure 114 and Figure 116 

respectively. As expected the experiments are matching the observed data, this can be observed 

from Figure 115 and Figure 117. It is observed that the pressure is decreasing rapidly until 

approximately 6 years of production. Then, there is a period of slow decline in the pressure (tail 

production) until approximately 8 years for Well B and around 9 years for Well A. After this period 
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the pressure has reached the abandonment pressure and the wells are shut-in, hence the pressure in 

the wells starts a buildup.  

Figure 118 shows the predicted total field gas produced from production start till shut-in. It is 

observed that the FGPT are ranging between 5.3 GSm3 and 5.9 GSm3, compared to Prediction 

Scenario 2 the range is smaller.  

 
Figure 114 Pressure Predictions Well A. 

 
Figure 115  Pressure Predictions for the history matched 

period in Well A. 

 
Figure 116  Pressure Predictions Well B. 

 
Figure 117  Pressure Predictions for the history matched 

period in Well B. 
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Figure 119 show the field gas in place distribution for the 174 experiments. Figure 120 show the 

cumulative distribution og the FGIP for the experiments. According to the results P10 is found to 

be 6.95 GSm3, P50 is 7.2 GSm3 and P90 is 7.38 GSm3.   

 

 

 

 
Figure 118 FGPT for the experiments in Prediction Scenario 2. 
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Figure 119 Distribution of the FGIP. 

 
Figure 120 Cumulative distribution of FGIP. 
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Remarks Prediction Scenario 2 

An approach like this were not originally planned as the number of simulation runs required to 

maintain a good uncertainty quantification by selecting individual models are very high. By not 

being able to include sufficient experiments that cover the spread in the posterior distributions may 

lead to multiple uncertain cases are left out. 

5.5 Further Discussion 

Evaluation of the History Match Scenarios and Sensitivity 

During this study, three history matching scenarios have been carried out. First, by HM Scenario 

1, it was tested if it is possible to get a sufficient history match by excluding MPV3 as an uncertain 

parameter. This was done as it was believed that region 3 contains the most certain parameter 

values, and the uncertainty in the other regions would be better explored by holding region 3 

constant at its base case parameter values. The results did not give a sufficient match and the 

posterior distributions of the uncertain parameters were reduced to a minimum for the best (yet 

insufficient) matches, except from the aquifer that were sampled from the whole prior distribution 

range. The best matches were not true reflections of the reservoir behavior, as the results showed 

an increasingly mismatch with time. Based on this is was concluded that the pore volume multiplier 

for region 3 needed to be considered to get a match. Multiple attempts were launched by running 

short simulations where the MPV3 reduction was very limited, these attempts were not showed in 

the result section as they were a part of a try and fail procedure. In some of the attempts the ranges 

of the other uncertain parameter distributions were limited to the lower part of the range, similar to 

the posterior distributions from Scenario 1, but neither these simulations gave a sufficient history 

match. A sufficient history match was first obtained by letting MPV 3 range between 0.3 and 1. 

Based on this a longer simulation were run where other input parameter distributions were kept as 

in Scenario 1, and the MPV3 were included with the range that could give a sufficient match, this 

simulation is presented by HM Scenario 2.  

As the Latin Hypercube method screens the search space, the pressure range obtained by the full 

Latin Hypercube sampling represents the pressure of the fully explored prior distributions of all 

input parameters. This means that by applying Latin Hypercube any possible match should be 

within the proposed range. If the observed pressure is outside the Latin Hypercube simulations 



113 

 

range (as in Scenario 1) the input parameters or their distributions need to be adjusted to be able to 

obtain a sufficient history match. From Figure 66 and Figure 67 in HM Scenario 2, it was found 

that by the assigned ranges of the uncertain parameters (viewed in Figure 33) the response pressures 

from the model are in general too high to give a sufficient match for most of the experiments, only 

a limited amount of experiments are close to the historical pressure. This may be an indication of 

that some of the parameters in the model are “over predicted”. By the correct assigned probability 

distributions that represent a high uncertainty there should be approximately as many experiments 

under as over the observed data, as the observed data should be assigned as a “most likely” value. 

The prior uncertainty ranges are ranging from 0 to 1, which is the base case value. Typically should 

a reservoir model represent a most likely case, hence should the start values be around the initial 

values in the model, and the range consider the downside and the upside if it is believed the base 

case model is the most likely model. The prior uncertainty distributions that are constructed based 

on earlier sensitivity studies, suggest that the base case model is an upside model. This may imply 

that the downside has not been properly considered by early interpretations of the reservoir 

parameters.  

After applying the MCMC algorithm in Scenario 2, there were obtained enough sufficient matches 

to get a picture of the posterior distributions. The experiments with a global value under 10 were 

chosen as the sufficient matches that should make up the posterior distributions, this was 

approximately 80 experiments. By choosing the sufficient matches based on the lowest global 

value, it was assumed that best matches would be the most representative of the reservoir behavior. 

A higher global value would include a higher number of sufficient matches and allows for larger 

mismatch in the pressure match, hence the posterior distributions would have been a bit wider, as 

illustrated by Figure 16 and Figure 17. Table 5 shows the FGIP and the increased uncertainty by a 

higher global value in HM Scenario 2. It is observed that the uncertainty range within P10-P90 

does not change very much by choosing a higher global value. This is a result of the many Latin 

Hypercube experiments launched before the MCMC simulations. By launching multiple LH 

experiments, the MCMC are able to quickly find good matches. In Table 5  it seems like the 

uncertainty in the lower range of the FGIP is increasing with a higher global value. This may imply 

that the downside is better captured by a higher global value.  



114 

 

When using the posterior distributions to describe and evaluate the uncertainty in the reservoir, it 

is important that the posterior distributions have converged to their stationary distributions. It is 

believed that when the global value is fairly constant for multiple chain iterations the chain has 

converged and the stationary posterior distributions are obtained. This is an assumption as 

convergence is difficult to prove as discussed in Chapter 3. It is made an attempt to determine, at 

least, if the distributions not have reached convergence by HM Scenario 3. The results from 

Scenario 3 show that by a twice as long simulation as in Scenario 2, the number of sufficient history 

matches with global value under 10 have increased from 80 to 550 experiments. When the Markov 

chain has converged the samples are picked from the same parameter range, defined as the 

stationary posterior distribution. The results show that the FGIP estimates and posterior 

distributions for the two scenarios to a large extent are covering the same uncertainty range. The 

longer simulation give a fuller picture of the FGIP and posterior distributions, however as the 

uncertainty range is approximately the same. From this there is found no lack of convergence.  

To find each of the input parameters influence on the pressure match and on the FGIP a sensitivity 

study was carried out. The sensitivity plots in Figure 99 and Figure 100 show how influential the 

prior parameter range is to the calculated pressure by the reservoir model. By taking into 

consideration the information from the pressure sensitivity plots, with the Latin Hypercube 

experiments that are illustrated in Figure 66 and Figure 67, it is found that sampling of low values 

in region 3 is necessary to get a pressure match. This is because the observed pressure measurement 

located in the lower range for all the experiments and only MPV3 are able to decrease the pressure 

to the necessary extent. The MPV3 sampling is confirmed by the posterior distribution shown in 

Figure 79. Figure 101 shows that by picking the low parameter values from MPV3 the gas volume 

is reduced significantly from the start point values. Which again results in the FGIP in the lower 

range of the experiments in Figure 68. From the sensitivity study it is found that it is necessary to 

pick low parameter values for MPV3 to be able to get a match with parameter values from the 

defined input distributions. It is also found that influence on the match from the permeability 

multipliers are limited. When studying the sensitivity plots it is easier to understand the sampling 

from the prior distributions, and the forming of the posterior distributions. 
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Geological Discussion 

Even though it is important to obtain a reasonable history match, it is at least just as important with 

a geologically truthful model to be able to get reliable predictions. This is why a geologist’s 

evaluation is essential to include in the study. The base case reservoir model and the initial grid 

cell values are based on earlier uncertainty studies and interpretations of the amplitude map. The 

average values of these in the different regions are presented in Table 2. As presented in Chapter 

4, the drilled wells confirmed the good facies and the properties that were interpreted from the 

amplitude map. In the study the parameter uncertainty are represented by the posterior 

distributions. The interpretations of the posterior distributions found from Scenario 2, and 

confirmed by Scenario 3, take certain forms that may indicate certain features. The posterior 

distributions need to be in conformity with each other and other geological knowledge to be a good 

representation of the real reservoir. First is an interpretation of the forms of the posterior 

distributions presented in the following points then is a geologist involved to evaluate the 

interpretations. The distributions can be viewed in Figures 91-98. 

 Loosely conditioned distributions: 

MULTX1 and MULTX6 seem to be loosely conditioned by the historical data, as about 

the whole prior distribution range (red curve) is presented by the posterior distribution 

(blue). The different values from the parameter range are able to result in sufficient 

matches, this imply that the parameters have a limited influence on the history match. 

This is also confirmed by the sensitivity.  

 Distinct conditioned distributions: 

MPV3, MPV5 and MULTX4 seem to have distinct conditioned distributions. The 

posterior distributions seem to take the form of normal distributions, similar to the prior 

distributions. MPV3 is observed to be in the low portion of the prior probability 

distribution, which may lead to the interpretation of a reduction in the pore volume in 

region 3. The posterior distribution sampling of MULTX4 seem to be in the middle of 

the predefined range, the permeability multiplier leads to a reduction of the permeability 

in region 4 (hence reduces the inflow to Well B). The MPV5 seem to consist of samples 
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located around the starting value. The distribution implies a slightly increase in the 

aquifer, represented by region 5, from the base case model.  

 Upper bound distributions: 

In the MULTX2 posterior distribution the sampling are in the upper range and seem to 

contain sampling around the base case values. The region was added to be able to adjust 

the flow between the regions. This may indicate that there is no limited flow between 

the regions, or that the multiplier does not act it was intended to do. 

 Lower bound (and upper bound) distributions for the low amplitude areas: 

It is notable that the MPV1 and MPV 6 posterior distributions, that both represents the 

low amplitude areas, are resulting in such different posterior distributions. MPV1 

consist of values that are chosen in the upper half of the predefined range, while MPV6 

consists sampling from the lower half of the range. The picking of low values for region 

6 may be an indication of the presence of a possible transmissibility barrier in the field, 

or the difference may imply different quality of the reservoir properties in the regions.  

The interpretation of the posterior distributions and other results of the study have further been 

discussed with a geologist, which has good knowledge of the reservoir. The following were 

discussed: 

 As the study show from the posterior distribution MPV6, the picking of low values may 

indicate a possible barrier. This should be tested by implementing one or two faults in the 

reservoir model. The geologist recommend two possible fault locations. A possible scenario 

is that the fault already implemented in region 6, could be extending into region 3. A second 

approach is to implement a fault that limit the flow from the northern part of the reservoir, 

this means that region 6 and the northern part of region 3 are sealed off and are not in 

contact with the gas that are being depleted.  

 From the sensitivity study it is found that MPV3 is dominating both the pressure match and 

the FGIP, by dividing the region into multiple regions may lead to better uncertainty 

quantification. The northern part should be a separate region. To further divide the region 

to a southern and middle part is also recommended by the geologist.  
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 The sampling of high values in MPV1 and the lower values in the MPV3 distribution, are 

most likely not correct assignment of the geological parameter values. The MPV3 

represents the high quality reservoir sands hence should contain higher MPV parameter 

values. It may be believed that since the MPV3 is dominating in the history match the 

uncertainty in MPV1 is not examined correctly by the method applied. In the new 

implementation it might be necessary to have a higher lower boundary for MPV3 to get the 

correct results of the other uncertain parameters.  

 The posterior distributions for the aquifer represented by MPV5 consists of values ranging 

between 1 and 3, which means that the water implemented in the base case model should 

be multiplied by a factor as represented from the MPV5 posterior distribution. The results 

show a rather small aquifer influence. In the sensitivity study it is found that the pressure 

in the wells could be affected by approximately +-5 % by the assigned input range of the 

aquifer in the time period of historical data. The Geologist thinks this may be a true 

reflection of the aquifer in the study. 

The geologist thinks that the structural probability is the most uncertain property, and that the 

implementation of faults may be the correct implementation to start a further study. The reliability 

of the parameter values based on the amplitude map seems to be higher as it is confirmed by the 

drilled wells.  

By applying the suggested implementations, new results will be able to confirm or disprove the 

interpretations, and by this give a better understanding of the reservoir. After the suggested 

scenarios are run and new posterior distributions are found, the parameter values assigned based 

on the amplitude map need to be carefully evaluated in hindsight of the study together with a 

geologist. There is a chance that the upscaling of the properties from the wells may have led to 

layers have gotten better properties than they actual have. If the pore volume multipliers are in the 

lower range after testing the new scenarios, the net-to-gross of the reservoir is the first thing the 

geologist would adjust in the reservoir model (approximately 10 % decrease to start with), as it is 

the most uncertain parameter the reservoir turbudite system.  

To summarize, the following scenarios should be implemented and evaluated: 

 Add one or two transmissibility barriers, in form of impermeable faults dividing the wells 

from the northern part of the field. There may be present barriers not detected by seismic.  
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 Dividing region 3 to two or three regions (north, south and mid). This can be useful for 

better uncertainty quantification.  

 Give MPV in region 3 an increased lower boundary so that MPV in region 1 most likely 

will be adjusted to have lower parameter values than region 3. 

 Adjust the net-to-gross in the geological model further indications of lower pore volumes 

by the multipliers.  

Field Gas in Place 

At the time of development the FGIP was estimated to be between 10 and 17 GSm3. Before further 

study of the geologically evaluations it is difficult to say if the volume found from the sufficient 

matches in Scenario 2 and 3 can represent the actual reservoir volume. The results from this study 

show a lower FGIP than what was expected before the field development, the study estimates an 

approximately range from 6.5 to 8 GSm3. The calculated in place volume is to a large extent 

dependent of the sampling of the MPV3 parameter values. Which is intuitive as region 3 covers 

most of the gas saturated reservoir, in addition to that region 3 is given the best reservoir properties 

in the base case model based on the interpretations from the amplitude map and well data. By 

testing the suggested implementations for the geologist the sampling might be different, hence 

yield a different FGIP. 

Another way of predicting the gas in place volume is the material balance p/z plot. There are clearly 

a lot of uncertainties related to the use of the plot according to literature, however it can be taken 

into consideration when discussing the aquifer influence on the results from the study. After 

analyzing at the p/z plot two responses from the plot curves were considered. In the plot in Figure 

30 the p/z curve indicated an initial gas volume to be around 10 GSm3, while the p/z’ curve 

indicates a gas volume to be around 6.5 GSm3. The first scenario assumes a reservoir only affected 

by natural gas expansion as the depletion strategy. The second approach takes into account only 

the early period that possibly is unaffected by water drive effects or other effects. Note that there 

is a possibility that the early period is affected by other effects e.g. transient coning behavior which 

does not result in a true FGIP assignment. The results of the study show a small aquifer influence, 

and a volume estimated to be in between 6.5 to 8 GSm3, which falls within the two p/z plot 

scenarios.  
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One important factor to mention is to consider if the buildup responses from the observation well 

is influenced by the other producing well. If this is the case, the pressures in the p/z plot can indicate 

a lower volume in place than the actual volume in place. The reservoir simulation model will take 

this into consideration in the dynamic behavior calculations.     

Evaluation of the Prediction Scenarios 

In Prediction Scenario 1, MCMC Sampling method were applied. The main reason to apply MCMC 

Sampling algorithm in combination with a proxy is to be able use the stationary posterior 

distributions as a representation of the uncertainty in the field, which further represent the 

uncertainties in the predictions. The posterior distributions represent the possible parameter values 

(from the prior distribution range) that can give a sufficient match. In Prediction Scenario 1, a total 

of 100 predictions were run based on a proxy model. The chosen proxy model that is based on the 

last iteration of the MCMC in the history match cycle, as it is the most likely to have reached 

convergence in the posterior distributions. After the MCMC sampling were applied, it was found 

that the method did not work properly due to software bugs. The experiments that were used in 

further analyses were only the experiments with a global value under 50, as they gave a sufficient 

match in the period of history data.  

In Prediction Scenario 2, multiple sufficient history match experiments were transferred to a 

prediction cycle. The best matches are considered the most true to the actual reservoir behavior as 

they better matches the observed data. A maximum global value was set to 8. A total of 174 

experiments were then chosen, as in an approach like this the number of simulation runs required 

to maintain a good uncertainty quantification by selecting individual models are very high.  

While the global value for the 174 experiments in Prediction Scenario 2 is under 8. The global 

value for the best 50 experiments in Prediction Scenario 1 is under 50. Table 7 show the P10, P50 

and P90 FGIP percentiles from the two Scenarios. It can be observed that a higher global value 

gives a larger spread in the FGIP uncertainty estimates. In the FGIP estimates is seems like Scenario 

1 covers a larger uncertainty spread in the volume estimates than Scenario 2.  
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Table 7 Percentiles for the FGIP for Prediction Scenario 1 and 2. 

    FGIP [GSm3]   Uncertainty Range..    

  P10 P50 P90 P10-P90 

Prediction Scenario 1 6.78 7.42 7.96 15 % 

Prediction Scenario 2 6.95 7.2 7.38 6 % 
 

 

The uncertainty coverage of the scenarios can also be observed by the buildup periods, as the 

pressure build up reflects the reservoir response. The experiments in Prediction Scenario 1 are 

viewed in Figure 107 and Figure 109. From the figures it can be found that they seem to show a 

large spread in the buildup period, hence contain a large uncertainty in the reservoir response. This 

may reflect the uncertainty of the influence from an aquifer. As a strong aquifer tends to yield a 

higher reservoir pressure after depletion. The buildup pressures for the experiments in Prediction 

Scenario 2 in Figure 114 and Figure 116 seem to be following the same trends and does not show 

as large uncertainty spread as Prediction Scenario 1.  

In a production scenario it is important to find how long the field can produce. For Prediction 

Scenario 1 the total production time is found to be varying between 7 and 10 years for both wells. 

For Production Scenario 2, Well A is found to produce approximately for 9 to 10 years, and Well 

B is found to be producing for approximately 8 to 9 years.  

Both of the methods in the scenarios seem to have some weaknesses associated with them. It is 

doubts about whether Prediction Scenario 2 are able to fully cover the uncertainty in the reservoir. 

Prediction Scenario 2 is based on the best pressure matches from the history match cycle. The 

number of experiments in a prediction cycle should be sufficient to cover the realistic combinations 

of the distribution values, hence capture the uncertainty. A total of 174 experiments are chosen, as 

they all matches the historical pressure well. The parameter sets for the chosen experiments creates 

their own posterior distributions, these should be able cover the true uncertainty spread. As the 

Prediction Scenario 1 is affected by a bug in the applied algorithm, the results might not be reliable 

even though the non-sufficient matches are filtered out. 

For a similar case it might be a good idea to run both the MCMC Sampling and in addition transport 

the best matches in an EDM file to be able to compare the uncertainty spread represented by the 

proxy with the best matches.  
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Creating Value from Uncertainty 

One of the main reasons to make quantify and analyze the uncertainty is to enhance decision 

analysis. The increased accuracy of the model and the results comes with the price of going through 

with the history match and the cost of gaining the information. Hence, the need of mitigation of 

uncertainties in a reservoir should depend on the cost of the gained information. In this case study 

the expenses are; the cost of gaining the pressure measurements, the time invested in the history 

match study and the software/licenses that are used. As mentioned, further history matching 

scenarios should be run to explore other the scenarios suggested by the geologist, before a final 

updated uncertainty evaluation is found. The results from this study show a lower FGIP than what 

was expected before development. Further scenarios should be run before assuming this is the right 

FGIP for the field. However should the further scenarios results appear similar to the results in the 

study, the following decisions may be taken based on this information.  

 A decision whether to trill a third well may be decided. To decide to go through with the 

extra well there should be a very high probability of trapped gas volumes that are not in 

contact with the producing wells.  

 Another decision concerns if it is desirable to upgrade certain equipment or infrastructure. 

Reliable predictions for the probable results from the further scenarios will be able to 

determine such a decision. 

 The results from the study might lead to adjustments of expected production volumes. To 

know the most likely outcomes of the project by itself does not result in any decision 

changes. However this can lead to greater flexibility in terms of being able to invest in other 

projects. 
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6 CONCLUSIONS  

This section will summarize the most important findings from the case study, before 

recommendations for future work based on experience and results are given. 

6.1 Results  

Good understanding of the reservoir, as well as geological knowledge of the parameters, are 

essential in an assisted history match study. As stated in the introduction of this thesis, the main 

objective of this thesis were to make an updated uncertainty evaluation of a producing gas field by 

integrating production data. A probabilistic approach is applied in addressing the reservoir 

uncertainties. Prior distributions are used as a starting point, which by combining static and 

dynamic uncertainties should cover the uncertainty domain in the reservoir. MEPO, an assisted 

history matching tool, was used to obtain multiple history matches by the use of MCMC 

optimization algorithm. Key takeaways from the research are listed below.  

 The sensitivity analysis of the predefined uncertainties provided results showing the 

key uncertainties that have significant effect on the pressure match are mainly the pore 

volume multipliers, representing the parameters that makes up the pore volume. 

Referring to the regions defined in Section 4.4.2; the pore volume in region 3 has the 

highest influence on the match, followed by the pore volume in region 6, the influx 

from the aquifer (region 5), the pore volume multiplier in region 1 and permeability 

multiplier around Well B. The permeability multipliers in regions 1, 6 and 2 have a 

limited influence on the pressure match. 

 By exploring the search space of the prior uncertainty, using Latin Hypercube, it is 

found that most of the experiments results in a higher pressure than the historical 

pressure. Hence, the results show that the base case model need to be adjusted by 

reducing multiple parameter values to match the historical data.  

 Three history matching scenarios were constructed, where Scenario 2 and Scenario 3 

gave sufficient history matches. In Scenario 3, over 1100 simulations were run to 

evaluate the range of reservoir uncertainties, and checking for lack of convergence in 

the Markov chain. The results implied no lack of convergence in the Markov chain.  
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 The posterior distributions obtained for the sufficient matches provided a basis of 

interpretations. The interpretations are; a possible barrier which restrict the flow from 

the northern part of the reservoir to the wells, a small influence from the aquifer, the 

loosely conditioned distributions of the permeability multipliers imply that they have 

limited influence on the history match and the distinct distribution for the influence 

dominating region might cause the less influential parameter distributions to be biased.  

 Even though it is important to obtain a reasonable history match, it is at least just as 

important with a geologically truthful interpretations and simulation model to be able 

to get reliable predictions. This is why a geologist’s evaluation is essential to include in 

the study. Based on the geological discussions, the recommendations for future work 

are; (1) implement the suggested faults, (2) divide the dominating region into multiple 

regions, and further, depending on the previous results, (3) reduce the net-to-gross in 

the initial model. 

 Two prediction scenarios were simulated. A FGIP between 6.5 and 8 GSm3 were 

predicted by the sufficient history matches. The predictions show a total production 

period of 8-9 years before abandonment pressure is reached.   

 For a similar case it might be a good idea to run both the MCMC Sampling and in 

addition transport the best matches in an EDM file, to be able to compare the uncertainty 

spread represented by the proxy with the best matches.  
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6.2 Recommendations  

Software User Recommendations  

The following are a few recommendations for any MEPO Software user, which will perform a 

history match study by the use of MCMC optimization and MCMC sampling. 

 (1) Run sensitivities on the input parameters. A sensitivity analysis of multiple parameters 

is a good way to determine the uncertain parameters used further in the study. When the 

uncertain parameters are determined and the uncertainty ranges are chosen, the analysis 

will provide information of how influential the uncertain prior parameters are on the history 

data and the volume in place.  

(2) Run Latin Hypercube to find if the observed data measurements are within the search 

space of the uncertain parameters. Compare the sensitivity plots with the Latin Hypercube 

results. 

(3) Further proceed with MCMC simulations if the Latin Hypercube and sensitivity study 

show that it is possible to get a sufficient match with the most uncertain parameters.  

 Start simple and add complexity, to save total simulation time.  

 By increasing the number of Latin Hypercube experiments it is observed quicker 

convergence of the global value.  

 Allow MEPO to launch multiple simulations simultaneously (the number of experiments 

in a chain is the optimal number of simulations to run simultaneously. To avoid occupations 

of licenses add a queuing system, this allows MEPO to only use available licenses at all 

times. (Eclipse MR allows MEPO to only use one license while simulating and would be a 

good alternative). 

 Set a maximum simulation time for the experiments simulations. The maximum time is the 

time from the individual simulation start to the simulation end of an experiment. The 

maximum time need to be assigned individually for the case as it is dependent on the model 

and the set up. By predefining a maximum time threshold, the MCMC iteration will be a 

more efficient process, as the next step on a chain is dependent on the current. By setting a 

maximum time MCMC is allowed to continue to the next step with the finished simulations.   

 At the time of usage, MCMC Sampling contains a bug which may affect the results gained 

in Prediction Scenario 2. While using MCMC Sampling for predictions, be sure to check 
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the pressure match for the period with observed data, and filter on the good matches. A 

recommendation can be to always import the best matches as an .EDM file for prediction 

to check if the MCMC sampling yields a similar result.  

Case Study Recommendations 

The following scenarios should be implemented and evaluated in a further study of the field: 

 Add one or two transmissibility barriers, in form of impermeable faults separating the wells 

from the northern part of the field. The geologist thinks that there may be present barriers 

not detected by seismic causing the results in the study.  

 Dividing region 3 into two or three regions (north, south and mid). This can be useful for 

better uncertainty quantification.  

 Give the pore volume multiplier in region 3 an increased lower boundary so that the pore 

volume multiplier in region 1 will be adjusted to contain lower parameter values than region 

3. Which should be correct according to information from the field. 

 Adjust the net-to-gross if further indications of lower MPV posterior distributions.  

Further Research Suggestions  

 Explore the number of experiments in a chain iteration and the number of chains that that 

are most beneficial to use in the MCMC algorithm to reach convergence.  

 Compare EnKF and MCMC algorithms. 

 As the geological model is made in Petrel using the history matching optimization program 

in to Petrel would be an interesting comparison to MEPO. 

 There are doubts whether a dominating uncertain parameter may lead to biased posterior 

distributions of the less influential parameters by application of the MCMC. This may be 

tested in further research.  
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