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The background for this project is related to the development of offshore wind parks at 
Dogger Bank outside the coast of England. Stable, strong winds and shallow water depths 
make this a well-suited site for bottom-fixed turbines. One of the main challenges for the 
industry is to drive down cost without compromising on safety. Design loads are of high 
importance for the total cost and a balanced trade-off securing sufficient conservatism is 
strived for. Methods for computing extreme loads are not well established in the industry, 
in particular for shallow water and highly dynamic turbines. A trend to reduce the cost of 
energy has been to increase turbine dimensions, making the structures more inertia 
dominated. The thesis will address challenges related to the modeling of environmental 
ULS loads, especially for large-diameter inertia-dominated turbines on shallow and 
intermediate water depths (20-45 m). It will focus on available tools, models and theories 
for such calculations, and includes the following tasks: 

1. Review design challenges related to large column-based foundations.  
2. Review how ULS wave loads and slamming loads are estimated according to 

standards, especially DNV’s OS-J101 and RP-C205, with emphasis on new design 
challenges. 

3. Perform model tests of a flexible bottom-fixed pile supporting a large turbine. The 
objective is to investigate forces/moments and slamming loads on the structure in an 
irregular sea state using statistical data from the Dogger Bank metocean report. 

4. Validate theoretical models of distributed higher-order loads in the surface zone and 
slamming loads by means of deterministic and stochastic comparisons with model 
tests. 

5. Based on load statistics and magnitudes, discuss how the different load types should 
be considered in structural design. 

The work scope may prove to be more extensive than initially anticipated. Subject to 
approval from the supervisor, topics may be left out from the list above or reduced in 
extent.  

In the thesis the candidate shall present his personal contribution to the resolution of 
problems within the scope of the thesis work. Theories and conclusions should be based 
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Summary

The objective of the thesis work was to explore challenges related to ULS wave
loading on o�shore wind turbines, with special emphasis on large-diameter inertia-
dominated monopile foundations.

Experimental studies testing ULS loads on a 6.9-m diameter pile in eight di�e-
rent three-hour sea states were performed in two water depths. The wave conditions
were set to represent those at location 2 of Creyke Beck B at Dogger Bank, with
specified sea state return periods up to 1000 years. The tested structure was a
rigid smooth-surfaced bottom-fixed pile with a flexible rotational base sti�ness.
Wave elevation, pile-top acceleration, shear force and moment time realizations
were measured. In addition, the runs were video-taped for deterministic studies.

A numerical model was developed in MATLAB, considering an idealized single
degree-of-freedom rotational system with a rigid pile and flexible base sti�ness.
The program includes two general force models generating the Morison or the
FNV excitation forces. The Morison model includes the option of running either
shallow, intermediate or deep water, with or without Wheeler stretching. In ad-
dition, an impulsive force term is included, aimed at evaluating the impact of an
individual spilling breaker. The FNV model is expanded to include the finite-depth
vertical kinematic distribution and dispersion relation. This is inconsistent with
the assumption of deep water in the derivation of the FNV formulae.

The model tests were shown to give less than a 1 % deviation in H
s

for repeated
sea states. The agreement in H

s

between the calibration tests and tests with the
model was within a -3 % to 3 % range for all sea states, whilst the discrepancy in
nominal and e�ective H

s

varied between a 12 % reduction to a 3 % increase for the
calibrated waves. The greatest decrease in H

s

occurred for the roughest sea state,
indicating a large amount of breaking waves.

Throughout the tests an excessive first-mode motion was observed. The pile
was almost constantly oscillating at its eigenfrequency, even in between large wave
groups. The cause is thought to have been a combination of self-excitation from
radiated waves reflecting o� the wavemaker, the conservative mode shape and the
low (but realistic) damping level.

Generally, the longer moment arm, i.e. the greatest water depth, generated the
largest loads. The relative di�erence was smaller for Tp = 15 s than for Tp =
11.25 s, indicating the e�ect of increased wave non-linearity causing higher loads.

The largest response moments for almost every sea state were a result of a
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breaking wave impacting the structure. However, uncertainty remains regarding
the excitation mechanism, as to whether it is caused by the impulse load or ringing
induced by non-linear wave components.

The feasibility of the metocean conditions are questioned, due to the large
amount of breaking for the roughest sea states. There is reason to believe that
shallow-water e�ects at Dogger Bank are not properly considered. The relati-
ve propagation distance for an unstable energy-dissipating breaking wave before
impacting a turbine could be significantly larger in real life than in the wave flume.

The FNV force gave the most conservative response moment values, the finite-
depth version more so than the one for deep water. The Morison force gave uncon-
servative responses for the roughest sea states. The FNV formulae implementation
was validated, yet uncertainty regarding the linearity of the measured input waves
still remains.
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Sammendrag

Målet med avhandlingen var å utforske utfordringer knyttet til ULS-laster fra bøl-
ger på o�shore vindturbiner, med spesielt fokus på bunnfaste, treghetsdominerte
monopælfundamenter med stor diameter.

Eksperimentelle tester av ULS-laster ble utført på en sylindrisk konstruksjon
med diameter 6,9 m for åtte forskjellige tre-timers sjøtilstander på to vanndyp.
Bølgeforholdene skulle være representative for lokasjon 2 av Creyke Beck B på
Doggerbank, med spesifiserte returperioder opptil 1000 år. Modellen var en stiv,
bunnfast konstruksjon med glatt overflate, festet med en fleksibel rotasjonsfjær.
Overflateheving-, sylindertoppakselerasjon-, skjærkraft- og momentrealisasjoner
ble målt. I tillegg ble kjøringene tatt opp på video for bruk i deterministiske studier.

En numerisk MATLAB-modell ble utviklet med utgangspunkt i et idealisert
rotasjonssystem med én frihetsgrad. Den besto av en stiv, hul sylinder med topp-
masse og rotasjonsfjær, spesifisert av de testede modellegenskapene. Programmet
inkluderer to kraftmodeller for beregning av eksitasjonskraften fra enten Morison
eller FNV. Med Morison-modellen har brukeren muligheten til å kjøre med en-
ten grunt, mellomdypt eller dypt vann, med eller uten Wheeler-strekking. I tillegg
kan man legge til en impulskraft som skal utgjøre slagkraften fra en brytende
bølge. FNV-modellen er utvidet til å omfatte endelig vanndyp i beregningen av
bølgekinematikk som avtar vertikalt og dispersasjonsrelasjonen. Dette motstrider
antakelsen om dypt vann i utledningen av FNV-formlene.

I modellforsøkene ble det vist mindre enn 1 % avvik i signifikant bølgehøyde H
s

for gjentatte kjøringer av sjøtilstander. Sammenligninger av H
s

for bølgekalibre-
ringstestene og kjøringene med modellen installert ga overensstemmelse innenfor
et intervall på -3 % til 3 % for alle sjøtilstander, mens avviket i nominell og e�ektiv
H

s

varierte mellom en 12 % reduksjon til en 3 % økning av signifikant bølgehøyde
i kalibreringen. Den største reduksjonen i H

s

oppsto i den groveste sjøtilstanden,
noe som indikerer mye bølgebryting.

En frekvent førstemodebevegelse ble observert i alle kjøringene. Konstrukjonen
var nesten konstant eksitert og oscillerte med egenfrekvensen, selv mellom store
bølgegrupper. Årsaken antas å ha vært en kombinasjon av selv-eksitering fra ra-
dierte bølger som reflekteres i bølgemaskinen, den konservative førstemodeformen
og det lave (men realistiske) dempingsnivået.

Den lengste momentarmen, dvs. den største vanndybden, resulterte generelt i
de største bølgelastene. Den relative forskjellen var mindre for Tp = 15 s enn for
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Tp = 11.25 s, noe som indikerer at økningen i bølgens ulinearitet resulterer i større
laster.

For nesten hver sjøtilstand oppsto den største momentresponsen ved virkningen
av en brytende bølge. Det er dog knyttet usikkerhet til eksitasjonmekanismen som
genererer disse lastene. Enten er de forårsaket av impulslasten fra bølgen eller så
er de grunnet ringing indusert av ikke-lineære bølgekomponenter.

Det ble observert og målt mye bølgebrytning for de største sjøtilstandene. Derfor
settes det spørsmålstegn ved om forholdene beskrevet av metocean-rapporten er
realistiske. Det er grunn til å tro at den ikke tar tilstrekkelig hensyn til gruntvanns-
e�ekter på Doggerbank. I tillegg kan den relative avstanden en ustabil, energi-
dissiperende, brytende bølge må propagere før den når en vindturbin være vesent-
lig større for det virkelige Doggerbank enn i bølgetanken. Store brytende bølger
beveget seg ofte fra den ene enden til den andre før den brøt ved modellen.

FNV-kraften ga de mest konservative responsmomentresultatene, og versjonen
for endelig vanndyb var mer konservativ enn den for dypt vann. Morison-modellen
var ukonservativ for de groveste sjøtilstandene. Implementeringen av FNV-formlene
ble validert, men det er knyttet usikkerhet til lineariteten av bølgene som benyttes
i beregningene av kreftene.
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1 | Introduction

After the installation of the first operative o�shore wind turbine at the beginning
of the 1990s, the technological development has been considerable and the indus-
try has grown immensely. A main driver has been to bring down costs without
compromising on safety, inducing a tendency to increase turbine dimensions, in-
tuitively causing the structural loads to increase. The upscaling of these turbine
loads has proven to be a non-trivial task, and some of the related challenges will
be presented in this thesis.

Since 2008, the United Kingdom has been leading in the o�shore wind field,
having an installed capacity equivalent to that of the rest of the world combined
[RenewableUK, 2015]. With an annual electricity production of over 13 TWh,
British wind power supplies an equivalent of approximately 3.1 million residences.

The proposed wind farm at Dogger Bank outside the East coast of England and
Statkraft’s involvement in the project acts as the backdrop of this thesis work. The
site boasts great wind conditions and shallow water depths, making it a well-suited
location for a wind farm of monopile-foundation turbines.

In order to avoid over-conservatism in turbine design, and thus to reduce project
costs, understanding the physical mechanisms inducing the largest loads is vital.
Shallow water depths and strong winds introduce complex wave kinematics, of
which models to accurately estimate forces are not well established. As turbine
dimensions increase it is important to document the e�ect on loads and responses
in order to maintain structural integrity and safety in turbine operation.

Compared to many other o�shore structures, bottom-fixed wind turbines are
very sensitive to dynamically amplified response, due to its relatively large and
highly placed top mass. Thus, ringing, a not fully understood burst-like transient
response phenomenon, is a concern in the industry. A major motivation of this
thesis has been to explore the occurrence of ringing in experiments and to capture
the phenomenon numerically.

The main objective of the work has been to perform experimental studies of
wave loads in extreme sea states, in order to investigate how the largest response
loads on an idling wind turbine develop. Deterministic and stochastic validation
of theoretical higher-order wave load models has been a main part of the thesis
scope.

Most bottom-fixed o�shore wind turbines are placed in shallow-water regions
where the possibility of breaking-wave impact may be significant for design. In
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Chapter 1. Introduction

many of the design standards for OWTs, slamming from breaking waves is only
included as an accidental load, much due to how the frequency and magnitude-
dependent risk of large global slamming loads is considered low compared to that of
other extreme wave loads. Investigating the significance of slamming from breaking
waves, i.e. how the maximum loads compare with those from steep, non-breaking
waves, will be an important part of the experimental post-processing.

The thesis includes four main segments: A review of design challenges related to
the dimensional upscaling of bottom-fixed OWTs, a theoretical basis where models
for kinematics and loads are presented, a part describing the execution and results
of the experimental tests, and finally describing the development of the numerical
model to be used in the validation of theoretical models.

As much of the literature study from the project thesis was deemed highly
relevant for the master thesis, theoretical parts from sections 2, 3, 4 and 5.3 are
reprinted directly from [Frimann-Dahl, 2014].
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2 | Design Challenges for Large-Diameter Monopiles

Since the infancy of the commercial wind industry, the average wind turbine output
ratings have grown. At the beginning of the 1980s the onshore turbines averaged
at approximately 50 kW, and the output growth has been almost linear since then
[Thresher et al., 2008]. The same trend has been observed for o�shore turbines in
the last years, resulting in large turbine dimensions. Vestas’ V164-8.0 MW turbine,
with a rotor diameter of 164 m, is currently the o�shore wind turbine with the
largest rated power output in the industry [Vestas, 2015]. A main driver in the
growth of turbine dimensions can be understood by considering that the power
output theoretically increases with the scaling factor squared (s2) if geometrical
similarity and linear scaling laws are assumed [Sieros et al., 2012]. Also, wind
shear causes more energetic winds at larger altitudes, leading to an advantageous
e�ect of placing the rotors higher. The cost (per MW installed) of maintenance
and operation may also decrease by installing fewer but larger turbines for a given
capacity wind park.

However, considering linear scaling, the mass of the turbine increases with the
scaling factor cubed, s3. The di�erence in scale proportionality for power and
mass is known as the square-cube law. According to [Twidell and Gaudiosi, 2009]
engineering costs are roughly proportional to the mass, i.e. the material volume,
so the costs of a growth in turbine dimensions will increase faster than the power
output. Up to a certain point the design of wind turbines can overcome this by a
continued optimization of material usage, securing a lower mass and thus reducing
engineering costs. In addition, over-conservative industry standards have been
altered to deal with this simplistic trend estimate [Thresher et al., 2008].

Challenges in creating large-scale o�shore wind turbines thus lie in establish-
ing standards that ensure su�cient safety in operation without becoming overly
conservative. Also, a more complete understanding of the physics and the phe-
nomena that may arise for larger dimensions are important when optimizing design
of large turbines. Developing materials with extreme strength to mass ratios and
more advanced control and measuring systems, ensuring reliability and safety, will
be necessary for the feasibility of future large-turbine projects [Fichaux et al.,
2011]. In this section, these challenges will be discussed in greater detail.
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2.1. Upscaling o�shore wind turbines

Many research projects have focused on aspects of upscaling wind turbine design,
including DOWEC, UpWind, ICORASS and WindPact [Ashuri, 2012]. UpWind
is especially interesting in this thesis as it deals with industry challenges at large,
related to dimensional upscaling.

The UpWind consortium (2006-2011) was a European R&D collaboration con-
sisting of 48 partners, counting wind energy specialists both from research insti-
tutions, academia and from the private sector. The project aimed at determining
technological and economical obstacles to developing feasible large-scale o�shore
wind turbines. It focused on the physical phenomena and model behavior that are
negligible for smaller turbines, but may be highly relevant when upscaling. Also,
it examined scaling the standard NREL 5-MW reference turbine [Jonkman et al.,
2009] to 20 MW, resulting in a rotor diameter of approximately 250 m [Fichaux
et al., 2011]. The turbine was deemed clearly unfeasible, mostly because of a
880-tonne top tower mass and the fact that it was not possible to manufacture or
install, in addition to being unprofitable. However, the project concludes that de-
signing an operational 20-MW turbine is in fact feasible, given the development of
some important innovations. The costs of some of these innovations are uncertain.

One example of such an innovation is the development of materials that can
overcome the increased gravity load from the more massive rotor blades [Fichaux
et al., 2011]. Instead of building heavier structures, UpWind investigated the idea
of using smart control systems for individual blade pitching to reduce the aero-
dynamic loads. Also, they tested LIDAR assisted collective pitch control, where
the upstream wind speed is measured in order to optimize pitch wrt. aerodynamic
rotor loading. These are some of the innovations that can make future large-scale
turbines feasible.

Two methods are often used in preliminary determination of turbine character-
istics in upscaling; linear scaling and extrapolation of existing wind turbine data.
Utilizing linear scaling laws, geometrical similarity is assumed, meaning that all
geometrical parameters vary linearly except the gearbox, the generator and the
power electronics. Furthermore, the tip speed is assumed constant [Ashuri, 2012].

In the extrapolation of existing data approach, trends in loading, component
mass and costs are investigated with respect to the rotor diameter. Thus, estima-
tions about larger turbines can be made. In some cases, such as in [Sieros et al.,
2012], large scatter can occur because of di�erences in turbine design and wind
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class. Intuitively, the uncertainties in upscaling increase with projected turbine
size for for any scaling method. Technical data from manufacturers for prospec-
tive large turbines are confidential, and thus the leap in turbine dimensions may
be large in a trend analysis using extrapolated data.

Considering geometrical similarity and linear scaling laws, the increase in envi-
ronmental turbine loads would be proportional to s2, the corresponding moments
≥ s3, whilst the bending sti�ness EI ≥ s4. However, upscaling wind turbine loads
is not a trivial task and in order achieve realistic structural loads and responses,
more sophisticated models must be employed than the two described above. Non-
linear structural behavior and higher-order loads must be investigated in order to
take higher-order e�ects into account. An example of such an e�ect is ringing,
which will be covered in section 3.6. Many other phenomena that are not linearly
scalable, are mentioned in [Sieros et al., 2012]. They include boundary layer e�ects,
the probability of buckling or fracture, non-linearities related to large deflections,
e�ects of inflow turbulence and variation in design choices. Thus, integrated anal-
yses must be performed in order to capture the change in physical e�ects. In
a coupled system with aerodynamic and hydrodynamic loads on a wind turbine,
load contributions consisting of many di�erent frequencies are present. Several un-
steady aerodynamic phenomena resulting in oscillating aerodynamic forces, such
as turbulent eddies, occur at the frequency of rotor rotation or multiples of this
frequency. The rotational frequency is called 1P and the blade passing frequency
3P is three times 1P, relevant for a three-bladed turbine.

A problem that may occur in the upscaling of turbine loads is the interaction
between the 6P frequency and the 2nd tower mode. This is due to the fact that the
2nd tower mode eigenfrequency decreases with a growth in turbine dimensions, in
some cases closing in on the 6P frequency. Figure 2.1 illustrates this interaction,
as the 2nd tower mode eigenfrequency and 6P frequency almost coincide. This is
a driver in the design against fatigue. In order to optimize turbine design, the
balance between ULS and FLS driven loads is vital, as dimensioning against one
of these is often at the expense of the other. The balance is very dependent on the
non-linearities in ULS loading [Suja-Thauvin et al., 2014].
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Figure 2.1.: Interaction between 6P and the 2nd tower mode [Suja-Thauvin et al.,
2014].

In [Ashuri, 2012], an integrated aero-servo-elastic cost optimization procedure is
employed to create an optimal 20-MW o�shore wind turbine design. The drawback
to such an approach is the huge design space of which the engineer needs to
constrain. The conclusion of this study is, similarly to that of [Fichaux et al.,
2011], that an upscaling to 20 MW is granted some key innovations. The main
concern is the excessive growth in turbine mass. [Ashuri, 2012] points at five
challenges in the upscaling:

• Blade mass increase (due to additional material in order to provide necessary
blade sti�ness). Solution: Utilizing materials with larger sti�ness to mass
ratios.

• Tower mass and cost increase (due to higher loads on the tower and an
increase in tower top mass). Solution: Reductions in mass and loading (e.g.
by developing more e�cient control systems).

• Blade root thickness (in order to supply su�cient strength at the blade root).
Solution: Designs are already feasible, but challenging for the engineer.

• Blade and tower size (due to the limited possibilities of component trans-
portation on land). Solution: Upgrading infrastructure and transport ves-
sels.
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2.2. Dynamic response of o�shore wind turbines

• Nacelle installation (due to the increase in tower height and nacelle weight).
Solution: Requires special installation vessels with improved carrying and
lifting capabilities.

One of the primary challenges for the wind power industry will be to evaluate
the necessary innovations from an economical and technical perspective.

2.2. Dynamic response of o�shore wind turbines

Like most other o�shore structures a wind turbine consists of several components,
each with their own natural frequency. What di�ers an o�shore wind turbine
from other o�shore structures, however, is the high degree of coupling between the
structural components. This can be exemplified as large blade oscillations excite
resonant motion in the tower, or vice versa, fast oscillations in the tower structure
can dramatically change the incident wind load on a turbine blade [Hansen, 2008].
As mentioned, this means that the structural, aerodynamic and hydrodynamic
models must be solved together, in fully aero-hydro-servo-elastic simulations.

The dynamic amplification factor DAF, is the ratio between the dynamic and
static response:

DAF = u

u
0

= u

F
0

/k
(2.1)

where u
0

is the static response (u
0

= F0
k , where F = F

0

cos(Êt)) and u is the
dynamic response. The DAF is designed for harmonic excitation, as it is a function
of F

0

.
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Chapter 2. Design Challenges for Large-Diameter Monopiles

Figure 2.2.: A DAF for di�erent damping levels [Manwell et al., 2009].

Figure 2.2 shows that the DAF depends on the damping level, and the response
is intuitively reduced as the damping level is increased. For an undamped system
the response will be infinite. The maximum response occurs at resonance i.e.
— = 1.

2.3. Standard regulations in the design of o�shore wind tur-
bines

When designing o�shore structures, handling uncertain environmental loads is
inevitable. To consider design loads and in order to set up design criteria [Det
Norske Veritas, 2014] describes four limit states relevant for o�shore wind turbines:

• Ultimate limit states (ULS)
• Fatigue limit states (FLS)
• Accidental limit states (ALS)
• Serviceability limit states (SLS)

The limit states define the conditions by which a structure can operate according
to the design requirements. The standards provide design criteria according to
certain levels of load annual excess probabilities that the structures should be
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2.3. Standard regulations in the design of o�shore wind turbines

dimensioned for. In [Det Norske Veritas, 2014] four main design approaches are
used:

• Design by the partial safety factor method
• Design by direct simulation of combined load e�ect of simultaneous load

processes
• Design assisted by testing
• Probability-based design

In the partial safety factor method the design criteria involve safety factors for
each load contribution and structural component. These factors are determined
such that an acceptable level of safety is satisfied, even for especially disadvan-
tageous realizations of loads and structural resistance, or a combination of these.
When the loads are considered, the following factors should be taken into account,
regardless of design technique:

• Unfavorable load deviations o� their characteristic values
• The possibility that di�erent loads exceed their characteristic values simul-

taneously
• Uncertainties in the load e�ect modeling

In this thesis, the design assisted by testing method will be explored in part,
by conducting experiments aiming to map the hydrodynamic loads on an idling
turbine. Since only one environmental load is taken into account, no combined
load e�ects are considered. Thus, if used in design, the hydrodynamic loads must
be included in a procedure much like that of the partial safety factor method,
where each environmental load is considered separately with a specified set of
safety factors. The standard specifies that dimensioning assisted by performing
model tests has to be supported by analytical design approaches.

2.3.1. Ultimate limit states (ULS)

The ultimate limit states define limits for a structure’s maximum load-carrying
capacity. Exceeding the ULS can lead to excessive yielding or buckling, brittle
fracture, loss of static equilibrium (e.g. capsizing or overturning) or failure of
critical components.

The characteristic value of the resulting combined load e�ect for design against
ULS is defined by the 98 % quantile, i.e. an annual probability of exceedance Æ
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Chapter 2. Design Challenges for Large-Diameter Monopiles

0.02, meaning a 50-year return period. This is relevant in a more complete analysis
than in this thesis, where no combined load e�ects will be considered.

Load factors “f are used both in operational and temporary conditions. For
ULS, the load factors from permanent, variable functional and deformation loads
are 1.0 in most cases. However, for environmental loading the load factors are 1.35
when the characteristic load is established as the 98 % quantile or 1.1 for abnormal
wind load cases. In a situation where the permanent and the variable functional
load factors are increased to 1.25, the environmental load factor can be reduced
to 0.7, except when the environmental loads are to be combined with functional
ship loads. These factors are summarized in [Det Norske Veritas, 2014].

2.3.2. Fatigue limit states (FLS)

The fatigue limit states are concerned with the possibilities of failure due to the
cumulative damage e�ect of cyclic loading. Instead of looking at a certain quantile
(as for ULS), the characteristic load e�ect history is determined by the expected
load e�ect history, i.e. the load factors “f are 1.0 for all load categories. For FLS,
cyclic loads may occur in the non-operational stages of structure life. These loads
have to be included in the calculations of cumulative damage.

2.3.3. Accidental limit states (ALS)

The accidental limit states take into account loads caused by technical failure
or generally abnormal operations, such as ship collisions, accidental crane drops,
explosions, fire or slamming loads from rarely large breaking waves. ALS ensure
structural integrity of locally damaged structures or flooding, as well as adequate
structural resistance of the actual accidental load. In the design against ALS
the annual probability of exceedance of the accidental load magnitude should not
exceed 10-4 [NORSOK, 2007]. The partial safety factors are set to 1.0.

When an accident has occured, minor local damage is tolerable. In such a
damaged state, the structure should be able to survive environmental loads with
an annual probability of exceedance of 10-2. Thus, the ALS need to be checked on
two levels [NORSOK, 2004].

[Haver, 2007] argues the importance of considering the 10-4 annual probability
of exceedance ALS environmental loads. Four quantities are defined: The char-
acteristic environmental load e�ect xc is the load e�ect corresponding to a 10-2

annual probability of exceedance and the characteristic capacity yc is taken as a
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2.3. Standard regulations in the design of o�shore wind turbines

lower percentile of the distribution of elastic component capacity. “m and “f are
material and load factors, respectively.

“f xc Æ yc

“m
(2.2)

Whilst the distribution function on the capacity side, yc/“m, is usually well
behaved, the nature of the load mechanism is not. This means that for very low
annual-probability loads, the actual loads may be significantly greater than the
estimated characteristic load. Thus, the design against ALS will only be su�cient
if there is no significant shift in the shape of the tail of the load distribution in the
10-4-10-2 annual exceedance probability range.

Figure 2.3.: Behavior of the distributions of environmental load mechanisms
[Haver, 2007].

As figure 2.3 shows, for a ‘bad-behaving’ load mechanism, “f xc = 1.3 xc <<

xALS≠bbp. Thus, the environmental load mechanism must be examined for annual
exceedance probabilities much smaller than 10-2. This is especially important for
old structures, as the structural behavior alters over time. Similarly, as will be
discussed in section 7.7, such ‘bad behavior’ in loading is relevant when considering
non-linear phenomena, such as ringing.

2.3.4. Serviceability limit states (SLS)

The serviceability limit states define the tolerances for normal use of the structure.
Examples of when SLS are used can be deflections or deformations of components,
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Chapter 2. Design Challenges for Large-Diameter Monopiles

which change the distribution of loads or the e�ect of the acting forces. Another
example is vibrations in o�shore structures causing discomfort.

For SLS the characteristic load e�ects depend on the specific operational re-
quirements in each deviational case.

The load factors “f are 1.0 for all load categories, both for temporary and
operational conditions.

2.3.5. Transient loads

Several operational states cause transient loads that should be considered for both
ULS and FLS. These states are:

• Start up from stand-still or idling
• Normal shutdown
• Emergency shutdown
• Fault events
• Yawing

In [Det Norske Veritas, 2014] table 4-5, load cases containing di�erent combi-
nations of environmental loads are proposed in order to test the wind turbine in
the operational states listed above. It provides 31 di�erent load cases, each of
which require approximately six 10-minute stochastic realizations, and in addi-
tion a range of wind speeds need to be considered. This amounts to around 2000
di�erent load cases that have to be analyzed [Schløer, 2013].

The [IEC, 2006] standard contains similar operational states and 35 di�erent
load cases to analyze the structural integrity of the wind turbine during installa-
tion, operation and survival conditions.

In [NORSOK, 2007] it is stated that characteristic environmental loads should
be elaborated analytically, if there are no significant uncertainties. If considerable
uncertanties are present, however, the analytical results need to be verified against
model tests.
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3 | Wave Loads

3.1. Wave load components on an o�shore structure

When calculating the wave loads on a structure, a wave theory able to represent
the kinematics should be applied. The wave loads acting on a structure consist
of both viscous and potential flow e�ects, and the kinematic wave models are
derived assuming potential theory. This means that the fluid is assumed inviscid,
i.e. viscous e�ects are not taken into account. The validity of wave theories will
be discussed in section 3.5.3.
Force contributions from viscous e�ects:

• Viscous drag force
• Viscous pressure drag

The viscous drag force is due to frictional e�ects and thus depends on the
Reynolds number Re and the relative roughness. The viscous pressure drag force
is due to the pressure di�erence between the front and aft of the structure, i.e.
separation e�ects. In other words, it depends on the width of the wake or position
of the points of separation.
Force contributions from potential flow e�ects:

• Froude-Krylov force
• Di�raction force

The potential flow e�ects can be described by defining the di�raction and ra-
diation problems, as done in [Greco, 2012]. In the di�raction problem, the body
is assumed fixed and interacting with incoming waves with a wave potential �

0

.
The resulting di�raction potential consists of two contributions, the incoming wave
potential �

0

and the scattering potential �S, giving

� = �
0

+ �S (3.1)

The impermeability condition specifying the impenetrability of a body, is intro-
duced as

ˆ„

ˆn
= ˆ(„

0

+ „S)
ˆn

= 0 (3.2)

using the spatial potentials.
The flow from „

0

is assumed to penetrate the body as if it wasn’t there, with the
velocity ˆ„0

ˆn . This hydrodynamic pressure causes Froude-Krylov loads on the body.
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Chapter 3. Wave Loads

In order for it to maintain its impermeability the di�raction/scattering potential
is created such that equation (3.2) holds true. This means that

ˆ„S

ˆn
= ≠ˆ„

0

ˆn
(3.3)

The scattering potential causes hydrodynamic loads on the body called di�rac-
tion loads. Summing the contributions of the di�raction problem gives the excita-
tion forces, i.e.

Fexc,k(t) = FF roude≠Krylov, k(t) + Fdiffraction, k(t)

= ≠
⁄

S0B

fl
ˆ�

0

ˆt
nkdS ≠

⁄

S0B

fl
ˆ�S

ˆt
nkdS

(3.4)

where S
0B is the mean wetted surface of which the dynamic pressure contributions

are integrated over.
In the radiation problem the structure is forced into oscillation in all six degrees

of freedom with no incoming waves. This causes radiated waves with potential �R.
Similarly as for the di�raction problem, the potential can be integrated over the
mean wetted surface. The resulting hydrodynamic terms are the added mass and
damping forces, whereas the restoring force is connected with hydrostatics. The
radiation problem is especially important for floating structures as they will have
large displacements.

Fexc,k(t) = ≠
⁄

S0B

fl
ˆ�R

ˆt
nkdS =

6ÿ

j=1

[≠Akj÷̈j ≠ Bkj÷̇j], k = 1, ..., 6 (3.5)

For a cylinder whose diameter is in the same order of magnitude as the wave-
length, the inertia forces dominate, meaning that the drag forces are generally at
least an order of magnitude smaller than the inertia forces. For a smaller structure
(D

⁄ << 1) the drag force influence will be greater. Thus, using Froude scaling, the
drag force coe�cient on a model will be greater than in full scale.

In this thesis, the focus is on large-diameter monopiles. When dimensions in-
crease the eigenfrequencies are decreasing, thus creating more inertia-dominated
systems. This implies that the system inertia is too large for the displacement to
mobilize sti�ness forces, so dynamic equilibrium is acquired through inertia forces.
In extreme cases the dominating load frequencies are considerably higher than the

14



3.1. Wave load components on an o�shore structure

first natural frequency. For harmonic loading, the dynamic equilibrium is given by

mü + cu̇ + ku = F
0

sinÊt (3.6)

As seen in figure 3.1, the phase angle for a completely inertia-dominated system
is fi because of the large Ê

Ê
n

ratio. Thus, the harmonic load, displacement, velocity
and acceleration will be as follows [Larsen, 2012]:

F (t) = F
0

sinÊt (3.7)

u(t) = u
0

sin(Êt ≠ fi) (3.8)

u̇(t) = u
0

Ê cos(Êt ≠ fi) (3.9)

ü(t) = ≠u
0

Ê2 sin(Êt ≠ fi) (3.10)

Figure 3.1.: The phase angle between a harmonic load and the response for di�er-
ent damping levels [Chopra, 2012].

The resulting dynamic response of a completely inertia-dominated structure is
in counter phase („ = fi) with the excitation, as shown in figure 3.2.
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Chapter 3. Wave Loads

Figure 3.2.: The response of an inertia-dominated SDOF system in time. The solid
line is the excitation F(t) whilst the dashed red line is the resulting
displacement x(t). The figure is taken from [Tempel, 2006].

At the instance of maximum loading, Êt = fi
2

, the dynamic equilibrium will be
given by

Ê2 u
0

m = F
0

+ k u
0

(3.11)

where the Ê2 u
0

m term is dominating because of the high load frequency Ê. As
can be seen in equation (3.11) the sti�ness forces increase the response in this case.
The external forces and sti�ness forces are balanced by the inertia force.

The relative importance of inertia, drag and di�raction is illustrated in figure
3.3.
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3.1. Wave load components on an o�shore structure

Figure 3.3.: Relative importance of inertia, drag and di�raction wave forces [Det
Norske Veritas, 2014].

For slender structures figure 3.4 gives an overview of the magnitude ratio of drag
and inertia forces.

Figure 3.4.: Relative magnitude of drag and inertia forces for slender structures
[Det Norske Veritas, 2014].
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For small volume structures, D < ⁄
5

, the Morison equation can be used, whereas
for large volume structures, D > ⁄

5

, di�raction has to be taken into account, so
MacCamy & Fuchs theory should be applied.

3.2. Slender structures

As mentioned, the Morison equation can be used to estimate forces on slender
structures, i.e. D < 0.2⁄ in [Det Norske Veritas, 2014], assuming that the flow is
undisturbed by the presence of the body. In equation (3.12) the horizontal force
on a vertical cylindrical section of height dz is calculated.

dF = dFM + dFD = CMflfi
D2

4 ẍ dz + CDfl
D

2 |ẋ|ẋ dz (3.12)

where CD and CM are the drag and inertia coe�cients, respectively. The first
term, the inertia force, consists of the Froude-Krylov and di�raction force. When
CM = 2.0 it is in agreement with potential theory. The second term, the drag force,
represents the viscous e�ects. The drag coe�cient must be found empirically, but
[Det Norske Veritas, 2014] o�ers a method by which CD can be estimated.

Integrating over the submerged cylinder length, the resulting horizontal force
for non-breaking waves is given by

F = FM + FD =
⁄ ÷(t)

≠d
CMflfi

D2

4 ẍ dz +
⁄ ÷(t)

≠d
CDfl

D

2 |ẋ|ẋ dz (3.13)

When integrating up to z = 0, neglecting the contribution from z = 0 to z =
÷(t), a much smaller error will be introduced for an inertia-dominated system than
a drag-dominated system since the maximum inertia force occurs when the wave
elevation past the cylinder is at z=0 (maximum acceleration), whereas the the
drag force has its maximum as the crest passes the cylinder (maximum velocity).

The phase di�erence between the two force contributions can be seen in figure
3.5.
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3.3. Large-volume structures

Figure 3.5.: The general shape of the Morison equation terms [Arany et al., 2014].

For an inertia-dominated structure the relative force contributions could be like
in figure 3.6.

Figure 3.6.: Force contributions in an inertia-dominated system [Arany et al.,
2014].

The Morison equation can also be expanded to include the relative motion of
the wind turbine response and the fluid particles [Faltinsen, 1990]:

dF = fl(1 + CA)fiD2

4 dz a
1

≠ flCA
fiD2

4 dz ÷̈
1

+ 1
2flCDDdz(u ≠ ÷̇

1

)|u ≠ ÷̇
1

| (3.14)

where C
A

is the added mass coe�cient and CM = 1 + CA is the inertia coe�cient.
÷̈

1

and ÷̇
1

are the horizontal turbine acceleration and velocity, respectively, and a
1

and u are the horizontal water acceleration and velocity.

3.3. Large-volume structures

For larger structures, specified as D > 0.2⁄ in [Det Norske Veritas, 2014], the
di�raction and reflection e�ects of the structures’ presence can no longer be ne-
glected. For these structures, the inertia force will be dominating and di�raction
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theory must be used (see figure 3.3).
On a form equivalent to the Morison equation, considering linear wave theory,

the large volume inertia coe�cient can be given as a function of ka, where a is the
cylinder radius [Chakrabarti, 1989]:

CM = 4
fi(ka)2{[J Õ

1

(ka)]2 + [Y Õ
1

(ka)]2}1/2

(3.15)

Here, J Õ
1

and Y Õ
1

are order one Bessel function derivatives of first and second kind,
respectively. The phase between the maximum force on the pile and the incoming
wave is

tan ” = J Õ
1

(ka)
Y Õ

1

(ka) (3.16)

In [Det Norske Veritas, 2014] the horizontal large-volume maximum force is
found through

FX,max = 4flgA

k2

sinh[k(d + Asin–)]
cosh[kd] › (3.17)

and the moment arm about the seabed is

hF = d
kd sinh[kd] ≠ cosh[kd] + 1

kd sinh[kd] (3.18)

where – and › are coe�cients depending on kD, found in the standard. Equation
(3.17) is valid for vertical cylinders with constant diameter. The di�raction solu-
tion is called the MacCamy & Fuchs solution, which is based on the assumption
that the di�racted waves are sinusoidal.

3.4. Non-linear forces on a structure

Several e�ects create non-linear forcing on an o�shore structure. The most impor-
tant ones will be discussed briefly in this section.

In an irregular sea a structure will be impacted by varying second-order sum
and di�erence frequency forces in addition to the loading from dominating wave
frequencies [Haver, 2007]. The non-linear force terms are typically much smaller
than the linear terms, but they are important to account for since their frequencies
may coincide with the natural frequencies of the structure. In the development of
non-linear waves, energy is distributed to higher and lower frequencies in the wave
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3.4. Non-linear forces on a structure

spectrum, meaning that the probability of wave component frequencies coinciding
with the structure’s first eigenfrequency increases [Schløer, 2013].

There are di�erent approaches to evaluating the magnitudes of the non-linear
force terms, e.g. using a perturbation scheme (see the sections on Stokes waves
(3.5.2.1) or the FNV model (3.6.1)) or considering the conservation of energy (as
done in the derivation of the Rainey force model).

Non-linearities also occur as the motions of a body modifies the pressure and
thus the force acting on it. In many cases, turbine responses are negligibly small
at sea level, so they are not necessary to include in force calculations. In slamming
loads from breaking waves, however, structural vibration can have a large e�ect
on the global load.

Since the wave loads on a structure depend on the relative motion, irregular
waves should be used in order to establish a realistic response pattern. However,
non-linearity has often been neglected for irregular waves. A remedy has been to
use linear irregular waves and e.g. fully non-linear stream function waves (valid for
regular waves on a flat sea bed) in order to estimate extreme ULS wave loading.
The idea behind this embedded stream theory method is to account for both the
non-linear wave kinematics and the stochastic nature of the wave process. In short,
the embedding theory includes both conservative and non-conservative aspects.
It is conservative in the sense that the resulting accelerations and velocities are
large, and non-conservative since higher-order harmonic resonance is not taken into
account, as for the FNV model (which will be described in section 3.6.1). Even
though the embedded stream function model is excessively used in the industry,
the method is highly debated in academia. The major concern is that the inclusion
of a non-real wave elevation in the largest maxima (the points of largest interest
in a ULS analysis), means that there is no way to perform a quality check of the
output force from a hydrodynamic point of view.

Integrating the Bernoulli pressure over the wetted surface to obtain the hydro-
dynamic force means integrating one linear term of the velocity potential and one
squared velocity potential term. If the velocity potential is linear the squared
term causes second-order e�ects. Higher-order velocity potentials cause non-linear
e�ects of the same order, as well as the order squared. Since a monopile can be
considered slender in most cases, the non-linear e�ects from the higher-order po-
tentials are most important for the incident waves as the presence of the pile will
not alter the incoming waves significantly [Rosenlund, 2013].

In addition, a variation in the wetted surface of which the pressure is integrated
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over leads to a higher-order term, since both the pressure and upper integration
limit depend on the incident surface elevation.

3.5. Wave kinematics

3.5.1. Linear wave theory

Linear waves are relevant when considering small-amplitude waves, i.e. waves with
a small slope ‘ = 2fi’

A

⁄ π 1. Here, ’A is the wave amplitude and ⁄ is the wavelength.
For a sinusoidal wave, this wave steepness can easily be derived by finding the
derivative of the wave profile, d’

dx = d
dx(’A sin kx) = ’Ak cos kx. In addition to

small-amplitude waves, the sea bottom is assumed horizontal and the free surface
is horizontally infinite. Linear wave theory is often used as a first approximation
in engineering practice and it is highly relevant for ocean engineering, where the
water depth is large.

When the wave slope is small the distance between the unknown free surface and
the horizontal mean free surface z = 0 is of the order O(‘). We can simplify the
dimensionless wave potential �Õ = 2fi

’
A

Ê⁄� by Taylor expanding it and neglecting the
non-linear terms, as in [Mei et al., 2005]. The methodology leads to the following
approximate kinematic and dynamic boundary conditions on the free surface:

ˆ’ Õ

ˆtÕ = �Õ
zÕ , zÕ = 0 (3.19)

ˆ�Õ

ˆtÕ + 2fig

Ê2⁄
’ Õ = ≠P Õ

a, zÕ = 0 (3.20)

where ’ Õ = ’
’

A

, zÕ = 2fiz
⁄ and P Õ

a = ≠ 2fiP
a

fl’
A

Ê2⁄ .
The only remaining terms are linear. If the boundary conditions are used for

the known horizontal plane zÕ = 0 the following physical linear equations can be
derived:

Ò2� = 0, ≠h < z < 0 (3.21)
ˆ�
ˆn

= 0, z = ≠h (3.22)

ˆ’

ˆt
= ˆ�

ˆz
, z = 0 (3.23)

ˆ�
ˆt

+ g’ = ≠Pa

fl
, z = 0 (3.24)
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which are the Laplace equation, the bottom kinematic, free-surface kinematic and
the free-surface dynamic boundary conditions, respectively.

The free-surface dynamic and kinematic boundary conditions can be combined
to

ˆ2�
ˆt2

+ g
ˆ�
ˆz

= ≠1
fl

ˆPa

ˆt
, z = 0 (3.25)

The Bernoulli equation can also be linearized, expressing the total pressure
inside a fluid:

P

fl
= ≠gz ≠ ˆ�

ˆt
(3.26)

In the derivation of the velocity potential for a propagating linearized wave, a
special form of the free surface is used:

’(x, z, t) = Re{Aei(k·x≠Êt)} = Acos(k · x ≠ Êt) (3.27)

where the the real sign is often omitted for brevity, yielding:

’(x, z, t) = Aei(k·x≠Êt) (3.28)

This surface elevation is seen to oscillate periodically with period T = 2fi
Ê for a

stationary observer. The wave oscillates around a mean free surface at z=0 with
extremes at z=-A and z=A. The wavelength is ⁄ = 2fi

k .
A solution of the Laplace equation is seen to be

�(x, z, t) = [Asinhk(z + h) + Bcoshk(z + h)]ei(kx≠Êt) (3.29)

where A and B are constants.
Using the bottom boundary condition for a horizontal seabed (ˆ�

ˆz = 0, z = ≠h),
the sinh term can be removed, giving:

�(x, z, t) = Bcoshk(z + h)ei(kx≠Êt) (3.30)

In order to satisfy the free-surface boundary conditions, the constant B must be

B = ≠ig’A

Ê

1
coshkh

(3.31)

giving
�(x, z, t) = ≠ig’A

Ê

coshk(z + h)
coshkh

ei(kx≠Êt) (3.32)
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In the derivation of B, Pa = 0 is assumed.
The dispersion relation on finite depth is found by using the combined free-

surface boundary condition, resulting in

Ê2 = gk tanh kh (3.33)

The speed of the wave form, which is called the ‘phase speed’, is given by

C = Ê

k
=

Ú
g

k
tanh kh (3.34)

For propagating linear waves, longer waves have higher phase speeds. This
phenomenon is called ‘dispersion’.

As tanh kh æ 1 when kh æ Œ, the phase speed for short waves/deep water
can be written

C = g

Ê
=

Ú
g

k
(3.35)

For tanh kh æ kh when kh æ 0, the phase speed of long waves/shallow water is

C =
Ò

gh (3.36)

The features of propagating waves in deep and shallow water are summarized
in [Mei et al., 2005]:
On deep water, kh ∫ 1

(„, u, v, w, p) = (≠ig

Ê
,
gk

Ê
, 0, ≠igk

Ê
, flg)’Aekzei(kx≠Êt) (3.37)

On shallow water, kh π 1

(„, u, v, w, p) = (≠ig

Ê
,
gk

Ê
, 0, 0, flg)’Aei(kx≠Êt) (3.38)

The shallow water results show that:
• the z-dependence disappears
• the vertical velocity is negligible
• the total pressure is P = flg(’ ≠ z), meaning a hydrostatic total pressure,

since the dynamic pressure is flg÷

The z-dependence for di�erent depths is illustrated in figure 3.7. The water
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depths at Dogger Bank are between 20 m - 45 m and thus characterized as inter-
mediate in most cases.

Figure 3.7.: z-dependence illustrated for linear waves in shallow, intermediate and
deep water [Dean and Dalrymple, 1991].

Another velocity used to describe waves is the group velocity. This is the velocity
of wave energy transport, or the velocity of the envelope amplitude around a locally
sinusoidal wave train. At constant depth the group velocity is found by

Cg = dÊ

dk
= C

2 (1 + 2kh

sinh 2kh
) (3.39)

sinh kh æ 1 for kh æ Œ and sinh kh æ kh for kh æ 0, giving Cg ƒ 1

2

C on
deep water and Cg ƒ C on shallow water. This means that on deep water, the
individual waves will travel faster than the group envelope.

3.5.2. Non-linear wave theories

Non-linear wave kinematics can be employed directly in the Morison equation
(3.13) by implementing the particle velocities and accelerations.

All the wave theories discussed in this section are symmetric about a vertical
plane and thus they cannot be used in the modelling of asymmetric wave profiles.

The Laplace equation is linear since the velocity potentials are of first order.
When the free surface boundary condition is applied at the still water level z = 0
there are no non-linear e�ects and the solution is thus linear. However, if the
boundary condition is taken at the instantaneous free surface (z = ’) non-linear
terms are introduced in the solution of the velocity potential. As the non-linear
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velocity potential is valid up to the unknown surface elevation ’, the problem at
hand becomes complicated. A solution is a simplification using a combination of
linear velocity potential contributions in a perturbation approach. This is known
as Stokes wave theory.

3.5.2.1. Stokes wave theories

Stokes waves are periodic and found by a perturbation procedure of the flow vari-
ables such as the surface elevation or velocity potential, using the wave steepness
‘ = k’A as the expansion parameter. The wave steepness must be small (‘ π 1)
as convergence is a measure of the validity of the Stokes waves, meaning that each
term in the series must be smaller than the previous one. In fact, each of the
velocity potential variables in equation (3.40) below is taken as having the same
order of magnitude, so each term is smaller than the preceding one by a factor of
O(‘). [Sarpkaya and Isaacson, 1981] gives the power series

„ = „
1

‘ + „
2

‘2 + „
3

‘3 + ...O(‘n) (3.40)

Substituting equation (3.40) into the the Laplace equation (3.41) and applying
the seabed boundary condition, the velocity potentials can be found.

ˆ2„n

ˆx2

+ ˆ2„n

ˆz2

= 0 for n = 1, 2, ... (3.41)

ˆ„n

ˆz
= 0 at z = ≠d for n = 1, 2, ... (3.42)

By collecting the terms proportional to each order of the wave steepness (as
in equation (3.40)) the di�erent wave potentials can be derived by letting each
Laplace term be equal to zero, as shown equation (3.41).

1st-order Stokes theory is defined by the first term in the series, 2nd-order Stokes
theory by the first two terms, and so on. Thus, 1st-order Stokes theory is in fact
equal to linear wave theory. For each additional order of ’n

A a new harmonic will
be introduced, so the nth-order solution will have a component oscillating with the
nth harmonic of the wave circular frequency Ê.

The solution has now been simplified, but the surface elevation ’ is still unknown.
An approximate solution can be found by Taylor expanding the velocity potential
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around z = 0, as done in [Sarpkaya and Isaacson, 1981]:

„(x, ’, t) = „(x, 0, t) + ’
ˆ„(x, 0, t)

ˆz
+ 1

2!’
2

ˆ2„(x, 0, t)
ˆz2

+ ... (3.43)

The free surface boundary condition is satisfied at a known surface z = 0 and
thus a velocity potential solution can be found. By substituting the power series
expression (3.40) into the resulting free surface boundary equations a successive
approximation consisting of sets of linear equations can be found. The first order
equation is homogeneous, whereas the second order equation is inhomogeneous
and depends on the first-order potential. So it continues, each successive solution
depending on the previous order potential. This results in a solvable system up to
any velocity potential order. The algebra needed to obtain each solution becomes
more extensive for every additional order, a tedious exercise if performed by hand.
This was first done in [Skjelbreia and Hendrickson, 1962] up to fifth order.

In finite water depth, the following velocity potential and surface elevation are
found for 2nd-order Stokes waves [Myrhaug, 2001]:

„ = „
1

+ „
2

= g’A

Ê

cosh k(z + h)
cosh kh

sin(kx ≠ Êt) + 3
8’2

AÊ
cosh 2k(z + h)

sinh4 kh
sin 2(kx ≠ Êt)

(3.44)
’ = ’Acos(kx ≠ Êt) + 1

4k’2

A

cosh kh

sinh3 kh
(2 + cosh 2kh) cos 2(kx ≠ Êt) (3.45)

The second-order dispersion relation Ê2 = gk tanh kh is the same as for linear
theory. This is the result of calculations giving a nondimensional �

2

which is
unbounded in time, meaning that it will increase to infinity. Therefore, Ê

2

© 0 in
equation (3.46).

Ê = Ê
1

+ ‘Ê
2

+ ‘2Ê
3

+ ... (3.46)

From third order the dispersion relation correction in equation (3.46) applies.
An illustration of the resulting second-order Stokes surface profile composed by

÷
1

and ‘÷
2

is given in figure 3.8.
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Figure 3.8.: A 2nd-order Stokes surface profile from [Dean and Dalrymple, 1991]
reused in [Myrhaug, 2001].

As seen in the illustration, the resulting wave crests are steeper and the troughs
are wider than for linear waves. The amplitude is higher and the trough is shallower
by the same amount, so the wave height remains the same. Since the first and
second-order dispersion relations are equal, the second-order wave cannot exist
without the first-order component. They will propagate together as in figure 3.8.

To test convergence [Dean and Dalrymple, 1991] defines the parameter R as the
ratio between an order n term and its preceeding order term n-1, e.g. R = ‘�2

�1
=

3

8

k’
A

cosh 2kh
cosh kh sinh3 kh , requiring R π 1. More on this in section 3.5.3.
Another requirement for the second-order Stokes wave is that there should be

no anomalous bump, or local maxima, in the trough. This would occur if the
second-order term becomes too large (see figure 3.8). By requiring that the second
derivative in the trough Æ 0, a maximum wave steepness can be established:

k’A = sinh3 kh

cosh kh(2 + cosh 2kh) (3.47)
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3.5. Wave kinematics

As long as the water depth exceeds 15 % of the wavelength [Det Norske Veritas,
2014] recommends using 5th-order Stokes theory for regular waves. The velocity
potential and surface elevation for 5th order Stokes waves are expressed in [Sarp-
kaya and Isaacson, 1981] on the form

k„

c
=

5ÿ

n=1

„Õ
n cosh nks sin n◊ (3.48)

k÷ =
5ÿ

n=1

÷Õ
n cos n◊ (3.49)

where the calculations for „Õ
n and ÷Õ

n, which are functions of k, d, H and T, were
derived in [Skjelbreia and Hendrickson, 1962].

Since many of the higher order terms in Stokes wave theories blow out of propor-
tions in shallow water, non-linear shallow water theories should be used instead.
In the following, a few other non-linear wave theories, specifically those mentioned
in [Det Norske Veritas, 2014], are briefly described.

3.5.2.2. Boussinesq wave theory

Boussinesq theory is relevant for weakly non-linear and moderately long waves in
shallow water and are thus ideal in coastal work, but also often used in monopile
wind turbine projects. In the derivation of the Boussinesq equations two expansion
parameters are introduced:

‘ = A

h
π 1 (3.50)

µ = kh π 1 (3.51)

‘ is a measure of the non-linearity of the wave and µ contains the dispersive
properties.

For the full derivation of the Boussinesq equations interested readers should
consult [Mei et al., 2005]. It involves a nondimensional perturbation analysis
resulting in a depth-averaged horizontal velocity ū which is substituted into the
equation of continuity and the momentum equation. Including the O(‘) and O(µ2)
terms, the Boussinesq equations are found as

’t + Ò[(‘’ + 1)ū] = 0 (3.52)
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ūt + ‘ū · Òū + Ò’ ≠ µ2

3 ÒÒ · ūt = 0 (3.53)

where equation (3.52) is the depth-averaged equation of continuity and (3.53) is
the depth-averaged momentum equation.

It can be noted that in general, Boussinesq theory includes non-hydrostatic
pressure and dispersion to the leading order µ2, unlike shallow water linear theory.

Some limiting cases of Boussinesq theory should be mentioned:

• Airy’s theory for very long waves (‘ ≥ O(1) ∫ µ2)
Valid for arbitrary ‘. Results in hydrostatic pressure and no dispersion.

• Linearized form (‘ π µ2)
Hydrostatic pressure and weak dispersion.

• Classical linearized waves, i.e. linear theory (‘, µ2 æ 0)
Hydrostatic pressure and no dispersion.

3.5.2.3. Cnoidal wave theory

Cnoidal waves are a form of stationary non-linear waves meaning that it propagates
at constant speed without changing shape. In order to establish such a permanent
(i.e. stationary) wave for non-linear waves, the form of the linear wave solution,
ek(x≠ct), is sought. This means that a solution of

„ = „(›)) (3.54)

is wanted, where
› = x ≠ ct (3.55)

A resulting equation describing the wave form is derived (in [Mei et al., 2005])
through a nondimensional perturbation approach of the Boussinesq equations
(3.52) and (3.53):

≠ 1
2‘’3 + (c2 ≠ 1)’2

2 + A
1

+ A
2

= µ2

6 ’ Õ2 (3.56)

where A
1

and A
2

are integration constants.
For finite integration constants, the di�erential equation (3.56) can be solved

in terms of cosine-elliptic (Cn) and sine-elliptic (Sn) functions (hence the name

30



3.5. Wave kinematics

‘cnoidal’), resulting in a wave with surface elevation

’ = ’
2

+ (’
3

≠ ’
2

)Cn2[3
1/2

2
(’

3

≠ ’
2

)1/2

h3/2

(x ≠ ct ≠ x
0

)] (3.57)

where the wave height H = ’
3

≠ ’
2

.
As non-linearity will steepen the crests whilst dispersion will tend to counteract

this e�ect by rather dispersing into waves of di�erent lengths, these two traits
must be in a dynamic equilibrium for a permanent wave to exist [Mei et al., 2005].

Cnoidal waves are periodic waves with wide troughs and high peaks with dis-
persion in shallow waters. The limiting cases of cnoidal waves are solitary waves
for long waves and sinusoidal waves for small amplitude waves.

3.5.2.4. Solitary wave theory

Solitary waves is the long wavelength limiting case of cnoidal wave theory. It
consists of a single peak with its entire surface elevation above the mean free
surface z=0, and |’| æ 0 as |x| æ ±Œ. In this case the integration constants of
equation (3.56) are zero and the equation reduces to

’ Õ2 = 3’2(c2 ≠ 1
‘

≠ ’) ‘

µ2

> 0 (3.58)

We recognize the ‘ and µ parameters from Boussinesq theory. The solitary wave
is supercritical, i.e. its phase velocity c =

Ò
g(h + A) is larger than the shallow

water linear wave (with phase velocity c =
Ô

gh), and c is seen to increase with
the amplitude [Mei et al., 2005].

The wave is used for modeling long waves in particularly shallow water and is
for example relevant for tsunamis.

3.5.3. The validity of wave theories

When choosing which wave theory to apply for a specific problem, [Det Norske
Veritas, 2010] uses three parameters to determine the validity in each case:

• Wave steepness parameter S = 2fi H
gT 2 = H

⁄0

• Shallow water parameter µ = 2fi d
gT 2 = d

⁄0

• Ursell parameter Ur = H
k02d3 = 1

4fi2
S
µ3
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The Ursell number represents the degree of wave non-linearity versus the dis-
persive properties. The reader should bear in mind that for the Ursell limit of 26
in figure 3.9, U

r

is defined di�erently than in equation (3.5.3). Since the phase
velocity is independent of ⁄ in shallow water but depends on ⁄ in deep water, kd
can be used as a measure of dispersion.

Figure 3.9.: Validity ranges for di�erent wave theories, from [Flow Science, 2015]
created using validity criteria in [Le Mehaute, 1976]. The same ranges
are applied in [Det Norske Veritas, 2010].
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3.5. Wave kinematics

The limit values for each parameter are summarized in [Det Norske Veritas, 2014]:

Theory Applications
Depth Approximate range

Linear (Airy wave) Deep and shallow S<0.006; S/µ<0.03
2nd order Stokes wave Deep water Ur < 0.65; S<0.04
5th order Stokes wave Deep water Ur < 0.65; S<0.14
Cnoidal theory Shallow water Ur > 0.65; µ < 0.125

Table 3.1.: Validity ranges of di�erent wave theories, reproduced from [Det Norske
Veritas, 2014]

The Stokes parameter R reduces to R = 3e≠2khk’A and R = 3

8

k’
A

(kh)

3 = 3

8

Ur for
deep and shallow water, respectively. For shallow water waves kh π 1, so there
are obvious problems with convergence. 2nd-order Stokes theory will thus give
unrealistic results on shallow water. Here, cnoidal waves are better suited.

By definition, the highest R value for deep water is found by letting h
⁄ = 1

2

and
H
⁄ = 1

7

(to avoid wave breaking). Thus, the maximum R value in deep water is
R = 3fi

7

e≠2fi = 0.0025 π 1, meaning ‘�
2

π �
1

, so the convergence criteria is
fulfilled.

In deep water the maximum steepness criterion (3.47) reduces to k’A = 1/2
(since 1/2 is larger than the breaking steepness of 1/7), so a anomalous bump will
never occur. In shallow water, however, the requirement reduces to Ur = k’

A

(kh)

3 ,
which is stricter than the convergency requirement described above, so single-
crestedness is the limiting wave steepness requirement for second-order Stokes
waves.

In conclusion, and as illustrated in figure 3.9:

• Linear waves should be used for small wave steepness waves in finite or deep
water depth.

• Stokes waves should be used for deep water and regular steep waves. 5th

order Stokes waves are valid up to larger wave heights than 2nd order Stokes
waves.

• Cnoidal waves are used for periodic waves in shallow water.
• Solitary waves are the long wave limit of cnoidal waves used for particularly

large amplitudes in shallow water.

All the wave theories discussed in this section satisfy the seabed boundary con-
dition exactly, but cnoidal theory does not fully satisfy the Laplace equation in the
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fluid. All theories only approximately satisfy the dynamic free surface boundary
condition.

3.5.4. Kinematics in irregular waves

As wave kinematics for both linear wave theory and Stokes wave theory are only
given up to the still water level z = 0, an error will be introduced in the force
integration if not corrected for. Stretching and extrapolation are widely used in
the o�shore industry because of the extensive use of linear deep water waves.

3.5.4.1. Grue’s method

Grue’s method is an approach for estimating the kinematics below the crests of
irregular waves. For a crest height z = ÷m and a trough-to-trough period of TT T

giving Ê = 2fi
T

T T

, the wave number k and local wave slope ‘ can be calculated by
solving for a third-order Stokes wave, giving the non-linear dispersion relation and
the non-dimensional surface elevation in equation (3.59).

Ê2

kg
= 1 + ‘2, k÷m = ‘ + 1

2‘2 + 1
3‘3 (3.59)

The horizontal velocity profile under the wave crest is given as

u(z) = ‘
Ú

g

k
ekz (3.60)

Grue’s method, however, is only valid for describing crest kinematics in deep
water, so it should not be used in calculations for wind turbines at Dogger Bank.

3.5.4.2. Stretching

In the Wheeler stretching method wave kinematics from linear theory at the mean
water level z=0 are shifted to the actual free surface z = ÷. It is thus a non-linear
extension of linear theory, since the resulting horizontal force on the vertical pile
will include a second-order wave amplitude term ≥ ’2

A. [Det Norske Veritas, 2010]
gives the stretched vertical coordinates as

z = zs ≠ ÷

1 + ÷/d
, ≠d < z < 0, ≠d < zs < ÷ (3.61)
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3.5. Wave kinematics

where ÷ is the instantaneous free surface elevation and d is the water depth. In
[Wheeler, 1970], where the method was presented, the author specifies that the
incident waves no longer satisfy the Laplace equation after the z-coordinates are
shifted.

The method is simply illustrated in figure 3.10.

Figure 3.10.: Wheeler stretching [USFOS, 2010]

To show how Wheeler stretching creates a second-order force, the utilization of
the stretching is exemplified for the inertia part of the Morison force and a linear
surface elevation. The inertia force per unit length is given by (3.12):

dFM = CM flcẍ dz (3.62)

where c is the cross-sectional area of the pile. Using linear wave theory the surface
elevation is given by:

’ = ’A sin(Êt ≠ kx) (3.63)

and the horizontal particle acceleration is:

ax = ẍ = Ê2’A
cosh k(z + h)

sinh kh
cos(Êt ≠ kx) (3.64)

Utilizing the Wheeler stretching approach, substituting (3.61) into (3.62) and in-
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tegrating up to the linear surface:

FM =
⁄ ’

≠h
CM flcÊ2’A

cosh k( z
s

≠’
1+’/h + h)

sinh kh
cos(Êt) dzs

=
⁄ ’

≠h
CM flcÊ2’A

cosh k( z
s

+h
1+’/h)

sinh kh
cos(Êt) dzs

= CM flcÊ2’A
cos(Êt)
sinh kh

⁄ ’

≠h
cosh k( zs + h

1 + ’/h
) dzs

= CM flcÊ2’A
cos(Êt)
sinh kh

1 + ’/h

k
[sinh k( zs + h

1 + ’/h
)]’≠h

= CM flcÊ2’A
cos(Êt)
sinh kh

1 + ’/h

k
[sinh kh ≠ sinh(0)]

= CM flcÊ2’A cos(Êt)1
k

(1 + ’/h)

= CM flcÊ2’A cos(Êt)1
k

(1 + ’A

h
sin(Êt))

= CM flcÊ2

’A

k
cos(Êt) + CM flcÊ2

’2

A

2kh
sin(2Êt)

(3.65)

The origin is placed in the center of the pile with the z-axis pointing upwards.
The second term of (3.65) shows ’2

A dependence, proving the non-linear e�ect of
the Wheeler stretching implementation, introducing a sum-frequency force in finite
water depth. Thus, the stretched Morison inertia force inhabits a second-harmonic
contribution.

[Det Norske Veritas, 2010] suggests using a non-linear elevation record when
stretching.

3.5.4.3. Extrapolation

By using a Taylor expansion or extrapolation of linear velocities and accelerations
a model for the velocity and acceleration profiles up to the free surface can be es-
tablished. In [Det Norske Veritas, 2010], this is done up to second order (including
sum- and di�erence frequency e�ects), e.g. giving the following horizontal velocity
profile:

u(z) = u(1)(z) + u(2+)(z) + u(2≠)(z), z Æ 0 (3.66)

u(z) = u(1)(0) + ˆu(1)

ˆz
|z=0

z + u(2+)(0) + u(2≠)(0), z > 0 (3.67)
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where u(1)(z), u(2+)(z) and u(2≠)(z) the linear, sum- and di�erence-frequency ve-
locity profiles, respectively.

As mentioned, Grue’s method is only valid on deep water. [Stansberg, 2005]
compares the three methods above, concluding that both Grue’s method and the
extrapolation method perform best in deep water. Grue’s method overestimates
the fluid velocities beneath z=0, whereas Wheeler stretching works well around
the crest but underestimates around the still water level and underneath.

3.6. Ringing

One of the e�ects that may arise from non-linear wave loads on an o�shore wind
turbine is ringing. As the bottom-fixed turbines are placed in shallow or interme-
diate depths, one expects the degree of wave non-linearity to increase, and thus
the forcing leading to ringing should become more frequent. This was verified in
[Bredmose et al., 2012]. It may be especially important to assess ringing for wind
turbines compared to other o�shore structures, since the relatively larger top mass
increases their sensitivity to dynamically amplified response.

The ringing phenomenon is a transient structural response characterized as a
collection of resonant response cycles that quickly build up to a maximum be-
fore decaying at the eigenperiod with the structural damping [Haver, 2007]. It is
connected with higher-order wave-body interaction e�ects, shown to occur when a
structure is excited by high-frequency wave components close to the natural period
in combination with a large quasi-static load from a high-amplitude wave. It can
typically occur when a steep, non-linear wave impacts a pile. A few high-frequency
oscillations, usually 3rd or 4th-order wave-frequency components, has been shown
su�cient in exciting the first-mode [Chaplin et al., 1997]. The structural oscil-
lation amplitudes are proportional to ’excitation order

a , where ’a is the amplitude of
the higher-order wave component and the excitation order is the wave component
exciting the transient response. At excitation, the response shifts from peak period
to eigenperiod dominated.

A typical ringing event from a steep non-linear wave is shown in figure 3.11.
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Figure 3.11.: The upper curve shows the incident wave history, whilst the lower
curve depicts a typical ringing event shown by the measured tension
oscillations at the structural eigenfrequency in the mooring wires of
a TLP [Faltinsen et al., 1995].

It is often di�cult to di�er a ringing incident from other transient responses,
such as the response induced by slamming, because they look alike. In fact, [Welch
et al., 1999] characterizes response events from impact by breaking wave groups as
ringing incidents. In the paper it is shown that ringing-like responses are excited
by impact-like waves because they generate a continuous response spectrum, as
opposed to the discontinuous separate spectrum peaks at multiples of the first
mode, for Stokes waves.

Ringing events may be important in the design against ULS, as it is relevant in
the estimation of the characteristic loads. [Det Norske Veritas, 2014] states that
ringing is only of significance when combined with extreme first-order frequency
e�ects, meaning that it is relevant for ULS only. For FLS, on the other hand,
the phenomenon is usually not taken into consideration as it is so rare [Haver,
2007]. However, whether it is relevant for FLS is debated. This was discussed by
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mathematician J. Grue of the University of Oslo in [Vogt, 2013] (pointed out by
[Schløer, 2013]).

In [Grue and Huseby, 2002], ringing is achieved for moderately steep waves in an
irregular sea, but for larger eigenfrequency to spectral peak frequency ratios than
for the slender cylinders in [Malenica and Molin, 1994], as discussed in section
3.6.1. In addition, for both single waves and wave trains, [Grue and Huseby, 2002]
investigated a secondary load cycle that appears approximately a quarter of a wave
period after the main force peak. It creates a higher-harmonic wave force, typically
corresponding to 10-15 % of the total peak-to-peak force in the same cycle. They
found that the secondary cycles were shown to be less pronounced for single-wave
events, and that there is a slight correlation between the occurrence of a secondary
load cycle and ringing, due to the presence of a higher-harmonic load.

In [Chaplin et al., 1997], a high-speed camera was used in experiments with
waves impacting a cylindrical pile. It is shown how the local breaking of water
around the pile causes ventilation and then a collapse as the water from each side
of the cylinder meet. This gives the secondary loading cycle shown in figure 3.12.

Figure 3.12.: Illustrating the secondary load cycle. The bold dotted curve repre-
sents moment records, whilst the other curves are moment estima-
tions [Chaplin et al., 1997].

[Det Norske Veritas, 2014] only briefly mentions the ringing phenomenon, stating
that ringing can occur if the typical wave frequency is not smaller than three or
four times the lowest natural frequencies of the structure. If the natural frequency
exceeds the spectral peak frequency f

p

around five or six times then ringing will
not occur.
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The focus in the next section will be on a method which is able to capture ring-
ing in numerical simulations. [Tromans et al., 2006] and [Haver, 2007], however,
argue that there are no robust analytical methods to predict ringing. This will be
discussed further in section 3.6.2.

3.6.1. The FNV model

The FNV model sets out to estimate the force from a deep-water, large-amplitude
incident wave with a height similar to the cross-sectional dimensions of a cylindri-
cal pile. Formally, the assumptions are ‘ = k’A << 1, R

’
A

≥ O(1) and kR << 1.
The theory is derived through perturbation wrt. these wave-structure characteris-
tics, assuming a vertical cylinder extending through the fluid surface with viscous
e�ects neglected (meaning potential flow). This corresponds to the large incident
wavelength assumption suitable for the inertia-dominated responses to be studied
in this thesis. The model was developed in order to take the 3rd-order wave loads
from large waves into account. In a similar study, [Malenica and Molin, 1994],
the third harmonic of the force on a fixed circular cylinder was estimated, but
the cylinder radius R was assumed much larger than the wave amplitude ’A, so
R/’A ≥ O(1) is an essential characteristic of [Faltinsen et al., 1995]. In the pa-
per they argue that the conventional perturbation analysis employed by [Malenica
and Molin, 1994] and [Chau and Taylor, 1992] is not su�cient to evaluate ringing
because of the small-amplitude assumption.

The derivation of the FNV theory sets out by defining the total di�raction
potential „D, consisting of an incident and a scattering potential.

„D = „I + „S (3.68)

The loads are found using linear and non-linear velocity potentials. J.N. New-
man later formulated the FNV theory for irregular sea in [Newman, 1996].

In long irregular waves, the most important high-frequency loads are due to
the fluid-structure interaction, and not non-linearities in the incident waves. Thus
the incoming waves are still described using the linear potential „I , non-linearities
neglected [Newman, 1996]. The dispersion relation of „I is modified, however, so
that it is accurate beyond linear theory. A higher-order scattering potential Â is
only relevant in the inner region, i.e. r ≥ O(a), where a is the cylinder radius.
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The resulting potential is given by

„ = „I + „S + Â = „D + Â (3.69)

where „I is the incident wave field, „S is the linear scatter and Â is the higher-
order scatter. A first-order, second-order and third-order force, F

1

, F
2

and F (1)

3

,
respectively, are derived from the first-order potential „D, whilst a third-order
force F (2)

3

is found from Â [Newman, 1996].
In [Krokstad et al., 1996] first-order complete di�raction simulations, second-

order sum- and di�erence frequency simulations and third-order FNV terms are
combined to a simplified load model valid for non-slender cylindrical structures.
The model was partly developed in the Norwegian Joint Industry Project ‘Higher
Order Wave Load E�ects on Large Volume Structures’, and in the paper these
results are validated against experiments for di�erent diameter/peak wavelength
ratios. Experiments for larger diameter structures than those valid in [Faltinsen
et al., 1995] show that the FNV model significantly overestimates the second-order
term, which means that it is a�ected by far field di�raction. The overestimation
depends on the degree of non-linearity, i.e. the wave steepness. Thus, the 2nd-order
force component is reduced in the [Krokstad et al., 1996] modified FNV model by
introducing a so-called ‘fat body’ or MacCamy & Fuchs correction. Since the 3rd-
order FNV component showed satisfactory agreement with experimental values,
the unmodified term was used. Thus, the objective of [Krokstad et al., 1996] was
to formulate a single model to simulate ringing response for a large range of natural
frequencies using linear and quadratic transfer functions and the unmodified 3rd-
order FNV contribution. The resulting force model is given in equation (3.70).

FF NV (t) = 2fiflR2

⁄
0

≠h
ut(z)dz O(‘)

+ 2fiflR2 ut|z=0

’(1) + fiflR2

⁄
0

≠h
wuzdz O(‘2)

+ fiflR2’(1)(utz’(1) + wuz ≠ 2
g
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+ fifl
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—(h/R) O(‘3)
(3.70)

where —(h/a) =
s h/a

0

[3�
1

(Z) + 4�
2

(Z)] dZ. �
1

(Z) and �
2

(Z) can be found in
[Newman, 1996].

As can be seen in equation (3.70), the 3rd-order wave force is not distributed,
but acts as a point source close to the still water level. Even though the magnitude
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of the 3rd-order force is much smaller than the magnitude of the 1st-order force,
the 3rd-order moment contribution may be substantial due to the long moment
arm.

The FNV bending moment up to fourth-order steepness ‘ = k’A is given in
[Krokstad et al., 1996]:

MF NV (t) = 2fiflR2

⁄
0

≠h
zut(z)dz O(‘)

+ fiflR2

⁄
0
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zwuzdz O(‘2)

+ fiflR2 ut|z=0

’(1)2 ≠ fifl

g
R3u2 ut|z=0
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+ 2
3fiflR2utz|z=0

’(1)3 + 1
2fiR2wuz|z=0

’(1)2 O(‘4)
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1

+ fifl
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’(1)—(h/a) O(‘4)

(3.71)

where “(h/a) =
s h/a

0

[3�
1

(Z) + 4�
2

(Z)]Z dZ.
However, this bending moment may not give realistic results, since the 3rd-order

force is taken as a point force instead of a distributed force. The e�ect will be
more prominent in shallow water as the distribution will be close to the still water
level z = 0. Equation (3.71) was never validated in the experiments.

3.6.2. Selecting force model

A key premise discussed in [Lighthill, 1979] is that the mechanisms generating
viscous and inviscid force contributions are independent. Further the inadequacy
of the Morison inertia term is argued, as it neglects the loads from non-linear
potentials. With this backdrop, [Rainey, 1989] sets out to establish a non-linear
equation for the potential-flow wave loading on a slender surface-piercing structure,
aimed to replace the inertial term in the Morison equation (3.13).

The derivation of the Rainey model di�ers from the FNV method in the sense
that it was not based on a perturbation approach, but rather derived with regard
to the conservation of energy principle.

When choosing a force model to simulate realistic turbine behavior in ULS
waves it is important to consider the theory’s validity with respect to the relative
structure-wave geometry, as well as depth conditions. The FNV model is based on
the assumptions of deep water, a pile radius similar to the wave height and a large

42
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incident wavelength relative to the cross-sectional dimensions. With the [Newman,
1996] extension it is also applicable in irregular waves. [Malenica and Molin, 1994]
perturbation theory assesses the third harmonic of the fixed-cylinder force with
the pile radius much larger than the wave amplitude (R >> ’A). Rainey theory
deals with potential flow forces on a small-radius pile.

In figure 3.13 the response bending moment from di�erent order FNV loads
are simulated. The results show that the 3rd-order force creates a large dynamic
amplification since the frequency of the 3rd harmonic part of the force (the wave
frequency tripled) is close to the first natural frequency of the structure. The
ringing phenomenon is illustrated in the large transient response.

Figure 3.13.: Simulation of the FNV bending moment at the point of maximum
utilization [Suja-Thauvin et al., 2014].

It is important to di�erentiate between orders and harmonics, harmonics being
multiples of the circular wave frequency Ê, that is 2Ê, 3Ê, etc. Because of coupling
e�ects there are 1st and 3rd harmonics in the 3rd-order term and 2nd and 4th har-
monics in the 4th-order term of the FNV. So, in general, truncation at the 3rd-order
load may be too conservative since 2nd-order di�raction will not be included.

This causes problems with the perturbation convergence, as higher-order terms
include lower-order harmonics, implying that adding higher orders may cause a less
accurate result. By considering the FNV force terms it is understood that before
adding an additional order the amplitude will be conservative (overestimated),
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whereas the period may be underestimated if not enough non-linear terms are
present for high-frequency loads. The problem with perturbation schemes is that
it is not possible to determine whether the solution has converged, as one cannot
check the result with an error estimate.

The Rainey model mixes kinematic harmonics. Assuming linear kinematics it
constitutes a 3rd-order strip force. Assuming arbitrary input kinematics, however,
the global force is integrated up to the non-linear surface elevation, increasing the
order accordingly. Even higher order contributions are included in the moment
as the moment arm varies with the order of the wave steepness. As opposed to
the FNV model, where the maximum order force is of 3rd order and the maximum
order moment is of 4th order, control of the steepness order is lost when using the
Rainey procedure. According to [Tromans et al., 2006], there is agreement between
[Lighthill, 1979], Rainey theory and FNV theory up to the second-order, second-
harmonic terms when regular waves in infinite water depth are utilized. Generally
the third-harmonic, third-order Rainey and FNV forces do not correspond, but
agreement can be achieved through the surface disturbance addition FSD to the
Rainey force [Rainey, 1995]. This considers the rate of change of energy related to
the surface disturbance of a non-slender body.

The third-harmonic Rainey contribution was found to be around half of the
third-harmonic FNV term when the Â term is included [Faltinsen et al., 1995].
This implies that the third-order Rainey is unconservative on deep water.

The idea that ringing is caused by the 3rd harmonic in the 3rd-order wave load
is debated. In [Rainey, 2007], it is argued that ringing is a fully non-linear phe-
nomenon, not a weakly non-linear one, so the 3rd harmonic excitation argument
is too simple. The argued strong non-linearity is due to the fact that the ringing
vibration envelope follows the shape of the secondary loading cycle. As described
in section 3.6, the secondary loading cycle is related to the local breaking flow
of a wave around the pile circumference (see also [Rainey, 2007]), i.e. a strongly
non-linear phenomenon. It is further argued that the natural period of the pile
can be set at much higher multiples of the wave frequency than the third harmonic
and ringing would still take place.

The intrinsic assumption of utilizing the wave kinematics at the cylinder cen-
terline, instead of at the cylinder wall, as done in both the FNV and Rainey
models, may lead to an error in the integrated forces. This error depends on the
wave characteristics and cylinder radius (as the force magnitude is related to the
instantaneous wave condition at the cylinder wall).
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[Tromans et al., 2006] concludes that neither the FNV or Rainey force models
are su�cient in modeling the non-linearities that take form in the steep incoming
wave problem, especially emphasizing how they fall short in not accounting for the
secondary loading cycle. No force model that includes hydrodynamic interaction is
operated with kinematics higher than second-order, except [Malenica and Molin,
1994], but that is for regular waves only. On the basis of the importance of
incoming wave non-linearity and the neglection of the secondary load cycle e�ects,
[Tromans et al., 2006] concludes that between the Rainey and FNV models, the
Rainey model seems to be the best tool of the two in order to predict ringing.
This is due to the possibility to implement a fully non-linear kinematic model in
the Rainey equations, which is not possible in FNV theory as is it based on a
perturbation approach.

In order to take the fluid interaction with the structure into account and resolv-
ing the secondary load cycle flow around the cylinder, a CFD model can be used.
However, such a model is too CPU extensive to be applicable as a primary tool
in design, but is commonly used to benchmark other hydrodynamic force models
[Schløer, 2013].

[Det Norske Veritas, 2010] specifies how numerical structural models may be
insu�cient, implying that ringing in many cases should be validated against model
tests, referring to NORSOK N-001 and N-003. In both [NORSOK, 2004] and
[NORSOK, 2007], ringing is described and model testing is suggested in order to
verify that no important feature has been overlooked.

The reason why the FNV theory is widely used, even though it is not universally
accepted, is that it agrees well with experiments, in addition to being conservative
(truncated at the 3rd order) when its assumptions are satisfied.

It should be noted that the assumption of deep water will not be valid for large
waves at Dogger Bank. However, since the di�raction disturbance only reaches a
vertical distance in the order of magnitude ≥ O(D) beneath the surface, creating
a finite-water FNV model should be physically feasible. A simplification of such
a model will in fact be included in the numerical program in this thesis work.
Whether this will give a conservative or non-conservative result is not known [Suja-
Thauvin et al., 2014], but the outcome of the coded numerical model is discussed
in section 7.

In this thesis work, two FNV models will be employed, both a conventional deep-
water version and a variant where the finite-water form of the vertical decay of
kinematics and dispersion relation, are included (see section 6.2). To illustrate the
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non-linear e�ects captured by FNV, a Morison model with Wheeler stretching is
also included. The procedure to include a slamming model in Morison is discussed
in section 4.2.
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4 | Slamming

4.1. Fundamentals of slamming

Slamming is an impulse loading from water on a body resulting in high pressure
peaks. This can occur for instance when a ship bottom out of the water hits the
surface at high velocity or when a breaking wave impacts a wind turbine tower.
Slamming loads are characterized by having short durations and being localized
in space.

To describe the physics of slamming, [Faltinsen, 1990] simplifies the problem
to a horizontal cylinder that is forced through an initially calm water surface at
constant speed V. The assumptions of a small submergence, a blunt body form
and a two-dimensional flow are made. The submergence of the body is defined by
the lowest point being a distance Vt relative to the initial flat surface. In addition,
other assumptions are made in order to derive the slamming force magnitude:

• Irrotational flow in an incompressible fluid is assumed in order to use poten-
tial theory

• The fluid accelerations are much larger than the gravitational acceleration,
a ∫ g

• The normal vector n
1

π n
3

, meaning that the boundary condition can be
approximated ˆ�

ˆz = ≠V on z = 0 as the body enters the water

A problem arises when using the assumption of an incompressible fluid, as a
compressible air pocket will form when a flat body enters the water. The prob-
lem can be solved by using the second and third assumptions listed above. The
derivation of the resulting vertical force on the body is given in [Faltinsen, 1990],
where the Bernoulli equation and the velocity potential on the body, taken from
[Newman, 1977], are utilized.

F
3

= V
d

dt
(flfi

2 c2) = V
d

dt
A

33flatplate (4.1)

where c = c(t) is the wetted length, V is the constant cylinder velocity and
A

33flatplate is the heave added mass of a flat plate when Ê æ Œ.
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The corresponding slamming coe�cient is defined as

Cs © F
3

1

2

flV 22R
(4.2)

When approximating the wetted two-dimensional surface length, two models
are commonly used, the von Karman solution and Wagner’s approach. Since we
are interested in the hydrodynamic pressure, the wetted area due to spray can be
excluded in both approximations, as the pressure in this region will be very close to
the atmospheric pressure. The di�erence in the approximations arise from where
the wetted lengths are measured. In the case of von Karman, the wetted length is
measured from the initial calm water level, and is found directly from geometry:

c2(t) = 2V tR ≠ V 2t2 (4.3)

This results in a slamming coe�cient of Cs = fi. The value has proven too small,
e.g. by experiments in [Campbell and Weynberg, 1980], where the slamming co-
e�cient was found to be Cs = 5.15 [Faltinsen, 1990].

Wagner’s solution gives the wetted length by approximating a free-surface ele-
vation due to the body entrance (see figure 4.1). The result of this is a wetted
length of

c(t) =
Ô

V tR (4.4)

which is
Ô

2 times larger than the von Karman wetted length at the undisturbed
free surface.

Figure 4.1.: The Wagner wetted length [Wienke and Oumeraci, 2005]

The Wagner slamming coe�cient is 2fi, which is higher than the [Campbell and
Weynberg, 1980] value.

48



4.1. Fundamentals of slamming

The pressure coe�cient is found from

Cp = p
1

2

flV 2

= 4
Ò

4(V t
R ) ≠ ( x

R)2

(4.5)

giving

Cp max =
(dc

dt )
2

V 2

(4.6)

which is
Cp max, von Karman = 0.5R

V t
at |x| = 2

Ô
V tR (4.7)

for the von Karman solution and

Cp max, W agner = R

V t
at |x| =

Ô
2V tR (4.8)

for the Wagner approach.
According to the [Campbell and Weynberg, 1980] experiments, the von Karman

pressure is of satisfactory magnitude, but the position of the pressure peak is
inaccurate. Looking at the Wagner pressure peak it is approximately twice the
experimental size in magnitude, but occurs at the correct location. However,
experimental errors cannot be ruled out.

When plotting the maximum pressure in time, Cp æ Œ as t æ 0. This is
unphysical and due to the incompressible fluid assumption. A correction has to
be implemented, as the maximum pressure, called the acoustic pressure, is

pac = flceV (4.9)

where ce is the velocity of sound in water. The value of this parameter varies
dramatically depending on the amount of air in the water. In breaking waves the
amount of air is high.

For an o�shore wind turbine, analyses of the global slamming loads is an im-
portant part of the design verification. [Faltinsen, 1990] describes the derivation
of the force on a rigid cylinder entering the water at a constant velocity V. By
starting out with a momentum consideration with no incident wave e�ects and
infinite water depth, the following formula for the force is found

F
3

= d

dt
(A

33

V ) + flg� (4.10)
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where � is the submerged volume and A
33

is the high-frequency added mass in
heave.

Equation (4.10) can be modified to include incident wave e�ects, assuming linear
deep-water incident waves of

„
0

= g’A

Ê
ekzcos(Êt ≠ kx) (4.11)

and a large wavelength relative to the diameter of the cylinder, meaning that the
di�raction caused by the body can be neglected.

The modification of equation (4.10) gives

F
3

= fl�(t)dw

dt
+ flg�(t) ≠ d

dt
(A

33

(d÷
3

dt
≠ w)) (4.12)

where w is the vertical fluid velocity in the incident waves, �(t) is the instantaneous
submerged body volume and ÷

3

is the vertical motion of the body.
For a breaking wave impact, the linear wave correction will not be su�cient.

4.2. Slamming loads from waves

Global loads from wave slamming on a monopile structure are characterized by a
short impact duration, after which the structure will oscillate transiently at its first
eigenfrequency, decaying with the structural damping. Such a load can be caused
by either a non-breaking wave of large steepness or a breaking wave. A plunging
breaker develops when a wave’s steepness becomes so large that it unstabilizes. At
this point, particle velocities in the crest exceed that of the wave celerity, implying
a transition from from potential to kinetic energy. Due to their short duration,
wave forces from breakers on a structure cannot be analyzed using conventional
non-breaking wave force formulae, such as the conventional Morison equation. As
shall be described in this section, an approach has been to add an impact force
term FI to the Morison equation in order to account for the global slamming force.

In regions where bottom-fixed wind turbines are commonly placed, such as sand
banks or other shallow areas, breaking waves often arise and propagate in the
proximity of the turbine towers. However, extreme stresses from wave loads are
most often due to large, very non-linear, but non-breaking waves [Okan et al.,
2002]. Nonetheless, with increased shallow water activity within the o�shore wind
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4.2. Slamming loads from waves

power industry, much research has been done on deterministic global slamming
loads from breaking waves, some of which will be presented in this section.

According to [Marino et al., 2013], the slamming loads from steep and breaking
waves may also induce wind turbine ringing. The ringing occurrence discussed
in the paper is found to be a result of either hydroelastic interaction stemming
from high-frequency, non-linear wave components, or from ringing vibrations at
the eigenfrequency from the impact of breaking waves. Breaking waves have been
shown to induce two high-frequency responses, one very-high-frequency vibration
for the second tower fore-aft eigenfrequency and one at the natural frequency of
the structure, resulting in a large amplification of the pile top displacement.

In figure 4.2 from [Marino et al., 2013], linear and non-linear wave elevation mod-
els (top) and their resulting base shear forces (second), base overturning moment
(third) and top displacements (bottom) are shown to illustrate the inadequacy of
linear models in steep irregular sea states.

Figure 4.2.: Ringing from breaking and non-braking waves for linear (blue) and
non-linear (red) wave elevation models [Marino et al., 2013].

Impact from a steep non-breaking wave occurs at approximately t=3095 s, am-
plifying the oscillation frequencies for around one T

p

=15 s period, followed by
smaller ringing events, whose oscillation amplitudes depend on the local wave
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steepness. The breaking wave impact, seen to give much larger forces and re-
sponses than for the non-breakers, is found at 3168.5 s.

[Marino et al., 2011] suggests that there is currently no systematic and accurate
method to simulate these loads on wind turbines since the commonly used wave
theories cannot model highly non-linear e�ects, but only irregular linear waves or
weakly non-linear regular waves. This concern was also discussed in section 3.4.

The hydrodynamic model used in [Marino et al., 2013] and figure 4.2 is based
on fully non-linear potential flow, utilizing an additional term for the impulse load
in the Morison equation, as established in [Wienke and Oumeraci, 2005]:

f(t) = fD(t) + fM(t) + fI(t) (4.13)

[Wienke and Oumeraci, 2005] assessed the impulsive term by conducting large-
scale experiments using plunging breakers to measure the impact on vertical and
inclined slender cylinders.
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Here, tÕ = t ≠ R

32v1
and v

1

is the impact velocity. v
1

is di�cult to determine, but
common approximations are to use Grue’s method or stream function theory. In
[Wienke and Oumeraci, 2005] the impulse duration for a vertical cylinder is found
from

td = 13
32

R

V
(4.15)

assuming that the area of impact is struck by the vertical face of a plunging breaker,
as illustrated in figure 4.3.
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Figure 4.3.: The impact area for a plunging breaker [Wienke and Oumeraci, 2005].

The load from a breaking wave in the proximity of the wind turbine tower
depends on the wave breaking type, since the wave kinematics are di�erent for
each case.

• Spilling breakers: Occur in deep and shallow water

• Plunging breakers: Occur primarily in shallow waters, but also frequent in
deep water

• Surging breakers: Occur in shallow water only

These are categorized cases of breaking waves, but there also exist intermediate
variants which are more di�cult to classify [Myrhaug, 2001].

Figure 4.4.: Di�erent types of breaking waves [Kühn, 2001].
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The surf similarity parameter ’, which depends on the seabed slope –, deter-
mines the type of breaking wave

’ = tan –

Û
gT 2

2fiH
(4.16)

For a plunging breaker, the impact force in [Det Norske Veritas, 2014] is found
by

F = 1
2flCsAu2 (4.17)

where A is the exposed area of the cylinder. This area depends on where the wave
breaks relative to the structure. The slamming coe�cient for a smooth cylinder
is limited by 3.0 Æ Cs Æ 2fi. [Det Norske Veritas, 2014] uses the assumed impact
duration (4.15) for a plunging wave that breaks immediately in front of a vertical
cylinder.

As seen in equation (4.17) the impact force is proportional to the normal com-
ponent of the breaker velocity squared, similar to the drag term in the Morison
equation. The di�erence between these two cases, however is the nature of the
impact, as the drag loading is steady state, whilst the slamming impact force is of
short duration resulting in a transient response pattern [Haver, 2007].

For spilling and surging breakers the force on a pile is calculated in a strip-wise
manner, where the instantaneous force per length is given by

f = 1
2flCsDu2 (4.18)

The slamming coe�cient has been estimated empirically and is given in [Nestegård
et al., 2004]:

Cs(s) = 5.15[ D

D + 19s
+ 0.107s

D
] (4.19)

Here, 0<s<D describes the penetration of the wave surface, i.e. the horizontal
distance from the impact point on the cylinder to the sloping water surface cor-
responding to s = Ct, giving Cs(D) = 0.8 and Cs(0) = 5.15 as in [Campbell and
Weynberg, 1980].
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4.2. Slamming loads from waves

Figure 4.5.: The [Nestegård et al., 2004] slamming coe�cient as a function of sub-
mergence.

In [Nestegård et al., 2004], the viscous drag term and the slamming force term
are merged into one celerity squared-dependent term, as in equation (4.18). Below
the wave trough and when the cylinder is fully submerged beneath a wave crest,
the force model corresponds to the conventional Morison equation with Cs(D) =
CD = 0.809 according to the limit value s=D of equation (4.19). However, it is
important to note that in general, the slamming force and the drag term of Morison
are not in phase in the [Nestegård et al., 2004] model, as the slamming force only
acts as an addition to the drag force. Thus, the slamming coe�cient has to be a
function of time, Cs = C · s(t). This is found to be true as s = s(z, t). A rendition
of the resulting load, with and without the slamming term methodology, is found
in figure 4.6.
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Figure 4.6.: The resulting load, with and without the slamming load component
[Nestegård et al., 2004].

The slamming model for a spilling or surging breaker from [Nestegård et al.,
2004] and [Det Norske Veritas, 2014] will be implemented in the numerical program
of this thesis.

The time-dependent slamming coe�cient is defined in equation (4.20), and is in
fact the basis of equation (4.19), assuming a constant phase velocity C = u during
the impact duration.

Cs = 2
flD

dA2D

ds
(4.20)

A2D(s) is the two-dimensional high-frequency added mass limit, which depends on
s. Equation (4.20) shows that C

s

is a function of the rate of change of added mass
with submergence. This is the dominant part of the loading during the impact
of a steep wave on a vertical cylinder and imperative for modelling the resulting
high-frequency response, which is not obtainable from the conventional Morison
load. This is an essential point, as it is the main objective of introducing the
slamming coe�cient.

The Campbell and Weynberg experiments were performed utilizing a horizontal
cylinder penetrating a flat water surface, giving a uniform velocity distribution,
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4.2. Slamming loads from waves

except at the ends. This is in line with the assumption of a vertical breaking wave
front, disregarding the end e�ects. The slamming load assumptions can be fulfilled
to a large extent if looking at specific deterministic wave breaker impact incidents.
However, if the force model of [Nestegård et al., 2004] is to be used for entire
wave elevation time series, where the majority of the waves are non-breaking, the
assumption of a uniform wave celerity is faulty as the particle velocity varies with
z.

The horizontal water particle velocity of equation (4.18) is assumed equal to the
phase velocity, i.e. the wave celerity of the incoming wave. In [Nestegård et al.,
2004] it is estimated using linear theory. It varies sinusoidally, from u = –c at the
crest and trough to u = 0 at the MWL, where the steepness parameter – (– Æ 1
and – = 1 for a breaking wave) is assumed equal to 0.3 for all cases. Wheeler
stretching is utilized in the wave elevation.

[Det Norske Veritas, 2014] characterizes ship collision as a primary concern in
ALS. In the o�shore wind industry, large global slamming loads are treated as
ALS loads with a certain predicted frequency and magnitude. However, since ship
impact is considered more crucial in the risk assessment, global slamming loads
are not dimensioning.

A problem with many of the established slamming methods is that they o�er no
stochastic view of the breaking wave impacts, so they are di�cult to implement
in dimensioning.

In [Choi, 2014], a comparison of existing conventional methods using wave and
structural analysis models to calculate breaking wave slamming, is given. As in
[Marino et al., 2013], the structural analysis models that were considered use an
impulsive slamming force F

I

to estimate the breaking wave impact:

FT = FM + FD + FI (4.21)

The impulsive slamming force is found through

FI = flRC2

b Cs⁄c÷b (4.22)

where R is the pile radius, Cb is the wave celerity at breaking, Cs is the slamming
coe�cient, ⁄c is the curling factor and ÷b is the maximum surface elevation at
breaking. The di�erence between (4.17) and (4.22) mainly lies in how the impact
area is estimated.
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The impact force in equation (4.22) can be split into the two-dimensional line
force (4.23) multiplied by the factor ⁄c÷b.

fL = CsflRC2

b (4.23)

The impact of a breaking wave spreads out from a single point in the radial
and tangential direction, as in figure 4.7. This means that the impact can be
assumed to occur simultaneously along the entire impacted area. Thus, the three-
dimensional impact force FI corresponds to the line force fL multiplied by ⁄c÷b,
which is the impact area height (see figure 4.3) [Wienke and Oumeraci, 2005]:

FI =
⁄

fL dz = fL · ⁄c · ÷b (4.24)

Intuitively, this area height factor has a great e�ect on the magnitude of the
impact force. A low wave with a large curl will generate a small FI .

Figure 4.7.: The impact of a breaking wave [Wienke et al., 2005].

A problem with these methods is that the slamming coe�cient Cs and curling
factor ⁄c need to be determined empirically. So far, experiments to establish
these parameters have shown considerable scatter, even with nominally identical
waves. In table 4.1 from [Choi, 2014], values from several experimental studies are
compared:

58



4.2. Slamming loads from waves

Slamming
coe�cient

Curling
factor

Impact
distribution

[Goda et al., 1966] fi 0.4-0.5 Uniform
[Sawaragi and Nochino, 1984] fi 0.90 Triangular

[Tanimoto et al., 1986] fi 0.5-0.66 Triangular
[Wienke and Oumeraci, 2005] 2fi 0.2-0.6 Uniform

[Arntsen et al., 2011] 4.3 0.67 Triangular

Table 4.1.: A comparison of slamming coe�cients and curling factors, from [Choi,
2014].

The source concludes that estimating the magnitude of a breaking wave impact
from empirical coe�cients is inaccurate. A reason is that the impacts greatly de-
pend on the e�ect of air entrapment in pockets and the entrainment of air bubbles.
Breaking patterns and the asymmetry of the waves cause the air entrapment to
di�er slightly for each experiment test. Also, only minor changes in bathymetry
have been shown to have a large e�ect on the impact force. Finally, the structural
response can cause dynamic amplification due to hydroelastic e�ects. The struc-
tural response will be large if the breaking wave impact force frequency is close to
the structure’s natural frequency.

[Wienke et al., 2005] compared the time history of the impact force FI in [Goda
et al., 1966] with the one elaborated in [Wienke and Oumeraci, 2005] (equation
(4.14)), as shown in figure 4.8. This is just one example of the discrepancies in
slamming models. The force decrease is slower and the initial slamming coe�cient
value is lower in the [Goda et al., 1966] model.
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Chapter 4. Slamming

Figure 4.8.: Comparison of the slamming coe�cient (C
s

) time histories for two
impact force models [Wienke et al., 2005].

The most important di�erences between the two models lie in two assumptions
[Wienke et al., 2005]:

• Pile-up e�ect
• Radial spreading

The radial spreading has already been discussed, implying that the impact can
be assumed simultaneous along the cylinder height. This assumption is most
accurate for a vertical plunging breaker wall, as in figure 4.3. When there is a
non-negligible angle between the breaker front and the pile, the model inaccuracy
must be considered. The pile-up e�ect is the increased wetted surface taken into
account by Wagner in figure 4.1, which means that the maximum force increases
and the impact duration is reduced. [Goda et al., 1966] rather used von Karman
theory, where the wetted surface is calculated by considering an undisturbed flat
water surface. The novelty of the [Goda et al., 1966] paper, as opposed to the
original [von Kármán, 1929], was the inclusion of the impact area height ⁄c÷b.

With a known structural response function, it is possible to predict the evolution
of the force of a slamming incident. The increased impact duration of [Goda et al.,
1966] introduces a lag in the structural response and thus the force history. This
is illustrated in figure 4.9.
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4.2. Slamming loads from waves

Figure 4.9.: Force development for a breaking wave. A comparison of the Wienke
and Goda force models [Wienke and Oumeraci, 2005].

At global impact, the structure will start to oscillate, generating a dynamic
force contribution in addition to the quasi-static one. The resulting dynamic part
of the force is found by subtracting the quasi-static part from the total force, as
illustrated in figure 4.10A-B.

Figure 4.10.: Slamming load composition [Wienke et al., 2005]. Figure A shows
the total slamming load history of a breaking wave. Figure B shows
the quasistatic load history, whilst figure A-B shows the resulting
dynamic part of the force.
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Chapter 4. Slamming

The frequency of the dynamic force (A-B) oscillations is the eigenfrequency of
the pile, and the force amplitude depends on the amplitude of the impacting wave
[Wienke and Oumeraci, 2005].

[Hallowell et al., 2015] points out that the [Wienke and Oumeraci, 2005] exper-
iments are performed under idealized conditions in a wave flume, whilst the con-
ditions for ocean-installed o�shore wind turbines are more complex. The model
does not consider non-linear irregular waves, free surface particle velocities or the
spatial variation of the slam. The varying real-life breaking wave characteristics is
a limitation of the [Wienke and Oumeraci, 2005] model.
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5 | Model Testing of a Pile with a Flexible Ro-
tational Spring

The objective of the model testing was to provide data for stochastic analyses and
the deterministic validation of load models in the numerical response program.
ULS sea states were run in the experiments.

The structure represents an idling turbine, as no aerodynamic damping was
taken into account. Waves were the only environmental load included. Wave ele-
vations, pile-top accelerations, shear forces and response moments were measured
for post-processing.

5.1. Principles of model testing

Performing model tests can be a valuable demonstration of the performance of a
structural design. The accuracy of the test data increases with model size, but so
does the trial cost.

In order to achieve similar behavior in model and full scale it is necessary to
utilize scaling laws when constructing the model. For similarity in forces the
following conditions apply in testing [Steen, 2014]:

• Geometrical similarity: Same shape for model and full scale, i.e. a con-
stant length relation ⁄ = LF /LM exists for all structural dimensions and
environmental length scales.

• Kinematic similarity: Velocity and acceleration ratios have to be equal in
model and full scale, implying that an incoming flow will encounter the same
relative geometrical paths in both scales.

• Dynamic similarity: The di�erent force components make out the same pro-
portions of the total force in model and full scale.

Satisfying di�erent scaling laws simultaneously is usually not achievable in a
model test. Common practice is to utilize Froude scaling, where similarity in the
Froude number FN is given as [Chakrabarti, 1994]:

FN = v2

M

gDM
= v2

F

gDF
(5.1)

63



Chapter 5. Model Testing of a Pile with a Flexible Rotational Spring

which is established by demanding similarity in the ratio between inertia and
gravitational forces:

Fi

Fg
Ã flu2D2

flgD3

= u2

gD
(5.2)

Similarity in this force ratio is achieved through equality in Froude number as well
as geometrical and kinematic similarity.

Froude number similarity is generally obtainable in a flow with a free surface
as the gravitational e�ects dominate, whilst other influences like viscosity, surface
tension and roughness are often negligibly small [Chakrabarti, 1994]. In Froude
scaling, the model and full scale accelerations are equal [Chakrabarti, 1994].

u̇M = u̇F (5.3)

This is called Froude’s law.
Relevant sizes are scaled according to the geometric similarity, i.e. LM = ⁄LF .

It gives uM =
Ô

⁄LF and FM = ⁄3FF , since F = mg, where the mass m = flL3

and the acceleration is equal. The moment is found by MM = ⁄4MF . Some of the
scaled sizes are illustrated in figure 5.1.

Figure 5.1.: Froude scaling of dimensional parameters [Chakrabarti, 1989].
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5.2. A discussion on the model roughness

The Reynolds number Re is defined as the ratio between inertia forces and viscous
forces [Chakrabarti, 1994]:

Fi

Fv
Ã flv2D2

µvD
= flvD

µ
= vD

‹
= Re (5.4)

Obtaining similarity in Reynolds number is usually not possible in model testing
due to a much lower flow velocity in the model tank. Thus, in order to accomplish
geometrical similarity and to realistically model viscous e�ects for large Reynolds
numbers, an additional surface roughness is introduced to compensate for the
di�erences in scale.

For structures whose dimensions are of one order of magnitude smaller than
the wavelengths, the wave forces are said to depend on the Reynolds number
[Chakrabarti, 1994], i.e. the forces generally no longer scale with ⁄3. When
O(D) ≥ O(⁄) the viscous drag forces will be negligibly small compared with the
inertia forces and Re becomes insignificant.

The Keulegan-Carpenter number KC is a commonly used parameter to deter-
mine the relative importance of drag and inertia.

KC = umax T

D
(5.5)

where umax is the maximum horizontal water particle velocity, T is the wave period
and D is the pile diameter. Similarity in KC is obtained if the wave height/cylinder
diameter-ratios are equal in model and full scale. KC follows Froude’s law, but
the inertia and drag coe�cients CM and CD, however, do not, as they depend on
Re.

The drag force coe�cient dependency on Re is large in the sense that it varies
with the state of the flow regime, which is roughly characterized as either laminar,
transitional or turbulent. In the turbulent flow regime CD is almost constant with
Re. Empiric testing shows that for Re < 105 the boundary layer flow will most
likely be laminar, whilst turbulence occurs for Re > 106. In model testing, the low
flow velocity and small model dimensions most often lead to a Re in the laminar
range, whilst it is turbulent in full scale. This may have a large impact on the drag
force, as a laminar flow causes a considerably higher CD (see figure 5.2). When
using Froude scaling, corrections for the Re can be employed. Also, flow tripping
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is often applied, inserting a roughness farthest upstream on the model in order to
trip a laminar flow to become turbulent.

Figure 5.2.: CD variation with Re [Chakrabarti, 1989].

By assuming linear wave theory the particle velocity can be written

u = u
0

cos Êt (5.6)

giving a particle acceleration of

u̇ = ≠Êu
0

sin Êt (5.7)

which substituted into the nondimensional force from the Morison equation (3.13)
gives [Chakrabarti, 1989]:

f
1

2

flDu
0

2

= ≠fi2CM

KC
sin Êt + CD|cos Êt|cos Êt (5.8)

from which the ratio between the nondimensional drag and inertia force can be
established:

fD

fI
= CDKC

fi2CM
(5.9)

[Chakrabarti, 1989] compares the intermediate and deep water ratio of the max-
imum total drag and inertia forces on a cylinder extending from the sea bed to the
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mean water level:

FD

FI
= CD KC

2fi2CM

2kd + sinh 2kd

2sinh2 2kd
intermediate depth

FD

FI
= CD KC

2fi2CM
deep water

(5.10)

Disregarding CD and CM , which are almost constant in a turbulent regime, the
deep-water relation is seen to only be a function of KC, whilst the intermediate
depth ratio also depends on the depth parameter kd. At low KC numbers the
total force is clearly inertia dominated. At KC = 4, F

D

F
I

= 10 %, increasing the
maximum total force by less than 0.5 % (due to the relative phase) [Chakrabarti,
1989].

In the model testing performed in this thesis work a 144 mm-diameter cylinder
is to be tested. With a 1:48 scale the corresponding full-scale diameter is 6.9 m.

As a preliminary illustration of how the roughness should be considered in the
ULS model testing, figure 5.3 is utilized. [Mathiesen et al., 2014] gives the 50-year
return period maximum significant wave height for Creyke Beck B location 2, as
Hs,max = 10.2 m, with a corresponding peak period Tp = 15.2 s. As an estimate,
linear wave theory is employed with the given Hs, Tp values and the 20.9 m depth.
The maximum particle velocity at the MWL is found to be umax = 3.7 m/s.

KC = umaxT

D
= 3.7 · 15.2

6.9 = 8.2 (5.11)

Even if the specified KC number in figure 5.3 is higher (KC = 20), the curves
are used an illustrative exercise, giving an indication to how the roughness should
be taken into account. The full scale Reynolds number will be

ReF S = umaxD

‹
= 3.7 · 6.9

10≠6

= 2.6 · 107 (5.12)

whilst the model scale Reynolds number is approximately

ReMS = ReF S/⁄1.5 = 3.5 · 105 (5.13)

Looking at figures 5.3 it is understood that the C
D

and C
M

are in a Re-sensitive
region for a Reynold number of O(105). By introducing an increased roughness,
e.g. by fastening sand paper to the cylinder surface, a leftward shift of the curves
would imply more stable C

D

and C
M

parameters for the Re range of the model
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scale testing. However, considering the model-scale Re in equation (5.13), one
could argue that for the largest wave incidents, the Reynolds number is su�ciently
high to have entered stable C

D

, C
M

regions.

(a) CD as a function of Re and roughness (b) CM as a function of Re and roughness

Figure 5.3.: CD and CM variation with Re and roughness (KC = 20). From
[Sarpkaya, 1976], reprinted in [Sarpkaya and Isaacson, 1981].

With 10 cm marine growth the full-scale roughness is k/D=1/69. Reading o�
figure 5.3 with the calculated parameters, the following CD and DM values are
found.

Model scale
(smooth)

Full scale
(k/D=1/69)

CD 0.65 1.85
CM 1.8 1.2

Table 5.1.: Approximate CD and CM values in model and full scale.

Despite the reduction of model scale e�ects with roughness, it was decided
against testing with a rough model. By introducing a new parameter of which
the e�ects were uncertain, both a smooth and rough model should have been
tested to understand the viscous e�ects. However, due to time limitations in the
testing facility, only a smooth model was used, as testing with a rough model may
in fact have introduced more questions than answers. Even though the quality
of non-ringing loads may be less robust, many studies on ringing have been per-
formed using smooth models, as it has been shown that ringing is independent of
the surface roughness [Krokstad, 2015]. Thus, a smooth model was chosen as not
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5.3. Irregular sea

to risk underestimating the frequency and e�ect of ringing, since the maximum
loads are the primary concern in this thesis.

5.3. Irregular sea

When looking at the sea surface its irregular nature is evident and thus it has to be
described by a combination of regular waves of di�erent wave frequencies. A first
approximation to this is long-crested waves, in which all waves propagate in the
same direction. [Myrhaug, 2007] gives the surface elevation of long-crested waves
as

’(x, t) =
Nÿ

n=1

’An cos(Ênt ≠ knx + ‘n) (5.14)

where ’An and ‘n are the wave amplitude and relative phase of wave n, respec-
tively. The phase angles are assumed stochastically independent with an identical,
rectangular distribution.

For short-crested waves a propagation direction ◊ is introduced for each of the
di�erent sinusoidal wave components. Similarly as for long-crested waves, the wave
components are summed to give the surface elevation. For short-crested waves,
however, a double sum is used to account for the propagation directions.

’(x, y, t) =
Iÿ

i=1

Jÿ

j=1

’Aij cos(Êit ≠ kix cos ◊j ≠ kiy sin ◊j + ‘ij) (5.15)

Using a directional wave spectrum S(Ê, ◊) for ’ as a measure of the wave energy
density, the volume within S(Êi, ◊j)�Ê�◊ is the total wave energy per unit area
for the wave components within the small intervals �Ê and �◊. Here, Êi and ◊j

are the middle values of the respective intervals. By letting �Ê, �◊ æ 0, the total
wave energy per unit area can be written

E

flg
=

⁄
2fi

0

⁄ Œ

≠Œ
S(Ê, ◊) dÊ d◊ (5.16)

As 1

2

’2

Aij is also a measure of the wave energy per unit area for �Ê�◊, the wave
amplitudes at a certain frequency and direction can be found by [Myrhaug, 2007]

’Aij =
Ò

2S(Êi, ◊j)�Ê�◊ (5.17)
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The standardized wave spectra assume a stationary and ergodic wave process
and the surface elevation has a Gaussian distribution with zero mean. The sta-
tionarity implies that within a short time interval the mean and variance will be
constant, whilst ergodicity implies that a single realization can be assumed repre-
sentative for the wave process.

Wave statistics can be derived from the wave spectrum, many of which are
defined through spectral moments, given by:

mÊ
n =

⁄ Œ

0

ÊnS(Ê)dÊ (5.18)

The significant wave height, i.e. the mean of the highest third of the waves in a
sea state, is estimated by

Hm0

= 4Ô
m

0

(5.19)

where m
0

is the zero moment, corresponding to the variance, i.e. the area under
the spectrum. Hm0

is the estimate of H
s

when it is calculated from the spectrum.

A 20-min to 3-hour sea state duration is usually assumed [Myrhaug, 2007]. In
this thesis, 3-h stationarity is utilized, giving a constant peak period and significant
wave height within this time interval.

The JONSWAP (‘Joint North Sea Wave Project’) spectrum is commonly used
to describe pure-wind sea states in the North Sea. It is a three-parameter spec-
trum defined by the peak period T

p

, the significant wave height H
s

and the peak
enhancement factor “. The empirical “ factor applied on the Pierson-Moskowitz
spectrum to achieve JONSWAP, is based on hindcast data from North Sea mea-
surements.

S(f) = 5
16H2

s Tp( f

fp
)≠5exp[≠5

4( f

fp
)≠4](1 ≠ 0.287ln “) “

exp[≠0.5(

f≠f

p

f

p

‡

)

2
] (5.20)

is found in [Mathiesen et al., 2014] with

‡ =
Y
]

[
0.07, for f Æ fp

0.09, for f > fp

(5.21)

and
“ = 42.2(2fiHs

gT 2

p

) 6
7 (5.22)
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[Mathiesen et al., 2014] suggests that the TMA spectrum may be proposed
for the Dogger Bank area in a later version of the metocean report. The TMA
spectrum is a finite-depth modified variant of the JONSWAP spectrum, based on
measurements from Bockstigen in the Baltic Sea [Bergdahl, 2009]. In [Det Norske
Veritas, 2010], ST MA(Ê, d) is given by

ST MA(Ê, d) = SJONSW AP (Ê) „(Ê, d) (5.23)

where „(Ê, d) is a dimensionless, frequency-dependent depth function that redis-
tributes the spectral values with Ê:

„(Ê, d) =
Ê5

ˆk
ˆÊ

2g2k3

= cosh2 kd

sinh2 kd + Ê2d
g

(5.24)

Use of the spectrum is valid where refraction and di�raction are negligible,
meaning that the bathymetry slope is small (Æ 1 : 100) and sea bed characteristics
are smoothly varying [Bishop and Donelan, 1989]. Also, the wind sea is assumed
to be in a steady state condition, implying that the use of the TMA spectrum in
a fetch or duration limited region would be conservative.

An important aspect when considering the TMA-spectrum is that it considers
the dissipation of energy due to shallow water e�ects, meaning that compared to
the JONSWAP spectrum, energy is lost. This is illustrated by the „ factor in
figure 5.4.

Figure 5.4.: The frequency and depth-dependent „ parameter of the TMA spec-
trum, given as a function of Ê [Bergdahl, 2009].

For the experiments in the tank, the irregular time series were generated using
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IrregWaveSeries.m for k waves up to the Nyquist frequency. The wave elevation
in the time domain is found through the real part of the inverse discrete Fourier
transform applied on the complex wave components in the frequency domain (Xk),
shown in equation (5.30). Xk corresponds to the amplitude of the waves of each
frequency component and includes the relative component phases, as indicated in
equation (5.25). The procedure to find the wave elevation, which is applied in
Realize.m (see appendix D), for k=N/2 waves is given by [Newland, 1993]:

Xk = ak ≠ ibk = ’An e≠i‘
n (5.25)

For a continuous function, ak and bk are given by

ak = 1
T

⁄ T

0

’(t) cos(ÊN/2

t) dt (5.26)

bk = 1
T

⁄ T

0

’(t) sin(ÊN/2

t) dt (5.27)

whilst for a discrete series, equation (5.25) can be rewritten as

Xk = 1
T

Nÿ

n=1

’An e≠iÊ
N/2 n�t�

= 2
N

Nÿ

n=1

’An e≠iÊ
N/2 n�t, k œ [1, N/2 ≠ 1]

(5.28)

where � = T
N/2

, Xk are the complex wave components, N is the number of sampling
points, T is the time duration, �t is the time spacing between each sampling point
and ÊN/2

is the Nyquist frequency, which is the largest frequency included in the
time series. It is found by

ÊN/2

= 2fik

T
= 2fi N/2

T
= fiN

T
= fi T/�t

T
= fi

�t
(5.29)

The wave amplitudes for each frequency component in the spectrum are found
using the long-crested wave reciprocal of equation (5.17), i.e. ’An =

Ò
2S(Ên)�Ê

up to N/2-1 [Myrhaug, 2007].
The time-domain wave elevation can now be found from the real part of the
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inverse discrete Fourier transform of Xk:

’n = a
0

+
N/2ÿ

n=1

(ak cos(ÊN/2

n�t) + bk sin(ÊN/2

n�t)) (5.30)

where
a

0

= 1
N

Nÿ

n=1

’An (5.31)

and
aN/2

= 1
N

Nÿ

n=1

’An cos(ÊN/2

n �t) (5.32)

In the MATLAB implementation the user specifies a wanted time step (the
sampling frequency of the wavemaker is 50 Hz), the ramp duration at the beginning
and end of the time series (applied to avoid abrupt wavemaker motion) and the
total duration of the time series (3-h sea states were used in this thesis).

Each seed has a random, uniformly distributed phase between 0 and 2fi, so the
irregular waves can be generated using the linear wave process equation (5.14).
In order to be able to reproduce the time series the rng function was used in
MATLAB. For a specific seed number, rng(seed) generates the same random num-
ber to be used in the specification of the phase. In this thesis, the seed number
was chosen as a function of of the run number (1-20, as there are 20 seeds) and
H

s

, implying that for the same significant wave height on di�erent water depths,
the same phases are selected. This enabled an explicit analysis of the e�ects of
changing the water depth, as two specific di�erent-depth seeds could be compared
directly.

5.4. Wavemaker theory

A wavemaker theory that has proven to provide satisfactory regular and irregular
wave series in the small wave flume at MARINTEK is the Biésel transfer function
for a piston wavemaker, equation (5.33).

H

S
= 2 cosh(2kh) ≠ 1

sinh(2kh) + 2kh
(5.33)

It is based on linear potential flow theory, meaning that the wave number k can
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be found from the linear dispersion relation Ê2 = kg tanh kh. H/S is the wave
height-to-stroke ratio, where H is the linear wave height. The Taylor-linearized
Biésel equation is derived assuming small stroke displacements and velocities. A
complete derivation is not going to be provided here, but interested readers can
consult [Dean and Dalrymple, 1991].

Figure 5.5.: The Biésel transfer function [Dean and Dalrymple, 1991].

The MATLAB-generated time series that were run in the wave tank corre-
sponded to the ideal time series appearing at the wavemaker. As the wave speed
depends on the wave period, the time series were not the same when they arrived
at the structure. In a stochastic analysis this does not matter as the energy of the
sea state is the same with or without an x-translation of the time series, i.e. H

s

and T
p

remain the same.
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5.5. MATLAB implementation

The MATLAB routines utilized in the generation and post-processing of regular
and irregular waves are shown in figures 5.6 and 5.7, respectively. The yellow
entries are main programs, the mint-colored entries are subroutines and the light
gray are data files. The green arrows indicate input, whilst the red are output.

In the generation of regular waves, findk.m is used to determine the wave num-
ber in order to find the wave height for the given steepnesses. MechTF.m and
biesel.m are the mechanical and wave height-to-stroke transfer functions, respec-
tively, whilst write2cml.m writes the wavemaker input file, containing the stroke
and the trigger signal for saving measured data. CheckRegular.m is the regular
post-processing routine handling test output, as found in section 7.2.

Figure 5.6.: Flow chart for generating and post-processing the regular waves.

The irregular waves are generated using the Realize.m routine, following the
procedure presented in section 5.3. The JONSWAP spectrum is utilized, specified
by the Pierson Moskowitz spectrum multiplied by a peak enhancement factor “.
CreateBatch.m generates the .dat wavemaker input file using the transfer functions
and write2mcl.m, just as for the regular waves.
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The binary files containing the measured test data are read using the cat-
man_read.m routine in the irregular post-processing program CompareFiles.m.
Through Fourier analyses, the subroutine Compare.m finds the sea state values, H

s

and T
p

, for the wavemaker input and output specified ’run#.dat’ and ’9000_out-
put#.dat’, respectively.

Gumbel.m finds the 0.05 and 0.95 confidence intervals for the Gumbel distribu-
tions and GumbelPlot.m plots the Gumbel regression line for the measured shear
forces and moments. A Butterworth filter routine is included to separate the peak
frequency-dominated responses and the eigenfrequency-dominated responses, as
in figure 7.31. CompareSpectra.m and CompareFMSpectra.m set up the resulting
wave spectrum and force and moment spectra. CompareHsTpPlot.m visualizes
the measured H

s

, T
p

values for each seed.
The post-processing is covered in section 7.

Figure 5.7.: Flow chart for generating and post-processing the irregular waves.

76



5.6. Dogger Bank site characteristics

MATLAB version R2014b has been utilized in the thesis work. The delivered
routines are listed in appendix D and attached as a compressed file in the electronic
submission. All the routines included in delivery are developed in collaboration
with Loup Suja-Thauvin, except where otherwise specified, that being the Biésel
transfer function, biesel.m (by Trygve Kristiansen of MARINTEK) and a routine
to find the wave number, findk2.m (by prof. II Jørgen Krokstad).

5.6. Dogger Bank site characteristics

Statkraft has part ownership and is responsible for the development and operation
of the wind turbine park at Creyke Beck B (see figure 5.8), enclosing locations 1,
2 and 3 in figure 5.9. Thus, these are of primary concern when selecting sea states
for model testing. Since met mast measurements are available for location 2, only
this position will be considered. Wind loads are not a concern in this thesis, but
the possibility to employ met mast measurements and wave load tests for the same
location can be valuable in other work springing out from the testing. Metocean
data from [Mathiesen et al., 2014] will be utilized in the test specifications.

Figure 5.8.: The Dogger Bank Creyke Beck locations [Royal HaskoningDHV, 2013].
The area marked yellow is Creyke Beck B.
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Figure 5.9.: Metocean data locations at Dogger Bank [Mathiesen et al., 2014].

5.6.1. Contour plot for location 2 of Creyke Beck B

The contour plot to be used in testing is calculated using the [Mathiesen et al.,
2014]-recommended LoNoWe (Lognormal-Weibull) significant wave height distri-
bution fH

s

, equation (5.35). The contours are visualized using PlotHsTpGraph.m
(see appendix D). The long-term variation of sea states is given by the joint PDF
for Hs and Tp:

fH
s

T
p

(hs, tp) = fH
s

(hs) · fT
p

|H
s

(tp|hs) (5.34)

Here, the LoNoWe distribution of Hs is

fH
s

(hs) =
Y
]

[

1Ô
2fi – h

s

exp(≠ (ln(h
s

)≠◊)

2

2–2 ), for hs Æ ÷
—
fl (h

s

fl )—≠1 exp[≠(h
s

fl )—], for hs > ÷
(5.35)

and the conditional lognormal distribution of Tp is

fT
p

|H
s

(tp|hs) = 1Ô
2fi ‡ tp

exp(≠(ln(tp) ≠ µ)2

2‡2

) (5.36)
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where
µ = a

1

+ a
2

ha3
s

‡2 = b
1

+ b
2

exp(≠b
3

hs)
(5.37)

All the coe�cients used in equations (5.35)-(5.37) are given for location 2 in
[Mathiesen et al., 2014] and rendered in table 5.2.

— 1.315
fl 1.546
÷ 2.802
– 0.591
◊ 0.313
a

1

0.889
a

2

0.913
a

3

0.300
b

1

0.005
b

2

0.123
b

3

0.486

Table 5.2.: Parameters used in the calculations of the LoNoWe Hs distribution and
the conditional lognormal Tp distribution [Mathiesen et al., 2014].

The resulting contour plots are found in section 5.8.2, when discussing the ir-
regular sea states to be tested.

5.6.1.1. A discussion on the validity of the sea states

According to [Det Norske Veritas, 2014], load case 6.1 for combined ULS loads on
a parked turbine, the 50-year water level should be used in testing. Two water
levels are included, a high and a low, and whichever gives the most unfavorable
load conditions should be applied in design. The high water level corresponds to
the 98 % quantile in the distribution of the annual maximum water level, and the
low water level is the 2 % quantile in the distribution of the annual minimum water
level. In the case of the high water level, the longer moment arm could generate
the most unfavorable load. However, the increased wave non-linearity of a lower
water level creates a larger average maximum load as well, so choosing between
the two is not trivial and must be tested for.

There are no distributions of annual maximum or minimum water levels in the
metocean report, [Mathiesen et al., 2014]. However, the mean water level, HAT,
LAT and the 50-year storm surge are given. HAT and LAT are the highest and
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lowest astronomical tides, respectively. They are the maximum and minimum
levels that can be predicted under average meteorological e�ects and will not
occur every year [The United Kingdom Hydrographic O�ce, 2015]. These values
can be further amplified by weather e�ects such as a storm surge. As the 50-
year storm surge could be combined with the HAT for the high water level, this
level is probably on the conservative side, whilst the low water is probably non-
conservative as it only considers the LAT.

The original intention was to use the following values for the high and low values
in the experiments:

hhigh = MWL + HAT + 50 ≠ year storm surge

= 20.9 m + 1.45 m + 1.5m ¥ 23.9 m
(5.38)

hlow = MWL + LAT

= 20.9 m + (≠1.55 m) ¥ 19.4 m
(5.39)

In model scale the values correspond to hhigh = 0.50 m and hlow = 0.40 m, as
⁄ = 48. However, due to the large amount of breaking waves for initial lab testing,
using specified 50-year return period sea states, larger water level values have been
chosen. In order to test the e�ects of the longer moment arm versus increased non-
linearity, comparable sea states with high H

s, e�ective

/H
s, nominal

ratios were needed.
Thus, it was decided to use full-scale water levels h = 20.9 m and h = 30 m,
corresponding to h = 0.435 m and h = 0.625 m in model scale, respectively.

[Mathiesen et al., 2014] states that the shallow water values of Hs larger than
8 m are probably too high in the metocean report. It further approximates the
highest extremes to be 10 % too high, but recommends the use of the given values
in design unless other proof of conservatism is found.

In [Engebretsen, 2012], the author argues that the grid resolution of the NORA10
hindcast model employed in the metocean report [Mathiesen et al., 2014] is too
coarse to properly take shallow water e�ects on Creyke Beck B into account. If so,
the significant wave height and peak period data provided in the metocean report
are not reliable, and thus they do not serve well as the basis for a realistic analysis
of the conditions at location 2.
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Figure 5.10.: Dogger Bank topography, taken from [Engebretsen, 2012].

As a reference point, [Engebretsen, 2012] employs NORA10 hindcast data for
a location north of the Creyke Beck region, illustrated in figure 5.10. In this
point the water depth is large enough to neglect shallow water e�ects, so the sea
state parameters are assumed to be predicted well by NORA10 data. Applying a
numerical model to account for shallow water e�ects, such as shoaling, refraction,
di�raction and wave breaking, the H

s

and T
p

are estimated in a southern point on
Creyke Beck B (also provided in figure 5.10), which is close to location 2 and with
approximately the same water depth. An overview of a southern point comparison
between the results of a numerical simulation and the NORA10 hindcast data is
provided in table 5.3. Sea state values in the southern point for the three largest
50-year return-period storms originating in the northern point are shown. The
results show that the significant wave height may be greatly overestimated in the
metocean report, even by more than the suggested 10 % prediction. However, the
results are not verified, and they are only given for 50-year return-period storms,
so they could not be used directly in the experiments.

Sea states Numerical model NORA10 hindcast model H
s

discrepancy [%]
T

p

discrepancy [%]H
s

[m] T
p

[s] H
s

[m] T
p

[s]
1 7.42 16.89 10.20 15.98 -27.25 5.69
2 7.31 15.38 8.60 15.03 -15.00 2.33
3 7.08 14.64 8.30 14.45 -14.70 1.31

Table 5.3.: H
s

, T
p

values in the southern point for the three largest 50-year storms
originating in the northern point. Results from [Engebretsen, 2012].
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5.7. Experimental setup

The objective was to determine the forces and moments from wave loads, including
slamming loads, on a pile structure in irregular sea states representing the site
conditions at a Dogger Bank location. The test results were utilized in a validation
of the selected theoretical load models discussed in section 3.6.2.

5.7.1. Testing facility and model setup

The model testing took place in the small wave flume at MARINTEK, Trondheim.
The flume setup is illustrated in figures 5.11 and 5.12.

Figure 5.11.: A bird’s eye view of the model tank setup, courtesy of T. Kristiansen
(MARINTEK), but with slight modifications from the original.

Figure 5.12.: A side view of the model tank setup, courtesy of T. Kristiansen
(MARINTEK), but with modifications from the original.

The tank is 28 m long and 2.5 m wide with a bottom-fixed, perforated, parabolic,
wave-absorbing beach at the end. The piston wavemaker was installed in Novem-
ber through December 2014, in order to improve shallow-water wave generation.
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Compared with the previous wavemaker it is also supposed to reduce parasitic
harmonics for regular waves [Kristiansen and Bachynski, 2015]. There is a less
than 1 cm variation in bottom topography, meaning that the water depth varies
around 2 % of the water depths.

The monopile model was attached to an intermediate piece acting as the spring
giving the mudline sti�ness. The spring was fastened to the force/moment trans-
ducer, which, through another intermediate piece, was mounted on the tower that
was placed on the bottom of the pit, as illustrated in figures 5.12 and 5.13a. The
plexiglass plate surrounding the lowest part of the pile was designed to have a mini-
mal opening to the pit, as to avoid additional bias error loads on the model beneath
the mudline. The tower was designed to be rigid, and previous tests showed that
compared to the base spring (with a specified sti�ness of 3000 Nm/rad) it is sti�
enough for an inverted pendulum-like first mode, to be discussed in section 7.3.

(a) Tower, intermediate piece and force/moment
transducer

(b) Submerged tower

Figure 5.13.: Contents of the tank pit.

The full-scale diameter is 6.7 m, but including a modelled 10 cm marine growth
around the cylinder circumference, the total diameter is 6.912 cm, giving 144 mm
in model scale. A top mass of 5.04 kg, consisting of clamps and a metallic piece,
was placed as in figure 5.14 at a height of approximately 1.54 m above the tank
floor.
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Figure 5.14.: The top mass and the accelerometers.

Scaling factor
⁄ = 48

Model
scale

Full
scale

Diameter 0.144 m 6.912 m
Top mass 5.04 kg 556.83 tonnes

Pile density 2700 kg/m3 2700 kg/m3

Pile height 1.54 m 73.9 m

Table 5.4.: Model test parameters

5.7.1.1. Parabolic beach

The perforated parabolic beach plates have a 8 % porosity and its height should,
from in-house experience, be adjusted so that the highest point is approximately
1.5 cm above the still water for each water depth. This was done to achieve
maximum wave absorption.
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Figure 5.15.: The parabolic beach

5.7.1.2. Wavemaker

The piston wavemaker generates waves through translational piston board motion.
It is driven by an electric actuator located approximately 60 cm above the tank
floor.

The wavemaker transfer function consists of a mechanical transfer function and a
hydrodynamic wave-to-motion transfer function. The latter transforms the desired
surface elevation time series to wavemaker motion, called stroke, whilst the former
converts prescribed stroke to actual wavemaker motion.

The wave-to-motion transfer function used is the Biésel function presented in
section 5.4, as this has proven to give satisfactory wavemaker accuracy in previous
lab tests in the small wave flume. This is an indication that neither the tank basin
or the wavemaker inhabit any grave irregular behaviors.

In general, the mechanical transfer function is frequency and amplitude de-
pendent, but in this case the amplitude dependency was found to be negligible.
The mechanical transfer function had previously been established by running tests
with 31 periods, every half a second from 3 s to 18 s in full scale. The result is
a frequency dependent factor to be multiplied with the stroke. This is especially
important for high frequencies, where the factor is large. Linear extrapolation be-
tween the period points was applied in order to determine the value in each case.
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For periods smaller than 3 s and larger than 18 s, the 3-s and 18-s values were
used, respectively. It had been tested for di�erent water depths, but showed little
dependency of h. Thus, the transfer function established for a water depth of 0,56
m was used in the experiments.

In order to test whether it was possible to create a better match between the
wanted and obtained wavemaker stroke, a new mechanical transfer function was
found using the same procedure as described above. The result is shown in fig-
ure 5.16. When using the new mechanical transfer function, however, the wanted
stroke output did not improve. There was especially a problem for the high fre-
quencies, where the wavemaker had trouble keeping up, meaning that its inertial
capacity limit was exceeded. This is exemplified for regular waves in section 7.2.

Figure 5.16.: Comparing mechanical transfer functions.

An additional factor 1.03 was multiplied with the stroke, since the cross sectional
tank area is approximately 3 % larger than the piston board.

The wavemaker motion was measured and saved in order to check repeatability
and to verify the correspondence of the wave calibration and model tests.
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(a) Piston plate (b) Piston

Figure 5.17.: The wavemaker

5.7.2. Instrumentation

The instrumentation included a force/moment transducer, 23 force gauges, two ac-
celerometers, two video cameras and 13 wave gauges. The measurement sampling
frequency was 200 Hz.

5.7.2.1. Force and moment transducers

The force and moment transducers, shown in figure 5.13a, had been modified by
MARINTEK technicians to function in the testing facility. It measures shear forces
up to approximately 7500 N in the longitudinal tank direction, which greatly ex-
ceeds the expected maximum forces in the experiments. Watertight strain gauges
are glued to the force transducer to measure the moment.

The equipment had been pre-calibrated for similar tests in the tank [Kristiansen
and Bachynski, 2015], and this calibration was utilized as the transducer had
previously shown little drift in calibration with time. However, to check their
accuracy, the transducers were tested during the experiments, applying weights
and a pulley with a string attached to the top of the pile, as shown in figure 5.18.
The tests included three masses and the results were as follows:

Mass Moment
arm

Applied
force

Measured
force

F
meas

F
applied

Applied
moment

Measured
moment

M
meas

M
applied

1.02 kg 1.52 m 10.01 N 10.4 N 1.04 15.21 Nm 16.5 Nm 1.08
2.59 kg 1.52 m 25.41 N 25.6 N 1.01 38.62 Nm 41.0 Nm 1.06
3.59 kg 1.52 m 35.22 N 35.0 N 0.99 53.53 Nm 58.0 Nm 1.08

Table 5.5.: Testing the force and moment transducer.
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Even though the M
measured

/M
applied

varied between 1.06 and 1.08, the testing
procedure was inaccurate and limited in terms of using only three testing points.
The tests were meant to check whether the measured moments were within the
correct order of magnitude. Thus, the calibration was kept as was and no correction
was applied in post-processing.

In addition to checking transducer calibration, the pulley system was utilized to
test the specified foundation sti�ness value of 3000 Nm/rad. By considering the
displacement of the pile top, the sti�ness could be estimated as in table 5.6.

Mass
Pile top

displacement from
initial position

◊
Applied
moment

Estimated
sti�ness

1.02 kg 0.7 cm 0.0046 rad 15.21 Nm 3307 Nm/rad
2.59 kg 1.8 cm 0.0118 rad 38.62 Nm 3273 Nm/rad
3.59 kg 2.9 cm 0.0191 rad 53.53 Nm 2806 Nm/rad

Table 5.6.: Testing the force and moment transducer.

The accuracy of the test depended on approximate eyesight folding rule mea-
surements and was based on the assumption that the pile itself is completely rigid,
in order to find the deflection angle ◊. Thus, the objective of the test was to verify
a ballpark figure for the sti�ness. Results from table 5.6 show that the specified
3000-Nm/rad sti�ness is reasonable.
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Figure 5.18.: Checking the force/moment transducer calibration and the base sti�-
ness, using a pulley system. The weights are circled.

5.7.2.2. Force gauges

There were 23 force gauges installed on the model, 8 in front and on the back, and
7 on side. Their full-scale vertical positions above the sea floor are found in table
5.7. The calibration was performed linearly, using two calibration points, 0 and
0.2 kg.

Front (0¶) Back (180¶) Side (90¶)
Gauge

#
Vertical
pos. [m]

Sensor
range [N]

Gauge
#

Vertical
pos. [m]

Sensor
range [N]

Gauge
#

Vertical
pos. [m]

Sensor
range [N]

1 33 110 9 33 110 17 33 110
2 31 5 10 31 5 18 31 5
3 29 5 11 29 5 19 29 5
4 27 5 12 27 5 20 27 5
5 25 5 13 25 5 21 25 5
6 23 5 14 23 5 22 23 5
7 20 110 15 20 110 23 20 110
8 18 110 16 18 110

Table 5.7.: Vertical full scale pressure gauge positions.
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The sensors placed at 18 m, 20 m and 33 m are less sensitive and have larger
ranges than the others.

Figure 5.19.: Force gauges in the front of the pile (upstream).

5.7.2.3. Accelerometers

Two accelerometers were operated in the experiments, one for the wave propagation
direction (x-direction) and the other for the transverse horizontal direction (y-
direction). The accelerometers had also been pre-calibrated, and this calibration
was used in the experiments. Their purpose was to validate the force/moment
transducer results, logging the model top motions. The transverse accelerometer
was employed to expose undesirable transverse wave loads. The accelerometer
placements are shown in figure 5.14.

5.7.2.4. Video cameras

A video camera was placed upstream of the monopile model, whilst another had
rear view. If an interesting incident was found in the measurements then video
could be used to shed light on the cause. They recorded continuously during the
days of model testing. A MATLAB routine, FindHourInCamera.m, was estab-
lished for the purpose of finding specific events. Usually, high-speed cameras can
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be used in order to determine wave celerity upon structural impact, which is essen-
tial when numerically estimating a slamming load. However, as shall be discussed,
wave gauge data is primarily used for this purpose in the thesis.

Figure 5.20.: The camera placements

5.7.2.5. Wave gauges

Thirteen capacitance type wave gauges were utilized, denoted w1-w13 in figure
5.11. Their positions were equal in the wave calibration and the model runs, except
that wave gauge w8 was moved to the model position during wave calibration.
Their vertical positions varied with water depth.

The wave gauges were linearly calibrated for each water depth. For h=43.5 cm
four calibration points were utilized, whilst five calibration points were used for
h=62.5 cm. In the experiments the lower point of the wave gauges were placed 15
cm and 30 cm above the tank floor, respectively.

5.8. Selecting waves for testing

Regular tests were included in the test matrix mainly as a means of testing the
performance of the tank facility and the numerical program. The deterministic
and stochastic analyses were performed using data from the irregular wave runs.

During the experiments, the need to run special, bi-chromatic waves became
evident, as shall be discussed in section 7.4. The special waves are therefore
included in this section.
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5.8.1. Regular time series

The regular wave runs were performed at both depths, h
high

and h
low

, for di�erent
steepness and period waves. The selected steepnesses were 1/30, 7/180, 2/45,
1/20 and 1/18, which constituted five points with constant spacing between the
maximum 1/18 and minimum 1/30. Five periods, 15 s, 12 s, 10 s, 7.5 s and T

1

were chosen in order to test a wide range, giving 25 tested regular waves in total.
The first structural eigenperiod T

1

varies with the water depth and thus a decay
test had to be run in order to complete the regular and bi-chromatic test matrices.

The generated regular waves are given in figure 5.21. The plotted values are
the input values, so the stroke is the specified input to the wavemaker in [mm].
The trigger signal is used as the saving switch, logging the measured data when
changing from 1 to 0.

(a) h=20.9 m (b) h=30 m

Figure 5.21.: The regular wave batches given in [mm]. Legend: Piston stroke
(blue), wave elevation (red), trigger signal (yellow).

The complete regular test setup is found in section 5.8.3.

5.8.2. Irregular time series

The irregular wave runs served two purposes, as they provided the basis for both
the stochastic and deterministic analyses. The greatest loads for each sea state
were found, and the largest maxima were selected and utilized in the comparative
study of numerical load models.
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The idling turbine assumption is stressed, as the aerodynamic damping of an
operative turbine would cause a large reduction in turbine response. Thus, the
loads would be greatly overestimated as the e�ect of dynamic amplification on
loading is significant.

As the TMA spectrum, presented in section 5.3, includes the dissipation of en-
ergy in shallow water (illustrated by the „ factor in figure 5.4), it was decided
against using it in the experiments, as it would have complicated the comparison
of specified H

s

and achieved H
s

. For increased control and insight in the mecha-
nisms reducing the significant wave height, such as wave breaking, the JONSWAP
spectrum was employed.

The first approach to selecting sea states for the irregular waves was twofold.
First, to select H

s

, T
p

combinations given by the maximum H
s

value for each return
period (10, 50, 100, 1 000 and 10 000 years) and its corresponding T

p

. Second,
selecting H

s

, T
p

combinations for the maximum wave steepness along the upper
limit of the contour line.

However, model trials showed a large amount of wave breaking right after the
wavemaker for the large H

s

, T
p

values. This caused a dramatic loss of wave energy,
and the e�ective output wave spectrum would be drastically altered compared to
the nominal input spectrum. This could mean that the sea states defined by
each sea state given in [Mathiesen et al., 2014] are too rough. This supports the
conclusion of [Engebretsen, 2012], discussed previously.

Contour plots are based on a statistical viewpoint and chosen points must be
evaluated considering whether the sea state is physically realistic. Criteria for the
maximum wave height before breaking are included in figure 5.22. The breaking
criterion in [Det Norske Veritas, 2010] is given by

Hb

⁄
= 0.142 tanh(2fih

⁄
) (5.40)

where Hb is the maximum wave height before breaking, ⁄ is the wavelength and h
h is the water depth. The breaker curves are calculated using linear wave theory
on finite water depth, meaning that an iterative procedure was used to find kh.
As seen in figure 5.22, some of the Hs, Tp combinations are deemed unphysical
due to wave breaking.
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Figure 5.22.: Contour plot for extreme waves with return periods 10, 50, 100, 1
000 and 10 000 years for location 2, Creyke Beck B. Three curves
show the wave breaking criteria for wave steepnesses 1/20, 1/10 and
1/7, based on linear wave theory on finite water depth (see equation
(5.40) for steepness 1/7).

Since the first approach for selecting sea states was unsuccessful, another method
had to be pursued. The full-scale T

p

values 11.25 s and 15 s were chosen as they are
approximately the third and fourth multiples of the first structural eigenperiods.
The full-scale H

s

values were chosen for return periods 10, 50 and 1000 years at
Tp = 11.25 s, as well as one lower H

s

value, Hs = 6.71 m, to ensure a sea state
with a low amount of breaking. The H

s

, T
p

points are shown in figure 5.23. The
same H

s

values were used for Tp = 15 s.
The contour plot is only valid at the lower water depth since it is based on

location 2 where h=20.9 m.
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Figure 5.23.: Irregular H
s

, T
p

points shown in the contour plot for Creyke Beck B,
location 2.

The problem with this approach is that the selection of sea states gives a return
period for the load, not the response of the structure. A comprehensive testing
scheme would thus cover a wide range of load regimes, but not necessarily an
equally broad set of responses. This means that the problem is approached the
wrong way. In order to base the experiments on a response return period, how-
ever, extensive testing must be performed beforehand, either in the wave flume or
numerically, as done in [Gaidai and Krokstad, 2014]. This was not done in this
thesis, as the time in the towing tank was limited.

Twenty seeds were tested for each sea state with 3-hour full scale durations. The
final irregular test matrix is found in section 5.8.3.

5.8.3. Test matrix
The resulting test matrix includes 50 regular and 320 irregular runs. As discussed
in section 7, the need to create special, bi-chromatic tests meant that more wave
runs were included in the matrix. The tests were run in batches, typically lasting
several hours, meaning that they could be run overnight. The model tests and
wave calibrations were run almost continuously during two weeks.

The regular tests performed were as follows:
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h · ⁄ [m] T ·
Ô

⁄ [s] S Seeds Type Duration
20.9 3.77 1/30 1 Regular 40 · T + 8 min

" 7.5 " " " "
" 10 " " " "
" 12 " " " "
" 15 " " " "
" 3.77 7/180 " " "
" 7.5 " " " "
" 10 " " " "
" 12 " " " "
" 15 " " " "
" 3.77 2/45 " " "
" 7.5 " " " "
" 10 " " " "
" 12 " " " "
" 15 " " " "
" 3.77 1/20 " " "
" 7.5 " " " "
" 10 " " " "
" 12 " " " "
" 15 " " " "
" 3.77 1/18 " " "
" 7.5 " " " "
" 10 " " " "
" 12 " " " "
" 15 " " " "

30 3.94 1/30 " " "
" 7.5 " " " "
" 10 " " " "
" 12 " " " "
" 15 " " " "
" 3.94 7/180 " " "
" 7.5 " " " "
" 10 " " " "
" 12 " " " "
" 15 " " " "
" 3.94 2/45 " " "
" 7.5 " " " "
" 10 " " " "
" 12 " " " "
" 15 " " " "
" 3.94 1/20 " " "
" 7.5 " " " "
" 10 " " " "
" 12 " " " "
" 15 " " " "
" 3.94 1/18 " " "
" 7.5 " " " "
" 10 " " " "
" 12 " " " "
" 15 " " " "

Table 5.8.: The test matrix for regular waves.
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Two water depths, five steepnesses and five period variations were run in the
regular setup, giving a total duration of 7.45 h. This includes the 40 periods and
8-minute resting time between each run.

The irregular tests are summarized in table 5.9.

h · ⁄ [m] Tp ·
Ô

⁄ [s] Hs · ⁄ [m] “ Seeds Type Duration
20.9 11.25 6.71 2.32 20 Irregular 20 · 34 min

" " 7.69 2.61 " " "
" " 8.22 2.76 " " "
" " 9.04 3.00 " " "
" 15 6.71 1.42 " " "
" " 7.69 1.59 " " "
" " 8.22 1.69 " " "
" " 9.04 1.83 " " "

30 11.25 6.71 2.32 " " "
" " 7.69 2.61 " " "
" " 8.22 2.76 " " "
" " 9.04 3.00 " " "
" 15 6.71 1.42 " " "
" " 7.69 1.59 " " "
" " 8.22 1.69 " " "
" " 9.04 1.83 " " "

Table 5.9.: The test matrix for irregular waves.

The irregular wave test setup consisted of two water depths and eight sea state
variations with twenty seeds, giving a duration of 2 ·8 ·20 ·34 min = 10 880 min =
7.6 days. Excluding the special wave tests, the entire test program lasted 447
min (regular tests) + 10 880 min (irregular tests) = 11 327 min = 189 h, or
approximately 7.9 days. It was run both with the model installed and for the
wave calibration tests.

5.8.4. Regular wave regimes

Based on a linear wave iteration procedure to find the wave number on finite water
depth, theoretical regular wave characteristics can be found. These characteristics
are summarized in the tables below.
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Regular
wave heights
h = 20.9 m

T=3.77 s T=7.5 s T=10 s T=12 s T=15 s

S=1/30 0.7397 2.7058 4.1026 5.1676 6.7115
S=7/180 0.8630 3.1568 4.7864 6.0288 7.8301
S=2/45 0.9862 3.6078 5.4702 6.8901 8.9487
S=1/20 1.1095 4.0587 6.1540 7.7514 10.0673
S=1/18 1.2328 4.5097 6.8377 8.6126 11.1859

Table 5.10.: Full-scale theoretical regular wave heights at h = 20.9 m.

Regular
wave heights

h = 30 m
T=3.94 s T=7.5 s T=10 s T=12 s T=15 s

S=1/30 0.8079 2.8564 4.5765 5.9014 7.8071
S=7/180 0.9426 3.3325 5.3392 6.8850 9.1083
S=2/45 1.0772 3.8085 6.1020 7.8685 10.4095
S=1/20 1.2119 4.2846 6.8647 8.8521 11.7106
S=1/18 1.3465 4.7607 7.6275 9.8357 13.0118

Table 5.11.: Full-scale theoretical regular wave heights at h = 30 m.

The following Ursell numbers are found using the equation on page 31, Ur =
H

k02d3 = 1

4fi2
S
µ3 .

Ursell numbers
h = 20.9 m T=3.77 s T=7.5 s T=10 s T=12 s T=15 s

S=1/30 0.0010 0.0626 0.3520 1.0511 4.0095
S=7/180 0.0012 0.0731 0.4107 1.2263 4.6778
S=2/45 0.0013 0.0835 0.4693 1.4014 5.3461
S=1/20 0.0015 0.0940 0.5280 1.5766 6.0143
S=1/18 0.0017 0.1044 0.5867 1.7518 6.6826

Table 5.12.: Theoretical regular wave Ursell numbers at h = 20.9 m.
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Ursell numbers
h = 30 m T=3.94 s T=7.5 s T=10 s T=12 s T=15 s

S=1/30 0.0004 0.0212 0.1190 0.3554 1.3557
S=7/180 0.0005 0.0247 0.1389 0.4146 1.5817
S=2/45 0.0006 0.0282 0.1587 0.4739 1.8076
S=1/20 0.0007 0.0318 0.1785 0.5331 2.0336
S=1/18 0.0007 0.0353 0.1984 0.5923 2.2595

Table 5.13.: Theoretical regular wave Ursell numbers at h = 30 m.

Regular
wave regimes
h = 20.9 m

T=3.77 s T=7.5 s T=10 s T=12 s T=15 s

S=1/30 2nd-order Stokes 2nd-order Stokes 2nd-order Stokes Cnoidal Cnoidal
S=7/180 2nd-order Stokes 2nd-order Stokes 2nd-order Stokes Cnoidal Cnoidal
S=2/45 5th-order Stokes 5th-order Stokes 5th-order Stokes Cnoidal Cnoidal
S=1/20 5th-order Stokes 5th-order Stokes 5th-order Stokes Cnoidal Cnoidal
S=1/18 5th-order Stokes 5th-order Stokes 5th-order Stokes Cnoidal Cnoidal

Table 5.14.: Theoretical regular wave regimes for h = 20.9 m.

Regular
wave regimes

h = 30 m
T=3.94 s T=7.5 s T=10 s T=12 s T=15 s

S=1/30 2nd-order Stokes 2nd-order Stokes 2nd-order Stokes 2nd-order Stokes Cnoidal
S=7/180 2nd-order Stokes 2nd-order Stokes 2nd-order Stokes 2nd-order Stokes Cnoidal
S=2/45 5th-order Stokes 5th-order Stokes 5th-order Stokes 5th-order Stokes Cnoidal
S=1/20 5th-order Stokes 5th-order Stokes 5th-order Stokes 5th-order Stokes Cnoidal
S=1/18 5th-order Stokes 5th-order Stokes 5th-order Stokes 5th-order Stokes Cnoidal

Table 5.15.: Theoretical regular wave regimes for h = 30 m.

As shown in tables 5.14 and 5.15, waves within both the 2
nd

-order Stokes, the
5

th

-order Stokes and the cnoidal wave regimes were run, as defined in [Det Norske
Veritas, 2010] (see table 3.1). Not surprisingly, the long and steep waves on shallow
water gave the highest non-linearity, as illustrated by the Ursell parameter in tables
5.12 and 5.13.
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Chapter 5. Model Testing of a Pile with a Flexible Rotational Spring

5.9. System testing

5.9.1. Model wave radiation and tank reflections

During the decay test in x-direction the model was observed to start oscillating a
while after the decay motions had died away. This is shown in figure 5.24, occuring
at around t=80 s. The phenomenon is found to be caused by wavemaker reflections
of the waves radiated by the model during the decay test.

Figure 5.24.: An illustration of the wavemaker reflection of the radiated waves from
the flexible model during a decay test.

Figure 5.25 shows the wave elevation at wave gauge 8 (next to the pile) during
the decay test. In figure 5.25b it is seen that the wave period of the radiated waves
matches the first eigenperiod T=0.54 s at h=20.9 m.
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5.9. System testing

(a) Radiated wave reflections (b) Radiated waves of period T = T1 = 0.54 s.

Figure 5.25.: The wave elevation at wave gauge 8 during a decay test in water
depth h=20.9 m.

The linear wavelength of a 0.54 s wave at h=0.435 m is 0.46 m, or approximately
three times larger than the model diameter. Figure 3.4 shows that di�raction is
non-negligible for ⁄/D . 5, which is in line with what is discussed here. Using
equation (3.39) gives the group velocity assuming linear theory, Cg = 0.42 m/s.
This means that the radiated wave should use approximately 73 s travelling the
50.5-m distance to the wavemaker and back, which coincides with the measure-
ments in figures 5.24 and 5.25.

Observations made while running the tests revealed that the model seemed to
be frequently excited at the first mode and it was almost never at rest during
the runs. This occurred even when it should not have been excited, in periods of
small wave amplitudes and for a variety of wave frequencies. An idling turbine is
lightly damped, which was also the case for the tested pile, meaning that once the
model was excited it took a long time for its motions to die out. However, the
self-excitation due to the wave radiation probably also had a large impact on the
frequent first-mode motion.

5.9.2. Testing the force gauges

Force gauges 7, 11, 13, 15, 18, 22 and 23 (see table 5.7) were never operational
and are therefore not included in this section. Measurements from the gauges,
exemplified for a sea state at h = 30 m in figure 5.26, show that the largest peaks
generally have no corresponding large peaks at neighboring gauges in the same time
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Chapter 5. Model Testing of a Pile with a Flexible Rotational Spring

instance. A closer look at the force and wave elevation realizations for the same sea
state (figure 5.27), shows how the largest peaks occur as a local phenomenon, and
typically not for the largest or steepest waves. This explains why the neighboring
gauges do not display the same large force.

Figure 5.26.: Measurements for each of the operative force gauges, exemplified for
a specific seed at h = 30 m.
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5.9. System testing

Figure 5.27.: Model scale force gauge measurements plotted with the wave eleva-
tion at wave gauge 7.

At h=20.9 m, most of the gauges are above the still water level. The resulting
forces, exemplified for gauge 2 in figure 5.28, for the same sea state as in figure
5.27, show that the highest peaks are very large compared to the values at h = 30
m. In addition, all the maxima are equal, with a value of 1500 N.

Figure 5.28.: The realization for force gauge 2 at h=20.9 m.

The intention of installing force gauges was to detect slamming events and to
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Chapter 5. Model Testing of a Pile with a Flexible Rotational Spring

determine the slamming pressure distributions in the deterministic analyses. Test-
ing the gauges, however, revealed that they could be used for neither. Since the
largest peaks were local pressure maxima, the pressure distributions could not be
determined since the neighboring gauges did not detect the same events. In addi-
tion, the large peaks for the lower water depth put the validity of the magnitude
of the measured forces into question.

5.9.3. Testing the accelerometers

If the pile was held still at an angle, a constant, non-zero acceleration was mea-
sured. This constant value corresponded well (within the error of the angle mea-
surement) with the decomposed gravitational acceleration component.

An iterative MATLAB routine was developed to correct for the e�ect. The
program first calculated the position of the pile top (pos1) based on the acceleration
measurements (acc1). Based on pos1 the theoretical gravitational acceleration
component (g1) at the accelerometer position was derived. By subtracting g1
from the measured acceleration, a second acceleration (acc2) was found. The
procedure was repeated iteratively, starting with the calculated accelerations, but
the solution never converged. Thus, a small error was expected in the measured
accelerations as a function of the pile deflection angle.
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6 | Numerical Model

6.1. Objective and assumptions

The numerical model was developed in MATLAB, serving as a simple single degree-
of-freedom (SDOF) system to test responses with load models and verify them
against the experimental tests results. In that way, the damping level could be
adjusted and the responses found experimentally could be adapted to the new
›. PileResponse.m solves the di�erential equation of motion (6.1) by specifying
known model parameters, found in table 6.1.

As specified in [NORSOK, 2007], both experimental tests and numerical eval-
uations exhibit clear limitations. However, through apt utilization, each tool can
be used to partially circumvent the constraints of the other.

The model consists of a totally rigid, hollow cylinder filled with (still) water up
to the water depth h. The pile rotates about its base in the two-dimensional plane
of the incoming wave, with a linear sti�ness and damping (found in the decay
tests, see section 7.1).

Figure 6.1.: The SDOF model
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Chapter 6. Numerical Model

Numerical model
parameters

Diameter 0.144 m
Top mass 5.60 kg

Height 1.54 m
Wall thickness 6 mm

Density 2700 kg/m3

Rotational sti�ness k◊ 3400 Nm/rad
Added mass coe�cient C

A

1.0

Table 6.1.: Model test parameters

The pile top mass consists of the mass of the flange in addition to weights applied
to achieve a realistic first eigenperiod. The weights have a collective mass of 5.04
kg, whilst the flange disc amounts to 0.56 kg. The flange is a circular holed-out
disc with thickness 5 mm, outer diameter 24.5 cm and inner diameter 13.5 cm.

The one degree-of-freedom equation of motion is

I ◊̈ + c◊◊̇ + k◊◊ = M(t) (6.1)

The moment of inertia parameters are found assuming a point top mass and
that the water inside the pile comprises a non-moving column, i.e. no sloshing
motion.

Iwater≠filled cylinder =1
3[mpile L2

pile + madded mass h2 + mwater inside pile h2]

=1
3[flpilefi(R2

outer ≠ R2

inner) L3

pile

+ flfiCAR2

outer h3]
+ flfiR2

inner h3

Itop mass =(mflange + mweights) L2

pile

I =Iwater≠filled cylinder + Itop mass

(6.2)

The rotational sti�ness k◊ was found from a trial-and-error best fit of the eigen-
period using the decay test (CompareDecay.m). The resulting measured and nu-
merical decay comparisons are shown in figure 6.2.
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(a) h = 20.9 m (b) h = 30 m

Figure 6.2.: Comparing the measured decays with the numerical calculations.

The measured and numerical decays agree well in terms of the damping level at
both water depths. The damping ratios from measured decay tests are established
in section 7.1. The numerical eigenperiod is a fraction too high at h=20.9 m,
whilst the opposite is the case at h = 30 m. In order to use the same sti�ness
value for both water depths, this was the best result when varying the rotational
sti�ness to fit the experimental decay test.

6.2. Implementation of the load models

The load models used in this thesis are Morison with Wheeler stretching and FNV.
Variants for both deep and intermediate water depths are included, di�erentiated
in two places:

• The vertical distribution of the kinematic properties (deep: „ Ã ekz, shallow:
„ Ã cosh k(z+h)

cosh kh )

• The dispersion relation (deep: Ê2 = kg, shallow: Ê2 = kg tanh kh)

A validation of the deep-water FNV implementation, applying the [Newman,
1996] extensions for an irregular sea, is given in appendix D. The following intermediate-
depth equations are used:

„ = igA

Ê

cosh k(z + h)
cosh kh

ei(Êt≠kx) (6.3)
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giving the following wave elevation, defined by the linear Bernoulli equation on
the free surface:

÷ = ≠1
g

ˆ„

ˆx
|z=0

= Aei(Êt≠kx) (6.4)

The horizontal velocity:

u = ˆ„

ˆx
= kg

Ê

cosh k(z + h)
cosh kh

Aei(Êt≠kx) ∆ u|z=0

= kg

Ê
Aei(Êt≠kx) (6.5)

The vertical velocity:

w = ˆ„

ˆz
= ikg

Ê

sinh k(z + h)
cosh kh

Aei(Êt≠kx) ∆ w|z=0

= iÊ Aei(Êt≠kx) (6.6)

The horizontal acceleration:

u̇ = ˆu

ˆt
= ikg

cosh k(z + h)
cosh kh

Aei(Êt≠kx) ∆ u̇|z=0

= ikg Aei(Êt≠kx) (6.7)

The vertical acceleration:

ẇ = ˆw

ˆt
= ≠kg

sinh k(z + h)
cosh kh

Aei(Êt≠kx) ∆ ẇ|z=0

= ≠Ê2 Aei(Êt≠kx) (6.8)

As the FNV load formulae were derived assuming deep water [Faltinsen et al.,
1995], it is inconsistent to estimate the kinematics using an intermediate depth
potential. Thus, without modifying the FNV load formulae, using finite depth
wave properties is based on a faulty assumption. The objective here is to de-
termine how the inclusion of finite depth characteristics influences the numerical
congruence with the experimental results.

The FNV model requires linear wave input. As the measured waves are real and
non-linear, a linearization is performed by cutting high and low wave frequencies
(as done in FreqDomain.m, see figure 6.3). This is a common approach industrially.
The cut-o� frequencies are set to half of the spectral peak frequency (low) and
(high), if below the Nyquist frequency:

Êmax =
Û

2g

Hs
(6.9)

The high frequency cut-o� is given in [Det Norske Veritas, 2010], shown to fit
experimental data well for a second-order model. The lower cut-o� frequency was
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6.2. Implementation of the load models

selected as the resulting filtered measured spectra compared well with the linear
input spectra.

In ForcesMorison.m and ForcesFNV.m, 50 vertical pile elements are used in the
integration of the Morison force and the 2nd-order potential of FNV.

The moment arm is set equal to the water depth for the Morison load and the
first and second-order FNV forces. This is a conservative assumption, obviously,
as the forces are vertically distributed. Using the water depth as the moment
arm is a standard assumption for the 2nd-order FNV force. The logic behind the
assumption is the rapid decay of the 2nd-order kinematics, which is less accurate
at shallow water. The relative decay/water depth implies a more conservative
moment arm assumption at 20.9-m depth than at 30 m. The 3rd-order FNV force
is said to act locally at the free surface [Faltinsen et al., 1995], since it quickly
attenuates with z, negligible below a depth comparable to the cylinder diameter.
This was discussed in section 3.6.1.

The inertia coe�cient C
M

is set to 2.0, as in accordance with the first-order
FNV component. The drag coe�cient CD = 0.809, as in [Nestegård et al., 2004].

As mentioned on page 57, the slamming model used in the numerical analysis
is the inclusion of the slamming coe�cient in the conventional Morison equation
with Wheeler stretching, as described in [Nestegård et al., 2004] and in section 4.2.
The slamming coe�cient is found in the subroutine slamcoe�.m, and included in
ForcesMorison.m.

The model is specified for the use on an individual chosen wave, as the user
specifies the occurrence of its peaks in time at wave gauge 5 and 7, upon which
the routine calculates the phase velocity. The upcrossing determines the starting
point of cylinder submergence (s), which increases with the constant phase velocity
within an upcrossing. The slamming coe�cent of equation (4.5), is only given for
÷ values above the MWL, as specified in [Nestegård et al., 2004], and is otherwise
set to Cs = CD = 0.809. The – factor is set to 1 in this thesis, since the focus is on
slamming from breaking waves, but the value can be altered in PileResponse.m.

A spilling breaker is assumed, as specified for equations (4.18) and (4.19). Thus,
the slamming model should not be used as a substitute for the conventional Mori-
son model for an entire wave elevation time series, but rather in the deterministic
analysis of a single spilling breaker wave event.
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Chapter 6. Numerical Model

Figure 6.3.: Flow chart for the numerical model.

6.3. Program testing

Using the sinusoidal normalized moment M = eiÊt, the transfer function for the
SDOF rotational system is found as

H(Ê) = 1
≠IÊ + c◊iÊ + k◊

(6.10)

Three transfer functions are plotted in figure 6.4. They are the transfer functions
of the numerical model (6.10), the corresponding theoretical values (6.10) and
measurement data points (6.11). The measured value transfer function is given by

TF = ◊ [rad]
M [Nm] (6.11)

To capture the excitation loads, the lowest steepness (S = 1/30) regular waves
are chosen and the frequencies above 1.5 · f (1) (f (1) is the measured reciprocal
of the regular input wave frequency) are filtered out, as to remove the dynamic
amplification (see figure 6.6). This is done for both the response moment and the
acceleration at the top of the pile. In order to find ◊, the acceleration is integrated
twice and transformed to a rotational value rather than a translational one, as
done in IntegrateAcceleration.m and FindingTF_Regular.m. Mean values for the
regular waves corresponding to full scale periods 15 s, 12 s, 10 s and 7.5 s are
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plotted in figures 6.4 and 6.5.
With the amplitude equal to 1 Nm the normalized moment gives the transfer

function for the numerical model in figure 6.4. The figure shows that the absolute
value of the theoretical transfer function fits well with that of the numerical routine.

Figure 6.4.: Comparing the absolute value of the transfer function |H(Ê)| with the
numerical model output.

Figure 6.5.: Zooming in on the measured transfer function values.
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As the dynamic amplification is filtered out the measured value transfer function
should give a constant value for di�erent frequencies. Figure 6.5, however, shows
that it is decreasing with f. A reason for this might be that the accelerometer
measurements are a�ected by the gravitational acceleration as the accelerometer
is tilted (see section 5.9.3).

Since the measured transfer function values agree quite well with those for the
theoretical and numerical models, they contribute to validating the numerical
model response, although only for linear response without dynamic amplification.
Hydrodynamic loads on a flexible structure are a�ected by the elastic structural
response, whilst for a more rigid structure the hydrodynamic excitation load can
be found directly from measurements. Thus, a sti�er model could have been used
in order to find the excitation loads at higher frequencies.

Figure 6.6.: Moment spectrum with a low-pass ideal filter with a cut-o� frequency
at 1.5 · f (1).

A large FNV force event is shown in figure 6.7 for the deep-water version of
the FNV model. The second and third order are in the same order of magni-
tude. In a conventional perturbation approach, as presented in the Stokes waves
section 3.5.2.1, each succeeding order is reduced by an order of magnitude ‘. In
the FNV approach, on the other hand, the orders of magnitude of the second-
and third-order contributions are comparable for practical-steepness waves, de-
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spite including di�erent harmonics and powers of the amplitude. Because of the
vertical integration, however, the second-order contribution can become more sig-
nificant, resulting in a O(‘4) contribution, whereas the third-order force is of O(‘5)
[Faltinsen et al., 1995].

Figure 6.7.: Illustrating the relative FNV contributions order of magnitude for a
large force event at h=20.9 m.

Top-of-pile acceleration spectra for the least and most steep sea states are pro-
vided in figures 6.8a and 6.8b. They clearly show the large relative response of the
deep-water FNV model compared to Morison and the measured data.

(a) Rough sea state (b) Less rough sea state

Figure 6.8.: Seed-averaged top-of-pile acceleration spectra compared.
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7 | Results and Discussions

7.1. Decay test

In the decay test, the structure was displaced and released, allowing a free decay of
the structure. This was done in both the x and y-directions for both water depths.
The decay of the moment about the y axis in water depth h=20.9 m is shown in
figure 7.1.

Figure 7.1.: The decay test in x-direction in the form of a M
y

time series.

The first and second mode eigenperiods were found through a spectral analysis
using a discrete Fourier transform of the resulting moment time series. The spec-
trum of M

y

at h=20.9 m is shown in figure 7.2a. A small spectral peak occured at
49.9 Hz, i.e. the second mode eigenfrequency, as given in figure 7.2b. The resulting
eigenperiods are given in table 7.1.
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(a) My spectrum cut-out showing the first mode
eigenfrequency at h=20.9 m.

(b) My spectrum cut-out showing the first mode
eigenfrequency at h=20.9 m.

Figure 7.2.: Moment spectrum cut-outs from the decay test giving the first and
second mode eigenfrecuencies, respectively.

The moment transducer used in the experiments only measured M
y

, so for the
decay test in the y-direction, a

y

of the y-direction accelerometer was employed.
The results are plotted in figure 7.4. The first eigenfrequency, found using the
same spectral analysis as in the x-direction, was found at 7.36 Hz, corresponding
to a 0.14-s eigenperiod, 0.94 s in full scale. This means that the sti�ness in y-
direction is much larger than in x-direction, which is desired to avoid excessive
parasitic transverse motion. The experiment was meant to be two-dimensional.
The eigenfrequency in y-direction should be noted, as motions at that specific
frequency may be found in the measurement post-processing. At h=20.9 m, in
the y-direction, a small peak was found at the same second eigenperiod as in the
x-direction. This could be the x-direction second mode, but it is expected that the
second modes are similar in both directions, since they depend on the sti�ness of
the pile itself, which should be equal in all directions.

The four decay tests are found in figures 7.3 and 7.4 with respective eigenperiods
in table 7.1.
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7.1. Decay test

(a) h=20.9 m (b) h=30 m

Figure 7.3.: Decay test in the x-direction (tank longitudinal), showing time series
of M

y

[Nm]. The oscillation maxima are marked.

(a) h=20.9 m (b) h=30 m

Figure 7.4.: Decay test in the y-direction (tank transverse), showing time series of
a

y

[m/s2]. The oscillation maxima are marked.

117



Chapter 7. Results and Discussions

Eigenperiods x-direction y-direction
Model
scale

Full
scale

Model
scale

Full
scale

First mode eigenperiod
h=20.9 m 0.54 s 3.77 s 0.14 s 0.94 s

Second mode eigenperiod
h=20.9 m 0.02 s 0.14 s 0.02 s 0.14 s

First mode eigenperiod
h=30 m 0.57 s 3.94 s 0.14 s 0.98 s

Second mode eigenperiod
h=30 m 0.02 s 0.14 s 0.02 s 0.14 s

Table 7.1.: Eigenperiods at the two water depths.

The decay tests were also used to determine the damping of the system. Theory
from [Steen, 2014] was used in the evaluation, resulting in the MATLAB routine
damping.m (see appendix D). Considering two successive oscillation amplitudes of
a decay test, x

i

and x
i+1

,the logarithmic decrement becomes

� = ln( xi

xi+1

) (7.1)

For a single degree-of-freedom system exhibiting non-linear damping, the equa-
tion of motion in a free decay can be written

Mẍ + B
1

ẋ + B
2

ẋ|ẋ| + Cx = 0 (7.2)

and the standardized form, dividing by M, yields

ẍ + p
1

ẋ + p
2

ẋ|ẋ| + p
3

x = 0 (7.3)

The damping ratio › is defined as

› = p

pcr
= p

2MÊ
0

(7.4)

where p is the actual damping and p
cr

is the critical damping. Further, the loga-
rithmic decrement as a function of the damping ratio, is

� = ›Ê
0

Td = 2fi
›Ô

1 ≠ ›2

(7.5)
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where Ê
0

and Td are the undamped eigenfrequency and the damped eigenperiod,
respectively. For a lightly damped system, roughly › < 0.2, the logarithmic decre-
ment can be approximated as

� = 2fi› (7.6)

In order to obtain the linear and non-linear damping coe�cients the logarithmic
decrement can be plotted against the mean amplitude for each decay test oscilla-
tion. The linear damping coe�cient p

1

is approximated by the linear regression
line intersection with the �-axis, whilst the non-linear coe�cient p

2

is the regres-
sion line slope. In such an approach, the first oscillations should be discarded
because of transient e�ects and the smallest oscillations omitted because of inac-
curacies. Figures 7.5 and 7.6 show the approach used for the decay tests at h=20.9
m and h=30 m in both x and y-directions.

(a) h=20.9 m (b) h=30 m

Figure 7.5.: Logarithmic decay plotted against mean amplitudes for decay tests in
x-direction.
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(a) h=20.9 m (b) h=30 m

Figure 7.6.: Logarithmic decay plotted against mean amplitudes for decay tests in
y-direction.

The results show that in the decay test in x-direction at h=20.9 m, figure 7.5a,
the non-linear damping coe�cient is negative. However, in all the cases the non-
linear damping is negligibly small, as shown in table 7.2, meaning that slight
inaccuracies or irregularities in testing may be the cause of the negative coe�cient
value. In further numerical analyses the damping is assumed linear.

Since the non-linear damping is negligible the damping ratio can be found di-
rectly using the mean value for the experimental logarithmic decrement.

› = 1
Ú

1 + ( 2fi
ln(mean(

x

i

x

i+1
))

)2

(7.7)

Damping
coe�cients

x-direction y-direction
p

1

p
2

p
1

/p
2

› p
1

p
2

p
1

/p
2

h = 20.9 m 0.015449 -0.000085 -181.545049 0.0140 0.005335 0.000081 66.064696
h = 30 m 0.018693 0.000192 97.560534 0.0249 0.003281 0.000244 13.428167

Table 7.2.: Linear and non-linear damping coe�cients for each decay test.

A dry decay test, to determine how much of the damping is due to wave gen-
eration, was never performed. However, in [Kristiansen and Bachynski, 2015] the
same model had previously been tested without water, although with a slightly
smaller additional top mass of 4.08 kg (flange disc not included). In those tests,

120



7.1. Decay test

which should be comparable, the dry decay damping ratio was 0.5 %. Thus, from
table 7.2 it can be found that damping from wave generation corresponds to ap-
proximately 64 % at h=20.9 m and 80 % at h=30 m.

Just as for real, full scale o�shore wind turbines the bottom part of the pile is
filled with water. This causes sloshing, which commonly increases the damping
of the structure, if constructed correctly. For a badly-tuned pile, however, the
sloshing can excite the structure and thus decrease the damping.

Due to low levels of damping, [Damgaard et al., 2013] could approximate a mea-
sured system damping ›

1

for the first eigenmode of an OWT as a linear combination
of the following damping contributions:

›
1

= ›steel + ›aero + ›water + ›tower + ›soil (7.8)

corresponding to the steel hyrestetic, aerodynamic, wave making and viscous hy-
drodynamic, tower oscillation and soil damping ratios, respectively. The o�shore
wind turbine in question, placed at a 20-m water depth, had a tower height of
53.0 m and a monopile diameter of 5.0 m, i.e. a little smaller dimensions than
the pile tested in this thesis. In the article, ›steel was estimated to 0.19 %, ›tower

was deemed negligible and ›soil was determined to approximately 1.00 %. A the-
oretical estimation of ›water was taken from [Leblanc and Tarp-Johansen, 2010],
giving ›water ¥ 0.12 % for a 4.7-m diameter turbine at 20-m depth. It was found
that due to the small relative velocities for the turbine structure, the viscous hy-
drodynamic damping was small compared to the wave-radiation damping. For an
idling turbine, the relevant damping ratios from [Damgaard et al., 2013] add up to
a level of 1.31 % at h = 20 m. Comparing with the damping ratio of › = 1.40 %
at h = 20.9 m in table 7.2, implies that the structure tested in this thesis work
is realistically damped. However, if the dry decay test mentioned above is within
the correct order of magnitude, then the hydrodynamic damping is considerably
more important in the model tests than in [Damgaard et al., 2013] (where the
hydrodynamic damping amounted to 9 % at h=20 m). This could mean that the
resulting › at h=30 m is too large compared the trend in [Damgaard et al., 2013],
but still within a reasonable level of damping.
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7.2. Regular wave post-processing

The resulting wave elevation characteristics in the regular wave runs are summa-
rized in tables 7.3 and 7.4. The wavemaker in general had trouble generating the
shortest waves corresponding to T = T

1

(see figure 7.7), as the inertial limit of the
wavemaker was exceeded. All the regular wave realizations are shown in appendix
A.

Figure 7.7.: An eigenperiod regular wave realization at h = 20.9 m.

Figure 7.8 shows how the response moment builds up for the eigenfrequency
waves, due to dynamic amplification. For the longer waves, the structure is never
excited at the first mode (as seen in the moment spectrum of figure 7.9b), so no
such build up is observed as there is negligible dynamic amplification. In this
thesis, the regular waves are mainly used as a linear validation of the numerical
model (see section 6.3) and to test tank performance.
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7.2. Regular wave post-processing

(a) (b)

Figure 7.8.: Showing the moment build-up for the eigenfrequency waves.

(a) (b)

Figure 7.9.: No moment build-up to the long 10-s regular waves.

The following data related to the resulting wave characteristics of the regular
waves are taken from the wave calibration runs, in order to omit di�raction and
reflection e�ects from the presence of the model. The wave elevation time series
are measured at wave gauge 7.
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S
nom

T
e�

[s] T
nom

[s] T
e�

/T
nom

H
e�

[m] H
nom

[m] H
e�

/H
nom

1/30 14.99 15.00 1.00 7.24 6.71 1.08
1/30 12.00 12.00 1.00 5.55 5.17 1.07
1/30 10.00 10.00 1.00 4.39 4.10 1.07
1/30 7.49 7.50 1.00 2.73 2.71 1.01
1/30 3.78 3.77 1.00 0.82 0.74 1.11
7/180 14.98 15.00 1.00 8.59 7.83 1.10
7/180 11.99 12.00 1.00 6.45 6.03 1.07
7/180 9.99 10.00 1.00 5.15 4.79 1.08
7/180 7.50 7.50 1.00 3.20 3.16 1.01
7/180 3.79 3.77 1.01 0.94 0.86 1.09
2/45 15.00 15.00 1.00 8.93 8.95 1.00
2/45 11.99 12.00 1.00 7.55 6.89 1.10
2/45 10.00 10.00 1.00 5.80 5.47 1.06
2/45 7.49 7.50 1.00 3.70 3.61 1.02
2/45 3.80 3.77 1.01 1.06 0.99 1.07
1/20 14.96 15.00 1.00 7.75 10.07 0.77
1/20 11.98 12.00 1.00 8.56 7.75 1.10
1/20 10.03 10.00 1.00 6.51 6.15 1.06
1/20 7.49 7.50 1.00 4.13 4.06 1.02
1/20 3.84 3.77 1.02 1.10 1.11 0.99
1/18 15.10 15.00 1.01 7.46 11.19 0.67
1/18 11.99 12.00 1.00 9.03 8.61 1.05
1/18 10.01 10.00 1.00 7.45 6.84 1.09
1/18 7.50 7.50 1.00 4.62 4.51 1.02
1/18 3.86 3.77 1.02 1.21 1.23 0.99

Table 7.3.: Resulting e�ective wave periods and wave heights for each nominal
steepness at h=20.9 m.

Wave non-linearity increases with steepness and period, as shown in table 5.14
on page 99. The largest-steepness wave with a nominal period of 15 s is seen to
give an e�ective wave height of only 67 % of the nominal value. This is due to a
large amount of breaking, which demonstrates the non-feasibility of such a large
wave at the specific water depth.

The non-breaking waves are generally too large. A reason for this might be an
overcompensating mechanical transfer function.

The e�ective wave periods are seen to match the nominal values well for all cases
at h = 20.9 m. The largest T

e�

/T
nom

are found for the short eigenperiod waves,
where a regular shape was never achieved, since the inertial limit of the wavemaker
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7.2. Regular wave post-processing

was exceeded for the required quick oscillatory stroke motion, as illustrated in
figure 7.7.

The results of table 7.3 are plotted in figures 7.10 and 7.11.

Figure 7.10.: The nominal and e�ective wave heights of the regular tests at h =
20.9 m.

Figure 7.11.: The nominal and e�ective wave periods of the regular tests at h =
20.9 m.
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S
nom

T
e�

[s] T
nom

[s] T
e�

/T
nom

H
e�

[m] H
nom

[m] H
e�

/H
nom

1/30 15.00 15.00 1.00 8.06 7.81 1.03
1/30 12.00 12.00 1.00 6.49 5.90 1.10
1/30 10.01 10.00 1.00 5.07 4.58 1.11
1/30 7.51 7.50 1.00 3.03 2.86 1.06
1/30 3.95 3.94 1.00 0.85 0.81 1.06
7/180 15.00 15.00 1.00 9.57 9.11 1.05
7/180 12.00 12.00 1.00 7.62 6.88 1.11
7/180 9.99 10.00 1.00 5.89 5.34 1.10
7/180 7.51 7.50 1.00 3.55 3.33 1.07
7/180 3.94 3.94 1.00 1.01 0.94 1.07
2/45 15.01 15.00 1.00 11.01 10.41 1.06
2/45 11.99 12.00 1.00 8.72 7.87 1.11
2/45 9.99 10.00 1.00 6.72 6.10 1.10
2/45 7.50 7.50 1.00 4.09 3.81 1.07
2/45 3.96 3.94 1.00 1.22 1.08 1.14
1/20 14.98 15.00 1.00 11.92 11.71 1.02
1/20 11.99 12.00 1.00 9.66 8.85 1.09
1/20 10.01 10.00 1.00 7.45 6.86 1.08
1/20 7.51 7.50 1.00 4.55 4.28 1.06
1/20 4.00 3.94 1.02 1.36 1.21 1.12
1/18 15.01 15.00 1.00 14.31 13.01 1.10
1/18 12.00 12.00 1.00 10.60 9.84 1.08
1/18 10.01 10.00 1.00 8.31 7.63 1.09
1/18 7.50 7.50 1.00 5.17 4.76 1.09
1/18 4.03 3.94 1.02 1.55 1.35 1.15

Table 7.4.: Resulting e�ective wave periods and wave heights for each nominal
steepness at h=30 m.

At the larger water depth, the H
e�

/H
nom

ratios are seen to be high for all steep-
nesses and periods, suggesting limited wave breaking. The measured wave periods
match the nominal values well, and as for h = 20.9 m, the largest T

e�

/T
nom

val-
ues are found for the eigenperiod waves, but the largest value of 1.02 indicates a
satisfactory wave period agreement.

Due to the di�erence in the amounts of breaking, stochastic comparisons of
loading for the two water depths could only have been done for the lower wave
heights. However, the regular wave runs will not be analyzed stochastically.
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7.2. Regular wave post-processing

Figure 7.12.: The nominal and e�ective wave heights of the regular tests at h =
30 m.

Figure 7.13.: The nominal and e�ective wave periods of the regular tests at h =
30 m.

The resulting wave regimes of the measured waves can be compared with those
in section 5.8.4. Except for a few regular wave runs, tables 7.5 and 7.6 correspond
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well with the theoretical regular waves in tables 5.14 and 5.15. It is seen that all
the regular waves are categorized by a non-linear wave theory.

Regular
wave regimes
h = 20.9 m

T=3.77 s T=7.5 s T=10 s T=12 s T=15 s

S=1/30 2nd-order Stokes 2nd-order Stokes 2nd-order Stokes Cnoidal Cnoidal
S=7/180 5th-order Stokes 5th-order Stokes 5th-order Stokes Cnoidal Cnoidal
S=2/45 5th-order Stokes 5th-order Stokes 5th-order Stokes Cnoidal Cnoidal
S=1/20 5th-order Stokes 5th-order Stokes 5th-order Stokes Cnoidal Cnoidal
S=1/18 5th-order Stokes 5th-order Stokes Breaking Cnoidal Cnoidal

Table 7.5.: Measured regular wave regimes for h = 20.9 m.

Regular
wave regimes

h = 30 m
T=3.94 s T=7.5 s T=10 s T=12 s T=15 s

S=1/30 2nd-order Stokes 2nd-order Stokes 2nd-order Stokes 2nd-order Stokes Cnoidal
S=7/180 5th-order Stokes 5th-order Stokes 2nd-order Stokes 5th-order Stokes Cnoidal
S=2/45 5th-order Stokes 5th-order Stokes 5th-order Stokes 5th-order Stokes Cnoidal
S=1/20 5th-order Stokes 5th-order Stokes 5th-order Stokes 5th-order Stokes 5th-order Stokes
S=1/18 5th-order Stokes 5th-order Stokes 5th-order Stokes 5th-order Stokes 5th-order Stokes

Table 7.6.: Measured regular wave regimes for h = 30 m.

At 20.9-m water depth the steepest 10-s wave is categorized as a breaking wave,
due to the large H

e�

/H
nom

ratio.
Figure 7.14 shows regular wave realizations with periods 7.5 s and 12 s, steep-

nesses 1/30 and 1/18 and depths 30 and 20.9 m, respectively. The higher waves at
shallower water in figure 7.14b, are more peaked with relatively shallower, wider
troughs than the less non-linear waves in figure 7.14a.
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7.2. Regular wave post-processing

(a) Regular waves, Te� = 7.5 s, S = 1/30, h = 30
m

(b) Regular waves, Te� = 12.00 s, S = 1/18, h =
20.9 m

Figure 7.14.: Showing non-linear features of steep waves at shallower water (b),
compared with less steep regular waves (a).

In the categorization of the regular waves, the data points of figures 7.15 and
7.16 are evaluated according to the criteria in figure 3.9.

(a) Regular waves, h = 20.9 m (b) Regular waves, h = 30 m

Figure 7.15.: Plots to determine the theoretical regular wave regimes, as from ta-
bles 5.14 and 5.15.
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(a) Regular waves, h = 20.9 m (b) Regular waves, h = 30 m

Figure 7.16.: Data for categorizing the measured regular wave series.

The non-linearity of waves can be illustrated by the response moment spectra.
In figure 7.17, regular waves of the same steepness and period are compared for
the two water depths. In both cases, H

e�

/H
nom

= 1.09 and T
e�

/T
nom

= 1.00. The
relative importance of the second and third multiple of the wave period is larger
at the lower water depths. This means that the second and third-order e�ects are
larger for the shallow water wave, which, not surprisingly, implies a larger degree
of non-linearity.

(a) h = 20.9 m (b) h = 30 m

Figure 7.17.: E�ect of water depth on higher-harmonic response moment contri-
butions.
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For an increasing steepness and wave period the same tendency is observed. The
higher-harmonic moment responses are relatively larger in both cases, as seen in
figures 7.18 and 7.19, respectively. The trend is less prominent for the steepness
than the period, but it is observable in figure 7.18.

(a) S = 1/30 (b) S = 1/18

Figure 7.18.: E�ect of steepness on higher-harmonic response moment contribu-
tions.

(a) T = 7.5 s (b) T = 15 s

Figure 7.19.: E�ect of the wave period on higher-harmonic response moment con-
tributions.
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7.3. Irregular wave post-processing

The measurements for each wave gauge correspond quite well in terms of resulting
H

s

and T
p

values, exemplified for an irregular run of H
s

=6.71 m and T
p

=15 s,
shown in figure 7.20. The back row of wave gauges, w9-w13 in figure 5.11, were
found to give peculiar results in some cases, not corresponding to the other wave
gauges. Gauge 5 was unstable, as illustrated in figures 7.20b and 7.21a, and thus
omitted in post-processing.

(a) Comparing significant wave height measure-
ments.

(b) Comparing peak period measurements.

Figure 7.20.: Wave gauge measurement comparisons.

Figure 7.21b (H
s

=9.04 m, h=20.9 m) shows how the significant wave height is
reduced with distance from the wavemaker. The same tendency is not found in
figure 7.20a, which is for a lower H

s

and a larger water depth. This is in line with
observations, as the high-H

s

sea states were seen to exhibit much breaking.
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7.3. Irregular wave post-processing

(a) Evolution of the significant wave height along
the tank length.

(b) Omitting the unstable wave gauge 5.

Figure 7.21.: Measured H
s

for the di�erent wave gauges shows wave breaking along
the tank.

In figures 7.22 and 7.23 the resulting H
s

, T
p

values for the steepest and least steep
sea states are compared. The results are based on calibrated wave runs measured
at wave gauge 7. Similar to the results of the regular waves, the measured wave
heights (blue) for the steepest waves are seen to be considerably lower than the
nominal input values (red). This is not surprising as breaking is expected for
the larger sea states in accordance with figure 5.23, where linear theory breaking
criteria are given for di�erent steepnesses. Breaking was seen to occur for many
of the largest waves and is considered to be the reason for the H

s

discrepancy.
For the nominal H

s

=6.71 m sea state, the e�ective H
s

exceeds the nominal values,
which was also typically the case for the non-breaking regular waves.
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(a) E�ective Hs for each seed in the least steep
irregular time series

(b) E�ective Hs for each seed in the steepest irreg-
ular time series

Figure 7.22.: Comparing e�ective H
s

values for di�erent steepness irregular sea
states.

A larger correspondence is seen for the T
p

values than for H
s

, for both steep-
nesses. The same trend was seen for the wave heights and periods of the regular
waves.

(a) E�ective Tp for each seed in the least steep
irregular time series

(b) E�ective Tp for each seed in the steepest ir-
regular time series

Figure 7.23.: Comparing e�ective T
p

values for di�erent steepness irregular sea
states.
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7.3. Irregular wave post-processing

An example 20-seed-averaged wave spectrum is given in figure 7.24.

Figure 7.24.: Averaged wave spectrum

The sloshing frequencies are found using equation (7.9) from [Faltinsen and
Timokha, 2009].

Tsloshing = 2fi
Ò

gfi tanh(fih/l)
l

(7.9)

where l is the length or width of the tank, for the longitudinal and transverse
sloshing periods, respectively. A distinct peak is found at the longitudinal sloshing
frequency, as in figure 7.25, but no similar peak is found for transverse sloshing.
The peaked area in the frequency range above the longitudinal sloshing frequency
is low-frequency noise in the tank, perhaps residue from previous wave runs.
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Figure 7.25.: Longitudinal sloshing

A small peak was discovered around 29.5 Hz (see figure 7.26a), found to be a
wave gauge eigenfrequency, as shown in the spectrum of a wave gauge decay test
of gauge 7 (w7), in figure 7.26b.

(a) A small wave spectrum peak showing one of
the wave gauge eigenfrequencies.

(b) The wave gauge decay test spectrum.

Figure 7.26.: Illustrations of the wave gauge eigenfrequencies.

In figure 7.27 a force and moment spectrum comparison is exemplified for the 20-
seed-averaged spectra for a certain sea state. It is observed that the highest peaks
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7.3. Irregular wave post-processing

are opposite for the force and moment. An explanation is found by considering
the particle velocity profiles for the di�erent frequencies. The low-frequency, long
waves imply more shallow-water wave characteristics. On deep water, the particle
velocity decreases with ekz in linear theory. This gives a larger moment arm than
on shallow water, where the vertical particle velocity distribution is more uniform.
Thus, the relative force/moment significance ratio decreases for higher frequencies.

Figure 7.27.: Comparing force and moment spectra

Figure 7.27 also shows another phenomenon characterizing the experiments,
which is illustrated by an unrealistically large eigenfrequency peak. As a compari-
son, a more realistic soil bending moment spectrum is supplied in figure 7.28, which
is taken from a FEDEM analysis of a large-diameter bottom-fixed WT. It shows
how wave excitation causes a much larger spectrum peak than the eigenfrequency,
which is usually the case. The relatively low foundation sti�ness compared with
the high sti�ness of the pile in the experiments creates an artificially conserva-
tive inverted pendulum-like mode shape, instead of a more realistic cantilever-like
first mode. By ‘conservative’ it is implied that for the same point load, the rigid
pile would achieve a larger top displacement compared to a realistic, curved mode
shape. In combination with the self-excitation mechanism described in section
5.9.1 and the low (but realistic) damping level, the conservative mode shape cre-
ates a situation of considerable first-mode motion occurring almost continuously
during the wave runs. This gives a larger relative dynamic compared to quasi-
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static e�ect than for full scale monopiles. The result is the high eigenfrequency
peak in figure 7.27.

Figure 7.28.: Realistic bending moment spectrum from [Suja-Thauvin et al., 2014].

Since the frequent first-mode excitation is probably caused by a combination
of real physics and experimental limitations it is di�cult to separate the relative
importance of the di�erent e�ects.

Mean H
s

, T
p

values, as well as mean and maximum force and moment measure-
ments of all the 20 seeds in each sea state, are presented in tables 7.7 to 7.10.
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H
s

specified [m]
T

p

specified [s]
h=20.9 m

Mean H
s

wm input [m]
Mean H

s

measured [m]
Mean red. %
H

s

achieved
Mean T

p

wm input [s]
Mean T

p

measured [s]
Mean red. %
T

p

achieved
9.04 15.00 9.04 7.95 12.04 14.87 15.06 -1.44
8.22 15.00 8.21 7.52 8.41 15.02 14.93 0.46
7.69 15.00 7.66 7.15 6.66 14.86 15.25 -2.63
6.71 15.00 6.71 6.44 3.96 14.84 15.18 -2.47
9.04 11.25 9.06 7.95 12.30 11.22 11.38 -1.41
8.22 11.25 8.24 7.57 8.13 11.24 11.62 -3.43
7.69 11.25 7.68 7.24 5.85 11.12 11.51 -3.53
6.71 11.25 6.71 6.61 1.43 11.15 11.56 -3.77

Table 7.7.: E�ective H
s

, T
p

values at h=20.9 m, considering all 20 seeds of each
sea state.

H
s

specified [m]
T

p

specified [s]
h=30 m

Mean H
s

wm input [m]
Mean H

s

measured [m]
Mean red. %
H

s

achieved
Mean T

p

wm input [s]
Mean T

p

measured [s]
Mean red. %
T

p

achieved
9.04 15.00 9.04 9.16 -1.39 14.87 15.37 -3.50
8.22 15.00 8.21 8.44 -2.79 15.02 15.49 -3.29
7.69 15.00 7.66 7.91 -3.24 14.86 15.33 -3.23
6.71 15.00 6.71 6.93 -3.38 14.84 15.27 -3.12
9.04 11.25 9.06 8.86 2.30 11.22 11.19 0.22
8.22 11.25 8.24 8.29 -0.64 11.24 11.32 -0.72
7.69 11.25 7.69 7.76 -0.92 11.29 11.36 -0.66
6.71 11.25 6.73 6.91 -2.80 11.22 11.18 0.26

Table 7.8.: E�ective H
s

, T
p

values at h=30 m, considering all 20 seeds of each sea
state.

H
s

specified [m]
T

p

specified [s]
h=20.9 m

Mean max.
force [MN]

Mean max.
moment [MNm]

Maximum max.
force [MN]

Maximum max.
moment [MNm]

Quantile
force [MN]

Quantile
moment [MNm]

9.04 15.00 5.36 222.27 7.11 279.98 6.83 295.01
8.22 15.00 4.96 199.87 6.62 246.27 6.28 254.43
7.69 15.00 4.80 192.65 5.73 219.53 5.63 241.14
6.71 15.00 4.32 169.47 5.08 209.44 5.21 219.13
9.04 11.25 5.11 209.35 5.70 249.06 5.99 259.92
8.22 11.25 5.03 202.73 5.71 234.14 5.75 234.05
7.69 11.25 4.82 195.30 5.96 231.39 5.66 238.70
6.71 11.25 4.64 180.68 6.24 213.72 5.84 222.02

Table 7.9.: Maximum loads for each sea state at h=20.9 m.

H
s

specified [m]
T

p

specified [s]
h=30 m

Mean max.
force [MN]

Mean max.
moment [MNm]

Maximum max.
force [MN]

Maximum max.
moment [MNm]

Quantile
force [MN]

Quantile
moment [MNm]

9.04 15.00 7.16 325.87 9.14 433.38 9.02 422.37
8.22 15.00 6.62 292.93 7.92 379.12 8.13 386.97
7.69 15.00 6.34 280.06 7.41 334.29 7.79 352.17
6.71 15.00 5.18 213.93 5.77 248.83 5.96 257.10
9.04 11.25 7.86 362.13 9.40 440.15 9.46 451.15
8.22 11.25 7.29 329.10 8.61 405.32 8.82 415.46
7.69 11.25 6.93 312.35 7.93 360.71 7.79 356.31
6.71 11.25 6.05 262.84 6.99 306.24 7.01 314.90

Table 7.10.: Maximum loads for each sea state at h=30 m.
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The mean and max. maximum moments of tables 7.9 and 7.10 are plotted in
figures 7.29 and 7.30.

(a) Mean max. moment (b) Maximum max. moment

Figure 7.29.: Comparing averaged max. moments as a function of measured H
s

for
T

p

=11.25 s.

(a) Mean max. moment (b) Maximum max. moment

Figure 7.30.: Comparing averaged max. moments as a function of measured H
s

for
T

p

=15 s.

A concern when considering the experimental results is whether the maximum
moments occur at an artificially large eigenfrequency peak, as discussed on page
137. The vital question in the analyses of the experimental results is whether the
first-mode motion alters the extreme wave loads.

Ringing is a response-dominated phenomenon, seen to arise when the first mode
is triggered by high-frequency wave components occurring at the same time as a
quasi-static extreme wave. Usually, the addition to the resulting total response
moment from the first-mode response is around 30-50 % ([Suja-Thauvin et al.,
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7.3. Irregular wave post-processing

2014], [Krokstad, 2015]). Even though the claim is debated, the occurrence of
ringing is said to be damping independent, i.e. the extreme response is memoryless.
Evidence showing the contrary is undocumented, but in experiments examining the
transition between springing (where the first mode is excited) and ringing shows
that the damping level is significant for the outcome. This clearly relates to the
present low-damping study. However, the mentioned study was never published
[Krokstad, 2015], and thus it cannot be rendered in this thesis. The question
remains whether the stated damping independence requires a certain damping
level lower limit.

In figure 7.31, fifth-order high-pass and low-pass Butterworth filters were applied
on a moment time series, giving the high and low frequency parts of the moment
(see figure 7.33). The cut-o� frequency was set to the mean of the spectrum peak
frequency and the first mode eigenfrequency. The result is an eigenfrequency-
dominated high-frequency part and a peak frequency-dominated low-frequency
part (figure 7.33).

Figure 7.31.: A low-pass (red) and high-pass (yellow) filter applied on a moment
time series (blue), for the largest moment of the sea state H

s

=7.69
m, T

p

=15 s, h=20.9 m, seed 1600.

With the low damping in the experiments we might not be able to adjust the
damping level using numerical tools. A weakness of the experiments is that only
one damping level was used. More damping levels would give a more robust
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validation using the numerical program, as well as an increased understanding of
the e�ect of damping on the occurrence of ringing in a lightly damped system.

From figure 7.31 it is seen that the continuously triggered first-mode, i.e. the
high-frequency part, dominates the resulting response moment. Thus, in extreme
loading for a lowly-damped system, the quasi-static load seems insignificant com-
pared to the first-mode response. This means that the system may be insensitive
to non-linear 3rd and 4th-order components of an extreme wave. For a system
without self-excitation and a higher damping level, this is not the case. As will
be discussed in section 7.4.1, ringing might not be a problem if the high-frequency
components of an extreme wave become unimportant.

Figure 7.32.: The wave elevation and moment time series corresponding to the
event in figure 7.31.
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Figure 7.33.: The resulting low-pass and high-pass contributions of the moment
spectrum after applying the ideal fifth-order Butterworth filter.

7.3.1. Comments on the execution of the irregular test program

A few problems occurred while running the irregular waves. For all seeds of
T

p

=11.25 s at h=20.9 m and the two smallest sea states of the same peak pe-
riod at h=30 m, the input stroke to the wavemaker was generated without any
high-frequency cut-o�. The same approach had been used for similar experiments
in the wave flume without problems. However, during the irregular 11.25-s T

p

runs
at h=30 m, the wavemaker began making loud, mechanical noises and was vibrat-
ing at a high-frequency. Small, transverse waves occurring by the wavemaker was
also observed. In figure 7.34, the H

s

=6.71 m, T
p

=11.25 s sea state stroke spectra
at both h=20.9 m (‘piston out old’) and h=30 m (‘piston out new’), are compared.
The high-frequency vibrations around 8-9 Hz are visible.
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Figure 7.34.: Comparing piston stroke spectra

A 3-Hz frequency cut-o� was applied to the remaining irregular sea states, as
exemplified in figure 7.35.

Figure 7.35.: Application of the 3-Hz filter
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The cut-o� was tested by running an irregular sea state of H
s

=6.71 m, T
p

=15
s at h=30 m. The di�erence in stroke is found in figure 7.36, whilst the wave
elevations are found in 7.37a. As seen in figure 7.37b the filter had little e�ect
on the wave elevation time series. A comparison of H

s

showed that it increased
from 6.63 m to 6.66 m, corresponding to a 0.45 % increase, after the filter was
applied. A probable reason for the negligible di�erence is that the inertial limit of
the wavemaker is already exceeded at 3 Hz.

(a) Comparing wavemaker strokes (b) Filtering the high frequencies

Figure 7.36.: E�ects of the high-frequency filter on the wavemaker stroke.

(a) Rerun of a wave elevation time series with filter (b) Resulting wave elevation spectrum

Figure 7.37.: Applying a high-frequency filter had little e�ect on the resulting wave
elevations.
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7.4. Special, bi-chromatic wave tests

The crucial problem that occurs for the lightly-damped system is whether the
response loads can be scaled with the damping level in the numerical program.
If so, the occurrence of non-linear phenomena generating large response maxima,
such as ringing, must remain unchanged when the excessive first-mode motion is
introduced.

In order to understand this essential aspect, additional bi-chromatic, special
wave tests were designed and run. The basic assumption of our lowly damped
system is that the load is independent of the response in a linear system. Ringing
is a response-dominated phenomenon, shown to occur on the impact of a large-
amplitude wave with high-frequency components close to the eigenfrequency. A
quasi-static part results from the large wave and the 3rd or 4th-order frequency
component excites the first-mode. Only a few succeeding high-frequency cycles
have proven su�cient for ringing to occur [Chaplin et al., 1997], causing a shift from
peak frequency-driven to eigenfrequency-driven response, as discussed in section
3.6.

The purpose of the special wave tests was to see whether the occurrence of ring-
ing is di�erent for the two cases, with and without the eigenfrequency component.
If so, it would strongly imply that the maximum moments in the irregular runs
would be faulty compared with the real-life structure, on a stochastic level.

The designed special waves were non-steep, low-frequency regular waves with
a single large embedded extreme wave, combined with eigenfrequency waves of
di�erent steepnesses. To test the e�ect of first-mode motion on the maximum
loads, the same waves where tested without the eigenfrequency component. The
response loads were to be compared. The two wave combinations are illustrated
in figure 7.38.

If the high-frequency parts of the extreme, non-linear wave proved unimportant,
i.e. if ringing is induced for the mono-chromatic waves only, it might imply that
ringing will not be a problem for the self-excited, lightly damped, conservative
mode shape system. It would also provide an indication to whether and how much
the measured maximum loads were underestimated or overestimated.
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(a) The eigenfrequency component is present (b) No eigenfrequency component

Figure 7.38.: A special wave run with and without the eigenfrequency component.
The wave periods are T=3.94 s and T=10 s, at h=30 m. The steep-
ness of the 10-s extreme wave is twice the steepness of the other 10-s
waves.

h · ⁄ [m] Eigenfreq. wave Low-steepness,
long wave Extreme wave Phase [rad]

S T [s] S T [s] S T [s]
30 0.0165 3.94 1/40 10 1/20 10 0
30 0.0165 3.94 1/40 10 1/20 10 fi/2
30 0.0165 3.94 1/40 10 1/20 10 fi
30 0.0165 3.94 1/40 10 1/20 10 3fi/2
30 0.0330 3.94 1/40 10 1/20 10 0
30 0.0330 3.94 1/40 10 1/20 10 fi/2
30 0.0330 3.94 1/40 10 1/20 10 fi
30 0.0330 3.94 1/40 10 1/20 10 3fi/2
30 0.0495 3.94 1/40 10 1/20 10 0
30 0.0495 3.94 1/40 10 1/20 10 fi/2
30 0.0495 3.94 1/40 10 1/20 10 fi
30 0.0495 3.94 1/40 10 1/20 10 3fi/2
30 0.0660 3.94 1/40 10 1/20 10 0
30 0.0660 3.94 1/40 10 1/20 10 fi/2
30 0.0660 3.94 1/40 10 1/20 10 fi
30 0.0660 3.94 1/40 10 1/20 10 3fi/2
30 0.0825 3.94 1/40 10 1/20 10 0
30 0.0825 3.94 1/40 10 1/20 10 fi/2
30 0.0825 3.94 1/40 10 1/20 10 fi
30 0.0825 3.94 1/40 10 1/20 10 3fi/2

Table 7.11.: The test matrix for special waves.
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In order for the eigenfrequency waves and the 10-s waves to reach the structure
simultaneously, the slower eigenfrequency waves were shifted, as in figure 7.39.
The time translation was calculated using the group velocity for linear waves on
finite water depth, as given in equation (3.39).

Figure 7.39.: The eigenfrequency waves are generated before the 10-s waves.

Since ringing is a response-dominated phenomenon, the phase di�erence between
the waves should have an e�ect, so phases were introduced in testing as seen in
table 7.11.

7.4.1. Special wave post-processing

A resulting special wave realization measured at wave gauge 7 is found in figure
7.40b. It shows that two extreme peaks were present at the end of the time series,
instead of the several peaks that were present for the wavemaker input (figure 7.39),
as some of the extreme waves merged during propagation. Several configurations
were tested and this proved to be the closest resemblance of the desired time series
of figure 7.38a.

The results showed that we were unable to trigger ringing artificially for either
wave combination. It was also shown that variation in the phase between the
di�erent wave components had little e�ect.
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(a) Wave elevation, no eigenfrequency component (b) Wave elevation with the eigenfrequency com-
ponent

Figure 7.40.: Comparing wave elevations with and without the eigenfrequency
component.

(a) Moment spectrum, no eigenfrequency compo-
nent

(b) Moment spectrum with the eigenfrequency
component

Figure 7.41.: Comparing moment spectra with and without the eigenfrequency
component.

149



Chapter 7. Results and Discussions

(a) Moment time series, no eigenfrequency com-
ponent

(b) Moment time series with the eigenfrequency
component

Figure 7.42.: Comparing moment time series with and without the eigenfrequency
component.

Figure 7.42 shows the e�ect of dynamic amplification, quantified to approxi-
mately a factor of 2.5, in this case (see moment axis values). The e�ect of dy-
namic amplification is well documented, and also shown previously in this thesis,
in figure 7.31. The results of the special tests gave little certain knowledge, as we
were unable to trigger ringing. Thus, based on these tests, on a stochastic level
we are not able to draw any firm conclusions to whether the maximum loads are
underestimated or overestimated for an adjustable damping level.

7.5. Repeatability

In order to check the repeatability of the measurements, a few irregular sea states
were repeated. They were all for T

p

=11.25 s, with H
s

7.69 m, 8.22 m and 9.04 m.
Comparing the repeated runs in general showed little variation in measured H

s

,
with less than a 1 % discrepancy in all cases. The maximum moment, however,
displayed a larger inconsistency, ranging from approximately a 2 % to a 13 %
deviation. Since the largest discrepancy occurred in highly non-linear conditions,
small di�erences in wave elevation might cause a wave to break where it didn’t in
the first realization. This could be a reason for the variation in maximum moments.
However, in a stochastic analysis this will probably not have a large e�ect on the
results on average. Examples of repeated test results follow:
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(a) Wave elevation time series cut-out (b) Comparing wave spectra

Figure 7.43.: Comparing wave elevations in a repeated test of H
s

=7.69 m,
T

p

=11.25 s. The measured H
s

were 7.23 m and 7.28 m, corresponding
to a di�erence of 0.7 %.

(a) Bending moment time series (b) Bending moment time series cut-out

Figure 7.44.: Comparing bending moments in a repeated test of H
s

=7.69 m,
T

p

=11.25 s. The measured maximum moments were 32.1 Nm and
29.0 Nm, corresponding to a di�erence of 10.0 %.
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7.6. Checking the results of the wave calibration

Utilizing measured wave elevation realizations at wave gauge 7, the resulting sig-
nificant wave heights and peak periods were compared, giving the seed-averaged
values in tables 7.12 and 7.13. The mean percentage values are calculated from

Hs, %

= Hs, wave calibration ≠ Hs, with model

(Hs, wave calibration + Hs, with model)/2 · 100 (7.10)

Tp, %

= Tp, wave calibration ≠ Tp, with model

(Tp, wave calibration + Tp, with model)/2 · 100 (7.11)

h=20.9 m Hs, %

[%] Tp, %

[%]
6.71 m 7.69 m 8.22 m 9.04 m 6.71 m 7.69 m 8.22 m 9.04 m

11.25 s -2.65 -2.08 -1.95 -1.41 -0.85 -0.85 -1.56 0.63
15 s -0.07 -0.04 -0.23 -0.17 0.71 -0.26 0.83 0.79

Table 7.12.: Seed-averaged percentage values for the significant wave height and
peak period for all sea states at h = 20.9 m.

h=30 m Hs, %

[%] Tp, %

[%]
6.71 m 7.69 m 8.22 m 9.04 m 6.71 m 7.69 m 8.22 m 9.04 m

11.25 s 1.37 2.66 2.02 2.35 0.96 0.22 0.51 0.45
15 s 0.97 1.65 1.51 1.68 0.84 -1.75 -0.62 0.04

Table 7.13.: Seed-averaged percentage values for the significant wave height and
peak period for all sea states at h = 30 m.

Comparing with the repeatability checks (section 7.5), where the variation in H
s

for the tested sea states was less than 1 %, the results of tables 7.12 and 7.13 show
that the reflection and di�raction e�ects of the model presence do not introduce
significant deviations in the measured wave elevations. All H

s

variations were
within an interval of a 3 % reduction to a 3 % increase, while the T

p

stayed within
a 2 % reduction to a 1 % increase interval.

In figure 7.45 a comparison of wave calibration and model testing wave elevations
are exemplified for Hs = 7.69 m, Tp = 15 s at h = 30 m.
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Figure 7.45.: Comparing the measured wave elevations from the model tests and
wave calibration runs for a given sea state seed.

7.7. Stochastic analysis

The quantile forces and moments found in tables 7.9 and 7.10 are the 95 % Gumbel
quantiles, as [NORSOK, 2007] states that for clearly non-linear response problems,
either 90 % or 95 % should be applied, referring to [Kleiven and Haver, 2003].

[Næss and Moan, 2012] describes a procedure of classical extreme value theory,
which can be utilized to estimate the experimental extreme wave loads. We assume
a set of statistically independent random variables (e.g. wave heights in a sea state)
X

1

, X
2

,..., X
n

, which are identically distributed with a distribution function F
X

.
The maximum values, corresponding to the largest waves in a set of sea states, is
given by Mn = max{X

1

, X
2

, ..., Xn}. The distribution of maxima is found to be

FM
n

= [FX(x)]n (7.12)

For the derivation of the distribution of maxima, interested readers are referred to
[Myrhaug, 2007].

The first assumption of independent random variables is questionable when con-
sidering response loads, especially for lightly damped systems where the largest
responses tend to be clumped. Large response peaks occur subsequently when
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the response is not damped out. However, the assumption is conservative as the
estimated extreme values will be larger than the real ones.

The extreme value distribution is studied as the number of samples approaches
infinity, [FX(x)]n for n æ Œ. As FX(x) < 1, [FX(x)]n æ 0 as n æ Œ, so in order
for the distribution of maxima to stabilize at some value other than 0, a rescaling
is introduced:

Mú
n = Mn ≠ bn

an
(7.13)

where the constants an > 0 and bn determine where Mú
n stabilizes for a su�ciently

large n.
A generalized extreme value distribution can be established for the maxima:

G(x) = exp{≠[1 + “(x ≠ µ

‡
)]≠1/“

+

} for ≠ Œ < µ < Œ, ‡ > 0, ≠Œ < “ < Œ
(7.14)

where [z]
+

= max(z, 0), µ is a location parameter, ‡ is a scale parameter and “ is
a shape parameter. The limiting case as “ æ 0 is the Gumbel distribution, given
in equation (7.15), which is used in [Det Norske Veritas, 2010] and which will also
be applied in this thesis.

G(x) = exp{≠exp[≠x ≠ µ

‡
]} for ≠ Œ < x < Œ (7.15)

In MATLAB, the µ and ‡ values are found from a least-square error linear
regression in the Gumbel coordinate system, giving

‡ = 1
P

1

(7.16)

µ = ≠P
2

‡ (7.17)

where the linear Gumbel fit is expressed by

ylinear Gumbel fit(x) = P
1

x + P
2

(7.18)

The Gumbel fits in figures B.1 and B.2 (in appendix B) show that the maximum
moments follow the linear Gumbel regression for each seed in all the sea states.
This might illustrate an important consequence of the frequent first-mode exci-
tation in the experiments: that it linearizes the response. When the structure is
constantly excited at the first mode, the relative e�ect of the 3rd and 4th-order load
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contributions might diminish. The largest response moments were expected to be
the result of non-linear phenomena such as ringing, causing rightward deviations
o� the regression lines. This would imply larger moments than those achieved from
linear response. Such a bend-o� trend is illustrated in [Suja-Thauvin et al., 2014].
The tendency cannot be found in any of the Gumbel fits, neither for the force
nor moment data. This means that either ringing occurrences are rare or that the
first-mode motion creates such large loads that ringing becomes insignificant.

(a) (b)

Figure 7.46.: Linear Gumbel fits of the maximum moments for each seed, exem-
plified for two di�erent sea states at h = 30 m.

The Gumbel regression plots give a relation between maximum measured mo-
ments and their respective probabilities of occurrence. Whether a measured mo-
ment point is above or below the linear curve should be random without non-
linearities present. Non-linear e�ects creating larger moment loads would create a
rightward bending trend because the larger loads develop for the same probability
of occurrence.

The cumulative distribution for the measured moments (of which the Gumbel
plots are based) of the sea state of figure 7.46b is found in figure 7.47.
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Figure 7.47.: The cumulative distribution for the measured moments.

The largest measured response moments for each seed of the roughest and least
rough sea states were examined. It turned out that in all cases first-mode oscil-
lations were always present after the largest moment incident. For the roughest
sea state, the burst-like transient ringing pattern was evident in most events. This
could explain why no non-linear bend-o� trend is observed in the Gumbel fits,
as all the largest responses may involve non-linear phenomena. However, this is
questionable, as the excessive first-mode motion made it di�cult to separate lin-
ear response from non-linear ringing phenomena. Usually, only the large waves
excite dynamic amplifications in a system, and otherwise the responses are quasi-
static. In these experiments, however, the system can almost never be considered
quasi-static.

In most cases, the n=20 seeds run in the experiments seem to be su�cient for a
stabilization in accordance with the renormalized distribution of maxima (equation
(7.13)). However, in one case, shown in figure 7.48b the 5 % and 95 % maxima
quantiles seem not to have stabilized. This means that running 20 seeds might
not be enough to be certain of the moment maxima order of magnitude. In figure
7.48b, the two last runs are the ones that cause the discrepancy, so they might as
well have arisen from faulty measurements and be deemed non-representative, as
they are well outside the scatter range of the first 18 measurements.
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(a) Stabilized moment maxima quantiles (b) Unstabilized moment maxima quantiles

Figure 7.48.: Comparing the stabilization of moment maxima quantiles.

7.8. Response from breaking wave events

In figure 7.49, an idealized ringing event induced by higher-order wave components
and a slamming event, are shown. The quasi-static part of the slamming force
has been filtered out, so only the high-frequency response load remains. The
development of the slamming load is characterized by an abrupt increase in force,
and the magnitude of the excitation impulse force is often significantly larger than
the maximum of the second force cycle. The evolution of the ringing event is
smoother than slamming, the first response cycle maximum not as abrupt and
not as large relative to the other cycle maxima. Otherwise, the progression of the
responses are fairly similar, decaying with the eigenfrequency at a certain damping
level.
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(a) Idealized ringing event, illustrated by a time
series of the tension in TLP wires.

(b) Idealized slamming event where the quasi-
static load contribution has been filtered out.

Figure 7.49.: Idealized ringing [Faltinsen et al., 1995] and slamming [Wienke et al.,
2005] events. See also figures 4.10 and 3.11.

Since ringing is triggered by first-mode excitation combined with an extreme
wave, the frequent first-mode motion in the experiments creates a di�culty in
distinguishing between the two phenomena, as the first mode is also triggered
when a global slamming load occurs. This means that both response patterns
appear similar in the measured response moment time series. Thus, separating
the two is an ad hoc exercise that could be performed by setting up automatized
criteria with respect to load duration and maxima magnitude ratios. However,
this would be an inaccurate exercise involving a lot of uncertainty as to whether
the specific events are placed in the correct category.

The characterization problem could have been evaded with functioning force
gauges, but as discussed in section 5.9.2, the gauge output was unstable and un-
reliable.

Even though the responses are similar the loading mechanisms of a breaking
wave slamming event and a non-linear wave ringing excitation event involve a
lot of di�erences. In the former case, a large degree of separation with run-up
and spray occurs at impact and the flow does not smoothly adjoin at the back of
the pile. The latter event is characterized by smoother fluid motion and stream
coalescence behind the cylinder. Usually, due to the short-duration load, a slam
generates a smaller response than an excited structure at ringing. In such an event,
the slamming impulse is more of a local phenomenon, creating large local pressures
in the impacted area. The importance of the impact duration will be discussed in
more detail later in this section.

As discussed in section 4.2, the global slamming loads on an OWT are charac-
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terized as ALS events, less important because the impact from ships are deemed
a graver concern [Det Norske Veritas, 2014]. The result of not automatically be-
ing able to distinguish between slamming and ringing from the experimental data
obtained, is that a stochastic analysis of slamming cannot be performed, so the
categorization in the DNV standard can only be discussed from a deterministic
point of view.

The largest maximum moments of all the di�erent sea state seeds at both water
depths (see the Gumbel fits in appendix B) were examined in order to study what
phenomena gave the largest response loads. Of the 16 total number of sea states, 14
video-taped events were investigated (for Tp = 11.25 s and h = 20.9 m, significant
wave heights 6.71 m and 7.69 m were run before the camera was installed). The
videos showed that all the largest moments, except one, arose from events where
a breaking wave impacted the structure. The non-breaking wave occurred for one
of the least rough sea states, Hs = 6.71 s, Tp = 15 s, h = 30 m. Even though the
wave was not breaking, the impact showed clear resemblance of an impulse load,
giving a large run-up with spray and an uneven flow resulting on the pile backside.

As all the breaking wave events generating the largest responses showed the
same general characteristics in impact and response, only one of the events is
shown in this section. The selected event corresponds to the largest measured
moment (My = 4.4 · 108 Nm, full scale) for the sea state specified by Hs = 9.04 m,
Tp = 11.25 s, h = 30 m. The pictures in figures 7.50 to 7.55 show the impact of the
breaker, creating a large run-up with spraying water. The breaker wall separates
on impact and does not immediately adjoin behind the cylinder. Figure 7.56 shows
the measured wave elevation, shear force and the response moment time histories,
illustrating the structure’s decay oscillations with the eigenperiod. A considerable
dynamic excitation is observed, both in the video and in figure 7.56.
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Figure 7.50.: Incoming breaking wave wall

Figure 7.51.: Wave breaker impact

Figure 7.52.: Water run-up and spray is observed
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The same event can be viewed from behind the structure:

Figure 7.53.: Incoming breaking wave wall, viewed from behind the structure

Figure 7.54.: Wave breaker impact, viewed from behind the structure

Figure 7.55.: Water run-up and spray is observed from behind the structure
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During the impact from a breaking wave, wave-structure interaction is relevant
in two time scales. One time scale is related to the period of the incident wave
and its non-linear components. The other is related to the duration of the im-
pulse. When the duration is comparable to the eigenperiod the hydrodynamic and
structural problems are coupled, i.e. hydroelastic e�ects can result from struc-
tural vibrations. When td π Tn, the magnitude of the impulse is important as the
dynamic amplification is negligible.

The measurements of the breaking wave event are converted to full scale values
in figure 7.56. The figure shows an event of which the excitation mechanism is
di�cult to characterize as neither a large excitation force or evidence of a secondary
load cycle are observed.

Figure 7.56.: Full scale wave elevation and response moment of the slamming event.
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In figure 7.57, a zoom-in on the event is supplied. The shear force measurements
show a small peak around t=5960.5 s, which is in slight anticipation of the wave
peak, since the wave gauge is placed along the pile centerline. The small shear
force peak is induced by the slamming impulse, but due to the 200-Hz sampling
frequency it was not properly captured. For an impact duration in the order of only
several milliseconds, an f

s

of a few kHz is required to acquire a su�cient sampling.
Following the miniature peak are high-frequency oscillations lasting about 1.5 s.
It is di�cult to determine their origin, as it is evident from the coarse resulting
curve of zooming in further, that the sampling frequency is too low to capture
the e�ect. They are probably due to impulse excitation of higher modes, which
dampen rapidly.

Figure 7.57.: Full scale wave elevation and response moment of the slamming event.
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The high-frequency components of the wave elevation after impact have periods
of approximately 0.25 s in full scale, corresponding to approximately 28 Hz in
model scale. This is the eigenfrequency of the wave gauge, found to be approxi-
mately 29.5 Hz for h=20.9 m in figure 7.26a.

With the tools and measurements available, that being an insu�cient sampling
frequency and a flexible pile, the load shape and duration of the slam cannot
be determined accurately. Thus, equation (4.15) will be used to find the impact
duration. It is based on the assumption of a plunging breaker with a vertical wave
front, breaking just before pile impact. In order to find the duration, the wave
celerity is needed. The large breaking wave is stable enough to be recognized for the
measured time series at both wave gauges 5 and 7, as seen in figure 7.58. The wave
peak passes gauge 5 at 5955.0 s and gauge 7 at 5961.4 s (full scale), giving a model-
scale di�erence of 0.92 s. The distance between the two gauges is approximately
2.05 m, so assuming a constant wave celerity gives C = 2.2 m/s and a rise-time
t

d

= 0.013 s. With the eigenperiod of 0.57 s, the t
d

/T
1

ratio is found to be 0.023.
The validity of the vertical wave front assumption is debatable. Nonetheless, the
2.3 % td/Tn ratio is an indication of the short duration, and even if the ratio is
inaccurate by a factor of 4 or 5, the duration would still be characterized as very
short, well outside the duration ranges giving significant dynamic amplification.

Figure 7.58.: Full scale slamming event wave elevations at wave gauges 5 and 7.

In the analysis of the e�ect of an impulse load on a structure, [Larsen, 2012]
names two phases: Phase 1 lasts the duration of the impact force, whilst in phase
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2 the structure is vibrating freely. A distinction is often made related to whether
the maximum response occurs within the duration of impact (phase 1) or in the
free vibration phase (phase 2). A rough characterization is made, approximately
specifying a long impulse as td/Tn > 0.5 and a short impulse as td/Tn < 0.2.
The breaking wave impact of figure 7.56 is well within the short impulse category,
implying that the maximum response will occur in phase 2.

In figure 7.59, [Chopra, 2012] illustrates when the first (and largest) response
peak occurs for a rectangular impulse shape as a function of td/Tn.

Figure 7.59.: Dynamic response of an undamped single-degree-of-freedom system
from a rectangular impulse [Chopra, 2012]. The dashed lines corre-
spond to the static solution ust(t).

For a short impulse duration the shape of the loading is seen to be irrelevant
in figure 7.60, as the dynamic response is equal for both the rectangular, half-sine
cycle and triangular impulse shapes. In addition, the DAF is negligible within the
short time span. No local peak will occur in the forced vibration phase and the
response can be assumed to build up from zero at the beginning of phase 2 (as the
contribution in phase 1 is so small) to a response peak in the free vibration phase.
The DAF will be proportional to the area under the impulse curve.
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Figure 7.60.: Shock spectra from [Chopra, 2012] for three di�erent impulse shapes
of equal area as a function of the ratio between the impulse duration
and the first natural period of the system.

[Larsen, 2012] describes a simplified procedure for the calculation of the response
from a short impulse load. A single degree-of-freedom system initially at rest
is impacted by a force P (t). Resisting forces from damping and sti�ness will
gradually increase from zero, but in the beginning the motion is only resisted by
inertial e�ects, thus giving the acceleration

ü(t) = P (t)
m

= I

m
(7.19)

where m is the mass of the system. This implies that the damping is negligible
when determining the maximum response of a slamming event. For a lightly
damped system (as in the experiments) the damping is only relevant after several
response periods [Larsen, 2012].

The velocity of the structure at the end of the impulse duration can be found
by integration:

u̇(td) =
⁄ t

d

0

P (t)
m

dt (7.20)

The system displacement at t = td is, as mentioned, approximately equal to zero
and proportional to u̇dtd. A new time variable is introduced, starting at the end
of the impulse, t̄ = t ≠ td. When the structure is no longer a�ected by the load it
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will oscillate freely, resulting in a structural displacement of:

u(t̄) = u̇d

Ên
sin Ênt̄ = I

mÊn
sin Ênt̄ (7.21)

where
I =

⁄ t
d

0

P (t) dt (7.22)

P(t) is the impulse function, corresponding to a specific shape in figure 7.60.
The maximum response is found by assuming free oscillations, giving

umax = I

mÊn
= IÔ

km
(7.23)

The example is derived for a translational system, but the same logic applies
for a rotational one. For for t

d

T
n

< 1

4

the described method supplies almost exact
solutions. The results will be inexact for 1

4

< t
d

T
n

< 1

2

and meaningless for t
d

T
n

> 1

2

since the maximum response will manifest in phase 1 [Chopra, 2012].
For a short-duration impulse the magnitude of the impulse is decisive as implied

by equation (7.23). As discussed, the duration of the load of the analyzed breaking
wave event can be established to some degree of accuracy. However, without the
means to determine the magnitude and shape of the impulse load, i.e. without a
su�ciently high sampling frequency and a more rigid pile foundation, the maxi-
mum response cannot be determined. Thus, the excitation mechanism cannot at
present be established based on this procedure.

In order to determine important wave frequencies in the wave elevation around
the breaking wave event, a fast Fourier transform wavelet analysis was performed.
A sliding time window was used, covering one peak period in each frame step.
However, no significant third or fourth-order wave elevation contributions were
observed. Nonetheless, non-linear wave-structure interaction could still be the rea-
son for a steep wave-induced ringing excitation, so the approach does not disprove
anything. If such components had been found, it could substantiate a hypothesis
of a non-linear component-induced ringing. However, firm conclusions could not
have been drawn. In figure 7.61 the wavelet analysis is exemplified for one of the
frames.
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Figure 7.61.: Wavelet analysis [Lugni, 2015] around the breaker event of figure
7.56.

Even if the excitation mechanisms are not unequivocally determined, it is sur-
prising that the largest measured moment response loads for all sea states arise
from the impact of breaking waves. Two options must be considered; either the
large breaking waves are commonplace in a shallow-water region such as Dogger
Bank, or the breaking waves occurring in the experiments are unrealistically large
or frequent.

In the wave tank, the large waves of the rough 9.04-m H
s

sea states break
excessively, reducing the e�ective significant wave heights, as rendered in tables
7.7 and 7.8. Many of these waves were observed to propagate almost the entire
length of the tank before breaking at impact with the structure. As specified in
[Engebretsen, 2012], shoaling and refraction e�ects from a rapid decrease in water
depth, ultimately causing some of the deep water waves to break, often develop
several tens of kilometers away from the wind park regions of Dogger Bank. There
are large di�erences in the relative distances comparing the tank and Dogger Bank.
Thus, it seems plausible that the frequency and amplitudes of the largest breaking
waves generated in the tank are exaggerated compared with realistic occurrences,
as considerable dissipation of energy takes place when a wave breaks.

However, if the maximum response loads are in fact driven by non-linear wave
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component-induced ringing, then a certain lower limit damping level for idling
turbines could be set to reduce the maximum responses. This would also reduce
the frequent first-mode motion observed in the experiments, even though this
phenomenon is not a result of realistic excitation in full scale. As mentioned, for
impulse load-induced responses the largest maxima are independent of the level of
damping.

7.9. Results from the numerical program

Numerical response moments for two force models are exemplified in figure 7.62.
The illustration shows the same breaking-wave event as in figure 7.56, but with
model-scale values. The numerical response moments are established through

Mresponse = ◊ · k◊ (7.24)

as given in [Langen and Sigbjörnsson, 1979]. The angular response ◊ is calculated
in PileResponse.m, solving the equation of motion (6.1).

Figure 7.62.: Realizations of response moments are exemplified, comparing the
measured moment with the deep-water FNV and the deep-water
Morison with Wheeler stretching and slamming (H

s

=9.04 m,
T

p

=11.25 s, h=30 m).
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The FNV model gives a conservative result whilst the Morison model underes-
timates the response in this example. The inertia dominance for the sea state and
at the event are illustrated in figures 7.63 and 7.64, respectively.

Figure 7.63.: Inertia dominance for the entire sea state seed

Figure 7.64.: Inertia dominance, with focus on the breaking wave event

Figure 7.65 to some extent illustrates the e�ect of the self-excitation. The exam-
ple is from an interval with low response moments, and it shows that in this region
the models underestimate the response. This could be caused by the self-excitation
mechanism, as the numerical force models use the calibrated wave realizations, i.e.
without the radiated waves generated by the structure.
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Figure 7.65.: Illustrating the e�ect of self-excitation

All the maximum moments from each seed of the irregular sea states were plotted
with the linear Gumbel regression line. The plots are all attached in appendix C.
The general trend is that the deep-water FNV model causes an overestimation
of the maximum response moments by approximately 50 % and the finite-depth
FNV gives an even larger overestimation of around 60-70 %. Very roughly, the
Morison models underestimate the maximum response moments by 25 % for the
largest sea states. For the lower sea states of H

s

=6.71 m, on the other hand, the
Morison models seem to give a marginally conservative response. These tendencies
are exemplified for one rough and one less rough sea state in figures 7.66 and 7.67.
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Figure 7.66.: Gumbel plots comparing the response moments from the numerical
program with measured data (H

s

=6.71 m, T
p

=11.25 s, h=20.9 m).

Figure 7.67.: Gumbel plots comparing the response moments from the numerical
program with the measured data (H

s

=9.04 m, T
p

=11.25 s, h=30 m).
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For the most severe sea states, the FNV was expected to capture the slope of
the Gumbel fit with higher precision than Morison, as the waves are more non-
linear. This is illustrated in figure 7.67, where the slope of the FNV Gumbel fits
are approximately equal to the measured value slope. The corresponding Morison
slopes are too high.

In the industry, these graphs are typically used when dimensioning structures,
using the 90 % or 95 % quantiles for clearly non-linear responses, as mentioned
previously. It is critical that the numerical model generates realistic loads, in order
to correctly evaluate the design load.

To test the hypothesis that the abundant first-mode motion in the experiments
linearizes the response, numerical simulations with increased damping ratios were
performed. The aim was to test whether the largest simulated moments would
change the configuration of the linear trend, i.e. cause a rightward bend-o� induced
by non-linear e�ects, as discussed in section 7.7. However, no such trends were
observed; the response maxima were still following the linear Gumbel regression.
The magenta plots in figures 7.66 and 7.67 are the finite-depth FNV simulations
using twice the damping level. A double damping curve using Morison is also
plotted as a comparison, since it is not capable of simulating ringing response
from 3rd and 4th-order wave components.

Since appendix D illustrates that the implementation of the FNV equations are
correct according to [Newman, 1996], the question remains whether the measured
wave input is consistent and linear. In figure 7.68, a 0.8 factor was applied on the
high cut-o� frequency (given in section 6.2) of the finite-depth FNV input wave
elevation. The plot shows that the finite-depth FNV response is sensitive to the
specified cut-o� frequency. However, arranging the cut-o�s to fit the measured
values without any realistic foundation wouldn’t serve any purpose.
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Figure 7.68.: Gumbel plots for the finite-depth version of the FNV, with and with-
out a 0.8 factor applied on the cut-o� frequencies.

On the capacity side, structural utilization factors could have been established
based on the measured moments and known turbine designs and material composi-
tions. Ringing induced by non-linear components is considered as an amplification
of the linear response, usually estimated as a 30-50 % addition, in design. However,
since the FNV simulations show such a large discrepancy from measurements for
both rough and less rough sea states, the additional load and structural response
from non-linearities cannot be determined. If the Morison, FNV and measured val-
ues had shown a large degree of compliance for a smaller sea state, and the FNV
and measured values were similar, but much larger than the Morison responses for
a larger sea state, the amplification from non-linearities could have been discussed.
The focus in this thesis has been on the loads, not the structural capacity.

In figure 7.69 the measured shear force and the numerical Morison excitation
force with the slamming component, are compared. The high-frequency oscilla-
tions of the measured shear force are not present in the numerical excitation force.
The numerical impact duration is seen to be considerably shorter relative to the
total load cycle duration, than in figure 4.6. The wave steepness-dependent –

factor is set to – = 0.3 in [Nestegård et al., 2004]. However, as the same source
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specifies – = 1 for a breaking wave, that value is used in the present work, thus
resulting in a much shorter impact. As discussed earlier, the measured impact
excitation force is not properly captured, so the magnitudes cannot be compared.

Figure 7.69.: Comparing the measured shear force with the numerical Morison
excitation force for the same event as in figure 7.57.

The same breaking wave event is shown in figures 7.56, 7.62 and 7.69. Since the
discrepancy in FNV and Morison responses are so large, as seen in the response
pattern in figure 7.62, the developed models do not shed light on the excitation
mechanism of the breaking wave event. For both models, the pile oscillates at
the eigenperiod. The Morison model with slamming greatly underestimates the
response after impact, whilst the FNV causes an overestimation, except for the
first maximum, where the measured response is larger than for both of the models.
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The reflected waves in the decay tests caused a self-excitation of the structure,
resulting in response moment oscillations with magnitudes around 5 % of the
applied moment. If the excessive first-mode motion does not change the frequency
of the non-linear phenomena giving the largest response maxima, then the self-
excitation has little significance on the conclusions regarding the stochastic ULS
maxima.

The e�ect of the frequent structural excitation is uncertain. The attempt to
trigger ringing artificially was unsuccessful, as discussed in section 7.4.1. Thus,
firm conclusions to whether the measured maximum responses are realistic cannot
be drawn. The first-mode motion causes a phase problem. When the pile response
and the incoming wave are in phase, the response is enhanced, whilst it is reduced
when they are in counter-phase. Statistically, the artificial response reinforcement
should occur for half of the incoming waves.

The largest measured response moments occurred for breaking wave events.
Whether the excitation mechanism was that of ringing induced by non-linear wave
components or from the impulse load of the breakers, is unclear. In order to
distinguish between the two, the seeds giving the largest responses should be run
with a higher measurement sampling frequency and a much sti�er base rotational
spring. In that way, the magnitude, shape and duration of the excitation impulse
force can be captured, in order to determine whether the response corresponds to
that of a slamming-type impact.

The physics of the selected sea states are drawn into question because of the
large amounts of breaking. The breakers in question often propagate the length of
the flume before breaking at structural impact. In the real Dogger Bank region,
the relative distance between breaking zones and the wind parks are often much
larger than in the tank, so many of the waves are prone to dissipate much energy
before impacting a turbine. In addition, the metocean report for Creyke Beck B
locations probably do not accurately take shallow water e�ects into account, as
pointed out by [Engebretsen, 2012]. The largest measured H

s

value at h=20.9 m
for T

p

=11.25 s is H
s

=7.95 m, which is lower than the 50-year value of 8.22 m,
shown in figure 5.23.

[Det Norske Veritas, 2014] specifies that the most unfavorable water level should
be used in the ULS design analysis of an o�shore wind turbine. The greatest
water depth generally resulted in the largest response loads (see figures 7.29 and
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7.30). This implies that the e�ect of the longer moment arm exceeded that of the
shallower depth-increased wave non-linearity. The relative di�erence in maximum
loads were smaller for T

p

=15 s than for T
p

=11.25 s, indicating that the increased
non-linearity of a longer wave had an amplifying e�ect on the maximum loads.
However, the 30-m depth does not correspond to any realistic quantile in the
distribution of the annual maximum water depth. If using the h

low

and h
high

values
discarded in section 5.6.1.1, due to wave breaking considerations, the conclusion
might be reversed. It can be discussed whether the larger degree of breaking at
the lower water depth has an impact on measured maxima given in tables 7.9 and
7.10, but using the data for the mean of the largest maxima as a general trend
should be reasonable.

There are many uncertainties in the stochastic analyses. They are related to
the e�ect of the excessive first-mode motion on the maximum loads, the degree of
realism of the generated sea states and the excitation mechanism for the largest
responses. Thus, it is di�cult to determine the importance of breaking compared
to non-breaking steep waves, in design. At this level of uncertainty it would
have been too audacious to draw conclusions contrary to the specifications in the
industry standards.

The numerical FNV model gave the largest responses, the intermediate-depth
version (inconsistent with FNV assumptions) more so than the one for deep water.
It was expected that the finite-depth extension generates greater loads as the
kinematics on shallower water are stretched out horizontally. In the asymptotic
shallow-water solution there is no contribution in the z-direction, as shown in
figure 3.7. As the FNV forces take the horizontal kinematics into account, the
resulting loads should be higher. A reason for the large responses using the FNV
model compared with the measured values could be non-linearities in the input
wave elevations.

The slamming model should be tested for an impulse-type event where the
structure is not already excited at the first-mode. With the excessively excited
experimental structure, no such measured slamming event could be found. In fur-
ther work, this could be done as validation. In addition, with a higher sampling
frequency and sti�er rotational spring, the impulse load can be measured and com-
pared with the resulting numerical impulse. It should be noted that the slamming
model is deemed valid for spilling and surging breakers [Det Norske Veritas, 2014],
whereas the breaking wave events that generated the largest responses in the ex-
periments were clearly plunging. This must be considered as there is considerable
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scatter in measurements of plunging impulse loads, due to curling factors, impact
areas and points of breaking.
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Recommendations for further work:

• Only one damping level was experimentally tested. In order to determine
whether the damping in the numerical program is adjustable, tests with more
damping levels should be performed as reference.

• In order to solve the combined problem of excessive first-mode motion, sev-
eral steps could have been taken. One could have increased the damping and
kept the realistic first mode eigenperiods constant, by introducing a larger
moment of inertia, i.e. larger distributed mass combined with a higher sti�-
ness. Also, installing wave absorbers along the tank could have contributed
to damping out the radiated waves.

• The damping levels in the numerical model are constants based on the de-
cay tests, where the surface is initially flat. As shown in the tests, the
damping is a function of the submergence. At a large wave impact the tem-
porary submergence is increased, leading to a higher damping level. This
submergence-dependent damping could be included in further development
of the model, but the e�ect is probably limited.

• A frequency-dependent wave-radiation damping should be included in the
numerical program.

• A validation of the numerical program against another should be performed.

• To get a better understanding of the e�ects of the first-mode motion, more
bi-chromatic/special wave tests should be performed. The objective would
be to successfully generate ringing artificially. If the ringing only occurs
either with or without the first mode excited in advance, the e�ect of the
excessive first-mode motion (caused by the self-excitation, conservative mode
shape and low damping) on the largest maxima could be evaluated.

• Working pressure gauges could be included to assess the vertical pressure
distribution of a slam. Combined with a sti�er base spring the excitation
force magnitude, shape and impact duration can be determined. For an
impact load duration of a few ms, the measurement sampling frequencies
should optimally be a few kHz. This means at least a tenth multiple increase
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from the current setup of fsampling = 200 Hz. The linear excitation loads
without dynamic amplification are found in section 6.3. With a sti�er model,
the excitation loads for non-linear response could also be determined.

• More force models can be implemented in the numerical program to compare
their degree of conservatism with that of the FNV.

• An improvement to the [Nestegård et al., 2004] slamming model could be
to redefine how the penetration parameter (s) and local phase velocity are
calculated (e.g. by utilizing the Hilbert transform).

• Testing with an added surface roughness should be performed in order to
verify that the e�ect on the maximum loads is small.

• The steepness-dependent – factor in the slamming model is set equal to 1 in
the current setup, as it is only used for deterministic analyses for a breaking
wave. The model can be improved by considering the local wave steepness,
implying a wider scope of usage, valid also for steep but non-breaking waves.

• The slamming model should be tested for an impulse-type event where the
structure is not already excited at the first-mode.
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A | Regular Wave Realizations

Figure A.1.: Regular wave realizations at h = 20.9 m. The figures are ordered
according to steepness, from S = 1/30 (left) to S = 1/18 (right), and
specified wave period, from T = 3.77 s (top) to T = 15 s (bottom).
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Appendix A. Regular Wave Realizations

Figure A.2.: Regular wave realizations at h = 30 m. The figures are ordered ac-
cording to steepness, from S = 1/30 (left) to S = 1/18 (right), and
specified wave period, from T = 3.94 s (top) to T = 15 s (bottom).
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B | Moment Gumbel Plots

Figure B.1.: Gumbel plots for the maximum response moments in each seed, h =
20.9 m. Ordered from H

s

=6.71 m (top) to H
s

=9.04 m (bottom) and
T

p

=11.25 s (left) to T
p

=15 s (right).
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Appendix B. Moment Gumbel Plots

Figure B.2.: Gumbel plots for the maximum response moments in each seed, h =
30 m. Ordered from H

s

=6.71 m (top) to H
s

=9.04 m (bottom) and
T

p

=11.25 s (left) to T
p

=15 s (right).
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C | Moment Gumbel Plots for the Numerical Pro-
gram

Figure C.1.: Comparing numerical model output with measured data. Gumbel
regression lines for the maximum response moments in each seed, h =
20.9 m. The plots are ordered with increasing H

s

from 6.71 m (top)
to 9.04 m (bottom). T

p

= 11.25 s is on left and T
p

= 15 s is on the
right. x-axes: Maximum moment [Nm], y-axes: log(log(F)).
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Appendix C. Moment Gumbel Plots for the Numerical Program

Figure C.2.: Comparing numerical model output with measured data. Gumbel
regression lines for the maximum response moments in each seed, h
= 30 m. The plots are ordered with increasing H

s

from 6.71 m (top)
to 9.04 m (bottom). T

p

= 11.25 s is on left and T
p

= 15 s is on the
right. x-axes: Maximum moment [Nm], y-axes: log(log(F)).
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D | Validation of the FNV implementation
In [Newman, 1996], a first-order free-surface elevation is put together by five sinu-
soidal components

’
1

=
5ÿ

n=1

Ansin Ênt (D.1)

In order to test whether the coded deep-water implementation of the FNV is
done correctly, the resulting components of the force are compared to those in
[Newman, 1996]. In the following figures, the upper graphs are from [Newman,
1996] and the lower graphs are from the numerical deep-water FNV implementa-
tion. The curves show a perfect fit.

Figure D.1.: First-order free-surface elevation ’
1
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Appendix D. Validation of the FNV implementation

Figure D.2.: F
1

Figure D.3.: F
2
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Appendix D. Validation of the FNV implementation

Figure D.4.: F (1)

3

Figure D.5.: F (2)
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%% AnalyzeAllSimulatedData 
% Objective: To run AnalyzeSimulatedData.m for all sea states 
% Method: For-loop 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
!
%% AnalyzeSimulatedData 
% Objective: To analyze the output binary files from PileResponse.m 
% Method: Gumbel analysis 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
!
%% biesel 
% Objective: Find the H/S for a piston-type wavemaker 
%            H: wave height for a linear wave [m] 
%            S: wave maker stroke 
% Method: Using the Biesel transfer function 
% Last Modified: 03.2015 
% Authors: Trygve Kristiansen (MARINTEK) 
% Modified by: Loup and Joakim 
function [HS_pist]=biesel(omega,h,iwrite) 
!
%% CalcHsTpProbability 
% Objective: To establish sea state probabilities for the Dogger Bank,  
% Creyke Beck B, location 2 
% Method: Using the values and formulae of [Mathiesen et al., 2014] 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
!
%% CheckHsTpFromInput 
% Objective: Checking the nominal Hs, Tp values 
% Method: Spectral analysis 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
function [Hs,Tp,F,Y] = CheckHsTpFromInput(filepath,ramp,duration,lambda) 
!
%% CheckHsTpFromMeas 
% Objective: Checking the effective Hs, Tp values 
% Method: Spectral analysis 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
function [Hs_meas,Tp_meas,dt] = 
CheckHsTpFromMeas(filepath,ramp,duration,trigger_end,lambda) 
!
%% Compare 
% Objective: Checking the nominal and effective Hs, Tp values 
% Method: Spectral analysis 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
function [Hs_in,Tp_in,Hs_meas,Tp_meas,dt_out,F_in,Y_in] = 
Compare(folderpath,log_path,output_path,ramp,duration,file,trigger_end,lambda) 
!
%% CompareDecay 
% Objective: To compare measured decay with the calculated numerical decay 
% Method: Solving the rotational equation of motion 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
function []=CompareDecay() 

E | MATLAB routines
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!
%% CompareFiles 
% Objective: Post-processing irregular wave data 
% Method: Spectral analyses and stochastic Gumbel analyses 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
!
%%   CompareFMspectra 
% Objective: To compare force and moment spectra (smoothed and unsmoothed)  
% for each seed of a sea state 
% Method: Plotting the nominal and effective wave spectra 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
function 
[]=CompareFMspectra(freq,moment_tot,force_tot,h,files,Tp_vec_meas,Hs_specified,
Tp_specified,lambda) 
!
%%   CompareHsTpPlot 
% Objective: To compare the Hs, Tp values for each sea state seed 
% Method: Plotting the specified nominal and effective Hs, Tp values 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
function 
[]=CompareHsTpPlot(h,files,Hs_specified,Tp_specified,Hs_vec_in,Tp_vec_in,Hs_vec
_meas,Tp_vec_meas) 
!
%%   CompareSpectra 
% Objective: To compare wave spectra (smoothed and unsmoothed) for each 
% seed of a sea state 
% Method: Plotting the nominal and effective wave spectra 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
function 
[]=CompareSpectra(h,files,Hs_specified,Tp_specified,F_in_vec,Y_in_vec,freq,wave
_tot) 
!
%% CreateBatch 
% Objective: Generating the batch files for irregular waves 
% Method: Using the wavemaker transfer functions, reading in the generated  
% irregular wave elevation time series 
% Last Modified: 04.2015 
% Authors: Loup and Joakim 
!
%%   CutTime 
% Objective: Removing the ramp duration 
% Method: Utilizing the ramp duration and seed duration and the specified  
% position where the ramp starts 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
function [out] = CutTime(in,first_step,ramp,duration) 
!
%% damping 
% Objective: To find the linear and nonlinear damping coefficients as well as  
% the damping ratio using measurements from a decay test 
% Method: Using the logarithmic decrement method of [Steen, 2014] 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
!
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%% eqmotion 
% Objective: Solving the differential equation of motion for Morison 
% Method: Using a procedure specified in the TMR4215 Sea loads exercise 8 
% Last Modified: 03.2015 
% Authors: Loup and Joakim 
!
%% eqmotion_FNV 
% Objective: Solving the differential equation of motion for FNV 
% Method: Using a procedure specified in the TMR4215 Sea loads exercise 8 
% Last Modified: 04.2015 
% Authors: Loup and Joakim 
!
%%   FilteringButterworth 
% Objective: To separate high and low frequency components in a moment time 
% series 
% Method: Using a 5th-order Butterworth filter 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
function []=FilteringButterworth(t,M,lambda,Fc) 
!
%% FindingTF_Regular 
% Objective: Finding the transfer function TF = theta [rad]/M [rad] for the 
% lowest-steepness regular waves in order to test the linear response of 
% the numerical program 
% Method: Filtering away the frequencies above 1.5*f_1, where f_1 is the  
% measured reciprocal to the regular wave frequency 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
function [meanFiltMMax,meanFiltThetaMax] = 
FindingTF_Regular(t,dt,freq,M,accx,Fc,T_meas,ph) 
!
%% findk 
% Objective: To find the wave number k using linear wave theory  
% Method: Using an iterative procedure to find k on a finite water depth 
% Last Modified: 03.2015 
% Authors: Loup and Joakim 
function [k]=findk(T,h) 
!
%% findk2 
% Objective: To find the wave number k for a vector of wave frequencies 
% using linear wave theory  
% Method: Using an iterative procedure to find k on a finite water depth 
% Last Modified: 03.2015 
% Authors: Jørgen Krokstad 
function [k]=findk2(w,h) 
!
%%   ForcesFNV 
% Objective: Calculating the 1st, 2nd and 3rd-order FNV  
% loads on a cylinder  
%Method: Using formulae for irregular waves from [Newman, 1996] 
% Last Modified: 03.2015 
% Authors: Loup and Joakim 
function [f1,f2,f3] = ForcesFNV( 
time,h,g,a,wave_elevation,rho,CD,CM,potential_M,potential_FNV) 
!
%%   ForcesMorison 
% Objective: Calculating the hydrodynamic Morison loads on a cylinder  
% Method: Using the Morison equation 
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% Last Modified: 05.2015 
% Authors: Loup and Joakim 
function [Fs,FD,FM] = 
ForcesMorison(time,h,g,a,Wave_elevation,rho,CD,CM,potential,wheeler,include_Cs,
output_path_cal,alpha,impulse_pos) 
!
%%   FreqDomain 
% Objective: Finding the Fourier components for the wave elevation and the  
% wave number for a given a circular wave frequency. 
% Created: 2015-03-12 
% Last Modified:  
% Author: Loup and Joakim 
function [Y2,W,k,a,b] = FreqDomain(wave_elevation,time,g,h,potential_) 
!
%% Gumbel 
% Objective: Gumbel analysis, finding the maximum value for the specified  
% quantile 
% Method: Using formulae from [Naess and Moan, 2012] 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
function [x] = Gumbel(vec_max,quantile) 
!
%% GumbelAnalyze 
% Objective: Gumbel analysis, finding the maximum value for the specified  
% quantile and the p1 and p2 of the regression line y=p1*x+p2 
% Method: Using formulae from [Naess and Moan, 2012] 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
function [x,p1,p2] = GumbelAnalyze(vec_max,quantile) 
!
%% GumbelPlot 
% Objective: Plotting Gumbel fits, finding the maximum values for the  
% specified quantile 
% Method: Using formulae from [Naess and Moan, 2012] 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
function [x] = GumbelPlot(vec_max,quantile,Mean_HsMeas,Mean_TpMeas,Hs,Tp,h,FM) 
!
%% IntegrateAcceleration 
% Objective: Finding the pile top position time histories from the  
% accelerometer measurements 
% Method: Using a highpass filter and integrating twice 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
function [pos] = IntegrateAcceleration(t,acc,cutoff) 
!
%%   IrregWaveSeries 
% Objective: Generating the irregular output file which is input for 
% CreateBatch.m 
% Method: Calculating the JONSWAP peakedness factor gamma and executing 
% Realize.m 
% Last Modified: 04.2015 
% Authors: Loup and Joakim 
function [] = IrregWaveSeries() 
!
%% JONSWAP_spectrum 
% Objective: Generating a JONSWAP spectrum 
% Method: Taking in the peakedness factor gamma to be multiplies with the 
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% PM spectrum 
% Last Modified: 02.2015 
% Authors: Loup and Joakim 
function [JSWP] = JONSWAP_spectrum(w,Hs,Tp,gamma) 
!
%% MechTF 
% Objective: Specifying the mechanical transfer function 
% Method: Linear interpolation between frequency values 
% Last Modified: 03.2015 
% Authors: Loup and Joakim 
function [MTF] = MechTF(omega) 
!
%%  Mirror 
% Objective: This function mirrors a spectrum wrt. its central value. 
% Last Modified: 01.2015 
% Authors: Loup and Joakim 
function [Xm] = Mirror(X) 
!
%% numToString100 
% Objective: Used for the three-digit run numbers that begin with '0' or 
% '00' 
% Method: If-sentences 
% Last Modified: 02.2015 
% Authors: Loup and Joakim 
function [num_string] = numToString100(num) 
!
%% PiersonMoskowitz_spectrum 
% Objective: Generating a Pierson-Moskowitz spectrum 
% Method: Using the formula specified in DNV-OS-J101 
% Last Modified: 02.2015 
% Authors: Loup and Joakim 
function [PM] = PiersonMoskowitz_spectrum(w,Hs,Tp) 
!
%% PileResponse 
% Objective: To calculate the pile response in the time domain, using  
% different excitation force models 
% Method: The response is found by solving the equation of motion: 
% (Imp+Imd+Ima)*ddtheta(t) + Crot*dtheta(t) + Krot*theta(t) = M(t) 
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
!
%% PlotHsTpGraph 
% Objective: To plot the contour lines for the Dogger Bank, Creyke Beck B,  
% location 2 
% Method: Using the values and formulae of [Mathiesen et al., 2014] through 
% CalcHsTpProbability.m. 
% Last Modified: 02.2015 
% Authors: Loup and Joakim 
!
%% Realize 
% Objective: Generating an irregular wave elevation time series 
% Method: Utilizing the procedure specified in [Newland, 1993] 
% Last Modified: 02.2015 
% Authors: Loup and Joakim 
function [t,x] = Realize(Tmax,dt,Hs,Tp,gamma,h,g,seed) 
!
%% RegWaveSeries 
% Objective: Generating the batch files for regular waves 
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% Method: Using the wavemaker transfer functions and linear wave theory 
% Last Modified: 04.2015 
% Authors: Loup and Joakim 
function [] = RegWaveSeries() 
!
%%   slamcoeff 
% Objective: Calculating the slamming coefficient to go with the impulse 
% force included in the Morison load 
% Method: Using the procedure from [Nestegaard, 2004]  
% Last Modified: 05.2015 
% Authors: Loup and Joakim 
function [Cs]=slamcoeff(h,g,R,rho,output_path_cal,alpha,impulse_pos) 
!
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