
Unconventional Propeller Tip Design
Hydrodynamic Study

Andreas Ommundsen

Marine Technology

Supervisor: Håvard Holm, IMT

Department of Marine Technology

Submission date: June 2015

Norwegian University of Science and Technology



 



Preface

This Master’s Thesis was written in the final term of the engineering studies with specialisation
in hydrodynamics at the Marine Technology Centre in Trondheim, under the Norwegian Uni-
versity of Science and Technology. The topic of unconventional propellers was chosen because
of curiosity and an interest in CFD. It was a very fascinating subject to study, and I learned a
lot during the process.

There are probably always things one should have done differently, but that is easier to see
in hindsight than right in the middle of the thesis work. It would be interesting to test many
variants of winglet designs, but there was simply not enough time. The lifting line computer
program was more time demanding to write than first anticipated, but proved very useful in
the design process and overall understanding of how propellers are engineered.

Thanks go to my supervisor, Associate Professor H̊avard Holm, for good help and very
supportive guidance meetings. Thanks are also given to my co-supervisor Professor Sverre
Steen for valuable help in understanding the lifting line theory and propeller theory in general.
I also want to thank my second co-supervisor Luca Savio, working at SINTEF MARINTEK,
especially for giving great tips of what to include in the post processing of the CFD results.

Trondheim, June 2015
Andreas Ommundsen

I



Abstract

The use of winglets on aircraft wings have proven to be beneficial regarding resistance and
efficiency. Devices like these have seen little use on ship propellers, which also in essence are
wings, only in a rotating motion. Propeller blades create lift by sustaining a pressure difference
between the two surfaces, but this pressure difference will naturally vanish as soon as the span
of the blade ends. The lift on the outer sections of the propeller blade will therefore be reduced,
and vortices are formed because of the pressure leakage around the blade tip. These vortices
will also induce velocities on the blade which alters the angle of inflow, and effectively the
propeller pitch. The induced velocities will also induce a drag component, implying that it is
wise to minimise them. A winglet is able to sustain the pressure difference further towards the
blade tip by acting as a physical barrier against the pressure leakage, and at the same time
reduce the tip vortices and induced velocities. It will in addition, if designed carefully, be able
to create a small thrust in the direction of travel.

A conventional propeller has its lift distributed such that the blade is unloaded to zero at
the tip to minimise the forming of tip vortices. This also indicates that the outer blade sections
are not lifting optimally. The idea of a winglet is that the lift can be maintained further towards
the tip, and rather go to zero at the winglet.

A computer program based on two-dimensional lifting line theory with the induction factor
method was therefore written in order to design a propeller with an arbitrary lift distribution.
Two different propellers were modelled from the same criteria – one with lift equal to zero on
the blade tip, and one with a finite loading. The tip loaded propeller was the basis for the
winglet propellers, of which two were made – one with a tall, and one with a shorter winglet.

A detailed CFD analysis was conducted on all the propellers. The results were presented in
open water diagrams, and with figures of cavitation patterns and vorticity details. The winglet
propellers were then compared with the conventional propeller, which served as the reference.

The goal of higher efficiency was not reached. The thrust increased by 24.5 % and 40.3 %
at the operating point for the short and tall winglet respectively – while the torque increased
by 34.4 % and 58.8 % for the short and tall winglet respectively. This lead to an efficiency
reduction of 5.5 and 8.7 percentage points respectively. The cavitation performance of the
winglet propellers were also worse than for the conventional propeller. It is assumed that the
negative effects are connected to the design of the winglets. They did not follow the radial
curvature of propeller circle correctly, and will therefore be oriented at an angle of attack on
the inflow. A larger pressure resistance is also likely, but it was in addition observed larger tip
vortices for the winglet propellers, something that contributes to a higher torque. Increased
viscous resistance is also a factor that will increase the torque.

The reason for the thrust to go up is believed to be the sustaining of the pressure difference
towards the blade tip, and the fact that the tip vortex was displaced away from the propeller
blade and up to the top of the winglet. This leads to lower induced velocities at the blade, and
therefore a higher pitch at the outer blade sections.

It is nevertheless concluded that there may be a potential in this type of propellers if the
winglet is designed carefully.
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Sammendrag

Bruken av winglets p̊a flyvinger har vist seg å være fordelaktig med tanke p̊a motstand og
effektivitet. Det har vært lite å se til den typen innretninger p̊a skipspropeller, som i og for seg
ogs̊a er vinger, bare i en roterende bevegelse. Et propellblad skaper løft ved å opprettholde en
trykkforskjell mellom de to overflatene, men denne trykkforskjellen vil naturlig nok opphøre s̊a
snart bladet stopper opp. Løftet p̊a de ytre seksjonene av propellbladet vil derfor være redusert,
og det dannes i tillegg virvler p̊a grunn av trykklekkasjen rundt bladtuppen. Disse virvlene vil
indusere hastigheter p̊a bladet som endrer innstrømningsvinkelen, og i praksis stigningen p̊a
propellen. De induserte hastighetene vil ogs̊a indusere en motstandskomponent, noe som vil si
at det er fordelaktig å minimere dem. En winglet vil kunne opprettholde trykkforskjellen lengre
ut mot bladtuppen ved å virke som en fysisk barriere mot trykklekkasjen, samtidig som den
ogs̊a ideelt sett er med p̊a å redusere endetuppvirvlene og de induserte hastighetene. I tillegg
vil den, hvis den er designet riktig, være med p̊a å skape en liten skyvkraft i fartsretningen.

En konvensjonell propell har løftet sitt fordelt slik at bladet avlastes til null mot tuppen,
nettopp for å minimere dannelsen av tuppvirvler. Det vil si at ogs̊a en stor del av de ytre
bladseksjonene ikke løfter optimalt. Ideen bak en winglet er at løftet kan opprettholdes lengre
ut mot tuppen, og heller g̊a mot null p̊a wingleten.

Et dataprogram basert p̊a todimensjonal løftelinjeteori med induksjonsfaktormetoden ble
derfor skrevet for å kunne designe en propell med en vilk̊arlig løftfordeling. To ulike propeller ble
modellert ut fra de samme kriteriene – den ene med løft lik null p̊a bladtuppen, og den andre med
en endelig belastning. Den tuppbelastede propellen var utgangspunktet for wingletpropellene,
som det ble laget to varianter av – en med høy og en med lavere winglet.

En detaljert CFD-analyse ble gjennomført p̊a alle propellene. Resultatene ble framstilt i
friprøvediagram, og med bilder av kavitasjonsmønstre og virvlingsdetaljer. Wingletpropellene
ble s̊a sammenlignet med den konvensjonelle propellen, som ble brukt som referansegrunnlag.

Målet om høyere virkningsgrad ble ikke n̊add. P̊a operasjonspunktet økte skyvkraften med
24,5 % og 40,3 % for propellene med henholdsvis lav og høy winglet – mens dreiemomentet økte
med henholdsvis 34,4 % og 58,8 %. Det førte til en reduksjon i virkningsgraden p̊a henholdsvis
5,5 og 8,7 prosentpoeng. Kavitasjonsegenskapene var ogs̊a d̊arligere for wingletpropellene enn
den konvensjonelle propellen. Det antas at grunnen til de negative effektene er knyttet opp til
utformingen av wingletene. De følger ikke kurvaturen til propellsirkelen korrekt, og vil derfor
st̊a med en angrepsvinkel p̊a innstrømningen. Større trykkmotstand er ogs̊a sannsynlig, men
det ble i tillegg observert større tuppvirvler for wingletpropellene, noe som ogs̊a bidrar til økt
dreiemoment. Større viskøs motstand vil ogs̊a bidra til det økte dreiemomentet.

Grunnen til at skyvkraften gikk opp antas å være at trykkforskjellen ble opprettholdt lengre
ut mot bladtuppen, og at tuppvirvelen ble flyttet vekk fra propellbladet og opp til toppen av
wingleten. Dette fører til lavere induserte hastigheter p̊a bladet, og derfor en høyere stigning
ved de ytre bladseksjonene.

Det konkluderes likevel med at det kan ligge et potensiale i denne typen propeller hvis
wingleten designes med stor nøyaktighet.
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Nomenclature

g Acceleration of gravity η Propeller efficiency
u Velocity in x-direction KT Thrust coefficient
v Velocity in y-direction KQ Torque coefficient
w Velocity in z-direction J Advance number
V Free stream velocity Z Number of blades
V0 Ship speed w Wake factor
VA Advance velocity Γ Circulation
VL Local velocity k Circulation factor
Vt Total velocity kc Camber factor
u∗ Friction velocity ka Angle of attack factor
UA Induced axial velocity kt Thickness factor
UT Induced tangential velocity y+ Wall distance
ia Axial induction factor τw Wall shear stress
it Tangential induction factor EAR Expanded Area Ratio
βi Hydrodynamic angle of attack φ General scalar
α Angle of attack PD Delivered power
αi Ideal angle of attack ν Kinematic viscosity
ρ Density µ Dynamic viscosity
p Pressure
pv Vapour pressure
σ Cavitation number, structural stress
σy Structural yield stress
I Second area of moment
M Bending moment
Cp Pressure coefficient
CL Lift coefficient
CD Drag coefficient
CF Friction coefficient
Re Reynolds’ number
Fn Froude’s number
t Thickness
c Chord length
r Radial position
R Propeller radius
D Propeller diameter, drag force
P Propeller pitch
n Propeller speed in rps
L Lift force
T Propeller thrust
Q Propeller torque
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Chapter 1

Introduction

1.1 Motivation and Objectives

Tip modified wing sections have been used in the aircraft industry for quite some time – dating
back to Sighard F. Hoerner’s work from the 1950’s (Hoerner 1952), and in particular Richard
T. Whitcomb’s work from the 1970’s (Whitcomb 1976).

Most wing tip devices have in common that they form a physical barrier between the suction
and pressure sides of the lifting surface, preventing some of the pressure leakage at the tip from
taking place. This increases the lift, and reduces the wing tip vortices – furthermore reducing
the downwash and drag. In addition, modern winglets are lifting surfaces themselves, managing
to create a slight forward thrust by utilising the flow from the wing tip vortices, as seen in Figure
1.1 below.

Direction of travel

Vortex flow

Winglet lift

Main wing lift

Free stream flow

Figure 1.1: Overview of the flow around a winglet fitted wing. The vortex flow alters the inflow
to the winglet. As the winglet creates a lift that is normal to the free stream flow, the lift may
be decomposed into a thrust component that is aligned with the direction of travel (red arrow).
The winglet also has a drag component, but it is lower than the resulting thrust.

The motivation behind this thesis is simple. Winglets have been successful in the aircraft
industry – so why have similar designs not been applied to marine propellers, which are lifting
surfaces too? The aim is to figure out if there could be potential performance gains for a marine
propeller by applying aircraft inspired lifting winglets. Special emphasis is put on the open
water efficiency, but all the propeller coefficients, as well as the cavitation performance and
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vorticity details will also be covered. This is in accordance with the thesis problem text, which
is cited below.

Thesis Problem Text

“The main objective of the thesis is to study the effects of adding aircraft style winglets to
marine propellers, with special emphasis put on the open water efficiency. A litterature study
should be conducted to see what has been achieved already in the field of unconventional tip
designs.

New variants of winglet designs should be modelled and analysed with state of the art CFD
software, and the results should be presented in a thorough manner.”

1.2 Previous Work

There are two major propeller tip modified designs that have been studied, namely the ‘Con-
tracted and Loaded Tip’ (CLT) propeller, and the ‘Kappel’ propeller. Both of them have a
thorough theoretical foundation and have also been tested in full-scale on a diverse range of
ships. The results are promising, and claims of notable efficiency gains have been reported.

1.2.1 The ‘Contracted and Loaded Tip’ Propeller

The CLT propeller originated in the wake of a 1976 study on Tip Vortex Free propellers of G.
Perez Gomez (Gennaro and Gonzalez-Adalid 2012). The spanish company SISTEMAR was
established in 1987 to further develop the design and to commercialise the product.

The CLT propeller differs considerably from a conventional design, with the most visibly
striking being the substantial tip chord length and large end-plates, which follow the entire tip
chord and point towards the blades’ pressure sides. Little skew is also a common feature.

Figure 1.2: A 5.25 m diameter fixed pitch CLT propeller installed behind a wake equalising
duct on the tanker M/T ‘Roy Maersk’ of A.P. Møller – Mærsk (The Motorship 2012a).

The blade tip is loaded, with the unloaded end-plates acting as barriers between the suction
and pressure sides of the propeller, thereby preventing pressure leakage over the tip. The end-
plates are positioned at a sharp angle to the blades, and runs along the entire tip chord length.
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The main goal of the CLT propeller is to improve the open water efficiency by reducing the
hydrodynamic angle of attack (βi in Figure 2.4) through a reduction of the induced velocities
(Gennaro and Gonzalez-Adalid 2012). An increase in the efficiency of 5 to 8 % over the
entire operational range have been reported, as well as lower induced noise and vibrations and
better manoeuvrability (Gonzalez-Adalid and Gennaro 2011). These results are presented by
SISTEMAR themselves, and should be taken with a grain of salt – but it is worth noting that
A.P. Møller – Mærsk decided that the CLT propeller was the most promising energy saving
device after a research and development program, also involving model trials at The Hamburg
Ship Model Basin (HSVA) and CEHIPAR in Madrid. As shown in Figure 1.2, ‘Roy Maersk’
was retrofitted with a CLT propeller in 2009, and promising results were obtained after a long
research period (Gonzalez-Adalid and Gennaro 2011).

The large number of vessels fitted with CLT propellers (around 300) is an indication for
the maturity of the design. Vessels ranging from hydrofoils to bulk carriers and VLCC’s (Very
Large Crude Carriers) have successfully been using CLT propellers.

Figure 1.3: A hydrofoil vessel fitted with two fixed pitch CLT propellers (Gonzalez-Adalid and
Gennaro 2011).

So, why are not every single new build then fitted with CLT propellers? There are, according
to a thorough study, possibly several reasons for this (Bertetta et al. 2012). The shape and
position of the end-plates introduce mechanical strength issues, and there are also a higher
risk of double tip vortex cavitation (i.e cavitation vortices originating from two locations on
the propeller tip). Since tip vortices are a significant source of energy loss and hydroacoustic
noise, it is important to have a proper understanding of the vortex dynamics, which is more
challenging for an unconventional propeller like the CLT design. The geometry is also likely to
produce a very complex wake field which interacts with the tip vortices. Another important
aspect is that the scale effects are not yet fully understood. The study also revealed that the
presence of the end-plates increases the risk of cavitation inception at the end-plate root and
tip, but it was also mentioned that the higher tip loading itself could stabilise the cavitation
sheet in the presence of unavoidable cavitation.

Another reason for the CLT propeller’s lack of popularity might be that it is a radically
different design that shipowners might be reluctant to purchase. They are often not risk takers,
and choose the conventional and well-proven design instead. The CLT propeller still seems like a
promising design, with the relatively numerous full scale applications backing it up furthermore.
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1.2.2 The ‘Kappel’ Propeller

The Kappel propeller was presented in 2001 after long development by the Danish engineer
Jens Julius Kappel. It stands out from the CLT design in a number of ways. The blade tips
are lifting, and curved gradually towards the suction side of the propeller with a large amount
of skew. This means that the blades are non-planar lifting surfaces, differing substantially from
most conventional propellers (Nielsen et al. 2012).

Figure 1.4: A 1:28 scale model of a Kappel Alpha 6.4 m diameter propeller (The Motorship
2012b).

The efficiency gains are claimed to be in the same vicinity as the CLT design – around 6 %
(Nielsen et al. 2012). Reduced noise and vibration levels are additional listed benefits.

The Kappel design has not been around for as long as the CLT propellers, and are therefore
not yet seen fitted to the same amount of vessels. The popularity is however on the rise. The
first full scale test was done in the early 2000’s on the 35 000 dwt tanker M/T ‘Nordamerika’
of Dampskibsselskabet Norden, right after it had undergone testing of a state of the art con-
ventional propeller. Off the coast of Portugal, in similar calm weather conditions, a 4 % higher
efficiency was achieved, as well as slightly lower pressure pulses (DTU 2014).

Over the years, passenger ferries, tankers, reefers, Ro-Pax ferries and even U-boats have
been fitted with Kappel propellers (Nielsen et al. 2012). Also, eight new 58 500 dwt bulk
carriers of Cyprus based Lemissoler Navigation, scheduled for delivery in 2015 and 2016, will
be fitted with them.

A study from 2010 compared experimental and numerical results of a Kappel propeller
(‘KAP510’) and a conventional propeller (‘CV1700’), with special emphasis on scale effects and
structural performance (Cheng et al. 2010). The Kappel propeller suffered from greater scale
effects, and had a larger stress concentration at the blade tip. In full scale (D = 6.6 m), the
blade tip deflection was 1.65 cm for the conventional propeller and 4.74 cm for the Kappel
propeller. It was also found that the efficiency of the two propellers essentially was identical,
contrary to other full scale test reports.

The Kappel design was acquired by MAN Diesel & Turbo in 2012, and is now an integrated
part of their line of propulsion systems. Torben Johansen, the director of their Propeller & Aft
Ship Department, says that they have difficulties convincing the shipowners of the design when
it comes to scaling the model results. The effects of the Kappel propeller are not as evident in
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full scale as in model scale, but they are certain that an increase in efficiency of at least 3 %
can be achieved (Ingeniøren 2014).

It seems that the Kappel propellers are of a design that bears great potential, but with
much ground to break when it comes to widespread use.

1.3 Outline of Thesis

The Kappel propeller is equipped with lifting blade tips, whereas the CLT propeller is not. The
Kappel propeller is therefore closest to the thesis motivation of a lifting winglet – but there
are a number of ways of conducting such a design. The blade tips of the Kappel propeller may
resemble the ‘raked wingtip’ of some aircraft (e.g the Boeing 777 and 787), which has proven
to be very effective on long distance flights. Another widely used wing tip device on aircraft is
the ‘blended winglet’ – as seen on the Boeing 737, among others.

Both the Kappel and CLT propeller have been developed over several decades, which makes
it unlikely that much contribution can be made to those designs in a Master’s Thesis. A
different approach is therefore chosen, with a design more analogous to the blended winglet.

Figure 1.5: The blended winglet of a Boeing 737-800 (Wikimedia Commons 2007).

The winglet equipped propellers had to be compared with a similar conventional propeller
in order to quantitatively validate the performance. A propeller of the conventional type
was therefore designed, and served as the reference case throughout the thesis. The winglet
propellers, of which there were two variants, have the same main dimensions and operational
conditions.

There are a lot of parameters in a propeller design phase that might be interesting to
monitor and fine tune, but only the open water thrust, torque and efficiency results, as well
as the cavitation performance and vorticity details are discussed. The reason for limiting the
thesis to these parameters and propeller designs is simply because of practical concerns and the
time scope. The results are presented in Chapter 6 and are thoroughly discussed in Chapter 7.

The lifting line computer program that was written for the sake of the propeller design will
contribute to a significant part of the thesis.
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Chapter 2

Theory

2.1 Linear Foil Theory

Propellers are lifting surfaces, where each blade are hydrofoils in circular motion. It is therefore
important to have a good understanding of foil theory in order to design a functional propeller.

A hydrofoil experiencing an inflow will accelerate the water, and induce velocities both on
the upper and lower surface. Common practice is to make a simplification, and assume these
velocities to be equal in magnitude at each position on the upper and lower surfaces, but with
different signs. This is shown in Figure 2.1 below.

x

z

V

V + δV(x)

V - δV(x)

Figure 2.1: Overview of a foil profile, showing the inflow velocity V and induced velocity δV .

These velocities will lead to a pressure difference between the two surfaces, which can be
found by Bernoulli’s Principle:

dynamic pressure + static pressure + local pressure = constant

Choosing a point along a streamline, 1
2
ρV 2 is the dynamic pressure, where ρ is the density

of water and V is the fluid velocity. The static pressure consist of two parts, the hydrostatic
pressure ρgz and the atmospheric pressure patm, where g is the acceleration of gravity and z is
the submergence of the hydrofoil. The local pressure at the chosen point is only denoted as p.
The sum of all these terms is constant along a streamline.
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By choosing a point in front of the hydrofoil where the velocity is undisturbed, and then a
point at the hydrofoil itself along the very same streamline, these two expressions equate to the
same constant according to Bernoulli’s Principle. The following two expressions are obtained, if
this is done for both the upper and lower surfaces and any differences in submergence between
the two streamlines are neglected:

1

2
ρV 2 + ρgz + patm + p0 =

1

2
ρ (V + δV (x))2 + patm + ρgz + pupper (2.1)

1

2
ρV 2 + ρgz + patm + p0 =

1

2
ρ (V − δV (x))2 + patm + ρgz + plower (2.2)

p0 is the local pressure at the point in front of the hydrofoil. It is obvious that the atmospheric
pressure cancels out since it is constant and equal at every point below the water surface,
and therefore will not affect the flow in any way. The hydrostatic pressure follows the same
argument since any differences in submergence between the two streamlines are neglected.

The expressions for the pressures at the upper and lower surfaces of the hydrofoil can be
found by reorganising Equations 2.1 and 2.2:

pupper(x) =
1

2
ρ
(
V 2 − (V + δV (x))2)+ p0 (2.3)

plower(x) =
1

2
ρ
(
V 2 − (V − δV (x))2)+ p0 (2.4)

Even more interesting than the pressure is the hydrofoil’s ability to create lift. Therefore, the
pressure difference between the two surfaces must be found and integrated over the chord length
to find the total lift. As Equations 2.3 and 2.4 show, pupper has a lower value than plower. This
means that the foil will lift upwards, so now defining this as the positive direction, pupper may
be subtracted from plower to obtain a positive pressure difference:

∆p(x) = plower(x)− pupper(x) = ρV · 2δV (x) (2.5)

The total lift can be found by integrating Equation 2.5 over the chord length c:

L = ρV

∫
c

2δV (x) dx = ρV Γ (2.6)

This equation is called the Kutta-Joukowski theorem. It is now time to introduce the term
circulation, where Γ as defined in Equation 2.6 is the total circulation around the foil profile.
The circulation has dimension m2/s, and physically represents the total lift contribution from
the velocity jump 2δV (x) between the lower and upper surface at each chord-wise position. At
each infinitesimal chord-wise section dx, there is an induced velocity jump 2δV (x) which gives
rise to an infinitesimal lift dL. Γ is the total contribution to the lift of all these velocities.

The foil profiles used for conventional propeller design have low thickness ratios, and operate
at very low angles of attack with low lift coefficients due to the cavitation criteria. These
properties must be valid in order to use linear foil theory. Linear foil theory is great, much
because of the highly desirable qualities it involves. The effects of thickness, camber and angle
of attack can for example be handled individually, and then later be superimposed to get the
combined result. Lift coefficients and angles of attack also scales linearly with each other, which
is a very useful property.
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2.2 Cavitation

Cavitation is the formation of vapour cavities in a liquid due to low pressure rather than high
temperature. It can also be termed ‘cold boiling’, as the temperature is kept constant (possibly
very low), and still the phase transition from liquid to vapour is present – contrary to the
usual boiling of water. The thermodynamic processes are in both cases exactly similar. If the
pressure falls below what is called the vapour pressure (around 1700 Pa for water at 15 ◦C),
there is danger of cavitation – but in perfectly clean water, with no impurities whatsoever (e.g
bubbles of air or minute amounts of vapour), there will not be any cavitation. Cavitation only
occur when these nuclei become unstable and grow when subjected to lower pressure. This is a
necessary condition, but cavitation is sure to evolve to some degree or another as there always
are impurities in natural water.

The suction side of a hydrofoil or a propeller is prone to cavitate due to the low pressure.
This is one of the key issues that drives the propeller design. Cavitation is an exclusively
negative effect from a marine engineer’s point of view, and life would be much better without
it. A lot of research, time and money goes into avoiding cavitation for several reasons:

• The cavitation sheet on a propeller or hydrofoil alters the water flow, effectively changing
the geometry and making it less efficient.

• Cavitation is noisy. The cavities may collapse and implode as they go from regions with
low pressure to regions with higher pressure. This is a surprisingly noisy and violent
transition from vapour to liquid that creates shock waves and very high local pressure
peaks. The same sound may be heard when rapidly boiling water on a stove, as the
temperature close to the bottom of the kettle is higher than further up. Cavities may
form near the bottom, but as they are are convected upwards where the temperature
is not high enough to sustain the vapour phase (or equivalently, the vapour pressure is
lower than the ambient pressure) they will collapse and create shock waves which make
the familiar sound. Later, as the temperature becomes more uniform, the sound disappear
as the cavities are sustained all the way to the surface.

• Cavitation may also introduce unpleasant vibrations. This may be noticed if a large ferry
reverses its propellers when for example docking – which may be slightly uncomfortable,
but fortunately not for very long. The problem may be more severe if excessive cavitation
occurs at normal operations. Also, if cavitation happens only at a certain point during
the propeller revolution, fatigue of axles, bearings and other structural components may
be an issue.

• Especially one form of cavities (bubble cavitation) erode the surface they collapse on. The
shock waves literally dissolve the material, even if it is solid steel. There are instances
of poorly designed propellers that have lost blades after a short amount of time because
of bubble cavitation at the blade root. Structural integrity is compromised, and a blade
could snap off.

These are all good reasons to avoid cavitation. Fortunately, a criteria for the cavitation
inception can be developed. The microscopic structures of the cavitation nuclei are ignored in
the following derivation, meaning that the cavity is modelled as a uniformly distributed pocket
of water vapour. Surface forces acting on it are also ignored.
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A hydrofoil with velocity V submerged at depth z = h will serve as the starting point, as
shown in Figure 2.2 below.

x

z

V
1

2

h

VL

Figure 2.2: A hydrofoil with velocity V , submerged at depth z = h.

Point one is in the undisturbed free stream with velocity V , and point two is located at the
hydrofoil, with local velocity VL. If the streamline from point one to point two is followed,
Bernoulli’s Principle can be used to get an expression for the local pressure at point two (the
difference in submergence is ignored):

1

2
ρV 2 + ρgh+ patm + p1 =

1

2
ρV 2

L + ρgh+ patm + p2 =⇒ p2 = p1 +
1

2
ρV 2

(
1−

(
VL
V

)2
)

(2.7)

The pressure at point one is known to be p1 = ρgh+ patm, and the desired situation is that the
local pressure at point two is larger than the vapour pressure pv in order to avoid cavitation:

p2 = ρgh+ patm +
1

2
ρV 2

(
1−

(
VL
V

)2
)
> pv (2.8)

Reorganising gives (
1−

(
VL
V

)2
)
>
pv − patm − ρgh

1
2
ρV 2

(2.9)

Multiplying by (−1) on both sides, the criteria for no cavitation is achieved as

σ > −Cp (2.10)

where σ is the cavitation number, defined as

σ =
patm − pv + ρgh

1
2
ρV 2

(2.11)

and −Cp is the negative pressure coefficient defined as

−Cp =

(
VL
V

)2

− 1 (2.12)
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The reason for the negative sign, which might seem like an unnecessary convention, is that
the positive Cp is a non-dimensional number widely used in foil theory in general.

Equation 2.10 gives the criteria for no cavitation. Cavitation inception happens when
σ = −Cp, so the flow is cavitating when σ ≤ −Cp. Both σ and −Cp are non-dimensional
numbers. σ is independent of the foil, and since only the ratio of local velocity and inflow
velocity is present in −Cp, the pressure coefficient is independent from everything but the foil
geometry. The free stream velocity is irrelevant for −Cp, as the ratio between the two velocities
is constant no matter what the free stream velocity is.

This is a simplified approach to the cavitation problem, and is not able to accurately predict
cavitation inception. It is however a good starting point, and will tell if the flow is likely to
cavitate or not. It is important to note that cavitation may occur at a higher σ than expected,
for example due to turbulence (Steen 2014).

A worst case value of −Cp for a symmetric NACA 0012 foil is 0.411 (Abbott, Doenhoff, and
Stivers Jr. 1945). With ρ = 1025 kg/m3, patm = 101 325 Pa, pv = 1500 Pa and h = 1 m, the
limiting upper velocity for cavitation free operation for this hydrofoil is just above 44 knots.
Cavitation becomes very difficult to avoid when the velocity increases above 50 knots. Water
jets, or even super cavitating or surface piercing foil profiles must be used for propulsion in
order to increase the velocity further.

2.3 NACA 16-series and the ‘a = 0.8’ Camber Line

Foil profiles come in all kinds of variations, tailor made to different applications. Most of the
early foil design was based on trial and error until the ‘inverse design’ approach came along,
meaning that the designer then could choose the desired pressure distribution and compute
the resulting geometry. This technique was utilised in the late 1930’s to come up with the
NACA 1-series. Of the 1-series, only the variant with minimum pressure located at 60 % of the
chord length has seen widespread use, and consequently the 1-series is often referred to as the
16-series.

The 16-series has been particularly popular in aircraft and ship propeller design. This is
mainly due to characteristics like low drag at high speed, and the fact that it avoids low pressure
peaks (Scott 2001).

The thickness distribution is at first symmetrical, and must therefore be tilted at an angle
of attack to produce lift. However, lift can also be produced by curving the profile. The flow
direction is forced to change, which accelerates the fluid and creates a lift force according to
Newton’s 2nd law. This effect may be achieved by combining the thickness distribution with
a camber line. There are a large number of different camber lines available. Particularly the
a = 0.8 line is popular in propeller design. It has a constant circulation distribution up until
80 % of the chord length, before it eventually reduces linearly to zero at the trailing edge. The
a = 1.0 camber line with constant circulation over the entire chord length is theoretically the
best choice, but the a = 0.8 line is preferred due to risk of flow separation and reduced lift
(Steen 2014). A camber line is usually designed with a lift coefficient equal to one, meaning
that it has to be scaled linearly if other lift coefficients are desired.

For a given camber line, there exists an angle of attack which makes the foil section to
lift purely by camber – called the ideal angle of attack, αi. This means that the foil does not
generate any lift due to an angle of attack, but only because of the applied camber. The lift
coefficient is therefore equal to the lift coefficient of the camber line. Operating at an angle of

attack will greatly increase the
(
VL
V

)2
term in the pressure coefficient (Equation 2.12), meaning

that hydrofoils and propellers are prone to experience severe cavitation if tilted to anything
else than the ideal angle of attack. It is therefore highly desirable to operate at exactly the
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ideal angle of attack. αi = 1.54◦ for the a = 0.8 camber line (Abbott, Doenhoff, and Stivers Jr.
1945). The ideal angle of attack scales linearly with the lift coefficient.

The symmetric NACA 16-012 profile and the a = 0.8 camber line for CL = 1 can be seen
in Figure 2.3 below, together with the superimposed final foil profile.

NACA 16-012, a = 0.8

Figure 2.3: NACA 16-012 profile and the a = 0.8 camber line for CL = 1. Superposition of the
two yields the NACA 16-012, a = 0.8 foil profile.

2.4 Lifting Line Theory

2.4.1 Introduction

The lifting line theory is a two-dimensional approach to the propeller design, where the pro-
peller is divided into a multiple of cross sections in the radial direction. A radial circulation
distribution Γ(r) is chosen, which essentially is a distribution of the lift along the propeller
blade, as seen from Equation 2.6. A number of other key parameters must also be chosen, like
for instance the radial chord length and thickness distributions, ship speed, propeller diameter
and RPM. The total thrust can be found by integrating the sectional lift forces, and the total
torque can be found by applying a suitable friction line. The induced axial and tangential
velocities are also calculated, which leads to the design pitch distribution.

Lifting line theory works best on lifting surfaces with minor 3D effects, i.e long and slender
high aspect ratio blades. This favours for example wind turbines which achieve great results by
this approach, but propeller blades are not comparable. They are usually of low aspect ratio
due to diameter restrictions and the cavitation criteria. Lifting line theory is however used in
this application as well and yields fair results – but not to the same degree as for wind turbines.

2.4.2 Procedure

At first, the lifting line theory assumes an infinite number of blades, which obviously has to be
corrected for. This can be done in a number of ways, i.e by Prandtl’s tip loss factors, Goldstein
factors or Lerbs’ induction factors. This affects the induced velocities, and therefore also the
pitch distribution.

The Biot-Savart law is an important equation in fluid mechanics. It is probably most
famous for its applications in electromagnetics – more specifically the magnetic field induced
by an electrical current – but the Biot-Savart law may also be used in hydrodynamics to express
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the velocities induced by vortices. The vortex strength is set equal to the circulation at each
radial position, so the induced tangential velocity may be expressed by Biot-Savart’s law as

UT =
Γ

2πr
(2.13)

By geometric considerations of Figure 2.4 below, an expression for the induced axial velocity
can be found, where V0 is the ship speed, and w is the wake factor:

V0 (1− w) + UA

2

2πrn− UT

2

=
UT
UA

=⇒ U2
A + UA (2V0(1− w))− UT (4πrn− UT ) = 0 (2.14)

UA/2

UT/2

2πrn

V = V0 (1 - w)

βi 

Figure 2.4: Velocities acting on a propeller blade section.

The induced axial velocity UA is in the same direction as the inflow velocity V , therefore adding
to the axial component of total velocity vector Vt. The induced tangential velocity UT is in
the opposite direction as the blade section velocity 2πrn, therefore reducing the tangential
component of Vt. The result of the induced velocities is an increase in the hydrodynamic angle
of attack, βi. There is also an induced drag component because the lift vector becomes slightly
angled by the induced downwash. This drag component could be reduced by minimising the
induced velocities.

The reason for the division by two in the induced velocities at the blade sections is that
they at this position are half the value of the velocities further downstream.

Equation 2.14 is a quadratic equation on the common form ax2 + bx+ c = 0, with x = UA
and coefficients a = 1, b = 2V0(1− w) and c = −UT (4πrn− UT ). Two solutions are therefore
possible, but only the positive makes sense.

The solutions to UA and UT are at this stage usually called the mean induced velocities, as
they are not yet corrected for a finite number of blades. From now on, the notation UA,mean

and UT,mean will be used for the uncorrected velocities, and UA and UT will be used when they
are corrected for a finite number of blades.

The mean hydrodynamic angle of attack may be expressed as follows:

βi,mean = arctan

(
UT,mean

UA,mean

)
(2.15)
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As already mentioned, there are different methods of correcting for a finite number of
blades. The one that gives the most accurate results for the lifting line method is Lerbs’
induction factors, and is therefore the one that will be covered. Assuming that the circulation
distribution Γ(r) is for each blade, and not all in total (otherwise there must be an additional
factor of 1

Z
), the expressions for the induced velocities become

UA(r0) = −
R∫

rh

ia(r, r0, βi, Z)

2π

dΓ(r)

dr

1

r0 − r
dr (2.16)

UT (r0) = −
R∫

rh

it(r, r0, βi, Z)

2π

dΓ(r)

dr

1

r0 − r
dr (2.17)

where r0 is the fixed radial position of interest, r is the running variable, ia and it are the
axial and tangential induction factors respectively, Z is the number of blades, rh is the hub
radius and R is the propeller radius.

The dashed integral signs denote that these are principal value integrals, meaning that they
have a singularity when r = r0. Special care must be taken at this point, as the integral is
undefined here and may shoot off to infinity.

The hydrodynamic angle of attack now has to be expressed in a new way, as the corrected
induced velocities may change sign, and are therefore poorly defined by Equation 2.15:

βi = arctan

(
V0(1− w) + UA

2

2πrn− UT

2

)
(2.18)

The equations commonly used for the induction factors are as follows (van Oossanen 1974),

where R̃ = r0/r:

ia = (R̃− 1)
ZA

tan(βi)

it =

(
1− 1

R̃

)
Z (1 + A)

 for R̃ > 1 (2.19)

ia = cos(βi)

it = sin(βi)

}
for R̃ = 1 (2.20)

ia = (1− R̃)
Z (1 + B)

tan(βi)

it =

(
1

R̃
− 1

)
ZB

 for R̃ < 1 (2.21)

where

A = f

[
1

u− 1
− g

24Z
ln

(
u

u− 1

)]

B = f

[
u

1− u
− g

24Z
ln

(
1

1− u

)]
f = sin−

1
2 (βi) p−

1
4
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u = exp

[
Z

(
ln

[
(p−

1
2 − 1)

(
sin−1(βi)− 1

)−1 1

R̃

]
+ p

1
2 − sin−1(βi)

)]
g = sin3(βi)

[
2 +

9

tan2(βi)

]
+ (3p− 5) p−

3
2

p = 1 +

[
R̃

tan(βi)

]2

Figure 2.5 and 2.6 below show the induction factors for a 5-bladed propeller and a selection
of hydrodynamic angles of attack – βi = 25◦, 50◦ and 75◦:
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Figure 2.5: Axial induction factors for Z = 5. βi = 25◦, 50◦ and 75◦.
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Figure 2.6: Tangential induction factors for Z = 5. βi = 25◦, 50◦ and 75◦.

The induction factors ia and it depends on the hydrodynamic angle of attack βi, which again
depends on the induced velocities that are to be calculated. The problem is therefore implicit,
and an iteration algorithm has to be applied in order to get a solution. A first guess on the
induced velocities must be made, which leads to an initial hydrodynamic angle of attack. A
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good start is to use the mean induced velocities and the mean hydrodynamic angle of attack
as defined by Equations 2.13 – 2.15, but any start value could in principle be used.

The solution strategy becomes as follows:

For each r0 from rh to R:

• Solve Equations 2.16 and 2.17:

◦ Guess UA(r0), UT (r0) and βi(r0)

◦ For each r from rh to R:

� Calculate R̃ = r0/r

� Calculate ia(R̃, βi,Z) and it(R̃, βi,Z) from Equations 2.19 – 2.21

� Multiply the induction factors by the derivative of the circulation distribu-
tion and 1

2π
1

r0−r
◦ Calculate UA(r0) and UT (r0) by integrating from r = rh to r = R

◦ Calculate βi from Equation 2.18

• Check for convergence of UA(r0) and UT (r0). The entire procedure must be repeated
for the current lifting line if there is not yet any convergence, now by using the calcu-
lated values as (hopefully) improved guesses. The next lifting line can be calculated
if there is convergence.

The next steps to be done in order to get an estimation of the thrust and torque of the
propeller are as follows (most variables are functions of the radial position r, but this is not
typed explicitly in order to avoid excessive clutter in the equations):

• Calculate the total velocity at each blade section:

Vt =

√(
V0 +

UA
2

)2

+

(
2πrn− UT

2

)2

(2.22)

• Calculate the lift of each section:
dL = ρVtΓ (2.23)

• Calculate the lift coefficient of each section:

CL =
dL

1
2
ρVt c

(2.24)

• Calculate the friction coefficient of each section (by using the ITTC ’57 friction line):

CF =
0.075

[log(Re)− 2]2
(2.25)

where Re is the Reynolds number, defined as follows, with ν as the kinematic viscosity:

Re =
Vt c

ν

• Calculate the drag coefficient of each section:

CD = 2CF

(
1 + 2

t

c

)
(2.26)

15



• Calculate the drag of each section:

dD =
1

2
ρV 2

t CD c (2.27)

• Calculate the thrust of each section:

dT = ρΓ

(
2πrn− UT

2

)
− dD sin(βi) (2.28)

• Calculate the torque of each section:

dQ = ρΓ

(
V0(1− w) +

UA
2

)
r − dD cos(βi) r (2.29)

• Integrate to find the total thrust and torque:

T =

R∫
rh

dT dr (2.30)

Q =

R∫
rh

dQ dr (2.31)

• The total efficiency of the propeller can now be found:

η =
V T

2πnQ
(2.32)

V T is the total thrust of the propeller times the ship speed, which is the usable power. 2πnQ
is the angular speed of the propeller times the total torque, which is the total power absorbed
by the propeller. The ratio is the efficiency, which is always lower than 100 %.

‘Foil and Propeller Theory’ by Professor Sverre Steen (Steen 2014) has been used extensively
for the lifting line implementation.

2.4.3 Cavitation Implementation

Cavitation may be introduced in the lifting line procedure. The cavitation number σ must be
calculated and compared with the pressure coefficient −Cp at each blade section. With h set
to the draught of the propeller hub, and Vt given by Equation 2.22, the cavitation number
becomes

σ(r) =
patm − pv + ρg(h− r)

1
2
ρV 2

t

(2.33)

The maximum local velocity at the blade suction side must be expressed in order to find
the correct −Cp of each blade section. This is a combination of both thickness and camber con-
tributions, and can be superimposed when linear foil theory is used. These data are tabulated
and can be scaled linearly with the thickness to chord ratio and lift coefficient. The velocity
due to thickness is (

1 +
v

V

)
=

[( v
V

)
t/c= 0.12

− 1

]
t/c

0.12
+ 1 (2.34)
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where the value of
(
v
V

)
t/c= 0.12

is taken from tables, and serves as the reference thickness

for scaling of the velocities. Another thickness ratio than 0.12 could just as well be used. Only
the velocity increase contributed by the thickness on top of the free stream velocity should be
taken into account when scaling, which is the reason why there is a −1 inside the brackets of
Equation 2.34 (and the reason why it is added once again after the scaling is done). The free
stream velocity should of course not be scaled by any thickness.

The velocity due to camber is

∆v

V
= CL

(
∆v

V

)
CL = 1

(2.35)

where
(

∆v
V

)
CL = 1

is taken from tables for the desired camber distributions. Only the increase
in velocity due to the camber is tabulated, meaning that they can be scaled directly without
subtracting any free stream velocity. This is different from the tabulated thickness velocities
described above.

The ratio of local and total free stream velocity then becomes

VL
Vt

=
(

1 +
v

V

)
+

∆v

V
(2.36)

and the pressure coefficient becomes

−Cp =

(
VL
Vt

)2

− 1 (2.37)

Cavitation is avoided as long as σ(r) > −Cp at each section.
As can be seen from Equation 2.22, the total velocity at each section increases linearly with

the radial position. σ(r) is inversely proportional with V 2
t , which implies that σ(r) is inversely

proportional with r2. In addition, there is a linear factor of −r in the numerator, which further
increases the inversely proportional trend. The cavitation number decreases rapidly with the
radius, therefore making it more and more difficult to avoid cavitation as we proceed towards
the tip of the propeller.

2.5 Open Water Tests

Propellers are usually going through two kinds of tests – a propulsion test done in a towing tank,
and an open water test done either in a cavitation tunnel or in a towing tank. The propulsion
test is done together with the correct ship model to check for propeller-hull interactions and
to check how the ship performs with its propeller. Only the open water test will be discussed
here, as this is the one relevant for this thesis.

The open water test is, as the name suggest, done in open water, implying that there is
no disturbing ship hull present. This means that the best possible operating conditions for
the propeller are achieved, and that the optimum performance can be examined. A cavitation
tunnel is especially suitable for such an experiment, with good control of the water inflow and
high quality measuring equipment usually already installed.

A set of dimensionless coefficients are necessary to present the data in a standardized and
comparable way. The advance number is first introduced, which provides a quantity describing
the loading of the propeller:

J =
VA
nD

(2.38)
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where VA is the advance velocity – the speed at which the propeller advances forward
(usually the ship speed itself) – n is the propeller speed and D is the propeller diameter.
Physically, the number may be understood as a ratio of the ship speed relative to the speed
of the propeller (actually the number of 1

π
circumferences the propeller tip manages to rotate

every second, since πD equals one complete circumference). An alternative, and maybe more
intuitive way to understand the advance number is by dividing with n in both the numerator
and denominator. J is then the distance the propeller moves forward in one revolution relative
to its diameter.

A large J implies that VA is much larger than nD, meaning that the propeller speed is low
compared to the ship speed. This can be understood as a lightly loaded propeller, as it moves
forward quite easily. The opposite case where J is low can be understood as a heavily loaded
propeller. The propeller must work hard in order to advance forward. This is particularly the
case for anchor handlers or tugs, where the propellers provide a lot of thrust, but hardly move
forward at all.

The thrust and torque are the two key parameters needed to describe a propeller’s perfor-
mance. The propeller efficiency can be deduced from these two parameters, as already seen
in Equation 2.32. Physically, the thrust is the forward directed force, and the torque is how
‘heavy’ the propeller is to turn around. The water will resist to move, and this is partly felt as
a torque on the propeller.

The thrust and torque are made non-dimensional, and expressed in this way:

KT =
T

ρn2D4
(2.39)

KQ =
Q

ρn2D5
(2.40)

where KT and KQ are the thrust and torque coefficients, respectively.
The following expression for the efficiency can be found by expressing T and Q from Equa-

tions 2.39 and 2.40, and substituting them into Equation 2.32 – where the ship speed V has
been used in the advance number J :

η =
J

2π

KT

KQ

(2.41)

Equations 2.32 and 2.41 express the exact same quantity – only with different parameters.
Equation 2.41 is usually preferred for open water tests.

The results from an open water test are presented in an ‘open water diagram’, where KT ,
10KQ and η are plotted for a range of advance numbers J . The advance number is usually
changed by varying the advance velocity (inflow velocity in a cavitation tunnel or carriage speed
in a towing tank) and keeping n constant.

The reason for plotting 10KQ rather than KQ is just to make the diagram more readable,
by better matching the orders of magnitude.

It is referred to Chapter 6.1.1 for examples of what open water diagrams look like.
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Chapter 3

Lifting Line Computer Program

3.1 Introduction

It was difficult to find freely available 3D models of propellers on the Internet. An important
part of the idea behind winglet fitted propellers is the ability to load the propeller tip more
than conventional propellers. This served as a motivation for writing a computer program for
propeller design. If a conventional propeller was found on the Internet, it would most probably
have a circulation distribution going to zero at the propeller tip, and the fitting of a winglet
would not necessarily yield any better thrust or efficiency. It proved very useful to have the
ability to freely choose an arbitrary circulation distribution, thickness and chord distribution,
propeller diameter, RPM as well as ship speed – and have the resulting pitch distribution and
correctly scaled foil sections calculated. To have complete control of the propeller design was
valuable, and it also goes without saying that writing such a program gave a lot of insight and
knowledge about the propeller design process.

The program was based on the lifting line theory with Lerbs’ induction factors as described
in Chapter 2.4. It was written in MATLAB, and consists of three functions:

• lifting line induction.m
This is the main body of the program, controlling the calculations, as well as all inputs
and outputs.

• induction factors.m
Calculates the induction factors.

• NACA 16 a08.m
Scales and prints NACA 16-series foil profiles with the a = 0.8 mean line, according to
the thickness, chord length and lift coefficient.

The source code for all functions can be found in Appendix A.1.

3.2 Review of the Program

The review of the program has been broken down into sections that cover the main topics
and how they have been handled in the code. All functions are explained, but the emphasis
will be on lifting line induction.m, which is the main part of the program. It will
be mentioned explicitly in the text when a certain part of the program is handled by either
induction factors.m or NACA 16 a08.m.
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3.2.1 Main Inputs

The main input parameters to lifting line induction.m are as follows:

• Number of lifting lines

• Propeller diameter

• Propeller RPM

• Number of propeller blades

• Ship speed in knots

• Water density

• Kinematic viscosity of water

• Draught of the propeller hub

• Number of propeller sections to print

• Yield stress of the propeller material

• A Scale factor for the circulation distribution

• A convergence criteria for the induction factor iteration loop

• An option for 3D correction

• A number of plot controls, and an option for printing the run-time outputs to a text file

Some of the distributions are handled internally in the function. The circulation distribution
is for example based on a sixth order polynomial with a linear scale factor that can be given as
input, and the thickness distribution follows the Wageningen B-Series thickness. The program
is written to handle an arbitrary radial wake distribution, but it is set to zero as standard.

Other distributions must be entered inside the code if changes are desired. This is just to
reduce the number of input parameters to the function.

3.2.2 Calculation of the Induced Velocities

The chord distribution is interpolated after the initialising of all internal variables, and the
circulation and thickness distributions are computed. The differentiation of the circulation
distribution is done numerically, with a second order accurate central differencing scheme at
all points except the end points, where first order accurate forward and backward schemes are
used.

The main loop is then entered, where the solving of Equations 2.16 and 2.17 for every lifting
line takes place. The numerical integration is done in a ‘brute force’ manner – that is, hoping for
convergence by simply skipping the singular point altogether, and summing up a large number
of small rectangles of the integrand. This requires a fine resolution of integration points, but
nothing more than what an average laptop can handle in a few minutes. This is hard coded to
be the same as the number of lifting lines – N lifting lines will also give N integration points.
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The integrand may look like this:
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Figure 3.1: What the integrand of Equations 2.16 and 2.17 might look like (the singularity is
clipped).

The integral should converge by approaching the singularity as close as possible from both
sides, and including everything except the infinite value. The way this is handled in the loop is
by skipping the index where r = r0, and summing up everything else. Residuals are calculated
after the induced velocities are computed, as well as a new value of the hydrodynamic angle of
attack. All this happens inside a ‘while loop’, which runs as long as the residuals are higher than
the convergence criteria, or the maximum number of iterations per lifting line is not exceeded
(set to 100 as standard). The induced velocities usually converge in less than ten iterations to
a final residual criteria of maximum 10−9.

The function induction factors.m handles the calculation of the induction factors,
and is called at this stage of the program. It is not much more to say about this function other
than that it follows Equations 2.19 – 2.21 exactly as they are presented. The inputs to the
function are as follows:

• The ratio of the fixed radial position and running radial position – that is R̃

• The hydrodynamic angle of attack

• The number of blades

There has to be calculated a new set of induction factors for each radial position at each
and every lifting line. In addition, the iteration loop repeats this process, which means that
the function is called a large amount of times. For a final residual criteria of 10−9, the average
number of iterations per lifting line is a little less than 8.5. This means that the function is
called approximately 8.5 ·N2 times. The total number becomes about 8.5 million for N = 1000,
which was the number used for the propeller design.

The whole process of integrating Equations 2.16 and 2.17 could be done more elegant, e.g by
a clever change of variables and a Fourier series expansion of both the circulation distribution
and induction factors (van Oossanen 1974). The singularity then disappears altogether, and
the equations may be integrated with very good accuracy using just a few integration points.
However, the mathematical complexity of this approach would require a lot of effort, and it
was not investigated further as the simpler method converged nicely.
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The Concept of Residuals

Suppose that the the equation f(x) = y is to be solved – that is finding the x that gives
y. A guess of the solution could be made, for example x0. The error is ε = x0 − x, and
assuming that the answer y is known, as is the case for an explicit problem, the residual is
r = f(x0) − f(x) = y0 − y. Finding the error involves knowing the correct solution x, which
in general could be very difficult to find, but finding the residual does not involve knowing the
correct solution – only the difference of the computed value and the desired one. The answer
is good if the difference is close to zero, implying that the solution is good – that is x0 ≈ x.
The solution is certainly useless if the residual is large – that is x0 6= x, and a new guess must
be made. The residual is therefore a good representation of the solution’s validity, but it must
not be mistaken as the error.

Suppose that even y is unknown, as is the case for an implicit problem, where the solution
x itself depends on the answer y – that is x = x(y) and f(x(y)) = y. The best thing to do
is start guessing, and check for convergence after some trials. The residual then becomes the
difference of the sequence of iterations, that is r1 = y1 − y0, r2 = y2 − y1 and so forth, where
the current answer is compared with the previous value of y. If the sequence of residuals are
diminishing, both x and y are converging, and the solution is approaching. Note that the first
residual can be computed only after two iterations are completed, otherwise a value of y0 must
be guessed as well.

The scary part of this technique is that it is not known which solution is the correct one.
There may be several solutions to the equation, meaning that there is a risk for the iterative
sequence to converge nicely, but to the wrong solution. However, this does not necessarily have
to be a big issue if one has good understanding of the problem and qualified guesses that are
in the near vicinity of the expected values.

The problem is implicit in the case of the induction factor based lifting line method, and
needs treatment of the type described above, where f(x(y)) and y can be seen as the right
and left hand side respectively of Equations 2.16 and 2.17. The meaning of x is the correct
solution, for example the correct βi, that must be found in order to calculate the correct values
of y – that is UA and UT . The hydrodynamic angle of attack βi is a function of UA and UT , so
x = x(y).

The mean values of the induced axial and tangential velocities are used as first guesses for
the input on the right hand side of the equations. These are good guesses which the corrected
velocities should not differ too much from, meaning that the converged values are believed to
be correct if they are reasonably close.

3.2.3 Cavitation Implementation

The cavitation check is done according to the procedure presented in Chapter 2.4.3. The
cavitation number and pressure coefficient are calculated at each radial position and plotted in
the same figure to see if the criteria is fulfilled. The submergence of the propeller hub is needed
for this, so the cavitation check is skipped if a draught of zero is chosen. Only the worst case
position of the blade is checked, which is when it points straight up towards the free surface.

The worst case value of
(
v
V

)
t/c= 0.12

is 1.137 for the NACA 16-012 profile, and the worst

case value of
(

∆v
V

)
CL = 1

is 0.278 for the a = 0.8 camber line (Abbott, Doenhoff, and Stivers Jr.

1945).
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3.2.4 Structural Design

The structural integrity of the propeller is very important. It experiences heavy loading, and
must therefore be properly designed so the internal stresses are not too high. A simple procedure
to check for the capacity in bending moment failure was written. It is based on the familiar
formula

σ =
M

I
y (3.1)

where σ is the bending stress, M is the bending moment, I is the cross section’s second
moment of area, and y is the distance to the axis of bending. M is found at each blade section
by integrating the thrust loads that contribute to the moment at that section – i.e all blade
sections outside (larger radial coordinate) of the one in interest.

The second moment of area is an important parameter, and is given by the formula

I =

∫∫
A

y2 dA (3.2)

for a rotation about the x-axis. Physically, I is a measure of a cross sections resistance
against rotation.

For a rectangle, with center at the origin, width b along the x-axis and height h along the
y-axis, the integral can be expressed in this way:

I =

b/2∫
−b/2

h/2∫
−h/2

y2 dy dx =
1

12
bh3 (3.3)

I has dimension m4, and a small change in h will make a significant contribution to the
final value.

The foil sections of a propeller change along the span, meaning that I changes as well.
Thickness and chord lengths change a lot, but the geometry itself does not change that much,
even though there is some camber that makes this assumption not entirely valid. A NACA
16-012 profile, with no camber and a chord length of 1 m was used to base the second moment
of area on. This value of I could then be scaled to get quite accurate approximations for
different similar cross sections. A simple MATLAB function, second area moment.m, was
written to calculate I for the standard cross section. The code is based on Equation 3.3 – so a
summation of many small rectangles of the foil cross section is done. The resulting value was
I = 7.0994865 · 10−5 m4.

At first, it is natural to think that I scales with the thickness to the third power, and the
chord length to the first power. It does scale with the thickness to the third power, but as
the thickness is given in terms of the chord length, it actually scales with the chord length
to the fourth power as well. The logic behind this is that a doubling of the chord length
increases I by a factor of two, but as the thickness is given by the t/c-ratio, the thickness also
doubles – which increases I eightfold. The total increase is in this case therefore sixteen –
the multiplication factor raised to the fourth power, 24 – which means that I scales as c4. An
increase in the thickness ratio t/c alone does not affect the chord length, implying that I scales
as t3. A doubling of both t and c would then lead to a multiplication of the original I by a
factor 23 · 24 = 27 = 128. This demonstrates the profound effect a change of the cross section
has on the ability to resist rotation – or the ability to absorb stresses. A large second moment
of area results in low stresses, as seen in Equation 3.1.

y is in the case of Equation 3.1 set equal to t/2. The standard NACA 16-012 cross section
has dimensions c = 1 m and t = 0.12 m, which means that scaling the thickness involves

23



dividing by 0.12 before multiplying by the new thickness. This can be included directly into

the scaling of the second moment of area as I = i
(

t
0.12

)3
c4, where i is the second moment of

area of the standard cross section. The chord length is already at unity, which implies that
the new chord length may be used without modifications. Substituting this value of I, and the
yield stress σ = σy as well as y = t/2 into Equation 3.1, it is possible to express a minimal
thickness required to avoid bending moment blade failure:

tmin =

√
27

31250

M

i c4 σy
(3.4)

All units are SI, which means that the dimension of t is metres. To avoid blade failure,
t > tmin.

It is crucial to highlight that this formula only takes into account the bending moment
contribution. This may be the most important one, but there are others as well, where especially
fatigue failure is vital to look out for. In addition, the propeller may experience significantly
higher loads at operational conditions other than the optimum. The thickness implied by
Equation 3.4 should therefore be regarded as the absolute lower limit, which most probably is
a bit too low. Because of this, the thickness distribution by Wageningen (Steen 2014) has also
been included as a conservative upper value. This is a linear thickness distribution for use with
the Wageningen B-series propellers, so a different one should probably be considered if the type
of propeller differs much from this series in terms of loading or geometry.

3.2.5 Correction for 3D Effects

One of the input parameters to the program is the number of sections that should be printed to
text files. If for example ten are selected, ten equally spaced radial positions between the hub
radius and tip radius are chosen. The program searches for the sections which are closest and
stores the indices, so that all necessary data from the different distributions may be fed into the
function handling scaling and printing of the sections. The 3D correction is done at this point.
Some corrections must be made since the lifting line procedure in its nature is two-dimensional,
and cannot account for the helical motion of a three-dimensional propeller. There are several
different ways of doing such a correction, but most of them are based on a large amount of
three-dimensional lifting surface simulations with different number of blades, Expanded Area
Ratios and pitch distributions. Finding the right correction factors in a general lifting line
program would require a very large database of correction factors and a clever interpolation
algorithm across several parameters. This is a cumbersome process, which led to a compromise
and the use of the following set of equations instead (Steen 2014):

• The correction factor for camber:

kc = 1.6946 + 0.5048
( r
R

)
− 4.0012

( r
R

)2

+ 4.3283
( r
R

)3

(3.5)

• The correction factor for angle of attack:

ka = 1 + 1.46
( r
R

)3

(3.6)

• The correction factor for thickness effects:

kt = 2.5
t

r

c

D
cos(βi) (3.7)
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These factors contribute mostly to an increase in the camber and angle of attack. The
factors are used as follows:

• Corrected total camber: (
f

c

)
total

= kc · CL ·
(
f

c

)
a = 0.8

(3.8)

where
(
f
c

)
is the maximum camber ratio.

• Corrected ideal angle of attack:

αi, 3D = ka · 1.54 · CL (3.9)

• Corrected angle of attack due to thickness effects:

αt = kt
t

c
(3.10)

This gives a corrected angle of attack:

αcorrected = αi, 3D + αt (3.11)

The correction factors are calculated at the end of lifting line induction.m, and
then used as input to NACA 16 a08.m which deals with scaling of the foil profiles and the final
correction.

3.2.6 Scaling and Printing of Propeller Foil Sections

The inputs to NACA 16 a08.m are given for each foil section that should be printed, and are
as follows:

• The section number of the foil

• Radial position

• Lift coefficient

• Absolute thickness

• Chord length

• The hydrodynamic angle of attack

• 3D correction factors

• Propeller radius

• An option for centring the foil coordinates around x = 0

• An option for plotting the resulting profile
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The standard NACA 16-012 foil section is again used as the reference. A foil geometry scales
very close to linearly with the thickness and chord length, meaning that it is unnecessary to
calculate new coordinates for each unique foil profile. The coordinates for the 16-012 profile was
obtained by the aid of a FORTRAN program called ‘NACA456’ (PDAS 2001), published by
Public Domain Aeronautical Software and written by Ralph L. Carmichael, based on previous
programs developed by NASA. This produced a high quality dense spacing of the coordinates,
leading to a more accurate representation of the profile (and eventually propeller surface)
compared to the tabulated coordinates produced by (Abbott, Doenhoff, and Stivers Jr. 1945).
The a = 0.8 camber line is taken directly from Abbott et al., so the coordinate spacing is
therefore quite coarse, but this is not a problem as there are no strong variations in the camber
line geometry. The camber line is interpolated onto the same x-coordinates as the thickness
distribution, making them identical, so that the transformation of the thickness distribution can
be done. This happens according to the following formulas (Abbott, Doenhoff, and Stivers Jr.
1945):

xu = xt − yt sin(ϑ) (3.12)

xl = xt + yt sin(ϑ) (3.13)

yu = yc + yt cos(ϑ) (3.14)

yl = yc − yt cos(ϑ) (3.15)

where xu, yu and xl, yl are the upper and lower side x- and y-coordinates respectively. xt,
yt and xc, yc are the x- and y-coordinates of the thickness and camber distribution respectively.
ϑ is given by the following expression:

ϑ = arctan

(
dyc
dxt

)
(3.16)

This implies that also the derivative of yc must be mapped onto the same x-axis, i.e xt.
NACA 16 a08.m then scales the camber line to the correct lift coefficient, as well as the

thickness and chord length to the desired values, before writing the final coordinates to a text
file. This is done in a right handed circular direction – that is, starting from the leading edge
and writing the coordinates of the upper side all the way to the trailing edge, before continuing
writing the lower side coordinates from the trailing edge and back to the leading edge. This is
a common way of presenting foil-coordinates. In addition, other useful data is written to the
text file, like for example the radial position and hydrodynamic angle of attack and ideal angle
of attack. This is to make the 3D CAD-modelling as efficient as possible.

Finally, lifting line induction.m calculates the total thrust and torque, as well as
the efficiency, according to the procedure outlined by Equations 2.22 – 2.32. The Expanded
Area Ratio (EAR) is also calculated, as well as the pitch ratio (P/D) distribution.

Run-time outputs, like final residuals of the lifting lines, a summary of the final design or
warning messages to be aware of, are written to the MATLAB window upon execution of the
program. These can also be printed to a text file if desired. Examples of the run-time output
can be found in Appendix A.2.
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Chapter 4

Design

4.1 Reference Ship

A realistic propeller loading for a given diameter was desired instead of just choosing some
random value. Quite accurate data for a real ship is needed for that purpose, and this is
usually difficult to get hold of. Luckily, there are some benchmark models with lots of test data
available, which are often used to check CFD codes and towing tank measuring equipment.
The ‘KRISO Container Ship’ (Korea Research Institute for Ships and Ocean Engineering) was
chosen, which is a 230 m long 3600 TEU container vessel with a cruise speed of 24 knots
(Fn = 0.26). The propeller has diameter 7.9 m, five blades, and an expanded area ratio (EAR)
of 0.8. All the main particulars of the ship can be found in the following reference (Simman
2008).

The diameter and blade number of the propeller is fixed during the design phase, but other
parameters may be changed. All deviations from the propeller of the KRISO Container Ship
(designated KCS from now on) design will be made clear.

One of the key pieces of information regarding the container ship is its resistance at cruise
speed. The total resistance coefficient in model scale (scale factor λ = 31.5994) was found equal
to 3.71 · 10−3 (Iranzo et al. 2007). This value was used to find the full scale total resistance,
equal to approximately 1.8 MN. The propeller must then deliver at least 1.8 MN of thrust to
be able to reach a cruise speed of 24 knots.

The object of the scaling was to find a reasonable full scale value, not the ‘undeniably
correct’ one. The point was to figure out approximately what kind of thrust the propeller must
deliver.

Another parameter that must be decided is the RPM of the propeller. The propeller of the
KCS has a P/D ratio at 0.7R equal to 0.997, which could be used to find the resulting RPM.
However, the RPM of large single screw ships are usually decided by the engine RPM itself
since the propellers tend to be driven directly without any gears. A search was therefore done
at the Sea-Web online ship database (www.sea-web.com) to find similar sized ships as the KCS,
and to see what RPM the propellers were driven at. The container ship of Hapag-Lloyd AG
called ‘Box Trader’ (IMO No. 9423035) built in 2010, with length 228.62 m and a cruise speed
of 23.75 knots was used as comparison. Its engine speed of 102 RPM will therefore serve as the
RPM of all propeller designs in this thesis.
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4.2 Conventional Propeller

4.2.1 Circulation Distribution

The radial circulation distribution is based on the following expression (Steen 2014):

Γ(r′) = k [sin(πr′)− a sin(2πr′)]
m

(4.1)

where r′ = r−rh
R−rh

and k, a and m are constants. With k = 1, a = 0.3 and m = 0.5, the

distribution looks like this, mapped onto the r/R axis:
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Figure 4.1: The circulation distribution, according to Equation 4.1, with k = 1, a = 0.3 and
m = 0.5.

The derivative of this circulation distribution is very high at the end points, which led to
dubious results that could not be trusted. The distribution was therefore modified in Microsoft
Excel, which could do a sixth-order curve fit over the newly specified points. The resulting
polynomial is as follows:

Γ(x) = k [−35.0640x6 +76.3500x5−53.5030x4 +7.7968x3 +3.3104x2 +1.0523x+0.0575] (4.2)

where k still is a constant, and x runs from 0 to 1.
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The resulting distribution looks the following, mapped onto the r/R axis and with k = 1:
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Figure 4.2: The circulation distribution, according to Equation 4.2, with k = 1.

The finite value at the hub radius is to avoid the large derivative, and the slope is also more
gradual at the propeller tip. The maximum circulation is pushed more towards the tip as well.
The derivative of the distribution is as follows:
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Figure 4.3: The derivative of the circulation distribution, given by Equation 4.2, with k = 1.

4.2.2 Chord Length Distribution

The chord length distribution was chosen mostly on the basis of avoiding cavitation. A lot of
trial and error was done in order to get a suitable final distribution. A sixth-order curve fit was
not accurate enough, so a cubic spline interpolation between the desired values was therefore
done in MATLAB instead. The values were made non-dimensional by the diameter, and are as
follows:

r/R 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.975 0.990 1.000

c/D 0.160 0.210 0.260 0.296 0.320 0.330 0.320 0.280 0.230 0.186 0.140 0.080

Table 4.1: Values of interpolated non-dimensional chord lengths.
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As can be seen, the chord length is not retracted to zero at the tip. The interpolated
distribution is as follows when multiplied by the diameter:
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Figure 4.4: The total chord length distribution.

4.2.3 Thickness Distribution

The thickness distribution follows the linear Wageningen distribution as described in Chapter
3.2.4. The lower limit in the following figure is the thickness calculated from Equation 3.4, with
yield stress σy = 275 MPa:
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Figure 4.5: The Wageningen thickness distribution is the one that has been used in the design,
and the lower limit is based on Equation 3.4, with σy = 275 MPa.

Equation 3.4 takes the actual propeller loading into account, whereas the Wageningen dis-
tribution does not. The Wageningen distribution probably overestimates the thickness, and
Equation 3.4 probably underestimates it, as discussed in Chapter 3.2.4. The Wageningen dis-
tribution was chosen to be on the safe side.

It is necessary to find the t/c distribution that gives the Wageningen distribution after it
has been multiplied by the chord length distribution. The best way of assuring this is to solve
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the equation t/c = tW
c

at each radial position, where tW is the Wageningen thickness, and c on
the right hand side is the chord length distribution. The resulting t/c distribution is as follows:
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Figure 4.6: The t/c distribution.

4.2.4 Lifting Line Results

The lifting line program can now be run with all these distributions defined. The linear circu-
lation scale factor k is set to 38.055, the ship speed is set to 24 knots, the number of propeller
blades is set to five, the propeller speed is set to 102 RPM, the propeller diameter is set to 7.9
m, the propeller hub draught is set to 6.68 m, the density of water ρ is set to 1025 kg/m3 and
the kinematic viscosity of water ν is set to 1.004 ·10−6 m2/s. The following results are obtained
with the residual convergence criteria set to 10−9 and the number of lifting lines set to 1000:
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Figure 4.7: Axial induced velocities of the final design.
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Figure 4.8: Tangential induced velocities of the final design.

0

10

20

30

40

50

60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

β
i

-
[d

eg
re

es
]

r/R

Hydrodynamic Angle of Attack - βi

Mean

Corrected

Figure 4.9: Hydrodynamic angle of attack of the final design.
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Figure 4.10: Cavitation criteria for the final design – no cavitation when −Cp < σ.
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Figure 4.11: Final residuals for each lifting line.

Total thrust T 2.15 MN
Total torque Q 2.95 MNm
Efficiency η 84.4 %
Expanded Area Ratio EAR 0.7
Pitch ratio at 0.7R P/D 1.37
Advance number J 0.92

Table 4.2: Results of the final design.

At first, the negative induced velocities at certain radial positions, as presented in Figure
4.7 and 4.8, seemed erroneous. Whether they are realistic or not will not be discussed, but it
is what the induction factor method may give. Two effects can cause this:

• The r0-coordinate is small close to the propeller hub, meaning that all the consecutive
values of r makes the factor 1

r0−r negative as the integration is done. It is therefore likely
that the integral may become negative.

• As r0 approaches R, the singularity moves towards the tip of the propeller (Figure 3.1).
This means that only the part to the left of the singularity is included. Since r has a
lower value than r0 on this side, the factor 1

r0−r is positive, and this should result in the
summation of only positive values of the integrand. However, there is only a negative
contribution to the integral because of the negative circulation derivative towards the
propeller tip, and the fact that the cancelling part on the right side of the singularity is
not present.

Maybe a different treatment of the singularity would lead to other results, but the ones
obtained here were accepted – backed up by the fact that Justin E. Kerwin also has found
negative induced velocities (Kerwin 2001). The very large negative value for the axial velocity
is probably not physically correct, which is especially clear by looking at the hydrodynamic
angle of attack in Figure 4.9. The negative UA reduces βi (Equation 2.18) too much towards
the tip. This is therefore corrected by linearly extrapolating from the value at r/R = 0.9. Risk
of pressure side cavitation and negative lift on the propeller tip would otherwise be present,
due to an effective negative angle of attack. Similar is done close to the hub where the tiny
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bend is flattened. These corrections are obviously a source of error, as it is difficult to know
for sure what the angle should be.

The design is made with a slightly larger thrust than 1.8 MN. This is because 3D effects
played a larger role than first anticipated. The correction done in Chapter 3.2.5 was not
enough to make the lifting line results and CFD results similar in terms of the key parameters.
The thrust was initially too low, so a higher scale factor on the circulation distribution was
introduced to compensate. It is therefore highly unlikely that an efficiency of 84.4 % will be
achieved in the CFD-results.

The design differs from the standard propeller of the KCS in some aspects:

• The EAR is 0.7, and not 0.8.

• The P/D ratio at 0.7R is 1.37, and not 0.997. This indicates that the design J is higher
than the one used in the KCS reference, meaning that the KCS reference has a higher
propeller speed.

• The hub diameter is 0.2D, and not 0.18D.

• In addition, the propeller rotation is left-handed and not right-handed, as will be seen
later. This has no influence on the final open water results, and was only done because
of more efficient 3D modelling due to the way the foil sections were printed.

A total of 20 foil sections were printed to text files, which will be used as the basis in the
CAD modelling.

4.2.5 3D CAD Modelling

The CAD modelling was done in a program called ‘Inventor Professional 2015’, made by Au-
todesk. It is a commercial CAD software, with many powerful features. The author is not an
experienced CAD modeller in any way, but the final geometry was at least of sufficient quality
to be used in the CFD simulations.

It was easy to define new separate work planes in Inventor with their own coordinate system,
which the foil sections could be imported to – at their correct radial positions. When rotated
to their correct angle of attack, it was possible to create a solid 3D body by ‘lofting’ a surface
through each of the foil sections. This loft procedure was done accurately by also defining
guide lines (called ‘rails’ in Inventor) that were touching the leading and trailing edges of all
the foil sections. These provided a boundary for the loft algorithm to follow, capturing all the
important features of the propeller geometry.
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Figure 4.12: The foil sections and guide lines as seen before the lofting procedure.

A standard hub was designed, with the following dimensions (in metres):

Figure 4.13: The half cross section of the propeller hub. The solid hub is generated by revolving
the sketch 360◦ around the horizontal axis. All dimensions are in metres.
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Only one blade needs to be modelled, as it is possible to repeat it in a circular pattern which
finishes the remaining four.

The final propeller looks as follows:

Figure 4.14: Final geometry of the conventional propeller.

Modern propellers may have a lot of skew to help minimising cavitation. The designs in this
thesis will have no skew (except for the winglet propellers that have some skew on the outer
sections). The applied skew is tailored to the wake field of the ship that the propeller should
power. Only the open water performance is to be tested, completely free of any of wake, so no
skew is therefore added.
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4.3 Tip Loaded Propeller

The winglet propellers have the same base design – i.e the exact same tip loaded circulation
distribution, as well as identical chord length and thickness distributions. The propeller tips
themselves are the only difference. This tip loaded base geometry will be presented in the
following chapter.

4.3.1 Circulation distribution

An Excel curve fit was done, and the following sixth-order polynomial represents the circulation
distribution:

Γ(x) = k [−22.8500x6 +46.3040x5−25.4270x4−4.3941x3 +5.6943x2 +0.8884x+0.0964] (4.3)

where x runs from 0 to 1. Mapped onto the r/R axis, the resulting distribution is as follows,
with k = 1:
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Figure 4.15: The tip loaded circulation distribution, according to Equation 4.3, with k = 1.

The derivative of the circulation distribution is as follows:
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Figure 4.16: The derivative of the circulation distribution, given by Equation 4.3, with k = 1.
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There is no clever theory behind the choice of this exact circulation distribution. A tip value
that seemed appropriate, and did not introduce severe cavitation problems with a sensible tip
chord length was chosen.

4.3.2 Chord Length Distribution

The curve fit in Excel was better for this chord length distribution, and led to the following
expression:

c(x)

D
= −17.6590x6 + 55.6410x5− 69.5800x4 + 43.3210x3− 14.4010x2 + 2.9474x− 0.1055 (4.4)

where x runs from 0.2 to 1. The final values are obtained by multiplying with the diameter
D, and looks as follows:
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Figure 4.17: The total tip loaded chord length distribution.
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4.3.3 Thickness Distribution

The thickness distribution follows the same Wageningen curve as the conventional propeller
loading, shown in Figure 4.5. The lower limit for the tip loaded propeller follows almost the
exact same curve as for the conventional propeller loading.

The thickness to chord ratio distribution for the tip loaded propeller is as follows:
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Figure 4.18: The t/c distribution for the tip loaded propeller.

4.3.4 Lifting Line Results

With the exact same settings as described in Chapter 4.2.4, the results are as follows:
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Figure 4.19: Axial induced velocities of the final tip loaded design.
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Figure 4.20: Tangential induced velocities of the final tip loaded design.
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Figure 4.21: Hydrodynamic angle of attack of the final tip loaded design.
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Figure 4.22: Cavitation criteria for the final tip loaded design – no cavitation when −Cp < σ.
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Figure 4.23: Final residuals for each lifting line.

Total thrust T 2.36 MN
Total torque Q 3.10 MNm
Efficiency η 88.01 %
Expanded Area Ratio EAR 0.7
Pitch ratio at 0.7R P/D 1.33
Advance number J 0.92

Table 4.3: Results of the final tip loaded design.

The hydrodynamic angle of attack is corrected at the end points in the same way as described
in Chapter 4.2.4.
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4.3.5 3D CAD Modelling

The 3D CAD modelling is done in the same way as described in Chapter 4.2.5. The final design
is as follows:

Figure 4.24: Final geometry of the tip loaded propeller.

4.4 Winglet Design

The tip loaded propeller was designed solely to be modified with winglets. A finite circulation
at the propeller tip is only possible in theory, as the pressure difference between the suction and
pressure side of the propeller cannot be maintained here in reality. The lift obviously has to
end as the propeller blade ends. This has to happen gradually, no matter what the theoretical
circulation here would be, because discontinuities do not exist in reality. A large circulation at
the tip would therefore most likely not give much more lift, but potentially a larger tip vortex
instead.

The aim is to design a winglet that will maintain the pressure difference as much as possible
towards the propeller tip before the lift is gradually reduced to zero along the winglet span. The
foil sections of the winglet itself will therefore be lifting, i.e they will be cambered. Designing
a winglet thoroughly is a difficult task, meaning that there are details that simply cannot be
evaluated in the limited scope of this thesis. The exact geometry of the winglet, and distribution
of lift along it, will therefore not be justified by any grand theories or best practices. There is
after all very little guidance to find for such a winglet application.

The winglet fitted propellers are based on the tip loaded propeller geometry defined in
Chapter 4.3. A few modifications are done: Some skew is introduced at the outermost foil
sections to manage to place the winglets at the desired location. The trailing edge of the
propeller blade should not contract towards the propeller center, but rather continue in a more
or less straight line to the tip. This is done by skewing the outer foil sections further towards
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the trailing edge. The propeller blade is also curved gradually towards the suction side, before
the winglet foil sections eventually are added.

4.4.1 Tall Variant

Winglet Foil Sections

Two additional foil sections are used for the winglet. This means that the total number of foil
sections used to describe the entire propeller geometry becomes 22 (20 are already printed from
the lifting line program). The chord lengths for the winglet sections are half the value of the
preceding chord length. When the last chord length prior to the winglet is 1.264 m (as defined
by Equation 4.4), the first winglet section has length 0.632 m, and the last section has length
0.316 m. The thickness is kept constant, which means that the t/c value is doubled for each
section.

The camber for the first winglet section is the same as the preceding blade section, and the
last winglet section has a camber equal to zero.

Suction Side Curvature Distribution

The curvature towards the suction side is as follows, where z is the vertical offset from the base
line:

r/R 0.200 → 0.900 0.958 0.980 0.991 1.000

10 z/D 0.000 → 0.000 0.038 0.127 0.380 0.633

Table 4.4: Values of the curvature towards the suction side.

This gives a total winglet height equal to 0.5 m. It is important to angle the foil sections so
that they have their lift vector normal to the new base line because of the introduced curvature.

Skew Distribution

The skew is as follows, where y is the horizontal offset from the base line:

r/R 0.200 → 0.700 0.747 0.789 0.832 0.874 0.916 0.958 0.980 0.991 1.000

y/c 0.000 → 0.000 0.005 0.010 0.020 0.030 0.040 0.100 0.300 1.250 3.300

Table 4.5: Values of the curvature towards the suction side.

The values are made non-dimensional with respect to the local chord length, that is the
curve following Figure 4.17, and the values as described in the ‘Winglet Foil Section’ above.
The last winglet foil section is therefore offset by 1.043 m.
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3D CAD Modelling

Figure 4.25: Final geometry of the winglet fitted propeller (tall variant).

It is worth specifying that the diameter of the winglet fitted propeller is exactly 7.9 m, just as
the conventional design.

An important detail about the design that has to be mentioned is that the winglet is not
curved to follow the circular motion of the propeller – that is, it is straight. The winglet chords
should be curved to follow a circle with radius equal to the radial position of each section. The
author was unable to accomplish this in any good way due to lack of 3D modelling experience.
A more skilled CAD user would probably be able to pull it off much better, but the easier way
had to be chosen in order to not spend too much time on CAD modelling. This is far from
an optimum design, and will most probably make the winglet work with some angle of attack,
which is negative for a number of reasons.

4.4.2 Short Variant

Winglet Foil Sections

The foil sections of the short winglet variant is exactly the same as the tall variant.

Suction Side Curvature Distribution

r/R 0.200 → 0.900 0.958 0.980 0.991 1.000

10 z/D 0.000 → 0.000 0.025 0.089 0.190 0.380

Table 4.6: Values of the curvature towards the suction side.

This gives a total winglet height equal to 0.3 m.
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Skew Distribution

r/R 0.200 → 0.700 0.747 0.789 0.832 0.874 0.916 0.958 0.980 0.991 1.000

y/c 0.000 → 0.000 0.005 0.010 0.020 0.030 0.050 0.100 0.350 1.250 3.300

Table 4.7: Values of the curvature towards the suction side.

The total offset of the last winglet foil section is also in this case 1.043 m.

3D Cad Modelling

Figure 4.26: Final geometry of the winglet fitted propeller (short variant).

The winglet is also here not curved – same as for the tall variant.
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Chapter 5

Fluid Flow Simulations

5.1 Governing Equations

General fluid flow behaves chaotic and random, with both large and small scale spatial and tem-
poral effects present. For example by looking at a river flowing, it is clear that it is dominated
by a certain velocity and direction – but it might also swirl into smaller or larger eddies locally,
flowing in all directions, more or less at random. The flow becomes increasingly turbulent and
chaotic if for example a waterfall approaches – with spray, foam and a mixing of air and water
as the outcome.

The mathematical equations governing viscous fluid flow have been known for more than a
century, and are usually termed the ‘Navier-Stokes Equations’, named after Claude-Louis Navier
and George Gabriel Stokes who discovered them. These equations are a set of equations, one for
each spatial dimension. They include both the time dependent flow acceleration, the nonlinear
time independent spatial convective acceleration, as well as pressure driven forces and viscous
forces. The constant viscosity, incompressible version of the equations is expressed in compact
vector notation in the following way:

ρ
D~U

Dt
= −∇p+ µ∇2 ~U + ρ~g (5.1)

ρ is the fluid density, ~U is the velocity vector with x-, y- and z-components [u v w] respec-
tively, p is the pressure, µ is the dynamic viscosity, and the acceleration of gravity vector ~g
with components [gx gy gz] has been substituted for the general body force vector ~f.
∇ is the vector differential operator, here acting on a general scalar φ:

∇φ =

[
∂φ

∂x

∂φ

∂y

∂φ

∂z

]
(5.2)

∇2 is the same as ∇ · ∇, yielding the scalar Laplace differential operator, here acting on a
general scalar φ:

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
(5.3)

D
Dt

is the material derivative operator, here acting on a general scalar φ:

Dφ

Dt
=
∂φ

∂t
+ ~U · ∇φ =

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
+ w

∂φ

∂z
(5.4)
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A mass continuity equation is also necessary, ensuring that the total amount of mass in the
system is kept constant. The mass continuity equation simplifies to a volume continuity of the
following form in the incompressible case:

∇ · ~U = 0 (5.5)

Written explicitly in each of its three components, Equation 5.1 becomes as follows:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ ρgx (5.6)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+ ρgy (5.7)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −∂p

∂z
+ µ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+ ρgz (5.8)

Equations 5.6 – 5.8 are a set of mixed hyperbolic-parabolic, unsteady, nonlinear, second
order partial differential equations. Let there be no doubt – they are difficult to solve. With
present methods, they are in fact impossible to solve for turbulent high Reynolds number flows
because of randomly time dependent boundary conditions (White 2006). It is the nonlinear

convective ~U · ∇~U term that makes the Navier-Stokes equations particularly troublesome, but
good approximate results are obtained through sophisticated numerics and clever turbulence
modelling.

Another interesting fact about these equations is that it has yet to be proven that smooth
solutions always exist in three dimensional space – smooth in the sense that the solution is
without singularities. This is called the ‘Navier–Stokes Existence and Smoothness’ problem,
and is one of the seven ‘Millennium Prize Problems’ – that is, one of the seven most important
open problems in mathematics, awarded with a USD 1 million prize if solved. Despite this fact,
the equations are widely used with great practical success – maybe to some mathematicians
vexation.

5.2 Computational Fluid Dynamics

It is impossible to solve the Navier-Stokes equations analytically for most (in essence all) prac-
tical purposes. Fortunately, numerics come to the rescue. Numerical methods used in fluid
analysis is termed ‘Computational Fluid Dynamics’ (CFD), with the ‘Finite Volume Method’
(FVM) being the most popular technique. The FVM has proven successful since its develop-
ments in the early 1970’s despite little numerical analysis, and difficulty to extend the method
to higher orders of accuracy compared with finite element or finite difference methods. Some
reasons for the success are the method’s discrete conservation property, integral formulation in
physical space, shock capturing capability, geometric flexibility and local grid adaption capa-
bility (Müller 2012).

In the FVM, the solution domain is subdivided into a finite number of control volumes that
are used to solve the set of equations, which for this purpose are recast into a conservative form.
Their integral forms are obtained by integrating them over the cell centred control volumes,
which makes it possible to find expressions for values of the conserved variables at the cell faces
by difference methods. There are a vast number of ways to do this, depending on the desired
level of accuracy and stability. The second order upwind scheme is popular for the convection
term, with an applied flux-limiter to reduce numerical oscillations at discontinuities (like for
example shocks, but these are not present in an incompressible simulation). In an upwind
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scheme, the face values are interpolated from cells that are upwind of the flow direction relative
to the interesting cell face. The second-order upwind scheme is not especially numerically
diffusive, which is good in some cases, but could in other cases lead to poor convergence and
non-physical numerical oscillations (like for the already mentioned flow discontinuities). This
is handled by flux-limiters that reduce the scheme to something like the first order upwind at
discontinuities, which is much more robust in terms of convergence. This is a good trade-off
between accuracy and stability.

The goal is to end up with a system of linear equations with a total number of unknowns
equal to the number of cells in the solution domain. Linearisations and iterative techniques
have to be applied in order to solve the nonlinear parts of the equations, as well as some sort of
time-integration scheme to control the transient terms. The time-integration is usually implicit
for greater stability, and of first or second order. Modern multigrid algorithms are used to solve
the final linear equations, resulting in nearly linear scaling with the number of unknowns.

It is referred to text books describing the FVM in detail for a more in-depth explanation of
the different numerical schemes and discretisation techniques, e.g (Versteeg and Malalasekera
2007).

5.3 Choice of Solver and Numerical Models

5.3.1 STAR-CCM+

The CFD software used in this thesis is STAR-CCM+ (version 9.04.011), which is a power-
ful commercial multiphysics software developed by CD-adapco, with special emphasis put on
thermo and fluid dynamics.

A good reputation in marine applications, personal experience, easy access to student li-
censes and a helpful support service were reasons for the choice of solver.

5.3.2 Numerical Models

Steady State Simulations

The flow field behind a propeller might at a first glance look highly irregular – but actually,
the truth is quite the contrary, at least for a smooth inflow, which is the case for an open
water test. This allows for a ‘steady state simulation’, or time independent solution. The flow
conditions are set, and the solver iterates until a steady state situation is met, avoiding time-
integration altogether. A complete open water test must include a large number of advance
numbers (different flow conditions), which would require immense computation resources for
an accurate time dependent, unsteady solution. It is therefore highly desirable to use a steady
state approach as much as possible, and this has been done for all simulations except for the
unsteady cavitation analysis.

The chosen numerical models for the steady state simulations are as follows:

• Incompressible single phase fluid

• Moving Reference Frame

• Segregated flow solver with the SIMPLE algorithm for pressure-velocity coupling

• Algebraic Multigrid iteration technique

• The k − ω SST Menter turbulence model
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• High y+ wall treatment

• Second order upwind convection scheme

• Hybrid Gauss-LSQ gradient scheme with the unmodified Venkatakrishnan limiter

The Moving Reference Frame (MRF) model is used to take care of motion in a steady
state simulation. This is done by defining both a static region and a ‘moving’ region within
the computation domain, and coupling them with an overlapping interface. A constant grid
flux is generated in the appropriate conservation equations of the moving region, based on
the reference frame’s properties (e.g a specified rotation) (CD-adapco 2015). The propeller is
therefore static, but its motion is introduced artificially.

The segregated flow solver solves each equation individually (the momentum equation and
the pressure correction equation), and later couples them with the SIMPLE algorithm (Semi
Implicit Method for Pressure Linked Equations).

The k − ω SST (Shear Stress Transport) turbulence model by F. R. Menter is widely used
and well proven. It is a two equation model, which blends the k − ε and original k − ω model,
in theory achieving the best of the two (CD-adapco 2015).

The ‘High y+ wall treatment’ model is all about turbulent boundary layers. The y+ pa-
rameter is a non-dimensional wall distance, defined as follows:

y+ =
u∗y

ν
(5.9)

u∗ is the friction velocity at the nearest wall, y is the distance to the nearest wall (effectively
the height of the innermost cell), and ν is the kinematic viscosity of the fluid. u∗ is defined as
follows, where τw is the wall shear stress:

u∗ =

√
τw
ρ

(5.10)

The high y+ model is used for the logarithmic region of the turbulent boundary layer, which
is valid for y+ values in the range of approximately 30 to 500 (McDonough 2007). However,
errors increase with large values of y+, which makes it wise to aim for upper values substantially
lower than 500 (CD-adapco 2015).

The y+ criteria puts a constraint on the cell size near the propeller surface. It is important
to have a fine enough mesh here to be able to resolve the boundary layer with sufficient accuracy,
but it is as always a trade-off between accuracy and computation cost. A maximum y+ value
of 150 has been set as an upper limit for the simulations in this thesis.

Most of the numerical models and their internal settings are chosen automatically by STAR-
CCM+ as a best practice starting point. More skilled users might get even better results by
altering the models additionally, but this has not been done in the following simulations.

Additional details and in-depth explanations of the selected numerical models are beyond
the scope of this thesis.
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Unsteady Simulations

Only the short winglet at three different advance numbers was simulated with an unsteady
approach due to the computational cost. The numerical settings were as follows:

• Incompressible two phase solver based on the ‘Volume of Fluid’ method

• Overset mesh approach (‘Chimera grids’) with linear interpolation

• Segregated flow solver with the unsteady SIMPLE algorithm for pressure-velocity coupling

• Algebraic Multigrid iteration technique

• 1st order, backward Euler implicit time stepping

• 10 innter iteration per time step

• The k − ω SST Menter turbulence model

• High y+ wall treatment

• Second order upwind convection scheme

• Hybrid Gauss-LSQ gradient scheme with the unmodified Venkatakrishnan limiter

Both water and air has been modelled, and an overset mesh technique has been used to
handle the propeller motion, which is one of the many nice features of STAR-CCM+. Two
regions are made – one background mesh and one overset mesh that is rotating. The overset
mesh is actually on top of the background mesh, and values are linearly interpolated between
them. Cells in the background mesh that are ‘behind’ the overset mesh are disabled and cut
away. This approach is particularly useful for large motions, such as a rotating propeller or
other arbitrary large scale displacements. The overset mesh is physically moving, contrary to
the MRF approach in the steady state simulations where the ‘moving’ region was static.

The time step size is constrained to ensure 1◦ of propeller rotation per timestep, implying
a magnitude of 0.001634 s when the propeller is rotating at 1.7 rps. Such a small rotation per
time step is widely used, and usually the recommended practice (Krasilnikov, Zhang, and Hong
2009).

The physical constants chosen for water and air are as follows, which except for the water
density are the standard values selected by STAR-CCM+:

Fluid Density ρ Dynamic viscosity µ
Water 1025 kg/m3 8.88710 · 10−4 Ns/m2

Air 1.18415 kg/m3 1.85508 · 10−5 Ns/m2

Table 5.1: Physical constants of water and air as used in the simulations.

The values for water are identical in the steady state simulations.
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5.4 Computer Cluster

CFD simulations are costly in terms of computation resources. The number of control volumes
that a fluid domain must be divided into can be in the order of several millions, meaning
that sets of linear equations with several million unknowns must be solved iteratively numerous
times. This procedure is repeated for each time step in unsteady simulations. With for example
a time step in the order of 10−3 s and ten inner iterations per time step to ensure convergence,
the million-unknown-sized equation set must be solved ten thousand times just to simulate one
second of real time. This involves a tremendous number of floating point operations, which is
impossible to do on a personal computer within a practical amount of time (given that it has
enough memory in the first place). Large computer clusters are therefore used instead, with
several powerful CPU’s working in parallel. For this thesis, access was gained to the ‘Vilje’
supercomputer cluster at NTNU in Trondheim, which when introduced in 2012 was the 44th

most powerful computer in the world (TOP500 2014). It runs Linux, and is based on the 8-core
Intel Xeon E5-2670 ‘Sandy Bridge’ processor. The entire cluster consists of 1404 nodes with
two processors per node, giving a total core count of 22 464. Each node has 32 GB of RAM,
giving approximately 45 TB of total memory.

Vilje’s nodes are grouped in IRU’s (Individual Rack Units) of 18 nodes per IRU. Each
IRU has two switches connecting nine and nine nodes together, and it is therefore advised to
decompose large cases into multiples of nine nodes to ensure best performance (HPC NTNU
2015). The size of the meshes used in the following simulations made it appropriate to use nine
nodes. All simulations are therefore done with 144 CPU cores and 288 GB of RAM.

5.5 Computational Domain

The rectangular computational domain is chosen on the basis of a propeller open water test
tutorial in the user guide of STAR-CCM+ that introduces many best practices for such CFD
simulations (CD-adapco 2015). The domain is extended 5D (five propeller diameters) upstream,
10D downstream and the total width and height are both set to 6D.
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5.6 Mesh

5.6.1 Steady State Simulations

The trimmer mesher (hexahedral dominant cells) of STAR-CCM+ has been used for the steady
state simulations. Refinement regions have been defined where necessary, and the feature lines
along the leading and trailing edge of the propeller have also been extracted and meshed at a
very high level of refinement in order to capture the sharp geometry features here. A prism
layer mesher has been used to control the boundary layer cells and y+ values.

Figure 5.1: Cutting plane of the mesh of the conventional propeller seen from the side. Water
inflow is from the right.

Figure 5.2: Close up cutting plane view of the mesh of the conventional propeller seen from
the front. The intersection cells between the static and rotating region are also clearly visible.
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Figure 5.3: View of the prism layers near the propeller surface. A total of ten layers have been
added.

Figure 5.4: View of the mesh around the sharp trailing edge of a propeller blade.

A propeller is not a simple geometry to mesh properly. It is highly three dimensional, and
consists of many sharp features. This may pose problems for the prism layers near the trailing
edge, as can be seen in Figure 5.4. Some of the layers are truncated, but the mesh is also
here of fair quality. The diagonal lines in the figure that seem to connect to arbitrary cells are
there because of the angled orientation of the cutting plane. These lines are connected to other
vertices than the ones visible.

Figure 5.1 reveals that a propeller axle has been added to the geometry. This is to ensure
a nice inflow to the propeller, but also to simulate an open water test as they are done in a
cavitation tunnel. This axle is not part of the rotating region, but has been assigned with a
rotational wall velocity boundary condition in order to match the rotation of the propeller.
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5.6.2 Unsteady Simulations

The mesh for the unsteady simulations used for the cavitation analysis is based on the one
used for the steady state simulations. The same domain is used, but the cells used in this
simulations are polyhedral, and not hexahedral. Such highly unstructered grids are useful for
overset meshes with large displacements, and can also give quicker convergence with fewer cells
(Symscape 2013). Only the short winglet variant was simulated in this way.

Figure 5.5: Cutting plane of the polyhedral mesh of the short winglet propeller seen from the
side. Water inflow is from the right.

Figure 5.6: Close up cutting plane view of the polyhedral mesh of the short winglet propeller
seen from the side.
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Figure 5.7: Close up cutting plane view of the polyhedral mesh of the short winglet propeller
seen from the front. The boundary between the background and rotating overset region is also
visible.

Figure 5.8: The polyhedral surface mesh of one propeller blade for the short winglet propeller.

As can be seen in Figures 5.5 and 5.6, the axle is different from the steady state simulations.
This is because the entire axle now is within the rotating overset region, and an overset region
should not continue all the way to a domain boundary. The axle was therefore not extended
to the inlet in order to avoid an unstable simulation.

The mesh consists of even more cells than the hexahedral mesh used in the steady state
simulations. The inclusion of the entire axle within the overset region was expensive in terms
of number of cells. It is also important to have similar sized cells in the interface between
the background and overset region in order to minimise interpolation errors. Fine cells had
therefore to be used quite far away from the overset region itself.
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5.6.3 Convergence Study

A test for convergence must be done in order to find what mesh resolution is necessary to ensure
valid results. The mesh is made according to a base cell size, which makes it easy to scale the
entire mesh by just changing one parameter. Five different base sizes are checked, with the
mesh sizes as follows:

Base size Mesh size (#cells)
4.00 m 289 075
2.00 m 578 403
1.00 m 1.670 million
0.50 m 4.562 million
0.25 m 15.967 million

Table 5.2: Mesh sizes for the conventional propeller geometry used in the convergence study.

It seems that the mesh does not necessarily scale by the base size factor to the third power for
the coarser meshes.

The convergence study is only done for the conventional propeller, and only at advance
number J = 0.95. It is assumed that the same mesh has converged for all other propeller
geometries and advance numbers. Mesh sizes vary for the propellers, being slightly larger for
the winglet equipped ones due to the more complicated geometry.

In the following figure, the percentage change in absolute value is presented for each mesh
refinement level relative to the preceding level. This means that the coarsest base size of 4 m is
not included, but rather used as a reference for the results of base size 2 m. For example, the
propeller thrust has changed with about 3.3 % for base size 2 m compared with base size 4 m.
Convergence is reached when the next refinement level has a change in results close to zero.
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Figure 5.9: Mesh convergence study for the conventional propeller. The x-axis shows increasing
level of mesh refinement.

It is clear that convergence has been reached for mesh base size 0.50 m when looking at Figure
5.9. The reason for this is that the changes in results for base size 0.25 m are much less than
0.5 % for all parameters – which for all practical purposes are zero difference.

The reason for the larger change in torque from base size 1 m to 0.5 m than for 2 m to 1 m
is believed to be connected to a better resolving of the boundary layer. The y+ parameter has
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a very high value for the coarsest meshes, making it impossible to capture the boundary layer
properly. This affects the viscous drag most, which is visible through the propeller torque.

A mesh base size of 0.5 m is chosen for all simulations as it has properly converged results
for all parameters. It is also this mesh that has been presented in Figures 5.1 – 5.4. The same
base size was used in the polyhedral mesh which consists of 5.526 million cells. It is this mesh
that is presented in Figures 5.5 – 5.8.

5.7 Simulation Procedures

5.7.1 Steady State Simulations

STAR-CCM+ allows for custom defined functions that can be used to control the simulations.
This was used heavily in the steady state simulations. The advance number could for example
be made dependent on the number of iterations in the following way:

J = 0.2 + 0.02 * $i (5.11)

where i is defined as follows:

i = floor($Iteration/501) (5.12)

What happens in Equation 5.12 is that i increases by one for each 501st iteration. The dollar
sign refers to another function, in this case Iteration, which is one of the standard functions
in STAR-CCM+ that just keeps track of which iteration is the current. The floor func-
tion rounds down to the nearest integer no matter how close it is to the next – for example,
floor(1.99) = 1.

Equation 5.11 refers to i, meaning that the advance number is increased by 0.02 for each
501st iteration. The inflow velocity can then be calculated as VA = $J * $n * $D, where n
and D are nothing else than the propeller speed and diameter. The inflow velocity boundary
condition can then be set to $VA, making the inflow to change automatically according to the
current advance number as the simulation proceeds.

By specifying STAR-CCM+ to extract the thrust and torque from the propeller, the KT

and KQ coefficients, as well as the efficiency η can be defined in much the same way. These
parameters can then be plotted for each 500th iteration, yielding the latest result of the current
advance number before the next one is introduced at the next iteration. It is then just to start
the simulation, and the total open water diagram is eventually plotted automatically.

This is exactly the way the steady state simulations are done. Starting at J = 0.2 and
running through to J = 1.3 with increments of 0.02 and 500 iterations per advance number.
This gives in total 56 different advance numbers and 28 000 iterations for each complete open
water test. The finished open water diagram can be extracted right after the simulation is
complete by setting the stopping criteria to 28 000 iterations.
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500 iterations per time step ensured convergence both for residuals and forces. The residuals
for the first 3500 iterations for the conventional propeller open water test are as follows:
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Figure 5.10: The residuals from STAR-CCM+ for the conventional propeller open water test.

‘Tke’ and ‘Sdr’ in Figure 5.10 above are related to the turbulence model.

The cavitation analysis is simplified in the steady state simulations. Gravity effects are
not included, so the change in hydrostatic pressure is not accounted for. This means that
the cavitation extension only can be represented correctly at one blade section. The reference
pressure inside STAR-CCM+ must be altered in order to have the correct pressure at the wanted
submergence. The propeller hub is located 6.68 m below the water surface, and the worst case
submergence in terms of cavitation is this submergence plus the propeller radius (D/2 = 3.95
m). 3.90 m was chosen, so to not be positioned exactly at the propeller tip. The water column
above this position is of height 6.68 m − 3.90 m = 2.78 m. By adding the pressure from this
water column to the atmospheric reference pressure, and also subtracting the vapour pressure
of 1500 Pa, cavitation is likely to occur if the absolute pressure on the propeller blade drops
below zero. This is, as already mentioned, only correct at the blade portion which is located
at exactly 3.90 m radial position, meaning that a conservative estimate of the cavitation sheet
is made elsewhere.

Each open water test took on average a little less than three hours to finish with nine nodes
at the Vilje cluster.
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5.7.2 Unsteady Simulations

It was decided that a cavitation check that included transient effects should be done – both to
validate the steady state results and to see the effects of the hydrostatic pressure. Only the short
winglet propeller was subject to the unsteady simulations, and at advance numbers J = 0.2,
0.6 and 0.95. As already mentioned in Chapter 5.3.2, the time step equalled 1◦ of rotation, and
the total number of complete propeller revolutions was ten. This ensured a properly developed
wake field and nicely converged cavitation results.

Ten inner iterations per time step, 360 time steps per complete propeller revolution and
a total of ten revolutions results in 36 000 iterations just for one single advance number –
compared with only 500 for the steady state simulations. The total computation time was on
average 30 hours for each case with nine nodes at the Vilje cluster. For the sake of argument: A
full open water test done in this way with the same resolution as the steady state simulations (56
advance numbers) would require ten weeks of non-stop computation time at a supercomputer.
It is now obvious why unsteady simulations are extremely costly compared with steady state
simulations – and it is clear why they were avoided as much as possible.

It should be noted that some computation time could be saved by not writing images for
each time step. However, the cavitation pattern images was in this case the key results and
had to be included.

The cavitation simulations here include the hydrostatic pressure, meaning that the dynamic
behaviour of the cavitation pattern can be captured since the propeller is physically moving.
Cavitation is likely to occur where the absolute pressure drops below zero by again subtracting
the vapour pressure of 1500 Pa from the atmospheric reference pressure. There is no need to
correct for the free surface since it already is properly modelled.
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Chapter 6

Results

The CFD results are presented in the following chapter without much discussion. The detailed
discussion takes place in Chapter 7.

6.1 Steady State Simulations

6.1.1 Open Water Tests

Conventional Propeller

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Advance Number J

Conventional Propeller

KT
x

10KQ
x

η

Figure 6.1: Open water diagram for the conventional propeller. ηmax = 75.5 % at J = 1.02.
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Tip Loaded Propeller

The tip loaded propeller is also included, to see what its characteristics are without the winglets.
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Figure 6.2: Open water diagram for the tip loaded propeller. ηmax = 75.4 % at J = 1.00.

Tall Winglet Propeller
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Figure 6.3: Open water diagram for the tall winglet propeller. ηmax = 67.1 % at J = 1.04.
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Short Winglet Propeller
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Figure 6.4: Open water diagram for the short winglet propeller. ηmax = 70.4 % at J = 1.04.

Combined Plots of Open Water Results
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Figure 6.5: Thrust coefficients for all the propellers.
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Figure 6.6: Torque coefficients for all the propellers.
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Figure 6.7: Efficiencies for all the propellers.

Summary of Results for J = 0.95

Co-supervisor Professor Sverre Steen pointed out that the desired operating point for a propeller
is slightly to the left of the optimum efficiency. It is desirable to be located a bit further away
from the steep reduction in the efficiency curve that occurs to the right of the optimum point.
The propeller loading is far from perfectly constant under real conditions, so a drop in the RPM
could potentially reduce the efficiency a lot – which is good to avoid. An advance number of
J = 0.95 has been selected as the design propulsion point for all the propellers. The results for
this advance number are summarised in the following tables:

Propeller KT 10KQ T Q η
Conventional 0.169 0.343 1.95 MN 3.12 MNm 74.5 %
Tip loaded 0.158 0.319 1.82 MN 2.90 MNm 74.7 %
Tall winglet 0.237 0.544 2.73 MN 4.96 MNm 65.8 %
Short winglet 0.210 0.461 2.43 MN 4.20 MNm 69.0 %

Table 6.1: Results for J = 0.95 for all the propellers.
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Parameter Tip loaded Tall winglet Short winglet
KT −6.7 % 40.3 % 24.5 %
10KQ −7.1 % 58.8 % 34.4 %
η 0.2 p.p −8.7 p.p −5.5 p.p

Table 6.2: Deviations from the conventional propeller at J = 0.95. The values for η are given
in percentage points.

Summary of Relative Differences from the Conventional Propeller

The figures below show the difference of the winglet propellers relative to the conventional
design for advance numbers J between 0.2 and 1.1 (relative differences are uninteresting and
at worst misleading above J = 1.1):
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Figure 6.8: Percentage increase in thrust relative to the conventional propeller.
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Figure 6.9: Percentage increase in torque relative to the conventional propeller.
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Figure 6.10: Percentage point reduction in efficiency relative to the conventional propeller.

6.1.2 Wake Streamlines

The wake streamlines in the figures below are coloured with the velocity magnitude of the flow
field, and the propellers are visualised with the pressure field.

Advance Number J = 0.20

Figure 6.11: Wake streamlines for the conventional, short and tall winglet propellers for advance
number J = 0.20.

Advance Number J = 0.60

Figure 6.12: Wake streamlines for the conventional, short and tall winglet propellers for advance
number J = 0.60.
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Advance Number J = 0.95

Figure 6.13: Wake streamlines for the conventional, short and tall winglet propellers for advance
number J = 0.95.

Advance Number J = 1.20

Figure 6.14: Wake streamlines for the conventional, short and tall winglet propellers for advance
number J = 1.20.

6.1.3 Cavitation

Advance Number J = 0.20

Figure 6.15: Cavitation sheets for the conventional, short and tall winglet propellers for advance
number J = 0.20.
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Advance Number J = 0.60

Figure 6.16: Cavitation sheets for the conventional, short and tall winglet propellers for advance
number J = 0.60.

Advance Number J = 0.95

Figure 6.17: Cavitation sheets for the conventional, short and tall winglet propellers for advance
number J = 0.95.

Advance Number J = 1.20

Figure 6.18: Cavitation sheets for the conventional, short and tall winglet propellers for advance
number J = 1.20. Pressure side cavitation is also present.
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6.1.4 Wake Vorticity

The vorticity in the wake have been visualised by the Q-Criterion technique and with cutting
planes at distances of 0.5D, 1D and 2D behind the propeller. This is to keep track of the tip
vortices and to find their magnitudes and directions. Only J = 0.95 have been checked, except
for one case where similarity in the KT coefficient was analysed.

The vorticity magnitude is presented, as well as the axial component and the component
normal to the axial one.

A three dimensional vorticity field will have components in all spatial directions, but each
vortex can be decomposed into three components, with the components’ rotational directions
specified by a vector and the right hand rule.

The vorticity magnitude shows the total absolute value of all the components, and is there-
fore a measure of the total vorticity, but information about the direction of spin is lost. The
axial component have its positive vector pointed along the propeller axle, i.e into the plane, and
will therefore show vortices in the plane, with positive values spinning clockwise and negative
values spinning counter clockwise. The component normal to the axial one has its positive
vector pointed to the left, meaning that the vortices are spinning into (and out of) the plane.
The idea is that this is the vorticity component induced by the pressure leakage between the
high pressure side and suction side of the propeller blades. Only the blades at positions per-
pendicular to the direction vector are able to give any contribution to this component, meaning
that the vertically positioned blades are the most visible. The other blades will have more
of their contribution in the upwards pointing component, but would actually only show just
about the same vorticity decomposed in another way. One of these components are therefore
sufficient to see the interesting effects of vortices into the plane.

A distance of two diameters behind the propeller is quite far, meaning that a roll up of the
vortices can be expected.

The Q-Criterion figures show the three dimensional vortices up to a certain strength, deter-
mined by a selected value. The vortices continue much further in the wake, but are not shown
that far because of figure cluttering.

Conventional Propeller

Figure 6.19: The Q-Criterion isosurfaces for a value of 10 s−2 for the conventional propeller.
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Figure 6.20: The wake vorticity magnitude for the conventional propeller. The planes are, from
left to right, located at distances of 0.5D, 1D and 2D behind the propeller.

Figure 6.21: The axial wake vorticity component (positive direction for the vector is into the
plane) for the conventional propeller. The planes are, from left to right, located at distances of
0.5D, 1D and 2D behind the propeller. Red colour is clockwise, blue is anti clockwise.

Figure 6.22: The wake vorticity normal to the axial component (positive direction for the
vector is to the left) for the conventional propeller. The planes are, from left to right, located
at distances of 0.5D, 1D and 2D behind the propeller. Red colour is clockwise, blue is anti
clockwise – but be sure to remember the right hand rule, implying that the vorticity really is
into the plane.
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Tip Loaded Propeller

Figure 6.23: The Q-Criterion isosurfaces for a value of 10 s−2 for the tip loaded propeller.

Figure 6.24: The wake vorticity magnitude for the tip loaded propeller. The planes are, from
left to right, located at distances of 0.5D, 1D and 2D behind the propeller.

Figure 6.25: The axial wake vorticity component (positive direction for the vector is into the
plane) for the tip loaded propeller. The planes are, from left to right, located at distances of
0.5D, 1D and 2D behind the propeller. Red colour is clockwise, blue is anti clockwise.
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Figure 6.26: The wake vorticity normal to the axial component (positive direction for the vector
is to the left) for the tip loaded propeller. The planes are, from left to right, located at distances
of 0.5D, 1D and 2D behind the propeller. Red colour is clockwise, blue is anti clockwise – but
be sure to remember the right hand rule, implying that the vorticity really is into the plane.

Tall Winglet Propeller

Figure 6.27: The Q-Criterion isosurfaces for a value of 10 s−2 for the tall winglet propeller.

Figure 6.28: The wake vorticity magnitude for the tall winglet propeller. The planes are, from
left to right, located at distances of 0.5D, 1D and 2D behind the propeller.
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Figure 6.29: The axial wake vorticity component (positive direction for the vector is into the
plane) for the tall winglet propeller. The planes are, from left to right, located at distances of
0.5D, 1D and 2D behind the propeller. Red colour is clockwise, blue is anti clockwise.

Figure 6.30: The wake vorticity normal to the axial component (positive direction for the
vector is to the left) for the tall winglet propeller. The planes are, from left to right, located
at distances of 0.5D, 1D and 2D behind the propeller. Red colour is clockwise, blue is anti
clockwise – but be sure to remember the right hand rule, implying that the vorticity really is
into the plane.

Short Winglet Propeller

Figure 6.31: The Q-Criterion isosurfaces for a value of 10 s−2 for the short winglet propeller.
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Figure 6.32: The wake vorticity magnitude for the short winglet propeller. The planes are,
from left to right, located at distances of 0.5D, 1D and 2D behind the propeller.

Figure 6.33: The axial wake vorticity component (positive direction for the vector is into the
plane) for the short winglet propeller. The planes are, from left to right, located at distances
of 0.5D, 1D and 2D behind the propeller. Red colour is clockwise, blue is anti clockwise.

Figure 6.34: The wake vorticity normal to the axial component (positive direction for the
vector is to the left) for the short winglet propeller. The planes are, from left to right, located
at distances of 0.5D, 1D and 2D behind the propeller. Red colour is clockwise, blue is anti
clockwise – but be sure to remember the right hand rule, implying that the vorticity really is
into the plane.
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Closeup View of the Winglets: Q-Criterion

Figure 6.35: The Q-Criterion isosurfaces for a value of 10 s−2 for the tall and short winglets.

Tall Winglet Propeller at KT = 0.169

The winglet propellers deliver significantly more thrust than the conventional and tip loaded
propellers at the same J , which could potentially make it a bit unfair to compare the vorticity
at J = 0.95 and expect them to be lower in the case of the winglet propellers. A simulation
was therefore done with the tall winglet propeller at J = 1.056, which gives the exact same KT

as the conventional propeller has at J = 0.95. The propellers then deliver the same amount of
thrust, which makes the tip vortices easier to compare. Only the component that is normal to
the axial one has been analysed, as this component can give details about the pressure leakage
from the high pressure side to the suction side of the propeller blades. The result should be
compared with Figure 6.22.

Figure 6.36: The wake vorticity normal to the axial component (positive direction for the vector
is to the left) for the tall winglet propeller at KT = 0.169. The planes are, from left to right,
located at distances of 0.5D, 1D and 2D behind the propeller. Red colour is clockwise, blue is
anti clockwise – but be sure to remember the right hand rule, implying that the vorticity really
is into the plane.
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6.1.5 Wall y+

The wall y+ values are only presented for the conventional propeller for J = 0.95, as they are
almost identical for all the propellers at all advance numbers.

Figure 6.37: The wall y+ values for the conventional propeller at J = 0.95. The majority of
the values are between 30 and 90, therefore making the ‘High y+ wall treatment’ model valid.
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6.2 Unsteady Simulations

Only cavitation results are presented for the unsteady simulations. They are all for the short
winglet propeller, and for advance numbers 0.2, 0.6 and 0.95. The Courant numbers for these
simulations are very low, ensured by the low time step.

6.2.1 Advance Number J = 0.20

Figure 6.38: The cavitation sheet for the short winglet propeller at J = 0.20.

6.2.2 Advance Number J = 0.60

Figure 6.39: The cavitation sheet for the short winglet propeller at J = 0.60.

6.2.3 Advance Number J = 0.95

Figure 6.40: The cavitation sheet for the short winglet propeller at J = 0.95.
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6.3 Comparison With the Wageningen B-Series

It is wise to conduct a comparison of the conventional propeller with the Wageningen B-Series
propellers. The B-Series is the most comprehensive series ever tested, containing more than
120 different propellers (Steen 2014). They are assumed to be quite similar in both loading
and geometry as the conventional propeller, and should therefore not deviate too much from
the presented results.

The B-Series is often presented in so called Bp-δ diagrams, named after the two coefficients
used to describe them:

Bp =

(
1

2πρ

)1/4
PD

1/4 n1/2

V
5/4
A

(6.1)

δ =
nD

VA
(6.2)

PD is the delivered power, and VA is the advance velocity. δ is actually the reciprocal of J .

The 5-bladed diagram was used, with an EAR of 0.75. It is now possible to find either
the diameter or the thrust by choosing which parameter to extract from the diagram. The
delivered power becomes PD = 1.8 · 24 · 1.852

3.6
MW = 22.2 MW by using the ship resistance of

1.8 MN, which makes the Bp coefficient equal approximately 0.43. δ is read from the diagram
to be 1.05 (δ = 1.05 is the same as J ≈ 0.95) by following the optimum efficiency curve. The
P/D ratio for the selected propeller is 1.2, and the diameter is found from δ to be 7.63 m. The
efficiency is read from the graph to be approximately 71.5 %.

These results deviate from the design diameter of 7.9 m and pitch ratio of 1.37, as well as the
EAR of 0.70 and efficiency of 75.5 %, but the results are essentially in quite good agreement.

6.4 Validity of Results

No experimental model tests have been done in order to check the obtained results. There are
therefore not any assurances for them to be correct – but things are not that grim. The CFD
simulations are based extensively upon a tutorial case from the STAR-CCM+ user guide with
the best practice approach for open water tests presented. The propeller analysed in that case
was the ‘Potsdam Propeller Test Case – VP1304’, and very good results were obtained by com-
paring them with experimental data (CD-adapco 2015). These results were also conservative,
meaning that the solver slightly underestimated the thrust and overestimated the torque.

STAR-CCM+ has proved to be a very good and accurate tool in marine engineering, and
the results obtained in this thesis are assumed reasonable because the best practices suggested
by the software developer have been followed. The comparison with the Wageningen B-Series
also supported the validity of the results.
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Chapter 7

Discussion and Conclusion

The design advance number for the conventional propeller was J = 0.92, which was not matched
perfectly by the lifting line program according to the CFD-results. The simulations showed an
optimum point at J = 1.02, but this is not too far off the lifting line values, meaning that the
lifting line program works as a good first approximation – at least for the pitch distribution. It
is not a particularly accurate tool with regards to the thrust, torque and efficiency. A thrust
of 2.15 MN, a torque of 2.95 MNm and an efficiency of 84.4 % was predicted, whereas the
CFD-results showed a thrust of 1.47 MN, a torque of 2.50 MNm and an efficiency of 75.5 % at
J = 1.02. This is quite far off the predicted values, but at a slightly lower J of 0.95 (which was
chosen as the operating point) the values are 1.95 MN, 3.12 MNm and 74.5 % for the thrust,
torque and efficiency respectively. The lifting line program is at least in the same ballpark for
this advance number, which shows that it gives reasonable results in the vicinity of the design
J . It is however imperative to do a more detailed analysis to make sure that the results are as
desired.

The cavitation prediction by the lifting line program was satisfactory. The CFD results
showed no problems with cavitation for the operating advance number of 0.95. It must be
pointed out that the designs proposed in this thesis are for open water only, and therefore
tuned to a zero wake situation. A propeller behind a ship works in a wake very far from zero,
therefore making the cavitation performance much worse, which must be accounted for by for
example reducing the lift coefficient at certain blade sections. The reason for the worsening of
the cavitation performance in a wake can be seen in Figure 2.4, where an increase in w will
reduce V and also the hydrodynamic angle of attack. The geometric angle of attack is however
the same, implying that the propeller blade section must work at a significant angle of attack,
which will induce very high velocities and low pressures at the leading edge – and possibly
further towards the trailing edge as well. Much the same reason is the explanation for the
severe cavitation experienced at low advance numbers, but V is then reduced directly, and not
through an increasing w.

An arbitrary wake distribution can be handled fine by the lifting line program, but the wake
is as mentioned set to zero.

The unsteady cavitation simulations showed that the cavitation is slightly overestimated by
the steady state simulations.

The open water diagrams show a clear difference before and after the winglets were fitted. It
is particularly interesting to see the difference in thrust of the tip loaded propeller and winglet
fitted propellers, which all share the same base circulation distribution. The thrust for the tip
loaded propeller is even lower than the one for the conventional propeller, which has an overall
lower total circulation, but the thrust went up by 25 % and 40 % at J = 0.95 for the short
and tall winglets respectively. Disappointingly, the torque went up even more for the same J ,
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by 34 % and 59 % respectively – leading to an overall reduction in the efficiency of 5.5 and
8.7 percentage points respectively. The cavitation sheets are more extensive for the winglet
propellers, with the winglets more or less completely cavitating at all advance numbers.

There are some plausible explanations to these negative effects (the increased torque and
severe cavitation). The winglet geometry is not optimally modelled, as explained in Chapter
4.4.1. Since the chord sections of the winglet are not curved to follow the correct radius, the
likely outcomes are increased pressure drag and increased cavitation, with the latter probably
connected to the winglet operating at an unfavourable angle of attack. This comes in addition
to the already higher viscous drag due to the larger surface area being added by the winglet.

There are some interesting conclusions to draw from the open water diagrams, and especially
the comparison of the thrust coefficients in Figure 6.5. The KT values are shifted to the right,
implying that the pitch is increased. An increased pitch will give a higher angle of attack, and
hence a higher thrust at any given J . The zero-crossing point along the J-axis is therefore
shifted to the right. The geometric angle of attack is the same for both winglet propellers as
well as the tip loaded propeller, meaning that something is happening with the hydrodynamic
angle of attack – or hydrodynamic pitch angle, as it may also be called. Induced velocities due
to vortices must be involved with the change in pitch. The tip vortices will induce a downwash
on the outer sections of the propeller blades, leading to a lower angle of attack – or equivalently
a higher hydrodynamic pitch angle (look at Figure 2.4 to see what happens when the induced
velocities are increased). The winglets will in theory reduce the tip vortices and therefore regain
some of the lost lift by reducing the hydrodynamic pitch angle.

However, it is clear that the tip vortices are not reduced after all for the winglet propellers
compared with the conventional and tip loaded propellers when looking at the vorticity figures
in Chapter 6.1.4. This makes it a bit harder to explain the increased pitch. By looking at
Figure 6.35, it is clear that the vortices originate first at the very tip of the winglets, putting a
longer distance between the blades’ trailing edges and the vortices. This should result in lower
induced velocities at the blade sections, therefore reducing the hydrodynamic pitch, despite the
larger tip vortices. However, the large vortices come with a cost, which is the increased torque.
A vortex is water in a rapid swirling motion. This rotational energy is added to the water by
the propeller, therefore making the propeller heavier to rotate. The reason why these vortices
are larger than for the conventional propeller is difficult to say for sure, but it is believed to be
connected to the unfavourable winglet geometry (as mentioned above and described in Chapter
4.4.1 as well). Also, the winglet should probably be stretched further towards the leading
edge than what has been done. Fear of introducing too much viscous drag was the reason for
making it shorter, but as the a = 0.8 camber line has constant chord-wise circulation all the
way from the leading edge until about 80 % of the chord length, it is likely that even more
of the vortices could be suppressed by extending the winglet further towards the leading edge.
Another thing to point out is that a tall winglet is likely to induce a more powerful vortex in
the axial component (the component shown in for example Figure 6.21), than compared with a
shorter winglet or no winglet at all. The water will be sheared in this rotational component due
to the viscous forces, which will be less critical for a shorter winglet or a conventional propeller.
A lower and longer winglet could potentially be beneficial, but this is certainly an optimisation
problem.

More of the pressure difference between the high pressure side and suction side of the blades
are maintained towards the propeller tip, which also will contribute to the higher thrust and
therefore also raise the KT values. This effect will however not necessarily shift the zero-crossing
point to the right, as the hydrodynamic pitch in this case may be close to the same. The first
sections of a propeller to experience negative thrust when the advance number is increased
is usually the tip. Assuming that the hydrodynamic and geometric pitch is the same, the
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section will experience negative thrust at the same advance number regardless of the pressure
distribution over the foil section. If however the induced velocities are reduced (something that
is believed to be the case for the winglet propellers), the hydrodynamic pitch angle is reduced
as well, which effectively is an increase of the propeller pitch. By looking at Figure 2.4 again,
an even larger velocity V (i.e a higher J) is needed in order to achieve negative thrust.

This explanation is a simplification, as the pressure distribution is what produces lift, and
the lift is proportional to the circulation which again is proportional to the induced velocities. A
different pressure distribution will therefore also alter the induced velocities and hydrodynamic
pitch, but not necessarily to the same extent as the tip vortices.

It is potentially a bit unfair to compare the propellers at the same advance number. The
winglet propellers produce around 25 % and 40 % more thrust than the conventional propeller
at J = 0.95, so it could therefore be unreasonable to expect the tip vortices to be lower for the
winglet propellers at this operating point. A case with similarity in the KT coefficients of the
tall winglet propeller and the conventional propeller was therefore done in order to compare the
vorticity of the two. KT = 0.169 was chosen, as this gives the same thrust as the conventional
propeller at J = 0.95. It is hard to tell much difference between Figures 6.36 and 6.22 seen
apart from the the hub vortices. (The other vorticity components have higher values, but they
are not presented in Chapter 6.) This would indicate that the winglet propellers indeed are
worse than the conventional propeller in terms of tip vortices, and should further back up the
theory of the increased thrust being developed by the displacement of the vortices rather than
the reduction of them, together with the increased pressure difference towards the winglet.

Other remarks about the results in general are the vortex sheets at the inner blade sections
for all the propeller variants. No good explanation for this effect is proposed, especially as the
maximum efficiency of the conventional and tip loaded propellers is very high (> 75 %). It is
therefore left unchecked whether this is a common result or rather a significant design flaw.

The results and the discussion may be wrapped up in this list of concluding remarks:

• The lifting line program written for the propeller design was vital for this thesis, and works
well as a quick approximation for the propeller performance. More detailed analyses are
however needed to be sure of the final results.

• The adding of winglets increased the delivered thrust and torque significantly. The overall
efficiency was reduced when compared with the conventional design. The reason for the
increased trust is believed to be the increased pressure difference at the outer blade
sections, and also an increase of the propeller pitch by reducing the induced velocities at
the propeller blades. The reduction of the induced velocities is believed to be connected
to the displacement of the tip vortices to the very top of the winglets instead of at the
propeller blades themselves. The tip vortices are not reduced as first anticipated, which is
believed to be a vital component of the increased torque, together with an unfavourable
winglet geometry and the increased viscous drag.

• The cavitation prediction by the lifting line program was good, as demonstrated by the
CFD simulations of the conventional and tip loaded propellers. The winglet propellers
experience more cavitation, with the winglets more or less covered by cavitation at all
advance numbers, which is also believed to be connected with the unfavourable winglet
geometry.

• There is great promise to reduce the torque by carefully designing the winglet. It is
therefore concluded that there may be a potential of increased efficiency for the propeller
designs proposed in this thesis, despite of the results achieved so far.
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Chapter 8

Suggestions for Future Work

The main goal, or desired outcome of the thesis work, was to see the open water efficiency
improved by adding winglets to the propeller. It is now evident that a much more careful
design of the winglets must be done in order to achieve this. The list below proposes what
should be done for any further studies regarding winglet equipped propellers on the basis of
what has been done in this thesis:

• Make sure that the winglet properly follows the radial curvature at the outer propeller
sections.

• Extend the winglet further towards the propeller blade’s leading edge.

• Vary the height of the winglet.

• Do parameter studies on the subjects in point two and three above to analyse the sensi-
tivity on thrust, torque, efficiency, cavitation and vorticity.

In addition, the following two points should be looked further into, preferably with parameter
studies:

• Study the angle of the winglet relative to the propeller base line.

• Study the circulation on the winglet.
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Appendix A

MATLAB Program

A.1 Source Code

lifting line induction.m

% "lifting_line_induction.m" is a lifting line program intended for marine
% propeller design. It is based on the induction factor method, with NACA
% 16-series profiles and the a = 0.8 camber line. Requires the functions
% "inductions_factors.m" and "NACA_16_a08.m" in order to run properly.
%
% Part of the Master's Thesis "Unconventional Propeller Tip Design" by
% Andreas Ommundsen, June 2015.
% Norwegian University of Science and Technology (NTNU), Trondheim.

function results = lifting_line_induction(N,D,RPM,Z,V_knots,rho,kin_visc, ...
draught,N_sections,k,tolerance,yield_strength, ...
threeD_corr,circulation_plot,beta_plot,induced_plot, ...
pitch_distr_plot,Cl_plot,thickness_plot, ...
residual_plot,propeller_plot,print)

tic
clc
close all

R = D/2;
D_hub = 0.2*D;
r_hub = D_hub/2;
radius = linspace(r_hub,R,N);
dr = radius(2) - radius(1);
n = RPM/60;
V = V_knots*(1.852/3.6);

sections = linspace(r_hub,R,N_sections);
section_pos = zeros(1,N_sections);
for i = 1:N_sections

for j = 1:N
if round(abs(sections(i) - radius(j)),4) <= round(dr/2,4)

section_pos(i) = j;
end

end
end

initialise = zeros(1,N);
thickness_distr = initialise;
circulation_distr = initialise;
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dgamma_dr = initialise;
Ua_mean = initialise;
Ua = initialise;
Ut_mean = initialise;
Ut = initialise;
V_total = initialise;
Lift_distr = initialise;
Drag_distr = initialise;
pitch_distr = initialise;
Cl_distr = initialise;
Cd_distr = initialise;
T_distr = initialise;
Q_distr = initialise;
beta_mean = initialise;
beta = initialise;
beta_const = initialise;
wake_distr = initialise;
blade_moment = initialise;
necessary_thickness = initialise;
sigma = initialise;
minus_Cp = initialise;
theta = initialise;
thickness_flag = false;
final_residual_matrix = zeros(2,N);
coord = zeros(4*Z,N);
chord_distr_rpos = [0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.975 ...

0.99 1]*R;
chord_distr_val = [0.16 0.21 0.26 0.296 0.32 0.33 0.32 0.28 ...

0.23 0.186 0.14 0.08]*D; % Conventional
chord_distr = interp1(chord_distr_rpos,chord_distr_val,radius,'spline');

if print == true
fid = fopen('results_induction.txt','w');

end

r_prime = linspace(0,1,N);
r_wag = [0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];
A_wag = [0.0526 0.0464 0.0402 0.0340 0.0278 0.0216 0.0154 0.0092 0.0030];
B_wag = [0.0040 0.0035 0.0030 0.0025 0.0020 0.0015 0.0010 0.0005 0.0000];
if Z == 3

B_wag(8) = 0.0002;
end
t_wag = D*(A_wag - Z*B_wag);
t_wag_int = interp1(r_wag,t_wag,radius/R,'linear')*1000;

EAR = 0;

for i = 1:N
circulation_distr(i) = k*(-35.064*r_prime(i)ˆ6 + ...

76.35*r_prime(i)ˆ5 - 53.503*r_prime(i)ˆ4 + ...
7.7968*r_prime(i)ˆ3 + 3.3104*r_prime(i)ˆ2 + ...
1.0523*r_prime(i) + 0.0575); % Conventional

% circulation_distr(i) = k*(-22.85*r_prime(i)ˆ6 + ...
% 46.304*r_prime(i)ˆ5 - 25.427*r_prime(i)ˆ4 - ...
% 4.3941*r_prime(i)ˆ3 + 5.6943*r_prime(i)ˆ2 + ...
% 0.8884*r_prime(i) + 0.0964); % Tip loaded

if round((radius(i)/R) - 0.7,4) <= round((dr/2)/R,4)
index_07 = i;

end
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% chord_distr(i) = (-17.659*(radius(i)/R)ˆ6 + ...
% 55.641*(radius(i)/R)ˆ5 - 69.58*(radius(i)/R)ˆ4 + ...
% 43.321*(radius(i)/R)ˆ3 - 14.401*(radius(i)/R)ˆ2 + ...
% 2.9474*(radius(i)/R) - 0.1055)*D; % Tip loaded

thickness_distr(i) = (t_wag_int(i)/chord_distr(i))*(1/1000);
EAR = EAR + chord_distr(i)*dr;
Ut_mean(i) = round(circulation_distr(i)/(2*pi*radius(i)),6);
a = 1;
b = 2*V*(1 - wake_distr(i));
c = -Ut_mean(i)*(4*pi*radius(i)*n - Ut_mean(i));
sol_1 = (-b + sqrt(bˆ2 - 4*a*c))/(2*a);
sol_2 = (-b - sqrt(bˆ2 - 4*a*c))/(2*a);
if round(sol_1,6) >= 0

Ua_mean(i) = sol_1;
else

Ua_mean(i) = sol_2;
end
if (Ut_mean(i) == 0) && (Ua_mean(i) == 0)

beta_mean(i) = pi/4; % Limit of atan(x/x) when x -> 0
else

beta_mean(i) = atan(Ut_mean(i)/Ua_mean(i));
end

end
EAR = (EAR*Z)/(pi*Rˆ2);

for i = 1:N
% Differentiating the circulation distribution.
if i == 1

% First order forward differencing for i = 1
dgamma_dr(i) = (circulation_distr(i + 1) - ...

circulation_distr(i))/dr;
elseif i < N

% Second order central differencing scheme for 1 < i < N
dgamma_dr(i) = (circulation_distr(i + 1) - ...

circulation_distr(i - 1))/(2*dr);
else

% First order backward differencing for i = N
dgamma_dr(i) = (circulation_distr(i) - ...

circulation_distr(i - 1))/dr;
end

end

integrand = initialise;
failed_convergence_counter = 0;
res_counter = 0;
for i = 1:N

residual_Ua = 1; % Put to 1 in order to enter the while loop
residual_Ut = 1; % Put to 1 in order to enter the while loop
start_Ua = Ua_mean(i); % Guessing Ua
start_Ut = Ut_mean(i); % Guessing Ut
start_beta = beta_mean(i); % Guessing beta_i (calculated from Ua

% and Ut above)
counter = 0;
exit_flag = 0;
while ((residual_Ua > tolerance) || (residual_Ut > tolerance)) && ...

(exit_flag == false)
updated_Ua = 0;
updated_Ut = 0;
for j = 1:N
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ind_factors = induction_factors(radius(i)/radius(j), ...
start_beta,Z);

if j ~= i
updated_Ua = updated_Ua + ((ind_factors.i_a/(2* ...

Z*pi))*(dgamma_dr(j))*(1/(radius(i) - radius(j))))*dr;
updated_Ut = updated_Ut + ((ind_factors.i_t/(2* ...

Z*pi))*(dgamma_dr(j))*(1/(radius(i) - radius(j))))*dr;
if i == N

integrand(j) = (ind_factors.i_a/(2*Z*pi))* ...
(dgamma_dr(j))*(1/(radius(i) - radius(j)));

end
if (isnan(updated_Ua) == true) || (isnan ...

(updated_Ut) == true)
exit_flag = 1;

end
end

end
start_beta = atan((V*(1 - wake_distr(i)) + updated_Ua/2)/ ...

(2*pi*radius(i)*n - updated_Ut/2));
residual_Ua = abs(start_Ua - updated_Ua);
residual_Ut = abs(start_Ut - updated_Ut);
start_Ua = updated_Ua;
start_Ut = updated_Ut;
counter = counter + 1;
res_counter = res_counter + 1;
complete_residuals(1,res_counter) = residual_Ua; %#ok
complete_residuals(2,res_counter) = residual_Ut; %#ok
if counter == 100

exit_flag = 1;
end

end

final_residual_matrix(1,i) = residual_Ua;
final_residual_matrix(2,i) = residual_Ut;

if print == false
if exit_flag == false

disp(['Lifting line ',num2str(i),' of ',num2str(N), ...
' converged in ',num2str(counter),' iterations:'])

disp([' Final residual Ua = ',num2str(residual_Ua)])
disp([' Final residual Ut = ',num2str(residual_Ut)])
disp(' ')

else
failed_convergence_counter = failed_convergence_counter + 1;
failed_convergence_vector( ...

failed_convergence_counter) = i; %#ok
disp(['WARNING: Lifting line ',num2str(i),' of ', ...

num2str(N),' failed to converge:'])
disp([' Final residual Ua = ',num2str(residual_Ua)])
disp([' Final residual Ut = ',num2str(residual_Ut)])
disp(' ')

end
else

if exit_flag == false
disp(['Lifting line ',num2str(i),' of ',num2str(N), ...

' converged in ',num2str(counter),' iterations:'])
disp([' Final residual Ua = ',num2str(residual_Ua)])
disp([' Final residual Ut = ',num2str(residual_Ut)])
disp(' ')
fprintf(fid,'%s \n',['Lifting line ',num2str(i),' of ', ...
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num2str(N),' converged in ',num2str(counter), ...
' iterations:']);

fprintf(fid,'%s \n',[' Final residual Ua = ', ...
num2str(residual_Ua)]);

fprintf(fid,'%s \n',[' Final residual Ut = ', ...
num2str(residual_Ut)]);

fprintf(fid,'\n');
else

failed_convergence_counter = failed_convergence_counter + 1;
failed_convergence_vector( ...

failed_convergence_counter) = i; %#ok
disp(['WARNING: Lifting line ',num2str(i),' of ', ...

num2str(N),' failed to converge:'])
disp([' Final residual Ua = ',num2str(residual_Ua)])
disp([' Final residual Ut = ',num2str(residual_Ut)])
disp(' ')
fprintf(fid,'%s \n',['WARNING: Lifting line ',num2str(i), ...

' of ',num2str(N),' failed to converge:']);
fprintf(fid,'%s \n',[' Final residual Ua = ', ...

num2str(residual_Ua)]);
fprintf(fid,'%s \n',[' Final residual Ut = ', ...

num2str(residual_Ut)]);
fprintf(fid,'\n');

end
end

Ua(i) = real(updated_Ua);
Ut(i) = real(updated_Ut);
beta(i) = atan((V + Ua(i)/2)/(2*pi*radius(i)*n - Ut(i)/2));

end

for i = 1:N
V_total(i) = sqrt((V*(1 - wake_distr(i)) + Ua(i)/2)ˆ2 + ...

(2*pi*radius(i)*n - Ut(i)/2)ˆ2);
Lift_distr(i) = rho*V_total(i)*(circulation_distr(i)/Z);
Cl_distr(i) = Lift_distr(i)/((0.5*rho*V_total(i)ˆ2)*chord_distr(i));
Rn = V_total(i)*chord_distr(i)/kin_visc;
Cf = 0.075/((log10(Rn) - 2)ˆ2);
Cd_distr(i) = 2*Cf*(1 + 2*thickness_distr(i)/chord_distr(i));
Drag_distr(i) = 0.5*rho*(V_total(i)ˆ2)*Cd_distr(i)*chord_distr(i);
T_distr(i) = rho*(circulation_distr(i)/Z)*(2*pi*radius(i)*n - ...

Ut(i)/2) - Cd_distr(i)*sin(beta(i));
Q_distr(i) = rho*(circulation_distr(i)/Z)*(V*(1 - wake_distr(i)) ...

+ Ua(i)/2)*radius(i) + Cd_distr(i)* ...
cos(beta(i))*radius(i);

pitch_distr(i) = 2*pi*R*atan(beta(i) + (1.54*pi/180)*Cl_distr(i))/D;
beta_const(i) = tan(beta_mean(i))/tan(beta(i));

end

if failed_convergence_counter > 0
for i = 1:failed_convergence_counter

T_distr(failed_convergence_vector(i)) = 0;
Q_distr(failed_convergence_vector(i)) = 0;

end
end

I = 7.0994865e-05; % Second area of moment of symmetric NACA 16-012,
% with chord length 1 m. Units mˆ4.

for i = 1:N
for j = i:N
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blade_moment(i) = blade_moment(i) + T_distr(j)*dr;
end
if blade_moment(i) < 0

blade_moment(i) = 0;
end
necessary_thickness(i) = sqrt((27*blade_moment(i))/ ...

(I*(chord_distr(i)ˆ4)*31250*yield_strength))*1000; % mm
if thickness_distr(i)*chord_distr(i)*1000 < necessary_thickness(i)

thickness_flag = true;
end

end

T_tot = 0;
Q_tot = 0;
for i = 1:N

T_tot = T_tot + T_distr(i)*Z*dr;
Q_tot = Q_tot + Q_distr(i)*Z*dr;

end
Eta = (T_tot*V)/(2*pi*n*Q_tot);

for i = 1:N_sections
results.section(i).r_R = radius(section_pos(i))/R;
results.section(i).Cl = Cl_distr(section_pos(i));
results.section(i).t_c = thickness_distr(section_pos(i));
results.section(i).chord_length = chord_distr(section_pos(i));

end
results.total_thrust = T_tot;
results.total_torque = Q_tot;
results.efficiency = Eta;
results.EAR = EAR;
results.P_D = 2*pi*R*atan(beta(index_07) + (1.54*pi/180)* ...

Cl_distr(index_07))/D;
results.J = V/(n*D);

if circulation_plot == true
figure(1)
plot(radius/R,circulation_distr)
title('Circulation distribution')
xlabel('r/R')
ylabel('\Gamma(r/R)')
box on
grid on
axis([0.2 1 0 ceil(max(circulation_distr))])
movegui('west');

figure(2)
plot(radius/R,dgamma_dr)
title('Derivative of the circulation distribution')
xlabel('r/R')
ylabel('d/dr \Gamma(r/R)')
box on
grid on
movegui('east');

end

if beta_plot == true
figure(3)
handlevector(1) = plot(radius/R,beta_mean*180/pi);
hold on
handlevector(2) = plot(radius/R,beta*180/pi);
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legend(handlevector,'Complete momentum theory', ...
'Induction factor method','Location','Best')

title('\beta_i')
xlabel('r/R')
ylabel('Hydrodynamic angle of attack - (degrees)')
box on
grid on
movegui('north');

end

if induced_plot == true
figure(4)
handlevector(1) = plot(radius/R,Ua_mean/2);
hold on
handlevector(2) = plot(radius/R,Ua/2);
legend(handlevector,'Complete momentum theory', ...

'Induction factor method','Location','Best')
title('U_a')
xlabel('r/R')
ylabel('Induced axial velocity - (m/s)')
box on
grid on
movegui('northwest');

figure(5)
handlevector(1) = plot(radius/R,Ut_mean/2);
hold on
handlevector(2) = plot(radius/R,Ut/2);
legend(handlevector,'Complete momentum theory', ...

'Induction factor method','Location','Best')
title('U_t')
xlabel('r/R')
ylabel('Induced tangential velocity - (m/s)')
box on
grid on
movegui('northeast');

end

if pitch_distr_plot == true
figure(6)
plot(radius/R,pitch_distr);
title('Pitch distribution')
xlabel('r/R')
ylabel('P/D')
box on
grid on
movegui('south');
figure(7)
plot(radius/R,beta_const);
title('Pitch distribution')

end

if Cl_plot == true
figure(7)
plot(radius/R,Cl_distr);
title('Lift coefficient distribution')
xlabel('r/R')
ylabel('C_L')
box on
grid on
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movegui('south');
end

if thickness_plot == true
figure(8)
handlevector3(1) = plot(radius/R,necessary_thickness);
hold on
handlevector3(2) = plot(radius/R,t_wag_int);
handlevector3(3) = plot(radius/R,thickness_distr.* ...

chord_distr.*1000);

legend(handlevector3,'Necessary thickness','Wageningen thickness', ...
'Current thickness','Location','Best')

title('Thickness distribution')
xlabel('r/R')
ylabel('Thickness - (mm)')
box on
grid on

end

if draught > 0;
p_a = 101325;
p_v = 1500;
g = 9.81;
% :)
for i = 1:N

sigma(i) = (p_a - p_v + rho*g*(draught - radius(i)))/ ...
(0.5*rho*V_total(i)ˆ2);

v_V = (1.137 - 1)*thickness_distr(i)/0.12;
dv_V = Cl_distr(i)*0.278;
minus_Cp(i) = (1 + v_V + dv_V)ˆ2 - 1;

end

figure(9)
handlevector(1) = plot(radius/R,sigma,'LineWidth',2);
hold on
handlevector(2) = plot(radius/R,minus_Cp);
legend(handlevector,'\sigma','-C_p','Location','Best')
title('Cavitation check: OK for -C_p < \sigma')
xlabel('r/R')
ylabel('-')
box on
grid on

end

if residual_plot == true
figure(10)
handlevector(1) = semilogy(1:res_counter,complete_residuals(1,:));
hold on
handlevector(2) = semilogy(1:res_counter,complete_residuals(2,:));
axis([0 res_counter 0 ceil(max(max(complete_residuals)))])
legend(handlevector,'U_a','U_t','Location','Best')
title('Total residuals')
xlabel('Accummulated iteration')
ylabel('Residuals')
box on
grid on
movegui('southwest');

figure(11)

92



handlevector(1) = semilogy(1:N,final_residual_matrix(1,:));
hold on
handlevector(2) = semilogy(1:N,final_residual_matrix(2,:));
axis([0 N 0 ceil(max(max(final_residual_matrix)))])
legend(handlevector,'U_a','U_t','Location','Best')
title('Final residuals')
xlabel('Lifting line number')
ylabel('Residuals')
box on
grid on
movegui('southeast');

end

if propeller_plot == true
x_hub = linspace(-r_hub,r_hub,500);
x_disk = linspace(-R,R,500);
y_hub_pos = zeros(1,500);
y_hub_neg = zeros(1,500);
y_disk_pos = zeros(1,500);
y_disk_neg = zeros(1,500);
for i = 1:500

y_hub_pos(i) = sqrt(r_hubˆ2 - x_hub(i)ˆ2);
y_hub_neg(i) = -y_hub_pos(i);
y_disk_pos(i) = sqrt(Rˆ2 - x_disk(i)ˆ2);
y_disk_neg(i) = -y_disk_pos(i);

end

figure(12)
hold on
title('Expanded Propeller View')
xlabel('Distance - (m)')
ylabel('Distance - (m)')
box on
grid on
for i = 1:Z

alpha = (2*pi/Z)*i;
for j = 1:N

theta(j) = atan((chord_distr(j)/2)/radius(j));
coord(i,j) = radius(j)*cos(alpha + theta(j));
coord(2*i,j) = radius(j)*sin(alpha + theta(j));
coord(3*i,j) = radius(j)*cos(alpha - theta(j));
coord(4*i,j) = radius(j)*sin(alpha - theta(j));

end
plot(coord(i,:),coord(2*i,:),'Color','b')
plot(coord(3*i,:),coord(4*i,:),'Color','b')

end
plot(x_hub,y_hub_pos,x_hub,y_hub_neg,'Color','b')
plot(x_disk,y_disk_pos,x_disk,y_disk_neg,'Color','r')
axis([-R R -R R])

end

if print == false
if failed_convergence_counter > 0

disp(['WARNING: ',num2str(failed_convergence_counter),' of ', ...
num2str(N),' lifting lines failed to converge.'])

disp(['----------------------------------------------------' ...
'-------------------------------------'])

disp(['FINAL RESULTS (ignoring lifting lines that' ...
' failed to converge):'])

disp(['----------------------------------------------------' ...
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'-------------------------------------'])
else

disp(['----------------------------------------------------' ...
'-------------------------------------'])

disp('FINAL RESULTS:')
disp(['----------------------------------------------------' ...

'-------------------------------------'])
end
disp(['Total thrust: ',num2str(round(T_tot,2)),' N'])
disp(['Total torque: ',num2str(round(Q_tot,2)),' Nm'])
disp(['Efficiency: ',num2str(round(100*Eta,2)),' %'])
disp(['Expanded Area Ratio: ',num2str(round(EAR,2))])
disp(['P/D at 0.7R: ',num2str(round(2*pi*R*atan(beta(index_07) + ...

(1.54*pi/180)*Cl_distr(index_07))/D,2))])
disp(['Advance number J = ',num2str(round(V/(n*D),2))])
disp(['----------------------------------------------------' ...

'-------------------------------------'])
if thickness_flag == true

disp(['WARNING: Danger of blade failure. Revise the' ...
' thickness distribution.'])

end
if max(Cl_distr) > 1

disp(['Maximum span-wise lift coefficient is ', ...
num2str(max(Cl_distr)), ...
' > 1. Consider revising the propeller design.'])

end
if chord_distr(1)*sin(beta(1) + (1.54*pi/180)*Cl_distr(1)) > D_hub

disp(['Required hub height is ',num2str(ceil(chord_distr(1)* ...
sin(beta(1) + (1.54*pi/180)*Cl_distr(1))*1000)), ...
' mm. Consider revising the chord distribution.'])

disp([' Maximum root chord length when hub height is' ...
' constrained to 0.2D: ',num2str(floor((D_hub/ ...
sin(beta(1) + (1.54*pi/180)*Cl_distr(1)))*1000)),' mm.'])

end
if chord_distr(1)*cos(beta(1) + (1.54*pi/180)*Cl_distr(1)) > D_hub

disp(['Required hub diameter is ',num2str(ceil(chord_distr(1)* ...
cos(beta(1))*1000)),' mm. Consider revising ' ...
'the chord distribution.'])

disp([' Maximum root chord length when hub diameter is' ...
' constrained to 0.2D: ',num2str(floor((D_hub/ ...
cos(beta(1) + (1.54*pi/180)*Cl_distr(1)))*1000)),' mm.'])

end
disp(['----------------------------------------------------' ...

'-------------------------------------'])
else

if failed_convergence_counter > 0
disp(['WARNING: ',num2str(failed_convergence_counter),' of ', ...

num2str(N),' lifting lines failed to converge.'])
disp(['----------------------------------------------------' ...

'-------------------------------------'])
disp(['FINAL RESULTS (ignoring lifting lines that' ...

' failed to converge):'])
disp(['----------------------------------------------------' ...

'-------------------------------------'])
fprintf(fid,'%s \n',['WARNING: ', ...

num2str(failed_convergence_counter),' of ',num2str(N), ...
' lifting lines failed to converge.']);

fprintf(fid,'%s \n',['----------------------------------------' ...
'-------------------------------------------------']);

fprintf(fid,'%s \n',['FINAL RESULTS (ignoring lifting lines' ...
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' that failed to converge):']);
fprintf(fid,'%s \n',['----------------------------------------' ...

'-------------------------------------------------']);
else

disp(['----------------------------------------------------' ...
'-------------------------------------'])

disp('FINAL RESULTS:')
disp(['----------------------------------------------------' ...

'-------------------------------------'])
fprintf(fid,'%s \n',['----------------------------------------' ...

'-------------------------------------------------']);
fprintf(fid,'%s \n','FINAL RESULTS:');
fprintf(fid,'%s \n',['----------------------------------------' ...

'-------------------------------------------------']);
end
disp(['Total thrust: ',num2str(round(T_tot,2)),' N'])
disp(['Total torque: ',num2str(round(Q_tot,2)),' Nm'])
disp(['Efficiency: ',num2str(round(100*Eta,2)),' %'])
disp(['Expanded Area Ratio: ',num2str(round(EAR,2))])
disp(['P/D at 0.7R: ',num2str(round(2*pi*R*atan(beta(index_07) + ...

(1.54*pi/180)*Cl_distr(index_07))/D,2))])
disp(['Advance number J = ',num2str(round(V/(n*D),2))])
disp(['----------------------------------------------------' ...

'-------------------------------------'])
if thickness_flag == true

disp(['WARNING: Danger of blade failure. ' ...
'Revise the thickness distribution.'])

end
if max(Cl_distr) > 1

disp(['Maximum span-wise lift coefficient is ',num2str ...
(max(Cl_distr)),' > 1. Consider revising the'
' propeller design.'])

end
if chord_distr(1)*sin(beta(1) + (1.54*pi/180)*Cl_distr(1)) > D_hub

disp(['Required hub height is ',num2str(ceil(chord_distr(1)* ...
sin(beta(1) + (1.54*pi/180)*Cl_distr(1))*1000)),' mm.' ...
' Consider revising the chord distribution.'])

disp([' Maximum root chord length when hub height is '
'constrained to 0.2D: ',num2str(floor((D_hub/sin ...
(beta(1) + (1.54*pi/180)*Cl_distr(1)))*1000)),' mm.'])

end
if chord_distr(1)*cos(beta(1) + (1.54*pi/180)*Cl_distr(1)) > D_hub

disp(['Required hub diameter is ',num2str(ceil(chord_distr(1)* ...
cos(beta(1))*1000)),' mm. Consider revising the' ...
' chord distribution.'])

disp([' Maximum root chord length when hub diameter ' ...
'is constrained to 0.2D: ',num2str(floor((D_hub/ ...
cos(beta(1) + (1.54*pi/180)*Cl_distr(1)))*1000)),' mm.'])

end
disp(['----------------------------------------------------' ...

'-------------------------------------'])
fprintf(fid,'%s \n',['Total thrust: ',num2str(round(T_tot,2)),' N']);
fprintf(fid,'%s \n',['Total torque: ',num2str(round(Q_tot,2)),' Nm']);
fprintf(fid,'%s \n',['Efficiency: ',num2str(round(100*Eta,2)),' %']);
fprintf(fid,'%s \n',['Expanded Area Ratio: ',num2str(round(EAR,2))]);
fprintf(fid,'%s \n',['P/D at 0.7R: ',num2str(round(2*pi*R* ...

atan(beta(index_07) + (1.54*pi/180)*Cl_distr(index_07))/D,2))]);
fprintf(fid,'%s \n',['Advance number J = ',num2str(round(V/(n*D),2))]);
fprintf(fid,'%s \n',['----------------------------------------' ...

'-------------------------------------------------']);
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if thickness_flag == true
fprintf(fid,'%s \n',['WARNING: Danger of blade failure.' ...

' Revise the thickness distribution.']);
end
if max(Cl_distr) > 1

fprintf(fid,'%s \n',['Maximum span-wise lift coefficient is ', ...
num2str(max(Cl_distr)),' > 1. Consider revising ' ...

'the propeller design.']);
end
if chord_distr(1)*sin(beta(1) + (1.54*pi/180)*Cl_distr(1)) > D_hub

fprintf(fid,'%s \n',['Required hub height is ',num2str ...
(ceil(chord_distr(1)*sin(beta(1) + (1.54*pi/180)*...
Cl_distr(1))*1000)),' mm. Consider revising the ' ...

'chord distribution.']);
fprintf(fid,'%s \n',[' Maximum root chord length when hub' ...

' height is constrained to 0.2D: ',num2str(floor((D_hub/ ...
sin(beta(1) + (1.54*pi/180)*Cl_distr(1)))*1000)),' mm.']);

end
if chord_distr(1)*cos(beta(1) + (1.54*pi/180)*Cl_distr(1)) > D_hub

fprintf(fid,'%s \n',['Required hub diameter is ',num2str(ceil ...
(chord_distr(1)*cos(beta(1))*1000)),' mm. Consider' ...
' revising the chord distribution.']);

fprintf(fid,'%s \n',[' Maximum root chord length when' ...
' hub diameter is constrained to 0.2D: ',num2str(floor ...
((D_hub/cos(beta(1) + (1.54*pi/180)* ...
Cl_distr(1)))*1000)),' mm.']);

end

fprintf(fid,'%s',['----------------------------------------' ...
'-------------------------------------------------']);

fclose(fid);
end

if threeD_corr == true
for i = 1:N_sections

k_c = 1.6946 + 0.5048*(radius(section_pos(i))/R) - 4.0012* ...
(radius(section_pos(i))/R)ˆ2 + 4.3283* ...
(radius(section_pos(i))/R)ˆ3;

k_a = 1 + 1.46*(radius(section_pos(i))/R)ˆ3;
k_t = 2.5*(thickness_distr(section_pos(i))/radius ...

(section_pos(i)))*(chord_distr(section_pos(i))/D)* ...
cos(beta(section_pos(i)));

NACA_16_a08(Cl_distr(section_pos(i)),thickness_distr ...
(section_pos(i)),chord_distr(section_pos(i)),R,beta ...
(section_pos(i))*180/pi,1,i,radius(section_pos(i)), ...
k_c,k_a,k_t,0)

end
else

for i = 1:N_sections
k_c = 0;
k_a = 0;
k_t = 0;
NACA_16_a08(Cl_distr(section_pos(i)),thickness_distr( ...

section_pos(i)),chord_distr(section_pos(i)),R, ...
beta(section_pos(i))*180/pi,1,i,radius(section_pos(i)), ...
k_c,k_a,k_t,0)

end
end

toc
end
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induction factors.m

% "induction_factors.m" is part of the lifting line program
% "lifting_line_induction.m", intended for marine propeller design. This
% function calculates the induction factors according to the formulas of
% Piet van Oossanen which are used for calculation of the induced velocities.
%
% Part of the Master's Thesis "Unconventional Propeller Tip Design" by
% Andreas Ommundsen, June 2015.
% Norwegian University of Science and Technology (NTNU), Trondheim.

function induction = induction_factors(R,beta,Z)
% R = r0/r, where r is the running variable and r0 is the fixed position
% beta in radians
% Z is number of blades

p = 1 + (R/tan(beta))ˆ2;
a = (sqrt(p) - 1)*(((1/sin(beta)) - 1)ˆ(-1))*(1/R);
u = exp(Z*(log(a) + sqrt(p) - (1/sin(beta))));
g = ((sin(beta)ˆ3)*(2 + (9/(tan(beta)ˆ2)))) + (3*p - 5)*pˆ(-1.5);
f = (sin(beta)ˆ(-0.5))*pˆ(-0.25);

if R > 1
A = f*((1/(u - 1)) - (1/(24*Z))*g*log(u/(u - 1)));
induction.i_a = (R - 1)*((Z*A)/(tan(beta)));
induction.i_t = (1 - (1/R))*Z*(1 + A);

elseif R == 1
induction.i_a = cos(beta);
induction.i_t = sin(beta);

else
B = f*((u/(1 - u)) + (1/(24*Z))*g*log(1/(1 - u)));
induction.i_a = (1 - R)*(Z/tan(beta))*(1 + B);
induction.i_t = ((1/R) - 1)*Z*B;

end
end
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NACA 16 a08.m

% "NACA_16_a08.m" is part of the lifting line program
% "lifting_line_induction.m", intended for marine propeller design. This
% function scales NACA 16-series profiles according to thickness, chord
% length and lift coefficient. The a = 0.8 camber line is used for the lift
% scaling. All coordinates are written to text-files.
%
% Part of the Master's Thesis "Unconventional Propeller Tip Design" by
% Andreas Ommundsen, June 2015.
% Norwegian University of Science and Technology (NTNU), Trondheim.

function NACA_16_a08(Cl,t,c,R,beta,centre,pos_index,pos,k_c,k_a,k_t, ...
figure_plot)

x = [0 0.00005 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0008 0.001 ...
0.0012 0.0014 0.0016 0.0018 0.002 0.0025 0.003 0.0035 0.004 ...
0.0045 0.005 0.006 0.007 0.008 0.009 0.01 0.011 0.012 0.013 ...
0.014 0.015 0.016 0.018 0.02 0.025 0.03 0.035 0.04 0.045 0.05 ...
0.055 0.06 0.07 0.08 0.09 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 ...
0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 ...
0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 ...
0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.95 0.96 0.97 0.975 ...
0.98 0.985 0.99 0.995 0.999 1];

N = 98;
initialise = zeros(1,N);
theta = initialise;
x_upper = initialise;
x_lower = initialise;
y_upper = initialise;
y_lower = initialise;
y_t = [0 0.001257 0.001776 0.002508 0.003068 0.00354 0.003955 ...

0.004329 0.004993 0.005576 0.006102 0.006585 0.007033 0.007454 ...
0.007851 0.008762 0.009582 0.010334 0.011032 0.011686 0.012302 ...
0.013443 0.014487 0.015454 0.016358 0.017209 0.018014 0.01878 ...
0.019512 0.020212 0.020886 0.021534 0.022765 0.023919 0.026534 ...
0.02885 0.030934 0.032833 0.034577 0.03619 0.03769 0.039089 ...
0.041629 0.043875 0.045874 0.04766 0.050693 0.053129 0.055074 ...
0.056607 0.05779 0.058674 0.059301 0.059709 0.059932 0.06 ...
0.059937 0.05975 0.059442 0.059015 0.058472 0.057816 0.057048 ...
0.056173 0.055192 0.054108 0.052923 0.051641 0.050263 0.048793 ...
0.047234 0.045587 0.043855 0.042041 0.040148 0.038178 0.036134 ...
0.034019 0.031834 0.029583 0.027269 0.024893 0.02246 0.01997 ...
0.017427 0.014834 0.012192 0.009506 0.008146 0.006776 0.005396 ...
0.004703 0.004007 0.003309 0.002608 0.001905 0.25*0.001341 0];

x_c = [0 0.5 0.75 1.25 2.5 5 7.5 10 15 20 25 30 35 40 45 50 55 ...
60 65 70 75 80 85 90 95 100]/100;

y_c = [0 0.287 0.404 0.616 1.077 1.841 2.483 3.043 3.985 4.748 5.367 ...
5.863 6.248 6.528 6.709 6.790 6.770 6.644 6.405 6.037 5.514 ...
4.771 3.683 2.435 1.163 0]/100;

dyc_dx = [((y_c(2)-y_c(1))/(x_c(2)-x_c(1))) 0.48535 0.44925 0.40359 ...
0.34104 0.27718 0.23868 0.21050 0.16892 0.13734 0.11101 ...
0.08775 0.06634 0.04601 0.02613 0.00620 -0.01433 ...
-0.03611 -0.06010 -0.08790 -0.12311 -0.18412 -0.23921 ...
-0.25583 -0.24904 -0.20385];

y_t = y_t*(t/0.12);

Cl = round(Cl,4);
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if (abs(k_c) > 0) && (abs(k_a) > 0) && (abs(k_t) > 0)
y_c_int = interp1(x_c,y_c,x,'spline')*Cl*k_c;
dyc_dx_int = interp1(x_c,dyc_dx,x,'spline')*Cl*k_c;
alpha_i = 1.54*Cl*k_a + t*k_t;

else
y_c_int = interp1(x_c,y_c,x,'spline')*Cl;
dyc_dx_int = interp1(x_c,dyc_dx,x,'spline')*Cl;
alpha_i = 1.54*Cl;

end

for i = 1:N
theta(i) = atan(dyc_dx_int(i));
x_upper(i) = x(i) - y_t(i)*sin(theta(i));
x_lower(i) = x(i) + y_t(i)*sin(theta(i));
y_upper(i) = y_c_int(i) + y_t(i)*cos(theta(i));
y_lower(i) = y_c_int(i) - y_t(i)*cos(theta(i));

end

x_upper = x_upper*c;
x_lower = x_lower*c;
y_upper = y_upper*c;
y_lower = y_lower*c;

if centre == true
x_upper = x_upper - c/2;
x_lower = x_lower - c/2;
x = x - c/2;

end

if exist('NACA16_sections','dir') ~= 7
mkdir('NACA16_sections');

end

if t < 0.1
fid = fopen(['NACA16_sections/sec',num2str(pos_index), ...

'_NACA_16-00',num2str(round(100*t)),'_a08.txt'],'w');
fprintf(fid,'%s\n',['NACA 16-00',round(num2str(100*t)), ...

' a=0.8 with chord length = ',num2str(c),' m']);
else

fid = fopen(['NACA16_sections/sec',num2str(pos_index), ...
'_NACA_16-0',num2str(round(100*t)),'_a08.txt'],'w');

fprintf(fid,'%s\n',['NACA 16-0',num2str(round(100*t)), ...
' a=0.8 with chord length = ',num2str(c), ' m']);

end
fprintf(fid,'%s\n',['---------------------------------------------' ...

'---------------------------------']);
fprintf(fid,'%s\n',['BLADE SECTION ',num2str(pos_index)]);
fprintf(fid,'%s\n',['Non-dimensional radial position: ', ...

num2str(pos/R),' - Absolute radial position: ',num2str(pos),' m']);
fprintf(fid,'%s\n',['Design lift coefficient: Cl = ',num2str(Cl)]);
fprintf(fid,'%s\n',['Design ideal angle of attack: alpha_i = ', ...

num2str(alpha_i),' degrees']);
fprintf(fid,'%s\n',['Hydrodynamic angle of attack: beta_i = ', ...

num2str(beta),' degrees']);
fprintf(fid,'%s\n',['Total angle of attack: alpha_i + beta_i = ', ...

num2str(alpha_i + beta),' degrees']);
fprintf(fid,'%s\n',['---------------------------------------------' ...

'---------------------------------']);
fprintf(fid,'%s %s\n','x/c','t/c');
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for i = N:-1:1
string = sprintf('%f %f',x_upper(i),y_upper(i));
fprintf(fid,'%s\n',string);

end

for i = 2:N
string = sprintf('%f %f',x_lower(i),y_lower(i));

if i ~= N
fprintf(fid,'%s\n',string);

else
fprintf(fid,'%s',string);

end
end
fclose(fid);

if figure_plot == true
hold on
plot(x_upper,y_upper,'Color',[0.2081,0.1663,0.5292])
plot(x_lower,y_lower,'Color',[0.2081,0.1663,0.5292])
plot(x_upper,y_upper,'r.')
plot(x_lower,y_lower,'r.')
plot(x*c,y_c_int*c,'r')
if t < 0.1

title(['NACA 16-00',round(num2str(100*t)),' a=0.8'])
else

title(['NACA 16-0',round(num2str(100*t)),', a=0.8'])
end
axis([min(x_upper) max(x_upper) -1 1])
xlabel('x/c')
ylabel('t/c')
box on
grid on

end
end
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second area moment.m

% "second_area_moment.m" is part of the lifting line program
% "lifting_line_induction.m", intended for marine propeller design. This
% function calculates the second moment of area of an arbitrary cross
% section around the x-axis, according to the formula I = 1/12 bhˆ3.
%
% Part of the Master's Thesis "Unconventional Propeller Tip Design" by
% Andreas Ommundsen, June 2015.
% Norwegian University of Science and Technology (NTNU), Trondheim.

function I = second_area_moment(x,y,N)
% Computes the second moment of area about the axis y = 0. Inputs the
% half cross section, but the result is for the entire cross section.

x_int = linspace(min(x),max(x),N);
y_int = abs(interp1(x,y,x_int,'spline'));
dx = x_int(2) - x_int(1);

I = 0;
for i = 1:(N - 1)

% Numerical integration by the trapezoidal rule
I = I + (1/12)*dx*((2*((y_int(i) + y_int(i+1))/2))ˆ3);

end
end
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A.2 Example Output

Below are two example outputs from lifting line induction.m for a calculation on the
conventional propeller with only ten lifting lines. The first is for J = 0.92 and converges well.
The second is for J = 0.19 and is fairly unstable. It has also been calculated with a very low
material yield strength.
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