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ABSTRACT

In this thesis a physical investigation of the slamming loads on a two-dimensional
body is performed. It includes an experimental analysis of a drop test performed
at MARINTEK’s laboratories on a wedge shaped section in two-dimensional flow
conditions. Due to confidentiality, the experiment will only be referred to as ’the
MARINTEK experiment’. From a former analysis of the experimental results at
MARINTEK, deviations between measurements and theoretically predicted impact
loads were found. The need for a further investigation of the involved features was
announced. A search for an explanation for these deviations is the motivation behind
this thesis. This task is demanding, and experienced researchers have already made an
attempt of explaining the observed behaviour.

A rigid wedge with a mass of 170 kg and a deadrise angle of 10◦ was dropped from three
drop heights: 0.1, 0.25 and 0.5 m. Pressure, force and position were measured. The
accelerometers were not set up during the experiments so the acceleration data files
proved to be empty. Velocity derived from position measurements was used instead.
The pressure sensors are mounted on the force panel.

All data from the tests have been available and analysed in Matlab. Features of
the measured pressure and force for different drop heights were analysed. The
observed features are compared to theoretical predictions. Measurement techniques and
applicability limits of theoretical models were studied as a background for the discussion
of deviations between theory and measurements. Other slamming experiments were
also studied to be aware of common challenges and for comparison with results from
the MARINTEK experiment.

Differences between measured data and theoretically predicted results were found.
Wagner’s theory (1932) was used for comparison. Spatial distribution of maximum
pressures and pressure coefficients showed values differing from the prediction by
Wagner. A discrepancy between integrated pressure and force measurements over the
panel was found. This occurred for the lowest drop height only. It was found that the
lowest drop height showed the largest deviations from theoretical predictions in most of
the analyses made.

Various effects that can affect the results were assessed. The change in velocity was
investigated, but it was concluded that the small changes in velocity are not capable of
causing the observed behaviour. Hydroelasticity was considered, but no indications of it
occurring were found in the analyses. Three-dimensional effects are also considered, but
from the test set-up they are not likely to occur. As a last solution, total error estimates
for the peak pressure and maximum pressure coefficient were made. The deviations from
the theoretical predictions were found to be inside this error range. For the discrepancy
between force and integrated pressure, the results from the performed analyses indicated
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that it is a combination of measurement errors from force and pressure sensors. It is
suspected that the force measurements for 0.1 m drop height show values above the true
ones.

Negative pressures reoccurred before the rise to peak pressure for all drop heights. It is
concluded that this is most likely due to air being trapped in the curvature of the sensor
front. A small increase in pressure was observed before the negative drop. This can be
explained by the air being compressed initially (causing the rise in pressure), and when
the cavity collapses, it causes the negative pressure.

The repeatability of pressure and force measurements for all drops at each drop height
was investigated. It was found that the peak pressures are of a stochastic nature, which
is expected. The repeatability of the force measurements was satisfying for 0.5 and
0.25 m drop height. A better repeatability is expected for the force measurements as
they are not as sensitive to small changes in local quantities as the pressure. For 0.1 m
drop height, a poor repeatability was found for the force measurements. This supports
the hypothesis of an error in the force measurements for this drop height. Linear or
non-linear dependence on drop height was evaluated for different slamming parameters.
A non-linear dependency was observed for the pressure coefficient, slamming pressure
duration and rise time of the pressure.

The data from the MARINTEK experiment were compared to the results of another
experiment with a 10◦ wedge. It was discovered that the experiment used for comparison
was performed with three-dimensional flow conditions. The comparison indicated that
three-dimensional effects cause a large decrease in peak pressure as well as a quicker
decrease in impact velocity.

Different theoretical models were evaluated to reproduce the main features of the
MARINTEK experiment. The deadrise angle will not set a limitation for the choice
of theoretical model. Including variation in velocity was not considered necessary.
Including gravity was considered beneficial, as it will give realistic results for a longer
time scale. The most efficient model to meet these requirements is the generalized
Wagner method (Zhao et al. 1996). Wagner’s theory (1932) is recommended as a
conservative estimate for peak pressures. This argues that the theoretical model is not
the reason for the observed differences between measured pressure peaks and Wagner’s
estimates.

Possibilities for a further study are considered limited, as all available information from
the MARINTEK experiment is already gathered. If flow visualization of a drop test with
the same sensor type (Kulite CT-190) is available, the explanation for negative pressures
may be verified. It is also suggested that a more in depth error analysis is carried out.
This would increase the understanding of the measurement errors assumed to be the
explanation for the differences between theoretical predictions and experimental results.
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SAMMENDRAG

I denne oppgaven vil en undersøkelse av slamming laster under todimensjonale forhold
bli presentert. Hovedfokuset er en eksperimentell analyse av en drop test av en stiv
kile, utført av MARINTEK. Grunnet konfidensialitet vil eksperimentet kun bli referert
til som ”MARINTEKs eksperiment”. Data fra forsøket har tidligere blitt evaluert
av forskere ved MARINTEK. De fant avvik mellom m̊alte resultater og forventede
resultater fra teoretiske modeller. Grunnet dette er det et behov for en videre analyse
av data fra forsøket. Å finne forklaringer p̊a de observerte avvikene fra teorien er
hovedm̊alet med denne oppgaven.

En stiv kile med en vekt p̊a 170 kg og angrepsvinkel p̊a 10◦ ble sluppet fra høyder p̊a 0,1,
0,25 og 0,5 m. Trykk, kraft og posisjon ble m̊alt under slippet. Det viste seg at datafilene
som skulle inneholde akselerasjonsm̊alingene var tomme, da akselerometre ikke var festet
p̊a kilen. Hastigheten til kilen er derfor brukt isteden. Trykk- og kraftsensorer er festet
p̊a kilens høyre side.

All data fra forsøket har vært tilgjengelig, og har blitt analysert ved hjelp av
programvaren Matlab. Karakteristiske verdier for trykk og kraft har blitt analysert
for de forskjellige slipp-høydene. Verdiene ble deretter sammenliknet med forventede
verdier fra teoretiske modeller. Mulige feilkilder, b̊ade for eksperimentelle m̊alinger
og for bruk av teoretiske modeller, har blitt studert for videre drøfting av avvik
mellom teori og m̊alte resultater. Andre slammingeksperimenter har blitt studert for
å øke kunnskapen om typiske utfordringer og for sammenlikning med MARINTEKs
eksperiment.

Det ble funnet avvik mellom teori og m̊alinger for MARINTEKs eksperiment. Teorien
valgt for sammenlikning var Wagners teori (1932). Fordelingen av maksimum trykk
og trykk-koeffisient over kilen viste avvik fra teorien. Integrert trykk over kraftpanelet
ble sammenliknet med kraftm̊alingene. For den laveste slipphøyden ble det observert
et stort avvik mellom de to. Generelt sett var det den laveste slipp-høyden som viste
størst avvik fra teoretiske estimater.

Flere mulige effekter ble vurdert som grunn til de observerte avvikene. En endring
i hastighet ble vurdert, men det ble konkludert med at avvikene ikke kunne forklares
med en hastighetsendring. Hydroelastisitet og tredimensjonale effekter ble vurdert, men
ingen tegn p̊a p̊avirkning fra disse effektene ble funnet i analysene som ble gjort. Til
sist ble feil i m̊alingene vurdert. Et estimat for den totale m̊alefeilen p̊a maksimum
trykk og trykk-koeffisient ble utarbeidet. Avvikene mellom teori og m̊alinger viste seg å
være innenfor intervallet av mulig m̊alefeil. For avviket mellom integrert trykk og m̊alt
kraft antydet resultatene fra analysene at det er en kombinasjon av m̊alefeil i trykk- og
kraftsensorer. Det kan virke som om kraftm̊alingene for 0,1 m slipp-høyde er over de
virkelige verdiene.
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Negative trykk gjentok seg før trykket steg til maksimum trykk for alle slipp-høyder.
Den beste forklaringen p̊a dette er luft som blir fanget i den buede formen p̊a
trykksensorens overflate. Før trykkfallet ble det observert en liten økning i trykk. Dette
kan forklares ved at luften blir komprimert i det sensoren treffer vannoverflaten (som
fører til en trykkøkning), før luftboblen kollapser og fører til det negative trykket.

Repeterbarheten til trykk- og kraftm̊alinger ble undersøkt. Verdien for maksimalt trykk
viste seg å være stokastisk. Repeterbarheten til kraftm̊alingene var tilfredsstillende for
0,5 og 0,25 m slipp-høyde. Det var forventet at repeterbarheten til kraftm̊alingene skulle
være bedre enn for trykket. Trykktoppene er veldig følsomme for sm̊a endringer i lokale
parametere, hvilket ikke kraften p̊a kilen er i samme grad. For 0,1 m slipp-høyde
var repeterbarheten for kraften ikke tilfredsstillende. Dette underbygger hypotesen
om feilm̊alinger av kraft for den laveste slipp-høyden. Ikke-lineær oppførsel av m̊alte
parametere ble undersøkt. En ikke-lineær sammenheng med slipp-høyde ble funnet for
trykk-koeffisient, varighet av slamming-trykk og stigningstiden til trykktoppene.

Dataene fra MARINTEKs eksperiment ble sammenliknet med resultater fra en annen
drop test av en kile med 10◦ angrepsvinkel. Underveis i analysen ble det klart at dette
eksperimentet var tredimensjonalt. Sammenlikningen viste at trykktoppene ble kraftig
redusert av tredimensjonale effekter.

Forskjellige teoretiske modeller ble undersøkt for å vurdere hvilken som best kunne gjen-
skape resultatene fra MARINTEKs eksperiment. Det ble fastsatt at angrepsvinkelen
ikke vil sette en grense for hvilken teori som kan bli brukt. Mulighet for å inkludere en
variasjon i hastighet ble heller ikke vurdert som nødvendig. Derimot ble det konkludert
å være gunstig å kunne inkludere tyngdekraften i den teoretiske modellen. Dette kan
gi realistiske resultater for et lenger tidsintervall. Den mest effektive modellen som kan
møte disse kravene er den generaliserte Wagner-teorien av Zhao et al. (1996). Wagners
teori (1932) er anbefalt hvis konservative estimater for trykktoppene er ønsket.

Det er ikke store muligheter for videre arbeid p̊a denne oppgaven. All data fra forsøket
har allerede blitt mottatt og analysert. Om det hadde blitt gjort filmopptak av et annet
forsøk med den samme typen trykksensorer (Kulite CT-190), kunne kanskje hypotesen
om årsaken til de negative trykkene blitt verifisert. Det foresl̊as ogs̊a at en mer grundig
feilanalyse av trykk- og kraftm̊alinger blir gjort. Dette vil kunne bedre forst̊aelsen for
feilm̊alingene som til n̊a er den beste forklaringen funnet p̊a avvikene mellom m̊alinger
og forventede verdier fra teorien.
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INTRODUCTION

Slamming (water impact) is important in the design of both ships and offshore
structures. It is defined by impulse loads with high localised pressure peaks. Examples of
situations where slamming occur can be a ship bottom hitting water with high velocity,
waves breaking upon platform columns or blunt transom sterns hitting waves. It has
caused many serious accidents and damages, also in the recent years. This may be part
of the motivation behind the large amount of papers written on the subject.

Both analytical and numerical methods have been developed throughout time to
estimate the slamming loads. The first paper presented on the topic was the publication
of von Karman in 1929. A few years later (1932), Wagner presented a paper with what is
probably the most well-known theory on slamming. His method is still used today, both
as a basis for other theories and for relatively simple estimates. After the pioneering
work by von Karman and Wagner, several other methods have been presented. Among
these is the similarity solution by Dobrovol’skaya (1969). She used a similarity flow to
solve the two-dimensional impact on a symmetric body. Zhao and Faltinsen (1993) used
a boundary element method to solve the problem. In the later time, computational fluid
dynamics has also been applied to water impact problems. As for most theories within
hydrodynamics, model testing is needed for validation. Model testing is also important
to gain increased understanding of the involved features of the slamming phenomenon.

The most frequently applied experiment is the drop test of a body onto an initially flat
free surface. When the body is blunt, the pressure peaks become very high and localised
in both time and space. The time scale of the impact loads on a rigid body entering
water is typically in the range of milliseconds. Many difficulties can be encountered
during such experiments. The small spatial extent and short time duration of the
pressure peaks set a high level of requirements for the measurement system and the
sensors. Influence of vibrations of the test rig and a varying impact velocity have also
proved to be difficult to avoid. Despite these challenges drop tests have been performed
for over 60 years (Kapsenberg 2011).

The focus of this thesis is an experimental investigation of a drop test performed
at MARINTEK’s laboratories on a two-dimensional wedge shaped section. Due to
confidentiality, the experiment will not be referred to as other than ’MARINTEK’s
drop test/experiment’. Both force and pressure on the wedge surface was measured.
These quantities, as well as the velocity development during impact will be studied
with the aim of increasing the understanding of the involved features. All data from
the drop tests have been available and investigated with use of Matlab.

Prior to this work, the experimental results from MARINTEK’s drop test have been
assessed by researchers at MARINTEK. They observed a difference between the
measured and theoretically predicted impact loads. From this observation, the need
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for a further investigation of the involved features was announced. An analysis will be
carried out, evaluating the correspondence with theoretical predictions. The intent of
this thesis is to investigate different effects that might cause the deviations that are
found.

Many effects can lead to deviations from theoretically predicted impact loads. The
theoretical model used will have limits that may not apply to the experiment. There
can also be errors in the instruments used for measurements, in the test set-up or in
the experimental procedure carried out. Possible error sources and challenges will be
studied on the basis of the available literature on theoretical models for impact loads,
slamming experiments and measurement techniques.

The thesis consists of seven more chapters containing, in short, the following:

• Chapter 2: A presentaion of previous theoretical and experimental studies on
slamming.

• Chapter 3: A literature study on measurement techniques and challenges met
when performing a drop test.

• Chapter 4: An analysis of the two-dimensional drop test of a wedge shaped
section performed at MARINTEK’s laboratories.

• Chapter 5: An investigation of the repeatability and behaviour of measured local
quantities of the drop test from MARINTEK.

• Chapter 6: A comparison with a similar drop test performed by Yang et al.
(2007).

• Chapter 7: A discussion of theoretical models suited to reproduce the main
features of the drop test from MARINTEK.

• Chapter 8: Conclusions and recommendations for further work.
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THEORETICAL AND
EXPERIMENTAL STUDIES

In experimental research, the compliance between theory and experiment is often an
important aspect. A project thesis was written the previous semester as a preparation
for this thesis, studying available theoretical and experimental research on slamming
loads from the literature. In this chapter, the findings considered relevant for this thesis
will be presented shortly. In the project thesis, the applicability limits of different
analytical and numerical theories on slamming were studied. This is of importance when
a comparison is made between theoretical predictions and measured impact loads in this
thesis. Theories together with their applicability limits will therefore be presented. A
summary of some previously performed slamming experiments studied in the project
thesis will be given. The focus is the challenges met when the aim is to reflect theoretical
assumptions in the experimental set-up.

2.1 ANALYTICAL AND NUMERICAL STUDIES ON SLAMMING

The first method presented to tackle the problem of slamming was the work of von
Karman (1929). His method was intended for the impact of seaplane floats during
landing on water. Wagner (1932) presented his method three years later, and this is
probably the most well known paper on the subject of slamming. He used a flat plate
approximation to estimate the slamming loads, meaning the body is modelled as a
flat plate based on the assumed body boundary conditions. His asymptotic theory is
applicable for blunt bodies, i.e. small local deadrise angles. Unlike von Karman, Wagner
included the local rise up of water along the body during impact. Both methods give
conservative estimates of the slamming pressure. Several methods have been developed
after the pioneering work by von Karman and Wagner.

A method for determining the slamming loads for the two-dimensional vertical water
entry of a symmetric body was developed by Dobrovol’skaya (1969) using a similarity
solution. She considered two-dimensional irrotational similarity flows with dimensionless
hydrodynamic characteristics and established an accurate gravityless solution. The
method is valid for wedge shaped sections and can be used to verify other theories.

Zhao and Faltinsen (1993) solved the two-dimensional water entry problem using a
boundary element method (BEM). When investigating small deadrise angles, it is
difficult to handle the intersection between the body and the free surface numerically.
This is because a small error in the estimation of the angle between the body and the
free surface will result in large errors in the prediction of the intersection and therefore
destroy the solution. Zhao and Faltinsen avoided this by introducing a control surface
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normal to the body surface at the spray root. This method is applicable to a range of
body shapes and varying impact velocity with time can be included.

Zhao et al. (1996) also used a BEM to make a two-dimensional generalized Wagner
method that proved to be more robust for engineering applications than the classical
Wagner theory (1932). The method is generalized to larger local deadrise angles than
what Wagner’s asymptotic solution allows. The main difference from Wagner’s theory
(1932) is that the exact body boundary condition is satisfied at each time instant. The
wetted body surface is found by a time integration of the fluid particles vertical velocities
on the free surface to find the particles intersection with the body surface. Wagner also
did this, but analytically for the simplified geometry of a flat plate.

Three-dimensional methods are also developed, among these are the methods presented
by Scolan and Korobkin (2001) and Faltinsen and Chezhian (2005), both based on the
Wagner-theory. Faltinsen and Chezhian (2005) presented a theory that makes it possible
to use the generalized Wagner method for an arbitrary three-dimensional body. Scolan
and Korobkin (2001) studied the impact of a three-dimensional body with an elliptical
contact line by using the Wagner approach.

2.1.1 Applicability of analytical and numerical methods
Theoretical and numerical methods are often verified by comparison with experimental
results, and vice versa. For the comparison to be successful, it is important that the
experiment reflects the theoretical assumptions. The theoretical assumptions will lead to
a set of applicability limits. If the experiment does not meet these limits, the theoretical
predictions cannot be expected to agree with measured data. The applicability limits
of the theories presented in the previous section will be discussed in the following.

All the presented theoretical models are based on the assumptions of a rigid body and
potential flow of an incompressible fluid. The assumption of incompressibility requires
that the impact velocity cannot be too high. If it is, compressible effects can be of
concern. In the initial stage of the water entry, compressible effects will matter. Due
to the body acting on the water a wave will be generated with the speed of sound,
propagating from the body surface due to this disturbance. This means the pressure
reach a maximum value being the acoustic pressure. For the classical Wagner method
(1932) the pressure goes to infinity as V t → 0 because the compressibility is neglected
and the pressure will not be limited to the acoustic pressure as it is supposed to. This
will mostly be a problem close to the centreline where the initial stage takes action.
Further away from the centreline the effect of neglecting compressibility will not be as
important.

When no air entrapment is assumed, this implicates that the deadrise angle cannot
be too small. Takemoto (1984) and Yamamoto et al. (1984) presented experimental
results for the pressure on wedges with common experimental errors accounted for. The
results showed to be in good agreement with Wagner’s (1932) theory for deadrise angles
between ≈ 3◦ and 15◦. A reason for the disagreement when β <≈ 3◦ is the air that can
be entrapped between body and fluid for such small deadrise angles. When a volume of
air is enclosed, this air can start oscillating due to air compressibility, which again will
lead to pressure oscillations. It can also lead to a secondary impact as the cavity will
collapse after some time, and the whole surface will become wet (Faltinsen 2010).

Gravity is neglected in most of the methods presented, because fluid accelerations are
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much larger than the gravitational acceleration during initial impact. However, this
only holds if the time scale involved is sufficiently small. After some time, gravitational
effects can matter. Neglecting gravity leads to the surface condition φ = 0. This means
that the surface is flat. Neglecting gravity means we do not include any radiation
damping, hydrostatic and non-linear Froude-Kriloff forces. This is fine as long as the
considered time scale is small.

The assumption of no flow separation is also present in the theoretical models. Here
it is not viscous flow separation that is considered, but non-viscous. This can happen
for example at a sharp corner, and the assumption of no flow separation will therefore
put limitations on the shape of the body. When the body is asymmetric, the flow will
separate at the apex leading to the development of a vortex. This vortex will increase
the velocities and hence lower the pressure. The non-viscous flow separation can also
happen on a curved body surface, such as a horizontal circular cylinder. Wang (2014)
concludes that the separation occurs in the jet because the particles in the jet tip moves
in a curved tail. The centripetal acceleration will work normal to the jet flow into the
body surface. To meet this pressure gradient, the pressure on the wetted surface near
the jet tip must be lower than atmospheric pressure. This can lead to air entering the
area, causing the pressure gradient to be too low and the jet tip will tangentially move
away from the body.

The three-dimensional theories presented are important for many practical applications,
but not many attempts have been made for dealing with arbitrary shaped three-
dimensional bodies. The two-dimensional theories are therefore important for design
and research of structures exposed to slamming loads. For the body to be considered
two-dimensional in an experiment the body is restricted to a cross-section (or an infinite
cylinder). The flow around the body should be as close to two-dimensional as possible. If
these conditions are not properly met, three-dimensional effects can occur and produce
results that deviate from the intended two-dimensional results.

In table 2.1 different theoretical models are compared with respect to their applicability
limits. In this thesis, Wagner’s theory (1932) will be used for comparison with
experimental data. As gravity is neglected in his theory, it is important to be aware of
the limited time duration where the theory can provide reliable results. It is also noted
that Wagner (1932) assume a constant water entry velocity.

Table 2.1 – Comparison of the applicability limits of theoretical models. β = deadrise
angle, Asym. = possible to apply theory to asymmetric body shape.

Body Shape β 2D/3D Gravity incl. Asym.

Wagner’s solution Arbitrary 3◦ ≤ β ≤ 15◦ 2D No No
Similarity solution Wedge 4◦ ≤ β ≤ 81◦ 2D No No
BEM Arbitrary 2− 3◦ ≤ β ≤ 81◦ 2D Yes No
Generalized Wagner Arbitrary β < 40◦ 2D Yes Yes
Inversed Wagner Elliptical plane 3◦ ≤ β ≤ 15◦ 3D No No
Generalized Wagner 3D Arbitrary β < 40◦ 3D Yes Yes
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2.2 IMPLEMENTATION OF CLASSICAL WAGNER THEORY

During the project thesis, a Matlab code was developed to find the pressure distribution
and generate pressure time series from classical Wagner theory (1932). The codes can be
found in appendix A, and are used for comparison with experimental data in this thesis.
The basis for the implementation was the composite solution presented by Armand
and Cointe (1986) and Cointe (1991). The details of the implementation will not be
presented here.

The implemented code provides valid results for small deadrise angle, and β is the only
input needed to run the code. An example for β = 4◦ is shown in figure 2.1, where the
implemented code is verified by plotting it together with the plot found in the lecture
notes by Faltinsen (1997). The comparison is satisfying. There are small deviations
present near the peak. This might be due to the method used to digitalise the plotted
graph of the results from paper, which will not be as exact as wanted.

Figure 2.1 – Pressure distribution from implemented code compared with existing results
for β = 4◦.

The code to generate pressure time series can be used for wedge shaped sections. The
input needed to run the code is the vertical position of pressure sensors and the drop
height. This code uses the spatial pressure coefficient distribution shown in 2.1 to
calculate the pressure over each sensor with time.
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2.3 EXPERIMENTAL STUDIES ON SLAMMING

An experimental analysis is an important aspect of this thesis. To get a better
understanding of the procedure and typical challenges met, three different slamming
experiments are studied from the literature. Two of them are drop tests of two-
dimensional wedges and one is a three-dimensional drop test of a wedge shaped body.
The experiments together with their major findings will be shortly presented in the
following.

Yettou et al. (2005) reported an experiment studying the pressure distribution on a
wedge upon water entry. The influence of drop height, deadrise angle and wedge mass
on the pressure distribution was examined. An important aspect of their experiment was
the influence of the varying wedge velocity through impact. They found that the wedge
mass did not affect the initial impact velocity, but during water entry an increased mass
led to a smaller deceleration. The deceleration was found to be inversely proportional
to the deadrise angle. For the pressure distribution, they reported that the pressure
coefficient increased with decreasing deadrise angle, while the influence of varying drop
height and wedge mass was negligible.

Tveitnes et al. (2008) developed a test rig to maintain constant water entry
velocity for drop tests of two-dimensional wedges. They used their experimental
results for comparison with CFD analyses and other theoretical estimates from the
literature. Unfortunately, keeping the wedge velocity constant proved to be challenging.
Significant dynamic noise caused by the wedge surface and rig drive system affected the
measurements. It proved to be demanding to keep the velocity constant as a result of
the rapid increase in wet chines entry force.

Chezhian (2003) performed a three-dimensional experiment aiming to maintain a
nearly constant velocity during water entry by giving the body a very large structural
mass. The experimental results were used to verify a numerical simulation for three-
dimensional impact covered in the same publication. He found a good agreement
between numerical estimates and experimental results. Many different error sources
were considered. For the pressure time series, he found that the experimental results
were in general on the lower side of the numerical prediction. This was most likely due
to the sensor area being larger than the spatial extent of the pressure peak, which made
the sensors measure an average value instead of the correct peak value. He also found
that hydroelasticity might have reduced the measured pressure.

2.3.1 Comments on experimental challenges
From the experiments presented above, some general comments can be made regarding
challenges met when investigating the water entry problem. They are all connected
to a comparison between theory and experiments, due to the assumptions made in
theoretical approximations. How these assumptions are met in practice is an important
aspect to keep in mind when evaluating such comparisons.

The first comment concerns the impact velocity, which is assumed constant in many
theories such as those of Wagner (1932), Dobrovol’skaya (1969) and Faltinsen and
Chezhian (2005). Experiments like the one by Yettou et al. (2005) demonstrate that
the velocity is often changing throughout the impact. Tveitnes et al. (2008) showed
that keeping the velocity constant can be difficult, even when the test rig is designed for
this purpose. Faltinsen (1990) states that the vertical force is dependent on the impact
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velocity and Chezhian (2003) argues that using the initial impact velocity in theoretical
methods can lead to an underestimation of the impact loads. This is if the velocity is
decreasing during water entry. Yettou et al. (2005) argues that a variation of impact
velocity can change the spatial pressure distribution from the theoretical prediction.

Another assumption in many theories is two-dimensionality. To ensure two-dimensionality
the body is restricted to a cross section (or an infinite cylinder). Faltinsen and Zhao
(1998) compared the maximum pressure coefficient for a wedge and a cone. A cone
represents the extreme case of three-dimensional flow while a wedge cross section
represents a two-dimensional case. From this comparison they found that three-
dimensional effects can cause the pressure loading to decrease with up to 50 %. A
cone is an extreme case so a smaller reduction is expected for other body shapes. Even
so, this states the significance of defining two- or three-dimensionality when experiment
and theory are compared.

Structural vibrations are a common problem for drop tests. Dynamic disturbances can
in the worst case destroy the data, as it partly did for Tveitnes et al. (2008). Structural
vibrations may also be connected with hydroelasticity. If hydroelasticity occur, the
assumption of a rigid body is no longer valid. For Chezhian (2003), it reduced the
recorded pressures. Hydroelastic behaviour will be discussed briefly in the following.

2.3.1.1 Hydroelasticity
Hydroelasticity will not be discussed in detail here, but should be mentioned, as it can
be relevant for slamming experiments. Hydroelasticity is excited when the highest wet
natural period of the structure is comparable to or higher than the loading time of the
slamming. Other natural periods can also matter, but it is often the highest one that
is excited. Hydroelasticity is a dynamic interaction between structure and fluid. The
hydrodynamic loads from the impact can affect the structural vibrations, which again
can start elastic vibrations. These vibrations will disturb the fluid and can generate
pressure oscillations. Physical effects such as compressibility and air cushions may be
relevant if hydroelasticity is excited.

Different physical effects related to slamming have different time scales. When the
slamming problem is analysed from a structural point of view the time scale of the
maximum stresses is the important scale and is given by the highest wet natural period
of the structure. This implies that air cushions and compressibility have a small effect
since the time scale for these are smaller than the structural one.

When the deadrise angle is small (typically β < 5◦), hydroelasticity must be considered
(Faltinsen 2010). The importance of hydroelasticity increases as the impact velocity
and the highest natural period of the structure increase. When hydroelasticity is not
excited, a quasi-static approach can be used. This means that the hydrodynamic loads
are calculated for a rigid body and then used for the structural analysis. For the
cases where hydroelasticity takes place, it is not possible to separate the hydrodynamic
and structural problem as they interact. This coupling leads to impact pressure and
dynamics that can vary highly from the quasi-static solution.

8



3

MEASUREMENT
TECHNIQUES

In the previous chapter, factors that can affect the consistency between theoretical
models and experimental data were discussed. Lack of this consistency is not the only
possible reason for deviations between theoretical model and measurements. A drop
test will set high standards for the instrumentation used. The instrumentation and
experimental set-up can represent potential error sources, and will therefore be studied
in this chapter.

A slamming experiment is not an easy experiment. The impact on a rigid body entering
water is short, typically only milliseconds. The parameters of interest during this short
time period undergo rapid changes. Quick variation of pressure in space and time has
proved to be challenging to measure. In this chapter, the measurement techniques and
data acquisition tools that can be applied to a slamming experiment will be presented.
Advantages and challenges in terms of the accuracy and errors will be discussed in the
context of a typical drop test of a two-dimensional body. Factors in the experimental
performance and test set-up that can influence the measurements will also be examined.
Most of the theory presented in this chapter is collected from Steen (2014), Das (2009)
and Van Nuffel et al. (2013).

3.1 INSTRUMENTATION

For a typical slamming experiment, a variety of instrumentation is needed to examine
the phenomenon properly. The choice of instrumentation depends on what features
of the slamming phenomenon the experiment focuses on. In this section, a range
of instruments will be presented. Potential challenges met when applying them to a
slamming experiment will be discussed.

3.1.1 Transducer principles: displacement and strain
For strain and displacement transducers, three principles are governing and can be
used to split the transducer into different groups. The transducer groups are resistive-,
inductive- and capacitance transducers. These principles can also be used in force and
pressure transducers, accelerometers and for velocity measurements.

Resistive transducers
Resistive transducers are based on a change in resistance due to some external physical
signal. The most common type of resistive transducer is the potentiometer type. It is
based on a direct correlation between the electrical and mechanical domain, where the
mechanical movement changes a part of the total potentiometer resistance.

9



MEASUREMENT TECHNIQUES

Another well-known resistive transducer is based on the change of resistance due to
strain, by using strain gauges. The strain gauges measure strain as change in electrical
resistance. The elongation of the strain gauge causes the change in resistance. The rate
of change in resistance per change of length (elongation) depends on the material used.
Hence, a more or less sensitive strain gauge can be formed by the choice of material. A
Wheatstone bridge circuit (figure 3.1) can measure the change in resistance. The strain
gauge occupies one of the resistances in the bridge circuit. In the other arms of the
bridge the resistances are known, and balances so that the voltage difference between
B and D is zero. When the strain gauge is elongated, it will cause a change in strain
that changes the resistance. The resistance difference between B and D will be non-zero
and proportional to the change in resistance and thereby proportional to the change
in strain. This unbalance will lead to a voltage output. By measuring this change in
voltage, the strain can be measured.

Figure 3.1 – Wheatstone bridge circuit. (Das 2009)

Inductive transducers
Inductive transducers work on the principle of magnetic induction of voltage. The
transducer must consist of a conductor and a magnetic field. A relative movement
between the two will induce a voltage in the conductor. As a movement causes this,
they are limited to dynamic measurements, but can be used in pressure cells, force
transducers, velocity measurements and accelerometers.

Capacitance transducers
A capacitance transducer is based on the change of capacitance between two parallel
plates or a plate attached between a pair of outer plates (figure 3.2). As the plates are
conductive, relative movement between them generates a change in capacitance. The
relative movement is caused by an external disturbance, marked by F in the figure.
These transducer types only require a small driving force, but can cause some noise.
They are also very sensitive to liquids, which can increase the capacitance significantly
(Das 2009).
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Figure 3.2 – Capacitance transducers for displacement measurements. (Steen 2014)

3.1.2 Pressure measurements
Pressure is an important parameter for a drop test. During impact, the pressure will
go through rapid changes in both time and space. The choice of pressure transducer
depends on the requirements associated with the phenomena under investigation. For
dynamic response such as slamming, the transducers resonance frequency and rise time is
important. This will be discussed in more detail. Pressure transducers can be classified
according to the technology they are based on. The three most common types will be
described shortly.

3.1.2.1 Pressure transducers

Piezoelectric pressure cells
Piezoelectric behaviour means that an electric charge can be induced in a material
due to the impact of a force. An example of such a material is quartz crystal.
Piezoelectric crystals will generate an electrical charge due to the deformation caused
by an external applied pressure. The electrical charge can be converted into volts and
will be proportional to the applied pressure. These pressure cells are only applicable
for dynamic measurements as the charge will disappear after a while if a constant
compressive force is applied. Piezoelectric pressure cells can be made very stiff and can
therefore be characterized by high resonance frequencies. They also have a very short
response time, which makes them capable of measuring high frequency pressure pulses.
This sensor type is shown in figure 3.3.

Figure 3.3 – Piezoelectric pressure cell. (Steen 2014)

Capacitance pressure cell
A variable capacitance transducer, such as the one shown in figure 3.4, works on the
technology of a change in capacitance due to an external pressure. The capacitance
will change due to a varying distance between a metal diaphragm and a fixed metal
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plate. Capacitance pressure cells are generally quite stable and linear, but they can be
sensitive to high temperatures and are more complicated to set up than other sensor
types.

Figure 3.4 – Capacitance pressure cell. (Steen 2014)

Piezoresistive pressure cells
Strain based pressure cells may be the most frequently used type and depend on strain
gauges to measure the pressure. This type of pressure cells can also be referred to as
piezoresitive pressure sensors. The strain is measured in the same way as described
in the section on resistive transducers by applying a Wheatstone bridge. As shown in
figure 3.5 the strain gauge is placed on a diaphragm that is elastic and works as a seal.
A deflection of the diaphragm will cause an elongation of the strain gauge that will be
transformed to an output voltage by the Wheatstone bridge. These types of pressure
sensors come in several different varieties dependent on the type of strain gauge used.

Figure 3.5 – Strain gauge pressure cell. (Steen 2014)

Pressure sensing tape
Pressure sensing films have been developed in the later years. The film is an elastic
film that can be taped to the surface and is equipped with many small pressure sensors.
It is based on the principle of change in conductivity by the applied external pressure
using a semi-conductive material. By taping this type of film on the body, the pressure
distribution can easily be obtained.
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3.1.2.2 Pressure measurements: Potential challenges

Slamming is a dynamic impact and great variation of the pressure occurs both in time
and space. A challenge is to correctly measure the peak pressure which duration is in
the order of milliseconds or less. This leads to a requirement for the data sampling rate,
as the measurements must be frequent enough to catch the real pressure peak. For a
zero deviation between the real and measured value the pressure must be sampled at
the exact time of the peak pressure’s occurrence. When the sampling rate is too low,
the measured maximum pressure may vary between two identical drops (with stochastic
behaviour disregarded). This is because the pressure peak can be situated anywhere
between two subsequent samples. The largest deviation will take place when the peak
is placed exactly in the middle of two samples. A sufficiently high sampling rate should
therefore be applied, although a large sampling rate will lead to large data files.

The pressure pulses travel quickly over the body surface during a slamming event. The
spatial extent of the pressure peak is small, and the pressure sensor area should be
designed according to this. If the sensor area is too large it will measure the average
pressure value over its area instead of the exact pressure peak leading to a loss of local
details.

Pressure transducers can be exposed to a temperature shock during water entry due to
a temperature difference between air and water. Van Nuffel et al. (2013) investigated
the effect of such a temperature shock on piezoelectric sensors. After the first pressure
peak, the pressure was found to drift away in both positive and negative direction. An
explanation was found in the thermal nature of the sensor materials where a preloaded
piezoelectric crystal is situated in a steel housing. The thermal expansion coefficient of
the crystal is 20 times smaller than for steel. This causes the steel to expand/contract
more than the crystal during a sudden change in temperature. For a sudden cooling,
the steel housing will contract more than the crystal causing an increased preloading of
the crystal that will be interpreted as a positive pressure output signal. For a sudden
heating, the steel will expand more, causing a negative pressure output signal. To
avoid such effects one can either make the air/water temperature difference very small
or adjust the sensors to the water temperature before the water impact. Piezoresistive
pressure sensors can also experience a temperature shock as the sensor front gets heated
from an electric current that is applied through the sensor front. This can cause a
temperature shock even when water and air have the same temperature.

In general, pressure sensors should be used only for measurements with response
frequencies well below the resonance frequency of the pressure sensor. As the rise
time of the pressure is in the order of milliseconds, a very high resonance period for the
sensor is required to avoid dynamic amplification.

The position of the pressure sensor surface relative to the body surface may have a
significant effect on the pressure measurements if they are not exactly flushed. There
are two cases of such a misalignment: either the sensor is sticking out of the body or it
is slightly inside the body surface. In both cases, it can lead to air being trapped along
the sensor edge or a change in the flow field around the sensor. Van Nuffel et al. (2013)
found that the peak pressure was significantly decreased for both cases compared to the
peak pressure when sensor and body were exactly flushed. There are also sensors where
the sensor surface itself is not entirely flat which may also affect the pressure recordings.
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3.1.3 Force measurements
For a slamming experiment, the investigation of forces can be of interest both alone and
for comparison with integrated measured pressure. Force transducers are often placed
on the body surface in panels to find the load over an area of the body during impact
with water. In the same manner as for pressure transducers, force transducers can be
classified according to the technology they are based upon. Two common types of force
transducers are presented in the following based on the literature of Elbestawi (1998).

3.1.3.1 Force transducers

Strain based force sensors
These types of force transducers are based on a structure that will easily deform under
the influence of an external load. Attached to this structure are a number of strain
gauges that will produce an electrical signal when connected to a Wheatstone bridge.
The force is determined by integrating the strain of each individual strain measurement.
The elastic element can have many shapes depending on the wanted capacity, dimension
and performance. Possible shapes are cantilever beam, S-beam or circular cylinders. A
requirement for the elastic material is a linear relationship between applied force and
strain. Strain load cells can have a load capacity ranging from 5 N to more than 500
MN.

The beam type is an example of an elastic element. It consists of a simple cantilever
beam with strain gauges attached to it. The strain gauges are oriented along the axis
of the beam and will elongate when the elastic beam is subject to an external load and
bends. The sensitivity and force range depend on the shape of the beam cross section
and the position of the loading across the beam length.

Piezo-electric force sensors
The properties of piezoelectric crystals are already explained. An electrical charge will
develop when a force deforms the crystal. This sensor type can measure forces ranging
from 1 to 200 kN. By using a pre-tensioned bolt on the sensor it is capable of measuring
both compressive and tensile forces. The electrical charge will leak, and if the load is
not subject to change it will fade. Therefore, piezoelectric force sensors are suited for
dynamic measurements. They can also operate in a wide temperature range.

3.1.3.2 Force measurements: Potential challenges
In a typical slamming experiment, a drop test rig is used together with the impacting
body. Combined, they form a complex dynamic system. Resonance frequencies of
test rig, impacting body and force sensors can affect the force measurements and may
cause noise or disturbances. If resonance occurs in the force sensor, the force output
signal can be frequency dependent. If the vibrations are severe, they can destroy the
measurements.

For strain based force sensors, the shape of the elastic element can affect the reliability
of the results. Some element types will provide the best accuracy when the loading
is perpendicular. For a drop test with a body that has an angle, the loads will not
be perpendicular. Another possible challenge can be oscillations in many degrees of
freedom. When many degrees of freedom are activated as response in the force panel,
accuracy can be lost when converting the signal back to the actual loading (P. B.
Berntsen 2015, pers. comm., 9 May).
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3.1.4 Position, Velocity and Acceleration measurements

For position, velocity and acceleration measurements it is often sufficient to measure
one of them and derive or integrate the two other quantities from the data obtained.
Sometimes it is of interest to measure one or more quantities individually. Tracking the
position of the body after it is dropped can be valuable as it describes in which phase
of the water entry the body is at each time instant. When evaluating time series of
measured pressure or force, the corresponding position gives a better understanding of
what is happening at a certain time during impact.

Position can be measured directly by for example a potentiometer. Voltage is generated
as a wiper slides against a resistive element. The wiper is connected to a mechanical
shaft or wire that can either move linearly or rotate. In this way, a potentiometer can
measure both displacement in a straight line or angular movement. A potentiometer
is a quite inexpensive and common position transducer, but noise may occur due to
vibrations during the relative movement. To eliminate this noise data should be filtered
accordingly.

During impact with water, the body may experience a change in velocity. When
the weight of the body is larger than the maximum slamming force, the body will
decelerate after initial water entry. The velocity can influence the vertical force as well
as the pressure distribution. Many numerical and analytical theories assume constant
water entry velocity. Data of the velocity development can help interpret potential
discrepancies between theory and experiment. Velocity can easily be derived from
position measurements from instruments such as a potentiometer. Another method
to measure a linear velocity is to measure the average velocity from distance travelled
over a certain time interval. Today the availability of high-speed video cameras with
up 12000 frames per second broadens the range of applicable velocities (Pinney and
Baker 1998). The average speed can be found for a sequence of positions by knowing
the length scale and flash rate of the camera. Using a video camera will also provide a
practical visualisation of the water entry process.

The time change of the intersection point between free surface and body is considered
an important parameter for slamming. Wave gauge tape can be used to find the
intersection points and monitor the change in wetted surface with time. They work on
the principle of their resistance changing with wetted length. The change in resistance
can be measured by using a voltage source and a voltage driver circuit. The change
in wetted surface is an important parameter present in many numerical estimates of
slamming loads. A possible error source of using wave gauge tape to find the intersection
point is the spray from the jet, which may cause the tape to react before it is affected
by the water pileup. It can also be affected by small waves/disturbances of the free
surface during initial impact.

Accelerometers can be used to monitor how the body is influenced by impact with
water. Acceleration transducers use the relation between acceleration, mass and
force a(t)=F(t)/m. Accelerometers can be based on the principle of strain gauges
or piezoelectricity. For the strain gauge based accelerometer, a mass is connected to
a beam that will deflect due to inertia forces when accelerated. The strain gauges are
used to measure the deflection, which can be used to determine the acceleration. For
a piezo-electricity based accelerometer, a piezoelectric material is used so a deflection
of the material will lead to the generation of an electrical charge. The electric charge
will be proportional to applied pressure. The pressure is applied by using a mass that
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when accelerated will cause inertia forces which over an area produces a pressure that
will deform the material. The charge is converted to a voltage output signal and the
acceleration can be measured.

It is in general important to use an accelerometer with a natural frequency well above the
oscillation frequency of the measured acceleration. If resonance occurs it may influence
the mass which will lead to a frequency dependent output signal. It is also important
to note that the accelerometers will add a mass to the structure under consideration,
but the mass can be constructed to be very light.

Water velocity measurements
In some cases it can be of interest to investigate the fluid flow along the body during
impact. For an asymmetric body there may be flow separation and for very small
deadrise angles there is a possibility of air entrapment. Under such scenarios, fluid
velocity measurements could be of interest to visualise the details.

Laser Doppler Velocimetry - LDV uses a shift in reflected light frequency to determine
velocity and direction of a fluid flow. For this principle to work, light-reflecting particles
must be dissolved in the water, but no other sensors are required in the area under
investigation. LDV is capable of measuring quick changes in the flow field.

Particle Image Velocimetry - PIV is similar to LDV in the sense that particles must be
dissolved to ensure light reflection. The main difference is that LDV measures velocity
at one point while PIV measure the velocity in an area. Laser light is shredded by a
spreading lens and reflected by the particles. By taking two stereo photographs with
a short time interval, the movement of the fluid particles can be tracked. As PIV can
map a velocity distribution instead of the velocity at one point, it is more frequently
used in the later years than LDV.

3.2 DATA ACQUISITION

This section will provide the reader with insight in basic data acquisition used for
slamming experiments. Measurements are needed to gain and verify knowledge and are
obtained by the use of instruments. In most experiments a collection of instruments
are needed to collect information about the phenomena investigated. Instruments can
be both analog and digital. Nowadays, it is common to use digital instruments because
of the advantages of computer storage and data handling. However, the transducer
or sensor itself is often analog. An analog-to-digital converter is therefore used to
convert the analog signals before they are further processed. A typical set up of a
data acquisition system is shown in 3.6. There is a transducer or sensor stage, a
signal-conditioning stage and an output stage. The analog transducer signals are often
conditioned by analog electronics even though they are configured as digital instruments.

Figure 3.6 – Stages in a typical data acquisition system.

The response (’physical signal’, figure 3.6) is affecting the sensor or transducer. A sensor
is a device that responds to a changing response while a transducer transfers energy from
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on form to another (Eren 2014). The sensor senses the change of the physical signal,
while the transducer reacts to the magnitude or intensity of the physical signal that
one wants to measure. A typical transducer will have a signal output in the order of
microvolts. One of the functions of the signal conditioner is therefore to amplify (scale)
this output up to +/− 10 volt range. Other possible functions of a signal conditioner
are sampling, filtering, phase shifting or noise elimination.

The process of digitalising an analog transducer signal is performed in the A/D-
converter. The A/D-converter can process several signals simultaneously depending
on the number of bridges it is equipped with. Thus, a larger sampling frequency implies
that a larger number of bridges is required. Experiments that require very high sampling
frequencies need special A/D-converters. The resolution of a sample is also an important
feature of the converter, meaning how many bits it will use to represent each sample.
If the A/D-converter uses 8-bit for representation of a sample it means it will choose
the value nearest the 28 = 256 values. This would be characterized as a low resolution
A/D-converter. Expensive models use 20-bit, resulting in 1048576 possible values. If
a low resolution A/D converter is applied, as much as possible of the range should be
used. If this is not the case, there is a risk of ending up with a very low number of
possible values, which will result in poor measurements and lost data details. To avoid
this one should be aware of the range of values the analog signals from the transducer
will have in order to choose the right resolution of the A/D-converter according to this
value. When the signal from the transducer is digitalised it can be sent to a computer
or microprocessor for storage and processing.

In the following, some important aspects of the data acquisition will be presented,
focusing on data sampling and filtering of measured data.

3.2.1 Sampling
A time series is a sequence of observations measured through time, and can be either
discrete or continuous. For a continuous time series there would be an infinite amount
of observations between two points in time. In most practical cases (as for a slamming
experiment) the time series will be discrete, meaning the observations are sampled at
equal intervals of time. The size of this time interval must be adjusted to fit the variation
in time of the process to be recorded.

If the time interval between each sample is denoted hs, the sampling frequency can be
defined as fs = 1

hs
. The higher the sampling frequency, the more data storage capacity is

needed. Defining the bits used to store each sample as bn and the total time of recording
T, the data storage needed will be bn · fs · T . The choice of sampling frequency will
therefore be a compromise between a sufficient frequency to catch all details of the
process and data storage capacity.

Errors in the recorded signal will occur if the sampling frequency is too low. Figure 3.7
shows an example of a sinusoidal sampled at a frequency 1

hs
. The resulting measured

signal does not properly represent the original signal. The Nyquist theorem, or sampling
theorem states that a continuous signal can only be properly sampled if it does not
contain frequencies above one-half of the sampling rate. The limit is defined by the
Nyquist frequency fN = 1

2hs
. This means that to theoretically represent a sine wave

properly a sampling frequency of minimum two samples per cycle is needed.

For slamming experiments, a very high sampling frequency is needed. The rise time of
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Figure 3.7 – Sinusoidal signal sampled at a frequency 1/hs. (Steen 2010)

the pressure is in the order of milliseconds, and the duration of the maximum pressure
is in the same order before it starts to decrease. Especially when the deadrise angle is
small, a high sampling frequency is required for reliable results. Van Nuffel et al. (2013)
suggests a minimum sampling frequency of 300 kHz for small deadrise angles.

3.2.2 Filtering

Filters can be both analog and digital. Analog filters will be applied before the A/D-
converter, while digital filters can be applied in computer programs during the post-
processing of the time series. Roughly, one can say that there are three types of filters:

• Low pass filters

• High pass filters

• Band pass filters

Before the three types are described, some expressions used will be defined. The transfer
function is defined as the ratio between the output and input signal and is denotedH (f).
The cut-off frequency is usually defined to be where the signal amplitude is reduced to
0.707 times its original value (Smith, 2002).

The low pass filter will allow low frequencies through and reject frequencies over a
cut-off frequency fc. It can be used to remove high-frequency noise from the time series.

The high pass filter will reject frequencies below a cut-off frequency fc and allow all
frequencies above to pass through. It can be used to remove constant or low frequency
values.

The band pass filter will pass a certain range of frequencies between the cut-off
frequencies fc1 and fc2 through and reject all other frequencies above or below this
range. It can for instance be used to extract a certain frequency range from the time
series.
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The frequency values allowed to pass through the filter is often called the pass band,
while the frequencies rejected is called the stop band. An illustration of the filter types
is shown in figure 3.8.

Figure 3.8 – Illustration of filter types.

For a slamming experiment, noise and disturbances from force panels or from the test
rig can be present in the recorded signal. To remove noise, a low pass filter can be
applied. When applying low pass filters to slamming experiments, care must be taken
when setting the cut-off frequency. As the rise time of the force and pressure is in the
order of milliseconds, the cut-off frequency must be sufficiently high to preserve it.

3.3 PERFORMANCE AND TEST SET-UP

Many slamming experiments are used for validation of analytical and numerical theories,
which are all based upon a set of boundary conditions. It is therefore important to be
aware of how the kinematic and dynamic conditions of an experiment match these
theoretical assumptions. For validating a theoretical model, the assumptions must be
integrated in the experimental set-up. In this section, some aspects that one should be
aware of in the performance and test set-up of a slamming experiment will be discussed.

3.3.1 Free surface condition
An initially flat free surface is a common assumption in numerical theories, and it
is important to meet this criterion when a comparison with experimental values is
performed. Small disturbances/wrinkles on the free surface can cause large deviations
in peak pressure. If a small wrinkle appears at the intersection between the body and
the free surface during initial impact, it will change the local deadrise angle. A small
change in deadrise angle will have a large effect on the pressure peak. This effect will
impair the repeatability of the experiment and can occur only on some of the drops
when the wrinkle is in the ’right’ position. It is therefore important to make sure the
surface is completely calm before starting a new measurement.

3.3.2 Body surface condition
During a drop test of a body, several subsequent drops are done, meaning the body is
wetted after the first drop. Van Nuffel et al. (2013) compared ten subsequent drops for
both a wet and a dry body surface. They found that for the wetted body the average
pressure peak was significantly lower and a larger scatter appeared. Lower average
pressure is explained by the presence of water droplets on the sensor surface. Coherent
forces between the water molecules will cause the water on the sensor and in the tank
to merge together right before impact. This will soften the impact loads on the body
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surface. The scatter is introduced due to the variability of droplet position between each
drop. To avoid these effects it is important to wipe the body and sensors dry between
each drop.

3.3.3 Three-dimensional effects
A drop test programme can be either two- or three-dimensional. The two represents
completely different scenarios, and distinguishing between them in both test set-up
and choice of theoretical model to compare with is important. In practice, two-
dimensionality means that the body is restricted to a cross-section (or an infinite
cylinder). If the experiment is fully two-dimensional, the aim is to restrict the flow
to these two dimensions only. Due to this, it is not only the shape of the body that
is important. When the body is dropped into a tank, the ideal condition for a two-
dimensional experiment would be no gap at all between the tank and the body. This is
not possible as the friction between the tank wall and the body will affect the velocity,
and it will not be a ’free fall’. Instead, the gap between the tank wall and the body
should be as small as possible to restrict the flow.
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4

EXPERIMENTAL
INVESTIGATION

An experimental programme was carried out at MARINTEK to investigate the free-fall
drop of a two-dimensional wedge into initially calm water. The aim of the test was a
qualification of the force and pressure sensors. In this chapter, the experiment will be
presented together with an analysis of the data obtained. Pressure and force on the
wedge surface during water entry were measured, together with position. This chapter
contains an investigation of the features of the impact loads for different water entry
velocities.

Figure 4.1 illustrates the parameters characterising the slamming pressure during water
entry of a blunt rigid body. Slamming pressure has a very short rise time followed by
the peak pressure. The maximum pressure coefficient is denoted Cpmax in the figure.
The decay time of the pressure after Cpmax is much larger than the rise time. As the
body penetrates the free surface, the slamming pressure is very localised and changes
position with time. The value of the pressure peak is of a stochastic nature. It may vary
from cycle to cycle, even when the drop height and deadrise angle is constant (Faltinsen
2010). Another important parameter is the spatial duration of the slamming pressure,
denoted ∆Ss. In this analysis, this part of the pressure will be defined as the slamming
pressure, which is the pressure exceeding 50% of maximum pressure. A vertical force
will work on the body during water entry. The force is measured in the experiment and
will be compared to integrated pressure. The acceleration and velocity during impact
are also important parameters that will be investigated.

Figure 4.1 – Definition of parameters characterizing slamming pressure during water entry
of a blunt two-dimensional body: α = deadrise angle; Cpmax = pressure
coefficient at maximum pressure; zmax = z-coordinate of maximum pressure;
∆Ss = spatial extent of slamming pressure exceeding 50% of maximum
pressure; t = time; V = water entry velocity. (Zhao and Faltinsen 1993)
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4.1 EXPERIMENTAL SET-UP

4.1.1 Test rig
A test rig as pictured in figure 4.3 was used to drop a wedge shaped body into water.
The wedge was dropped into a tank (height 4000 mm, width 283 mm) filled with water
at approximately room temperature. In the tank there is a window that has been
checked and concluded to be rigid enough to not affect any measurements. The wedge
itself has dimensions as illustrated in figure 4.2, with a deadrise angle of 10◦. The body
is therefore considered blunt. It is built of compact aluminium, which should ensure
that the assumption of a rigid body is applicable. MARINTEK has informed that the
test rig itself is not a concern regarding natural frequencies that may be excited during
the experiment. The gap between the tank wall and the wedge is less than 2 mm on
each side of the width, W. This is expected to be sufficiently small to restrict the flow
to two dimensions. On the transverse sides of the breadth B, the gap is 1665 mm. The
weight of the wedge assembly is 170 kg. Force and pressure panel is mounted on the
right hand side of the wedge.

Figure 4.2 – Measured wedge dimensions.

Figure 4.3 – Sketch and picture of test rig. (MARINTEK)
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4.1.2 Sensors
Three different configurations of combined force and pressure panels are used in
the experiment. The force and pressure sensor types are equal for the three panel
configurations, but the number and position of pressure sensors differ. In figure 4.4
the position of the pressure sensors on the force panels as well as their numbering is
illustrated. The indicated distance between pressure sensors are centre-to-centre. Force
panel starts 75 mm from apex. All data was sampled at 50 kHz.

To set a limit for the size of this experimental investigation, only the 5x3 panel in figure
4.4a will be analysed. For the presented results in this chapter, potential differences in
the behaviour of the three panel types will be disregarded.

(a) (b) (c)

Figure 4.4 – Lay-out of the three different combined force and pressure panels with sensor
numbering and position from wedge apex (mm) for the (a) 5x3 (b) 5x5 and
(c) 3x5 panel configuration.

4.1.2.1 Pressure sensors

The piezoresistive pressure sensors are from Kulite (CT-190). They have a square
sensing area of 2x2 mm and the diameter of the sensor front is 2.6 mm. Before the final
drop tests that will be analysed in this chapter, initial drop tests were performed to
check the pressure sensors. These tests were completed without the presence of a force
panel. MARINTEK compared measured maximum pressures from the inital tests to
predicted values by classical Wagner theory (1932) and a numerical BEM code SLAM-
2D based on Zhao et al. (1993, 1996). Sensors showing values clearly differing from
the predictions were removed before the final drop tests. It is noted that after the final
drop tests, some sensors were again replaced. In the 5x3 panel that will be considered in
this analysis the removed sensors were number 1000 and 1005. In the following analysis
these sensors will be avoided when possible.

4.1.2.2 Force sensor panels

For the combined force and pressure panel, a ’beam’ type of force sensor was applied.
The force panel is of size 60x60 mm, and is mounted on the wedge using a hard type
of plastic. The force senor panel is of the type HLCB2, manufactured by HBM. All
force transducers were statically calibrated. Hammer tests were performed on the force
panels in dry condition on the test rig with input frequencies up to 2 kHz. In these tests
resonance frequencies and gain between input and response of the panel configurations
were checked. The gain for all combined panels was found to be in the range 1.0 -
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1.05, which is satisfactory. The combined panel type under investigation in this chapter
showed resonance frequencies around 400 Hz.

4.2 EXPERIMENTAL PROCEDURE

Two rounds of experiments were carried out:

• Initial drop tests: of pressure sensors without force panel present, with drop
heights of 0.1, 0.16 and 0.25 m

• Final drop tests: of combined force and pressure panel, with drop heights 0.1,
0.25 and 0.5 m

This analysis will be performed on the results from the 5x3 combined panel from the
final drop tests. Results from the initial drop tests will be used for comparison in some
analyses, but no further details from this round of experiments will be discussed. The
same experimental procedure (disregarding drop height) was carried out for all tests,
both final and initial.

No fixed start time was set for the measurements, but they started before the wedge
was released for all tests. The wedge was released and ran through the free surface
in the tank. Shortly after the force panel was submerged, oil dampers stopped the
wedge. Between each drop, water on the wedge from the previous drop was wiped off.
MARINTEK (K. Berget 2015, pers. comm., 18 March) informs that the waiting time
between each drop was not set, but should be at least five minutes where they prepared
for the next drop. For the 5x3 panel, 11 tests were executed and the numbering of these
tests are listed in table 4.1.

During each drop, the pressure and force over the panel was measured, as well as the
position of the wedge. It was intended to measure the acceleration, but during this
analysis it became clear that the accelerometers were not attached to the wedge. The
available acceleration measurements from the tests were only recording vibrations from
where they were left.

Table 4.1 – Overview of tests performed for the 5x3 panel.

Test number Drop Height [m]

9801 0.25
9802 0.25
9803 0.25
9804 0.25
9806 0.5
9807 0.5
9808 0.5
9809 0.5
9810 0.1
9811 0.1
9812 0.1
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4.3 DATA ANALYSIS METHOD

The experimental data from the drop tests was received as binary Matlab files (.mat). To
perform the analysis presented in this chapter several Matlab codes have been developed.
The codes used in this chapter together with descriptions are found in appendix A and
B. To connect the different codes to the presented results, the Matlab codes used in each
part of the analysis are cited with footnotes where they are applied. All measurements
were received in full scale and are scaled to model scale with a scaling factor λ = 50.1

4.4 IMPACT VELOCITY

Impact velocity is an important parameter that will affect both slamming force and
pressure values. Faltinsen (2010) states that for deadrise angles larger than 5◦, the
maximum slamming pressure will be proportional to V 2. The hydrodynamic vertical
force on a body penetrating the free surface with a velocity V(t) is defined by Faltinsen
(1990) as

F3 =
d

dt
(A33 (t)V (t)) + ρgΩ (4.1)

where Ω is the volume of the submerged body and A33 is the high frequency added mass
in heave. From these two statements it can be concluded that a change in velocity will
affect the results and should be investigated. Chezhian (2003) investigated the velocity
variation and found that it is dependent on the ratio between the body weight and the
maximum slamming force. If the weight is larger, the body will keep accelerating after
water entry. When the submergence increases, the added mass and hydrostatic load
will increase and eventually lead to a deceleration of the body.

When the impacting body is dropped from a given height h, the initial impact velocity
can be found by using the equality of potential and kinetic energy:

V =
√

2gh. (4.2)

The velocity of each drop is found by numerical derivation of the position measure-
ments.2 The position measurements are low pass filtered to remove noise from the
signal. It is noted that there is an uncertainty in the presented velocity connected with
the derivation process and the filtering of the position measurements. As the position
measurements cannot give the position of the spray root, a direct synchronization
of pressure peaks and position measurements cannot be performed. Instead, the
synchronization is checked by evaluating the derived velocity at the time where apex
initially hits water against the value from eq. (4.2). This will also give an indication of
the possible error in the derived velocity. Values of the initial velocity from eq. (4.2),
experimental values (mean for each drop height) and an error estimate between the two
are presented in table 4.2.

1Appendix B.1 - analyse.m
2Appendix B.2 - dispvelc.m

25



EXPERIMENTAL INVESTIGATION

Table 4.2 – Theoretical velocity compared to experimental velocity. V0calc
= velocity by

eq. (4.2), V0exp
= measured velocity from experiments, Error = V0calc

- V0exp
.

Positive directon downwards.

Drop Height [m] V0calc [m/s] V0exp [m/s] Error [m/s]

0.1 1.400 1.402 0.002
0.25 2.215 2.214 -0.001
0.5 3.132 3.092 -0.040

A velocity time history for a 0.5 m drop is showed in figure 4.5. Gravity causes the
wedge to accelerate towards the free surface with increasing velocity. One can observe
that the velocity decreases again after impact until it reaches zero. The initial reduction
of velocity is caused by water resistance and vertical forces working on the wedge during
impact. The wedge is forced to a full stop by oil dampers.

Figure 4.5 – Wedge velocity vs. time for 0.5 m drop height (Test 9807).

Plots of the velocities for 0.5 and 0.1 m drop height including the time instances of
pressure peaks at first and last sensor row (red circles) and the time where apex hits
water (black star) are presented in figure 4.6. Two values quantifying the velocity
change for each drop height are presented in table 4.3. The mean velocity change for
each drop height between initial impact and first pressure peak is presented to see if the
assumption of constant velocity is applicable for the pressure. The change in velocity
between the pressure peaks at the first and last sensor row is also presented.

It is observed that two different scenarios occur for the three drop heights. For 0.1 m
drop height the velocity reaches its maximum value after the last pressure peak. For
0.25 m and 0.5 m the maximum velocity occur right before the first pressure peak. The
velocity changes found in table 4.3 are small. As an attempt to correct for the error
made by the derivation process, the velocity change can be considered with the error
estimate from table 4.2. The values of ∆V1 and ∆V2 for 0.5 m drop height are inside
this estimated error range, and it is possible to assume that the velocity is constant for
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this drop height. For the other two drop heights the values of ∆V1 and ∆V2 are outside
the suggested error range. A constant velocity can therefore not be assumed for 0.1 and
0.25 m drop height.

(a) (b)

Figure 4.6 – Velocity of wedge with red circles indicating first and last pressure peak and
black star indicating initial impact for a) 0.5 m (Test 9807) and b) 0.1 m
(Test 9810) drop height.

Table 4.3 – Mean variation in velocity for each drop height. ∆V1 = velocity change
between initial impact and peak pressure over first sensor row, ∆V2 = velocity
change between peak pressure over first and last sensor row. Positive value =
velocity increase.

Drop Height [m] ∆V1 [m/s] ∆V2 [m/s]

0.1 0.063 0.0112
0.25 0.020 -0.0013
0.5 0.0069 -0.0085

4.4.1 Comment on velocity change

It is concluded that the velocity for 0.5 m drop height is constant during the slamming
pressure measurements. For 0.1 and 0.25 m drop height, a small velocity increase is
found between the time the wedge initially hit water and the first measured pressure
peak (∆V1 from table 4.3). To evaluate this velocity change a possible error source is
considered. That is the presence of a small wave trough under apex when the initial
impact position is measured. If the vertical position of the wedge is denoted z, initial
impact corresponds to the time t0 where z=0, i.e. when apex hits the free surface.
If a small disturbance in the free surface causes a small wave trough to be present
underneath apex at time t0, the wedge will hit the free surface at a time t = t0 + ∆t. If
the wedge actually started to decelerate at the time where contact with water started,
this means maximum velocity would occur at the time t = t0 + ∆t. ∆t would therefore
be the time from the position measurements show z=0 to the time where maximum
velocity occur. ∆t can therefore be found from the position and velocity data. From
the equations of motion the depth of the trough ∆z can be calculated as
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∆z = g
(∆t)2

2
(4.3)

where g is the gravitational acceleration and ∆t is the time passed from z=0 to maximum
velocity. Inserting values for 0.1 and 0.25 m drop height, eq. (4.3) show that the
necessary depths of the troughs to cause the increase in velocity are 0.75 and 0.23 mm
for the two drop heights respectively. This means that the waves needed to cause the
observed velocity change is very small. It is not concluded that this is happening, but
it demonstrates how sensitive the measured velocity is to small disturbances in the free
surface. This finding argues that the change in velocity found should not be emphasised
too much.

4.5 ACCELERATION

A change in the acceleration of the wedge can change the pressure. If the wedge
decelerates it will result in a decreasing pressure. The pressure corrected for non-
constant velocity is expressed by Faltinsen (2010) as

p(t) = p(t)asymptotic −
dV

dt

√
c2 − x2 (4.4)

where 2c is the distanc between each spray root and x is the position along the wedge
surface. Eq. (4.4) expresses how the pressure will decrease with a deceleration dV

dt
(positive direction downwards).

It became clear during this analysis of data from the experiment that the acceleration
measurements were not usable. The accelerometers were not attached to the wedge
and therefore no acceleration measurements were made. An attempt of analysing the
acceleration as the second derivative of the position measurements was made. This
numerical approach proved to cause large drifts in the resulting acceleration, so the time
history was not satisfying. It is therefore decided to not investigate the accelerations
further and only use the derived velocity as an indicator of what is happening during
water entry.
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4.6 PRESSURE RESULT ANALYSIS

4.6.1 Filtering
Different filters were considered for the pressure time series to eliminate noise from the
signal. As the rise time for the pressure is very short, it proved to be demanding to
filter away any noise without affecting the peak pressure. Figure 4.7 shows the attempt
of applying 4th order Butterworth low pass filters with cut-off frequencies of 8000, 5000
and 2500 Hz to the pressure signal for drop height 0.5 m. The largest drop height is
used to evaluate the filtering as the lowest rise time is expected here. A quick rise in
pressure makes filtering demanding as high frequencies must be allowed to pass in order
to maintain the full pressure peak. There is not much noise present in the signal and
the filters lead to a loss in peak pressure, even for high cut-off frequencies. Due to this,
it is decided to not filter the pressure time series. All pressure values represented in this
chapter is therefore unfiltered.

Figure 4.7 – Comparison of LP-filters for pressure time series. Drop height 0.5 m.

4.6.2 Time series
Time series of the pressures from drop heights of 0.5 m, 0.25 m and 0.1 m is shown in
figure 4.10 - 4.12. They represent typical pressure measurements from a drop test. For
each subfigure, the pressure from one row of sensors (i.e. same distance from apex) is
plotted. It is important to notice that during the first peak the other sensor rows have
not yet hit water. Figure 4.8 shows a sketch of the wedge upon water entry. In this
sketch, only sensor rows 1-3 are in contact with water, the above rows will at this time
not measure any impact pressure. The initial free surface is marked and the rise-up
along the body is included. The water will after rising along the body form a jet. It
can be assumed that the pressure in this jet is close to atmospheric pressure. In the
jet root however, the maximum pressure will occur. In the sketched stage of impact,
the peak pressure would occur at the third row of sensors which are situated in the jet
root marked by c(t). This can be observed in the measurements in figure 4.10 - 4.12
as well. The first row shows peak pressures first, and then the other rows follow. It is
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noted that the time axes in the plots does not represent the time after the wedge was
dropped, as the start time of measurements varies from drop to drop. The pressure
sensor numbering and location on the 5x3 panel is illustrated in figure 4.9 for reference.

Figure 4.8 – Sketch of wedge with pressure sensors upon water entry.

Figure 4.9 – Position and numbering of sensors at the 5x3 panel.
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Figure 4.10 – Pressure records for a 0.5 m drop(test 9807). From the top: Row 1-5.
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Figure 4.11 – Pressure records for a 0.25 m drop(test 9801). From the top: Row 1-5.
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Figure 4.12 – Pressure records for a 0.1 m drop(test 9810). From the top: Row 1-5.
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4.6.3 Pressure peaks
As seen in the time series the pressure will have a maximum value over each sensor.
The peak pressure will typically occur when the sensor row is located at the spray root.
Using Wagner’s theory (1932) the value of the maximum pressure can be estimated as

pmax =
1

2
ρV 2Cpmax (4.5)

where ρ is the density of water, V is the impact velocity and Cpmax is the maximum
pressure coefficient given as

Cpmax =
π2

4
cot2β. (4.6)

β is the deadrise angle of the wedge. Using these formulations and equation (4.2) for
the velocity the expected maximum pressures are

h = 0.1m pmax = 80kPa
h = 0.25m pmax = 200kPa
h = 0.5m pmax = 390kPa

Slamming is a phenomenon of a stochastic nature, so it is not expected that the pressure
peaks will be exactly equal to these estimates for all peak pressure measurements. The
mean of the maximum pressure over all sensors is found for all tests.3 All tests at a
given drop height is considered together and an average value is found for each drop
height. The relative standard deviation of the maximum pressure between all sensors
for all tests at equal drop height is also found. The results are presented in table 4.4.

Table 4.4 – Mean maximum pressure for each drop height together with the corresponding
relative standard deviation.

Drop Height [m] pmax [kPa] Relative STD [%]

0.1 83.3 13.5
0.25 215.9 13.5
0.5 402.6 20.0

The results agree well with the estimates made, being on the upper side of the predicted
values. As Wagner’s theory is expected to overestimate the pressure due to the flat plate
approximation, it is somewhat unexpected that the experimental values exceeds these
estimates. For 0.1 m drop height it could be explained by the velocity increase that is
occurring after apex initially hits water. Yettou et al. (2005) proposed estimating the
peak pressure using the instantaneous velocity:

pmax =
1

2
ρCpmax(V (t))2. (4.7)

In eq. (4.7), Yettou et al. (2005) used a Cpmax corrected for non-constant velocity.
Here the coefficient from Wagner is used. In section 4.4 the velocity for 0.5 m drop
height was considered constant during the pressure peaks. For 0.1 m drop height the

3Appendix B.3 - maxp.m
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velocity was found to increase slightly. Assuming this velocity change to be true, the
mean velocity across the sensor rows is 1.47 m/s. This will lead to an estimated peak
pressure of 85 kPa. For 0.25 m drop height the change in velocity could explain an
increase of 3 kPa for the peak pressure. This does not cover the observed gap between
theoretical estimate and experimental result. As the experimental peak pressures are
above the Wagner estimates for all drop heights, a velocity change is not a reasonable
explanation.

Peak pressures in a slamming experiment on a blunt body are expected to have a
stochastic nature (Faltinsen 2010). The standard deviations presented in table 4.4 may
therefore be considered normal. A larger relative standard deviation for the 0.5 m case
could be caused by the pressure behaviour becoming more stochastic as the impact
velocity increase.

4.6.4 Spatial pressure distribution
It is described in previous reports like Dobrovol’skaya (1969) that when the impact
velocity is constant, the magnitude of the spatial pressure distribution will be constant.
Yettou et al. (2005, 2006) reported from their drop tests with a two-dimensional wedge,
that a variation in velocity can change the spatial pressure distribution. To find out
if this could be the case in this experiments the spatial pressure distribution is found
for different time instants. One column of sensors is used to represent the spatial
distribution across the rows. For best accuracy, the column which does not contain any
later replaced sensors is used (sensor 1029 - 1008). The mean and standard deviation
of the pressure are found for all considered time instants over all tests at the same drop
height.

Plots of the spatial distribution at each time instant a sensor reaches its maximum
pressure value is shown for all drop heights in figure 4.13 to 4.15.4 Error bars are
included and the length of each error bar is two times the standard deviation. The
numbering of the time instants (t1 - t5) in the plot corresponds to the time where row
number n senses its maximum pressure. This means t1 corresponds to the time when
row 1 (closest to apex) is in the spray root. It is noted that the first peak (t1) is alone
because at this time instant only the first sensor row is in contact with water. The
thicker black line represents the peak pressures.

4Appendix B.4 - spatial2.m
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Figure 4.13 – Spatial pressure distribution along wedge surface at different times through
impact for 0.5 m drop height.

Figure 4.14 – Spatial pressure distribution along wedge surface at different times through
impact for 0.25 m drop height.
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Figure 4.15 – Spatial pressure distribution along wedge surface at different times through
impact for 0.1 m drop height.

Yettou et al. (2005) found that a reduced speed during impact led to a less steep
and more rounded curve with a lower peak pressure. As there are only five sensor
rows, the spatial distribution will not be smooth, which makes it harder to evaluate
how the spatial distribution changes with time. Even so, it is observed that the slope
from the measured point before peak pressure and peak pressure is quite constant for
all time instances. This indicates that a velocity change is not affecting the pressure
measurements. In section 4.4, the velocity was found to be constant for 0.5 m drop
height from t1 to t5. This agrees well with the slopes of the curves t1-t5 in figure 4.13,
that appear constant. For 0.1 m drop height, the velocity is increasing with 0.0112 m/s
from t1 to t5. Studying the pressures distribution in figure 4.15, one can observe that
the distance between the curves t1 to t5 is smaller than for the other drop heights. This
is consisitent with a velocity increase.

The black lines in figure 4.13 to 4.15 represent the peak pressure across the rows. It
is observed that the first row of sensors show a lower maximum pressure than row
two for all drop heights. For the very short time interval between t1 and t2 it is not
possible that a velocity change is the cause. It is assumed that this is some kind of
sensor error. After the second sensor row the pressure decreases for all drop heights. A
velocity change is again ruled out as an explanation. For 0.1 m drop height, the velocity
increases slightly across the rows which implies an increase in pressure. The opposite
behaviour is observed. Some other effect must be the reason for this decay across the
rows. This will be discussed in section 4.7.
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4.6.5 Pressure coefficient
The pressure coefficient is a non-dimensional measure of the slamming pressure and can
be expressed as

Cp =
p

1
2ρ(V (t))2 (4.8)

where p is the slamming pressure, ρ is the density of water, V(t) is the impact velocity
and t is time. Dobrovol’skaya (1969) and Zhao et al. (1993) both show that for a given
deadrise angle, the spatial shape of the pressure coefficient distribution is constant. This
holds when the assumptions of constant impact velocity and gravity neglected compared
to fluid accelerations are applicable. For the data analysed in this chapter, it means
that when the pressure is made non-dimensional it is expected that when plotting the
pressure coefficients for all drop heights they will fall into one curve. For the impact on
a 10◦ wedge, which is considered blunt, a steep curve is expected with a Cpmax = 80.
The spatial pressure distribution by Wagner’s theory (1932) is presented in figure 4.165.

In the literature, the pressure coefficient is normally plotted against the non-dimensional
water entry depth z

V t as in figure 4.16. As the time is not synchronized between the
drops in this experiment it is chosen to plot the pressure coefficient against the position
along the wedge. Values of Cp are found by taking the average of the measured pressure
at all repeated test for each drop height.6 To show the variation over the sensor rows
only one column (sensor 1029 - 1008) is used to avoid data from later replaced sensors.
Figure 4.17 shows the distribution of Cp at the time instant when the peak pressure
occurs at the fifth row of sensors. Cpmax is found to be 73, 76 and 67 for 0.1, 0.25 and 0.5
m drop height respectively. This is lower than the estimate of Cpmax = 80 by Wagner
(1932). In section 4.6.3, the peak pressures were found to exceed the Wagner estimate.
This was the mean over all sensors, while in figure 4.17 the peak pressure is from the
fifth sensor row. It is therefore noted that the peak pressure decrease with increased
distance from apex. It is also observed that the pressure coefficient in the tail reach
values well below the ones presented in figure 4.16 for all drop heights. This discrepancy
increases with decreasing drop height.

The curve for 0.1 m drop height shows a behaviour differing from the other two curves.
At the considered time instant, the first row of sensors show a higher pressure than
the second and third row. If the tails of the pressure peaks approach zero at the same
speed the pressure over sensor row three would clearly be expected to last longer than
the pressure from the first sensor row. Investigating the time series, it appears as if the
second and third row has a much quicker decay than the other rows. This is shown in
figure 4.18 and the same behaviour is found along this sensor column for all repeated
tests at 0.1 m drop height. For 0.25 and 0.5 m drop height this is not the occurring.
Unfortunately, the tests for 0.1 m drop height are performed after the tests on the other
two heights. Therefore, one cannot conclude that this is a sensor error occurring in this
round of experiments (0.1 m), or if it is something else happening for this exact drop
height. Possible explanations will be discussed in section 4.7.

5Appendix A.1 - findtau.m
6Appendix B.5 - pressurecoeff.m
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Figure 4.16 – Spatial pressure distribution from Wagner’s theory as a function of non-
dimensional water entry depth.

Figure 4.17 – Pressure coefficient as a function of the distance along the wedge compared
for all drop heights when peak pressure is at the fifth sensor row.
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Figure 4.18 – Pressure time series for sensors 1029 - 1008 along the wedge for 0.1 m drop
height. The time instant investigated is marked with corresponding pressure
values for sensor rows 1, 2 and 3.

4.6.6 Slamming pressure duration
Parameters characterising slamming on a blunt rigid body from a hydrodynamic point
of view were illustrated in figure 4.1. The pressure distribution and maxima on the
wedge have already been investigated. Another important feature is the time duration
and spatial extent of the slamming pressure. The initial high pressure peaks are directly
connected with the sudden impact with water, but as the previously illustrated time
series show the pressure has a long tail after the maximum pressure. After some time
the pressure is no longer defined by the slamming phenomenon itself, but is a result of
other factors such as gravity. In figure 4.1 the spatial extent of the slamming pressure
is denoted ∆Ss and include the pressure exceeding 50% of maximum pressure.

In this analysis, a choice is made to look at the time duration of the slamming pressure
(rather than the spatial extent). The time associated with the slamming is important
when considering possible excited natural frequencies of sensors and test rig. It will
also give a better representation of the decay of pressure observed for different drop
heights. The slamming pressure duration is found as the mean time duration for all
involved sensors where the pressure is above 50% of peak pressure.7 In table 4.5 the
mean duration for each drop height is presented together with the standard deviation.
The duration of the slamming pressure at a fixed point on the body is expected to
be in the order of milliseconds or less (Faltinsen 1990), and that is the case for these
experimental results as well.

The observed trend for these tests indicates that the time duration increases with
decreasing drop height. As discussed in section 4.6.5, a longer tail is found for sensor
1029 at 0.1 m drop height. Removing this sensor from the calculation of the mean
duration only leads to a reduction of approximately 3 %. The conclusion that the

7Appendix B.6 - decay.m
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longest duration is found for the 0.1 m case can therefore be drawn regardless of the
behaviour of sensor 1029.

Table 4.5 – Duration of slamming pressure over each row for all tests and heights.

Drop Height [m] Mean duration [ms] Standard deviation [ms]

0.1 0.248 0.082
0.25 0.198 0.048
0.5 0.180 0.072

4.6.7 Re-evaluation of velocity
In section 4.4, the velocity change between the first and last pressure peak over the
sensor rows were found. The change proved to be small or zero for all drop heights.
The time it takes for the peak pressure to travel from the first sensor row to the last
varies from 3.2 ms for 0.1 m drop height, to 0.9 ms for 0.5 m drop height. From the
results in table 4.5, it is observed that the duration of the slamming pressure is much
smaller than this time range. From this observation it can be concluded that a velocity
change will not affect the decay of the pressure during the slamming pressure duration.
The time scale is too small for the velocity to change and affect the pressure in the early
part of the pressure tail.

4.6.8 Negative pressures
In the time series presented in section 4.6.2, negative pressures are reoccurring right
before the rise of the pressure peaks. It is especially evident for the lowest drop
height. MARINTEK (K. Berget 2015, pers. comm., 18 March) informs that from
experience with previous drop tests, this negative pressure is a recurring problem for
the Kulite pressure sensors. Berget also informs that the negative pressure is a local
phenomenon and not dependent on the value of the measured pressure itself. For this
reason he expects that the smallest drop height will experience the largest relative
negative pressure. MARINTEK assumes that the reason for the negative pressures is a
temperature shock in the sensor. When the sensors are switched on, an electric current
travels through the sensor front and heats it up slightly. Even though the water and
air are at equal temperature, the sensors will be warmer than the water due to this
electrical heating when initially penetrating the water surface. They assume that this
effect can last throughout the time series and even lower the results in the tail of the
pressure measurements.

The results of an investigation of the mean negative pressure experienced over all sensors
for each drop height are presented in table 4.6.8 The relative minimum to the maximum
pressure for each drop height is also given as well as standard deviation and relative
standard deviation. As predicted, 0.1 m drop height shows a larger relative negative
pressure, almost twice of the two other heights. If the negative pressure was completely
unaffected by the drop height the minimum pressure should be the same for all drop
heights, with a changing relative value. It can be seen in the table (4.6) that for 0.5 m
drop height the mean negative pressure is twice as large as the other two. This could be
due to the increased impact velocity, which may lead to a larger shock in the sensor due
to a quicker temperature change. Kulite will not respond to any of these observations.

8Appendix B.7 - minp.m
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Table 4.6 – Data for negative pressures: pmin = Mean minimum pressure, σ = Standard
Deviation for minimum values, pminrel

= Mean minimum pressure relative to
mean maximum pressure, σrel = Relative standard deviation as percentage of
mean minimum pressure.

Drop Height [m] pmin [kPa] σ [kPa] pminrel
[%] σrel [%]

0.1 -12.15 4.85 -14.6 4.0
0.25 -16.6 5.60 -7.7 3.4
0.5 -28.6 6.86 -7.11 2.4

To check the assumption of a temperature shock causing the negative pressures the
initial drop tests are investigated. If a temperature shock is the cause, the same values
will be expected for the initial drop tests as for the final. It is chosen to analyse the
0.1 m drop height case as it shows the largest relative negative pressure. The same
procedure is carried out, finding the mean negative pressure over all sensors. Taking
the mean over the three tests performed for 0.1 m drop height the negative pressure is
-7.74 kPa. This is only 64 % of the value from the final drop tests. From this result one
may suspect that there is something about the final drop tests causing larger negative
pressure values.

A final remark on a temperature shock causing the negative pressures is made looking
at an arbitrary pressure time series in figure 4.19. If the negative pressure was affecting
the whole pressure time series one would expect a lower peak pressure for the sensors
with corresponding low negative pressures. This is not what is observed. The first peak
is the highest, even though the negative pressure before this peak is one of the lowest.
For the fourth peak there is no negative pressure, but the peak has the same value as the
previous peak which experiences a negative drop. These observations do not support
the assumption of a lasting effect of the negative pressures. A lasting thermal zero
shift in the sensors is not present as the measured pressure after the wedge is stopped
corresponds to the hydrostatic pressure.

Figure 4.19 – Pressure time series for 0.1 m drop height for visualization of negative
pressures. (test 9810, sensor 1029-1008) .

The time scale observed for the negative pressures is short and comparable to the rise
of the pressure peaks. A thermal shock is not expected to be so quick, but to be drifting
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through the time series. A last explanation for the negative pressure will be presented.
The negative pressures can be linked to the curvature of the Kulite sensors front (C.
Lugni 2015, pers. comm., 19 May). The sensor front is not completely flat, but has
a curvature inwards. Inside this curvature, air can be trapped during impact. When
impact occurs this air will be compressed. A compression of air would cause a positive
pressure that can be observed before the negative drops. When the air cavity expands
again during a collapse this will cause a negative pressure. This explanation is more
likely considering both the small increase in pressure before the negative drop and the
involved time scale of the negative pressures.

4.7 DISCUSSION OF RESULTS FROM PRESSURE ANALYSIS

From the analysis of the measurements from the pressure sensors there are results
that deviates from the expected behaviour. The small changes found in the velocity
during impact from section 4.4 is not a suited explanation for these unexpected features.
From the analysis carried out in section 4.6 the following phenomena need further
investigation:

1. The spatial distribution of maximum slamming pressure show a decay as the
distance of the sensor position from apex increase. The decay occurs for all drop
heights, so a velocity change can not explain it as the velocity is constant for 0.5
m drop height.

2. The spatial distribution of the pressure coefficient is below the Wagner (1932)
estimate. This is for both maximum pressure coefficient and in the tail of the
curve. The deviation from Wagner increase with decreasing drop height.

3. A much quicker decay towards zero is experienced by some sensors in the panel
during the tests with 0.1 m drop height.

4. Negative pressures are reoccurring before the rise to peak pressure for all drop
heights. The amount of the negative pressure relative to peak pressure is larger
for 0.1 m drop height than for the other heights.

For the negative pressure mentioned in item four, the explanation is expected to be
air that is trapped over the sensor front during impact. This conclusion is made based
on the involved time scale of the negative pressures as well as the small positive value
observed before the pressure drop. It is stressed that this is a best guess. Video
recordings or flow visualization from the experiment would be necessary to verify it. As
this is not available, this phenomenon needs further experimental investigation to be
entirely understood.

For the other three items listed above, three physical effects will be investigated in the
search for an explanation. That is three-dimensional effects, hydroelasticity and sensor
errors. The effects will be discussed in the following.
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4.7.1 Three-dimensional effects
The pressure coefficients are lower than predicted by Wagner (1932). A lowering of the
pressure can be caused by three-dimensional effects. As the column of sensors analysed
in section 4.6.5 is on the side of the panel and not from the middle column it would be
more vulnerable to such effects. The pressure can ’leak’ out on the sides. If the sensor
columns closer to the edge of the panel was affected they may show a different pressure
time history than the middle column. A comparison of the time history of all sensors in
the first row is shown in 4.20 for a) 0.1 m and b) 0.5 m drop height. The test for 0.1 m
height shows scatter in peak pressure, time instance of peak pressure and in the pressure
tail. None of this can be observed for 0.5 m drop height. If three-dimensional effects
were present, the pressure would be lower for the outer sensor columns represented by
sensor 1029 and 1019. It seems like sensor 1029 is responding to 0.1 m drop height in a
different way than the others. For 0.25 m drop height, the plot corresponds to the one
for 0.5 m, but with sensor 1029 showing slightly higher values in the tail. This is most
likely a sensor error rather than three-dimensional effects.

(a) (b)

Figure 4.20 – Pressure history of row 1 for a) 0.1 m and b) 0.5 m drop height.

To check the possibility of three-dimensional effects in all tests, mean peak pressure
for each sensor column is calculated.9 If three-dimensional effects are affecting the
measurements, a higher mean pressure will be expected in the middle column (sensor
1020-1005). The result of this check is presented in table 4.7. The middle sensor column
is denoted Column 2 while the two on each side are denoted Column 1 (sensor 1029-
1008) and Column 3 (sensor 1019-1003). The results imply that three-dimensional
effects are not affecting the mean pressure peaks as the middle column shows no trend
of higher peak pressures.

It is noted that the distance between the columns investigated here is small as the
pressure sensors are located on the force panel, which is only covering a small area
of the wedge surface width. Due to this, possible three-dimensional effects may not
show using this approach of analysing the pressure for each column as the difference
in distance to the edge is relatively small. Three-dimensional effects can lead to other
phenomena than lower peak pressure. The flow regime is changed as well as the added
mass changing from the two-dimensional estimate. A further check for three-dimensional
effects will be carried out in the following.

9Appendix B.8 - threedim.m
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Table 4.7 – Mean peak pressure in kPa over each sensor column. Middle column: Column
2 (sensor 1020-1005). Side columns: Column 1 (sensor 1029-1008) and
Column 3 (sensor 1019-1003).

Drop Height [m] Column 1 [kPa] Column 2 [kPa] Column 3 [kPa]

0.1 86 82 82
0.25 209 220 218
0.5 387 411 424

4.7.1.1 Analytical model for three-dimensional effects

Yettou et al. (2006) developed an analytical model for the impact of rigid wedges with
varying velocity. This model also includes three-dimensional effects, using a correction
factor from the theory of Zhao et al. (1996). The correction factor is defined as

f3D =
F3

F 2D
3

, (4.9)

where F3 is the vertical force per unit length of the wedge section and is defined as

F3 =
d

dt

(
0.5ρπB2(t)V f

(
B

L

))
. (4.10)

The ratio (B/L) is the breadth/length ratio of the intersection between the instantaneous
free surface and the body surface. F 2D

3 is the two-dimensional vertical force on the
body which is valid when (B/L) approaches zero. Meyerhoff (1970) calculated the
added mass of rectangular flat plates with a generalisation of Wagner’s theory to three-
dimensional flow. From these results different values of the factor f3D can be found as
a function of the ratio (B/L). The following values are presented by Zhao et al. (1996):
f3D(0.25) = 0.95, f3D(0.4) = 0.87 and f3D(0.5) = 0.80. f3D(0.5) = 0.80 means a 20%
reduction of the vertical force caused by three-dimensional effects.

For the analysed experiment, the length of the wedge is 280 mm. The factor f3D is
evaluated at the time instances where the instantaneous free surface (spray root) is
intersecting with the sensor positions. For the first row of sensor placed at a breadth
B=84 mm, (B/L)=0.3. For the last sensor row B=123 mm, (B/L)=0.44. From the
above estimates of the correction factor one can assume a reduction of 10% for the first
sensor row and 15% for the last. This implies that three-dimensional effects should be
considered for this two-dimensional experiment. A small reduction is found from the
correction factor, but it is sufficient to assume that three-dimensional effects cannot be
disregarded.

From the values of the correction factor at the upper and lower sensor postions it can
be assumed that the pressure will reduce as the distance from apex increase. In section
4.6.3 the maximum pressure was plotted as a function of sensor position. It was observed
that the maximum pressure decreased across the sensor rows. This is found to be the
behaviour across the rows for all tests at all drop heights. Three-dimensional effects
are therefore considered a possible explanation for this behaviour. Although, with the
experimental set-up used, it is not likely that the effects will be strong.
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4.7.2 Hydroelasticity
Faltinsen (2000) states that when the deadrise angle is small, hydroelasticity should be
considered. Hydroelasticity is a dynamic interaction between structure and fluid. It is
excited when the highest wet natural period of the structure is comparable to or higher
than the loading time of the slamming. Other natural periods can also matter, but it is
often the highest one that is excited. For this experiment, vibrations of the force panel
that the pressure sensors are mounted on would be the source of structural vibrations.
Such vibrations can affect the pressure over the panel. Bereznitski (2001) describes a
reduction of pressure to be a possible effect of hydroelastic behaviour. The possibility of
hydroelasticity causing the quicker decay of some sensors towards zero and a reduction
in peak pressure across the rows is considered.

4.7.2.1 Comparison with pressure from initial drop tests

As an attempt to see if hydroelastic behaviour is influencing the measurements, the
pressure from the initial drop tests are compared to the final drop tests10. Since the
initial drop tests are performed without the force panel, no vibrations are expected to
occur during these tests. The initial drop test pressure panel consists of 6x6 sensors
starting 62 mm from apex. They are not placed at the same positions as the sensors
in the final drop tests, and the two tests can therefore not be compared directly. This
is solved by generating pressure time series for each panel using the Matlab code of
Wagner theory (1932) to compare against11. If the tests with and without the force
panel show different behaviour compared to Wagner time series, hydroelastic behaviour
in the final drop tests may be suspected. The results of this comparison is shown in
figure 4.21.

(a) (b)

Figure 4.21 – Pressure time series from drop test compared to time series generated by
Wagner (1932) Matlab code for 0.1 m drop height for the two cases: (a)
final test with force panel present (Test 9810) and (b) initial test without
force panel.

From figure 4.21 it can be observed that the pressure peaks are in general larger for the
initial drop test without a force panel present. For the initial test, the average maximum

10Appendix B.9 - hydroelasticity.m
11Appendix A.2 - maketimehistory.m
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pressure over all sensors is 90.3 kPa with a standard deviation of 15 kPa. For the final
test with the force panel present the average maximum pressure is 82.5 kPa with a
standard deviation of 12 kPa. The experimental pressure peaks are underestimated by
Wagner’s theory, which is not expected. And the deviation from Wagner’s estimate
of 80 kPa is larger for the initial tests. It was found in section 4.4 that the velocity
for the final test presented here was 1.463 m/s during the first pressure peak. For the
initial test, the velocity at the first pressure peak is actually lower, being 1.450 m/s.
This means a higher velocity for the inital test is not the reason for the higher peak
pressures.

The pressure peaks have a noticeable different distribution along the rows. For the final
drop test (a), the maxima are larger closer to apex and then they decrease and get
closer to the Wagner prediction. For the initial drop test (b), the experimental maxima
show an oscillatory nature. The frequency of this oscillation is roughly estimated to
be 1300 Hz. This same oscillating peak behaviour at 1300 Hz is found across all rows
for all sensors for this specific panel and drop height in the initial tests. A possible
explanation could be small disturbances in the free surface. If the free surface is not
completely flat, small wrinkles can change the local deadrise angle between water and
body. This will change the pressure peaks correspondingly. Nevertheless, a frequency
of 1300 Hz is considered too high to support this explanation. No further comments are
made on these oscillations.

It is also noted that the pressure measurements for the initial drop tests show more
oscillations than the final drop test. If hydroelasticity affected the measurements it
would be expected that the final drop test with the vibrating force panel showed this
behaviour, not the other way around. The time duration of the slamming pressure
(being 50 % of maximum pressure) appears to correspond quite well for the two cases.
In general there are no differences between the two recorded pressure time series that
indicates hydroelasticity to be affecting the pressure data of the final drop tests.

4.7.3 Error analysis of pressure measurments

Two of the listed items in this discussion of the results can possibly be explained by
being inside a pressure measurement error range. That is the spatial distribution of the
pressure coefficient and the spatial distribution of maximum pressure. These results
have been presented as mean values together with standard deviations. The standard
deviation will quantify the precision error, which is the error that can be found from
repetition of an experiment. The other type of error is the bias error. Bias errors
cannot be measured from repetition of experiments, but can be estimated based on
experience and educated guesses (Steen 2014). In this section the error propagation
wil be investigated, that is the combined effect of all independent error sources on the
measurements. The error propagation can be defined by the root sum square method
(Steen 2014) as

e =
√
e2
P + e2

B (4.11)

where eP is the total precision error and eB is the total bias error. To estimate the total
error, all possible error sources must be identified. It is not easy to identify all sources.
As an error analysis is not a fundamental part of this thesis only some error sources will
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be investigated, and the procedure is simplified. For the precision error the standard
deviations will be used. For the bias error two sources will be considered:

1. An error in the measured velocity

2. The presence of small disturbances on the free surface

4.7.3.1 Estimation of bias error
For a measurement X the reduction equation can be defined as

X = fr(Y1, Y2..., YN ) (4.12)

where fr is a function of N parameters Y1...YN denoted elemental error sources (Steen
2014). It is assumed that a small change in a parameter Yi will result in a small change
in the measured value X. By using Taylor expansion the error ei from an elemental error
source Yi can be defined as

ei =
∂X

∂Yi
∆Yi. (4.13)

The value of ∆Yi is unknown, but some small deviations from the predicted value will be
evaluated. This can also be considered a sensitivity analysis. To estimate the effect of
the change of Yi on the measurement X classical Wagner theory (1932) will be applied.
∂X
∂Yi

is denoted the influence coefficient, κi.

First a small variation in velocity will be considered. From section 4.4 an estimate of the
velocity error was made comparing the experimental initial velocity to the theoretical
value from energy conservation. From Wagner the maximum pressure is defined as

pmax = Cpmax

1

2
ρV 2 =

π2

4
cot2β

1

2
ρV 2 (4.14)

where Cpmax is the maximum pressure coefficient, β is the deadrise angle and V is the
impact velocity. Deriving this expression with respect to velocity and insert for β = 10◦

and ρ = 1000 kg
m3 the sensitivity to variation in velocity on pmax in kPa is:

κvel = 80V. (4.15)

In eq. (4.15) the velocity V is the theoretical value of the initial velocity. The velocity
error estimates from section 4.4 are used. The corresponding error estimates from the
velocity variation for the peak pressure is presented in table 4.8 using eq. 4.13.

Table 4.8 – Error estimate for maximum pressure due to a variation in velocity. The
velocity error is found in section 4.4. Here the absolute value is used.

Drop Height [m] Error [m/s] Error [kPa]

0.1 0.002 ±0.224
0.25 0.001 ±0.177
0.5 0.040 ±10.02

48



DISCUSSION OF RESULTS FROM PRESSURE ANALYSIS

If small wrinkles or waves are present on the free surface this can change the local
deadrise angle. This can change the maximum pressure coefficient and thereby the
maximum pressure. Using the maximum pressure coefficient from Wagner (1932) the
influence coefficient is found by numerical derivation of the maximum pressure coefficient
around β = 10◦. A linear approximation at this point show a influence coefficient
κβ2 = 16.2.

In the above influence coefficient β = 10◦. From the experimental set up there is a
difference in the deadrise angle on each side of the wedge of ±0.004◦. Considering the
possibility of small disturbances in the free surface the variation in deadrise angle is set
to ±0.5◦. Error estimates for the maximum pressure and maximum pressure coefficient
due to this variation are shown in table 4.9.

Table 4.9 – Error estimate for max. pressure pmax and pressure coefficient CPmax
due to

a variation in deadrise angle of ±0.5◦.

Drop Height [m] Error on pmax [kPa] Error on CPmax [-]

0.1 ±7.94 ±8.10
0.25 ±19.87 ±8.10
0.5 ±39.73 ±8.10

4.7.3.2 Total error evaluation

Together with the estimated error from a variation in velocity and local deadrise angle,
the sensor error given by the manufacturer will also be included. For the Kulite CT-
190 (M) pressure sensors it is specified that the combined non-linearity, hysteresis and
repeatability error is 0.5% of full scale measurements. The sensors used are designed
for a pressure input range of 350 kPa. This means the sensor error on the maximum
pressure can be set to 1.75 kPa.

The total error on the maximum pressure is presented in table 4.10 by using eq. (4.11).
Including the sensor error may be counting some error sources twice as the standard
deviation is also included. For simplicity, the standard deviation is taken as the mean
standard deviation of all pressure peaks for each drop height.

Table 4.10 – Total error estimate for pmax. e∆V = error due to a variation in velocity,
e∆β = error due to a variation in deadrise angle, esens = error from sensor
specification, eP = precision error from standard deviation, etot = total error.

Drop Height [m] e∆V [kPa] e∆β [kPa] esens [kPa] eP [kPa] etot [kPa]

0.1 ±0.224 ±7.94 ±1.75 ±11.25 ±19.33
0.25 ±0.177 ±19.87 ±1.75 ±27.68 ±47.61
0.5 ±10.02 ±39.73 ±1.75 ±80.67 ±121.66

Considering the total error relative to the mean maximum pressure for each drop height
a percentage ratio of 23.2, 22.0 and 30.2 % is found for 0.1, 0.25 and 0.5 m drop height
respectively. The observed decay in maximum pressure with increasing distance from
apex found in section 4.6.4 will now be evaluated with the total error estimate. The
decrease in maximim pressure from the first sensor row to the last is 16, 35 and 93 kPa
for 0.1, 0.25 and 0.5 m drop height respectively. These changes in pressure is within
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the total error range presented in table 4.10. It is therefore concluded that the decay
observed should not be overemphasized as it can be an effect of errors in the pressure
measurements.

For the maximum pressure coefficient the total error is presented in table 4.11. The
standard deviation is included, taken as the mean value of the standard deviations at
each drop height. The error given by the sensor manufacturer is also included as a
possible variation in maximum pressure. For the maximum pressure coefficient this
gives a influence coefficient:

κsens =
2

V 2
(4.16)

Table 4.11 – Total error estimate for CPmax . e∆β = error due to a variation in deadrise
angle, esens = error from sensor specification, eP = precision error from
standard deviation, etot = total error.

Drop Height [m] e∆β [-] esens [-] eP [-] etot [-]

0.1 ±8.10 ±1.79 ±4.25 ±12.71
0.25 ±8.10 ±0.71 ±0.17 ±8.83
0.5 ±8.10 ±0.36 ±13.78 ±21.88

In section 4.6.5 the maximum pressure coefficients were found to deviate from the
prediction by Wagner (1932) of CPmax = 80. The experimental values for CPmax were
73, 76 and 67 for 0.1, 0.25 and 0.5 m drop height respectively. The deviation from the
Wagner value is therefore 7, 4 and 13, which is inside the total error range from table
4.11. It is therefore possible that the lower results for pressure coefficients relative to
the expected values are due to experimental errors.

4.7.4 Final remarks on the pressure analysis
Before the analysis of the pressure measurements was carried out in section 4.6, the
velocity was investigated. The fact that there are no available acceleration recordings
from this experiment makes the velocity an important parameter. From the analysis in
section 4.4, the velocity was found to be constant for 0.5 m drop height. The change in
velocity increased with decreasing drop height. Even so, the velocity change is uncertain
due to the derivation and filtering used in the process of obtaining the velocity. It is
therefore decided that a change in velocity is not an explanation for any observed
features in the pressure analysis.

Mean peak pressures from the experiment are above the predicted value by Wagner
(1932). This is not expected. In a slamming experiment, a static and a dynamic
calibration of the pressure sensors are standard procedure. Wagner’s theory is often
used as the real value of the peak pressure during the dynamic calibration. It is a
possibility that the high pressure peaks are due to an error in the calibration factor.
The factor is unknown, so this suggestion cannot be investigated further in this thesis.

For the spatial distribution of the pressure, the peak pressure was found to decrease
with increasing distance from apex. Three-dimensional effects are considered, and it
is possible that there is some small effect for the upper sensor rows. Regardless, the
small gap between tank wall and wedge argues that three-dimensional effects are not
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severe for this experimental set-up. It is therefore concluded that measurement errors
investigated in section 4.7.3 is the most likely reason for the decrease in peak pressure.
The same conclusion is drawn for the spatial distribution of the pressure coefficient,
which is lower than predicted by the asymptotic solution.

Several explanations for the negative pressures that occur before the pressure peaks
have been established through conversations with researchers familiar with the Kulite
sensors. A temperature shock was the preliminary conclusion. Based on the short time
duration of the negative pressures and no visible effect of it in the peak or the tail
of the pressure time series, this explanation is precluded. The believed reason for the
negative pressures is air being trapped in the curvature of the Kulite sensor surface.
This conclusion is supported by the positive pressures occurring before the negative
drop, which agrees with air being compressed during initial impact with water.

The above explanations for the observed behaviour of the pressure cannot be verified.
There are no video recordings or flow visualizations made in the experiment. Without
this, the explanations presented here are the best educated guesses that can be made
considering the information available.
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4.8 FORCE ANALYSIS

4.8.1 Filtering
The measured signal from the force panel is strongly affected by noise and dynamical
disturbances from the panel sensor mass. From the hammer tests performed at
MARINTEK, the natural frequency of the force sensors used in the combined force and
pressure panel was found to be around 400 Hz. Looking at the unfiltered force signal
in figure 4.22, the dynamical disturbance can be seen clearly in the tail after maximum
force. The force measurements are oscillating at a frequency of 400 Hz approximately,
which is also seen in the FFT’s. To remove the dynamic disturbance a fourth order
band stop filter is applied with cut-offs at 350 Hz and 450 Hz. Noise is also visible in
the signal and is removed by applying a fourth order low pass filter at 600 Hz.12

4.8.2 Time series
Figure 4.22, 4.23 and 4.24 show the development of the force on the force panel during
impact. Both the filtered and original signal is included in the plots to display the effect
of the filtering. It appears that the filtering causes a change in the rise time, which
should be noted during further investigation of this part of the force development.

Figure 4.22 – Force panel signal vs. time for 0.5 m drop height (Test 9807). Original and
filtered signal presented.

12Appendix B.1 - analyse.m

52



FORCE ANALYSIS

Figure 4.23 – Force panel signal vs. time for 0.25 m drop height (Test 9801). Original
and filtered signal presented.

Figure 4.24 – Force panel signal vs. time for 0.1 m drop height (Test 9810). Original and
filtered signal presented.
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4.8.3 Comparison with integrated pressure
Integrated average pressure measured by the pressure sensors are compared to the force
signal.13 The unfiltered force measurements are used to include the correct rise time
lost with the filtering. In figure 4.25 - 4.27 the results of this comparison are presented.
By using the average pressure over all sensor rows at all sampled time instances, the
force is found by multiplying this with the force panel area. The integrated pressure
appears very jagged during the rise phase of the force, which is due to the finite spacing
between the pressure sensors.

For 0.5 m drop height (figure 4.22) the agreement between force signal and integrated
pressure is satisfying. As the drop height decreases, a larger discrepancy is found,
especially in the tail after maximum force. For 0.25 m drop height (figure 4.23) the
agreement is good during the rise up to maximum force, but in the tail the integrated
pressure has a quicker decay than the force signal. For 0.1 m drop height (figure 4.24)
this discrepancy in the tail becomes much more evident. The integrated pressure during
the rise of the force is also clearly below the force signal.

For 0.1 m drop height, the force signal displays a deviation from zero before the force
rise to its maximum. This deviation starts about 0.15 seconds before the rise and
has an average value of approximately 5 N. Evaluating the position measurements, it
appears that this deviation starts at the exact time instant where the wedge is released.
As this deviation is seen in the end of the measurements as well, a correction is made,
subtracting 5 N from the force measurements. It is not sufficient to make the comparison
satisfying. This deviation is assumed to be caused by missing zero measurements, but
this is not confirmed. Part of the explanation for the large discrepancy observed for
the lowest drop height especially might be a loss of local details caused by the use of
average pressure over the panel to estimate the force.

Figure 4.25 – Force panel signal compared to force from averaged pressure for 0.5 m drop
height (Test 9807).

13Appendix B.10 - integral.m

54



FORCE ANALYSIS

Figure 4.26 – Force panel signal compared to force from averaged pressure for 0.25 m drop
height (Test 9801).

Figure 4.27 – Force panel signal compared to force from averaged pressure for 0.1 m drop
height (Test 9810).
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4.8.3.1 Uncertainty of pressure integration

The method used to integrate the pressure time series may not be optimal. An average
value at each time instant is used, which will cause a loss of local details and a possible
reduction of the actual pressure over the panel. For the first row of sensors, the
calculated average pressure should be quite correct. The problem occurs in the later
rows where the average pressure will be affected by the quickly decreasing pressure of
the previous rows. This can lead to an underestimation of the pressure that will be
enhanced with time. This effect would be present at all drop heights. Therefore, it
is considered a source of uncertaintly, rather than an explanation for the increasing
discrepancy with decreasing drop height.

4.8.4 Comparison with classical Wagner theory
The large discrepancy between the integrated pressure and the measured force for 0.1 m
drop height is further investigated by comparison with classical Wagner theory (1932)14.
Wagner used a flat plate approximation to solve the boundary value problem as a blunt
rigid body penetrates the free surface with a constant water entry velocity. In the
project thesis a Matlab code was developed to generate pressure time series based on
Wagner’s theory15. Pressure time series are now generated using Wagner’s theory at
the actual sensor positions along the wedge. Assuming the pressure distribution in time
and space from Wagner to be applicable for this experiment, the generated pressure
time series can be integrated and compared with the force measurements. The results
from this comparison are presented in figure 4.28 and 4.29 for 0.5 and 0.1 m drop height
respectively.

As it is previously found that the experimental maximum pressure corresponds well
with the Wagner maximum, the theory is considered somewhat applicable. Even so,
one should be aware of the weaknesses of using Wagner’s theory for this experiment. As
the theory is valid for blunt bodies (small deadrise angles), this experiment is already in
a more uncertain zone, evaluating a 10◦ deadrise angle. It is also noted that even though
the Wagner theory is considered quite reliable for estimating maximum pressures, it will
give poorer results for force estimates. Another important aspect is the neglected gravity
assumed in this theoretical model, which is only valid when the fluid accelerations are
large. The estimates of pressures and forces from Wagner will only be valid until gravity
becomes important. This means that after some time the results from Wagner will
overestimate the force and pressure.

Some observations can be made for both drop heights. In figure 4.28 for 0.5 m
drop height the Wagner integrated pressure is in good accordance with the measured
integrated pressure during the rise of the force. The force from Wagner grows larger
than the measured values towards the peak and throughout the tail it preserves a larger
value. This behaviour is expected due to the neglected gravity.

For 0.1 m drop height, it has been established that the experimental integrated pressure
does not compare well with the force measurements. In figure 4.29 a very good
agreement is observed between the measured force signal and the Wagner integrated
pressure. Such a good comparison is not expected. The expected behaviour is in
accordance with what is observed for 0.5 m drop height, with the Wagner integrated
pressure overestimating the measured values after some time. During the jagged part of

14Appendix B.10 - integral.m
15Appendix A.2 - maketimehistory.m
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the experimental integrated pressure (caused by the pressure peaks), the large deviation
from the integrated pressure by Wagner is surprising. From section 4.6.3, the pressure
peaks for 0.1 m drop height are found to be close to the Wagner estimates. This could
indicate that the measured force show values higher than the real ones. Explanations
for the discrepancy will be discussed further in section 4.9.

Figure 4.28 – Force panel signal compared to force from averaged experimental pressure
and averaged pressure from Wagner (1932) for 0.5 m drop height (Test
9807).

Figure 4.29 – Force panel signal compared to force from averaged experimental pressure
and averaged pressure from Wagner (1932) for 0.1 m drop height (Test
9810).
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Another comparison with Wagner’s theory is made using an expression for the force
over the force panel by mathematically integrating the pressure16. By Greco (2012) we
have the two-dimensional vertical force along a wedge expressed as:

F3 =

c(t)∫
xa

p(t)dx =
ρV 2cπ

2 tanβ

(
π

2
− arcsin

(
xa
|c|

))
(4.17)

where xa and c(t) are the horizontal coordinates of the start of the force panel and
the spray root respectively, β is the deadrise angle, V is the impact velocity and p(t)
is the pressure from Wagner (1932). The maximum force on the force panel will take
place at the time instant when the spray root is at the upper edge of the force panel,
i.e. when the panel is fully submerged. Defining the upper horizontal coordinate of the
force panel as xb the maximum vertical force on the panel can be defined as

F3max =
ρV 2xbπ

2 tanβ

(
π

2
− arcsin

(
xa
|xb|

))
. (4.18)

To make the force three-dimensional it is multiplied by the width of the panel, which
in this experiment is 60 mm. The results are presented in table 4.12 together with the
corresponding experimental averaged maximum force for each drop height. Percentage
values are also given for the ratio between the experimental and theoretical force. It
is expected that the theoretical value will overestimate the force. It is observed that
for 0.5 and 0.25 m drop height the force ratio is equal while for 0.1 m drop height the
experimental force show a higher value compared to the theoretical estimate. This can
be interpreted as an indication of the force measurements for 0.1 m drop height showing
values that are higher than the actual value.

Table 4.12 – Maximum force on force panel based on Wagner’s theory (1932) compared
to experimental values.

Drop Height [m] Wagner F3 max [N] Experimental F3 max [N] Force ratio [%]

0.1 136.9 94.1 68.7
0.25 342.2 184.0 53.8
0.5 684.4 369.6 54.0

4.8.5 Duration of slamming force
The duration of the slamming force is defined as the time period where the force
measurements are above 50 % of the maximum force. To find the duration the filtered
force measurements are used. From the time axes in figure 4.22 - 4.24 the duration
of the slamming force appears to increase with decreasing drop height. Investigating
this further shows that the duration is 9, 5 and 3 ms for 0.1, 0.25 and 0.5 m drop
height respectively17. This behaviour is expected. Wagner (1932) also predicted that
the wetted surface will increase linearly with the impact velocity. The loading time

16Appendix B.11 - Forcean.m
17Appendix B.6 - decay.m
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depends on the change of wetted area. A slower increase in wetted surface (lower
velocity) will therefore lead to a longer duration of the vertical force on the body.

For the slamming pressure, the longest duration occurs for 0.1 m drop height as well.
Even so, figure 4.24 shows that the integrated pressure decreases a lot quicker than the
force measurements for this drop height.

4.8.6 Rise time
The rise time of the force from zero to maximum is investigated. As mentioned, the
filtering appears to cause a longer rise time. To avoid this, the start time of the rise
is taken from the unfiltered time series while the time of maximum force is taken from
the filtered time series to avoid dynamic amplification. The results are presented in
table 4.13 with all values in milliseconds. For a comparison the rise time predicted from
Wagner’s theory (1932) is included. The estimates from Wagner agree well with the
experimental values.

Table 4.13 – Results for force rise time. texp = mean rise time for each drop height, σ =
standard deviation between tests, tWag = predicted rise time from Wagner’s
theory (1932).

Drop Height [m] texp [ms] σ [ms] tWag [ms]

0.1 4.97 0.13 4.74
0.25 2.64 0.12 2.99
0.5 1.86 0.08 2.12

If the rise time of the force is close to the natural period of the panel the measurements
will be more exposed to dynamic amplification. The natural period of the panel is 2.5
ms. This is closest to the rise time for 0.25 m drop height. The drops from 0.1 m drop
height should be the least affected by dynamic amplification. This indicates that the
higher maximum force compared to Wagner’s estimate found in section 4.8.4 for the
lowest drop height is not caused by dynamic amplification.
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4.9 DISCUSSION OF RESULTS FROM FORCE ANALYSIS

In section 4.8, a large discrepancy was found between the integrated pressure and force
measurements for 0.1 m drop height. As the comparison is better for the other two
drop heights, this discrepancy implies that there is some error or physical effect that is
occurring for the lowest drop height. As for the pressure measurements, it is investigated
if three-dimensional effects or hydroelasticity could be the reason for this discrepancy.

4.9.1 Three-dimensional effects
Three-dimensional effects were evaluated in section 4.7.1 for the pressure measurements.
Correction factors from Zhao et al. (1996) were found for the time instances of peak
pressure measurements over the panel. This correction factor is now considered for the
force measurements. Maximum force occurs when the spray root is at the upper end of
the panel. At the end of the force panel the breadth is 133 mm which gives (B/L)=0.47.
The correction factor for this ratio implies a 20% reduction of the vertical force caused
by three-dimensional effects.

Considering the discrepancy between integrated pressure and force measurements for
0.1 m drop height, the correction factor disagrees with the experimental results. The
force measurements are above the integrated pressure. If three-dimensional effects were
lowering the force on the panel, a smaller discrepancy would be expected for this
comparison. The pressure was found to decrease in accordance with the correction
factor as the distance from apex increase. If this pressure behaviour is caused by
three-dimensional effects, they are for some unknown reason not affecting the force
measurements. This finding supports the assumption of a decreased maximum pressure
with increased distance from apex to be caused by measurement errors rather than
three-dimensional effects.

4.9.2 Hydroelasticity
For hydrodynamic calculations it is common to assume a rigid body. Using this
assumption one can find the pressure on the body and use this to determine the
structural response without considering any coupling between the two. As it has already
been declared that there are vibrations in the force panel excited by the impact loads it
is suspected that hydroelasticity is occurring. From the analysis of hydroelasticity for
the pressure measurements in section 4.7.2 any indication of hydroelastic behaviour was
not found. This evaluation of hydroelasticity was focused on the time interval around
the pressure peaks. For the force measurements a longer time duration is relevant.
A continued analysis of hydroelasticity will therefore be carried out. The initial drop
tests are used for comparison again as they are measuring pressure without possible
disturbances from the vibrating force panel.

4.9.2.1 Comparison with initial drop tests

A comparison is made between the integrated pressure time series from an initial drop
test and integrated pressure generated on the basis of Wagner’s theory (1932) for 0.1 m
drop height.18. It is displayed in figure 4.30 together with the same comparison for a
final drop test (test 9810). For the initial drop test (4.30b) it can be observed that the
integrated pressure from the experiment is closer to the Wagner estimate for a longer

18Appendix B.9 - hydroelasticity.m
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part of the force rise than the final test (4.30a). The integrated pressure from the initial
drop test reaches a higher value quicker than the final test.

(a) (b)

Figure 4.30 – Integrated pressure time series from drop test compared to integrated
pressure generated by Wagner (1932) Matlab code for 0.1 m drop height
for the two cases: (a) with force panel present (Test 9810) and (b) without
force panel.

It is observed in figure 4.27 that the integrated pressure for 0.1 m drop height show
oscillations in the pressure tail. These oscillations are also present for 0.25 m drop
height, but less distinct. From this, one could expect that hydroelasticity is lowering
the pressure in the tail. It is observed that the integrated pressure for the initial and
final drop tests fall down to the same pressure level of 20 kPa. Hydroelasticity will not
occur for the inital tests. This indicates that hydroelasticity cannot be the explanation
for the low integrated pressure compared to the force.

4.9.2.2 The quasi-steady approach
The assumption of a rigid body makes it possible to use the impact pressure on the
body to calculate the structural response. This quasi-steady approach is only valid if
hydroelasticity is not excited. As stated by Bereznitski (2001) and Faltinsen (2010),
the validity of this approach depends on the ratio between the duration of the loading
relative to the natural period of the dry structure. Results from Faltinsen (1999) show
that a when the ratio is larger than 2, a quasi-steady approach is applicable. For the
case to be fully quasi-steady the ratio should be larger than 5 (M. Greco 2015, pers.
comm., 17 April).

The natural period of the force panel is found in the hammer test as 2.5 ms. Load
time is found to increase with decreasing drop height, from 3 ms for 0.5 m to 9 ms for
0.1 m. This implies that the higher drop heights are more sensitive to hydroelasticity.
Calculating the ratios for the three drop heights it is found to be 1.2, 2 and 3.6 for
0.5, 0.25 and 0.1 m drop height respectively. These ratios show that for 0.5 m drop
height hydroelasticity should definitely be considered. For 0.25 and 0.1 m drop height
hydroelasticity can still affect the results, but in a smaller scale. It is the lowest drop
height that show the largest discrepancy between force and integrated pressure. As this
case is least sensitive to hydroelasticity, it is supposedly not the reason for the large
discrepancy found between integrated pressure and force measurements.
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4.9.2.3 Preliminary conclusion on hydroelasticity

The aim of this investigation of hydroelastic behaviour was a possible explanation for
the discrepancy between force measurements and integrated pressure for the lowest
drop height. Comparing the initial drop tests without a vibrating force panel to the
final drop tests did not give any indication of hydroelasticity. One would expect a
oscillating pressure for the tests with a force panel present. The comparison shows
the opposite, with a more oscillating pressure behaviour for the initial drop tests. The
fact that the higher drop heights are more sensitive to hydroelasticity breaks down
the hypothesis of hydroelasticity causing the discrepancy between force and integrated
pressure. It is therefore for now concluded that hydroelasticity is not an explanation
for the discrepancy. Even so, hydroelastic effects are not fully disregarded. In the tail
of the pressure recordings one can observe oscillations.

The oscillations can be explained by the case studied by Faltinsen (2000). He describes
how it takes time to build up elastic deformations during water impact of a flat plate.
There will be a phase that he defines as the structural inertia phase. During this phase,
the force impulse works on the body, but the vibrations will not start until the plate
is fully wetted. After the structural inertia phase, Faltinsen (2000) describes a free
vibration phase where the maximum strains occur. As the deadrise angle is 10◦ in this
case one would expect a somewhat different behaviour than for a flat plate. A larger
deadrise angle means a longer force impulse. This means it will take more time before
a free vibration phase will start. It should also be noted here that the wedge is stopped
right after the force panel is fully submerged. Therefore, there is a possibility that what
can be seen in the pressure recordings is not a free vibration phase. It could be that
the measurements only show a coupling between the hydrodynamic and structural loads
and this may result in the oscillatory behaviour in the pressure tail.

4.9.3 Performance of force sensors

It cannot be ruled out that the discrepancy between integrated pressure and force
measurements are due to a force sensor error. The tests for 0.1 m drop height were
executed as a last round of experiments. It is not possible to conclude on whether or
not a sensor error occurred, as there is no later reference.

For the ’beam’ type of force sensor used in these tests, there are possible error sources.
The force sensors used are designed to measure perpendicular loading. With a 10◦

deadrise angle the force working on the panel will not be perpendicular. This will
lead to a poorer quality of the force measurements. When the force works on a part
of the panel only the quality will also fall. This uncertainty will be present until the
whole panel is covered, i. e. until maximum force occur. In the decay of the force
measurements the largest discrepancy is found, but this source of error is no longer
valid at this time. Many degrees of freedom can be activated as response in the panel.
Returning the force measurements back to the actual loading can be difficult, and this
process may lead to an uncertainty.

It is not possible to tell how much these sources of uncertainty are affecting the force
measurements. Regardless, they demonstrate that there are reasons to not rely fully on
the force measurements when comparing against integrated pressure.
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4.9.4 Pressure behaviour during force measurements
In figure 4.22 - 4.24 a difference in the overall shape of the integrated pressure can be
observed. For 0.5 and 0.25 m drop height the integrated pressure displays a triangular
shape as it increases quickly and then reduces more slowly. For 0.1 m drop height, the
integrated pressure peaks and then it falls straight down to a lower value. The gradual
decrease that is showing for the other drop heights is not observed for 0.1 m.

Plots of the time series during the time intervals corresponding to the time of the
presented integrated pressure in figure 4.22 and 4.23 is illustrated in figure 4.31. For
0.5 m drop height in figure 4.31b the pressure time series for all sensors show an equal
slope and thereafter blend into one curve. For 0.1 m drop height some measurements
go quickly towards zero after peak pressure while others show a longer tail as observed
for the other drop heights. It is considered that the sensors that approach zero fast will
lower the average pressure used in the integrated pressure.

(a) (b)

Figure 4.31 – Pressure time series at the same time interval as the presented comparison
between force and integrated pressure for a) 0.5 m drop height and b) 0.1
m drop height.

To check this assumption a pressure time series that does not show this quick decay
towards zero is used for the pressure integration. By ’copying’ this time series to the
other sensors, the average pressure is found in the same way as in section 4.8.3. The
time series for the fourth sensor (fourth peak from the left) in figure 4.31b is used for
all sensors. The result is shown in figure 4.32. It is observed that the comparison is
more satisfying in the rise up to maximum force than it is for the original time series.
In the force tail, the comparison is still poor.
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Figure 4.32 – Force panel signal compared to integrated pressure with pressure over all
sensors as pressure from sensor 1012 for 0.1 m drop height (test 9810).

4.9.5 Final remark on force analysis
The force measurements have been compared to the integrated pressure from the force
sensors. The main question left from the force analysis is why a large discrepancy is
found for 0.1 m drop height. For 0.5 m drop height the comparison is very good and it
is slightly poorer for 0.25 m drop height.

Comparing force measurements to integrated pressure generated from classical Wagner
theory (1932), the behaviour for 0.1 m drop height is again deviating from the
others. It is expected that the Wagner integrated pressure will overestimate the force
measurements after some time, but for the lowest drop height the comparison is very
good through the decay of the force. This implies that the force measurements are too
high, as it is expected to decrease much faster than Wagner predicts. For the measured
maximum force, the value for 0.1 m drop height is again showing a higher value relative
to maximum force predicted by Wagner. The other two height show a force ratio of 54
% compared to Wagner, while the lowest drop height show a ratio of almost 70 %.

Three-dimensional effects are considered for the force measurements, but it is concluded
that they are not affecting the measurements. Three-dimensional effects are not likely
to occur for the applied test set-up. It is also an argument that these effects would
lower the force. For 0.1 m drop height the comparison with Wagner implies that the
force measurements are above the expected values.

Hydroelasticity is also considered as it can diminish the pressure over the body.
Comparison of integrated pressure from an initial drop test with force measurements
from a final drop test show the same large discrepancy for 0.1 m drop height. A force
panel is not present in the initial drop tests and it is the vibrations from this panel that
would initiate the hydroelastic behaviour. It is therefore concluded that the discrepancy
cannot be explained by hydroelasticity.

The only explanation left is measurement errors. It has already been concluded in the
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pressure analysis that error sources can explain deviations of the pressure measurements
from theoretical predictions. As mentioned in section 4.9.3 there are also uncertainties
present in the force measurements. The lowest drop height will be more sensitive to
errors due to its lower measurement values. It is suspected that the force measurements
for 0.1 m drop height are showing values higher than the real ones. It is also observed
that the pressure measurements for this drop height show a different decay in pressure
than for the other heights. The best guess for an explanation of the discrepancy is a
combination of these two measurement errors.
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5

PARAMETER STUDY

In this chapter a parameter study will be carried out in two parts. First, the repeatability
of the pressure and force measurements will be investigated. Repeatability is an
important aspect of an experiment. Even though the maximum pressures are expected
to have a stochastic nature (Faltinsen 2010), it is expected that the pressure sensors
will preserve an amount of repeatability. An error estimate was made for the maximum
pressures in chapter 4. This measurement error was found to be the most likely
explanation for differences between measurements and theoretical predictions. In this
chapter, the error estimate can be checked by comparison with the repeatability.

The second part consists of an investigation of how different features of the slamming
phenomenon depend on a varying drop height. Linear or non-linear behaviour of
different involved quantities are discussed. Two Matlab codes are used in this chapter.
The code used to investigate the repeatability can be found in Appendix C.1, while the
code for investigation of drop height dependency is found in Appendix C.2.

5.1 REPEATABILITY

When an error analysis is carried out, two types of errors are distinguished: bias
and precision errors. Bias errors are systematic errors that cannot be revealed from
repetition of an experiment. Precision errors on the other hand are random errors that
appear as a scatter in the measurements when they are repeated.

Repeatability can be defined as the variation in measurements from a single instrument
for a given item under the same test conditions when repeated measurements are
compared. The drop tests were performed four times for 0.5 and 0.25 m drop height
and three times for 0.1 m. The repeatability of the experimental measurements can
therefore be investigated.

To evaluate the repeatability it is necessary to compare the measurements at the
exact same stage of impact through time. As the start time of each drop test is at
some arbitrary time before the wedge was released it requires some reference point to
synchronize the recordings between drops. A first attempt was made using the time
instant where the position measurements are zero (when apex initially hits the free
surface). It turned out these measurements were not accurate enough to synchronize
the quick pressure peaks. The reference point for the synchronization between drops
will therefore be taken in the data under consideration, such as a pressure peak over a
given sensor for pressure measurements. There will probably be an error connected to
this synchronization method as well, but it is considered the best alternative.

The results of the repeatability analysis consist of the mean and standard deviation
found over N repeated tests. The mean of a measurement A is calculated as:
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µ =
1

N

N∑
i=1

Ai (5.1)

and the standard deviation is found as:

S =

√√√√ 1

N − 1

N∑
i=1

|Ai − µ|2 (5.2)

5.1.1 Repeatability of pressure measurements
To synchronize the pressure recordings from N repeated tests, the time instance of
maximum pressure over the first sensor row is used. One column of sensors is analysed
(sensor 1029 - 1008) for two drop heights, 0.1 m and 0.5 m. The mean pressure for each
sensor at each sample point is found together with the standard deviation. In figure 5.1
and 5.2 the mean is presented as a solid line while the magnitude of standard deviation
is represented by a shaded area about the mean line. It is observed that the largest
standard deviations occur around the peak pressures, which complies with the findings
of Lewis et al. (2010).

The repeatability of the pressure peaks are investigated in more detail. Faltinsen (2010)
describes that in the initial phase of the pressure development, large pressures appear
that are very sensitive to small changes in the local flow details. This results in a strongly
stochastic behaviour of the maximum pressure. In the current experimental data, the
standard deviation of the maximum pressure relative to the peak pressure value appears
to increase with increasing drop height. The conclusion that the maximum pressure
becomes more stochastic in nature as the water entry velocity increase is also suggested
in Faltinsen (2010).

Lewis et al. (2010) estimated the error on the maximum pressure based on sensor error
given by the manufacturer as well as errors from amplifier and data acquisition systems.
Their total error was estimated to be 1.1 %. The repeatability of the maximum pressure
proved to be inside this error range. For the data analysed here the maximum variation
in peak pressure is found to be 15 and 20 % for 0.1 and 0.5 m drop height respectively.
These values are far above the values from Lewis et al. (2010). It is noted that Lewis
et al. (2010) performed their drop test with a 25◦ deadrise angle. This would imply a
less stochastic behaviour of the pressure peaks. Regardless, the large difference suggests
that there are other error sources present in the MARINTEK experiment.

In the previous chapter an error analysis was made for the maximum pressure, trying
to estimate the total error. Standard deviation, sensor error from sensor specification
sheet, error from velocity measurements and the effect of small wrinkles on the free
surface were included. The total error was estimated to be 23.2 and 30.2 % of maximum
pressure for 0.1 and 0.5 m drop height respectively. These results agree quite well with
the repeatability error established in this section. The error estimates are above the
experimental values, which implies that the error estimates made are conservative. This
could be explained by an overestimation of the variation in deadrise angle caused by
disturbances in the free surface.
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Figure 5.1 – Mean pressure time history of sensors 1029 - 1008 with shaded area
representing the magnitude of the standard deviation for 0.5 m drop height.

Figure 5.2 – Mean pressure time history of sensors 1029 - 1008 with shaded area
representing the magnitude of the standard deviation for 0.1 m drop height.
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5.1.2 Repeatability of force measurements
Force time series are synchronized over N repeated tests by using the time instant of
the maximum force as reference. Figure 5.3 and 5.4 show the mean force together
with the magnitude of the standard deviation represented as a shaded area about the
mean line. In general, the repeatability is found to be satisfying, at least during the
duration of the slamming force. Further along the tail of the force measurements, a
larger standard deviation is found. For 0.5 m drop height the standard deviation starts
to grow in magnitude when the force stabilizes around zero and will therefore not be of
much importance for the experimental results. For 0.1 m drop height there is more noise
present during the decay of the force measurements. Noise is considered disturbances
of random nature and a larger standard deviation would be expected when noise affects
the measurements. The noise seems to be connected with an abrupt decrease of the
measured force. It is considered that as the duration of the force is longer for 0.1 m
drop height, the noise may be caused by the wedge being stopped. In this experiment,
the wedge was stopped right after the force panel was fully submerged. Evaluating the
position measurements and derived velocity at the time of the abrupt force decrease, it
does not coincide with the time the wedge is stopped. Because the wedge is stopped by
oil dampers it is a possibility that a deceleration from them have started, which causes
the noise although it is not entirely stopped. This could explain the sudden force loss
and noise.

For the maximum force value, a relative standard deviation to the maximum force
is found to be 1.2 % for 0.5 m drop height. Compared to results from Tveitnes et
al. (2008), this value is satisfying as they found the standard deviation of their force
measurements to vary between 1 and 3 %. For 0.1 m drop height the result is not
very satisfying, showing a relative standard deviation of 15 %. To check if the relative
standard deviation increases with decreasing drop height, the 0.25 m drop height case
is checked. It shows a standard deviation close to the one found for 0.5 m drop height.
The lack of repeatability is only showing for 0.1 m drop height. This suggests that the
force measurements for the lowest drop height is more sensitive and less certain.

Figure 5.3 – Mean filtered force time history from force panel with shaded area
representing the magnitude of the standard deviation for 0.5 m drop height.
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Figure 5.4 – Mean filtered force time history from force panel with shaded area
representing the magnitude of the standard deviation for 0.1 m drop height.

5.1.3 Final remark on repeatability
For the pressure peaks, the repeatability is poor. This is expected, as the pressure peaks
are very sensitive to small variations in physical conditions (Faltinsen 2010). Considering
the error estimates made in the chapter 4, the poor repeatability of the peak pressures
can be explained by error sources such as disturbances of the free surface. Pressure
peaks during slamming are of a stochastic nature (Faltinsen 2010). The error estimates
used to explain the features of the recorded pressure in chapter 4 is above the maximum
standard deviation found in this repeatability analysis. If the error is overestimated, or
if some errors does not show in this repeatability analysis is unknown.

Force measurements are expected to show better repeatability as the force itself is less
responsive to small variations in physical conditions. For 0.5 m and 0.25 m drop height,
the repeatability is very satisfying, and in accordance with the expected repeatability.
For 0.1 m drop height, the standard deviation is 15 times larger than for the other
heights for the maximum force. In chapter 4, it was suggested that an error is occurring
for the force measurements at the lowest drop height. The poor repeatability for 0.1 m
supports this hypothesis.
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5.2 LINEAR AND NON-LINEAR VARIATION OF LOCAL QUANTITIES

An analysis is carried out to find how the features of the slamming phenomenon vary
with drop height (and impact velocity). The investigation is done to see if the quantities
have a linear or non-linear behaviour. The variation along the rows is also evaluated.
A comparison is made with the experiment carried out by Yang et al. (2007) who
performed a drop test with a 10◦ wedge with drop heights ranging from 0.05 to 0.5
m. The weight of their wedge was 60 kg, that is 110 kg lighter than the wedge in the
MARINTEK experiment.

5.2.1 Peak pressure

An investigation of the variation of peak pressure with drop height is carried out. The
peak pressure is found for each sensor for all final drop tests and the mean is taken
over each row. This mean row peak pressure is presented in figure 5.5 as a function
of drop height. As the drop height increases the maximum pressure increases, and the
variation appears to be linear. Faltinsen (2010) states that when the deadrise angle is
larger than 5◦, the maximum slamming pressure is proportional to the square of the
impact velocity. As the impact velocity can be defined as

√
2gh we have the following

relation between maximum pressure and drop height:

pmax ∝ V 2 ∝ h. (5.3)

This corresponds well with the behaviour seen in figure 5.5. As the maximum pressure
depends on the impact velocity, it is expected that the rows closer to apex will experience
the highest pressure peaks if the wedge is decelerated. This is the case for the data
presented by Yang et al. (2007). As the velocity is close to constant for MARINTEK’s
data, the measurement error found in chapter 4 is assumed to be the reason for the
scatter here.

Figure 5.5 – Variation of mean peak pressure with drop height over each sensor row.
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5.2.2 Pressure coefficient
The pressure coefficient is defined as

Cp =
p

1
2ρV

2
(5.4)

where p is the pressure, ρ is the density of water and V is the impact velocity. In
this analysis, the variation of the maximum pressure coefficient with drop height is
considered. The mean maximum pressure over each sensor row is made non-dimensional
using equation (5.4). The result is shown in figure 5.6. As the maximum pressure is
expected to be proportional to V 2, the non-dimensional expression (5.4) should be
unaffected by the drop height and only depend on the deadrise angle. This seems to
agree well with the behaviour observed in figure 5.6. The scatter across the rows is
largest for 0.5 m drop height, while it is smallest for 0.25 m. Yang et al. (2007) showed
that the scatter did not change with drop height for their data. They used the actual
velocity at the time instance of the maximum pressure. The velocity change is small or
zero for the MARINTEK experiment. It is therefore expected that the scatter is mostly
related to measurement errors, as discussed in chapter 4.

Figure 5.6 – Variation of maximum pressure coefficient with drop height over each sensor
row.

5.2.3 Duration of slamming pressure
The duration of the slamming pressure is defined as the time range where the pressure
on the wedge exceeds 50% of maximum pressure. The average duration over each sensor
row is found for all drop tests. The results over each row for each drop height is shown in
figure 5.7. A trend towards an inversely proportional relationship between drop height
and duration of the slamming pressure is seen. This could be expected as a lower impact
velocity will give a softer impact. However, for 0.25 and 0.5 m drop height the duration
appears to be very similar. If the duration was actually inversely proportional to the
drop height, one would expect a longer duration for 0.25 m than for 0.5 m.
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From the similarity solution (Dobrovol’skaya 1969), the spatial extent of the slamming
pressure is proportional to the horizontal distance to the spray root, c. As the sensors
are positioned equally for all drop heights, one would expect the spatial duration of the
slamming pressure to remain constant for all heights. The time duration would then
depend on the velocity, which will be proportional to the square of the drop height,√
h. From this argumentation one could assume the slamming pressure duration to be

inversely proportional to
√
h. Across the rows, the duration seems to increase with

increasing distance from apex.

Figure 5.7 – Variation of slamming pressure duration (50% of maximum pressure) with
drop height over each sensor row.

5.2.4 Pressure rise time
Pressure rise time is here defined as the time it takes for the pressure to increase up to
its peak. The start time is taken as the time of maximum negative pressure before the
rise start, or at zero pressure before the peak for those measurements that do not show
negative pressures. Variation of pressure rise time with drop height is presented in figure
5.8. The relation between rise time and drop height appears to be non-linear. For 0.25
and 0.5 m drop height the rise time is approximately 0.15 ms. For 0.1 m drop height
the rise time almost doubles. A contributory cause for this increased rise time could
be the larger negative pressures seen for the lowest drop height. It is not considered
the whole explanation, as the negative pressure is small relative to the whole rise up to
maximum pressure.

Two other observations are made. Across the rows, a tendency towards increased rise
time with increased distance from apex is seen. The second observation is the scatter
of the results for each drop height, which is remarkably lower for 0.25 m drop height.
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Figure 5.8 – Variation of pressure rise time with drop height over each sensor row.

5.2.5 Slamming force
The variation of the slamming force on the force panel with drop height is also evaluated.
For each drop height, the maximum force for all tests at this height is found and
presented in figure 5.9. In the previous chapter, the following expression was derived
for the maximum force on the panel (Greco 2012):

F3max =
ρV 2xbπ

2 tanβ

(
π

2
− arcsin

(
xa
|xb|

))
. (5.5)

From this equation one can assume that the maximum force will be proportional to V 2,
and therefore proportional to the drop height h. From figure 5.9 a tendency towards
a linear dependency can be seen. The maximum force for 0.1 m drop height deviaties
from the linear behaviour. It was suggested in chapter 4 that the force measurements
for this drop height show values higher than the real ones. This hypothesis is supported
by the value for 0.1 m drop height in figure 5.9.
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Figure 5.9 – Variation of maximum slamming force with drop height.

5.2.6 Duration of slamming force
The duration of the slamming force is defined as the time interval where the force
is above 50% of maximum force. In figure 5.10 the duration for each test at each
drop height is presented. The duration of the slamming force can be assumed to be
proportional to the change in wetted surface (Wagner 1932). A higher impact velocity
will therefore lead to a quicker change in wetted surface and a corresponding shorter
duration of the slamming force. From figure 5.10, the duration of the slamming force
appears to be inversely proportional to the drop height. It is noted that there is a larger
scatter between the tests at 0.25 m drop height.

Figure 5.10 – Variation of slamming force duration with drop height.
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5.2.7 Final remark on drop height dependency
From the above analysis, the variables that resemble a linear variation with drop height
is the pressure peaks, the maximum force and the slamming force duration. A non-linear
variation with drop height is observed for the pressure coefficient, slamming pressure
duration and pressure rise time. The observed variation of the maximum slamming
force with drop height supports the hypothesis of a measurement error for the force at
0.1 m drop height, as it deviates from the linear behaviour.

The scatter across the rows varies for the different quantities. For the pressure peaks
and pressure coefficient, the scatter increases with increasing drop height. This is similar
to what is found in Faltinsen (2010), and indicate that the nature of the pressure peaks
become more stochastic as the impact velocity increase. For pressure duration and rise
time, the scatter is remarkably lower for 0.25 m drop height than for the other two
heights. It seems like the pressure sensors behave more stably for 0.25 m.
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EXPERIMENTAL
COMPARISON

In this chapter, a second drop test of a 10◦ wedge in similar conditions will be studied.
The hope is to better understand the observed discrepancies from theoretical predictions
in the MARINTEK experiment. By evaluating and comparing to a second drop test,
increased insight in expected results for a drop test of a 10◦ wedge can be obtained.
The goal is not to find equal results, but to explain the outcome of the comparison from
the available literature on slamming.

Not many drop tests of wedges with 10◦ deadrise angle are available, and only two
possible experiments were found. One was performed by Sayeed et al. (2010), with
the aim of investigating the slamming loads on a wedge formed section. The other was
performed by Yang et al. (2007) to study the water entry of symmetric wedges and a
stern section for a modern containership. Due to lack of experimental data from the
experiment by Sayeed et al. (2010), the experiment by Yang et al. (2007) will be used.

The experiment by Yang et al. (2007) will be presented shortly, and pressure
measurements and impact velocity will be compared to those found in this thesis from
MARINTEK’s experiment.

6.1 EXPERIMENTAL SET-UP

6.1.1 Model and rail system
A two-dimensional symmetric wedge model with dimensions as illustrated in figure 6.1
is used. It is dropped into a tank with width 2.5 m and length 5.4 m. The depth is
varied in the experiment, but for the results considered here a water depth of 1.5 m
is applied. The wedge is attached to a guide rail system to lead it vertically through
the free surface. Bush bearings are installed between the wedge model and the rail
to reduce friction. To eliminate disturbances when the model is initially dropped, an
electro-magnetic system is used to release it. The model is made of wood to ensure
rigidity. The weight is varied between 50 and 60 kg. In the results presented in the
following, the weight is 60 kg.
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Figure 6.1 – Schematic view of 10◦ wedge used in the experiment. (Yang et al. 2007)

6.1.2 Measurement systems
To measure the pressure along the wedge surface, five pressure sensors are applied. The
sensor type is not specified in their report, and attempts of establishing contact with
the writers have not been successful. Pressure sensors are located 100 mm from the
middle of the model. They are placed 50, 100, 150, 200 and 250 mm from apex. Four
accelerometers are also attached on the inner bottom of the model corners. A sampling
frequency of 5 kHz is used for all measurements together with a 10 kHz low pass filter.

6.2 RESULTS

The results that will be used for comparison in this chapter are shown in figure 6.2.
These results are from a drop height of 0.5 m, and a comparison will only be made
for this drop height. The acceleration is measured by the four accelerometers, while
the velocity is integrated from the acceleration measurements. Pressure time histories
for all five pressure sensors are also shown. All tests were conducted twice to ensure a
satisfying repeatability. The data in figure 6.2 will be digitalized for further comparison.
This process may lead to a small loss of accuracy, but this is not considered a problem.

6.3 COMPARISON

For simplicity, the two experiments compared in this chapter will be referred to as:

• Experiment 1 : the experiment by MARINTEK analysed in this thesis

• Experiment 2 : the experiment by Yang et al. (2007) used for comparison in this
chapter

6.3.1 Velocity
The velocity plot from figure 6.2 is digitalized and compared to the velocity from a final
drop test in Experiment 1 (Test 9807). There is a slight difference in maximum velocity.
Where Experiment 1 have an initial impact velocity of 3.1 m/s, Experiment 2 only reach
3.0 m/s. The lower velocity in the latter case is expected by the authors of the report
to be caused by friction in the rail system. Velocities for drops with 0.5 m drop height
is presented in figure 6.3 for both Experiment 1 (6.3a) and Experiment 2 (6.3b). The
marked circles on the velocity plots represent pressure peaks. For Experiment 1 (fig.
6.3 a), the first circle represents peak pressure at the first sensor row (85 mm from apex)
and the second circle peak pressure at the fifth row (125 mm from apex).
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Figure 6.2 – Results from the experiment: time history of acceleration, velocity and
pressure for 0.5 m drop height. (Yang et al. 2007)
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For Experiment 2 (fig. 6.3 b) the two circles represents the second sensor (100 mm from
apex) and thirds sensor (150 mm from apex). For both cases the distance between the
two sensors which peaks are illustrated is 50 mm.

(a) (b)

Figure 6.3 – Velocity of the wedge with circles indicating first and last pressure peak for
a) Experiment 1 and b) Experiment 2.

For Experiment 1 the velocity remain constant during the peak pressures over the sensor
rows. For Experiment 2 the velocity has already been reduced to 2.71 m/s when peak
pressure occurs at the second sensor row. When maximum pressure occurs at the third
sensor row 0.0017 ms later it is further reduced by 0.2382 m/s.

It was reported by Yettou et al. (2005) that for a constant drop height, the deceleration
is determined by the mass. The higher the mass, the smaller the deceleration. This is
consistent with what is observed here. Experiment 1 has mass that is 110 kg heavier
than Experiment 2, which can explain a larger deceleration in the latter case. Yettou et
al. (2005) reported that a changing velocity could affect the spatial pressure distribution.

It is drawn attention to the uncertainty present in the velocity for both experiments as
it is not measured directly. In Experiment 1 it is derived from position measurements
while for Experiment 2 it is integrated from acceleration measurements.

6.3.2 Pressure

From the plot in the bottom of figure 6.2 the pressure time history for each sensor in
Experiment 2 is shown. To obtain a meaningful comparison it is important to be aware
of the sensor position. The first and last pressure peak is much lower than the two
in the middle. In Experiment 1, the pressure peak values show less variation. This is
a result of sensor position as different pressure distributions across the wedge surface
will occur at different stages of impact. In the analysed results from Experiment 1 the
positions along the wedge surface from apex were 85, 95, 105, 115 and 125 mm. All
these positions are closest to the sensor positioned at 100 mm distance from apex in
Experiment 2. Considering the time history for each sensor from textitExperiment 2 it
is decided that the sensors at 100 and 150 mm distance from apex are most qualified for
a comparison. They will therefore be digitalized for further investigation. As the image
quality of figure 6.2 is not high, the digitalization will be somewhat poor. This causes
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the digitalized pressure plots from Experiment 2 to appear more uneven than they are
in reality.

6.3.2.1 Pressure peaks

Looking at the pressure time series in figure 6.2, it is discovered that the pressure
peaks are much lower than in Experiment 1. Using Wagner (1932), the expected
maximum pressure assuming constant velocity would be 390 kPa. This is with the
velocity calculated from equality between potential and kinetic energy that gives an
initial impact velocity of 3.13 m/s. The pressure peaks from Experiment 2 only reach
a value slightly above 120 kPa. It was first considered to use pressure time series
from Wagner (1932) to compare the two experiments. As the pressure results from
Experiment 2 is so far away from this theoretical prediction it is decided to make the
comparison visual. The pressure time series from Experiment 1 and Experiment 2 are
therefore shown next to each other in figure 6.4. Please take note of the different scales
on the vertical axes.

(a) (b)

Figure 6.4 – Time history of measured pressure for a) Experiment 1 and b) Experiment
2.

It was found previously in this thesis that the average maximum pressure for Experiment
1 at 0.5 m drop height was 402 kPa. For Experiment 2 the average maximum pressure is
found to be 123 kPa. The peak pressure from Experiment 1 is consistent with the peak
pressure from the similarity solution (Dobrovol’skaya 1969) and the asymptotic theory
(Wagner 1932), assuming constant impact velocity. In the previous section it was found
that the velocity under the occurrence of the pressure peaks was approximately 0.4
m/s lower for Experiment 2. Using Wagner’s theory (1932) the value of the maximum
pressure can be estimated as

pmax =
1

2
ρV 2Cpmax (6.1)

where ρ is the density of water, V is the impact velocity and Cpmax is the maximum
pressure coefficient given as
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Cpmax =
π2

4
cot2β. (6.2)

Here β is the deadrise angle of the wedge. Using these formulations with the velocities at
the first peak for both experiments, that is 3.1 and 2.7 m/s, the following peak pressures
are estimated:

Experiment1 : pmax = 381kPa
Experiment2 pmax = 291kPa

From the above calculation it is clear that a small reduction in impact velocity have
a large influence on the peak pressure. Decreasing pressure amplitude with decreasing
velocity was also reported by Yettou et al. (2005). Even so, the value from Experiment
2 is still only 42.3 % of this estimate.

The large deviation from the expected maximum value by Wagner’s theory for
Experiment 2 is explained by three-dimensional effects. In fact, the tank used in
Experiment 2 allows a fully three-dimensional flow, as the gap between the wedge and
the tank wall is in the order of meters. In a fully three-dimensional case the pressure
can be reduced by up to 50 % compared to the pressure for a two-dimensional case.
This is sufficient to explain the lower value of the peak pressure measured in Experiment
2 as the Wagner estimate is for two-dimensional flow.

6.3.2.2 Slamming pressure duration

The duration of the slamming pressure is defined as pressure above 50% of maximum
pressure. For Experiment 2 the mean duration of the slamming pressure for the two
chosen pressure sensors is 0.82 ms. The mean duration for Experiment 1 at 0.5 m drop
height is 0.18 ms which is only 22% of the duration for Experiment 2. This indicates
that three-dimensional effects can cause a longer duration of the slamming pressure.

6.4 VERIFICATION OF THREE-DIMENSIONAL EFFECTS

Yettou et al. (2006) presented an analytical solution to symmetrical water impact
problems on two-dimensional wedges. In their solution, they included three-dimensional
effects, using a correction factor based on the work of Zhao et al. (1996). By applying
the moment theorem the following expression for the velocity at any time t during
impact can be defined:

V (t) =
V0

1 + Ma
M

. (6.3)

Here V(t) is the instantaneous velocity of the wedge upon impact, V0 is the initial impact
velocity, M is the mass and Ma is the added mass of the wedge. The added mass is
defined by Zhao et al. (1996) as

Ma = Caρ(Y (t))2 (6.4)

where
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Ca =
f3Dπ

2

(
1− β

2π

)
. (6.5)

Y(t) is the horizontal coordinate of the intersection between the free surface and the
wedge, β is the deadrise angle and f3D is a factor taken three-dimensional effects into
account. The factor f3D is calculated by Zhao et al. (1996) and varies between 0.5 and
1. f3D = 0.5 corresponds to a completely three-dimensional case. It was observed in
section 6.3.1 that the velocity decreased more for Experiment 2 than for Experiment 1.
By using the known velocity change from section 6.3.1 together with eq. (6.3) the value
of f3D can be found for Experiment 2.

By the use of eq. (6.3), (6.4) and (6.5) the factor f3D is found to be 0.5. This means
that from the test set-up in Experiment 2 a three-dimensional drop test is performed.
It was not stated to be a three-dimensional experiment in the report, but it is now clear
that this is the case. It explains the large differences in results as Experiment 1 is a
two-dimensional experiment.

6.5 FINAL COMMENT ON COMPARISON

It was not specified in the report by Yang et al. (2007) that their experiment was
performed in three-dimensional flow conditions. It is evident that this reduces the
value of the comparison. If any explanations for the differences between theoretical
predictions and measurements were to be found, the experiments should have similar
flow conditions. What has been revealed from this comparison is the consequences of
three-dimensional effects. The pressure peaks from Yang et al. (2007) are much lower
than for the MARINTEK experiment. In the MARINTEK experiment, the pressure
peaks were underestimated by Wagner’s theory (1932). The low pressure peaks from
Yang et al. (2007) argue that three-dimensional effects are not affecting the pressure
results from MARINTEK.
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APPLICATION OF
THEORETICAL MODELS

In chapter 2, some recognized theories on slamming were shortly presented. They vary
in applicability range, computer intensity and complexity. For the theory to fit the
experiment, the theoretical applicability limits must be met by the experimental set-up
and behaviour. In the analysis carried out in chapter 4, Wagner’s theory (1932) was
used for comparison. At the time the choice was made to use this theory, all involved
features of the MARINTEK experiment were not yet known. At this point they are, and
a new evaluation of what theoretical model are best suited to reproduce the involved
features can be made. In this search for an appropriate theoretical model, efficiency will
be valued.

The theories evaluated in this chapter are all based on potential flow of an incompressible
fluid. The experiment that the theoretical model is aimed for here is a two-dimensional
experiment and the three-dimensional theories from chapter 2 are disregarded.

A common restriction for theoretical models of slamming on wedges is the size of the
deadrise angle. In the experiment under consideration the deadrise angle is 10◦. It
can therefore be defined as a blunt body. In figure 7.1 a comparison of the pressure
distribution predicted by the similarity solution, the boundary element method and the
asymptotic solution is illustrated. The results are based on the assumption of a constant
impact velocity. It can be observed that the three theories are almost consistent in
determining the pressure distribution for this angle. The estimates of maximum pressure
coefficient agree very well for all three theories. In the lower part of the distribution,
the asymptotic theory lies above the other two.

Of the theories in figure 7.1, the asymptotic solution has the lowest limit for applicable
deadrise angles. The small deviations in the spatial pressure distribution show that
10◦ is still within the range of deadrise angles the asymptotic theory can provide valid
estimates for. For the maximum pressure the theories provide equal results. When the
asymptotic theory has been compared to experiments throughout time, different results
on how well it predicts the maximum pressures have been found. Often the reasons
for the deviation have proved to be the size of the pressure gauges and the sampling
frequency. A changing velocity during the drop has also often been disregarded.
Takemoto (1984) and Yamamoto et al. (1984) included these factors in their comparison
and found a good agreement between experimental results and the asymptotic solution
for deadrise angles 3◦ < β < 15◦.

The similarity solution by Dobrovol’skaya (1969) and the non-linear boundary element
method by Zhao and Faltinsen (1993) allow larger angles. When the asymptotic theory
is applied to large deadrise angle the results will not be consistent with neither the
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Figure 7.1 – Predictions of pressure distribution on a wedge with constant impact velocity.
(Faltinsen 1997)

similarity solution nor the BEM. This is because the flat plate approximation used in
the asymptotic solution no longer holds when the body becomes sharper. The spatial
pressure distribution will therefore be expected to deviate from the theories that are
designed to handle larger deadrise angles.

Figure 7.1 shows the pressure on a wedge with constant velocity. A constant water
entry velocity is not a given. Chezhian (2003) found that when the mass of the body
is smaller than the maximum slamming load, the body will decelerate. If the mass is
larger than the maximum slamming force, the body will continue to accelerate until
the submergence has increased the added mass and hydrostatic force enough to start a
deceleration. The non-linear boundary element method by Zhao and Faltinsen (1993) is
a theoretical model that can handle a varying velocity with time. For this experiment
it is observed that the change in velocity during the time where pressure is measured
is very small. The largest change in velocity between the pressure peaks is found for
0.25 m drop height as 0.03 m/s. With this slight velocity change it can be acceptable to
assume a constant impact velocity and a theory that can handle a variation in velocity
is not required.

Gravity is neglected in the asymptotic solution and the similarity solution. Neglecting
gravity is true only when the fluid accelerations are large compared to the gravitational
acceleration. After a while the fluid acceleration will decrease and gravity can no longer
be neglected. If this happens then the theories that neglect gravity will overestimate the
pressure. Gravity is included in the generalized Wagner method by Zhao et al. (1996)
and can be included in the boundary element method by Zhao and Faltinsen (1993).
Because of this, these theories are not limited to a small time scale. For estimates of the
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maximum pressure, the assessed time scale is small. To get a better theoretical model
for a larger part of the pressure time series it is considered beneficial to use a theory
that can include gravity.

Evaluating the efficiency of the theoretical models, it is evident that the asymptotic
solution will give a quick and conservative estimate. It is therefore suited for first
estimates, but if a more detailed and precise estimate is needed it will not be
recommended. The similarity solution can provide an accurate gravityless solution,
but it is computer intensive. Especially for small deadrise angles it is numerically
demanding. The non-linear boundary element method is also a numerically demanding
model. For practical engineering purposes the simplified boundary element method
presented as the generalized Wagner theory is a less computer intensive and more robust
model.

The pressure is not the only important slamming paramater that should be captured by
a theoretical model. In table 7.1 estimates of slamming parameters by the asymptotic
theory, the similarity solution and the non-linear boundary element method is presented.
The estimates are collected from Zhao and Faltinsen (1993) and all presented values are
for deadrise anlge β = 10◦.

Table 7.1 – Slamming parameters estimated by the similarity solution, the asymptotic
theory and the boundary element method for water entry of a 10◦ wedge with
constant impact velocity V. Cpmax

= maximum pressure coefficient, zmax/V t =
z-coordinate of maximum pressure, ∆Ss = spatial extent of slamming pressure,
c = 0.5πV t cotβ, F3 = total vertical hydrodynamic force on the wedge.

Asymp. Simil. BEM

Cpmax 79.36 77.847 80.2
zmax/V t 0.5708 0.5556 0.555
∆Ss/c 0.1002 0.09088 0.0941
F3/

(
ρV 3t

)
231.973 213.980 220.8

From the comparison in table 7.1 one can see that the maximum pressure is well
predicted by the asymptotic solution. For the force estimates, the asymptotic theory is
less accurate and clearly overestimates the value. Force measurements are an important
feature of the analysed experiment. Wagner’s (1932) asymptotic solution was used for
comparison of maximum force in chapter 4. The estimate showed values much higher
than the experimental values. Considering this, it appears the asymptotic solution is
not suited for predicting the hydrodynamic vertical force on the wedge.

As the force estimates from the asymptotic solution showed values high above the
experimental results, the boundary element method with the lowest force estimate is
assessed. The non-linear boundary element method is less efficient than the generalized
Wagner method, so the latter is preferred. It is similar to Wagner’s theory, with
the main difference being that the exact body boundary condition is satisfied at
each time step instead of the flat plate approximation. Avoiding the flat plate
approximation is expected to diminish the observed overestimation of the experimental
force measurements.

On the basis of the above argumentation it is concluded that the generalized Wagner
theory by Zhao et al. (1996) will be preferred for reproducing the phenomena of the
analysed experiment from chapter 4. It is noted that this depends on the amount
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and quality of information needed. Wagner’s theory (1932) was used to generate the
integrated pressure used for comparison with force measurements in chapter 4. Using
the generalized Wagner theory for this purpose would be beneficial. It would have made
the comparison in the tail of the force measurements more reliable, as gravity can be
included.

For estimates of maximum pressures, the classical Wagner theory (1932) is still
considered a good choice. From the investigation in this chapter, it is concluded that
the theory is not the problem when maximum pressures are found to deviate from the
prediction by Wagner. All applicability limits of the theory is met by the experiment
when considering the pressure peaks. This argues, again, that it is measurement errors
causing the observed differences.
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CONCLUSIONS

Differences between measured data from the MARINTEK experiment and theoretically
predicted impact loads are the reason why the work in this thesis has been carried out.
To find explanations for the differences has been the motivation behind the analyses
made. The applicability of theoretical models, measurement techniques and other
experiments have been studied for this reason. Some conclusions have been made on
what effects are most and least likely to cause the deviations.

Wagner’s theory have been used for comparison, and is concluded to be suited for
comparison of peak pressures. However, the maximum pressure along each sensor row
decreases with increased distance from apex. The spatial distribution of the pressure
coefficient showed values different from the predictions by Wagner. Experimental values
were below the theoretical estimates. It is concluded that these results are not caused
by a velocity change, as they occur for the largest drop height where the velocity
is constant during these measurements. Both hydroelasticity and three-dimensional
effects are assessed, but the experimental results do not show behaviour that can
confirm the occurrence of any of the two. Evaluation of possible error sources for
the pressure measurements show that the total decrease in peak pressure is inside a
predicted error range. In addition to the standard deviation measured, this error range
include error estimates for small disturbances in the free surface as well as errors in the
velocity measurements. It is therefore concluded that the most likely explanation for
the observed pressure behaviour is measurement errors.

Negative pressure drops are reoccurring before the rise of the pressure peaks for all drop
heights. It was first assumed that the negative pressures are generated by a temperature
shock in the sensor. The time scale of the negative pressures is very small, in the
same range as the pressure rise time. No effect of the negative pressures is observed
in the peak pressure value or in the pressure tail. It is therefore concluded that the
best explanation is air trapped in the curvature of the sensor front. The conclusion
is supported by the presence of a pressure rise before the negative drop. This can be
explained by the trapped air being compressed initially (causing the rise in pressure),
and when the cavity collapses this causes the negative pressure.

The above observations are reoccurring for all drop heights. A large discrepancy
between force measurements and integrated pressure is only observed for the lowest
drop height. An explanation for this behaviour has not been found. It is suspected that
it is measurement errors. The question is why the measurement errors cause a large
discrepancy for 0.1 m drop height, while there is no discrepancy for 0.5 m drop height.
Relative to the maximum pressure, the estimated total error on the pressure is larger
for 0.5 m drop height. This argues that errors in the pressure measurements are not the
only explanation for the discrepancy. It is suspected that the force measurements for
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the lowest drop height is above the real values. This assumption of a force measurement
error is based on the maximum forces compared to the Wagner (1932) estimates.

The error estimate made for the peak pressures agrees well with the variation of
peak pressure found in the repeatability analysis. Comparing the standard deviation
from the repeatability analysis to the error estimate showed that the error estimate
is conservative. Force measurements show very good repeatability for 0.5 and 0.25 m
drop height. Pressure peaks are very sensitive to small changes in local details (Faltinsen
2010), and as expected they show a stochastic nature. The force is not as sensitive, which
is reflected by its satisfactory repeatability. For 0.1 m drop height, the repeatability
is not satisfying. The standard deviation is 15 times the value for the other heights.
This supports the hypothesis of an error in the force measurements for the lowest drop
height.

Very few reports of drop tests with a 10◦ wedge are available, and the experiment by
Yang et al. (2007) was the best option. The comparison of drop test results between
the MARINTEK experiment and a drop test performed by Yang et al. (2007) showed
little agreement. It is concluded that this is due to the test set-up in Yang et al.,
which is three-dimensional. This comparison suggests that three-dimensional effects
lead to a large decrease in peak pressure, which is expected (Bereznitski 2001). From
the high pressure peaks in the MARINTEK experiment, this finding argues that three-
dimensional effects are ruled out. This is consistent with the results of Yettou et al.
(2006).

To verify the conclusions made for the observed features of the MARINTEK experiment,
more information is needed. If video recordings or flow visualization was available it
could possibly increase the understanding of what is happening. Without this, the best
possible conclusion is measurement errors.

8.1 SUGGESTIONS FOR FURTHER STUDY

With the amount of information available from the MARINTEK experiment at this
point, the possibilities for a further study are limited. Information in the form of video
recordings or flow visualization cannot be obtained, as no visual presentation of the
experiment was recorded. The following information may be available and could help
obtain better explanations on the observed features of the experiment:

• A visual presentation of a similar drop test experiment from the same test rig to
increase the understanding of what is happening.

• Data from a similar drop test programme at the same test rig at MARINTEK
with different pressure and force sensor types than in this experiment. This could
reveal possible sensor errors.

• Flow visualization of a drop test where the same Kulite sensors are used to confirm
the hypothesis of trapped air causing the negative pressures.

• Data from a drop test of a 10◦ wedge in two-dimensional flow conditions to see if a
comparison can reveal any error sources or explanations of the observed features.

Measurement errors are the best explanation found for the deviations from theoretical
predictions. It is therefore suggested to perform a more in depth error analysis for force
and pressure measurements. It is suspected that there is some error occurring for the
force measurements at 0.1 m drop height, and this should be investigated further.
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APPENDIX A

This appendix includes the Matlab code for generation of pressure time series from
Wagner’s(1932) theory developed in the project thesis.

A.1 Pressure distribution

A.1.1 findtau.m

findtau.m calculates the spatial pressure coefficient distribution for a wedge with a small
deadrise angle (given as input) using asymptotic theory.

%-------------------------------------------------------------------------
% Purpose: Calculate pressure coefficient on wedge from asymptotic theory.
% Method: The formulas defined for the pressure coefficient are used
% from input of the deadrise angle. Tau is found by iteration.
% ------------------------------------------------------------------------
% Variables Description
% bmax z/Vt for spray root, y=c
% angle Deadrise angle in degrees
% beta Deadrise angle in radians
% k Counter for values of pressure and z/Vt
% j Counter in for loop
% b z/Vt
% tau Relation between y and c in pressure equations
% newton Iterative function to find tau
% l Vector with z/Vt values
% p1 Function calculating pressure for y<=c
% p2 Function calculating pressure for y>c
% p Vector with pressure coefficients
%-------------------------------------------------------------------------
clear all
clc

% Read input from user:
angle=input('Please enter wedge deadrise angle in degrees:');

%Calculating necessary parameters:
bmax=(0.5*pi-1);
beta=(angle*pi)/180;

k=0;

% Max value of j is set for a 10 degree deadrise angle here.
for j=-1:0.002:0.64;
b=j;
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% Call on function newton() to iterate tau value
tau=newton(@f1,@f2,0.1,0.00001,300,beta,b);

k=k+1;
l(k)=b;

% If we are outside the jet root (y>c) pressure is:
if b > bmax

p2=pressure2(tau,beta);
p(k)=p2;

else

% Before and in spray root (y<=c), the pressure is:
p1=pressure(b,tau,beta);
p(k)=p1;
end
end

for i=0.64:0.002:0.8
l(k)=i;
p(k)=0;
k=k+1;

end

% Check results for beta=10:

M=csvread('asymptotic cp.csv');
x=M(:,1);
y=M(:,2);

figure
plot(l,p,'color','r')
axis ( [-1 1 0 100] )
hold on
plot(x,y,'color','g')
set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('z/Vt','FontSize',14)
ylabel('Pressure Coeff.','FontSize',14)
legend('Implemented code','Existing data');
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Pressure distribution

A.1.2 newton.m

Calculation of τ with Newton’s method.

%-------------------------------------------------------------------------
% Purpose: Calculate tau.
% Method: Tau is calculated by using Newtons method.
%-------------------------------------------------------------------------
% ------------------------------------------------------------------------
% Variables Description
% fun f(tau)=f1
% funder f'(tau)=f2
% xest Start vaule of tau in iteration
% err Allowed error between two last iterations
% imax Max number of iterations before stopped
% beta Deadrise angles in radians
% b z/Vt
%-------------------------------------------------------------------------

function tau=newton(fun,funder,xest,err,imax,beta,b)

for i=1:imax
x1=xest-feval(fun,xest,beta,b)/feval(funder,xest,beta);
if abs((x1-xest)/xest)<err

tau=x1;
break

end
xest=x1;

end
if i==imax

fprintf('Solution was not found in %i iterations.\n',imax)
tau=('No answer');

end

A.1.3 f1.m, f2.m

Functions in Newton’s method.

%-------------------------------------------------------------------------
% Function for input in Newtons method. f1=f(tau).
%-------------------------------------------------------------------------

function f=f1(x,beta,b)

m=0.5*pi*cot(beta)-cot(beta)*(1+b);
n=(((1/(4*pi))*tan(beta))*(-log(abs(x))-(4*sqrt(abs(x)))-abs(x)+5));
f=m+n;

%-------------------------------------------------------------------------
% Function for input in Newtons method. f2=f'(tau).
%-------------------------------------------------------------------------

function g=f2(x,beta)

g=0.25*pi*tan(beta)*(-(1/x)-(x/(2*(abs(x)ˆ2/3)))-(x/abs(x)));
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A.1.4 pressure.m, pressure2.m

Functions for pressure calculation.

%-------------------------------------------------------------------------
% Purpose: Calculating pressure coefficient (p1) for y<=c
% Method: Use b, tau and beta as input to calculate p1 as output.
%-------------------------------------------------------------------------

function p1=pressure(b,tau,beta)

a=cot(beta);
c=(1+b);
d=0.5*pi;
t=abs(tau);
p1=0.5*(piˆ2)*(aˆ2)*((1/(a*sqrt(dˆ2-cˆ2)))-(1/(a*sqrt(pi*(d-c))))
+((2*sqrt(t))/((1+sqrt(t))ˆ2)));

%-------------------------------------------------------------------------
% Purpose: Calculating pressure coefficient (p2) for y>c
% Method: Use tau and beta as input to calculate p2 as output.
%-------------------------------------------------------------------------

function p2=pressure2(tau,beta)

a=(cot(beta))ˆ2;
c=piˆ2;
d=sqrt(abs(tau));
e=1./(1+sqrt(abs(tau))).ˆ2;

p2=a.*c.*d.*e;
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A.2 maketimehistory.m

maketimehistory.m generates pressure time series at given sensor positions by using the
spatial pressure distribution from findtau.m.

%-------------------------------------------------------------------------
% Purpose: Generate pressure time series for comparison with
% experimental results.
% Method: Using the pressure coefficient the pressure is found for
% input of a sensor location by finding the pressure
% at each time instant at this location for input drop height.
% Note: The script for the pressure coefficient must be run before
% this script can be run.
% ------------------------------------------------------------------------
% Variables Description
% v Water entry velocity
% z1 Vector of vertical sensor coordinates
% t Time
% m Counter for pressure matrices
% zs1-5 Relative entry depth for sensor row 1-5
% l1-l5 Non-dimensional entry depth
% pp1-5 Pressure time series for sensor row 1-5
% pm1-pm13 Experimental pressure for sensor row 1-5
%-------------------------------------------------------------------------

% Water entry velocity: Fill in manually.
v=sqrt(2*9.81*0.5);

% Vertical coordinates of sensors for final drop test:
z1=[0.0148, 0.0165, 0.0182, 0.0200, 0.0217];

% Vertical coordinates of sensors for initial drop test:
%z1=[0.0108, 0.0116, 0.0125, 0.0134, 0.0142, 0.0151];
m=1;

% Find pressure coefficient and pressure for each time instant
for t=0.002:0.000035:0.012

time(m)=t;
zs1(m)=z1(1)-(v*t);
zs2(m)=z1(2)-(v*t);
zs3(m)=z1(3)-(v*t);
zs4(m)=z1(4)-(v*t);
zs5(m)=z1(5)-(v*t);
l1=zs1(m)/(v*t);
l2=zs2(m)/(v*t);
l3=zs3(m)/(v*t);
l4=zs4(m)/(v*t);
l5=zs5(m)/(v*t);
[minDifferenceValue, indexAtMin] = min(abs(l - l1));
pp1(m)=p(indexAtMin)*500*vˆ2;
[minDifferenceValue, indexAtMin] = min(abs(l - l2));
pp2(m)=p(indexAtMin)*500*vˆ2;
[minDifferenceValue, indexAtMin] = min(abs(l - l3));
pp3(m)=p(indexAtMin)*500*vˆ2;
[minDifferenceValue, indexAtMin] = min(abs(l - l4));
pp4(m)=p(indexAtMin)*500*vˆ2;
[minDifferenceValue, indexAtMin] = min(abs(l - l5));
pp5(m)=p(indexAtMin)*500*vˆ2;
m=m+1;
end
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APPENDIX B

This appendix contains the Matlab scripts used in chapter 4 for the experimental
analysis. 98XX indicate test numbers , where XX varies from 01 to 12.

B.1 analyse.m

analyse.m loads the chosen .mat file containing all data from a test. Froude scaling
and geometrical similiraty is applied with a scaling ratio of 50. Filtering of force and
position measurements is also performed.

%-------------------------------------------------------------------------
% Purpose: Scale measurements from full scale to model scale.
% Method: Load measurements and scale with scaling factor 50.
% ------------------------------------------------------------------------
% Variables Description
% fm Sampling frequency - Model scale
% Posm Position - Model scale
% Timem Time - Model scale
% pm(x) Pressure at sensor x - Model scale
% ForcePanelm Force - Model scale
% A Pressure Matrix - Model scale
% fs Sampling frequency - Full scale
% Pos Position - Full scale
% Time Time - Full scale
% mXXXX Pressure at sensor XXXX - Full scale
% ForcePanel Force - Full scale
% ffilt Filtered force - Model scale
% pfilt Filtered position - Model scale
%-------------------------------------------------------------------------

clc
clear all
load('test9810.mat')
% Scale variables to model scale
fm=fs*sqrt(50);
Posm=Pos/50;
Timem=Time/sqrt(50);
pm1=m1029/50;
pm2=m1020/50;
pm3=m1019/50;
pm4=m1018/50;
pm5=m1017/50;
pm6=m1000/50;
pm7=m1015/50;
pm8=m1014/50;
pm9=m1013/50;
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pm10=m1012/50;
pm11=m1010/50;
pm12=m1009/50;
pm13=m1008/50;
pm14=m1005/50;
pm15=m1003/50;
ForcePanelm=ForcePanel/125000;
A=[pm1;pm2;pm3;pm4;pm5;pm6;pm7;pm8;pm9;pm10;pm11;pm12;pm13;pm14;pm15];

% Filtering of force measurements
Fd=double(ForcePanelm);
[b,a] = butter(4,0.024,'low');
ffilt=filtfilt(b,a,Fd);
[b,a] = butter(4,[0.014 0.018],'stop');
ffilt=filtfilt(b,a,ffilt);

% Low pass filtering of position measurements
Posd=double(Posm);
[b,a] = butter(4,0.001,'low');
pfilt=filtfilt(b,a,Posd);

VIII



dispvelc.m

B.2 dispvelc.m

dispvelc.m use the LP-filtered position measurements for numerical derivation to obtain
the velocity. Time instances of initial impact, pressure peak over first sensor row and
pressure peak over last sensor row is found and marked in the plot of the velocity that
is generated. - analyse.m must be run first.

%-------------------------------------------------------------------------
% Purpose: Derive velocity from position measurements.
% Method: Numerical derivation and filtering.
% ------------------------------------------------------------------------
% Variables Description
% pfilt LP-filtered position measurements
% h Derivation time step
% Timem Time
% pm1-pm15 Pressure
% v Velocity
% vnull Velocity at initial impact
% tnull Time of initial impact
% I1,I2 Index variables
% t1 Time of pressure peak first & last row
% s1 Velocity at t1
% ForcePanel Force - Full scale
%-------------------------------------------------------------------------

% Derivation of velocity
h=Timem(2)-Timem(1);
v=diff(pfilt)/h;

% Check velocity when apex hits water
[minDifferenceValue, indexAtMin] = min(abs(pfilt - 0));
vnull=v(indexAtMin);
tnull=Timem(indexAtMin);

% Time when maximum velocity
ii=find(v==min(v));
tmaks=Timem(ii);

% Plot velocity
I1=find(pm1==max(pm1));
I2=find(pm14==max(pm14));
t1=[Timem(I1), Timem(I2)];
s1=[v(I1), v(I2)];
hold on
plot(Timem(1:499999),-v,'b')
scatter(t1,-s1,100,'r');
scatter(tnull,-vnull,70,'*k')
set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('Time (s)','FontSize',14)
ylabel('Velocity (m/s)','FontSize',14)
grid on
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B.3 maxp.m

maxp.m loads the 98XX max.mat files containing maximum pressure over each sensor
for each drop test 98XX. The mean and standard deviation of the maximum pressure
is calculated over all sensors and tests at each drop height.

%-------------------------------------------------------------------------
% Purpose: Find mean maximum pressure each drop height with stand. dev.
% Method: Load max from each test, use func. mean and std.
% ------------------------------------------------------------------------
% Variables Description
% m1-m12 Vectors of max pressure for test 1-12
% m01 Matrix of maximum pressure for 0.1 m drop height
% m025 Matrix of maximum pressure for 0.25 m drop height
% m05 Matrix of maximum pressure for 0.5 m drop height
% m01m Mean maximum pressure for 0.1 m drop height
% m025m Mean maximum pressure for 0.25 m drop height
% m05m Mean maximum pressure for 0.5 m drop height
% e01 Std. deviation of max. pressure for 0.1 m drop height
% e025 Std. deviation of max. pressure for 0.25 m drop height
% e05 Std. deviation of max. pressure for 0.5 m drop height
%-------------------------------------------------------------------------

clc
clear all

% Load maximum pressure for all tests over all sensors
load('9801 max.mat')
load('9802 max.mat')
load('9803 max.mat')
load('9804 max.mat')
load('9806 max.mat')
load('9807 max.mat')
load('9808 max.mat')
load('9809 max.mat')
load('9810 max.mat')
load('9811 max.mat')
load('9812 max.mat')

% Calculate mean and standard deviation for each drop height
m01=[m10,m11,m12];
m01m=mean(m01);
e01=(std(m01)/m01m)*100;
m025=[m1,m2,m3,m4];
m025m=mean(m025);
e025=(std(m025)/m025m)*100;
m05=[m6,m6,m8,m9];
m05m=mean(m05);
e05=(std(m05)/m05m)*100;
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B.4 spatial2.m

spatial2.m loads the 98XX psens.mat files containing the pressure over each sensor for
test 98XX at the time instances where peak pressure occur over each sensor row. Mean
and standard deviation is found over each sensor row, and is plotted with errorbars as
a function of the distance of the sensors from apex.

%-------------------------------------------------------------------------
% Purpose: Plot spatial distribution of pressure.
% Method: Load spatial pressure distribution for all tests and calc.
% mean and std for all sensors - plot with errorbars.
% ------------------------------------------------------------------------
% Variables Description
% s1-s12 Matrix of pressure at sensors at tests 1-12 at times 1-5
% s01 Matrix of pressure distribution for 0.1 m drop height
% s025 Matrix of pressure distribution for 0.25 m drop height
% s05 Matrix of pressure distribution for 0.5 m drop height
% s01m Mean of s01
% s025m Mean of s025
% s05m Mean of s05
% e01 Standard deviation of s01
% e025 Standard deviation for s025
% e05 Standard deviation for s05
% P1-P5 Sensor positions at time instants 1-5
% C1-C5 Mean pressure distribution at time instants 1-5
% CP Peak pressure at sensors
% E1-E5 Std of pressure distribution at time instants 1-5
%-------------------------------------------------------------------------

clc
clear all

% Load pressure coefficients
load('9801 psens.mat')
load('9802 psens.mat')
load('9803 psens.mat')
load('9804 psens.mat')
load('9806 psens.mat')
load('9807 psens.mat')
load('9808 psens.mat')
load('9809 psens.mat')
load('9810 psens.mat')
load('9811 psens.mat')
load('9812 psens.mat')

% Calculate mean and std for each sensor
s01=[s10; s11; s12];
s01m=mean(s01,1);
e01=std(s01,0,1);
s025=[s1; s2; s3; s4];
s025m=mean(s025,1);
e025=std(s025,0,1);
s05=[s6; s7; s8; s9];
s05m=mean(s05,1);
e05=std(s05,0,1);

% Prepare plot
P1=85;
C1=s05m(1);
E1=e05(1);
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P2=[85, 95];
C2=[s05m(2),s05m(3)];
E2=[e05(2),e05(3)];
P3=[85, 95, 105];
C3=[s05m(4),s05m(5),s05m(6)];
E3=[e05(4),e05(5),e05(6)];
P4=[85,95,105,115];
C4=[s05m(7),s05m(8),s05m(9),s05m(10)];
E4=[e05(7),e05(8),e05(9),e05(10)];
P5=[85,95,105,115,125];
C5=[s05m(11),s05m(12),s05m(13),s05m(14),s05m(15)];
E5=[e05(11),e05(12),e05(13),e05(14),e05(15)];
CP=[s05m(1),s05m(3),s05m(6),s05m(10),s05m(15)];

% Plot spatial distribution
figure
hold on
grid on
errorbar(P1,C1,E1,'r');
errorbar(P2,C2,E2,'-b');
errorbar(P3,C3,E3,'-m');
errorbar(P4,C4,E4 ,'-c');
errorbar(P5,C5,E5,'-g');
plot(P5,CP,'-k','LineWidth',2)
axis([80,140,-10,700]);
set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('Position along wedge surface (mm)','FontSize',14)
ylabel('Pressure (kPa)','FontSize',14)
legend('t1','t2','t3','t4','t5','Peak Pressure')
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B.5 Pressurecoeff.m

Pressurecoeff.m use the 98XX psens.mat files from the time instance where the pressure
peak occur over the fifth sensor row. The maximum pressure is made non-dimensional,
i.e. maximum pressure coefficients. The maximum pressure coefficients vs. distance of
sensor position from apex is plotted.

%-------------------------------------------------------------------------
% Purpose: Plot spatial distribution of pressure coefficient.
% Method: Load spatial pressure dist. for all tests and calc. mean and std
% for all sensors - plot with errorbars.
% ------------------------------------------------------------------------
% Variables Description
% s1-s12 Matrix of pressure at all sensors at all tests at time t
% s01 Matrix of pressure coefficient for 0.1 m drop height
% s025 Matrix of pressure coefficient for 0.25 m drop height
% s05 Matrix of pressure coefficient for 0.5 m drop height
% s01m Mean of s01
% s025m Mean of s025
% s05m Mean of s05
% e01 Standard deviation of s01
% e025 Standard deviation for s025
% e05 Standard deviation for s05
% v01 Square of velocity, 0.1 m drop height
% v025 Square of velocity, 0.25 m drop height
% v05 Square of velocity, 0.5 m drop height
% P Sensor positions
% C1-C5 Matrix for mean pressure coeff. at each drop height
% E1-E5 Matrix of std. for each drop height
%-------------------------------------------------------------------------

clc
clear all

% Loading spatial pressure distribution
load('9801 psens.mat')
load('9802 psens.mat')
load('9803 psens.mat')
load('9804 psens.mat')
load('9806 psens.mat')
load('9807 psens.mat')
load('9808 psens.mat')
load('9809 psens.mat')
load('9810 psens.mat')
load('9811 psens.mat')
load('9812 psens.mat')

% Calculate square of velocity
v01=0.1*9.81;
v025=0.25*9.81;
v05=0.5*9.81;

% Calculate mean and std for each sensor
s01=[s10; s11; s12]./v01;
s01m=mean(s01,1);
e01=std(s01,0,1);
s025=[s1; s2; s3; s4]./v025;
s025m=mean(s025,1);
e025=std(s025,0,1);
s05=[s6; s7; s8; s9]./v05;
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s05m=mean(s05,1);
e05=std(s05,0,1);

% Prepare plot
P=[85,95,105,115,125];
C5=[s05m(11),s05m(12),s05m(13),s05m(14),s05m(15)];
E5=[e05(11),e05(12),e05(13),e05(14),e05(15)];
C25=[s025m(11),s025m(12),s025m(13),s025m(14),s025m(15)];
E25=[e025(11),e025(12),e025(13),e025(14),e025(15)];
C1=[s01m(11),s01m(12),s01m(13),s01m(14),s01m(15)];
E1=[e01(11),e01(12),e01(13),e01(14),e01(15)];

% Plot spatial distribution
figure
hold on
grid on
errorbar(P,C1,E1,'r');
errorbar(P,C25,E25,'-b');
errorbar(P,C5,E5,'-m');
axis([80,120,0,130]);
set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('Position along wedge surface (mm)','FontSize',14)
ylabel('Pressure coefficient, Cp','FontSize',14)
legend('h = 0.1 m','h = 0.25 m','h = 0.5 m')
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B.6 decay.m

decay.m calculates the duration of the slamming pressure for each sensor. This is done
by finding all indices of each pressure vector that contains pressure values above 50%
of the maximum pressure. After the time duration is found the mean and standard
deviation for all sensors are found. The duration of the slamming force is found in the
same manner. Note: analyse.m must be run first.

%-------------------------------------------------------------------------
% Purpose: Find duration of slamming pressure and force.
% Method: Track indices of pressure/force > 50% max pressure/force.
% ------------------------------------------------------------------------
% Variables Description
% slamt Vector for duration for each sensor
% i Counter for sensor number
% Timem Time - Model scale
% A Pressure Matrix - Model scale
% x Vector for pressure for sensor i/ force measurement
% M Max pressure/force
% M2 50% max pressure
% I Indices of pressure above M2
% slamtm Mean slamming duration for test
% stand Standard deviation of slamming durations
% fd Force duration
%-------------------------------------------------------------------------

% Find slamming duration for each sensor
slamt=zeros(1,15);
for i=1:15

x=A(i,:);
M=max(x);
M2=0.5*M;
I=find(x>M2);
slamt(i)=Timem(I(length(I)))-Timem(I(1));

end

% Find mean slamming duration
slamtm=(mean(slamt))*1000;
stand=(std(slamt))*1000;

% Find duration of slamming force
x=ffilt;
M=max(x);
M2=0.5*M;
I=find(x>M2);
fd=Timem(I(length(I)))-Timem(I);
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B.7 minp.m

minp.m loads the 98XX min.mat files containing minimum pressure over each sensor
for each drop test 98XX. The mean and standard deviation of the minimum pressure is
calculated over all sensors and tests at each drop height.

%-------------------------------------------------------------------------
% Purpose: Find mean minimum pressure each drop height with stand. dev.
% Method: Load min from each test, use func. mean and std.
% ------------------------------------------------------------------------
% Variables Description
% min1-12 Vectors of minimum pressure each sensor and test
% m01 Matrix of minimum pressure for 0.1 m drop height
% m025 Matrix of minimum pressure for 0.25 m drop height
% m05 Matrix of minimum pressure for 0.5 m drop height
% m01m Mean minimum pressure for 0.1 m drop height
% m025m Mean minimum pressure for 0.25 m drop height
% m05m Mean minimum pressure for 0.5 m drop height
% e01 Std. deviation of max. pressure for 0.1 m drop height
% e025 Std. deviation of max. pressure for 0.25 m drop height
% e05 Std. deviation of max. pressure for 0.5 m drop height
%-------------------------------------------------------------------------

clc
clear all

% Load minimum pressure for all tests over all sensors
load('9801 min.mat')
load('9802 min.mat')
load('9803 min.mat')
load('9804 min.mat')
load('9806 min.mat')
load('9807 min.mat')
load('9808 min.mat')
load('9809 min.mat')
load('9810 min.mat')
load('9811 min.mat')
load('9812 min.mat')

% Calculate mean and standard deviation for each drop height
m01=[min10,min11,min12];
m01m=mean(m01);
e01=(std(m01)/m01m)*100;
m025=[min1,min2,min3,min4];
m025m=mean(m025);
e025=(std(m025)/m025m)*100;
m05=[min6,min6,min8,min9];
m05m=mean(m05);
e05=(std(m05)/m05m)*100;

XVI



threedim.m

B.8 threedim.m

threedim.m loads the 98XX max.mat files with maximum pressure values for test 98XX.
The mean maximum pressure over each column is found to check for possible three-
dimensioanl effects closer to the edges.

%-------------------------------------------------------------------------
% Purpose: Check for three-dimensional effects
% Method: Find mean max pressure for each sensor column
% ------------------------------------------------------------------------
% Variables Description
% m1-m12 Vectors of max pressure from test 1-12
% (x) 1-3
% (y) 0.1, 0.25, 0.5
% c(x)(y) Max pressure of column x at drop height y
% c(x)(y)m Mean max pressure of column x at drop height y
%-------------------------------------------------------------------------

% Load maximum pressures

load('9801 max.mat')
load('9802 max.mat')
load('9803 max.mat')
load('9804 max.mat')
load('9806 max.mat')
load('9807 max.mat')
load('9808 max.mat')
load('9809 max.mat')
load('9810 max.mat')
load('9811 max.mat')
load('9812 max.mat')

% Find mean over each 'column'
% Column 1: Sensor 1029-1008
c101=[m10(1),m10(4),m10(7),m10(10),m10(13),m11(1),m11(4),m11(7),m11(10),

m11(13),m12(1),m12(4),m12(7),m12(10),m12(13)];
c101m=mean(c101,2);
c1025=[m1(1),m1(4),m1(7),m1(10),m1(13),m2(1),m2(4),m2(7),m2(10),m2(13),

m3(1),m3(4),m3(7),m3(10),m3(13),m4(1),m4(4),m4(7),m4(10),m4(13)];
c1025m=mean(c1025,2);
c105=[m6(1),m6(4),m6(7),m6(10),m6(13),m7(1),m7(4),m7(7),m7(10),m7(13),

m8(1),m8(4),m8(7),m8(10),m8(13),m9(1),m9(4),m9(7),m9(10),m9(13)];
c105m=mean(c105,2);
% Column 2: Sensor 1020-1005
c201=[m10(2),m10(5),m10(8),m10(11),m10(14),m11(2),m11(5),m11(8),m11(11),

m11(14),m12(2),m12(5),m12(8),m12(11),m12(14)];
c201m=mean(c201,2);
c2025=[m1(2),m1(5),m1(8),m1(11),m1(14),m2(2),m2(5),m2(8),m2(11),m2(14),

m3(2),m3(5),m3(8),m3(11),m3(14),m4(2),m4(5),m4(8),m4(11),m4(14)];
c2025m=mean(c2025,2);
c205=[m6(2),m6(5),m6(8),m6(11),m6(14),m7(2),m7(5),m7(8),m7(11),m7(14),

m8(2),m8(5),m8(8),m8(11),m8(14),m9(2),m9(5),m9(8),m9(11),m9(14)];
c205m=mean(c205,2);
% Column 3: Sensor 1019-1003
c301=[m10(3),m10(6),m10(9),m10(12),m10(15),m11(3),m11(6),m11(9),m11(12),

m11(15),m12(3),m12(6),m12(9),m12(12),m12(15)];
c301m=mean(c301,2);
c3025=[m1(3),m1(6),m1(9),m1(12),m1(15),m2(3),m2(6),m2(9),m2(12),m2(15),

m3(3),m3(6),m3(9),m3(12),m3(15),m4(3),m4(6),m4(9),m4(12),m4(15)];
c3025m=mean(c3025,2);
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c305=[m6(3),m6(6),m6(9),m6(12),m6(15),m7(3),m7(6),m7(9),m7(12),m7(15),
m8(3),m8(6),m8(9),m8(12),m8(15),m9(3),m9(6),m9(9),m9(12),m9(15)];

c305m=mean(c305,2);

XVIII



hydroelasticity.m

B.9 hydroelasticity.m

hydroelasticity.m check for hydroelastic behaviour for 0.1 m drop height (test 9810).
Pressure time series generated by maketimeseries.m is loaded for final and initital
drop tests. These pressure time series are synchronized and plotted together with the
experimental results for comparison. Force measurements from inital and final drop
tests are compared as well as position measurements.

%-------------------------------------------------------------------------
% Purpose: Check for indications of hydroelastic behaviour.
% Method: Compare time series of inital and final drop tests.
% Compare initial integrated pressure to Wagner.
% ------------------------------------------------------------------------
% Variables Description
% NFA Matrix of pressure, initial test
% NFTimem Time - inital test
% NFPos Position - initial test
% pm31-33 Pressure vectors, inital test
% Timem Time - Model scale
% pp1-pp6 Pressure vectors, Wagner generated
% time Time - Wagner generated
% pm4-pm13 Pressure vectors, final test
% P1 Averaged pressure, initial test
% b,a LP-filter variables
% pfilt LP-filtered position, final test
% pfilt2 LP-filtered position, inital test
% pXXXX Pressure - Full scale
% ForcePanel Force - Full scale
%-------------------------------------------------------------------------

% !! NOTE: Run analyse.m for test 9810 before start this script !!
% Load pressure from initial drop test
load('NoPanel01.mat')
% Load Wagner estimate for inital drop test
load('WagP NoPanel.mat')

% Prepare plot
pm31=NFA(31,:);
pm32=NFA(32,:);
pm33=NFA(33,:);
pm34=NFA(34,:);
pm35=NFA(35,:);
pm36=NFA(36,:);

% Plot inital time series vs. Wagner time series
figure(1)
h1=plot(time,pp1/1000,'r');
hold on
plot(time,pp2/1000,'r')
plot(time,pp3/1000,'r')
plot(time,pp4/1000,'r')
plot(time,pp5/1000,'r')
plot(time,pp6/1000,'r')
h2=plot(NFTimem,pm31,'b');
hold on
plot(NFTimem,pm32,'b')
plot(NFTimem,pm33,'b')
plot(NFTimem,pm34,'b')
plot(NFTimem,pm35,'b')
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plot(NFTimem,pm36,'b')
grid on
set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('Time (s)','FontSize',14)
ylabel('Pressure (kPa)','FontSize',14)
legend([h1 h2],{'Wagner', 'Experimental'})
axis([0.002 0.011995 -20 125])

% Load Wagner estimate for final drop test
load('WagForce 01.mat')

% Plot final time series vs. Wagner time series
figure(2)
h1=plot(time,pp1/1000,'r');
hold on
plot(time,pp2/1000,'r')
plot(time,pp3/1000,'r')
plot(time,pp4/1000,'r')
plot(time,pp5/1000,'r')
h2=plot(Timem,pm1,'b');
hold on
plot(Timem,pm4,'b')
plot(Timem,pm7,'b')
plot(Timem,pm10,'b')
plot(Timem,pm13,'b')
grid on
set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('Time (s)','FontSize',14)
ylabel('Pressure (kPa)','FontSize',14)
legend([h1 h2],{'Wagner', 'Experimental'})
axis([0.002 0.011995 -20 125])

%Compare initial force measurements to Wagner force
P1=[pp1;pp2;pp3;pp4;pp5;pp6];
P1=mean(P1,1)/1000;
P2=mean(NFA,1);

% Plot force comparison
figure(3)
grid on
hold on
plot(NFTimem,(P2*3.6),'r')
plot(time,(P1*3.6),'b');
set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('Time (s)','FontSize',14)
ylabel('Force (N)','FontSize',14)
legend('Measured integrated pressure','Wagner integrated pressure')
axis([2.51 2.52 -9 205])

% Load position measurements from inital drop test
load('NoPanelPos.mat')

% Compare initial position measurements to final
NFpos=NFPosm+0.1;

% Filter initial position measurements
Posd=double(NFpos);
[b,a] = butter(4,0.001,'low');
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pfilt2=filtfilt(b,a,Posd);

% Plot comparison
plot(Timem,pfilt,'b')
hold on
plot(NFTimem-6.1691,pfilt2,'r')
set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('Time (s)','FontSize',14)
ylabel('Position (m)','FontSize',14)
legend('Final drop test','Initial drop test')
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B.10 integral.m

integral.m compares the integrated pressure measurements with measured force. It
also loads pressure time series from the code maketimeseries.m that was presented in
appendix X. A comparison is made between integrated pressure measurements, force
measurements and integrated pressure generated from Wagner’s(1932) theory. Note:
analysis.m must be run first.

%-------------------------------------------------------------------------
% Purpose: Integrate measured pressure to compare with force measures.
% Method: Find average pressure over panel area.
% ------------------------------------------------------------------------
% Variables Description
% Timem Time - Model scale
% time Time, Wagner generated
% ffilt LP-filtered force measurement
% A Pressure Matrix - Model scale
% P6 Average pressure over panel
% pp1-pp5 Pressure vectors, Wagner generated
% P7 Average pressure, Wagner generated
%-------------------------------------------------------------------------

% Comparison of force measurements and integrated pressure
P6=mean(A,1);
figure(1)
hold on
plot(Timem,ffilt*1000,'b');
plot(Timem,P6*3.6,'r')
set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('Time (s)','FontSize',14)
ylabel('Force (N)','FontSize',14)
legend('Measured integrated pressure','Measured force')
grid on

% Comparison force measurements, integrated pressure, Wagner integrated

% Read input from user:
height=input('Enter analysed drop height (0.1 or 0.5):');

% Load generated Wagner pressure for chosen drop height
if height==0.1

load('WagForce 01.mat')
elseif height==0.5

load('WagForce 05.mat')
else

disp('Height not valid')
stop

end

% Plot
P7=[pp1;pp2;pp3;pp4;pp5];
P7=mean(P7,1)/1000;
figure(2)
hold on
plot(Timem,(P6*3.6),'r')
plot(time-2.5065,P7*3.6,'b')
plot(Timem,ffilt*1000,'g')
set(gca,'fontsize',14)
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set(gcf,'color','white')
xlabel('Time (s)','FontSize',14)
ylabel('Force (N)','FontSize',14)
legend('Measured integrated pressure', 'Wagner integrated pressure',

'Measured force')

XXIII



APPENDIX B

B.11 Forcean.m

Forcean.m loads the ffilt XX.mat files containing the filtered force measurements from
test 98XX. The mean maximum force is found for each drop height. Maximum force
from Wagner’s(1932) theory is calculated for each drop test.

%-------------------------------------------------------------------------
% Purpose: Find mean max each drop height and Wagner estimate of Fmax.
% Method: Loading max values of filtered values, calc mean and std.
% Caluculate Wagner max force
% ------------------------------------------------------------------------
% Variables Description
% rho Density of water
% v Impact velocity
% beta Deadrise angle
% xa,xb,b Calculation variables
% f Wagner mac force per unit length
% fmax01 Wagner max force for 0.1 m drop height
% fmax025 Wagner max force for 0.25 m drop height
% fmax05 Wagner max force for 0.5 m drop height
% f1-f4 Variables storing max force from tests
% F Vector of max forces
% F01 Mean max force for 0.1 m drop height
% F025 Mean max force for 0.25 m drop height
% F05 Mean max force for 0.5 m drop height
%-------------------------------------------------------------------------

% Find wagner maximum for each drop height

% 0.1 m drop height
rho=1000;
v=sqrt(2*9.81*0.1);
beta=(10/180)*pi;
xa=cos(beta)*(75/1000);
xb=cos(beta)*(135/1000);
b=asin(xa/abs(xb));
f=((rho*(vˆ2)*xb*pi)/(2*tan(beta)))*((pi/2)-b);
fmax01=fmax*(60/1000);

% 0.25 m drop height
v=sqrt(2*9.81*0.25);
f=((rho*(vˆ2)*xb*pi)/(2*tan(beta)))*((pi/2)-b);
fmax025=f*(60/1000);

% 0.5 m drop height
v=sqrt(2*9.81*0.5);
f=((rho*(vˆ2)*xb*pi)/(2*tan(beta)))*((pi/2)-b);
fmax05=f*(60/1000);

% Load filtered force measurements
load('ffilt 01.mat')
load('ffilt 02.mat')
load('ffilt 03.mat')
load('ffilt 04.mat')
load('ffilt 06.mat')
load('ffilt 07.mat')
load('ffilt 08.mat')
load('ffilt 09.mat')
load('ffilt 10.mat')
load('ffilt 11.mat')
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load('ffilt 12.mat')

% Mean max force 0.1 m drop height
f1=max(ffilt10);
f2=max(ffilt11);
f3=max(ffilt12);
F=[f1; f2; f3];
F01=mean(F);

% Mean max force 0.25 m drop height
f1=max(ffilt01);
f2=max(ffilt02);
f3=max(ffilt03);
f4=max(ffilt04);
F=[f1; f2; f3; f4];
F025=mean(F);

% Mean max force 0.5 m drop height
f1=max(ffilt06);
f2=max(ffilt07);
f3=max(ffilt08);
f4=max(ffilt09);
F=[f1; f2; f3; f4];
F05=mean(F);
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APPENDIX C

This appendix contains the Matlab scripts used in chapter 5 for investigation of
repeatability and behaviour of local quantities. 98XX indicate test numbers, where
XX varies from 01 to 12.

C.1 repeatability.m

repeatability.m load the 98XX pf.mat files containing the filtered force and pressure
measurements from each test. The pressure time series are synchronized in time using
the peak pressure at first sensor row. Force measurements are synchronized by peak
force. Shaded errorbar plots are generated.

%-------------------------------------------------------------------------
% Purpose: Check repeatability of force and pressure measurements
% Method: Load measurements and synchronize.
% Plot with shadederrorbar for mean and std.
% ------------------------------------------------------------------------
% Variables Description
% m1-m4 Max measurements
% I1-I4 Index of maxima
% P1-P4 Synchronized pressure vectors
% dt Time step
% t Time
% PP1-PP5 Matrix of pressure for each sensor from all equal tests
% M1-M5 Mean pressure for each sensor
% E1-E5 Std. of pressure over each sensor
% F1-F3 Synchronized force measurements
% FF Vector of synchronized force from all equal tests
% MF1 Mean force
% EF1 Std of force
%-------------------------------------------------------------------------

clc
clear all

% Load pressure and force measurements
load('9806 pf.mat')
load('9807 pf.mat')
load('9808 pf.mat')
load('9809 pf.mat')
load('9810 pf.mat')
load('9811 pf.mat')
load('9812 pf.mat')
load('9801 pf.mat')
load('9802 pf.mat')
load('9803 pf.mat')
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load('9804 pf.mat')

% Prepare plot for 0.5 m drop height

% Synchronize pressure time series from tests
m1=max(P9806(1,:));
m2=max(P9807(1,:));
m3=max(P9808(1,:));
m4=max(P9809(1,:));
I1=find(P9806(1,:)==m1);
I2=find(P9807(1,:)==m2);
I3=find(P9808(1,:)==m3);
I4=find(P9809(1,:)==m4);
P1=P9806(:,(I1-50000):(I1+150000));
P2=P9807(:,(I2-50000):(I2+150000));
P3=P9808(:,(I3-50000):(I3+150000));
P4=P9809(:,(I4-50000):(I4+150000));
dt=1/50000;
t=0:dt:((200001*dt)-dt);

%Caulculate mean and standard deviation
PP1=[P1(1,:); P2(1,:); P3(1,:);P4(1,:)];
PP2=[P1(2,:);P2(2,:);P3(2,:);P4(2,:)];
PP3=[P1(3,:);P2(3,:);P3(3,:);P4(3,:)];
PP4=[P1(4,:);P2(4,:);P3(4,:);P4(4,:)];
PP5=[P1(5,:);P2(5,:);P3(5,:);P4(5,:)];
M1=mean(PP1,1);
M2=mean(PP2,1);
M3=mean(PP3,1);
M4=mean(PP4,1);
M5=mean(PP5,1);
E1=std(PP1,1);
E2=std(PP2,1);
E3=std(PP3,1);
E4=std(PP4,1);
E5=std(PP5,1);
%Plot
figure(1)
hold on
A=shadedErrorBar(t,M1,(E1),{'-b', 'LineWidth', 2});
B=shadedErrorBar(t,M2,(E2),{'-g', 'LineWidth', 2});
C=shadedErrorBar(t,M3,(E3),{'-r', 'LineWidth', 2});
D=shadedErrorBar(t,M4,E4,{'-c', 'LineWidth', 2});
E=shadedErrorBar(t,M5,E5,{'-y', 'LineWidth', 2});
legend([A.mainLine,B.mainLine,C.mainLine,D.mainLine,E.mainLine],
'Sensor1029 - Row1','Sensor1018 - Row2', 'Sensor1015 - Row3',
'Sensor1012 - Row4', 'Sensor1008 - Row5');

set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('Time (s)','FontSize',14)
ylabel('Pressure (kPa)','FontSize',14)

% Prepare plot for 0.1 m drop height

% Synchronize pressure time series from tests
m1=max(P9810(1,:));
m2=max(P9811(1,:));
m3=max(P9812(1,:));
I1=find(P9810(1,:)==m1);
I2=find(P9811(1,:)==m2);
I3=find(P9812(1,:)==m3);
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P1=P9810(:,(I1-50000):(I1+150000));
P2=P9811(:,(I2-50000):(I2+150000));
P3=P9812(:,(I3-50000):(I3+150000));
dt=1/50000;
t=0:dt:((200001*dt)-dt);

%Caulculate mean and standard deviation
PP1=[P1(1,:); P2(1,:); P3(1,:)];
PP2=[P1(2,:);P2(2,:);P3(2,:)];
PP3=[P1(3,:);P2(3,:);P3(3,:)];
PP4=[P1(4,:);P2(4,:);P3(4,:)];
PP5=[P1(5,:);P2(5,:);P3(5,:)];
M1=mean(PP1,1);
M2=mean(PP2,1);
M3=mean(PP3,1);
M4=mean(PP4,1);
M5=mean(PP5,1);
E1=std(PP1,1);
E2=std(PP2,1);
E3=std(PP3,1);
E4=std(PP4,1);
E5=std(PP5,1);
%Plot
figure(2)
hold on
A=shadedErrorBar(t,M1,(E1),{'-b', 'LineWidth', 2});
B=shadedErrorBar(t,M2,(E2),{'-g', 'LineWidth', 2});
C=shadedErrorBar(t,M3,(E3),{'-r', 'LineWidth', 2});
D=shadedErrorBar(t,M4,E4,{'-c', 'LineWidth', 2});
E=shadedErrorBar(t,M5,E5,{'-y', 'LineWidth', 2});
legend([A.mainLine,B.mainLine,C.mainLine,D.mainLine,E.mainLine],
'Sensor1029 - Row1','Sensor1018 - Row2', 'Sensor1015 - Row3',
'Sensor1012 - Row4', 'Sensor1008 - Row5');

set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('Time (s)','FontSize',14)
ylabel('Pressure (kPa)','FontSize',14)

% Prepare plot for force measurements for 0.5 m drop height

%Synchronize force records
m1=max(F9806(1,:));
m2=max(F9807(1,:));
m3=max(F9808(1,:));
m4=max(F9809(1,:));
I1=find(F9806(1,:)==m1);
I2=find(F9807(1,:)==m2);
I3=find(F9808(1,:)==m3);
I4=find(F9809(1,:)==m4);
F1=F9806(:,(I1-50000):(I1+150000));
F2=F9807(:,(I2-50000):(I2+150000));
F3=F9808(:,(I3-50000):(I3+150000));
F4=F9809(:,(I4-50000):(I4+150000));
%Calculate mean and standard deviation
FF=[F1(1,:); F2(1,:); F3(1,:);F4(1,:)];
MF1=mean(FF,1);
EF1=std(FF,1);
%Plot
figure(3)
hold on
shadedErrorBar(t,MF1,(EF1),{'-b', 'LineWidth', 2});
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set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('Time (s)','FontSize',14)
ylabel('Force (N)','FontSize',14)

% Prepare plot for force measurements for 0.1 m drop height

%Synchronize force records
m1=max(F9810(1,:));
m2=max(F9811(1,:));
m3=max(F9812(1,:));
I1=find(F9810(1,:)==m1);
I2=find(F9811(1,:)==m2);
I3=find(F9812(1,:)==m3);
F1=F9810(:,(I1-50000):(I1+100000));
F2=F9811(:,(I2-50000):(I2+100000));
F3=F9812(:,(I3-50000):(I3+100000));
%Calculate mean and standard deviation
FF=[F1(1,:); F2(1,:); F3(1,:)];
MF1=mean(FF,1);
EF1=std(FF,1);
dt=1/50000;
t=0:dt:((150001*dt)-dt);
%Plot
figure(4)
hold on
shadedErrorBar(t,MF1,(EF1),{'-b', 'LineWidth', 2});
set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('Time (s)','FontSize',14)
ylabel('Force (N)','FontSize',14)
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C.2 linearity.m

linearity.m loads the 98XX max.mat files containing maximum pressures, ffilt XX.mat
files containing filtered time series, dur98XX.mat files containing slamming pressure
duration, fdur98XX.mat files containing slamming force duration and rise98XX.mat
files containing rise time of pressure. Variation with drop height and accorss rows are
found and plotted for all the loaded quantities.

%-------------------------------------------------------------------------
% Purpose: Check linear dependence on drop height.
% Method: Load measurements and synchronize.
% Plot with shadederrorbar for mean and std.
% ------------------------------------------------------------------------
% Variables Description
% h Vector of drop heights
% (y) 1-5
% (x) 0.1, 0.25, 0.5
% r(x)(y) Peak pressure at row x at drop height y
% r(x)(y)m Mean peak pressure at row x at drop height y
% y(y) Vector with peaks for row y at all heights
% v1-v3 Square velocity times half of water density
% c(y) Vector with max Cp for row y at all heights
% f(y) Max force for drop height y
% f All max forces
% x Drop heights for force plot
% d(x)(y) Slamming pressure duration at row x at drop height y
% d(x)(y)m Mean slamming pressure dur. at row x at drop height y
% d(y) Vector with peaks for row y at all heights
% f2 Vector of all slam. force durations
% ri(x)(y) Rise time pressure at row x at drop height y
% ri(x)(y)m Mean rise time pressure at row x at drop height y
% ri(y) Vector with rise time for row y at all heights
%-------------------------------------------------------------------------

clc
clear all

% Load maximum pressure
load('9801 max.mat')
load('9802 max.mat')
load('9803 max.mat')
load('9804 max.mat')
load('9806 max.mat')
load('9807 max.mat')
load('9808 max.mat')
load('9809 max.mat')
load('9810 max.mat')
load('9811 max.mat')
load('9812 max.mat')

% Scatter plot of peak pressure vs. drop height

h=[0.1, 0.25, 0.5];
% Find mean over each row - 0.1 m
r101=[m10(1),m10(2),m10(3),m11(1),m11(2),m11(3),m12(1),m12(2),m12(3)];
r101m=mean(r101,2);
r201=[m10(4),m10(5),m10(6),m11(4),m11(5),m11(6),m12(4),m12(5),m12(6)];
r201m=mean(r201,2);
r301=[m10(7),m10(8),m10(9),m11(7),m11(8),m11(9),m12(7),m12(8),m12(9)];
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r301m=mean(r301,2);
r401=[m10(10),m10(11),m10(12),m11(10),m11(11),m11(12),m12(10),m12(11),m12(12)];
r401m=mean(r401,2);
r501=[m10(13),m10(14),m10(15),m11(13),m11(14),m11(15),m12(13),m12(14),m12(15)];
r501m=mean(r501,2);
% Find mean over each row - 0.25 m
r1025=[m1(1),m1(2),m1(3),m2(1),m2(2),m2(3),m3(1),m3(2),m3(3),m4(1),m4(2),m4(3)];
r1025m=mean(r1025,2);
r2025=[m1(4),m1(5),m1(6),m2(4),m2(5),m2(6),m3(4),m3(5),m3(6),m4(4),m4(5),m4(6)];
r2025m=mean(r2025,2);
r3025=[m1(7),m1(8),m1(9),m2(7),m2(8),m2(9),m3(7),m3(8),m3(9),m4(7),m4(8),m4(9)];
r3025m=mean(r3025,2);
r4025=[m1(10),m1(11),m1(12),m2(10),m2(11),m2(12),m3(10),m3(11),m3(12),m4(10),

m4(11),m4(12)];
r4025m=mean(r4025,2);
r5025=[m1(13),m1(14),m1(15),m2(13),m2(14),m2(15),m3(13),m3(14),m3(15),m4(13),

m4(14),m4(15)];
r5025m=mean(r5025,2);
% Find mean over each row - 0.5 m
r105=[m6(1),m6(2),m6(3),m7(1),m7(2),m7(3),m8(1),m8(2),m8(3),m9(1),m9(2),m9(3)];
r105m=mean(r105,2);
r205=[m6(4),m6(5),m6(6),m7(4),m7(5),m7(6),m8(4),m8(5),m8(6),m9(4),m9(5),m9(6)];
r205m=mean(r205,2);
r305=[m6(7),m6(8),m6(9),m7(7),m7(8),m7(9),m8(7),m8(8),m8(9),m9(7),m9(8),m9(9)];
r305m=mean(r305,2);
r405=[m6(10),m6(11),m6(12),m7(10),m7(11),m7(12),m8(10),m8(11),m8(12),m9(10),

m9(11),m9(12)];
r405m=mean(r405,2);
r505=[m6(13),m6(14),m6(15),m7(13),m7(14),m7(15),m8(13),m8(14),m8(15),m9(13),

m9(14),m9(15)];
r505m=mean(r505,2);
% Make scatter plot
x=[0.1, 0.25, 0.5];
y1=[r101m,r1025m,r105m];
y2=[r201m,r2025m,r205m];
y3=[r301m,r3025m,r305m];
y4=[r401m,r4025m,r405m];
y5=[r501m,r5025m,r505m];
figure(1)
hold on
scatter(x,y1,100,'ro')
scatter(x,y2,100,'g+')
scatter(x,y3,100,'b*')
scatter(x,y4,100,'kd')
scatter(x,y5,100,'ms')
legend('Row 1','Row 2','Row 3','Row 4','Row 5')
set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('Drop height (m)','FontSize',14)
ylabel('Max Pressure (kPa)','FontSize',14)
axis([0 0.7 0 500])
grid on

% Scatter plot of maximum pressure coefficient vs. drop height

v1=2*9.81*0.1*500;
v2=2*9.81*0.25*500;
v3=2*9.81*0.5*500;
v=[v1,v2,v3];
% Define pressure coefficients each drop height
c1=y1./v;
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c2=y2./v;
c3=y3./v;
c4=y4./v;
c5=y5./v;
% Plot
figure(2)
hold on
scatter(x,c1*1000,100,'ro')
scatter(x,c2*1000,100,'g+')
scatter(x,c3*1000,100,'b*')
scatter(x,c4*1000,100,'kd')
scatter(x,c5*1000,100,'ms')
legend('Row 1','Row 2','Row 3','Row 4','Row 5')
set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('Drop height (m)','FontSize',14)
ylabel('Cp = Pmax/(0.5*rho*Vˆ2)','FontSize',14)
axis([0 0.7 0 100])
grid on

% Scatter plot pf maximum force vs. drop height

% Load filtered force measurements
load('ffilt 01.mat')
load('ffilt 02.mat')
load('ffilt 03.mat')
load('ffilt 04.mat')
load('ffilt 06.mat')
load('ffilt 07.mat')
load('ffilt 08.mat')
load('ffilt 09.mat')
load('ffilt 10.mat')
load('ffilt 11.mat')
load('ffilt 12.mat')
% Max each drop height
f01=[max(ffilt10),max(ffilt11),max(ffilt12)];
f025=[max(ffilt01),max(ffilt02),max(ffilt03),max(ffilt04)];
f05=[max(ffilt06),max(ffilt07),max(ffilt08),max(ffilt09)];
f=[f01,f025,f05];
x=[0.1,0.1,0.1,0.25,0.25,0.25,0.25,0.5,0.5,0.5,0.5];
% Plot
figure(3)
hold on
scatter(x,f*1000,100,'b*')
set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('Drop height (m)','FontSize',14)
ylabel('Max Force (N)','FontSize',14)
axis([0 0.7 0 400])
grid on

% Scatter plot of slamming pressure duration vs. drop height

% Load slamming pressure duration
load('dur9801.mat')
load('dur9802.mat')
load('dur9803.mat')
load('dur9804.mat')
load('dur9806.mat')
load('dur9807.mat')
load('dur9808.mat')
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load('dur9809.mat')
load('dur9810.mat')
load('dur9811.mat')
load('dur9812.mat')

% Find mean over each row - 0.1 m
d101=[d10(1),d10(2),d10(3),d11(1),d11(2),d11(3),d12(1),d12(2),d12(3)];
d101m=mean(d101,2);
d201=[d10(4),d10(5),d10(6),d11(4),d11(5),d11(6),d12(4),d12(5),d12(6)];
d201m=mean(d201,2);
d301=[d10(7),d10(8),d10(9),d11(7),d11(8),d11(9),d12(7),d12(8),d12(9)];
d301m=mean(d301,2);
d401=[d10(10),d10(11),d10(12),d11(10),d11(11),d11(12),d12(10),d12(11),d12(12)];
d401m=mean(d401,2);
d501=[d10(13),d10(14),d10(15),d11(13),d11(14),d11(15),d12(13),d12(14),d12(15)];
d501m=mean(d501,2);
% Find mean over each row - 0.25 m
d1025=[d01(1),d01(2),d01(3),d02(1),d02(2),d02(3),d03(1),d03(2),d03(3),d04(1),

d04(2),d04(3)];
d1025m=mean(d1025,2);
d2025=[d01(4),d01(5),d01(6),d02(4),d02(5),d02(6),d03(4),d03(5),d03(6),d04(4),

d04(5),d04(6)];
d2025m=mean(d2025,2);
d3025=[d01(7),d01(8),d01(9),d02(7),d02(8),d02(9),d03(7),d03(8),d03(9),d04(7),

d04(8),d04(9)];
d3025m=mean(d3025,2);
d4025=[d01(10),d01(11),d01(12),d02(10),d02(11),d02(12),d03(10),d03(11),d03(12),

d04(10),d04(11),d04(12)];
d4025m=mean(d4025,2);
d5025=[d01(13),d01(14),d01(15),d02(13),d02(14),d02(15),d03(13),d03(14),d03(15),

d04(13),d04(14),d04(15)];
d5025m=mean(d5025,2);
% Find mean over each row - 0.5 m
d105=[d06(1),d06(2),d06(3),d07(1),d07(2),d07(3),d08(1),d08(2),d08(3),d09(1),

d09(2),d09(3)];
d105m=mean(d105,2);
d205=[d06(4),d06(5),d06(6),d07(4),d07(5),d07(6),d08(4),d08(5),d08(6),d09(4),

d09(5),d09(6)];
d205m=mean(d205,2);
d305=[d06(7),d06(8),d06(9),d07(7),d07(8),d07(9),d08(7),d08(8),d08(9),d09(7),

d09(8),d09(9)];
d305m=mean(d305,2);
d405=[d06(10),d06(11),d06(12),d07(10),d07(11),d07(12),d08(10),d08(11),d08(12),

d09(10),d09(11),d09(12)];
d405m=mean(d405,2);
d505=[d06(13),d06(14),d06(15),d07(13),d07(14),d07(15),d08(13),d08(14),d08(15),

d09(13),d09(14),d09(15)];
d505m=mean(d505,2);
% Make scatter plot
x=[0.1, 0.25, 0.5];
d1=[d101m,d1025m,d105m];
d2=[d201m,d2025m,d205m];
d3=[d301m,d3025m,d305m];
d4=[d401m,d4025m,d405m];
d5=[d501m,d5025m,d505m];
figure(4)
hold on
scatter(x,d1*1000,100,'ro')
scatter(x,d2*1000,100,'g+')
scatter(x,d3*1000,100,'b*')
scatter(x,d4*1000,100,'kd')
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scatter(x,d5*1000,100,'ms')
legend('Row 1','Row 2','Row 3','Row 4','Row 5')
set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('Drop height (m)','FontSize',14)
ylabel('Slamming Duration (ms)','FontSize',14)
axis([0 0.7 0 0.4])

% Scatter plot of slamming force duration

% Load slamming force duration
load('fdur9801.mat')
load('fdur9802.mat')
load('fdur9803.mat')
load('fdur9804.mat')
load('fdur9806.mat')
load('fdur9807.mat')
load('fdur9808.mat')
load('fdur9809.mat')
load('fdur9810.mat')
load('fdur9811.mat')
load('fdur9812.mat')

f2=[fd10,fd11,fd12,fd1,fd2,fd3,fd4,fd6,fd7,fd8,fd9];
x=[0.1,0.1,0.1,0.25,0.25,0.25,0.25,0.5,0.5,0.5,0.5];
% Make scatter plot
figure(5)
hold on
scatter(x,f2*1000,100,'b*')
set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('Drop height (m)','FontSize',14)
ylabel('Slamming force duration (ms)','FontSize',14)
axis([0 0.7 0 10])

% Scatter plot pf rise time of pressure vs. drop height

% Load rise time
load('rise9801.mat')
load('rise9802.mat')
load('rise9803.mat')
load('rise9804.mat')
load('rise9806.mat')
load('rise9807.mat')
load('rise9808.mat')
load('rise9809.mat')
load('rise9810.mat')
load('rise9811.mat')
load('rise9812.mat')

% Find mean over each row - 0.1 m
ri101=[rise10(1),rise10(2),rise10(3),rise11(1),rise11(2),rise11(3),rise12(1),

rise12(2),rise12(3)];
ri101m=mean(ri101,2);
ri201=[rise10(4),rise10(5),rise10(6),rise11(4),rise11(5),rise11(6),rise12(4),

rise12(5),rise12(6)];
ri201m=mean(ri201,2);
ri301=[rise10(7),rise10(8),rise10(9),rise11(7),rise11(8),rise11(9),rise12(7),

rise12(8),rise12(9)];
ri301m=mean(ri301,2);
ri401=[rise10(10),rise10(11),rise10(12),rise11(10),rise11(11),rise11(12),
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rise12(10),rise12(11),rise12(12)];
ri401m=mean(ri401,2);
ri501=[rise10(13),rise10(14),rise10(15),rise11(13),rise11(14),rise11(15),

rise12(13),rise12(14),rise12(15)];
ri501m=mean(ri501,2);
% Find mean over each row - 0.25 m
ri1025=[rise1(1),rise1(2),rise1(3),rise2(1),rise2(2),rise2(3),rise3(1),

rise3(2),rise3(3),rise4(1),rise4(2),rise4(3)];
ri1025m=mean(ri1025,2);
ri2025=[rise1(4),rise1(5),rise1(6),rise2(4),rise2(5),rise2(6),rise3(4),

rise3(5),rise3(6),rise4(4),rise4(5),rise4(6)];
ri2025m=mean(ri2025,2);
ri3025=[rise1(7),rise1(8),rise1(9),rise2(7),rise2(8),rise2(9),rise3(7),

rise3(8),rise3(9),rise4(7),rise4(8),rise4(9)];
ri3025m=mean(ri3025,2);
ri4025=[rise1(10),rise1(11),rise1(12),rise2(10),rise2(11),rise2(12),

rise3(10),rise3(11),rise3(12),rise4(10),rise4(11),rise4(12)];
ri4025m=mean(ri4025,2);
ri5025=[rise1(13),rise1(14),rise1(15),rise2(13),rise2(14),rise2(15),

rise3(13),rise3(14),rise3(15),rise4(13),rise4(14),rise4(15)];
ri5025m=mean(ri5025,2);
% Find mean over each row - 0.5 m
ri105=[rise6(1),rise6(2),rise6(3),rise7(1),rise7(2),rise7(3),rise8(1),

rise8(2),rise8(3),rise9(1),rise9(2),rise9(3)];
ri105m=mean(ri105,2);
ri205=[rise6(4),rise6(5),rise6(6),rise7(4),rise7(5),rise7(6),rise8(4),

rise8(5),rise8(6),rise9(4),rise9(5),rise9(6)];
ri205m=mean(ri205,2);
ri305=[rise6(7),rise6(8),rise6(9),rise7(7),rise7(8),rise7(9),rise8(7),

rise8(8),rise8(9),rise9(7),rise9(8),rise9(9)];
ri305m=mean(ri305,2);
ri405=[rise6(10),rise6(11),rise6(12),rise7(10),rise7(11),rise7(12),

rise8(10),rise8(11),rise8(12),rise9(10),rise9(11),rise9(12)];
ri405m=mean(ri405,2);
ri505=[rise6(13),rise6(14),rise6(15),rise7(13),rise7(14),rise7(15),

rise8(13),rise8(14),rise8(15),rise9(13),rise9(14),rise9(15)];
ri505m=mean(ri505,2);
% Make scatter plot
x=[0.1, 0.25, 0.5];
ri1=[ri101m,ri1025m,ri105m];
ri2=[ri201m,ri2025m,ri205m];
ri3=[ri301m,ri3025m,ri305m];
ri4=[ri401m,ri4025m,ri405m];
ri5=[ri501m,ri5025m,ri505m];
figure(6)
hold on
scatter(x,ri1*1000,100,'ro')
scatter(x,ri2*1000,100,'g+')
scatter(x,ri3*1000,100,'b*')
scatter(x,ri4*1000,100,'kd')
scatter(x,ri5*1000,100,'ms')
legend('Row 1','Row 2','Row 3','Row 4','Row 5')
set(gca,'fontsize',14)
set(gcf,'color','white')
xlabel('Drop height (m)','FontSize',14)
ylabel('Rise Time (ms)','FontSize',14)
axis([0 0.7 0 0.35])
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