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Abstract
The simulation model PropSiM has been developed and implemented into Simulink. The
simulation model generates a time domain solution to the six degree of freedom propeller
forces in varying operation conditions, including:

• Change of operating point, including controllable pitch.

• Unsteady axial and tangential inflow wake field.

• E�ect of oblique inflow in manoeuvring conditions.

• Reduced propeller submergence.

• Wagner e�ect.

• Propeller ventilation.

The basic hydrodynamic propeller calculations are performed using propeller vortex lattice
lifting line theory. The control and vortex points are cosine spaced along the lifting line,
providing e�cient convergence even for a limited number of vortex panels.

Solution to the unsteady inflow wake field is found using a quasi-steady approach, where
calculations from all the respective blade positions are superimposed to get a representation
of the unsteady wake field. This approach has been verified using simulations with the
software akpa.

The e�ect of oblique inflow is found by adapting the inflow wake field to the inflow an-
gle and perform a skewed propeller wake correction. The e�ect of partly submergence is
treated by forcing the circulation to be zero at the dry parts of the blade. In addition the
Wagner e�ect is included. Ventilation is considered using an analogy to a blade experi-
encing only static pressure on the pressure side and atmospheric pressure on the suction
side, and adding a weight factor for the amount of ventilated propeller disk area.

Comparison of open water test of the model scale KVLCC2 propeller, akpa and PropSiM

calculations shows that the predicted thrust and torque values generally are conservative.
Yet the development with varying advance number J agrees well with the experiments. In
addition the ability to reproduce an accurate spanwise circulation and lift distribution has
been validated against akpa calculations. In general PropSiM overestimates the lift, but
multiple runs indicate that the lift and circulation distribution are reproduced su�ciently
for a wide range of operating points.
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The simulation model has been validated against experimental results for four di�erent
cases of varying propeller submergence and ventilation mechanisms. The first case is a
non-ventilating condition of a propeller being forced in sinusoidal heave motion. The other
three cases are all ventilating conditions, while the last two cases are in addition surface
piercing conditions. The results show that PropSiM has the ability to catch the e�ects
of abrupt changes in operating conditions in a very convincing way.

The model is also validated for oblique inflow calculations against model experiments. The
results show that thrust and torque are su�ciently predicted by the simulation model. The
vertical side force and bending moment is not as well predicted as the horisontal side force
and bending moment. However the total side force and bending moment coe�cients are
predicted with similar behaviour as found in experiments for increasing advance number
and azimuth angles.
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Sammendrag
Simuleringsmodellen PropSiM har blitt utviklet og implementert i Simulink. Simu-
leringsmodellen beregner propellkrefter i seks frihetsgrader i tidsdomene ved forskjellige
kondisjoner, inkludert:

• Endret operasjonspunkt, inkludert kontrollerbar stigningsvinkel.

• Inhomogent aksielt og tangentielt innstrømningsfelt.

• E�ekt av skr̊a innstrømning ved manøvreringsoperasjoner.

• Redusert neddykking av propell.

• Wagner e�ekt.

• Ventilerende propell.

Den grunnleggende hydrodynamiske beregningen er basert p̊a løftelinje teori med sirku-
lasjonspaneler. Kontroll- og sirkulasjonspunktene er cosinusfordelt langs løftelinjen, noe
som sørger for e�ektiv konvergens selv for et begrenset antall sirkulasjonspaneler.

Løsning av propellkrefter i et inhomogent innstrømningsfelt blir funnet ved en kvasi-statisk
tilnærming, der beregninger fra alle respektive bladposisjoner superponeres. Denne tilnær-
mingen har blitt verifisert ved hjelp av simuleringer i programvaren akpa.

E�ekt av skr̊a innstrømning beregnes ved å dekomponere innstrømningsfeltet til innstrøm-
ningsvinkelen, og legge til en korreksjon for skr̊a propellstrøm. E�ekt av delvis neddykking
blir behandlet ved å tvinge sirkulasjonen rundt bladet til å være null for bladseksjoner
som er ute av vannet. I tillegg blir Wagner e�ekten lagt til. Ventilasjon blir behandlet
ved å bruke en analogi til et blad som opplever kun statisk trykk p̊a trykksiden og at-
mosfærisk trykk p̊a sugesiden, og legge til en vektfaktor for størrelsen p̊a det ventilerte
propellarealet.

Sammenligning med friprøve av KVLCC2-propellen i modellskala, akpa- og PropSiM-
beregninger viser at den simulerte trusten og dreiemomentet for det meste er konservativt
beregnet. Likevel stemmer utviklingen med fremgangstallet godt overens med forsøk. I til-
legg har evnen til å gjengi en nøyaktig spennvis sirkulasjons- og løftefordeling blitt validert
mot akpa-beregninger. Generelt overpredikerer simuleringsmodellen løft og sirkulasjon,
men en stor samling av beregninger viser at fordelingen av løft og sirkulasjon langs bladet
predikeres tilfredsstillende for et bredt spekter av operasjonspunkter.
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Simuleringsmodellen har blitt validert mot eksperimentelle forsøk for fire ulike scenari-
oer av varierende neddykking og ventilasjonshendelser. Det første scenarioet er en ikke-
ventilerende kondisjon for en propeller som tvinges i en vertikal sinusbevegelse. De andre
tre scenarioene er alle ventilerende kondisjoner, mens de to siste i tillegg er overflatepene-
trerende. Resultatene viser at PropSiM klarer å fange e�ekter av hurtige trusttap p̊a en
overbevisende måte.

Simuleringsmodellen har ogs̊a blitt validert for beregninger av skr̊a innstrømning mot
eksperimentelle forsøk. Resultatene viser at trusten og dreiemomentet predikeres p̊a en
tilfredsstillende måte. Den vertikale sidekraften og bøyemomentet blir ikke like nøyaktig
beregnet som den horisontale. Likevel viser resultatene at den totale sidekraften og
bøyemomentet predikeres med tilsvarende oppførsel som er funnet gjennom forsøk for
økende fremgangstall og innstrømningsvinkel.
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1 Introduction

Most marine vessels are equipped with propellers and thrusters to ensure propulsion, ma-
noeuvring and station-keeping capabilities. Safe and e�cient operation of marine vessels
are thus highly depending on how these systems perform. In order to provide long life oper-
ation of the propellers and thrusters, knowledge of the hydrodynamic forces and responses
is important. This master thesis will focus on how to model and simulate hydrodynamic
loads on azimuthing thrusters operating in various extreme load conditions. The aim is
to develop a hydrodynamic component for a multibody simulation (MBS) model of an
azimuthing thruster. The MBS model involves modelling of complete propulsion system,
from the engine to the propeller. That is, coupling and interaction between propeller and
the engine through gear, shaft and other structural components.

1.1 Motivation and background

The project is a part of HyDynPro, Hydroelastic e�ects and Dynamic response of Pro-
pellers and thrusters, which is a project run by Rolls-Royce University Technology Centre.
The overall objective is to find the real dimensioning loads on azimuthing thrusters in
extreme situations, including propeller-ice impacts and dynamic response e�ects, for the
purpose of solving the in-service problems related to bevel gears, shaft bearings and seals
on azimuthing thrusters.

The problems are believed to be related to extreme dynamic loads on the propellers, caused
by waves, intermittent ventilation, and strongly oblique inflow. A propeller operating in
such conditions is the main source of excitation of the dynamic response of a thruster drive
train. A simulation model of the propeller forces is therefore an essential part of the MBS
model.

Excitation loads and succeeding responses in the thruster drive train components is largely
connected to environmental conditions. The environmental conditions are actually time
dependent disturbances causing time dependent propeller reaction forces. The reaction
forces are input to the propeller control system, however a more important aspect is that
the time varying forces will excite dynamic loads in the thruster drive train. Catching these
dynamic variations is important for understanding how the propeller loads are transmitted
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through multiple mechanical couplings. In addition the study of dynamic variations of
excitation loads can be crucial for determining whether or not the dynamic response is
extreme enough to cause a translation or change in rotation in all or parts of the propulsion
system and drive train (Hutchison et al., 2014).

1.2 Previous work

An attempt of developing an advanced physical based model for hydrodynamic loads
on a propeller in various extreme conditions has been made, but it turned out to be
unsuccessful. The model became too complex, slow with respect to computational time
and also some instability and convergence problems were experienced. During spring
2014 a new project was initiated with the intention of developing a quite simple and
computational fast simulation model for time domain calculation of propeller loads. The
project evolved through an employment during summer 2014, for which the author was
hired. The author continued with the model related to his project thesis during fall 2014,
which resulted in the well-functioning simplified simulation model presented in (Dalheim,
2014). The experience gained through this development formed an important foundation
for the work related to a more physical based simulation model.

1.3 Scope of work

Dalheim (2014) presented a simplified simulation model, mainly based on curve-fit methods
for average forces, geometrical considerations and a fully empirical method for adding high
frequency harmonics to the average loads. The aim of the master thesis is to develop a
more physical based simulation model, providing more accurate propeller forces in time
domain. The simulation model shall take into account:

• Change of operating point, including controllable pitch angle.
• Angular inhomogeneous axial and tangential inflow velocity.
• Propeller submergence, including ventilation and Wagner e�ect.
• E�ect of oblique inflow in manoeuvring conditions.

Subsequent to the establishment of the simulation model the model shall be tuned and
validated against experimental data.



2 Propeller performance simulation

There are several approaches on how to do a propeller analysis that can be used in a
propeller performance simulation model. The approaches di�er in the variety of compu-
tational e�ort, accuracy, necessary simplifications and limitations, and the applicability
varies with the purpose of the model. We mainly distinguish between empirical and nu-
merical methods, although semi-empirical methods exist as well.

This chapter summarises the most common approaches in the field of propeller analysis,
and respectively relate them to their applicability for use in a time domain propeller
simulation model. A view on the present state in the field of propeller simulation is further
established, followed by a discussion and conclusion on principal strategy for building the
simulation model.

2.1 Empirical approaches

An empirical approach to propeller analysis is by far the most computational e�cient.
Such methods utilise preprocessed experimental results in order to calculate the basic pro-
peller characteristics. Despite the superior computational speed, empirical methods su�er
from lack of physical behaviour. That is, such methods are only capable of replicating
average forces, meaning that all the propeller harmonics are lost. In addition the empirical
approaches can only deal with homogeneous inflow. Dalheim (2014) successfully presented
a simplified time domain propeller simulation model based on purely empirical approaches.
The accuracy of the model obviously were limited and the relation to the propeller har-
monics non-physical, however the computational speed were superior and made the model
suitable for several purposes. The following sections introduce two empirical approaches
that can be implemented in a simulation model.

2.1.1 Open water model test

One empirical approach is to use open water model test data for the relevant propeller,
represented by polynomial fitted curves. In the case of a controllable pitch propeller
(CPP) the open water characteristics should be available in a multiple set of relevant
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pitch angles. This approach requires that open water model test data is available for the
propeller subject to the simulation.

2.1.2 Propeller series

A second approach is to use open water model test data connected to the main parameters
of the propeller. From time to time, propeller models with systematically changes of
pitch, blade area and number of blades have been tested. Open water test results with
such propellers have formed basis for propeller diagrams, and the primary example of
such propeller diagrams is the Wageningen B-series. This series is made by a curvefit
to open water characteristics of 120 propellers tested at Netherland Ship Model Basin in
Wageningen (Bernitsas et al., 1981). Figure 2.1 shows an example of such a propeller
diagram. This approach does not require that open water model test data is available
for the propeller subject to the simulation. Only the main parameters of the propeller is
relevant for the analysis.

Figure 2.1: Example of Wageningen B-series propeller diagram (Bernitsas et al., 1981).
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2.2 Numerical approaches

A number of numerical methods can be applied for the purpose of finding the hydro-
dynamic force and moment generated by a propeller. Numerical methods include both
potential and viscous flow methods. The di�erent methods spans over a large field re-
garding computational e�ort, basic assumptions, simplifications and validity ranges. The
aim of this section is to briefly look at the most relevant numerical methods used in pro-
peller design and analysis, and connect them to the applicability related to a time domain
simulation model of propeller forces.

2.2.1 Momentum Theory

The simplest possible idealisation of a propeller is by treating the propeller as an actuator
disk. That is, the physical propeller is replaced by a permeable disk of equal radius. The
actuator disk causes an instantaneous uniform pressure jump �p in the fluid, which can
be related to the change in the fluid velocity within the slipstream. The thrust, torque
and delivered power can be attributed to this change in fluid velocity (Rankine, 1865;
Froude, 1911, 1889). The method can be useful for maximum e�ciency calculations as
well as an estimate for the propeller induced velocity. In addition the computational
speed is superior to other methods. However, momentum theory does not provide any
information on the di�erential propeller thrust and torque at a given blade section. Thus
it is considered too simple and non-physical for application to propeller design or propeller
analysis. In relation to a 6 DoF time domain propeller simulation model all the physics
behind propeller harmonics, variable inflow conditions, ventilation e�ects and propeller
side forces and bending moments will be completely lost. Thus the momentum theory is
considered to be far o� the level of accuracy wanted for the simulation model.

2.2.2 Blade Element Momentum Theory

The Blade Element Momentum Theory (BEMT) is based on a combination of Blade El-
ement Theory (BET) and Momentum Theory. BET calculates the forces and moments
acting on a blade from a finite number of independent blade sections. The blade sections
are treated as two-dimensional foils subject to an angle of attack relative to incoming fluid
flow. Unlike the momentum theory, BET considers the geometrical properties of the blade
sections in order to determine the di�erential blade forces. Thus the forces exerted on
the blade elements are determined from the two-dimensional lift and drag characteristics
of the blade section shape in addition to the orientation relative to the incoming flow.
A BEMT model combines the two-dimensional behaviour of the blade provided by BET
with the change in fluid momentum found using momentum theory. An iterative process
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between calculating blade section thrust and torque using BET and finding the increase
of axial and angular momentum using momentum theory is done for each blade section.
This consequently leads to a total thrust and torque by integration over the propeller disc.
The advantage of BEMT over more advanced methods is that it allows the lift and drag
properties of the two-dimensional sections to include viscous e�ects such as stall and the
e�ect of laminar separation at low Reynolds numbers by using empirically based lift and
drag curves for the blade sections (Amini, 2011).

With respect to simplicity of the propeller calculations, BEMT has the great advantage
of modelling the blade as a set of two-dimensional independent foil sections. However,
due to the fact that the blade sections are treated independently, the method is less valid
for high spanwise pressure variations. That is, the accuracy decreases with increased
propeller loading due to large pressure gradients across the span. In relation to a 6 DoF
time domain propeller simulation model BEMT is considered to be applicable. Su�cient
accuracy can be achieved within acceptable limits of computational time, and information
regarding sectionwise thrust and torque enables calculation of side forces and bending
moments. A modification can also be made for the purpose of treating oblique inflow
(Amini, 2011), and the influence of propeller ventilation can be implemented. For the
propeller simulation model the drawback of BEMT reveals itself when it comes to reducing
the propeller submergence. Due to the fact that each blade section is solved independently
of the adjacent sections there will be no corrections made to the submerged part of the
propeller blade as parts of the blade gets dry. The change of propeller forces is a result
of the reduced fluid momentum change only, and the physics related to lack of induced
velocity from dry parts of the blade is completely lost.

2.2.3 Lifting Line

Lifting Line Theory represents the propeller blades as lifting lines, which allows for a
spanwise varying circulation distribution. Similar to BEMT, lifting line theory has the
powerful advantage of simplifying a three-dimensional problem down to a finite number
of two-dimensional problems. In BEMT however the amount of influence that the blade
sections have on each other is completely lost, while lifting line theory is able to account
for the flow characteristics at all blade sections. Lifting line theory is considered to be
applicable in relation to a 6 DoF time domain propeller simulation model. Su�cient
accuracy can be achieved within acceptable limits of computational time, and information
regarding sectionwise thrust and torque enables calculation of side forces and bending
moments. In addition, lifting line theory has the advantage over BEMT in the way that
the physical behaviour of reduced propeller induces velocities is retained even at a reduced
propeller submergence. The lifting line approach is only valid for moderately loaded high
aspect ratio propellers, and is unable to capture the behaviour of stall (Lerbs, 1952).
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2.2.4 Lifting Surface

In the Lifting Surface method the propeller blade is represented by an infinitely thin
surface lying on the blade mean camber line. This means that the problem no longer is
two-dimensional. Similar to the lifting line approach a distribution of circulation is used
in the spanwise direction. However, in the lifting surface method the circulation is also
distributed in the chordwise direction, leading to a sheet of vorticity lying on the camber
line. The lifting surface method accounts for the blade geometry to a larger degree.
However, due to the larger amount of unknown circulation, the computational e�ort is
significantly larger compared to the lifting line approach. In relation to a time domain
simulation model the lifting surface method would be more accurate than lifting line,
due to the chordwise representation of the blade geometry. The lifting surface approach
includes the physical behaviour of the propeller induced velocities to a larger degree, and
is able to account for inhomogeneous inflow in an unsteady propeller calculation (Kerwin
and Lee, 1978).

2.2.5 Panel method

Panel methods are very similar to Lifting Surface methods, however that the problem is
further extended by including the blade thickness and the hub by a finite number of vortex
panels. Instead of using the mean camber surface, the blade surface is discretised with a
distribution of source or dipole panels. The use of panel method for a propeller in open
water condition is known to predict the propeller torque and thrust with good accuracy
(Amini, 2011). In relation to a time domain simulation model a panel method would be
more accurate than lifting line and lifting surface, due to the thickness representation of
the blade geometry in addition to the chordwise representation. The computational time
would however be a major drawback for time domain simulation.

2.2.6 Reynolds Averaged Navier Stokes

Reynolds Averaged Navier Stokes (RANS) calculations solves the averaged flow field by
modelling a full three-dimensional viscous flow field using a finite volume or finite element
approach. Time domain solution of propeller forces by utilising RANS calculations would
be very time consuming, and not suitable for the purpose of this model. In addition the
complexity would expand to a whole new level when it comes to including di�erent variable
working conditions as ventilation and surface penetration. Califano (2010) discussed the
di�culty to accurate capture the pressure in the tip vortex, which both experiments and
numerical calculations have shown to be a key mechanism for ventilation. This is due to
the fact that every attempt to refine the grid in order to better capture the low pressures
within the tip vortex, result in an increase of the already long computational time in
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addition to worsen the stability of the simulation. Califano (2010) therefore suggests to
use simpler, less computationally expensive methods to capture the main mechanisms of
a ventilating propeller.

2.3 Present state

Available methods for propeller force modelling are numerous, and the present knowl-
edge on propeller performance simulation models is wide and extensive. A considerable
amount of the knowledge originates from aerodynamics, where simulation models used
for aeroelastic studies have been sought after for several years. For marine propellers the
objective has been related to methods for propeller design, and high quality approaches for
detailed study of hydrodynamical e�ects. That is, boundary element methods and other
three-dimensional approaches has been developed and further improved for the purpose
of accurate prediction of propeller characteristics in various conditions. The continuous
development of computational capacity has gradually also introduced computational fluid
dynamics (CFD) to the field of marine propellers.

The present state of propeller performance modelling is extensive, however the objective
of the succeeding sections is to reflect on today’s knowledge related to propeller simulation
and introduce some established approaches on this field.

2.3.1 OpenProp

OpenProp is a free software that can be used for design and analysis of marine propellers
(Epps and Kimball, 2013). Regarding propeller performance analysis it provides perfor-
mance curves for a given rotor geometry, blade cavitation analysis and propeller design
optimisation using lifting line theory. Several functionalities are available in a graphical
user interface, which o�er a variety of options for two- and three-dimensional graphical
representations. That is, circulation distribution, three-dimensional propeller geometry,
sectional lift curve, induced velocities etc.

OpenProp has achieved good reviews and is acknowledged for the related work. Further
enhancement of the code is also planned, which will increase the knowledge on adapting
lifting line theory to account for additional physical e�ects, like for example compressible
flow corrections and implementation of rotors with rake and skew. The software is cur-
rently not adapted to angular inhomogeneous inflow conditions, and does not cover any
e�ects of changing the propeller submergence or inflow angle. Implementation of Open-
Prop into a time domain simulation model is possible, however the amount of necessary
modification is substantial.
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2.3.2 AeroDyn

AeroDyn is a set of routines used to predict the aerodynamics of horisontal axis wind
turbines (Moriarty and Hansen, 2005). The routines are used in combination with several
aeroelastic simulation codes, that is, YawDyn, FAST, SymDyn and ADAMS.The aeroe-
lastic simulator calls for the AeroDyn routines at each time step, enabling time domain
simulation for investigation of change in aerodynamic forces.

A number of di�erent models are used in AeroDyn, each of them applicable to di�erent
simulation purposes. The most important feature is the wake model implementation,
which contains two options for wake modelling: the blade element momentum theory
and the generalised dynamic wake theory. The generalised dynamic wake model is an
acceleration potential method, which allows for a more general distribution of pressure
than blade element momentum theory. Other advantages is inclusion of dynamic wake
e�ect, tip losses and skewed wake dynamics (Moriarty and Hansen, 2005). However as
with other rotor simulation models the method was developed for lightly loaded rotors,
and su�ers from computational instability at low inflow velocities.

2.3.3 Boundary Element Methods

Boundary element methods have been used for the solution of propeller design and anal-
yses for several years. The first three-dimensional boundary element model developed
for investigation of steady flow around a marine propeller can be attributed to Hess and
Valarezo (1985). Their approach was related to the representation of a steadily translat-
ing and rotating propeller, where the trailing vortex surface from the trailing edge was
modelled using a prescribed wake shape (Politis, 2004). After the publication of this pio-
neering work a large number of publications regarding di�erent forms of boundary element
methods and free wake modelling appeared. Increasing computer power enabled the appli-
cation of the wake relaxation method to the solution of steady state flow problem, which
further resulted in a number of papers on using boundary element approaches on unsteady
flows.

Politis (2004) developed a boundary element method for simulation of unsteady motion of
a propeller using a time-stepping approach. The problem was formulated for the flow of
a propeller performing an unsteady translation and rotation with instantaneous velocity
and rotational vectors. The model was used to simulate a propeller in inclined flow and
a propeller in heaving motion, and the conclusion was that the model could provide very
accurate results compared to experiments.

The time-stepping approach of the boundary element method is well suited for applica-
tion to a time-domain simulation model. As the translation and rotation velocities are
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instantaneous vectors, the method is already prepared for implementation of various in-
flow conditions, that is, manoeuvring situations, heaving and surface piercing propeller
and other transient operational conditions. The drawback is however the amount of com-
putational e�ort required to carry out a full time-domain simulation of the operating
condition of interest. In combination with a MBS-model of a complete thruster drive train
the computational time will be considerable. Hence this approach may be unbalanced in
terms of matching the required accuracy of the model with the demand of computational
power.

2.3.4 Blade Element Momentum Methods

Several applications of blade element momentum theory in terms of propeller performance
simulation can be found in the literature, especially connected to aerodynamics. BEMT is
in fact one of the most common engineering models for computation of the aerodynamic
loads on wind turbine rotors (Madsen et al., 2007). Among the varieties of publications,
Rwigema (2010) presented a BEMT-model for analyses of the aerodynamic performance of
an aircraft propeller which combined the behaviour of the resultant slip-stream by coupling
a vortex wake deflection representation to the propeller forces. More related to marine
propellers was the BEMT-model established by Amini (2011) for investigation of azimuth
propulsors in o�-design conditions, with emphasis on the e�ect of inclined inflow. The
purpose of this model was however not related to a time domain simulation, but to a
thorough study of side forces and bending moments due to inclined inflow. The approach
to this propeller investigation reveals how a BEMT-approach is suitable for implementa-
tion into a simulation model. In addition the overall knowledge on the field of BEMT is
comprehensive. Yet, there is shortage of available documentation or publications on the
utilisation of BEMT for combining hydrodynamic e�ects in the time domain.

2.3.5 Nonlinear Dynamic Propeller Model

The knowledge on the field of propeller simulation has not only developed through appli-
cations to aerodynamics and aircraft propellers. There is a large amount of publications
related to analysis of propulsion control units that treat the problem of modelling pro-
peller hydrodynamics accurately within an acceptable amount of computational power.
Traditionally the mathematical models of propeller thrust and torque have been based on
model tested steady state thrust and torque characteristics. Accurate thrust control in
dynamic positioning and underwater robotics depends on both how well and how fast the
propeller hydrodynamics are provided by the model. In that relation the transient e�ects
in a thruster have been found to be important for the control performance.
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Blanke et al. (2000) developed a large signal dynamic model of a propeller that included
the e�ects of transients in the flow over a wide range of operation. The model was based
on propeller characteristics from open water tests, modified to obtain a dynamic model
including additional states. With the intention of creating reliable control performance
units, the balance between computational e�ort and accuracy focuses more towards high
computational speed, simply due to the fact that the control units must be able to min-
imise the time delay in operation. Improved hydrodynamic models which satisfy demands
on rapid response are longed for in the field of thruster control. Yet, use of open water pro-
peller characteristics combined with transient states is reliable and utterly computational
e�cient, which makes it di�cult to find an adequate hydrodynamic replacement.

2.4 Strategy for building the simulation model

The two approaches considered to be the most relevant for the purpose of the simulation
model are BEMT and lifting line theory. RANS calculations are considered to require an
unacceptable amount of computational e�ort, at least with respect to the range of applica-
tion for the simulation model. Not to mention the additional modelling trouble that will be
present when environmental e�ects such as ventilation and reduced propeller submergence
are included. The analysis will regardless of modelling strategy be exposed to prominent
uncertainties. Thus the gain in simulation accuracy with increasing demand of compu-
tational e�ort will be uncertain. Boundary element methods are however better suited
for time domain simulation of propeller forces, because the method is more applicable for
implementation into a MBS model, and in addition less computational demanding. There
is however a risk of getting a slow simulation model using this approach, and combining
this method with additional e�ects such as reduced propeller submergence can be hard to
implement within a physical approach.

Both BEMT and lifting line theory is found to be suited for the simulation model, simply
because these methods stand out as the only ones with the potential of o�ering acceptable
computational speed. The choice of simulation strategy among these to approaches is
however more uncertain, because both accuracy and speed is expected to be on the same
level. Yet, the final choice of model strategy is lifting line theory. The theory can handle a
general case of a propeller in radially non-uniform inflow with an arbitrary distribution of
circulation. As with BEMT the lifting line approach has the powerful advantage of simpli-
fying a three-dimensional problem down to a finite number of two-dimensional problems.
However, the lifting line method can also account for the amount of influence between the
sections. This is expected to be of particular importance for a propeller operating in the
free surface, where parts of the propeller blade will vary between wet and dry.





3 Theory for propeller analysis

Prior to building the complete simulation strategy and structure of the simulation model
it is necessary to go into the knowledge and methods of basic propeller characteristics.
Further the fundament of the lifting line approach must be established, including relevant
equations, assumptions and limitations. In order to obtain a physical approach for includ-
ing various environmental conditions that a propeller is subject to, the characteristics of
these conditions and the strategy of implementing them must be established. The subse-
quent sections will go into and present all the theories and methods found to be relevant
for the propeller simulation model.

3.1 Propeller characteristics

It is convenient to express propeller characteristics by use of dimensionless numbers. Three
of the most important numbers are the advance number J , thrust coe�cient KT and
the torque coe�cient KQ, shown in (3.1), (3.2) and (3.3), respectively. For a specific
propeller geometry, KT and KQ are often given as functions of the advance number J .
This relationship is commonly referred to as open water propeller characteristics.

J = V

nD

(3.1)

KT = T
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D

4 (3.2)

KQ = Q

fln
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5 (3.3)

where n is propeller shaft frequency, fl is water density and D is propeller diameter.

In the study of finding the design loads of azimuthing thrusters, all propeller forces in six
degrees of freedom (DoF) are of interest. The propeller side forces and bending moments
can be expressed dimensionless in a similar way as for thrust and torque.
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Kfy = fy
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Azimuthing thrusters are mostly equipped with controllable pitch propellers (CPP). CPP
propellers can o�er higher propulsion e�ciency, and are particularly suitable for vessels
that require good manoeuvrability and other conditions related to variable propulsion
power. There are two control parameters for a CPP, the shaft speed and the pitch angle.
The pitch angle „ consists of one blade geometry dependent part, and one part that can
be controlled by adjusting the rotation of the blade root fastening point, hereby referred
to as the angle Âcpp. Âcpp is defined as positive if it increases the blade pitch angle. The
blade geometry dependent part of the pitch angle is often given in terms of the propeller
pitch ratio P/D. P/D varies along the span, and it is convenient to express the pitch angle
as a function of the relative spanwise coordinate y.

„(y) = tan≠1
3P/D

y fi

4
+ Âcpp (3.8)

where y = r
R

There are other ways of describing the thrust and torque as non-dimensional coe�cients.
While KT and KQ are made non-dimensional by use of the propeller shaft frequency, we
can rather express the forces related to the propeller disc area and the forward speed
of the ship. The coe�cients are referred to as CT and CQ. Similar expressions can
also be established for the side forces and bending moments, based on (3.9) and (3.10)
respectively.
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3.2 Lifting Line Theory used in propeller modelling

A sectionwise two-dimensional analysis of a lifting wing has the powerful advantage of
simplifying a three-dimensional problem down to a finite number of independent two-
dimensional sections. While this finite number of independent two-dimensional sections
can be solved quite easy, the amount of influence that the two-dimensional sections have
on each other is completely lost. On a three-dimensional finite wing, the local lift on a
wing section is strongly a�ected by the lift on the neighbouring sections. Thus, much of
the physics is actually lost by treating the sections independently.

The Lifting Line theory is a two-dimensional mathematical model for predicting the lift
distribution over a three-dimensional wing based on its geometry. This theory is powerful
because it can treat the wing as two-dimensional sections while still accounting for the
influence the two-dimensional sections have on each other. In a propeller analysis the
aim is to find the propeller forces related to a certain inflow velocity to the propeller
blades. In other words, there is a matter of finding the distribution of lift on the propeller
blade for the relevant characteristics of the flow. The wing section lift can e�ectively be
related to the wing section circulation by making use of the Kutta-Joukowski theorem
(3.11). The unknown in the propeller analysis then becomes the spanwise distribution
of circulation rather than the distribution of lift. This is a crucial step in building the
lifting line approach, because the substitution enables to take the wing section reciprocal
influence into consideration.

dL(y) = flV �(y) (3.11)

As a starting point it is important to understand the two-dimensional features of the flow
around a blade section. Figure 3.1 shows a two-dimensional velocity diagram of a blade
section. Va is the undisturbed inflow velocity normal to the propeller disk, and Vt is the
undisturbed in-plane velocity to the propeller disk in tangential direction of the blade. Êr
is the velocity component due to the propeller rotational speed. Together these velocities
form the undisturbed inflow velocity V0 oriented with the undisturbed hydrodynamic angle
—.

tan — = Va

Êr + Vt

(3.12)

In order to generate momentum, and hence propeller thrust and torque, the propeller
blade induces velocities in axial and tangential direction. The axial and tangential in-
duced velocity is denoted u

ú
a and u

ú
t respectively. Together the undisturbed and induced
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velocities form the total resultant velocity seen by the blade section VŒ oriented with the
hydrodynamic angle —i, where

tan —i = Va + u

ú
a

Êr + Vt ≠ u

ú
t

(3.13)

VŒ =
Ò

(Va + u

ú
a)2 + (Êr + Vt ≠ u

ú
t )2 (3.14)

The hydrodynamic angle of attack – is then found from the blade section pitch angle „

and the hydrodynamic angle —i.

– = „ ≠ —i (3.15)
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Figure 3.1: Propeller blade section velocity diagram.

Using the Kutta-Joukowski relation (3.11) the inviscid lift force Fi is found as

Fi = flVŒ� (3.16)
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The viscous drag force of the blade section is equal to

FV = 1
2flV

2
ŒCDvc (3.17)

where

CDv : Viscous drag coe�cient.
c : Chord length.

The total thrust and torque of the propeller is then found by integrating the lift force Fi

and drag force Fv parallel and normal to VŒ over the span of the blade, and multiply with
the number of propeller blades Z.

T = flZ

⁄ R

r
h

5
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2(VŒ)2
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6
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3.2.1 Vortex lattice method

Planar lifting line
Analytic solutions to the linearised problem of a two-dimensional foil section can be found.
However, for a three-dimensional foil this is generally not possible, and there is necessary to
involve numerical methods for solving such problems (Kerwin, 2001). An e�cient approach
is by representing the continuous vortex sheet by a lattice of concentrated, straight line
vortex elements. The first step is simply to divide the span of the lifting line into M

panels. This allows for the continuos vortex sheet �(y) to be concentrated into discrete
point vortices �m within each panel.

The simplest spanwise arrangement of the vortex panels consists of equally spaced panels
with no tip inset, and with the control points located in the middle of each panel. An
example is shown in Figure 3.2 (a). This arrangement is in general able to predict a
circulation distribution with reasonable shape, however the magnitude will be too high.
This problem originates from the strength of the continuous free vortex sheet, which has
a square root singularity at the tips. This singularity is not well treated by the simple
approach of equally spaced vortex panels.

Much better results can be obtained if the tip panels are inset by one quarter of a panel
width, see Figure 3.2 (b). This is a very easy modification, which does not cause any
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(b) With 1/4 tip panel inset.

Figure 3.2: Discrete representation of a continuous circulation distribution �(y) with
equally spaced vortex and control points with and without panel inset.

additional computational e�ort. Changing the tip inset will influence the accuracy of tip
induced velocity, total lift and induced drag. However, no single value of the tip inset can
be optimal for all three at the same time, so a tip inset of one quarter panel is considered
to be the best (Kerwin, 2001).

Another vortex panel arrangement can be established by using a relationship between the
physical coordinate y to an angular coordinate Â

y as shown in (3.20). This approach is called
cosine spacing, and Lan (1974) proved that this arrangement can give remarkably good
results. Yet, if the control points are located midway between the vortices the singularity
replication will still be present. The control points should rather be mapped with the same
cosine transformation as the vortices, giving the real cosine spacing where control points
are biased towards the tips (Kerwin, 2001). An example of real cosine spacing is shown
in Figure 3.3, and equations for cosine spaced vortex (yv(m)) and control (yc(m)) points
distributed between the propeller hub xh and blade tip are given in (3.22) and (3.21).

y = ≠s

2 cos(Â
y) (3.20)

where s is the span of the foil.

yc(n) = xh + 1
2 (1 ≠ xh)

5
1 ≠ cos((2n ≠ 1) fi

2M

)
6

(3.21)

yv(m) = xh + 1
2 (1 ≠ xh)

5
1 ≠ cos(2(m ≠ 1) fi

2M

)
6

(3.22)
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Figure 3.3: Discrete representation of a continuous circulation distribution �(y) with cosine
spaced vortex and control points.

Regardless of panel spacing method the continuous distribution of circulation along the
span can be replaced by a stepped distribution. The step in circulation strength takes
place at the vortex point, leaving the circulation strength within each panel constant. The
value of the circulation for each panel is equal to the continuous circulation distribution at
a specified y-value, see Figure 3.3. The purpose of the control points is to find the induced
velocity at these locations.

A piecewise circulation distribution introduces a set of concentrated vortex lines shed from
the boundaries of each vortex panel. For a continuous circulation distribution the strength
of the shed vorticity is equal to the rate of change of the bound vorticity. For a stepped
circulation distribution however, the strength of the shed vorticity is equal to the di�erence
in bound vorticity strength across the panel boundary. Each panel has a set of two vortex
lines shed from the boundaries. This means in fact that the continuous vortex distribution
is replaced by a set of discrete horseshoe vortices, consisting of a bound vortex line (the
lifting line) and two concentrated tip vortices. By introducing the discrete circulation
distribution the singularity in the induced velocity field integral is avoided. The induced
velocity at control point n is rather found by summation over the M vortex panels.

w

ú
n =

Mÿ

m=1
�mwn,m =

Mÿ

m=1

�m

4fi (yv(m) ≠ yc(n)) ≠ �m

4fi (yv(m + 1) ≠ yc(n)) (3.23)

where wn,m is the velocity induced at control point n by a unit horseshoe vortex at vortex
panel m. We call wn,m the influence function, and it consists of the contribution of two
semi-infinite trailing vortices of opposite sign.
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Propeller vortex lattice lifting line
The propeller vortex lattice lifting line approach is very similar to a planar lifting line
problem. The span of the propeller blade is divided into M vortex panels between the
propeller hub and tip. See Figure 3.4 for an illustration of a propeller blade with eight real
cosine spaced vortex panels. The distribution of bound circulation becomes, equivalent
to the planar lifting line problem, a function of the radial position on the blade, and
the continuous distribution is approximated by a set of M vortex elements. The vortex
elements are constant in strength on each panel. The vortex system is considered to be
built from a set of M horseshoe vortex elements. The horseshoe elements consist of a
bound vortex �m and two free vortices of strength ±�m. An additional consideration that
is crucial for a vortex lattice lifting line approach used on a propeller blade, is the fact that
each horseshoe element actually represents a set of Z identical elements originating from
each propeller blade. Each one of the horseshoe elements induces both axial and tangential
velocity at the control points, and the total contribution comes from a summation of the
M vortex panels, as shown in (3.24) and (3.25) (Kerwin, 2001).

u

ú
a(yc(n)) =

Mÿ

m=1
�mua(n, m) (3.24)

u

ú
t (yc(n)) =

Mÿ

m=1
�mut(n, m) (3.25)

where ua(n, m) and ut(n, m) are the horseshoe influence functions.

Figure 3.4: Propeller blade with cosine spaced vortex and control points. M=8.
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The induced velocity at the control point yc by a set of Z unit strength helical vortices
shed at the vortex point yv can be expressed as an integral using Biot-Savarts law:

ua(rc, rv) = 1
4fi

Zÿ

k=1

⁄ Œ

0

rv [rv ≠ rc cos(„ + ”k)]
[(rv„ tan —w)2 + r

2
v + r

2
c ≠ 2rvrc cos(„ + ”k)]3/2 d„ (3.26)

ut(rc, rv) = 1
4fi

Zÿ

k=1

⁄ Œ

0

rv tan —w [(rc ≠ rv cos(„ + ”k)) ≠ (rv„ sin(„ + ”k))]
[(rv„ tan —w)2 + r

2
v + r

2
c ≠ 2rvrc cos(„ + ”k)]3/2 d„ (3.27)

where

—w : Pitch angle of helix at vortex point rv.
„ : Angular coordinate of general point on the helix shed from the actual blade.
”k : Angular coordinate of general point on the helix shed from the k’th blade.

The expressions for the induced velocities from Biot-Savarts law is extremely hard to eval-
uate analytically, so a numerical solution is necessary. Lerbs (1952) solved the potential
problem for this type of flow in terms of modified Bessel functions. However, direct evalu-
ation of the modified Bessel functions requires the same amount of computational e�ort as
numerical integration of (3.26) and (3.27). Fortunately highly accurate asymptotic formu-
las for the sums of modified Bessel functions exist, which enabled Wrench (1957) to develop
closed form approximations to the induced velocities. The closed form approximations are
given in appendix A.

Knowing the induced velocities enables to determine the hydrodynamic inflow angle —i.
From Figure 3.1 the following kinematic relationship can be established:

Êr tan —i = Êr tan — + u

ú
a ≠ u

ú
t tan —i (3.28)

which can be written as

u

ú
a

V

≠ u

ú
t

V

tan —i = Va

V

A
tan —i

tan —

≠ 1
B

(3.29)

By combining (3.29) with (3.24) and (3.25) an equation system of the unknown circulation
values �m can be established. The equations can be solved simultaneously in a matrix
equation system.

Mÿ

m=1
[ua(n, m) ≠ ut(n, m) tan —i(n)] �m = Va

V

A
tan —i(n)
tan —(n) ≠ 1

B

n = 1...M (3.30)
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Both the integral expression of Biot-Savarts law and the closed form approximations of
Wrench depends on the pitch angle —w of the helical surfaces. Linear theory valid for
lightly loaded propellers assumes that —w = —, that is, the inflow angle of the undisturbed
flow. The induced velocities however increase with the propeller loading, such that the
di�erence between — and —i increases. The moderately loaded propeller theory thus makes
a better assumption that the free vortices follow helical paths with pitch angle —i, rather
than — (Kerwin, 2001). Using the moderately loaded propeller assumption complicates the
calculation of induced velocities, due to the fact that —i depends on the induced velocities
itself. An iterative solution is therefore required.

The resulting circulation distribution found from (3.30) does not take into account the
presence of the propeller hub. This is equivalent to assuming that the propeller blade has
a free end and that the circulation goes to zero towards the hub. In reality the circulation
has a non-zero finite value, and the presence of the hub boundary is equivalent to having
zero crossflow through a circle of radius rh. In a two-dimensional flow it is known that if
a vortex located at radius r has an image vortex located at a radius ri equal to

ri = r

2
h

r

(3.31)

the total velocity normal to rh is zero. However, numerical calculations show that (3.31)
is amazingly well suited for a helical vortex as well (Kerwin, 2001). To account for the
propeller hub using a vortex lattice lifting line approach it is simply su�cient to supplement
each helical horseshoe vortex with its image inside the hub. The velocity induced by
the image horseshoe vortex located at ri can be combined with the influence function
of the horseshoe vortices along the lifting line, such that no additional unknowns are
introduced.

Once the discrete distribution of circulation is known the forces can be calculated by
summing up contribution from all the vortex panels. The integral equations for thrust
and torque given by (3.18) and (3.19), respectively, can be converted to a discrete sum
over the M vortex panels.

T = flZ

Mÿ

m=1

5
VŒ,m�m cos(—i,m) ≠ 1

2(VŒ,m)2
cmCDv,m sin(—i,m)

6
drm (3.32)

Q = flZ

Mÿ

m=1

5
VŒ,m�m sin(—i,m) + 1

2(VŒ,m)2
cmCDv,m cos(—i,m)

6
rmdrm (3.33)

By utilising (3.9) and (3.10) the non-dimensional form of thrust and torque can be ex-
pressed. The side forces can be found by decomposing the tangential blade force in ho-
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risontal and vertical direction, and the bending moments can be found by multiplying the
thrust with the horisontal and vertical distance to the point of attack, i.e. the respective
distance to the control points. CT and CQ consider the contribution from all the pro-
peller blades, while Cfy, Cfz, Cmy and Cmz consider only the contribution from the actual
propeller blade. Derivation of the formulas is given in Appendix B. For simplicity the
following relations are used:

F1 = VŒ,m

V

�m

V fiD

F2 = 1
2fi

3
VŒ,m

V

42
cm

D

CDv,m

The final expressions for the non-dimensional 6 DoF force coe�cients are:

CT = 4Z

Mÿ

m=1

5
F1 cos(—i,m) ≠ F2 sin(—i,m)

6
�yv,m (3.34)

CQ = 4Z

Mÿ

m=1

5
F1 sin(—i,m) + F2 cos(—i,m)

6
yc,m �yv,m (3.35)

Cfy = ≠4 cos ◊

Mÿ

m=1

5
F1 sin(—i,m) + F2 cos(—i,m)

6
�yv,m (3.36)

Cfz = ≠4 sin ◊

Mÿ

m=1

5
F1 sin(—i,m) + F2 cos(—i,m)

6
�yv,m (3.37)

Cmy = ≠4 cos ◊

Mÿ

m=1

5
F1 cos(—i,m) ≠ F2 sin(—i,m)

6
yc,m �yv,m (3.38)

Cmz = ≠4 sin ◊

Mÿ

m=1

5
F1 cos(—i,m) ≠ F2 sin(—i,m)

6
yc,m �yv,m (3.39)

where �yv,m = yv(m + 1) ≠ yv(m)

The hub image correction, involving a finite circulation towards the hub, is equivalent
to having a circulation inside the hub. In reality this circulation must be shed into the
flow downstream of the hub, which forms a concentrated hub vortex. The presence of a
concentrated hub vortex contributes to the propeller thrust. In the core of the hub vortex
there is a low pressure region, causing a drag force. To obtain a physically realistic result
of the drag force the hub vortex must be modelled as one single vortex of finite strength
and core radius. Wang (1985) developed an expression for the resulting pressure force
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acting on the downstream end of the hub.

Fh = fl

16fi

3
ln( rh

rhv

) + 3.0
4

(Z�0)2 (3.40)

where rh is the hub radius, rhv is the core radius of the hub vortex and �0 is the blade
root circulation.

In non-dimensional form the hub vortex drag force is:

CF h = 1
2

3
ln( rh

rhv

) + 3.0
4

(ZG0)2 (3.41)

where G0 = �0
fiV D

The equation system in (3.30) does not take into account the geometry of the propeller
blades, the circulation distribution is just related to the induced velocities through the
inflow angle —i and the horseshoe influence functions ua and ut. The relation to the blade
geometry can be established by use of the blade section lift coe�cient from the law of
Kutta-Joukowski.

CL = dL

1
2flVŒ

2 = flVŒ�
1
2flVŒ

2 = 2�
VŒc

(3.42)

The sectional lift coe�cient can also be expressed by superposition of lift from camber
and angle of attack, given in (3.43).

CL = CLc + CL– = zmax

zmax(C
Li

)
CLi + 2fi(„ ≠ —i ≠ –i

zmax

zmax(C
Li

)
) (3.43)

where

CLi : Lift coe�cient at ideal angle of attack of camber profile.
–i : Ideal angle of attack.
zmax : Maximum camber height of blade section.
zmax(C

Li

) : Maximum camber height of the camber profile.

By equating (3.42) and (3.43) the e�ective inflow angle —i can be expressed as a function
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of the circulation �, blade section pitch angle „ and ideal angle of attack –i.

—i =
3

CLi

2fi

≠ –i

4
zmax

zmax(C
Li

)
+ „ ≠ �

VŒ c fi

(3.44)

Solving for the unknown circulation distribution
In moderately loaded propeller theory, the induced velocities become function of the e�ec-
tive inflow angle —i which itself depends on the induced velocities. The relation between
the circulation and the e�ective inflow angle —i is established in (3.44). The solution of
the circulation distribution from the equation system in (3.30) results in an e�ective in-
flow angle —i using (3.44). This is again input to the equation system, which provides a
new —i. Thus the solution to the unknown circulation distribution is found in an iterative
process.

Fundamental assumptions
The moderately loaded lifting line theory has the following fundamental assumptions:

• Incompressible and inviscid flow

• Circumferentially homogeneous flow.

• High aspect ratio blades.

• Trailing vortex considered as helix with fixed radius and pitch.

3.3 Thrust loss

A ship operating in high waves can experience large vertical motions relative to the free
surface during both low speed operations as well as transit conditions. For the relevant
propellers this can lead to a rather frequent change of working conditions. The result
is large and abrupt thrust losses, which can be up to 70%-80% of the nominal thrust
(Califano, 2010). With respect to the propeller shaft loads, and hence the forces acting on
the lower bevel gear of azimuthing thrusters, the dynamics and magnitude of these thrust
losses can be of major importance.

To explain the physics of the thrust losses we can separate into contribution from three
e�ects: loss of e�ective propeller disc area, ventilation and the lift hysteresis e�ect. With
respect to the mean thrust reduction during a complete propeller revolution we can es-
tablish reduction factors for each of the three contributions. The total factor is denoted



26 3. Theory for propeller analysis

—, which is the ratio between the ventilating and non-ventilating thrust, where

— = —0—V —H (3.45)

and

—0 : Reduction factor due to loss of e�ective propeller disc area
—V : Reduction factor due to ventilation.
—H : Reduction factor due to the lift hysteresis e�ect.

Thrust and torque losses are closely related. However, due to the drag force on the
propeller the change in KQ is not the same as the change in KT . Model tests indicate
that

KQ = —

k
KQ0 (3.46)

where k is a constant between 0.80 and 0.85 for open propellers and KQ0 is the torque
coe�cient for the deeply submerged propeller (Faltinsen et al., 1981). This empirical
based relationship has later been confirmed by Kozlowska et al. (2009) based on new
experimental results. A physical explanation of (3.46) is the fact that the e�ciency should
not increase with the thrust losses, i.e. the torque reduction factor should always be larger
than the thrust reduction factor.

3.3.1 Loss of propeller disc area

The propeller submergence ratio sr is considered as the ratio between the propeller sub-
mergence h and the propeller radius R.

sr = h

R

(3.47)

The propeller submergence h is defined as the distance from the centre of propeller boss
to the free surface Ò, with positive direction measured downwards from the free surface,
see Figure 3.5. This means that sr = 1 as the propeller blade penetrates the free surface,
and sr = ≠1 as the propeller leaves the water, as shown in Figure 3.6.
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r

h > 0

Figure 3.5: Definition of propeller sub-
murgence h > 0.

r

r

r

sr = 1

sr = 0

sr = �1

Figure 3.6: Definition of the submur-
gence ratio sr for a propeller going out
of water.

The propeller will experience a thrust loss during the water exit phase of each blade. This
comes from loss of the e�ective disc area (Gutsche, 1967; Fleischer, 1973). Koushan (2004)
derived a formula for the thrust diminuation factor due to loss of propeller disk area, by
assuming that the resulting thrust is proportional to the submerged propeller disc area.
In his formula he included the e�ect of the propeller hub.

—0 = As

A0
=

C

0.5 + sin≠1(sr)
fi

+ sr

fi

Ò
1 ≠ (sr)2

DC

1 ≠ |sr + xh| ≠ (sr + xh)
2(1 ≠ xh)

D

(3.48)

where

As : Submerged propeller disk area.
A0 : Propeller disk area.
sr : Submergence ratio.
xh : Propeller hub ratio.

Dalheim (2014) discussed this formula in relation to simple geometric considerations, and
presented a new formula for the loss of propeller disc area. For simplicity the formula
is presented as a tripartite expression for submergences above, inside and beneath the
propeller hub.
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(3.49)

Use of either (3.48) or (3.49) is convenient if the propeller dynamics are of low importance,
i.e. only the the average forces are of interest. Using these geometrical properties in fact
means that the propeller harmonics for a partially submerged propeller are assumed equal
to the deeply submerged propeller. For the aim of developing a propeller simulation model
the propeller dynamics are of considerable importance. Due to the fact that fluctuating
water entry and exit will lead to important propeller dynamics, neither one of the presented
formulas is suitable for the simulation model. The thrust loss must rather be treated local
to each blade. The strategy relevant for the simulation model is discussed in section
5.4.1.

3.3.2 Ventilation

When the propeller submergence gets su�ciently low the propeller will not only experi-
ence thrust loss due to reduced propeller disk area, but also due to ventilation. During
ventilation air gets dragged down to the suction side of the propeller disk, causing an
increase in pressure, and hence a thrust loss. Treating ventilation in a delicate way is
very di�cult, and the common practice in propeller analysis is to use simplified formulas.
Minsaas et al. (1983) developed an expression for the reduced thrust due to ventilation
by assuming that the suction side of the propeller blade was fully ventilated, and that the
pressure side was covered by static pressure. Using a mathematical interpretation this can
be expressed as:

CL
V

= CL(‡V = 0) + ‡V (3.50)

where

CL
V

: Fully ventilated lift coe�cient.
‡V : Suction side contribution to lift coe�cient at fully ventilated case.
CL(‡V = 0) : Pressure side contribution to lift coe�cient at fully ventilated case.
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By assuming that the pressure side of the blade has no camber, the pressure side lift
coe�cient can be expressed as:

CL(‡V = 0) = fi

2 – (3.51)

where – [rad] is the blade section angle of attack.

The suction side contribution to lift coe�cient is found by neglecting e�ect of camber and
angle of attack, and finding the pressure di�erence between static pressure on the pressure
side and atmospheric pressure on the suction side.

‡V = 2gh

V

2
Œ

(3.52)

where

g : Gravitational acceleration.
h : Propeller submergence.
V

2
Œ : Velocity seen by the blade section.

From this, the lift coe�cient of a fully ventilated propeller blade section can be expressed
as:

CL
V

= fi

2 – + 2gh

V

2
Œ

(3.53)

A very rough estimate of the thrust coe�cient of a typically propeller can be found as
(Minsaas et al., 1983):

KT = 1.5 EAR CL(0.7) (3.54)

where

EAR : Expanded blade area ratio.
CL(0.7) : Lift coe�cient at 70% radius.
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From this the thrust loss factor due to propeller ventilation can be found as:

—V = KT

KT0

= 1.5 EAR

KT0

A
fi

2 – + 2gh

V

2
Œ

B

(3.55)

where – and V

2
Œ are evaluated at 70% radius.

Kozlowska et al. (2009) concluded that this formula underestimates the thrust loss when
the propeller is close to the free surface, and overestimates the thrust loss for deeply
submerged propellers. When the propeller is deeply submerged, the assumption of fully
ventilated suction side is not satisfactory. Kozlowska and Steen (2010) proposed correc-
tions to (3.55) based on the assumption that thrust loss also depends on how much of the
propeller blade area that is covered by air. This resulted in the thrust loss equation for par-
tially ventilated propellers. Kozlowska and Steen (2010) proposed that the lift coe�cient
for partially ventilated propeller can be approximated by lift coe�cient for non-ventilated
flat plate and fully ventilated flat plate, weighted by the ventilated and non-ventilated
areas of the blade. In a mathematical interpretation this was formulated as:

CL
P V

= KT0

1.5 EAR
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(3.56)

This resulted in a new expression for the thrust loss factor due to partial ventilation:
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(3.57)

where

A0 : Propeller disk area.
Av : Ventilated area of propeller disk.
Anv : Non-ventilated area of propeller disk.

Experiments (Koushan, 2006, 2007; Kozlowska et al., 2009; Olofsson, 1996) on varying
submerged propellers have identified a small amount of ventilation regimes, showing the
same type of ventilation patterns in terms of applied loads or type of air-drawing. The
ventilation regimes are illustrated in Figure 3.7. The partially ventilating regime is char-
acterised by having and unstable amount of propeller blade area covered by air. In this
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regime the propeller thrust typically fluctuates rapidly. The fully ventilated regime takes
place if the submergence is su�ciently low and the propeller loading high. More or less
the complete suction side of the blade is covered by air, which causes a significant thrust
loss. The loss is however quite stable in time in the fully ventilating regime. Propellers
will also typically experience an unstable ventilation regime, where rather abrupt changes
of thrust occurs.

Figure 3.7: Ventilation flow regimes. Adapted from Olofsson (1996).

Determination of the amount of ventilated area of the propeller blades is a very demand-
ing and, not to mention, di�cult process. Califano (2010) used RANS simulations to
investigate the mechanisms of ventilation of a marine propeller by vortex formation, and
Kozlowska and Steen (2010) used high speed video during model experiments for visual
observations. The visual observations led to an approximation of the ventilated blade
areas for di�erent propeller submergences, given in Table 3.1.
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Table 3.1: Ventilated and non-ventilated area of propeller blade. Adopted from (Kozlowska
and Steen, 2010).

h/R
1

A
nv

A0

2 1
A

v

A0

2

min - max min - max
1 0 1

1.40 0 - 0.05 1 - 0.95
1.72 0 - 0.50 1 - 0.50
2.60 0.20 - 1 0 - 0.80
3.40 0.20 - 1 0 - 0.80

3.3.3 Lift hysteresis

When the propeller goes in and out of water there will be a hysteresis e�ect in the thrust
generation. This causes a loss of thrust, denoted —w. The lift hysteresis e�ect is connected
to the time delay before the lift on the blade builds up. When a propeller blade splashes
into the water, there will be a sudden increase in the lift. However, after the blade has
penetrated the water surface there will take some time for the lift to reach its full value.
Wagner studied a related problem for a two dimensional foil, and found that the sudden
increase amounted to 50% of the fully developed lift (Faltinsen et al., 1981).

The Wagner function gives the ratio —w between the instantaneous lift and the fully devel-
oped lift for a propeller blade immersing into the water. The original function was a rather
mathematical complicated analytical solution to the problem, so a curve fit approximation
to the analytical solution is mostly used. The curve fit approximation is given in (3.58)
and is referred to as Minsaas’ Wagner function. A plot of this function is given in Figure
3.8.

—w = 0.5 + 0.5
Û

1 ≠
3155 ≠ VŒt

c

155

427.59
(3.58)

where

VŒt
c

: number of chord lengths travelled by the propeller section
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Figure 3.8: Minsaas’ curve fit to the Wagner function.

3.4 Oblique inflow

Oblique inflow is an operating condition that a propeller most certainly will experience
during operation. The situation occurs due to ship manoeuvring, either at high advance
numbers during transit or at low advance numbers during port operations and dynamic
positioning. The general aspect of oblique inflow is that the inflow field seen by the
propeller changes with the azimuth angle ”. This is in fact rather general and applicable
to all advance numbers. A more sophisticated aspect is that the propeller wake will leave
the propeller along an axis not normal to the disc plane. The propeller wake will be skewed
to one side of the propeller with the wake skew angle ‰, see Figure 3.9. The wake skew
angle is largely depending on the propeller loading.
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χ

δVa

Figure 3.9: Propeller disk at inflow angle ” and skewed vortex rings at angle ‰. Reproduced
from (Amini, 2011).

3.4.1 Decomposition of axial and tangential inflow field

The condition of axial and tangential inflow field change when the propeller is inclined with
an azimuth angle relative to the ship velocity. The axial and tangential inflow components
must be decomposed into the local coordinate system rotating along with the azimuth
angle ”. The axial inflow velocity Va is decomposed into two components, one in-plane
component and one component normal to the propeller disc, see Figure 3.10. The normal
component is a source to an axial inflow velocity field independent of local blade position.
Following the directions as illustrated Figure 3.10, the velocity normal to the propeller disc
due to axial inflow velocity in case of oblique inflow can be expressed by (3.59). Similar,
the in-plane component creates a tangential and radial inflow velocity. However this will
be local to the blade, thus dependent on the local blade position ◊. The model neglects
all radial velocity components, so only the tangential component will be further discussed.
Following simple geometrical considerations, the tangential velocity local to the blade due
to axial inflow can be expressed as in (3.60). The decomposition of the in-plane velocity
is also illustrated in Figure 3.11.

Va,a = Va cos ” (3.59)

Vt,a = Va sin ” cos ◊ (3.60)

where

Va : Undisturbed axial inflow component local to blade.



3. Theory for propeller analysis 35

Va

V
a

c

o

s

(�
) V

a
s

i

n

(

�
)

�

�

x

Figure 3.10: Decomposition of axial wake field due to azimuth angle ”. Top view.
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Figure 3.11: Decomposition of axial wake field into tangential and radial velocity compo-
nents as function of angular propeller blade position ◊. View from behind.

If the propeller operates in a tangential velocity field, the tangential velocity will contribute
to both a normal component Va,t and a tangential component Vt,t local to the blade,
dependent on the azimuth angle ”. The contribution from the tangential velocity to the
axial inflow component local to the propeller blade can be expressed by (3.61). The
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contribution from the tangential velocity to the tangential inflow component local to the
propeller blade can be expressed by (3.62).

Va,t = Vt sin ” cos ◊ (3.61)

Vt,t = Vt

Ò
(cos ◊ cos ”)2 + sin2

◊ (3.62)

where

Vt : Undisturbed tangential inflow component local to blade.

For a propeller operating in both an axial and a tangential undisturbed velocity field, the
total axial and tangential inflow velocity local to the blade during oblique inflow can be
found as:

Va,” = Va cos ” + Vt sin ” cos ◊ (3.63)

Vt,” = Vt

Ò
(cos ◊ cos ”)2 + sin2

◊ + Va sin ” cos ◊ (3.64)

Note that for radial and circumferentially inhomogeneous axial and tangential velocity
fields, Va and Vt are functions of both radius r and rotational angle ◊.

3.4.2 Vortex wake deflection

As illustrated in Figure 3.9 the propeller wake will be skewed to one side of the propeller
if the incoming velocity is inclined relative to the propeller disk. Amini (2011) discussed
the properties of the skewed vortex wake using theory of Coleman et al. (1945), which
formulated an expression for the distribution of induced velocity over the propeller disk.
The final expression was presented as:

ui(r, ◊)
u0

= 1 + K tan(‰

2 ) r

R

cos(Â) (3.65)

where

ui(r, ◊) : Local axial induced velocity at (r,◊) due to skewed propeller wake.
u0 : Average axial induced velocity over the propeller disk.
Â : Circumferential position of blade, zero at downstream position.
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K : Form factor.
‰ : Propeller wake skew angle.
r
R

: Relative radial position on the propeller blade.

Di�erent values for the K factor have been suggested. Pitt and Peters (1981) proposed
K = 15fi

32 .

Note that the circumferential position of the blade in (3.65) is measured from the most
downstream position of the propeller disk when subject to oblique inflow. This is due
to the fact that this position has the greatest amount of induced velocity. If the blade
position ◊ is defined as shown in Figure 3.11, the angle Â will be shifted 90¶ relative to ◊,
and the relation will be:

Â = 90 ≠ ◊ (3.66)

By relating the mean induced velocity to the incoming velocity, the wake skew angle was
found to be equal to:

‰ = arctan
A

Va sin ”

Va cos ” + u0

B

(3.67)

Amini (2011) also discussed the momentum theory for oblique inflow presented in (Glauert,
1935). Glauert studied a lifting rotor with an inclination angle to the incoming flow, and
formulated that the di�erential thrust of an annular ring of the propeller can be expressed
as:

T (r) = 4flfiru0(r)
Ò

V

2
a + 2Vau0(r) cos ” + u

2
0(r) dr (3.68)

where

u0(r) : Average value of the axial induced velocity for an annular ring.

(3.68) relates the annular average induced velocity to the annular thrust, which means
that the u0(r) can be found by knowing the thrust of each annular ring. That is, if the
thrust on a propeller blade section is found by for example using BEMT or lifting line
theory, the average induced velocity on the blade section can be found. The wake skew
angle can the by found using (3.67), which finally leads to the local axial induced velocity
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using (3.65). Since the thrust depends on the induced velocity, and the induced velocity
again depends on the thrust, and iteration procedure is necessary to obtain a final result
of the annular propeller induced velocity.



4 Evaluating simplifications

A simulation model built for investigation of propeller performance can get very accurate,
however the accuracy of the simulation result is very often related to the required computa-
tional e�ort. Depending on the purpose of the model it is necessary to decide on a balance
between the desired accuracy and the tolerance for computational e�ort. Thus, investing
some time for evaluation of possible simplifications prior to building the simulation model
can be beneficial. The numerical software akpa has been applied for this objective, and
this section will present the motive, strategy and findings of the study.

4.1 AKPA

The akpa software is a velocity based boundary element method intended for analysis of
two-staged podded marine propulsors with controllable pitch open or ducted propellers
(Krasilnikov et al., 2011). The program consists of two main calculation modules: The
Steady Propeller Analysis (SPA) and the Quasi-Steady Propeller Analysis (QSPA). The
SPA module performs the analysis of propeller in circumferentially homogeneous velocity
field, while the QSPA module performs unsteady propeller simulation in a circumferentially
inhomogeneous velocity field, allowing both radial and angular variations. The QSPA
module originally used a quasi-steady approach, however as from akpa version 5.4 and
later on the module performs a complete unsteady simulation.

4.1.1 Analysed data

The propeller used in the akpa analysis is the KVLCC2 propeller. This is a four-bladed
fixed pitch propeller of regular design, as shown in Figure 4.1. The global propeller
geometry and blade section geometry of the propeller is given in Appendix C1.2. The
unsteady axial wake field used in the analysis is shown in Figure 4.2, and input data can
be found in Appendix E3.

39
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Figure 4.1: Propeller three-dimensional ge-
ometry view of KVLCC2 propeller.

Figure 4.2: Unsteady axial wake field used
in the akpa calculations.

4.1.2 Unsteady e�ects

A propeller operating in a circumferentially inhomogeneous wake field will experience
unsteady e�ects. The unsteady e�ects are related to vortex generation due to change of
local inflow speed at di�erent propeller blade angular positions. When the circulation
around the blade changes, vortices are shed from the trailing edge causing additional
induced velocities on the blade. This will a�ect the resulting flow characteristics around
the blades, hence also the propeller forces. Performing fully unsteady propeller calculations
are very time consuming, because it requires to keep track of the vortices shed due to
circumferentially varying blade circulation.

Several studies have performed analyses of unsteady e�ects on propellers by relating the
wavelength of the oscillatory downwash to either the span or the chord length of the blade.
Sclavounos (1987) developed a method of matched asymptotic expansions to account for
unsteady e�ects, which generalised the existing approaches and increased their valid fre-
quency range. Common for the varieties of developed approaches is the fact that they are
potential methods.

Using simpler approaches for propeller simulation makes it more challenging to account
for the unsteady e�ects. The potential methods are not suited for application to lifting
line or BEMT, hence this e�ect must be considered in other ways. The most simple
way of treating the circumferentially inhomogeneous wake field is by using a quasi-steady
approach. The concept behind this approach is that the instantaneous flow field local to
a propeller blade is treated as if it was covering the entire propeller disk. Because the
local flow field changes among the propeller blades, the calculations are applied to each
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one of the propeller blades. The total propeller forces are then found by averaging the
contributions from the number of blades in question. An illustration is shown in Figure
4.3.

The quasi-steady approach takes into account the instantaneous flow conditions for each
blade, however the unsteadiness of the problem is completely lost. Experience has however
shown that if the radial distribution of axial and tangential momentum is taken into
consideration, the influence from the vortices shed due to circumferentially varying inflow
can be neglected (Phillips et al., 2009).

(a) 1st blade. (b) 2nd blade. (c) 3rd blade. (d) 4th blade.

Figure 4.3: Quasi-steady approach for lifting line calculation in unsteady wake field.

In addition to the present experience regarding unsteady analyses, the actual contribution
from the unsteady e�ects has been investigated using akpa. Fully unsteady simulations
for six di�erent propeller blade positions at advance numbers ranging from J=0.1 to J=1.4
have been carried out. Further, quasi-steady simulations for the corresponding circum-
ferentially homogeneous inflow fields and same range of advance numbers have been per-
formed. For the four-bladed KVLCC2 propeller this corresponds to 4 x 6 = 24 simulations
for each advance number. Figure 4.4 shows the result of the unsteady and quasi-steady
akpa simulations.

The simulations clearly verify the initial assumption that the unsteady e�ects can be ne-
glected. Figure 4.4 shows that the di�erence between quasi-steady and fully unsteady
analysis is low, and that this assumption holds for both low and high propeller load-
ings.
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Figure 4.4: Comparison between quasi-steady and fully unsteady propeller force calcula-
tion in akpa for four-bladed propeller at six di�erent angular positions ◊ [deg].
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4.1.3 E�ect of skewed wake corrections

When the propeller is inclined to the flow with an angle ”, the e�ective inflow to the
propeller disk will consist of a normal component and an in-plane component, see Figure
3.10. The in-plane component contributes to a circumferentially dependent tangential in-
flow velocity component, while the normal component will be uniform over the propeller
disk. The normal velocity component will decrease with increased azimuth angle ”, which
means that the e�ective advance number decreases. The circumferentially varying tangen-
tial components cause the generated propeller forces to vary with blade position, which in
reality means that side forces and bending moments are generated.

In addition to the fact that the inflow conditions depend on the azimuth angle ”, the
properties of the propeller wake will also change with the azimuth angle, as discussed in
section 3.4.2. The e�ect is referred to as the skewed wake e�ect.

Taking the skewed propeller wake into consideration will introduce more complex be-
haviour of propeller induced velocities, hence also additional demands on computational
e�ort. For the purpose of establishing a computational e�cient propeller simulation model,
it would be practical if the skewed propeller wake e�ect could be neglected, and within
an acceptable range of error. Multiple combinations of circumferential blade position ◊,
advance number J and azimuth angle ” have been simulated using akpa to test whether
or not this simplification can hold, and if so, to what extent. The strategy has been to
compare the fully unsteady calculation including built-in azimuth angle functionality with
a fully unsteady calculation only adjusting the inflow velocity field to the azimuth angle.
For simplicity the fully unsteady calculation including built-in azimuth angle functionality,
hereby referred to as the inclined calculation, is considered to be the correct value. The
fully unsteady calculation only adjusting the inflow velocity field to the azimuth angle,
hereby referred to as the decomposed calculation, is considered a simplification. Figure 4.5
shows the relative error between the decomposed (subscript d) and inclined (subscript i)
simulation for all six DoF at propeller rotation angle ◊ = 0. The complete set of results
for six di�erent propeller rotation angles can be found in Appendix D. Note that the co-
ordinate system used is fixed to the propeller plane, i.e. local to the propeller shaft, as
illustrated in Figure 5.1.



44 4. Evaluating simplifications

Azimuth angle δ [deg]
-35 -30 -20 -10 0 10 20 30 35

K
T
i
−
K

T
d

K
T
i

[−
]

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
J = 0.1
J = 0.3
J = 0.5
J = 0.7
J = 0.9

(a) Thrust coe�cient.

Azimuth angle δ [deg]
-35 -30 -20 -10 0 10 20 30 35

K
Q
i
−
K

Q
d

K
Q
i

[−
]

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

J = 0.1
J = 0.3
J = 0.5
J = 0.7
J = 0.9

(b) Torque coe�cient.

Azimuth angle δ [deg]
-35 -30 -20 -10 0 10 20 30 35

K
F
Y
i
−
K

F
Y
d

K
T
i

[−
]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

J = 0.1
J = 0.3
J = 0.5
J = 0.7
J = 0.9

(c) Horisontal force coe�cient.

Azimuth angle δ [deg]
-35 -30 -20 -10 0 10 20 30 35

K
F
Z
i
−
K

F
Z
d

K
T
i

[−
]

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

J = 0.1
J = 0.3
J = 0.5
J = 0.7
J = 0.9

(d) Vertical force coe�cient.

Azimuth angle δ [deg]
-35 -30 -20 -10 0 10 20 30 35

K
M

Y
i
−
K

M
Y
d

K
Q
i

[−
]

-1.5

-1

-0.5

0

0.5

1

1.5

J = 0.1
J = 0.3
J = 0.5
J = 0.7
J = 0.9

(e) Horisontal moment coe�cient.
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Figure 4.5: Comparison between decomposed wake field (subscript d) and inclined (sub-
script i) calculation using akpa for the KVLCC2 propeller in oblique inflow.
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What we clearly can identify from Figure 4.5 is that the e�ect of skewed propeller wake is
of significant importance. Starting with the thrust (a) and torque (b) coe�cients we see
how the relative error is quite low for high propeller loadings, that is, low advance number.
For increasing advance number the relative error grows significantly for both thrust and
torque, and we can identify errors up to 30%. This can be explained by the fact that the
incoming velocity has less importance for higher propeller loadings. The relative error also
increases with the azimuth angle.

Horisontal (c) and vertical (d) side forces show the same trend as for the thrust and
torque. That is, the relative error is quite low for high propeller loadings, but increases
with the advance number. Note that the relative error of side force is plotted against the
thrust coe�cient from the inclined calculation. This enables a logical representation of
how the relative error changes with propeller loading and azimuth angle. The drawback
is however that the amount of error in vertical and horisontal side force is more di�cult
to compare.

Similarly, the horisontal (e) and vertical (f) bending moments show the same trend that
the relative error grows significantly with propeller loading. Note that the relative error
of bending moment is plotted against the torque coe�cient from the inclined calculation.
This enables a logical representation of how the relative error changes with propeller
loading and azimuth angle. The drawback is however that the amount of error in vertical
and horisontal bending moment is more di�cult to compare.

The akpa calculations show evidently that the e�ect of skewed propeller wake is hard
to neglect, because the accuracy of the simulation model would be significantly reduced,
especially for low propeller loadings and large azimuth angles. Hence, the conclusion from
this investigation is that the skewed propeller wake e�ect should be taken into considera-
tion.

4.1.4 Correction of AKPA-results

According to the akpa user manual (Krasilnikov et al., 2011) the output propeller side
forces and bending moments are in a local coordinate system fixed to the propeller disk.
Multiple simulations for di�erent combinations of azimuth angles ”, inclination angles ‰

and advance numbers however revealed that the forces stated to be local to the propeller
could not possibly be that. Figure 4.6 shows the horisontal side force and bending moment
post-processed directly from akpa results, which are stated to be local to the propeller.
The first consideration is how the side force increases with propeller loading. For high
propeller loading, the dependence on the azimuth angle is evident and almost linear.
Yet, the physical interpretation of high propeller loading suggest only modest dependence
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on the azimuth angle. This is because the contribution from inflow field becomes small
when the loading is high, resulting in lower dependence on azimuth angle. If we rather
consider the result shown in Figure 4.6 (a) as side force fixed to a global coordinate system,
the result makes more sense. In a global coordinate system the main contribution to side
force is the side force component of the thrust. Because the thrust increases with propeller
loading the side force in the global coordinate system increases its dependency on azimuth
angle as the propeller loading increases. Exactly the same argument can be established
for the horisontal bending moment, because in a global coordinate system it will mainly
be a decomposed component of the propeller torque.

Similar findings were made related to the inclination angle ‰. Figure 4.7 shows the vertical
side force and bending moment post-processed directly from akpa results, which are stated
to be local to the propeller. The same strong dependence on the inclination angle for high
propeller loading is found for the vertical side force and bending moment. Due to the same
reasons as for the horisontal side force and bending moment at non-zero azimuth angles,
one can argue that the vertical side force and bending moment is given in a global fixed
coordinate system rather than local to the propeller disk.
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Figure 4.6: Horisontal side force and bending moment coe�cients as function of azimuth
angle ”. Post-processed directly from akpa results, stated to be local to the propeller.
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Figure 4.7: Vertical side force and bending moment coe�cients as function of inclination
angle ‰. Post-processed directly from akpa results, stated to be local to the propeller.

From this detailed investigation of the akpa-calculations there is su�cient evidence that
the results are given in a global coordinate system (x0,y0,z0). However, a more feasible
way of presenting the 6 DoF propeller forces in a condition of oblique inflow is in the
propeller plane fixed coordinate system (x,y,z), see Figure 4.8. This requires a coordinate
system transformation of the results. The transformation matrices are given in (4.1) and
(4.2).
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T‰ =

S

WWWWU

cos(‰) 0 ≠ sin(‰)
0 1 0

sin(‰) 0 cos(‰)

T

XXXXV
(4.1)

T” =

S

WWWWU

cos(”) sin(”) 0
≠ sin(”) cos(”) 0

0 0 1

T

XXXXV
(4.2)

Transformation of forces and moments from the global coordinate system (x0,y0,z0) to
the local coordinate system (x,y,z) then follows from matrix multiplication as shown in
(4.3). Note that this transformation holds for any combination of azimuth and inclination
angles.
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5 Structure of the simulation model

The 6 DoF time domain propeller simulation model is built based on the theory, assump-
tions and simplifications found to be valid and appropriate for the purpose of the model.
In the succeeding sections the structure and properties of the model will be presented.
The intention is to give understanding and knowledge of what the model is capable of
doing and how the simulation model works. The propeller simulation model has been
implemented into Simulink and has been named PropSiM, which it from now on will be
referred to as.

5.1 Specifications

The forces calculated in the simulation model are reaction forces, i.e. forces acting from
the water on the propeller. The coordinate system that is used follows a right handed
system, as shown in Figure 5.1. Note that the coordinate system is persistent regardless
of direction of propeller rotation. Due to the choice of coordinate system, one should
have in mind that the torque becomes negative as reaction force for a clockwise rotating
propeller.

fz

fy

T

mz

my

Q

Figure 5.1: Coordinate system used in the simulation model for both clockwise and coun-
terclockwise rotating propeller. Reproduced from (Helicetude, 2015).
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5.2 Simulation input pre-processing

The simulation model retrieves information about the propeller, incoming wake field and
lifting line properties from separate input files. The routine readinput.m is responsible for
reading the input data, and is attached as Appendix F2. The input data is read as an
initialisation of the simulation, that is, prior to the simulation starts. Hence the input
data can be modified between each simulation, but not during the simulation.

5.2.1 Propeller

The propeller data is given in the file propeller.txt. That is, both global propeller informa-
tion and blade section details are read from this file. The structure of the propeller file
is illustrated in Figure 5.2. The first part of the file contains the global propeller data.
There is a column for propeller diameter D, Expanded blade Area Ratio EAR, number
of blades Z, propeller hub ratio xh, direction of rotation, initial position of the propeller
at simulation start and the density of Wagner calculation. The direction of rotation can
either be right or left. Note that the simulation model does not distinguish between
left and right rotating propellers in the current version, the default choice is right rotat-
ing. The initial position of the propeller is the circumferential position ◊ [deg] when the
simulation starts. The density of Wagner calculation is how dense, in degrees, the instan-
taneous velocity seen by the propeller blade should be calculated during Wagner e�ect
calculation.

Beneath the global propeller data follows the blade section geometry details. The first
column r R contains the relative spanwise positions where the blade geometry is defined.
The number of spanwise positions and their respective values can be user-defined, however
the positions must be relative to the propeller radius, hence between zero and one.

c D : Chord length relative to propeller diameter.
tmax D : Maximum section thickness relative to propeller diameter.
P D : Section pitch relative to propeller diameter.
f0 D : Maximum section camber relative to propeller diameter.
cD : Section drag coe�cient.

The last part of the propeller input file contains information for the camber line using a
selected NACA-profile. The first row specifies the lift coe�cient at ideal angle of attack for
the profile. The second row specifies the maximum camber to chord length of the camber
line. The third and last row specifies the ideal angle of attack for the profile.
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/* Propeller characteristics */

D EAR Z Xh Rotation Init.Pos Wagner

x x x x RIGHT x x

=============================================

/* Blade section geometry */

r_R c_D tmax_D P_D f0_D cD

0.155 x x x x x

0.160 x x x x x

0.250 x x x x x

0.300 x x x x x

0.400 x x x x x

0.500 x x x x x

0.600 x x x x x

0.700 x x x x x

0.800 x x x x x

0.900 x x x x x

0.950 x x x x x

1.000 x x x x x

=============================================

/* Camber profile */

x | Lift coefficient for chosen camber profile (Cl)

x | Max camber relative to chord length (f0max_c) [%]

x | Ideal angle of attack [deg]

Figure 5.2: Structure of propeller input file.

5.2.2 Incoming wake field

The wake field data is given in the file wakefield.txt. The simulation model can handle
both an axial and a tangential inflow wake field, which follows the structure illustrated
in Figure 5.3. The first row contains the relative spanwise positions of the wake input,
and the first column contains the circumferential positions, in degrees, of the wake input.
The remaining rows and columns holds the actual wake input data, formatted as the
incoming velocity relative to the forward speed of the ship. For axial inflow positive sign
means towards the propeller, and for tangential inflow positive sign means clockwise seen
from behind the propeller. The number of circumferential and spanwise positions are
user-defined, however the wake input data must cover the whole area of the propeller
disk.
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/* Axial wakefield */

T\R 0.05 0.23 0.39 0.51 0.63 0.72 0.80 0.92 1.00

0 x x x x x x x x x

30 x x x x x x x x x

60 x x x x x x x x x

90 x x x x x x x x x

120 x x x x x x x x x

150 x x x x x x x x x

180 x x x x x x x x x

210 x x x x x x x x x

240 x x x x x x x x x

270 x x x x x x x x x

300 x x x x x x x x x

330 x x x x x x x x x

360 x x x x x x x x x

/* Tangential wakefield */

T\R 0.05 0.23 0.39 0.51 0.63 0.72 0.80 0.92 1.00

0 x x x x x x x x x

30 x x x x x x x x x

60 x x x x x x x x x

90 x x x x x x x x x

120 x x x x x x x x x

150 x x x x x x x x x

180 x x x x x x x x x

210 x x x x x x x x x

240 x x x x x x x x x

270 x x x x x x x x x

300 x x x x x x x x x

330 x x x x x x x x x

360 x x x x x x x x x

Figure 5.3: Structure of wake field input file.

5.2.3 Lifting Line

The properties of the lifting line calculations are given in the file LLproperties.txt. An
illustration of the input file is given in Figure 5.4. The first input value is the number of
vortex panels M the propeller blade should be divided into. The second input value is the
ratio between the hub vortex radius and the hub radius. Typically this can be set to 0.25.
The third input value decides the maximum number of iterations allowed in solving for the
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unknown circulation. The fourth input value is the swirl cancellation factor, where 1 =
no cancellation. The fifth input value is the density of water [kg/m3]. The sixth and last
input value is the accuracy tolerance �tol for determination of the unknown circulation,
that is, the accepted relative change of circulation from the previous iteration, which can
be expressed as:

�rel = |new ≠ old|
new (5.1)

The iteration aborts when �rel Æ �tol, or when the maximum number of iterations is
exceeded.

/* Lifting Line properties */

x | Number of blade vortex panels

x | Hub vortex radius/Hub radius

x | Maximum number of iterations in wake alignment

x | Swirl cancellation factor: 1=no cancellation

x | Density of water [kg/mˆ3]

x | Circulation accuracy tolerance

Figure 5.4: Structure of input file for lifting line properties.

5.2.4 Important notes on input files

It is crucial that the structure of the input files are maintained during modifications. The
routine that reads the input data needs to understand the structure of the files in order
to allocate the data correctly. Hence it is recommended that the original files attached to
the model are stored for later reuse. The following features are applicable and common to
all the input files:

• All input files must be stored in the input folder.
• Numbers are separated by one or several spaces, not tabular spacing.
• Headerlines can not be removed, and must start with /* and end with */.
• Numbers and their respective descriptions are separated by |.
• The sequence of the input data must be maintained.
• The numbers can have an unspecified number of decimal places.
• The decimal point must be period, not comma.
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5.2.5 Pre-processing

The routine readinput.m is responsible for assigning the information in the input files to
appropriate parameters. In addition the span of the blade is divided into M vortex panels
by the routine cosspace.m, using real cosine spaced control and vortex points as defined
in (3.21) and (3.22). The final step in pre-processing the input data is to interpolate the
blade geometry to the control points and the axial and tangential wake field to both the
vortex and control points.

5.3 Main body

The main body of PropSiM starts with the Simulink module shown in Figure 5.5. The
user-defined input to the block is the propeller rotational speed [RPM], ship speed [m/s],
pitch control angle [deg], propeller submergence [m] and the azimuth angle [deg]. This
input can have individual arbitrary time dependency, however it is recommended that
they are kept continuous. The output from the block is the 6 DoF propeller forces and
moments in [N] and [Nm], respectively. PropSiM gives output for each time step. The
subsequent sections will go through the various calculation steps of the model. The steps
can be related to the PropSiM flowchart presented in 5.7.

Figure 5.5: Representation of PropSiM as it is shown for the user.
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5.3.1 Interpolation of input data

For each time step the circumferential position of the blades must be determined. The
angle ◊ [deg] for blade number k is found from the expression:

◊(k) = 360
A

n t + ◊0
360 + k ≠ 1

Z

≠
E

n t + ◊0
360 + k ≠ 1

Z

FB

(5.2)

where

n : Propeller rotation speed [Hz].
t : Real time [s].
k : Propeller blade number.
◊0 : Initial circumferential position of propeller [deg].
Z : Number of propeller blades.
ÂxÊ : Rounding x down to nearest integer.

After the blade positions are determined the instantaneous wake field local to each pro-
peller blade is found by interpolating the input wake field to the circumferential positions.
The routine uses a spline interpolation method. If the azimuth angle ” is non-zero, the
axial and tangential wake fields are corrected for the azimuth angle using (3.63) and
(3.64).

5.3.2 Finding blade circulation

When the inflow velocities local to each blade are determined, the undisturbed hydrody-
namic angle — of each blade is found using (3.12). PropSiM then enters the quasi-steady
analysis of the blade circulation by treating each blade subsequently in a loop. A first
estimate of the hydrodynamic angle —i is found as a multiplier of the undisturbed hy-
drodynamic angle — equal to 1.1, simply due to the fact that —i > — for a moderately
loaded propeller. The horseshoe influence functions are then found using the approach of
Wrench’s closed form approximations discussed in section 3.2.1. The closed form approx-
imations are given in Appendix A. An important aspect of finding the influence functions
is that cosine spacing of the vortex and control points leads to variable distance between
vortex and control points along the span. Hence the influence function from two adjacent
horseshoe vortices must be averaged relative to their individual distance to the control
point. The contribution to the horseshoe influence functions due to the hub image is
found using the approach described in section 3.2.1.
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When the horseshoe influence functions are found the distribution of circulation is deter-
mined using the equation system in (3.30) by inverse matrix multiplication. An updated
value of the hydrodynamic angle —i is then found using (3.44), which then again is input
to finding new horseshoe influence functions. This procedure runs in a loop until either:
(i) the maximum number of iterations is reached or (ii) the circulation distribution has
converged su�ciently. Both (i) and (ii) depends on the input specified in LLproperties.txt,
which were discussed in section 5.2.3. The propeller induced velocities local to control
point yc are determined from the circulation by using (3.24) and (3.25).

5.3.3 6 DoF propeller forces

When a satisfactory accuracy of the circulation distribution has been obtained, the 6 DoF
non-dimensional force coe�cients can be found from the discrete sum over the vortex
panels given in (3.34) - (3.39). Note that CT and CQ are thrust and torque coe�cients
from all the blades, while Cfy, Cfz, Cmy and Cmz are for the actual blade subject to the
calculation. The thrust is corrected for the hub vortex, using (3.41).

5.4 E�ect of propeller submergence

5.4.1 Loss of propeller disc area

In section 3.3.1 simple geometrical considerations were presented with the purpose of
treating the thrust loss of a partly submerged propeller. However, using these geometrical
properties was found to be insu�cient for the purpose of the propeller simulation model.
PropSiM rather treats the loss of thrust and torque local to each blade. Based on
the propeller submergence the wetted length of the span Swet is found using geometric
identities.

Swet =

Y
____]

____[

5
xh,

sr

cos ◊

6
for sr Ø 0

5
sr

cos ◊

, 1
6

for sr < 0
(5.3)

where

Swet : Interval of wetted span of propeller blade.
xh : Relative size of propeller hub.
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✓

Figure 5.6: Wetted span of partly submerged propeller blade.

From this the instantaneous submerged vortex points are found solving for yv œ Swet. The
change of submerged vortex points actually leads to a reduction in the circulation equation
system (3.30). However, when the number of submerged vortex points is less than four the
blade is considered dry. This is due to the fact that the numerical solution to the equation
system gets unstable for less than four points. The simplification is however considered to
have very low influence on the result, since the vortex and control points are very dense
towards the propeller hub and tip using the real cosine spacing method.

When sr < 0 and parts of the propeller blade is out of water the hub image e�ect is turned
o�. This is because it is assumed that there will be a pressure leak on the part of the
blade operating close to the free surface. Hence, it is more correct to let the circulation
approach zero towards the free surface rather than having a finite value of circulation.
The same argument holds for sr > 0: there will be a pressure leak on the parts operating
close to the surface. However, the blade tip is in any case modelled with a free tip, so no
modification is necessary.

5.4.2 Ventilation

The e�ect of ventilation is treated according to the approach outlined in section 3.3.2 by
use of (3.57). The angle of attack – and velocity VŒ are evaluated at the control point
with yc closest to 0.70. Most of the variables in (3.57) are already known from the calcu-
lation of circulation distribution. However, the amount of ventilated propeller disk area is
undetermined. As there is no easy and still accurate way of predicting the ventilated pro-
peller disk area, a simplified approach using data from experiments is implemented. The
experimental results from Kozlowska and Steen (2010) presented in Table 3.1 has been
used to generate polynomial approximations to the amount of ventilated propeller disk
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area. The polynomials take two di�erent characteristics into consideration, a propeller in-
creasing its submergence and a propeller decreasing its submergence. The polynomials are
illustrated in Figure 5.7 and expressed mathematically in (5.4). Experiments have shown
that for a propeller approaching the free surface, ventilation does not occur until sr ¥ 1.7.
From the moment ventilated area starts to form, the change in ventilated area is rather
abrupt. This is reproduced in the polynomial for decreasing submergence. For a propeller
decreasing its submergence the behaviour is di�erent. When the propeller enters the water
completely the amount of ventilation will be considerable. For increasing submergence the
propeller will still have access to air, so the amount of ventilation will be quite large. As
the polynomial shows, some ventilated area will remain until sr ¥ 3.4. The equation for
the ventilated area is directly implemented into PropSiM.

sr

1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

Av

A0

Increasing submergence

Decreasing submergence

Figure 5.7: Polynomial approximations to the ventilated area during ventilation.

Av

A0
¥

Y
____]

____[

≠1.2276 sr
2 + 2.2201 sr ≠ 0.1969 if dh

dt

< 0, sr œ [1, 1.7]

≠0.1593 sr
3 + 1.3420 sr

2 ≠ 3.7357 sr + 3.4483 if dh

dt

> 0, sr œ [1, 3.4]
(5.4)

PropSiM calculates the thrust loss factor due to ventilation (—V ) for 1 Æ sr < 3.4. For
sr < 1 —V is kept as it was at the time the propeller disk penetrated the free surface. New
calculation of —V initiates when the propeller is fully submerged again.
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5.4.3 Lift hysteresis

The third contribution to the thrust loss is related to the Wagner e�ect. PropSiM

calculates the instantaneous reduction in lift force due to Wagner e�ect directly using
Minsaas’ expression given in (3.58). Since the lift force on a blade section is proportional to
the bound circulation, expressed by the Kutta-Joukowski relation in (3.42), the loss factor
—w can be directly applied to the bound circulation rather than the lift coe�cient.

The instantaneous number of chord lengths travelled by a blade section since water entry
is necessary as input to the Wagner function. PropSiM evaluates this in the routine
wagnere�ect.m, which is attached in Appendix F6. For circumferential inhomogeneous
inflow the velocity seen by the blade section changes with circumferential blade position.
This means that integration is required in order to find the total number of chord lengths
travelled from water entry to the position of the blade. In the Wagner routine the angular
distance between water entry of a blade section and the circumferential blade position is
divided into a certain number of points, based on user-specified input. The axial and tan-
gential inflow wake fields are then interpolated at these points using a spline interpolation
method. For each circumferential point between water entry and the instantaneous blade
position the velocity seen by the propeller blade section is found using the equation sys-
tem given in (3.30), i.e. by the routine circulation.m. The total number of chord lengths
travelled by the blade section is then found by averaging VŒ over the total number of
circumferential points, multiplying with the time since water entry and dividing by the
chord length of the blade section. The time since a blade section entered the water is
found using the following relationship:

te = ◊ ≠ ◊e

360 n

(5.5)

where

te : Elapsed time since blade section entered the water [s].
n : Shaft rotational speed [Hz].
◊e : Angle when blade section entered the water [deg].
◊ : Propeller blade position [deg].

For saving of computational e�ort, the Wagner e�ect is only calculated for the blade
sections that vary between wet and dry during one revolution. Yet since VŒ, and hence
the circulation distribution, must be determined at several positions for each propeller
blade, the Wagner e�ect influences the computational e�ort significantly.
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5.4.4 Additional inflow velocity component

As a result of heave and pitch motion of the ship, the propeller can experience large
vertical motions during operation. The vertical motion is denoted h, and is considered
positive downwards. Vertical motion of the propeller causes an additional inflow velocity
component Vh = dh

dt
to the propeller, which is the time derivative of the propeller sub-

mergence. For simplicity the model assumes that the vertical velocity is uniform over the
propeller disc, and that it only contributes to a tangential velocity component Vh,t local
to the propeller blade, i.e. the radial component is neglected. The tangential component
depends on the rotational angle of the blade as shown in Figure 5.8 and is expressed in
(5.6). PropSiM treats this additional inflow velocity component by adding it to the tan-
gential inflow wake field. Note the sign convention that is used. dh

dt
is positive when the

propeller increases its submergence.

Vh,t = Vh sin(◊) = dh
dt

sin(◊) (5.6)
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Figure 5.8: Decomposition of rate of change of propeller submergence Vh=dh
dt

into tangen-
tial and radial velocity component local to propeller blade.
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5.5 E�ect of oblique inflow

If the azimuth angle is di�erent from zero the simulation model activates calculation of
side forces and bending moments due to oblique inflow. The axial and tangential inflow
wake fields are decomposed into the new propeller plane using (3.63) and (3.64). The e�ect
of the skewed propeller wake is then considered by forcing the axial induced velocity to
follow the distribution given in (3.65). This is implemented into the simulation model by
forcing the distribution of hydrodynamic angle —i along the span to follow the distribution
of axial induced velocity in (3.65). The annular mean axial induced velocity is found by
equating the mean di�erential thrust expressed in (3.68) with the actual di�erential thrust
found using the lifting line approach. The thrust is evaluated for each vortex panel, so
the summation of the thrust coe�cient in (3.34) is removed. The di�erential thrust of a
vortex panel is found as:

T drm = fl

5
VŒ,m�m cos(—i,m) ≠ 1

2(VŒ,m)2
cmCDv,m sin(—i,m)

6
drm (5.7)

Solving for the mean annular induced velocity u0 requires an iteration procedure. In the
simulation model the iteration continues until an error less than 5% is achieved. When
u0 is found the propeller wake skew angle ‰ can be found using the relationship in (3.67).
With the wake skew angle available a new distribution of circulation, and hence a new
distribution of hydrodynamic angle —i can be found. This loop continues until either the
required convergence of circulation is fulfilled or until the maximum number of iterations
is exceeded.

The e�ect of oblique inflow is implemented in the routine circulation.m, simply because it
is the distribution of circulation that is altered due to the skewed propeller wake. When
the propeller is only partly submerged the calculation of oblique inflow is turned o�. This
is mainly because a situation of partly submergence introduces so many additional e�ects
that the contribution from oblique inflow will be of low importance. Another aspect is
simply that treating the skewed propeller wake when parts of the propeller is out of water
will require an undesirable amount of computational e�ort.
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5.6 Iterative solution of induced velocities

5.6.1 Improved iteration procedure

The solution of the equation system expressed in (3.30) is found by iteration. In the first
outline of the lifting line routine the iteration procedure simply followed an algorithm of
updating the hydrodynamic inflow angle —i to the induced velocities. The development of
the circulation at 70% propeller radius during the iteration process is shown as a blue line
in Figure 5.9. However, an improved iteration method was implemented into the model to
ensure faster convergence. This is shown as an orange line in Figure 5.9. The improvement
was created based on observations that the circulation is alternately overestimated and
underestimated. By memorising the previous steps in the iteration, a new guess on the
induced velocities can be found from the two preceding predictions. The simulation model
utilise this by finding the third estimate on the circulation distribution as the mean value
of the first and second estimate. As we clearly can observe from Figure 5.9 this forces a
much faster convergence of the circulation distribution.
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Figure 5.9: Convergence of circulation at 70% propeller radius for normal and improved
iteration procedure.
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5.6.2 Numerical instability - reduction factor

Some numerical instability in the iteration procedure was observed for high propeller
loading. This occurs because the first estimate of the induced velocities gets very large,
causing large negative angles of attack. In the second iteration these large negative angles
of attack causes the calculation of induced velocities using Wrench’s approximations to be
unstable. Wrench’s approximations includes logarithmic expressions, which are sensitive
when the input approaches zero. If the input becomes negative the calculation of induced
velocities crashes.

To avoid this problem for high propeller loadings, a reduction factor is included in the
iteration procedure. This means that the first estimate of induced velocities is tuned down
to limit the extent of overestimation of induced velocities in the first cycle of iteration.
The reduction factor is set to 0.8.
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5.7 Flowchart
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Figure 5.10: Flowchart PropSiM
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5.8 Recommendations

The number of vortex panels M used in the simulation will a�ect both computational time
and accuracy. For a deeply submerged propeller, not experiencing any loss of propeller
disk area, it is su�cient to use M = 8. If the simulation is aimed at studying the e�ect
of partly submergence it is recommended to use M = 16. Depending on the propeller
parameters, M = 12 can also be su�cient, however if the calculation gets unstable the
number of panels must be increased. Note that a propeller blade is considered dry if less
than four vortex points are submerged, hence the thrust loss will be unphysically abrupt
when the propeller hub is close to the free surface and the number of vortex panels is low.
The value of M is set in the input file LLproperties.txt.

The density of the Wagner calculation will also have a major contribution to computational
time. If this number is decreased the Wagner e�ect is calculated more dense, i.e. there will
be more points where to evaluate the induced velocities for each time step. A su�cient
choice of the Wagner density is 15 [deg]. Increasing this number decreases the computa-
tional time. The value of the Wagner density is set in the input file propeller.txt.

The simulation model can not handle velocities equal to zero. The propeller loading will
be very high, and the numerical calculation will be unstable. Hence it is recommended to
keep the advance number J > 0.05 to ensure that unstability is avoided. How low advance
number the simulation model can handle is depending on other parameters, such as the
heave velocity of the propeller.





6 Results and validation

PropSiM has been tested and validated using both commercial software and model ex-
periments. It is important to ensure that the model delivers expected results, that is,
results that both agrees with physical behaviour and with more advanced numerical tools.
More important is it also to ensure that the simulation model is able to produce results
in agreement with model experiments. This section will cover all the testing of the simu-
lation model, and compare results from simulations with both other software and model
experiments.

6.1 Main body

The main body of the simulation model, that is the basic lifting line code with all additional
e�ects excluded, has been validated in an open water condition. The validation considers
both model experiments and simulations using the software akpa.

6.1.1 Open water thrust and torque coe�cients

Thrust and torque coe�cients as function of advance number have been evaluated for both
the KVLCC2 propeller and the P1374 propeller in an open water condition. The geometry
of the propellers is attached in Appendix C1.

The simulation of the KVLCC2 propeller is shown in 6.1 along with results from model
experiments and akpa calculations. We see that the shape of the curves for both thrust
and torque obtained with PropSiM is nearly identical to the experiment, however it seems
that especially the thrust coe�cient is somewhat overestimated. The akpa calculations
seem to produce results more in agreement with the experiment, however the shape of the
curves are not predicted that good.

A similar simulation of the P1374 propeller is shown in 6.2. akpa calculations for this
propeller has not been achieved, so the validation is only performed against model ex-
periments presented in (Amini, 2011). For this propeller we can identify that the result
from simulation agrees very well with the experiments, especially in magnitude of the

67
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thrust coe�cient. The shape of the curves are however not so good as for the KVLCC2
propeller.

The open water comparison of the simulation model against akpa calculations and model
experiments gives good reason to argue that the main body of the simulation model works
su�ciently, and that the lifting line approach is implemented correctly.
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Figure 6.1: Comparison of open water thrust and torque coe�cients from experimental
results, PropSiM and AKPA calculations for the KVLCC2 propeller.
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Figure 6.2: Comparison of open water thrust and torque coe�cients from experimental
results and PropSiM calculations for the P1374 propeller.
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6.1.2 Open water spanwise circulation and lift distribution

Spanwise distribution of circulation and lift coe�cient for the KVLCC2 propeller in open
water has been validated against akpa calculations for advance numbers between 0.1 and
0.8. The results are shown in Figure 6.3. We see a fairly good match between simulation
in PropSiM and akpa for high propeller loading, that is for advance numbers below 0.4.
The match gets somewhat poor for J = 0.5 and J = 0.6, however the agreement returns
for J = 0.7 and J = 0.8. For all advance numbers we see that the simulation model tends
to overestimate the circulation and the lift coe�cient, which already has been emphasized
for the thrust and torque coe�cients in section 6.1.1.
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(c) Spanwise circulation for J = 0.2.
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Figure 6.3: Spanwise circulation and lift coe�cient from PropSiM and AKPA calculations.
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(e) Spanwise circulation for J = 0.3.
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(f) Spanwise lift coe�cient for J = 0.3.
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(g) Spanwise circulation for J = 0.4.
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(h) Spanwise lift coe�cient for J = 0.4.
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(i) Spanwise circulation for J = 0.5.
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(j) Spanwise lift coe�cient for J = 0.5.

Figure 6.3: Spanwise circulation and lift coe�cient from PropSiM and AKPA calculations.
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(k) Spanwise circulation for J = 0.6.
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(l) Spanwise lift coe�cient for J = 0.6.
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(m) Spanwise circulation for J = 0.7.
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(n) Spanwise lift coe�cient for J = 0.7.
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(o) Spanwise circulation for J = 0.8.
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Figure 6.3: Spanwise circulation and lift coe�cient from PropSiM and AKPA calculations.
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6.2 Physical behaviour of special e�ects

Di�erent e�ects implemented into the simulation model have been isolated and tested for
investigation of their physical behaviour. The subsequent sections present the results from
the simulations, and related comments regarding the physical behaviour.

6.2.1 Wagner e�ect

The KVLCC2 propeller has been used to investigate the Wagner e�ect predicted by the
simulation model. The strategy was to design two similar cases of a partly submerged
condition, with turning the Wagner e�ect on/o� as the only di�erence. The propeller
was simulated in a sinusoidal heave motion, being completely out of water at its highest
position. The ventilation model was deactivated for both of the simulations in order to
isolate the Wagner e�ect as much as possible.

Figure 6.4 shows the thrust and torque coe�cients with and without the Wagner e�ect,
along with the submergence ratio of the propeller. The propeller had a shaft speed of n =
76[RPM] and advance number J = 0.1. The simulation results show that the Wagner e�ect
leads to loss of both thrust and torque. In addition some more abrupt changes in thrust and
torque can be identified when Wagner e�ect is turned o�. The somewhat non-harmonical
behaviour of the propeller harmonics can be explained by the very slowly rotating propeller.
With a shaft frequency of only 76 [RPM] = 1.27 [Hz] the propeller submergence, and
hence the Wagner e�ect, will change a lot during one propeller revolution. In addition one
must have in mind that the calculation of Wagner e�ect depends on the wet vortex and
control points, which will experience a stepwise rather than continuous change for varying
propeller submergence.
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(a) Wagner e�ect on thrust coe�cient KT .
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Figure 6.4: E�ect of turning Wagner e�ect calculation on/o� on thrust and torque coe�-
cient for propeller in forced sinusoidal heave motion. n = 76 [RPM], J = 0.1.
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6.2.2 Deeply submerged with harmonic variation

The KVLCC2 propeller has also been used to evaluate the e�ect of the vertical inflow
component resulting from vertical motion of the propeller. During one revolution the
propeller blade experiences a local harmonic varying tangential velocity component. If
the vertical speed of the propeller is not constant, i.e. d2h

dt2 ”= 0, this will cause harmonic
variation of the blade lift force, resulting in low frequent harmonic fluctuations of thrust
and torque. This e�ect is shown in Figure 6.5 for a sine varying propeller submergence,
which has a non-constant cosine varying dh

dt
. In addition the same propeller has been

simulated at constant submergence, which is shown in Figure 6.5. We can clearly identify
the low frequent fluctuation in thrust and torque due to the vertical motion of the propeller.
We also see that the vertical motion does not a�ect the amplitude of the high frequency
propeller harmonics.
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Figure 6.5: KT and KQ for propeller at constant submergence compared to propeller
exposed to sine varying propeller submergence, showing low frequent harmonic fluctuations
of thrust and torque.

6.3 Partly submerged propeller

Validation of the simulation model in case of partly submerged condition is carried out
using four model experimental cases collected from Koushan (2006). The experiments
were performed on an open pulling propeller exposed to forced sinusoidal heave motion.
Tests were conducted at di�erent propeller rate of revolutions and carriage speeds at both
constant submersions as well as with periodically varying submersions. The propeller sim-
ulation results presented in Dalheim (2014) are also shown along with the four validation
cases. Data for the submergence conditions are given in Table 6.1.



74 6. Results and validation

The first validation case is a non-ventilating condition of a propeller being forced in sinu-
soidal heave motion. The other three cases are all ventilating conditions, while the last
two cases are in addition surface piercing conditions.

Table 6.1: Four experimental test conditions for propeller forced in sinusoidal heave mo-
tion.

Case h
R at highest position (srmin) h

R amplitude (srA) h
R period (srT)

1 2.2 0.55 1.87
2 1.1 1.075 2.0
3 -0.15 1.075 2.0
4 -1.0 1.075 2.0

The results from both model experiments and propeller simulation are filtered using a
low-pass filter. The motive is to investigate the ventilation e�ects, so the high frequency
harmonics are of secondary importance.

6.3.1 Case 1
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Figure 6.6: Validation of simulation model with experimental results from Koushan (2006)
for propeller subject to forced sinusoidal heave motion.
Case 1: sr

max

= 3.30, sr
min

= 2.20, sr
A

= 0.55, sr
T

= 1.87 [s].
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(b) Relative torque coe�cient KQ/KQ0.

Figure 6.6: Validation of simulation model with experimental results from Koushan (2006)
for propeller subject to forced sinusoidal heave motion.
Case 1: sr

max

= 3.30, sr
min

= 2.20, sr
A

= 0.55, sr
T

= 1.87 [s].

The simulation results in the non-ventilating condition match very well with the experi-
mental result. Only small deviations can be found. Part of this deviation could possibly
be due to the blade force measurements.
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6.3.2 Case 2
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Figure 6.7: Validation of simulation model with experimental results from Koushan (2006)
for propeller subject to forced sinusoidal heave motion.
Case 2: sr
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= 3.25, sr
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= 2.0 [s].

In the second case the lowest submergence ratio is sr
min

= 1.10. Dalheim (2014) predicted
no e�ect of ventilation in this case, however the experiment shows that the amount of
ventilation will be substantial even if the propeller is submerged during the complete
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forced heave motion. PropSiM is able to reproduce this ventilation mechanism in a
very convincing way, and we see a very good agreement on both how the thrust drops
and how the thrust reconstructs. The deviation in torque is somewhat larger than for
the thrust. However, as the loss factor for torque is related to the loss factor for thrust
through a constant (see (3.46)), some better agreement with the experimental result can
be achieved. This simulation was run with k = 0.82.

6.3.3 Case 3

In this ventilation case even the propeller hub leaves the water, and results from Dalheim
(2014) are in better agreement with the experiment. However we clearly see that the
simplified simulation model recovers from the thrust and torque loss very soon after the
propeller enters the water again, and that thrust and torque loss are delayed when the
propeller penetrates the water surface on its way up. This was expected to be due to
massive suction of air down to the propeller, especially as the propeller is leaving its highest
position and going down into the water again. The simulation result from PropSiM

shows again a much better agreement with the experiments. We see that the ventilation
occurs almost at the same time as in the experiment, and that it takes some time to
rebuild the thrust again after the propeller is fully submerged. The new model behaves
more physically, and much of the same mechanisms that are found in the experiment are
reproduced by this model. The torque is almost in similar agreement with the experiments
as the thrust.
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Figure 6.8: Validation of simulation model with experimental results from Koushan (2006)
for propeller subject to forced sinusoidal heave motion.
Case 3: sr

max

= 2.0, sr
min

= -0.15, sr
A

= 1.075, sr
T

= 2.0 [s].

Time [s]
8.5 9 9.5 10 10.5 11

K
Q
/K

Q
o

0.2

0.4

0.6

0.8

1

s r

-0.15

0.4

0.8

1.2

1.6

2

KQ/KQ0 Koushan (2006)
sr
KQ/KQ0 PropSiM
KQ/KQ0 Dalheim (2014)

(b) Relative torque coe�cient KQ/KQ0.

Figure 6.8: Validation of simulation model with experimental results from Koushan (2006)
for propeller subject to forced sinusoidal heave motion.
Case 3: sr
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= 2.0 [s].
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6.3.4 Case 4
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Figure 6.9: Validation of simulation model with experimental results from Koushan (2006)
for propeller subject to forced sinusoidal heave motion.
Case 4: sr
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In the last validation example of ventilation events, the propeller is going completely in and
out of the water for each cycle. Dalheim (2014) found that the simulated maximum loss
of thrust and torque matched well with the experiment, but that the same development as
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for case 3 could be seen: the simulation model recovers from thrust and torque loss much
too soon. In this case the thrust and torque never recover from the loss, and su�er from
substantial ventilation during the complete heave motion. PropSiM is able to reproduce
this e�ect in a very convincing way. The amount of thrust loss is almost correct, and the
time of incidence for the thrust loss follows the experiment completely. The torque loss is
somewhat underestimated, however as the loss factor for torque is related to the loss factor
for thrust through a constant (see (3.46)), some better agreement with the experimental
result can be achieved. This simulation was run with k = 0.82 .

In total these four cases show that the new simulation model can predict very physically
correct ventilation patterns, and that the model produces time domain propeller forces
very similar to what is found in experiments.

6.4 Oblique inflow

For conditions of oblique inflow the validation of the simulation model is based on experi-
mental results published by Amini (2011). The validation has been carried out for advance
numbers J = 0.2, J = 0.6 and J = 1.0 and for azimuth angles ” varying in a step of 10¶

from -40¶ to 40¶ for the P1374 propeller. Figure 6.10 (a) to (f) show how the PropSiM

simulation behaves relative to experiments. Continuous lines are used for results from
simulation model, while the experimental results are shown with dashed lines.

Figure 6.10 (a) and (b) show the propeller thrust and torque coe�cients for the simulated
conditions. As expected, the thrust and torque coe�cients increase with increasing abso-
lute value of the azimuth angle ”. This is because the component of the incoming velocity
in the direction of the propeller axis decreases with increasing azimuth angle. In other
words, the e�ective advance number seen by the propeller will be decreased, causing higher
thrust and torque. The agreement with the experimental results is good for J = 0.2 and
J = 0.6, also for large azimuth angles. For J = 1.0 the di�erence between simulation and
experiments is somewhat larger, at least for large azimuth angles. Parts of the di�erence
can be explained by the inaccuracy in the lifting line approach, since there is a di�er-
ence between simulated result and experiment for ” = 0 as well. The contribution from
the oblique inflow calculation is thus in better agreement with experiments than Figure
6.10 (a) and (b) indicate, especially with respect to the torque coe�cient where almost a
parallel shift of the curve can be observed for J = 1.0.

Comparison of propeller side force coe�cients is shown in Figure 6.10 (c) and (d). As
for the thrust and torque the agreement is good for J = 0.2. For the horisontal side
force the agreement is also su�cient for J = 0.6. For J = 1.0 the horisontal side force
is underestimated compared to the experiments. The agreement of the vertical side force
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for lower propeller loading is not as good as for the horisontal side force. The results
show that the vertical side force is largely underestimated for lower propeller loadings.
The reason for this is expected to be related to the implementation of the simplified
oblique momentum theory outlined in section 3.4.2. The same observation can be made
for the bending moment coe�cients, shown in Figure 6.10 (e) and (f). The agreement
in horisontal bending moment is much better than for the vertical bending moment, and
we can observe that the horisontal bending moment is very well predicted also for low
propeller loadings. The vertical bending moment is largely underestimated, especially for
low propeller loadings.

In Figure 6.11 (a) and (b) the propeller shaft total side force coe�cient Ks and bending
moment coe�cient Kb are shown. In general we can observe that the simulated result is
underestimated compared to experiments. This can mainly be explained by the error in
vertical side force and bending moment. Yet we can observe that the simulation model
predicts similar behaviour as found in experiments for the total side force and bending
moment coe�cients for increasing advance number and azimuth angles.
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Figure 6.10: Validation of simulation model ( � ) with experimental results from
Amini (2011) (· · · ¶ · · ·) for 6 DoF propeller forces in oblique inflow condition with
propeller P1374. Inflow angle ” between -40¶ and 40¶. Advance number J=0.2, J=0.6 and
J=1.0.
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Figure 6.10: Validation of simulation model ( � ) with experimental results from
Amini (2011) (· · · ¶ · · ·) for 6 DoF propeller forces in oblique inflow condition with
propeller P1374. Inflow angle ” between -40¶ and 40¶. Advance number J=0.2, J=0.6 and
J=1.0.
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Figure 6.11: Validation of simulation model ( � ) with experimental results from
Amini (2011) (· · · ¶ · · ·) for propeller shaft total side force and bending moment coef-
ficients in oblique inflow condition with propeller P1374. Inflow angle ” between -40¶ and
40¶. Advance number J=0.2, J=0.6 and J=1.0.

6.5 Computational e�ort

For a deeply submerged propeller the computational time has been found to be satisfactory
for implementation into a MBS model. However, inclusion of various types of e�ects has
considerable influence on the computational speed. The most important e�ect with respect
to demand of computational e�ort is the Wagner e�ect. This has to do with the fact that
the unknown circulation distribution must be determined at several blade positions for
each time step. If the simulation model is processing very slowly, the density of the
Wagner e�ect calculation should be reduced. How this can be done is further described
in section 5.2.3.





7 Conclusions and recommendations

7.1 Conclusion

Based on a study of the present state of knowledge regarding time domain simulation of
propeller performance, the simulation model PropSiM has been built based on a lifting
line approach. Various operating conditions have been implemented into the simulation
model, such that time domain simulation of a propeller operating in a physical environment
is possible. The propeller simulation model has shown to be able to predict 6 DoF propeller
forces with satisfactory results, and the computational e�ciency of the model has shown
to be satisfactory, especially for a deeply submerged propeller. Overall, the work can
conclude on the following:

• PropSiM provides 6 DoF propeller forces in time domain for an arbitrary propeller.
The model catches important e�ects on a propeller operating in various environmen-
tal conditions.

• The lifting line approach has shown a tendency of overestimating the propeller thrust
and torque, however, the approach has been found to be suitable for implementation
into a time domain simulation model, giving satisfactory results.

• The vertical side force and bending moment has shown not to be conservative in the
simulation model when the propeller operates in oblique inflow. Lifting line theory
has been found to be challenging and computational demanding when it is used in
combination with momentum theory for skewed propeller wake.

• The required computational e�ort is largely depending on the e�ects included in the
simulation. Computational time is saved when parts of a propeller blade is out of
water, however the calculation of the Wagner e�ect is very demanding and increases
the computational e�ort substantially.

• The ventilation model works very well, and is able to predict important physical
e�ects during ventilation. The model has been validated against di�erent types of
ventilation incidents, and has proved to replicate the magnitude and time of incidence
of both thrust loss and thrust regeneration in a convincing manner.
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86 7. Conclusions and recommendations

7.2 Recommendations for future work

The work related to the propeller simulation model has expanded the author’s knowledge
on the field of study. Important experience regarding di�erent e�ects on propellers has
been achieved, however additional experience related to combining di�erent e�ects e�-
ciently in a time domain has been more important. The propeller simulation model has
shown to be able to predict 6 DoF propeller forces with satisfactory results, however there
are several improvements that can be implemented. The author’s thoughts on recom-
mended improvements for a future release of PropSiM are:

• Include memory blocks to the simulation model for improvement of computational
speed during constant and repeatedly operating conditions.

• Improve both speed and precision in calculation of the Wagner e�ect, by increasing
the density of computational points towards the water entry phase and lower the
density towards the position of the blade.

• Avoid superfluous calculation of Wagner e�ect by implementing a routine that shuts
down the Wagner calculation if the propeller blade is su�ciently far away from the
position of water entry.

• Implement calculation of impact loads on a propeller operating in waves by adding
a slamming model for partly submerged propeller.

• Modify the simulation model to account for direction of propeller rotation.

• Improve the model for conditions of oblique inflow such that vertical bending mo-
ments are more accurately simulated.

• Further validation of complete simulation model against experiments, with particu-
larly emphasis on combining di�erent e�ects.

• Include a physical model for estimating the ventilated area of the propeller disc based
on propeller loading.

• Develop a correction routine to the quasi-steady analysis to account for unsteady
e�ects.
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A Wrench’s closed form approximations
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ua(rc) = Z

4firc

(y ≠ 2ZrvF1) (A.1)

ut(rc) = Z

2

2firc

y0F1 (A.2)

For rc > rv:

ua(rc) = ≠ Z

2

2firc

yy0F2 (A.3)

ut(rc) = Z

4firc

(1 + 2Zy0F2) (A.4)

where
F1 ¥ ≠ 1

2Zy0

A
1 + y

2
0

1 + y

2

B0.25 I
1

U

≠1 ≠ 1 + 1
24Z

C
9y

2
0 + 2

(1 + y

2
0)1.5 + 3y

2 ≠ 2
(1 + y

2)1.5

D

ln
3

1 + 1
U

≠1 ≠ 1

4 J (A.5)

F2 ¥ ≠ 1
2Zy0

A
1 + y

2
0

1 + y

2

B0.25 I
1

U ≠ 1 ≠ 1
24Z

C
9y

2
0 + 2

(1 + y

2
0)1.5 + 3y

2 ≠ 2
(1 + y

2)1.5

D

ln
3

1 + 1
U ≠ 1

4 J (A.6)

and
U =

I
y0(

Ô
1 + y

2 ≠ 1)
y(

Ò
1 + y

2
0 ≠ 1)

exp
3Ò

1 + y

2 ≠
Ò

1 + y

2
0

4JZ

(A.7)

y = rc

rv tan —w

(A.8)

y0 = 1
tan —w

(A.9)

Collected from Kerwin (2001).
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B Derivation of discrete sum of thrust and torque
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Similarly, the side force contribution from one blade can be found by decomposing the
tangential force in horisontal and vertical direction.
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Hence the vertical component is:
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The bending moment contribution from one blade can be found by multiplying the thrust
force with the horisontal and vertical distance to where the thrust force attacks, i.e. the
control points.
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Hence the vertical component is:
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C Setup of validation experiments

C1 Propeller model geometry

C1.1 P1374

Geometry of propeller P1374:

Propeller diameter 250 mm
Hub diameter 60 mm
Design pitch ratio P/D 1.10
Skew 25 deg
EAR 0.60
Number of blades 4

Table C.1: Main specifications of propeller P1374.

r/R c/D P/D f0/D *103

0.240 0.13340 1.07800 1.200
0.250 0.14135 1.07895 3.685
0.300 0.17995 1.08335 7.050
0.350 0.21635 1.08725 8.750
0.400 0.25040 1.09065 9.815
0.500 0.31040 1.09585 10.800
0.600 0.35755 1.09895 10.715
0.700 0.38790 1.10000 9.880
0.800 0.39395 1.08820 8.450
0.900 0.35640 1.03765 6.250
0.950 0.30020 0.99350 4.530
0.975 0.24515 0.96610 3.245
0.990 0.18370 0.94790 2.070
1.000 0.02500 0.93500 0.000

Table C.2: Blade section geometry of propeller P1374.
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C1.2 KVLCC2

Geometry of propeller KVLCC2:

Propeller diameter 9.86 m
Hub diameter 0.31 m
Design pitch ratio P/D 1.10
EAR 0.431
Number of blades 4

Table C.3: Main specifications of propeller KVLCC2.

r/R c/D P/D f0/D *103

0.155 0.14992 0.57430 4.650
0.160 0.15150 0.57650 4.740
0.250 0.17720 0.61300 6.185
0.300 0.18920 0.63100 6.735
0.400 0.20930 0.66300 7.075
0.500 0.22470 0.69150 6.585
0.600 0.23350 0.71200 5.840
0.700 0.23380 0.72120 5.120
0.800 0.21920 0.71600 4.340
0.900 0.18080 0.69270 2.910
0.950 0.14220 0.67480 1.820
1.000 0.01000 0.65100 0.030

Table C.4: Blade section geometry of propeller KVLCC2.
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D Investigation of skewed wake e�ect
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Figure D.1: KT comparison between decomposed wakefield (with no radial flow) due to
oblique inflow (KT

d

) and AKPA azimuth angle built-in calculation (KT
i

) for four bladed
propeller at six di�erent angular blade positions ◊ [deg]. Presented as relative di�erence
with respect to KT

i

.
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Figure D.2: KQ comparison between decomposed wakefield (with no radial flow) due to
oblique inflow (KQ

d

) and AKPA azimuth angle built-in calculation (KQ
i

) for four bladed
propeller at six di�erent angular blade positions ◊ [deg]. Presented as relative di�erence
with respect to KQ
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Figure D.3: KF Y comparison between decomposed wakefield (with no radial flow) due to
oblique inflow (KF Y

d

) and AKPA azimuth angle built-in calculation (KF Y
i

) for four bladed
propeller at six di�erent angular blade positions ◊ [deg]. Presented as relative di�erence
with respect to KT

i

.
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Figure D.4: KF Z comparison between decomposed wakefield (with no radial flow) due to
oblique inflow (KF Z

d

) and AKPA azimuth angle built-in calculation (KF Z
i

) for four bladed
propeller at six di�erent angular blade positions ◊ [deg]. Presented as relative di�erence
with respect to KT
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.
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Figure D.5: KMY comparison between decomposed wakefield (with no radial flow) due
to oblique inflow (KMY

d

) and AKPA azimuth angle built-in calculation (KMY
i

) for four
bladed propeller at six di�erent angular blade positions ◊ [deg]. Presented as relative
di�erence with respect to KQ
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Figure D.6: KMZ comparison between decomposed wakefield (with no radial flow) due
to oblique inflow (KMZ

d

) and AKPA azimuth angle built-in calculation (KMZ
i

) for four
bladed propeller at six di�erent angular blade positions ◊ [deg]. Presented as relative
di�erence with respect to KQ

i

.
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E Input files

E1 Lifting Line properties

/* Lifting Line properties */

16 | Number of blade vortex panels

0.25 | Hub vortex radius/Hub radius

10 | Maximum number of iterations in wake alignment

1 | Swirl cancellation factor: 1=no cancellation

1000 | Density of water [kg/mˆ3]

0.0000001 | Circulation accuracy tolerance

E2 Propeller

/* Propeller characteristics */

D EAR Z Xh Rotation Init.Pos Wagner

9.86 0.431 4 0.155 RIGHT 0 15

=============================================

/* Blade section geometry */

r_R c_D tmax_D P_D f0_D cD

0.155 0.14992 0.046995 0.57430 0.004650 0.0092

0.160 0.15150 0.046810 0.57650 0.004740 0.0091

0.250 0.17720 0.042170 0.61300 0.006185 0.0077

0.300 0.18920 0.038520 0.63100 0.006735 0.0071

0.400 0.20930 0.032020 0.66300 0.007075 0.0062

0.500 0.22470 0.026020 0.69150 0.006585 0.0056

0.600 0.23350 0.020550 0.71200 0.005840 0.0052

0.700 0.23380 0.015600 0.72120 0.005120 0.0049

0.800 0.21920 0.011050 0.71600 0.004340 0.0047

0.900 0.18080 0.007000 0.69270 0.002910 0.0046

0.950 0.14220 0.004720 0.67480 0.001820 0.0047

1.000 0.01000 0.000000 0.65100 0.000030 0.0049

=============================================

/* Camber profile */

1.0 | Lift coefficient for chosen camber profile (Cl)

6.651 | Max camber relative to chord length (f0max_c) [%]

1.40 | Ideal angle of attack [deg]
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F PropSiM source code

The simulation model is built on multiple functions that handles the di�erent hydrody-
namic e�ects. The main function ”PropSiM” controls the sequence of the calculations,
ensuring that the all e�ects are included both when they should and in the right or-
der.

This appendix contains the source code of the main function, along with the accompanying
subroutines.

The Simulink model block and the subroutines are published with MATLAB® R2015a.
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F1 PropSiM

1 function [T, Q, fy, fz, my, mz] = PropSiM(TIME,n_RPM,V,CPANGLE,h,dhdt,DELTA,RHO,...

2 INIT,NBLADES,NITER,NPANELS,ALPHAi,ZCi,CLi,WTP,AXWYC,AXWYV,TAWYC,TAWYV,BPAC,DIAM,CDYC,...

3 ZCYC,CRP,DRAGYC,DTHETA,EAR,HUBVRAD,ROT,TOL,XHUB,YC,YV,PANELSIZE)

4 %*****************************************************************************************
5 % ROUTINE: PropSiM

6 % SUBCALL: circulation.m

7 % wagnereffect.m

8 % ----------------------------------------------------------------------------------------

9 %

10 % Object: Calculate 6 DoF propeller forces.

11 %

12 % Method: Use Lifting Line theory to calculate 6 DoF propeller forces.

13 % Include effect from reduced propeller submergence, Wagner effect, ventilation,

14 % change in operating point and oblique inflow.

15 %

16 % PARAMETERS

17 % Name Note Type Description

18 % ----------------------------------------------------------------------------------------

19 % T output float Thrust [N]

20 % Q output float Torque [Nm]

21 % fy output float Horisontal side force [N]

22 % fz output float Vertical side force [N]

23 % my output float Horisontal bending moment [Nm]

24 % mz output float Vertical bending moment [Nm]

25 % TIME input float Simulation time [s]

26 % n_RPM input float Shaft speed [RPM]

27 % V input float Forward speed of vessel [m/s]

28 % CPANGLE input float Controllable pitch angle at blade root [deg]

29 % h input float Propeller submergence [m]

30 % dhdt input float Rate of change of propeller submergence [m]

31 % NWPANELS input float Number of wet vortex panels

32 % BLADE input float Blade number

33 % BLADEPOS input float Circumferential position of blades

34 % DELTA input float Azimuth angle [deg]

35 % RHO input float Density of water

36 % INIT input float Initial position of propeller blade at simulation start

37 % NBLADES input float Number of propeller blades

38 % NITER input float Maximum number of iterations in wake alignment

39 % NPANELS input float Number of cosine spaced vortex panels

40 % ALPHAi input float Ideal angle of attack of NACA section

41 % ZCi input float Maximum camber of NACA section

42 % ZCYC inout float Maximum camber at control points

43 % CLi input float Lift coefficient at ideal angle of attack for NACA section

44 % WTP input float Angular position of wake input

45 % AXWYC input float Interpolated axial wake field at control points

46 % AXWYV input float Interpolated axial wake field at vortex points

47 % TAWYC input float Interpolated tangential wake field at control points

48 % TAWYV input float Interpolated tangential wake field at vortex points

49 % BPAC input float Interpolated blade pitch angle at control points

50 % DIAM input float Propeller diameter

51 % CDYC input float Interpolated chord length at control points

52 % CRP input float Swirl cancellation factor

53 % DRAGYC input float Interpolated drag coefficient at control points

54 % DTHETA input float Wagner density angle

55 % EAR input float Expanded blade Area Ratio

56 % HUBVRAD input float Relative radius of hub vortex

57 % ROT input float Direction of rotation for propeller

58 % TOL input float Relative tolerance of circulation accuracy

59 % XHUB input float Relative hub radius
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60 % YC input float Coordinates of control points

61 % YV inout float Coordinates of vortex points

62 % PANELSIZE input float Length of the vortex panels

63 % ----------------------------------------------------------------------------------------

64 % INTERNAL VARIABLES

65 % Name Note Type Description

66 % ----------------------------------------------------------------------------------------

67 % BLADEPOS float Circumferential position of blades

68 % CT float Non-dimensional thrust

69 % CQ float Non-dimensional torque

70 % CFY float Non-dimensional horisontal side force

71 % CFZ float Non-dimensional vertical side force

72 % CMY float Non-dimensional horisontal bending moment

73 % CMZ float Non-dimensional vertical bending moment

74 % CTH float Hub vortex drag coefficient

75 % VENTFACTOR float Thrust loss due to ventilation

76 % AVAO float Ventilated area/disk area

77 % ANVAO float Non-ventilated area/disk area

78 % k float Relation between thrust and torque loss

79 % g float Gravitational acceleration

80 % n_Hz float Rotational speed [Hz]

81 % SR float Submergence ratio

82 % J float Advance number

83 % dSRdt float Derivative of submergence ratio

84 % WETSPAN float Wetted span interval of blades

85 % BLADEENT float Angle when blade enters the water

86 % TANBC float tan(beta) at control points

87 % TANBV float tan(beta) at vortex points

88 % YCWETVARINDX float Index to control points that vary between wet and dry

89 % YVWETVARINDX float Index to vortex points that vary between wet and dry

90 % YCSUBINDX float Index to submerged control points

91 % YVSUBUNDX float Index to submerged vortex points

92 % NWPANELS float Number of wet vortex panels

93 % VASTAR float Resulting axial inflow velocity

94 % VTSTAR float Resulting tangential inflow velocity

95 % VINF float Velocity seen by propeller blade

96 % G float Nondimensional circulation

97 % CHIYC float Wake skew angle at control point

98 % U0 float Mean annular axial induced velocity

99 % CTH float Hub vortex drag coefficient

100 % DVISC float Viscous drag force coefficient

101 % WAGNER float beta_factor for Wagner effect at each blade section

102 % YCWAGNER float Index to control points that are affected by Wagner

103 % YVWAGNER float Index to vortex points that are affected by Wagner

104 % WAGFLAG float Flag that inform if this is a Wagner calculation or not

105 % axwbyc float Temporary axial wake field at control point for each blade

106 % axwbyv float Temporary axial wake field at vortex point for each blade

107 % tawbyc float Temporary tangential wake field at control point for each blade

108 % tawbyv float Temporary tangential wake field at vortex point for each blade

109 % PART float Number of revolutions

110 % ----------------------------------------------------------------------------------------

111 % ========================================================================================

112 % Written by: Oyvind Oksnes Dalheim

113 % Last edited: 10.06.15

114 % ****************************************************************************************
115
116 coder.extrinsic('cosspace.m', 'induction.m', 'circulation.m', 'wagnereffect.m');

117 %% Default settings

118 ROT = 1;

119
120 %% Preallocation

121 BLADEPOS = zeros(NBLADES,1);

122 CT = zeros(NBLADES,1);

123 CQ = zeros(NBLADES,1);
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124 CFY = zeros(NBLADES,1);

125 CFZ = zeros(NBLADES,1);

126 CMY = zeros(NBLADES,1);

127 CMZ = zeros(NBLADES,1);

128 CIRC = zeros(NBLADES,NPANELS);

129 ANGLE = zeros(NBLADES,1);

130 SPEED = zeros(NBLADES,1);

131 persistent VENTFACTOR AVAO ANVAO;

132 if isempty(VENTFACTOR)

133 VENTFACTOR = 1;

134 AVAO = 0;

135 ANVAO = 1-AVAO;

136 end

137
138 coder.varsize('YCWAGNER',[1 NPANELS],[0 1]);

139 coder.varsize('YVWETVARINDX',[1 NPANELS+1], [0 1]);

140 coder.varsize('YCWETVARINDX',[1 NPANELS], [0 1]);

141
142 %% Unit conversion

143 k = 0.84;

144 g = 9.81;

145 n_Hz = n_RPM/60;

146 SR = (2*h)/(DIAM);

147 dSRdt = (-dhdt)/V;

148 J = V/(n_Hz*DIAM);

149 PART = n_Hz*TIME+INIT/360;

150
151 %% Finding position of each blade [deg]

152 for i = 1:NBLADES

153 BLADEPOS(i) = 360*(PART+((i-1)/NBLADES)-floor(PART+((i-1)/NBLADES)));

154 end

155 %% Finding wetted span interval for all blades

156 WETSPAN = [ones(NBLADES,1).*XHUB, ones(NBLADES,1)];

157 if SR<1 && SR >= 0

158 BLADEENT = acosd(SR);

159 WETSPAN(:,2) = ceil((SR)./(cosd(BLADEPOS-(BLADEPOS-BLADEENT).*logical((BLADEPOS>=BLADEENT)...

160 & (BLADEPOS<=(360-BLADEENT))))).*10ˆ6)/10ˆ6;

161 WETSPAN(˜isfinite(WETSPAN)) = 1;

162 elseif SR<0 && SR > -1

163 BLADEENT = acosd(SR);

164 WETSPAN(:,1) = floor((1-(1-SR./cosd(BLADEPOS)).*logical((BLADEPOS>BLADEENT)...

165 & (BLADEPOS<(360-BLADEENT)))).*10ˆ6)/10ˆ6;

166 elseif SR <= -1

167 WETSPAN = ones(NBLADES,2);

168 end

169
170 %% Interpolating at each blade position

171 axwbyc = zeros(NBLADES,NPANELS);

172 tawbyc = zeros(NBLADES,NPANELS);

173 axwbyv = zeros(NBLADES,NPANELS+1);

174 tawbyv = zeros(NBLADES,NPANELS+1);

175 TANBC = zeros(NBLADES,NPANELS);

176 TANBV = zeros(NBLADES,NPANELS+1);

177
178 for i = 1:NPANELS

179 axwbyc(:,i) = interp1(WTP,AXWYC(:,i),BLADEPOS,'spline');

180 tawbyc(:,i) = interp1(WTP,TAWYC(:,i),BLADEPOS,'spline');

181 end

182 for i = 1:(NPANELS+1)

183 axwbyv(:,i) = interp1(WTP,AXWYV(:,i),BLADEPOS,'spline');

184 tawbyv(:,i) = interp1(WTP,TAWYV(:,i),BLADEPOS,'spline');

185 end

186
187 %% Decomposing wake field due to azimuth angle
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188 AXWBYC = axwbyc.*cosd(DELTA) + tawbyc.*sind(DELTA).*cosd(repmat(BLADEPOS,1,NPANELS));

189 AXWBYV = axwbyv.*cosd(DELTA) + tawbyv.*sind(DELTA).*cosd(repmat(BLADEPOS,1,NPANELS+1));

190 TAWBYC = tawbyc.*sqrt((cosd(repmat(BLADEPOS,1,NPANELS)).*cosd(DELTA)).ˆ2+...

191 (sind(repmat(BLADEPOS,1,NPANELS))).ˆ2)+ axwbyc.*sind(DELTA).*...

192 cosd(repmat(BLADEPOS,1,NPANELS))+dSRdt.*sind(repmat(BLADEPOS,1,NPANELS));

193 TAWBYV = tawbyv.*sqrt((cosd(repmat(BLADEPOS,1,NPANELS+1)).*cosd(DELTA)).ˆ2+...

194 (sind(repmat(BLADEPOS,1,NPANELS+1))).ˆ2)+axwbyv.*sind(DELTA).*...

195 cosd(repmat(BLADEPOS,1,NPANELS+1))+dSRdt.*sind(repmat(BLADEPOS,1,NPANELS+1));

196 VNORMAL = axwbyc.*cosd(DELTA);

197 VINPLANE = tawbyc.*cosd(DELTA).*cosd(repmat(BLADEPOS,1,NPANELS)).*logical(DELTA˜=0) +

axwbyc.*sind(DELTA);

198
199 for i = 1:NBLADES

200 TANBC(i,:) = AXWBYC(i,:)./((pi/J).*YC-TAWBYC(i,:).*ROT);

201 TANBV(i,:) = AXWBYV(i,:)./((pi/J).*YV-TAWBYV(i,:).*ROT);

202 end

203
204 YVWETVARINDX = find(YV>abs(SR));

205 if isempty(YVWETVARINDX)

206 YCWETVARINDX = zeros(1,0);

207 else

208 YCWETVARINDX = find(YC>(min(YV(YVWETVARINDX))));

209 end

210
211 %% Ventilated propeller area

212 if SR < 3.4 && SR >= 1

213 if dSRdt > 0

214 AVAO = polyval([-1.2276 2.2201 -0.1969],SR)*logical(SR<1.7 && SR>1)+logical(SR<=1);

215 elseif dSRdt < 0

216 AVAO = polyval([-0.1593 1.3420 -3.7357 3.4483],SR)*logical(SR<2.6 && SR>1)+logical(SR<=1);

217 end

218 ANVAO = 1-AVAO;

219 end

220
221 %% Running loop for all blades

222 for BLADE = 1:NBLADES

223 WAGFLAG = 0;

224 YVSUBINDX = find(YV>=WETSPAN(BLADE,1) & YV<=WETSPAN(BLADE,2));

225 NWPANELS = length(YVSUBINDX)-1;

226 if NWPANELS<4

227 % Blade is considered dry

228 continue

229 end

230 YVSUB = YV(YVSUBINDX);

231 YCSUBINDX = find(YC>min(YVSUB) & YC<max(YVSUB));

232 YCSUB = YC(YCSUBINDX);

233
234 %% Finding circulation for submerged parts of the blade

235 [G,VINF,VTSTAR,VASTAR,alpha] = circulation(NITER,TOL,NBLADES,NPANELS,NWPANELS,...

236 BLADE,BLADEPOS(BLADE),CRP,YCSUBINDX,YVSUBINDX,YC,YV,TANBC,TANBV,AXWBYC,...

237 VNORMAL,VINPLANE,WAGFLAG,CLi,ALPHAi,ZCYC,ZCi,BPAC,...

238 CPANGLE,DIAM,CDYC,XHUB,DELTA,HUBVRAD,DRAGYC,PANELSIZE);

239
240 %% Wagner effect

241 WAGNER = ones(1,NPANELS);

242 if ˜isempty(YCWETVARINDX)

243 YCWAGNER = max(min(YCWETVARINDX),min(YCSUBINDX)):1:min(max(YCWETVARINDX),max(YCSUBINDX));

244 YVWAGNER = max(min(YVWETVARINDX),min(YVSUBINDX)):1:min(max(YVWETVARINDX),max(YVSUBINDX));

245 if ˜isempty(YCWAGNER)

246 WAGFLAG = 1;

247 WAGNER = wagnereffect(NITER,TOL,NBLADES,CRP,CLi,ALPHAi,ZCYC,ZCi,BPAC,CPANGLE,DIAM,...

248 CDYC,XHUB,NPANELS,SR,YC,YV,YCWAGNER,YVWAGNER,WAGNER,DTHETA,BLADEPOS(BLADE),WTP,AXWYC,...

249 TAWYC,AXWYV,TAWYV,VNORMAL,VINPLANE,WAGFLAG,J,ROT,DELTA,HUBVRAD,DRAGYC,PANELSIZE);

250 end

XIX



251 end

252 %% For ventilation

253 [˜,indx07] = min(abs(YCSUB-0.7));

254 ANGLE(BLADE,1) = alpha(indx07);

255 SPEED(BLADE,1) = VINF(indx07);

256
257 %% TOTAL OF BLADE EFFECTS

258 G = G.*WAGNER(YCSUBINDX)';

259 CIRC(BLADE,YCSUBINDX) = G';

260 CTH = 0.5*(log(1/HUBVRAD)+3)*(NBLADES*CIRC(BLADE,1))ˆ2;

261 DVISC = (1/(2*pi)).*VINF.*(CDYC(YCSUBINDX)./DIAM).*DRAGYC(YCSUBINDX);

262 tmp1 = -4*sum((VASTAR.*G'+DVISC.*VTSTAR).*PANELSIZE(YCSUBINDX));

263 tmp2 = -4*sum((VTSTAR.*G'-DVISC.*VASTAR).*PANELSIZE(YCSUBINDX).*YC(YCSUBINDX));

264 CT(BLADE) = 4*NBLADES*sum((VTSTAR.*G'-DVISC.*VASTAR).*PANELSIZE(YCSUBINDX))-CTH;

265 CQ(BLADE) = 4*NBLADES*sum((VASTAR.*G'+DVISC.*VTSTAR).*YCSUB.*PANELSIZE(YCSUBINDX));

266 CFY(BLADE) = cosd(BLADEPOS(BLADE))*tmp1;

267 CFZ(BLADE) = sind(BLADEPOS(BLADE))*tmp1;

268 CMY(BLADE) = cosd(BLADEPOS(BLADE))*tmp2;

269 CMZ(BLADE) = sind(BLADEPOS(BLADE))*tmp2;

270 end %each blade

271
272 %% Thrust loss due to ventilation

273 if SR < 3.4 && SR >= 1

274 cl07fv = (pi/2)*mean(ANGLE) + (2*g*h)/((mean(SPEED)*V)ˆ2);

275 VENTFACTOR = ANVAO + ((1.5*EAR)/(sum(CT*Jˆ2*pi/8)/NBLADES))*cl07fv*AVAO;

276 if VENTFACTOR > 1

277 VENTFACTOR = 1;

278 end

279 end

280
281 %% 6 DoF propeller forces

282 KT = VENTFACTOR*sum(CT*Jˆ2*pi/8)/NBLADES;

283 KQ = (-VENTFACTORˆk)*sum(CQ*Jˆ2*pi/16)/NBLADES;

284 KFY = sum(CFY*Jˆ2*pi/8);

285 KFZ = sum(CFZ*Jˆ2*pi/8);

286 KMY = sum(CMY*Jˆ2*pi/16);

287 KMZ = sum(CMZ*Jˆ2*pi/16);

288
289 T = KT*RHO*n_Hzˆ2*DIAMˆ4;

290 Q = KQ*RHO*n_Hzˆ2*DIAMˆ5;

291 fy = KFY*RHO*n_Hzˆ2*DIAMˆ4;

292 fz = KFZ*RHO*n_Hzˆ2*DIAMˆ4;

293 my = KMY*RHO*n_Hzˆ2*DIAMˆ5;

294 mz = KMZ*RHO*n_Hzˆ2*DIAMˆ5;
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F2 readinput.m

1 %*****************************************************************************************
2 % ROUTINE: readinput.m

3 % ----------------------------------------------------------------------------------------

4 %

5 % Object: Read wake field, propeller and blade section geometry and lifting line input.

6 % input.

7 %

8 % Method: The input is made available to the workspace.

9 %

10 % PARAMETERS

11 % Name Note Type Description

12 % ----------------------------------------------------------------------------------------

13 % ALPHAi output float Ideal angle of attack of NACA section

14 % CLi output float Lift coefficient at ideal angle of attack for NACA section

15 % AXWYC output float Interpolated axial wake field at control points

16 % AXWYV output float Interpolated axial wake field at vortex points

17 % TAWYC output float Interpolated tangential wake field at control points

18 % TAWYV output float Interpolated tangential wake field at vortex points

19 % BPAC output float Interpolated blade pitch angle at control points

20 % CDYC output float Interpolated chord length at control points

21 % CRP output float Swirl cancellation factor

22 % DIAM output float Propeller diameter

23 % DRAGYC output float Interpolated drag coefficient at control points

24 % DTHETA output float Wagner density angle

25 % EAR output float Expanded blade Area Ratio

26 % HUBVRAD output float Relative radius of hub vortex

27 % INIT output float Initial position of propeller blade at simulation start

28 % NBLADES output float Number of propeller blades

29 % NITER output float Maximum number of iterations in wake alignment

30 % NPANELS output float Number of cosine spaced vortex panels

31 % PANELSIZE output float Length of the vortex panels

32 % RHO output float Density of water

33 % ROT output float Direction of rotation for propeller

34 % TOL output float Relative tolerance of circulation accuracy

35 % WTP output float Angular position of wake input

36 % XHUB output float Relative hub radius

37 % YC output float Coordinates of control points

38 % YV outout float Coordinates of vortex points

39 % ZCi output float Maximum camber of NACA section

40 % ZCYC outout float Maximum camber at control points

41 % ----------------------------------------------------------------------------------------

42 % ========================================================================================

43 % Written by: Oyvind Oksnes Dalheim

44 % Last edited: 10.04.15

45 % ****************************************************************************************
46
47 %% Find the directory of the input files

48 p1 = mfilename;

49 p2 = mfilename('fullpath');

50 inputpath = p2(1:length(p2)-length(p1));

51
52 %% Read propeller geometry

53 fid = fopen(strcat(inputpath,'input/propeller.txt'));

54 temp = textscan(fid, '%f%f%f%f%s%f%f', 'Delimiter', ' ', 'MultipleDelimsAsOne', 1,...

55 'HeaderLines', 2, 'CollectOutput', 0, 'CommentStyle', '/*');

56 ROTATION = temp{5}{1};

57 PropGeometry = [cell2mat(temp(1,1:4)),cell2mat(temp(1,6:7))];

58 BladeGeometry = cell2mat(textscan(fid, '%f%f%f%f%f%f', 'Delimiter', ' ', 'MultipleDelimsAsOne',

1,...
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59 'HeaderLines', 3, 'CollectOutput', 0, 'CommentStyle', '/*'));

60 CamberProfile = cell2mat(textscan(fid, '%f%*s', 'Delimiter', '|', 'MultipleDelimsAsOne', 1,...

61 'HeaderLines', 2, 'CollectOutput', 0, 'CommentStyle', '/*'));

62 [˜] = fclose(fid);

63 clearvars fid temp

64
65 %% Read wakefield input

66 fid = fopen(strcat(inputpath,'input/wakefield.txt'));

67 [˜] = fgets(fid); [˜] = fgets(fid);

68 formatspec = repmat('%f', 1, length(strsplit(fgets(fid)))-1);

69 fseek(fid, 0, 'bof');

70 AxialWake = cell2mat(textscan(fid, formatspec, 'Delimiter', ' ', 'MultipleDelimsAsOne', 1,...

71 'HeaderLines', 2, 'CollectOutput', 0, 'CommentStyle', '/*'));

72 TangWake = cell2mat(textscan(fid, formatspec, 'Delimiter', ' ', 'MultipleDelimsAsOne', 1,...

73 'HeaderLines', 1, 'CollectOutput', 0, 'CommentStyle', '/*'));

74 fseek(fid, 0, 'bof');

75 formatspec = strcat('%*s', formatspec(3:end));

76 WRP = cell2mat(textscan(fid, formatspec, 1, 'Delimiter', ' ', 'MultipleDelimsAsOne', 1,...

77 'HeaderLines', 1, 'CollectOutput', 0, 'CommentStyle', '/*'));

78 [˜] = fclose(fid);

79 WTP = AxialWake(:,1);

80 clearvars fid formatspec

81
82 %% Read Lifting Line properties

83 fid = fopen(strcat(inputpath,'input/LLproperties.txt'));

84 [˜] = fgets(fid);

85 LLproperties = cell2mat(textscan(fid, '%f%*s', 'Delimiter', '|', 'MultipleDelimsAsOne', 1,...

86 'HeaderLines', 0, 'CollectOutput', 0, 'CommentStyle', '/*'));

87 [˜] = fclose(fid);

88 clearvars fid

89
90 %% Allocating to variables

91 %Input to the lifting line calculation

92 NPANELS = LLproperties(1); %Number of panels

93 NITER = LLproperties(3); %Maximum number of iterations

94 HUBVRAD = LLproperties(2); %Hub vortex radius/Hub radius

95 CRP = LLproperties(4); %Swirl cancellation factor

96 RHO = LLproperties(5); %Density of water

97 TOL = LLproperties(6); %Circulation accuracy tolerance

98
99 %Propeller input

100 DIAM = PropGeometry(1); %Propeller diameter

101 EAR = PropGeometry(2); %Expanded blade area ratio

102 NBLADES = PropGeometry(3); %Number of propeller blades

103 XHUB = PropGeometry(4); %Hub ratio

104 INIT = PropGeometry(5); %Initial revolution angle of propeller [deg]

105 XR = BladeGeometry(:,1);%Input blade section positions

106 DTHETA = PropGeometry(6); %Density of Wagner calculation [deg]

107
108 if strcmp(ROTATION,'RIGHT') == 1

109 ROT = 1;

110 elseif strcmp(ROTATION,'LEFT') == 1

111 ROT = -1;

112 else

113 error('Invalid direction of rotation input. Check propeller input file.')

114 end

115
116 %Camber line input

117 CLi = CamberProfile(1); %Lift coefficient at ideal angle of attack

118 ZCi = CamberProfile(2)/100; %max camber/chord for camber profile input (NACA)

119 ALPHAi = CamberProfile(3)*(pi/180);

120
121 NWRP = size(AxialWake,2)-1; %Number of wake radial positions in input

122 NWAP = size(AxialWake,1); %Number of wake angular positions in input
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123
124 %% Preprocessing

125 AXWYC = zeros(NWAP, NPANELS); %Axial wake at control points

126 TAWYC = zeros(NWAP, NPANELS); %Tangential wake at control points

127 AXWYV = zeros(NWAP, NPANELS+1); %Axial wake at vortex points

128 TAWYV = zeros(NWAP, NPANELS+1); %Tangential wake at vortex points

129
130 %Establishing cosine spaced control points and vortex panels

131 [YC, YV] = cosspace(XHUB, 1, NPANELS);

132 PANELSIZE = diff(YV);

133
134 %Interpolating blade geometry at control points

135 CDYC = interp1(XR, BladeGeometry(:,2).*DIAM, YC, 'spline');

136 ZCYC = interp1(XR, BladeGeometry(:,5)./BladeGeometry(:,2), YC, 'spline');

137 PDYC = interp1(XR, BladeGeometry(:,4), YC, 'spline');

138 DRAGYC = interp1(XR, BladeGeometry(:,6), YC, 'spline');

139 BPAC = atan(PDYC./(YC.*pi));

140
141 %Interpolating wake field at control, vortex and blade section points

142 for i = 1:NWAP

143 AXWYC(i,:) = interp1(WRP, AxialWake(i,2:end), YC);

144 TAWYC(i,:) = interp1(WRP, TangWake(i,2:end), YC);

145 AXWYV(i,:) = interp1(WRP, AxialWake(i,2:end), YV);

146 TAWYV(i,:) = interp1(WRP, TangWake(i,2:end), YV);

147 end

148 clearvars ans i inputpath p1 p2 LLproperties PropGeometry BladeGeometry

149 clearvars CamberProfile ROTATION TangWake AxialWake PDYC NWRP NWAP XR WRP
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F3 cosspace.m

1 function [YC,YV] = cosspace(startPoint, endPoint, M)

2 %*****************************************************************************************
3 % ROUTINE: cosspace.m

4 % ----------------------------------------------------------------------------------------

5 %

6 % Object: Calculate cosine spaced control and vortex points.

7 %

8 % Method: Divide the length of the blade into M vortex panels from hub to

9 % blade tip. Concentrates samples at the ends while

10 % producing fewer sample points in the center,

11 %

12 % PARAMETERS

13 % Name Note Type Description

14 % ----------------------------------------------------------------------------------------

15 % startPoint input float Starting value of the vortex point coordinates.

16 % endPoint input float Ending value of the vortex point coordinates.

17 % M input float Number of vortex panels

18 % YC output float Coordinates of control points.

19 % YV outout float Coordinates of vortex points.

20 % ----------------------------------------------------------------------------------------

21 % INTERNAL VARIABLES

22 % Name Note Type Description

23 % ----------------------------------------------------------------------------------------

24 % del float Angular panel increment.

25 % ----------------------------------------------------------------------------------------

26 % ========================================================================================

27 % Written by: Oyvind Oksnes Dalheim

28 % Last edited: 22.03.15

29 % ****************************************************************************************
30
31 %% Checking input

32 if endPoint <= startPoint

33 disp('Cosine spacing failed, because end point is lower than start point');

34 YV = [];

35 return;

36 end

37
38 %% Calculate control and vortex points

39 YV = zeros(1,M+1); YC = zeros(1,M);

40 del = pi/(2*M);

41
42 for N = 1:M+1

43 YV(N) = (0.5*(endPoint-startPoint))*(1-cos(2*(N-1)*del));

44 end

45 for N = 1:M

46 YC(N) = (0.5*(endPoint-startPoint))*(1-cos((2*N-1)*del));

47 end

48 YV = YV + startPoint;

49 YC = YC + startPoint;

50 end
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F4 circulation.m

1 function [G,VINF,VTSTAR,VASTAR,alpha] = circulation(NITER,TOL,NBLADES,NPANELS,NWPANELS,BLADE,...

2 BLADEPOS,CRP,YCSUBINDX,YVSUBINDX,YC,YV,TANBC,TANBV,AXWBYC,VNORMALIN,VINPLANEIN,WAGFLAG,...

3 CLi,ALPHAi,ZCYC,ZCi,BPAC,CPANGLE,DIAM,CDYC,XHUB,DELTA,HUBVRAD,DRAGYC,PANELSIZE)

4 %*****************************************************************************************
5 % ROUTINE: circulation.m

6 % SUBCALL: induction.m

7 % ----------------------------------------------------------------------------------------

8 %

9 % Object: Find unknown circulation distributon and induced velocities.

10 %

11 % Method: Iterate between induced velocities and circulation.

12 %

13 % PARAMETERS

14 % Name Note Type Description

15 % ----------------------------------------------------------------------------------------

16 % VASTAR output float Resulting axial inflow velocity

17 % VTSTAR output float Resulting tangential inflow velocity

18 % VINF output float Velocity seen by propeller blade

19 % G output float Nondimensional circulation

20 % alpha output float Angle of attack at 70% radius

21 % NBLADES input float Number of propeller blades

22 % NITER input float Maximum number of iterations in wake alignment

23 % NPANELS input float Number of cosine spaced vortex panels

24 % NWPANELS input float Number of wet vortex panels

25 % BLADE input float Blade number

26 % BLADEPOS input float Circumferential position of blades

27 % CRP input float Swirl cancellation factor

28 % YCSUBINDX input float Index to submerged control points

29 % YVSUBUNDX input float Index to submerged vortex points

30 % YC input float Coordinates of control points

31 % YV inout float Coordinates of vortex points

32 % TANBC input float tan(beta) at control points

33 % TANBV inout float tan(beta) at vortex points

34 % AXWYC input float Interpolated axial wake field at control points for actual blade

35 % WAGFLAG input float Flag that inform if this is a Wagner calculation or not

36 % CLi input float Lift coefficient at ideal angle of attack for NACA section

37 % ALPHAi input float Ideal angle of attack of NACA section

38 % ZCi input float Maximum camber of NACA section

39 % ZCYC inout float Maximum camber at control points

40 % BPAC input float Interpolated blade pitch angle at control points

41 % CPANGLE input float Controllable pitch angle at blade root [deg]

42 % CDYC input float Interpolated chord length at control points

43 % DIAM input float Propeller diameter

44 % DRAGYC input float Interpolated drag coefficient at control points

45 % XHUB input float Relative hub radius

46 % DELTA input float Azimuth angle [deg]

47 % HUBVRAD input float Relative radius of hub vortex

48 % PANELSIZE input float Length of the vortex panels

49 % TOL input float Relative tolerance of circulation accuracy

50 % ----------------------------------------------------------------------------------------

51 % INTERNAL VARIABLES

52 % Name Note Type Description

53 % ----------------------------------------------------------------------------------------

54 % YCSUB float Submerged control points

55 % YVSUB float Submerged vortex points

56 % BETAiC float Hydrodynamic inflow angle

57 % UAHIF float Axial horseshoe influence coefficient

58 % UTHIF float Tangential horseshoe influence coefficient

59 % UASTAR float Axial induced velocity

XXV



60 % UTSTAR float Tangential induced velocity

61 % BETAiC float Hydrodynamic inflow angle

62 % TANBCB float tan(beta) at control point for specific blade

63 % TANBVB float tan(beta) at vortex point for specific blade

64 % TANBIC float tan(beta_i) at control point for specific blade

65 % TANBIV float tan(beta_i) at vortex point for specific blade

66 % CHIYC float Wake skew angle at control point

67 % U0 float Mean annular axial induced velocity

68 % CTH float Hub vortex drag coefficient

69 % VNORMAL float Inflow velocity normal to propeller

70 % VINPLANE float Inflow velocity in propeller plane

71 % ----------------------------------------------------------------------------------------

72 % ========================================================================================

73 % Written by: Oyvind Oksnes Dalheim

74 % Last edited: 10.06.15

75 % ****************************************************************************************
76
77 %% Preprocessing

78 YCSUB = YC(YCSUBINDX);

79 YVSUB = YV(YVSUBINDX);

80
81 %% Preallocating for speed

82 tempC = zeros(NITER,NWPANELS);

83 tempV = zeros(NITER,NWPANELS+1);

84 memCIRC = zeros(NITER,NWPANELS);

85 UAQ = zeros(1,NWPANELS+1);

86 UTQ = zeros(1,NWPANELS+1);

87 UAHIF = zeros(NWPANELS);

88 UTHIF = zeros(NWPANELS);

89 AXWYCB = AXWBYC(BLADE,YCSUBINDX);

90 TANBCB = TANBC(BLADE,YCSUBINDX);

91 TANBVB = TANBV(BLADE,YVSUBINDX);

92 U0 = zeros(1,size(AXWYCB,2));

93 VNORMAL = zeros(1,length(YCSUBINDX));

94 VINPLANE = zeros(1,length(YCSUBINDX));

95
96 %% Initialising effect of oblique inflow

97 if WAGFLAG ˜= 1 && DELTA ˜= 0

98 U0 = 0.5.*AXWYCB;

99 VNORMAL = VNORMALIN(BLADE,YCSUBINDX);

100 VINPLANE = VINPLANEIN(BLADE,YCSUBINDX);

101 CHIYC = atand(VINPLANE./(VNORMAL+U0));

102 UASTAR = U0.*(1+((15*pi)/32).*tand(CHIYC./2).*YCSUB.*-1*cosd(BLADEPOS-90));

103 UTSTAR = zeros(1,NWPANELS);

104 TANBIC = (AXWYCB+UASTAR)./((AXWYCB./TANBCB)+UTSTAR);

105 if length(YCSUBINDX)>=2

106 TANBIV = interp1(YCSUB,TANBIC,YVSUB,'spline','extrap');

107 else

108 TANBIV = repmat(TANBIC,1,length(YCSUBINDX)+1);

109 end

110 else

111 CHIYC = zeros(1,NWPANELS);

112 TANBIC = TANBCB.*1.2;

113 TANBIV = TANBVB.*1.2;

114 end

115
116
117 %% Iteration procedure

118 for ITER=1:NITER

119 if ITER == 3 || ITER == 5

120 TANBIC = (tempC(ITER-2,:)+tempC(ITER-1,:))/2;

121 TANBIV = (tempV(ITER-2,:)+tempV(ITER-1,:))/2;

122 end

123
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124 %% Compute axial and tangential horseshoe influence coefficients

125 for m = 1:NWPANELS

126 RCQ = YCSUB(m);

127 for n = 1:NWPANELS+1

128 %Induction of trailing vortices shed at YV

129 TANBIQ = TANBIV(n);

130 RVQ = YVSUB(n);

131 [UAIF, UTIF] = induction(NBLADES,TANBIQ,RCQ,RVQ);

132 UAQ(n) = -0.5*(UAIF/(YCSUB(m)-YVSUB(n)));

133 UTQ(n) = 0.5*((UTIF*CRP)/(YCSUB(m)-YVSUB(n)));

134
135 %Induction of hub-image

136 if floor(YVSUB(1)*10ˆ8)/10ˆ8>XHUB

137 continue

138 end

139 RVQ=YVSUB(1)ˆ2/YVSUB(n);

140 TANBIQ = TANBIV(1)*YVSUB(1)/RVQ;

141 [UAIFH, UTIFH] = induction(NBLADES,TANBIQ,RCQ,RVQ);

142 UAQ(n) = UAQ(n)+0.5*(UAIFH/(YCSUB(m)-RVQ));

143 UTQ(n) = UTQ(n)-0.5*((UTIFH*CRP)/(YCSUB(m)-RVQ));

144 end

145 %Final building of influence functions

146 UAHIF(m,:) = diff(UAQ);

147 UTHIF(m,:) = diff(UTQ);

148 end

149
150 %% Solve system of equations

151 A = UAHIF-UTHIF.*repmat(TANBIC',1,size(UTHIF,2));

152 B = (AXWYCB.*((TANBIC./TANBCB)-1))';

153 G = A\B;

154
155 %% Evaluating induced velocities from the circulation

156 UASTAR = (UAHIF*G)';

157 UTSTAR = (UTHIF*G)';

158
159 %% Account for skewed propeller wake effect

160 if DELTA ˜= 0 && WAGFLAG ˜= 1

161 VASTAR = (AXWYCB+UASTAR);

162 VTSTAR = (AXWYCB./TANBCB)+UTSTAR;

163 VINF = sqrt(VASTAR.ˆ2+VTSTAR.ˆ2);

164 DVISC = (1/(2*pi)).*VINF.*(CDYC(YCSUBINDX)./DIAM).*DRAGYC(YCSUBINDX);

165 tmp = (NBLADES*(VTSTAR.*G'-DVISC.*VASTAR))./(2*YCSUB);

166 old = U0.*1.2;

167 while max(abs((U0-old)./U0)) > 0.05

168 old = U0;

169 U0 = tmp./sqrt(VINPLANE.ˆ2+(VNORMAL+U0).ˆ2);

170 end

171 CHIYC = atand(VINPLANE./(VNORMAL+U0));

172 end

173
174 VASTAR = (AXWYCB+UASTAR);

175 VTSTAR = (AXWYCB./TANBCB)+UTSTAR;

176 VINF = sqrt(VASTAR.ˆ2+VTSTAR.ˆ2);

177
178 BETAiC = ((CLi/(2*pi)-ALPHAi).*(ZCYC(YCSUBINDX)/ZCi))+BPAC(YCSUBINDX)+...

179 CPANGLE*(pi/180)-((G'*DIAM)./(VINF.*CDYC(YCSUBINDX)));

180
181 if WAGFLAG ˜= 1

182 tmp = (tan(BETAiC).*VTSTAR-AXWYCB).*(1+((15*pi)/32)...

183 .*tand(CHIYC./2).*YCSUB.*-1*cosd(BLADEPOS-90));

184 TANBIC = ((AXWYCB+tmp)./VTSTAR);

185 if ITER == 1 %Including reduction factor

186 TANBIC = 0.8.*TANBIC;

187 end
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188 else

189 TANBIC = tan(BETAiC);

190 end

191
192 if length(YCSUBINDX)>=2

193 TANBIV = interp1(YCSUB,TANBIC,YVSUB,'spline','extrap');

194 else

195 TANBIV= repmat(TANBIC,1,length(YCSUBINDX)+1);

196 end

197 tempC(ITER,:) = TANBIC;

198 tempV(ITER,:) = TANBIV;

199 memCIRC(ITER,:) = G';

200
201 %% Check if the circulation has converged sufficiently

202 if ITER > 2

203 if abs(max((memCIRC(ITER,:)-memCIRC((ITER-1),:))./memCIRC(ITER,:))) < TOL

204 continue

205 end

206 end

207
208 end

209 alpha = (BPAC(YCSUBINDX)+CPANGLE*(pi/180))-BETAiC;

210 end
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F5 induction.m

1 function [UAIF, UTIF] = induction(NBLADES,TANBIQ,RCQ,RVQ)

2 %*****************************************************************************************
3 % ROUTINE: induction.m

4 % ----------------------------------------------------------------------------------------

5 %

6 % Object: Find horseshoe influence coefficients.

7 %

8 % Method: Wrench's approximations to Bessel functions.

9 %

10 % PARAMETERS

11 % Name Note Type Description

12 % ----------------------------------------------------------------------------------------

13 % UAHIF output float Axial horseshoe influence coefficient

14 % UTHIF output float Tangential horseshoe influence coefficient

15 % RCQ input float Coordinate of control point

16 % RVQ input float Coordinate of vortex point

17 % TANBIQ input float tan(beta_i) at vortex point

18 % NBLADES input float Number of propeller blades

19 % ----------------------------------------------------------------------------------------

20 % ========================================================================================

21 % Written by: Oyvind Oksnes Dalheim

22 % Last edited: 22.04.15

23 % ****************************************************************************************
24
25 %% Calculates horseshoe influence coefficients using Wrench's approximations

26 Y0 = 1/TANBIQ;

27 ETA = RVQ/RCQ;

28 Y = Y0/ETA;

29 XS = 1+Yˆ2;

30 T = sqrt(XS);

31 V = 1+Y0ˆ2;

32 W = sqrt(V);

33 R = (((Y0*(T-1))/(Y*(W-1)))*exp(T-W))ˆNBLADES;

34 XX = (1/(2*NBLADES*Y0))*((V/XS)ˆ0.25);

35 YY = ((9*Y0ˆ2)+2)/(Vˆ1.5)+((3*Yˆ2-2)/(XSˆ1.5));

36 Z = (1/(24*NBLADES))*YY;

37 if (Y >= Y0)

38 F2 = XX*(1/(R-1)-Z*log(1+1/(R-1)));

39 UAIF = 2*NBLADESˆ2*Y0*Y*(1-ETA)*F2;

40 UTIF = NBLADES*(1-ETA)*(1+2*NBLADES*Y0*F2);

41 else

42 if (R > 1.0E-12)

43 RAT = 1/((1/R)-1);

44 if RAT<-1

45 RAT=0;

46 end

47 else

48 RAT = 0;

49 end

50 F1 = -XX*(RAT+Z*log(1+RAT));

51 UAIF = NBLADES*Y0*(1-1/ETA)*(1-2*NBLADES*Y0*F1);

52 UTIF = 2*NBLADESˆ2*Y0*(1-ETA)*F1;

53 end

54 end
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F6 wagnere�ect.m

1 function WAGNER = wagnereffect(NITER,TOL,NBLADES,CRP,CLi,ALPHAi,ZCYC,ZCi,BPAC,CPANGLE,DIAM,...

2 CDYC,XHUB,NPANELS,SR,YC,YV,YCWAGNER,YVWAGNER,WAGNER,DTHETA,BLADEPOS,WTP,AXWYC,TAWYC,...

3 AXWYV,TAWYV,VNORMAL,VINPLANE,WAGFLAG,J,ROT,DELTA,HUBVRAD,DRAGYC,PANELSIZE)

4 %*****************************************************************************************
5 % ROUTINE: wagnereffect.m

6 % SUBCALL: circulation.m

7 % ----------------------------------------------------------------------------------------

8 %

9 % Object: Find the thrust loss factor due to Wagner effect.

10 %

11 % Method: Find the velocity seen by the propeller blade at certain user-defined

12 % circumferential positions by solving for the unknown

13 % circulation. Calculate number of chord lengths travelled by

14 % each section since water entry, and use Minsaas' Wagner function.

15 %

16 % PARAMETERS

17 % Name Note Type Description

18 % ----------------------------------------------------------------------------------------

19 % WAGNER output float beta_factor for Wagner effect at each blade section

20 % NBLADES input float Number of propeller blades

21 % NITER input float Maximum number of iterations in wake alignment

22 % CRP input float Swirl cancellation factor

23 % CLi input float Lift coefficient at ideal angle of attack for NACA section

24 % ALPHAi input float Ideal angle of attack of NACA section

25 % ZCi input float Maximum camber of NACA section

26 % ZCYC inout float Maximum camber at control points

27 % BPAC input float Interpolated blade pitch angle at control points

28 % CPANGLE input float Controllable pitch angle at blade root [deg]

29 % DIAM input float Propeller diameter

30 % CDYC input float Interpolated chord length at control points

31 % XHUB input float Relative hub radius

32 % NPANELS input float Number of cosine spaced vortex panels

33 % SR input flot Submergence ratio

34 % YC input float Coordinates of control points

35 % YV input float Coordinates of vortex points

36 % YCWAGNER input float Index to control points that are affected by Wagner

37 % YVWAGNER input float Index to vortex points that are affected by Wagner

38 % WAGNER input float beta_factor for Wagner effect at each blade section

39 % DTHETA input float Wagner density angle

40 % BLADEPOS input float Circumferential position of blades

41 % WTP input float Angular position of wake input

42 % AXWYC input float Interpolated axial wake field at control points

43 % AXWYV input float Interpolated axial wake field at vortex points

44 % TAWYC input float Interpolated tangential wake field at control points

45 % TAWYV input float Interpolated tangential wake field at vortex points

46 % WAGFLAG input float Flag that inform if this is a Wagner calculation or not

47 % J input float Advance number

48 % ROT input float Direction of rotation for propeller

49 % DELTA input float Azimuth angle [deg]

50 % HUBVRAD input float Relative radius of hub vortex

51 % DRAGYC input float Interpolated drag coefficient at control points

52 % PANELSIZE input float Length of the vortex panels

53 % TOL input float Relative tolerance of circulation accuracy

54 % ----------------------------------------------------------------------------------------

55 % INTERNAL VARIABLES

56 % Name Note Type Description

57 % ----------------------------------------------------------------------------------------

58 % WAGANENTYV float Angle when vortex point affected by Wagner enters the water

59 % WAGANENTYC float Angle when control point affected by Wagner enters the water
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60 % WAGBLADEPOS float Circumferential positions where Wagner effect is calculated

61 % NWAGBLADEPOS float Number of WAGBLADEPOS

62 % AXWBYCWAG float Interpolated axial wake field at the Wagner positions

63 % AXWBYVWAG float Interpolated axial wake field at the Wagner positions

64 % TAWBYCWAG float Interpolated tangential wake field at the Wagner positions

65 % TAWBYVWAG float Interpolated tangential wake field at the Wagner positions

66 % WAGVINF float Velocity seen by propeller blade at all Wagner positions

67 % NUMCHORD float Number of chord lengths travelled by each blade section

68 % BLADEENT float Angle when blade enters the water

69 % WETSPAN float Wettet span interval of blade

70 % YCSUBINDX float Index to submerged control points

71 % YVSUB float Submerged vortex points

72 % YVSUB float Submerged vortex points

73 % NWPANELS float Number of wet vortex panels

74 % noData float Number of desired Wagner positions

75 % ----------------------------------------------------------------------------------------

76 % ========================================================================================

77 % Written by: Oyvind Oksnes Dalheim

78 % Last edited: 10.06.15

79 % ****************************************************************************************
80
81 coder.extrinsic('circulation.m', 'induction.m');

82 coder.varsize('WAGBLADEPOS', [1 360],[0 1])

83
84 %% Determining the number of Wagner positions

85 assert (NPANELS<=64);

86 WAGANGENTYC = acosd(SR./YC(YCWAGNER));

87 if SR >= 0

88 WAGANGENTYV = acosd(SR./YV(YVWAGNER(YVWAGNER>4)));

89 else

90 WAGANGENTYV = acosd(SR./YV(YVWAGNER(YVWAGNER<NPANELS-2)));

91 end

92
93 noData = floor((BLADEPOS - min(WAGANGENTYV))/DTHETA)+1;

94 assert (noData<360);

95 WAGBLADEPOS = linspace(min(WAGANGENTYV),BLADEPOS,noData);

96 NWAGBLADEPOS = length(WAGBLADEPOS);

97 assert (NWAGBLADEPOS<=360);

98
99 %% Preallocating variables for speed

100 AXWBYCWAG = zeros(NWAGBLADEPOS,NPANELS);

101 AXWBYVWAG = zeros(NWAGBLADEPOS,NPANELS+1);

102 TAWBYCWAG = zeros(NWAGBLADEPOS,NPANELS);

103 TAWBYVWAG = zeros(NWAGBLADEPOS,NPANELS+1);

104 TANBCWAG = zeros(NWAGBLADEPOS,NPANELS);

105 TANBVWAG = zeros(NWAGBLADEPOS,NPANELS+1);

106 WAGVINF = zeros(NWAGBLADEPOS,NPANELS);

107 NUMCHORD = zeros(1,NPANELS);

108
109 %% Interpolating wake field at each Wagner position

110 for i = 1:NPANELS

111 AXWBYCWAG(:,i) = interp1(WTP,AXWYC(:,i),WAGBLADEPOS,'spline');

112 TAWBYCWAG(:,i) = interp1(WTP,TAWYC(:,i),WAGBLADEPOS,'spline');

113 end

114 for i = 1:NPANELS+1

115 AXWBYVWAG(:,i) = interp1(WTP,AXWYV(:,i),WAGBLADEPOS,'spline');

116 TAWBYVWAG(:,i) = interp1(WTP,TAWYV(:,i),WAGBLADEPOS,'spline');

117 end

118 for i = 1:NWAGBLADEPOS

119 TANBCWAG(i,:) = AXWBYCWAG(i,:)./((pi/J)*YC-TAWBYCWAG(i,:)*ROT);

120 TANBVWAG(i,:) = AXWBYVWAG(i,:)./((pi/J)*YV-TAWBYVWAG(i,:)*ROT);

121 end

122
123 %% Finding wetted span length for each Wagner position
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124 WETSPAN = [ones(NWAGBLADEPOS,1).*XHUB, ones(NWAGBLADEPOS,1)];

125 BLADEENT = acosd(SR);

126 if SR >= 0

127 WETSPAN(:,2) =

ceil(SR./(cosd(WAGBLADEPOS-(WAGBLADEPOS-BLADEENT).*logical((WAGBLADEPOS>=BLADEENT)...

128 & (WAGBLADEPOS<=(360-BLADEENT))))).*10ˆ6)/10ˆ6;

129 WETSPAN(˜isfinite(WETSPAN)) = 1;

130 elseif SR < 0

131 WETSPAN(:,1) = floor((1-(1-SR./cosd(WAGBLADEPOS)).*logical((WAGBLADEPOS>BLADEENT)...

132 & (WAGBLADEPOS<(360-BLADEENT)))).*10ˆ6)/10ˆ6;

133 end

134
135 %% Calculating Wagner effect

136 for k=1:NWAGBLADEPOS

137 YVSUBINDX = find(YV>=WETSPAN(k,1) & YV<=WETSPAN(k,2));

138 YVSUB = YV(YVSUBINDX);

139 YCSUBINDX = find(YC>min(YVSUB) & YC<max(YVSUB));

140 YCSUB = YC(YCSUBINDX);

141 NWPANELS = length(YCSUB);

142 [˜,WAGVINF(k,YCSUBINDX),˜,˜,˜] =

circulation(NITER,TOL,NBLADES,NPANELS,NWPANELS,k,WAGBLADEPOS(k),...

143 CRP,YCSUBINDX,YVSUBINDX,YC,YV,TANBCWAG,TANBVWAG,AXWBYCWAG,VNORMAL,VINPLANE,WAGFLAG,CLi,ALPHAi,...

144 ZCYC,ZCi,BPAC,CPANGLE,DIAM,CDYC,XHUB,DELTA,HUBVRAD,DRAGYC,PANELSIZE);

145 end

146 for i=1:length(YCWAGNER)

147 j = YCWAGNER(i);

148 NUMCHORD(j) = J*DIAM*(mean(WAGVINF(:,j))./CDYC(j)).*((BLADEPOS-WAGANGENTYC(i))/360);

149 end

150 WAGNER(YCWAGNER) = 0.5+0.5.*sqrt(1-((155-NUMCHORD(YCWAGNER))./155).ˆ(27.59));

151 end
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G Electronic appendages

The propeller simulation model is submitted in an electronic appendage as a zip-file along
with the master thesis. In addition a poster presentation of the project is attached. The
electronic appendage contains the following files:

Poster

Input files:

propeller.txt

wakefield.txt

LLproperties.txt

Matlab files:

readinput.m

cosspace.m

circulation.m

induction.m

wagnereffect.m

Simulink model:

PropSiM.slx
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