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Sammendrag

Muligheten for å benytte Artificial Neural Network til å estimere motstand og propul-
sjonsvirkningsgrad for skip er testet. Ulike ANN er tested med varierende input data,
netverksstørrelse og struktur samt ulik oppdeling av datamaterialet mellom trening- og
testgrupper. Metoder er utviklet for å estimere motstand (CR), total propulsjonsvirkn-
ingsgrad (ηD), propellvirkningsgrad (η0), skrogvirkningsgraden (ηH), medstrømsfaktor
(w), thrustdeduksjon (t) og relativ rotasjonsvirkningsgrad (ηR). Datamaterialet for
denne masteroppgaven består av modellforsøksresultater ved MARINTEK fra193 ulike
fiskefartøy og lastkondisjoner.

Det er funnet den beste nettverkstrukturen for hvert problem. Et nettverk med totalt
45 celler har vist seg å gi generelt gode resultater, men for skrogvirkningsgraden har
mindre nettverk gitt best resultater.

Oppsummert prestereer ANN metodene svært godt. Resultatene for motstandspredik-
sjon er sammenlignet mot andre empiriske metoder, og ANN presterer alltid best, ofte
med god margin. Av metodene for propulsjonsvirkningrader var det metodene for den
totale propulsjonsvirkningssgraden og propellvirkningsgrad som gav minst avvik. Ulike
sett av metoder ble satt sammen for å estimere effektbehovet, og best resultat ble opp-
nådd ved å benytte kun metodene CR og total propulsjonsvirkningsgrad. I tabellen
nedenfor er prosentvis middelavvik og standardavvik for alle ANN metodene oppgitt:

Middelavvik[%] Standardavvik
CR 1.4827 0.1745
ηD 0.0423 0.0409
η0 -1.5626 0.0602
ηR 0.1688 0.0372
ηH 0.5992 0.0684
thrust 2.7184 0.1714
medstrøm 6.4155 0.2914

Det er også utført en regressjonsanalyse for Digernes Formel. Nye koeffisienter er bereg-
net og avvikene for metoden ble redusert slik at metoden nå skal gi bedre resultater for
moderne fiskefartøy.

Konklusjonen fra detter arbeidet er at ANN er i stand til å gi gode estimater for et bredt
spekter av problemer. Det er enkelt å trene nye nettverk, og brukeren har mulighet til
å lage spesialiserte metoder for spesielle fartøykategorier.
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Summary

The possibility to use Artificial Neural Network for estimating ship resistance and propul-
sion coefficients are investigated. Different ANNs are tested by varying input parameters,
network size and complexity and division of data material into training and testing sets.
ANN prediction methods are trained for Resistance (CR), total propulsion efficiency
(ηD), open water efficiency (η0), hull efficiency (ηH), wake fraction (w), thrust deduc-
tion (t) and relative rotative efficiency (ηR). The data material for the thesis are model
test results from MARINTEK and consist of 193 fishing vessels and loading conditions.

Each problem has its own network structure that give best performance. A network
size of 45 nerons generally performs well, while for the hull efficiency coefficients better
performance are achieved with smaller networks.

The performance for ANN methods are very good. The resistance prediction method are
compared to other empirical methods, and the performance are often much better. For
the propulsion coefficients, the methods for total propulsion efficiency and open water
efficiency gave best performance. Different combinations of prediction methods are com-
bined to make an estimate for installed engine power, the combination of ANN methods
for CR and total propulsion efficiency gave the best result. The table gives mean error
and standard deviation in percentage for all the trained ANN methods:

Mean error[%] Standard Deviation
CR 1.4827 0.1745
ηD 0.0423 0.0409
η0 -1.5626 0.0602
ηR 0.1688 0.0372
ηH 0.5992 0.0684
thrust 2.7184 0.1714
wake 6.4155 0.2914

A new regression analyse was performed for Digernes formula. The new coefficients
improved the formula, and it should now perform better for modern fishing vessels.

The conclusion from this work is that ANN are capable of making good predictions for
a broad range of problems. It is easy to train new methods, and one can easily make
individual methods for specific vessel categories.
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Chapter 1

Introduction

When someone wants to build a new vessel today, they will normally start with having a
design established that can fulfill the requirements of the ships intended purpose at the
most affordable price.. In the process of proposing a design, the Naval Architect needs
good tools that can estimate the performance of his design before the detailed drawings
are made. It is of particular importance to have reliable tools when estimating the ships
resistance and machinery power. The machinery plant of a ship is one of the main cost
drivers when building a new vessel. As such, being able to estimate the installed power
accurately for a certain design and speed, is very important to get a correct and cost
efficient price for the new vessel.

Throughout history, there has been many ideas and theories presented for how a
ships resistance could be estimated accurately. . Some of these methods produce good
estimates, but without being updated along with modern theories, the confidence in their
results weakens. Traditionally the methods have been based on mathematical regression,
sometimes in a hybrid solution with a theoret- ically deduced element. More recently
we have seen increased interest into utilizing the possibilities that comes with increased
computer power related to estimating resistance. CFD and finite element methods have
been developed, but these types of methods need an actual hull to perform calculations.
In the early design phase the naval architect need a tool where he can test combinations
of parameters (displacement, length, breath and draught etc.) to get a best possible
starting point before designing the hull.

Artificial Neural Network (ANN) stands out as an interesting tool to use in making
of a modern empirical method. The method is generic and identifies relations in complex
problems very well, such as resistance estimation.. This thesis will investigate if ANN
can be used to develop reliable estimation methods based on model test data of fishing
vessels. The results will be compared to the existing methods to see if any improvements
have been achieved.
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Chapter 2

Previous work

This thesis fall into line with previously developed empirical methods. Many has tried to
develop empirical methods to predict the necessary power for a ship in the early design
phase, some has succeeded and are used today. It is important to remember that most
empirical methods are developed for a narrow vessel category, and there exist a lot of
methods for high speed vessels, multiple hulled boats and different categories of vessels.
This thesis discusses traditional displacement vessels, with special attention to fishing
vessels.

There are two empirical methods that are particularly well recognized and extensively
in use today. One is the Hollenbach’s method (Hollenbach, 1998) which was published
in 1998, and considered reliable and with a broad area of application. The other major
method is Holtrops’s statistical method (Holtrop, 1984), with four publicly available re-
visions. Holtrop’s method is kept up to date by the Netherlands model basin (MARIN)
and are their proprerty. It’s newest revisions is therefore not open to public. From a
project assignment from last semester (Kleppestø, 2014), I also discovered methods that
are more specialized towards fishing vessels. The oldest is Oortmerssen’s power pre-
diction method (Van Oortmerssen, 1971), that is still useful for small vessels. Another
method which is much simpler, but gives very good results, is the Digernes formula (Di-
gernes, 1982). MARINTEK tested Artificial Neural Network methods in 2008, and made
it available through their software package ShipX. This gave promising results and is an
important reason why I have chosen to investigate this field further in a master thesis.

I have also found some empirical methods that predict propulsion coefficients. These
are less known, and I have essentially used them to compare my results from the trained
Artificial Neural Networks. They are presented in Section 5.2.
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Chapter 3

Resistance theory

Today, there is consensus for the principles used to calculate a vessels hull resistance.
The basis is Froude scaling of the resistance, which is represented with dimensionless
coefficients that are defined as per Formula 3.1. This chapter will provide a brief pre-
sentation of how the resistance is divided into dimensionless coefficients and how these
coefficients are used to scale the resistance. Formula 3.2 show how the total resistance
coefficient is divided to account for different resistance components (Fathi et al., 2012,
p. 56).

CX = RX
0.5 · ρ · S · V 2 (3.1)

CTot = CR + (1 + k0)(CF + ∆CF ) + CAA + CBC + CApp + CA (3.2)

CTot – Total resistance coefficient
CR – Residuary resistance coefficient
1 + k0 – Form factor
CF – Frictional resistance coefficient
∆CF – Hull roughness allowance
CAA – Air resistance coefficient
CBD – Base drag coefficient
CApp – Appendage resistance coefficient
CA – Correlation factor coefficient

3.1 Residuary resistance coefficient
The residuary resistance represents effects that are hard to distinguish as unique com-
ponents. It mainly consist of the wave resistance which is a result of the wave pattern
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4 CHAPTER 3. RESISTANCE THEORY

(pressure distribution) around a moving hull. Another component is called the viscous-
pressure resistance and is the resistance mainly resulting of the flow separation behind
the hull. MARINTEK assumes that this component can be Froude scaled and can be
included in the CR. The CR coefficient is identical for a model and a full scale vessel.
The CR coefficient is found in model tests, while all the other components can be cal-
culated by using known theories. It is essential to establish a good way to estimate the
residual coefficient as this has a major impact on the result when calculating the total
hull resistance.

3.2 Form factor

The calculation of frictional resistance assumes a flat plate in a uniform flow, and it’s
important to compensate for the fact that a hull has curvature. The form factor is
related to the friction resistance coefficient, and corrects for the fullness of the hull. The
form factor can be established from model test, then Prohaskas method (ITTC, 2011) is
often applied. In this thesis MARINTEKs approach is applied, and MARINTEK uses
a self developed formula to find the form factor (Formula 3.3)

k0 = 0.6φ+ 145φ3.5 (3.3)

φ = CB(LWL)
LWL

·
√

(TAP + TFP ) ·B

3.3 Frictional resistance

The frictional resistance consist of two components for full scale ships. The friction
resistance for a flat plate, and the increased frictional resistance from surface roughness.
The frictional resistance coefficient is calculated from the ITTC’57 correlation line (For-
mula 3.4), and represents the viscous resistance on a flat plate in turbulent flow. For
full scale vessel, an increase in resistance is expected due to increased roughness (which
is assumed to be zero for a polished model). This roughness allowance is formulated as
Formula 3.5, where H is the surface roughness in µ (10−3 mm), which often is set to 150
as a standard value.

CF = 0.075
(log10RN − 2)2 (3.4)

∆CF =
[
110.31 · (H · V )0.21 − 403.33

]
· C2

F (3.5)
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3.4 Air resistance

The air resistance depends on the speed and size of the vessel’s superstructure. It can
be calculated with varying accuracy and details depending on the requirements and
available resources. MARINTEK uses a fairly simple formula given as Formula 3.6. AT
is defined as the transverse projected area above the waterline. One could also deduce a
drag coefficient for the superstructure, but it’s hard to get a good accuracy without an
independent study.

CAA = 0.001 · AT
S

(3.6)

3.5 Base drag

For ships with a submerged transom stern, the resistance is increased due to suction.
This suction force is a result of the external flow and the boundary layer around the
hull. The base drag must be scaled to Reynolds number due to it’s dependency of the
boundary layer. As long as the stern is wet, the base drag coefficient is expressed as
Formula 3.7, where SB is the area of the wetted transom stern.

CBD = 0.029 · (SB/S)3/2
√
CF

(3.7)

3.6 Appendage resistance

Most ships do have some kind of appendages which are not part of the hull, but will affect
the resistance. Example of appendages are propeller shafts, shaft brackets, stabilizer
fins, motion damping foils, tunnel thruster opening, bilge keels and rudders. Not all
appendages are present on models, so the full scale appendage resistance coefficient is
larger than for a typical model scale. The total appendage resistance is the sum of
the resistance for all the included appendages. The appendage resistance coefficient is
formulated as Formula 3.8, where wApp is the hull wake fraction at the position of the
appendage, CF,App is the frictional resistance for the appendage and kApp is the form
factor of the appendage (Steen, 2013). It is possible to find tables which estimate the
resistance coefficient for different types of appendages.

The appendage resistancecan be hard to calculate with desired accuracy. For this rea-
son MARINTEK do not scale the appendage resistance separately. Instead it’s included
in the residual resistance, and scale effects are included in the correlation factor.

CApp = (1− wApp)2 · (1 + kApp)
SApp

· CF,App (3.8)
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3.7 Correlation factor
The correlation factor is a purely empirical coefficient which is used to compensate for
the fact that not all effects present in the ships resistance are possible to identify and
scale separately. The correlation coefficient depends on both the methods applied, and
the test facilities used in the model test. In this thesis, test results and methodology
from MARINTEK are applied and therefore also their correlation factor, CA.

CA = −0.228 · 10−3 (3.9)



Chapter 4

Propulsion theory

In this thesis I’m also interested in looking at the propulsion efficiency with the purpose
of determining the necessary machinery power for the vessel. This chapter will define
the total propulsion efficiency and its components. The total propulsion efficiency can
be defined as per Formula 4.1.

ηD = η0 · ηH · ηR (4.1)

ηD – Total propulsion efficiency
η0 – Open water efficiency
ηH – Hull efficiency
ηR – Relative rotative efficiency

4.1 Open water efficiency
The open water efficiency is the propeller efficiency found from an open water test in a
test basin. It indicates the optimum efficiency that the propeller can deliver in a uniform
and laminar flow. The open water efficiency can be defined as per Formula 4.2, where
PD is the power delivered to the propeller and PE is the effective power delivered from
the propeller. The open water efficiency depends on the J-number and is often expressed
in an open water diagram together with KQ and KT .

η0 = PE
PD

(4.2)

4.2 Hull efficiency
The hull efficiency, quantifies the effect from the hull on a working propeller’s efficiency.
It is found in a self-propulsion test, where a model of the propeller delivers the necessary
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8 CHAPTER 4. PROPULSION THEORY

thrust needed to run the ship model at a desired speed (except for a tow force that
is applied to compensate for the increased friction resistance in full scale). The hull
efficiency is defined as per Formula 4.3. The effects that are included in this efficiency,
wake fraction and thrust deduction, are both described in more detail in Section 4.3
and 4.4.

ηH = 1− t
1− w (4.3)

4.3 Wake fraction
When a propeller is placed behind a hull, the flow velocity through the propeller disc is
less than the speed of the vessel (free flow velocity). This speed difference is called wake,
and is defined as per Formula 4.4. This reduction in flow velocity is recognized to have
three causes: Potential wake, Frictional wake and Wave wake (Molland et al., 2011, p.
146) and (Harvald, 1983, p. 152). The reduced speed over the propeller disc increases
the propeller efficiency.

The wake fraction used in this thesis, is deduced from the propulsion test and the
open water diagram. The expected thrust at a given flow velocity (model speed) are
known, and the actual thrust is measured. One can easily deduce the speed difference
(∆J) that separate the two thrust values. This difference in speed is used to find the
effective wake.

w = V − VA
V

(4.4)

4.4 Thrust deduction
The thrust required to move a vessel at a certain speed is greater than the rope force
needed to tow the vessel at the same speed. This means that a working propeller
increases the resistance on the hull. This is referred to as thrust deduction (Defined in
Formula 4.5). This increase in resistance is mainly caused by the fact that a propeller
accelerates the flow speed ahead of itself. This causes two effects: (1) The increase in
flow velocity at the stern of the vessel, results in increased shear forces, the same as more
frictional resistance and (2) The increase of velocity reduces the pressure (explained by
the Bernoulli equation) which can be explained as a suction force on the stern (Molland
et al., 2011, p. 145). This implies that the thrust deduction reduces the propeller
efficiency.

The thrust deduction used in this thesis is found from the propulsion test, where the
trust measured on the propeller shaft, and the resistance are known from a towing test
is used.

t = T −RTot
T

(4.5)
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4.5 Relative rotative efficiency
The relative rotative efficiency compensate for the efficiency loss that is caused by other
disturbances in the wake field. When thrust identity is assumed, the relative rotative
efficiency can be expressed as per Formula 4.6. Mainly two components are present (Mol-
land et al., 2011, p.145) (1) Turbulence in full scale is much more severe than in model
scale because of the difference in Reynolds number. This will have negative effect on the
propeller efficiency (2) The flow behind the hull is non-uniform and the propeller gives
the flow rotation which is left as lost energy behind the propeller. This will also have a
negative effect on the propeller efficiency. To what extent. will depend on how optimized
the propeller is for the given wake situation and if there are any contra-rotating devises
installed around the propeller.

ηR = KQ

KQ0
(4.6)



Chapter 5

Empirical methods

As a reference in this thesis, I have chosen some common empirical methods to compare
the results from the developed Artificial Neural Networks. The described methods are
regarded as reliable and are often used in an early design phase. I have divided the
empirical methods in two groups; (1) methods for predicting ship resistance and (2)
propulsion and hull efficiency.

5.1 Resistance prediction methods

Many different methods have been developed for prediction of ship resistance. While
some methods calculate the total resistance, others calculate the residual coefficient. To
compare the methods on the same premises, I have calculated the total resistance based
on the ITTC procedure by dividing the resistance in several components that can be
calculated based on the ship geometry as seen in Equation 5.1.

CTot,s = (1 + k0) · (CF,s + ∆CF ) + CR + CAA,s + CDB,s + CApp,s + CA (5.1)

5.1.1 Digernes formula

Digernes formula is a pure regression formula (Formula 5.2), which was formulated at
MARINTEK in 1982. This formula is based on the experience showing that resistance,
to a large extent, is decided by the displacement and speed of the vessel (Digernes, 1982).
By developing an equation that is logarithmic linear, one gets the possibility to apply
linear regression to find the coefficients. There are also some other geometrical relations
added which are assumed to influence the resistance. The values for the coefficients are
listed in Table 5.1.

RTot = a ·
(
LWL

B

)b
·
(
B

T

)c
· ∇δ · eβ′·Fn (5.2)
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Table 5.1: Coefficient values for Digernes method, (Formula 5.2)

a b c δ β′

2.956 · 10−4 0.802 0.745 1.113 15.605

Table 5.2: Field of validity for Digernes method as it is defined by Digernes

LWL[m] B[m] T [m] ∇[m3] LWL/B B/T FN
11.9–53.9 3.55–13.6 0.68–5.65 17.6–1376 1.8–4.5 1.9–10.0 0.223–0.494

This regression is based on resistance results from 33 model tests, and later controlled
against 280 other vessels (Digernes, 1983). The regression coefficient for this regression
is found to be R2 = 0.995, which is very impressive. A regression coefficient value close
to 1, indicates that this equation is able to follow the curvature of resistance curves
very well for the vessels included in the original dataset. It’s worth to mention that the
dataset consist of vessels without bulb.

Field of validity

Digernes defines the field of validity for his method based on six geometrical parameters
and one Froude number interval (see Table 5.2). These are the outer limits for the
original dataset. The method is based on fishing vessels only, and this characterizes the
field of validity, and especially the size of the vessels.

In this assignment, I have made an updated regression for Dignernes Method which
is described in Section 8

5.1.2 Hollenbachs resistance estimate

Hollenbachs resistance estimate is a modern method released in 1998, and is widely used
by Naval Architects today. This method is primarily made for merchant vessels, but
with a wider field of validity than Holtrop. It’s developed from model results at the
Wiena towing-tank. The method is quite comprehensive and utilizes a larger dataset
and more complex formulas than the other methods reviewed in this thesis. This method
separate the best and poorest 5% of the results, and gives the user the possibility to
decide whether the specified vessel have good or poor hull lines. This is related to the
amount of constrains a vessel are subject to in the design process (Hollenbach, 1998)
and how optimized the hull is for minimum resistance. Because this method is primarily
designed for merchant vessels, it’s hard to tell which type of hull lines apply for fishing
vessels. These modes are tested on a group of fishing vessels (Kleppestø, 2014) and it was
clear that fishing vessels should use the «minimum» resistance option. Figure 5.1 show
the results for the three options. Fishing vessels do have extensive constrains regarding
stability and payload, so this finding is somehow surprising, but may indicate that the
hull lines are good relative to their extreme hull coefficients (i.e. B/L, CB).
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(a) Maximum Resistance
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(b) Mean Resistance

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−100

−50

0

50

100

150

200

250

F
N

A
vv

ik
 [%

]

(c) Minimum resistance

Figure 5.1: Hollenbach’s modes for «maximum», «mean» and «minimum» resistance,
is tested on fishing vessels. Error between formula and model tests are plotted against
the Froude number. The horizontal black line indicates no error (0%) and y-axis range

is from -100% to 250%, where negative error indicates underprediction of
resistance. (Kleppestø, 2014)
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Table 5.3: Field of validity for Hollenbach’s method as they are defined
for the «minimum resistance» mode (Hollenbach (1998))

LPP [m] LPP /∇1/3 CB L/B B/T LOS/LWL LWL/LPP
Single Screw 42–205 4.49–6.01 0.60–0.83 4.71–7.11 1.99–4.00 1.00–1.05 1.00–1.06
Twin Screw 30.6–206.8 4.41–7.27 0.51–0.78 3.96–7.13 2.31–6.11 1.00–1.05 1.00–1.07

Field of validity

Hollenbachs resistance estimate is an advanced prediction method that combines several
empirical methods and require relatively many input parameters. This gives a quite
generous field of validity. Even so, Table 5.3 indicates that the limits are designed for
merchant vessels and that the L/B and Lpp/∇1/3 limits are not suitable for fishing
vessels.

5.1.3 Holtrop statistical method

Holtrops statistical analysis of performance results are more than ten years older than
Hollenbachs method, but is still widely used today. The method is also developed for mer-
chant vessels, which utilize other types of hull-forms than fishing vessels. This method
is based on model tests and full scale tests from the Nederlands Ship Model Basin. It
uses the same division of the total resistance as ITTC (as explained in Section 3), the
total resistance can then be formulated as Formula 5.3.

RTotal = RF (1 + k1) +RAPP +RW +RB +RTR +RA (5.3)

RF = Friction resistance according to ITTC-1957 formula
1 + k1 = Form factor of the hull
RAPP = Appendage resistance
RW = Wave resistance
RB = Additional pressure resistance of bulbous bow near the water surface
RTR = Additional pressure resistance due to transom immersion
RA = Model-Ship correlation resistance

As a result of where Holtrop includes viscous-pressure resistance in the resistance, it’s
a difference in the form factor of Holtrop versus the one from MARINTEK. Holtrop
presents a resistance component for the wave resistance (RW ) alone and includes the
viscous pressure resistance in the form factor. In contrast, MARINTEK base their form
factor on Prohaskas method, and includes viscous pressure resistance together with the
wave resistance in the residual resistance coefficient. Because of this, one should not
compare the resistance coefficients directly, but rather look at the total resistance which
should be comparable.
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Table 5.4: Field of validity for Holtrops statistical method
for fishing vessels, as it is defined in his first article

(Holtrop, 1977)

LWL/B CP FN,maks
3.9–6.3 0.55–0.65 0.38

Holtrops statistical method apply some uncommon input values, which are not always
available in the initial design phase. This might make the method somewhat harder to
use, but with some experience it should be possible to estimate those values without
affecting the results too much. Some sources also recommend not to use the bulb option
this method offer.

As a final remark, I want to point out that Holtrops statistical method for resistance
prediction has been upgraded several times. The 1984 version is the latest version
publicly available. Newer versions of this method is the property of Nederlands Ship
Model Basin (MARIN), and has not been published.

Field of validity

Since Holtrops statistical method is not made for, or from, fishing vessels, it is not
expected that the field of validity cover typical fishing vessels. This method want to be
a general method, and the field of validity is given in the first (of four) article (Holtrop,
1977), and then specified for fishing vessels. How the field of validity has changed through
the later revisions is not commented, and I assume that it hasn’t changed. Holtrop
defines the field of validity with only a few parameters, but they are non-dimensional
and give a good representation of the hull types that are used in the development of the
method.

5.1.4 Oortmerssen power prediction method

Oortmerssen method for power prediction (Van Oortmerssen, 1971) is the oldest resis-
tance prediction method in this thesis. The method is based on both a mathematical
derivation and regression to a data material of fishing vessels and tugs. The formula and
input parameters are deduced from the wave resistance for a short vessel. Coefficients
are calculated with regression of a data material consisting of 93 vessels that are random
fishing vessels and tugs. The method is somewhat similar to Digernes formula, but the
approach is more advanced.

Oortmerssen tries to deduce his own formula for the form factor based on Granvilles (Granville,
1956) empirical formula. The fundamental idea is that the form factor, to a large extent,
depends on the relationship CB

L/B , and that this is a good starting point. The deduced
formula is seen in Formula 5.4. The meaning of the parameter ψ is illustrated in Fig-
ure 5.2, while C is empirically determined from model tests. The recommended value
for C is 139. Oortmerssen concludes himself that the form factor does not improve the
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Figure 5.2: Oortmerssen uses the diagonal of the hull to calculate his form factor for a
vessel. This figure illustrated how two of the coefficient is to be found

results, and removes it from the final formula. For a modern group of fishing vessel, the
form factor does actually increase the errors (Kleppestø, 2014).

k0 = C ·
[

CB

LD/
√
B2 + T 2

]2

· sin2 2ψ

= C · C2
B

(LD
B )2 ·

[
(BT )2 + 1

] (5.4)

The residual resistance of Oortmerssen is deduced from the wave pattern along the
hull. Oortmerssen has deduced the wave resistance for a wave pattern along a two
dimensional pressure distribution that he uses as a basis for his formula. This method
is made from small ships, so a simplification is applied by removing the parallel midship
in the deduction. He expresses the divergent wave pattern in a polynomial, before he
simplify the whole equation to make a better fit to the data material.

When I tested this method on a modern group of fishing vessels, it seems like the
applied formula contains an error. This assumption is based on two facts. (1) I cannot
get the same answer for the example calculation given in the article. (2) The errors seem
to have a noticeable «bump» in a Froude number interval as illustrated in Figure 5.3.
My best guess, after some back tracing, is that one of the coefficients are misprinted in
the article. I have tried, but not succeeded, in finding experienced naval architects that
are familiar with this method which I could compare my results with. Mainly because
of the age of this method (44 years), it’s not well known anymore and seldom used.

Field of validity

This method is deduced to predict resistance for tugs and small fishing vessels (Van Oort-
merssen, 1971), and it’s a result from mathematical deduction validated on model tests.
Since the method is published in 1971, one should also be aware that design trends has
changed considerable since then. Oortmerssen does not himself define a field of validity
for his method, but gives bar charts for his data material, and based on this I have
formulated a field of validity that can be seen in Table 5.5.
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Figure 5.3: Percentage error plotted against Froude number for Oortmerssen method.
Zero error is marked with a horizontal line, and y-axis goes from-100% til 250%

(Kleppestø, 2014)

Table 5.5: Field of validity for Oortmerssen method
which is based on the bar charts of the data material as it’s given in the

article (Van Oortmerssen, 1971)

LD[m] LCB[%] B/T LD/B ∇[m3] S[m2] CP CM
16–72 -4.2–7 1.9–2.95 3.4–6.2 0–2850 0–1200 0.55–0.7 0.76–0.94

5.2 Propulsion prediction methods
There are empirical formulas that estimate propulsion coefficients, but they are not as
well known as the resistance methods. This section presents a selection of methods that
I have tested against my data material.

As for the resistance methods, one must keep in mind that this thesis deal with
modern fishing vessels with length 30-90m and does not always hold the same properties
as traditional merchant vessels. For propulsion calculations, I must emphasize that all
the vessel in this thesis are equipped with ducted propellers, which is quite uncommon
for other vessel types than fishing vessels and tugs.

For the propulsion prediction methods, I have typed the formulas in the document,
this in contrast to the resistance methods. There are two reasons for this (1) The wake
and thrust deduction formulas are much simpler and therefore easier to include in the
text, and (2) Wake and thrust deduction formulas are not so commonly known today,
so it may be harder for the reader to find the formulas on his own.

5.2.1 Wageningen B-series

Wageningen B-series are a comprehensive and systematic propeller series that are fre-
quently used to find an early estimate for the propeller geometry. The series consist of
more than 120 propellers with a systematic change in the propeller geometry. In this the-
sis I take advantage of the fact that open water diagragrams are already established for
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Table 5.6: Field of validity for Wageningen B-series

Z AE/A0 P/D
2–7 0.3–1.05 0.5–1.4

this series, and the propeller efficiency can be estimated. A regression analysis has been
performed, so that the results are interpolated between the tested propellers (Bernit-
sas et al., 1981). This polynom makes it simple to estimate the open water propeller
efficiency for the actual propellers in my data material.

Field of validity

The field of validity are the limits of the propeller series tested, and can be seen in Ta-
ble 5.6. Because of the polynom that are applied, one must be careful when approaching
the boundaries of the series.

5.2.2 BSRA Propulsion factors

The British Ship Research Association conducted a methodical series of vessels (Parker
and Eng., 1966), which they later used to develop both a resistance method and an
equation for wake estimation. The resistance method gave so poor results for my data
material that only the wake formula is included. The series represent a systematic
variation of hull proportions and LCB for a range of block coefficients from 0.65 to 0.80.
The full scale ships are all scaled to the same dimension; LPPxBxT = 400ft x 55ft x 26ft
= 122m x 16,8m x 8m.

The equation is the result of a linear regression where the authors have identified
hull parameters that have the most impact on the thrust and wake. These are the block
coefficient, Froude number and a «home made» coefficient D for both wake and thrust.
The longitudinal position of buoyancy (LCB) forward of amidships is also included in
an intricate manner which is meant to illustrate how much the position of LCB deviates
from the basis position forward of amidships. These three parameters can be seen in
Formula 5.5

Dw = B

∇1/3 ·

√
∇1/3

D
(5.5)

Dt = B ·D
∇2/3 (5.6)

δLCB = LCB − 0.2 · (CB − 0.675) · LPP (5.7)

In the same journal there is a discussion where the complex formula is criticized and
a simpler version is suggested with similar performance. It’s this simplified version that
is later adapted by Prof. Knut Minsaas in his ship propulsion compendiums. I will
present the simplified version (because this seems to be the one commonly used). The
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simplified formulation hse been fitted for two independent data sets, and therefore two
sets of coefficients are found, as seen in Formula 5.8 and 5.9.

w = −0.478 + 0.79 · CB − 0.10 · V√
L

+ 0.170 ·Dw − 0.0072 · LCB (5.8)

w = −0.508 + 0.67 · CB − 0.05 V√
L

+ 0.234 ·Dw − 0.0028 · LCB (5.9)

Field of validity

There is not much emphasis on this methods field of validity, so the user should know
that the data set consist of ocean going vessels with a single propeller tested before 1966.
For Formula 5.8, the dataset is specified as merchant vessels with a Block Coefficient of
CB ∈ [0.65, 0.8], while the dataset for Formula 5.9 consist of unspecified vessel categories
with a block coefficient of CB ∈ [0.55, 0.8]. Since I’m not familiar with these formulas, I
have included both in this thesis and tested them to my data material.

5.2.3 Harvald graphical method for propulsion factors

Harvald developed a prediction method for the wake fraction and thrust deduction in
1949, from 200 model experiments, consisting of single-screw ships carried out at the
model basin in Wageningen (Harvald, 1983, p. 165-186). The derivation of this method
is based on the theory that one can divide the wake coefficient into three separate parts,
like it’s common to do with resistance. Because the definition of the total wake coefficient
are straight forward (Formula 4.4), this should not have any big impact. I will later give
a brief explanation of the wake coefficients that Harvald base his diagrams on.

In the development of this method, Harvald tried to find which coefficients that the
wake fraction depends most on. He sorted his data material by block coefficient and
breath-to-length ratio which are the two most important parameter for the potential
wake(Figure 5.4). This was not enough for a method in itself because of the extensive
scattering of the points.

[...] the scattering of the points was so extensive that it was extremely difficult
to draw mean curves. (Harvald, 1983, p. 166)

The two lower diagrams in Figure 5.4 try to identify the cause of this extensive
scattering by sorting the data further. The third diagram tries to quantify the frictional
resistance based on boundary layer calculations, by normalizing the material to DP /L =
0.04. The middle diagram is a correction for ships with pronounced U- or V-shaped
sections. He also attempted to make corrections based on the B/T or T/L ratios,
without success.

Harvald also try to make a method to estimate trust deduction factor (see For-
mula 4.5). He looks for a relationship between wake and thrust deduction, but cannot
find any valid generalization for this relationship. Because thrust and wake should be
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Figure 5.4: Harvalds graphical representation of the wake and thrust deduction factor
for single-crew ships: w = w1 + w2 + w3; t = t1 + t2 + t3 (Harvald, 1983, p. 166)
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Figure 5.5: Propeller arrangements as defined by Harvald to estimate the thrust
deduction (Harvald, 1983, p. 184)

correlated per definition, he presents an individual method to estimate the thrust deduc-
tion that seems to have much in common with the wake method. It is therefore presented
in the same diagram as the wake method (Figure 5.4). But as the thrust deduction is
more dependent on the propeller arrangement, the curves are only valid for a conventinal
stern (defined in Figure 5.5). For a Free-propeller stern the thrust deduction is divided
in half (∆t = −0.5t), and for bulbous stern it is reduced by a quarter (∆t = −0.25t).
Because it’s impossible for me to identify the stern shapes in my data material in this
thesis, Harvalds method for thrust deduction is not investigated further.

Wake components

As commented earlier, Harvald divides the wake coefficient into three components.
Where wP , wF and wW are the potential wake fraction, the friction wake fraction and
the wave wake fraction.

w = wP + wF + wW (5.10)

The potential wake is the wake obtained in an ideal fluid (potential flow) without any
wave making. This should be possible to calculate mathematically by using potential
theory. The wave wake comes from the particle movement in the wave system from the
vessel, which is stationary relative to the propeller. The frictional wake is the wake that
is caused by effects from friction on the afterbody of the vessel. This is assumed to be
the main component, while at the same time hard to quantify because it’s not certain
how much of the boundary layer that needs to be taken into account.
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Table 5.7: Field of validity for Harvalds graphical method which is based on the
presentation of the data material as it is indicated in (Harvald, 1983). Valid for both

wake and thrust deduction

CB B/LOS DP /LOS B/T T/LOS
0.4–0.9 0.12–0.2 0.02–0.07 2.4–2.5 about 0.06

Harvald critizice this way of dividing the wake fraction, so I will spend no more time
discussing this method, and finish the discussion with quoting him:

This method of definition is the one mostly employed, but it is far from
good, as it is uncertain how much of the frictional belt must be taken into
account. (Harvald, 1983, p. 166)

In this thesis I have performed a mathematical curve fit for the curves to make
calculations easier for the large amount of vessels in the data material.

Field of validity

There are not given any specific field of validity for this method. As a graphical method,
one should not try to extrapolate the curves as this probably indicates quite well the
field of validity. As mentioned, the data material consists of single-screw merchant
vessels. Harvald also gives a quite narrow B/T and T/L interval for this method, as
seen in Table 5.7. For thrust deduction the field of validity is the same, but in addition
the stern shape is important, and three propeller configurations are defined as seen in
Figure 5.5.

5.2.4 Holtrop estimate of propulsion factors

Holtrop developed a statistical method for propulsion factors, and together with the
resistance this has been updated several times. I have used the latest published arti-
cle (Holtrop, 1984). This method is quite advanced compared to the other propulsion
methods with many terms (Formula 5.11). Since this is a statistical regression, the con-
nection to real life phenomena’s are not considered in other ways than in the choice of
input coefficients. This gives the impression to be messy and difficult to use, but this is
not the case when using computers. This method is hard to use with a pocket calculator,
but with a simple computer script or excel spreadsheet it is very simple to reuse this
formula for many vessels.

w =C9 · C20 · CV ·
L

TA

(
0.050776 + 0.93405 · C11 ·

CV
1− CP1

)
+ 0.27915 · C20

√
B

L(1− CP1
+ C19 · C20 (5.11)



22 CHAPTER 5. EMPIRICAL METHODS

Where the coefficients are defined as:

C8 =
{

(B · S)/(L ·D · TA) : B/TA < 5
S · (7B/TA − 25)/(L ·D(B/TA − 3)) : B/TA > 5

C9 =
{
C8 : C8 < 28
32− 16

C8−24 : C8 > 28

C11 =
{
TA/D : TA/D < 2
0.0833333(TA/D)3 + 1.33333 : TA/D > 2

C19 =
{

0.12997/(0.95− CB)− 0.11056/(0.95− CP ) : CP < 0.7
0.18567

1.3571−CM
− 0.71276 + 0.38648 · CP : CP > 0.7

C20 = 1 + 0.015 · Cstern
CP1 = 1.45 · CP − 0.315− 0.0225 · LCB
CV = (1 + k)CF + CA

CA = 0.000352

Holtrop has also formulated an equation for the thrust deductionthat is much simpler
than the wake formula (Formula 5.12)

t =0.25014
(
B

L

)0.28956
(√

BT

D

)0.2624

/ (1− CP + 0.0225 · LCB)0.01762 + 0.0015 · Cstern (5.12)

Field of validity

As for the resistance prediction method, Holtrop only gives a field of validity in his first
article from 1977. Even if the formulas are revisited in the later articles there are given
no or little information of the types of ships these updates are based on. The field of
validity is assumed to be the same as for the resistance method which are shown in
Table 5.4.

5.2.5 Taylor wake formula

The simplest formula for wake estimation I will present is Taylors formula (Formula 5.13).
This formula is very old (1910) and not very well explained in the original source (Taylor,
1910, p. 201). As such, I can not give much information related to this formula. But
with it simple appearance, a deep understanding is not necessary. However, Taylor do
note that this method have a tendency of over predicting the full scale wake fraction.

w = 0.5CB − 0.05 (5.13)
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Field of validity

There is not much information about the field of validity, but it is made for single-screw
ships. It is also noted that the formula is derived from model tests where some are of
the bare hulls where the propeller configuration does not interfere with the natural flow
of water (i.e. vessels fitted with struts or bossing).



Chapter 6

ANN theory

6.1 Introduction

McCulloch and Pitts took the first step towards Artificial Neural Networks in 1943, when
they devised a simple mathematical model of a neuron (Fausett and Hall, 1994, p. 22).
Neurons are the building blocks in a neural network, and they process the input-data
through the network. The fundamental idea behind a neural network is to replicate
the complex network of biological neurons in the human brain and its ability to solve
complex non-linear problems in an efficient manner.

Today, there exists over thousand artificial neural network models, and more than
forty are considered primary ones (He and Xu, 2010, p. 4). The reason that there are
so many possible ways to design an ANN is the simple nature of a neuron. Because
a neuron can process an unlimited number of signals, the network designer can choose
which signals that should be sent to each neuron and make recursive and feedback loops
in the network. By utilizing feedback loops one can design a network which is capable
of learning from each calculation. Some of the problems that an ANN can solve are;
pattern recognition, system simulation, automatic control and curve fitting.

The human brain is made up of many relative simple neurons which are connected
in a complex network. By utilizing parallel computation this makes it capable of solving
very complex problems with a relative small amount of energy. The human brain has
approximately 1010− 1011 neurons. Each biological neuron is interconnected with 103−
105 other neurons (including itself). By taking into the fact that that interconnections
between the neurons is in constant change through human learning and experience, one
can get the idea of how powerful and flexible the human brain is. The switching time
of a biological neuron is several milliseconds (in the order of 10−3 s), which is millions
of times longer than that of a current computer (in the order of 10−10 s). Even so,
the human brain can produce an accurate response to a complex task in less than one
second This is much faster than a modern computer. This illustrates that although
the processing and transmission-speed of a single neuron is rather slow, the brain can
respond quickly due to its high parallelism. (He and Xu, 2010, ch. 2.1).

One of the ANNs many strengths is that the user don’t need a mathematical under-
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standing of the problem he needs to solve. In contradiction to making regression and
simulation with traditional methods, a user making use of ANN, don’t need to know
how these relations are formulated as long as he is aware of the relations in the problem
and has an accurate dataset. With the large number of neurons, comes the advantage of
parallell computation which the network makes easy to utilize. However, the black box
approach of ANNs means that the user only sees the results, and not how the network
has chosen to model the relations. This can make some advanced users skeptical in
embracing the method since one cannot supervise the computation.

Because ANN uses association in solving problems, and, as many other mathematical
methods, do not look for an exact recognition, it is capable of solving more diffuse
problems, like handwriting recognition. Since handwritings are quite unique, but at the
same time similar, they are though problems to solve with traditional methods. An
ANN will look after if a letter «looks like» an a or b etc. not if it matches a predefined
value (letter).

6.2 The neuron

Figure 6.1 compare the artificial neuron to a stylized biological neuron. The figure show
that the fundamental structure is somehow equal, while the biological version is more
advanced as it can mix several inputs to a joint input and have the bias value dependent
on inputs. In this text, we will concentrate on the artificial neuron and its characteristics.

The artificial neuron is built up by five elements; inputs (pi), bias weights (wi,j), bias
value (b), activation function (f(n)) and output value (a). The neuron can receive an
unlimited number of input signals, where each has an unique bias weight assigned from
training. All the weighted input signals are summed up and a bias value is added to the
sum. This sum is then used as input to an activation function that create a normalized
output value from the neuron.

The bias weight represents the relative effect each input has on the output value.
The bias is unique for each input and neuron, and the same input signal has different
weights for each neuron. The bias weight can be zero or negative. The bias value is
added to the weighted sum, and its purpose is to shift the value of the sum before it
is fed into the activation function. To change the bias value is equivalent of sliding the
activation function sideways, which gives the possibility to give an output value of zero
without the weighted sum of inputs being zero. Because the activation function normally
is symmetrical, the bias value is essential to decide the zero-output point (Kohl, 2010).
The activation function is used to normalize the output value from the neuron. The
function can be discrete, linear or of other shapes. In this assignment, I use the common
sigmoid function (Equation 6.1) which normalize the output between [−1,+1]. The
sigmoid function are plotted in Figure 6.2a.

F (n) = 2
1 + exp(−2n) − 1 (6.1)
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Figure 6.1: Comparison of a stylized biological and an artifical neuron
(Ünal et al., 2013, ch. 1)

This structure gives a very flexible neuron that can communicate with many other
neurons in different ways and networks. It can, as stated, process signals from an
unlimited amount of other neurons and share its output value with an the same number
of neurons. Because the weights for each neuron is decided individually, the neuron can
handle both discrete and continuous values. By assigning a discrete activation function
(a step function), the problem can be made fully discrete as well. It’s common to
standardize the neurons in a network with one activation function, and individual values
for the bias values and weights.

6.3 Network structure

The way neurons interact with each other defines the network structure. There are many
ways to design a network, and finding the optimum structure depends on the type of
problem at hand. The network design needs to define include the number of neurons
and how they are distributed in the network. Complex problems needs more neurons
and a more advanced structure.

Two common neural networks are (1) feedforward and (2) recurrent networks. In
this assignment I use feed forward artificial neural network (FFANN), which is the most
common signal path and works well for pattern recognition (Ünal et al., 2013). In a
FFANN all the signal paths go the same way (i.e. from the inputs towards the outputs).
In this one-way signal flow, the neurons are structured in layers (input-, output- and
hidden layers) and each output value from the previous layer is sent to every neuron in
the next layer. This creates a lot of possible combinations to process the input values
into the desired output values. The structure of a FFANN is illustrated in Figure 6.3.

Recurrent network is a signal feedback network which uses a neurons output signal
as one of its input signals. This gives the system a dynamic behavior with a time delay
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for the memory processing. A Recurrent network is suitable for simulation problems
and regulators. A recurrent network is able to make decisions based on the real time
situation and experience. An example is backing up a trailer, where a recurrent network
can assess the state of the trailer (position of the cab of the truck, the position of the rear
of the trailer, the (fixed) position of the loading dock, and the angles that the truck and
the trailer make with the loading dock) to steer the trailer in place. As for a human, an
untrained network will perform this task poorly, but will gradually improve with training
when it learns how the trailer react on steering (Fausett and Hall, 1994, ch. 1.3). This
is a problem where traditional methods will need to calculate many complete paths of
steering the trailer for then to find feasible and optimum solutions, while a recurrent
network takes real times decisions based on the situation.

For a FFANN, the number of neurons and hidden layers is equivalent to the number of
Degrees of Freedom (DOF). If we increase the number of neurons in the hidden layer(s),
it gives the possibility to generate more complex functions, but this also increase the
risk of overfitting the network and decrease its generalization ability.

«Each sigmoid function represents a soft threshold in its input space, as
shown in Figure 6.2a. With one hidden layer and one output layer, each
output unit computes a soft-thresholded linear combination of several func-
tions. For example, by adding two opposite-facing soft threshold functions
and thresholding the result, we can obtain a "ridge" function as shown in
Figure 6.2b. Combining two such ridges at right angle to each other (i.e.
combining the outputs from four hidden units), we obtain a "bump" as shown
in Figure 6.2c.

With more hidden units, we can produce more bumps of different sizes in
more places. In fact, with a single sufficiently large hidden layer, it is possible
to represent any continuous function of the inputs with arbitrary accuracy;
with two layers, even discontinuous functions can be represented. (The proof
is complex, but the main point is that the required number of hidden units
grows exponentially with the number of inputs. For example, 2n

n hidden units
are needed to encode all Boolean functions of n inputs). Unfortunately, for
any particular network structure, it is harder to characterize exactly which
functions can be represented and which one cannot.»

(Russel and Norvig, 2010, p. 732)

Even though the fact that a complex problem needs a complex network structure to
be reproduced, I have not found any sources that gives a good rule of thumb to how
large the network should be for certain complexity of problems. The general advice
seems to be the trial-and-error approach for each problem one wants to solve by dividing
the dataset into two groups, one for training the network and one to validate the trained
network. A poor fit to the training group calls for a larger network structure, while
a poor fit to the validation group indicates overfitting and calls for a simpler network
structure. The complexity can be varied by changing the number of hidden layers, the
total number of neurons and the distribution of neurons over the hidden layers.
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(a) A single sigmoid function
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(b) The result of combining
two opposite-facing sigmoid
functions to produce a ridge

(c) The result of combining
two ridges to produce a bump

Figure 6.2: By combining sigmoids functions it is possibll to reproduce complex
continous functions

6.4 ANN learning

Neural networks improve their performance by changing the way input signals are treated
through the network in order to reduce the output error. This is done by changing the
bias weights and bias values through training. The larger the network is, the more
demanding training becomes to make a good network. This also provides the possibility
to use more biases which make the network capable of distinguish between finer nuances
in the result domain.

Training of an ANN is only based on experience with a given training dataset, and
it’s not possible to improve the performance beyond what these two factors determine.
This implies that in order to get a good, well trained ANN, one needs a good network
and a good representative, dataset for training. A FFANN is therefore only optimized
to solve the problems it have already encountered, and don’t improve with experience as
some other types of ANNs. If the training dataset is biased, the outputs from the neural
net will also be biased. The same applies for overtraining where a complex network is
used with a simple problem and with a non satisfactory dataset. The network will then
be able to make a perfect fit to the dataset while it may not represent the underlying
trend very well. This is illustrated in Figure 6.4.

When we want to train an ANN against a dataset with given inputs and outputs,
it’s called supervised learning. This is an iterative method where the network start with
initial bias weights and values and calculates the errors this initial network gives. Then
the bias weights and values are changed to minimize the error in an iterative process
until a stop condition is met (i.e. number of iterations, error magnitude, error gradient).
A flow chart of this process is shown in Figure 6.5.

Recurrent networks learn by looking at the error produced by a «choice» versus the
anticipated result from the action. From the trailer example, this would be that the
trailer moves to the point that was anticipated to get towards the loading dock. If the
trailer doesn’t get where the network anticipated it would go, the network has to change.
This is the same as learning by experience. The trailer problem is also divided in two,
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Figure 6.3: Schematic overview of a Neural Network
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Figure 6.4: AN example of an overfitted function. The dataset consist of an sinus curve
with a random error added to the data points. The solid line are the results from an
overfitted ANN, while the dotted line are the underlying function. (Beale et al., 2015,

p. 8-32)

Figure 6.5: Flowchart of that illustrates the process of supervised learning for a
FFANN (Kattan et al., 2011, p. 18)
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one part which focus on what is needed to get the trailer to the loading ramp, and one
that focus on steering the trailer and how it react on certain controls (i.e. gas, steering)



Chapter 7

Background data

The basis for a good empirical method is a good data material. Because it’s not possible
to manually control the training of an ANN, the outcome solely rely on the training data
set. In general, ANNs can be considered as a representation of the training data set,
and the quality of the data set is the quality of the ANN. To be able to make a good
generalized ANNmethod, it is necessary with a large data set with a certain variance. For
this thesis, MARINTEK has been so kind to give access to their model results of fishing
vessels from the time period 1987-2013, in total 193 vessels and loading conditions. To
give the reader a better understanding of the types of hull that this datamaterial consist
of, I have plotted the distribution of some dimensionless parameters in Figure 7.1. A field
of validity are important to define for empirical methods, and because I have used the
same data material for all ANN methods, I give one field of validity for all the methods
in Table 7.1.

Because of the nature of ANN, one must be careful when approaching the edges of
the validity field. Especially the CR ANN seems to be sensitive for the LWL/∇(1/3)

parameter. I have done some testing on vessels wchich are outside the field of validity.
Due to the nature of ANN the results that fail, fails significantly and should be easy to
identify as unreliable to the user.
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Figure 7.1: Graphical representation of some non-dimensional coefficients in the data
material

Table 7.1: Outer limits for data material, who also will function as field of validity for
ANN method

FN CP LWL/∇(1/3) B/T (TAP − TFP )/LPP [%] DP /T
0.1–0.42 0.6–0.75 3.5–5.2 1.5–3.5 -2 – 3.5 0.45–0.9



Chapter 8

Updated Digernes Formula

The Digernes Formula, is a logarithmic linear formula (Formula 8.1) which simplify
regression analysis. Because of the minimal additional work, I have performed a new
regression of the Digernes Formula to see how much improvements can be achieved by
using new coefficients from a modern dataset. There has been shown that Digernes
formula does not predict the resistance well for low Froude numbers (Kleppestø, 2014).
Of this reason, I have filtered out Froude numbers less than 0.15 in the data material.

ln(RTotal) = A+ b · ln(LWL

B
) + c · ln(B

T
) + δ · ln(∇) + β · FN (8.1)

Matlabs regression function gives a robust fitting option, and I have tested different
implemented weight functions to see how much they improve the results. Robust fitting
is a method to decrease the influence of outliers in the regression model. Matlabs user
guide describe the process as:

«Robust regression works by assigning a weight to each data point. Weight-
ing is done automatically and iteratively using a process called iteratively
reweighted least squares. In the first iteration, each point is assigned equal
weight and model coefficients are estimated using ordinary least squares. At
subsequent iterations, weights are recomputed so that points farther from
model predictions in the previous iteration are given lower weight. Model
coefficients are then recomputed using weighted least squares. The process
continues until the values of the coefficient estimates converge within a spec-
ified tolerance.» (Mathworks, 2015, ch.9)

The weight functions are dependent on the variable r, which is defined in Formula 8.2.
In this formula, resid is the vector of residuals from the previous iteration, h is the vector
of leverage values from a least-square fit, and s is an estimation of the standard deviation
of the error term given by s = MAD/0.6745. MAD is the median absolute deviation
of the residuals from their median. The constant 0.6745 makes the estimate unbiased
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Table 8.1: Matlabs weight functions available in the Robust fit option. All these are
tested to see which gave the best results for Digernes Formula

# Weight function Equation
1 andrews w = (|r| < π) · sin(r)/r
2 bisquare w = (|r| < 1) · (1− r2)2

3 cauchy w = 1/(1 + r2)
4 fair w = 1/(1 + |r|)
5 huber w = 1/max(1, |r|)
6 logistic w = tanh(r)/r
7 ols Ordinary least square
8 talwar w = 1 · (|r| < 1)
9 welsch w = exp(−(r2))

Table 8.2: Coefficient values for Digernes Formula found from regression analysis with
a modern data material

a b c δ β
0.795154 0.401732 0.438858 0.959433 12.535261

for the normal distribution. Tune is a tuning constant that is divided into the residual
vector before computing weights, and has a default value for each weight function.

r = resid/(tune · s ·
√

1− h) (8.2)

From Figure 8.1 we can see that weight function #8 gives significantly better results
than the other functions. It gives a regression coefficient closer to one, and a lower error
value (RMSE). I have also logged the coefficient values that each weight function gives,
and there are only minor differences in the values (coefficients for all weight functions
are given in Appendix A). This is easy to understand when welook at the resulting small
differences in performance. The final coefficients from this new regression are given in
Table 8.2.
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Chapter 9

Network structures

The network design have a major influence of the types of problems and complexity
that an ANN can handle. There are a lot of litterature for what type of network that
is suitable for different kind of problems. There are however little information of how a
multi layer feed forward network should be sized for specific types of problems, beyond
the principles presented in Section 6.3. It was therefore no references I could use to
determine the network structure to apply for my ANN methods in the beginning. The
sources I found which gave concrete example of node distribution, was quite old and
was therefor limited by computational power. In this work available computer power
and computational time has not been restricted as I had access to a powerful computer
(Table 9.1). The working period that stretched over a whole semester gave the possibility
to train networks over long time periods.

To find a good network for each problem, I used a systematic trial and error method
to identify any trends for what kind of networks that solved the different kind of problems
the best. I will in the following text present the process to identify good network sizes
and the final structure for each prediction method.

Table 9.1: Hardware and Software used to design and train ANN network

Hardware
CPU model Intel Xeon E5-2680 v3
CPU speed 2.50 GHz
RAM 128 GB

Software
Operating System Windows Server 2012 R2
Matlab + Neural Network toolbox R2014a
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9.1 CR estimation

There are many methods existing today, which can predict the CR coefficients behavior
quite well, but they often have problems with the accuracy. The residual resistance is
a large component in the total resistance, particularly for higerh Froude numbers. As a
result, even small percentage errors will produce large absolute errors and have a major
effect on estimated calculated machinery power. From other methods, I could find a
good collection of h parameters that affect the resistance. Based on the most promising
coefficients I have tested three different groups of input parameters, to determine how
many are necessary to predict CR well. When I selected the input parameters, I empha-
sised that they should be easy to estimate early in the design process. I then test the
three parameter sets over a broad range of network structures to get a first impression
of what is necessary to get good results. In the end I will use this knowledge on an
improved set of network structures, to find the optimum network for CR prediction.

It’s important to remember that ANN training is a generic training process, which
produces different results for every training session. There are possible to imrove the
results from a given network by repeatedly training it until the results are satisfactory.
Of this reason, the following graphs should be treated as indications of a possible trend.
Of this reason it is important to test the networks in parallell for different setups so that
one can get an indication of the accuracy of a given network structure. This makes it
possible to identify some trends and make conclusions.

For the first iteration, I tested the parameter sets presented in Table 9.2. Because
CR is a dimensionless coefficient, I have decided to use dimensionless input parameters
as well. A test without dimensionless input parameters gave significantly poorer results.
Parameter set 1 and 2 are large and quite similar and parameter set 3 is to test the
effect of a small input set. Originally parameter set 2 was larger, but because of holes
in the database some coefficients was removed to not make disturbances in the training
of the networks. In Table 9.3, the node distribution and total nodes are given for 17
different networks. The performance of these networks are plotted in Figure 9.2, where
the performance are given for both the training and validation sets. The performance
are calculated by Matlab under training as the mean square error (Formula 10.1)

As Figure 9.2 illustrates, the training performance gets better as the number of
neurons increases. This is expected, as more neurons gives more possibilities to find a
network that fits the training set well. What is more interesting, is to look at how the
networks are able to generalize to the test set (Figure 9.1a). This graph show that the
number of neurons alone are no good measure of the quality of a network. When I look
at both graphs, I note that network #13 performs well for both training and testing,
and at the same time perform well for all three parameter sets. From this observation
I conclude that this network gives stable and good results. I can also se a vague trend
that networks with 45 nodes performs well in general. When the result for different
parameter sets are evaluated, it’s clear that parameter set #2 performs best for almost
all networks for bost train and test performance.
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Table 9.2: Three dimensionless paramater sets that are tested for CR prediction, to
identify necessary number of input parameters. Input set 2 was meant to be larger, but

because of holes in the database some less common parameters was removed

Parameter Set 1 Set 2 Set 3
FN X X X
LWL/∆1/3 X
LWL/LPP X X
LWL/B X X X
B/T X X X
(TAP − TFP )/LPP X X
LCB/LPP X X X
CM X X
CB X X X

Table 9.3: An initial set of nework structures to test how the ANN results depends on
node distribution

Node distribution No. of neurons #
15-0-0 15 1
20-0-0 20 2
30-0-0 30 3
40-0-0 40 4
50-0-0 50 5
60-0-0 60 6
20-20-0 40 7
30-30-0 60 8
20-30-0 50 9
30-20-0 50 10
15-15-15 45 11
20-20-20 60 12
10-15-20 45 13
20-15-10 45 14
20-30-20 70 15
30-15-30 75 16
100-0-0 100 17
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Figure 9.1: Graphical representation for the performance of different ANN
architectures, with different number and distribution of neurons. Performance is

represented with mean-square-error, and low values are best performance
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Table 9.4: New set of Neural Network structures iterated from performance to
Networks in Table 9.3, with 40-50 neurons. This test set investigate if the shape of the

network has any influence on the results

Node distribution No. of neurons #
40-0-0 40 1
45-0-0 45 2
50-0-0 50 3
20-20-0 40 4
20-25-0 45 5
25-20-0 45 6
15-30-0 45 7
30-15-0 45 8
5-40-0 45 9
40-5-0 45 10
15-15-15 45 11
10-10-20 40 12
20-10-10 40 13
10-20-10 40 14
10-15-20 45 15
20-15-10 45 16
10-20-15 45 17
15-30-5 50 18
5-30-15 50 19
15-5-30 50 20

9.1.1 A second iteration

From this first iteration, I get an impression of what size of network that performs well,
but there is no obvious trend in the test performance. Since this ANN will be applied
for new vessels, it’s important that the Test Performance are good and stable. Based on
the first iterateion and with basis in Figure 9.2, I tested another set of networks that are
similar to network #13. What I also want to investigate is if the shape of the network
has any influence of the results. The new set of networks can be seen in Table 9.4. For
these networks I have only tested input set #2, and instead focused on the division ratio
of the total dataset between testing and training. My hypothesis are that there is an
actual (but complex) relation between the input parameters and the CR coefficient, and
it is important that the network gets access to as many training samples as possibleto
find this relation. But at the same time, a certain amount of samples to test the networks
ability to generalize are also required. The two division ratios plotted are 95%/5% and
90%/10%.

As for the more general investigation, we can see a good correlation between the
size of the network and the Training performance, while there is not so easy to draw
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Figure 9.2: Graphical representation for the performance of different Neural Network
architectures, with different number and distribution of neurons. Performance is

represented with mean-square-error
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any conclusion from the Test performance. There is not even possible to see a clear
correlation between Train- and Test performance. By looking at the Train performance,
it seems that a neural net should have the smallest number of neurons in the last layer.
An extreme effect, are the difference between train performance of network #9 and #10.
The same trend are not so obvious by looking at the Test performance.

To pick a network architecture to go ahead with, I note the fact that network #15
perform very well under training with a good test performance for the 90/10 division
ratio. With the aim to get the best possible performance, the best network would be three
hidden layers with a neuron distribution 15-30-5. But, because I’m not very experienced
with ANNs and afraid to recommend an over fitted ANN, I will choose network #2
with just one hidden layer and 45 neurons in this thesis. The reason for this are the
behavior of the test performance in Figure 9.1a and 9.2a. These figures illustrates that
the test performance are steady and good for the one layered ANN, while it gets quite
unstable for the more complex networks. Because I cannot identify if this behavior are
caused by difference in network architecture or over fitting, there is impossible for me
to recommend a multi layered FFANN. The performance for the 90/10 division of the
dataset are slightly weaker, but not worse than that I prefer the security a larger test
set gives against over fitting.

9.2 Total Propulsion efficiency

There might be ambitious to make a ANN method for the total propulsion, without
taking it’s component (as described in Section 4) into account. I have assumed that
the problem is much similar to the CR-estimation problem, so that I can use the same
network structure to get good results. For this network, I will look closer into which
input parameters that are important to get a good relation. It should, in theory, not
matter if the parameters are dimensionless or not because the training process should
be able to find the relation anyway. There are, as I will show, not indifferent when
the result are dimensionless. There is possible to let the efficiency be speed or J-number
dependent. I have chosen to take the mean value for each vessel, and predict this. This is
simply because the variation for each vessel are small, and there was no clear correlation
to the J-number in my material.

For the propulsion efficiency, the inflow to the propeller are the single most important
factor. Parameters that can effect this inflow is therefor important to capture. This
implies that coefficients that sais something about the fullness should be investigated.
Some propeller data are obvious also important, together with the number of propellers.
The suggested input parameter sets are given in Table 9.5, and their performance are
given in Table 9.6.

There is easy to see that input set # 6 that performs best on all parameters, and
is the set that I will choose as my input set for ηD ANN. There seems to be little gain
to choose dimensionless parameters, but because ηD is dimensionless I believe there are
more consistent to use dimensionless input parameters. It is also interesting to note how
good the results are, by remember how complex the total propulsion efficiency are.
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Table 9.5: Six input sets, that are tested for ηD network. #4-6 are dimensionless

# Input parameters
1 No Prop CB LWL B ∇ AeA0
2 No Prop CB LWL B T ∇ AeA0 Pitch
3 No Prop CB LWL B T lcb ∇ DP AeA0 Pitch
4 No Prop CB LWL/B lcb LWL/∇1/3 Pitch
5 No Prop CB LWL/B B/T lcb LWL/∇1/3 AeA0 Pitch
6 No Prop CB LWL/B B/T lcb LWL/∇1/3 DP /LWL AeA0 Pitch
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Figure 9.3: Graphical representation for the performance of different Input parameter
sets for estimating ηD (is this needed?)
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Table 9.6: Performance data for ηD ANN

# Train Performance Test Performance R2

1 3,880239E-04 4,356840E-03 0,90537
2 2,348041E-04 2,471690E-03 0,94563
3 1,936928E-04 3,646710E-03 0,93252
4 4,353770E-03 2,313880E-03 0,48618
5 3,170786E-04 4,723520E-03 0,90721
6 1,756066E-04 2,305300E-03 0,95184

Table 9.7: Properties of η0 ANN

Input data J-no, Pitch, AeA0, Z, DP

Network 15-30-5
TrainPerformance 1.110776E-04
TestPerformance 2.042546E-04
R2 0.98698

9.3 Open Water efficiency

The Open water efficiency are found from an open water test, for an individual propeller.
The open water efficiency are better understood than the other parameters, this is
because there are fewer unknown effects involved (like turbulence and flow pattern behind
a hull) and well known propeller series that has investigated the effect of propeller
geometry. There is however worth noting that Fishing vessels uses Ducted Propellers
which is not so well investigated.

For the η0 ANN, I used the same input parameters as Wagening Propeller series and
added propeller diameter as a parameter. This network gave so good results that I did
not perform a broad testing of networks and input parameters. The summary of the
network can be seen in Table 9.7.

9.4 Hull Efficiency

Hull efficiency are a result of wake and thrust deduction, and it is usual to calculate these
two parameters individually. I have tried to make ANN’s for all three (ηH , wake, thrust
deduction), but for the same network structure as CR the training gives the strange
result that the mean value gives the best performance. I have therfore looked at some
simpler network structures to see how the results react on this.

I have tested some input sets and chosen one for all the parameters, which are Number
of Propellers, CB, lcb, B/T , LWL/B. This is inspired from the methods described in
Section 5.2, combined with the idea to define the fullness of the stern by using common
hull parameters. The stern fullness should be possible to define with the block coefficient
and the longitudinal center of buoyancy (lcb).
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Let me, in words, explain how this attempt went. When I tried to train the network
with the same architecture as I found for the CR estimation, the best result are given
as the mean value. This indicates that it cannot find a more reliable relation. By
reducing the complexity of the network (10 neurons in one layer), it produces a relation
which are not good compared to the networks mentioned above. This behavior are
interestingly equal for ηH , wake and thrust deduction. After discussing these findings
with experienced professionals I conclude that this is because these parameters depends
mostly on the stern curvature and how the propeller are positioned. This is information
that I can’t include because the information I have access to, are given in table form and
does not include stern shape. The methods developed, are also meant to be used in the
early design phase, where the sterns hape may not have been decided. To give the reader
some numbers to substantiate this phenomena, Table 9.8-9.11 gives the performance of
some relatively simple networks against the CR network.

We can see that the performance of the trained network are not much better than
the mean value. I will, however continue to use the network with the best performance
for the following calculations. This mean that I will use network #3 for thrust deduction
and network #1 for wake and hull efficiency. But there should be noted that the mean
value may be a more reliable estimate which can be seen from the Test Performance
values for the 15-30-5. I have therefor given the mean values in Table 9.10.

9.5 relative rotative efficiency
I have not found any methods that predicts ηR. After investigating this parameter and
talking to experienced professionals I understand that ηR are quite similar for each vessel
type. On this basis, and after trying to train different ANNs I have decided that the
mean value are a good and reliable estimate for ηR. When I tried to train an ANN, I
used the same input parameters as for hull efficiency, and added an I/O parameter to
tell if an propeller duct was installed or not. Most of the vessels uses propeller duct.
The mean value for ηR are 1.0675284.
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Table 9.8: Performance of Thrust deduction

# Network Train Performance Test Performance R2

1 10-0-0 2,04482E-03 1,59440E-03 0,54188
2 40-0-0 2,49086E-03 2,28405E-03 0,33909
3 45-0-0 1,74665E-03 3,29041E-03 0,53307
4 40-5-0 1,70810E-03 2,78777E-03 0,56871
5 15-30-5 2,64608E-03 3,41059E-03 0,00000

Table 9.9: Performance of wake

# Network Train Performance Test Performance R2

1 10-0-0 3,06063E-03 2,16921E-03 0,52795
2 40-0-0 3,22665E-03 1,26019E-03 0,52432
3 45-0-0 2,75511E-03 3,94356E-03 0,52698
4 40-5-0 3,05110E-03 2,21737E-03 0,52657
5 15-30-5 4,24294E-03 2,89303E-03 0,00000

Table 9.10: Performance of Hull efficiency

# Network Train Performance Test Performance R2

1 10-0-0 4,71171E-03 5,02722E-03 0,61749
2 40-0-0 6,80309E-03 3,00503E-03 0,40452
3 45-0-0 6,21724E-03 8,80279E-03 0,39797
4 40-5-0 4,46053E-03 1,11394E-02 0,57586
5 15-30-5 8,14787E-03 3,28945E-03 0,00000

Table 9.11: Mean estimation of Hull efficiency

Parameter Mean value
ηH 0.9967
wake 0.2528
thrust deduction 0.2590
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ANN programming

In Section 6, I have presented the general theory for ANN, but in the scope of a master
thesis it’s relevant to inform the reader of how this theory is applied.Rather than giving a
user manual for the tools and methods I have applied. Instead I will share my experience
and use this chapter to discuss what worked well and what I believe can be done in a
better way. I hope this can be of help to those who want to train their own ANNs and
would like to hear someone elses experience.

The software I have used in this work is mainly Matlab with Neural Network toolbox
where I have performed all the calculations and training of ANNs. To process the data
material to the right format (in my case .csv format), I have also used textprocessing
tools that are able to configure .csv files (MS Excel and TextPad have worked well for
me).

10.1 Input processing

The most important part of traing an ANN is to have a large and reliable data material.
Especially for resistance and propulsion estimation it is difficult to predict which input
parameters that will give the best results. So to have the possibility efficient change the
input parameters. I therefor converted my data source to a .csv file, and used Matlabs
handy «csvread» command, that automaticly transform a .csv file to a matrix. When
the data material is imported as a matrix in Matlab, it is trivial to to sort and process
the data before beginning the training of the network. I gained good experience in
structuring the data into tables, which gives the possibility to assign names to the row
and columns so that it is easier to call for the right data (i.e. Geometry.Lwl(i) if one
wants to use the waterline length of model i that is stored in a table called «Geometry»).

Early in the process, I decided to make a few and general tables to store a lot of
information in one place. This made it easy to know where to get the information I
needed, and to know that the methods was tested and trained on the same premises.
Late in the process, I learned that it might have been better to also make individual
tables for each ANN method. The reason for this hindsight is that sometimes there are
missing data in some of the inputs, but it’s undesirable to remove the vessel from the
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table and thereby reducing the data material for all the ANNs.

10.2 Matlab NeuralNetwork toolbox

The NN toolbox is a comprehensive tool package that is needed to handle the complete
process of training an ANN. It includes a lot of commands, but also a very handy
graphical userface to design and train ANNs (By using the command «nnstart»). This
graphical interface is a good way to get familiar with the NN toolbox and gives easy
access to the important operations, but gives limited options to do complex network
designs. I used the included options of codegeneration, that convert the choices made
in the graphical userface to a script. In this script it’s possible to exploit the advanced
possibilities in the toolbox.

In Appendix C, I have given an example of the script I used to train ANNs. I
made one script for each ANN. This way I could store different input/output matrices
and then it was easier to train several networks simultaneously. The script makes it
easier to customize (1)the neuron distribution over several layers, (2)the division of the
dataset in a training and testing fraction and (3)the training limits (Like maximum
training epochs, stop conditions and such). The structure of the script are standarized
from the export option, but there are alsopossible to train and design more complex
networks (Beale et al., 2015, p.8-44). In my work, I limited myself to using the the
configurations that I understand and not tested very advanced networks, this is because
I need to be committed to the results I present and be able to explain them. To take
the ANN knowledge and experience furthter, I believe that these options should be
investigated by users that are familiar with both the use and desing of ANNs because
I’m conviced that they might produce even better results when used right.

A parameter that is important in the use of NN toolbox is the performance parameter.
In this thesis I have used mean square error (MSE, Formula 10.1) as the performance
calculations. It increases the importance of outliers in the predictions, and therefor
reduces the standard deviation in the training. This is an important quality for this
types of problems where I want a stable and thrustworthy prediction method.

MSE = 1
n

n∑
i=1

(Xi − X̄)2 (10.1)

10.3 Final script

Another nice feature of ANNs, is that they are so easy to use after they are trained.
A trained FFANN basically consist of matrices of bias weights and values that is to
be added and multiplied. This is an operation that is very simple for any computer.
The training requires a lot of processing power to find these matrices, but once found
an ANN can be used with a very small processor (even a smartphone can use ANNs).
The final script which consist of matrices and some transfer functions, can also easily be
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translated to any programming language that best suits the intended use. An example
of an FFANN with a neuron distribution of 15-30-5 is attached in Appendix D



Chapter 11

Results

This chapter will compare the developed ANN methods against established methods
to quantify the improvements that ANN gives. Because I have used 90% of my data
material for training the networks, it is expected that they will perform better than the
other methods. I have tried to account for this when choosing error calculations for
comparison, which should indicate both the precision of the methods and dispersion of
the results. The aim is to give the reader a good basis to identify if an ANN method
could be a better tool in estimating resistance and installed power than what are publicly
available today. This chapter is divided in two parts, first I investigate the estimation
of individual parameters, before I look at how the methods work together to predict the
necessary delivered power.

To indicate the precision of the methods I use the mean error (Formula 11.1), this is
a simple but effective indicator of how close the prediction are to the actual value. The
mean value can however be tricked by an estimate that over predict and under predict
equally, so that independent if the scattering are high, the mean error will be low. To
correct for this pitfall, I have also calculated the standard deviation (Formula 11.2). This
is a good parameter to reveal if there is large dispersion in the results, because it sums
up the deviation from the mean error in each sample. So the case with large deviations
that are equally distributed for positive and negative errors will produce a small mean
error, but a large standard deviation. These two variables work well together to give the
reader a good impression of the reliability of each method. To make comparisons easier,
both between methods and parameters, I will calculate errors in percentage against the
model results (Formula 11.3).

X̄ = 1
n

n∑
i=1

Xi (11.1)

σ =

√√√√ 1
n− 1

n∑
i=1

(Xi − X̄)2 (11.2)
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Table 11.1: Error calculation for the tested CR estimation methods. All the results are
converted to the total resistance in Newton before the errors are calculated. The errors

are given as percentage compared to the model test results.

Mean error [%] Standard Deviation
ANN 1.4539 4.4158
Digernes 13.0064 14.3315
Hollenbach -13.6922 16.4739
Holtrop 4.8853 15.6854
Oortmerssen 34.126 30.3128

X = 100 · xcalculated − xmodel
xmodel

(11.3)

11.1 Individual methods
I will first calculate the error for each method independently, and compare the difference
between the ANN and established methods I have investigated. In the next section, I
will use the described methods to calculate the necessary delivered power.

In the project assignment last semester (Kleppestø, 2014), I calculated the errors
for the empirical methods. The data material was then smaller than the one used in
this thesis. It consist of 48 fishing vessels (Where 194 vessels are present in this data
material).Because some of the empirical methods calculate the total resistance directly,
I have calculated the total resistance based on the CR coefficient so I can compare all
the methods on the same basis. As Table 11.1 illustrates, the developed ANN for CR
method perform significantly better than the other methods.

Table 11.2 gives the calculated errors for wake estimation. The methods that are
tested are discussed in Section 5.2, and one can see that there is not necessary the
most advanced formulas that are best. Especially interesting is it to see that the simple
formula of Taylor gives so good results. As discussed in Section 9.4. Because the mean
value seems to be a competitive alternative to estimate the wake estimation, I have
calculated the error for the mean value for the vessels with one propeller which applies
for 186 of the vessels, and we can see that it actually performs better than the ANN.

I have not investigated more than one empirical method for thrust deduction, and in
Table 11.3 it’s easy to see that the result are not very good for Holtrop’s thrust deduction
estimate. The ANN method are fairly good, and one can see that the mean value are
not so good in prediction as for wake. I have also here removed the seven vessels with
twin propellers, and can inform the reader that the effect on error was much less than
for wake.

Another coefficient that I was curious if the mean value could compete with the ANN
results are the relative rotative efficiency (ηR). This is the parameter where the effect of
sorting out the twin-screw ships has the most influence on the errors. We can see that
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Table 11.2: Error calculation for the tested wake estimation methods. The errors are
given as percentage compared to the model test results. The mean value are given as

an alternative to the ANN. The reason for this are explained in Section 9.4

Mean error [%] Standard Deviation
ANN 6.4155 0.2914
Mean Value 5.3373 0.2640
BSRA 454.4822 30.2287
Harvald 9.8757 0.6322
Holtrop −21.4035 0.3452
Taylor 8.2889 0.5312

Table 11.3: Error calculation for the tested thrust estimation methods. The errors are
given as percentage compared to the model test results. The mean value are given as

an alternative to the ANN. The reason for this are explained in Section 9.4

Mean error [%] Standard Deviation
ANN 2.7184 0.1714
Mean Value 4.1971 0.2159
Holtrop −112.017 0.1590

the mean value performs very well, but the ANN are slightly better. The reader should
be aware that ηR varies much for different kinds of vessel types.

To predict the propeller efficiency, it is common to use the systematic Wageningen
B-series. When we compare the results to the trained ANN, it’s interesting to note that
the performance are not very bad. Even when we know that the tested propellers are
equipped with ducts, something the Wageningen B-series propellers are not. When we
look at Table 11.5, it seems it’s easy to conclude that the ANN does not perform any
better than the Wageningen B-series. But this is not necessarily true, because we here
got an interesting case where the ANN in general performs well, but has two results that
increase the total error significantly. After investigating these two errors, I found that
the AE/A0 input value was zero for these two propellers. This was discovered rather
late in the process, and because of the way I process the data’s in my Matlab program
its not trivial to remove individual results from the calculations. To illustrate the case,
I have plotted all the errors in Figure B.2 where it’s clear that for all the other vessels,

Table 11.4: Error calculation for the tested ηR estimation methods. The errors are
given as percentage compared to the model test results. The mean value are given as

an alternative to the ANN. The reason for this are explained in Section 9.4

Mean [%] Standard Deviation
ANN 0.1688 0.0372
Mean Value 0.2872 0.053
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Table 11.5: Error calculation for the tested η0 estimation methods. The errors are
given as percentage compared to the model test results for all tested J-values

Mean error [%] Standard Deviation
ANN -1.5626 0.0602
Wageningen -0.0436 0.0675

Table 11.6: An overview of the calculated errors for all trained ANNs. The errors are
given as percentage compared to model test results, and the standard deviation are

calculated for the percentage errors

Mean error[%] Standard Deviation
CR 1.4827 0.1745
ηD 0.0423 0.0409
η0 -1.5626 0.0602
ηR 0.1688 0.0372
ηH 0.5992 0.0684
thrust 2.7184 0.1714
wake 6.4155 0.2914

the ANN performes much better than Wageningen B-series. This can also be used as an
example that ANNs can give quite extreme results with poor input data, in this example
the results from Wageningen B-series don’t show such a major effect with the same input
values.

In general, it is very interesting to see how well ANN is able to estimate the total
propulsion efficiency. It removes many potential error sources to use only one method,
compared to calculate each component with several methods. When all the results for
the ANNs are examined, there is impressive to see how good the results are for all the
different methods (Table 11.6). Especially the very low standard deviation for all the
methods gives a good impression that the ANN are a comprehensive method that can
handle different problems very well.

11.2 Estimating delivered power

The goal for this thesis is to predict the necessary machinery power. To estimate the
machinery power, the results from several methods must be put together. Then small
individual errors can either be strengthened or weakened by errors in other methods.
It’s therefore not enough to look at the methods independently, but necessary to see
how they work together.

I have tested many methods, and this gives many possible combinations to calculate
the total machinery power. To keep it simple, I have chosen just three combinations
that seems most relevant. A obvious choice is to test the effect to calculate ηD directly,
because if this works it is the most efficiency way to estimate with as few methods as
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Table 11.7: An overview of the calculated errors for the delivered power for three
different combinations of methods. #1 CR and ηD are calculated from ANN. #2 CR,

wake, thrust deduction, η0 and ηR from ANN. #3 RTot from updated Digernes
formula, wake from Taylors formula, thrust deduction from Holtrop’s formula, η0 from

Wageningen B-series and ηD as the mean value from data material.

Mean error [%] Standard Deviation
# 1 -3.0009 0.0258
# 2 12.5282 0.8768
# 3 -79.3519 0.1344

possible. To compare this, I have performed a calculation with the other ANN methods.
The last combination I have chosen is to calculate ηD from the best performing empirical
methods from Section 11.1, that is Taylors formula for wake, Holtrops formula for thrust,
Wageningen B-series for η0 and the mean value for ηR. I have used the updated Digernes
formula to calculate RTot for the empirical combination because it performs well and
was easy accessible for me.

From Table 11.7 we can see that the mean error are not so different, while there are
significantly differences for the standard deviation. This type of scenario are discussed
in the introduction to this chapter. To assist the reader further, I have included a 3-D
plot of all the calculated errors for all vessels and speed in Appendix B (Figure B.1). On
the basis of this results, it’s clear that it’s recommended to use only the ANN method
for CR and ηD to estimate the necessary machinery power.



Chapter 12

Discussion

When the results are summerized, all the ANN methods perform better than existing
methods. This illustrates how powerful and flexible a ANN is, and this supports the
impression I have from this work. As long as one uses a good and sufficiently large
data material, anyone can produce good and reliable ANN’s that are tailored for their
problem.

My main concern when training ANNs, has been to control overfitting. An overfitted
ANN looses its generalization ability, and therefore looses reliablilty as a prediction
method. I have taken several measures to prevent overfitting, and believe that I have
succeeded. A small test with vessels not included the data material, show that the
reisistance prediction are very good, but a few vessels that are slightly outside the field
of validity fails significantly. It is however so obvious that these results are wrong, that
any user would dismiss them. The same phenomen is observed for some of the propulsion
estimation methods, most of the errors are very low with a few resultsare way off when
some of the input parameters are abnormal. This indicates that there are still more to
learn about ANNs, but with the promising results in this thesis, ANN has the potential
to become the dominant tool for empirical prediction in the near future.

The estimation of machinery power, gave very good result by combining just CR and
ηD estimation. Overall, I would recomend everyone that needs a reliable and precise
estimate of resistance or machinery power to try these methods.

I have also improved Digernes Formula for modern fishing vessels. This formula can
be recomended for everyone that needs a fast and simple estimate of resistance.

12.1 Future work

This work has shown the great potential of ANN, but it has not been able to produce
excelent results for all type of problems. There is still a need for a deeper understanding
of what kind of network architecture that suits the kind of problems encountered in ship
resistance and propulsion estimation. I have not been able to justify if my errors are
caused by not choosing the right input parameters, or the wrong network architecture.
A deeper study into commercial use of ANN should aim to answer these problems.
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Another interesting topic for future work, would be to check the capability to do
a parameter study with an ANN. Because neural network training is about finding
connections both between the input parameters and the output parameters. This means
that a neural network not only look at how each input affect the output, but how
the input parameters together affect the output value. This should mean that there is
possible to do a parameter study from an ANN if the training sets are good.
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Appendix A

Digernes coefficients

The resulting coefficients from the updated regression analysis of Digernes Formula. Dif-
ferent robust fitting weight functions are tested, and only minor differences are produced.

I



Table A.1: The resulting coefficient values for different robust weight function from
regression analysis in Matlab. See Section 8

# Weight function a b c δ β

1 andrews −0, 184409 0, 402914 0, 431905 0, 955804 12, 506959
2 bisquare −0, 184274 0, 402638 0, 431659 0, 955863 12, 507215
3 cauchy −0, 179162 0, 392988 0, 431762 0, 957102 12, 508442
4 fair −0, 175876 0, 385251 0, 429369 0, 958457 12, 510439
5 huber −0, 180830 0, 394678 0, 434129 0, 956721 12, 509730
6 logistic −0, 177884 0, 390039 0, 431725 0, 957521 12, 509021
7 ols −0, 174844 0, 345410 0, 434087 0, 966449 12, 494959
8 talwar −0, 223922 0, 401732 0, 438858 0, 959433 12, 535261
9 welsch −0, 191959 0, 399156 0, 431529 0, 956268 12, 507599
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Appendix B

Error Plots

Sometimes it’s easier to explain with a figure than tables. The following figures tries to
show the distribution of the error for some of the threated methods in this thesis.
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(a) Visualization of the errors calculated for the #1 combinations of
methods for machinery power estimation
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(b) Visualization of the errors calculated for the #2 combinations of
methods for machinery power estimation
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(c) Visualization of the errors calculated for the #3 combinations of
methods for machinery power estimation

Figure B.1: The plots illustrates all the calculated errors for delivered power in
percentage on the z-axis (upwards). Each vessel are on the x-axis (0-200) and the
speeds in the y-axis (0-25). The vessels are testes for different number of speeds.
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(a) Visualization of the errors calculated for the ANN method for η0
estimation
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(b) Visualization of the errors calculated for the Wageningen B-series used
for η0 estimation

Figure B.2: The plots illustrates all the calculated errors for η0 in percentage on the
z-axis (upwards). Each vessel are on the x-axis (0-200) and the speeds in the y-axis

(0-25). The vessels are testes for different number of speeds. The figure are included to
show that an ANN network can have a very good performance in general, but fail

considerable when it misses. In these two cases, there are an error (zero value) for one
of the input parameters that creates the two large errors
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Appendix C

ANN.m

Matlab code that is used to train a three layered FFANN network
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% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app
%
% This script assumes these variables are defined:
%
% ANN_in - input data.
% ANN_out - target data.

%global ANN_in ANN_out

% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. NFTOOL falls back to this in low memory situations.
trainFcn = 'trainbr'; % Bayesian Regularization

% Create a Fitting Network
hiddenLayerSize = [15 30 5]; % Neuron distribution over three layers
net = fitnet(hiddenLayerSize,trainFcn);

% Choose Input and Output Pre/Post-Processing Functions
% For a list of all processing functions type: help nnprocess

% !Hides post- & preprocessing as described in Stackoverflow
% thread so the length of weigth vector is known!

%net.input.processFcns = {'removeconstantrows','mapminmax'};
%net.output.processFcns = {'removeconstantrows','mapminmax'};

% Setup Division of Data for Training, Validation, Testing
% For a list of all data division functions type: help nndivide
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'sample'; % Divide up every sample
net.divideParam.trainRatio = 89/100;
net.divideParam.valRatio = 1/100;
net.divideParam.testRatio = 10/100;

% Choose a Performance Function
% For a list of all performance functions type: help nnperformance
net.performFcn = 'mse'; % Mean squared error

% Choose Plot Functions
% For a list of all plot functions type: help nnplot
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...

'plotregression', 'plotfit'};

% Train the Network
net.trainParam.epochs = 5000; % Max training epochs
net.trainParam.showWindow = 0; % If graphical window of training progress should show up
net.trainParam.showCommandLine = 1; % Sho progress as command line output
net.trainParam.show = 500; % Choose how often progress should be written

% Train the network
[net,tr] = train(net,ANN_in,ANN_out);
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% Test the Network
y = net(ANN_in);
e = gsubtract(ANN_out,y);
performance = perform(net,ANN_out,y)

% Recalculate Training, Validation and Test Performance
trainTargets = ANN_out .* tr.trainMask{1};
valTargets = ANN_out .* tr.valMask{1};
testTargets = ANN_out .* tr.testMask{1};
trainPerformance = perform(net,trainTargets,y)
%valPerformance = perform(net,valTargets,y)
testPerformance = perform(net,testTargets,y)

% View the Network
% view(net)

% Plots
% Uncomment these lines to enable various plots.
figure, plotperform(tr) % Performance progress
%figure, plottrainstate(tr)
%figure, plotfit(net,ANN_in,ANN_out)
figure, plotregression(ANN_out,y) % Regression coefficient
%figure, ploterrhist(e)

% Deployment
% Change the (false) values to (true) to enable the following code blocks.
if (true)

% Generate MATLAB function for neural network for application deployment
% in MATLAB scripts or with MATLAB Compiler and Builder tools, or simply
% to examine the calculations your trained neural network performs.
genFunction(net,'Mastergrad/myNeuralNetworkFunction');
y = myNeuralNetworkFunction_Cr(ANN_in);

end
if (false)

% Generate a matrix-only MATLAB function for neural network code
% generation with MATLAB Coder tools.
genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes');
y = myNeuralNetworkFunction(ANN_in);

end
if (false)

% Generate a Simulink diagram for simulation or deployment with.
% Simulink Coder tools.
gensim(net);

end
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Appendix D

MyNeuralNetworkFunction.m

Example file of how a trained FFANN with neuron distribution of 15-30-5 would look
like. The values are set to one because the results are confidential.
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function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~)
%MYNEURALNETWORKFUNCTION_CR neural network simulation function.
%
% Generated by Neural Network Toolbox function genFunction.
%
% [Y] = myNeuralNetworkFunction_Cr(X,~,~) takes these arguments:
%
% X = 1xTS cell, 1 inputs over TS timsteps
% Each X{1,ts} = 8xQ matrix, input #1 at timestep ts.
%
% and returns:
% Y = 1xTS cell of 1 outputs over TS timesteps.
% Each Y{1,ts} = 1xQ matrix, output #1 at timestep ts.
%
% where Q is number of samples (or series) and TS is the number of timesteps.

% ===== NEURAL NETWORK CONSTANTS =====
% The matrix values are replaced with ones. This is because the final
% results are confidensial but at the same time it should be of interest
% to the reader to see the matrix sizes.

% Input 1
x1_step1_xoffset = [1;1;1;1;1;1;1;1];
x1_step1_gain = [1;1;1;1;1;1;1;1];
x1_step1_ymin = -1;

% Layer 1
b1 = [1;1;1;1;1;1;1;1;1;1;1;1;1;1;1];
IW1_1 = [ 1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1; ...

1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1];

% Layer 2
b2 = [1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1];
LW2_1 = [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; ...

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];

% Layer 3
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b3 = [1;1;1;1;1];
LW3_2 = [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; ...

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; ...
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];

% Layer 4
b4 = 1;
LW4_3 = [1 1 1 1 1];

% Output 1
y1_step1_ymin = -1;
y1_step1_gain = 1;
y1_step1_xoffset = 1;

% ===== SIMULATION ========

% Format Input Arguments
isCellX = iscell(X);
if ~isCellX, X = {X}; end;

% Dimensions
TS = size(X,2); % timesteps
if ~isempty(X)
Q = size(X{1},2); % samples/series

else
Q = 0;

end

% Allocate Outputs
Y = cell(1,TS);

% Time loop
for ts=1:TS

% Input 1
Xp1 = mapminmax_apply(X{1,ts},x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);

% Layer 1
a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1);

% Layer 2
a2 = tansig_apply(repmat(b2,1,Q) + LW2_1*a1);

% Layer 3
a3 = tansig_apply(repmat(b3,1,Q) + LW3_2*a2);

% Layer 4
a4 = repmat(b4,1,Q) + LW4_3*a3;

% Output 1
Y{1,ts} = mapminmax_reverse(a4,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin);
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end

% Final Delay States
Xf = cell(1,0);
Af = cell(4,0);

% Format Output Arguments
if ~isCellX, Y = cell2mat(Y); end

end

% ===== MODULE FUNCTIONS ========

% Map Minimum and Maximum Input Processing Function
function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin)

y = bsxfun(@minus,x,settings_xoffset);
y = bsxfun(@times,y,settings_gain);
y = bsxfun(@plus,y,settings_ymin);

end

% Sigmoid Symmetric Transfer Function
function a = tansig_apply(n)

a = 2 ./ (1 + exp(-2*n)) - 1;
end

% Map Minimum and Maximum Output Reverse-Processing Function
function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin)

x = bsxfun(@minus,y,settings_ymin);
x = bsxfun(@rdivide,x,settings_gain);
x = bsxfun(@plus,x,settings_xoffset);

end
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