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Environmental data from reliable sources has been of great importance to ensure safe operations at sea. 

Recently, there has been a development towards using already existing sensors in most waters, which 

are ships by applying the wave buoy analogy. The wave buoy analogy uses the ship response and 

estimate the wave spectrum by this movement. Most methods today assume that both the short-term 

sea state and the ship response are stationary. Assuming that the short-term sea state is a stationary 

stochastic process is well established in the literature. However, by assuming that the ship response is 

stationary, the recreation of the spectrum is dependent on the operational conditions, such as constant 

course direction, and constant vessel speed. In this thesis it is desirable to investigate if there exist 

methods that are not dependent on the operational conditions, such that the vessel data can be used 

constantly.  

 

This thesis should address the non-stationary problem, using multivariate analysis and Bayesian 

statistics. The aim of the project is be to obtain spectral information from a non-stationary response.  

 

Scope of work  

1. Perform a literature review to provide background and relevant references on 
•  General methods for estimating wave spectra.  
•  Stochastic theory related to the subject.  

2.  Investigate the ship response behaviour and present relevant concepts to wave theory. 
 

3.  Propose a theoretical mathematical method that can investigate non-stationary response 
spectrum. 
 

4.  Formulate the non-stationary ship response as an estimation problem, and relate the method to 
known estimation techniques in Marine Cybernetic environment, and apply the method on a 
simple process to verify the estimation technique.  Evaluate the algorithm’s performance of 
estimating the parameters of this process.  
 

5. Estimate the spectrum of simulated stationary ship response processes, and evaluate the 
performance.   
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Summary

The main topic of this master thesis is to obtain spectral information of non-stationary
ship responses, with the motive of facilitating improvement of sea state estimation
methods, that are using the wave buoy analogy. The wave buoy analogy is a method that
uses the ship response to estimate the wave spectra. This method is restricted by constant
operational conditions, such as vessel speed and direction, and is therefore limited to
stationary processes. By introducing a method that can obtain spectral information from
a time-varying ship response, the sea state estimation can be done without restrictions
on the operational conditions. This can be achieved by the use of a parametric method,
which is derived in this thesis.

The parametric method uses a time-varying auto-regressive model (TVAR) and Bayesian
estimation methods to estimate the time-varying parameters, which can be transformed
to the time-dependent power density spectrum of the ship response.

The algorithm is tested on stationary and non-stationary processes where key factors and
limitations are identified. Simulation studies show that the performance of the algorithm
is sensitive to the ratio between the co-variance of the state noise and the observation
noise. The main limitation of the study is that this ratio needs to be tuned manually, and
not in an adaptive way. In addition, the algorithm has a decreasing performance when
the level of non-stationarity and the complexity of the spectrum increase.

The algorithm is tested on real data in a model test with Cybership III conducted in
the MClab at NTNU. Unfortunately, the RAO’s of Cybership were for different load
conditions than those tested. Since the test study was approximately stationary, the
algorithm could be compared with another using Fast Fourier Transform and smoothing
functions. However, it was due to work with this thesis that the RAO’s were found to be
for a different load condition. Furthermore, it was found that the algorithm estimate a
more narrow spectrum than the Fourier Transform method.





Sammendrag

Hovedtema for denne masteroppgaven er å estimere spektralinformation av ikke-stasjonære
skipsresponser, for å legge til rette forbedringer av metoder som bruker bølgebøye
analogien til å sjøtilstandsestimering. Bølgebøyeanalogien er en metode som bruker
skipsresponser til å estimere bølgespektre. Denne metoden er begrenset av konstante
operasjonelle betingelser, slik som fartøyets fart og kurs, og er derfor bundet til stasjonære
prosesser. Ved å innføre en metode som kan estimere spektral information fra et
tidsvarierende skipsresponsespectrum, så kan sjøtilstandsestimering uten begrensninger
på operasjonelle forhold. Dette kan gjøres med en parametrisk metode som er utledet i
denne masteroppgaven.

Den parametriske metoden bruker en tidsvarierende auto-regressiv model, og Bayesiske
estimeringsmetoder til å estimere de tidsvarierende parametrene, som kan transformeres
til det tidsvariande skipsresponsspekteret.

Algoritmen er testet på stasjonære og ikke-stasjonære prosesser, hvor viktige faktorer er
funnet. I korte trekk, så viser simuleringsstudier at algoritmen estimerer de dominante
frekvensene bedre enn den estimerer størrelsen på spekteret. I tillegg viser studiene
at ytelsen er svært følsomt ovenfor forholdet mellom kovariansen til tilstandsstøyen, og
kovariansen til målestøyen i den matematiske modellen. Den største begrensningen til
algoritmen er at dette forholdet bestemmes manuelt, og ikke automatisk. I tillegg så viser
algoritmen en avtagende ytelse når kompleksiteten og graden av ikke-stasjonæritet øker.

Algoritmen er også testet på model data av Cybership III utført i MClab på Marin
Teknisk Senter NTNU. Dessverre viste det seg at transferfunksjonene til Cybership III
var for en annen lastkondisjon enn den som var i modelforsøket. Siden test forsøket var
implementert som en tilnærmet stasjonær prosess, så kunne algorithmen bli sammenlignet
med en metode som bruker Fourier Transform og glattefunksjoner. Det var i denne
masteroppgaven det ble funnet ut at transfer funksjonen var for en annen lastkondisjon.
Resultatet viste at den parametriske metoden estimerer et smalere spekter enn metoden
med Fourier Transformasjon.
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Chapter 1

Introduction

This thesis is part of the research, carried out at the Center for Autonomous Marine
Operations and Systems (AMOS), in analyzing the ship response, with the underlying
motive of improving sea state estimation. The thesis has a particular focus of estimating
spectral information of non-stationary ship response, with emphasis on using Bayesian
methods.

1.1 Motivation

Environmental data from reliable sources has been of great importance to ensure
safe marine operations at sea. The wave-rider buoy has primarily been the most
important source to establish oceanographic statistics. However, recently there has been
a development towards using already existing sensors that travel most waters, namely
ships, inviting the “big data” revolution to the study of Marine Technology. Although
the value of information from wave buoys is unquestionable, the possibility of extracting
meaningful and useful information out of the large amount of data already available on
vessels, could be of tremendous importance. In the future, maybe this concept can make
it possible to create a common database describing and predicting the seas all around the
world. Challenges related to this extend to several disciplines in the Marine Cybernetic
study, and knowledge within wave theory, weather forecasting, observer technology, sensor
fusion, stochastic process analysis, statistics and computer science. All these elements
are required to reach the common aim in making the sea more predictable, safer and
operational effective.
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CHAPTER 1. INTRODUCTION

1.2 Background

The method of using ship response to estimate the wave spectrum is called the wave
buoy analogy. An example of this methodology, proposed by Nielsen (2005), is shown in
Figure 1.1.

Figure 1.1: Wave spectrum estimation algorithm.

In brief, the figure shows the movement of the vessel y(t) is transformed to a ship response
spectrum Sy(f). This is compared with a ship response spectrum generated from a wave
spectrum and a transfer function. Furthermore, the correct wave spectrum is then found
by minimizing the error between the two ship response spectra.

In this thesis, the main focus is to analyze the ship response transform between the time
domain and the frequency domain, which is the three blocks outlined in red in the figure
above. The reason for this is elaborated below.

Most methods today, are assuming that both the short term sea state, and the ship
response can be considered as stationary. It is well established in the literature that the
short term sea state can be considered as stationary, see Faltinsen (1990). However, the
ship response can only be assumed stationary for constant operational conditions, such
as constant heading and vessel speed. This is not suitable for the purpose of having a
database receiving data from vessels simultaneously. For changing operational conditions,

2



CHAPTER 1. INTRODUCTION

the ship response should therefore be considered as non-stationary (Nielsen 2005).

The aim of this thesis is therefore to propose an alternative method that can recreate
the non-stationary ship response, which facilitates the possibility of recreating the wave
spectrum when the operational conditions vary with time. This is obtained by using a
time-varying auto regressive model (TVAR), and Bayesian estimation methods.

1.3 Previous Work

Sea state estimation originates from the 1970’s with use of moored wave buoys. The
method is also an important contributor of oceanographic analysis today, in particular
in areas close to shore. In harsher and deeper seas, wave buoys are exposed to damage,
and the cost of mooring lines increases substantially as the sea depth increases. The wave
buoy analogy solves this problem using motion spectra from ships to estimate the wave
spectra, see Nielsen (2005) and Tannuri et al. (2003). These methods assume stationary
ship response, making the estimation problem applicable for the Fast Fourier Transform.

The use of parametric spectral estimation methods, such as TVAR, was in the engineering
aspect first used for earthquake modeling, see Kitagawa & Gersch (1985). Earthquakes
are highly non-stationary, and therefore the non-parametric methods fail. The TVAR-
estimation theory has been used on offshore structures by Yazid et al. (2012), and on ship
response by Iseki & Terada (2003) and Iseki (2004).

1.4 Main Contribution

The main contributions of this thesis is the development of an algorithm that can analyze a
non-stationary ship response. The algorithm exist on different applications, however to the
author’s knowledge, the derivation of the whole algorithm lacks important considerations
in the literature. Therefore a rigorous derivation of the algorithm is presented, where
the essential is presented in Chapters 4 to 7. In addition, two different mathematical
state space models are proposed and tested, through a parameter study, see Section 8.1.
Furthermore, identification of key factors and limitations of the algorithm are also given
in Chapter 8, and Chapter 9. It is found that a low ratio between the state noise and the
observation noise in the Kalman filter is decisive to obtain a proper result.

3



CHAPTER 1. INTRODUCTION

1.5 Outline

The thesis is divided into three parts: Part I: Ship Response, Part II: Spectral Estimation
of Ship Response, and Part III: Case Studies.

Part I includes the following chapters:

• Chapter 2: Wave Theory, which contains background information of the relation
between the wave spectrum and the ship response.

• Chapter 3: Non-stationary Ship Response , which explains the non-stationary
behavior of the ship response.

Part II addresses the derivation of the algorithm that can recreate the non-stationary ship
response, and is composed of

• Chapter 4: Mathematical Modeling, which contains a rigorous description of the
mathematical models chosen to analyze the ship response.

• Chapter 5: Bayesian Estimation of TVAR parameters, presents derivation of the
estimation techniques that are used in order to recreate the spectrum.

• Chapter 6: Model Order Selection contains a brief description of the evaluation
criteria used to choose the correct model for the problem.

• Chapter 7: Estimation of Time Dependent Response Spectrum the relation between
the estimated parameters and the recreated spectrum is derived.

Part III consisting in analyzing the performance of the algorithm, by different case studies,
divided into

• Chapter 8: Stationary Simulation Studies consists of different stationary case studies
made for identifying key factors and limitations in the method.

• Chapter 9: Non-Stationary Simulation Studies consists of non-stationary case study
to test the robustness of the algorithm.

• Chapter 10: Ship Response Estimation of Cybership III the case study is
implemented on real data from a model test, with the vessel Cybership III conducted
in the MClab at the Department of Marine Technology, NTNU.

4



Part I

Ship Response
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Introduction to the Ship Response

In this thesis, the ship response refers to the wave-induced response of the first order wave
forces. Knowledge about the waves is therefore of particular importance when analyzing
the ship response, and therefore wave theory is presented in Chapter 2.

The relation between the wave spectrum and the ship response for constant operational
conditions is shown in Figure 1.2. However, for changing operational condition the transfer
function also changes. This induces non-stationary behavior of the ship response. This
will be discussed in Chapter 3.
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Figure 1.2: Wave spectrum, transfer function and ship response.
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Chapter 2

Wave Theory

A brief description of the relevant wave theory is given is this chapter. The description is
referred to Faltinsen (1990), Myrhaug (2007), Fossen (2011), and Sørensen (2012).

2.1 Sea State

The sea state is defined as the statistical representation of the wave height, distributed
over the wave frequencies and the wave directions, and can be described by the significant
wave height Hs, and the peak period Tp. The significant wave height is defined as the
average of the 1

3
highest waves Myrhaug (2007), and the peak period is defined as the

dominant period in wave spectrum S(ω) which will be defined in Section 2.2.

The sea states are divided into short term sea state and long term sea state:

• Short term sea state is a statistical description of the wave heights as function of
frequency and direction, for a specific duration of time in a specific area. The
significant wave height, and peak period are constant. A typical duration time is
around three hours.

• Long term sea state is a statistical description of which of the short term sea state
that might takes place. The time length can be up to several months, and the
significant wave height and the peak period vary.

The sea states are furthermore categorized in different codes, depending on the significant
wave height (Price & Bishop 1974), see table Table 2.1.
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Sea State Code Description of Sea Significant Wave Height Hs

0 Calm (Glassy) 0 m
1 Calm (Rippled) 0 - 0.1 m
2 Smooth (Wavelets) 0.1 - 0.5 m
3 Slight 0.5 - 1.25 m
4 Moderate 1.25 - 2.5 m
5 Rough 2.5 - 4 m
6 Very Rough 4 - 6 m
7 High 6 - 9 m
8 Very High 9 - 14 m
9 Phenomenal Over 14 m

Table 2.1: Sea state codes (Price & Bishop 1974).

2.2 Wave Spectrum

A way to describe a sea state is to represent the energy as function of frequency and
direction of the waves. This is called a wave spectrum, and consists of a frequency spectrum
S(ω), and a spreading function D(ψ),

S(ω, ψ) = S(ω)D(ψ). (2.1)

The frequency spectrum S(ω), which is in general called a power density spectrum,
describes the energy distribution of the sea state as a function of frequency ω, see
Figure 2.1a, while the spreading function D(ψ) gives the directional distribution of the
wave energy, see Figure 2.1b.
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(a) Frequency spectrum of the sea state. (b) Spreading function.

Figure 2.1: Frequency spectrum and spreading function.

Figure 2.2: Directional wave spectrum.

In Figure 2.2 the frequency spectrum and the spreading function are combined, and is
often referred to as the directional wave spectrum. In the following the emphasis will be
on the frequency spectrum, and the wave spectrum will be consider only as the frequency
spectrum, that is S(ω, ψ) = S(ω).

There exist a lot of established wave spectrum, playing an important role in the design
of ships and offshore structures.
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The Pierson-Moskowitz spectrum (PM) is a spectrum made for representing fully
developed wind-generated seas, which is an empirical made spectrum, made from samples
from the North Atlantic Ocean. The formula for the spectrum is given as

S(ω) = Aω−5e−Bω
−4

, (2.2)

where A = 8.1× 10−3g2, and B = 3.11
H2
s
.

Figure 2.3: Pierson-Moscowitz spectrum for Hs = 3,4,...,14 m.

In Figure 2.3, the Pierson-Moscovitz is plotted for Hs = 3 − 14m. It can be seen in the
figure that the spectrum is a single-peaked spectrum.
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The JONSWAP spectrum is a spectrum for developing seas, and is based on
measurements in the North Sea (Sørensen 2012). From Faltinsen (1990) the spectral
density is given as

S(ω) = 155
H2
s

T 4
1

w−5e
− 944

T−4
1

ω4

γY , (2.3)

where γ = 3.3, and Y is given as

Y = exp
[
−
(0.191ωT1√

2σ

)2]
, (2.4)

where σ is given as

σ =

{
0.07 for ω ≤ 5.24

T1

0.09 for ω > 5.24
T1
,

(2.5)

where T1 = 0.834T0 (Fossen 2011), and T0 is the peak period.

Figure 2.4: JONSWAP spectrum for Hs = 3,4,...,14 m.

In Figure 2.4, the JONSWAP spectrum is plotted for Hs = 3−14m, and wp = 0.4[rad/s].
The spectrum has a sharper peak than spectrum for fully developed seas such as the PM
spectrum, see Figure 2.3 and Figure 2.4.
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The Torsethaugen spectrum has two spectral peaks. The first peak is due to the
effect of swell, and the second is because of wind generated seas. This is an empirical
spectrum which was made for Norsk Hydro in 1996 1.

Figure 2.5: Torsethaugen spectrum for Hs = 3,4,...,14 m, and T0=4.

In Figure 2.5 the Torsethaugen spectrum is plotted for Hs = 3− 14m.

As mentioned, it is common to use time series drawn from the wave spectra in simulation
studies. This is called realizations, and is derived in the next section.

1The spectrum was generated by Thor Inge Fossen’s MSS toolbox in Matlab.
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2.3 Realizations

The total energy in the sea state can be found by taking the integral of all frequencies
and directions (Sørensen 2012), and can be written as

Stot =

∫ ∞
0

∫ 2π

0

S(ω, ψ)dψdω. (2.6)

Assuming linearity, superposition of harmonic wave components extracted from the wave
spectrum, can be made. Thus, a set of harmonic wave components can represent the total
energy of the spectrum. The sum of these components is called irregular waves, and can
be found from the wave spectrum if the chosen frequencies and direction ensure that the
spectral area is covered, so that energy is conserved. This relation is given as

ζ(x, y, t) =
N∑
q=1

M∑
r=1

√
2S(ω, ψ)∆ω∆ψ sin(ωqt+ ε− kq(x cos(ψr) + y sin(ψr))), (2.7)

where k is the wave number, and ε is uniformly distributed between −2π to 2π, that
is ε ∼ U(−2π, 2π). This is called short-crested irregular waves. By disregarding the
directional contribution, Equation (2.7) reduces to

ζ(x, y, t) =
N∑
q=1

√
2S(ωq)∆ω sin(ωqt+ ε), (2.8)

which describes long-crested irregular waves.
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Chapter 3

Non-Stationary Ship Response

In this chapter, a few facts about stationary and non-stationary processes will be given,
and the consequence related to the ship response is briefly discussed. As part of the
discussion it is shown that, although a sea state itself often can be considered stationary,
the induced response of a vessel operating in it, are not necessarily stationary.

3.1 Stationary Short Term Sea State

The relation between a stationary process and a power density spectrum is shown in this
section.

The probability density function has time-invariant parameters for stationary processes,
see Appendix A.1. For instance for Gaussian processes, the mean and the variance will be
constant. According to Faltinsen (1990) the wave elevation ζ(t) can, at a specific locations
for a given period of time, be assumed to be Gaussian with zero mean and variance σ2

ζ ,
denoted as ζ(t) ∼ N (0, σζ). The variance is defined to be the first moment of the spectra,
that is σ2

ζ = m0, where

m0 =

∫
S(ω)dω. (3.1)

Faltinsen (1990) also states that the wave heights can be assumed to be Rayleigh
distributed, denoted as H ∼ R(σζ). The significant wave height and the variance can
then be related by

Hs = 4
√
m0

= 4σζ .
(3.2)
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Furthermore, Tp is proportional to the average wave period T1 which is given as

T1 = 2π
m0

m1

= 2π
σ2
ζ

m1

,

(3.3)

and, thus, Tp depends also on the variance. Therefore, from a stationary process it follows
a spectrum with constant parameters Hs and Tp, which makes the spectrum independent
of time. Non-stationary processes will have time-dependent spectra because the describing
parameters are time-dependent, for instance a time-dependent variance.

Although the short term sea state can be considered as stationary, it does not mean that
the ship response has the same behavior, which will be discussed in the next section.

3.2 Time Dependent Response Amplitude Operator

Assuming linear theory and stationary processes, the relation between the wave spectrum
and the ship response can be formulated by

Sy(ω) = |H(ιω)|2Sζ(ω), (3.4)

where ι =
√
−1, Sy(ω) is the response spectrum, Sζ(ω) is the wave spectrum, and H(ιω)

is the response amplitude operator (RAO), see Figure 3.1. The RAO is a transfer function
relating the wave amplitude to the movement of the vessel, and is usually known for each
vessel.

Figure 3.1: Example of a wave spectrum, RAO and the corresponding ship response.

The relation in Equation (3.4) does not hold if the operational condition changes, for
instance changes in the vessel speed V , or the angle β between the vessel and the
encountering waves. These two operational parameters are the ones mostly affected by
decisions of the ship master, and - strictly speaking - the RAO in Equation (3.4) needs to
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continuously reflect any decision made by the vessel operator. Consequently, by noting
that both vessel speed and direction can be interpreted as time dependent functions, the
transfer function therefore becomes time dependent, and the relation in Equation (3.4)
extends to

Sy(ω, t) = |H(ιω), t|2Sζ(ω). (3.5)

This results in a time-dependent spectrum Sy(ω, t), which is non-stationary see Figure 3.2.

Figure 3.2: Example of evolutionary power density spectrum. The spectrum is non-
stationary since it changes magnitude during the time sequence.
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Part II

Spectral Estimation of Ship Response
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Introduction to Spectral Estimation of
Ship Response

Mainly, there exist two methods for spectral estimation: the parametric approach and
the non-parametric approach, see Figure 3.3. The parametric approach assumes that
the process follows a model, while in the non-parametric approach there is not any
assumptions on the structure of the process.

Figure 3.3: Parametric and non-parametric spectral estimation methods.

Assuming a stationary processes, the ship response spectrum can be recreated by the
non-parametric method, using the Fast Fourier transform (FFT). These methods often
require a long sequence of data in order to get a satisfying frequency resolution Proakis
& Manolakis (2006). During this time, the ship response might have had non-stationary
behavior, which makes the spectrum recreation spurious. Therefore it is more or less a
trade off between frequency resolution and time resolution for the non-parametric methods
in this application. In parametric methods it is assumed that the process follows a model.
Therefore the method does not require such a long time time series in order to get a
reasonable frequency resolution. In addition the parametric methods are able to handle
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non-stationary processes which will be shown in Chapter 4. The parametric approach
consists of several more steps than the non-parametric approach, see Figure 3.4. In the
next chapters the different steps are derived, beginning with mathematical modeling.

Figure 3.4: Parametric spectral estimation algorithm.
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Chapter 4

Mathematical Modeling

Figure 4.1: Focus area of Chapter 4 marked in red.

As mentioned in the introduction of this part, the parametric spectral method assumes
that the process follows a mathematical parametric model. In this chapter, some
potential models are presented, and the choice of them is justified. Furthermore, it is
given indications that the particular model is able to handle non-stationary processes by
introducing time-varying parameters. This action requires to formulate the model on a
state space approach, and is done in the last part of this chapter. Note that two different
state spaces are proposed, resulting in two mathematical models.
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4.1 Parametric Mathematical Models

In this thesis the term mathematical model is used for a simplified description of a process,
which is a comprehensive description of the real system. There exists a lot of different
models of physical systems, see Figure 4.2. There also exist mathematical models which
do not necessarily need to have a physical interpretation. The parametric Auto-Regressive
model (AR), the Moving Average model (MA) and the Auto-Regressive Moving Average
model (ARMA) are examples of such models, and are explained briefly below.

Figure 4.2: Different mathematical models. Property of Robotnor Centre for Advanced
Robothics (2015).

AR, MA and ARMA models

The AR model is characterized by that the output is a linear combination of the previous
outputs (Ting & Bahar 2011). The equation is given as

yk =

p∑
j=1

ajyk−j + ek, (4.1)

where yk is the output, p is the order of the model determining how many linear
combinations of the previous data that are required, aj are the auto regressive coefficients,
and ek is the error at time k between the data and the weighted linear combination of
previous data.

The MA model is described in a slightly different way. The output is a linear combination
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of the current and previous error terms

yk = µ+ ek +
r∑
j=1

bjek−j, (4.2)

where µ is the average of the data, r is the order of the model determining how many
combinations of the error ek that are needed.

A combination of Equation (4.1) and Equation (4.2), is called the ARMA model, and has
the characteristics of both models. The ARMA model can be written as

yk =

p∑
j=1

ajyk−j + µ+ ek +
r∑
j=1

bjek−j. (4.3)

The models have different spectral characteristics, and the choice of them is based on
initial knowledge on the spectrum which is desirable to estimate. That is which shape the
ship response spectrum is most likely to take. The main differences between these model
are

• the AR model has a spectrum characterized by peaks, which corresponds to having
dominant frequencies (Spyers-Ashby et al. 1998),

• the MA model has a spectrum characterized by notches, which means absence of
power at certain frequencies (Spyers-Ashby et al. 1998),

• and the ARMA model has a spectrum characterized by both peaks and notches
(Spyers-Ashby et al. 1998).

In Section 2.2 it was shown that wave spectra can have both peaks and notches. As
elaborated in Section 3.2, the ship response depends on the wave spectrum, since the
ship response takes a filtrated1 form of it. The apparent method to use seems to be the
ARMA model, but according to Spyers-Ashby et al. (1998) the AR parameters are less
computationally demanding than the ARMA-parameters. In a addition the ARMA model
can be obtained from AR-model if the order is high enough (Marple 1986). Therefore the
AR model is the model of choice.

Furthermore, in order to model a non-stationary process, the model has to be non-
stationary itself. In the next paragraph, the stationary conditions of the AR model will
be checked.

1The RAO filtrates the wave spectrum into the ship response, see Section 3.2
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Stationary Analysis of AR model

Assuming that the process is Gaussian, a stationary process has a constant mean, and
a co-variance that is only dependent on the time-shift, see Appendix A.1. For an AR
process the mean can be calculated as

µ = E(yk)

= E(

p∑
j=1

ajyk−j) + E(ek)︸ ︷︷ ︸
0

=

p∑
j=1

ajµ

=
0

1−
∑p

j=1 aj
= 0,

p∑
j=1

aj 6= 1

(4.4)

where E(yk−1) = E(yk) = µ, and it is assumed that the model residuals are identically,
independently distributed (IID) Gaussian white noise, that is ek ∼ N (0, σe). In
Equation (4.4) it can be seen that the mean is constant.

Furthermore, in order to find the co-variance, the variance needs to be found and is given
as

σy = var(yk)

= E(y2
k)− E(yk)

2︸ ︷︷ ︸
0

= E((

p∑
j=1

ajyk−j + ek)
2)

= E((

p∑
j=1

ajyk−j)
2) + 2E(

p∑
j=1

ajyk−j)ek)︸ ︷︷ ︸
0

+E(e2
k)

=

p∑
j=1

a2
jσ

2
y + σ2

e

=
σ2
e

1−
∑p

j=1 a
2
j

,

p∑
j=1

a2
j 6= 1

(4.5)

where E(y2
k−1) = E(y2

k) = σ2
y. In addition it is assumed that the model residuals are
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uncorrelated with the output. The co-variance of the expression can now be found by

γ1 = cov(yk, yk+1) = E(yk, yk+1),

= E(yka1yk + yka2yk−1, ..., ykapyk+1−p + ykek+1︸ ︷︷ ︸
0

)),

= a1γ0 + a2γ1, ..., apγp−1

=
a1γ0+, ...,+apγp−1

1− a2

.

(4.6)

To solve Equation (4.6), the same has to be elaborated for γi, i = 2, ..., p, which results in p
unknowns with p equation which can be solved. This is called the Yule Walker Equations,
see Stoica & Moses (1997). However, the important point is to note that this expression
is the same for cov(yk−10, yk−9), and therefore explicitly independent of time2 will not be
equal to for instance cov(yk, yk−10).

Since the mean is constant and the co-variance only depend on the time shift, this is
a stationary process, and can not be applied to analyze a non-stationary ship response.
Therefore a slightly modification of the AR model are needed in order to handle non-
stationary processes which will be discussed in the next section.

2It is dependent on the time-shift since cov(yk, yk−10)
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4.2 Time Varying Auto Regression

By letting the coefficients aj vary with time, the co-variance becomes time dependent,

γ1(t) =
a1(t)γ0(t)+, ...,+ap(t)γp−1(t)

1− a2(t)
, (4.7)

and the model becomes non-stationary. Models of this type is called time-varying auto
regressive models (TVAR), and is defined below. In the definition discrete time is used,
indexed by k.

Definition 1 (TVAR model) The time-varying auto-regressive model is given as

yk =

p∑
j=1

ak,jyk−j + ek (4.8)

where p is the order of the model, yk is the output, ak,j are the unknown parameter
coefficients, and ek is the estimation error.

The challenge with this approach is to estimate the parameters in the TVAR model,
both the static parameter p, and the time varying parameters ak,j. The time-varying
parameters will be estimated by Bayesian tools described in Chapter 5, and the static
parameter will be determined by an information criteria which is presented in Chapter 6.

Due to the time-dependency of the parameters, the model needs to be formulated in a
state space approach to describe how the parameters change. This is also required in
order to use the Bayesian estimation techniques, and will be derived in the next section.
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4.3 State Space Formulation

In order to use Bayesian prediction tools like the Kalman filter or the Particle filter, the
model needs to be formulated in a state space approach. In this approach the mathematical
model is extended to have a set of differential equations, describing the evolution of the
states.

A state space is composed of the observation equation and the transition equation, which
will be further analyzed in the upcoming sections. Note that two different state spaces
will be proposed, which require different estimation filters to be solved.

4.3.1 Observation Equation

The observation equation is a compact form of Equation (4.8). This equation shows the
relation between the output and the time varying parameters, which are defined as the
states, xk = [ak,1, ak,2, ..., ak,p]

T . It is written as

yk = Ckxk + ek, (4.9)

where Ck = [yk−1, yk−2, ..., yk−p]. This equation is time varying and linear. The error
term ek is assumed to be Gaussian distributed with zero mean, and with a variance of σ2

e ,
denoted as ek ∼ N (0, σe). The reason for this assumption is that Gaussian distributions
should be assumed first, unless other information is available (Brekke 2010).

Probability Density Function of Observation Equation

Since the variable is subject to white noise in Equation (4.10), the variable yk becomes a
random variable. Random variables are often described by probability density functions,
which is defined as the probability that yk will fall within a small interval dy. However,
since that the states xk are already known at this point, yk is conditional random variable,
and can be described by the conditional probability density function. This is defined as
the probability that yk fall into the interval dy, given the states xk.

The equation for the conditional density function can be found by rearranging Equa-
tion (4.10), so that

yk − Ckxk = ek. (4.10)

Thus, the left hand side needs to have the same distribution as the right hand side. Since
the ek is Gaussian distributed, the expression p(yk|xk) is also Gaussian distributed. This
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can be written as

p(yk|xk) = pe(yk − Ckxk), (4.11)

where pe is the probability density function of the model residuals.

Figure 4.3: Gaussian probability density function, with zero mean and unity variance

The formula for the Gaussian probability density function is given as

p(yk|xk) =
1√

2πσ2
e

e
(yk−Ckxk)

2

2σ2e (4.12)

An example is shown in Figure 4.3 with zero mean and unity variance.

4.3.2 Transition Equation

The transition equation represents the differential equations in the state space. These
equations show the rate of change of the variables in our system. The discrete version of
these equations are called difference equations which are used here.
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Because the model is based on an auto regressive model without a physical interpretation
it is hard to predict how the difference equations are related and will evolve. Thus,
assumptions are required, and are discussed in the next paragraphs.

Assumption 1 The transition equation follows a first order Markov property.

Definition 2 (Markov Property) Given the Markov property, the probability of xk at
time k, given the sequential set x1:k−1 is only dependent on the set xk−1, given at the
previous time instant, and can be mathematically stated as

p(xk|x1:k−1) = p(xk|xk−1, x1:k−1) = p(xk|xk−1). (4.13)

The reason for choosing this property is that it is computational effective, and therefore
will simplify the estimation calculations.

Assumption 2 The difference equation of the states follows a random noise.

The reason for doing this assumption is to allow the states to change. Inspired by bias
estimation in the dynamical positioning (DP) equation, the transition equation is proposed
to be equal to

xk = Φxk−1 + Γvk, (4.14)

where Φ is the identity matrix. In Yazid et al. (2012) this also used which support this
proposition.

In the introduction of this section, it was mentioned that two state space approaches
are suggested. This in terms of which probability density function the state noise vk is
assumed to follow. These two will be presented in the following paragraphs.

Gaussian distributed state noise

In the first model it is assumed that the transition equation is subject to Gaussian identical
independent (IID) white noise with zero mean and variance denoted as σ2

v , i.e. vk ∼
N (0, σv). Thus, the transition kernel is stochastic and can be written as

p(xk|xk−1) = pv(xk − xk−1), (4.15)

where pv is the Gaussian probability density function of vk. If the order p is higher than
one, meaning that xk is a vector, the distribution becomes multivariate and can be written
as

pv =
1

(2π)
p
2 |Q| 12

e−
1
2

(xk−xk−1)TQ−1(xk−xk−1), (4.16)
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where |Q| is the determinant of multivariate co-variance Q. Note that we use the
multivariate co-variance matrix and mean, as it handles multidimensional random
variables xk. These are denoted as

Q =


σv1,1 0 . . . 0

0 σv2,2 . . . 0
...

... . . . ...
0 0 . . . σvp,p

, µv =


E[v1]

E[v2]
...

E[vp]

 =


0

0
...
0

 . (4.17)

Cauchy distributed state noise

The other state noise that is proposed is noise generated from the Cauchy distribution,
see (Leira 2005).

In extreme conditions, the transient response may change rapidly, making the time varying
parameters to change drastically in the state space. Therefore, it might be necessary to
increase the variance of the Gaussian distribution in order to capture a bigger state space.
However, this could lead to a more noise in the state evolution which is not desirable.

Figure 4.4: Gaussian and Cauchy Probability Density Function

The Cauchy distribution is more long tailed and more narrow in the center than the
Gaussian distribution, see Figure 4.4). Therefore the Cauchy noise is maybe able to
capture sudden changes without increasing the noise on the states.

Thus Cauchy distributed noise could be a more favorable choice of state noise in extreme
conditions. This is discussed more in Chapter 8. The formula for the Cauchy probability
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density function is given as

p(xk|xk−1) =
1

πσc[1 + (xk − xk−1)2/σ2
c ]

(4.18)

where σc is a scaling parameter.
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4.3.3 Resulting Mathematical Model

The state space can be written as


xk,1

xk,2
...
xk,p

 =


1 0 . . . 0

0 1 . . . 0
...

... . . . ...
0 0 . . . 1


︸ ︷︷ ︸

Φ


xk−1,1

xk−1,2

...
xk−1,p

+


1 0 . . . 0

0 1 . . . 0
...

... . . . ...
0 0 . . . 1


︸ ︷︷ ︸

Γ


vk,1

vk,2
...
vk,p

 (4.19)

yk =
[
yk−1 yk−2 . . . yk−p

]
︸ ︷︷ ︸

Ck


xk,1

xk,2
...
xk,p

+ ek (4.20)

where the state noise vk,1, vk,2, . . . , vk,p is assumed to be Gaussian or Cauchy distributed,
and ek is assumed to be Gaussian distributed. In other words the system is either a linear
time-variant Gaussian system, or a linear time-variant non-Gaussian system.

The mathematical frame has been established, and to make it applicable both static and
time-varying parameters need to be determined. The static parameters to be determined:

• The order of the model p.

• The co-variance of the state noise σv.

• The co-variance of the observation noise σe.

The time-varying parameters to be estimated:

• The timevarying parameters xk.

Observers can be constructed to estimate time varying parameters. Mainly there
exists two main categories of observers, known as deterministic observers and stochastic
observers. Deterministic observers are acquired for deterministic systems without
uncertainty. The most famous deterministic observer is called the Luenberger observer
(Luenberger 1971). Stochastic observers are most applicable to systems with uncertainties,
and Bayesian observers fall into this category. Two observers that can be derived from
Bayesian theory are the Kalman filter and the Particle filter. These are going to be used
to estimate the time varying parameters of the two different state spaces proposed in this
chapter.
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Bayesian Estimation of TVAR
Parameters

Figure 5.1: Focus area of Chapter 5 marked in red.

In Chapter 4 two state space models were proposed. The estimation techniques used to
estimate the time-varying parameters on these models, will be derived from a Bayesian
perspective in this chapter. Firstly, preliminaries of Bayesian estimation is presented.
Based on this, both the Kalman filter and the Particle filter are derived, and will be
presented in the last sections.
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5.1 Preliminaries of Bayesian Estimation

First in this section the motive of Bayesian estimation is presented. Furthermore, the
Bayesian update recursion is presented which is the fundamental algorithm that Bayesian
estimation techniques is built upon.

5.1.1 Motive of Bayesian Estimation

In Bayesian estimation the time varying parameter vector xk = [ak,1, ak,2, ..., ak,p]
T is

considered to be a stochastic variable, instead of an unknown, and this is done in
Equation (4.14), where the unknown parameter vector is transformed to a stochastic
variable because of the random noise. As mentioned in Section 4.3.1 stochastic variables,
given certain information, are described by the conditional distribution. Two such
distributions are called the prior distribution and the posterior distribution.

• The prior distribution, denoted as p(xk|y1:k−1), defines the conditional probability
density function of the random variable xk, given the measurements y1:k−1 up to the
previous time step. This is a predictive term.

• The posterior density, denoted as p(xk|y1:k), represents the probability density
function of xk given y1:k current time step. This is a correcting term.

The most likely value of the time varying parameters xk, given y1:k can be estimated by
taking the mean of the posterior distribution. Hence finding the posterior distribution is
the main motive of Bayesian estimation techniques.

The Bayesian recursion is an recursive algorithm to calculates the prior and the posterior
density function, and is derived in the next section.
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5.1.2 Bayesian Update Recursion

The Bayes update recursion is fundamental for all Bayesian filtering, and consists of two
steps:

• The Measurement Update: Correction from measurements (posterior).

• Time Update: Prediction in time (prior).

The derivation of the of the Bayesian update recursion is given in Appendix A.3, and is
summarized below.

Algorithm 1 Bayes Update Recursion
• Measurement update

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(5.1)

• Marginalization

p(yk|y1:k−1) =

∫
p(yk|xk)p(xk|y1:k−1)dxk (5.2)

• Time Update

p(xk+1|y1:k) =

∫
p(xk+1|xk)p(xk|y1:k)dxk (5.3)
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5.2 Kalman Filter

The Kalman filter by Kalman (1960) is a recursive algorithm to find expected value, and
the co-variance of the posterior distribution. In particular in navigation and guidance
for vehicles such as aircraft, spacecraft or marine vessels this estimation theory has been
pioneering, but is today used in every aspect of estimation.

5.2.1 Gaussian Simplification

For Gaussian systems, only the expected value and the covariance are needed to represent
the posterior p(xk|y1:k) (Simon (2006)), that is

p(xk|y1:k) = N (xk, µk|k, Pk|k). (5.4)

For linear Gaussian system, the posterior is calculated analytically and it is this
simplification that makes this possible. This will be shown in the next sections.

5.2.2 Kalman Filter Equations

The Kalman equations can be derived in several different ways, for instance as the linear
quadratic estimator (LQE) or by the Bayesian update recursion. In this thesis it will be
done by the latter.

Measurement update

The measurement update starts with Bayes law given in Equation (5.1), where the
normalization Equation (5.2) is omitted. This is allowed since this term only serve to
normalize the posterior density distribution, meaning that∫

p(xk|y1:k)dxk = 1. (5.5)

However, this means that the posterior density function given in Equation (5.1), is
proportional to

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1). (5.6)

Both the prior p(xk|y1:k−1) and the likelihood function, denoted p(yk|xk) are Gaussian,
therefore the posterior can be written as
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p(xk|y1:k) ∝ N (yk, Ckxk, R)N (xk, µk|k−1, Pk|k−1),

= N (xk, µk|k, Pk|k).
(5.7)

Therefore, the posterior can be found by finding µk|k, and Pk|k. The derivation of the
measurement update for these two are given in Appendix A.4, and the final result is
written as

Pk|k =
(
I −KkCk

)
Pk|k−1,

µk|k = µk|k−1 +Kk(y − Ckµk|k−1),
(5.8)

where the kalman gain is given as

Kk = Pk|k−1C
T
k (R + CkPk|k−1C

T
k )−1. (5.9)

Time update

The time update for the expected value and the covariance, is given in Appendix A.4.

Pk+1|k = ΦPk|kΦ
T + ΓQΓT

µk+1|k = Φµk|k
(5.10)

The total algorithm is summarized below. Note that the following notation x̄k = µk+1|k,
x̂k = µk|k, P̄k = Pk+1|k, and P̂k = Pk|k is used.
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Algorithm 2 Kalman filter (Fossen 2011)
Initialization
• Design matrices:

Qk = QT
k , Rk = RT

k (5.11)

• Initial conditions:
x̄(0) = x0, P̄ (0) = P0 (5.12)

Measurement update
• Kalman gain matrix:

Kk = P̄kH
T
k [HkP̄kH

T
k +Rk]

−1 (5.13)

• Expected value correction update

x̂k = x̄k +Kk[yk −Hkx̄k] (5.14)

• Covariance correction update

P̂k = [I −KkHk]P̄k[I −KkHk]
T

+KkRkK
T
k

(5.15)

Time update
• Expected value prediction update

x̄ = Φkx̂k (5.16)

• Co-variance prediction update

P̄ = ΦkP̂kΦ
T
k + ΓkQkΓ

T
k (5.17)

Remark 1 Note that the Q and R values, have contradictory functions, and it is the ratio
between them that decides how much state noise and observation noise that is accepted in
the estimate. The ratio can be described by the signal to noise ratio (SNR) (Gustafsson
2010b).

SNR ∝
√
det(Q)/det(R) (5.18)
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5.3 Particle filter

To solve the non-Gaussian model proposed in Chapter 4, the Particle filter is used. The
Particle filter theory can be traced back to Hammersley & Morton (1954), but was first
discussed as a complete algorithm in Gordon et al. (1993). Then, the method was further
developed by Kitagawa (1996), Isard & Blake (1998), and Doucet et al. (2001).

The Particle filter approximates the posterior density function, and is able to handle
non-linear and non-Gaussian processes.

5.3.1 Introduction to Monte Carlo Simulation

In the Bayesian update recursion given in Section 5.1.2, problems might arise when
evaluating the integrals. The distributions may have high dimensions, making it hard
to solve Equation (5.3) numerically. In addition, the distribution can be unknown. These
problems can be addressed by Monte Carlo integration. The Monte Carlo integration is
given as

I =

∫
h(x)p(x)dx

≈ 1

N

N∑
i=1

h(xi), xi ∼ p(x),

(5.19)

where h(x) and p(x) are Monte Carlo factors, and xi means that x is sampled from a
distribution p(x), denoted xi ∼ p(x). Noting that if h(x) = xk, and p(x) = p(xk|y1:k),
this integral evaluates the expected value of the posterior density function.

However, since the posterior density function is not Gaussian, it is unknown, and therefore
sampling from it is not possible. This problem can be solved by importance sampling.

Importance sampling is a technique in Monte Carlo simulation of finding the expected
value of a distribution by sampling from another distribution. This density function
is called the importance sampling function q(xk|y1:k). By multiplying and dividing the
importance sampling with Equation (5.19), the expression for the expected value can be
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written as,

E(xk) =

∫
xkp(xk|y1:k)dxk,

=

∫
xk
p(xk|y1:k)

q(xk|y1:k)︸ ︷︷ ︸
h(x)

q(xk|y1:k)︸ ︷︷ ︸
p(x)

dxk,

≈ 1

N

N∑
i=1

xik
p(xik|y1:k)

q(xik|y1:k)
,

=
1

N

N∑
i=1

xikw
i
k, xik ∼ q(xik|y1:k),

(5.20)

where

wk =
p(xik|y1:k)

q(xik|y1:k)
(5.21)

are called the importance weights. Here, it is assumed that it is possible to evaluate wk,
at the points xi. However, usually this can be evaluated up to a normalization constant,
which is unknown in this case. Below, the Monte Carlo integral is evaluated when the
normalization constant is unknown.

The normalized distributions are given as

p̃(xk|y1:k) =
p(xk|y1:k)

cp
, q̃(xk|y1:k) =

q(xk|y1:k)

cq
, (5.22)

where the p̃(xk|y1:k), and q̃(xk|y1:k) are the normalized distribution with the respective
normalization constants given as

cp =

∫
p(x|y1:k)dx > 0, cq =

∫
q(x|y1:k)dx > 0. (5.23)

By inserting Equation (5.22) into Equation (5.20), the expected value can be written as

E(xk) =

∫
xkp̃(xk|y1:k)dxk

=

∫
xk
p̃(xk|y1:k)

q̃(xk|y1:k)
q(xk|y1:k)dxk

=

∫
x
p(xk|y1:k)

q(xk|y1:k)

cq
cp︸ ︷︷ ︸

h(x)

q(xk|y1:k)︸ ︷︷ ︸
p(x)

dxk

≈ cq
cp

1

N

N∑
i=1

xikw
i
k, xik ∼ q(xk|y1:k)

(5.24)
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where wk = p(xk|y1:k)
q(xk|y1:k)

are the unnormalized importance weights. The ratio1 between the
normalization constant, can be computed by

cp
cq

=
1

cq

∫
p̃(xk|y1:k)dxk

=

∫
p(xk|y1:k)

q(xk|y1:k)︸ ︷︷ ︸
h(x)

q̃(xk|y1:k)︸ ︷︷ ︸
p(x)

dxk

≈ 1

N

N∑
i=1

wk, xi ∼ q(xk|y1:k).

(5.25)

Putting Equation (5.25) into Equation (5.24), the following relationship is obtained,

E(x) ≈
1
N

∑N
i=1 x

i
kw̃(xik)

1
N

∑N
i=1 w̃(xik)

,

=
N∑
i=1

xikw̃(xik)∑N
i=1 w̃(xik)

=
N∑
i=1

xikŵk, xik ∼ q(xk),

(5.26)

where ŵk = wk∑N
i=1 wk

are the normalized importance weights. This is the estimate of the
expected value of the posterior. The normalized importance weights are still unknown,
and these are found by the Particle filter derived in the next section.

5.3.2 Derivation of the Particle Filter

According to Arulampalam et al. (2002) the posterior distribution can be estimated by

p(xk|y1:k) =

Np∑
i=1

ŵkδ(xk − xik), xi ∼ q(xk|y1:k) (5.27)

where δ(xk − xik) is the dirac delta function2, meaning that a weighted sum of impulse
functions is an estimate of the posterior. Note that in this expression the posterior
density function is parameterized by the importance weights wk, and the samples xik from
the sampling distribution q(xk|y1:k). The importance weights are called particle weights
and the samples are called particles, and therefore it is called the Particle filter. In the
following the update laws of these parameters are derived.

1Note that the ratio have been flipped for simplicity.
2Note that this is only for the mathematical derivation, and is not implemented.
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The unnormalized particle weights can written as

wk ∝
p(xi0:k|y1:k)

q(xi0:k|y1:k)
(5.28)

Here it can be seen that the particle weights are dependent on the information from
the whole trajectory, that is {xj}Nkk=0, and {yj}

Nk
k=0. This is computationally inefficient.

Therefore the particle weights should be calculated recursively, meaning that the weights
are dependent on the previous weights wk−1 instead of the information from the whole
trajectory. This is derived in Appendix A.6, and gives the following result

wik ∝ wik−1

p(yk|xik)p(xik|xik−1)

q(xik|xk−1i, y1:k)
, xi ∼ q(xk|xk−1, yk), (5.29)

where p(yk|xik) is derived in Equation (4.12), and p(xik|xik−1) is given in Equation (4.18).

By choosing q(xk|xk−1, yk) = p(xk+1|xk), the weight update law in Equation (5.29) reduces
to

wik ∝ wik−1p(yk|xik). (5.30)

Then by normalizing the weights by

ŵik =
wik∑N
i=1w

i
k

, (5.31)

the algorithm is complete. To sum up, Np particles xi are sampled from p(xk|xk−1), and
p(yk|xik) is evaluated. Furthermore, the weights wik for each particle are updated and
normalized. The posterior density function can therefore be found by Equation (5.27),
see Figure 5.2. Furthermore, the expected value can be found by Equation (5.26).
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Figure 5.2: Particles with their normalized weights as an estimate of the posterior density
function.

5.3.3 Resampling

A common problem with this algorithm is that after a few iterations, only a few particles
have considerable weights, while the others have weights equal to zero, see Figure 5.3.

Figure 5.3: Degeneration problem, where only a few particles have considerable weights.

This is called degeneracy or depletion, and is computationally inefficient (Arulampalam
et al. 2002). In Equation (5.26), it can be seen that this also reduces the quality of the
estimate of the expected value.

Means to avoid this, is by using a resampling strategy. The purpose of this strategy is
to neglect the particles with negligible weights and duplicate those with bigger weights.
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By doing this, the only particles with high relative probability of being close to the real
trajectory are being used (Gustafsson 2010a).

A proper measure of depletion is the estimate of the effective sample size N̂eff and is
according to Arulampalam et al. (2002) defined as

N̂eff =
1∑N

i=1(wik)
2
. (5.32)

When Neff < Nth with Nth = 2
3
N , resampling should be initialized (Gustafsson 2010a).

There exists a lot of different resampling techniques. In the implementation done in this
project, Ripley’s method are used. See Gustafsson (2010a) for details. A summary of the
Particle filter is given below.

Algorithm 3 Particle filter (Gustafsson 2010a)
Initialization
• Choose the proposal distribution q(xk+1|x1:k, yk+1) = p(xk+1|xk), a resampling

strategy and the number of particles N .
• Generate xi1 ∼ px0 , i = 1, ..., N and let wi1|0 = 1

N

Measurement update
• For i = 1, ..., N

wik|k =
1

ck
wik|k−1p(yk|xik) (5.33)

where

ck =
N∑
i

wik|kp(yk|xik) (5.34)

• Resampling: Take N samples with replacement from the set xi1:k
N

i=1, where the
probability of the sample i is wik|k. Then assign equal weights wik|k = 1

N
.

• Estimation: The mean is approximated by

x̂k =
N∑
i=1

wik|k x
i
k (5.35)

Time update
• Sample N particles from state transition probability density function

xik+1 ∼ p(xk+1|xk) (5.36)
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Chapter 6

Model Order Selection

Figure 6.1: Focus area of Chapter 6 marked in red.

The model evaluation problem, is the evaluation and determination of the model order p.
There exist many different ways of doing this, for instance Akaikes Information Criteria
(AIC) (Akaike 1974), and the Bayesian Information Criteria (BIC) Schwarz et al. (1978).
In this chapter, the latter method is presented.
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6.1 Bayesian Information Criteria

The Bayesian information criteria, is a value that describes how accurate the model is, and
penalize the fact of having too many time-varying parameters. The number is relative,
meaning that it is only informative if several models are tested. The model giving the
least BIC number is the optimal model, from the BIC criteria. The general equation of
the BIC number is given as

BIC = −2 ln(L̂) + p ln(Nk) (6.1)

where L̂ is maximum likelihood function, and N is the number of observations. If the
errors ek in Equation (4.8) are Gaussian distributed, the BIC number can be written as

BIC = Nk ln(RSS/Nk) + p ln(Nk) (6.2)

where RSS =
∑Nk

i=1(yi−ŷi)2. As previously discussed in Section 4.3.1, the error is assumed
to be Gaussian distributed, and this simplified method can be used (Priestley 1965).

6.2 Decision Support

Having a too low model order, will result in inaccurate modeling of the ship response. This
leads to poor recreation of the response spectrum, for instance by the lack of important
peak frequencies. If the model order is too high, could also lead to false result, and peaks
which do not exist might appear (Reddy & Rao 2014). However, the information criteria
does not contain any information about having model order which is leading to false
recreation of the spectrum. Therefore, the model order should serve as an indicator, and
not as law.

The final evaluation should be based on our initial knowledge of the spectrum. For
instance, by suddenly having a spectral peak at 10 hertz in the ship response spectrum
for a large crude carrier, the model order should be reduced, even though this is the
optimal order seen from the BIC point of view.
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Chapter 7

Estimation of Time Dependent
Response Spectrum

Figure 7.1: Focus area of Chapter 7 marked in red.

The relation between the estimated time varying parameters and the spectrum of the ship
response is derived in this chapter. As indicated in Chapter 3, the power spectrum of a
non-stationary process is a time and frequency dependent spectrum called the evolutionary
power density spectrum (EPDS). The derivation of this spectrum is given in the next
sections.
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7.1 Derivation of Evolutionary Power Density Spec-
trum

The EPDS spectrum of the discrete time ship response process yk is denoted Sy(f, k), and
is based on the spectra relation, the spectrum of white noise, and the transfer function
between the model residuals and the output.

7.1.1 Spectra Relation

The relation between two spectra describing different processes, is the squared of the
transfer function between the two processes, and is given as

Sy(f, k) = |H(f, k)|2Se(f), (7.1)

where Se(f) is the spectrum of the model residuals e1:k in Equation (4.8), and H(f, k) is
the discrete time dependent transfer function between yk and ek (Gardner 1990). Before
deriving the transfer function, the spectrum of the model residuals will be presented.

7.1.2 Spectrum of White Noise

The model residuals are assumed to be Gaussian white noise, see Section 4.3.1. Gaussian
white noise processes have a constant power spectral density, Se(f) = N0. In addition,
the variance of the spectrum is given as

σ2
e =

∫ fs
2

− fs
2

S(f)df

= N0

∫ fs
2

− fs
2

df

= N0fs,

(7.2)

where fs is the sampling frequency.

Remark 2 The sampling theorem states, that it is only possible to capture the frequencies
which are less than the half of the sample frequency fs (Balchen et al. 2003). Therefore
the integral limits in Equation (7.2), becomes f = [−fs

2
, fs

2
].

By inverting this formula, the expression for the PSD for white noise is found as

N0 =
σ2
e

fs
(7.3)
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The variance σe of the residual can be estimated by taking the sample variance of

var(ek) = var(yk −
p∑
j=1

ak,jyk−j)

σ2
e =

1

N − p

N−1∑
k=p+1

∣∣∣yk − p∑
j=1

ak,jyk−j

∣∣∣2. (7.4)

7.1.3 Transfer Function

The transfer function is the relation between the input and output of a linear system. In
the particular process of interest, the driving input of the system is the model residuals
ek, and the output is the measurements yk, see Figure 7.2.

Figure 7.2: Transfer function.

The transfer function can be found by using the time-step property of the z-transform
(Balchen et al. 2003). Recall Equation (4.8), and note that since this is a linear system it
can be written on the z-domain form, Y (z, k) = H(z, k)E(z). The z-transform converts
a discrete time signal to the frequency domain, and can be seen as an equivalent of the
Laplace domain for continuous systems.
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Taking the z-transform of Equation (4.8), the transfer function can be obtained and is
given as

Y (z, k) =

p∑
j=1

ak,jY (z, k)z−j + E(z)

Y (z, k)(1−
p∑
j=1

ak,jz
−j) = E(z)

H(z, k) =
Y (z, k)

E(z)
=

1

1−
∑p

j=1 ak,jz
−j ,

(7.5)

where Y (z, k), and E(z) is the z-transformations of respectively the measurements yk and
the model residuals ek at time instant k, and z is the complex z-domain variable.

To obtain the frequency domain, z can be substituted with zj = eιOmegaj, where Ω is a
dimensionless frequency. By substituting Ω = 2πf∆t, the transfer function is a function
of f in hertz (Balchen et al. 2003). The transfer function can therefore be written as

H(f, k) =
1

|1−
∑p

j=1 ak,je
−j2πιf |2

. (7.6)

By combining Equation (7.1), Equation (7.3) and Equation (7.6), the spectrum Sy(f, k)

can be written as
Sy(f, k) =

σ2
e∆t

|1−
∑p

j=1 ak,je
−j2πιf∆t|2

, (7.7)

where ∆t = 1
fs
.

7.1.4 Spectrum Scaling

Recall that in Section 2.2 the spectra were presented as functions of ω( rad
s

). The estimated
spectrum in this chapter, was given as a function of frequency f in [hz]. Because of the
conservation of energy, the spectra is scaled differently for different function variables, and
it is therefore desirable to have both the wave spectra and the estimated spectra scaled
correctly. Therefore it is chosen to scale both spectra after frequency in hertz, and the
wave spectra need to be scaled.

In order to present the spectrum as a function of frequency f in hertz, a change of variables
is required. To do a change of variables, the energy of the spectrum must be conserved,
and the spectrum needs to be scaled.

The total energy of a spectrum is given as

Etot =

∫ ∞
−∞

S(ω)dω. (7.8)
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The same has to hold, if using frequency f in herz instead of frequency ω, that is

Etot =

∫ ∞
−∞

S ′(f)df. (7.9)

By doing a change of variable in Equation (7.8) from ω to f , and comparing with
Equation (7.9), it follows that

Etot =

∫ ∞
−∞

S(ω)dω

=

∫ ∞
−∞

S(ω(f))
dω

df
df

=

∫ ∞
−∞

S(2πf)2π︸ ︷︷ ︸
S′(f)

df,

(7.10)

where ω(f) = 2πf , and dω
df

= 2π.

In Equation (7.2), the spectrum was defined in f ∈ [−fs
2
, fs

2
], which is a double sided

spectrum. Physical systems operate in f ∈ [0,∞], and are therefore the preferred interval
to use. Assuming that the spectrum is symmetric around the y-axis, the single sided
spectrum can be found by

Etot =

∫ ∞
−∞

S(f)df =

∫ ∞
0

2 · S(f)︸ ︷︷ ︸
S+(f)

df. (7.11)

The single sided spectrum scaled with frequency f in hertz is given as

S+
y (f, k) = 2 · σ2

e∆t

|1−
∑p

j=1 ak,je
−j2πιf∆t|2

, (7.12)

which is the formula the evolutionary power density spectrum of the ship response.
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Case Studies
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Introduction to Case Studies

Three sets of case studies are presented in this part. The main motivation of considering
these, is to identify the key factors and limitations which is decisive for the algorithm’s
performance in estimating the non-stationary ship response spectrum. The case studies
are presented in three different chapters namely,

• Chapter 8: Stationary Simulation Studies,

• Chapter 9: Non-Stationary Simulation Studies,

• Chapter 10: Estimating Ship Response of Cybership III.
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Chapter 8

Stationary Simulation Studies

In this chapter, the robustness of the algorithm will be tested through stationary case
studies.

Figure 8.1: Example of an EPDS of a stationary process.
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8.1 Case Study 1: Parameter Estimation Study

In this case study, estimation of the parameters of an AR(2) process is provided. Both the
Gaussian model and the Cauchy model, proposed in Chapter 4, are tested. To estimate
the parameters of the Gaussian model the Kalman filter is used, and the Particle filter
is used on the Cauchy model. Furthermore, an analysis of the results are made with the
use of logarithmic squared error and variance analysis.

The purpose of this case study is to validate whether the algorithm is able to detect the
unknown parameters from a simple simulated process. In addition, a comparison of the
performance of the Kalman and Particle filter is made. The model order evaluation, and
the estimation of the spectrum are not looked into in this case study, see Figure 8.2.

Figure 8.2: Focus area of Case 1 marked in red.
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8.1.1 Process Plant

The AR(2) process implemented in this section is a process with two unknown constant
parameters subject to Gaussian white noise. The process is

yk = −0.7yk−1 − 0.9yk−2 + ek, (8.1)

where ek ∼ N (0, 1). The process is simulated in Figure 8.3, with a simulation time of
t = 50s and time step of ∆t = 0.1s.
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Figure 8.3: AR(2) process simulated in this case study.
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8.1.2 Mathematical Model

As discussed in Section 4.3, the observation equation can be written in compact form of
Equation (8.1) as

yk =
[
yk−1 yk−2

]
︸ ︷︷ ︸

Ck

[
xk,1

xk,2

]
+ ek, (8.2)

where xk,1 = ak,1, xk,2 = ak,2, and êk ∼ N (0, σ̂). Furthermore, the transition equation is
according to Equation (4.14) written as[

xk,1

xk,2

]
=

[
1 0

0 1

][
x1,k

x2,k

]
+

[
1 0

0 1

][
vk,1

vk,2

]
, (8.3)

where vk,1 ∼ N , and vk,2 ∼ N for the Gaussian model, and vk,1 ∼ C, and vk,2 ∼ C for the
Cauchy model. The model order is here p = 2, and assumed known.

8.1.3 Initial Conditions on Estimation Filters

The Kalman filter, and the Particle filter which were discussed in Chapter 5, are
implemented with the following initial conditions.

KF Conditions Value
Initial state a1,1 -10
Initial state a1,2 -10
Initial covariance Pk|k I

State noise Q 10−12 · I
Observation noise R 1

PF Conditions Value
Initial state a1,1 -10
Initial state a1,2 -10
Number of particles 100000
Scaling Cauchy parameter σc 0.1

Observation noise R 1

Table 8.1: Filter initial conditions.

The initial state is chosen far away from the real parameters. The reason for this is to
check the algorithms detection abilities.

64



CHAPTER 8. STATIONARY SIMULATION STUDIES

8.1.4 Estimation Results

In this section the estimation results are provided. Both the results from the Kalman
filter and the Particle filter are presented, each containing an error and variance analysis.

Kalman Filter Performance

The following plots show how the Kalman filter estimates the unknown parameters, ak,1
and ak,2. The red line indicates the true value of the process, and the blue represents the
estimated result.
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(a) Parameter estimates ak,1.
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(b) Parameter estimates ak,2.

Figure 8.4: Kalman filter parameter estimates.

In Figure 8.4, it can be seen that the Kalman filter is able to estimate the correct values,
and therefore able to meet the motive of this case study.
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Error Analysis: Since the error is close to zero, the LSE quantity gives a detailed view
of how close to zero the error is. The LSE for the ak,1 is given as

LSE = log[(ak,1 − aref
k,1)2], (8.4)

and is plotted for both parameters in Figure 8.5. In addition the mean of these two
quantities, which is known as the Logarithmic Mean Squared Error (LSME), is plotted in
Figure 8.6 to evaluate the total performance.
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(a) LSE of ak,1.
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(b) LSE of ak,2.

Figure 8.5: Logarithmic squared error of parameter estimates from Kalman filter.
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Figure 8.6: Logarithmic mean squared error of parameter estimates from Kalman filter.

It can be observed in Figure 8.5a, and Figure 8.5b that both parameters are estimated with
approximately the same performance. In Figure 8.6, it can be seen that the parameters
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are being estimated with a LSME error of magnitude of 10−8 after t = 45s. It can be
observed that a transient behavior exists, which is due to the Kalman filter’s initialization
process.

Variance Analysis: As mentioned in Section 5.1.2, the expected value of the posterior
distribution is in this thesis considered as the best estimate. However, this could lead to
misleading result, when not considering the variance. A small variance correspond to a
narrow posterior density function. This implies that the mean is a good representative of
the obtained posterior.
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Figure 8.7: Kalman filter standard deviation.

Figure 8.7, it can be seen that the standard deviations are approximately equal to 0.025,
and remain constant after the transient period.
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Particle Filter Performance

The same simulations as in the previous section, are also repeated for the Particle filter.
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(b) Parameter estimates ak,2.

Figure 8.8: Particle filter parameter estimates.

In Figure 8.8 it can not be seen that the estimates converge to the correct value, and the
results need to be further investigated.
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Error analysis: Reference is made to Section 8.1.4 for explanation of LSE and LSME,
which is plotted in Figure 8.9, and Figure 8.10.

(a) LSE of ak,1. (b) LSE of ak,2.

Figure 8.9: Logarithmic squared error of parameter estimates from Particle filter.

Figure 8.10: Logarithmic mean squared error of parameter estimates from Kalman filter.

It can be observed in Figure 8.9 that both parameters are estimated with the approxi-
mately with the same performance, both in LSE and in noise.

From Figure 8.10 it can be seen that the LMSE is oscillating around the value −5,
indicating a squared error of 10−5. By this it can be concluded that the estimates in
Figure 8.8, converge to the correct value. However, the results are less accurate and more
noisy than the Kalman filter estimates.
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Variance analysis: The estimated standard deviation from the Particle filter is plotted
in Figure 8.11.
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(a) Standard deviation ak,1.
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(b) Standard deviation ak,2.

Figure 8.11: Particle filter standard deviation.

In Figure 8.11, it can be observed that the standard deviations have a value of
approximately 0.9, and have a more noisy behavior than the variances estimated by the
Kalman filter.

Comparison of Kalman Filter and Particle Filter results

In Figures 8.6 and 8.10, it can be observed that LMSE obtained from the Kalman filter is
around LMSE = −8, and for the Particle filter oscillating around an approximate value
of LSME = −5. This implies a squared error of respectively 10−8, and 10−5. There can
be many reasons to the difference in the performance. For instance the Kalman filter can
better tuned than the Kalman filter.

Comparing Figure 8.7 and Figure 8.11 it can be seen that the Particle filter estimate a
higher standard deviation1, than the Kalman filter. One reason for this can be related to
the noise distribution in the Cauchy model, which is discussed in the following paragraph.

As previously elaborated, the Cauchy distribution is more long tailed than the Gaussian
distribution. This allows the estimates to cover a greater area of the state space, which
could lead to a greater variance. To investigate this the Particle filter has also been
implemented with Gaussian noise, where the results are given in Appendix A.5. From
these results it can be seen that the standard deviations are smoother and smaller than for

1Note that the y-axis in the Kalman filter plots and the Particle filter plots are differently scaled

70



CHAPTER 8. STATIONARY SIMULATION STUDIES

the those obtained with the Cauchy state noise. This supports the theory that the Cauchy
distribution makes the variance more noisy and larger. However, the large variance can
also be influenced by bad tuning of the Particle filter with the Cauchy state noise, although
the filter is tuned after the author’s best ability.

8.1.5 Concluding Remarks of Case Study 1

The results indicates that the Gaussian mathematical model with the use of the Kalman
filter has a better performance than the Particle filter for this specific process given in
this case study. The possible reasons might be that

• the Cauchy state noise spans a wider set of the state space, such that the variance
increases, and

• the tuning of the Kalman filter might be better than the Particle filter.

Although this case should not generalize the Kalman and the Particle filters abilities for
spectral estimation, it is chosen to only proceed with the Kalman filter.
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8.2 Case Study 2: Single Peaked Ship Response Spec-
trum

In this case study, it is assumed that the vessel moves simultaneously in heave with waves
simulated from the JONSWAP spectrum, see Figure 8.12. The motive of the case study
is to analyze the algorithm’s performance in recreating a full spectrum.
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Figure 8.12: The JONSWAP spectrum.
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8.2.1 Process Plant

As previously elaborated in Chapter 2, the output yk can be simulated from wave
spectra by realizations. The particular wave spectrum of choice in this case study, is
the JONSWAP spectrum with the following parameters:

Parameters Value
Peak frequency f0 1.5 hz
Significant wave height Hs 6 m

Table 8.2: Process Parameters.

It is assumed that the vessel is moving simultaneously with the waves and with equal
magnitude, which simplifies the response amplitude operator to RAO = 1. In addition
it is assumed that the spreading function is neglected, i.e. the waves are long crested.
Furthermore, it is assumed that the incoming waves encounter the bow of the vessel,
known as head sea waves.

The output is analyzed in the origin, that is x = 0 and y = 0, such that Equation (2.7)
is simplified to

ζk =
N∑
q=1

√
2Sζ(ω)∆ω sin(ωqt+ ε). (8.5)

where Sζ is the wave spectrum. Since |RAO| = 1, it follows that Sy = Sζ . In addition, it is
assumed that there exists some observation noise that contributes to the model residuals
e1:k. This leads to the following output equation,

yk =
N∑
q=1

√
2Sy(ω)∆ω sin(ωqt+ ε) + ek, (8.6)

where ε ∼ U(0, 2π), and ek ∼ N (0, 0.1). The process is plotted in Figure 8.13, with
simulation time of t = 50s, and a sample time of ∆t = 0.1s.
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Figure 8.13: Realization from JONSWAP.
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8.2.2 Mathematical Modeling

In this case study only the Gaussian mathematical model developed in Chapter 4 is used.
From the model evaluation criteria described in Chapter 6, the calculated BIC values
from p = 3− 45 are presented in Figure 8.14.

Figure 8.14: BIC value for different model order p.

The minimum BIC value is found at p = 6, and is the chosen order for the mathematical
model developed.
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8.2.3 Estimation Results

The motive of the case study is to test the algorithm’s capacity of estimating an entire
spectrum. This is related to the SNR ratio mentioned in Section 5.2. Therefore first in
this section, a sensitivity analysis of the Kalman filter parameters is presented.

Except the form of the spectrum, there are two quantities that are of particular interest
when analyzing the performance: the peak frequency and the area below the curve.
The peak frequency indicates at which frequency most of the energy in the spectrum
is centered. The area below represent the total energy in the sea state, and is directly
related to Hs. Therefore, these two quantities can serve as indicators of the performance
of the TVAR algorithm.

Sensitivity Analysis of Tuning Parameters

Large Q-covariance, Small R-covariance: The Kalman filter can be tuned such that
the model residuals ek, become very small or disappears. By reducing R and increasing
Q the measurements are considered as more reliable than the model. In the following the
Kalman filter is implemented with the parameters given in table Table 8.3.

Conditions Value
State noise Q 10−1

Observation noise R 10−5

Table 8.3: Kalman filter parameters.
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Figure 8.15: Output versus estimated output.

In Figure 8.15, it can be seen that the estimated output yTV AR is able to follow the
generated output yk from the JONSWAP spectrum.
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(a) TVAR estimated a1.
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(b) TVAR estimated a2.
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(c) TVAR estimated a3.
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(d) TVAR estimated a4.

Figure 8.16: TVAR estimated parameters.

Figure 8.17: Evolutionary power spectrum with tuning parameters given in Table 8.3.

The first four estimated parameters are shown in Figure 8.15. It can be observed that
they are noisy and do not converge to constant values. By substituting these parameters
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into Equation (7.12), the following spectra is obtained.

Figure 8.17 shows a spectrum which is contaminated by noise. In addition, the power is
here given in decibel [db], which is a logarithmic scale. This was necessary to be able to
capture the variations in the spectrum. Another observation is that the power is small,
with an approximate mean of 10−12db.

Small Q-covariance, Large R-covariance: To ensure that the parameters vary
slowly, a low Q-parameter must be chosen. In addition, the R-value is set to the value of
observation variance.

Conditions Value
State noise Q 10−5

Observation noise R 10−1

Table 8.4: Kalman filter parameters.
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(a) TVAR estimated a1.
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(b) TVAR estimated a2.
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(c) TVAR estimated a3.
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(d) TVAR estimated a4.

Figure 8.18: TVAR estimated parameters.

In Figure 8.18 the first four estimated parameters are shown. It can be seen that the
estimates are smooth and converge to constant values approximately after 20 seconds. By
substituting these parameters into Equation (7.12), the spectrum shown in Figure 8.19 is
obtained.
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Figure 8.19: Estimated power spectrum with tuning parameters given in Table 8.4.

Figure 8.19 shows the estimated evolutionary power density spectrum. Note that the
spectrum is plotted from t = 20 − 80s to avoid transient behavior in the plot. The
spectrum shows a smooth behavior, with a minor oscillating behavior of the magnitude.

Comparison of the Tuning Parameter Sets: Although the algorithm, with the
parameters given in Table 8.3 is able to follow the output which is shown in Figure 8.15,
the algorithm is not able to recreate the spectrum of the process. The reasons for this are
explained in the following paragraphs.

By recalling Equation (7.12), it can be seen that the parameters are related to the poles
of the estimation model. Perturbations in the parameters can therefore make the system
unstable2. A high Q-parameter, allows the states in the Kalman filter to change much
at each time instant to find the optimal solution. This induces noisy behavior of the
parameters, and by observing Figure 8.17 it can be seen that this occurs.

2In this thesis unstable means in the sense of making the spectrum rise where it should not.

81



CHAPTER 8. STATIONARY SIMULATION STUDIES

In addition, it can be seen in Equation (7.12) that the algorithm is dependent on model
residuals e1:k in terms σ2

e to work. If the model residuals go to zero, the variance will also
go to zero σe → 0, resulting in the estimated spectrum goes to zero Sy(f, t)→ 0. In other
words, the algorithm is dependent on that the noise is filtered out.

In Figure 8.18 the parameters are smoother compared to Figure 8.16. In addition the
parameters converge to a relative constant value, resulting in a stable spectrum given in
Figure 8.19. Therefore, the constraints given in the Q and R matrices are important for
the algorithm’s performance.

As mentioned in Section 5.2, the ratio between the Q and R matrices is defined as SNR.
The results above show that there are reasons to believe that a low SNR value is decisive
to obtain a reasonable result.
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Figure 8.20: Instantaneous spectrum with different tuning parameters.

In Figure 8.20, the TVAR estimated spectrum at specific time instant is plotted for three
different SNR values. It seems like the quality of the performance decreases, for increasing
SNR value. In other words, the performance is sensitive to the SNR, and a method to
find this optimal ratio is yet to be found.
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Peak Frequency and Area Analysis

The results with the last tuning parameters are analyzed further in this paragraph. By
taking the mean of the steady 3 spectrum in Figure 8.19, the following result is obtained
in Figure 8.21.
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Figure 8.21: Mean of estimated EPDS vs true spectra.

In Figure 8.21, the mean of evolutionary power spectrum is compared with the true
spectrum. The TVAR estimated spectrum and the true spectrum are almost identical.

3In this regard, ’steady’ means that the transient part is neglected.
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To analyze whether this is the case at each distinct time instant, N plots are required.
Instead of doing this, the area and the peak frequency are investigated.
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Figure 8.22: Peak frequency.

In Figure 8.22, it can be observed that there exist some transients in the beginning.
Furthermore, the peak frequency converges to the correct peak value after approximately
40 seconds.
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Figure 8.23: Area below the spectrum.

In Figure 8.23, the area below the estimated spectrum is shown. It can be seen that this
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quantity is also affected by the transient period. However, after 50 seconds the TVAR
algorithm finds the correct area.

8.2.4 Concluding Remarks of Case Study 2

In this case study, the importance of correct tuning parameters of the Kalman filter has
been shown.

To be more precise a low SNR value is, according to the results obtained in this case
study, important to obtain a stable spectrum. The reasons for this is that a low SNR

value

• constraint the states such that they vary slowly,

• and filters out noise with a variance which decides the magnitude of the spectrum.

Furthermore, the optimal SNR value is found manually in this case study, by trial and
error. Therefore, an adaptive way to find the ratio is yet to be done.

By having an optimal tuning ratio, the results of this case study show that the algorithm
is able to detect both the correct peak frequency and area for this particular realization.
In addition the shape of the spectrum is also very similar to the true one.
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8.3 Case Study 3: Estimating Double Peaked Spec-
trum

To increase the complexity, it is assumed in this case study that the vessel follows the
wave motion generated from the Torsethaugen spectrum, see Chapter 2 and Figure 8.24.
Note that this case follows the same structure as the case study presented in Section 8.2,
and therefore only the results are presented. The Torsethaugen spectrum is simulated
with the parameters given in Table 8.5.

Parameters Value
Peak frequency ω0 3 rad/s
Significant wave height Hs 5 m

Table 8.5: Process Parameters
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Figure 8.24: Torsethaugen spectrum
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8.3.1 Estimation Results

The results are presented in terms of the estimated parameter, the EPDS, a snapshot
of the estimated spectrum, the instantaneous peak frequency- and area analysis. The
Kalman filter was implemented with the parameters given in Table 8.6.

Conditions Value
State noise Q 0.0000001

Observation noise R 1

Table 8.6: Kalman filter parameters.
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(a) TVAR estimated a1.
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(b) TVAR estimated a2.
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(c) TVAR estimated a3.
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(d) TVAR estimated a4.

Figure 8.25: TVAR estimated parameters.

The first four estimated parameters are given in Figure 8.25. It can be seen that there exist
transient in the parameters in the beginning, but they stabilize to constant values after
approximately 40 seconds. Substituting these values into Equation (7.12), the following
EPDS is obtained.
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Figure 8.26: Estimated power density spectrum.
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Figure 8.27: Estimated power spectrum vs real spectrum at t = 60s.

In Figure 8.26, it can be seen that both peaks are detected. However, it is observed
that the second peak contains more magnitude noise than the first peak. Furthermore, in
Figure 8.27 the estimated spectrum is shown at t = 60s. It can be seen that the estimated
shapes differs from the true spectrum.
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Figure 8.28: Peak frequency.
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Figure 8.29: Area below the spectrum.

In Figure 8.28 the instantaneous peak frequencies are plotted against the true peak
frequencies. It can be seen that the there is a smaller offset in the higher frequency
peak than the other.

The estimated area is plotted against the true area in Figure 8.29, and it can be seen that
the estimated area is close to the true area.
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Discussion

In Figure 8.26, it can be seen that the algorithm is able to detect the two peaks. However,
second peak contains more magnitude noise than the first. The reason for this is unclear,
but possible related to the tuning of the filter or sub-optimal model order.

In Figure 8.29 it can be seen that the total energy in terms of the area is estimated
accurately. However, the distribution in terms of the shape in Figure 8.27 is totally
different.

8.3.2 Concluding Remarks of Case Study 3

In this case study it has been shown that the algorithm’s performance in estimating a
spectrum decreases with increasing complexity of the spectrum.
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Chapter 9

Non-Stationary Simulation Studies

In this chapter, non stationary case studies are analyzed, see Figure 9.1. As previously
elaborated, non-stationary processes have time varying describing parameters. Due to
the lack of time-varying transfer functions, these processes are simulated by changing the
describing parameters of the wave spectra during a time series, such as Tp and Hs, see
Chapter 3.

Figure 9.1: Example of Non-Stationary Ship Response Spectrum.
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9.1 Case Study 4: Estimating Changing Power and
Peak Frequency

In this section it is assumed that the RAO = 1, and the ship response output comes
from a time varying JONSWAP spectrum, meaning that Tp and Hs changes during the
simulation time.

In the first 26.67, seconds, the realizations are drawn from S1(ω) and the rest of the time,
the realizations are drawn from S2(ω), see Figure 9.2, and Figure 9.3. The spectra are
implemented with the following parameters given in Table 9.1. Furthermore, the process
changes abruptly at t = 26.67s both in frequency and area, and may not reflect the reality.
On the other hand, similar characteristics may occur when a vessel transiting in head sea,
which suddenly changes heading and receiving waves from the side. By this maneuver the
encounter frequency and the power will change. However, this case study is made to test
the algorithm’s ability to detect changes in a ship response, and is therefore considered
as reasonable.

Spectrum Hs Tp

S1(ω) 4 m 0.5 s
S2(ω) 6 m 1.5 s

Table 9.1: Parameters of the time varying JONSWAP spectrum.
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(a) JONSWAP spectrum S1(ω).
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(b) JONSWAP spectrum S2(ω).

Figure 9.2: Time varying JONSWAP spectrum.
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9.1.1 Process Plant

The time varying JONSWAP spectra shown in Figure 9.2 are realized by the following
equation,

yk =

{ ∑N
q=1

√
2S1(ωq)∆ω sin(ωqt+ ε) + ek if k ≤ N

3∑N
q=1

√
2S2(ωq)∆ω sin(ωqt+ ε) + ek if k > N

3
,

(9.1)

where ek ∼ N (0, 0.1). In Figure 9.3, it can be observed that the main frequency of the
components increases and the amplitude increases as a result of an increasing Tp and
Hs. This corresponds to the parameters given in Table 9.1. (This can also be related to
Figure 9.2, since an increase in Hs coincides to an increase in area).
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Figure 9.3: Time dependent JONSWAP spectrum that changes parameters
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9.1.2 Mathematical Modeling

In Chapter 6, it was mentioned that high model order numbers can give spurious peaks
in the estimated spectrum, even though the model order has been recommended by the
BIC. In this case, such an event occurs.

The BIC curve is fairly flat between p = 15− 45, but the least BIC number corresponds
to p = 34, see Figure 9.4. However, this results in the spectrum given in Figure 9.5.
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Figure 9.4: BIC values for different model orders.
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Figure 9.5: TVAR estimated spectrum with non-optimal model order.

From Figure 9.5, it can be observed that the optimal model indicated by the BIC number
is not necessarily the correct one. As discussed in Chapter 6, the BIC number does not say
anything about the spurious peaks that occur for a high model order number. Therefore,
the model evaluation criteria stated in this thesis, should only serve as an indicator.
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9.1.3 Estimation Results

By trial and error, the final model order was set to be p = 8, and the results obtained with
this mathematical model are given in this section. The Kalman filter was implemented
with the Q and R values given in Table 9.2.

Conditions Value
State noise Q 10−11

Observation noise R 10−1

Table 9.2: Kalman filter parameters.
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(a) TVAR Estimated a1.
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(b) TVAR Estimated a2.
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(c) TVAR Estimated a3.
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(d) TVAR Estimated a4.

Figure 9.6: TVAR estimated parameters.

In Figure 9.6, the first 4 parameters are shown. In the plot it can be seen that
the parameters change value after 26.67s. Furthermore, it can be observed that the
parameters have more noise before 26.67s, than after.
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Figure 9.7: TVAR estimated spectrum.
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(a) Estimated spectrum at t = 10s.
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(b) Estimated spectrum at t = 80s.

Figure 9.8: Snapshot of estimated spectrum.

In Figure 9.7, it can be seen that the spectrum changes during the simulation time, both
in terms of peak frequency and area. In addition, it can be observed that there are some
higher peaks in the beginning than in the end.

In Figure 9.14a, a snapshot of the estimated spectrum at t = 10s is shown. The estimated
spectrum over estimate the power at low frequency. In Figure 9.14b, a snapshot of the
estimated spectrum at t = 80s is shown, and it can be observed that the algorithm under
estimate the power.
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Figure 9.9: Peak frequency estimation

In Figure 9.9 the true versus the estimated peak frequency are shown. From the plot it
can be seen that there is a lag between the true spectrum, and the estimated spectrum,
when the parameter changes.
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Figure 9.10: Area below spectrum.

In Figure 9.10 it can be seen that the algorithm is not able to detect the change in
magnitude.
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Discussion: In Figure 9.7, it can be seen that the magnitude oscillates more before the
spectrum changes characteristics. The reason can be related to the estimated parameters
in Figure 9.3, which are more noisy before the change. Due to the sensitivity the algorithm
has to noise in the parameters, the magnitude of the spectrum will also oscillate, see
Section 8.2. An explanation of why there is more noise in the beginning is due to the
tuning of the estimation filter. Since the dynamics of the process changes when the
spectrum change, the SNR ratio should be tuned according to both processes

In Figure 9.14b the algorithm estimates that there exist some energy at low frequency.
The reason might be that the white noise, which has a uniform distribution across the
frequencies, is not completely filtered out.

Furthermore in Figure 9.9, there is a lag between the estimated and the true peak
frequency when the process change. The reason for this can be explained by the
algorithm’s build up. By observing Equation (4.8), the output (yk) depends on the
previous outputs (yk−1, yk−2...yk−p). Therefore, the algorithm might having trouble with
changing before all the previous outputs have changed. In addition, the Q-matrix has
low values to ensure low noise in the parameters. This causes the parameters to change
slowly.

9.1.4 Concluding Remarks of Case 4

In this case study the BIC seems to give a poor indication for the choice of model order.
The results show therefore that the BIC should only serve as an indicator for this particular
case. An adaptive approach to find the optimal model order could therefore be of interest.

Furthermore, although the algorithm estimated the peak frequency with a small error,
the performance of estimating the changing area was not that good. The reason for this
can be that

• the tuning of the SNR ratio might be only optimal to one of the two processes,

• or a sub-optimal model order was used.

This case study shows also that an adaptive SNR algorithm could be might be a solution
to this problem.
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9.2 Case Study 5: Estimating Changing Power

The algorithm’s ability to estimate the spectrum magnitude is investigated further in this
section, by letting the spectrum power change. Note that this case follows the structure
as in Section 9.1, and therefore only the results are presented. The peak frequency is the
same, while the significant wave height changes according to Table 9.3, after 40 seconds.
The corresponding spectra are plotted in Figure 9.11.

Spectrum Hs f0

S1(ω) 7 m 1.5 hz
S2(ω) 8 m 1.5 hz

Table 9.3: Parameters of the spectra.
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(a) JONSWAP spectrum S1(ω).
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(b) JONSWAP spectrum S2(ω).

Figure 9.11: Time varying JONSWAP spectrum. The ship response realizations is
changed from the left plot to the right plot after t = 40s.
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9.2.1 Estimation Results

The results are presented in terms of the estimated parameters in Figure 9.12, the EPDS
in Figure 9.13, the estimated spectrum before and after the power change plotted versus
the real spectrum Figure 9.14, and instantaneous area plot in Figure 9.13. The algorithm
is implemented with the Kalman filter parameters given in Table 9.4.

Conditions Value
State noise Q 10−11 · I
Observation noise R 10−1

Table 9.4: Kalman filter parameters.
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(a) TVAR Estimated a1.

Time [s]
0 10 20 30 40 50 60 70 80

P
a

ra
m

e
te

r 
[a

2
]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

a
2

(b) TVAR Estimated a2.
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(c) TVAR Estimated a3.
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(d) TVAR Estimated a4.

Figure 9.12: TVAR estimated parameters.
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Figure 9.13: Estimated power density spectrum.
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(a) Estimated spectrum at t = 10s
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(b) Estimated spectrum at t = 80s.

Figure 9.14: Snapshot of estimated spectrum.

In Figure 9.13, it can be seen that the algorithm is able to detect the change of parameters
after 40 seconds. Furthermore, in Figure 9.14 the estimated spectra at t = 10s and t = 80s

are shown, and it can be seen that the estimated spectra are closed to the true spectra.
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Figure 9.15: Area below the spectrum.

Discussion of Results

It can be observed that in Figure 9.13, the algorithm detect the magnitude change of the
spectrum. However, in Figure 9.15 it can be seen that the algorithm is not able to find
the correct magnitude. The reason for this might be that the SNR ratio is only optimal
for the process before the parameters change.

9.2.2 Concluding Remarks of Case 5

In this case study the algorithm seems to be able to detect the magnitude to change, but
not perfectly. The reason can possibly be related to the SNR.
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Chapter 10

Ship Response Estimation of Cybership
III

Figure 10.1: Cybership III.

In this case study, the algorithm has been tested on a model scaled test. The test
was conducted in the MClab at the department of Marine Technology, NTNU, with
the model Cybership III, see Figure 10.1. The characteristics of the model is given in
Table 10.1. The model vessel has a station keeping capabilities, and sensors that measure
orientation of the vessel. The MClab has a wave generator that can generate long crested
irregular waves realized from several spectra, such as the Pierson Moscovitz, JONSWAP
and Torsethaugen. The lab also has a sensor that measures the generated sea state.
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Parameters Model Ship
Length 1.97 m 59 m
Beam 0.44 m 13.2 m
Draught 0.16. 4.8 m
Mass 89 kg 2.4 ·106

Table 10.1: Main dimensions of Cybership III (Ruth 2008).

10.1 Process Plant

The generated spectra is the JONSWAP spectra, with Tp = 1.48s, and Hs = 0.05m. The
measured heave movement in the first 10 seconds is given in Figure 10.2.
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Figure 10.2: Measured response of Cybership III.

106



CHAPTER 10. SHIP RESPONSE ESTIMATION OF CYBERSHIP III

10.2 Reference Spectrum

In order to obtain a reference ship response spectrum that can be compared with TVAR
estimated spectrum, the JONSWAP spectrum is multiplied with the square of the RAO of
Cybership III, see Equation (3.4). The RAO is taken from MC-Sim, which is a simulation
platform developed in Matlab/Simulink by the Department of Marine Cybernetics NTNU.
This particular RAO is calculated for head sea waves, meaning that the vessel needs to
point in the direction of encountering waves. Therefore, this is the control objective of
the vessel, and the case is considered as stationary. The wave spectra, the RAO, and the
ship response is shown in Figure 10.3.
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Figure 10.3: Wave spectrum, transfer function and ship response.
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10.3 Mathematical Modeling

In Section 9.1 it is shown that the BIC can give misleading indication of optimal model
order. Therefore the model order is found by trial and set equal to p = 22.

10.4 Estimation Results

In the following the TVAR estimated parameters are shown.
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(a) TVAR estimated a1.

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [s]

P
a

ra
m

e
te

r 
a

2
 [

−
]

 

 

a
2

(b) TVAR estimated a2.
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(c) TVAR estimated a3.
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(d) TVAR estimated a4.

Figure 10.4: TVAR estimated Parameters.

In Figure 10.4 the first four parameters are shown. The parameters are smooth, and
seems to converge to constant values.
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Figure 10.5: TVAR estimated evolutionary power density spectrum of Cybership III in
head sea waves.

In Figure 10.5 the estimated power spectral density are shown. The figure shows that the
spectrum is smooth, which indicates a stationary process. This makes it able to include
a third reference, which is the spectrum estimated from the WAFO toolbox in Matlab.
This is non-parametric method that the uses FFT and smoothing functions to estimate
the spectrum. Furthermore, by taking the mean of Figure 10.5, the TVAR estimated
spectrum can be compared with two references.
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Figure 10.6: Spectrum calculated from transfer function, WAFO calculated spectrum,
and TVAR estimated spectrum.

In Figure 10.6, it can be seen that the reference spectrum, differs substantially from the
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TVAR and WAFO estimated spectrum. Furthermore, the TVAR estimated spectrum is
more narrow, than the two others and has a slightly higher peak frequency.

10.4.1 Discussion

Since both the estimation methods differs quite much in magnitude from the reference
spectrum there might be something wrong. From Figure 10.3 and Figure 10.6, it can be
seen that the RAO has a cancellation point where the WAFO and TVAR methods have
maximums. This indicates that there is an error with the RAO of Cybership III.

Due to these findings a further investigation of the RAO was initiated, and it was found
that the battery packages of the vessel has been replaced, without an update of the RAO
(Astrid H. Brodtkorb 2015).

Since the RAO is also a function of the load condition, including both the weight and the
distribution of the weight in the vessel, the RAO needs to be updated for the new load
condition. Therefore, it is incorrect to compare the estimation results with the reference
spectrum. Therefore, the WAFO and the TVAR estimated are compared.

It can be observed that the TVAR estimated spectrum is more narrow than the WAFO
estimated spectrum. If the WAFO estimated spectrum is equal to the real ship response
spectrum, the TVAR estimated spectrum is too narrow. As previously discussed the
TVAR algorithm is very sensitive to the SNR ratio, and therefore there are reasons to
believe that this is also the case in this study. In addition, the model order can be
sub-optimal not recreating the correct spectrum.
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Conclusion

In this thesis it is found that the ship response is non-stationary for changing operational
conditions such as vessel speed or course angle. This is addressed by introducing a time
varying auto-regressive model, which can be used to form an estimate of the non-stationary
ship response spectrum.

The simulation studies indicates that the TVAR algorithm can estimate single peaked
spectra with a satisfying accuracy. However, by increasing the complexity by double
peaks, the performance of the algorithm decreases. The same holds for the level of non-
stationarity. The algorithm was able to track the change in power when this was the only
the time-varying describing parameter. When both the peak frequency and the power
changed, the performance decreased.

Furthermore, the simulation studies indicates that key factors of the algorithm is shown
to be the SNR value. A low SNR value contribute to slowly varying parameters, which
contribute to a stable spectrum.

The main limitation with the method is that the optimal SNR value has to be tuned
manually. In addition, the model evaluation criteria can sometimes give wrong indications
of which model order is the optimal one. Adaptive algorithms in estimating the SNR
value and the model order needs to be investigated to be able to reach the potential of
the method.
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Recommendations for Further Work

Real ship response data is yet to be tested for the TVAR algorithm. Unfortunately, the
RAO of Cybership III was shown to be for a different load condition, and therefore the
algorithm could not be tested on real data with a proper reference.

As stated in Section 4.3.2, the Cauchy and the Particle filter should be implemented
and tested in case studies where changes occur more abruptly, for instance a ship in an
extreme weather conditions. In order to do so, it is suggested to use smoothing algorithms
to reduce the noise.

In spectral estimation of ship response, the TVAR method is still an area in need of
more research. In particular, it is recommended that adaptive algorithms to can find the
optimal SNR ratio should be investigated, and it is suggested to look into smoothing
algorithms such as Kalman smoother etc.

When these algorithms are obtained, the algorithm should also be implemented in wave
spectra estimation algorithms. This would bring the concept one step closer of having
a database receiving data from seas all around the world, and make the ocean more
predictable.
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Appendix A

Appendix

A.1 Stationary processes

Definition 3 (Stationary processes) (Wei 2006) The nth order joint distribution is
given as

F (xt1 , xt2 , ..., xtn) = P (xt1 < β1, xt2 < β2, ..., xn < βn) (A.1)

If F (xt1 , xt2 , ..., xtn) = F (xt1+τ , xt1+τ , ..., xtn+τ ), the process is strictly stationary.

This means that the cumulative distribution function are not explicitly dependent on
time, only on the time shift. This definition also holds for the higher order probability
density function p(x1, x2, ..., xn).
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A.2 Multivariate Gaussian Distribution

If yk is a vector the density function becomes multivariate, and can be written as

pv(yk − Ckxk) =
1

(2π)
q
2 |Σw|

1
2

e−
1
2

([yk−Ckxk]−µv)TΣ−1
v ([yk−Ckxk]−µv) (A.2)

where |Σe| is the determinant of Σe, and q is the order of the observation vector yk. The
multivariate co-variance and mean of the observation noise, given as

Σe =


σe1,1 σe1,2 . . . σe1,q
σe2,1 σe2,2 . . . σe2,q
...

... . . . ...
σeq,1 σeq,2 . . . σeq,q

, µe =


E[e1]

E[e2]
...

E[eq]

 =


0

0
...
0

 (A.3)
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A.3 Derivation of Bayesian Update Recursion

The Bayes update recursion can be derived from Bayes Law, the Markov property defined
in Section 4.3.2, and factorization and marginalization properties of random variables:

Definition 4 (Bayes Law) The probability of event A, given event B can be written as

p(A|B) =
p(A,B)

p(B)

=
p(B|A)p(A)

p(B)
.

(A.4)

Definition 5 (Factorization) The density is factorisable if it can be divided into terms
like the following

p(A1:k) = p(Ak, A1:k−1) = p(Ak|A1:k−1)p(A1:k−1). (A.5)

Definition 6 (Marginalization) Consider the joint probability density function p(x, y).
Then it follows that

p(A) =

∫
p(A,B)dB. (A.6)

Having these definitions in mind, the measurement update is derived in the following

p(xk|y1:k) =
p(y1:k|xk)p(xk)

p(y1:k)

=

Factorization︷ ︸︸ ︷
p(yk, y1:k−1|xk) p(xk)

p(yk, y1:k−1)

=

Markov Property︷ ︸︸ ︷
p(yk|xk, y1:k−1) p(y1:k−1|xk)p(xk)

p(yk|y1:k−1)p(y1:k−1)

=
p(yk|xk)

Bayes Law︷ ︸︸ ︷
p(y1:k−1|xk)p(xk)

p(yk|y1:k−1) p(y1:k−1)

=
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
.

(A.7)

The time update can be found by first considering the joint probability distribution

p(xk+1, xk|y1:k) = p(xk+1|xk, y1:k)p(xk|y1:k)

= p(xk+1|xk)p(xk|y1:k)
(A.8)

Further, marginalizing this with respect to xk, the prior density function can be written
as

p(xk+1|y1:k) =

∫
p(xk+1|xk)p(xk|y1:k)dxk. (A.9)
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The same procedure can be repeated for time instant k + 1, and therefore the recursive
formula for calculating the posterior is now derived.
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A.4 Kalman Filter Derivation

The following derivation is based on Simon Godsill (2009).

A.4.1 Measurement update

The measurement update starts with Bayes law Equation (5.1), where the normalization
Equation (5.2) is omitted. This is allowed since this term only serve to normalize the
posterior density distribution, meaning that

∫
p(xk|y1:k)dxk = 1. (A.10)

However, this means that the posterior are proportional to

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1). (A.11)

Both the prior and the likelihood function, denoted p(yk|xk) are Gaussian, therefore the
posterior can be written as

p(xk|y1:k) ∝ N (yk, Ckxk, R) · N (xk, µk|k−1, Pk|k−1),

= N (xk, µk|k, Pk|k).
(A.12)

Let P̄ = Pk|k−1, P̂ = Pk|k, µ̄ = µk|k−1, and µ̂ = µk|k. Writing out the posterior as

N (xk, µ̂, P̂ ) ∝ exp
(
− 1

2

[
xTk P̂

−1xk − 2xTk P̂
−1µ̂+ µ̂T P̂−1µ̂

])
, (A.13)

and writing out the prior, and likelihood function as

N (yk, Ckxk, R) ∝ exp
(
− 1

2

[
(yk − Ckxk)TR−1(yk − Ckxk)

])
N (xk, µ̄, P̄ ) ∝ exp

(
− 1

2

[
(xk − µ̄)T P̄−1(yk − µ̄)

])
N (xk, µ̂, P̂ ) ∝ exp

(
− 1

2

[
(xk − µ̂)T P̂−1(yk − µ̂)

])
,

(A.14)

and put these into Equation (A.12), the following equation is obtained.
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p(xk|y1:k) ∝ exp
(
− 1

2

[
xTk

(
CT
k R
−1Ck + P̄−1︸ ︷︷ ︸
P̂−1

)
xk

− 2xTk

(
CT
k R
−1yk + P̄−1µ̄︸ ︷︷ ︸
P̂−1µ̂

)
+ yTk

(
R−1

)
yk

+ µ̄T
(
P̄
)
µ̄
])

(A.15)

By observing Equation (A.13), and noticing that Pk|k is between (xk...xTk ), and µk|k is
behind (−2xkP

−1
k|k ...), the updated co-variance and expected value can be found after

observing them in Equation (A.15). Thus, updated co-variance and expected value can
be written as

P̂ = (CT
k R
−1Ck + P̄−1)−1 (A.16)

and
µ̂ = P̂ (CT

k R
−1yk + P̄−1µ̄) (A.17)

The Kalman gain appears in
P̂ =

(
I −KkCk

)
P̄ (A.18)

and can be found by using the Matrix Inversion Lemma

Lemma 1 (Matrix Inversion Lemma) Higham (2002)

(A+ UCV )−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1

V A−1 (A.19)

Using the lemma on Equation (A.16),

P̂ = (CT
k R
−1Ck + P̄−1)−1

= P̄ − P̄CT
k

(
R + CkP̄C

T
k

)
CkP̄

P̂ =
[
I − P̄CT

k

(
R + CkP̄C

T
k

)−1

︸ ︷︷ ︸
Kk

Ck

]
P̄

(A.20)

Thus the Kalman gain is equal to

Kk = P̄CT
k

(
R + CkP̄C

T
k

)−1

︸ ︷︷ ︸
S−1
k

(A.21)
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Furthermore, is known that

µ̂ = µ̄+Kk(y − Ckµ̄) (A.22)

To prove this, Equation (A.17) is written out

µ̂ = P̂ (CT
k R
−1yk + P̄−1µ̄)

= P̂CT
k R
−1yk + P̂ P̄−1µ̄

= (I − CkK)µ+ P̂CT
k R
−1yk

(A.23)

Comparing with Equation (A.22), it needs to be shown that Kk = P̂CT
k R
−1.
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P̂CT
k R
−1 =

[
I − P̄CT

k

(
R + CkP̄C

T
k )−1C

]
P̄CT

k R
−1

=
[
P̄CT − P̄CT

(
R + CkP̄C

T
k

)−1

CkP̄C
T
k

]
R−1

= P̄CT
k

[
I −

(
R + CkP̄C

T
k

)−1

CkP̄C
T
k

]
R−1

= P̄CT
k

[
S−1
k Sk −

(
R + CkP̄C

T
)−1

︸ ︷︷ ︸
S−1
k

CkP̄C
T
k

]
R−1

= P̄CT
k S
−1
k

[ (
R + CkP̄C

T
k

)
︸ ︷︷ ︸

Sk

−CkP̄CT
k

]
R−1

= P̄CT
k S
−1
k

(A.24)

Therefore, it follows that Equation (A.17) can be written as Equation (A.22).

A.4.2 Time Update

For the time update, consider Equation (5.3),

p(xk+1|y1:k) =

∫
N (xk+1, µ̄, P̄ )N (xk, µ̂, P̂ )dxk

= N (xk+1, µ̄, P̄ )

∫
N (xk|k, µ̂, Pk|k)dxk︸ ︷︷ ︸

1

= N (xk+1, µ̄, P̄ )

(A.25)

The expected value can be found by

µ̄ = E[xk+1]

= E[Φxk] + E[Γvk]︸ ︷︷ ︸
0

= Φµ̂

(A.26)

The co-variance matrix can be found by
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Pk+1|k = E[(xk+1 − µ̄)(xk+1 − µ̄)T ]

= E[(Φxk + Γvk − Φµ̄)(Φxk + Γvk − Φµ̄)T ]

= E[(Φ(xk − µ̂) + Γvk)(Φ(xk − µ̂) + Γvk)
T ]

= E[(Φ(xk − µ̂)(xk − µ̂)TΦT + Γvkv
T
k ΓT )

= E[(Φ(xk − µ̂)(xk − µ̂)TΦT ) + E(Γvkv
T
k ΓT )

= ΦE[((xk − µ̂)(xk − µ̂)T )︸ ︷︷ ︸
Pk|k

φT + E(Γvkv
T
k ΓT )︸ ︷︷ ︸

Q

= ΦP̂ΦT + ΓQΓT

(A.27)
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A.5 Particle Filter with Gaussian State Noise

(a) Case 1: Parameter estimates ak,1 (b) Case 1: Parameter estimates ak,2

Figure A.1: Case 1: Particle Filter Parameter Estimates

(a) Case 1: Log Square Error (b) Case 1: Log Square Error

Figure A.2: Case 1: Log Square Error

128



APPENDIX A. APPENDIX

Figure A.3: Case 1: Particle filter log mean square error with Gaussian state noise

(a) Case 1: Standard deviation ak,1 (b) Case 1: Standard deviation ak,2

Figure A.4: Case 1: Standard deviation from Particle filter with Gaussian state noise
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A.6 Importance Weights Update Law

The following derivation is given in Arulampalam et al. (2002).

Let the importance sampling function and the posterior density function for the whole
trajectory x1:k be factorisable such that,

q(x0:k|y1:k) = q(xk|x0:k−1, y1:k)q(x0:k−1|y1:k) (A.28)

and

p(x0:k|y1:k) = p(x0:k|xk−1)p(x0:k−1|y0:k−1). (A.29)

Then consider Bayes law given in Equation (5.1)

p(x0:k|y1:k) =
p(yk|x0:k)p(x0:k|y1:k−1)

p(yk|y1:k−1)

=

Factorization︷ ︸︸ ︷
p(yk|xk)p(x0:k|xk−1) p(x0:k−1|y0:k−1)

p(yk|y1:k−1)

∝ p(yk|xk)p(x0:k|xk−1)p(x0:k−1|y0:k−1)

(A.30)

Putting (A.28) and (A.30) into (5.21), the following is obtained

ŵik ∝
p(yk|xk)p(xk|xk−1)

︷ ︸︸ ︷
p(x0:k−1|y1:k−1)

q(xk|x0:k−1) q(x0:k−1|y1:k−1)︸ ︷︷ ︸
wk−1

= ŵik−1

p(yk|xk)p(xk|xk−1)

q(xk, y1:k)

(A.31)
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