
DUNE: Unified Navigation Environment 
for the REMUS 100 AUV
Implementation, Simulator Development, and 

Field Experiments

Sigurd Andreas Holsen

Master of Science in Engineering and ICT

Supervisor: Asgeir Johan Sørensen, IMT
Co-supervisor: Petter Norgren, IMT

Department of Marine Technology

Submission date: June 2015

Norwegian University of Science and Technology



 



NTNU Trondheim
Norwegian University of Science and Technology
Department of Marine Technology

MASTER THESIS IN MARINE CYBERNETICS

SPRING 2015

FOR

STUD. TECH. Sigurd Andreas Holsen

DUNE: Unified Navigation Environment for the REMUS 100 AUV

Implementation, Simulator Development, and Field Experiments

Work Description

Autonomous Underwater Vehicles (AUVs) are commonly used for underwater surveys as they have high
maneuverability and can cover great distances. NTNU owns one such vehicle: the REMUS 100 developed
by Hydroid. The REMUS 100 vehicle enables software extensions by use of the Hugin SDK plugin API. The
API gives low-level access to the states of the vehicle and makes it  possible to override the vehicles
behavior.

Development of algorithms for navigation and control often involves complex systems and the Hugin SDK
gives little aid to the structuring of such systems. To cope with this complexity, we have chosen to use the
open source robot framework DUNE. By making an interface to DUNE from a Hugin SDK plugin,  the
control  of the vehicle can be written using DUNE and leverage its  field tested software modules for
underwater  applications.  DUNE  is  also  used  by  Department  of  Engineering  and  Cybernetics  and
Department of Marine Technology at NTNU. Using the same robot framework will allow for reuse of code
across applications.

Scope of work

1. Development of an interface between DUNE and Hugin SDK through a plugin.

2. Development of a DUNE configuration for the REMUS 100 vehicle.

3. Development of an altitude controller in DUNE to move the vehicle with a constant distance to 
the seabed. The controller will take the Doppler Velocity Log (DVL) ranges as input.

4. Development of a simulator for the vehicle to be able to test the controller.

5. Field testing of the interface, DUNE configuration, and controller in Hopavågen.



NTNU Trondheim
Norwegian University of Science and Technology
Department of Marine Technology

6. Writing of documentation and guidelines for DUNE development on REMUS.

The report shall be written in English and edited as a research report including literature survey, 
description of mathematical models, description of control algorithms, simulation results, model test 
results, discussion and a conclusion including a proposal for further work. Source code should be provided
on a CD with code listing enclosed in appendix. It is supposed that Department of Marine Technology, 
NTNU, can use the results freely in its research work, unless otherwise agreed upon, by referring to the 
student’s work. The thesis should be submitted in three copies within June 10.

Advisers: PhD Candidate Petter Norgren

Professor Asgeir J. Sørensen
Supervisor







Abstract

This master thesis presents a new software system for developing control systems
on the REMUS 100 autonomous underwater vehicle (AUV). Software written to
control autonomous vehicles generally involve many components, and issues such
as communication, synchronization, and modularity will arise. Many software
frameworks have been written to address these issues. To ease the development, we
have implemented an interface between the REMUS vehicle and the open source
DUNE framework, leveraging its field-tested software for AUVs. To be able to
simulate software written in DUNE, we have implemented an interface to an AUV
simulator, AUVSim.

We have used DUNE to control the heading and the altitude of the vehicle. Two
altitude controllers have been presented that use range measurements from a
Doppler velocity log (DVL) as control input. The auto altitude controller uses the
ranges to estimate the altitude of the vehicle. The highpass altitude controller uses
an additional estimate of the seabed slope, resulting in a reduced altitude error on
large bathymetric variations. Both altitude controllers have been implemented in
DUNE and simulated in AUVSim with good results.

A field test was carried out in Hopavågen April 20-23, 2015 to test the two altitude
controllers and the heading control via DUNE. The field test showed good result
for the auto altitude controller. However, the highpass controller proved to be
sensitive to noise in the range measurements from the DVL and did therefore give
a noisy control output. Control of heading was not conducted due to an error in
the REMUS API. This error was fixed after the field test was complete.

The field tests proved that DUNE was a good fit for controlling the REMUS 100
AUV. The NTNU REMUS 100 can now use DUNE as a development platform,
allowing reuse of code from related research activities.





Sammendrag

Denne masteroppgaven presenter et nytt programvaresystem for utvikling av
styringssystem for den autonome undervannsfarkosten REMUS 100. Program-
vare skrevet for å kontrollere autonome fartøy vil generelt sett inneholde mange
komponenter, og problemstillinger som kommunikasjon, synkronisering, og mod-
ularitet vil fort oppstå. Mange programvarerammeverk har blitt utviklet for å
bistå i disse utfordringene. For å tilrettelegge for videre utvikling har vi utviklet et
grensesnitt mellom REMUS og DUNE, som er et rammeverk med åpen kildekode.
DUNE er mye brukt for å styre undervannsfarkoster, noe som kan bidra til økt
produktivitet for videre utvikling på REMUS. For å gjøre det mulig å simulere
progamvaren, har vi implementert et grensesnitt til fartøysimulatoren AUVSim.

Vi har brukt DUNE til å styre kursen og altituden til farkosten. For å styre
altituden har vi utviklet to regulatorer som bruker avstandsmålinger fra en Doppler
velocity log (DVL) som innputt. Auto-regulatoren bruker avstandsmålingene til å
estimere fartøyets altitude. Høypass-regulatoren kompanserer i tillegg for stigningen
til havbunnen, noe som kan gi lavere regulatorfeil. Begge regulatorene har blitt
implementert i DUNE og simulert i AUVSim.

En felttest ble gjennomført i Hopavågen fra 20. til 23. april 2015 for å teste de
to altituderegulatorene. Felttesten viste gode resultater for auto-regulatoren, men
støy i avstandsmålingene fra DVLen gjorde at resultatene fra høypass-regulatoren
ble støyete. Styring av kurs ble ikke gjennomført på grunn av en feil i REMUS sitt
API. Denne feilen ble identifisert og rettet etter at felttesten var gjennomført.

Resultatene fra felttesten viste at DUNE var godt egnet som utviklingsplatform
for REMUS 100.





Acknowledgements

I would like to thank my supervisor Asgeir J. Sørensen and co-supervisor Petter
Norgren for their contributions to this master thesis. Petter has patiently read
through this thesis giving me advice on structure and theory. He spent a week
week with me in Hopavågen to get the results presented in this thesis. Asgeir has
given me invaluable guidance on academic writing and control theory. I would also
like to thank Kristian Klausen for teaching me the basics of DUNE and Neptus
and for responding to all my emails.

Last I want to thank my office mates at Tyholt.





Nomenclature

AUV - Autonomous Underwater Vehicle

DOF - Degrees Of Freedom

DUNE - DUNE Unified Navigational Environment

DVL - Doppler Velocity Log

GCS - Ground Control System

GPS - Global Positioning System

LSTS - Underwater Systems and Technology Laboratory (Portuguese)

MBE - Multibeam Echosounder

RECON - Remote Control Interface

ROS - Robot Operating System

ROV - Remotely Operated Vehicle

RPM - Revolutions Per Minute

SBC - Single Board Computer

SNAME - Society of Naval Architects and Marine Engineers

UDP - User Datagram Protocol

UUV - Unmanned Underwater Vehicle

VIP - Vehicle Interface Program

xi





Contents

List of Figures xvii

List of Tables xxi

List of Listings xxiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Unmanned Underwater Vehicles . . . . . . . . . . . . . . . . 2
1.2.2 Doppler Velocity Log . . . . . . . . . . . . . . . . . . . . . . 2
1.2.3 The REMUS 100 AUV . . . . . . . . . . . . . . . . . . . . . 2
1.2.4 HUGIN SDK . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.5 DUNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.6 AUVSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 Software Frameworks for Unmanned Vehicles . . . . . . . . . 4

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Evaluation of Software Frameworks for AUVs 9
2.1 Program Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Run Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Neptus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 rqt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 UWSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Documentation and Real World Usage . . . . . . . . . . . . . . . . 19

2.5.1 ROS Used for AUV and ROV operations . . . . . . . . . . . 20
2.5.2 DUNE Used for AUV Operations . . . . . . . . . . . . . . . 21

xiii



2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Modeling and Control System 25
3.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Altitude Kinematics . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Sensors and Controllers Aboard REMUS 100 . . . . . . . . . . . . . 30
3.2.1 DVL Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 The REMUS Controllers . . . . . . . . . . . . . . . . . . . . 31

3.3 Altitude Estimation by use of DVL . . . . . . . . . . . . . . . . . . 31
3.3.1 Altitude Rate of Change . . . . . . . . . . . . . . . . . . . . 32

3.4 Altitude Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.1 Auto Altitude Controller . . . . . . . . . . . . . . . . . . . . 33
3.4.2 Highpass Controller . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Altitude Controller Implementation . . . . . . . . . . . . . . . . . . 34

4 Software 37
4.1 Mission Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Interfacing with the Vehicle . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Interfacing with HUGIN SDK . . . . . . . . . . . . . . . . . 39
4.2.2 Interfacing with RECON . . . . . . . . . . . . . . . . . . . . 39
4.2.3 RECON Control Modes . . . . . . . . . . . . . . . . . . . . 40

4.3 HuginDuneBridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 Connecting to AUVSim . . . . . . . . . . . . . . . . . . . . 45
4.3.3 Run Configurations . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.4 Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 AUVSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Simulation of Beam Ranges . . . . . . . . . . . . . . . . . . . . . . 49

4.5.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Simulation 53
5.1 Simulation Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Constant Slope . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.2 Sinus Curved . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.3 Hopavågen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Beam Range Simulator . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.1 Visual Confirmation That the Beams Hit the Sea Bed . . . . 56
5.2.2 Altitude Control of an AUV Across the Sea Bed . . . . . . . 56

xiv



5.3 Tuning the Depth Controller . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Altitude Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4.1 Scenario: Constant Slope Map . . . . . . . . . . . . . . . . . 62
5.4.2 Scenario: Sinus Curved Map . . . . . . . . . . . . . . . . . . 63
5.4.3 Scenario: Hopavågen Map . . . . . . . . . . . . . . . . . . . 65

5.5 Heading Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Field Testing 69
6.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Altitude Control . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.2 Heading Control . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Tuning of the REMUS Depth Controller . . . . . . . . . . . . . . . 71
6.4 Altitude Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.1 REMUS Altitude Controller . . . . . . . . . . . . . . . . . . 75
6.4.2 Auto Altitude Controller . . . . . . . . . . . . . . . . . . . . 76
6.4.3 Highpass Controller . . . . . . . . . . . . . . . . . . . . . . . 77
6.4.4 Noise in the DVL range measurements . . . . . . . . . . . . 79

6.5 Heading Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.6 Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Software Changes Based on Experiences from Field Testing 83
7.1 Problems Encountered During Field Testing . . . . . . . . . . . . . 83

7.1.1 Changing Configurations Between Mission . . . . . . . . . . 83
7.1.2 Safety if DUNE Stops Communicating . . . . . . . . . . . . 83
7.1.3 Complexity in HuginDuneBridge . . . . . . . . . . . . . . . 84

7.2 Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3.1 New IMC Messages . . . . . . . . . . . . . . . . . . . . . . . 85
7.3.2 HuginDuneBridge . . . . . . . . . . . . . . . . . . . . . . . . 86
7.3.3 Control.REMUS.RECON . . . . . . . . . . . . . . . . . . . 86
7.3.4 Control.REMUS.AUVSim . . . . . . . . . . . . . . . . . . . 88

7.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8 Conclusions and Further Work 91
8.1 Recommendations for Further Work . . . . . . . . . . . . . . . . . . 92

9 Bibliography 93

Appendices 99

A Guidelines for DUNE Development on REMUS 101

xv



A.1 Replay Missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.2 Compiling Programs for the PP computer . . . . . . . . . . . . . . 101

A.2.1 Debugging side-by-side Configuration Errors on the PP Com-
puter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.3 Recompile IMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.4 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.5 Mission Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.6 Pre-Mission Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.7 Post-Mission Checklist . . . . . . . . . . . . . . . . . . . . . . . . . 105

B Path Control in DUNE 107

C Simulations Using a PID Depth Controller 109
C.1 Scenario: Constant Sloped Map . . . . . . . . . . . . . . . . . . . . 109
C.2 Scenario: Sinus Curved Map . . . . . . . . . . . . . . . . . . . . . . 111
C.3 Scenario: Hopavågen Map . . . . . . . . . . . . . . . . . . . . . . . 113

D Original Plots From the Field Tests 117
D.1 REMUS Altitude Controller . . . . . . . . . . . . . . . . . . . . . . 118
D.2 Auto Altitude Controller . . . . . . . . . . . . . . . . . . . . . . . . 119
D.3 Highpass Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

E Attachments 123

xvi



List of Figures

1.1 DVL made by Teledyne RD Instruments (2014). . . . . . . . . . . . 3
1.2 The REMUS 100 AUV developed by Hydroid. . . . . . . . . . . . . 3

2.1 Message passing using IMC. . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Communication graph in ROS made with rqt_graph . . . . . . . . 12
2.3 Connection setup in ROS between two nodes through the master

channel. Courtesy of DeMarco et al. (2011). . . . . . . . . . . . . . 12
2.4 Tree structure comprising the configuration files for the SeaCon-1

AUV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Neptus operator console. Simultaneous control of two AUVs. . . . . 15
2.6 Neptus Mission Review and Analysis. Showing the xy-trajectory of

an AUV mission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Neptus Mission Review and Analysis. Showing a Sidescan plot. . . 16
2.8 Custom interface made with rqt. . . . . . . . . . . . . . . . . . . . 18
2.9 AUVs approaching a shipwreck in UWSim. Courtesy of IRS Lab

(http://www.irs.uji.es/uwsim). . . . . . . . . . . . . . . . . . . . . . 18
2.10 Network connectivity across platforms. Courtesy of Faria et al. (2014) 22

3.1 An AUV sending out four DVL beams. The dottet line represents
altitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Numbering of the DVL beams. u points in the surge direction and
v point in the sway direction . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Altitude estimate in 2D. . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Comparison of ideal control output from the auto altitude controller

and highpass controller. . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 The Vehicle Interface Program for REMUS. . . . . . . . . . . . . . 38
4.2 Example of a plugin running on the PP computer. . . . . . . . . . . 38
4.3 Communication between HuginDuneBridge, DUNE, and the REMUS

computer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xvii



4.4 Communication flow for HuginDuneBridge running in simulation on
a local laptop or on REMUS. . . . . . . . . . . . . . . . . . . . . . 42

4.5 Running DUNE on a separate computer . . . . . . . . . . . . . . . 42
4.6 Network architecture for HuginDuneBridge and DUNE. . . . . . . . 43
4.7 Control flow from CPPDataBase in HuginDuneBridge to DUNE. . . 43
4.8 Control flow from DUNE to HUGIN . . . . . . . . . . . . . . . . . 44
4.9 Network architecture for HuginDuneBridge, DUNE, and AUVSim . 45
4.10 Block diagram of the AUVSim simulator. . . . . . . . . . . . . . . . 48
4.11 Network delay between AUVSim and DUNE. The timestep dt is

0.01 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.12 Range error for the beam simulator. . . . . . . . . . . . . . . . . . . 50
4.13 Class diagram for the Beam Range Simulator. . . . . . . . . . . . . 52

5.1 The constant slope map. . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 The sinus curved map. . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Contour plot of the bathymetry at Hopavågen. The lowest point is

28 meters deep. The thick blue line represents the shore line. . . . . 55
5.4 Visualizing the DVL beams from an AUV. The beams should barely

touch the seabed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5 Estimated depth and true depth of the seabed recorded along an

AUV trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6 Depth estimation error of the seabed recorded along an AUV trajectory. 58
5.7 Depth reference zd, depth zremus, and simulated depth zauvsim for a

mission in Ny-Ålesund, Spitsbergen January 20, 2015. . . . . . . . . 59
5.8 Depth reference zd, depth zremus, and simulated depth zauvsim for a

mission in Ny-Ålesund, Spitsbergen January 20, 2015. . . . . . . . . 60
5.9 Example of input zr and response zd for the depth guidance block. . 60
5.10 AUV path for the Hopavaagen simulation scenario. The thick blue

line represents the shore line while the thick red line represents the
AUV path. The start position is west of the deepest point. . . . . . 61

5.11 Simulation using the auto altitude controller and the constant slope
map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.12 Simulation using the highpass controller and the constant slope map. 63
5.13 Simulation using the auto altitude controller and the sinus map. . . 64
5.14 Simulation using the highpass controller and the sinus map. . . . . 64
5.15 Simulation using the auto altitude controller and the Hopavågen map. 65
5.16 Simulation using the highpass controller and the Hopavågen map. . 66
5.17 Simulation of Heading using DUNE to set the destination goal and

AUVSim to set the heading. The thick red line represents the AUV
path while the thick dotted black line represents the desired path. . 67

xviii



5.18 Simulation of Heading using the vectorfield task in DUNE to set the
heading angle. The thick red line represents the AUV path while
the thick dotted black line represents the desired path. . . . . . . . 67

6.1 Path of the depth control mission in Hopavågen. Plotted using Neptus. 70
6.2 Path of the heading control mission in Hopavågen. Plotted using

Neptus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3 Horizontal path for the depth controller tuning mission. . . . . . . . 72
6.4 Result of the tuning mission with kp = 3.0 and ki = 0.273. . . . . . 72
6.5 Result of the tuning mission with kp = 3.5 and ki = 0.273. . . . . . 73
6.6 Result of the tuning mission with kp = 2.5 and ki = 0.273. . . . . . 73
6.7 Result of the tuning mission with kp = 2.0 and ki = 0.223. . . . . . 74
6.8 Result of the tuning mission with kp = 4.0 and ki = 0.223. . . . . . 74
6.9 The range measurement retrieved from the DVL during the field

testing was the altitude a and not the range |r|. . . . . . . . . . . . 75
6.10 The difference between the altitude estimated by REMUS and the

altitude estimated from the wrong beam ranges. . . . . . . . . . . . 75
6.11 Depth z and desired depth zr for the baseline mission using the

REMUS altitude controller. . . . . . . . . . . . . . . . . . . . . . . 76
6.12 Depth z and desired depth zr for the auto altitude mission. . . . . . 77
6.13 Depth z and desired depth zr for the first highpass altitude mission. 78
6.14 Depth z and desired depth zr for the second highpass altitude mission. 79
6.15 Range measurements from the DVL during the first highpass altitude

mission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.16 Range measurements from the DVL during the first highpass altitude

mission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.17 Range measurements from the DVL during a mission in the Trond-

heimsfjord October 2014. The range measurements from this mission
had significantly less noise. . . . . . . . . . . . . . . . . . . . . . . . 81

7.1 Control flow for the RECON task. . . . . . . . . . . . . . . . . . . . . 86
7.2 Control flow for the AUVSim task. . . . . . . . . . . . . . . . . . . . 89

B.1 Control flow for path planning in DUNE. . . . . . . . . . . . . . . . 107

C.1 Simulation using auto altitude and the constant slope map. . . . . . 110
C.2 Simulation using the highpass controller and the constant slope map.111
C.3 Simulation using auto altitude and the sinus map. . . . . . . . . . . 112
C.4 Simulation using the highpass controller and the sinus map. . . . . 113
C.5 Simulation using auto altitude and the Hopavågen map. . . . . . . . 114
C.6 Simulation using the highpass controller and the Hopavågen map. . 115

xix



D.1 The range measurement retrieved from the DVL during the field
testing was the altitude a and not the range |r|. . . . . . . . . . . . 117

D.2 Depth z and desired depth zr for baseline mission using the REMUS
altitude controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

D.3 Depth z and desired depth zr for the auto altitude mission. . . . . . 119
D.4 Depth z and desired depth zr for the first highpass altitude mission. 120
D.5 Depth z and desired depth zr for the second highpass altitude mission.121

xx



List of Tables

3.1 The notation of SNAME(1950) for marine vessels. . . . . . . . . . . 26

5.1 Simulation coefficients for the AUVSim PI depth controller. . . . . 59

7.1 The available methods of control. . . . . . . . . . . . . . . . . . . . 87

C.1 Simulation coefficients for the AUVSim PID depth controller. . . . . 109

xxi





List of Listings

3.1 Example of configuration parameters for the AltitudeFromDVL task. 34
4.1 Code for listening for new vehicle state updates. . . . . . . . . . . . 39
4.2 Data format of packages sent from AUVSim to HuginDuneBridge. . 45
4.3 Data format of packages sent from HuginDuneBridge to AUVSim. . 46
4.4 Configuration file for HuginDuneBridge. . . . . . . . . . . . . . . . 47
5.1 Configuration parameters used for the Vectorfield task. . . . . . . . 68
7.1 Configuration parameters for the Control.REMUS.RECON task. . . . 87
7.2 Configuration parameters for the Control.REMUS.AUVSim task. . . . 89
A.1 Script to recompile IMC dependencies. . . . . . . . . . . . . . . . . 103

xxiii





Chapter 1

Introduction

1.1 Motivation

The aim of this thesis is to facilitate software development for the REMUS 100
autonomous underwater vehicle (AUV). Currently the only way to add functionality
to the AUV is through the HUGIN SDK plugin API. Development of algorithms
for navigation and control often involves complex systems and the HUGIN SDK
gives little aid to the structuring of such systems.

Multiple software frameworks have been written to cope with the complexity of
developing robotic software. Most of these frameworks support separation of the
software into multiple user-defined components that interact with each other in a
transparent manner. With smaller components it becomes easier to reason about
the system.

In addition, they include a big amount of plumbing code required for an AUV to
function. This include modules for data logging, synchronization and communica-
tion between components, noise filtering and more. To do research on high-level
topics like maneuvering or autonomy it is necessary to have implemented solutions
for these tasks. By using a field-tested software framework, the focus can be
centered on development of new features that will result in increased productivity.

DUNE is a software framework made by the Underwater Systems and Technology
Laboratory (LSTS, 2014), a part of the Faculty of Engineering, University of Porto.
It has been tested in the field numerous times, is the software running on the AUVs
produced by LSTS, and is actively developed.

1



Chapter 1. Introduction

1.2 Background

1.2.1 Unmanned Underwater Vehicles

Unmanned underwater vehicles (UUVs) are a growing research field and have many
applications. Their use cases include bathymetric surveys, pipeline surveys, cable
maintenance, marine archeology, and marine biology. Autonomous underwater
vehicles is a category of underwater vehicles that is untethered and can operate
autonomously without human intervention. They are commonly used for underwater
surveys as they have high maneuverability and can cover great distances. AUVs
are often underactuated, which means that they do not have actuators in all
degrees-of-freedom (DOF) (Wadoo and Kachroo, 2010). Most AUVs have a stern
propeller to control forward speed and two fins to control pitch and heading.

Another category of underwater vehicles is the remotely operated vehicle (ROV).
ROVs are tethered and most often controlled by an operator located onshore or
onboard a surface vessel. They are often equipped with manipulator arms that can
be used for missions that require interaction.

1.2.2 Doppler Velocity Log

Most AUVs are equipped with a Doppler velocity log (DVL). A DVL sends out
acoustic signals in multiple directions. When these beams hit a surface, they are
reflected back to the DVL. The time between sending and receiving yields the
distance along the beam, and a Doppler shift of the frequency gives the velocity.
Three beams are necessary to get the velocity of the vehicle, but most DVLs have
four beams making it more robust. When an UUV is relative close to the seabed,
the DVL can be used as navigation input to estimate the position of the vehicle.
Usage of DVL for navigation have been presented by Candeloro et al. (2012) and
Dukan et al. (2011). Usage of the DVL range measurements for altitude control
have been presented by Dukan and Sørensen (2012).

1.2.3 The REMUS 100 AUV

The AUV used in this thesis is a REMUS 100, first developed by the Woods
Hole Oceanographic Institution. The AUV is now developed by Hydroid, a spinoff
company fromWoods Hole owned by KONGSBERG Group. The vehicle is equipped
with two DVLs: one on the upper side of the vehicle and one underneath. Both
DVLs are made by Teledyne RD Instruments (2014). In addition, the AUV is

2



1.2. Background

Figure 1.1: DVL made by Teledyne RD Instruments (2014).

equipped with an altimeter measuring the distance straight down. This is the
sensor that the Hydroid software uses for altitude control.

Figure 1.2: The REMUS 100 AUV developed by Hydroid.

REMUS is equipped with two horizontal fins called the stern planes, and two
vertical fins called the rudder planes. The stern planes control the pitch of the
vehicle while the rudder planes control the heading. Both the stern planes and the
rudder planes are moving together, thus they cannot be controlled individually.

The REMUS 100 vehicle has multiple computers responsible for the parts of the
system. The Payload-processor computer (PP computer) handles the plugins and
all the sensors except for navigation. The PP computer is running the Windows
7 Embedded operating system. The REMUS computer runs the low-level control
system responsible for setting the propeller speed and fin position.

1.2.4 HUGIN SDK

HUGIN SDK is the plugin framework originally created for the HUGIN AUV
developed by KONGSBERG Maritime. It has since been ported to support the
REMUS AUV. The framework is written in C++ and contains common building
blocks for plugin creation including multithreading, synchronization, and file access.

3



Chapter 1. Introduction

In addition, it includes an interface to retrieve data from the AUV. Typical data
includes estimated state from the observer, ranges from the DVL, and data from
the side scan sonar.

1.2.5 DUNE

DUNE is made by the Underwater Systems and Technology Laboratory (LSTS,
2014), a part of the Faculty of Engineering, University of Porto. The development
of DUNE started with the development of another software package, Neptus (Dias
et al., 2005).

Neptus is graphical user interface (GUI) for operating multiple unmanned vehicles.
This includes mission planning, simulation, execution, and review and analysis of
mission data. A key point of the Neptus software is that it was designed for use
with different types of vehicles including AUVs, ASVs, ROVs, and UAVs. This was
also the reason for its creation.

DUNE is the runtime environment for the vehicles on-board software (Pinto et al.,
2012). It was created because of the need to control networks of vehicles and to
facilitate further research on unmanned vehicles. DUNE, together with Neptus,
forms the LSTS-Toolchain for unmanned vehicles. A more thorough discussion
about DUNE is given in Chapter 2.

1.2.6 AUVSim

AUVSim is a simulator for REMUS 100 created by PhD candidate Petter Norgren
(Norgren and Skjetne, 2015). The simulator is implemented in MATLAB and
Simulink. All simulations in this thesis have been performed by AUVSim.

1.3 Previous Work

1.3.1 Software Frameworks for Unmanned Vehicles

Different software frameworks are developed for different use cases. This section
will present some of the frameworks and the purpose for their creation.

4



1.3. Previous Work

Orocos

Orocos (Open Robot Control Software) is a European project, started on September
1st, 2001. The project aimed at becoming a general-purpose and open robot control
software package (Bruyninckx, 2001) since no other open source control software
packages existed at the time. Orocos systems are separated into components that
may be developed individually and connected together either at compile time or
run time.

Orocos has a high focus on real time applications through its real time toolchain
that provides fine grained control over how the software components interact. In
addition, Orocos includes libraries for bayesian filtering like Kalman filters, dynamic
bayesian networks, and particle filters, and libraries for kinematics and dynamics
like kinematic chains and forward kinematics.

ROS

ROS (Robot Operating System) is maybe the most popular middleware for robotic
applications. The software platform is a result of a collaboration between Willow
Garage and Stanford University that started around 2007 (Magyar et al., 2015).
ROS has been built from the ground up to encourage collaborative robotics software
development (Quigley et al., 2009). ROS software are developed in packages that
are easily distributed and shared. As of June 2015, over 3500 packages have been
developed.

The official description of ROS is:

ROS is an open-source, meta-operating system for your robot. It
provides the services you would expect from an operating system,
including hardware abstraction, low-level device control, implementation
of commonly-used functionality, message-passing between processes, and
package management. It also provides tools and libraries for obtaining,
building, writing, and running code across multiple computers (ROS,
2014).

An evaluation of ROS and DUNE is presented in Chapter 2.

Rock

Rock (Robot Construction Kit) is an open source software framework for devel-
opment of robotic systems. It is based on the real time toolchain in Orocos and

5



Chapter 1. Introduction

provides several ready-to-use drivers and modules.

Meinecke et al. (2013) have used Rock in the control system aboard the Marum
Hybrid-ROV for under-ice operations. Natarajan et al. (2012) have used Rock for
offline parameter identification using on-board sensors for an AUV.

1.4 Contributions

The contributions of this thesis are the following:

• A HUGIN SDK plugin for interfacing the REMUS 100 AUV with DUNE.
This interface makes it possible to implement software extensions for REMUS
100 using the DUNE framework and leverage its field testes software modules
for underwater applications. The architecture and design decisions for the
software are given in Chapter 4 and Chapter 7.

• A beam range simulator capable of simulating DVL and MBE beam ranges
is presented in Section 4.5.

• A altitude controller using beam range measurements from a DVL. The
new altitude controller, named the highpass controller, uses the slope of the
seabed to reduce the altitude error experienced when the slope of the seabed
changes. The theory for highpass controller is given in Chapter 3 and has
been simulated in Chapter 5. A field test using the REMUS 100 AUV was
carried out in Hopavågen, Norway April 20-23, 2015. The field testing results
are found in Chapter 6.

• Guidelines for DUNE development on REMUS based on the experiences from
the field test. The guidelines are presented in Appendix A.

1.5 Organization of Thesis

Chapter 2 presents an evaluation of two software frameworks ROS and DUNE.
The frameworks are compared in terms of configurability, ease of use, portability,
user interface, and applicability for AUVs.

Chapter 3 presents modeling of the REMUS 100 AUV and development of two
altitude controllers. The focus is on modeling and estimation of the altitude and
the seabed slope using range measurements from a DVL. Two altitude controllers
are presented that use these range measurements as input.

6



1.5. Organization of Thesis

Chapter 4 presents the software written to control the REMUS AUV during the
field tests. A HUGIN SDK plugin have been developed to interface the vehicle
with DUNE. Finally, the AUVSim simulator is connected to DUNE allowing for
simulation of control systems written in DUNE.

Chapter 5 presents the simulation results using the software and the altitude
controllers given in the previous chapters. The AUVSim depth controller is tuned
to resemble the depth controller on REMUS. The altitude controllers presented in
Chapter 3 is simulated in AUVSim for three different scenarios.

Chapter 6 presents the execution of the field testing in Hopavågen. The chapter
includes organization of the field testing, tuning of the REMUS depth controller,
and the field test results.

Chapter 7 presents a new architecture for interfacing DUNE with the REMUS
AUV based on the experiences from Hopavågen.

Appendix A presents a set of guidelines for DUNE development on the REMUS
100 AUV.

Appendix B presents the control flow for path planning and maneuvering in
DUNE.

Appendix C presents new simulation results using a PID depth controller as
opposed to the PI depth controller implemented on REMUS 100.

Appendix D presents the raw test results from the field test in Hopavågen.

Appendix E presents the attachments to this thesis.

7





Chapter 2

Evaluation of Software
Frameworks for AUVs

This chapter presents an evaluation of software frameworks for AUVs. The two
software frameworks that have been evaluated are DUNE and ROS. The frameworks
are compared in terms of configurability, ease of use, portability, user interface,
and applicability for AUVs. The result of the evaluation was the choice of using
DUNE for the REMUS 100 AUV.

The chapter is based on what was done in the project thesis (Holsen, 2014), and
has been repeated because of its relevance to this thesis.

2.1 Program Structure

DUNE

The base entity of a DUNE program is the Task. Tasks can be viewed as small
configurable subprograms that run in parallel with other tasks. DUNE tasks can be
diverse; some are responsible for interfacing with hardware, others are part of the
chain of command translating higher-level goals to low-level actuator commands
or monitoring the state of the vehicle (Faria et al., 2014). The communication
between different tasks are done by message passing. Each task may subscribe to
and broadcast messages. A depth controller task may subscribe to messages about
desired depth and broadcast messages about thruster actuation.

A corner stone of the LSTS-Toolchain is the Inter-Module Communication (IMC)

9



Chapter 2. Evaluation of Software Frameworks for AUVs

protocol (Martins et al., 2009). This protocol describes the different data types and
messages that can be sent between tasks. All message types in IMC is described in
a single XML file IMC.xml that can be compiled into C++ and Java classes. Ex-
amples of different messages are IMC::EstimatedState, IMC::DesiredControl,
and IMC::SetThrusterActuation. A depth controller for an AUV may listen
to IMC::EstimatedState to get the current depth of the vehicle, and then after
some calculations broadcast IMC::DesiredControl. The IMC::DesiredControl
message may then be received by a thrust allocation task that in turn broad-
casts IMC::SetThrusterActuation and IMC::SetServoPosition. Subscription
and broadcasting of IMC messages in DUNE are handled by the IMC Bus. An
illustration of the message passing can be seen in Figure 2.1

Depth Controller

EstimatedState

DesiredControl

EstimatedState

IMC Bus

Thrust
Allocation

DesiredControl

SetThrusterActuation

SetServoPosition

BasicNavigation

Figure 2.1: Message passing using IMC.

The benefit of this approach is that it makes it easy to replace a task. As long as
the new task broadcasts the same messages as the replaced one, the rest of system
should behave the same. It also makes it easy to retrieve information from the
system since all messages are available to all tasks.

The tasks in DUNE are supported by the DUNE core library. The core library
consists of all the plumbing code necessary for the tasks to function. This includes
support for concurrency, monitoring, filtering, control algorithms, modeling, and
the IMC protocol among others. Other applications that want to interact with
DUNE may link to the core library.

10



2.1. Program Structure

The core library together with the tasks are compiled into a single binary executable.
The executable will contain all tasks and hardware drivers. An unmanned aerial
vehicle (UAV) may use the same executable as an AUV, and then run the executable
with a different configuration. Configuration files are discussed in Section 2.2.

ROS

The basic entity of a ROS application is the node. A node is a program that
performs computations. A ROS application is typically comprised of many such
nodes, each responsible for one part of the application. The node in ROS differs
from the tasks in DUNE in that each ROS node is compiled into its own executable
while all DUNE tasks are compiled into the same DUNE executable.

This leads to a different architecture for communication between nodes. The single
executable in DUNE makes it easy to locate the different tasks to find the receiver.
In ROS, this responsibility is given to a special program called master. Each of the
nodes have to connect to master to communicate with other nodes.

As in DUNE, ROS uses message passing to communicate between nodes. The
types of messages are specified in the language-neutral interface definition language
(IDL) where each message type is defined in a separate file. The IDL offers the
same functionality as the IMC protocol in DUNE.

The message passing is done by subscribing and publishing to different topics. This
allows for more fine-grained control of the message passing as there may be multiple
topics using the same message type. An example of a message passing graph is
shown in Figure 2.2. The nodes in the figure are showed as ellipsoids while the
topics are showed as rectangles.

The way message passing works for the two platforms is different. In DUNE,
all messages are sent to and received from a common message bus. In ROS,
the messages are sent directly between the nodes using the peer-to-peer model.
The difference lies in how the nodes/tasks establish the connection. In ROS, the
connection between the nodes and the topics is explicitly established when setting
up the connection. The connection procedure for ROS is shown in Figure 2.3.

Source Code Hierarchy

The source code in ROS is separated into packages that may contain any ROS
file. A ROS package may reside in a ROS workspace for development, or be
installed in the ROS package directory as a binary. This separation makes it easy

11



Chapter 2. Evaluation of Software Frameworks for AUVs

Figure 2.2: Communication graph in ROS made with rqt_graph

Master

Camera Display

Advertise(images)

Master

Camera Display

Subscribe(images)

Master

Camera Display

images

images

Figure 2.3: Connection setup in ROS between two nodes through the master
channel. Courtesy of DeMarco et al. (2011).

12



2.2. Run Configurations

to collaborate. If new functionality is needed in ROS, a new package can be created.
The package may then be distributed to others as either binaries or source code.
Another developer can then choose to install the new functionality.

2.2 Run Configurations

DUNE

Which tasks should be run is specified in a configuration file. In addition, the
configuration file includes configuration parameters for each of the tasks. Different
AUVs can use the same tasks, but with different configurations.

Configuration files may also be included in other configuration files forming a
tree-like structure. For the AUVs that LSTS operates, most of the task parameters
will be the same. These common parameters lies in the etc/auv folder in the
DUNE source code. The parameters that differ can be overridden in parent files.
An illustration of the tree structure for the SeaCon-1 AUV is shown in Figure 2.4

lauv-seacon-1

...hardware/lctr-a6xx/basic

...gps

auv/basic

...auv/navigationauv/simulator

Figure 2.4: Tree structure comprising the configuration files for the SeaCon-1 AUV

DUNE can be run in different profiles. The four most used profiles are Simulation,
Hardware, Always, and Never. All task entries in a configuration file must state
what profiles it allows. Hardware sensors should only be enabled in Hardware and
simulation tasks should only be enabled in Simulation. A task using the Always
profile will always be enabled, and a task using the Never profile will never be
enabled. This way it is possible to use the same configuration file for both real
missions and simulations.

ROS

A ROS program called roslaunch makes it possible to run multiple nodes at once.
roslaunch reads a configuration file in XML-syntax ands starts the appropriate

13



Chapter 2. Evaluation of Software Frameworks for AUVs

nodes. One important difference with DUNE tasks is that after the nodes have been
launched, it’s still possible to start new nodes and connect them to the others. This
is not possible with a DUNE task. When a node start, it connects to the master
channel to connect to the intended topics. This may be useful during debugging to
launch plotting tools or other logging software.

The roslaunch program also has the functionality to start ROS nodes on multiple
computers. For large-scale robots with many computational entities, this can be
useful.

2.3 User Interface

2.3.1 Neptus

DUNE is tightly integrated with the Ground Control System (GCS) Neptus. The
GCS is the user interface the operator interacts with to control the vehicles. This
includes both setting up mission plans, executing mission plans, and reviewing the
mission afterwards (Dias et al., 2006).

The goal of the Neptus framework is stated by Dias et al. (2005):

This infrastructure, the Neptus framework, goal is to support the coor-
dinated operation of heterogeneous teams which include autonomous
and remotely operated underwater, surface, land, and air vehicles and
people.

A key property of the Neptus framework is that it offers different interfaces for
different use cases. The operation console is different for AUVs, ROVs, and UAVs.
ROVs are for instance often equipped with cameras, therefore the operation console
for ROVs includes a camera view (Dias et al., 2006). For UAVs, the operation
console includes customized views for altitude and attitude. These customizations
are not hard-coded, but can be configured using XML. New types of views can be
written as plugins for Neptus and then configured to be included in the console.

Another goal of the Neptus project is to control multiple vehicles at once. Control
of two AUVs in Neptus is shown in Figure 2.5. Field experiments and simulations
with multiple vehicles have been performed by Pinto et al. (2013) and Marques
et al. (2015). With the development of the NVL language (Marques et al., 2015),
LSTS have executed coordinated missions where AUVs and an UAV have operated
together using Neptus.

14



2.3. User Interface

Figure 2.5: Neptus operator console. Simultaneous control of two AUVs.

For mission planning, Neptus offers a set of maneuvers that is linked together
to form a mission plan. The types of maneuvers include waypoints, lawnmower
patterns, and loitering. Mission plans created with Neptus may also be simulated
before the they are executed.

Neptus provides a specialized application (Neptus MRA) to inspect and analyze the
mission data after an operation (Pinto et al., 2012). After a mission or a maneuver
has been performed, Neptus can requests a log of all the messages sent and received
by DUNE. This data file can be read and analyzed by Neptus MRA, see Figure 2.6

The MRA has support for some of the data formats used by multibeam echosounders
(MBE) and sidescan sonars. The MBE data can be presented in a 3D plot, while
the sidescan sonar data can be presented as a sidescan plot (Figure 2.7) plotted
directly on the map. A video demonstrating these capabilities have been published
on http://youtu.be/bBafWYAiPAY.

15

http://youtu.be/bBafWYAiPAY


Chapter 2. Evaluation of Software Frameworks for AUVs

Figure 2.6: Neptus Mission Review and Analysis. Showing the xy-trajectory of an
AUV mission.

Figure 2.7: Neptus Mission Review and Analysis. Showing a Sidescan plot.

16



2.3. User Interface

2.3.2 rqt

rqt is a Qt-based framework for GUI development for ROS (Thomas et al., 2014;
Qt-Project, 2015). Most of the graphical tools offered by ROS is made with rqt. A
benefit of this is that these tools can be docked in a single window creating custom
interfaces (See Figure 2.8).

2.3.3 UWSim

UWSim is a software tool for visualization and simulation of underwater robotic
missions (Prats et al., 2012). The visualization is done with OpenSceneGraph
(2014) and osgOcean (2014). OpenSceneGraph is a high performance 3D graphics
toolkit that is used both for scientific simulations and 3D games. osgOcean is an
EU funded project that improves the graphics for underwater applications.

The core functionality of UWSim is to render underwater 3D visualizations. A
simple example is a 3D plot of an AUV together with a bathymetry. The scene may
be extended with other 3D models, like for example ship wrecks (see Figure 2.9).

The simulator in UWSim is purely kinematic. For each vehicle or object, it can take
forces acting on the body as input and compute the next state. It also simulates
different sensors, with or without noise. The different sensors include virtual
cameras, localization sensors for position, and range sensors like altimeter, DVL,
and MBE. The virtual camera can be used for pilot training or to test algorithms
for image recognition.

With the simulator and the visualization, it is possible to simulate different control
algorithms. UWSim exposes a ROS API making it possible to communicate with
other ROS software. The control algorithms may then be written in any language
that can interact with ROS. The dynamics simulations performed by Prats et al.
(2012) was done in MATLAB.

One of the main goals of UWSim is that it should be modular and extensible.
Research has been made to combine UWSim with the dynamic simulator Gazebo
(Koenig and Howard, 2004; Kermorgant, 2014) which may give more realistic
simulations for underwater behavior.

UWSim has support for collision detections. However, since the simulator is only
kinematic, it does not support the dynamics of such collisions. This may improve
in the future with research on Gazebo.

17



Chapter 2. Evaluation of Software Frameworks for AUVs

Figure 2.8: Custom interface made with rqt.

Figure 2.9: AUVs approaching a shipwreck in UWSim. Courtesy of IRS Lab
(http://www.irs.uji.es/uwsim).

18



2.4. Portability

2.4 Portability

The most used and recommended operating system for ROS is the Ubuntu Linux
distribution (Ubuntu, 2015) running on a x86 processor. There is experimental
support for Arch Linux, OSX, and Ubuntu running ARM processors. Windows
support is currently being developed, but is still considered unstable. Since ROS is
comprised of many separate programs, cross compilation to Single Board Computers
(SBCs) running ARM can be tedious and requires more effort. However, ROS have
been used on embedded devices with success as done by Ma’sum et al. (2013) and
Sa and Corke (2012).

It is the distributed nature of ROS that makes it less portable. Each node/program
is compiled to a separate executable or library that may use any external resource
they deem necessary. ROS packages will therefore have more requirements to
external software than DUNE. Since most of the community evolves around Ubuntu
as the main target, other Linux distributions, and especially Windows, have less
focus. Small differences in the Linux distributions can lead to compilation errors.

DUNE on the other hand is compiled into a single executable that runs in a single
operating system process. Because of this, cross compilation is only a matter of
compiling the single binary to the new platform. This is in accordance with the
goal that DUNE should work on embedded processors with limited capabilities.

2.5 Documentation and Real World Usage

ROS has a big community developing open source packages. At the time of writing,
there are around 3500 community developed packages available for ROS. However,
most of the focus goes towards robots in air and on ground. Few of the applications
of ROS in underwater operations have published any source packages. Although
few packages is focused directly on underwater vehicles, ROS has extensive support
for kinematics and manipulators (Sucan and Chitta, 2014).

The community around DUNE is active, but considerable smaller.

19



Chapter 2. Evaluation of Software Frameworks for AUVs

2.5.1 ROS Used for AUV and ROV operations

Open-loop control of ROV

The first documentet usage of ROS for underwater applications is done by Johns
Hopkins University Dynamical Systems and Control Laboratory (2014). They have
published a video where they use ROS to do open loop control of an ROV. This
was part of an exercise in using ROS. Based on the demonstration in the video,
the exercise was successful.

No source code, or any documentation beyond this video, have been published.

Yellowfin

Yellowfin is an AUV developed by Georgia Tech Research Institute specifically for
missions that require autonomous collaboration amongst multiple vehicles. (Melim
and West, 2011; DeMarco et al., 2011). It has been developed from the ground up
with common of the shelf hardware and a custom built body.

The Yellowfin computer control is separated into two sections called front-seat
and back-seat. Each of the sections are a implemented on its own Single Board
Computer (SBC). The front-seat board is responsible for the low-level control of
the actuators and sensors. This will coincide with the actuator control level used by
Sørensen (2013). The back-seat computer is responsible for the high-level control
like mission planning and navigation. It is the back-seat computer that is running
ROS. This is the most complex of the two and is therefore more prone to errors,
which is the reason for the separation.

The control system in the back-seat is separated in two platforms. On earlier
operations, they have used the MIT developed MOOS framework (Newman, 2008).
To utilize the MOOS code, they made a bridge between the MOOS framework and
ROS (Newman, 2014).

This shows some of the flexibility of ROS. Both ROS and MOOSE uses message
passing for inter-process communication. Given a configuration file specifying the
message formats, the bridge will translate the messages between the systems.

The source code for the ROS/MOOSE bridge have been published as a ROS
package. However, the ROS source code for path planning and navigation has not.

20



2.5. Documentation and Real World Usage

Girona 500 and SPARUS II

The University of Girona in Spain have developed two AUVs that use ROS for
the whole control chain: Girona 500 and SPARUS II (Carreras et al., 2013). The
control system is developed mostly using the Python programming language. As
opposed to the other AUVs, the code is open source and freely available (Cola2,
2015). They have used UWSim for the simulations.

2.5.2 DUNE Used for AUV Operations

DUNE and Neptus have been used on numerous missions. This section presents
two missions of particular interest.

Autonomous operation

Faria et al. (2014) have used DUNE and Neptus to coordinate multiple vehicles.
The mission that was carried out involved multiple AUVs and unmanned aerial
vehicles (UAVs). The UAVs were equipped with cameras that were used to detect
features of interest. When a feature of interest had been found, they messaged the
AUVs that would do further inspections.

ArduPilot (ArduPilot, 2015) was used as the flight controller for the UAVs. ArduPi-
lot is an open source low-cost autopilot suite consisting of both hardware and
software. This autopilot was connected through a serial port to a Single-Board
Computer running DUNE . To integrate it with DUNE, a specialized driver task
was created which translates commands between DUNE and ArduPilot. The AUVs
were controlled in full by DUNE.

T-REX is an open source on-board adaptive control system that integrates AI-based
planning and state estimation (Faria et al., 2014). T-REX was responsible for the
deliberation of the plans while the plan execution was carried out by DUNE.

To communicate with the AUVs when they were underwater, they employed a
gateway buoy that would forward messages to the AUV via acoustic signals. When
the AUVs were in the surface, it would forward messages via long range WiFi. The
Network connectivity is shown in Figure 2.10.

Coordinated maneuvers with multiple vehicles

Marques et al. (2015) presents the NVL language used to coordinate multiple

21



Chapter 2. Evaluation of Software Frameworks for AUVs

Figure 2.10: Network connectivity across platforms. Courtesy of Faria et al. (2014)

vehicles. Control of a network of vehicles is challenging, especially when vehicles
need to interact with each other. The scenario included three AUVs surveying three
areas and an UAV that was used as a data mule. That is, the UAV was collecting
data from the AUVs after they had finished surveying. The NVL language was
used to select vehicles to execute maneuvers and synchronize maneuvers involving
multiple vehicles. The action in need of synchronization was the transmission of
data between the AUVs and the UAV. During data transmission, the UAV would
fly in circles above the AUV until the data had been transferred.

2.6 Summary

On the low level, DUNE and ROS supports the same functionality. Both systems
are applicable for developing control software for underwater vehicles. On-board
robotic software has been tested successfully using both platforms. However, DUNE
has more ready to use software for underwater operations. Of the two uses of ROS
in underwater operations, only one of the projects had published working code.

DUNE on the other hand has been successfully used with both AUVs and ROVs.
It connects to the Neptus Ground Control System that is a ready to use graphical
user interface for operators. The IMC protocol allows for joint missions with many
different vehicles that can all be monitored and controlled through Neptus.

22



2.6. Summary

ROS has a strong open source history and an active and growing community.
However, most of the focus goes towards robots on ground and in air. A common
focus for ground robots and underwater vehicles is the use of manipulator arms.
With the development of Gazebo, ROS has extensive support for kinematics and
manipulator arms that is applicable for ROVs.

ROS also has the advantage of a 3D kinematic simulator of underwater vehicles,
UWSim. Work is being made to integrate UWSim with Gazebo that may be of
interest for the ROV community.

The PP computer aboard the REMUS 100 AUV is using the Windows 7 Embedded
operating system. If a software framework should be used on the REMUS, it must
therefore support Windows. As of 2015, Windows support on ROS is considered
experimental. For this reason, and since DUNE works so well with the Neptus
GCS, DUNE was chosen to be used on the REMUS 100 AUV.

A summary in pros and cons format is given below.

DUNE

Pros

• Available software and documentation.
• Tested in the field numerous times.
• Supports coordinated behavior of a network of vehicles.
• Neptus allows multiple operators to monitor and maneuver a network of

vehicles.
• In active development by LSTS.
• Available on Windows.

Cons

• Not as flexible as ROS for communication between tasks.
• No concept of packages, making collaboration require more effort and coordi-

nation.

ROS

Pros

• Extensive support for manipulator kinematics.

23



Chapter 2. Evaluation of Software Frameworks for AUVs

• Big and active community.
• rqt_graph can visualize the communication which makes it easier to under-

stand the control flow.
• 3D-visualization with UWSim.
• Easy collaboration with packages.

Cons

• Windows support is experimental.
• Crosscompilation requires more effort.
• Little available software for underwater applications.
• The community is mostly focused on ground and air vehicles.

24



Chapter 3

Modeling and Control System

During missions it is often convenient for the AUV to run on a constant altitude to
be able to collect data near the seabed. Most AUVs are equipped with an altimeter
that measures the altitude. The altitude can then be fed into a depth controller to
perform altitude control. An alternative to using the altimeter sensor, is to use
the range measurements from a Doppler velocity log (DVL). One advantage with
using the DVL is that the DVL makes range measurements in multiple directions
making it possible to compensate for the slope of the seabed.

This chapter will present the kinematics and kinetics for doing altitude control with
REMUS, and will present two altitude controllers that use the range measurements
from a DVL. Both altitude controllers have been implemented in DUNE.

3.1 Modeling

For the system equations, the SNAME notation (Society of Naval Architects and
Marine Engineers) is used (see Table 3.1).

25



Chapter 3. Modeling and Control System

Table 3.1: The notation of SNAME(1950) for marine vessels.

Forces and Linear and Position and
DOF moments angular velocities Euler angles
1 motions in the x direction (surge) X u x
2 motions in the y direction (sway) Y v y
3 motions in the z direction (heave) Z w z
4 rotation about the x axis (roll) K p φ
5 rotation about the y axis (pitch) M q θ
6 rotation about the z axis (yaw) N r ψ

The time derivative of a variable x(t) is denoted ẋ. Vectors are written in small
letters in bold and matrices are written in capital letters in bold. The dimension
of each variable will be defined. A variable in Euclidean space with dimension n is
denoted Rn, while matrices of dimension n×m are denoted Rn×m.

3.1.1 Reference Frames

Two reference frames are used to express the motions and dynamics of the vehicle.
The BODY fixed reference frame has its origin in the center of the vehicle, usually
coincided with the vehicles center of gravity. The North-East-Down (NED) reference
frame has its origin relative to an earth-fixed position typically given by a latitude
and longitude.

The vehicle’s position p and attitude Θ are given in the NED frame.

η =
[
p Θ

]T
=
[
x y z φ θ ψ

]T
∈ R6 (3.1)

The vehicle’s linear velocity v and angular velocity ω are given in the BODY frame.

ν =
[
v ω

]T
=
[
u v w p q r

]T
∈ R6 (3.2)

The kinematic relationship between the velocity vector ν in the BODY frame and
the position vector η in the NED frame is expressed by

η̇ = JΘ(η)ν (3.3)

where

JΘ(η) =
[
Rn
b (Θ) 03x3
03x3 TΘ(Θ)

]
. (3.4)

26



3.1. Modeling

Rn
b denotes the rotation matrix from BODY (b) frame to NED (n) frame. Using

c· = cos(·), s· = sin(·), and t· = tan(·), Rn
b (Θ) is given by

Rn
b (Θ) =

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 (3.5)

and TΘ(Θ) is given by

TΘ(Θ) =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 . (3.6)

3.1.2 Equations of Motion

According to Fossen (2011), the marine craft equations of motion can be written in
a vectorial setting.

η̇ = JΘ(η)ν (3.7)
Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ (3.8)

M = MRB +MA ∈ R6×6 is the rigid-body inertia and added mass of the AUV.
C(ν) = CRB +CA ∈ R6×6 is the Coriolis and centripetal for the rigid-body and
added mass, while D(ν) ∈ R6×6 represents the hydrodynamic damping effects.
The restoring forces are given by g(η) ∈ R6. τ is the forces and moments acting
on the AUV from the propeller, rudder, and stern planes.

The forces and moments from the rudder and stern fins have been derived by
Prestero (2001).

Yr = 1
2ρcLαSfin[u2δr − uv − xfin(ur)]

Zs = −1
2ρcLαSfin[u2δs − uw − xfin(uq)]

Ms = 1
2ρcLαSfinxfin[u2δs − uw − xfin(uq)]

Nr = 1
2ρcLαSfinxfin[u2δr − uv − xfin(ur)]

(3.9)

where ρ is the density of the water, Sfin is the fin area, xfin is the distance from
the BODY-fixed origin to the fin position, and cLα is the lift coefficient for the
fin. δs and δr are the stern and rudder angles relative to the body-fixed x-axis,

27



Chapter 3. Modeling and Control System

respectively. The coefficients listed above have been estimated for the REMUS 100
AUV by Prestero (2001).

The surge force and roll moment from the propeller have been derived by Carlton
(2012).

Xp = KTρD
4n2 (3.10)

Kp = KQρD
5n2 (3.11)

where KT and KQ is the thrust and torque coefficients, respectively. D is the
diameter of the propeller, and n is the propeller shaft speed given in revolutions-per-
second. The propeller coefficients for the REMUS 100 AUV have been estimated
by Allen et al. (2000).

Finally, τ can be written in terms of the forces and moments

τ =
[
XpYzZsMsNrKp

]
. (3.12)

This AUV model has been implemented in the AUVSim simulator by Norgren and
Skjetne (2015).

3.1.3 Altitude Kinematics

The altitude of the AUV is given by the following definition by Dukan and Sørensen
(2012).
Definition 1. The altitude is the length of the vector from the center of origin
(CO) of the AUV to the point on the seabed with the same horizontal coordinates
as the CO.

Let

zsb = f(x, y) (3.13)

define the depth of the seabed at position (x, y). The altitude can then be expressed
in a vectorial setting as

a = ra − p =

 x
y

f(x, y)

−
xy
z

 =

 0
0

f(x, y)− z

 (3.14)

a = |a| = f(x, y)− z (3.15)

where ra is the position vector to the seabed at the same horizontal position as the
AUV.

28



3.1. Modeling

Altitude Rate of Change

The altitude rate of change can be found by differentiating the altitude expression:

ȧ = ḟ(x, y)− ż. (3.16)

By using partial derivation and the chain rule, this becomes

ȧ = δf

δx

dx

dt
+ δf

δy

dy

dt
− dz

dt
. (3.17)

The expression can by simplified by introducing the seabed surface given by

F (x, y, z) = f(x, y)− z = 0. (3.18)

F is generally an unknown function, but only the gradient of F , the slope of the
seabed, is of interest. Evaluated at the AUVs position p, this gradient is expressed
by

∇F (p) =
[
δf
δx
|p, δfδy |p,−1

]
. (3.19)

The expression for ȧ can then be written as

ȧ = ∇F (p) · ṗ (3.20)

= ∇F (p)Rn
b (Θ)

uv
w

 (3.21)

=
[
δf
δx
|p, δfδy |p,−1

]
Rn
b (Θ)

uv
w

 . (3.22)

(3.22) is a result found by Dukan and Sørensen (2012).

Sea Depth Rate of Change

Another use case for the bathymetry gradient is to estimate the sea depth rate of
change żsb. Since the sea depth is given by zsb = f(x, y) = f(p), the gradient is
expressed by

∇f(p) =
[
δf
δx
|p, δfδy |p, 0

]
. (3.23)

29



Chapter 3. Modeling and Control System

By using the same approach as with the altitude rate of change, the expression
becomes

żsb = ∇f(p)Rn
b (Θ)

uv
w

 (3.24)

=
[
δf
δx
|p, δfδy |p, 0

]
Rn
b (Θ)

uv
w

 . (3.25)

The difference between the two rates is that the latter does not take the vertical
motion of the AUV into account.

3.2 Sensors and Controllers Aboard REMUS 100

3.2.1 DVL Sensors

The REMUS 100 is equipped with two DVL sensors: one above and one below the
vehicle. It is thus capable of measuring the distance both to the seabed and to the
surface.

Each of the DVL beams has an angle of 20 degrees along the vehicles longitudinal
and transversal axis illuminating a square as seen in Figure 3.1. See Figure 3.2 for
the numbering of the DVL beams. The 1st beam will be offset with 20 degrees in
positive u direction and 20 degrees in positive v direction.

Figure 3.1: An AUV sending out four DVL beams. The dottet line represents
altitude.

30



3.3. Altitude Estimation by use of DVL

u

v

1 3

24

Figure 3.2: Numbering of the DVL beams. u points in the surge direction and v
point in the sway direction

3.2.2 The REMUS Controllers

REMUS has two controllers that works in conjunction to control the vertical
position: a pitch controller and a depth controller. The depth controller provides
the set points for the pitch controller. The depth controller is a PI controller and
the pitch controller is a PID controller.

The heading is controlled by a PID controller. The guidance algorithm that provides
set points to the heading controller is not known. However, the results from the
field testing discussed in Chapter 6 indicate that it is similar to the line-of-sight
algorithm.

3.3 Altitude Estimation by use of DVL

The method of altitude estimation that is used in this section has been presented
by Dukan and Sørensen (2012).

We assume that the direction of the DVL beams and the rotation of the vehicle is
known. Let Rb

DV Li
be the rotation matrix from the ith beam to the BODY frame.

The direction of each beam can then be expressed by

ri
|ri|

= Rn
bR

b
DV Li

[
0 0 1

]T
(3.26)

31



Chapter 3. Modeling and Control System

where ri is the position vector from the AUVs center of origin to the ith beams end
point. With the range measurements |ri| from the DVL, the beams position vector
in the NED frame is given by

ri = Rn
bR

b
DV Li

[
0 0 1

]T
· |ri|. (3.27)

The position vectors ri is used to create a first order approximation of the seabed
beneath the vehicle. The altitude estimate is then found by following the approx-
imated plane to the horizontal position of the vehicle. This is shown in 2D in
Figure 3.3.

ai

Figure 3.3: Altitude estimate in 2D.

Three points are needed to define a plane, and since the DVL sends out 4 beams, 4
planes can be defined. The normal vectors for the planes are given by

n0 = (r0 − r1)× (r3 − r0)
n1 = (r1 − r2)× (r0 − r1)
n2 = (r2 − r3)× (r1 − r2)
n3 = (r3 − r0)× (r2 − r3).

(3.28)

This gives one altitude approximation ai for each plane ni.

ai = ri,z + ni,x
ni,z

ri,x + ni,y
ni,z

ri,y (3.29)

3.3.1 Altitude Rate of Change

The DVL ranges can be used to estimate the altitude rate of change by using the
planes given in (3.28).

∇F (p) ≈
[
−ni,x

ni,z
−ni,y

ni,z
−1
]

(3.30)

32



3.4. Altitude Control

3.4 Altitude Control

Since the REMUS vehicle has a working depth controller, an altitude controller
can be developed to send a desired depth to this depth controller.

Another option would be to implement an altitude controller in DUNE that sets the
fin angles directly. However this would require direct control of both the rudder fin
and the propeller RPM, and it would thus be necessary to reimplement a complete
control system for the REMUS AUV. It was therefore easier to develop the altitude
controller using the depth controller on REMUS. How the REMUS AUV can be
controlled is discussed in more detail in Chapter 4.

3.4.1 Auto Altitude Controller

Auto altitude is the simplest possible altitude controller. The control law is given
by

zd,auto = zsb − ad (3.31)

where ad is the desired altitude and zd,auto is the desired depth sent to the depth
controller. Given an ideal depth controller that is able to follow any control input,
the error

ae = ad − a (3.32)

will always be zero.

Due to the integrator in the depth controller, the vehicle will have no steady state
error when the seabed slope is constant.

3.4.2 Highpass Controller

The change in seabed depth żsb can be exploited in a feedforward term to reduce
the altitude error. Let

zd,hp = zsb − ad + zff = zd,auto + zff (3.33)

be a new control law for altitude control where zff is the feedforward term. Since
the REMUS depth controller have zero steady state error when receiving a linearly
increasing control input, the feedforward term must converge to zero when the
seabed slope is constant. To be added to the feedforward term, żsb must therefore

33



Chapter 3. Modeling and Control System

be filtered such that only changes in the seabed slope are used. It is thus only the
high frequency part of żsb that can be used. This high frequency part can be found
by running it through a highpass filter.

The highpass filter is given by

zff (t) = khp
(
żsb(t)− żsb(t− 1) + zff (t− 1) αhp

αhp + dt

)
(3.34)

where αhp controls the cut-off frequency of the filter, dt is the timestep, and khp
controls the amplitude of the feedforward term. żsb(t− 1) and zff (t− 1) denotes
that previous values for żsb(t) and zff (t), respectively.

A comparison to auto altitude is shown in Figure 3.4. The figure shows the ideal
control output when the AUV moves above a bathymetry formed like a sinus
wave. The output from the auto altitude controller would be ar meters above the
seabed. The output from the highpass controller should compensate for the seabed
when the slope of the seabed changes. When the slope is constant, it should give
no compensation. Since the AUV needs time to react when the control input is
changing, the depth of the AUV following zd,hp should be closer to the desired
depth zd,auto.

3.5 Altitude Controller Implementation

The controllers are implemented in DUNE in the task Control.REMUS.AltitudeFromDvl.

The configuration parameters available for the task is shown in Listing 3.1.

1 [Control.REMUS.AltitudeFromDVL]
2 Altitude Control Method = Highpass
3 Altitude Reference = 10.0
4 Highpass -- Gain = 10
5 Highpass -- Alpha = 3.0
6 Depth Reference = 1
7 Max Distance To Auto = 2

Listing 3.1: Example of configuration parameters for the AltitudeFromDVL task.

This DUNE tasks supports three difference control methods that must be specified
in the Altitude Control Method parameter. The three available methods are:
Depth, Auto, and Highpass. The Depth method was implemented during field

34



3.5. Altitude Controller Implementation

t[s]

0 2 4 6 8 10 12 14 16 18 20

d
e
p
th

[m
]

-1.5

-1

-0.5

0

0.5

1

1.5

z
d,auto

z
d,hp

Figure 3.4: Comparison of ideal control output from the auto altitude controller
and highpass controller.

testing at Hopavågen. When this method is enabled, it well send a constant depth
command specified by the Depth Reference parameter.

The Auto control method uses the auto altitude controller described in Section 3.4.1.
The Highpass control method uses the highpass controller described in Section 3.4.2.
The highpass control method needs two additional parameters: Highpass – Gain
and Highpass – Alpha. The alpha parameter determines the αhp value in (3.33)
and the gain parameter determines the gain khp in (3.33). For both altitude
controllers, the desired altitude is given by the Altitude Reference parameter.

35





Chapter 4

Software

To be able to control the vehicle, DUNE must know the current states of the vehicle
like the position p and the attitude Θ. Some of the states are only available inside
HUGIN SDK and must therefore be made available to DUNE. It is thus necessary
to implement software that interfaces HUGIN SDK with DUNE.

This chapter presents the software written to control the REMUS vehicle during
the field tests. After the field tests were carried out, the programs were rewritten
based on the experiences. The changes to the program design are presented in
Chapter 7.

4.1 Mission Execution

The Vehicle Interface Program (VIP) is the graphical user interface used to control
REMUS vehicles and to create missions (see Figure 4.1).

A mission is a pre-programmed list of objectives that the REMUS vehicle should
follow. When the vehicle is on a mission, it will step through that list of objectives.
Examples of objectives are navigating to a new position, updating GPS position,
and going up to the surface. The index of the objectives in the mission is called
the Leg.

37



Chapter 4. Software

Figure 4.1: The Vehicle Interface Program for REMUS.

4.2 Interfacing with the Vehicle

There are two ways to communicate with the vehicle. The first way is to create a
plugin in HUGIN SDK that is run on the PP computer. The plugin must by run
through a special program named PP.exe (see Figure 4.2). For simulation purposes,
there is also a PP.exe simulator that can run plugins on a local computer. The
second way is to use the Remote Control Interface.

PP Computer

UDP

A Plugin

PP.exe

REMUS Computer

Actuators Navigation

Navigation

Sensors

Figure 4.2: Example of a plugin running on the PP computer.

38



4.2. Interfacing with the Vehicle

4.2.1 Interfacing with HUGIN SDK

HUGIN SDK enables plugins to listen to updates about the states of the vehicle.
The data is grouped in C++ structs. The two most important data groups used in
this thesis is CDvlData and CNavSolutionData that holds the data from the DVL
and the navigation system, respectively. The CPPDataBase is used to listen to the
updates. The code used to listen to navigation updates are given in Listing 4.1.
This code will wait for 100 milliseconds for a navigation update. If an update is
sent during this time, it will be written to the navData variable.

1 CNavSolutionData navData;
2 CPPDataBase &db = CPPDataBase::getInstance()
3 db.read(CPPDataBase::ePositionData, navData);
4 if(db.wait(CPPDataBase::ePositionData, 100))
5 {
6 db.read(CPPDataBase::ePositionData, navData);
7 // Do something with navData
8 }

Listing 4.1: Code for listening for new vehicle state updates.

4.2.2 Interfacing with RECON

The Remote Control Interface (RECON) is the only way for programs to send
commands to the REMUS computer and change the vehicle’s behavior. These
commands include setting speed, depth, altitude, next waypoint, fin positions, and
propeller RPM (revolutions per minute). After a command has been sent, the
REMUS computer will respond with an acknowledge message. If the acknowledge
message is not equal to the command message, the command will be rejected.

RECON uses the User Datagram Protocol (UDP) to send messages between the
PP and REMUS computers. UDP is a minimal network protocol and a corner
stone for network communication. Since UDP is a network protocol, it can be used
to send packages between computers on the same network using the server-client
model. To send a UDP package, both the server and the client must create a UDP
socket. The server that is going to receive the packages must then bind to a network
port. The network port, together with the IP of the computer, will function as
an address to the server. The client can then send data packes to this address by
using the UDP socket.

39



Chapter 4. Software

When RECON is connected, the REMUS computer will send periodic updates
about the state of the vehicle. However, these updates are not equivalent to the
updates from HUGIN SDK. The beam ranges from the DVL is only available
through HUGIN SDK, and the mission state is only available through RECON.
HUGIN SDK supplies a C++ implementation of the RECON interface in the class
CReconDriver.

Since the REMUS computer is responsible for the control of the vehicle, it is of
great importance that the computer is not stressed. Therefore, as a precaution,
each call to CReconDriver will return after a timeout of 100 milliseconds. This
prevents that messages sent to the REMUS computer will be sent too frequently
and stress the computer.

If no commands have been sent in the last 5 seconds, the REMUS computer
will take back control of the vehicle. This security measure ensures that loss of
communication with a plugin does not cause the vehicle to continue using old or
obsolete commands. When sending commands to the REMUS computer, it is thus
important that the frequency of the commands is not so high that the computer is
stressed, and not so low that the mission aborts.

4.2.3 RECON Control Modes

When a program wants to take control over the vehicle, the program must enable
one of three control modes. The simplest mode is depth-only mode. In this
mode, only depth commands will be transferred to the REMUS computer and
the horizontal path will be controlled by REMUS’s path controller following the
mission plan. The depth may be controlled either by setting a depth or by setting
an altitude.

To control heading and speed in addition to the depth, the full-override mode must
be enabled. When this mode is enabled, all three control parameters must be set
within the 5-second window, or else the vehicle exits RECON control and continues
to the next mission objective. As in depth-only mode, the vehicle’s depth must
be set by a depth reference or by an altitude reference. The speed may be set
in meters per second, knots, or by propeller RPM. The heading may be set by a
heading angle, heading angular velocity, or by a latitude/longitude goal.

The final mode is the direct-control mode. This mode is for directly setting the
propeller RPM and fin positions, and can be used to develop low-level controllers.

These modes cannot be mixed. It is thus not possible to control the depth by
setting the stern fin position, and control heading and speed by following the

40



4.3. HuginDuneBridge

mission plan.

4.3 HuginDuneBridge

HuginDuneBridge is the plugin created to interface HUGIN SDK with DUNE,
and the main contribution through this thesis. The plugin is intended to be
a thin translation layer sending sensor and state data from HUGIN SDK to
DUNE, receiving control signals from DUNE, and sending the appropriate RECON
commands.

HuginDuneBridge is linked to the DUNE core library enabling it to understand
the IMC message format and to use other DUNE constructs. It communicates
with DUNE by sending and receiving IMC messages using UDP. The DUNE task
Transports.UDP is responsible for this communication on DUNE.

HuginDuneBridge will be run inside PP.exe while DUNE will be run as a standalone
program. During a mission, both programs will be run on the PP computer aboard
the vehicle as seen in Figure 4.3. During a simulation with AUVSim, the programs
will either be on the same computer as the AUVSim (Figure 4.4a) or on the PP
computer (Figure 4.4b).

PP Computer

HuginDuneBridge DUNE
UDP

UDP

PP.exe

REMUS Computer

Actuators Sensors

Figure 4.3: Communication between HuginDuneBridge, DUNE, and the REMUS
computer.

A third option would be to install a new computer aboard the vehicle and use that
computer to run DUNE. The computer will be connected to the same local area
Ethernet, and because DUNE and HuginDuneBridge uses UDP, they will still be
able to communicate. One advantage of running DUNE on a separate computer

41



Chapter 4. Software

PP.exe simulator

HuginDuneBridge DUNE
UDP

UDP

Laptop

AUVSim

(a) Simulation on single computer.

PP Computer

HuginDuneBridge DUNE
UDP

UDP

PP.exe

Laptop

AUVSim

(b) Simulation with DUNE on the
PP computer.

Figure 4.4: Communication flow for HuginDuneBridge running in simulation on a
local laptop or on REMUS.

is that it gives a separation of concerns. The PP computer has a 1.6 GHz Intel
Atom CPU with two cores, and due to the low clock rate, this makes it hard to use
advanced control strategies like solving optimization problems in real-time. Using a
new and faster computer will allow running such computational demanding tasks.

Another advantage is that the new computer can run the Linux operating system.
Although DUNE compiles on Windows, it is more frequently tested on Linux. How
the communication would be with the new computer is shown in Figure 4.5

HuginDuneBridge DUNE
UDP

UDP

PP.exe

REMUS Computer

Actuators Sensors

New Computer

PP Computer

Figure 4.5: Running DUNE on a separate computer

42



4.3. HuginDuneBridge

4.3.1 Architecture

Since HuginDuneBridge must listen to data from DUNE, HUGIN SDK, and
RECON, it is convenient to use multiple threads. Communication between these
threads is done either by method calls guarded by synchronization locks, or by
using a local IMC bus to send IMC messages. All threads in HuginDuneBridge are
DUNE tasks using the subscribe and broadcast constructs described in Chapter 2.

The communication is split into a receiving part, and a sending part (see Figure 4.6).
The control flow for the receiving part is shown in Figure 4.7.

HuginToDune

DuneToHugin

HuginDuneBridge

DUNE
UDP://8888

UDP://6493

Figure 4.6: Network architecture for HuginDuneBridge and DUNE.

HuginToDune

IMC Bus

DUNE

HuginNavigationToDune

HuginDvlToDune

CPPDataBase

HuginDuneBridge

CDvlData

CNavSolutionData

IMC::SonarData

IMC::EstimatedState

Figure 4.7: Control flow from CPPDataBase in HuginDuneBridge to DUNE.

When it comes to the receiving part, we have chosen four RECON commands to be
controllable: speed, depth, and heading by setting an angle or a goal destination.
For depth control, the task listens to IMC::DesiredZ. For speed control, it listens to
IMC::DesiredSpeed and IMC::ManeuverControlState. The last one is necessary
to detect when a maneuver is done, so that the speed can be set to zero. For heading
control, it listens to IMC::DesiredHeading and for setting the next waypoint, it
listens to IMC::DesiredPath.

43



Chapter 4. Software

Not all RECON commands should be available at all times. If a mission is
programmed such that DUNE is controlling the depth only, then other commands
should be rejected. A supervisor layer is thus necessary to control which RECON
commands should be enabled and to enable them at the correct time. This has
been implemented in the ReconSupervisor class. The current mission objective,
the leg, is used to control when the commands should be enabled. When the
start objective is reached, ReconSupervisor will enable control, and will have
control until the end objective is reached. The start and end objectives are set in
the configuration file for HuginDuneBridge (see Listing 4.4). For the field tests
described in Chapter 6, the supervisor was configured to enable commands at
objective 2 and disable commands at objective 7.

To control how often RECON commands are sent to REMUS, all commands are
routed through the ReconProxy class. When a command is first sent to ReconProxy,
it will be sent every second until REMUS takes back control. If a command is
sent to frequently, it will act as a zero-order-hold and only send the latest received
command at each iteration.

ReconProxy is the class that ensures that the REMUS computer is not stressed by
receiving commands too frequently, and that it will not take back control if the
time between commands exceeds 5 seconds. A drawback of this approach is that if
DUNE should fail, old and outdated commands will still be sent to REMUS. This
has been improved in the new architecture described in Chapter 7. A control flow
diagram of the receiving part can be seen in Figure 4.8.

IMCTaskListener

IMC Bus

DUNE

DuneToHugin

ReconSupervisor

ReconDriver

HuginDuneBridge

ReconProxy
IMC::*

IMC::*setCommanded...()

setCommanded...()

IMC::*

Figure 4.8: Control flow from DUNE to HUGIN

44



4.3. HuginDuneBridge

4.3.2 Connecting to AUVSim

This section documents how the HuginDuneBridge is connected to the AUVSim
simulator described in Section 4.4.

AUVSim communicates with HuginDuneBridge by use of the UDP protocol (see
Figure 4.9). The AuvsimToHugin class is responsible for receiving UDP packages
from AUVSim. The format of the message is given by FromAuvsimState listed in
Listing 4.2.

1 struct FromAuvsimState {
2 double t, dt;
3 double x, y, z, phi, theta, psi;
4 double u, v, w, p, q, r;
5 double dvlUpRange[4];
6 double dvlDownRange[4];
7 };

Listing 4.2: Data format of packages sent from AUVSim to HuginDuneBridge.

After a UDP package has been received, the data is put into the CPPDataBase.
Since HuginNavigationToDune and HuginDvlToDune is listening for changes in
CPPDateBase, the data will be sent to DUNE immediately.

AUVSim AuvsimToHuginUDP://8889

HuginToDune

DuneToHugin

HuginToAuvsim

HuginDuneBridge

DUNE
UDP://8888

UDP://6493
UDP://9090

CPPDataBase

Figure 4.9: Network architecture for HuginDuneBridge, DUNE, and AUVSim

Ideally all data received from AUVSim would be written to the CPPDataBase such
that all data flow through the HUGIN interface. However, some data do not have

45



Chapter 4. Software

any storage type in HUGIN. An example is the current simulation time t and the
simulation timestep dt that is needed by DUNE to compute integrals. Therefore,
AuvsimToHugin has a reference to HuginToDune to send additional data through
method calls. These method calls are guarded by synchronization locks to avoid
race conditions.

For the same reasons, DuneToHugin will need to hold a reference to HuginTo-
Auvsim. After DuneToHugin has received the messages from DUNE, it signals to
HuginToAuvsim to send an update message to AUVSim. The format of the message
is given by ToAuvsimState listed in Listing 4.3.

1 struct ToAuvsimState {
2 double t;
3 double z_ref;
4 double altitude;
5 double z;
6 };

Listing 4.3: Data format of packages sent from HuginDuneBridge to AUVSim.

4.3.3 Run Configurations

HuginDuneBridge is configured with a configuration file in ini format (see List-
ing 4.4). The configuration file is split in a network part and a supervisor part.
The network part specifies what IP addresses and ports that should be used. The
supervisor part specifies what modes should be enabled and at which objective
they should be enabled.

The configuration file in Listing 4.4 enables sending of commands at objective 2,
and disables sending at objective 7. The mode is set to full-override since both
depth, speed and waypoint heading is enabled. Messages that set heading by an
angle will be rejected, while messages that set heading by a waypoint goal will be
allowed.

46



4.4. AUVSim

1 [Network]
2 DUNE Incoming Port = 8888
3 DUNE Outgoing Port = 6493
4 DUNE Outgoing IP = 192.168.1.50
5 AUVSim Incoming Port = 8889
6 AUVSim Outgoing Port = 9090
7 AUVSim Outgoing IP = 192.168.1.100
8 RECON IP = 192.168.1.44
9

10 [ReconSupervisor]
11 Enable At Objective = 2
12 Disable At Objective = 7
13 Depth Enabled = 1
14 Speed Enabled = 1
15 Heading Enabled = 0
16 Waypoint Enabled = 1

Listing 4.4: Configuration file for HuginDuneBridge.

4.3.4 Standby Mode

When DUNE is in control of heading and speed, and have not started a DUNE
mission, the vehicle is set in standby mode. The standby mode is a state where
the commanded depth, heading and speed is set to zero. The mode is necessary so
that the REMUS computer does not take back control after 5 seconds of inactivity.

4.4 AUVSim

AUVSim is a simulator for REMUS 100 created by PhD candidate Petter Norgren
(Norgren and Skjetne, 2015). The simulator is implemented in MATLAB and
Simulink. The top level block diagram can be seen in Figure 4.10. The parameters
for the simulator have been taken from a previous REMUS 100 model by Prestero
(2001). The connection to HuginDuneBridge is implemented as a C++ sFunction
inside the Guidance system block.

HuginDuneBridge translates the messages from AUVSim into multiple IMC-
messages, and DUNE is responding by sending multiple IMC-messages back. As a
result, the sFunction may receive more than one package in some iterations, and if
the timing is unfortunate, no packages in other iterations.

47



Chapter 4. Software

Figure 4.10: Block diagram of the AUVSim simulator.

The first implemenation of the sFunction had a single blocking receive call waiting
for the next IMC message. Due to the uncertainty of how many packages will be
received each iteration, the sFunction’s performance was unpredictable. If no pack-
ages were received, it would go into a deadlock state where both HuginDuneBridge
and the sFunction were listening and no one was sending. If more than one package
were received, the queue of incoming packages would stack up, and introduce a
growing time delay between the two applications.

This problem was solved by introducing a new thread in the sFunction that listens
for new packages. On each iteration, the sFunction returns the last received package.
This introduces a time delay since HuginDuneBridge and DUNE do not have time to
perform their actions between a send and receive. However, since DUNE performs
high-level control, this time delay is so small that it does not affect the simulation.

Since the sFunction only returns the last received message, it is prone to time
delay problems if AUVSim runs faster than HuginDuneBridge and DUNE. To solve
this problem a Realtime Pacer block (Gautam Vallabha, 2015) was introduces
to the Simulink program. This block can slow down the simulation time so that
the simulator is not speeding past HuginDuneBridge and DUNE. The amount of
slowdown is controlled by a speedup parameter. If the speedup is set to 1, the
simulator runs in real time.

48



4.5. Simulation of Beam Ranges

To be able to measure the delay between AUVSim and DUNE, the simulation time
t is sent through the control chain. The difference between the simulation time
used by AUVSim and the simulation time returned from HuginDuneBridge will
indicate if AUVSim is speeding past HuginDuneBridge and DUNE. An example
of a good network delayed can be seen in Figure 4.11a. As seen in the figure the
lowest network delay is 0.01 which is the same as the timestep in this simulation.
An example of AUVSim running faster than the other components can be seen in
Figure 4.11b.

t[s]

0 5 10 15 20 25 30 35 40 45 50

t 
- 

t D
U

N
E
 [

s
]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Latency: t - t
DUNE

(a) Good network delay.
t[s]

0 5 10 15 20 25 30 35 40 45 50

t 
- 

t D
U

N
E
 [
s
]

0

0.5

1

1.5

2

2.5

3

3.5

4

Latency: t - t
DUNE

(b) Bad network delay.

Figure 4.11: Network delay between AUVSim and DUNE. The timestep dt is 0.01
seconds.

4.5 Simulation of Beam Ranges

Section 3.4 presents two altitude controllers using the range measurements from
a DVL as input. To perform simulations of these controllers, it is thus necessary
to be able to simulate DVL range measurements. A beam range simulator has
therefore been developed. This section is an excerpt from the preceding project
thesis (Holsen, 2014).

4.5.1 Theory

By using the same beam model as in Section 3.3, the vector describing the direction
of each beam is given by

ri
|ri|

= Rn
bRb

DV Li

[
0 0 1

]T
(4.1)

49



Chapter 4. Software

where ri is the position vector representing the ith beam. We will assume that the
position and attitude of the vehicle as well as the direction of the DVL beams are
known.

The next step is to determine the correct length of each beam. Let ei be the
estimated length of the ith beam. Let pb = [x, y, z]T ∈ R3 be the position of the
vehicle in the NED frame. Finally, let pi = [xi, yi, zi]T ∈ R3 be the estimate of the
end position of the ith beam in the NED frame. This gives the following relationship

pi = pb + ri
|ri|
· ei. (4.2)

The relationship may be used to indicate whether the estimate of the beam length
is too large or too small. Let the depth at position (x, y) be given by Z(x, y). We
can now find the distance between the beam end position pi and the seabed. The
distance is given by

ez = zi − Z(xi, yi) (4.3)

If the error is positive, the beam range is too small, while a negative error tells us
that the beam range is too large (see Figure 4.12). Binary search is used to reduce
the error to a sufficient accuracy.

p
b

pi

ez

(a) Negative error

p
b

pi

ez

(b) Positive error

Figure 4.12: Range error for the beam simulator.

The data structure chosen for the map data is a matrix where each cell represents
the depth at a specific position. To get the depth Z(x, y) there must be a mapping

50



4.5. Simulation of Beam Ranges

from coordinates given in the NED frame to the cells in the map matrix. The size
and resolution of the map is given by the Bounds-structure. The Bounds-structure
consists of four values: northMin, northMax, eastMin, eastMax. The north and
east index will then be given by

percentageDone = x−min
max−min

(4.4)

xindex = xsize · percentageDone (4.5)

This formula applies to both north and east where x is the position and min and
max are the minimum and maximum values specified in the Bounds-structure. xsize
is the number of rows or column in the map matrix in that direction.

The resulting north and east index will be a real number, that is xindex ∈ R. To
get the depth between grid points, bilinear interpolation is used between the four
nearest neighbours.

4.5.2 Implementation

The class diagram for the beam range simulator can be seen in Figure 4.13.

The simulator has been separated into two classes: Map and BeamRangeSimulator.
The main responsibility for the Map class is to calculate the depth Z(x, y) given a
coordinate. This is done through the Map::getDepthAtCoordinates method. Map
implements the bilinear interpolation and conversion from coordinates to index
values.

The BeamRangeSimulator class implements the binary search algorithm used to
estimate the beam lengths. Another important feature is the possibility to use
different beam configurations. This allows the user to simulate a Doppler Velocity
Log (DVL) or a Multibeam Echosounder (MBE). The BeamConfiguration struct
gives the spread of the beams and the number of beams.

The estimate is returned as a BeamRangeResult. The beamRanges vector contains
the computed ranges and the hitPositions contain the corresponding pi positions.

The Beam Range Simulator have been simulated to ensure that the implementation
gives satisfactory results. The simulation results are shown in Section 5.2.

51



Chapter 4. Software

Figure 4.13: Class diagram for the Beam Range Simulator.

52



Chapter 5

Simulation

This chapter presents the simulations using the controllers presented in Chapter 3
and the software presented in Chapter 4. The altitude controllers that have been
simulated are the auto altitude and highpass controllers. In addition, heading
control has been simulated using the heading controllers in DUNE and AUVSim.
All simulations have been run with the AUVSim simulator.

5.1 Simulation Maps

Three maps representing different bathymetric conditions were used for the simula-
tions.

5.1.1 Constant Slope

The constant slope map is shown in Figure 5.1. The map is used to test the altitude
controllers going up a constant slope.

53



Chapter 5. Simulation

200

100

East[m]

0

-100

-2000

200

North[m]

400

600

-48

-46

-44

-42

-40

-50

800

U
p
[m

]

Figure 5.1: The constant slope map.

5.1.2 Sinus Curved

The sinus curved map shown in Figure 5.2 is a sinus curve in the north-south
direction. The map is used to test the altitude controllers’ performance when
following a curved seabed.

200

100

East[m]

0

-100

-2000

200

North[m]

400

600

-29

-28

-27

-33

-32

-31

-30

800

U
p
[m

]

Figure 5.2: The sinus curved map.

54



5.1. Simulation Maps

5.1.3 Hopavågen

A map of Hopavågen has been created by PhD Candidate Pierre-Yves T Henry at
AMOS NTNU and Mancheño (2014). The map is generated using datasets from
previous missions at Hopavågen and gives a low fidelity estimate of the bathymetry.
The bathymetry is shown in Figure 5.3 with the shore line represented by the thick
blue line. Ideally the shore line would be aligned with the contour lines in the plot,
but since it is a low fidelity approximation it does not. However, it gives a good
approximation of the seabed slope.

East[m]

-300 -200 -100 0 100 200 300 400

N
o

rt
h

[m
]

-500

-400

-300

-200

-100

0

100

200

300

Figure 5.3: Contour plot of the bathymetry at Hopavågen. The lowest point is 28
meters deep. The thick blue line represents the shore line.

55



Chapter 5. Simulation

5.2 Beam Range Simulator

A number of simulations have been performed to ensure that the implementation of
the Beam Range Simulator described in Section 4.5 is correct. This is a continuation
of the simulations done in the project thesis (Holsen, 2014).

5.2.1 Visual Confirmation That the Beams Hit the Sea
Bed

An AUV was positioned in the middle of the map with a nonzero pitch and roll.
The beam range simulator was used to find the position where the DVL beams
would hit. The beams are then plotted as seen in Figure 5.4. The plot can now be
used to verify the length of the beams. Each beam should touch the seabed, but
not go through it.

105

East[m]

100

95110

115

North[m]

120

-30

-32

-26

-28

-36

-34

U
p
[m

]

Figure 5.4: Visualizing the DVL beams from an AUV. The beams should barely
touch the seabed.

5.2.2 Altitude Control of an AUV Across the Sea Bed

This simulation uses both the beam simulator and the altitude estimator described
in Section 3.3.

56



5.2. Beam Range Simulator

An AUV was sent along a straight path over the Hopavågen seabed. The AUV was
moved in a fixed path with a constant altitude of 3 meters. At each step, the beam
simulator would estimate the range measurements. The range measurements was
then sent to the altitude estimator. After the altitude was found, the sea depth
could be estimated by adding the AUV depth to the estimated altitude. The sea
depth estimated could then be compared to the real sea depth.

Estimated sea depth and true sea depth is plotted in Figure 5.5. The estimation
error is plotted in Figure 5.6. As seen in the figures, the error is small. The reason
for the deviation is that the seabed is nonlinear, and it can therefore not give
a perfect estimate using the planes described in Section 3.3. Since the altitude
estimator uses four range measurements around the vehicle, it is expected that the
estimated altitude should be smoother than the real altitude. Looking closer at
Figure 5.5, one can see that this is the case.

t[s]

0 100 200 300 400 500 600 700 800 900 1000

d
e

p
th

[m
]

32

33

34

35

36

37

38

39

40

41

42

True depth

Estimated depth

Figure 5.5: Estimated depth and true depth of the seabed recorded along an AUV
trajectory.

57



Chapter 5. Simulation

t[s]

0 100 200 300 400 500 600 700 800 900 1000

e
s
ti
m

a
ti
o
n
 e

rr
o
r 

[m
]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 5.6: Depth estimation error of the seabed recorded along an AUV trajectory.

5.3 Tuning the Depth Controller

The altitude controllers developed in Chapter 3 uses the depth controller on REMUS
for the low-level control. It is therefore important that the depth controller in
AUVSim is similar to the depth controller on REMUS. Using mission data from
previous missions as input, the AUVSim depth controller has been tuned so that
the simulation results should resemble real results. The desired depth zd from
the mission data was sent as input to the depth controller in AUVSim. The real
mission depth zremus could then be compared to the simulated depth zauvsim.

The mission that was used for the tuning was performed near Ny-Ålesund, Spits-
bergen January 20, 2015. Figure 5.7 shows a plot of the depth zremus and desired
depth zd for the mission as well as the simulated depth zauvim. It shows two depth
control challenges: slope-following and big steps in zd.

Figure 5.8 shows the response from the REMUS depth controller when it received
a step in zd. The figure indicates that there is a maximum diving and surfacing
velocity, and that the surfacing velocity (see t = 8400) is greater than the diving
velocity (see t = 7500). The maximum diving velocity was found to be around
0.21m/s and the maximum surfacing velocity was found to be around 0.68m/s.

Based on this information, a guidance block was added in front of the AUVSim
depth controller to guarantee that the velocity will not exceed this maximum. The
block receives the depth reference zr and outputs the desired depth zd. If the input
would result in a step bigger than what the maximum velocity would allow, the

58



5.3. Tuning the Depth Controller

t[s]

0 1000 2000 3000 4000 5000 6000 7000 8000

d
e

p
th

[m
]

-10

0

10

20

30

40

50

60

70

80
Depth

z
d

z
remus

z
auvsim

Figure 5.7: Depth reference zd, depth zremus, and simulated depth zauvsim for a
mission in Ny-Ålesund, Spitsbergen January 20, 2015.

output would change linearly towards the input with the maximum velocity. The
behavior of the guidance block can be seen in Figure 5.9.

A second or third order reference model could also have been used to solve this
problem (Fossen, 2011, pp. 249-251). A benefit of using a reference model is that it
can give a smooth transition between the point where it is able to follow the signal
and the point where the signal jumps. However, a reference model will introduce
a delay between the zr and zd, and no such transitions can be observed in the
previous missions (see Figure 5.8). It was therefore concluded that REMUS does
not employ a reference model, and it could therefore not be added to the simulator.

Table 5.1: Simulation coefficients for the AUVSim PI depth controller.

Parameter Value
kp 0.12
ki 0.005

imax,z 10.0

59



Chapter 5. Simulation

t[s]

7400 7500 7600 7700 7800 7900 8000 8100 8200 8300 8400 8500

d
e

p
th

[m
]

40

45

50

55

60

65

70

75

80
Depth

z
d

z
remus

z
auvsim

Figure 5.8: Depth reference zd, depth zremus, and simulated depth zauvsim for a
mission in Ny-Ålesund, Spitsbergen January 20, 2015.

t[s]

0 20 40 60 80 100 120 140 160 180

d
e

p
th

[m
]

-2

0

2

4

6

8

10

z
r

z
d

Figure 5.9: Example of input zr and response zd for the depth guidance block.

60



5.4. Altitude Control

5.4 Altitude Control

Three scenarios for altitude control have been tested, first by using the auto altitude
controller, and then by using the highpass controller. The first scenario uses the
linear slope map with a path that moves in a direct line from south to north. The
second scenario uses the sinus curved map and follows the same path. The third
scenario uses the Hopavågen map with the path shown in Figure 5.10. All scenarios
have set the altitude reference ar to 10 meters.

The simulation results presented in this section uses the depth controller tuned in
Section 5.3. Using a depth controller that resembles the one used on the REMUS
AUV should give results that are similar to that of the real system. However, to
best show the effect of the highpass controller, the depth controller should be as
good as possible. Appendix C shows simulations using a PID controller instead of
a PI controller to control the depth.

East[m]

-300 -200 -100 0 100 200 300 400

N
o

rt
h

[m
]

-500

-400

-300

-200

-100

0

100

200

300

Figure 5.10: AUV path for the Hopavaagen simulation scenario. The thick blue
line represents the shore line while the thick red line represents the AUV path. The
start position is west of the deepest point.

61



Chapter 5. Simulation

The figures that will be presented in this section includes three plots: z shows the
vehicles depth, zr shows the desired depth sent to the AUVSim depth controller,
and zperfect shows the depth 10 meters above the seabed.

5.4.1 Scenario: Constant Slope Map

The first scenario uses the constant sloped map. A simulation using the auto
altitude controller is shown in Figure 5.11, and a simulation using the highpass
controller is shown in Figure 5.12. The auto altitude controller gives a maximum
altitude error of around 0.5 meters while the highpass controller gives a maximum
altitude error of around 0.3 meters.

The reduction is caused by the increased error zd − z at t = 120 s and t = 225 s.
The greater error increases the proportional gain in the depth controller resulting
in a faster response. As seen in the error plot, there are two consecutive peaks
after the slope changes. The second peak is caused by the sudden reduction in
the altitude error after the highpass controller compensation has converged. The
proportional gain from the controller is then reduced, and the integral gain needs
time to increase resulting in the second peak.

t[s]

50 100 150 200 250 300

d
e
p
th

[m
]

25

30

35

40

45
Depth

z

z
r

z
perfect

t[s]

50 100 150 200 250 300

e
rr

o
r[

m
]

-1

-0.5

0

0.5

1
Altitude error

Figure 5.11: Simulation using the auto altitude controller and the constant slope
map.

62



5.4. Altitude Control

t[s]

50 100 150 200 250 300

d
e
p
th

[m
]

25

30

35

40

45
Depth

z

z
r

z
perfect

t[s]

50 100 150 200 250 300

e
rr

o
r[

m
]

-0.4

-0.2

0

0.2

0.4
Altitude error

Figure 5.12: Simulation using the highpass controller and the constant slope map.

5.4.2 Scenario: Sinus Curved Map

The second scenario uses the sinus curved map to see how the AUV behaves when
going over a curved seabed. Figure 5.13 shows a simulation using the auto altitude
controller while Figure 5.14 shows a simulation using the highpass controller. As
can be seen in the figures, the maximum error is reduced from around to 0.6 meters
to 0.4 meters when using the highpass controller. This error could have been further
improved by using a PID depth controller (see Appendix C).

63



Chapter 5. Simulation

t[s]

50 100 150 200 250 300

d
e

p
th

[m
]

16

18

20

22

24
Depth

z

z
r

z
perfect

t[s]

50 100 150 200 250 300

e
rr

o
r[

m
]

-1

-0.5

0

0.5

1
Altitude error

Figure 5.13: Simulation using the auto altitude controller and the sinus map.

t[s]

50 100 150 200 250 300

d
e

p
th

[m
]

16

18

20

22

24
Depth

z

z
r

z
perfect

t[s]

50 100 150 200 250 300

e
rr

o
r[

m
]

-0.5

0

0.5
Altitude error

Figure 5.14: Simulation using the highpass controller and the sinus map.

64



5.4. Altitude Control

5.4.3 Scenario: Hopavågen Map

The final scenario uses the Hopavågen map. The simulation using the auto altitude
controller can be seen in Figure 5.15 while the simulation using the highpass
controller can be seen in Figure 5.16. This is the scenario with the greatest
difference between the two controllers. The maximum error is reduced from 1.5 to
0.8 by using the highpass controller.

t[s]

50 100 150 200 250 300 350 400 450

d
e
p
th

[m
]

5

10

15

20
Depth

z

z
r

z
perfect

t[s]

50 100 150 200 250 300 350 400 450

e
rr

o
r[

m
]

-2

-1

0

1
Altitude error

Figure 5.15: Simulation using the auto altitude controller and the Hopavågen map.

A downside with using the highpass controller is that it introduces two new
parameters that are dependent both on the depth controller of the vehicle and on
the underlying seabed. If a new section is added to the front of the AUV such that
the depth controller need to be re-tuned, the parameters for the highpass controller
must be re-tuned as well.

65



Chapter 5. Simulation

t[s]

50 100 150 200 250 300 350 400 450

d
e
p
th

[m
]

5

10

15

20
Depth

z

z
r

z
perfect

t[s]

50 100 150 200 250 300 350 400 450

e
rr

o
r[

m
]

-1

-0.5

0

0.5
Altitude error

Figure 5.16: Simulation using the highpass controller and the Hopavågen map.

5.5 Heading Control

Two simulations have been run using heading control; both have been run with a
constant depth so that the bathymetry would not influence the simulations. The
first scenario controls the heading by sending an IMC::DesiredPath message from
DUNE to AUVSim. This message includes the position of the next waypoint. That
waypoint is then sent to the line-of-sight guidance in AUVSim that in turn sends a
desired heading Ψd to a heading controller. A simulation of the first scenario is
shown in Figure 5.17.

The second scenario uses the vector field guidance (Lim et al., 2014) implemented
in the DUNE task Control.Path.VectorField and sends the the heading angle
Ψd to AUVSim directly. The configuration parameters used by the vectorfield
DUNE task is given in Listing 5.1. The two parameters that have been tuned are
the corridor width and the corridor entry angle. The other parameters are the
same as for the other LSTS AUVs. It is the ratio between the corridor entry angle
and the corridor width that determines how fast the path converges to the desired
path. A large entry angle corresponds to a high gain.

How DUNE performs path planning is discussed in more detail in Appendix B. A
simulation of the second scenario is shown in Figure 5.18. In both scenarios, the
AUV is able to follow the path with good accuracy.

66



5.5. Heading Control

East[m]

-300 -250 -200 -150 -100 -50 0 50 100 150 200

N
o
rt

h
[m

]

-200

-150

-100

-50

0

50

100

150

200

Figure 5.17: Simulation of Heading using DUNE to set the destination goal and
AUVSim to set the heading. The thick red line represents the AUV path while the
thick dotted black line represents the desired path.

East[m]

-300 -250 -200 -150 -100 -50 0 50 100 150 200

N
o
rt

h
[m

]

-200

-150

-100

-50

0

50

100

150

200

Figure 5.18: Simulation of Heading using the vectorfield task in DUNE to set the
heading angle. The thick red line represents the AUV path while the thick dotted
black line represents the desired path.

67



Chapter 5. Simulation

1 [Control.Path.VectorField]
2 Enabled = Always
3 Entity Label = Path Control
4 Control Frequency = -1
5 Along-track -- Check Period = 20
6 Along-track -- Minimum Speed = 0.05
7 Along-track -- Minimum Yaw = 2
8 Cross-track -- Monitor = false
9 Cross-track -- Nav. Unc. Factor = 1

10 Cross-track -- Distance Limit = 25
11 Cross-track -- Time Limit = 20
12 Position Jump Threshold = 10.0
13 Position Jump Time Factor = 0.5
14 ETA Minimum Speed = 0.1
15 New Reference Timeout = 5.0
16 Course Control = false
17 Corridor -- Width = 1.5
18 Corridor -- Entry Angle = 4

Listing 5.1: Configuration parameters used for the Vectorfield task.

68



Chapter 6

Field Testing

The field testing was carried out between the April 20, and April 23, 2015 at
Hopavågen in Sør-Trønderlag by the author and PhD candidate Petter Norgren.
The goal of the field tests was to see how HuginDuneBridge and DUNE worked
together in a real application and to see if the simulation results were valid.

Good tuning of the depth controller was crucial for the performance of the altitude
controllers developed in Chapter 3. The REMUS depth controller was therefore
tuned before performing missions using the altitude controllers.

6.1 Organization

To launch and retrieve the AUV, we had packed a small inflatable boat with an
outboard engine. With us in the boat we had two laptops and a portable WiFi
router. The first laptop was used for the Vehicle Interface Program (VIP) and
the second was used for Neptus. When the vehicle was underwater, it would
communicate via an acoustic transponder developed by Hydroid, and when the
vehicle was at the surface it would communicate via WiFi.

During the field testing there were two configuration files that had to be changed
between missions: one for DUNE and one for HuginDuneBridge. To make it easier,
we made all configuration files the day before and organized and grouped them by
mission. After each mission, we would lift the AUV back into the boat. Then we
exited the PP.exe and dune.exe programs, copied over the new configuration files
and restarted PP.exe and dune.exe. Finally, we put the AUV back into the water
and started the mission from the VIP.

69



Chapter 6. Field Testing

6.2 Scenarios

6.2.1 Altitude Control

All altitude control scenarios followed the path shown in Figure 6.1. Two altitude
controllers were tested: the auto altitude controller and the highpass controller.
The altitude reference was set to 10 meters for both scenarios.

Figure 6.1: Path of the depth control mission in Hopavågen. Plotted using Neptus.

6.2.2 Heading Control

In the heading control scenarios, heading and speed are controlled in addition to
the depth. Control of the vehicle’s heading has a greater risk than only controlling
the vehicles depth. If the vehicle should be moving too close to the seabed, thus
risking a bottom crash, the control system aboard REMUS would move towards the
surface until it reached a safe altitude. Since the REMUS AUV does not have any
forward looking sonars, such fail safe detection is not possible for heading control.

For heading control we used Neptus to create a mission plan. That mission plan
was sent to DUNE before starting the mission. The REMUS mission plan was to
wait for a position update from a GPS and then hand over control to DUNE that
would initiate the standby mode. We would then start the DUNE mission plan

70



6.3. Tuning of the REMUS Depth Controller

from Neptus. After the DUNE mission had completed, we would abort the mission
via VIP and retrieve the vehicle.

The path planned for the heading control missions is shown in Figure 6.2. The
plan is to start the mission at Buoy 6, perform the mission and then stop at Goto4.

Figure 6.2: Path of the heading control mission in Hopavågen. Plotted using
Neptus.

Two scenarios were planned for the heading control. The RECON interface supports
setting heading both by setting a destination goal and by setting a heading angle.
In the first scenario, we set the heading by setting a latitude/longitude goal. In
the second scenario, we set the heading using the path controller in DUNE.

6.3 Tuning of the REMUS Depth Controller

To be able to see a measurable difference between the two altitude control methods,
it is important that the depth controller is accurate. In the first altitude control
missions, the vehicle oscillated around the reference point. It was therefore deemed
necessary to tune the depth controller.

The depth controller on REMUS is a PI controller. The output of the controller is
sent to a pitch controller that is a PID controller. Before we started tuning, the
parameters for the depth controller were set to kp = 3.5 and ki = 0.273.

71



Chapter 6. Field Testing

For the tuning we created a short mission with a duration of about 10 minutes.
The mission was to go to a waypoint and back again with a constant depth of 6
meters. The horizontal path can be seen in Figure 6.3.

East[m]

0 50 100 150 200 250 300

N
o
rt

h
[m

]

-100

-50

0

50

100

150

Path

Figure 6.3: Horizontal path for the depth controller tuning mission.

The first tuning test was performed without changing the control parameters. The
result can be seen in Figure 6.4.

t[s]

0 50 100 150 200 250 300 350 400 450 500

d
e

p
th

[m
]

-1

0

1

2

3

4

5

6

7
Depth

z

z
r

Figure 6.4: Result of the tuning mission with kp = 3.0 and ki = 0.273.

Due to the buoyancy being greater than the weight of the vehicle, the vehicle will
rise to the surface when the pitch is zero. Since the vehicle’s overshoot was greater
under than over the reference point, we first thought that this was due to a low kp
value. A mission with kp = 3.5 is shown in Figure 6.5.

72



6.3. Tuning of the REMUS Depth Controller

t[s]

0 100 200 300 400 500 600

d
e

p
th

[m
]

-1

0

1

2

3

4

5

6

7
Depth

z

z
r

Figure 6.5: Result of the tuning mission with kp = 3.5 and ki = 0.273.

This tuning reduced the control error. To investigate the impact of kp further, we
ran another mission with kp set to 2.5. The performance is shown in Figure 6.6.

t[s]

0 100 200 300 400 500 600

d
e

p
th

[m
]

-1

0

1

2

3

4

5

6

7
Depth

z

z
r

Figure 6.6: Result of the tuning mission with kp = 2.5 and ki = 0.273.

As expected, this increased the control error. The big bigger control error also
indicated that the value of ki was too big. A mission was run with kp = 2.0
and ki = 2.223, reducing ki by 0.5. The performance of the tuning is shown in
Figure 6.7.

73



Chapter 6. Field Testing

t[s]

0 100 200 300 400 500 600

d
e

p
th

[m
]

-1

0

1

2

3

4

5

6

7

8
Depth

z

z
r

Figure 6.7: Result of the tuning mission with kp = 2.0 and ki = 0.223.

We then tried to turn the value of kp up again. Figure 6.8 shows a depth plot with
kp = 4.0 and ki = 0.223. The overshoot at t = 300 corresponds with the turning at
the first waypoint. We found the performance of this tuning to be satisfactory.

t[s]

0 100 200 300 400 500 600

d
e

p
th

[m
]

-1

0

1

2

3

4

5

6

7
Depth

z

z
r

Figure 6.8: Result of the tuning mission with kp = 4.0 and ki = 0.223.

6.4 Altitude Control

The figures showing the results in this section include three plot lines. z represents
the depth of the vehicle, zr represents the depth reference, and zperfect represents
the depth 10 meters above the sea bed.

74



6.4. Altitude Control

The altitude control missions used the beam ranges from the DVL to find the
altitude. After the field tests were carried out, it was found that the range
measurements returned from the DVL was the altitude of the beam and not the
range (see Figure 6.9). Since the altitude a was shorter than the beam range |r|,
the estimated altitude was always shorter than the real altitude.

|r| a

Figure 6.9: The range measurement retrieved from the DVL during the field testing
was the altitude a and not the range |r|.

The difference between the altitude estimated by REMUS and the computed
altitude is shown in Figure 6.10. The figure shows the difference for the auto
altitude mission where the mean error is 0.31 meters. To make it easier to compare
the results from the field testing, the mean error was added to zperfect so that the
lines would align. The original values for zperfect can be seen in Appendix D.

t[s]

1000 1500 2000 2500 3000

ra
n

g
e

 e
rr

o
r[

m
]

-0.2

0

0.2

0.4

0.6

0.8

Figure 6.10: The difference between the altitude estimated by REMUS and the
altitude estimated from the wrong beam ranges.

6.4.1 REMUS Altitude Controller

The altitude scenario was first run using the altitude controller implemented on
REMUS. This mission would function as a baseline that could be compared to the

75



Chapter 6. Field Testing

controllers implemented in DUNE. The depth and desired depth of the vehicle is
given in Figure 6.11. As expected the vehicle overshoots when the slope of the
seabed changes (see t = 470 and t = 650).

t[s]

200 300 400 500 600 700 800

d
e
p

th
[m

]

4

6

8

10

12

14

16

18

20

22

z

z
r

z
perfect

Figure 6.11: Depth z and desired depth zr for the baseline mission using the
REMUS altitude controller.

6.4.2 Auto Altitude Controller

The second mission was performed with the auto altitude controller implemented
in DUNE. The result is shown in Figure 6.12. Compared to zd set by the REMUS
computer shown in Figure 6.11, the auto altitude controller gives a similar output.
The oscillations observed in the vehicles depth indicate that more effort should be
put into tuning of the depth controller, but due to time constraints, this was not
done.

76



6.4. Altitude Control

t[s]

200 300 400 500 600 700 800

d
e
p
th

[m
]

4

6

8

10

12

14

16

18

20

22

z

z
r

z
perfect

Figure 6.12: Depth z and desired depth zr for the auto altitude mission.

6.4.3 Highpass Controller

The rest of the altitude control missions were performed with the highpass controller.
The first mission with this method is shown in Figure 6.13. The highpass gain
parameter khp was set to 2.0 and the highpass alpha αhp was set to 3.0.

Compared to the desired depth zd,auto from the auto altitude controller, the desired
depth zd,hp from the highpass controller had more noise. Although the signal is
noisy, it can be seen that the controller is compensating for the slope of the seabed
at t = 470 and t = 660. However, this effect is small.

77



Chapter 6. Field Testing

t[s]

200 300 400 500 600 700 800

d
e

p
th

[m
]

4

6

8

10

12

14

16

18

20

22

z

z
r

z
perfect

Figure 6.13: Depth z and desired depth zr for the first highpass altitude mission.

For the last altitude mission we increased the highpass parameters to see if the
effect would be more present. The result is shown in Figure 6.14 with the highpass
gain khp set to 3.0 and the highpass alpha αhp set to 5.0. This tuning lead to big
oscillations for the vehicle’s depth and confirms that good tuning of the highpass
controller is crucial.

78



6.4. Altitude Control

t[s]

200 300 400 500 600 700 800

d
e

p
th

[m
]

4

6

8

10

12

14

16

18

20

22

z

z
r

z
perfect

Figure 6.14: Depth z and desired depth zr for the second highpass altitude mission.

6.4.4 Noise in the DVL range measurements

The high level of noise in the results with the highpass controller, may be explained
by noisy input from the DVL. The DVL range measurements is shown in Figure 6.15
and Figure 6.16. In the latter figure it looks like the range measurements have
periodic oscillations. Because the DVL is an acoustic system, it is expected that
the range measurements should include noise, but due to the periodic oscillation,
it looks more like digital noise.

Figure 6.17 shows the range measurements from a mission in the Trondheimsfjord
October, 2014 with the same REMUS AUV. In this mission, the range measurements
from the DVL had significantly less noise indicating that the DVL may have been
faulty during the field tests in Hopavågen.

79



Chapter 6. Field Testing

t[s]

200 300 400 500 600 700 800

ra
n
g
e
[m

]

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5
DVL range measurements

|r
1
|

|r
2
|

|r
3
|

|r
4
|

Figure 6.15: Range measurements from the DVL during the first highpass altitude
mission.

t[s]

555 560 565 570 575 580 585 590

ra
n
g
e
[m

]

10.5

11

11.5

12

DVL range measurements

|r
1
|

|r
2
|

|r
3
|

|r
4
|

Figure 6.16: Range measurements from the DVL during the first highpass altitude
mission.

80



6.4. Altitude Control

t[s]

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600

d
e
p
th

[m
]

3

3.5

4

4.5

5

5.5 |r
1
|

|r
2
|

|r
3
|

|r
4
|

Figure 6.17: Range measurements from the DVL during a mission in the Trondheims-
fjord October 2014. The range measurements from this mission had significantly
less noise.

81



Chapter 6. Field Testing

6.5 Heading Control

When we tried to perform the heading control we had some problems with the
RECON interface. The first scenario was to test heading control by setting a
waypoint destination the AUV should move towards. The log file showed that
the depth, heading, and speed were sent repeatedly in 1 second intervals, but the
REMUS VIP stated that it had not received any heading commands. The REMUS
computer would therefore take back control after 5 seconds. Since we did not know
why RECON rejected the heading commands, and because of the larger risk of
performing heading control, we did not run more heading control tests.

During testing of the new HuginDuneBridge architecture discussed in Chapter 7
we found that the message format implemented in CReconDriver was wrong. The
command for setting the heading via a waypoint destination in CReconDriver
separated the latitude and longitude with a comma. The correct separation
character was the space character. After fixing the error, RECON accepted the
heading goal command.

6.6 Experiences

Using both Neptus and the REMUS VIP to control the mission execution proved
to be more troublesome than first thought. Since the DUNE mission plan was
initiated by Neptus, it was necessary for REMUS to be in the surface close to the
boat so that it had WiFi connection. In the time from when the REMUS mission
had started to the time before the DUNE mission was started from Neptus, one of
us had to keep REMUS fixed and make sure that it did not slip under the boat due
to the current. When we tried to run the heading missions, the boat was anchored
to Buoy 6 shown in Figure 6.2. If the DUNE mission had started automatically
when RECON control was enabled, this would not have been a problem. This
problem has been addressed in the new architecture described in Chapter 7.

82



Chapter 7

Software Changes Based on
Experiences from Field Testing

This chapter presents a new architecture for the HuginDuneBridge and for the
interface between DUNE and REMUS. The new architecture has been implemented
to address the problems encountered during the field testing. The implementation
has been tested on the REMUS computer May 8, 2015 to ensure that the new
architecture worked.

7.1 Problems Encountered During Field Testing

7.1.1 Changing Configurations Between Mission

One of the inconvenient moments during the field tests was changing the configura-
tion files between missions. When we were out in the boat, and were getting ready
for the next mission, we would have to turn off PP.exe and dune.exe, change the
two configuration files, and restart both programs.

7.1.2 Safety if DUNE Stops Communicating

Another issue that could arise was if dune.exe crashed or if the communication
suddenly stopped working. Since HuginDuneBridge would repeat the latest received
commands at least every second, it would not stop transmitting messages even if
DUNE stopped sending messages.

83



Chapter 7. Software Changes Based on Experiences from Field Testing

7.1.3 Complexity in HuginDuneBridge

A third problem is that the HuginDuneBridge complexity grew due to the RECON
constraints. This is in conflict with the goal of the bridge to be a thin translation
layer. This complexity made it more difficult to reason about the code base.

7.2 Architectural Overview

DUNE, being a complete framework for vehicle control, is a better fit for the
complexities in HuginDuneBridge. A first goal was therefore to move some of the
complexities from HuginDuneBridge to DUNE. Since the RECON interface uses
the UDP protocol, it would be possible to move the RECON procedure calls from
HuginDuneBridge to DUNE. This would solve or improve upon all the problems
described above.

By sending RECON commands from DUNE, the HuginDuneBridge plugin would
only be responsible for transmitting the vehicle state from HUGIN to DUNE, which
will simplify its design. The HuginDuneBridge configuration would be reduced
to the network configurations. Since these parameters rarely change, the DUNE
configuration will be the only one that needs to be updated between missions, and
the PP.exe program does not need to be restarted.

If dune.exe would crash, or otherwise be unable to send commands, the safety
mechanisms on the REMUS computer would abort the mission after 5 seconds.

Another point that was important during the field testing was logging. If a mission
failed to meet the desired performance, having a log file with debugging information
was crucial. When HuginDuneBridge grew in complexity, it would also need logging,
leading to multiple log files from both DUNE and HuginDuneBridge. Logging is
easier in DUNE due to the logging task Transports.Logging that saves all IMC
messages in a compressed file. After mission completion, the compressed log file
can be viewed in Neptus and plotted.

7.3 Implementation

Two new DUNE tasks have been implemented to handle the communication
with AUVSim and RECON, Control.REMUS.AUVSim and Control.REMUS.RECON
respectively. In addition, 8 new IMC messages types were created. The code

84



7.3. Implementation

is available at https://www.bitbucket.org/sighol/dune-remus and https://
www.github.com/sighol/imc.

7.3.1 New IMC Messages

The new IMC messages were created to ease the communication between the two
tasks and so that the state of the two tasks could be observed in the log files.

The IMC::SimulatedTime message includes the current simulation time and the
timestep used by AUVSim. This message is useful for tasks that perform integrations
or other time dependent operations. The Control.REMUS.AltitudeFromDVL task
has been changed to subscribe to this message. If a IMC::SimulatedTime have
been received, it uses that timestep for the propagation of the highpass filter.

For use by the new Control.REMUS.RECON task in DUNE, seven different IMC
messages have been created. IMC::ReconState mirrors the data that is returned
through the RECON interface. It is this message that includes the current mission
objective number (or leg) used by REMUS.

IMC::ReconMessage is used for logging of all packages sent between DUNE and
the REMUS computer over the RECON interface. The message includes the
command string and the direction of the message: vehicle to external or external
to vehicle. With this message, it was easier to debug why RECON rejected the
heading commands as experienced during the field testing.

When the RECON task changes between being enabled and disabled, an IMC::Recon-
ControlState message is sent out on the IMC bus. This message is used for logging.

Finally, four new messages have been created to mirror the desired state messages
used by DUNE: IMC::DesiredZ, IMC::DesiredSpeed, IMC::DesiredPath, and
IMC::DesiredHeading. The new messages are: IMC::ReconDesiredZ, IMC::Recon-
DesiredSpeed, IMC::ReconDesiredHeadingWaypoint, and IMC::ReconDesired-
HeadingAngle. These messages are sent from the RECON task every time the
corresponding RECON commands are sent to the REMUS computer. The messages
are used by the AUVSim task so that AUVSim can use the commands sent to
the REMUS computer instead of the more frequently updated IMC::Desired*
messages.

The new IMC messages makes it easier to test the logic in the RECON task that
involves enabling and disabling of the connection to the RECON interface.

85

https://www.bitbucket.org/sighol/dune-remus
https://www.github.com/sighol/imc
https://www.github.com/sighol/imc


Chapter 7. Software Changes Based on Experiences from Field Testing

7.3.2 HuginDuneBridge

HuginDuneBridge has been greatly simplified since it no longer is in charge of
sending RECON messages to the REMUS computer. The communication is
flowing in only one direction: from HuginDuneBridge to DUNE. The code in the
CReconDriver, ReconSupervisor, and ReconProxy classes has been moved to the
Control.REMUS.RECON task.

7.3.3 Control.REMUS.RECON

The RECON task is in charge of communicating with REMUS over the RECON
interface to send commands to the vehicle. The communication can be split into
three objectives: deciding which commands should be sent, when they should be
sent, and the actual sending. The control flow is shown in Figure 7.1.

Figure 7.1: Control flow for the RECON task.

The configuration parameters for the RECON task is given in Listings 7.1.

86



7.3. Implementation

1 Recon Address = 192.168.1.44
2 Recon Port = 23456
3 Control Mode = HeadingWaypoint
4 Disable After Maneuver Completion = false
5 Recon Enable -- Method = TimeDelay
6 Recon Enable -- Leg Start = 1
7 Recon Enable -- Leg End = 4
8 Recon Enable -- Time Delay = 20
9 Recon Enable -- Start Maneuver = HopavaagenMission

Listing 7.1: Configuration parameters for the Control.REMUS.RECON task.

Which Commands Should be Sent

Which commands that should be allowed to be sent to the REMUS computer is
determined by the Control Mode parameter. The different control modes are given
in Table 7.1.

Table 7.1: The available methods of control.

Method Enabled Commands

DepthOnly Depth
HeadingAngle Depth, Speed, Heading by Angle
HeadingWaypoint Depth, Speed, Heading by Waypoint
None

When the Commands Should be Sent

As the DuneToHugin block in HuginDuneBridge did before the rewrite, the RECON
task need to control the frequency of messages that are sent to REMUS. If the time
between two messages exceeds 5 seconds, the REMUS computer will take back
control, and if the messages are sent too frequently, the REMUS computer can be
stressed. This is handled by the CommandLoop class that resembles the ReconProxy
class in HuginDuneBridge. The CommandLoop class keeps track of the latest given
command and sends this to the REMUS computer every 100 millisecond. If no
commands have been given to CommandLoop, no commands are sent to REMUS.

The RECON interface will not always be enabled during the execution of a mission.
A typical mission will use the REMUS controllers to move the vehicle to a starting

87



Chapter 7. Software Changes Based on Experiences from Field Testing

position, and then enable RECON and let DUNE take over control. This switching
logic is determined by the enable and disable conditions. The conditions used in
Hopavågen were to check that the current REMUS mission objective was inside
a given interval. To use this condition, Recon Enable – Method must be set to
Leg and the interval is determined by the Recon Enable – Leg Start and Recon
Enable – Leg End parameters.

Two new conditions have been added to the RECON task. The TimeDelay method
enables RECON control after a given time delay after the DUNE program has
started. This time delay is specified by the Recon Enable – Time Delay.

During the field tests, we found that the mission file included an option to allow or
deny RECON commands at each mission objective. This condition is sent back via
the RECON status messages RemoteControlAllowed. Setting the Recon Enable
– Method to ReconAllowed will enable this behavior.

The last switching logic method is the None condition. In this mode, RECON will
never be enabled. This is useful if DUNE should be used for logging, and not take
control.

Start Maneuver When RECON is Enabled

The parameter Recon Enable – Start Maneuver can be used to specify a DUNE
maneuver that should be run when RECON is enabled. This was implemented
due to the difficulties experienced during heading control in Hopavågen. Not being
required to use Neptus to start the DUNE mission simplifies the mission execution.
If this parameter is not present, DUNE will go into standby mode and wait for
commands from Neptus as was done during the field tests.

7.3.4 Control.REMUS.AUVSim

The Control.REMUS.AUVSim tasks has taken over the responsibility of HuginDune-
Bridge for the interaction with the AUVSim simulator. Instead of routing the
AUVSim messages through HuginDuneBridge, they are now sent directly from
AUVSim to the Control.REMUS.AUVSim task. This makes simulations easier since
HuginDuneBridge does not need be started. With less communication between the
different programs, AUVSim will also be able to run simulations faster and with
less delay.

The AUVSim task can be used in two different modes: RECON mode and automatic
mode. When the AUVSim task is in RECON mode it will listen to the IMC::Recon-

88



7.4. Testing

Desired* messages instead of the IMC::Desired* messages. This is useful for
testing the configuration of the RECON task to see that the correct messages are sent
to REMUS. Note that this will add a delay to the messages sent to AUVSim since
the RECON task sends messages at a fixed frequency. AUVSim should therefore
be run at a low speedup when the AUVSim task is in RECON mode. In short the
automatic mode is more convenient for quick simulations while the RECON mode
tests a bigger part of the system. The control flow is shown in Figure 7.2.

The configuration for the AUVSim DUNE task is given in Listings 7.2.

Figure 7.2: Control flow for the AUVSim task.

1 Input Port = 8889
2 Output Port = 9090
3 Output Address = 127.0.0.1
4 Only Use Recon Commands = false

Listing 7.2: Configuration parameters for the Control.REMUS.AUVSim task.

7.4 Testing

Testing of the new architecture was conducted on May 8, 2015. Since CReconDriver
had to be rewritten to not depend on HUGIN SDK, it was necessary to test that it
functioned as before. We ran both DUNE and the plugin on the PP computer and
started the do-nothing mission that we used for heading testing in Hopavågen. The
log files showed that the RECON connection worked as before, and that messages
were sent and received.

89



Chapter 7. Software Changes Based on Experiences from Field Testing

We had some problems with the the RemoteControlAllowed status that we wanted
to use to determine when the RECON task should be enabled. The status was set to
true regardless of the ReconAllowed setting in the mission file. However, using the
mission objective number, as we did during the field testing, still worked.

90



Chapter 8

Conclusions and Further Work

This master thesis has presented a new software system for developing control
systems on the REMUS 100 AUV using the DUNE framework. Two altitude
controllers have been developed using the range measurements from a Doppler
velocity log (DVL) aboard REMUS. Both controllers used REMUS’ depth controller
as control output. The auto altitude controller used the DVL ranges to estimate
the altitude. The second altitude controller, the highpass controller, used the
DVL ranges to approximate the slope of the seabed, and used that estimate in a
feedforward term.

The implementation has been tested both by simulations using the AUVSim
simulator and in a field test at Hopavågen. The simulations have shown that the
highpass controller can reduce the altitude error on large bathymetric variations.
Using a PD depth controller, as used by the REMUS vehicle, the maximum
altitude error reduction ranged from 30% to 45%. Using a PID depth controller the
simulations show that the maximum altitude error was reduced by around 60%.

The field testing of the highpass controller gave varying results due to large amounts
of noise in the DVL range measurements. The highpass controller proved to be
sensitive to the noise, and did therefore give a noisy control output. However, the
auto altitude controller gave good results that are similar to the control output
used by the altitude controller on the REMUS AUV.

The DUNE integration proved to be a robust strategy for software development on
REMUS. The NTNU REMUS 100 can now use DUNE as a development platform,
allowing reuse of code from related research activities.

91



Chapter 8. Conclusions and Further Work

8.1 Recommendations for Further Work

Heading control was not tested due to an error in the CReconDriver interface. The
error was identified after the field testing had been carried out, but it has not been
tested in the field yet. Using DUNE to control the heading will make it possible to
perform most of the different maneuvers supported by DUNE and make the DUNE
interface more complete.

The highpass filter in the highpass controller used the difference between the
two last measurements. This approach is sensitive to large steps between two
measurements, and therefore also to noise. A new approach could be to increase
the timespan for the filter such that more than two measurements are used.

The depth controller aboard REMUS is difficult to tune since it does not have a
derivative gain. New control strategies could be investigated that controls the fin
positions instead of using the depth controller on REMUS. This would require a
re-implementation of the whole control system with heading controllers and path
planning. However, the AUVs developed by LSTS use DUNE for the whole control
system. Using these tasks will reduce the implementation time, but the tasks would
still need extensive tuning.

92



Chapter 9

Bibliography

Allen, B., Vorus, W. S., and Prestero, T. (2000). Propulsion system performance
enhancements on remus auvs. In Oceans 2000 MTS/IEEE Conference and
Exhibition, volume 3, pages 1869–1873. IEEE.

ArduPilot (2015). Autopilot suite. [Online] http://ardupilot.com/.

Bruyninckx, H. (2001). Open robot control software: the ORocos project. In
Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International
Conference on, volume 3, pages 2523–2528.

Candeloro, M., Sørensen, A., Longhi, S., and Dukan, F. (2012). Observers for
dynamic positioning of rovs with experimental results. volume 9, pages 85–90.

Carlton, J. (2012). Marine propellers and propulsion. Butterworth-Heinemann.

Carreras, M., Candela, C., Ribas, D., Mallios, A., Magí, L., Vidal, E., Palomeras,
N., and Ridao, P. (2013). Sparus ii, design of a lightweight hovering auv. In
Martech 2013 5th International Workshop on Marine Technology. SARTI.

Cola2 (2015). The ros source code for the sparus ii auv. [Online] Available:
https://bitbucket.org/udg_cirs/cola2.

DeMarco, K., West, M. E., and Collins, T. R. (2011). An implementation of ros on
the yellowfin autonomous underwater vehicle (auv). In OCEANS 2011, pages
1–7. IEEE.

Dias, P., Fraga, S., Gomes, R., Goncalves, G., Pereira, F., Pinto, J., and Sousa, J.
(2005). Neptus - a framework to support multiple vehicle operation. In Oceans
2005 - Europe, volume 2, pages 963–968.

93

https://bitbucket.org/udg_cirs/cola2


Chapter 9. Bibliography

Dias, P., Goncalves, R., Pinto, J., Sousa, J., Gongalves, R., and Pereira, F. (2006).
Mission review and analysis. In Information Fusion, 2006 9th International
Conference on, pages 1–6.

Dukan, F., Ludvigsen, M., and Sorensen, A. (2011). Dynamic positioning system
for a small size rov with experimental results. In OCEANS, 2011 IEEE - Spain,
pages 1–10.

Dukan, F. and Sørensen, A. J. (2012). Altitude Estimation and Control of ROV
by use of DVL. volume 9, pages 79–84.

Faria, M., Pinto, J., Py, F., Fortuna, J., Dias, H., Martins, R., Leira, F., Jo-
hansen, T., Sousa, J., and Rajan, K. (2014). Coordinating UAVs and AUVs for
oceanographic field experiments: Challenges and lessons learned. In Robotics and
Automation (ICRA), 2014 IEEE International Conference on, pages 6606–6611.

Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control.
John Wiley & Sons.

Gautam Vallabha (2015). Real-Time Pacer for Simulink. [Online]
Available: http://www.mathworks.com/matlabcentral/fileexchange/
29107-real-time-pacer-for-simulink. (April, 2015).

Holsen, S. A. (2014). Evaluation of Software Platforms and Development of Terrain
Relative Navigation for UUV. Project thesis, NTNU.

Johns Hopkins University Dynamical Systems and Control Laboratory (2014).
Video of open loop control of ROV using ROS. [Online] Available: http:
//vimeo.com/26510562. (December, 2014).

Kermorgant, O. (2014). A dynamic simulator for underwater vehicle-manipulators.
In Simulation, Modeling, and Programming for Autonomous Robots, pages 25–36.
Springer.

Koenig, N. and Howard, A. (2004). Design and use paradigms for gazebo, an open-
source multi-robot simulator. In Intelligent Robots and Systems, 2004. (IROS
2004). Proceedings. 2004 IEEE/RSJ International Conference on, volume 3,
pages 2149–2154.

Lim, S., Jung, W., and Bang, H. (2014). Vector field guidance for path following and
arrival angle control. In Unmanned Aircraft Systems (ICUAS), 2014 International
Conference on, pages 329–338.

LSTS (2014). LSTS homepage. [Online] Available: http://lsts.fe.up.pt/.
(December, 2014).

94

http://www.mathworks.com/matlabcentral/fileexchange/29107-real-time-pacer-for-simulink
http://www.mathworks.com/matlabcentral/fileexchange/29107-real-time-pacer-for-simulink
http://vimeo.com/26510562
http://vimeo.com/26510562
http://lsts.fe.up.pt/


Magyar, G., Sinčák, P., and Krizsán, Z. (2015). Comparison study of robotic
middleware for robotic applications. In Sinčák, P., Hartono, P., Virčíková, M.,
Vaščák, J., and Jakša, R., editors, Emergent Trends in Robotics and Intelligent
Systems, volume 316 of Advances in Intelligent Systems and Computing, pages
121–128. Springer International Publishing.

Mancheño, A. G. (2014). Numerical model of currents and tides in an inlet using
mike 3. Student project at the Dept. of Civil and Transport Engineering NTNU.

Marques, E. R., Ribeiro, M., Pinto, J., Sousa, J. B., and Martins, F. (2015). NVL:
a coordination language for unmanned vehicle networks. In ACM Symposium on
Applied Computing (SAC’15). ACM, ACM.

Martins, R., Dias, P., Marques, E., Pinto, J., Sousa, J., and Pereira, F. (2009).
Imc: A communication protocol for networked vehicles and sensors. In OCEANS
2009 - EUROPE, pages 1–6.

Ma’sum, M., Jati, G., Arrofi, M., Wibowo, A., Mursanto, P., and Jatmiko, W.
(2013). Autonomous quadcopter swarm robots for object localization and tracking.
In Micro-NanoMechatronics and Human Science (MHS), 2013 International
Symposium on, pages 1–6.

Meinecke, G., Albiez, J., Joyeux, S., Ratmeyer, V., and Renken, J. (2013). ORocos
based control software of the new developed marum hybrid-rov for under-ice
applications. In Oceans - San Diego, 2013, pages 1–6.

Melim, A. and West, M. (2011). Towards autonomous navigation with the yellowfin
auv. In OCEANS 2011, pages 1–5. IEEE.

Natarajan, S., Gaudig, C., and Hildebrandt, M. (2012). Offline experimental
parameter identification using on-board sensors for an autonomous underwater
vehicle. In Oceans, 2012, pages 1–8.

Newman, P. M. (2008). Moos-mission orientated operating suite. Massachusetts
Institute of Technology, Tech. Rep, 2299(08).

Newman, P. M. (2014). Moos ROS Bridge. [Online] Available: https://github.
com/SyllogismRXS/moos-ros-bridge.

Norgren, P. and Skjetne, R. (2015). Line-of-sight iceberg edge-following using an
AUV equipped with multibeam sonar. Submitted.

OpenSceneGraph (2014). OpenSceneGraph. [Online] Available: http://
openscenegraph.org. (December, 2014).

95

https://github.com/SyllogismRXS/moos-ros-bridge
https://github.com/SyllogismRXS/moos-ros-bridge
http://openscenegraph.org
http://openscenegraph.org


Chapter 9. Bibliography

osgOcean (2014). oscOcean source code repository. [Online] Available: http:
//code.google.com/p/osgocean. (December, 2014).

Pinto, J., Calado, P., Braga, J., Dias, P., Martins, R., Marques, E., and Sousa, J.
(2012). Implementation of a control architecture for networked vehicle systems.
In Navigation, Guidance and Control of Underwater Vehicles, volume 3, pages
100–105.

Pinto, J., Dias, P., Martins, R., Fortuna, J., Marques, E., and Sousa, J. (2013).
The LSTS toolchain for networked vehicle systems. In OCEANS - Bergen, 2013
MTS/IEEE, pages 1–9.

Prats, M., Pérez, J., Fernández, J. J., and Sanz, P. J. (2012). An open source tool
for simulation and supervision of underwater intervention missions. In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages
2577–2582. IEEE.

Prestero, T. T. J. (2001). Verification of a six-degree of freedom simulation model
for the REMUS autonomous underwater vehicle. PhD thesis, Massachusetts
institute of technology.

Qt-Project (2015). Qt project. [Online] Available: http://qt-project.org/.
(June, 2015).

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
and Ng, A. Y. (2009). Ros: an open-source robot operating system. In ICRA
workshop on open source software, volume 3, page 5.

ROS (2014). ROS wiki introduction. [Online] Available: http://wiki.ros.org/
ROS/Introduction. (December, 2014).

Sa, I. and Corke, P. (2012). System identification, estimation and control for a cost
effective open-source quadcopter. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 2202–2209.

Sørensen, A. J. (2013). Marine Control Systems Propulsion and Motion Control of
Ships and Ocean Structures.

SQLite (2015). Sqlite3. [Online] Available: https://www.sqlite.org/. (June,
2015).

Sucan, I. A. and Chitta, S. (2014). Moveit! [Online] Available: http://moveit.
ros.org. (December, 2014).

96

http://code.google.com/p/osgocean
http://code.google.com/p/osgocean
http://qt-project.org/
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Introduction
https://www.sqlite.org/
http://moveit.ros.org
http://moveit.ros.org


Teledyne RD Instruments (2014). [Online] Available: http://www.rdinstruments.
com/datasheets/workhorse_monitor_ds_lr.pdf. (December, 2014).

Thomas, D., Scholz, D., and Blasdel, A. (2014). rqt. [Online] Available: http:
//wiki.ros.org/rqt. (December, 2014).

Ubuntu (2015). Ubuntu. [Online] Available: http://www.ubuntu.com/. (June,
2015).

Wadoo, S. and Kachroo, P. (2010). Autonomous Underwater Vehicles: Modeling,
Control Design and Simulation. CRC Press.

97

http://www.rdinstruments.com/datasheets/workhorse_monitor_ds_lr.pdf
http://www.rdinstruments.com/datasheets/workhorse_monitor_ds_lr.pdf
http://wiki.ros.org/rqt
http://wiki.ros.org/rqt
http://www.ubuntu.com/




Appendices

99





Appendix A

Guidelines for DUNE
Development on REMUS

A.1 Replay Missions

It is possible to replay log files from previous missions in DUNE. Since all input
data is stored in the log file, the whole mission may be run in replay and it should
produce the same results.

This is of interest if additional data should have been logged during a mission,
but was omitted. Logging can be added after the mission has completed, and
DUNE can run the mission log file in replay to recover the omitted data. This was
done with the first mission using the highpass controller in Hopavågen to retrieve
intermediate values used in the algorithm. These values made it easier to tune the
gain khp and alpha αhp paremeters prior to last field tests.

The MATLAB script replayDuneLog.m, that is included in the git repository of
AUVSim, can be used to replay missions from MATLAB. To use the command,
DUNE must be running with the Transports.Replay task enabled. The script
will send an IMC message to DUNE and return when the replay has finished.

A.2 Compiling Programs for the PP computer

To run programs on the PP computer, they have to be compiled with a compiler
version supported by the PP computer. If the compiler used to compile the program
has a newer version than the one supported by the PP computer, the program will

101



Appendix A. Guidelines for DUNE Development on REMUS

crash with a side-by-side configuration error. To use the currently supported
compiler version, Visual Studio 2005 (VS2005) must be installed with Service Pack
1 (SP1). VS2005 must be installed withouth any service packs or updates and SP1
should be installed through Windows Update.

It is important that no other updates are installed from Windows Update. If
VS2005 is updated, PP will no longer be able to run the compiled program. It is
recommended to disable additional updates for VS2005 in Windows Update.

If VS2005 is accidentally updated, it must be reinstalled. It is therefore important
to have the installation files available before doing field testing.

The HuginDuneBridge plugin must be compiled with the correct version of VS2005
to be able to run inside PP.exe. However, it should be possible to compile DUNE
with more recent versions of Visual Studio. If the correct side-by-side files are
copied to the folder containing dune.exe, it may work, but this has not been
tested.

A.2.1 Debugging side-by-side Configuration Errors on the
PP Computer

If a program is compiled with a compiler version not supported by the PP computer,
it will crash with a side-by-side configuration error when run on the PP computer.
This is caused by the program trying to refer to side-by-side libraries that are not
present on the computer.

The error can be debugged using the SxSTrace command line tool. Before launching
the program, run

SxsTrace Trace -logfile:debugSxS.etl

on the Windows command line. Then run the program that should be debugged.
After the program has crashed, select the command line window and press Enter.
To parse the sxstrace logfile, run

SxsTrace Parse -logfile:debugSxS.etl -outfile:debugSxS.txt

on the Windows command line. Open debugSxS.txt to see what caused the error.

The problem is usually solved by reinstalling Visual Studio.

102



A.3. Recompile IMC

A.3 Recompile IMC

A bash script has been made to automate recompilation caused by updates to
IMC.xml. The script updates the IMC source code used by DUNE and compiles
the IMC library used by Neptus. After the script has finished, DUNE and Neptus
must be recompiled. The script is shown in Listing A.1.

1 #!/bin/bash
2

3 DUNE_DIR=’path/to/dune’
4 IMC_DIR=’path/to/imc’
5 IMCJAVA_DIR=’path/to/imcjava’
6 NEPTUS_DIR=’path/to/neptus’
7

8 cd "$DUNE_DIR" &&
9 python programs/generators/imc_code.py -x \

10 "$IMC_DIR"/IMC.xml "$DUNE_DIR"/src/DUNE/IMC &&
11 python programs/generators/imc_blob.py -x \
12 "$IMC_DIR"/IMC.xml "$DUNE_DIR"/src/DUNE/IMC &&
13 python programs/generators/imc_tests.py -x \
14 "$IMC_DIR"/IMC.xml "$DUNE_DIR"/programs/tests &&
15 python programs/generators/imc_addresses.py -x \
16 "$IMC_DIR"/IMC_Addresses.xml etc/common/imc-addresses.ini &&
17

18 cd "$IMCJAVA_DIR" &&
19 # ant will ask for location of the
20 # imc directory (default = ../imc).
21 # echo "" confirms the location.
22 echo "" | ant && ant lsf2llf &&
23

24 cp dist/libimc.jar "$NEPTUS_DIR"/lib &&
25

26 echo "Updated DUNE and recompiled imcjava."
27 echo "Please recompile DUNE and Neptus."

Listing A.1: Script to recompile IMC dependencies.

103



Appendix A. Guidelines for DUNE Development on REMUS

A.4 Logging

The easiest way to log new data is to use the IMC protocol and add new message
types for the data that should be logged. The new messages can then be filled
with the intended data and be dispatched to the IMC bus. The message must be
added to the Transports.Logging configuration to be present in the log file. The
Mission Review and Analysis tool inside Neptus may be used to plot the data after
the mission or simulation has completed.

MATLAB can also be used to plot the data. First, the lsf file must be converted to
the llf format using the lsf2llf tool that is included in the IMCJava repository
at github.com/lsts/imcjava. The llf files can be loaded to matlab using the
llfload tool that is included in the DUNE repository.

See https://github.com/LSTS/dune/wiki/Working-with-IMC for how to add
new messages.

A.5 Mission Preparation

Some measures can be done to organize the code before a mission. Each mission
should have its own git branch named mission/“mission name”. A good reason
to use a different branch for the mission is so that the state of the code and the
configuration can be found later.

If DUNE or HuginDuneBridge needs to be recompiled it is convenient to have the
installation files for Visual Studio 2005 SP1 available. Then, Visual Studio can be
reinstalled if Windows Update have been run by accident.

A.6 Pre-Mission Checklist

• Stop the RecExtrCtrl program on the PP computer. This program uses
RECON and will therefore interfere with DUNE.

• Enable the HuginDuneBridge plugin on the PP computer.

• Restart the PP.exe program on the PP computer. Check that the plugin is
loaded.

• Run dune.exe on the PP computer.

• Run Neptus on a local computer and open the lauv console.

104

github.com/lsts/imcjava
https://github.com/LSTS/dune/wiki/Working-with-IMC


A.7. Post-Mission Checklist

• Check that the ntnu-remus vehicle is connected and verify that the estimated
position is near the actual position. If the vehicle is indoors, the estimated
position can be far off, even multiple kilometers. When the vehicle is outdoors,
the estimated error should be small.

A.7 Post-Mission Checklist

• Download the DUNE log files.

• Disable the HuginDuneBridge plugin on the PP computer.

• Stop the DUNE program.

• Start the RecExtrCtrl program.

105





Appendix B

Path Control in DUNE

Figure B.1: Control flow for path planning in DUNE.

The control flow for path planning in DUNE is shown in Figure B.1. Missions
plans are generated using the Neptus Ground Control System (GCS).

A mission plan consists of multiple maneuvers that are linked together into a plan.
Examples of maneuvers are the Goto maneuver that commands the vehicle to go
to a waypoint, the Loiter maneuver that commands the vehicle to run in a circle

107



Appendix B. Path Control in DUNE

around a waypoint, and the PopUp maneuver that commands underwater vehicles
to surface at a specified waypoint. Mission plans can be sent to DUNE in an
IMC::PlanDB message. The mission plan is then saved into an sqlite3 database
(SQLite, 2015).

Launching of missions are initiated by Neptus. The start command is encoded
in an IMC::PlanControl message that includes the mission name and the op-
eration that should be run (start, stop, etc.). The message is received by the
Plan.PlanEngine task in DUNE and translated into an IMC::VehicleCommand
message that i sent to the Supervisors.Vehicle task. It is this supervisor task
that is in charge of the plan execution. The supervisor sends the mission maneuvers
one by one to the Maneuver.Multiplexer task. When the supervisor receives
an IMC::ManeverControlState stating that the maneuver has finished, the next
maneuver command is sent to the multiplexer.

The multiplexer task consists of multiple components representing each of the pos-
sible maneuvers. If an IMC::Goto message is received by the multiplexer, it is then
handled by the Maneuver.Multiplexer/Goto component. In the case for the Goto
command, the message is translated into an IMC::DesiredPath command. When
the path controller has completed the path, it sends an IMC::PathControlState
back to the multiplexer. There are multiple path controllers in DUNE, including
pure pursuit and line-of-sight, but the one used in this thesis is the vector field
path controller. When the path controller receives a desired path, it will send the
IMC::DesiredHeading and IMC::DesiredSpeed commands that can be received
by the Control.REMUS.AUVSim and Control.REMUS.RECON tasks.

108



Appendix C

Simulations Using a PID Depth
Controller

The simulation results presented in Chapter 5 used a depth controller that resembles
the one used on the REMUS 100 AUV. This depth controller was a PI controller
that was difficult to tune since it had no derivative gain. This appendix includes
simulation results using a PID depth controller. The derivative gain made it easier
to get the vehicle to follow the desired path and made the difference between the
two controllers more visible. The simulations scenarios presented in this appendix
is the same as the ones used in Chapter 5.

The coefficients used by the depth controller are shown in Table C.1. The highpass
gain khp was set to 20.0 and the highpass alpha αhp was set to 3.0.

Table C.1: Simulation coefficients for the AUVSim PID depth controller.

Parameter Value
kp,z 0.20
ki,z 0.02
kd,z 0.80
imax,z 10.00

C.1 Scenario: Constant Sloped Map

The first scenario uses the constant sloped map. With the auto altitude controller
showed in Figure C.1, the maximum error is around 0.5 meters. With the highpass

109



Appendix C. Simulations Using a PID Depth Controller

controller showed in Figure C.2, the maximum error is around 0.2 meters. The
highpass controller gives a faster response due to the increased error when the slope
of the seabed changes.

t[s]

50 100 150 200 250 300

d
e
p
th

[m
]

25

30

35

40

45
Depth

z

z
r

z
perfect

t[s]

50 100 150 200 250 300

e
rr

o
r[

m
]

-1

-0.5

0

0.5

1
Altitude error

Figure C.1: Simulation using auto altitude and the constant slope map.

110



C.2. Scenario: Sinus Curved Map

t[s]

50 100 150 200 250 300

d
e
p
th

[m
]

25

30

35

40

45
Depth

z

z
r

z
perfect

t[s]

50 100 150 200 250 300

e
rr

o
r[

m
]

-0.4

-0.2

0

0.2

0.4
Altitude error

Figure C.2: Simulation using the highpass controller and the constant slope map.

C.2 Scenario: Sinus Curved Map

The second scenario using the sinus curved map shows the same effect as in the first
scenario. Using auto altitude, as shown in Figure C.4, the vehicle overshoots by
approximately 0.5 meters. Using the highpass controller, as shown in Figure C.4,
the vehicle overshoots by approximately 0.2 meters.

111



Appendix C. Simulations Using a PID Depth Controller

t[s]

50 100 150 200 250 300

d
e
p
th

[m
]

16

18

20

22

24
Depth

z

z
r

z
perfect

t[s]

50 100 150 200 250 300

e
rr

o
r[

m
]

-1

-0.5

0

0.5
Altitude error

Figure C.3: Simulation using auto altitude and the sinus map.

112



C.3. Scenario: Hopavågen Map

t[s]

50 100 150 200 250 300

d
e
p
th

[m
]

16

18

20

22

24
Depth

z

z
r

z
perfect

t[s]

50 100 150 200 250 300

e
rr

o
r[

m
]

-0.4

-0.2

0

0.2

0.4
Altitude error

Figure C.4: Simulation using the highpass controller and the sinus map.

C.3 Scenario: Hopavågen Map

The third scenario uses the Hopavågen map. This is the scenario that shows the
biggest difference between the two controllers. A simulation using auto altitude
controller can be seen in Figure C.5. A simulation using the highpass controller
can be seen in Figure C.6. The maximum error is reduced from around 1.4 meters
to 0.6 meters by using the highpass controller.

113



Appendix C. Simulations Using a PID Depth Controller

t[s]

50 100 150 200 250 300 350 400 450

d
e

p
th

[m
]

5

10

15

20
Depth

z

z
r

z
perfect

t[s]

50 100 150 200 250 300 350 400 450

e
rr

o
r[

m
]

-2

-1

0

1
Altitude error

Figure C.5: Simulation using auto altitude and the Hopavågen map.

114



C.3. Scenario: Hopavågen Map

t[s]

50 100 150 200 250 300 350 400 450

d
e
p
th

[m
]

5

10

15

20
Depth

z

z
r

z
perfect

t[s]

50 100 150 200 250 300 350 400 450

e
rr

o
r[

m
]

-1

-0.5

0

0.5
Altitude error

Figure C.6: Simulation using the highpass controller and the Hopavågen map.

115





Appendix D

Original Plots From the Field
Tests

The altitude control missions used the beam ranges from the DVL to find the
altitude. After the field tests were carried out, it was found that the range
measurements returned from the DVL was the altitude of the beam and not the
range (see Figure D.1). Since the altitude a was shorter than the beam range |r|,
the estimated altitude was always shorter than the real altitude.

|r| a

Figure D.1: The range measurement retrieved from the DVL during the field testing
was the altitude a and not the range |r|.

However, the difference is mostly constant. By adding 0.31 meters to the value of
zperfect, the error is reduced.

The results presented in Chapter 6 adds this difference to the value of zperfect so
that the results are comparable. The original results are shown in this appendix.

117



Appendix D. Original Plots From the Field Tests

D.1 REMUS Altitude Controller

t[s]

200 300 400 500 600 700 800

d
e
p

th
[m

]

4

6

8

10

12

14

16

18

20

22

z

z
r

z
perfect

Figure D.2: Depth z and desired depth zr for baseline mission using the REMUS
altitude controller.

118



D.2. Auto Altitude Controller

D.2 Auto Altitude Controller

t[s]

200 300 400 500 600 700 800

d
e
p

th
[m

]

4

6

8

10

12

14

16

18

20

22

z

z
r

z
perfect

Figure D.3: Depth z and desired depth zr for the auto altitude mission.

119



Appendix D. Original Plots From the Field Tests

D.3 Highpass Controller

t[s]

200 300 400 500 600 700 800

d
e

p
th

[m
]

4

6

8

10

12

14

16

18

20

22

z

z
r

z
perfect

Figure D.4: Depth z and desired depth zr for the first highpass altitude mission.

120



D.3. Highpass Controller

t[s]

200 300 400 500 600 700 800

d
e

p
th

[m
]

4

6

8

10

12

14

16

18

20

22

z

z
r

z
perfect

Figure D.5: Depth z and desired depth zr for the second highpass altitude mission.

121





Appendix E

Attachments

This appendix lists the attachments to this thesis. The attachment is a zip file that
includes the following folders.

AUVSim

This folder includes all source code written for AUVSim. AUVSim has additional
dependencies on the Eigen3 and BOOST frameworks. These frameworks have not
been attached due to their big size. To be able to run AUVSim, these frameworks
must be downloaded into the vendor-folder.

dune-remus

This folder includes the DUNE source code that has been developed during the
work on this thesis.

HuginDuneBridge

This folder includes the HuginDuneBridge.

imc

New IMC messages were created during the work on the new architecture described
in Chapter 7. This folder includes the IMC repository.

123


	List of Figures
	List of Tables
	List of Listings
	Introduction
	Motivation
	Background
	Unmanned Underwater Vehicles
	Doppler Velocity Log
	The REMUS 100 AUV
	HUGIN SDK
	DUNE
	AUVSim

	Previous Work
	Software Frameworks for Unmanned Vehicles

	Contributions
	Organization of Thesis

	Evaluation of Software Frameworks for AUVs
	Program Structure
	Run Configurations
	User Interface
	Neptus
	rqt
	UWSim

	Portability
	Documentation and Real World Usage
	ROS Used for AUV and ROV operations
	DUNE Used for AUV Operations

	Summary

	Modeling and Control System
	Modeling
	Reference Frames
	Equations of Motion
	Altitude Kinematics

	Sensors and Controllers Aboard REMUS 100
	DVL Sensors
	The REMUS Controllers

	Altitude Estimation by use of DVL
	Altitude Rate of Change

	Altitude Control
	Auto Altitude Controller
	Highpass Controller

	Altitude Controller Implementation

	Software
	Mission Execution
	Interfacing with the Vehicle
	Interfacing with HUGIN SDK
	Interfacing with RECON
	RECON Control Modes

	HuginDuneBridge
	Architecture
	Connecting to AUVSim
	Run Configurations
	Standby Mode

	AUVSim
	Simulation of Beam Ranges
	Theory
	Implementation


	Simulation
	Simulation Maps
	Constant Slope
	Sinus Curved
	Hopavågen

	Beam Range Simulator
	Visual Confirmation That the Beams Hit the Sea Bed
	Altitude Control of an AUV Across the Sea Bed

	Tuning the Depth Controller
	Altitude Control
	Scenario: Constant Slope Map
	Scenario: Sinus Curved Map
	Scenario: Hopavågen Map

	Heading Control

	Field Testing
	Organization
	Scenarios
	Altitude Control
	Heading Control

	Tuning of the REMUS Depth Controller
	Altitude Control
	REMUS Altitude Controller
	Auto Altitude Controller
	Highpass Controller
	Noise in the DVL range measurements

	Heading Control
	Experiences

	Software Changes Based on Experiences from Field Testing
	Problems Encountered During Field Testing
	Changing Configurations Between Mission
	Safety if DUNE Stops Communicating
	Complexity in HuginDuneBridge

	Architectural Overview
	Implementation
	New IMC Messages
	HuginDuneBridge
	Control.REMUS.RECON
	Control.REMUS.AUVSim

	Testing

	Conclusions and Further Work
	Recommendations for Further Work

	Bibliography
	Appendices
	Guidelines for DUNE Development on REMUS
	Replay Missions
	Compiling Programs for the PP computer
	Debugging side-by-side Configuration Errors on the PP Computer

	Recompile IMC
	Logging
	Mission Preparation
	Pre-Mission Checklist
	Post-Mission Checklist

	Path Control in DUNE
	Simulations Using a PID Depth Controller
	Scenario: Constant Sloped Map
	Scenario: Sinus Curved Map
	Scenario: Hopavågen Map

	Original Plots From the Field Tests
	REMUS Altitude Controller
	Auto Altitude Controller
	Highpass Controller

	Attachments

