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Abstract
This report presents a stochastic method for predicting the time scale of
scour and backfilling, occurring around vertical piles and marine pipelines
on the seabed. The erosion occurs due to waves alone or waves com-
bined with a current. Existing formulas for the time scale are expanded
allowing input of random waves. The waves are assumed to be stationary
and narrow-banded such that the statistical distributions Rayleigh and
Forristall (2000) can be employed. When applying the Rayleigh distri-
bution, the waves are assumed to be linear, while Forristall distributes
the wave crest heights representing long-crested (2D) and short-crested
(3D) waves where the second-order effects sum-frequency and difference-
frequency are included. The waves typically exhibit a nonlinear behaviour
in severe seastates and in shallow water.

The time scale is calculated based on typical field parameters and pre-
sented graphically for linear, nonlinear long-crested and nonlinear short-
crested waves. When second-order effects are included, the wave crests
appear higher and sharper than to linear sinusoidal waves. This causes
the water particle velocity below second-order waves to be higher, result-
ing in shorter time scale, which is reflected in the results. The results for
the time scale of long-crested and short-crested waves are also compared,
and all the results display that the 3D waves are higher, resulting in lower
time scales when the nonlinear effects increase.





Abstract (Norwegian)
Denne avhandlingen presenterer en stokastisk metode for å beregne tidsskalaen
av erosjon (scour), som oppstår på havbunnen i sanden rundt marine
strukturer. Erosjonen er forårsaket av bølger alene, eller bølger kombin-
ert med strøm. Eksisterende formler for tidsskalaen er omformulert slik
at stokastiske bølger kan inkluderes. For å kunne anvende de statistiske
fordelingene Rayleigh og Forristall (2000), må bølgene antas å være smal-
båndede og stasjonære. I Rayleigh fordelingen er bølgene lineære sinusbøl-
ger, mens i Forristall fordelingen kan bølgene beskrives med ulik grad av
andre ordens effekter for langkammede (2D) og kortkammede (3D) bølger.
Ulineariteten i bølgene øker i kraftige sjøtilstander og på grunt vann der
bølgene treffer havbunnen og vokser.

Tidsskalaen er beregnet basert på representative eksempelverdier, og frem-
stilt grafisk for lineære, ulineære langkammede og ulineære kortkammede
bølger. Når andreordens effekter er inkludert, blir bølgetoppene skarpere
og høyere, sammenlignet med sinusbølger. Dette vil øke hastigheten under
bølgene og dermed resultere i kortere tidsskala, noe som gjenspeiles i alle
resultatene. Resultatene for kortkammede og langkammede bølger er også
sammenlignet og viser at når ulineære effekter økes, vil de kortkammede
bølgene være størst, og dermed føre til kortere tidsskala.
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θcr lower value for motion of sand
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D diameter of pile or pipeline
d50 median diameter of grain
f wave frequency, 1/Tw
fv vortex shedding frequency
fw seabed friction



g acceleration of gravity
Hs significant wave height
h water depth
KC Keulegan-Carpenter number
KCrms r.m.s. value of Keulegan-Carpenter number
KCi initial Keulegan-Carpenter number
KCirms initial r.m.s. value of KC number
KCf final Keulegan-Carpenter number (during backfilling)
KCfrms final r.m.s. value of KC number (during backfilling)
k wave number, k = 2π/L
kp wave number in a narrow-banded seastate
L wave length
Lp wave length in a narrow-banded seastate
n fraction of wave heights in a seastate
ReD Pipe/pile Reynolds number
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U horizontal velocity component of u near the seabed
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Urms rms value of the near bed horizontal velocity below waves
Uc undisturbed current velocity
Ucw current wave velocity in regular waves
Ucwrms current wave velocity in irregular waves
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wc normalized second-order wave amplitude
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(wc1, wc2) lower and upper value of wc in the truncated distribution
z depth from mean water level
z0 bed roughness, z0 = d50/12
(c, d) coefficients for calculating the seabed friction



1 Introduction
Scour is a type of erosion that occurs around structures on a sandy seabot-
tom due to flow velocities induced by waves, current or a combination. The
flows interaction with the seabed creates a boundary layer flow, which in-
teracts with the structure near the bottom, creating complicated flow pat-
terns that will depend on the geometry of the structure. When the seabed
is exposed for this three-dimensional flow, the shear stress increases, allow-
ing sand particles to move more easily. When the flow climate is described
by one ratio between the orbital fluid particle displacement and the di-
ameter, the scour will develop to a maximum depth where it remains
constant. When the flow climate changes, the final depth will also change
and backfilling of the initial scour hole may occur.

Scour and backfilling occurs around a variety of marine structures but here
it is investigated for offshore piles and pipelines. The main contribution
to scour below pipelines and around vertical slender piles occurs due to
flow patterns mainly contributed by vortex shedding, while scour around
vertical large piles appears due to flow fields related to the diffraction of
waves. Pipelines are mainly used to transport hydrocarbons and there-
fore failures, which might happen due to free spans, which may lead to
severe consequences. Free spans allow the flow to surround the whole pipe
such that vortex induced vibrations might result. For vertical piles, scour
results in decreased stability. Vertical piles are now important as funda-
ments to many marine structures such as platform legs and wind turbine
columns.

The assessment of the time scales for scour and backfilling is of interest
in this thesis and it is essential in the the design of marine pipeline and
foundations of vertical piles and in scour protection work. The time scale
is the time it takes before the scour reaches a certain depth. The time
scale of scour created due to the presence of waves is of special interest
because during a storm, it may occur quickly and thereby be critical.

The formulas of the time scale are obtained by linear fit of experimental
data. For the time scale of scour in regular waves, empirical formulas were
proposed in Fredsøe et al. (1992) for pipelines and in Sumer et al. (1992) for
vertical slender piles. The time scale of backfilling around piles by irregular
waves and current were presented in Sumer et al. (2012). These formulas
are expanded with the stochastic method, allowing input of random waves.
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The waves are assumed to be stationary and narrow-banded such that the
statistical distributions by Rayleigh and Forristall (2000) can be employed.
When applying the Rayleigh distribution, the waves are assumed to be
linear while Forristall distributes the wave crest heights representing short-
crested (2D) and long-crested (3D) waves where the second-order effects
sum-frequency and difference-frequency are included. The waves typically
exhibit a nonlinear behaviour in severe seastates and in shallow water.

The purpose of this thesis is to derive the formulas for the time scale with
the stochastic method and thereby present the time scale graphically for
linear, nonlinear long-crested and nonlinear short-crested waves.
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2 Background
The theory in this chapter is taken from Sumer and Fredsøe (2002) unless
otherwise mentioned.

2.1 The bed shear stress

A requirement for scour to occur is that sand particles must be trans-
ported. The seabeds shear stress describes the ability of sediment trans-
port. The presence of a structure will change the flow field and therefore
increase the bed shear stress such that sediment transport may occur close
to the structure. The increase can be described by the amplification factor:

α = τ

τ∞
(1)

where τ∞ is the bed shear stress of the undisturbed flow meaning the
shear stress that occurs due to a flow unaffected by the structure. τ is the
actual value of the shear stress in the bed created by the disturbed flow.
Scour will continue to develop until a depth where τ = τ∞. This depth is
referred to as the equilibrium scour depth, S.

In this thesis, the undisturbed value of the shear stress will be applied
when calculating the time scale. The reason for this is that the method
proposed is based on formulas derived from laboratory experiments where
the scour depth is measured versus its corresponding undisturbed shear
stress, which is found based on the incoming waves. A result of this is that
in a real life scenario, the time scale can be predicted when the sea state
is given. However, the distribution of the actual value of the shear stress
around the structure is of importance when it comes to the mechanisms
of scour and will therefore be elaborated in Ch. 3.

2.1.1 Bed shear stress below regular waves

The shear stress is dependent on the velocity of the incoming flow. The
incoming flow is due to current, waves, or a combination. When the flow
is caused by waves, the undisturbed maximum shear stress is expressed

3



as:
τmax,∞/ρ = 1

2fwU
2
m (2)

where ρ is the density of the seawater and Um is the maximum horizontal
velocity of the water particles on the seabed during one wave period. The
maximum shear stress is of interest because it will contribute most to
scour. From linear wave theory, the water particle velocity u in a water
depth z is given by Faltinsen (1993) as:

u = ωa
coshk(h+ z)
sinh(kh) sin(ωt− kx) (3)

where ω is the frequency, a is the linear wave amplitude, k is the wave
number and h is the water depth. Close to the sea bottom z ≈ −h such
that the maximum value of the horizontal velocity near the sea bottom
during a wave cycle is:

Um = ω
a

sinh(kh) = ωA (4)

where A is the maximum horizontal distance the water particle moves
during one wave period. k is the wave number and it is expressed k = 2π/L
where L is the wavelength. It can be found by the dispersion relation:

ω2 = gk tanh(kh) (5)

where g is the acceleration of gravity. The shear stress is as shown in Eq.
(2) linear to the friction fw. The following friction factor given by Soulsby
(1997) is:

fw = c(A
z0

)−d (6)

where
(c, d) = (1.39, 0.52) for 10 ≤ A

z0
≤ 105 (7)

where c and d are coefficients based on best fit to data and z0 = d50/12 is
an expression for the roughness of the sand where d50 is the median sand
grain diameter. Myrhaug et al. (2001) divided the interval of A/z0 from
Eq. (7) in 3 subintervals with different coefficients c and d for each. These
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could be applied in this thesis but for simplicity, Eq. (7) is chosen. From
Eq. (6), it can be seen that for a given z0, the wave friction increases
when A decreases. This can be explained by increased turbulence at the
sea bottom when A is small. Eqs. (6) and (7) are valid for sinusoidal
waves and rough turbulent flow. They are obtained based on laboratory
measurements without the presence of a structure and can thereby be
applied to find the undisturbed shear stress below waves given by Eq. (2).

2.2 The equilibrium scour depth

The scour process will evolve in different stages where the scour depth
increases until it reaches its final value S; the equilibrium scour depth. At
this stage, the sediment transport into the scour hole equals the sediment
transport out of the hole, Myrhaug and Ong (2012). Definition sketches
of S are given for a pipeline in Fig. 2.1 and for a vertical pile in Fig. 2.2.

2001) data for linear random waves plus current. An example of
calculation is also given to demonstrate the application of the
method.

2. Background

2.1. Scour below pipelines

In the case of two-dimensional scour below a fixed pipeline
below regular waves, the Sumer and Fredsøe (1990) empirical
formula for the equilibrium scour depth S below the pipeline with
diameter D (see Fig. 1) is given as

S
D
¼ 0:1KC0:5 (1)

where the Keulegan–Carpenter number KC is defined as

KC ¼
UT
D

(2)

Here U is the undisturbed linear near-bed orbital velocity
amplitude, and T is the wave period. Eq. (1) is valid for live-bed
scour, for which y4ycr, and is based on data for which
2tKCt1000. y is the undisturbed Shields parameter defined by

y ¼
tw

rgðs# 1Þd50
(3)

where tw is the maximum bottom shear stress under the waves, r
is the density of the fluid, g is the acceleration of gravity, s is the
sediment density to fluid density ratio, d50 is the median grain
size diameter, and ycr is the critical value of the Shields parameter
corresponding to the initiation of motion at the bed, i.e. ycrE0.05.
One should note that the scour process attains its equilibrium
stage through a transition period. Thus, the approach is valid
when it is assumed that the storm has lasted longer than the time
scale of the scour. Further details on the time scale of the scour are
given in Sumer and Fredsøe (1996).

The maximum bottom shear stress within a wave cycle is taken
as

tw
r ¼

1
2
f wU

2 (4)

where fw is the friction factor, which here is taken from Myrhaug
et al. (2001), valid for waves plus current for wave-dominated
situations (see Myrhaug et al., 2001, Table 3)

f w ¼ c
A
z0

! "#d

(5)

ðc; dÞ ¼ ð18;1Þ for 20tA=z0t200 (6)

ðc; dÞ ¼ ð1:39;0:52Þ for 200tA=z0t11;000 (7)

ðc; dÞ ¼ ð0:112; 0:25Þ for 11;000tA=z0 (8)

where A ¼ U/o is the near-bed orbital displacement amplitude,
o ¼ 2p/T is the angular wave frequency, and z0 ¼ d50/12 is the bed
roughness (see e.g. Soulsby, 1997). The advantage of using this

friction factor for rough turbulent flow is that it is possible to
derive the stochastic approach analytically. Note that Eq. (7)
corresponds to the coefficient given by Soulsby (1997) obtained as
best fit to data for 10tA/z0t105.

One should note that the KC number can alternatively be
expressed as

KC ¼
2pA
D

(9)

Moreover, A is related to the linear wave height H by

A ¼
H

2 sinh kh
(10)

where h is the water depth, and k is the wave number determined
from the dispersion relationship o2 ¼ gk tanh kh.

Sumer and Fredsøe (1996) presented results of an experi-
mental study on scour below pipelines subject to combined
colinear irregular waves and current acting on a perpendicularly
oriented pipeline with KC ranging from 5 to about 50, and sand
with d50 ¼ 0.16mm. Therefore the proposed method is strictly not
applicable to other orientations between waves, current and
pipeline. Sumer and Fredsøe (1996) found that their empirical
formula for the equilibrium scour depth for regular waves given in
Eq. (1) can be used for irregular waves provided that the KC
number is calculated by KCSF ¼ UrmsTp/D where Tp is the spectral
peak period, and Urms is the root-mean-square (rms) value of the
near-bed orbital velocity amplitude U. Based on their data it is
found that Tp ¼ 1.5Tz where Tz is the mean zero-crossing wave
period. By using this relationship, KCSF can be written as

KCSF ¼ 1:5KCrms (11)

where

KCrms ¼
UrmsTz

D
¼

2pArms

D
(12)

Here Arms is the rms value of A. Further details of Urms and Arms

are given in Section 3.
It should be noted that the relationship Tp ¼ 1.5Tz is only used

when comparisons are made between the present method
predictions and the Sumer and Fredsøe’s data and predictions;
otherwise the present method predictions are not affected by this
relationship. This is also the case for the vertical pile results.

Based on their data Sumer and Fredsøe (1996) found the
following empirical expressions for the scour depth S below
pipelines exposed to random waves plus current

S
D
¼

Scur
D

F (13)

Here Scur/D ¼ 0.6 is the non-dimensional scour depth for
current-alone with a non-dimensional standard deviation
s/D ¼ 0.2 (i.e. reflecting the scatter in the data), and F is given
by the following empirical equations:

F ¼ 5
3KC

a
SF expð2:3bÞ for 0pUcwrmsp0:7 (14)

F ¼ 1 for 0:7oUcwrmsp1 (15)

where

Ucwrms ¼
Uc

Uc þ Urms
(16)

and Uc is the current velocity.
For 0pUcwrmsp0.4 the coefficients a and b are given by

a ¼ 0:557# 0:912ðUcwrms # 0:25Þ2 (17)

b ¼ #1:14þ 2:24ðUcwrms # 0:25Þ2 (18)
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Fig. 1. Definition sketch of the scour depth (S) below a pipeline with diameter D.

D. Myrhaug et al. / Ocean Engineering 36 (2009) 605–616606

Figure 2.1: Definition sketch of S below a pipeline, taken from Myrhaug et al.
(2009).

For 0.4oUcwrmsp0.7 the coefficients are given by

a ¼ "2:14Ucwrms þ 1:46 (19)

b ¼ 3:3Ucwrms " 2:5 (20)

It is noticed that Eqs. (13), (14), (17) and (18) reduce to Eq. (1)
for random waves alone, i.e. for Ucwrms ¼ 0 and with KC replaced
by KCSF. Moreover, also notice that Eqs. (17) and (19), as well as
Eqs. (18) and (20), are discontinuous at Ucwrms ¼ 0.4. However,
since wave-dominated flow will be considered here Eqs. (19) and
(20) are not used, and thus this does not affect the present results.

The stochastic method proposed here for random waves plus
current is valid for wave-dominated flow. Moreover, it is based on
assuming that Eqs. (13), (14), (17) and (18) are also valid for
regular waves if KCSF and Urms are replaced by KC and U,
respectively, i.e. if F for 0pUcwp0.4 is given by

F ¼ 5
3KC

a expð2:3bÞ (21)

where Ucwrms is replaced by

Ucw ¼
Uc

Uc þ U
(22)

and the coefficients a and b are given by

a ¼ 0:557" 0:912ðUcw " 0:25Þ2 (23)

b ¼ "1:14þ 2:24ðUcw " 0:25Þ2 (24)

The dispersion relationship for regular waves plus current at an
angle j to the direction of the wave propagation is o ¼ kUc cosj
+(gk tanh kh)1/2 (see e.g. Soulsby (1997)), which determines the
wave number k for given values ofo, Uc and h. However, for wave-
dominated situations the effect of Uc on k is small, i.e. k is
determined from o2 ¼ gk tanh kh, as previously given for waves
alone.

It should be noted that since Eq. (1) appears to be physically
sound for KCX0, i.e. S equals zero for KC ¼ 0, the formula can be
taken to be valid from KC ¼ 0. This extension of Eq. (1) relies on
the threshold of motion being exceeded, which for small values of
KC may not be the case.

It should also be noted that the assumption of transferring the
results for random waves plus current to regular waves plus
current is not obvious, although it is to some extent justified here
by referring to the results for random and regular waves alone.

2.2. Scour around vertical piles

The scour around a single, slender vertical pile with a circular
cross-section in regular waves was investigated in laboratory tests
by Sumer et al. (1992b). They obtained the following empirical

formula for the equilibrium scour depth S around the pile with the
diameter D (see Fig. 2)

S
D
¼ Cf1" exp½"qðKC " rÞ'g for KCXr (25)

where C, q and r are coefficients given by the following values

ðC;q; rÞ ¼ ð1:3;0:03;6Þ (26)

It should be noticed that C ¼ 1.3 corresponds to the current-
alone case (i.e. for T-N and thus KC-N). Eqs. (25) and (26) are
valid for live-bed scour, for which y4ycrE0.05, where y is the
undisturbed Shields parameter as defined in Eq. (3). Also here the
scour process attains its equilibrium stage through a transition
period. Thus the approach is valid when it is assumed that the
storm has lasted longer than the time scale of the scour. Further
details on the time scale of the scour are given in Sumer et al.
(1992a). One should notice that Eqs. (25) and (26) are also valid
for nonlinear regular waves with q ¼ 0.06, but with KC defined
according to Eq. (9) where A is the stroke of the wave motion close
to the bottom (Carreiras et al., 2000). These results were obtained
as best fit to data for KC in the range 11–23.

Sumer and Fredsøe (2001) presented results of an experi-
mental study on scour around a vertical circular pile subject to
combined irregular waves and current with KC ranging from 5 to
about 30, and sand with d50 ¼ 0.16mm. They found that their
empirical formula for the equilibrium scour depth for regular
waves given in Eqs. (25) and (26) can be used for irregular waves
provided that the KC number is calculated by KCSF ¼ UrmsTp/D. Also
in this case Eq. (11) is valid.

Based on the Sumer and Fredsøe (2001) data for randomwaves
plus current, Sumer and Fredsøe (2002) found that Eq. (25) can be
used for irregular waves plus current provided that KC is
calculated by Eq. (11) and with the coefficients

q ¼ 0:03þ 0:75U2:6
cwrms (27)

r ¼ 6 expð"4:7UcwrmsÞ (28)

Now C ¼ 1.3 with a standard deviation s ¼ 0.7 corresponds to
the current-alone case (i.e. for KCrms-N) according to Sumer and
Fredsøe (2002). Moreover, they also stated that one can take
C ¼ 1.3+s ¼ 2 or C ¼ 1.3+2s ¼ 2.7, which gives the maximum
non-dimensional scour depths of S/D ¼ 2 or S/D ¼ 2.7 for design
purposes. It is also noticed that Eqs. (27) and (28) reduce to
the values of q and r, respectively, in Eq. (26) for waves alone, i.e.
for Uc ¼ 0.

Also here the wave-dominated case will be considered, i.e. for
0tUcwrmst0.4. Moreover, similar to that for the pipeline, it is
based on assuming that Eqs. (25), (27) and (28) are also valid for
regular waves plus current if KCSF and Urms are replaced by KC and
U, respectively, i.e. Eq. (25) by using Eqs. (27) and (28) where
Ucwrms is replaced by Ucw in Eq. (22).

3. Scour in random waves plus current

3.1. Outline of stochastic method

For scour below pipelines and around vertical piles in random
waves Sumer and Fredsøe (1996, 2001) determined the character-
istics of the random variables wave height H and wave period T to
be used to represent the scour depth and width below pipelines
and scour depth around slender vertical piles. By trial and error
they found that use of Hrms (rms value of H) and Tp in an otherwise
deterministic approach gave the best agreement with data. Here a
stochastic approach is outlined. The highest among randomwaves
in a stationary narrow-band sea state are considered, as it is
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Fig. 2. Definition sketch of the scour depth (S) around a circular vertical pile with
diameter D.

D. Myrhaug et al. / Ocean Engineering 36 (2009) 605–616 607

Figure 2.2: Definition sketch of S around a circular vertical pile, taken from
Myrhaug et al. (2009).
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The value of S is dependent on the flow climate, which changes over time.
An important parameter describing this is the Keulegan-Carpenter num-
ber (KC). It is defined as:

KC = UmTw
D

(8)

where D is the diameter of the structure and Tw is the wave period. Under
the assumption of linear theory, Um from Eq. (8) can be substituted with
Eq. (4), resulting in:

KC = 2πA
D

(9)

For very large KC numbers the flow of each half period resembles a cur-
rent, while for small KC numbers the movements of the water particles
are small relative to D. If the flow climate changes such that the KC
number is decreased, the value of S decreases and backfilling of the initial
scour hole occurs. This is illustrated in Fig. 2.3

Experimental Setup

The experiments were, for the most part, conducted with piles with
diameters of D 5 15, 25, 40, and 75mm. However, some sup-
plementary experiments were also conducted with a large pile with
D 5 310mm. The former experiments were designated as small-pile
experiments, and the latter experiments were designed as large-pile
experiments.

Experiments with Small Piles

Wave Flume
These experiments were conducted in a wave-current flume (26.5-m
length, 0.6-m width, and 0.8-m depth), equipped with an Active
Wave Absorption Control System and Danish Hydraulic Institute
(DHI)Wave Synthesizer 2.40 (Schäffer et al. 1994), which was
developed by DHI Water & Environment for the control of wave
generators in wave flumes (Schäffer et al. 1994). This made it
possible for simultaneous generation of desired incident waves and
absorption of the associated reflected waves.

A honeycomb type of wave filter, 0.6 m in length and extending
over the entire width and depth of the flume, was placed in the flume,
2.7 m from the wave generator, to avoid unevenness of the surface
elevation across the width.

Irregular waves were used in the experiments; they were gen-
erated by a programmable piston-type wave generator. Irregular
waves were used in favor of regular waves in order to avoid bed
undulations associated with long test durations, up to 85 h. [The
generation mechanism of these bed formations is similar to that
of alternating scour and deposition pattern induced by (partial)
standingwaves (Sumer and Fredsøe 2000)] The test durations were
very large to capture large time scales involved in the backfilling
process, as will be subsequently detailed. In the wave generation,
a measured in situ water surface elevation spectrum for the North
Sea storm conditions was used as the control spectrum to generate
the wave-generator displacement signal, similar to the previous
studies by Kozakiewicz et al. (1994) and Sumer and Fredsøe
(2000).

A sediment section in the form of a sand pit with two ramps at
the two ends was formed in the flume. The sand pit was 0.6-m
wide, 0.2-m deep, and 6-m long; the distance from the offshore
end of the sand pit to the wave generator was 13 m. The two end
ramps (with 1:15 slope) were made from crushed stones the size
of 4 cm.

The grain size of the sediment (fine sand) used was d50 5 0:17
mm, with a geometric standard deviation of sg 5 d84/d50 5 1:3.

A wave absorber, made of perforated plastic plates with an arch-
shaped cross-sectional profile, was placed at the onshore end of the
flume to handle the reflection. The water depth in the experiments
(wave, current, and combined waves and current experiments) was
maintained at 40 cm at the sand pit section. In the case of the

combined waves and current experiments, the water depth was ad-
justed, and therefore it was initially smaller than 40 cm (0.4e9.1%
smaller, depending on the current velocity); and, with the introduction
of the current, it increased to 40 cm.

Three conventional resistance-type wave gauges were used to
monitor the water surface elevation: (1) midway between the
filter and the sediment section, (2) at the junction between the
sediment section and the offshore ramp section, and (3) at the pile
section.

Model Piles and Monitoring Scour and Backfilling

The model pile was embedded vertically in the sediment bed at the
center of the sediment section. It was rigidly fixed, extending down
to the base bottom of the flume.

Model piles with diameters D 5 15, 25, 40, and 75mm were
implemented in the tests, as mentioned previously. This range of
pile diameters was selected to adjust the range of the Keulegan-
Carpenter number (KC), one of the key parameters. The 40- and 75-
mm-diameter piles were transparent. This enabled the scour and
backfilling processes to be monitored by a mini video camera
placed inside the pile with the help of a 45!mirror (Fig. 2), similar
to Sumer et al. (2007). The overall time development of the scour hole
was monitored by a second camera placed outside the pile (Fig. 2).
The latter camera was used to monitor the scour depth in the case of
15 and 25 mm piles, because these piles did not have the 45! mirror
arrangement.

With this setup, the scour and backfilling process was video-
taped at the offshore side of the pile with a viewing area of ap-
proximately 100! in plan view. The time resolution of the video
recording was 1/25 of a second, enabling the time scale of the
backfilling processes, one of the key quantities, to be determinedwith
a very large accuracy. This is particularly important when the time
scale of the backfilling process is determined using the so-called
tangent method (where the time scale is predicted by calculating
the slope of the line tangent to the scour depth-versus-time curve at
time t5 0 (Sumer and Fredsøe 2002), as will be subsequently
detailed.

Velocity Measurements

In the case of waves and combined waves and current, the orbital
velocity of water particles at the bed was measured using a laser
Doppler anemometer (LDA), a Dantec LDA-04 system (Dantec
Dynamics, Denmark) comprising a 5-mW He-Ne laser, and a
Dantec 9057 3 0181 photomultiplier, the measurements being
conducted in forward-scatter mode. The system was equipped
with a Dantec 9055N0124 frequency shifter and a Dantec
9055N0214 frequency tracker. The measurement point was

Fig. 1. Definition sketch (schematic): (a) scour hole generated by
a current (or a wave); (b) scour hole after the initially generated scour
hole is backfilled; S is the depth of the scour hole after the backfilling
process attains its equilibrium Fig. 2. Test setup to monitor the development of scour and backfilling
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Figure 2.3: Definition sketch of S around a vertical pile. (a) Scour hole generated
by waves or current. (b) Scour hole after backfilling. Taken from Sumer et al.
(2012).

The value of S can be determined by empirical formulas, that are functions
of the KC number. The formulas will vary for different marine structures
such as pipelines and vertical piles.

2.3 The time scale of scour

The time scale T is the time it takes for scour to reach a certain depth. It
is defined from the value of the equilibrium depth S:

6



St = S(1− e− t
T ) (10)

where St is the instantaneous scour depth at the time t. The equation is
presented by Fig. 2.4 where the time scale is the value of t made by the
cross section of the tangent to St in t = 0 and the equilibrium scour depth
S. The time scale can therefore be predicted by calculating the slope of the
line tangent to the St(t) curve at t = 0, or by integrating St(t) over time.
Note that the time scale is defined before the equilibrium scour depth is
reached.

Figure 2.4: Time development of scour depth. Taken from Sumer and Fredsøe
(2002).

2.4 The time scale of backfilling

The time scale T is also defined as the time it takes before backfilling has
reached a certain depth. It is a function of the equilibrium scour depth S
and is given by Sumer et al. (2012) as:

St = S + (Si − S) e−
t
T (11)

where Si is the initial scour depth and S is the equilibrium scour depth
when the backfilling is completed. The equation is presented by Fig. 2.5
where the time scale is the value of T made by the cross section of the
tangent to St in t = 0 and S.

7



The two quantities, S, the equilibrium scour depth, and T , the
time scale, are two major parameters of the backfilling process
(Fig. 6). Each parameter will now be considered individually.

Equilibrium Scour Depth

Wave Case

Fig. 7 displays the equilibrium scour depth plotted in the familiar
form S/D versus the KC (Sumer and Fredsøe 2002). There are two
kinds of experiments associated with the data plotted in Fig. 7: (1)
scour experiments with an initially flat bed (square symbols); and
(2) backfilling experiments with an initially scoured bed, where the
initial scour holewas generated either by currents (circle symbols) or
waves (triangle symbols).

The scour-depth data plotted in Fig. 7 (square symbols) com-
pares well with Sumer et al.’s (1992) corresponding data, repre-
sented by

S
D

¼ 1:3
!
12 exp½20:03ðKC2 6Þ%

"
ð10Þ

(the solid curve in Fig. 7), the empirical expression given in Sumer
et al. (1992). The latter expression is valid for the live-bed regime
scour, uf . ucr . The Sumer et al. (1992) data are not plotted in Fig. 7
in order to keep the figure relatively simple.

Now, from Fig. 7, the scour-depth data obtained in the scour
experiments (squares) and the backfilling experiments (circles and
triangles) practically coincide. This is an important result. It es-
sentially implies that, regardless of the initial scour hole geometry
(no matter whether the bed is initially flat or scoured, or whether the
initial scour hole is generated by steady current or waves), the
equilibrium scour depth of the backfilling processwill be the same as
that of the ordinary scour process for the same KC. This can be
explained as follows.

Fig. 8 shows the result of a typical particle tracking experiment.
As previously mentioned, these tests were carried out in regular
waves, with KCf 5 11. The scour hole was initially formed by
a current with conditions similar to Test 1. The perimeter of the scour
hole indicated in Fig. 8 represents that during the backfilling process.
As previously described, the particles were released from different
positions, and their trajectories were videotaped.

As illustrated in Fig. 8, the particles are brought into the scour
hole from the areas offshore, onshore, and the sides of the scour
hole. The particle trajectories appear to be orthogonal to the pe-
rimeter of the scour hole because of the fact that the perimeter of
the scour hole acts as a potential line, drawing an analogy to a sink
flow in the potential flow theory. Fig. 8 implies that the actual
sand particles are brought into the scour hole from outside, in all
directions.

Now, being in the scour hole, the sand will subsequently be
redistributed by the existing vortex flow around the pile. This is
precisely the mechanism of the familiar scour process around a pile,
as described in Sumer et al. (1992, 1993) and Sumer and Fredsøe
(2002). Therefore, the equilibrium stage of the backfilling process

Fig. 6. Test 47: time series of the depth of the scour hole monitored at
the offshore side of the pile during backfilling displayed in Fig. 5

Fig. 7. Equilibrium scour depth; solid line: empirical equation given
in Sumer et al. (1992) for the depth of scour hole generated by waves in
the case of an initially flat bed, Eq. (10).

Fig. 8. Trajectories obtained in the particle tracking experiment:
regular waves with KCf 5 11; circles are the points where particles are
released
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d.Figure 2.5: The scour depth St (cm), given for values of time (s). Time series
monitored at the offshore side of the pile during backfilling. Taken from Sumer
et al. (2012).

2.5 Shields parameter

The ability of sediment transport is as mentioned in Section 2.1, dependent
of the shear stress. The shear stress can be defined dimensionless by the
Shields parameter:

θ = τ∞/ρ

g(s− 1)d50
(12)

where s = ρs/ρ is the ratio between the sediment (ρs) and fluid (ρ) density.
For a given grain type and fluid (seawater), the denominator in Shields
parameter is constant while the nominator given by Eq. (2) increases with
Um in second power and linearly with fw. Figure 2.6 presents a relation
between the equilibrium scour depth and the Shields parameter obtained
by experiments done for a pipeline. It can be seen that the scour depth
increases quickly when θ is increased from zero to approximately 0.05. In
this case, sediment transport will only take place near the structure and
it is referred to as clear water scour.

In this thesis it is assumed that the Shields parameter is above this value,
indicating a live bed regime. This is valid for all the figures shown where
this information is relevant, except Fig. 2.6 which shows the transition
from clear water scour to live bed scour. From this figure it can be seen
that in the case of live bed regime an increase in Shields parameter will

8



not result in a much bigger scour depth. However, it will result in a higher
shear stress causing more sediment transport, but note that the sediment
transport into the scour hole equals the sediment transport out of the hole.

The value θcr is used to define the limit between the two scour regimes.
When the seabed is sloping the effect of sediment gravity may increase
or decrease θcr, but in this thesis the seabed will always be considered
horizontal such that θcr = 0.05. This value is valid for both pipelines and
vertical piles.

Figure 2.6: Variation of the equilibrium scour depth normalized by the diameter
(S/D) for a pipeline, versus Shields parameter (θ). The initial clearance between
the seabed and the pipe is zero. Taken from Sumer and Fredsøe (2002).
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3 Mechanisms of Scour Around
Marine Structures

This section will elaborate the mechanisms of scour around vertical piles
and below pipelines. The different behaviour of scour will be described
when the incoming flow is due to currents, regular waves, irregular waves
or waves plus current. The mechanisms of scour in current or waves will
be quite similar, but in the case of waves or a varying current the process
will happen on both sides of the structure.

The theory in this chapter is taken from Sumer and Fredsøe (2002) unless
otherwise mentioned.

3.1 Scour around slender vertical piles

In the slender pile regime, separation of the flow occurs because the ve-
locity is high relative to the diameter. Separation leads to the formation
of vortices that create scour.

3.1.1 Scour around vertical piles in steady currents

When a vertical slender pile is placed on the seabed scour may occur
around it due to two main mechanisms, the horseshoes vortices in front,
and the lee-wake vortices downstream the pile. Compared to a pipe, the
pile is taller resulting in exposure to the whole boundary layer thickness
(δ) of the flow field, illustrated in Figure 3.1. This boundary layer causes
a rotation of the incoming flow downwards resulting in a flow rotating
away from the surface of the pile. This spiral vortex around the structure
is defined as the horseshoe vortex. The size of the horseshoe vortices
increase with increased δ/D. If it is too small the boundary layer may not
separate and no vortex will be shed. The separation is also dependent on
the Reynolds number given as ReD = UcD/ν for a cylinder shape, where
ν is the kinematic viscosity of the water and Uc is the current velocity.
If ReD decreases to the laminar regime the boundary layer faces more
resistance to separation, such that the horseshoe vortices get smaller. No
separation will happen if the horseshoe vortex is too small.

11
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Figure 1. Definition sketch. S: separation line.

boundary layer rolls up to form a swirling vortex around the pile, which then trails o�
downstream (figure 1).

The lee-side vortices, on the other hand, are caused by the rotation in the boundary
layer over the surface of the pile : the shear layers emanating from the side edges of the
pile roll up to form these vortices.

These flow e�ects can introduce extensive scour on an erodible bed in the
neighbourhood of the pile and may reduce the stability of pile-supported marine
structures such as platforms, bridges, subsea templates, thus leading to their failures.
Knowledge of these e�ects is essential when scour protection around such structures
is considered.

In the case of steady currents (wind flows, river flows, etc.) the horseshoe vortex has
been investigated quite extensively in the past decades (see Baker 1979; Niederoda &
Dalton 1982; Dargahi 1989 for reviews of recent work). Various visualization
techniques, such as the smoke technique in a wind tunnel (e.g. Schwind 1962; Baker
1979) and the hydrogen-bubble technique in water (Dargahi 1989), have been used to
visualize the horseshoe vortex flow. Also, measurements of pressure and velocity
beneath the horseshoe vortex have been carried out (Hjorth 1975; Baker 1979;
Dargahi 1989). In Hjorth’s and Baker’s studies, the distribution of bed shear stress
beneath the horseshoe vortex has been calculated from the measured velocity profiles.
These latter studies demonstrated that the bed shear stress can be amplified by a factor
of 7–11 with respect to its undisturbed value, emphasizing the importance of the
horseshoe vortex in scour processes.

On the theoretical side, numerical simulation of the horseshoe-vortex flow has been
carried out by several researchers in recent years. Briley & McDonald (1981) made
Navier–Stokes computations of a laminar, steady horseshoe vortex at the junction
between an elliptic strut and a flat plate at low Mach numbers. Using a three-
dimensional incompressible Navier–Stokes code, Kwak et al. (1986) computed the
laminar, steady junction flow. Deng & Piquet (1992) studied the three-dimensional

Figure 3.1: Principal sketch of boundary layer flow interacting with vertical pile.
Taken from Sumer et al. (1997).

Fig. 3.2 shows the distribution of the amplification factor, α given by Eq.
(1), at the normalized distances (x/D, y/D) from the center of the pile
axis. It shows that α can be 11 at the middle of the front and side edge
of the pipe. This is due to the combined action of the horseshoe vortex
and the contraction of the flow.
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Figure 3.2: Distributions of amplification factors, α, at the normalized distances
(x/D, y/D) from the center of the pile axis. D = 7.5 cm, Uc = 30 cm/s, δ =
20 cm/s, δ/D = 2.7, ReD = 23 000. Taken from Sumer et al. (1997).
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3.1.2 Scour around vertical piles below regular waves

When the pile is exposed to waves, or a varying current such as tidal flows,
the downstream section that now has been described, occurs at both sides
of the pile. In this case the scour is in addition to ReD = UmD/ν and
δ/D also dependent on the KC number as expressed in Eq. (8). For large
KC numbers the flow of each half period resembles a current, while for
small KC numbers the movement of the water particles is small compared
to the diameter of the pile such that the horseshoe vortices may not have
time to form.

Fig. 3.3 displays the results of Sumer et al. (1997) regarding the criterion
for formation of horseshoe vortices at the upstream and the downstream
side of the pile for different wave phases. 0◦ < ωt ≤ 180◦ indicates the time
interval for the wave half-cycle of the wave crest while 180◦ < ωt ≤ 360◦
is the time interval of the wave half-cycle for the trough. It can be seen
that a criterion for formation of horseshoe vortices is KC > 6. However,
scour also occurs for lower KC-numbers due to other mechanisms which
will be described in 3.2. The test was performed with ReD = O(103).
The differences in the results for the upstream and the downstream part
are due to asymmetry in wave troughs and crests. This phenomenon is
explained more in detail in Section 4.2. However, scour will occur when
KC < 6 due to other mechanisms than the horseshoe vortex, which will
be elaborated in Ch. 3.2 under the large pile regime.
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Figure 3.3: Formation of horseshoe vortices as a function of KC-number and
wave phase. ◦ marks flow visualization measurements and + marks the bed shear
stress measurement. Taken from Sumer et al. (1997).

From Fig. 3.1 it can be seen that lee-wake vortices will be formed behind
the pile. They are caused by the separation of the boundary layer on
the surface of the pile. The lee wake vortices are essential for the scour
characteristics below waves, but the KC number is the governing factor.

Fig. 3.4 shows the amplification factor given by Eq. (1), with varying
KC numbers for different values of x, where x = 0 is the center of the
pile. α increases with increasing KC because the horseshoe vortices grow
with increasing KC. The figure also shows that the shear stress is higher
during the crest half-period compared to the trough half-period, which is
a consequence of the increased horseshoe vortex in the crest half-period,
as shown in Fig. 3.3. Although Fig. 3.4 e) shows the amplification factor
of the shear stress for currents, it is included in this figure for waves as it
clearly illustrates the difference between these conditions. The bed shear
stress underneath the horseshoe vortex in front of the pile can be 5 times
larger than the undisturbed shear stress.

14
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Figure 17. Bed shear stress along the x-direction at the horseshoe vortex side of the pile. Circular pile.
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results (test 49) ; crosses, Baker’s (1979) air experiments, where DØ 7.6 cm, VØ 51 cm s�", D}d*Ø
14.8 and Re

D

Ø 2610, d* being the undisturbed displacement thickness of the boundary layer.

larger the Reynolds number, Re
D

, the larger the separation distance x
s

, therefore the
larger the bed shear stress under the horseshoe vortex. The steady-current data in figure
18 appear to reveal this.

Figure 19 depicts the root-mean-square (r.m.s.) value of the fluctuating component
of the bed shear stress under the horseshoe vortex (at a distance 0.1D from the
upstream edge of the cylinder), plotted against KC. First, a non-zero r.m.s. value means
that the horseshoe vortex is not in the laminar regime. Figure 19 indicates that, while
the horseshoe vortex is in the turbulent regime for KCØ 20 and ¢ (the steady-current
case), it is in the laminar regime for KCØ 6 (for both half-periods of the waves) and
for KCØ 10 (for only the trough half-period). From the figure it is inferred that the
transition to turbulence in the horseshoe vortex begins to occur somewhere between
KCØ 10 and 20. (Recall that the incoming wave boundary layer for these KC, and
indeed for all the other KC in the present flume experiments, was in the laminar regime
(tables 1–3.)

Now, Baker’s (1991) work on the oscillation of horseshoe-vortex systems in steady

Figure 3.4: Bed shear stress at the horseshoe-vortex side of pile. Taken from
Sumer et al. (1997).

At the same time as the shear stress grows with increasedKC, the amount
of sediment that must be transported also increases. This results in a
bigger scour hole for a given D, as revealed in Fig. 3.5. When KC is
around 100 the scour is almost equal to the depth generated by a current,
while it reaches the current depth around KC = 300. Sumer et al. (1992)
developed the following empirical expression for the data in Fig. 3.5 for
regular waves:
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S

D
= C(1− e−q(KC−r)) for KC ≥ r (13)

where:
(C, q, r) = (1.3, 0.03, 6) (14)

Figure 3.5: Equilibrium depth normalized by the diameter (S/D), versus KC.
Eq. (13) represents the solid line. Taken from Sumer et al. (1992).

As previously mentioned in Ch. 2.2, the value of S will be reduced if
the KC number decreases. In this case the initial scour hole Si will be
backfilled and will end up with the final depth Sf . Fig. 3.6 displays S/D
plotted versus KCf . The squares show scour experiments performed with
an initially flat bed, while the the circles and the triangles are the result
of backfilling experiments from an initially scoured bed. The solid line in
Fig. 3.6 represents Eq. (13) and therefore implies that regardless of the
initial scour hole geometry, the equilibrium scour depth of the backfilling
process will be the same as for the scour process for the same value of KC.
This means that the final depth is not affected by whether the initial bed
is flat or scoured, or whether the initial scour hole is generated by current
or waves. However, the time scale will be influenced by these factors. This

16



is implied in Eqs. (10) and (11) where it can be seen that the time scales
dependency on S are different for backfilling and scour.

Figure 3.6: Equilibrium scour depth normalized by the diameter (S/D), versus
KC during backfilling (KCf ). solid line: Eq. (13). Backfilling experiments from
initially scoured bed where the initial scour hole was generated by currents (◦) or
waves (/). Taken from Sumer et al. (2012).

3.1.3 Scour around piles below irregular waves

Sumer and Fredsøe (2001a) studied the effect of irregular waves on scour.
They used North Sea storm conditions in their laboratory experiments de-
scribed by the JONSWAP spectrum. Sumer and Fredsøe (2002) compared
results of S/D for irregular waves with Eq. (13) where the KC number
was calculated in six different ways. They found that replacing KC with
KCrms defined as:

KCrms = UrmsTp
D

(15)

gave the best representation of the scour depth in irregular waves. Tp is
the peak period and Urms is the random mean square (r.m.s.) value of the
velocity below irregular waves defined as:

17



Urms =
√

2σU (16)

where σU is the r.m.s. value of the orbital velocity U at the bed,

σ2
U =

∫ ∞
0

S(f)df (17)

where S(f) is the power spectrum of U and f is the wave frequency given
by 1/Tw.

3.1.4 Scour around piles in combined waves and current

Fig. 3.7 presents experimental results from Sumer and Fredsøe (2001a),
and it shows S/D versus the current wave velocity for regular waves, Ucw,
which is expressed as:

Ucw = Uc
Uc + Um

(18)

Uc is the undisturbed current velocity D/2 from the bed. The figure
implies that for small KC numbers, even a small current will cause the
scour depth to increase significantly. This is due to the strong horseshoe
vortex in front of the pile in the case of a current. It can be seen that
when Ucw ≈ 0.7, the scour depth approaches the value representing current
alone.

18
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FIG. 4. Equilibrium Scour Depth, Codirectional Waves and Current, Present Data, Arrows on Vertical Axis, Ucw = 0, Indicate Waves-Alone Scour
Depth Given by Eq. (8)

FIG. 5. Equilibrium Scour Depth, Codirectional Waves and Current, Comparison of Present Data with Data of Others

J. Hydraul. Eng. 2001.127:403-411.
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Figure 3.7: Equilibrium scour depth normalized by the diameter (S/D), versus
current wave velocity (Ucw). Waves and current propagates in the same direction.
Taken from Sumer and Fredsøe (2001a).

Sumer and Fredsøe (2001a) did experiments for irregular waves plus cur-
rent. Sumer and Fredsøe (2002) found that Eq. (13) can be used for
irregular waves plus current if KC is replaced by KCrms, Eq. (15) and the
coefficients q and r in Eq. (14) are replaced by:

q = 0.03 + 0.75U2.6
cwrms (19)

r = 6 exp(−4.7Ucwrms) (20)

where Ucwrms is expressed as:

Ucwrms = Uc
Uc + Urms

(21)

Eqs. (19) and (20) are given for wave dominated seastates, meaning 0 ≤
Ucwrms ≤ 0.4. For waves plus current with an angle φ, the dispersion
relation becomes:

19



ω = kUccosφ+ (gktanhkh)1/2 (22)

Sumer and Fredsøe (2002) found that KCrms reduces to the ordinary KC
number in the case of regular waves because

√
2σU → Um and Tp → Tw.

Eq. (15) and Eq. (21) given for irregular waves plus current then result
in Eq. (8) and Eq. (18) given for regular waves plus current.

Figure 3.8: Equilibrium depth normalized by the diameter (S/D), versus KC.
Taken from Sumer et al. (1992).

3.2 Scour around large piles

When the diameter of the pile becomes large the body will affect the
incoming waves, such that the waves become reflected and diffracted, see

20



Fig. 3.9. Reflection and diffraction are often just referred to as diffraction,
and it becomes important when D/L > 0.2, Isaacson (1979). In the
diffraction regime the value of D/L will affect the flow, and therefore the
scour process.

Figure 3.9: Sketch of incident, diffracted and reflected wave fronts around a pile.
Taken from Sumer and Fredsøe (2002).

No separation, and therefore no vortex shedding, will exist in the diffrac-
tion regime. Fig. 3.10 shows that diffraction occurs within low KC num-
bers. This is because the period is too short compared to D, such that
the direction of the incoming flow changes before separation has time to
occur. The dotted line defines the maximum steepness of the waves given
by Isaacson (1979) as

(
H
L

)
max

= 0.14 tanh(kh).
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Figure 3.10: Different flow regimes. Taken from Isaacson (1979).

In the diffraction regime there are other flow processes that cause scour
compared to the slender pile regime, where scour is related to the vortex
shedding. The flow patterns that occur are described as phase-resolved
flow and steady streaming, and their mechanisms and contribution to scour
will be described in the following.

The phase-resolved flow is an outer flow occurring around the pile due
to the interacting wave field. In the front of the pile the incident waves
interact with the reflected waves, while behind the pile the diffracted waves
interact with reflected waves. This causes velocities near the pile, which
can be up to twice as large as the undisturbed wave velocity, causing the
Shields parameter to increase, such that sediments are stirred up from the
seabottom.

The boundary layer over the bed will be affected by the interacting waves,
and this will result in steady streaming. Fig. 3.11 shows the period
averaged resultant velocities 4 cm above the bed, defined as

√
UR + Uθ,

where UR is the period-averaged radial velocity and Uθ is the period-
averaged tangential velocity. Three areas are defined in the Fig. 3.11;
region A where the flow is directed towards the front of the pile and region
B and C where the flow components are directed outwards. In region B
the radial velocities are likely to occur as a response of the bed boundary
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layers interaction with the reflected waves. It should be noted that this
flow picture occurs when the bed is plane. The streaming will experience
a constant adjustment as scour develops.
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FIG. 3. Vector Diagram of Period-Averaged Velocities (Steady Stream-
ing) (Test 1 in Table 1) at Distance from Bed of: (a) z = 0.4 cm; (b) z =
5 cm; (c) z = 25 cm

propagation (Fig. 2). The measured value of this streaming
agrees well with the theoretical value due to Longuet-Higgins
(1957) [for details of the comparison, see Sumer and Fredsøe
(1997a)].
The velocity profile measurements made at 2 m from the

cylinder center toward the guiding walls at each side gave
practically the same period-averaged velocity profiles, imply-
ing that the wave-induced flow field is the same across the
width between the two guiding walls Q and R [Fig. 1(a)]. This
ensured that the steady streaming measured in the presence of
the cylinder is caused by the cylinder itself, and not by other
effects such as the asymmetry of the ambient, wave-induced
steady-streaming field. The measurements of the y-compo-
nent of the velocity showed that this velocity was practically
nothing.

Steady Streaming around Cylinder

Figs. 3(a–c) show the vector diagram of the period-aver-
aged [(4)], plan-view component of the velocity measured at
three different distances from the bottom, namely z = 0.4, 5,
and 25 cm. The period-averaged velocities are defined by

T T
1 1

U = u dt, U = u dt (6)r r ! !! !T T0 0

and the velocity vectors plotted in Fig. 3 correspond to the
resultant velocity, namely ! .2 2 1/2(U U )r !

The plotted values are without subtracting the undisturbed
streaming velocities depicted in Fig. 2. Note that the undis-
turbed period-averaged flow velocity at z = 0.4 cm is U = 0.2
cm/s (Fig. 2), an extremely small value as compared with the
velocities displayed in Fig. 3(a). Hence, the measured nonzero
period-averaged flow at this depth [Fig. 3(a)] is due to the
presence of the cylinder. Likewise, the measured nonzero pe-
riod-averaged flow very close to the cylinder at z = 5 and 25
cm is essentially due to the presence of the cylinder [Figs. 2
and 3(b and c)]. At these elevations, the background undis-
turbed streaming velocity is about 2 to 3 cm/s (in the direction
opposite the wave propagation) (Fig. 2). The velocities near
the cylinder in Figs. 3(b and c) are definitely different from
this background velocity; therefore, at these elevations, too,
the flow should be induced by the sheer presence of the cyl-
inder. It may be noted that apparently the background velocity
is not recovered in Figs. 3(b and c) away from the cylinder,
meaning that the influence of the cylinder is present at a dis-
tance as far away as O(2D). Unfortunately, no measurements
were taken to reveal exactly where this influence continues to
exist.
The flow field illustrated in Fig. 3 shows very clearly that

a wave-induced steady streaming (nonzero mean flow) takes
place around the cylinder. As seen, the magnitude of the ve-
locity of this streaming can reach values as high as 20–25%
of the maximum value of the undisturbed orbital wave velocity
at the bed. This streaming can have a significant effect on
scour around the cylinder when the bed is erodible, as will be
demonstrated in the next section.
Of particular interest is the steady streaming near the bed

[Fig. 3(a)]. It appears that there are three distinct regions in
Fig. 3(a), marked A, B, and C. In Region A, the streaming is
toward the cylinder, while in Regions B and C, it has a com-
ponent directed outward. While in Region B the x-component
of the streaming is in the direction opposite the wave propa-
gation; the converse is true for Region C. (The flow pattern
in Fig. 3 implies that, for continuity reasons, the streaming
must have a 3D structure with a strong vertical component.)
Regarding the streaming in the neighborhood of the cylinder

in Region B [Fig. 3(a)], the following features appear to be
noteworthy:

1. The presence of the large, nonzero radial velocities in
this region suggests that the bed boundary layer is mainly
responding to the reflected waves in the radial direction.
(Note that no such velocities exist in the absence of the
pile.)

2. Fig. 4 displays the time series of the two velocity com-
ponents measured at Point P in Region B [Fig. 3(a)].
(Here "t = 0 corresponds to the phase where the wave
crest is just at the offshore edge of the cylinder.) The
time series for the individual wave cycles are plotted on
top of each other to demonstrate the degree of turbulence
in the velocity signals for all the wave cycles sampled.
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Figure 3.11: Vector diagram of the period-averaged velocities. Taken from Sumer
and Fredsøe (2001b).

Figs. 3.12 and 3.13 show that S/D increases with increased KC and
D/L, which can be explained by a stronger steady streaming. When KC
increases for a given water depth, diameter and period, the wave height
grows resulting in larger incoming waves and therefore larger reflected
and diffracted waves, causing more steady streaming. When D/L is large,
the reflected and diffracted waves becomes stronger, which also results in
more steady streaming. However, Sumer and Fredsøe (2001b) suggest that
when D/L is above 0.15, the phase-resolved velocity decreases, preventing
the sand to be transported as far away from the bed as it would be for
smaller D/L. Therefore, the sand will not be exposed to the same steady
streaming.
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FIG. 13. Maximum Scour Depth versus KC; Live Bed (!0 > !cr); Tests
1, 2, 3, 5, 6, and 7 in Table 2

FIG. 14. Maximum Scour Depth versus D/L; Live Bed (!0 > !cr); Tests
3 and 4 in Table 2

FIG. 16. Scour at Periphery of Cylinder Base; D/L = 0.08; Live Bed
(!0 > !cr): (a) KC = 1.4 (Test 8 in Table 2); (b) KC = 1.2 (Test 9 in Table
2); (c) KC = 0.98 (Test 12 in Table 2)

FIG. 15. Scour at Periphery of Cylinder Base; D/L = 0.15; Live Bed:
(a) KC = 1.1 (Test 1 in Table 2); (b) KC = 0.61 (Test 7 in Table 2);
(c) KC = 0.30 (Test 5 in Table 2)the value of D/L, the larger the steady streaming (Fig. 9);

hence the scour should increase with increasing D/L. However,
it can be expected that there may be a limit on the increase in
S/D for large values of D/L (see the discussion in the next
subsection).

Scour at Periphery of Cylinder Base
Fig. 15 displays the variation of the scour/deposition depth

at the periphery of the cylinder base for the previously men-
tioned three KC numbers [Figs. 11 and 12(a and b)]. Fig. 14
shows that the maximum scour depth moves toward the shore-
ward side of the cylinder. (Although not included here, the
results in Tests 2 and 3 together with those plotted in Fig. 14
indicate that this displacement of the maximum scour toward
the shoreward side of the cylinder occurs in a progressive
manner as KC is decreased from 1.1 to 0.3.) Fig. 14 further
shows that the scour depth decreases, as the KC number de-
creases, in agreement with Fig. 13. Note that the maximum
scour depth at the periphery is somewhat smaller than that
measured over the scour-hole area (Figs. 13 and 15).
Figs. 16 and 17 show the variation of the scour/deposition

depth at the periphery of the cylinder base for the other D/L
values tested, namely D/L = 0.08 and 0.23, respectively. As in
the previous figure, it is seen that the scour depth decreases
with decreasing KC.
The maximum scour depth from Figs. 15–17 together with

the other data given in Table 2 (the maximum scour depth at
the periphery of the cylinder base) are plotted in Fig. 18. Also
plotted in Fig. 18 is the maximum scour-depth data obtained

in Sumer et al.’s (1992) small cylinder (D/L! 0) experiments.
[Regarding this latter case: (1) the maximum scour depth is
always at the periphery of the cylinder; (2) the scour depth is
mainly governed by the Keulegan-Carpenter number; and (3)
for the variation of the scour depth with KC, Sumer et al.
(1992) gave the following empirical expression: S/D = 1.3(1
! exp(!0.03(KC ! 6))); KC > 6, D/L ! 0. This expression
is also plotted in Fig. 18.]
There are three different regions in the diagram in Fig. 18:
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Figure 3.12: S/D versus KC for D/L = 0.15. Taken from Sumer and Fredsøe
(2001b).
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hence the scour should increase with increasing D/L. However,
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indicate that this displacement of the maximum scour toward
the shoreward side of the cylinder occurs in a progressive
manner as KC is decreased from 1.1 to 0.3.) Fig. 14 further
shows that the scour depth decreases, as the KC number de-
creases, in agreement with Fig. 13. Note that the maximum
scour depth at the periphery is somewhat smaller than that
measured over the scour-hole area (Figs. 13 and 15).
Figs. 16 and 17 show the variation of the scour/deposition

depth at the periphery of the cylinder base for the other D/L
values tested, namely D/L = 0.08 and 0.23, respectively. As in
the previous figure, it is seen that the scour depth decreases
with decreasing KC.
The maximum scour depth from Figs. 15–17 together with

the other data given in Table 2 (the maximum scour depth at
the periphery of the cylinder base) are plotted in Fig. 18. Also
plotted in Fig. 18 is the maximum scour-depth data obtained

in Sumer et al.’s (1992) small cylinder (D/L! 0) experiments.
[Regarding this latter case: (1) the maximum scour depth is
always at the periphery of the cylinder; (2) the scour depth is
mainly governed by the Keulegan-Carpenter number; and (3)
for the variation of the scour depth with KC, Sumer et al.
(1992) gave the following empirical expression: S/D = 1.3(1
! exp(!0.03(KC ! 6))); KC > 6, D/L ! 0. This expression
is also plotted in Fig. 18.]
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Figure 3.13: S/D versus D/L for KC = 0.4. Taken from Sumer and Fredsøe
(2001b).

3.3 Scour below marine pipelines

The development of scour below pipelines can be divided in four stages,
which are onset of scour, tunnel erosion, lee-wake erosion and the equilib-
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rium stage.

3.3.1 Scour below marine pipelines due to steady currents

The first process is the onset of scour and it is caused by piping. Piping
happens due to the pressure difference at the upstream and downstream
side of the pipe. When a transverse water flow hits the pipe, the velocity
decreases near the bottom of the pipe such that the pressure increases.
This can be seen in Fig. 3.14(b). The downstream side has a low pressure
such that the water will try to flow underneath the pipe from the upstream
to the downstream side. The sand is not impermeable, and there will be
water in the sand moving slowly. This will cause sand to build up on the
downstream side of this pipe, see Fig. 3.15(b). When a certain amount
is removed, the remaining sand can not hold the pressure difference and
water seeps through, Fig. 3.15(c).

Figure 3.14: Pressure distributions for bottom-seated pipe. Taken from Sumer
and Fredsøe (2002).
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Fig. 5. Sequence of piping process captured by video. Time
instants correspond to those in Fig. 4.

rent. In this test, the flow velocity is increased
Žgradually until the critical point where the mixture

of sand and water breaks through underneath the
.pipe is reached. The pressure gradient is calculated

from the two pressure time series recorded at points
Ž .A and B Fig. 2 :

E p p ypA Bs 3.2Ž .ž /Ex g gAB

It may be noted that the pressure distribution
Žalong the surface of the pipe in the soil measured in

a separate test, by rotating the pipe at small incre-
.ments showed that the pressure distribution, when

Ž .plotted as a function of the distance x Fig. 3 , is
linear, revealing the way in which the pressure gradi-

Ž Ž ..ent is calculated Eq. 3.2 .
In the test, the junction between the downstream

side of the pipe and the bed was videotaped simulta-
neously with the pressure measurements with a mini

Ž .underwater camera Fig. 5a . To enable the onset of
scour to occur precisely at the section of the pressure
measurements, the bed was loosened by removing
the sand at this section, and then replacing it in a
very gentle way. In addition to that, a small channel

Žon the bed 15 cm long, and with decreasing depth,
.from 3 to 0 mm was established, as sketched in Fig.

Ž6 note that the figure is not to scale; the dimensions
.of the channel are grossly exaggerated . With this

arrangement, the onset of scour occurred precisely at
the same section where the pressure measurements
were made. This arrangement enabled us to relate the
measured pressure gradient to the videotaped onset
of scour. The obtained picture from the video record-

Žing is displayed in Fig. 5b and c cf. the time instants
.in Figs. 4 and 5 .

From Figs. 4 and 5, the following deductions can
be made.

Ž .1 There are two stages in the process of piping,
Ž .leading to the onset of scour Fig. 5b and c . As the

Ž .pressure gradient increases with increasing velocity ,
a point is reached where the surface of the sand at
the immediate downstream of the pipe begins to rise
Ž .Fig. 5b , consistent with the description of the pip-
ing process described in conjunction with dams in

Ž . ŽTerzaghi 1948 it may be noted that the video
recording showed clearly that this change in the bed
level was not in the form of piling-up of the sand
due to the lee-wake vortex, but rather in the form of

.rise of the bed en masse .

Ž .Fig. 6. Small channel 15-cm long, and with decreasing depth from 3 to 0 mm on the bed, enabling the onset of scour to occur precisely at
the section of the pressure measurements. The figure is not to scale; the dimensions of the channel are grossly exaggerated.

Figure 3.15: Piping, the break through process. Taken from Sumer and Fredsøe
(2002).

The second stage of the scour development is tunnel erosion. Right after
the onset of scour, the gap between the pipe and the seabed is small. This
results in high velocities in the gap, causing a high bed shear stress, Eq.
(2), such that the sediment transport is large and scour occurs violently.
When the gap is sufficiently large, the velocity has decreased to an extent
that indicates tunnel erosion is over.

The next stage is the lee-wake erosion which happens due to vortex shed-
ding. Vortex shedding begins when the gap between the pipeline and the
seabed reaches a certain value. Measurements from the bed shear stress
show that Shields parameter may increase up to four times during the
vortex shedding period. This results in a high sediment transport at the
downstream side of the pipeline so the sand dunes behind the pipe get
more distributed, and may disappear. This results in a less steep slope of
the scour downstream than upstream.

After the lee-wake erosion the scour process reaches the equilibrium stage,
where the depth is termed S. At this stage the bed stress underneath the
pipe equals the undisturbed shear stress τ∞.

Fig. 3.16 presents the results of a typical scour test where a fixed pipe
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is exposed to a steady current. The numbers on the slopes are the times
it takes before the dune develops, given in minutes. It can be seen how
fast the scour depth evolves in the beginning, where tunnel erosion occurs.
Later the sand dune downstream the pipe gets more distributed.

Figure 3.16: Scour development in steady current. Times in minutes. θ = 0.098.
Taken from Sumer and Fredsøe (2002).

3.3.2 Scour below marine pipelines in regular waves

When the pipeline is exposed to waves the downstream section that now
has been described occurs at both sides of the pipe. This is illustrated in
Fig. 3.17(b). In this case the KC number, Eqs. (8) and (9), must also be
considered.

When KC is small, the orbital motion of the water particles is small
relative to the diameter, and the separation behind the pipe may not
occur due to the short length of the lee-wake erosion. Large KC numbers
mean that water particles travel large distances relative to the diameter,
resulting in longer lee-wake, such that separation and probably vortex
shedding occur. For very large KC number, the scour characteristics
resemble the situation for current because of the long period.
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a slight decrease in S occurs for Reynolds number around 105-3 • 105. For 
a free circular cylinder, this coincides with the transition from subcritical to 
supercritical flow (Schewe 1983; Sumer and Freds0e 1988). In this transition 
region, the vortex shedding becomes less pronounced, which might lead to 
a smaller lee-wake erosion and hence less scour depth. 

As far as the influence of 9 is concerned, this must be examined in two 
different categories: the clear-water case, where the sediment far from the 
pipe is not moving, and the live-bed case, where sediment is transported far 
from the pipe. In the clear water case, the variation in scour depth with 9 
is more pronounced: as S/D increases from 0 at very small 9-values up to 
values of 0.4-1.0 when the 6-value approaches the live-bed case. However, 
when the live-bed case is obtained, very small variation in S/D is observed, 
as seen from Fig. 2. Kjeldsen et al. (1973) indicate that S/D increases with 
8 by a power of 0.2, while others simply disregard this very weak variation. 
This variation is weak, because any change in 9 results in corresponding 
changes in sediment transport. These changes occur upstream of the scour 
hole and inside the scour hole in equivalent amounts, eventually causing 
practically no change in the equilibrium scour depth. 

SCOUR IN TIDAL FLOW AND WAVES 

This section considers the case where flow attacks the pipe from both sides 
due to near-bed flow induced by wind waves or by slowly varying unsteady 
current conditions like a tidal current. The main difference between this case 
and the steady case is that the downstream-formed wake system now occurs 
on both sides of the pipeline. Here the strong lee-wake erosion, which gives 

(a) Current 

Lee-Wake 

(b) Waves 

FIG. 3. Lee-Wake Effect: (a) Currents; (/>) Waves 
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Figure 3.17: Lee wake effect. Taken from Sumer and Fredsøe (2002).

Fig. 3.18 depicts experimental data from Sumer and Fredsøe (1990) where
a pipeline was exposed to regular waves in live-bed conditions. It shows
the scour depth normalized by the diameter versus the KC number. For
waves, the normalized scour depth is linearised by the solid line in the
figure expressed as:

S

D
= 0.1

√
KC (23)
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Figure 3.18: Equilibrium scour depth. θ > θcr. Taken from Sumer and Fredsøe
(1990).
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4 Statistical Distributions of
Wave Heights

The scour depth and the resulting time scale were described in the previ-
ous chapters as highly dependent on the incoming flow to the structure.
Therefore, the origin of this flow is of interest, and is in this thesis consid-
ered to be caused by waves alone, or waves and current combined.

The description of waves can be done statistically based on stochastic pro-
cesses such that the waves can be seen as random variables. In this thesis
the Rayleigh and the Forristall (2000) distributions are used. Rayleigh
assumes each random variable to be a linear wave, while in Forristall each
random variable is a second-order wave.

In mild to moderate sea states the linear approach gives good results
but in severe sea states and shallow water the nonlinear effects become
more important, and Forristall is just one example of a model that can be
used to include such effects, Wist (2003). To use these distributions two
assumptions must be made:

• The waves are stationary, resulting in a constant variance of the
energy spectrum of the wave elevations.

• The waves are narrow-banded. A stochastic process is narrow-banded
when most of the energy in the wave spectrum is concentrated
around one frequency; the peak frequency ωp. This means that
all the frequencies can be approximated to be equal this frequency,
Myrhaug (2004).

4.1 The Rayleigh distribution

Longuet-Higgins (1952) showed that if the sea surface is assumed to be
the sum of many regular waves in a random phase and the wave spec-
trum is narrow-banded, the wave amplitudes are distributed according to
Rayleigh. The wave crests and troughs are then equally distributed be-
low and above the mean water level over time, referred to as a Gaussian
distribution. The distribution of the normalized wave amplitude is of in-
terest when employing the stochastic method that will be presented in the
following chapters. It is given as:
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â = a

arms
(24)

where arms is the r.m.s. value of the wave amplitude, given according to
the Rayleigh distribution as:

arms = Hs

2
√

2
(25)

where Hs is the significant wave height, which can be found from a time
series of wave elevations as the mean value of the 1/3 highest waves. The
cumulative distribution function (cdf) of the normalized linear wave am-
plitude â is given as:

P (â) = 1− e−â2 for â ≥ 0 (26)

The probability density function (pdf) is obtained by derivation of the
cumulative distribution function in Eq. (26) such that p(â) = dP (â)/dâ:

p(â) = 2âe−â2 for â ≥ 0 (27)

4.1.1 The truncated Rayleigh distribution

If â is defined within an interval â1 ≤ â ≤ â2, this is accounted for by
letting â follow the truncated Rayleigh distribution where the cdf is given
as:

P (â) = e−â
2
1 − e−â2

e−â
2
1 − e−â2

2
for â1 ≤ â ≤ â2 (28)

The pdf is obtained by derivation of Eq. (28) such that p(â) = dP (â)/dâ:

p(â) = 2âe−â2

e−â
2
1 − e−â2

2
for â1 ≤ â ≤ â2 (29)
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4.2 The Forristall distribution

The weakness of the Rayleigh distribution is that real waves do not have a
perfectly Gaussian distributed surface. The crests are higher and sharper
than expected from a summation of sinusoidal waves with random phases,
and the troughs are shallower and flatter, Cataño-Lopera and García
(2007). This can be seen in Fig. 4.1 that shows a part of a simulated
time series. Eq. (4) shows that the maximum near bed velocity Um in-
creases linearly with the wave amplitude. This results in a higher velocity
below the crest and therefore a higher bed shear stress given by Eq. (2),
leading to more scour.

Fig. 4.1 shows how a second order wave can be split in different parts. It
has contribution from the the second order sum-frequency and difference
frequency parts. Note that most of the wave is built up by the linear
term. The sum frequency increases the wave amplitude and the difference
frequency reduces this effect, and thereby they are also termed wave set-
up and wave set-down effects. The biggest contributions from the second
order terms appear in the highest wave amplitudes. This means that the
nonlinearity of the waves will increase with increasing crest height and
trough depth, Wist (2003).
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Figure 4.1: Different components of the surface elevation in a simulated time
series. Taken from Wist (2003).
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Fig. 4.2 is based on field data from the Draupner field and shows the rela-
tive magnitude between sum-frequency and difference-frequency for waves
with varying water depth. Due to the assumption of a narrow-banded
process, ω2 = ω1 = ωp. The positive values of the quadratic transfer func-
tion describe the sum-frequency, while the negative values describe the
difference frequency. It can be seen that when the water depth is large
the sum-frequency, and the difference frequency effect are small. The dif-
ference frequency becomes smaller relative to the sum-frequency and For-
ristall (2000) states that the difference frequency effect can be neglected
for long-crested (2D) and short-crested (3D) waves in deep water. 3D
waves are characterized by a three-dimensional wave spectrum dependent
on the frequencies and the propagation angles of the waves. 2D waves
are only dependent on the frequency spectrum, and therefore propagate
in the same direction.

From Fig. 4.2 it can be seen that when the water depth decreases the
difference-frequency gets more negative, while the sum-frequency gets
more positive, meaning the second order effects increase. Fig. 4.3 shows
that in finite water depth the difference-frequency is most significant for
2D waves, resulting in a smaller 2D wave compared to 3D. In deep water
the total 2D wave ends up being larger than the 3D because the difference
frequency effect is neglected, as earlier stated.
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Figure 4.2: The quadratic transfer function for a fixed sum frequency ω1 + ω2 =
1− 12rad/s. - - deep water; · • ·· d = 70m; ·∆ · · d = 42m; ·� · · d = 31m; ·+ ··
d = 16m. Taken from Wist (2003).

Figure 17: The quadratic transferfunction is a measure of the magnitude of sum-freqeuncy and
difference-frequency effects. The positive values describes sum-frequency effects and negative
values describes difference-frequency effects. ω1 − ω2 describes the bandwidth of the seastate.
Valid for 2D waves. Waterdepths defined as: – deep water; · • ·· = 70 m; · � ·· = 42 m;
·� · · = 31 m; · + ·· = 16 m. Wist (2003).

Figure 18: Principal sketch of difference-frequency effects and total height of wave crest

22

Figure 4.3: Principal sketch of 2D and 3D waves in deep and finite water. Taken
from Hesten (2011).
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Forristall (2000) includes the second-order effects by using a two-parameter
Weibull distribution based on the assumption of the surface elevations as
a stationary narrow-banded process. The distribution of the normalized
wave crests, wc, is of interest because they contribute more to scour as
they are higher than the trough.

The nonlinear crest height is given by wc = ηn/arms where ηn is the
nonlinear surface elevation. At a fixed point in a sea state with stationary
narrow-banded waves, consistent with Stokes second-order regular waves
in finite water depth, wc and Ûm are given by Dean and Dalrymple (1984)
as:

wc = â+O(kparms) (30)

Ûm = â+O(kparms) (31)

where Ûm = Um/Urms is the the non-dimensional nonlinear maximum
horizontal particle velocity at the seabed. O(kparms) is the second-order
terms which are proportional to the characteristic wave steepness kparms,
where kp is the wave number in a narrow-banded seastate. Eq. (30) can
be reorganized such that â = wc − O(kparms). Substitution of this into
Eq. (31) results in Ûm = wc + O(kparms). When comparing this result
with Eq. (31), it appears that â can be replaced by wc in the linear term
of Ûm, because the error involved is of second order, Myrhaug and Ong
(2014):

â = wc (32)

Even though â is assumed to equal to wc, the distribution of them will be
different. Eq. (25) will be employed when using the Forristall distribu-
tion to find necessary statistical parameters. Forristall (2000) derived the
following cumulative distribution function:

P (wc) = 1− e−( wc√
8α

)β for wc ≥ 0 (33)

where α and β are Weibull parameters. These are obtained by simulations
based on Sharma et al. (1981) theory that includes the second order sum-
frequency and difference-frequency effects. Forristall (2000) expressed the
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Weibull parameters α and β for long-crested (2D) and short-crested (3D)
waves:

α2D = 0.3536 + 0.2892S1 + 0.1060Ur (34)

β2D = 2− 2.1597S1 + 0.0968Ur2 (35)

α3D = 0.3536 + 0.2568S1 + 0.0800Ur (36)

β3D = 2− 1.7912S1 − 0.5302Ur + 0.284Ur2 (37)

where S1 is the wave steepness, and Ur is the Ursell number. These
parameters characterize the degree of nonlinearity in the waves. When
S1 = Ur = 0, the waves become sinusoidal such that the Forristall distri-
bution reduces to the Rayleigh distribution. The wave steepness and the
Ursell number are defined as:

S1 = 2π
g

Hs

T 2
1

(38)

Ur = Hs

k2
1h

3 (39)

where T1 is the mean wave period, and k1 is the corresponding wave
number. The seastate is narrow-banded such that T1 = Tp, which by
the dispersion relation, Eq. (5), implies that k1 = kp. The Forristall
distribution is based on simulations for Ur ≤ 1. The value of the wave
steepness is given as S1 < 0.1412 to avoid breaking waves.

The pdf is obtained by derivation of Eq. (33) such that p(wc) = dP (wc)/dwc:

p(wc) = β√
8α

( wc√
8α

)β−1e
−( wc√

8α
)β for wc ≥ 0 (40)
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4.2.1 The truncated Forristall distribution

If wc is defined within the interval wc1 ≤ wc ≤ wc2, this is accounted for
by letting wc follow the truncated Forristall distribution, where the cdf is
given as:

P (wc) = e
−( wc1√

8α
)β − e−( wc√

8α
)β

e
−( wc1√

8α
)β − e−( wc2√

8α
)β for wc1 ≤ wc ≤ wc2 (41)

The pdf is obtained by derivation of Eq. (41) such that p(wc) = dP (wc)/dwc:

p(wc) =
( 1√

8α)ββwβ−1
c e

−( wc1√
8α

)β

e
−( wc1√

8α
)β − e−( wc2√

8α
)β for wc1 ≤ wc ≤ wc2 (42)
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5 The Time Scale of Scour and
Backfilling

This chapter derives a method where empirical empirical formulas for the
time scale of scour and backfilling are presented and reformulated, such
that random waves can be included. This allows the time scale to be found
for a given seastate in linear or nonlinear waves. The empirical formulas
were obtained by linear fit of experimental data, which can be found in
Sumer and Fredsøe (2002) and Sumer et al. (2012). They presented the
time scale non-dimensionally as T ∗, which is independent of the diameter
and related to real time by:

T = T ∗
D2√

g(s− 1)d3
50

(43)

Note that all the experiments were performed in live bed conditions. The
data were plotted as functions of θ and KC in waves, and the addi-
tional parameter Ucw in waves plus current. For each experiment the
parameters have been calculated based on the properties of the incom-
ing waves, current and the sand grains. The corresponding S was mea-
sured with necessary instrumentation such that T could be found from
the slope method or the area method by the formulas St = S(1 − e−t/T )
and St = S + (Si − S)e−t/T , given in Eq. (10) and (11).

The formulas for the time scale will vary depending on the different sce-
narios, which will be referred to as CASE 1- CASE 6. In CASE 1- CASE
4, scour is caused by random waves alone, while in CASE 5 and 6, back-
filling is caused by currents and waves combined. The first section will
present the time scale of scour. The formulas are taken from Fredsøe et al.
(1992) and Sumer et al. (1992) where the experiments were performed in
regular waves. The second section presents the time scale of backfilling
taken from Sumer et al. (2012) where the vertical pile were subjected to
irregular waves during the experiments.
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5.1 The time scale of scour

5.1.1 Method

The following method is used to express KC and θ by their r.m.s. values
and the normalized wave height:

The maximum value of the Shields parameter below waves is obtained by
substituting τ∞/ρ in Eq. (12) with τmax,∞/ρ from Eq. (2):

θm = τmax,∞/ρ

g(s− 1)d50
(44)

When Eq. (44) is divided by its r.m.s. value, Shields parameter is ex-
pressed non-dimensionally as:

θc = θm
θrms

(45)

where
θrms = τrms/ρ

g(s− 1)d50
(46)

When combining Eqs. (44) - (46) the normalized Shields parameter equals:

θc = τmax,∞/ρ

τrms/ρ
(47)

By substituting Eq. (6) into Eq. (2) the following is obtained:

τmax,∞/ρ = 1
2c(

A

z0
)−dU2

m (48)

τrms/ρ is expressed similarly, but A and U are replaced by Arms and Urms:

τrms/ρ = 1
2c(

Arms
z0

)−dU2
rms (49)

Eqs. (47) - (49) result in the following expression for the normalized
Shields parameter:

θc = ( A

Arms
)−d( Um

Urms
)2 (50)
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By the assumption of a narrow banded process, the following relation of
the ratio of Um/Urms can be seen from Eq. (4):

Um
Urms

= Aω

Armsωp
= A

Arms
= a

arms
(51)

By combining Eqs. (24), (32), (50) and (51), the normalized Shields pa-
rameter becomes:

θc = θm
θrms

= â2−d = w2−d
c (52)

such that
θm = θrmsâ

2−d = θrmsw
2−d
c (53)

The normalized Keulegan Carpenter number is found by dividing the KC-
number, Eq. (8), by its r.m.s. value, Eq. (15). Under the assumption of
a narrow banded sea state the following relation is obtained:

KCc = KC

KCrms
= UmTw
UrmsTp

= Um
Urms

= â = wc (54)

such that
KC = KCrmsâ = KCrmswc (55)

Note that even though the linear normalized wave amplitude â and the
nonlinear normalized wave crest wc are equal, they are distributed differ-
ently. In the following formulas the time scales will be presented by wc,
but T ∗ will also be calculated for linear waves.

5.1.2 The time scale of scour below pipelines (CASE 1)

Fredsøe et al. (1992) showed that the time scale of scour below pipelines
can be expressed as a function of only the Shields parameter in waves and
currents. They did experiments with varying KC numbers, presented in
Fig. 5.1, and concluded that the dependency of KC could be neglected.
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Fig. 3 Nondimensional plot of time scale against Shields parame-
ter. Waves. Note that bed is originally plane, and gap between
pipe and bed is nil.

Data:

Steady current
(From Fig. 2)
Waves
(From Fig.3)

0.1
0.01

Fig. 4 Nondimensional plot of time scale against Shields parame-
ter. All data. (Steady-current as well as waves) Note that bed is
originally plane, and gap between pipe and bed is nil.
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Fig. 5 Time development of scour depth in case of change in
wave climate. a) Wave climate is changed suddenly so that KC
changes from 19.6 to 5.6 and 8 from 0.092 to 0.13. D = 30 mm.
dso = 0.19 mm. b) Likewise, KC changes from 19.6 to 9.4 and 8
from 0.092 to 0.13. D = 30 mm, dso = 0.19 mm.

KC changes from 20 to 9 and 8 from 0.092 to 0.13. These dia-
grams are taken from a study carried out in the same flume as in
the wave experiments described in the previous section.
Altogether, eight tests were conducted in that study. The test con-
ditions and the results are summarized in Table 4.
In a typical test, the waves are run with a particular wave peri-

od and a particular wave height, and this is done until the scour
process reaches an equilibrium situation. The KC number corre-
sponding to this portion of the test is denoted by KCinitial and 8 by
8initial' Then the wave climate is changed suddenly by changing
the wave period and the wave height. The KC number and 8 val-
ues corresponding to this new portion of the test are denoted by
KCfinal and 8final .

Table 5 compares the equilibrium scour depths with the ones
obtained from the expression given in Eq. 3, SID = 0.1 -fiC ,
where KC is taken as KCfinal' As seen, the agreement is quite
good. Therefore, it can be concluded that in a transitional situa-
tion where the waves change from one climate to another, the
equilibrium scour depth is always determined by KCfinal.
Fig. 6 presents the nondimensional time scale data. The figure

clearly shows that the times scale is a function of not only the
Shields parameter but also the initial and the final values of the KC
number. Obviously the Shields parameter here should be the one
imposed on the bed after the wave climate is changed, namely 8final.

The way in which the time scale varies with 8final is exactly the
same as in Fig. 4. It is also evident from the figure that the closer
the initial and final values of the KC number are, the smaller the
time scale will be.

1) The time scale of the scour process below a pipeline is gov-
erned by the Shields parameter, 8. The larger the Shields parame-
ter, the smaller the time scale.
2) The data indicate that the relation between the nondimen-

sional time scale T* (= T(g(s-l)d3)1/2/D2) and the Shields parame-
ter is:

T *=~8-5/3
50

This relation is applicable to steady currents as well as waves.
3) The time scale in the transitional scour process involving a

change in the wave climate is governed by the Shields parameter

1
0.03

Fig. 6 Nondimensional plot of time scale against Shields parame-
ter. Change in wave climate.

Figure 5.1: Non-dimensional plot of time scale against Shields parameter for
waves. The bed is originally plane and the gap between the pipe and bed is zero.
Taken from Fredsøe et al. (1992).

Fig. 5.2 shows that the data sets for steady currents and waves correlate.
By linear fit to the data, Fredsøe et al. (1992) obtained the following
expression:

T ∗ = r1θ
−s1 (56)

where r1 = 1/50 and s1 = 5/3. The tests were performed within
0.05 ≤ θ ≤ 0.19.
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Figure 5.2: Non-dimensional plot of time scale against Shields parameter. Steady
current and waves. Plane bed, the gap between pipe and bed is zero. The data for
the current experiments are obtained in Mao (1986) and Kjeldsen et al. (1973).
Wave data and figure are taken from Fredsøe et al. (1992).

By substituting θm in Eq. (56) with the expression for θm given in Eq.
(53), the dimensionless time scale becomes:

T ∗ = r1θ
−s1
rms w

−s1(2−d)
c (57)

Eq. (57) can be reorganized and expressed by the dimensionless constant
t:

t = T ∗

r1θ
−s1
rms

= w−s1(2−d)
c = w−vc (58)

where
v = s1(2− d) (59)

The purpose of defining t is that it is easier to compare the scour char-
acteristics for linear, nonlinear 2D and nonlinear 3D solutions of the time
scale by this value. The ratio of t will reflect the ratio of T ∗ for a given
value of θrms and KCrms (CASE 2 - 4). It is possible to derive t in CASE
1 - CASE 4, where the only value that will differentiate the cases is v,
making the calculation simple.
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5.1.3 The time scale of scour around vertical slender piles
(CASE 2)

Sumer et al. (1992) investigated the time scale of scour around vertical
piles and concluded that T ∗ decreases with increasing θm, consistent with
the results obtained for pipelines. This can be seen in Fig. 5.3, which
also shows the time scales dependency on the KC number. As seen from
Fig. 3.5, higher KC-numbers result in higher equilibrium scour depths S
for a given D, and therefore, more sediment must be transported to reach
S. This results in longer time. Based on their results, they obtained the
relation:

T ∗ = r1(KC
θm

)
s1

(60)

where r1 = 10−6 and s1 = 3. The tests were performed within
7 ≤ KC ≤ 34 and 0.07 ≤ θ ≤ 0.19.

I Waves I 
r* 

100 

10 

1.0 
e D(mm) 

007 010-016 016-019 
ii1 " {Z 10 

" • 4 20 
0.1 

• 41 30 · A 40 

Fig. 6. Normalized time scale as function of 
Keulegan- Carpenter number and Shields 
parameter. Circular cylinder in waves. 
Live bed (8 > 8 er ). Test conditions for 
the data are summarized in Table 2. 

T' = 10-6 (15) 

Finally, it may be mentioned that in 
addition to the studied effects, namely the 
effect of KC, and that of 8, other non-dimen-
sional parameters such as the pile Re number 
and the pile relative roughness k* (=ks/D) may 
influence the end results where ks is the 
Nikuradse' s equivalent sand roughness of the 
pile surface. 

If the pile is rough, the wake flow will 
be almost unaffected by the Re number, there-
fore no influence of the Re number will be 
expected on the time scale. I f the pi Ie is 
smooth, however, the wake flow will be influ-
enced by the Re number; the Stouhal frequency 
St will be increased to a value of about 0.45 
in the range of 105 ;;: Re ;;: 1.5 X 106 and then 
will drop to about 0.15 at Re = 1.5 x 106 and 
then it will constantly increase with increa-
sing Re, reaching about 0.3 at Re = 7 x 106 

(Schewe (1983». This change in St affects the 
strength of the shed vortices, therefore the 
time scale of the scour process might be af-
fected by an increase in Re. However, no data 
is available to verify this. 

8. SUMMARY AND CONCLUSIONS 

1) The time scale of the scour process 
around a pile in steady currents is governed by 
two parameters, namely 6/0 and 8, 6 being the 
boundary-layer thickness (or the flow depth for 
an open-channel flow), 0 the pile diameter and 
8 the Shields parameter. 

314 

2) The data indicate that the time scale 
increases with increasing 6/0 and decreases 
with increasing 8, in the fashion shown in Fig. 
4. The relation in Fig. 4 can be represented by 
Eq. 9. 

3) In the case of waves, the governing 
parameters are the Keulegan-Carpenter number, 
KC, and the Shields parameter. 

4) The data obtained in the present study 
indicate that the time scale increases with 
increasing KC and decreases with increasing 8, 
as shown in Fig. 7. The relation in Fig. 7 can 
be represented by Eq. 15. 

The results of this study are valid only 
for non-cohesive sediment and for live-bed 
conditions. 

T* I Waves I 
100 

Data: 
From Fig 6 

Symbol e 
0 007 
0 010-016 10 
c,. 016 019 

1.0 

0.1 
10 100 1000 

KC/S 

Fig. 7. Data of Fig. 6 plotted in the form T* 
versus KC/8. Circular cylinder in 
waves. Live bed (8 > 8 er ). Test con-
ditions for the data are summarized in 
Table 2. 
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Figure 5.3: Time scale of scour around pile. Taken from Sumer et al. (1992).

By substituting θm and KC in Eq. (60) with the expressions for θm and
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KC given in Eqs. (53) and (55), the dimensionless time scale becomes:

T ∗ = r1
(KCrms
θrms

)s1
w−s1(1−d)
c (61)

where

t = T ∗

r1KCrms
s1θ−s1

rms
= w−s1(1−d)

c = w−vc (62)

such that
v = s1(1− d) (63)

5.2 The time scale of backfilling

The formulas of the time scale for backfilling were derived by Sumer et al.
(2012) for irregular waves, and therefore presented by KCrms, θrms and
Ucwrms. However, in this thesis it is assumed that these parameters can be
reduced to KC, θ, and Ucw in the formulas for the time scale in the event
of regular waves alone or regular waves plus current. A similar assumption
were made by Sumer and Fredsøe (2002). They found that S/D from Eq.
(13) was valid for irregular waves plus current when KC was replaced by
KCrms and q and r by Eqs. (19) and (20), represented by Ucwrms. They
stated that these formulas could be applied in regular waves plus current
by replacing KCrms and Ucwrms with KC and Ucw.

5.2.1 Method

As mentioned in the introduction, the equations from Sumer et al. (2012)
were assumed to be valid for regular waves plus current. Now it is further
assumed that these equations are valid for individual waves in an irregular
narrow-banded seastate. This results in the following:

KC = UmTp
D

(64)

The expressions for θm will be similar to Eq. (44), where τmax,∞/ρ is
replaced by Eq. (2) containing fw, which is replaced by Eq. (6), where

45



A = Um/wp under the assumption of individual waves in a narrow-banded
sea state:

θm = 0.5 c (z0ωp)d Um(2−d)

g(s− 1)d50
(65)

Eqs. (64) and (18) are multiplied with Urms/Urms and Eq. (65) with
(Urms/Urms)2−d. By using the relation Um/Urms = wc from Eq. (54),
KC and θm end up beeing equal to Eqs. (53) and (55). Ucw becomes:

Ucw = Uc
(Uc + wcUrms)

(66)

By re-arranging Ucwrms given in Eq. (21), the following is obtained:

Uc = UcwrmsUrms
1− Ucwrms

(67)

which is substituted into Eq. (66) resulting in:

Ucw = Ucwrms
wc(1− Ucwrms) + Ucwrms

(68)

5.2.2 The time scale of backfilling around slender verti-
cal piles below waves when the initial scour hole was
generated by current (CASE 3)

Sumer et al. (2012) defined the non-dimensional time scale for backfilling
in the same manner as for scour; linear fit to data of experimental results.
The time scale for each experiment was obtained by the tangent method
according to the definition in Eq. (11). Fig. 5.4 presents results where the
initial scour depth (Si) was generated by current and the final depth (Sf )
was caused by waves alone, characterized by KCf on the x-axis. In the
further context, the index i will always present the initial conditions for
the scour hole, while the index f describes the waves causing backfilling.

From Fig. 3.5 it was seen that when KC = ∞ (the current situation),
S/D reaches its highest possible value. When backfilling begins the time
is dependent on KCf as this will indicate how big the final depth is. If
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KCf is high the final scour hole is closer to the initial hole, resulting
in less backfilling and therefore shorter time. The time scale decreases
with increasing θf due to the same reason as described earlier; increased
θ causes faster sediment transportation.

Definitions of KCf and θf by Sumer et al. (2012) are r.m.s. values such
that their equation for the time scale becomes:

T ∗ = (θs1
frms KCfrms)

−s2 (69)

were s1 = 2 and s2 = 1.45. The experiments were performed within
5 < KCfrms < 53 and 0.07 < θfrms < 0.15.

no scour data exist in the literature for large piles exposed to
combined waves and current.

The flume where the present experiments were conducted was
available only for a limited period of time, and therefore no scour
experiments in combinedwaves and current were carried out with an
initially flat bed with the large pile. Thus, the authors were unable to
check whether the equilibrium scour depth in the present backfilling
experiments was the same as that in scour experiments with the same
wave and current conditions.

Time Scale of Backfilling Process

Backfilling under Waves

The time scale of the backfilling process, T , was obtained from the
scour depth time series, using the tangent method according to the
definition given in Eq. (9) and Fig. 6. The data are included in
Tables 4e6.

On dimensional grounds, the time scale can be written in the
following nondimensional functional form:

Tp ¼ f
!
KCi, KCf , uf

"
ð14Þ

whereTp 5 nondimensional time scale defined by Eq. (8); KCi 5KC
corresponding to the initial scour depth Si (i.e., Si is generated by
a wave/current with KCi, with Si corresponding to the equilibrium
stage of the scour process); and KCf and uf 5KC and the Shields
parameter corresponding to the wave, which backfills the scour hole,
respectively.

The following is true in Eq. (14): (1) KCi is involved simply
because it controls Si, the initial scour depth, for the live-bed regime
(Sumer et al. 1992; Sumer and Fredsøe 2002); (2) KCf is involved
because it controls the equilibrium (or final) scour depth in the
backfilling process; and (3) uf is involved because the time scale is
governed by the sediment transport in the initial stage of the
backfilling process, which is influenced by uf , similar to what occurs
in the scour process (Sumer and Fredsøe 2002).

All these quantities, namely, KCi, KCf , and uf , correspond to
the undisturbed flow in the absence of the pile.

Now, in the case of the backfilling experiments with an initially
scoured bed with the initial scour hole generated by current
(i.e., KCi 5‘), Eq. (14) reduces to

Tp ¼ f
!
KCf , uf

"
ð15Þ

The time scale data corresponding to the KCi 5‘ experiments are
plotted in Fig. 11. First of all, Fig. 11 shows that the time scale
decreases with increasing KCf . This is because the larger the value
of KCf , the larger the equilibrium scour depth, and therefore the
time needed for the waves to backfill the scour hole should be
smaller. Fig. 11 also shows that the time scale decreases with
increasing uf . This is because the larger the value of uf , the larger
the sediment transport, and therefore the smaller the time scale of
the backfilling.

The variation of the time scale, Tp, for backfilling of a current
generated scour hole by waves, with KCf and uf in Fig. 11, can be
represented by the following empirical expression:

Tp ¼
#
u2f KCf

$21:45
ð16Þ

This equation is valid for the live-bed conditions, that is, uf . ucr.
The ranges of the parameters for which the data were collected are
5 , KCf , 53 and ucr* uf , 0:15; therefore, caution must be
observed when extrapolating Eq. (16) to areas outside the indicated
ranges.

At this juncture, it will be interesting to compare the time scale of
the backfilling process with that of scouring, although these are two
entirely different processes (save the final stages of the backfilling
process, however; see the previous discussion). Considering that, for
example, forwindfarm applications, theKC is of orderKC,Oð10Þ;
comparison of the present findings (Fig. 11) with the time scale of
scour (Sumer et al. 1993; Sumer and Fredsøe 2002) shows that the

Fig. 11. Normalized time scale of backfilling, where the initial scour
hole is generated by a current with the initial scour depth corresponding
to the equilibrium scour; this scour hole is subsequently subjected to
waves to cause backfilling: live bed, uf . ucr

Fig. 12. Normalized time scale of backfilling, where the initial scour
hole is generated by a wave with the initial scour depth corresponding to
the equilibrium scour: live bed, uf . ucr; this scour hole is subsequently
subjected to smaller waves to cause backfilling: KCi 5‘ case corre-
sponds to the current case displayed in Fig. 11; line A: Eq. (16); lines B:
Eq. (17).
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Figure 5.4: Time scale of backfilling. Initial equlibrium scour depth is generated
by a current (KC =∞). Taken from Sumer et al. (2012).

θrms andKCrms in Eq. (69) reduce to θm andKC under the assumption of
individual waves in a narrow-banded seastate. They are thereby replaced
with Eqs. (53) and (55) such that the dimensionless time scale becomes:

T ∗ = (θs1
frmsKCfrms)

−s2w−s2(s1(2−d)+1)
c (70)

where
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t = T ∗(θs1
frmsKCfrms)

s2 = w
−s2(s1(2−d)+1)
f = w−vc (71)

such that

v = s2(s1(2− d) + 1) (72)

5.2.3 The time scale of backfilling around slender piles be-
low waves when the initial scour hole was generated
by waves (CASE 4)

In this case of backfilling around a slender vertical pile the initial scour
hole is generated by waves. Sumer et al. (2012) performed experiments
on this presented in Fig. 5.5. For a given value of θ2KCf , a smaller value
of KCi causes a smaller initial hole and the time it takes to reach the
final value will therefore be shorter. Definitions of KCf and θf by Sumer
et al. (2012) are r.m.s. values such that their equation for the time scale
becomes:

T ∗ = (r1
KCfrms
KCirms

θs1
frms)

−s2 (73)

where r1 = 70, s1 = 2 and s2 = 1.45. The experiments were performed in
the ranges: 11 ≤ KCirms ≤ 32, 4 ≤ KCfrms ≤ 25 and
0.07 ≤ θfrms ≤ 0.15, resulting in 0.02 ≤ θ2

frmsKCfrms ≤ 0.56.
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no scour data exist in the literature for large piles exposed to
combined waves and current.

The flume where the present experiments were conducted was
available only for a limited period of time, and therefore no scour
experiments in combinedwaves and current were carried out with an
initially flat bed with the large pile. Thus, the authors were unable to
check whether the equilibrium scour depth in the present backfilling
experiments was the same as that in scour experiments with the same
wave and current conditions.

Time Scale of Backfilling Process

Backfilling under Waves

The time scale of the backfilling process, T , was obtained from the
scour depth time series, using the tangent method according to the
definition given in Eq. (9) and Fig. 6. The data are included in
Tables 4e6.

On dimensional grounds, the time scale can be written in the
following nondimensional functional form:

Tp ¼ f
!
KCi, KCf , uf

"
ð14Þ

whereTp 5 nondimensional time scale defined by Eq. (8); KCi 5KC
corresponding to the initial scour depth Si (i.e., Si is generated by
a wave/current with KCi, with Si corresponding to the equilibrium
stage of the scour process); and KCf and uf 5KC and the Shields
parameter corresponding to the wave, which backfills the scour hole,
respectively.

The following is true in Eq. (14): (1) KCi is involved simply
because it controls Si, the initial scour depth, for the live-bed regime
(Sumer et al. 1992; Sumer and Fredsøe 2002); (2) KCf is involved
because it controls the equilibrium (or final) scour depth in the
backfilling process; and (3) uf is involved because the time scale is
governed by the sediment transport in the initial stage of the
backfilling process, which is influenced by uf , similar to what occurs
in the scour process (Sumer and Fredsøe 2002).

All these quantities, namely, KCi, KCf , and uf , correspond to
the undisturbed flow in the absence of the pile.

Now, in the case of the backfilling experiments with an initially
scoured bed with the initial scour hole generated by current
(i.e., KCi 5‘), Eq. (14) reduces to

Tp ¼ f
!
KCf , uf

"
ð15Þ

The time scale data corresponding to the KCi 5‘ experiments are
plotted in Fig. 11. First of all, Fig. 11 shows that the time scale
decreases with increasing KCf . This is because the larger the value
of KCf , the larger the equilibrium scour depth, and therefore the
time needed for the waves to backfill the scour hole should be
smaller. Fig. 11 also shows that the time scale decreases with
increasing uf . This is because the larger the value of uf , the larger
the sediment transport, and therefore the smaller the time scale of
the backfilling.

The variation of the time scale, Tp, for backfilling of a current
generated scour hole by waves, with KCf and uf in Fig. 11, can be
represented by the following empirical expression:

Tp ¼
#
u2f KCf

$21:45
ð16Þ

This equation is valid for the live-bed conditions, that is, uf . ucr.
The ranges of the parameters for which the data were collected are
5 , KCf , 53 and ucr* uf , 0:15; therefore, caution must be
observed when extrapolating Eq. (16) to areas outside the indicated
ranges.

At this juncture, it will be interesting to compare the time scale of
the backfilling process with that of scouring, although these are two
entirely different processes (save the final stages of the backfilling
process, however; see the previous discussion). Considering that, for
example, forwindfarm applications, theKC is of orderKC,Oð10Þ;
comparison of the present findings (Fig. 11) with the time scale of
scour (Sumer et al. 1993; Sumer and Fredsøe 2002) shows that the

Fig. 11. Normalized time scale of backfilling, where the initial scour
hole is generated by a current with the initial scour depth corresponding
to the equilibrium scour; this scour hole is subsequently subjected to
waves to cause backfilling: live bed, uf . ucr

Fig. 12. Normalized time scale of backfilling, where the initial scour
hole is generated by a wave with the initial scour depth corresponding to
the equilibrium scour: live bed, uf . ucr; this scour hole is subsequently
subjected to smaller waves to cause backfilling: KCi 5‘ case corre-
sponds to the current case displayed in Fig. 11; line A: Eq. (16); lines B:
Eq. (17).
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Figure 5.5: Time scale of backfilling. A: Initial equilibrium scour depth generated
by current, Eq. (69) B: Initial equilibrium scour depth is generated by waves, Eq.
(73). Taken from Sumer et al. (2012).

θrms and KCrms in Eq. (73) reduce to θm and KC under the assumption
of individual waves in a narrow-banded sea state, and are thereby replaced
with Eqs. (53) and (55) such that the dimensionless time scale becomes:

T ∗ = (r1
KCfrmsθ

s1
frms

KCirms
)−s2w−s2(s1(2−d)+1)

c (74)

where

t = T ∗(r1
KCfrmsθ

s1
frms

KCirms
)s2 = w−s2(s1(2−d)+1)

c = w−vc (75)

such that

v = s2(s1(2− d) + 1) (76)
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5.2.4 Backfilling around vertical slender piles in combined
waves and current when initial scour hole is gener-
ated by current (CASE 5)

Fig. 5.6 shows the time scale of backfilling around a slender pile by current
and waves combined when the initial hole was generated by a current.
From Fig. 3.5 it was seen that the scour depth increases with increasing
KC until it reaches a constant value corresponding to the depth generated
by current. This means that the stronger the current, corresponding to
higher Ucw, the bigger is the final depth, which results in less time of
backfilling. Therefore, the time scale approaches zero when the current-
wave ratio is Ucw > 0.7. Sumer et al. (2012)s definition of KCf , θf , and
Ucw are as mentioned r.m.s. values, resulting in the following empirical
expression based on the experiments presented in the figure:

T ∗ = 1.9− ( 0.65
(θs1
frmsKCfrms − 0.01)s2

+2)(Ucwrms−0.7) for Ucwrms < 0.7

(77)

where s1 = 2 and s2 = 1.68. The tests were performed within
4 ≤ KCfrms ≤ 20 and 0.07 ≤ θfrms ≤ 0.11.
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time scale of backfilling is much larger than that of scour. For
example, for KC5 10, the time scale for u5 0:07 is Tp 5 80 (from
Fig. 11) for backfilling and Tp 5 2 for scour (Sumer et al. 1993);
likewise, for u5 0:15, Tp 5 9 for backfilling and Tp 5 0:2 for
scour. However, for larger KCs, such as KC..Oð10Þ, this ex-
ercise indicates that the time scale of scour can be larger than that
of backfilling. This is also not unexpected, because the scour depth
for such large KCs is very close to that generated by steady current,
and therefore the time needed to backfill the scour hole will be
substantially smaller.

Now, turning our attention to the case of the backfilling experi-
ments with an initially scoured bed where the scour hole is generated
by waves (KCi !‘) [Eq. (14)], the time scale data obtained in these
experiments are plotted inFig. 12,where thehorizontal axis is selected
to be the product u2f KCf , considering Eq. (16). The data presented
in Fig. 11 is also plotted in Fig. 12 (KCi 5‘, circle symbols). Line A
in Fig. 12 represents the expression given by Eq. (16).

Fig. 12 indicates that the time scale decreases with decreasing
KCi, the KC corresponding to the flow climate generating the initial
scour hole. This is because the smaller the value of KCi, the smaller
the initial scour depth; therefore, the time needed to backfill the scour
hole should be smaller, as revealed by Fig. 12. The time scale data for
wave backfilling corresponding to the initially scoured bed gener-
ated by waves (Fig. 12) can be represented by the empirical ex-
pression (lines B in Fig. 12)

Tp ¼
!
70

KCf

KCi
u2f

"21:45

ð17Þ

Similar to Eq. (16), Eq. (17) is valid for the live-bed regime,
uf . ucr . Also, caution must be exercised when extrapolating Eq.
(17) outside the ranges of the parameters for which the data were
collected, namely, 11 # KCi # 32, 4 # KCf # 25, and ucr # uf #
0:15.As previouslymentioned, the live-bed regime in the backfilling
experiments ensures that backfilling will take place.

Backfilling under Combined Waves and Current

Small-Pile Experiments
The equilibrium scour depth in the case of combined waves and
current has been discussed in conjunctionwith Fig. 9. Fig. 9 suggests
that the equilibrium scour depth in the case of combined waves and
current approaches the current value when the current-wave velocity
ratio is Ucw

~. 0:7, a result first revealed by Sumer and Fredsøe’s
(2001a) experimental data. Presumably, one would expect that, for
Ucw

~. 0:7, no significant backfilling would occur in combined
waves and current in a backfilling experiment with an initially
scoured bed, where the initial scour hole is generated either by
current or waves (waves with very large KCi, and therefore the
equilibrium scour depth Si is close to that generated by currents).
For that reason, the backfilling tests of the present experiments
were designed in order for Ucw*0:7 (Table 5). In these experi-
ments, the initial scour hole was generated by the current of Test 1
(Table 1).

The time scale in the case of waves is given by Eq. (14). In the
case of combined waves and current, there will be one additional
parameter, Ucw, and therefore Eq. (14) in this case will read

Tp ¼ f
#
Ucw, KCi, KCf , uf

$
ð18Þ

and, in the case of the backfilling with an initially scoured bed with
the initial scour hole generated by current ðKCi 5‘Þ, Eq. (18) will
reduce to

Tp ¼ f
#
Ucw, KCf , uf

$
ð19Þ

Now, the present combined waves and current data are plotted in
Fig. 13 in the form of Tp versusUcw for various pairs of KCf and uf ,
with KCf ranging from 4 to 20 and uf from 0.07 to 0.11. In Fig. 13,
the plotted data on the vertical axis is that collected in the previously
described wave-case backfilling experiments, except the data point
corresponding to KCf 5 4; this latter data point was obtained from
the empirical expression in Eq. (16).

Fig. 13. Normalized time scale of backfilling, where the initial scour hole is generated by a current with the initial scour depth corresponding to the
equilibrium scour: live bed, uf . ucr; this scour hole is subsequently subjected to combined waves and current to cause backfilling; no diffraction effect
with D/L→ 0; solid lines: Eq. (20); dashed lines: Eq. (16)
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Figure 5.6: Time scale of backfilling in combined waves and current. Initial scour
hole generated by current. Horizontal lines: Eq. (69), curved lines: Eq.(77).
Taken from Sumer et al. (2012).

KCrms, θrms, and Ucwrms in Eq. (77) are reduced to KC, θ, and Ucw
given in Eqs. (55), (53), and (68), under the assumption of individual
waves in a narrow-banded sea state. This results in:

T ∗ = 1.9−

( 0.65
(ws1(2−d)+1

c θs1
frmsKCfrms − 0.01)

s2 + 2)( Ucwrms
wc(1− Ucwrms) + Ucwrms

− 0.7)

(78)

It was seen in Eq. (77) that the validity is within Ucwrms < 0.7, resulting
in the following criterion for Eq. (78):

Ucwrms
wc(1− Ucwrms) + Ucwrms

< 0.7 (79)

51



5.2.5 Backfilling around large piles in combined waves and
current when initial scour hole is generated by cur-
rent (CASE 6)

Fig. 5.7 shows the time scale of backfilling around a large pile by current
and waves combined when the initial hole was generated by a current.
Similarly to Fig. 5.6, the time scale decreases when the current becomes
stronger because the final depth increases, resulting in less time of back-
filling. It should be noted that the amount of data is limited such that
extrapolation must be done with caution. The scour will not vary with
any significance when the diffraction parameter D/L changes from 0.07
to 0.12, Sumer and Fredsøe (2002), as seen in Fig. 3.13. This is due to
the small variation in the flow pattern. However, in Fig. 3.12 it can be
observed that S/D changes between KCf = 0.7 to KCf = 1.5. Sumer
et al. (2012) present the following empirical expression based on their ex-
periments presented in Fig. 5.7:

T ∗ = − 15.15
KCs1

frms

(Ucwrms − 0.7) for Ucwrms < 0.7 (80)

where s1 = 2.38. The experiments were performed within
0.7 ≤ KCfrms ≤ 1.5 and 0.101 ≤ θrms ≤ 0.105.
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For a given set of KCf and uf , the time scale appears to decrease
with increasing Ucw. This is because the larger the value of Ucw, the
larger the scour depth (Fig. 8). This means that the time for the
combined flow to backfill the scour hole will be relatively smaller
with a larger Ucw, as revealed by Fig. 13.

The limited data in Fig. 13 can be represented by the following
empirical expression:

Tp ¼ 1:92CðUcw 2 0:7Þ with Ucw , 0:7 ð20Þ

in which the coefficient C is

C ¼ 0:65!
u2f KCf 2 0:01

"1:68 þ 2 ð21Þ

The solid curves in Fig. 13 represent Eqs. (20) and (21), while
the horizontal lines (dashed lines) represent Eq. (16). Eq. (20)
is valid for the live-bed regime, uf . ucr. Also, caution must
be exercised when extrapolating Eq. (20) outside the ranges of
the parameters for which the data were collected, namely,
4 # KCf # 20 and ucr # uf # 0:11. The representation in Fig. 13
enables the time scale in the combined flow case to be predicted by
the following procedure: (1) calculateTp, usingEqs. (20) and (21); (2)
if the Tp value exceeds the value calculated from Eq. (16), then adopt
the value calculated from Eq. (16); (3) otherwise, retain the value
calculated from Eqs. (20) and (21).

Large-Pile Experiments
Similar to the small-pile case, the equilibrium scour depth in the
case of combined waves and current approaches the current value
when the current-wave velocity ratio is Ucw

~. 0:7 (Fig. 10).

Therefore, for Ucw
~. 0:7, it is expected that no significant back-

filling occurs in combined waves and current in the backfilling
experiments. The data (limited in size, as previously mentioned)
are plotted in Fig. 14. The variation in Fig. 14 is mainly because of
the change in KCf , because the values of the diffraction parameter,
D=L, for the two cases plotted in the figure are rather close to each
other, and therefore the time scale picks up the variation because of
the change in KCf . In this context, while the change in the flow
pattern and in the resulting scour is not very significant when D=L
changes from 0.07 to 0.12 (Sumer and Fredsøe 2002, 2006), the
opposite is true when KCf changes from 0.7 to 1.5 (Sumer and
Fredsøe 2006, Fig. 3.2; Sumer and Fredsø 2002, Fig. 6.18 and
6.19).

The variation of the time scale with Ucw can be explained in the
same manner as in Fig. 13, and that with KCf in the same manner as
in Fig. 11.

Finally, the variation of the time scale with the parameters Ucw

and KCf can be represented by

Tp ¼ 2 15:15
KC2:38

f
ðUcw 2 0:7Þ ð22Þ

Eq. (22) is valid for the live-bed regime, uf . ucr . Also, similar to
the previous cases, caution must be exercised when extrapolating
Eq. (22) outside the ranges of the parameters for which the data
were collected, namely, 0:7#KCf # 1:5 and ucr #uf*0:1.

Discussion

As previously mentioned, Fredsøe et al. (1992) studied backfilling
below a pipeline, while Hartvig et al. (2010) studied backfilling
around a pile. This section will discuss these studies as related to the
present work.

The present findings agree with those of Fredsøe et al. (1992) in
the sense that
• The depth of a backfilled scour hole for a givenKCf is the same as

the scour depth obtained with an initially flat bed and with the
same KCf ;

• The time scale of backfilling is a function of the initial KC, the
final KC, and the final Shields parameter, namely, KCi, KCf , and
uf , respectively; and

• The way in which the time scale of backfilling varies with these
parameters is qualitatively the same in both studies.
Regarding Hartvig et al.’s (2010) work, Hartvig et al. (2010)

point out that the scour-depth development formula of Sumer et al.
(1992) (also used in the present analysis) provides a fair fit to their
test results.

Second, they report that initially, current-scoured beds, when sub-
jected to waves, are backfilled about 10 times slower than when they
are scoured, a result similar to that obtained in the current study for
KC,Oð10Þ.

Finally, the time resolution of the scour and backfilling meas-
urements of Hartvig et al. (2010) is unfortunately too coarse to
enable them to determine the time scale in a precise manner, and
therefore their time-scale values are not conclusive. The experi-
mental determination of the time scale (Sumer and Fredsøe 2002)
requires a very fine time resolution in monitoring the depth of the
scour hole during the scour or the backfilling processes (time res-
olution 0.04 s of the present tests, see the discussion under theWave
Flume section and Fig. 6 to recall the formal definition of the time
scale of backfilling, the quantity T). Hartvig et al. (2010) note that
some of their test runswere impaired by one ormore of the following

Fig. 14. Normalized time scale of backfilling, where the initial scour
hole is generated by a current with the initial scour depth corresponding
to the equilibrium scour: live bed, uf . ucr; this scour hole is sub-
sequently subjected to combined waves and current to cause backfilling;
diffraction parameter, D/L, is finite; solid curves: Eq. (22)

JOURNAL OF WATERWAY, PORT, COASTAL, AND OCEAN ENGINEERING © ASCE / JANUARY/FEBRUARY 2013 / 21

J. Waterway, Port, Coastal, Ocean Eng. 2013.139:9-23.

D
ow

nl
oa

de
d 

fro
m

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
TN

U
 o

n 
01

/0
5/

15
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.

Figure 5.7: Time scale of backfilling in combined waves and current around large
piles. Initial scour hole generated by current. Taken from Sumer et al. (2012).

KCrms and Ucwrms in Eq. (80) can be replaced by KC and Ucw given in
Eqs. (55) and (68) under the assumption of individual waves in a narrow-
banded sea state. This results in:

T ∗ = − 15.15
(KCfrmswc)s1

( Ucwrms
wc(1− Ucwrms) + Ucwrms

− 0.7) (81)

where Eq. (79) must be fulfilled.
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6 The Stochastic Method
In this Chapter, a stochastic method for calculating the expected value of
time scale of scour and backfilling is described. As seen in Ch. 5 and 5.2.4,
the formulas of the timescale expressed by the normalized wave crest were
derived, allowing input of random waves, which will be distributed by the
Rayleigh and Forristall pdfs shown in Ch. 4.

This stochastic approach is based on the following assumptions:

• In a given sea state, only the 1/n’th highest waves contribute to
scour.

• The seastate has lasted longer than the timescale of the scour.

• The method is only valid for live-bed conditions. This assumption
appears because the formulas for the time scale are obtained based
on experiments where θ > θcr.

• The surface elevation is a stationary narrow-banded random process.
This assumption is connected to the probability distributions that
were shown Ch 4. Now they will be used to find the time scale.

Myrhaug and Ong (2011) found that the scour depth and width below
pipelines caused by the (1/10)’th highest waves represent the upper values
of the random wave-induced scour, and suggest that this can be used for
design purposes. n = 10 is therefore applied in this thesis. θcr = 0.05
when the seabed is flat, which is assumed here.

6.1 The time scale in random waves

The time scales caused by random waves were derived in Ch. 5.1.1 as
CASE 1-4. All the formulas of the dimensionless time scale T ∗ could be
expressed by t as the only parameter dependent on the distribution of the
wave amplitudes/crests. This is used in the following method to calculate
the expected value of the time scale of scour or backfilling.
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6.1.1 Linear random waves

The expected value of the dimensionless time scale t for linear waves is
expressed as:

E[t(â)|â > â1/n] = n

∫ ∞
â1/n

t(â)p(â)dâ (82)

where p(â) is the probability density function given by Eq. (27) and t(â)
is the normalized dimensionless time scale from Eqs. (58), (62), (71) and
(75), given as t(â) = â−v. By inserting t(â) and p(â) into Eq. (82), the
expected value of the dimensionless time scale is found as:

E[t(â)|â > â1/n] = n

∫ ∞
â1/n

2â(1−v)e−â
2
dâ (83)

where â1/n is the linear normalized wave height exceeded by the probability
1/n. It is found by substituting â by â1/n in the cdf from Eq. (26) such
that 1 − P (â1/n) = 1/n can be solved with respect to â1/n. This results
in:

â1/n =
√

lnn (84)

6.1.2 2D and 3D nonlinear random waves

The expected value of the time scale for nonlinear waves is expressed:

E[t(wc)|wc > wc1/n] = n

∫ ∞
wc1/n

t(wc)p(wc)dwc (85)

where p(wc) is the probability density function given by Eq. (40) and
t(wc) is the normalized dimensionless time scale given by Eqs. (58), (62),
(71) and (75) as t(wc) = w−vc . By inserting t(wc) and p(wc) into Eq. (85),
the expected value of the dimensionless time scale is found as:

E[t(wc)|wc > wc1/n] = nβ

∫ ∞
wc1/n

wβ−1−v
c

(
√

8α)β
∗ e−( wc√

8α
)β
dwc (86)
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where wc1/n is the normalized nonlinear wave height exceeded by the prob-
ability 1/n. It is found by substituting wc by wc1/n in the cdf from Eq.
(33) such that 1 − P (wc1/n) = 1/n can be solved with respect to wc1/n.
This results in:

wc1/n =
√

8α(lnn)1/β (87)

6.1.3 Comparison of nonlinear and linear results

The time scales T ∗ in CASE 1 - CASE 4 for linear, nonlinear 2D, and
nonlinear 3D waves can be compared by the non-dimensional time scale t.
t is independent of KCrms and θrms, but the ratio of t will represent the
ratio of T ∗ for given values of θrms and KCrms. For linear waves, t(â) will
be constant for each case, while for nonlinear waves t(wc) will vary with
only Ur and S1.

The ratio of the expected values of t for the nonlinear Forristall distribu-
tion and the linear Rayleigh distribution is obtained by dividing Eq. (86)
by Eq. (83):

R1 =
nβ
∫∞
wc,1/n

wβ−1−v
c

(
√

8α)β ∗ e
−( wc√

8α
)β
dwc

n
∫∞
â1/n

2â(1−v) ∗ e−â2dâ
(88)

The expected value for the nonlinear solution can be solved by assuming
long-crested or short-crested waves. The ratio of the 3D and 2D solution
is found by substituting α and β in Eq. (86) with α3D, β3D, α2D, and β2D
from Eqs. (34) - (37):

R2 =
nβ3D

∫∞
wc,1/n

w
β3D−1−v
c

(
√

8α3D)β3D
∗ e−( wc√

8α3D
)β3D

dwc

nβ2D
∫∞
wc,1/n

w
β2D−1−v
c

(
√

8α2D)β2D
∗ e−( wc√

8α2D
)β2D

dwc

(89)

6.2 The time scale in random waves plus current

The time scales for random waves plus current were derived in Ch. 5.2.4
and the final expressions for T ∗ are shown in Eqs. (78) and (81). In these
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equations, it is not possible to express the wcs as one factor in T ∗. Due
to this, the whole expression of T ∗ must be included in the integral. A
truncated distribution must be applied because there exists a lower limit
of wc due to the criterion Ucw < 0.7.

6.2.1 Linear random waves plus current

The expected value of the non-dimensional time scale of scour or backfilling
in linear waves is found by the following formula:

E[T ∗ | â > â1/n] = n

∫ ∞
a1/n

T ∗(â)p(â)dâ (90)

where p(â) is the truncated pdf for the Rayleigh distribution given in
Eq. (29). By inserting â2 = ∞ as the upper value, the following pdf is
obtained:

p(â) = 2âeâ2
1−â

2 (91)

The 1/n highest waves in the truncated Rayleigh distribution is found by
solving
1− P (â ≤ â1/n) = 1/n where the cdf is given by Eq. (28) where â2 =∞,
such that:

â1/n =
√

lnn+ â2
1 (92)

â1 is the smallest value the linear non-dimensional wave amplitude can
have in order to make Eq. (78) valid. This value is found by solving Eq.
(79) with respect to â1/n (shown as wc) for each value of Ucwrms.

6.2.2 2D and 3D nonlinear waves plus current

The expected value of the non-dimensional time scale for scour or back-
filling in nonlinear waves is found by the following formula:

E[T ∗ | wc > wc1/n] = n

∫ ∞
wc1/n

T ∗(wc)p(wc)dwc (93)
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where p(wc) is the truncated pdf for the Forristall distribution given in
Eq. (42). By inserting wc2 = ∞ as the upper value the following pdf is
obtained:

p(wc) =
( 1√

8α

)β
βwβ−1

c e

(
wc1√

8α

)β
−
(
wc√

8α

)β
(94)

The (1/n)’th highest waves in the truncated Forristall distribution is found
by solving 1−P (ωc ≤ ωc1/n) = 1/n where the cdf is given by Eq. (41) for
w2 =∞, such that:

wc1/n =
√

8α
[(

wc1√
8α

)β
+ ln n

]1/β
(95)

wc1 is the smallest value the nonlinear non-dimensional wave amplitude
can have in order to make Eq. (78) valid. This value is found by solving
Eq. (79) with respect to wc for each value of Ucwrms.
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7 Method, Example Values and
Limits

To calculate the dimensionless time scale T ∗ by the Forristall distribution,
some example values of parameters have to be given. This is because the
pdf is dependent on α and β, which are functions of S1 and Ur, Eqs. (38)
and (39), expressed by the parameters Hs, Tp, kp and h. Hs and h are
constant through the example calculations shown along with the other
fixed parameters in Table 7.1. The procedure for finding Tp and kp will
vary in the different cases and will be described in this chapter. All the
calculations are performed in MATLAB.

Caution must be taken when applying different parameters. Some limits
appear through the method and are described earlier. They are summa-
rized below:

• Different validity areas of KC and θ are given for each case of T ∗.
θrms and KCrms are replaced directly.

• Ursells criterion: Ur ≤ 1

• (c, d) = (1.39, 0.52) for 10 ≤ Arms
z0
≤ 105

The criteria check is performed in Microsoft Excel and the resulting pa-
rameters can be found in Appendix A as tables given for each case.

Due to the Ursell criterion, an upper limit of KCrms appears and sub-
stitutes the initial upper limit given for the time scale if it is higher. By
applying the criterion and inverting the expression for Ur given in Eq.
(39), a lower value of kp results when inserting the example values from
Table 7.1:

kp ≥
√
Hs

h3 = 0.0548 (96)

Urms is obtained when replacing a, k and ω in Eq. (4) with its r.m.s.
values:

Urms = ωparms
sinh(kph) (97)
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When Urms is substituted into Eq. (15) where Tp is replaced by 2π/ωp,
the following is obtained:

KCrms = 2πarms
D sinh(kph) (98)

arms is calculated in accordance with the Rayleigh distribution given in
Eq. (25) as Hs/2

√
2. When replacing kp in Eq. (98) with kp from Eq.

(96), an upper value of KCrms appears for each of the diameters given
in Table 7.1. The time scale for the different diameters will be compared
such that the lowest upper value must be used. For the slender pile regime
(diameters given in row 3), the upper values of KCrms becomes 23, 15 and
12. The upper values given by the validity area of the formulas are always
higher than 12, meaning that this limit will be applied. In the large pile
regime (diameters given in row 4), the upper limits ofKCrms are 4,3 and 2.
However, the upper limit of the initial validity area of T ∗ is KCrms = 1.5
and therefore this value must be applied.

Given parameters
Water depth (h) 10m
Significant wave height (Hs) 3m
Diameter (D) (0.5, 0.75, 1.0) m (CASE 2-5)
Diameter (D) (3, 4, 5) m (CASE 6)
Ratio quartz sand/fluid density (s) 2.65
Median grain diameter (d50) 0.001m (CASE 1 and 4)
Constant from friction formula (c) 1.39
Constant from friction formula (d) 0.52
arms 1.061m

Table 7.1: Example values for a typical field condition, Myrhaug et al. (2009).

7.1 Scour below pipelines in waves (CASE 1)

θrms is the only varying parameter in the equation for the time scale of
scour below pipelines, given in Eq. (57). An interval of θrms is given
such that the corresponding kp and ωp can be found. This is done in the
following procedure: the expression for θrms is found by substituting Um
and z0 with Urms and d50/12 in Eq. (65). The equation is inverted and
expressed as Urms:
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Urms =
(2 ∗ 12d θrms g(s− 1)d50

(1−d)

ωpd c

)1/(2−d)
(99)

To make the dispersion formula, Eq. (5), valid for a narrow-banded seast-
ate, which is one of the assumptions of the method, k and ω are replaced
by kp and ωp resulting in:

ωp =
√
gkptanh(kph) (100)

When requiring Eq. (99) to equal Eq. (97) and inserting Eq. (100) for ωp
in both of the equations, kp will be the only unknown for the given θrms,
and can therefore be found. Further, ωp is calculated by the dispersion
formula such that Ur and S1 can be solved.

The limit Arms/z0 is controlled for each value of θrms. Arms is found as
Urms/ωp and z0 is given as d50/12 where d50 is found in Tab. 7.1. All the
resulting parameters can be found in Appendix A. 1.

7.2 Scour and backfilling around slender piles be-
low waves (CASE 2 and 3)

An interval of of KCrms and three example values of θrms are given, see
Table 7.2, along with the other parameters from Tab. 7.1.

CASE Shields parameter (θrms)
2 (0.07, 0.13, 0.18)
3 (0.07, 0.10, 0.15)

Table 7.2: Given values of θrms for CASE 2 and 3.

kp is found for each value of the given KCrms by inverting Eq. (98):

kp = 1
h
sinh−1

( 2πarms
KCrmsD

)
(101)

The frequency is found from Eq. (100) such that Ur and S1 can be calcu-
lated for each value of KCrms. Note that θrms will not affect the values
of Ur and S1 but they will affect T ∗.
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It remains to check the criterion Arms/z0 for each value of the three given
values of θrms. θrms is given by Eq. (65) when replacing Um with Urms,
resulting in:

θrms = 0.5 c (z0ωp)d Urms(2−d)

g(s− 1)d50
(102)

When evaluating Eq. (102), it can be seen that a consequence of holding
θrms constant is that z0 must change accordingly to fulfil the equation. z0
is obtained when replacing d50 with 12z0 such that the equation can be
reorganized and expressed:

z0 =
( 24
wpd

θrmsg(s− 1)
c U

(2−d)
rms

) 1
d−1

(103)

When calculating the real time, Eq. (43), the change in z0 must be ac-
counted for in each value of KCrms. All the resulting parameters can be
found in Appendices A. 2 and A. 3.

7.3 Backfilling around a slender pile below waves
when the initial hole is generated by waves
(CASE 4)

CASE 4 is plotted for different values of θ2
rmsKCrms. The procedure is

quite similar as for CASE 2 and 3 described in the previous section; KCrms
is given and the corresponding kp is found from Eq. (101) such that ωp
and thereby Ur and S1 are found. However, in this case, θrms is not given,
allowing z0 to hold its constant value given in Tab. 7.1. θrms is found
from Eq. (102) for each value of KCrms.

To be able to find T ∗, values for KCirms are given, see Table 7.3.

CASE Keulegan-Carpenter number (KCirms)
4 (11, 20, 32)

Table 7.3: Given values of KCirms for CASE 4.
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7.4 Backfilling in waves plus current (CASE 5
and 6)

The time scale of backfilling in current plus waves will be given for different
values of Ucwrms, Eq. (21). For each plot of the time scale, values ofKCrms
and θrms are given, see Table 7.4.

CASE Keulegan-Carpenter number (KCrms) Shields parameter (θrms)
5 (4, 8, 11) (0.08, 0.07, 0.09)
6 (0.7, 1.5) (0.101, 0.105)

Table 7.4: Given values of θrms and KCrms for CASE 5 and 6.

The wave number is calculated by Eq. (101) and will now represent the
wave number for waves and current combined. The frequency obtained by
the dispersion formula from Eq. (100) is now relative:

ωr =
√
gkptanh(kph) (104)

Further, Urms is calculated by Eq. (97) such that Uc can be calculated for
the given interval Ucwrms = [0, 0.7] by Eq. (67). The absolute frequency
can now be found for each value of Uc:

ωp = kpUc +
√
gkptanh(kph) (105)

The Ursell number will be constant in each of the three plots, since kp is
constant. S1 is varying with the absolute frequency.

The criterion z0/Arms is controlled by calculating z0 given by Eq. (103).
Similarly as for CASE 2 and 3, a consequence of holding θrms constant is
that z0 changes. It should be mentioned that the time scale T ∗ for CASE
6 is not dependent on θrms, it is only used to check the criterion, while T ∗
for CASE 5 is directly dependent on the value of θrms. When finding the
real time T given by Eq. (43), both of the cases are dependent on θrms
through z0.
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8 Results and Discussion
This chapter presents the expected value of the time scale for scour and
backfilling, calculated by the stochastic method and displayed graphically
with its dependency of KCrms, θrms and Ucwrms. The time scale is given
non-dimensionally as T ∗, and in real time by T given in minutes. Compar-
isons are made between linear, second-order long-crested and second-order
short-crested waves in all cases.

It was described in Ch. 4.2 that when applying the Forristall distribution,
second-order effects are included resulting in higher and sharper wave
crests compared to the linear sinusoidal waves represented by the Rayleigh
distribution. This results in a faster scour process and therefore less time
before the equilibrium scour depth is reached when applying Forristall,
which will be seen in all the results.

The water depth regime for the different cases will decide whether the
short-crested or the long-crested waves give the shortest time scale. From
Fig. 4.2 it is seen that the second-order effects almost cease in deep water.
The difference frequency effect becomes so small that Forristall neglects
it, resulting in higher 2D waves as illustrated in Fig. 4.3. However, most
of the results lie within the finite water depth regime where the difference
frequency effect causes the 3D waves to be higher than the 2D waves,
resulting in a decreased time scale. This is physically sound because when
the waves are directionally spread, the waves will hit each other and there-
fore form shapes that are unlikely to be linear sinusoidal waves. The water
regime of each case can be found in Appendix A where h/L < 0.05 char-
acterize shallow water waves, 0.05 < h/L < 0.5 is the intermediate region
and h/L > 0.5 is deep water, Pettersen (2004).

An assumption for all the formulas of the time scale is the live-bed criterion
(θ > θcr). In this project, the initial bed is always flat resulting in θcr =
0.05. From Fig. 2.6 it can be seen that when the Shields parameter is
above this value, the equilibrium scour depth will not increase even though
θ increases. This means that for all the cases, an increase in θ will result
in higher sediment transport and therefore shorter time, but not a bigger
scour depth.

All the results for vertical piles are plotted for various numbers of KCrms.
Fig. 3.4 shows that the bed shear stress increases around the pile when
the KC-number increases such that the amount of sediment that must be
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transported also increases. This results in a bigger scour hole for a given
D, as illustrated in Fig. 3.5, and therefore a longer time in the event of
scour.

For the stochastic method proposed in this project, it was seen that for
a given sea state, only the (1/10)th highest waves were assumed to con-
tribute to scour. This means that the random waves included in the
formulas for the time scale, are quite high resulting in lower time scales
than those seen from the original formulas.

The time scale T ∗ presented by Sumer et al. (1992), Fredsøe et al. (1992)
and Sumer et al. (2012) are independent of D. In the previous chapter it
was seen that the dependency on the diameter appears through the KC-
number, Eq. (98), which is inverted to find kp and thereby ωp in order to
solve Ur and S1. This will however not influence the Rayleigh pdf such
that T ∗ calculated by the Rayleigh distribution is independent of D for
all the cases.

Note that each case has its own validity area ofKCrms and θrms, presented
along with T ∗ in Chs. 5 and 5.2.4. The intervals on the x-axes are chosen
accordingly. The upper value of KCrms is limited by the Ursell criterion
as 12 for CASE 2-5 as seen in Ch. 7.

8.1 The time scale of scour

8.1.1 The time scale of scour below pipelines (CASE 1)

Fig. 8.1 shows the isocurves of the ratios R1 and R2 for the dimensionless
time scale t for scour below a pipeline. Figs. 8.1a and 8.1b display R1,2D
and R1,3D given in Eq. (88) where R1,2D gives the ratio of the dimen-
sionless time scale t for nonlinear long-crested to linear waves, while R1,2D
gives the ratio of t for nonlinear short-crested to linear waves. Fig. 8.1c
gives the ratio of t for short-crested and long-crested waves, given in Eq.
(89). As seen from the equations, the solutions are dependent on α and
β, which are determined by Ur and S1. Note that t, and therefore R1 and
R2 are independent of θrms and KCrms, but the ratio of t will represent
the ratio of T ∗ for given values of θrms and KCrms. The distribution of
the wave amplitude/crest is the only parameter that will vary when giving
different values of Ur and S1.
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In Figs. 8.1a and 8.1b it appears that R1 decreases with increased S1
and Ur. This is physically sound because increasing S1 and Ur means
increasing the second-order effects, resulting in flow structures with higher
intensity. This causes a lower time scale for the nonlinear solution, while
the linear one obviously remains constant.

With high nonlinearity, the nonlinear time scale is 40% as low as the linear
time scale for R1,2D, while for R1,3D the nonlinear solution is even lower.
When comparing one value of an isocurve in the two plots, the R1,3D curve
generally appears more to the left. This means that the 3D solution gives
a lower time scale for a given value of Ur and S1. However, when studying
the isocurves in R1,2D they appear linear, while the R1,3D curves are bent
and have a steeper slope. A result of this is that the isocurves for R1,2D
appear more to the left compared to R1,3D when S1 is high and Ur is low.
This can be seen more clearly in Fig. 8.1c where this area has positive
isocurves showing that the time scale for 2D waves is lowest. It can also
be seen in R2 that the highest nonlinearity indicated by high values of Ur
and S1, gives the biggest difference in the time scale for short crested and
long crested waves where 3D is 80% of the 2D time scale.

The tendencies shown in Fig. 8.1 are also found in Myrhaug and Ong
(2014) in Fig. 2, where R1 and R2 represent the ratios of the burial depth
for nonlinear to linear and short-crested to long-crested waves. In this
thesis, the time scale will be shorter for sharper and bigger waves while
S/D will on the other hand increase. This means that Fig. 2 in Myrhaug
and Ong (2014) shows the opposite of what is seen here; the isocurves in
R2 are generally larger than 1, except for the combination of high values
of S1 and low values of Ur.
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(a) (b)

(c)

Figure 8.1: Isocurves for the ratios R1, Eq. (88) and R2, Eq. (89) for the
dimensionless time scale t of scour below a pipeline. a)R1,2D - nonlinear long-
crested to linear. b)R1,3D - nonlinear short-crested to linear. c) R2 - short-crested
to long-crested.

Fig 8.2 shows the expected value of the time scale T ∗ of scour below a
pipeline, presented in Eq. (57) and calculated with the stochastic method
proposed in Ch. 6.1. It shows that the time scale decreases with increased
θrms due to higher sediment transport. The short-crested waves result in
a higher time scale than the long-crested, this is most significant for lower
values of θrms. From Appendix A. 1, Tab. A.2, it can be seen that lower
values of θrms give higher values of h/Lp, indicating deep water waves,
which are long relative to the water depth. In this case the wave set-down
effects are small, while the set-up effects are larger for 2D than 3D waves.
This is also verified when studying S1 and Ur from Tab. A.2, revealing
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low values of Ur combined with high values of S1, which result in a lower
time scale for 2D waves as shown in Fig. 8.1c.

Fig. 8.3 shows the expected value of the time scale T of scour below a
pipeline, given in minutes. This is obtained by using the relation between
T ∗ and T from Eq. (43). It can be seen from the figure that an increase
in D results in higher time scale. This can be explained by the decreased
vortex shedding frequency for higher diameters, which can be seen when
studying the Strouhals number, S = fvD/U , where S equals 0.2 within a
big velocity area such that the vortex shedding frequency can be expressed
as:

fv = 0.2Urms
D

(106)

From Tab. A.2 it is seen that for a given value of θrms, Urms is constant,
resulting in lower vortex shedding frequency when D increases.

Figure 8.2: The expected value of the time scale T ∗ of scour below a pipeline for
linear and second-order waves.
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Figure 8.3: The expected value of the time scale T (min) of scour below a pipeline
for linear and second-order waves. Given for D = 0.5m, D = 0.75m and D = 1m.

8.1.2 Scour around vertical slender piles (CASE 2)

Fig. 8.4 displays the isocurves of the ratiosR1 andR2 for the dimensionless
time scale t of scour around a slender vertical pile, plotted versus S1 and
Ur. The trend in these figures is similar to that described for pipelines
in the previous section; the isocurves for a given value of R1,3D generally
appear more to the left compared to R12D, indicating a lower time scale
for a given value of Ur and S1. The combination of low values of Ur and
high values of S1 also gives shorter time scale for long-crested waves in
this case. Keep in mind that these ratios are independent of θrms and
KCrms, the only varying parameters are Ur and S1.

The highest difference in the time scale t between the short-crested and
long-crested waves can be seen from Fig. 8.4c where it appears in the area
of highest second-order effects where t for 3D waves is 92 % of 2D waves.
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(a) (b)

(c)

Figure 8.4: Isocurves for the ratios R1, Eq. (88) and R2, Eq. (89) for the
dimensionless time scale t of scour around a slender vertical pile. a)R1,2D: Non-
linear long-crested to linear. b)R1,3D: Nonlinear short-crested to linear. c) R2:
Short-crested to long-crested.

Fig. 8.5 shows the expected value of the time scale T ∗ of scour around
a vertical slender pile for θrms = 0.07, θrms = 0.13 and θrms = 0.18,
presented by Eq. (61) and calculated by the stochastic method proposed
in Ch. 6.1. It shows that the time scale decreases with increased θrms due
to higher sediment transport.

In Appendix A. 2, Tab. A.4, it can be seen that for D = 0.5 m and
KCrms = 7, the combination of S1 and Ur corresponds to an isocurve in
Fig. 8.4c where R2 is just below 1. When KCrms increases, S1 decreases
and Ur increases, moving the point in R2 downwards to the right. This
indicates a lower value of R2 and therefore an even lower value of the time
scale of the 3D solution, compared to the 2D. This is consistent with Fig.
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8.5 where it can be observed that the difference in the time scale for short-
crested and long-crested waves increases with KCrms. When comparing
the values of S1 and Ur for a given KCrms for the 3 diameters, it can be
seen that higher D always gives a point more downward to the right in
R2, causing a higher difference in 2D and 3D. This is also consistent with
Fig. 8.5.
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(a)

(b)

Figure 8.5: The expected value of the dimensionless time scale T ∗ of scour around
a vertical slender pile for linear and second-order waves for D = 0.5 m, D =
0.75m and D = 1m. a) θrms = 0.07 b) θrms = 0.13 and θrms = 0.18
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As earlier mentioned, the time scale T ∗ for linear waves is independent ofD
because the Rayleigh distribution function is not dependent on Ur and S1
such that the distribution of the wave amplitudes therefore is independent
of the given KCrms, for details see Ch. 7.2. D will affect the value of
S1 and Ur and is therefore responsible for a small variation in T ∗ for
nonlinear waves. However, D is totally accounted for in the time scale T
by the relation T = T ∗D2/

√
g(s− 1)d3

50 from Eq. (43). This means that
the variation of the time scale for different diameters should be evaluated
in T and not in T ∗. Fig. 8.6 shows the time scale T given in minutes and
it can be observed that the time scale increases with increased D. This
is consistent with the values of fv in Appendix A. 2, Tab A.4, Col. 9
where it can be seen that for a given KCrms, fv decreases with increased
diameter.

Fig. 8.6 displays T for θrms = 0.07 and θrms = 0.18, and it shows the
opposite of what would be expected; the highest value of θrms gives the
highest value of the time scale. For a given value of KCrms, h, Hs, D, s,
d50, c and d (see Tab. 7.1), this would not be physically sound. However,
in this case, a mathematical consequence of holding θrms at a constant
value, is that d50 varies for each given KCrms and D. From Appendix
A. 2, Tab. A.5, Col. 2,4 and 6, it can be observed that for a given value
of KCrms, z0 decreases when θrms increases. Tab A.4 shows that for a
given KCrms and D, there will be one resulting value of Urms and Arms.
This means that the only parameter varying in the equation for the shear
stress given by Eq. (2), is z0. The reduced z0 for higher θrms therefore
results in a lower shear stress, which explains the increased time scale for
higher θrms. Note that the value of z0 will not affect T ∗ but it comes into
T through Eq. (43) where d50 appears in the denominator.

The problem with the varying z0 could be avoided if θrms was calculated
for each given value of KCrms with a given z0, similar to the procedure in
CASE 4 described in Ch. 7.3. However, the present results are displayed
for a given θrms for simpler comparison with the results from Sumer et al.
(1992).
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(a)

(b)

Figure 8.6: The expected value of the time scale T (min) of scour around a vertical
slender pile for linear and second-order waves for D = 0.5 m, D = 0.75 m and
D = 1m. a) θrms = 0.07. b) θrms = 0.18.
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8.2 The time scale of backfilling

When KCrms increases for a given D, the scour hole will also increase
until a certain depth corresponding to the depth generated by a current.
In the cases of backfilling, smaller values of KCfrms indicate smaller value
of the final scour depth, resulting in longer time.

8.2.1 Backfilling by waves when the initial hole was gener-
ated by current (CASE 3)

Fig. 8.7 displays the isocurves for the ratios R1 and R2 for the dimen-
sionless time scale t of backfilling around a slender vertical pile, plotted
versus S1 and Ur. The trend in these figures is similar to those described
for scour below pipelines and around vertical piles in the previous section.
The main difference is that in Figs. 8.7a and 8.7b, the value of t for non-
linear waves is as low as 10 % of the linear t, which is much lower than
what is shown for scour where it was 40− 60 %, when the nonlinearity is
high. The largest difference in the time scale between the short-crested
and long-crested waves can be seen from Fig. 8.7c where it is below 0.8
when the second-order effects are high.
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(a) (b)

(c)

Figure 8.7: Isocurves for the ratios R1, Eq. (88) and R2, Eq. (89) for the
dimensionless time scale t of backfilling around a slender verical pile. a)R1,2D:
Nonlinear long-crested to linear. b)R1,3D: Nonlinear short-crested to linear. c)
R2: Short-crested to long-crested.

Fig. 8.8 shows the time scale T ∗ of backfilling by waves around a vertical
slender pile where the initial hole was generated by a current, described in
Eq. (70) and calculated with the stochastic method proposed in Ch. 6.1.
The same tendencies as mentioned earlier can be seen: higher θrms gives
shorter time scale and the nonlinear time scale is shorter than the linear.
When studying Ur and S1 (App. A. 3, Tab. A.7) in relation with the
isocurves from 8.7c, it can be seen that R2 decreases whenKCrms becomes
higher. This indicates that the difference between the 2D and 3D solution
increases relatively for high values of KCrms, even though it looks like the
solutions approach each other in Fig. 8.8 due to the decreased time scale.

Fig. 8.9 shows the variation of T ∗ with θrms for D = 0.5m and D = 1m.
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When reading the values of Ur and S1 for D = 0.5 m (App. A. 3, Tab.
A.7), it can be seen from the isocurves in Fig. 8.7c that R2 is higher than
1 when KCrms is low. Therefore, the time scale in 2D waves appear lower
than for 3D waves when D = 0.5 and KCrms is low. This is most visible
when θrms = 0.07 because it gives the highest time scale. Keep in mind
that R2 is independent of θrms. When D = 1 m, R2 is lower than 1 for
all the values of KCrms, which can be seen in Fig. 8.9b where the 3D
solution gives the smallest time scale.

Fig. 8.10 shows the expected value of the time scale T given in minutes
for θrms = 0.07 and θrms = 0.15. Higher values of D give lower vortex
shedding frequency (App. A. 3, Tab. A.7), and therefore increased time
scales. However, this figure shows that when KCrms is low, D = 0.5 m
gives the highest time scale. This can be explained when considering Tab.
A.8, where D = 0.5 m gives the highest values of Arms/z0 for low values
of KCrms, indicating the lowest friction given by Eq. (6). As KCrms
increases, Arms/z0 becomes smallest for D = 0.5m, indicating the highest
friction and therefore the lowest time scale.
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(a)

(b)

Figure 8.8: The expected value of the time scale T ∗ of backfilling around a vertical
slender pile when the initial hole was generated by a current for D = 0.5 m,
D = 0.75m and D = 1m. a) θrms = 0.07. b) θrms = 0.15.
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(a)

(b)

Figure 8.9: The expected value of the time scale T ∗ of backfilling around a vertical
slender pile when the initial hole was generated by a current for θrms = 0.07,
θrms = 0.10 and θrms = 0.15. a) D = 0.5m b) D = 1m.

82



(a)

(b)

Figure 8.10: The expected value of the time scale T (min) of backfilling around
a vertical slender pile when the initial hole was generated by a current for D =
0.5m, D = 0.75m and D = 1m. a) θrms = 0.07. b) θrms = 0.15.
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8.2.2 Backfilling by waves when the initial hole was gener-
ated by waves (CASE 4)

This section shows the time scale of backfilling by waves when the initial
scour was generated by waves with KCirms = 32, KCirms = 20 and
KCirms = 0.11, described by Eq. (74) and calculated by the stochastic
method proposed in Ch. 6.1. In this case, the time scale is plotted versus
(θ2KC)rms. As described in Ch. 7.3, Ur and S1 were found from the given
KCrms in addition to the global parameters. Based on KCrms, θrms was
calculated from Eq. (102) where d50 was given. In contrast to CASE 2
and 3, θrms therefore varies with each value of KCrms.

The experiments of the time scale were performed by Sumer et al. (2012)
with the following lower and upper values:

4 ≤ KCrms ≤ 25 (107)

0.07 ≤ θrms ≤ 0.15 (108)

resulting in:

0.02 ≤ (θ2KC)rms ≤ 0.56 (109)

The upper limit of KCrms in the stochastic method appears at 12 due to
the Ursells criteria, which is lower than the upper limit from Eq. (107).
Even so, (θ2KC)frms calculated in this thesis becomes higher than the
upper value from Eq. (109). This is because θrms calculated in this method
becomes higher than the upper limit from Eq. (108), for most of the given
values of KCrms (see App. A. 4, Tab. A.10). This will result in a
smaller validity area, especially when comparing the 3 diameters. For
example when KCrms = 4, this method results in (θ2KC)rms = 0.13
(for D = 1 m) and when KCrms = 12, (θ2KC)rms = 0.54 (D = 0.5 m).
Therefore, extrapolation is performed by using KCrms = 3 as the lower
value and KCrms = 13 as the upper value. This gives the validity area
0.07 ≤ (θ2KC)frms ≤ 0.55, which is used in all the following plots.

The isocurves from this case will equal those for CASE 3, because v given
by Eqs. (72) and (76), are the same for the two cases.
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Fig. 8.11 shows the time scale T ∗ of backfilling around a slender vertical
pile when the initial hole was generated by waves corresponding to a given
initial value of the Keulegan-Carpenter number; denoted KCirms. When
KCrms is small, the initial scour depth for a given D is small and therefore
it takes shorter time to reach the final depth. Fig. 8.11a displays the time
scale for nonlinear waves when D = 1 m and for linear waves, which are
independent of D. Fig. 8.11b shows that the variation of T ∗ for different
values of D is small for nonlinear waves.

Fig. 8.12 shows the time scale T given in minutes for backfilling around
a vertical slender pile when the initial hole was generated by waves for
D = 0.5 m and D = 1 m. When studying S1 and Ur (App. A. 4, Tab.
A.10) for D = 0.5 m, in relation with the isocurves from Fig. 8.7c, it
can be seen that R2 is higher than 1 until KCrms = 7, which corresponds
to (θ2KC)rms = 0.2. This is consistent with Fig. 8.12a where it can
be seen that after this point, the time scale for the short-crested waves
becomes smaller than for the long-crested waves. Note that R2 is equal
for the plots having the same D, but the tendency is more visible when
T ∗ is high. When considering D = 1 m, R2 is lower than 1 already at
KCrms = 4, corresponding to (θ2KC)rms = 0.13. Fig. 8.12 also shows
that the time scale is higher when D increases due to the reduced vortex
shedding frequency (App. A. 4, Tab. A.10), consistent with previous
results.
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(a)

(b)

Figure 8.11: The expected value T ∗ of backfilling around a slender vertical pile
when the initial hole was generated by KCirms = 32, KCirms = 20 and
KCirms = 0.11. a) Linear and nonlinear results for D = 1m. KCrms =∞ added
for comparison. b)Nonlinear results for D = 0.5m, D = 0.75m and D = 1m.
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(a)

(b)

Figure 8.12: The expected value T (min) of backfilling around a slender vertical
pile when the initial hole was generated by KCirms = 32, KCirms = 20 and
KCirms = 0.11. a) D = 0.5m. b) D = 1m.
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8.2.3 Backfilling around a slender pile by waves and
current when initial hole was generated by
a current (CASE 5)

Fig. 8.13 displays the time scale T ∗ of backfilling by waves and current
around a slender vertical pile where the initial hole was generated by a
current, described in Eq. (78) and calculated with the stochastic method
proposed in Ch. 6.2. When the value of Eq. (78) exceeds the value for
backfilling by waves alone given by Eq. (70), T ∗ takes the values from
waves alone. This is because when the current becomes more dominant,
the intensity increases and therefore backfilling by waves alone should
give the smallest time scale. When evaluating Ucwrms from Eq. (21) for
a given KCrms and θrms, Urms remains constant such that Uc is the only
parameter increasing when Ucwrms increases in each of the 3 examples.
More details are found in Ch. 7.4 and in Appendix A. 5.

Fig. 8.13 shows that the linear solution decreases at a higher rate than
the nonlinear solution when the current increases. The isocurves for this
case is not plotted but this behaviour should corresponds to an increase
in R1. This is consistent with the results from Fig. 4 in Ong et al. (2013)
where R1 represents the ratio between the nonlinear and linear S/D, which
decreases for increased Ucwrms. As earlier mentioned, it is expected that
R1 and R2 representing S/D should behave the opposite way compared
to R1 and R2 for the time scale because increased intensity decreases the
time scale, but increases S/D.

Fig. 8.13 is plotted for 3 different combinations of KCrms and θrms.
When comparing the plots of (KCrms1, θrms1) and (KCrms2, θrms2), where
θrms is fixed, the effect of varying KCrms can be evaluated. It can be
observed in Fig. 8.13b that R1 should decrease when KCrms increases;
R1(KCrms1) ≈ 6.5/13.15 = 0.48 while R1(KCrms2) ≈ 2.3/6 = 0.38. This
is consistent with the results in Fig. 4 from Ong et al. (2013). It shows that
R1 for S/D increases with higher KCrms, which appears as a reduction of
R1 for the time scale.

Fig. 8.14 displays the time scale T given in minutes for backfilling by
waves and current, for KCrms = 4 and KCrms = 7. It can be observed
that the increase in KCrms results in a shorter time of backfilling because
the initial and final depth are closer. In the following, the variation of R2
with KCrms will be evaluated:
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When D = 0.5 m and KCrms = 4 (Fig. 8.14a), the 2D solution is lower
than the 3D, which should result in a positive value of R2. This is due
to the low value of Ur (see App. A. 5, Tab. A.12, example 1). When
D = 0.5 m and KCrms = 7 (Fig. 8.14b ) it can be seen that R2 has
decreased (going closer to 1). The reduction in R2 also appears in the other
diameters when KCrms increases. This is consistent with the results from
Ong et al. (2013), Fig. 4 where R2 for S/D increases for higher KCrms.

It should be noted that there is some inconsistency with the present re-
sults calculated by the stochastic method, compared to Fig. 5.6 from
Sumer et al. (2012). In Fig. 5.6, the point where T ∗ calculated by waves
and current equals the value for waves alone (horizontal line), appears at
higher values of Ucw for lower values of KC. The present results show the
opposite; this point moves to the right for increased KCrms. The reason
for this behaviour is not known.
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(a)

(b)

Figure 8.13: The expected value of the time scale T ∗ of backfilling around a
slender pile in waves and current combined when the initial hole was generated
by a current. (KCrms1, θrms1)=(4, 0.07), (KCrms2, θrms2)=(7, 0.07)
and (KCrms3, θrms3)=(4, 0.09). a)D = 0.5m. b) D = 1.0m.
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(a)

(b)

Figure 8.14: The expected value of the time scale T (min) for backfilling around
a slender pile in waves and current combined when the initial hole was generated
by a current for D = 0.5m, D = 0.75m and D = 1.0m.
a) (KCrms1, θrms1)=(4, 0.07). b) (KCrms2, θrms2)=(7, 0.07).
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8.2.4 Backfilling around a large pile by waves and current
when initial hole was generated by current (CASE 6)

Figs. 8.15 and 8.16 display the time scale of backfilling by waves and
current around a large vertical pile where the initial hole was generated
by a current, described in Eq. (80) and calculated with the stochastic
method proposed in Ch. 6.2. Fig. 8.15 shows the dimensionless time scale
T ∗ given for D = 3 m and D = 5 m, where it can be observed that the
time scale decreases when KCrms increases, similar to CASE 5. Fig. 8.16
shows that the time scale T given in minutes is significantly larger than
for the slender pile. This can be explained by the large diameter, which
appears in second potential in the conversion from T ∗ to T in Eq. (43).
This results in extremely low vortex shedding frequency, which can be seen
in Appendix A. 6, Tabs. A.16- A.18. When D = 3m and KCrms = 0.7,
the time scale for 2D waves is lower compared to 3D waves due to the low
value of Ur, which can be seen in Tab. A.16. In the remaining plots, the
short-crested waves gives the lowest time scale.
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(a)

(b)

Figure 8.15: The expected value of the time scale T ∗ of backfilling around a large
pile in waves and current combined when the initial hole is generated by a current.
a) D = 3m. b) D = 5m.
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(a)

(b)

Figure 8.16: The expected value of the time scale T (min) of backfilling around
a large pile in waves and current combined when the initial hole is generated by
a current. a) KCrms = 0.7. b) KCrms = 1.5.
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9 Conclusions and Further Work

9.1 Conclusion

The time scale of scour is highly dependent on the strength of incom-
ing flow near the seabed. Overall, the time scale of scour and backfill-
ing becomes smaller in second-order long-crested and second-order short-
crested waves compared to linear sinusoidal waves. This is due to the
presence of nonlinear effects that indicate higher and sharper waves and
thereby higher nearbed velocities. Most of the results lie within finite
water depth where the set-down effects causes the short-crested waves to
be higher and sharper than the long-crested waves. The time scale of
the short-crested waves becomes even smaller relative to the long-crested
waves when KCrms increases. However, when the nonlinear effects be-
come small corresponding to deeper water waves (long waves relative to
the depth), the long-crested waves might appear as slightly larger than
the short-crested waves resulting in a smaller time scale for long-crested
waves. The effects become most significant for small numbers of KCrms.
This is because Forristall (2000) neglects the set-down effects in deep wa-
ter and includes only the sum-frequency, which is larger for long-crested
than for short-crested nonlinear waves.

The method proposed in this thesis should be applied as a first approxima-
tion to find the time scale of scour and backfilling in random waves below
pipelines and around vertical piles, and for backfilling around vertical piles
in random waves plus current. Comparisons with data are required to val-
idate the results.
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9.2 Further work

Petersen (2015) performed experiments presented in Fig. 9.1 for scour
around vertical piles in waves and current combined, and derived the em-
pirical formula T ∗ = 0.0028θ−3, which is valid within 0.3 < Ucw < 0.5. In
the present thesis, the formula T ∗ = 0.0028 θ−310(−1.88 θ−0.51 (Ucw−0.5)) has
been fitted to the result for 0.5 < Ucw < 0.7. It is of interest to apply the
stochastic method, but an improvement of the formula is necessary. In
the experiments, the lowest value of T ∗ is 0.17 and occurs at Ucw ≈ 0.73.
The formula should be modified such that values below this are invalid.
This is necessary because the stochastic method with n = 10 decreases
the time scale.

Figure 9.1: The time scale T ∗ of scour around a vertical slender pile in current
and waves combined for θ = 0.07, θ = 0.10 and θ = 0.15.

In addition efforts should be made to understand the origin of the discrep-
ancy found between our results and Sumer et al. (2012) (see Figs. 5.6, 8.13
and 8.14).
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Appendix A

A. 1 - CASE 1

Given parameters
Water depth (h) 10m
Significant wave height (Hs) 3m
Diameter (D) -
Shields parameter (θrms) Col. 1
Ratio quartz sand/fluid density (s) 2.65
Median grain diameter (d50) 0.001m
Constant from friction formula (c) 1.39
Constant from friction formula (d) 0.52
rms value of wave amplitude (arms) 1.06m
Bed roughness (z0) 0.0000833m

Table A.1: Given parameters CASE 1

θrms kp ωp Urms Arms h/Lp S1 Ur Arms/z0
[−] [ radm ] [ rads ] [ms ] [m] [ - ] [ - ] [ - ] [ - ]
0.05 0.27 1.61 0.24 0.15 0.42 0.13 0.04 1783
0.06 0.25 1.55 0.27 0.18 0.40 0.12 0.05 2113
0.07 0.24 1.50 0.31 0.20 0.37 0.11 0.05 2449
0.08 0.22 1.46 0.34 0.23 0.35 0.10 0.06 2795
0.09 0.21 1.42 0.37 0.26 0.33 0.10 0.07 3153
0.10 0.12 1.37 0.40 0.29 0.32 0.09 0.08 3525
0.11 0.19 1.33 0.43 0.33 0.30 0.09 0.08 3915
0.12 0.18 1.29 0.47 0.36 0.29 0.08 0.09 4327
0.13 0.17 1.25 0.50 0.40 0.27 0.08 0.10 4765
0.14 0.16 1.21 0.53 0.44 0.26 0.07 0.11 5236
0.15 0.15 1.17 0.56 0.48 0.24 0.07 0.13 5746
0.16 0.15 1.13 0.59 0.53 0.23 0.06 0.14 6308
0.17 0.14 1.09 0.63 0.58 0.22 0.06 0.16 6938
0.18 0.13 1.04 0.66 0.64 0.20 0.05 0.18 7660
0.19 0.12 0.99 0.70 0.71 0.19 0.05 0.21 8517

Table A.2: Resulting values CASE 1
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A. 2 - CASE 2

Given parameters
Water depth (h) 10m
Significant wave height (Hs) 3m
Diameter (D) Col. 1
Shields parameter (θrms) Tab. A.5, Row 1
Keulegan-Carpenter number (KCrms) Col. 2
Ratio quartz sand/fluid density (s) 2.65
Median grain diameter (d50) -
Constant from friction formula (c) 1.39
Constant from friction formula (d) 0.52
rms value of wave amplitude (arms) 1.06m
Bed roughness (z0) Tab. A.5, Col. 3,5,7

Table A.3: Given parameters CASE 2

D KCrms kp ωp Urms Arms h/Lp D/Lp fv S1 Ur
[m] [-] [ radm ] [ rads ] [ms ] [m] [-] [-] [1

s ] [-] [-]

0.50

7 0.14 1.10 0.61 0.56 0.22 0.011 0.25 0.06 0.15
8 0.13 1.04 0.66 0.64 0.20 0.010 0.27 0.05 0.18
9 0.12 0.98 0.70 0.72 0.19 0.009 0.28 0.05 0.21
10 0.11 0.93 0.74 0.80 0.17 0.009 0.30 0.04 0.25
11 0.10 0.88 0.77 0.88 0.16 0.008 0.31 0.04 0.29
12 0.10 0.84 0.80 0.96 0.15 0.008 0.32 0.03 0.33

0.75

7 0.11 0.90 0.76 0.84 0.17 0.013 0.20 0.04 0.27
8 0.10 0.84 0.80 0.96 0.15 0.011 0.21 0.03 0.33
9 0.09 0.78 0.83 1.07 0.14 0.010 0.22 0.03 0.39
10 0.08 0.72 0.86 1.19 0.13 0.010 0.23 0.03 0.47
11 0.07 0.68 0.89 1.31 0.12 0.009 0.24 0.02 0.55
12 0.07 0.63 0.91 1.43 0.11 0.008 0.24 0.02 0.64

1.00

7 0.09 0.76 0.84 1.11 0.13 0.010 0.17 0.03 0.42
8 0.08 0.69 0.88 1.27 0.12 0.009 0.18 0.02 0.52
9 0.07 0.63 0.91 1.43 0.11 0.008 0.18 0.02 0.64
10 0.06 0.58 0.93 1.59 0.10 0.007 0.19 0.02 0.77
11 0.06 0.54 0.95 1.75 0.09 0.007 0.19 0.01 0.91
12 0.05 0.50 0.96 1.91 0.08 0.006 0.19 0.01 1.07

Table A.4: Resulting values CASE 2

II



θrms = 0.07 θrms = 0.13 θrms = 0.18
D KCrms z0 Arms/zo z0 Arms/z0 z0 Arms/z0

[m] [-] [m] [-] [m] [-] [m] [-]

0.50

7 0.00050 1104 0.00014 4010 0.00007 7900
8 0.00059 1071 0.00016 3890 0.00008 7662
9 0.00067 1064 0.00019 3864 0.00009 7611
10 0.00074 1076 0.00020 3907 0.00010 7696
11 0.00079 1102 0.00022 4004 0.00011 7887
12 0.00084 1141 0.00023 4145 0.00012 8165

0.75

7 0.00077 1087 0.00021 3949 0.00012 7779
8 0.00084 1141 0.00023 4145 0.00012 8165
9 0.00088 1219 0.00024 4426 0.00012 8719
10 0.00091 1316 0.00025 4780 0.00013 9417
11 0.00092 1432 0.00025 5199 0.00013 10241
12 0.00092 1563 0.00025 5677 0.00013 11182

1.00

7 0.00089 1249 0.00025 4537 0.00012 8937
8 0.00092 1391 0.00025 5052 0.00013 9953
9 0.00092 1563 0.00025 5677 0.00013 11182
10 0.00090 1763 0.00025 6401 0.00013 12609
11 0.00090 1989 0.00024 7222 0.00012 14226
12 0.00085 2240 0.00023 8136 0.00012 16027

Table A.5: Resulting values CASE 2

A. 3 - CASE 3

Given parameters
Water depth (h) 10m
Significant wave height (Hs) 3m
Diameter (D) Col. 1
Shields parameter (θrms) Tab. A.8, Row 1
Keulegan-Carpenter number (KCrms) Col. 2
Ratio quartz sand/fluid density (s) 2.65
Median grain diameter (d50) -
Constant from friction formula (c) 1.39
Constant from friction formula (d) 0.52
rms value of wave amplitude (arms) 1.06m
Bed roughness (z0) Tab. A.8, Col. 3,5,7

Table A.6: Given parameters CASE 3
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D KCrms kp ωp Urms Arms h/Lp D/Lp fv S1 Ur
[m] [-] [ radm ] [ rads ] [ms ] [m] [-] [-] [1

s ] [-] [-]

0.50

5 0.17 1.25 0.50 0.40 0.27 0.014 0.20 0.08 0.10
6 0.15 1.17 0.56 0.48 0.24 0.012 0.22 0.07 0.13
7 0.14 1.10 0.61 0.56 0.22 0.011 0.25 0.06 0.15
8 0.13 1.04 0.66 0.64 0.20 0.010 0.26 0.05 0.18
9 0.12 0.98 0.70 0.72 0.19 0.009 0.28 0.05 0.21
10 0.11 0.93 0.74 0.8 0.17 0.009 0.3 0.04 0.25
11 0.10 0.88 0.77 0.88 0.16 0.008 0.31 0.04 0.29
12 0.10 0.84 0.80 0.95 0.15 0.008 0.32 0.03 0.33

0.75

5 0.13 1.07 0.64 0.60 0.21 0.016 0.17 0.06 0.17
6 0.12 0.98 0.70 0.72 0.19 0.014 0.19 0.05 0.21
7 0.11 0.90 0.76 0.84 0.17 0.013 0.20 0.04 0.27
8 0.10 0.84 0.80 0.95 0.15 0.011 0.21 0.03 0.33
9 0.09 0.78 0.83 1.07 0.14 0.010 0.22 0.03 0.39
10 0.08 0.72 0.86 1.19 0.13 0.010 0.23 0.03 0.47
11 0.07 0.67 0.89 1.31 0.12 0.009 0.24 0.02 0.55
12 0.07 0.63 0.91 1.43 0.11 0.008 0.24 0.02 0.64

1.00

5 0.11 0.93 0.74 0.80 0.17 0.017 0.15 0.04 0.25
6 0.10 0.84 0.80 0.95 0.15 0.015 0.16 0.03 0.33
7 0.08 0.76 0.84 1.11 0.13 0.013 0.17 0.03 0.42
8 0.08 0.69 0.88 1.27 0.12 0.012 0.18 0.02 0.52
9 0.07 0.63 0.91 1.43 0.11 0.011 0.18 0.02 0.64
10 0.06 0.58 0.93 1.59 0.10 0.010 0.19 0.02 0.77
11 0.06 0.54 0.95 1.75 0.09 0.009 0.19 0.01 0.91
12 0.05 0.50 0.96 1.91 0.08 0.008 0.19 0.01 1.07

Table A.7: Resulting values CASE 3

IV



θrms = 0.07 θrms = 0.10 θrms = 0.15
D KCrms z0 Arms/zo z0 Arms/z0 z0 Arms/z0

[m] [-] [m] [-] [m] [-] [m] [-]

0.50

5 0.00030 1310 0.00014 2755 0.00006 6412
6 0.00041 1176 0.00019 2473 0.00008 5754
7 0.00050 1104 0.00024 2322 0.00010 5403
8 0.00059 1071 0.00028 2252 0.00012 5241
9 0.00067 1063 0.00032 2237 0.00014 5206
10 0.00074 1076 0.00035 2262 0.00015 5264
11 0.00079 1102 0.00038 2318 0.00016 5394
12 0.00084 1141 0.00040 2400 0.00017 5584

0.75

5 0.00055 1084 0.0026 2279 0.00011 5303
6 0.00067 1064 0.00032 2237 0.00014 5205
7 0.00077 1087 0.00037 2286 0.00016 5321
8 0.00084 1141 0.00040 2400 0.00017 5584
9 0.00088 1219 0.00042 2563 0.00018 5964
10 0.00091 1316 0.00043 2767 0.00019 6441
11 0.00092 1432 0.00044 3010 0.00019 7004
12 0.00092 1563 0.00044 3286 0.00019 7648

1.00

5 0.00074 1076 0.00035 2262 0.00015 5264
6 0.00084 1141 0.00040 2400 0.00017 5584
7 0.00089 1249 0.00042 2626 0.00018 6113
8 0.00092 1391 0.00044 2925 0.00019 6807
9 0.00092 1563 0.00044 3286 0.00019 7648
10 0.00090 1763 0.00043 3706 0.00018 8625
11 0.00088 1989 0.00042 4181 0.00018 9730
12 0.00085 2240 0.00041 4710 0.00017 10962

Table A.8: Resulting values CASE 3

A. 4 - CASE 4

Given parameters
Water depth (h) 10m
Significant wave height (Hs) 3m
Diameter (D) Col. 1
Shields parameter (θrms) Col. 6
Keulegan-Carpenter number (KCrms) Col. 2
Ratio quartz sand/fluid density (s) 2.65
Median grain diameter (d50) 0.001
Constant from friction formula (c) 1.39
Constant from friction formula (d) 0.52
rms value of wave amplitude (arms) 1.06m
Bed roughness (z0) 0.0000833

Table A.9: Given parameters CASE 4
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D KCrms kp ωp Urms θrms θ2
rms∗ h/Lp D/Lp fv S1 Ur Arms/z0

[m] [-] [ radm ] [ rads ] [ms ] [-] KCrms [-] [-] [1
s ] [-] [-] [-]

0.5

4 0.19 1.43 0.43 0.108 0.046 0.31 0.015 0.17 0.09 0.08 3820
5 0.17 1.25 0.50 0.130 0.09 0.27 0.014 0.20 0.08 0.10 4775
6 0.15 1.17 0.56 0.150 0.13 0.24 0.012 0.22 0.07 0.13 5730
7 0.14 1.10 0.61 0.166 0.19 0.22 0.011 0.25 0.06 0.15 6685
8 0.13 1.04 0.66 0.180 0.26 0.20 0.010 0.27 0.05 0.18 7639
9 0.12 0.98 0.70 0.191 0.33 0.19 0.009 0.28 0.05 0.21 85944
10 0.11 0.93 0.74 0.200 0.40 0.17 0.009 0.30 0.04 0.25 9549
11 0.10 0.88 0.77 0.207 0.47 0.16 0.008 0.31 0.04 0.29 10504
12 0.10 0.84 0.80 0.212 0.54 0.15 0.008 0.32 0.03 0.33 11459
13 0.09 0.80 0.82 0.216 0.61 0.14 0.007 0.33 0.03 0.37 12414

0.75

3 0.18 1.29 0.46 0.119 0.043 0.29 0.022 0.12 0.08 0.09 4297
4 0.15 1.17 0.56 0.150 0.09 0.24 0.018 0.15 0.07 0.13 5730
5 0.13 1.07 0.64 0.173 0.15 0.21 0.016 0.17 0.06 0.17 7162
6 0.12 0.98 0.70 0.191 0.22 0.19 0.014 0.19 0.05 0.21 8594
7 0.11 0.90 0.76 0.203 0.29 0.17 0.013 0.20 0.04 0.27 10027
8 0.10 0.84 0.80 0.212 0.36 0.15 0.011 0.21 0.03 0.33 11459
9 0.09 0.76 0.83 0.217 0.42 0.14 0.010 0.22 0.03 0.39 12892
10 0.08 0.72 0.86 0.220 0.49 0.13 0.010 0.23 0.03 0.47 14324
11 0.07 0.68 0.89 0.221 0.54 0.12 0.009 0.24 0.02 0.55 15756
12 0.07 0.63 0.91 0.221 0.59 0.11 0.008 0.24 0.02 0.64 17189

1

3 0.15 1.17 0.56 0.150 0.07 0.24 0.024 0.11 0.07 0.13 5730
4 0.13 1.04 0.66 0.180 0.13 0.20 0.020 0.13 0.05 0.18 7639
5 0.11 0.93 0.74 0.200 0.20 0.17 0.017 0.15 0.04 0.25 9549
6 0.10 0.84 0.80 0.212 0.27 0.15 0.015 0.16 0.03 0.33 11459
7 0.09 0.76 0.84 0.218 0.33 0.13 0.013 0.17 0.03 0.42 13369
8 0.08 0.69 0.88 0.221 0.39 0.12 0.012 0.18 0.02 0.52 15279
9 0.07 0.63 0.91 0.221 0.44 0.11 0.011 0.18 0.02 0.64 17189
10 0.06 0.58 0.93 0.220 0.48 0.10 0.010 0.19 0.02 0.77 19099
11 0.06 0.54 0.95 0.217 0.52 0.09 0.009 0.19 0.01 0.91 21008
12 0.05 0.50 0.96 0.214 0.55 0.08 0.008 0.19 0.01 1.07 22918

Table A.10: Resulting values CASE 4
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A. 5 - CASE 5

Given parameters
Water depth (h) 10m
Significant wave height (Hs) 3m
Diameter (D) Row 1
Keulegan-Carpenter number (KCrms) Row. 2
Ratio quartz sand/fluid density (s) 2.65
Median grain diameter (d50) -
Constant from friction formula (c) 1.39
Constant from friction formula (d) 0.52
r.m.s. value of wave amplitude (arms) 1.06m
Bed roughness (z0) Row 19

Table A.11: Given parameters CASE 5

D = 0.5m
Example 1 Example 2 Example 3

KCrms = 4, θrms = 0.07 KCrms = 7, θrms = 0.07 KCrms = 4, θrms = 0.09
kp [rad/m] 0.1919 kp [rad/m] 0.1400 kp [rad/m] 0.1919
ωr [rad/s] 1.3426 ωr [rad/s] 1.1026 ωr [rad/s] 1.3426
Urms [m/s] 0.4274 Urms [m/s] 0.6142 Urms [m/s] 0.4274

Ucwrms Uc ωp fv S1 Uc ωp fv S1 Uc ωp fv S1
[ms ] [ms ] [ rads ] [1

s ] [-] [ms ] [ rads ] [1
s ] [-] [ms ] [ rads ] [1

s ] [-]
0.0 0.00 1.34 0.17 0.09 0.00 1.10 0.25 0.06 0.00 1.34 0.17 0.09
0.1 0.05 1.35 0.17 0.09 0.07 1.11 0.25 0.06 0.05 1.35 0.17 0.09
0.2 0.11 1.36 0.17 0.09 0.15 1.12 0.25 0.06 0.11 1.36 0.17 0.09
0.3 0.18 1.38 0.18 0.09 0.26 1.14 0.25 0.06 0.18 1.38 0.18 0.09
0.4 0.29 1.40 0.18 0.10 0.41 1.16 0.26 0.07 0.29 1.40 0.18 0.10
0.5 0.43 1.42 0.18 0.10 0.61 1.19 0.26 0.07 0.43 1.42 0.18 0.10
0.6 0.64 1.47 0.19 0.10 0.92 1.23 0.27 0.07 0.64 1.47 0.19 0.10
0.7 1.00 1.53 0.20 0.11 1.43 1.30 0.29 0.08 1.00 1.53 0.20 0.11

h/Lp [-] 0.3053 h/Lp [-] 0.2228 h/Lp [-] 0.3053
D/Lp [-] 0.0153 D/Lp [-] 0.0111 D/Lp [-] 0.0153
Ur [-] 0.0815 Ur [-] 0.1531 Ur [-] 0.0815
Arms [m] 0.3183 Arms [m] 0.5570 Arms [m] 0.3183
z0 [m] 0.0002 z0 [m] 0.0004 z0 [m] 0.00012
Arms/z0 [-] 1560 Arms/z0 [-] 1459 Arms/z0 [-] 2633

Table A.12: Resulting values CASE 5, D = 0.5m
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D = 0.75m
Example 1 Example 2 Example 3

KCrms = 4, θrms = 0.07 KCrms = 7, θrms = 0.07 KCrms = 4, θrms = 0.09
kp [rad/m] 0.1538 kp [rad/m] 0.1060 kp [rad/m] 0.1538
ωr [rad/s] 1.1731 ωr [rad/s] 0.9036 ωr [rad/s] 1.1731
Urms [m/s] 0.5601 Urms [m/s] 0.7551 Urms [m/s] 0.5601

Ucwrms Uc ωp fv S1 Uc ωp fv S1 Uc ωp fv S1
[ms ] [ms ] [ rads ] [1

s ] [-] [ms ] [ rads ] [1
s ] [-] [ms ] [ rads ] [1

s ] [-]
0.0 0.00 1.17 0.15 0.07 0.00 0.90 0.20 0.04 0.00 1.17 0.15 0.07
0.1 0.06 1.18 0.15 0.07 0.09 0.91 0.20 0.04 0.06 1.18 0.15 0.07
0.2 0.14 1.19 0.15 0.07 0.19 0.92 0.21 0.04 0.14 1.19 0.15 0.07
0.3 0.24 1.21 0.15 0.07 0.32 0.93 0.21 0.04 0.24 1.21 0.15 0.07
0.4 0.37 1.23 0.16 0.07 0.50 0.96 0.21 0.04 0.37 1.23 0.16 0.07
0.5 0.56 1.26 0.16 0.08 0.76 0.98 0.22 0.05 0.56 1.26 0.16 0.08
0.6 0.84 1.30 0.17 0.08 1.13 1.02 0.23 0.05 0.84 1.30 0.17 0.08
0.7 1.31 1.37 0.18 0.09 1.76 1.09 0.24 0.06 1.31 1.37 0.18 0.09

h/Lp [-] 0.2449 h/Lp [-] 0.1686 h/Lp [-] 0.2449
D/Lp [-] 0.0184 D/Lp [-] 0.0126 D/Lp [-] 0.0184
Ur [-] 0.1267 Ur [-] 0.2672 Ur [-] 0.1267
Arms [m] 0.4775 Arms [m] 0.8356 Arms [m] 0.4775
z0 [m] 0.0004 z0 [m] 0.0008 z0 [m] 0.0002
Arms/z0 [-] 1176 Arms/z0 [-] 1087 Arms/z0 [-] 1985

Table A.13: Resulting values CASE 5, D = 0.75m

VIII



D = 1m
Example 1 Example 2 Example 3

KCrms = 4, θrms = 0.07 KCrms = 7, θrms = 0.07 KCrms = 4, θrms = 0.09
kp [rad/m] 0.1283 kp [rad/m] 0.0847 kp [rad/m] 0.1283
ωr [rad/s] 1.0390 ωr [rad/s] 0.7569 ωr [rad/s] 1.0390
Urms [m/s] 0.6615 Urms [m/s] 0.8433 Urms [m/s] 0.6615

Ucwrms Uc ωp fv S1 Uc ωp fv S1 Uc ωp fv S1
[ms ] [ms ] [ rads ] [1

s ] [-] [ms ] [ rads ] [1
s ] [-] [ms ] [ rads ] [1

s ] [-]
0.0 0.00 1.04 0.13 0.05 0.00 0.76 0.17 0.03 0.00 1.04 0.13 0.05
0.1 0.07 1.05 0.13 0.05 0.09 0.76 0.17 0.03 0.07 1.05 0.13 0.05
0.2 0.17 1.06 0.13 0.05 0.21 0.77 0.17 0.03 0.17 1.06 0.13 0.05
0.3 0.28 1.08 0.14 0.06 0.36 0.79 0.18 0.03 0.28 1.08 0.14 0.06
0.4 0.44 1.10 0.14 0.06 0.56 0.80 0.18 0.03 0.44 1.10 0.14 0.06
0.5 0.66 1.12 0.14 0.06 0.84 0.83 0.18 0.03 0.66 1.12 0.14 0.06
0.6 0.99 1.17 0.15 0.07 1.27 0.86 0.29 0.04 0.99 1.17 0.15 0.07
0.7 1.54 1.24 0.16 0.07 1.97 0.92 0.21 0.04 1.54 1.24 0.16 0.07

h/Lp [-] 0.2043 h/Lp [-] 0.1348 h/Lp [-] 0.2043
D/Lp [-] 0.0204 D/Lp [-] 0.0135 D/Lp [-] 0.0204
Ur [-] 0.1821 Ur [-] 0.4181 Ur [-] 0.1821
Arms [m] 0.6366 Arms [m] 1.1141 Arms [m] 0.6366
z0 [m] 0.0006 z0 [m] 0.0009 z0 [m] 0.0004
Arms/z0 [-] 1071 Arms/z0 [-] 1249 Arms/z0 [-] 1808

Table A.14: Resulting values CASE 5, D = 1m

A. 6 - CASE 6

Given parameters
Water depth (h) 10m
Significant wave height (Hs) 3m
Diameter (D) Row 1
Keulegan-Carpenter number (KCrms) Row. 2
Ratio quartz sand/fluid density (s) 2.65
Median grain diameter (d50) -
Constant from friction formula (c) 1.39
Constant from friction formula (d) 0.52
r.m.s. value of wave amplitude (arms) 1.06m
Bed roughness (z0) Row 19

Table A.15: Given parameters CASE 6
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D = 3m
Example 1 Example 2

KCrms = 0.7, θrms = 0.101 KCrms = 1.5, θrms = 0.105
kp [rad/m] 0.1872 kp [rad/m] 0.1184
ωr [rad/s] 1.3234 ωr [rad/s] 0.9812
Urms [m/s] 0.4423 Urms [m/s] 0.7027

Ucwrms Uc ωp fv S1 Uc ωp fv S1
[ms ] [ms ] [ rads ] [1

s ] [-] [ms ] [ rads ] [1
s ] [-]

0.0 0.00 1.32 0.030 0.09 0.00 0.98 0.047 0.05
0.1 0.05 1.33 0.030 0.09 0.08 0.99 0.047 0.05
0.2 0.11 1.34 0.030 0.09 0.18 1.00 0.048 0.05
0.3 0.18 1.36 0.030 0.09 0.30 1.02 0.049 0.05
0.4 0.29 1.38 0.031 0.09 0.47 1.04 0.049 0.05
0.5 0.44 1.41 0.031 0.10 0.70 1.06 0.051 0.06
0.6 0.66 1.45 0.032 0.10 1.05 1.11 0.053 0.06
0.7 1.03 1.52 0.034 0.11 1.64 1.18 0.056 0.07

h/Lp [-] 0.2980 h/Lp [-] 0.1885
D/Lp [-] 0.0894 D/Lp [-] 0.0565
Ur [-] 0.0856 Ur [-] 0.2139
Arms [m] 0.3342 Arms [m] 0.7162
z0 [m] 0.0001 z0 [m] 0.0003
Arms/z0 [-] 3212 Arms/z0 [-] 2476

Table A.16: Resulting values CASE 6, D = 3m
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D = 4m
Example 1 Example 2

KCrms = 0.7, θrms = 0.101 KCrms = 1.5, θrms = 0.105
kp [rad/m] 0.1602 kp [rad/m] 0.0958
ωr [rad/s] 1.2036 ωr [rad/s] 0.8355
Urms [m/s] 0.5364 Urms [m/s] 0.7979

Ucwrms Uc ωp fv S1 Uc ωp fv S1
[ms ] [ms ] [ rads ] [1

s ] [-] [ms ] [ rads ] [1
s ] [-]

0.0 0.00 1.20 0.027 0.07 0.00 0.84 0.040 0.03
0.1 0.06 1.21 0.027 0.07 0.09 0.84 0.040 0.03
0.2 0.13 1.23 0.027 0.07 0.20 0.85 0.041 0.04
0.3 0.23 1.24 0.028 0.07 0.34 0.87 0.041 0.04
0.4 0.36 1.26 0.028 0.08 0.53 0.89 0.042 0.04
0.5 0.54 1.29 0.029 0.08 0.80 0.91 0.044 0.04
0.6 0.80 1.33 0.030 0.09 1.20 0.95 0.045 0.04
0.7 1.25 1.40 0.031 0.10 1.86 1.01 0.048 0.05

h/Lp [-] 0.2549 h/Lp [-] 0.1524
D/Lp [-] 0.1020 D/Lp [-] 0.0610
Ur [-] 0.1169 Ur [-] 0.3272
Arms [m] 0.4456 Arms [m] 0.9549
z0 [m] 0.0002 z0 [m] 0.0004
Arms/z0 [-] 2619 Arms/z0 [-] 2656

Table A.17: Resulting values CASE 6, D = 4m
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D = 5m
Example 1 Example 2

KCrms = 0.7, θrms = 0.101 KCrms = 1.5, θrms = 0.105
kp [rad/m] 0.1400 kp [rad/m] 0.0800
ωr [rad/s] 1.1026 ωr [rad/s] 0.7222
Urms [m/s] 0.6142 Urms [m/s] 0.8620

Ucwrms Uc ωp fv S1 Uc ωp fv S1
[ms ] [ms ] [ rads ] [1

s ] [-] [ms ] [ rads ] [1
s ] [-]

0.0 0.00 1.10 0.025 0.06 0.00 0.72 0.034 0.03
0.1 0.07 1.11 0.025 0.06 0.10 0.73 0.034 0.03
0.2 0.15 1.12 0.025 0.06 0.22 0.74 0.035 0.03
0.3 0.26 1.14 0.025 0.06 0.37 0.75 0.036 0.03
0.4 0.41 1.16 0.026 0.07 0.57 0.77 0.037 0.03
0.5 0.61 1.19 0.027 0.07 0.86 0.79 0.038 0.03
0.6 0.92 1.23 0.027 0.07 1.29 0.83 0.039 0.03
0.7 1.43 1.30 0.029 0.08 2.01 0.88 0.042 0.04

h/Lp [-] 0.2228 h/Lp [-] 0.1274
D/Lp [-] 0.0111 D/Lp [-] 0.0637
Ur [-] 0.1531 Ur [-] 0.4683
Arms [m] 0.5570 Arms [m] 1.1937
z0 [m] 0.0002 z0 [m] 0.0004
Arms/z0 [-] 2370 Arms/z0 [-] 3064

Table A.18: Resulting values CASE 6, D = 5m
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Appendix B
Parameters

function [n Hs h g s d50 arms c d]=Parameters()
%THIS FUNCTION GIVES THE GLOBAL PARAMETERS TO ALL THE FUNCTIONS
%USED IN THIS PROJECT. THESE VALUES ARE THE SAME IN ALL THE CASES
%EXCEPT d50, WHICH IS CONSTANT IN CASE 1 AND 4. THE GLOBAL
%PARAMETERS WILL NOT BE REPEATED IN THE OTHER FUNCTIONS.

n=10; %wave fraction [m]
Hs=3; %significant wave heigh [m]
h=10; %water depth [m]
g=9.806; %aceleration of gravity [m/s^2]
s=2.65; %specific gravity [-]
d50=0.001; %diameter sand grains [m]
arms=Hs/(2*sqrt(2)); %the rms value of the wave amplitude [m]
c=1.39; %constant from the friction formula [-]
d=0.52; %constant from the friction formula [-]

end

B. 1 - CASE 1

Rayleigh

function [R R1 R2 R3]=Rayleigh(x)
%CASE 1: THIS FUNCTION USES THE RAYLEIGH DISTRIBUTION TO CALCULATE
%THE EXPECTED VALUE OF THE TIME SCALE FOR SCOUR BELOW A PIPELINE,
%FOR DIFFERENT VALUES OF THE SHIELDS PARAMETER (trms).

%DESCRIPTION OF SYMBOLS
%x: the normalized linear wave amplitude
%R: The expeced value of the time scale T* for all D.
%R1: D=0.50 m - The expeced value of the time scale T (min).
%R2: D=0.75 m - The expeced value of the time scale T (min).
%R3: D=1.00 m - The expeced value of the time scale T (min).

%Et: The expected value of t [-].
%ET: The expected value of T* [-].

syms x;
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[n Hs h g s d50 arms c d]=Parameters();

s1=5/3;
r1=1/50;
v=s1*(2-d);

i=0;
for trms=0.05:0.001:0.19

i=i+1;

xmin=sqrt(log(n));
x=(xmin:0.01:5);

Et=trapz(x,2*n*(x).^(1-v).*exp(-(x).^2));
ET=Et*r1*trms^(-s1);

%RESULTING DATA OF T*
R(i,1)=trms;
R(i,2)=ET;

end

%RESULTING DATA OF T FOR D=0.50 m, D=0.75 m and D=1.00 m.
R1(:,1)=R(:,1);
R1(:,2)=R(:,2)*0.5^2/(sqrt(g*(s-1)*(d50)^3))/60;
R2(:,1)=R(:,1);
R2(:,2)=R(:,2)*0.75^2/(sqrt(g*(s-1)*(d50)^3))/60;
R3(:,1)=R(:,1);
R3(:,2)=R(:,2)*1^2/(sqrt(g*(s-1)*(d50)^3))/60;

end

Forristall

function [F F1 F2 F3]=Forristall(x)
%CASE 1: THIS FUNCTION USES THE FORRISTALL DISTRIBUTION TO
%CALCULATE THE EXPECTED VALUE OF THE TIME SCALE FOR SCOUR BELOW
%A PIPELINE, FOR DIFFERENT VALUES OF THE SHIELDS PARAMETER (trms).

%kp is solved by iteration such that wp also can be found (to find
%Ur and S1). The requirement is that Urms from Eq. (103) equals
%Urms=wp*arms/sin(kp*h). In the equation Urms=Urms, wp are replaced
%by wp=sqrt(g*kp*tanh(kp*h) and the equation are reorganized such
%that all the kps appears inn ledd 2. The only unknown value for
%a given trms is then kp, which is solved in the "while" loop by
%iteration: kp changes until the criterion ledd1=ledd2 is fulfilled.
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%DESCRIPTION OF SYMBOLS
%x: The normalized second order wave crest.
%F: The expeced value of the time scale T* for all D.
%F1: D=0.50 m - The expeced value of the time scale T (min).
%F2: D=0.75 m - The expeced value of the time scale T (min).
%F3: D=1.00 m - The expeced value of the time scale T (min).

%Et_2D: The expected value of t [-] for 2D waves.
%Et_3D: The expected value of t [-] for 3D waves.
%ET_2D: The expected value of T* [-] for 2D waves.
%ET_3D: The expected value of T* [-] for 3D waves.

%nu: desired numbers behind comma. The computation time will be
%very long if not shortening the numbers, due to the requirement
%ledd1=ledd2.

syms x;

[n Hs h g s d50 arms c d]=Parameters();

s1=5/3;
r1=1/50;
v=s1*(2-d);
nu=4;

i=0;
for trms=0.05:0.001:0.19

i=i+1;

kp=0.05; %start value
ledd1=0;
ledd2=1/arms*((2*12^(d)*trms*g*(s-1)*d50^(1-d))/c)^(1/(2-d));
ledd2= round(ledd2*(10^nu))/(10^nu);

while ledd1~=ledd2
ledd1=(sqrt(g*kp*tanh(kp*h)))^(1+d/(2-d))/(sinh(kp*h));
ledd1= round(ledd1*(10^nu))/(10^nu);
kp=kp+10^(-(nu+2));

end

kp=kp-10^(-(nu+2));
wp=sqrt(g*kp*tanh(kp*h));
Tp=2*pi/wp;

S1=2*pi*Hs/(g*Tp^2);
Ur=Hs/(kp^2*h^3);

%parameters 2D model
alpha2=0.3536+0.2892*S1+0.1060*Ur;
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beta2=2-2.1597*S1+0.0968*Ur^2;
xmin_2D=sqrt(8)*alpha2*(log(n))^(1/(beta2));
x2D=(xmin_2D:0.01:5);

%parameters 3D model
alpha3=0.3536+0.2568*S1+0.0800*Ur;
beta3=2-1.7912*S1-0.5302*Ur+0.284*Ur^2;
xmin_3D=sqrt(8)*alpha3*(log(n))^(1/(beta3));
x3D=(xmin_3D:0.01:5);

Et_2D=trapz(x2D,n*beta2*(x2D).^(beta2-1-v)/((sqrt(8)*alpha2)^...
(beta2)).*exp(-((x2D)./(sqrt(8)*alpha2)).^(beta2)));

Et_3D=trapz(x3D,n*beta3*(x3D).^(beta3-1-v)/((sqrt(8)*alpha3)^...
(beta3)).*exp(-((x3D)./(sqrt(8)*alpha3)).^(beta3)));

ET_2D=Et_2D*r1*trms^(-s1);
ET_3D=Et_3D*r1*trms^(-s1);

%RESULTING DATA OF T*
F(i,1)=trms;
F(i,2)=ET_2D;
F(i,3)=ET_3D;

end

%RESULTING DATA OF T FOR D=0.5 m, D=0.75 m and D=1 m
F1(:,1)=F(:,1);
F1(:,2)=F(:,2)*0.5^2/(sqrt(g*(s-1)*(d50)^3))/60;
F1(:,3)=F(:,3)*0.5^2/(sqrt(g*(s-1)*(d50)^3))/60;
F2(:,1)=F(:,1);
F2(:,2)=F(:,2)*0.75^2/(sqrt(g*(s-1)*(d50)^3))/60;
F2(:,3)=F(:,3)*0.75^2/(sqrt(g*(s-1)*(d50)^3))/60;
F3(:,1)=F(:,1);
F3(:,2)=F(:,2)*1^2/(sqrt(g*(s-1)*(d50)^3))/60;
F3(:,3)=F(:,3)*1^2/(sqrt(g*(s-1)*(d50)^3))/60;

end

Plot

function P=Plot(x)
%CASE 1: THIS FUNCTION PLOTS THE TIME SCALE FOR SCOUR BELOW A
%PIPELINE, FOR DIFFERENT VALUES OF THE SHIELDS PARAMETER (trms).

%Retrieving data from the Rayleigh distibution
[R R1 R2 R3]=Rayleigh();
%R: Data for E[T*].
%R1: D=0.50 m - Data for E[T] (min).
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%R2: D=0.75 m - Data for E[T] (min).
%R3: D=1.00 m - Data for E[T] (min).

%Retrieving data from the Forristall distribution
[F F1 F2 F3]=Forristall();
%F: Data for E[T*].
%F1: D=0.50 m - Data for E[T] (min).
%F2: D=0.75 m - Data for E[T] (min).
%F3: D=1.00 m - Data for E[T] (min).

%T*
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=semilogx(R(:,1),R(:,2),'b',F(:,1), F(:,2),'c--',...

F(:,1), F(:,3),'k:');
hleg=legend('Rayleigh','Forristall (2D)','Forristall (3D)',...

'Location','northeast');
set(hleg,'Fontsize',13)
set (h, 'LineWidth', 2.5)
axis([0.05 0.19 0 0.8]);
u=[0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19];
set(gca,'XTick',u,'Fontsize',14);
xlabel('\theta_{r m s}','Fontsize',24);
ylabel('E[T*]','Fontsize',22);
hgexport(gcf, '../../Figures/CASE1/CASE1.png',...

hgexport('factorystyle'), 'Format', 'png')

%T for D=0.5 m, D=0.75 m and D=1 m
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=semilogx(R1(:,1),R1(:,2),'c',F1(:,1),F1(:,2),'c--',...

F1(:,1),F1(:,3),'c:',...
R2(:,1),R2(:,2),'k',F2(:,1),F2(:,2),'k--',...

F2(:,1),F2(:,3),'k:',...
R3(:,1),R3(:,2),'m',F3(:,1),F3(:,2),'m--',...

F3(:,1),F3(:,3),'m:');
hleg=legend('Rayleigh D=0.50 m','Forristall (2D) D=0.50 m',...

'Forristall (3D) D=0.50 m',...
'Rayleigh D=0.75 m','Forristall (2D) D=0.75 m',...

'Forristall (3D) D=0.75 m',...
'Rayleigh D=1.00 m','Forristall (2D) D=1.00 m',...

'Forristall (3D) D=1.00 m',...
'Location','northeast');

set(hleg,'Fontsize',13)
set (h, 'LineWidth', 2.5)
axis([0.05 0.19 0 100 ]);
u=[0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19];
set(gca,'XTick',u,'Fontsize',14);
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xlabel('\theta_{r m s}','Fontsize',24);
ylabel('E[T]','Fontsize',22);
hgexport(gcf, '../../Figures/CASE1/CASE1_T.png',...

hgexport('factorystyle'), 'Format', 'png')

end

Iso

function i=iso()
%CASE 1: THIS FUNCTION USES THE RAYLEIGH AND THE FORRISTALL
%DISTRIBUTION TO FIND THE RATIO BETWEEN THE NONLINEAR AND
%LINEAR SOLUTION (R1) AND THE RATIO BETWEEN THE 3D AND 2D
%SOLUTION (R2), FOR THE TIME SCALE OF SCOUR BELOW PIPELINES.
%R1 AND R2 ARE PLOTTED AS ISOCURVES VERSUS URSELLS NUMBER
%(Ur) AND THE STEEPNESS (S1).

%DESCRIPTION OF SYMBOLS
%x_R: The normalized linar wave amplitude.
%x_2D: The normalized second-order wave crest for 2D waves.
%x_3D: The normalized second-order wave crest for 3D waves.

syms x_R x_2D x_3D;

[n Hs h g s d50 arms c d]=Parameters();

s1=5/3;
v=s1*(2-d);

o=zeros(101,101);
h=zeros(101,101);

Ur=-0.01;
for i=1:101

Ur=Ur+0.01;
h(:,i)=Ur;

S1=-0.0015;
for j=1:101

S1=S1+0.0015;
o(j,:)=S1;

alpha2=0.3536+0.2892*S1+0.1060*Ur;
beta2=2-2.1597*S1+0.0968*Ur^2;
alpha3=0.3536+0.2568*S1+0.0800*Ur;
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beta3=2-1.7912*S1-0.5302*Ur+0.284*Ur^2;

xmin_R=sqrt(log(n));
xmin_2D=sqrt(8)*alpha2*(log(n))^(1/(beta2));
xmin_3D=sqrt(8)*alpha3*(log(n))^(1/(beta3));

x_R=(xmin_R:0.01:5);
x_2D=(xmin_2D:0.01:5);
x_3D=(xmin_3D:0.01:5);

%The expected value of t
e_R=2*n*(x_R).^(1-v).*exp(-((x_R).^2));
e_2D=n*beta2*(x_2D).^(beta2-1-v)/((sqrt(8)*alpha2).^beta2)...

.*exp(-((x_2D)./(sqrt(8).*alpha2)).^beta2);
e_3D=n*beta3*(x_3D).^(beta3-1-v)/((sqrt(8)*alpha3).^beta3)...

.*exp(-((x_3D)./(sqrt(8).*alpha3)).^beta3);

%The expected value of T*
E_R=trapz(x_R,e_R);
E_2D=trapz(x_2D,e_2D);
E_3D=trapz(x_3D,e_3D);

%R1
R1_2D=(E_2D)/(E_R);
R1_3D=(E_3D)/(E_R);

%R2
R2=E_3D/E_2D;

%data for plot
k1(j,i)=R1_2D;
k2(j,i)=R1_3D;
k3(j,i)=R2;

end
end

%PLOT
%R1_2D
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
c1=contour(h,o,k1,'b','LineWidth',2.5);
clabel(c1,'Fontsize',18);
u=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];
set(gca,'XTick',u,'Fontsize',18);
u=[0 0.02 0.04 0.06 0.08 0.10 0.12 0.14];
set(gca,'YTick',u,'Fontsize',18);
xlabel('U_{R}','Fontsize',22);
ylabel('S_{1}','Fontsize',22);
title('R_{1,2D}', 'Fontsize',22)

XIX



hgexport(gcf, '../../Figures/CASE1/CASE1_R1_2D.png',...
hgexport('factorystyle'), 'Format', 'png');

%R1_3D
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
c1=contour(h,o,k2,'b','LineWidth',2.5);
clabel(c1,'Fontsize',18);
u=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];
set(gca,'XTick',u,'Fontsize',18);
u=[0 0.02 0.04 0.06 0.08 0.10 0.12 0.14];
set(gca,'YTick',u,'Fontsize',18);
xlabel('U_{R}','Fontsize',22);
ylabel('S_{1}','Fontsize',22');
title('R_{1,3D}', 'Fontsize',22)
hgexport(gcf, '../../Figures/CASE1/CASE1_R1_3D.png',...

hgexport('factorystyle'), 'Format', 'png');

%R2
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
c1=contour(h,o,k3,'b','LineWidth',2.5);
clabel(c1,'Fontsize',18);
u=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];
set(gca,'XTick',u,'Fontsize',18);
u=[0 0.02 0.04 0.06 0.08 0.10 0.12 0.14];
set(gca,'YTick',u,'Fontsize',18);
xlabel('U_{R}','Fontsize',22);
ylabel('S_{1}','Fontsize',22);
title('R_{2}', 'Fontsize',22)
hgexport(gcf, '../../Figures/CASE1/CASE1_R2.png',...

hgexport('factorystyle'), 'Format', 'png');
end

B. 2 - CASE 2

Rayleigh

function [R R1 R2 R3]=Rayleigh(x)
%CASE 2: THIS FUNCTION USES THE RAYLEIGH DISTRIBUTION TO CALCULATE
%THE EXPECTED VALUE OF THE TIME SCALE OF SCOUR AROUND A VERTICAL
%SLENDER PILE FOR DIFFERENT VALUES OF THE SHIELDS PARAMETER (trms)
%AND KEULEGAN-CARPENTER NUMBERS (KCrms).
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%The expected value of the time scale is shown for 3 different
%values of the trms. T* is independent of D for Rayleigh
%because trms is given. Since trms is given, the grain size
%(z0,d50) will change for each value of KCrms. To find T by
%knowing T*, z0 must be calulated.

%DESCRIPTION OF SYMBOLS
%x: the normalized linear wave amplitude
%R: The expected value of the time scale T* for all D.
%R1: D=0.50 m - The expeced value of the time scale T (min).
%R2: D=0.75 m - The expeced value of the time scale T (min).
%R3: D=1.00 m - The expeced value of the time scale T (min).

%Et: The expected value of t [-].
%ET: The expected value of T* [-].

syms x;

[n Hs h g s d50 arms c d]=Parameters();

trms1=0.07;
trms2=0.13;
trms3=0.18;

s1=3;
r1=10^(-6);
v=s1*(1-d);

for j=1:3

if j==1
D=0.5;

elseif j==2
D=0.75;

else
D=1;

end

i=0;
for KCrms=7:0.01:12

i=i+1;

kp=1/h*asinh(2*pi*arms/(D*KCrms));
wp=sqrt(kp*g*tanh(kp*h));
Urms=wp*arms/(sinh(kp*h));

z0_1=(24/(wp^d)*trms1*g*(s-1)/(c*Urms^(2-d)))^(1/(d-1));
z0_2=(24/(wp^d)*trms2*g*(s-1)/(c*Urms^(2-d)))^(1/(d-1));
z0_3=(24/(wp^d)*trms3*g*(s-1)/(c*Urms^(2-d)))^(1/(d-1));
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xmin=sqrt(log(n));
x=(xmin:0.01:5);
Et=trapz(x,2*n*(x).^(1-v).*exp(-(x).^2));

ET_1=Et*r1*KCrms.^(s1)*trms1^(-s1);
ET_2=Et*r1*KCrms.^(s1)*trms2^(-s1);
ET_3=Et*r1*KCrms.^(s1)*trms3^(-s1);

%RESULTING DATA OF T*
R(i,1)=KCrms;
R(i,2)=ET_1;
R(i,3)=ET_2;
R(i,4)=ET_3;

%RESULTING DATA OF T
if D==0.5

R1(i,1)=KCrms;
R1(i,2)=ET_1*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
R1(i,3)=ET_2*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
R1(i,4)=ET_3*D^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;

elseif D==0.75
R2(i,1)=KCrms;
R2(i,2)=ET_1*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
R2(i,3)=ET_2*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
R2(i,4)=ET_3*D^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;

else
R3(i,1)=KCrms;
R3(i,2)=ET_1*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
R3(i,3)=ET_2*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
R3(i,4)=ET_3*D^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;

end
end

end
end

Forristall

function [F1, F2, F3]=Forristall(x)
%CASE 2: THIS FUNCTION USES THE FORRISTALL DISTRIBUTION TO
%CALCULATE THE EXPECTED VALUE OF THE TIME SCALE FOR SCOUR
%AROUND A VERTICAL SLENDER PILE FOR DIFFERENT VALUES OF
%THE SHIELDS PARAMETER (trms) AND KC NUMBER (KCrms).

%The expected value of the time scale is shown for 3 different
%values of the trms. Since trms is given, the grain size
%(z0,d50) will change for each value of KCrms, affecting T.
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%DESCRIPTION OF SYMBOLS
%x: The normalized second order wave crest.
%F1: D=0.50 m - The expected value of the time scale T*
%(col 1-7) and T(min) (col 8-13).
%F2: D=0.75 m - The expected value of the time scale T*
%(col 1-7) and T in minutes (col 8-13).
%F3: D=1.00 m - The expected value of the time scale T*
%(col 1-7) and T(min) (col 8-13).

%Et_2D: The expected value of t [-] for 2D waves.
%Et_3D: The expected value of t [-] for 3D waves.
%ET_2D: The expected value of T* [-] for 2D waves.
%ET_3D: The expected value of T* [-] for 3D waves.

syms x;

[n Hs h g s d50 arms c d]=Parameters();

s1=3;
r1=10^(-6);
v=s1*(1-d);

trms1=0.07;
trms2=0.13;
trms3=0.18;

for j=1:3
if j==1

D=0.5;
elseif j==2

D=0.75;
else

D=1;
end

i=0;
for KCrms=7:0.01:12

i=i+1;

kp=(1/h*asinh(2*pi*arms/(D*KCrms)));
wp=sqrt(kp*g*tanh(kp*h));
Tp=2*pi/wp;
Urms=wp*arms/(sinh(kp*h));

z0_1=(24/(wp^d)*trms1*g*(s-1)/(c*Urms^(2-d)...
))^(1/(d-1));
z0_2=(24/(wp^d)*trms2*g*(s-1)/(c*Urms^(2-d)...
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))^(1/(d-1));
z0_3=(24/(wp^d)*trms3*g*(s-1)/(c*Urms^(2-d)...
))^(1/(d-1));

S1=2*pi*Hs/(g*Tp^2);
Ur=Hs/(kp^2*h^3);

%parameters for 2D model
alpha2=0.3536+0.2892*S1+0.1060*Ur;
beta2=2-2.1597*S1+0.0968*Ur^2;
xmin_2D=sqrt(8)*alpha2*(log(n))^(1/(beta2));
x2D=(xmin_2D:0.01:5);

%parameters for 3D model
alpha3=0.3536+0.2568*S1+0.0800*Ur;
beta3=2-1.7912*S1-0.5302*Ur+0.284*Ur^2;
xmin_3D=sqrt(8)*alpha3*(log(n))^(1/(beta3));
x3D=(xmin_3D:0.01:5);

Et_2D=trapz(x2D,n*beta2*(x2D).^(beta2-1-v)/((sqrt(8)*...
alpha2)^(beta2)).*exp(-((x2D)./(sqrt(8)*alpha2)).^(beta2)));
Et_3D=trapz(x3D,n*beta3*(x3D).^(beta3-1-v)/((sqrt(8)*...
alpha3)^(beta3)).*exp(-((x3D)./(sqrt(8)*alpha3)).^(beta3)));

ET_2D_1=Et_2D*r1*KCrms.^(s1)*trms1^(-s1);
ET_3D_1=Et_3D*r1*KCrms.^(s1)*trms1^(-s1);

ET_2D_2=Et_2D*r1*KCrms.^(s1)*trms2^(-s1);
ET_3D_2=Et_3D*r1*KCrms.^(s1)*trms2^(-s1);

ET_2D_3=Et_2D*r1*KCrms.^(s1)*trms3^(-s1);
ET_3D_3=Et_3D*r1*KCrms.^(s1)*trms3^(-s1);

%RESULTING DATA
if D==0.5

%T*
F1(i,1)=KCrms;
F1(i,2)=ET_2D_1;
F1(i,3)=ET_3D_1;
F1(i,4)=ET_2D_2;
F1(i,5)=ET_3D_2;
F1(i,6)=ET_2D_3;
F1(i,7)=ET_3D_3;
%T
F1(i,8)= ET_2D_1*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
F1(i,9)= ET_3D_1*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
F1(i,10)=ET_2D_2*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
F1(i,11)=ET_3D_2*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
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F1(i,12)=ET_2D_3*D^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;
F1(i,13)=ET_3D_3*D^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;

elseif D==0.75
%T*
F2(i,1)=KCrms;
F2(i,2)=ET_2D_1;
F2(i,3)=ET_3D_1;
F2(i,4)=ET_2D_2;
F2(i,5)=ET_3D_2;
F2(i,6)=ET_2D_3;
F2(i,7)=ET_3D_3;
%T
F2(i,8)= ET_2D_1*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
F2(i,9)= ET_3D_1*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
F2(i,10)=ET_2D_2*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
F2(i,11)=ET_3D_2*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
F2(i,12)=ET_2D_3*D^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;
F2(i,13)=ET_3D_3*D^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;

else
%T*
F3(i,1)=KCrms;
F3(i,2)=ET_2D_1;
F3(i,3)=ET_3D_1;
F3(i,4)=ET_2D_2;
F3(i,5)=ET_3D_2;
F3(i,6)=ET_2D_3;
F3(i,7)=ET_3D_3;
%T
F3(i,8)= ET_2D_1*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
F3(i,9)= ET_3D_1*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
F3(i,10)=ET_2D_2*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
F3(i,11)=ET_3D_2*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
F3(i,12)=ET_2D_3*D^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;
F3(i,13)=ET_3D_3*D^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;

end
end

end
end

Plot

function P=Plot(x)
%CASE 2: THIS FUNCTION PLOTS THE EXPECTED VALUE OF THE TIME
%SCALE OF SCOUR AROUND A VERTICAL SLENDER PILE FOR DIFFERENT
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%VALUES OF THE SHIELDS PARAMETERS AND KC NUMBERS.

%Retrieving data from the Rayleigh distibution
[R R1 R2 R3]=Rayleigh();
% R: Data for of E[T*].
% R1: D=0.50 m - Data for E[T].
% R2: D=0.75 m - Data for E[T].
% R3: D=1.00 m - Data for E[T].

%Retrieving data from the Forristall distribution
[F1 F2 F3]=Forristall();
% F1: D=0.50 m - Data for E[T*] (Col 1-7) and E[T] (Col 8-13).
% F2: D=0.75 m - Data for E[T*] (Col 1-7) and E[T] (Col 8-13).
% F3: D=1.00 m - Data for E[T*] (Col 1-7) and E[T] (Col 8-13).

%T* for D=0.5 m, D=0.75 m and D=1 m for trms=0.07
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=semilogx(R(:,1),R(:,2),'b',F1(:,1), F1(:,2),'c--',...

F1(:,1), F1(:,3),'c:',...
F2(:,1), F2(:,2),'k--',...
F2(:,1), F2(:,3),'k:',...
F3(:,1), F3(:,2),'m--',...
F3(:,1), F3(:,3),'m:');

hleg=legend('Rayleigh','Forristall (2D) D=0.50 m',...
'Forristall (3D) D=0.50 m',...
'Forristall (2D) D=0.75 m',...
'Forristall (3D) D=0.75 m',...
'Forristall (2D) D=1.00 m',...
'Forristall (3D) D=1.00 m',...
'Location','northwest');

set(hleg,'Fontsize',13)
set (h, 'LineWidth', 2.5)
u=[7 8 9 10 11 12];
set(gca,'XTick',u,'Fontsize',14);
axis([7 12 0 2.5]);
xlabel('KC_{r m s}','Fontsize',22);
ylabel('E[T*]','Fontsize',22);
hgexport(gcf, '../../Figures/CASE2/CASE21.png',...

hgexport('factorystyle'), 'Format', 'png');

%T* for D=0.5 m, D=0.75 m and D=1 m for trms=0.13 and trms=0.18
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=semilogx(R(:,1),R(:,3),'b',F1(:,1), F1(:,4),'c--',...

F1(:,1), F1(:,5),'c:',...
F2(:,1), F2(:,4),'k--',...
F2(:,1), F2(:,5),'k:',...
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F3(:,1), F3(:,4),'m--',...
F3(:,1), F3(:,5),'m:',...

R(:,1),R(:,4),'b',F1(:,1), F1(:,6),'c--',...
F1(:,1), F1(:,7),'c:',...
F2(:,1), F2(:,6),'k--',...
F2(:,1), F2(:,7),'k:',...
F3(:,1), F3(:,6),'m--',...
F3(:,1), F3(:,7),'m:');

hleg=legend('Rayleigh','Forristall (2D) D=0.50 m',...
'Forristall (3D) D=0.50 m',...
'Forristall (2D) D=0.75 m',...
'Forristall (3D) D=0.75 m',...
'Forristall (2D) D=1.00 m',...
'Forristall (3D) D=1.00 m',...
'Location','northwest');

set(hleg,'Fontsize',13)
set (h, 'LineWidth', 2.5)
u=[7 8 9 10 11 12];
set(gca,'XTick',u,'Fontsize',14);
axis([7 12 0 0.35 ]);
xlabel('KC_{r m s}','Fontsize',22);
ylabel('E[T*]','Fontsize',22);
hgexport(gcf, '../../Figures/CASE2/CASE22.png',...

hgexport('factorystyle'), 'Format', 'png');

%T for D=0.5 m, D=0.75 m and D=1 m for trms=0.07
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=semilogx(R1(:,1),R1(:,2),'c',F1(:,1), F1(:,8),'c--',...

F1(:,1), F1(:,9),'c:',...
R2(:,1),R2(:,2),'k',F2(:,1), F2(:,8),'k--',...

F2(:,1), F2(:,9),'k:',...
R3(:,1),R3(:,2),'m',F3(:,1), F3(:,8),'m--',...

F3(:,1), F3(:,9),'m:');
hleg=legend('Rayleigh D=0.50 m',...

'Forristall (2D) D=0.50 m',...
'Forristall (3D) D=0.50 m',...

'Rayleigh D=0.75 m',...
'Forristall (2D) D=0.75 m',...
'Forristall (3D) D=0.75 m',...

'Rayleigh D=1.00 m',...
'Forristall (2D) D=1.00 m',...
'Forristall (3D) D=1.00 m',...

'Location','northwest');
set(hleg,'Fontsize',13)
set (h, 'LineWidth', 2.5)
u=[7 8 9 10 11 12];
set(gca,'XTick',u,'Fontsize',14);
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axis([7 12 0 10 ]);
xlabel('KC_{r m s}','Fontsize',22);
ylabel('E[T]','Fontsize',22);
title('\theta_{r m s}=0.07','Fontsize',17)
hgexport(gcf, '../../Figures/CASE2/CASE2T1.png',...

hgexport('factorystyle'), 'Format', 'png');

%T for D=0.5 m, D=0.75 m and D=1 m for trms=0.18
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=semilogx(R1(:,1),R1(:,4),'c',F1(:,1), F1(:,12),'c--',...

F1(:,1), F1(:,13),'c:',...
R2(:,1),R2(:,4),'k',F2(:,1), F2(:,12),'k--',...

F2(:,1), F2(:,13),'k:',...
R3(:,1),R3(:,4),'m',F3(:,1), F3(:,12),'m--',...

F3(:,1), F3(:,13),'m:');
hleg=legend('Rayleigh D=0.50 m',...

'Forristall (2D) D=0.50 m',...
'Forristall (3D) D=0.50 m',...
'Rayleigh D=0.75 m',...
'Forristall (2D) D=0.75 m',...
'Forristall (3D) D=0.75 m',...
'Rayleigh D=1.00 m',...
'Forristall (2D) D=1.00 m',...
'Forristall (3D) D=1.00 m',...
'Location','northwest');

set(hleg,'Fontsize',13)
set (h, 'LineWidth', 2.5)
u=[7 8 9 10 11 12];
set(gca,'XTick',u,'Fontsize',14);
axis([7 12 0 10]);
xlabel('KC_{r m s}','Fontsize',22);
ylabel('E[T]','Fontsize',22);
title('\theta_{r m s}=0.18','Fontsize',17)
hgexport(gcf, '../../Figures/CASE2/CASE2T3.png',...

hgexport('factorystyle'), 'Format', 'png');
end

Iso

function i=iso()
%CASE 2: THIS FUNCTION USES THE RAYLEIGH AND THE FORRISTALL
%DISTRIBUTION TO FIND THE RATIO OF THE NONLINEAR AND LINEAR
%SOLUTION (R1) AND THE RATIO OF THE 3D AND 2D SOLUTION (R2),
%FOR THE TIME SCALE OF SCOUR AROUND VERTICAL SLENDER PILES.
%%R1 AND R2 ARE PLOTTED AS ISOCURVES VERSUS URSELLS NUMBER
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%(Ur) AND THE STEEPNESS (S1).

%DESCRIPTION OF SYMBOLS
%x_R: The normalized linar wave amplitude.
%x_2D: The normalized second-order wave crest for 2D waves.
%x_3D: The normalized second-order wave crest for 3D waves.

syms x_R x_2D x_3D;

[n Hs h g s d50 arms c d]=Parameters();

s1=3;
v=s1*(1-d);

o=zeros(101,101);
h=zeros(101,101);

Ur=-0.01;
for i=1:101

Ur=Ur+0.01;
h(:,i)=Ur;

S1=-0.0015;
for j=1:101

S1=S1+0.0015;
o(j,:)=S1;

alpha2=0.3536+0.2892*S1+0.1060*Ur;
beta2=2-2.1597*S1+0.0968*Ur^2;
alpha3=0.3536+0.2568*S1+0.0800*Ur;
beta3=2-1.7912*S1-0.5302*Ur+0.284*Ur^2;

xmin_R=sqrt(log(n));
xmin_2D=sqrt(8)*alpha2*(log(n))^(1/(beta2));
xmin_3D=sqrt(8)*alpha3*(log(n))^(1/(beta3));

x_R=(xmin_R:0.01:5);
x_2D=(xmin_2D:0.01:5);
x_3D=(xmin_3D:0.01:5);

%THE EXPECTED VALUE t
e_R=2*n*(x_R).^(1-v).*exp(-((x_R).^2));
e_2D=n*beta2*(x_2D).^(beta2-1-v)/((sqrt(8)*alpha2).^beta2...
).*exp(-((x_2D)./(sqrt(8).*alpha2)).^beta2);
e_3D=n*beta3*(x_3D).^(beta3-1-v)/((sqrt(8)*alpha3).^beta3...
).*exp(-((x_3D)./(sqrt(8).*alpha3)).^beta3);
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E_R=trapz(x_R,e_R);
E_2D=trapz(x_2D,e_2D);
E_3D=trapz(x_3D,e_3D);

%R1
R1_2D=(E_2D)/(E_R);
R1_3D=(E_3D)/(E_R);

%R2
R2=E_3D/E_2D;

%data for plot
k1(j,i)=R1_2D;
k2(j,i)=R1_3D;
k3(j,i)=R2;

end
end

%PLOT
%R1_2D
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
c1=contour(h,o,k1,'b','LineWidth',2.5);
clabel(c1,'Fontsize',18);
u=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];
set(gca,'XTick',u,'Fontsize',18);
u=[0 0.02 0.04 0.06 0.08 0.10 0.12 0.14];
set(gca,'YTick',u,'Fontsize',18);
xlabel('U_{R}','Fontsize',22);
ylabel('S_{1}','Fontsize',22);
title('R_{1,2D}', 'Fontsize',22)
hgexport(gcf, '../../Figures/CASE2/CASE2_R1_2D.png',...

hgexport('factorystyle'), 'Format', 'png');

%R1_3D
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
c1=contour(h,o,k2,'b','LineWidth',2.5);
clabel(c1,'Fontsize',18);
u=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];
set(gca,'XTick',u,'Fontsize',18);
u=[0 0.02 0.04 0.06 0.08 0.10 0.12 0.14];
set(gca,'YTick',u,'Fontsize',18);
xlabel('U_{R}','Fontsize',22);
ylabel('S_{1}','Fontsize',22');
title('R_{1,3D}', 'Fontsize',22)
hgexport(gcf, '../../Figures/CASE2/CASE2_R1_3D.png',...

hgexport('factorystyle'), 'Format', 'png');
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%R2
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
c1=contour(h,o,k3,'b','LineWidth',2.5);
clabel(c1,'Fontsize',18);
u=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];
set(gca,'XTick',u,'Fontsize',18);
u=[0 0.02 0.04 0.06 0.08 0.10 0.12 0.14];
set(gca,'YTick',u,'Fontsize',18);
xlabel('U_{R}','Fontsize',22);
ylabel('S_{1}','Fontsize',22);
title('R_{2}', 'Fontsize',22)
hgexport(gcf, '../../Figures/CASE2/CASE2_R2.png',...

hgexport('factorystyle'), 'Format', 'png');
end

B. 3 - CASE 3

Rayleigh

function [R, R1, R2, R3]=Rayleigh(x)
%CASE 3: THIS FUNCTION USES THE RAYLEIGH DISTRIBUTION TO CALCULATE
%THE EXPECTED VALUE OF THE TIME SCALE OF BACKFILLING BY WAVES ALONE
%AROUND A PILE WHEN THE INITIAL HOLE WAS GENERATED BY A CURRENT.

%The expected value of the time scale is shown for 3 different
%values of the trms. T* is independent of D for Rayleigh
%because trms is given. Since trms is given, the grain size
%(z0,d50) will change for each value of KCrms. To find T by
%knowing T*, z0 must be calulated.

%Et: The expected value of t [-].
%ET: The expected value of T* [-].

%Rayleigh because trms is given.
%R1: D=0.50 m - The expeced value of the time scale T (min).
%R2: D=0.75 m - The expeced value of the time scale T (min).
%R3: D=1.00 m - The expeced value of the time scale T (min).

syms x;

[n Hs h g s d50 arms c d]=Parameters();

s1=2;
s2=1.45;
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v=s2*(s1*(2-d)+1);

trms1=0.07;
trms2=0.10;
trms3=0.15;

for j=1:3
if j==1

D=0.5;
elseif j==2

D=0.75;
else

D=1;
end

i=0;
for KCrms=5:0.01:12

i=i+1;

kp=1/h*asinh(2*pi*arms/(D*KCrms));
wp=sqrt(g*kp*tanh(kp*h));
Urms=wp*arms/(sinh(kp*h));

z0_1=(24/(wp^d)*trms1*g*(s-1)/(c*Urms^(2-d)))^(1/(d-1));
z0_2=(24/(wp^d)*trms2*g*(s-1)/(c*Urms^(2-d)))^(1/(d-1));
z0_3=(24/(wp^d)*trms3*g*(s-1)/(c*Urms^(2-d)))^(1/(d-1));

xmin=sqrt(log(n));
x=(xmin:0.01:5);
Et=trapz(x,2*n*(x).^(1-v).*exp(-(x).^2));

ET_1=Et*trms1^(-s1*s2)*KCrms.^(-s2);
ET_2=Et*trms2^(-s1*s2)*KCrms.^(-s2);
ET_3=Et*trms3^(-s1*s2)*KCrms.^(-s2);

%RESULTING DATA of T*
R(i,1)=KCrms;
R(i,2)=ET_1;
R(i,3)=ET_2;
R(i,4)=ET_3;

%RESULTING DATA OF T
if D==0.50

R1(i,1)=KCrms;
R1(i,2)=ET_1*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
R1(i,3)=ET_2*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
R1(i,4)=ET_3*D^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;

elseif D==0.75
R2(i,1)=KCrms;
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R2(i,2)=ET_1*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
R2(i,3)=ET_2*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
R2(i,4)=ET_3*D^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;

else
R3(i,1)=KCrms;
R3(i,2)=ET_1*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
R3(i,3)=ET_2*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
R3(i,4)=ET_3*D^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;

end
end

end
end

Forristall

function [F1 F2 F3]=Forristall(x)
%CASE 3: THIS FUNCTION USES THE FORRISTALL DISTRIBUTION TO CALCULATE
%THE EXPECTED VALUE OF THE TIME SCALE OF BACKFILLING BY WAVES ALONE
%AROUND A PILE WHEN THE INITIAL HOLE WAS GENERATED BY A CURRENT.

%The expected value of the time scale is shown for 3 different
%values of the trms. Since trms is given, the grain size
%(z0,d50) will change for each value of KCrms, affecting T.

%DESCRIPTION OF SYMBOLS
%x: The normalized second-order wave crest.
%F1: D=0.50 m - The expected values of the time scale T*
%(col 1-7) and T(min) (col 8-13).
%F2: D=0.75 m - The expected value of the time scale T*
%(col 1-7) and T in minutes (col 8-13).
%F3: D=1.00 m - The expected value of the time scale T*
%(col 1-7) and T(min) (col 8-13).

%Et_2D: The expected value of t [-] for 2D waves.
%Et_3D: The expected value of t [-] for 3D waves.
%ET_2D: The expected value of T* [-] for 2D waves.
%ET_3D: The expected value of T* [-] for 3D waves.

syms x;

[n Hs h g s d50 arms c d]=Parameters();

s1=2;
s2=1.45;
v=s2*(s1*(2-d)+1);

trms1=0.07;
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trms2=0.10;
trms3=0.15;

for j=1:3

if j==1
D=0.5;

elseif j==2
D=0.75;

else
D=1;

end

i=0;
for KCrms=5:0.01:12

i=i+1;
kp=1/h*asinh(2*pi*arms/(D*KCrms));
wp=sqrt(g*kp*tanh(kp*h));
Tp=2*pi/wp;
Urms=wp*arms/(sinh(kp*h));

z0_1=(24/(wp^d)*trms1*g*(s-1)/(c*Urms^(2-d)...
))^(1/(d-1));
z0_2=(24/(wp^d)*trms2*g*(s-1)/(c*Urms^(2-d)...
))^(1/(d-1));
z0_3=(24/(wp^d)*trms3*g*(s-1)/(c*Urms^(2-d)...
))^(1/(d-1));

S1=2*pi*Hs/(g*Tp^2);
Ur=Hs/(kp^2*h^3);

%parameters for 2D model
alpha2=0.3536+0.2892*S1+0.1060*Ur;
beta2=2-2.1597*S1+0.0968*Ur^2;
xmin_2D=sqrt(8)*alpha2*(log(n))^(1/(beta2));
x2D=(xmin_2D:0.01:5);

%parameters for 3D model
alpha3=0.3536+0.2568*S1+0.0800*Ur;
beta3=2-1.7912*S1-0.5302*Ur+0.284*Ur^2;
xmin_3D=sqrt(8)*alpha3*(log(n))^(1/(beta3));
x3D=(xmin_3D:0.01:5);

Et_2D=trapz(x2D,n*beta2*(x2D).^(beta2-1-v)/((sqrt(8)*...
alpha2)^(beta2)).*exp(-((x2D)./(sqrt(8)*alpha2)).^(beta2)));

Et_3D=trapz(x3D,n*beta3*(x3D).^(beta3-1-v)/((sqrt(8)*...
alpha3)^(beta3)).*exp(-((x3D)./(sqrt(8)*alpha3)).^(beta3)));
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ET_2D_1=Et_2D*trms1^(-s1*s2)*KCrms.^(-s2);
ET_3D_1=Et_3D*trms1^(-s1*s2)*KCrms.^(-s2);

ET_2D_2=Et_2D*trms2^(-s1*s2)*KCrms.^(-s2);
ET_3D_2=Et_3D*trms2^(-s1*s2)*KCrms.^(-s2);

ET_2D_3=Et_2D*trms3^(-s1*s2)*KCrms.^(-s2);
ET_3D_3=Et_3D*trms3^(-s1*s2)*KCrms.^(-s2);

%RESULTING DATA
if D==0.5

%T*
F1(i,1)=KCrms;
F1(i,2)=ET_2D_1;
F1(i,3)=ET_3D_1;
F1(i,4)=ET_2D_2;
F1(i,5)=ET_3D_2;
F1(i,6)=ET_2D_3;
F1(i,7)=ET_3D_3;
%T
F1(i,8)=ET_2D_1*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
F1(i,9)=ET_3D_1*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
F1(i,10)=ET_2D_2*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
F1(i,11)=ET_3D_2*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
F1(i,12)=ET_2D_3*D^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;
F1(i,13)=ET_3D_3*D^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;

elseif D==0.75
%T*
F2(i,1)=KCrms;
F2(i,2)=ET_2D_1;
F2(i,3)=ET_3D_1;
F2(i,4)=ET_2D_2;
F2(i,5)=ET_3D_2;
F2(i,6)=ET_2D_3;
F2(i,7)=ET_3D_3;
%T
F2(i,8)=ET_2D_1*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
F2(i,9)=ET_3D_1*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
F2(i,10)=ET_2D_2*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
F2(i,11)=ET_3D_2*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
F2(i,12)=ET_2D_3*D^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;
F2(i,13)=ET_3D_3*D^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;

else
%T*
F3(i,1)=KCrms;
F3(i,2)=ET_2D_1;
F3(i,3)=ET_3D_1;
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F3(i,4)=ET_2D_2;
F3(i,5)=ET_3D_2;
F3(i,6)=ET_2D_3;
F3(i,7)=ET_3D_3;
%T
F3(i,8)=ET_2D_1*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
F3(i,9)=ET_3D_1*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
F3(i,10)=ET_2D_2*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
F3(i,11)=ET_3D_2*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
F3(i,12)=ET_2D_3*D^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;
F3(i,13)=ET_3D_3*D^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;

end
end

end
end

Plot

function P=Plot(x)
%CASE 3: THIS FUNCTION PLOTS THE EXPECTED VALUE OF THE TIME SCALE
%OF BACKFILLING BY WAVES ALONE AROUND A PILE WHEN THE INITIAL HOLE
%WAS GENERATED BY A CURRENT.

%Retrieving data from the Rayleigh distibution
[R R1 R2 R3]=Rayleigh();
% R: Data for of E[T*].
% R1: D=0.50 m - Data for E[T].
% R2: D=0.75 m - Data for E[T].
% R3: D=1.00 m - Data for E[T].

%Retrieving data from the Forristall distribution
[F1, F2, F3]=Forristall();
% F1: D=0.50 m - Data for E[T*] (Col 1-7) and E[T] (Col 8-13).
% F2: D=0.75 m - Data for E[T*] (Col 1-7) and E[T] (Col 8-13).
% F3: D=1.00 m - Data for E[T*] (Col 1-7) and E[T] (Col 8-13).

%T* with trms=0.07 and D=0.5 m, D=0.75 m and D=1 m
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=semilogx(R(:,1),R(:,2),'b',F1(:,1), F1(:,2),'c--',...

F1(:,1), F1(:,3),'c:',...
F2(:,1), F2(:,2),'k--',...
F2(:,1), F2(:,3),'k:',...
F3(:,1), F3(:,2),'m--', ...
F3(:,1), F3(:,3),'m:');

hleg=legend('Rayleigh','Forristall (2D) D=0.50 m',...
'Forristall (3D) D=0.50 m',...
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'Forristall (2D) D=0.75 m',...
'Forristall (3D) D=0.75 m',...
'Forristall (2D) D=1.00 m',...
'Forristall (3D) D=1.00 m',...
'Location','northeast');

set(hleg,'Fontsize',13)
set (h, 'LineWidth', 2.5)
u=[5 6 7 8 9 10 12];
set(gca,'XTick',u,'Fontsize',14);
axis([5 12 0 10]);
xlabel('KC_{f r m s}','Fontsize',22);
ylabel('E[T*]','Fontsize',22);
title('\theta_{f r m s}=0.07','Fontsize',17)
hgexport(gcf, '../../Figures/CASE3/CASE31.png',...

hgexport('factorystyle'), 'Format', 'png');

%T* with trms=0.15 and D=0.5 m, D=0.75 m and D=1 m
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=semilogx(R(:,1),R(:,4),'b',F1(:,1), F1(:,6),'c--',...

F1(:,1), F1(:,7),'c:',...
F2(:,1), F2(:,6),'k--',...
F2(:,1), F2(:,7),'k:',...
F3(:,1), F3(:,6),'m--',...
F3(:,1), F3(:,7),'m:');

hleg=legend('Rayleigh','Forristall (2D) D=0.50 m',...
'Forristall (3D) D=0.50 m',...
'Forristall (2D) D=0.75 m',...
'Forristall (3D) D=0.75 m',...
'Forristall (2D) D=1.00 m',...
'Forristall (3D) D=1.00 m',...
'Location','northeast');

set(hleg,'Fontsize',13);
set (h, 'LineWidth', 2.5)
u=[5 6 7 8 9 10 11 12];
set(gca,'XTick',u,'Fontsize',14);
axis([5 11 0 1.1]);
xlabel('KC_{f r m s}','Fontsize',22);
ylabel('E[T*]','Fontsize',22);
title('\theta_{f r m s}=0.15','Fontsize',17)
hgexport(gcf, '../../Figures/CASE3/CASE33.png',...

hgexport('factorystyle'), 'Format', 'png');

%T* for D=0.5 m - All theta
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=semilogx(R(:,1),R(:,2),'c',F1(:,1), F1(:,2),'c--',...
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F1(:,1), F1(:,3),'c:',...
R(:,1),R(:,3),'k',F1(:,1), F1(:,4),'k--',...

F1(:,1), F1(:,5),'k:',...
R(:,1),R(:,4),'m',F1(:,1), F1(:,6),'m--',...

F1(:,1), F1(:,7),'m:');
hleg=legend('Rayleigh \theta_{frms}=0.07',...

'Forristall (2D) \theta_{frms}=0.07',...
'Forristall (3D) \theta_{frms}=0.07',...
'Rayleigh \theta_{frms}=0.10',...
'Forristall (2D) \theta_{frms}=0.10',...
'Forristall (3D) \theta_{frms}=0.10',...
'Rayleigh \theta_{frms}=0.15',...
'Forristall (2D) \theta_{frms}=0.15',...
'Forristall (3D) \theta_{frms}=0.15',...
'Location','northeast');

set(hleg,'Fontsize',10)
set (h, 'LineWidth', 2.5)
u=[5 6 7 8 9 10 12];
set(gca,'XTick',u,'Fontsize',14);
axis([5 12 0 10]);
xlabel('KC_{f r m s}','Fontsize',22);
ylabel('E[T*]','Fontsize',22);
title('D=0.5 m','Fontsize',17)
hgexport(gcf, '../../Figures/CASE3/CASE3_D05.png',...

hgexport('factorystyle'), 'Format', 'png');

%T* for D=1.0 - All theta
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=semilogx(R(:,1),R(:,2),'c',F3(:,1), F3(:,2),'c--',...

F3(:,1), F3(:,3),'c:',...
R(:,1),R(:,3),'k',F3(:,1), F3(:,4),'k--',...

F3(:,1), F3(:,5),'k:',...
R(:,1),R(:,4),'m',F3(:,1), F3(:,6),'m--',...

F3(:,1), F3(:,7),'m:');
hleg=legend('Rayleigh \theta_{rms}=0.07',...

'Forristall (2D) \theta_{rms}=0.07',....
'Forristall (3D) \theta_{rms}=0.07',...
'Rayleigh \theta_{rms}=0.10',...
'Forristall (2D) \theta_{rms}=0.10',...
'Forristall (3D) \theta_{rms}=0.10',...
'Rayleigh \theta_{rms}=0.15',...
'Forristall (2D) \theta_{rms}=0.15',...
'Forristall (3D) \theta_{rms}=0.15',...
'Location','northeast');

set (h, 'LineWidth', 2.5)
set(hleg,'Fontsize',10)
u=[5 6 7 8 9 10 12];
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set(gca,'XTick',u,'Fontsize',14);
axis([5 12 0 10]);
xlabel('KC_{f r m s}','Fontsize',22);
ylabel('E[T*]','Fontsize',22);
title('D=1 m','Fontsize',17)
hgexport(gcf, '../../Figures/CASE3/CASE3_D10.png',...

hgexport('factorystyle'), 'Format', 'png');

%T for all D and trms=0.07
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=semilogx(R1(:,1),R1(:,2),'c',F1(:,1), F1(:,8),'c--',...

F1(:,1), F1(:,9),'c:',...
R2(:,1),R2(:,2),'k',F2(:,1), F2(:,8),'k--',...

F2(:,1), F2(:,9),'k:',...
R3(:,1),R3(:,2),'m',F3(:,1), F3(:,8),'m--',...

F3(:,1), F3(:,9),'m:');
hleg=legend('Rayleigh D=0.50 m','Forristall (2D) D=0.50 m',...

'Forristall (3D) D=0.50 m',...
'Rayleigh D=0.75 m','Forristall (2D) D=0.75 m',...

'Forristall (3D) D=0.75 m',...
'Rayleigh D=1.00 m','Forristall (2D) D=1.00 m',...

'Forristall (3D) D=1.00 m',...
'Location','northeast');

set(hleg,'Fontsize',13)
set (h, 'LineWidth', 2.5)
u=[5 6 7 8 9 10 12];
set(gca,'XTick',u,'Fontsize',14);
axis([5 12 0 50]);
xlabel('KC_{f r m s}','Fontsize',22);
ylabel('E[T]','Fontsize',22);
title('\theta_{f r m s}=0.07','Fontsize',17)
hgexport(gcf, '../../Figures/CASE3/CASE3T1.png',...

hgexport('factorystyle'), 'Format', 'png');

%T all D and trms=0.15
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=semilogx(R1(:,1),R1(:,4),'c',F1(:,1), F1(:,12),'c--',...

F1(:,1), F1(:,13),'c:',...
R2(:,1),R2(:,4),'k',F2(:,1), F2(:,12),'k--',...

F2(:,1), F2(:,13),'k:',...
R3(:,1),R3(:,4),'m',F3(:,1), F3(:,12),'m--',...

F3(:,1), F3(:,13),'m:');
hleg=legend('Rayleigh D=0.50 m','Forristall (2D) D=0.50 m',...

'Forristall (3D) D=0.50 m',...
'Rayleigh D=0.75 m','Forristall (2D) D=0.75 m',...
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'Forristall (3D) D=0.75 m',...
'Rayleigh D=1.00 m','Forristall (2D) D=1.00 m',...

'Forristall (3D) D=1.00 m',...
'Location','northeast');

set(hleg,'Fontsize',13)
set (h, 'LineWidth', 2.5)
u=[5 6 7 8 9 10 12];
set(gca,'XTick',u,'Fontsize',14);
axis([5 12 0 60]);
xlabel('KC_{f r m s}','Fontsize',22);
ylabel('E[T]','Fontsize',22);
title('\theta_{f r m s}=0.15','Fontsize',17)
hgexport(gcf, '../../Figures/CASE3/CASE3T2.png',...

hgexport('factorystyle'), 'Format', 'png');

end

Iso

function i=iso()
%CASE 3: THIS FUNCTION USES THE RAYLEIGH AND THE FORRISTALL
%DISTRIBUTION TO FIND THE RATIO OF THE NONLINEAR AND LINEAR
%SOLUTION (R1) AND THE RATIO OF THE 3D AND 2D SOLUTION (R2),
%FOR THE TIME SCALE OF BACKFILLING AROUND VERTICAL SLENDER PILES.
%%R1 AND R2 ARE PLOTTED AS ISOCURVES VERSUS URSELLS NUMBER
%(Ur) AND THE STEEPNESS (S1).

%DESCRIPTION OF SYMBOLS
%x_R: The normalized linar wave amplitude.
%x_2D: The normalized second-order wave crest for 2D waves.
%x_3D: The normalized second-order wave crest for 3D waves.

syms x_R x_2D x_3D;

[n Hs h g s d50 arms c d]=Parameters();

s1=2;
s2=1.45;
v=s2*(s1*(2-d)+1);

o=zeros(101,101);
h=zeros(101,101);

Ur=0.01;
for i=1:101

Ur=Ur+0.01;
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h(:,i)=Ur;

S1=0.0015;
for j=1:101

S1=S1+0.0015;
o(j,:)=S1;

alpha2=0.3536+0.2892*S1+0.1060*Ur;
beta2=2-2.1597*S1+0.0968*Ur^2;
alpha3=0.3536+0.2568*S1+0.0800*Ur;
beta3=2-1.7912*S1-0.5302*Ur+0.284*Ur^2;

xmin_R=sqrt(log(n));
xmin_2D=sqrt(8)*alpha2*(log(n))^(1/(beta2));
xmin_3D=sqrt(8)*alpha3*(log(n))^(1/(beta3));

x_R=(xmin_R:0.01:5);
x_2D=(xmin_2D:0.01:5);
x_3D=(xmin_3D:0.01:5);

%THE EXPECTED VALUE t
e_R=2*n*(x_R).^(1-v).*exp(-((x_R).^2));
e_2D=n*beta2*(x_2D).^(beta2-1-v)/((sqrt(8)*alpha2).^...

beta2).*exp(-((x_2D)./(sqrt(8).*alpha2)).^beta2);
e_3D=n*beta3*(x_3D).^(beta3-1-v)/((sqrt(8)*alpha3).^...

beta3).*exp(-((x_3D)./(sqrt(8).*alpha3)).^beta3);

E_R=trapz(x_R,e_R);
E_2D=trapz(x_2D,e_2D);
E_3D=trapz(x_3D,e_3D);

%R1
R1_2D=(E_2D)/(E_R);
R1_3D=(E_3D)/(E_R);

%R2
R2=E_3D/E_2D;

%data for plot
k1(j,i)=R1_2D;
k2(j,i)=R1_3D;
k3(j,i)=R2;

end
end

%PLOT
%R1_2D
h1=figure;
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set(h1, 'Position', [5 5 700 500],'Visible','off')
c1=contour(h,o,k1,'b','LineWidth',2.5);
clabel(c1,'Fontsize',18);
u=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];
set(gca,'XTick',u,'Fontsize',18);
u=[0 0.02 0.04 0.06 0.08 0.10 0.12 0.14];
set(gca,'YTick',u,'Fontsize',18);
xlabel('U_{R}','Fontsize',22);
ylabel('S_{1}','Fontsize',22);
title('R_{1,2D}', 'Fontsize',22)
hgexport(gcf, '../../Figures/CASE3/CASE3_R1_2D.png',...

hgexport('factorystyle'), 'Format', 'png');

%R1_3D
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
c1=contour(h,o,k2,'b','LineWidth',2.5);
clabel(c1,'Fontsize',18);
u=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];
set(gca,'XTick',u,'Fontsize',18);
u=[0 0.02 0.04 0.06 0.08 0.10 0.12 0.14];
set(gca,'YTick',u,'Fontsize',18);
xlabel('U_{R}','Fontsize',22);
ylabel('S_{1}','Fontsize',22');
title('R_{1,3D}', 'Fontsize',22)
hgexport(gcf, '../../Figures/CASE3/CASE3_R1_3D.png',...

hgexport('factorystyle'), 'Format', 'png');

%R2
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
c1=contour(h,o,k3,'b','LineWidth',2.5);
clabel(c1,'Fontsize',18);
u=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];
set(gca,'XTick',u,'Fontsize',18);
u=[0 0.02 0.04 0.06 0.08 0.10 0.12 0.14];
set(gca,'YTick',u,'Fontsize',18);
xlabel('U_{R}','Fontsize',22);
ylabel('S_{1}','Fontsize',22);
title('R_{2}', 'Fontsize',22)
hgexport(gcf, '../../Figures/CASE3/CASE3_R2.png',...

hgexport('factorystyle'), 'Format', 'png');
end
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B. 4 - CASE 4

Rayleigh

function [R1 R2 R3]=Rayleigh(x)
%CASE 4: THIS FUNCTION USES THE RAYLEIGH DISTRIBUTION TO CALCULATE
%THE EXPECTED VALUE OF THE TIME SCALE FOR BACKFILLING AROUND A PILE
%WHEN THE INITIAL HOLE WAS GENERATED BY WAVES. THE TIME SCALE WHEN
%THE INITIAL HOLE WAS GENERATED BY A CURRENT (CASE 3) IS OF INTEREST FOR
%COMPARISON.

%The time is calculated for 3 different initial values of KC (KCirms),
%and plotted versus KCfrms*tfrms^2 where tfrms is calculated for the
%given KCfrms.

%DESCRIPTION OF SYMBOLS
%x: the normalized linear wave amplitude
%R1:D=0.50 m - The expected values of the time scale T*
%(col 1-5) and T(min) (col 6-9).
%R2: D=0.75 m - The expected values of the time scale T*
%(col 1-5) and T(min9) (col 6-9).
%R3 D=1.00 m - The expected values of the time scale T*
%(col 1-5) and T(min) (col 6-9).

%Et: The expected value of t [-].
%ET: The expected value of T* [-] (CASE 3)
%ET_1, ET_2 and ET_3: The expected value of T* [-] (CASE 4)

syms x;

[n Hs h g s d50 arms c d]=Parameters();

KCirms1=11;
KCirms2=20;
KCirms3=32;

s1=2;
s2=1.45;
r1=70;
v=s2*(s1*(2-d)+1);

for j=1:3
if j==1

D=0.5;
elseif j==2

D=0.75;

XLIII



else
D=1;

end

i=0;
for KCrms=2:0.1:13

i=i+1;

kp=1/h*asinh(2*pi*arms/(D*KCrms));
wp=sqrt(g*kp*tanh(kp*h));
Arms=arms/(sinh(kp*h));
Urms=wp*Arms;
trms=0.5*c*(wp*d50/12)^d*Urms^(2-d)/(g*(s-1)*d50);

%The expected value of T*
xmin=sqrt(log(n));
x=(xmin:0.01:5);
Et=trapz(x,2*n*(x).^(1-v).*exp(-(x).^2));

%CASE 3
ET=Et*trms^(-s1*s2)*KCrms^(-s2);

%CASE 4
ET_1=Et*(r1*KCrms.*(trms).^(s1)/KCirms1).^(-s2);
ET_2=Et*(r1*KCrms.*(trms).^(s1)/KCirms2).^(-s2);
ET_3=Et*(r1*KCrms.*(trms).^(s1)/KCirms3).^(-s2);

%RESULTING DATA
if D==0.5

%T*
R1(i,1)=KCrms*trms^2;
R1(i,2)=ET_1;
R1(i,3)=ET_2;
R1(i,4)=ET_3;
R1(i,5)=ET;
%T
R1(i,6)=ET_1*D^2/sqrt(g*(s-1)*d50^3)/60;
R1(i,7)=ET_2*D^2/sqrt(g*(s-1)*d50^3)/60;
R1(i,8)=ET_3*D^2/sqrt(g*(s-1)*d50^3)/60;
R1(i,9)=ET*D^2/sqrt(g*(s-1)*d50^3)/60;

elseif D==0.75
%T*
R2(i,1)=KCrms*trms^2;
R2(i,2)=ET_1;
R2(i,3)=ET_2;
R2(i,4)=ET_3;
R2(i,5)=ET;
%T
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R2(i,6)=ET_1*D^2/sqrt(g*(s-1)*d50^3)/60;
R2(i,7)=ET_2*D^2/sqrt(g*(s-1)*d50^3)/60;
R2(i,8)=ET_3*D^2/sqrt(g*(s-1)*d50^3)/60;
R2(i,9)=ET*D^2/sqrt(g*(s-1)*d50^3)/60;

else
%T*
R3(i,1)=KCrms*trms^2;
R3(i,2)=ET_1;
R3(i,3)=ET_2;
R3(i,4)=ET_3;
R3(i,5)=ET;
%T
R3(i,6)=ET_1*D^2/sqrt(g*(s-1)*d50^3)/60;
R3(i,7)=ET_2*D^2/sqrt(g*(s-1)*d50^3)/60;
R3(i,8)=ET_3*D^2/sqrt(g*(s-1)*d50^3)/60;
R3(i,9)=ET*D^2/sqrt(g*(s-1)*d50^3)/60;

end
end

end
end

Forristall

function [F1 F2 F3]=Forristall(x)
%CASE 4: THIS FUNCTION USES THE FORRISTALL DISTRIBUTION TO CALCULATE
%THE EXPECTED VALUE OF THE TIME SCALE FOR BACKFILLING AROUND A PILE
%WHEN THE INITIAL HOLE WAS GENERATED BY WAVES. THE TIME SCALE WHEN
%THE INITIAL HOLE WAS GENERATED BY A CURRENT (CASE 3) IS OF INTEREST
%FOR COMPARISON.

%The time is calculated for 3 different initial values of KC (KCirms),
%and plotted versus KCfrms*tfrms^2 where tfrms is calculated for the
%given KCfrms.

%DESCRIPTION OF SYMBOLS
%x: the normalized nonlinear wave amplitude
%F1: D=0.50 m - The expected values of the time scale T*
%(col 1-9) and T(min) (col 10-17).
%F2: D=0.75 m - The expected values of the time scale T*
%(col 1-9) and T(min) (col 10-17).
%F3: D=1.00 m - The expected values of the time scale T*
%(col 1-9) and T in minutes (col 10-17).

%ET_2D and ET_3D: The expected value of T* [-] (CASE 3)
%ET_1_2D, ET_1_3D - ET_2_2D, ET_2_3D - ET_3_2D, ET_3_3D:
%The expected value of T* [-] (CASE 4) for each case of
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%different KCirms

syms x;

[n Hs h g s d50 arms c d]=Parameters();

KCirms1=11;
KCirms2=20;
KCirms3=32;

s1=2;
s2=1.45;
r1=70;
v=s2*(s1*(2-d)+1);

for j=1:3
if j==1

D=0.5;
elseif j==2

D=0.75;
else

D=1;
end

i=0;
for KCrms=2:0.1:13

i=i+1;

kp=1/h*asinh(2*pi*arms/(D*KCrms));
wp=sqrt(g*kp*tanh(kp*h));
Tp=2*pi/wp;
Arms=arms/(sinh(kp*h));
Urms=wp*Arms;
trms=0.5*c*(wp*d50/12)^d*Urms^(2-d)/(g*(s-1)*d50);

S1=2*pi*Hs/(g*Tp^2);
Ur=Hs/(kp^2*h^3);

%parameters for 2D model
alpha2=0.3536+0.2892*S1+0.1060*Ur;
beta2=2-2.1597*S1+0.0968*Ur^2;
xmin_2D=sqrt(8)*alpha2*(log(n))^(1/(beta2));
x2D=[xmin_2D:0.01:5];

%parameters for 3D model
alpha3=0.3536+0.2568*S1+0.0800*Ur;
beta3=2-1.7912*S1-0.5302*Ur+0.284*Ur^2;
xmin_3D=sqrt(8)*alpha3*(log(n))^(1/(beta3));
x3D=[xmin_3D:0.01:5];
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%THE EXPECTED VALUE OF THE TIME SCALE T*
Et_2D=trapz(x2D,n*beta2*(x2D).^(beta2-1-v)/((sqrt(8)*...

alpha2)^(beta2)).*exp(-((x2D)./(sqrt(8)*alpha2)).^(beta2)));
Et_3D=trapz(x3D,n*beta3*(x3D).^(beta3-1-v)/((sqrt(8)*...

alpha3)^(beta3)).*exp(-((x3D)./(sqrt(8)*alpha3)).^(beta3)));

%CASE 3
ET_2D=Et_2D*trms^(-s2*s1)*KCrms^(-s2);
ET_3D=Et_3D*trms^(-s2*s1)*KCrms^(-s2);

%CASE 4
ET_2D_1=Et_2D*(r1*KCrms*trms^2/KCirms1)^(-s2);
ET_3D_1=Et_3D*(r1*KCrms*trms^2/KCirms1)^(-s2);

ET_2D_2=Et_2D*(r1*KCrms*trms^2/KCirms2)^(-s2);
ET_3D_2=Et_3D*(r1*KCrms*trms^2/KCirms2)^(-s2);

ET_2D_3=Et_2D*(r1*KCrms*trms^2/KCirms3)^(-s2);
ET_3D_3=Et_3D*(r1*KCrms*trms^2/KCirms3)^(-s2);

%RESULTING DATA

if D==0.5
%T*
F1(i,1)=KCrms*trms^2;
F1(i,2)=ET_2D_1;
F1(i,3)=ET_3D_1;
F1(i,4)=ET_2D_2;
F1(i,5)=ET_3D_2;
F1(i,6)=ET_2D_3;
F1(i,7)=ET_3D_3;
F1(i,8)=ET_2D;
F1(i,9)=ET_3D;
%T
F1(i,10)=ET_2D_1*D^2/sqrt(g*(s-1)*d50^3)/60;
F1(i,11)=ET_3D_1*D^2/sqrt(g*(s-1)*d50^3)/60;
F1(i,12)=ET_2D_2*D^2/sqrt(g*(s-1)*d50^3)/60;
F1(i,13)=ET_3D_2*D^2/sqrt(g*(s-1)*d50^3)/60;
F1(i,14)=ET_2D_3*D^2/sqrt(g*(s-1)*d50^3)/60;
F1(i,15)=ET_3D_3*D^2/sqrt(g*(s-1)*d50^3)/60;
F1(i,16)=ET_2D*D^2/sqrt(g*(s-1)*d50^3)/60;
F1(i,17)=ET_3D*D^2/sqrt(g*(s-1)*d50^3)/60;

elseif D==0.75
%T*
F2(i,1)=KCrms*trms^2;
F2(i,2)=ET_2D_1;
F2(i,3)=ET_3D_1;
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F2(i,4)=ET_2D_2;
F2(i,5)=ET_3D_2;
F2(i,6)=ET_2D_3;
F2(i,7)=ET_3D_3;
F2(i,8)=ET_2D;
F2(i,9)=ET_3D;
%T
F2(i,10)=ET_2D_1*D^2/sqrt(g*(s-1)*d50^3)/60;
F2(i,11)=ET_3D_1*D^2/sqrt(g*(s-1)*d50^3)/60;
F2(i,12)=ET_2D_2*D^2/sqrt(g*(s-1)*d50^3)/60;
F2(i,13)=ET_3D_2*D^2/sqrt(g*(s-1)*d50^3)/60;
F2(i,14)=ET_2D_3*D^2/sqrt(g*(s-1)*d50^3)/60;
F2(i,15)=ET_3D_3*D^2/sqrt(g*(s-1)*d50^3)/60;
F2(i,16)=ET_2D*D^2/sqrt(g*(s-1)*d50^3)/60;
F2(i,17)=ET_3D*D^2/sqrt(g*(s-1)*d50^3)/60;

else
%T*
F3(i,1)=KCrms*trms^2;
F3(i,2)=ET_2D_1;
F3(i,3)=ET_3D_1;
F3(i,4)=ET_2D_2;
F3(i,5)=ET_3D_2;
F3(i,6)=ET_2D_3;
F3(i,7)=ET_3D_3;
F3(i,8)=ET_2D;
F3(i,9)=ET_3D;
%T
F3(i,10)=ET_2D_1*D^2/sqrt(g*(s-1)*d50^3)/60;
F3(i,11)=ET_3D_1*D^2/sqrt(g*(s-1)*d50^3)/60;
F3(i,12)=ET_2D_2*D^2/sqrt(g*(s-1)*d50^3)/60;
F3(i,13)=ET_3D_2*D^2/sqrt(g*(s-1)*d50^3)/60;
F3(i,14)=ET_2D_3*D^2/sqrt(g*(s-1)*d50^3)/60;
F3(i,15)=ET_3D_3*D^2/sqrt(g*(s-1)*d50^3)/60;
F3(i,16)=ET_2D*D^2/sqrt(g*(s-1)*d50^3)/60;
F3(i,17)=ET_3D*D^2/sqrt(g*(s-1)*d50^3)/60;

end
end

end
end

Plot

function P=Plot(x)
%CASE 4: THIS FUNCTION PLOTS THE EXPECTED VALUE OF THE TIME SCALE FOR
%BACKFILLING AROUND A PILE WHEN THE INITIAL HOLE WAS GENERATED BY WAVES.
%THE TIME SCALE WHEN
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%Retrieving data from the Rayleigh distibution
[R1 R2 R3]=Rayleigh();
% R1: D=0.50 m - Data for E[T*] (Col 1-5) and E[T] (Col 6-9)
% R2: D=0.75 m - Data for E[T*] (Col 1-5) and E[T] (Col 6-9)
% R3: D=1.00 m - Data for E[T*] (Col 1-5) and E[T] (Col 6-9)

%Retrieving data from the Forristall distribution
[F1 F2 F3]=Forristall();
% F1: D=0.50 m - Data for E[T*] (Col 1-9) and E[T] (Col 10-17)
% F2: D=0.75 m - Data for E[T*] (Col 1-9) and E[T] (Col 10-17)
% F3: D=1.00 m - Data for E[T*] (Col 1-9) and E[T] (Col 10-17)

%T* for D=1 m; All cases of KCi
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=semilogx(R3(:,1),R3(:,2),'c',F3(:,1),F3(:,2),'c--',...

F3(:,1),F3(:,3),'c:',...
R3(:,1),R3(:,3),'b',F3(:,1),F3(:,4),'b--',...

F3(:,1),F3(:,5),'b:',...
R3(:,1),R3(:,4),'k',F3(:,1),F3(:,6),'k--',...

F3(:,1),F3(:,7),'k:',...
R3(:,1),R3(:,5),'m',F3(:,1),F3(:,8),'m--',...

F3(:,1),F3(:,9),'m:');
hleg=legend('Rayleigh KC_{i r m s}=11',...

'Forristall (2D) KC_{i r m s}=11',...
'Forristall (3D) KC_{i r m s}=11',...
'Rayleigh KC_{i r m s}=20',...
'Forristall (2D) KC_{i r m s}=20',...
'Forristall (3D) KC_{i r m s}=20',...
'Rayleigh KC_{i r m s}=32',...
'Forristall (2D) KC_{i r m s}=32',...
'Forristall (3D) KC_{i r m s}=32',...
'Rayleigh KC_{i r m s}=\infty',...
'Forristall (2D) KC_{i r m s}=\infty',...
'Forristall (3D) KC_{i r m s}=\infty');

set (h, 'LineWidth', 2.5)
set(hleg,'Fontsize',11)
axis([0.07 0.55 0 2.2 ]);
u = [0.07 0.1 0.2 0.3 0.4 0.55];
set(gca,'XTick',u,'Fontsize',14);
xlabel('(\theta^2KC)_{f r m s}','Fontsize',22)
ylabel('E[T*]','Fontsize',22)
title('D=1 m','Fontsize',17)
hgexport(gcf,'../../Figures/CASE4/CASE41.png',...

hgexport('factorystyle'),'Format','png')

%T* for all D and all KCi (except current)
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h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=semilogx(F1(:,1),F1(:,2),'c--',F1(:,1),F1(:,3),'c:',...

F1(:,1),F1(:,4),'c--',F1(:,1),F1(:,5),'c:',...
F1(:,1),F1(:,6),'c--',F1(:,1),F1(:,7),'c:',...
F2(:,1),F2(:,2),'k--',F2(:,1),F2(:,3),'k:',...
F2(:,1),F2(:,4),'k--',F2(:,1),F2(:,5),'k:',...
F2(:,1),F2(:,6),'k--',F2(:,1),F2(:,7),'k:',...
F3(:,1),F3(:,2),'m--',F3(:,1),F3(:,3),'m:',...
F3(:,1),F3(:,4),'m--',F3(:,1),F3(:,5),'m:',...
F3(:,1),F3(:,6),'m--',F3(:,1),F3(:,7),'m:');

hleg=legend(h([1 2 7 8 13 14]),'Forristall (2D) D=0.50 m',...
'Forristall (3D) D=0.50 m',...
'Forristall (2D) D=0.75 m',...
'Forristall (3D) D=0.75 m',...
'Forristall (2D) D=1.00 m',...
'Forristall (3D) D=1.00 m');

set (h, 'LineWidth', 2.5)
set(hleg,'Fontsize',13)
axis([0.07 0.55 0.01 0.35]);
u = [0.07 0.2 0.3 0.4 0.55];
set(gca,'XTick',u,'Fontsize',14);
xlabel('(\theta^2KC)_{f r m s}','Fontsize',22)
ylabel('E[T*]','Fontsize',22)
hgexport(gcf,'../../Figures/CASE4/CASE42.png',...

hgexport('factorystyle'),'Format','png')

%T for D=0.5 m
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=semilogx(R1(:,1),R1(:,6),'c',F1(:,1),F1(:,10),'c--',...

F1(:,1),F1(:,11),'c:',...
R1(:,1),R1(:,7),'b',F1(:,1),F1(:,12),'b--',...

F1(:,1),F1(:,13),'b:',...
R1(:,1),R1(:,8),'k',F1(:,1),F1(:,14),'k--',...

F1(:,1),F1(:,15),'k:');
hleg=legend('Rayleigh KC_{i r m s}=11',...

'Forristall (2D) KC_{i r m s}=11',...
'Forristall (3D) KC_{i r m s}=11',...
'Rayleigh KC_{i r m s}=20',...
'Forristall (2D) KC_{i r m s}=20',...
'Forristall (3D) KC_{i r m s}=20',...
'Rayleigh KC_{i r m s}=32',...
'Forristall (2D) KC_{i r m s}=32',...
'Forristall (3D) KC_{i r m s}=32');

set(hleg,'Fontsize',13)
set (h, 'LineWidth', 2.5)

axis([0.07 0.55 0 23]);
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u = [0.07 0.1 0.2 0.3 0.4 0.55];
set(gca,'XTick',u,'Fontsize',14);
xlabel('(\theta^2KC)_{f r m s}','Fontsize',22)
ylabel('E[T]','Fontsize',22)
title('D=0.5 m','Fontsize',17)
hgexport(gcf,'../../Figures/CASE4/CASE4T1.png',...

hgexport('factorystyle'),'Format','png')

%T for D=1 m
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=semilogx(R2(:,1),R2(:,6),'c',F2(:,1),F2(:,10),'c--',...

F2(:,1),F2(:,11),'c:',...
R2(:,1),R2(:,7),'b',F2(:,1),F2(:,12),'b--',...

F2(:,1),F2(:,13),'b:',...
R2(:,1),R2(:,8),'k',F2(:,1),F2(:,14),'k--',...

F2(:,1),F2(:,15),'k:');
hleg=legend('Rayleigh KC_{i r m s}=11',...

'Forristall (2D) KC_{i r m s}=11',...
'Forristall (3D) KC_{i r m s}=11',...
'Rayleigh KC_{i r m s}=20',...
'Forristall (2D) KC_{i r m s}=20',...
'Forristall (3D) KC_{i r m s}=20',...
'Rayleigh KC_{i r m s}=32',...
'Forristall (2D) KC_{i r m s}=32',...
'Forristall (3D) KC_{i r m s}=32');

set(hleg,'Fontsize',13)
set (h, 'LineWidth', 2.5)

axis([0.07 0.55 0 53 ]);
u = [0.07 0.1 0.2 0.3 0.4 0.55];
set(gca,'XTick',u,'Fontsize',14);
xlabel('(\theta^2KC)_{f r m s}','Fontsize',22)
ylabel('E[T]','Fontsize',22)
title('D=1 m','Fontsize',17)
hgexport(gcf,'../../Figures/CASE4/CASE4T3.png',...

hgexport('factorystyle'),'Format','png')
end

B. 5 - CASE 5

wc1

function x1=wc1()
%CASE 5: THIS FUNCTION FINDS THE LOWER VALUE OF wc FOR EACH
%VALUE OF Ucwrms.
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%The highest value of wcmin is 1 and will appear when
%Ucwrms=0.7. When Ucwrms decreases, the denominator can
%be higher before "ledd" equals 0.7. This means that
%wcmin will decrease for decreases value of Ucrwms.

l=0;
for Ucwrms=0:0.01:0.7

j=0;
l=l+1;
for x=1:-0.001:0

ledd=Ucwrms./(x.*(1-Ucwrms)+Ucwrms);
if ledd>=0.7

j=j+1;
x=x-0.001;

if j==1;
x=x+0.002;

x1(l,1)=x;
end

end
end

end
end

Rayleigh

function [R R1 R2 R3]=Rayleigh(x)
%CASE 5: THIS FUNCTION USES THE RAYLEIGH DISTRIBUTION TO CALCULATE
%THE EXPECTED VALUE OF THE TIME SCALE FOR BACKFILLING IN WAVES +
%CURRENT AROUND A SLENDER VERTICAL PILE WHEN THE INITAL HOLE WAS
%GENERATED BY A CURRENT. THE TIME SCALE IS CALCULATED FOR DIFFERENT
%VALUES OF THE CURRENT WAVE VELOCITY (Ucwrms).

%When the time scale exceeds the value of waves alone (CASE 3),
%the time scale takes this value. The time scale is shown for 3
%different values of (KCrms, trms). T* is independent of D for
%Rayleigh because trms is given. %Since trms is given, the grain
%size (z0,d50) will change for each value of KCrms. To find T when
%knowing T*, z0 must be calulated.

%DESCRIPTION OF SYMBOLS
%x: the normalized linear wave amplitude
%R: The expected value of the time scale T* is
%R1: D=0.50 m - The expeced value of the time scale T (min).
%R2: D=0.75 m - The expeced value of the time scale T (min).
%R3: D=1.00 m - The expeced value of the time scale T (min).
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%Et: The expected value of t [-].
%ET1: The expected value of T* [-] (CASE 3).
%ET2: The expected value of T* [-] (CASE 5).

syms x;

[n Hs h g s d50 arms c d]=Parameters();
[x1]=wc1();

KCrms1=4;
KCrms2=7;
KCrms3=4;

trms1=0.07;
trms2=0.07;
trms3=0.09;

%CASE 3
s1=2;
s2=1.45;
v=s2*(s1*(2-d)+1);

xmin=sqrt(log(n));
x=(xmin:0.01:5);
Et=trapz(x,2*n*(x).^(1-v).*exp(-(x).^2));

ET11=Et*trms1^(-s1*s2)*KCrms1^(-s2);
ET12=Et*trms2^(-s1*s2)*KCrms2^(-s2);
ET13=Et*trms3^(-s1*s2)*KCrms3^(-s2);

%CASE 5
s1=2;

for l=1:3
if l==1

D=0.5;
elseif l==2

D=0.75;
else

D=1;
end

for i=1:3
if i==1;

KCrms=KCrms1;
trms=trms1;

elseif i==2
KCrms=KCrms2;
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trms=trms2;
else

KCrms=KCrms3;
trms=trms3;

end

kp=1/h*asinh(2*pi*arms/(D*KCrms));
wr=sqrt(g*kp*tanh(kp*h));
Urms=wr*arms/(sinh(kp*h));

j=0;
for Ucwrms=0:0.01:0.7

j=j+1;

Uc=Ucwrms*Urms/(1-Ucwrms);
wp=Uc*kp+sqrt(g*kp*tanh(kp*h));

z0_1=(24/(wp^d)*trms1*g*(s-1)/(c*Urms^(2-d)))^(1/(d-1));
z0_2=(24/(wp^d)*trms2*g*(s-1)/(c*Urms^(2-d)))^(1/(d-1));
z0_3=(24/(wp^d)*trms3*g*(s-1)/(c*Urms^(2-d)))^(1/(d-1));

x1n=sqrt(log(n)+(x1(j))^2);
x=[x1n:0.001:5];
pd=2*n.*x.*exp((x1(j)).^2-(x).^2);
ET=trapz(x,pd.*(1.9-(0.65./(nthroot((trms.^(s1).*...
KCrms.*x.^(s1*(2-d)+1)-0.01).^(42),25))+2).*...
(Ucwrms./(x.*(1-Ucwrms)+Ucwrms)-0.7)));

if i==1;
ET2(j,1)=ET;

elseif i==2;
ET2(j,2)=ET;

else
ET2(j,3)=ET;

end
end

end

%COMPARING VALUES
for i=1:71 %if the value from CASE 5 exceeds the value from
%CASE 3, T* takes the value of CASE 3.

if ET2(i,1)>ET11;
ET_1(i,1)=ET11;

else
ET_1(i,1)=ET2(i,1);

end
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if ET2(i,2)>ET12;
ET_2(i,1)=ET12;

else
ET_2(i,1)=ET2(i,2);

end

if ET2(i,3)>ET13;
ET_3(i,1)=ET13;

else
ET_3(i,1)=ET2(i,3);

end
end

%RESULTING DATA OF T*
R(:,1)=(0:0.01:0.7);
R(:,2)=ET_1;
R(:,3)=ET_2;
R(:,4)=ET_3;

%RESULTING DATA OF T
if D==0.5

R1(:,1)=(0:0.01:0.7);
R1(:,2)=ET_1*0.5^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
R1(:,3)=ET_2*0.5^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
R1(:,4)=ET_3*0.5^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;

elseif D==0.75
R2(:,1)=(0:0.01:0.7);
R2(:,2)=ET_1*0.75^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
R2(:,3)=ET_2*0.75^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
R2(:,4)=ET_3*0.75^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;

else
R3(:,1)=(0:0.01:0.7);
R3(:,2)=ET_1*1^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
R3(:,3)=ET_2*1^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
R3(:,4)=ET_3*1^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;

end
end
end

Forristall

function [F1 F2 F3]=Forristall(x)
%CASE 5: THIS FUNCTION USES THE FORRISTALL DISTRIBUTION TO CALCULATE
%THE EXPECTED VALUE OF THE TIME SCALE FOR BACKFILLING IN WAVES +
%CURRENT AROUND A SLENDER VERTICAL PILE WHEN THE INITAL HOLE WAS
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%GENERATED BY A CURRENT. THE TIME SCALE IS CALCULATED FOR DIFFERENT
%VALUES OF THE CURRENT WAVE VELOCITY (Ucwrms).

%When the time scale exceeds the value of waves alone (CASE 3),
%the time scale takes this value. The time scale is shown for 3
%different values of (KCrms, trms). Since trms is given, the grain
%size (z0,d50) will change for each value of KCrms. To find T when
%knowing T*, z0 must be calulated.

%DESCRIPTION OF SYMBOLS
%x: The normalized second-order wave crest.
%F1: D=0.50 m - The expected values of the time scale T*
%(col 1-7) and T(min) (col 8-13).
%F2: D=0.75 m - The expected value of the time scale T*
%(col 1-7) and T in minutes (col 8-13).
%F3: D=1.00 m - The expected value of the time scale T*
%(col 1-7) and T(min) (col 8-13).

%Et: The expected value of t [-].
%ET1: The expected value of T* [-] (CASE 3).
%ET2: The expected value of T* [-] (CASE 5).
syms x;

[n Hs h g s d50 arms c d]=Parameters();
[x1]=wc1();

KCrms1=4;
KCrms2=7;
KCrms3=4;

trms1=0.07;
trms2=0.07;
trms3=0.09;

for l=1:3
if l==1

D=0.5;
elseif l==2

D=0.75;
else

D=1;
end

for i=1:3
if i==1;

KCrms=KCrms1;
trms=trms1;

elseif i==2;
KCrms=KCrms2;
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trms=trms2;
else

KCrms=KCrms3;
trms=trms3;

end

kp=1/h*asinh(2*pi*arms/(D*KCrms));
wr=sqrt(g*kp*tanh(kp*h));
Urms=wr*arms/(sinh(kp*h));

j=0;
for Ucwrms=0:0.01:0.7

j=j+1;

%CASE 3
S1=2*pi*Hs/(g*(2*pi/wr)^2);
Ur=Hs/(kp^2*h^3);

%parameters 2D model
alpha2=0.3536+0.2892*S1+0.1060*Ur;
beta2=2-2.1597*S1+0.0968*Ur^2;
xmin_2D=sqrt(8)*alpha2*(log(n))^(1/(beta2));
x2D=(xmin_2D:0.001:5);

%parameters 3D model
alpha3=0.3536+0.2568*S1+0.0800*Ur;
beta3=2-1.7912*S1-0.5302*Ur+0.284*Ur^2;
xmin_3D=sqrt(8)*alpha3*(log(n))^(1/(beta3));
x3D=(xmin_3D:0.001:5);

%CASE 3
s1=2;
s2=1.45;
v=s2*(s1*(2-d)+1);

Et1_2D=trapz(x2D,n*beta2*(x2D).^(beta2-1-v)/...
((sqrt(8)*alpha2)^(beta2)).*exp(-((x2D)./...
(sqrt(8)*alpha2)).^(beta2)));

Et1_3D=trapz(x3D,n*beta3*(x3D).^(beta3-1-v)/...
((sqrt(8)*alpha3)^(beta3)).*exp(-((x3D)./...
(sqrt(8)*alpha3)).^(beta3)));

ET1_2D=Et1_2D*trms^(-s1*s2)*KCrms^(-s2);
ET1_3D=Et1_3D*trms^(-s1*s2)*KCrms^(-s2);

if i==1
ET11_2D(1,j)=ET1_2D;
ET11_3D(1,j)=ET1_3D;
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elseif i==2
ET12_2D(1,j)=ET1_2D;
ET12_3D(1,j)=ET1_3D;

else
ET13_2D(1,j)=ET1_2D;
ET13_3D(1,j)=ET1_3D;

end

%CASE 5
s1=2;
Uc=Ucwrms*Urms/(1-Ucwrms);
wp=Uc*kp+sqrt(g*kp*tanh(kp*h));
Tp=2*pi/wp;

z0_1=(24/(wp^d)*trms1*g*(s-1)/(c*Urms^(2-d)))^(1/(d-1));
z0_2=(24/(wp^d)*trms2*g*(s-1)/(c*Urms^(2-d)))^(1/(d-1));
z0_3=(24/(wp^d)*trms3*g*(s-1)/(c*Urms^(2-d)))^(1/(d-1));

S1=2*pi*Hs/(g*(2*pi/wp)^2);
Ur=Hs/(kp^2*h^3);

%parameters 2D model
alpha2=0.3536+0.2892*S1+0.1060*Ur;
beta2=2-2.1597*S1+0.0968*Ur^2;
xmin_2D=sqrt(8)*alpha2*(log(n))^(1/(beta2));
x2D=(xmin_2D:0.001:5);

%parameters 3D model
alpha3=0.3536+0.2568*S1+0.0800*Ur;
beta3=2-1.7912*S1-0.5302*Ur+0.284*Ur^2;
xmin_3D=sqrt(8)*alpha3*(log(n))^(1/(beta3));
x3D=(xmin_3D:0.001:5);

for y=1:2
if y==1

alpha=alpha2;
beta=beta2;

else
alpha=alpha3;
beta=beta3;

end

x1n=sqrt(8)*alpha*((x1(j)/(sqrt(8)*alpha))...
^(beta)+log(n))^(1/beta);
x=(x1n:0.001:5);
pd=(n*(1/(sqrt(8)*alpha))^(beta)*beta.*x.^...
(beta-1).*exp((x1(j)/(sqrt(8)*alpha))^(beta))...
.*exp(-(x./(sqrt(8)*alpha)).^beta));
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ET2=trapz(x,pd.*(1.9-(0.65./(nthroot((trms.^...
(s1).*KCrms.*x.^(s1*(2-d)+1)-0.01).^(42),25))+2).*...
((Ucwrms./(x.*(1-Ucwrms)+Ucwrms))-0.7)));

%Writes data for 2D
if y==1;

if i==1
ET21_2D(1,j)=ET2;

elseif i==2
ET22_2D(1,j)=ET2;

else
ET23_2D(1,j)=ET2;

end

%Writes data for 3D
else

if i==1
ET21_3D(1,j)=ET2;

elseif i==2
ET22_3D(1,j)=ET2;

else
ET23_3D(1,j)=ET2;

end
end

end
end

end

%LOOP COMPARING BACKFILLING WAVES/WAVES+CURRENT
for j=1:71

if ET21_2D(1,j)>ET11_2D(1,j) %example 1
ET_2D_1(1,j)=ET11_2D(1,j);

else
ET_2D_1(1,j)=ET21_2D(1,j);

end

if ET21_3D(1,j)>ET11_3D(1,j);
ET_3D_1(1,j)=ET11_3D(1,j);

else
ET_3D_1(1,j)=ET21_3D(1,j);

end

if ET22_2D(1,j)>ET12_2D(1,j) %example 2
ET_2D_2(1,j)=ET12_2D(1,j);

else
ET_2D_2(1,j)=ET22_2D(1,j);

end

if ET22_3D(1,j)>ET12_3D(1,j);
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ET_3D_2(1,j)=ET12_3D(1,j);
else

ET_3D_2(1,j)=ET22_3D(1,j);
end

if ET23_2D(1,j)>ET13_2D(1,j) %example 3
ET_2D_3(1,j)=ET13_2D(1,j);

else
ET_2D_3(1,j)=ET23_2D(1,j);

end

if ET23_3D(1,j)>ET13_3D(1,j);
ET_3D_3(1,j)=ET13_3D(1,j);

else
ET_3D_3(1,j)=ET23_3D(1,j);

end
end

%RESULTING DATA
if D==0.5

F1(:,1)=(0:0.01:0.7);
F1(:,2)=ET_2D_1;
F1(:,3)=ET_3D_1;
F1(:,4)=ET_2D_2;
F1(:,5)=ET_3D_2;
F1(:,6)=ET_2D_3;
F1(:,7)=ET_3D_3;

F1(:,8)=ET_2D_1*0.5^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
F1(:,9)=ET_3D_1*0.5^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
F1(:,10)=ET_2D_2*0.5^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
F1(:,11)=ET_3D_2*0.5^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
F1(:,12)=ET_2D_3*0.5^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;
F1(:,13)=ET_3D_3*0.5^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;

elseif D==0.75
F2(:,1)=(0:0.01:0.7);
F2(:,2)=ET_2D_1;
F2(:,3)=ET_3D_1;
F2(:,4)=ET_2D_2;
F2(:,5)=ET_3D_2;
F2(:,6)=ET_2D_3;
F2(:,7)=ET_3D_3;

F2(:,8)=ET_2D_1*0.75^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
F2(:,9)=ET_3D_1*0.75^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
F2(:,10)=ET_2D_2*0.75^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
F2(:,11)=ET_3D_2*0.75^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
F2(:,12)=ET_2D_3*0.75^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;
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F2(:,13)=ET_3D_3*0.75^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;

else
F3(:,1)=(0:0.01:0.7);
F3(:,2)=ET_2D_1;
F3(:,3)=ET_3D_1;
F3(:,4)=ET_2D_2;
F3(:,5)=ET_3D_2;
F3(:,6)=ET_2D_3;
F3(:,7)=ET_3D_3;

F3(:,8)=ET_2D_1*1^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
F3(:,9)=ET_3D_1*1^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
F3(:,10)=ET_2D_2*1^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
F3(:,11)=ET_3D_2*1^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
F3(:,12)=ET_2D_3*1^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;
F3(:,13)=ET_3D_3*1^2/(sqrt(g*(s-1)*(12*z0_3)^3))/60;

end
end
end

Plot

function P=Plot(x)
%CASE 5: THIS FUNCTION USES PLOTS THE TIME SCALE FOR BACKFILLING IN
%WAVES + CURRENT AROUND A SLENDER VERTICAL PILE WHEN THE INITAL HOLE
%WAS GENERATED BY A CURRENT, FOR DIFFERENT VALUES OF Ucwrms.

%Retrieving data from the Rayleigh distibution
[R R1 R2 R3]=Rayleigh();
% R: Data for of E[T*].
% R1: D=0.50 m - Data for E[T].
% R2: D=0.75 m - Data for E[T].
% R3: D=1.00 m - Data for E[T].

%Retrieving data from the Forristall distibution
[F1 F2 F3]=Forristall();
% F1: D=0.50 m - Data for E[T*] (Col 1-7) and E[T] (Col 8-13).
% F2: D=0.75 m - Data for E[T*] (Col 1-7) and E[T] (Col 8-13).
% F3: D=1.00 m - Data for E[T*] (Col 1-7) and E[T] (Col 8-13).

%T* for D=0.5 m
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=plot(R(:,1),R(:,2),'b',F1(:,1),F1(:,2),'b--',...

F1(:,1),F1(:,3),'b:',...
R(:,1),R(:,3),'k',F1(:,1),F1(:,4),'k--',...
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F1(:,1),F1(:,5),'k:',...
R(:,1),R(:,4),'m',F1(:,1),F1(:,6),'m--',...

F1(:,1),F1(:,7),'m:');
hleg=legend('Rayleigh \theta_{rms1}, KC_{rms1}',...

'Forristall 2D \theta_{rms1}, KC_{rms1}', ...
'Forristall 3D \theta_{rms1}, KC_{rms1}',...
'Rayleigh \theta_{rms2}, KC_{rms2}',...
'Forristall 2D \theta_{rms2}, KC_{rms2}', ...
'Forristall 3D \theta_{rms2}, KC_{rms2}',...
'Rayleigh \theta_{rms3}, KC_{rms3}',...
'Forristall 2D \theta_{rms3}, KC_{rms3}', ...
'Forristall 3D \theta_{rms3}, KC_{rms3}');

set(hleg,'Fontsize',10)
set (h, 'LineWidth', 2.5)
axis([0 0.7 0 18])
u = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7];
set(gca,'XTick',u);
u = [0 2 4 6 8 10 12 14 16 18];
set(gca,'YTick',u,'Fontsize',14);
xlabel('U_{cwrms}','Fontsize',22)
ylabel('E[T*]','Fontsize',22)
title('D=0.5 m','Fontsize',17);
hgexport(gcf,'../../Figures/CASE5/CASE5_D=0.5.png',...

hgexport('factorystyle'), 'Format', 'png')

%T* for D=1 m
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=plot(R(:,1),R(:,2),'b',F3(:,1),F3(:,2),'b--',...

F3(:,1),F3(:,3),'b:',...
R(:,1),R(:,3),'k',F3(:,1),F3(:,4),'k--',...

F3(:,1),F3(:,5),'k:',...
R(:,1),R(:,4),'m',F3(:,1),F3(:,6),'m--',...

F3(:,1),F3(:,7),'m:');
hleg=legend('Rayleigh \theta_{rms1}, KC_{rms1}',...

'Forristall 2D \theta_{rms1}, KC_{rms1}', ...
'Forristall 3D \theta_{rms1}, KC_{rms1}',...
'Rayleigh \theta_{rms2}, KC_{rms2}',...
'Forristall 2D \theta_{rms2}, KC_{rms2}', ...
'Forristall 3D \theta_{rms2}, KC_{rms2}',...
'Rayleigh \theta_{rms3}, KC_{rms3}',...
'Forristall 2D \theta_{rms3}, KC_{rms3}',...
'Forristall 3D \theta_{rms3}, KC_{rms3}');

set(hleg,'Fontsize',10)
set (h, 'LineWidth', 2.5)
axis([0 0.7 0 18])
u = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7];
set(gca,'XTick',u);
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u = [0 2 4 6 8 10 12 14 16 18];
set(gca,'YTick',u,'Fontsize',14);
xlabel('U_{cwrms}','Fontsize',22)
ylabel('E[T*]','Fontsize',22)
title('D=1.0','Fontsize',17);
hgexport(gcf,'../../Figures/CASE5/CASE5_D=1.png',...

hgexport('factorystyle'), 'Format', 'png')

%T for ex 1, D=0.5 m, D=0.75 m and D=1 m
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=plot(R1(:,1),R1(:,2),'c',F1(:,1),F1(:,8),'c--',...

F1(:,1),F1(:,9),'c:',...
R2(:,1),R2(:,2),'k',F2(:,1),F2(:,8),'k--',...

F2(:,1),F2(:,9),'k:',...
R3(:,1),R3(:,2),'m',F3(:,1),F3(:,8),'m--',...

F3(:,1),F3(:,9),'m:');
hleg=legend('Rayleigh D=0.50 m','Forristall 2D D=0.50 m',...

'Forristall 3D D=0.50 m',...
'Rayleigh D=0.75 m','Forristall 2D D=0.75 m',...

'Forristall 3D D=0.75 m',...
'Rayleigh D=1.00 m','Forristall 2D D=1.00 m',...

'Forristall 3D D=1.00 m');
set(hleg,'Fontsize',10)
set (h, 'LineWidth', 2.5)
axis([0 0.7 0 100])
u = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7];
set(gca,'XTick',u,'Fontsize',14);
xlabel('U_{cwrms}','Fontsize',22)
ylabel('E[T]','Fontsize',22)
title('KC_{rms}=4, \theta_{rms}=0.07','Fontsize',17);
hgexport(gcf,'../../Figures/CASE5/CASE51_T.png',...

hgexport('factorystyle'), 'Format', 'png')

%T for ex 2, D=0.5 m, D=0.75 m and D=1 m
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=plot(R1(:,1),R1(:,3),'c',F1(:,1),F1(:,10),'c--',...

F1(:,1),F1(:,11),'c:',...
R2(:,1),R2(:,3),'k',F2(:,1),F2(:,10),'k--',...

F2(:,1),F2(:,11),'k:',...
R3(:,1),R3(:,3),'m',F3(:,1),F3(:,10),'m--',...

F3(:,1),F3(:,11),'m:');
hleg=legend('Rayleigh D=0.50 m','Forristall 2D D=0.50 m',...

'Forristall 3D D=0.50 m',...
'Rayleigh D=0.75 m','Forristall 2D D=0.75 m',...

'Forristall 3D D=0.75 m',...
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'Rayleigh D=1.00 m','Forristall 2D D=1.00 m',...
'Forristall 3D D=1.00 m');

set(hleg,'Fontsize',10)
set (h, 'LineWidth', 2.5)
axis([0 0.7 0 52])
u = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7];
set(gca,'XTick',u,'Fontsize',14);
xlabel('U_{cwrms}','Fontsize',22)
ylabel('E[T]','Fontsize',22)
title('KC_{rms}=7, \theta_{rms}=0.07','Fontsize',17);
hgexport(gcf,'../../Figures/CASE5/CASE52_T.png',...

hgexport('factorystyle'), 'Format', 'png')

%T for ex 3, D=0.5 m, D=0.75 m and D=1 m
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=plot(R1(:,1),R1(:,4),'c',F1(:,1),F1(:,12),'c--',...

F1(:,1),F1(:,13),'c:',...
R2(:,1),R2(:,4),'k',F2(:,1),F2(:,12),'k--',...

F2(:,1),F2(:,13),'k:',...
R3(:,1),R3(:,4),'m',F3(:,1),F3(:,12),'m--',...

F3(:,1),F3(:,13),'m:');
hleg=legend('Rayleigh D=0.50 m','Forristall 2D D=0.50 m',...

'Forristall 3D D=0.50 m',...
'Rayleigh D=0.75 m','Forristall 2D D=0.75 m',...

'Forristall 3D D=0.75 m',...
'Rayleigh D=1.00 m','Forristall 2D D=1.00 m',...

'Forristall 3D D=1.00 m');
set(hleg,'Fontsize',10)
set (h, 'LineWidth', 2.5)
axis([0 0.7 0 110])
u = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7];
set(gca,'XTick',u,'Fontsize',14);
xlabel('U_{cwrms}','Fontsize',22)
ylabel('E[T]','Fontsize',22)
title('KC_{rms}=4, \theta_{rms}=0.09','Fontsize',17);
hgexport(gcf,'../../Figures/CASE5/CASE53_T.png',...

hgexport('factorystyle'), 'Format', 'png')
end

B. 6 - CASE 6

wc1

function x1=wc1()
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%CASE 6: THIS FUNCTION FINDS THE LOWER VALUE OF wc FOR EACH
%VALUE OF Ucwrms.

%The highest value of wcmin is 1 and will appear when
%Ucwrms=0.7. When Ucwrms decreases, the denominator can
%be higher before "ledd" equals 0.7. This means that
%wcmin will decrease for decreases value of Ucrwms.

l=0;
for Ucwrms=0:0.01:0.7

j=0;
l=l+1;
for x=1:-0.001:0

ledd=Ucwrms./(x.*(1-Ucwrms)+Ucwrms);
if ledd>=0.7

j=j+1;
x=x-0.001;

if j==1;
x=x+0.002;

x1(l,1)=x;
end

end
end

end
end

Rayleigh

function [R R1 R2 R3]=Rayleigh(x)
%CASE 6: THIS FUNCTION USES THE RAYLEIGH DISTRIBUTION TO CALCULATE
%THE EXPECTED VALUE OF THE TIME SCALE FOR BACKFILLING IN WAVES +
%CURRENT AROUND A LARGE VERTICAL PILE WHEN THE INITAL HOLE WAS
%GENERATED BY A CURRENT. THE TIME SCALE IS CALCULATED FOR DIFFERENT
%VALUES OF THE CURRENT WAVE VELOCITY (Ucwrms).

%The time scale is shown for 2 different values of (KCrms, trms).
%T* is independent of D for Rayleigh because trms is given.
%Since trms is given, the grain size (z0,d50) will change
%for each value of KCrms. To find T when knowing T*, z0 must be
%calulated.

%DESCRIPTION OF SYMBOLS
%x: the normalized linear wave amplitude
%R: The expected value of the time scale T*
%R1: D=3 m - The expeced value of the time scale T (min).
%R2: D=4 m - The expeced value of the time scale T (min).
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%R3: D=5 m - The expeced value of the time scale T (min).

%ET: The expected value of T* [-].

syms x;

[n Hs h g s d50 arms c d]=Parameters();
[x1]=wc1();

KCrms1=0.7;
trms1=0.101;

KCrms2=1.5;
trms2=0.105;

s1=2.38;

for D=3:5

for i=1:2

if i==1;
KCrms=KCrms1;

else
KCrms=KCrms2;

end

kp=1/h*asinh(2*pi*arms/(D*KCrms));
wr=sqrt(g*kp*tanh(kp*h));
Urms=wr*arms/(sinh(kp*h));

j=0;
for Ucwrms=0:0.01:0.7

j=j+1;

Uc=Ucwrms*Urms/(1-Ucwrms);
wp=Uc*kp+sqrt(g*kp*tanh(kp*h));

z0_1=(24/(wp^d)*trms1*g*(s-1)/(c*Urms^(2-d)))^(1/(d-1));
z0_2=(24/(wp^d)*trms2*g*(s-1)/(c*Urms^(2-d)))^(1/(d-1));

x1n=sqrt(log(n)+(x1(j))^2);

x=(x1n:0.001:5);
pd=2*n.*x.*exp((x1(j)).^2-(x).^2);

ET=trapz(x,pd.*(-15.15./((KCrms.*x).^(s1))).*...
(Ucwrms./(x.*(1-Ucwrms)+Ucwrms)-0.7));
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%RESULTING DATA

R(j,1)=Ucwrms;
if i==1;

R(j,2)=ET;
else

R(j,3)=ET;
end

if D==3
R1(j,1)=Ucwrms;
if i==1;
R1(j,2)=ET*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
else
R1(j,3)=ET*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
end

elseif D==4
R2(j,1)=Ucwrms;
if i==1;
R2(j,2)=ET*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
else
R2(j,3)=ET*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
end

else
R3(j,1)=Ucwrms;
if i==1;
R3(j,2)=ET*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;
else
R3(j,3)=ET*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;
end

end
end

end
end
end

Forristall

function [F1 F2 F3]=Forristall(x)
%CASE 6: THIS FUNCTION USES THE FORRISTALL DISTRIBUTION TO CALCULATE
%THE EXPECTED VALUE OF THE TIME SCALE FOR BACKFILLING IN WAVES +
%CURRENT AROUND A LARGE VERTICAL PILE WHEN THE INITAL HOLE WAS
%GENERATED BY A CURRENT. THE TIME SCALE IS CALCULATED FOR DIFFERENT
%VALUES OF THE CURRENT WAVE VELOCITY (Ucwrms).
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%The time scale is shown for 2 different values of (KCrms, trms).
%Since trms is given, the grain size (z0,d50) will change for each
%value of KCrms. To find T when knowing T*, z0 must be calulated.

%DESCRIPTION OF SYMBOLS
%x: The normalized second-order wave crest.
%F1: D=0.50 m - The expected values of the time scale T*
%(col 1-5) and T(min) (col 6-9).
%F2: D=0.75 m - The expected value of the time scale T*
%(col 1-5) and T in minutes (col 6-9).
%F3: D=1.00 m - The expected value of the time scale T*
%(col 1-5) and T(min) (col 6-9).

%Et: The expected value of t [-].
%ET: The expected value of T* [-].

syms x;

[n Hs h g s d50 arms c d]=Parameters();
[x1]=wc1();

s1=2.38;

KCrms1=0.7;
trms1=0.101;

KCrms2=1.5;
trms2=0.105;

for D=3:1:5

for i=1:2
if i==1;
KCrms=KCrms1;
else
KCrms=KCrms2;
end

kp=1/h*asinh(2*pi*arms/(D*KCrms));
wr=sqrt(g*kp*tanh(kp*h));
Urms=wr*arms/(sinh(kp*h));

j=0;
for Ucwrms=0:0.01:0.7

j=j+1;

Uc=Ucwrms*Urms/(1-Ucwrms);
wp=Uc*kp+sqrt(g*kp*tanh(kp*h));
Tp=2*pi/wp;
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z0_1=(24/(wp^d)*trms1*g*(s-1)/(c*Urms^(2-d)))^(1/(d-1));
z0_2=(24/(wp^d)*trms2*g*(s-1)/(c*Urms^(2-d)))^(1/(d-1));

S1=2*pi*Hs/(g*Tp^2);
Ur=Hs/(kp^2*h^3);

%parameters 2D model
alpha2=0.3536+0.2892*S1+0.1060*Ur;
beta2=2-2.1597*S1+0.0968*Ur^2;

%parameters 3D model
alpha3=0.3536+0.2568*S1+0.0800*Ur;
beta3=2-1.7912*S1-0.5302*Ur+0.284*Ur^2;

for y=1:2
if y==1
alpha=alpha2;
beta=beta2;
else
alpha=alpha3;
beta=beta3;
end

x1n=sqrt(8)*alpha*((x1(j)/(sqrt(8)*alpha))^...
(beta)+log(n))^(1/beta);
x=(x1n:0.001:5);

pd=(n*(1/(sqrt(8)*alpha))^(beta)*beta.*x.^...
(beta-1).*exp((x1(j)/(sqrt(8)*alpha))^(beta)).*...
exp(-(x./(sqrt(8)*alpha)).^beta));

ET=trapz(x,pd.*(-15.15./((KCrms.*x).^(s1))).*...
(Ucwrms./(x.*(1-Ucwrms)+Ucwrms)-0.7));

%RESULTING DATA
F1(j,1)=Ucwrms;
F2(j,1)=Ucwrms;
F3(j,1)=Ucwrms;

if D==3
if y==1; % Data for 2D

if i==1
F1(j,2)=ET;
F1(j,6)=ET*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;

else
F1(j,4)=ET;
F1(j,8)=ET*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;

end
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else % Data for 3D
if i==1

F1(j,3)=ET;
F1(j,7)=ET*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;

else
F1(j,5)=ET;
F1(j,9)=ET*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;

end
end

elseif D==4
if y==1; % Data for 2D

if i==1
F2(j,2)=ET;
F2(j,6)=ET*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;

else
F2(j,4)=ET;
F2(j,8)=ET*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;

end
else % Data for 3D

if i==1
F2(j,3)=ET;
F2(j,7)=ET*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;

else
F2(j,5)=ET;
F2(j,9)=ET*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;

end
end

else
if y==1; % Data for 2D

if i==1
F3(j,2)=ET;
F3(j,6)=ET*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;

else
F3(j,4)=ET;
F3(j,8)=ET*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;

end
else % Data for 3D

if i==1
F3(j,3)=ET;
F3(j,7)=ET*D^2/(sqrt(g*(s-1)*(12*z0_1)^3))/60;

else
F3(j,5)=ET;
F3(j,9)=ET*D^2/(sqrt(g*(s-1)*(12*z0_2)^3))/60;

end
end

end
end
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end
end

end
end

Plot

function P=Plot(x)
%CASE 6: THIS FUNCTION USES PLOTS THE TIME SCALE FOR BACKFILLING IN
%WAVES + CURRENT AROUND A LARGE VERTICAL PILE WHEN THE INITAL HOLE
%WAS GENERATED BY A CURRENT, FOR DIFFERENT VALUES OF Ucwrms.

%Retrieving data from the Rayleigh distibution
[R R1 R2 R3]=Rayleigh();
% R: Data for of E[T*].
% R1: D=3 m - Data for E[T].
% R2: D=4 m - Data for E[T].
% R3: D=5 m - Data for E[T].

%Retrieving data from the Forristall distibution
[F1 F2 F3]=Forristall();
% F1: D=3 m - Data for E[T*] (Col 1-5) and E[T] (Col 6-9).
% F2: D=4 m - Data for E[T*] (Col 1-5) and E[T] (Col 6-9).
% F3: D=5 m - Data for E[T*] (Col 1-5) and E[T] (Col 6-9).

%T* for ex 1 and 2 for D=3 m
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=plot(R(:,1),R(:,2),'b',F1(:,1),F1(:,2),'b--',...

F1(:,1),F1(:,3),'b:',...
R(:,1),R(:,3),'k',F1(:,1),F1(:,4),'k--',...

F1(:,1),F1(:,5),'k:');
hleg=legend('Rayleigh KC_{rms}=0.7',...

'Forristall 2D KC_{rms}=0.7', ...
'Forristall 3D KC_{rms}=0.7',...
'Rayleigh KC_{rms}=1.5',...
'Forristall 2D KC_{rms}=1.5', ...
'Forristall 3D KC_{rms}=1.5');

set(hleg,'Fontsize',12)
set (h, 'LineWidth', 2.5)
axis([0 0.7 0 7])
u = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7];
set(gca,'XTick',u,'Fontsize',12);
xlabel('U_{cwrms}','Fontsize',22)
ylabel('E[T*]','Fontsize',22)
title('D=3 m','Fontsize',17);
hgexport(gcf,'../../Figures/CASE6/CASE6D3.png',...
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hgexport('factorystyle'), 'Format', 'png')

%T* for ex 1 and 2 for D=4 m
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=plot(R(:,1),R(:,2),'b',F2(:,1),F2(:,2),'b--',...

F2(:,1),F2(:,3),'b:',...
R(:,1),R(:,3),'k',F2(:,1),F2(:,4),'k--',...

F2(:,1),F2(:,5),'k:');
hleg=legend('Rayleigh KC_{rms}=0.7',...

'Forristall 2D KC_{rms}=0.7', ...
'Forristall 3D KC_{rms}=0.7',...
'Rayleigh KC_{rms}=1.5',...
'Forristall 2D KC_{rms}=1.5', ...
'Forristall 3D KC_{rms}=1.5');

set(hleg,'Fontsize',12)
set (h, 'LineWidth', 2.5)
axis([0 0.7 0 7])
u = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7];
set(gca,'XTick',u,'Fontsize',12);
xlabel('U_{cwrms}','Fontsize',22)
ylabel('E[T*]','Fontsize',22)
title('D=4 m','Fontsize',17);
hgexport(gcf,'../../Figures/CASE6/CASE6D4.png',...

hgexport('factorystyle'), 'Format', 'png')

%T* for ex 1 and 2 for D=5 m
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=plot(R(:,1),R(:,2),'b',F3(:,1),F3(:,2),'b--',...

F3(:,1),F3(:,3),'b:',...
R(:,1),R(:,3),'k',F3(:,1),F3(:,4),'k--',...

F3(:,1),F3(:,5),'k:');
hleg=legend('Rayleigh KC_{rms}=0.7',...

'Forristall 2D KC_{rms}=0.7', ...
'Forristall 3D KC_{rms}=0.7',...
'Rayleigh KC_{rms}=1.5',...
'Forristall 2D KC_{rms}=1.5', ...
'Forristall 3D KC_{rms}=1.5');

set(hleg,'Fontsize',12)
set (h, 'LineWidth', 2.5)
axis([0 0.7 0 7])
u = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7];
set(gca,'XTick',u,'Fontsize',12);
xlabel('U_{cwrms}','Fontsize',22)
ylabel('E[T*]','Fontsize',22)
title('D=5 m','Fontsize',17);
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hgexport(gcf,'../../Figures/CASE6/CASE6D5.png',...
hgexport('factorystyle'), 'Format', 'png')

%T for all D for ex 1.
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=plot(R1(:,1),R1(:,2),'c',F1(:,1),F1(:,6),'c--',...

F1(:,1),F1(:,7),'c:',...
R2(:,1),R2(:,2),'k',F2(:,1),F2(:,6),'k--',...

F2(:,1),F2(:,7),'k:',...
R3(:,1),R3(:,2),'m',F3(:,1),F3(:,6),'m--',...

F3(:,1),F3(:,7),'m:');
hleg=legend('Rayleigh D=3 m','Forristall 2D D=3 m',...

'Forristall 3D D=3 m',...
'Rayleigh D=4 m','Forristall 2D D=4 m',...

'Forristall 3D D=4 m',...
'Rayleigh D=5 m','Forristall 2D D=5 m',...

'Forristall 3D D=5 m');
set(hleg,'Fontsize',11)
set (h, 'LineWidth', 2.5)
u = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7];
set(gca,'XTick',u,'Fontsize',14);
xlabel('U_{cwrms}','Fontsize',22)
ylabel('E[T]','Fontsize',22)
title('KC_{rms}=0.7','Fontsize',17);
hgexport(gcf,'../../Figures/CASE6/CASE6_T1.png',...

hgexport('factorystyle'), 'Format', 'png')

%T for all D for ex 2
h1=figure;
set(h1, 'Position', [5 5 700 500],'Visible','off')
h=plot(R1(:,1),R1(:,3),'c',F1(:,1),F1(:,8),'c--',...

F1(:,1),F1(:,9),'c:',...
R2(:,1),R2(:,3),'k',F2(:,1),F2(:,8),'k--',...

F2(:,1),F2(:,9),'k:',...
R3(:,1),R3(:,3),'m',F3(:,1),F3(:,8),'m--',...

F3(:,1),F3(:,9),'m:');
hleg=legend('Rayleigh D=3 m','Forristall 2D D=3 m',...

'Forristall 3D D=3 m',...
'Rayleigh D=4 m','Forristall 2D D=4 m',...

'Forristall 3D D=4 m',...
'Rayleigh D=5 m','Forristall 2D D=5 m',...

'Forristall 3D D=5 m');
set(hleg,'Fontsize',11)
set (h, 'LineWidth', 2.5)
u = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7];
set(gca,'XTick',u,'Fontsize',14);
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xlabel('U_{cwrms}','Fontsize',22)
ylabel('E[T]','Fontsize',22)
title('KC_{rms}=1.5','Fontsize',17);
hgexport(gcf,'../../Figures/CASE6/CASE6_T2.png',...

hgexport('factorystyle'), 'Format', 'png')
end
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