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Abstract

This report presents a stochastic method for predicting the time scale of
scour and backfilling, occurring around vertical piles and marine pipelines
on the seabed. The erosion occurs due to waves alone or waves com-
bined with a current. Existing formulas for the time scale are expanded
allowing input of random waves. The waves are assumed to be stationary
and narrow-banded such that the statistical distributions Rayleigh and
Forristall (2000) can be employed. When applying the Rayleigh distri-
bution, the waves are assumed to be linear, while Forristall distributes
the wave crest heights representing long-crested (2D) and short-crested
(3D) waves where the second-order effects sum-frequency and difference-
frequency are included. The waves typically exhibit a nonlinear behaviour
in severe seastates and in shallow water.

The time scale is calculated based on typical field parameters and pre-
sented graphically for linear, nonlinear long-crested and nonlinear short-
crested waves. When second-order effects are included, the wave crests
appear higher and sharper than to linear sinusoidal waves. This causes
the water particle velocity below second-order waves to be higher, result-
ing in shorter time scale, which is reflected in the results. The results for
the time scale of long-crested and short-crested waves are also compared,
and all the results display that the 3D waves are higher, resulting in lower
time scales when the nonlinear effects increase.






Abstract (Norwegian)

Denne avhandlingen presenterer en stokastisk metode for & beregne tidsskalaen
av erosjon (scour), som oppstar pa havbunnen i sanden rundt marine
strukturer. Erosjonen er forarsaket av bglger alene, eller bglger kombin-
ert med strgm. Eksisterende formler for tidsskalaen er omformulert slik
at stokastiske bglger kan inkluderes. For & kunne anvende de statistiske
fordelingene Rayleigh og Forristall (2000), ma bglgene antas a veere smal-
bandede og stasjonere. I Rayleigh fordelingen er bglgene linesere sinusbgl-
ger, mens i Forristall fordelingen kan bglgene beskrives med ulik grad av
andre ordens effekter for langkammede (2D) og kortkammede (3D) bolger.
Ulineariteten i bglgene gker i kraftige sjgtilstander og pa grunt vann der
bglgene treffer havbunnen og vokser.

Tidsskalaen er beregnet basert pa representative eksempelverdier, og frem-
stilt grafisk for linezere, ulineszere langkammede og ulinesere kortkammede
bglger. Nar andreordens effekter er inkludert, blir bglgetoppene skarpere
og hgyere, sammenlignet med sinusbglger. Dette vil gke hastigheten under
bglgene og dermed resultere i kortere tidsskala, noe som gjenspeiles i alle
resultatene. Resultatene for kortkammede og langkammede bglger er ogsa
sammenlignet og viser at nar ulinesere effekter gkes, vil de kortkammede
bglgene veere storst, og dermed fgre til kortere tidsskala.
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1 Introduction

Scour is a type of erosion that occurs around structures on a sandy seabot-
tom due to flow velocities induced by waves, current or a combination. The
flows interaction with the seabed creates a boundary layer flow, which in-
teracts with the structure near the bottom, creating complicated flow pat-
terns that will depend on the geometry of the structure. When the seabed
is exposed for this three-dimensional flow, the shear stress increases, allow-
ing sand particles to move more easily. When the flow climate is described
by one ratio between the orbital fluid particle displacement and the di-
ameter, the scour will develop to a maximum depth where it remains
constant. When the flow climate changes, the final depth will also change
and backfilling of the initial scour hole may occur.

Scour and backfilling occurs around a variety of marine structures but here
it is investigated for offshore piles and pipelines. The main contribution
to scour below pipelines and around vertical slender piles occurs due to
flow patterns mainly contributed by vortex shedding, while scour around
vertical large piles appears due to flow fields related to the diffraction of
waves. Pipelines are mainly used to transport hydrocarbons and there-
fore failures, which might happen due to free spans, which may lead to
severe consequences. Free spans allow the flow to surround the whole pipe
such that vortex induced vibrations might result. For vertical piles, scour
results in decreased stability. Vertical piles are now important as funda-
ments to many marine structures such as platform legs and wind turbine
columns.

The assessment of the time scales for scour and backfilling is of interest
in this thesis and it is essential in the the design of marine pipeline and
foundations of vertical piles and in scour protection work. The time scale
is the time it takes before the scour reaches a certain depth. The time
scale of scour created due to the presence of waves is of special interest
because during a storm, it may occur quickly and thereby be critical.

The formulas of the time scale are obtained by linear fit of experimental
data. For the time scale of scour in regular waves, empirical formulas were
proposed in Fredsge et al. (1992) for pipelines and in Sumer et al. (1992) for
vertical slender piles. The time scale of backfilling around piles by irregular
waves and current were presented in Sumer et al. (2012). These formulas
are expanded with the stochastic method, allowing input of random waves.



The waves are assumed to be stationary and narrow-banded such that the
statistical distributions by Rayleigh and Forristall (2000) can be employed.
When applying the Rayleigh distribution, the waves are assumed to be
linear while Forristall distributes the wave crest heights representing short-
crested (2D) and long-crested (3D) waves where the second-order effects
sum-frequency and difference-frequency are included. The waves typically
exhibit a nonlinear behaviour in severe seastates and in shallow water.

The purpose of this thesis is to derive the formulas for the time scale with
the stochastic method and thereby present the time scale graphically for
linear, nonlinear long-crested and nonlinear short-crested waves.



2 Background

The theory in this chapter is taken from Sumer and Fredsge (2002) unless
otherwise mentioned.

2.1 The bed shear stress

A requirement for scour to occur is that sand particles must be trans-
ported. The seabeds shear stress describes the ability of sediment trans-
port. The presence of a structure will change the flow field and therefore
increase the bed shear stress such that sediment transport may occur close
to the structure. The increase can be described by the amplification factor:

o= — (1)

Too

where 7, is the bed shear stress of the undisturbed flow meaning the
shear stress that occurs due to a flow unaffected by the structure. 7 is the
actual value of the shear stress in the bed created by the disturbed flow.
Scour will continue to develop until a depth where 7 = 7o,. This depth is
referred to as the equilibrium scour depth, S.

In this thesis, the undisturbed value of the shear stress will be applied
when calculating the time scale. The reason for this is that the method
proposed is based on formulas derived from laboratory experiments where
the scour depth is measured versus its corresponding undisturbed shear
stress, which is found based on the incoming waves. A result of this is that
in a real life scenario, the time scale can be predicted when the sea state
is given. However, the distribution of the actual value of the shear stress
around the structure is of importance when it comes to the mechanisms
of scour and will therefore be elaborated in Ch. 3.

2.1.1 Bed shear stress below regular waves

The shear stress is dependent on the velocity of the incoming flow. The
incoming flow is due to current, waves, or a combination. When the flow
is caused by waves, the undisturbed maximum shear stress is expressed



as: 1
Tmaw,oo/p = §wa72n (2)

where p is the density of the seawater and U, is the maximum horizontal
velocity of the water particles on the seabed during one wave period. The
maximum shear stress is of interest because it will contribute most to
scour. From linear wave theory, the water particle velocity u in a water
depth z is given by Faltinsen (1993) as:

~ coshk(h+z) .
U= wa “Snh(bh) sin(wt — kx) (3)

where w is the frequency, a is the linear wave amplitude, k is the wave
number and h is the water depth. Close to the sea bottom z ~ —h such
that the maximum value of the horizontal velocity near the sea bottom
during a wave cycle is:

a

where A is the maximum horizontal distance the water particle moves
during one wave period. k is the wave number and it is expressed k = 27 /L
where L is the wavelength. It can be found by the dispersion relation:

w? = gk tanh(kh) (5)

where g is the acceleration of gravity. The shear stress is as shown in Eq.
(2) linear to the friction f,,. The following friction factor given by Soulsby
(1997) is:

A _
fu=e()1 (6)
20
where 4
(¢,d) = (1.39,0.52) for 10 < — < 10° (7)
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where ¢ and d are coefficients based on best fit to data and zg = d50/12 is
an expression for the roughness of the sand where dsg is the median sand
grain diameter. Myrhaug et al. (2001) divided the interval of A/zy from
Eq. (7) in 3 subintervals with different coefficients ¢ and d for each. These



could be applied in this thesis but for simplicity, Eq. (7) is chosen. From
Eq. (6), it can be seen that for a given zp, the wave friction increases
when A decreases. This can be explained by increased turbulence at the
sea bottom when A is small. Eqgs. (6) and (7) are valid for sinusoidal
waves and rough turbulent flow. They are obtained based on laboratory
measurements without the presence of a structure and can thereby be
applied to find the undisturbed shear stress below waves given by Eq. (2).

2.2 The equilibrium scour depth

The scour process will evolve in different stages where the scour depth
increases until it reaches its final value S; the equilibrium scour depth. At
this stage, the sediment transport into the scour hole equals the sediment
transport out of the hole, Myrhaug and Ong (2012). Definition sketches
of S are given for a pipeline in Fig. 2.1 and for a vertical pile in Fig. 2.2.
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S

Figure 2.1: Definition sketch of S below a pipeline, taken from Myrhaug et al.
(2009).
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Figure 2.2: Definition sketch of S around a circular vertical pile, taken from
Myrhaug et al. (2009).



The value of S is dependent on the flow climate, which changes over time.
An important parameter describing this is the Keulegan-Carpenter num-
ber (KC). It is defined as:

UnTy
5 (%)

KC =

where D is the diameter of the structure and T3, is the wave period. Under
the assumption of linear theory, U, from Eq. (8) can be substituted with
Eq. (4), resulting in:

21 A
KC = - (9)

For very large KC numbers the flow of each half period resembles a cur-
rent, while for small K'C' numbers the movements of the water particles
are small relative to D. If the flow climate changes such that the KC
number is decreased, the value of S decreases and backfilling of the initial
scour hole occurs. This is illustrated in Fig. 2.3

—{D e

| 1
‘ ‘ Backfill
(a) (b)

Figure 2.3: Definition sketch of S around a vertical pile. (a) Scour hole generated
by waves or current. (b) Scour hole after backfilling. Taken from Sumer et al.

(2012).

The value of S can be determined by empirical formulas, that are functions
of the KC number. The formulas will vary for different marine structures
such as pipelines and vertical piles.

2.3 The time scale of scour

The time scale T is the time it takes for scour to reach a certain depth. It
is defined from the value of the equilibrium depth S:



S, =S(1—eT) (10)

where S; is the instantaneous scour depth at the time t. The equation is
presented by Fig. 2.4 where the time scale is the value of t made by the
cross section of the tangent to S; in t = 0 and the equilibrium scour depth
S. The time scale can therefore be predicted by calculating the slope of the
line tangent to the Si(t) curve at ¢t = 0, or by integrating Sy(¢) over time.
Note that the time scale is defined before the equilibrium scour depth is
reached.

A Scour Depth, St

-
L

0 Time, t

Figure 2.4: Time development of scour depth. Taken from Sumer and Fredsge
(2002).

2.4 The time scale of backfilling

The time scale T is also defined as the time it takes before backfilling has
reached a certain depth. It is a function of the equilibrium scour depth S
and is given by Sumer et al. (2012) as:

Sl

S =S8+(S;—S)e (11)

where S; is the initial scour depth and S is the equilibrium scour depth
when the backfilling is completed. The equation is presented by Fig. 2.5
where the time scale is the value of T" made by the cross section of the
tangent to Sy in ¢t = 0 and S.
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Figure 2.5: The scour depth S; (cm), given for values of time (s). Time series
monitored at the offshore side of the pile during backfilling. Taken from Sumer
et al. (2012).

2.5 Shields parameter

The ability of sediment transport is as mentioned in Section 2.1, dependent
of the shear stress. The shear stress can be defined dimensionless by the
Shields parameter:

_ Too/ P
o= g(s — 1)dso (12)

where s = p;/p is the ratio between the sediment (ps) and fluid (p) density.
For a given grain type and fluid (seawater), the denominator in Shields
parameter is constant while the nominator given by Eq. (2) increases with
U, in second power and linearly with f,,. Figure 2.6 presents a relation
between the equilibrium scour depth and the Shields parameter obtained
by experiments done for a pipeline. It can be seen that the scour depth
increases quickly when 6 is increased from zero to approximately 0.05. In
this case, sediment transport will only take place near the structure and
it is referred to as clear water scour.

In this thesis it is assumed that the Shields parameter is above this value,
indicating a live bed regime. This is valid for all the figures shown where
this information is relevant, except Fig. 2.6 which shows the transition
from clear water scour to live bed scour. From this figure it can be seen
that in the case of live bed regime an increase in Shields parameter will



not result in a much bigger scour depth. However, it will result in a higher
shear stress causing more sediment transport, but note that the sediment
transport into the scour hole equals the sediment transport out of the hole.

The value 6., is used to define the limit between the two scour regimes.
When the seabed is sloping the effect of sediment gravity may increase
or decrease 0., but in this thesis the seabed will always be considered
horizontal such that 6., = 0.05. This value is valid for both pipelines and
vertical piles.
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Figure 2.6: Variation of the equilibrium scour depth normalized by the diameter
(S/D) for a pipeline, versus Shields parameter (6). The initial clearance between
the seabed and the pipe is zero. Taken from Sumer and Fredspe (2002).
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3 Mechanisms of Scour Around
Marine Structures

This section will elaborate the mechanisms of scour around vertical piles
and below pipelines. The different behaviour of scour will be described
when the incoming flow is due to currents, regular waves, irregular waves
or waves plus current. The mechanisms of scour in current or waves will
be quite similar, but in the case of waves or a varying current the process
will happen on both sides of the structure.

The theory in this chapter is taken from Sumer and Fredsge (2002) unless
otherwise mentioned.

3.1 Scour around slender vertical piles

In the slender pile regime, separation of the flow occurs because the ve-
locity is high relative to the diameter. Separation leads to the formation
of vortices that create scour.

3.1.1 Scour around vertical piles in steady currents

When a vertical slender pile is placed on the seabed scour may occur
around it due to two main mechanisms, the horseshoes vortices in front,
and the lee-wake vortices downstream the pile. Compared to a pipe, the
pile is taller resulting in exposure to the whole boundary layer thickness
(6) of the flow field, illustrated in Figure 3.1. This boundary layer causes
a rotation of the incoming flow downwards resulting in a flow rotating
away from the surface of the pile. This spiral vortex around the structure
is defined as the horseshoe vortex. The size of the horseshoe vortices
increase with increased d/D. If it is too small the boundary layer may not
separate and no vortex will be shed. The separation is also dependent on
the Reynolds number given as Rep = U.D /v for a cylinder shape, where
v is the kinematic viscosity of the water and U, is the current velocity.
If Rep decreases to the laminar regime the boundary layer faces more
resistance to separation, such that the horseshoe vortices get smaller. No
separation will happen if the horseshoe vortex is too small.

11
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Figure 3.1: Principal sketch of boundary layer flow interacting with vertical pile.
Taken from Sumer et al. (1997).
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Fig. 3.2 shows the distribution of the amplification factor, a given by Eq.
(1), at the normalized distances (z/D,y/D) from the center of the pile
axis. It shows that o can be 11 at the middle of the front and side edge
of the pipe. This is due to the combined action of the horseshoe vortex
and the contraction of the flow.
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x/D
Figure 3.2: Distributions of amplification factors, «, at the normalized distances

(z/D, y/D) from the center of the pile axis. D = 7.5 em, U. = 30 em/s, § =
20em/s, /D = 2.7, Rep = 23000. Taken from Sumer et al. (1997).
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3.1.2 Scour around vertical piles below regular waves

When the pile is exposed to waves, or a varying current such as tidal flows,
the downstream section that now has been described, occurs at both sides
of the pile. In this case the scour is in addition to Rep = U, D/v and
d/D also dependent on the K C' number as expressed in Eq. (8). For large
KC numbers the flow of each half period resembles a current, while for
small KC numbers the movement of the water particles is small compared
to the diameter of the pile such that the horseshoe vortices may not have
time to form.

Fig. 3.3 displays the results of Sumer et al. (1997) regarding the criterion
for formation of horseshoe vortices at the upstream and the downstream
side of the pile for different wave phases. 0° < wt < 180° indicates the time
interval for the wave half-cycle of the wave crest while 180° < wt < 360°
is the time interval of the wave half-cycle for the trough. It can be seen
that a criterion for formation of horseshoe vortices is KC > 6. However,
scour also occurs for lower K C-numbers due to other mechanisms which
will be described in 3.2. The test was performed with Rep = O(103).
The differences in the results for the upstream and the downstream part
are due to asymmetry in wave troughs and crests. This phenomenon is
explained more in detail in Section 4.2. However, scour will occur when
KC < 6 due to other mechanisms than the horseshoe vortex, which will
be elaborated in Ch. 3.2 under the large pile regime.

13
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Figure 3.3: Formation of horseshoe vortices as a function of KC-number and
wave phase. o marks flow visualization measurements and + marks the bed shear
stress measurement. Taken from Sumer et al. (1997).

From Fig. 3.1 it can be seen that lee-wake vortices will be formed behind
the pile. They are caused by the separation of the boundary layer on
the surface of the pile. The lee wake vortices are essential for the scour
characteristics below waves, but the KC number is the governing factor.

Fig. 3.4 shows the amplification factor given by Eq. (1), with varying
KC numbers for different values of x, where x = 0 is the center of the
pile. « increases with increasing K C' because the horseshoe vortices grow
with increasing KC. The figure also shows that the shear stress is higher
during the crest half-period compared to the trough half-period, which is
a consequence of the increased horseshoe vortex in the crest half-period,
as shown in Fig. 3.3. Although Fig. 3.4 e) shows the amplification factor
of the shear stress for currents, it is included in this figure for waves as it
clearly illustrates the difference between these conditions. The bed shear
stress underneath the horseshoe vortex in front of the pile can be 5 times
larger than the undisturbed shear stress.
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Figure 3.4: Bed shear stress at the horseshoe-vortex side of pile. Taken from
Sumer et al. (1997).

At the same time as the shear stress grows with increased K C, the amount
of sediment that must be transported also increases. This results in a
bigger scour hole for a given D, as revealed in Fig. 3.5. When KC is
around 100 the scour is almost equal to the depth generated by a current,
while it reaches the current depth around K'C = 300. Sumer et al. (1992)
developed the following empirical expression for the data in Fig. 3.5 for
regular waves:
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1 o |
D
ok AT -
S
D
+—Steady
LI 3 current
/ 1= .
(4 o 2% rml e
- = 110 mm
01 o Ca [ ] = 200mm —
F + =45 mm Das (1570}
F ~ Kawata &
r . ° X =0 o8
| I =75 = 900 mm 5;!;;7«5!!& ]
1 10 10? 10° @ (Steady
KC current)

Figure 3.5: Equilibrium depth normalized by the diameter (S/D), versus KC.
Eq. (13) represents the solid line. Taken from Sumer et al. (1992).

As previously mentioned in Ch. 2.2, the value of S will be reduced if
the KC' number decreases. In this case the initial scour hole S; will be
backfilled and will end up with the final depth Sy. Fig. 3.6 displays S/D
plotted versus KCy. The squares show scour experiments performed with
an initially flat bed, while the the circles and the triangles are the result
of backfilling experiments from an initially scoured bed. The solid line in
Fig. 3.6 represents Eq. (13) and therefore implies that regardless of the
initial scour hole geometry, the equilibrium scour depth of the backfilling
process will be the same as for the scour process for the same value of KC.
This means that the final depth is not affected by whether the initial bed
is flat or scoured, or whether the initial scour hole is generated by current
or waves. However, the time scale will be influenced by these factors. This
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is implied in Egs. (10) and (11) where it can be seen that the time scales
dependency on S are different for backfilling and scour.
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Figure 3.6: Equilibrium scour depth normalized by the diameter (S/D), versus
KC during backfilling (KCy). solid line: Eq. (13). Backfilling experiments from
initially scoured bed where the initial scour hole was generated by currents (o) or
waves (<1). Taken from Sumer et al. (2012).

3.1.3 Scour around piles below irregular waves

Sumer and Fredsge (2001a) studied the effect of irregular waves on scour.
They used North Sea storm conditions in their laboratory experiments de-
scribed by the JONSWAP spectrum. Sumer and Fredsge (2002) compared
results of S/D for irregular waves with Eq. (13) where the K C' number
was calculated in six different ways. They found that replacing KC' with
KC,ps defined as:

Urms Tp

K rms —
¢ D

(15)
gave the best representation of the scour depth in irregular waves. T, is

the peak period and U,,s is the random mean square (r.m.s.) value of the
velocity below irregular waves defined as:
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Urms = \/§UU (16)

where oy is the r.m.s. value of the orbital velocity U at the bed,

ot = [ s (17)

where S(f) is the power spectrum of U and f is the wave frequency given
by 1/T.

3.1.4 Scour around piles in combined waves and current

Fig. 3.7 presents experimental results from Sumer and Fredsge (2001a),
and it shows S/ D versus the current wave velocity for regular waves, Uey,
which is expressed as:

Ue
U= ——— 18
0. (18)

U. is the undisturbed current velocity D/2 from the bed. The figure
implies that for small KC numbers, even a small current will cause the
scour depth to increase significantly. This is due to the strong horseshoe
vortex in front of the pile in the case of a current. It can be seen that

when U, = 0.7, the scour depth approaches the value representing current
alone.

18



10

Olw

Lt LI
<

<

1.0

0.59
(KC=26)

Ll o

| l\Hi\‘

0.01 |
0 0.2 0.4 0.6 0.8 1

Waves alone Current alone

=(_Ye
Vo= (o,

Figure 3.7: Equilibrium scour depth normalized by the diameter (S/D), versus
current wave velocity (Uey, ). Waves and current propagates in the same direction.
Taken from Sumer and Fredspe (2001a).

Sumer and Fredsge (2001a) did experiments for irregular waves plus cur-
rent. Sumer and Fredsge (2002) found that Eq. (13) can be used for
irregular waves plus current if KC is replaced by KC\,s, Eq. (15) and the
coefficients ¢ and r in Eq. (14) are replaced by:

¢ =0.03+0.75U%8 (19)
r==6 GXp(—4-7Ucwrms) (20)

where Ugyrms 1S expressed as:

Ue
Ucwrms T ——— 21
Uec + Urmns ( )

Egs. (19) and (20) are given for wave dominated seastates, meaning 0 <
Ucwrms < 0.4. For waves plus current with an angle ¢, the dispersion
relation becomes:
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w = kU.cos¢ + (gktanhkh)L/? (22)

Sumer and Fredsge (2002) found that KC,.,s reduces to the ordinary KC
number in the case of regular waves because V20 — U, and T, — Ty.
Eq. (15) and Eq. (21) given for irregular waves plus current then result
in Eq. (8) and Eq. (18) given for regular waves plus current.
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Figure 3.8: Equilibrium depth normalized by the diameter (S/D), versus KC.
Taken from Sumer et al. (1992).

3.2 Scour around large piles

When the diameter of the pile becomes large the body will affect the
incoming waves, such that the waves become reflected and diffracted, see
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Fig. 3.9. Reflection and diffraction are often just referred to as diffraction,
and it becomes important when D/L > 0.2, Isaacson (1979). In the
diffraction regime the value of D/L will affect the flow, and therefore the
scour process.
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Figure 3.9: Sketch of incident, diffracted and reflected wave fronts around a pile.
Taken from Sumer and Fredspe (2002).

No separation, and therefore no vortex shedding, will exist in the diffrac-
tion regime. Fig. 3.10 shows that diffraction occurs within low KC num-
bers. This is because the period is too short compared to D, such that
the direction of the incoming flow changes before separation has time to
occur. The dotted line defines the maximum steepness of the waves given
by Isaacson (1979) as (4) = 0.14 tanh(kh).
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Figure 3.10: Different flow regimes. Taken from Isaacson (1979).

In the diffraction regime there are other flow processes that cause scour
compared to the slender pile regime, where scour is related to the vortex
shedding. The flow patterns that occur are described as phase-resolved
flow and steady streaming, and their mechanisms and contribution to scour
will be described in the following.

The phase-resolved flow is an outer flow occurring around the pile due
to the interacting wave field. In the front of the pile the incident waves
interact with the reflected waves, while behind the pile the diffracted waves
interact with reflected waves. This causes velocities near the pile, which
can be up to twice as large as the undisturbed wave velocity, causing the
Shields parameter to increase, such that sediments are stirred up from the
seabottom.

The boundary layer over the bed will be affected by the interacting waves,
and this will result in steady streaming. Fig. 3.11 shows the period
averaged resultant velocities 4 cm above the bed, defined as /Ug + Uy,
where Ug is the period-averaged radial velocity and Uy is the period-
averaged tangential velocity. Three areas are defined in the Fig. 3.11;
region A where the flow is directed towards the front of the pile and region
B and C where the flow components are directed outwards. In region B
the radial velocities are likely to occur as a response of the bed boundary
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layers interaction with the reflected waves. It should be noted that this
flow picture occurs when the bed is plane. The streaming will experience
a constant adjustment as scour develops.
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Figure 3.11: Vector diagram of the period-averaged velocities. Taken from Sumer
and Fredspe (2001b).

Figs. 3.12 and 3.13 show that S/D increases with increased KC and
D/L, which can be explained by a stronger steady streaming. When KC
increases for a given water depth, diameter and period, the wave height
grows resulting in larger incoming waves and therefore larger reflected
and diffracted waves, causing more steady streaming. When D/L is large,
the reflected and diffracted waves becomes stronger, which also results in
more steady streaming. However, Sumer and Fredsge (2001b) suggest that
when D/L is above 0.15, the phase-resolved velocity decreases, preventing
the sand to be transported as far away from the bed as it would be for
smaller D/L. Therefore, the sand will not be exposed to the same steady
streaming.
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Figure 3.12: S/D wversus KC for D/L = 0.15. Taken from Sumer and Fredsge
(2001b).

0.04 I
S KC=0.4
D
0.02 —
Ocl | |
0 0.1 0.2 0.3

o)

Figure 3.18: S/D wversus D/L for KC = 0.4. Taken from Sumer and Fredsge
(2001b).

3.3 Scour below marine pipelines

The development of scour below pipelines can be divided in four stages,
which are onset of scour, tunnel erosion, lee-wake erosion and the equilib-

24



rium stage.

3.3.1 Scour below marine pipelines due to steady currents

The first process is the onset of scour and it is caused by piping. Piping
happens due to the pressure difference at the upstream and downstream
side of the pipe. When a transverse water flow hits the pipe, the velocity
decreases near the bottom of the pipe such that the pressure increases.
This can be seen in Fig. 3.14(b). The downstream side has a low pressure
such that the water will try to flow underneath the pipe from the upstream
to the downstream side. The sand is not impermeable, and there will be
water in the sand moving slowly. This will cause sand to build up on the
downstream side of this pipe, see Fig. 3.15(b). When a certain amount
is removed, the remaining sand can not hold the pressure difference and
water seeps through, Fig. 3.15(c).
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Figure 3.14: Pressure distributions for bottom-seated pipe. Taken from Sumer
and Fredsge (2002).
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Figure 3.15: Piping, the break through process. Taken from Sumer and Fredsge
(2002).

The second stage of the scour development is tunnel erosion. Right after
the onset of scour, the gap between the pipe and the seabed is small. This
results in high velocities in the gap, causing a high bed shear stress, Eq.
(2), such that the sediment transport is large and scour occurs violently.
When the gap is sufficiently large, the velocity has decreased to an extent
that indicates tunnel erosion is over.

The next stage is the lee-wake erosion which happens due to vortex shed-
ding. Vortex shedding begins when the gap between the pipeline and the
seabed reaches a certain value. Measurements from the bed shear stress
show that Shields parameter may increase up to four times during the
vortex shedding period. This results in a high sediment transport at the
downstream side of the pipeline so the sand dunes behind the pipe get
more distributed, and may disappear. This results in a less steep slope of
the scour downstream than upstream.

After the lee-wake erosion the scour process reaches the equilibrium stage,
where the depth is termed S. At this stage the bed stress underneath the
pipe equals the undisturbed shear stress 7.

Fig. 3.16 presents the results of a typical scour test where a fixed pipe
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is exposed to a steady current. The numbers on the slopes are the times
it takes before the dune develops, given in minutes. It can be seen how
fast the scour depth evolves in the beginning, where tunnel erosion occurs.
Later the sand dune downstream the pipe gets more distributed.

Flow

Figure 3.16: Scour development in steady current. Times in minutes. 8 = 0.098.

Taken from Sumer and Fredsge (2002).

3.3.2 Scour below marine pipelines in regular waves

When the pipeline is exposed to waves the downstream section that now
has been described occurs at both sides of the pipe. This is illustrated in
Fig. 3.17(b). In this case the KC number, Egs. (8) and (9), must also be

considered.

When KC is small, the orbital motion of the water particles is small
relative to the diameter, and the separation behind the pipe may not
occur due to the short length of the lee-wake erosion. Large KC' numbers
mean that water particles travel large distances relative to the diameter,
resulting in longer lee-wake, such that separation and probably vortex
shedding occur. For very large KC number, the scour characteristics
resemble the situation for current because of the long period.
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Figure 3.17: Lee wake effect. Taken from Sumer and Fredspe (2002).

Fig. 3.18 depicts experimental data from Sumer and Fredsge (1990) where
a pipeline was exposed to regular waves in live-bed conditions. It shows
the scour depth normalized by the diameter versus the KC number. For
waves, the normalized scour depth is linearised by the solid line in the
figure expressed as:

% = 0.1VKC (23)
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4 Statistical Distributions of
Wave Heights

The scour depth and the resulting time scale were described in the previ-
ous chapters as highly dependent on the incoming flow to the structure.
Therefore, the origin of this flow is of interest, and is in this thesis consid-
ered to be caused by waves alone, or waves and current combined.

The description of waves can be done statistically based on stochastic pro-
cesses such that the waves can be seen as random variables. In this thesis
the Rayleigh and the Forristall (2000) distributions are used. Rayleigh
assumes each random variable to be a linear wave, while in Forristall each
random variable is a second-order wave.

In mild to moderate sea states the linear approach gives good results
but in severe sea states and shallow water the nonlinear effects become
more important, and Forristall is just one example of a model that can be
used to include such effects, Wist (2003). To use these distributions two
assumptions must be made:

e The waves are stationary, resulting in a constant variance of the
energy spectrum of the wave elevations.

¢ The waves are narrow-banded. A stochastic process is narrow-banded
when most of the energy in the wave spectrum is concentrated
around one frequency; the peak frequency w,. This means that
all the frequencies can be approximated to be equal this frequency,
Myrhaug (2004).

4.1 The Rayleigh distribution

Longuet-Higgins (1952) showed that if the sea surface is assumed to be
the sum of many regular waves in a random phase and the wave spec-
trum is narrow-banded, the wave amplitudes are distributed according to
Rayleigh. The wave crests and troughs are then equally distributed be-
low and above the mean water level over time, referred to as a Gaussian
distribution. The distribution of the normalized wave amplitude is of in-
terest when employing the stochastic method that will be presented in the
following chapters. It is given as:
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a

(24)

a p—
Qrms

where a,ms is the r.m.s. value of the wave amplitude, given according to
the Rayleigh distribution as:

H;
rms — 25
a Ve (25)

where Hj is the significant wave height, which can be found from a time
series of wave elevations as the mean value of the 1/3 highest waves. The
cumulative distribution function (cdf) of the normalized linear wave am-
plitude @ is given as:

P@a)=1—e¢% for a>0 (26)
The probability density function (pdf) is obtained by derivation of the
cumulative distribution function in Eq. (26) such that p(a) = dP(a)/da:

p(a) = 2ae™% for a>0 (27)

4.1.1 The truncated Rayleigh distribution

If & is defined within an interval a; < @ < dao, this is accounted for by
letting a follow the truncated Rayleigh distribution where the cdf is given
as:

a2 _
e —e¢
~2

~2
e M — e %

P(&) = for &1 S a S &2 (28)

The pdf is obtained by derivation of Eq. (28) such that p(a) = dP(a)/da:

A _A2
2ae~
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4.2 The Forristall distribution

The weakness of the Rayleigh distribution is that real waves do not have a
perfectly Gaussian distributed surface. The crests are higher and sharper
than expected from a summation of sinusoidal waves with random phases,
and the troughs are shallower and flatter, Catano-Lopera and Garcia
(2007). This can be seen in Fig. 4.1 that shows a part of a simulated
time series. Eq. (4) shows that the maximum near bed velocity U, in-
creases linearly with the wave amplitude. This results in a higher velocity
below the crest and therefore a higher bed shear stress given by Eq. (2),
leading to more scour.

Fig. 4.1 shows how a second order wave can be split in different parts. It
has contribution from the the second order sum-frequency and difference
frequency parts. Note that most of the wave is built up by the linear
term. The sum frequency increases the wave amplitude and the difference
frequency reduces this effect, and thereby they are also termed wave set-
up and wave set-down effects. The biggest contributions from the second
order terms appear in the highest wave amplitudes. This means that the
nonlinearity of the waves will increase with increasing crest height and
trough depth, Wist (2003).

12 ‘ ‘
— 2nd order
10r — linear i
8f lin. + sum freq. -
sum freq.

— difference freq.

Surface elevation [m]

0 10 20 30 40 50 60 70
Time [s]

Figure 4.1: Different components of the surface elevation in a simulated time
series. Taken from Wist (2003).
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Fig. 4.2 is based on field data from the Draupner field and shows the rela-
tive magnitude between sum-frequency and difference-frequency for waves
with varying water depth. Due to the assumption of a narrow-banded
process, wy = w1 = wp. The positive values of the quadratic transfer func-
tion describe the sum-frequency, while the negative values describe the
difference frequency. It can be seen that when the water depth is large
the sum-frequency, and the difference frequency effect are small. The dif-
ference frequency becomes smaller relative to the sum-frequency and For-
ristall (2000) states that the difference frequency effect can be neglected
for long-crested (2D) and short-crested (3D) waves in deep water. 3D
waves are characterized by a three-dimensional wave spectrum dependent
on the frequencies and the propagation angles of the waves. 2D waves
are only dependent on the frequency spectrum, and therefore propagate
in the same direction.

From Fig. 4.2 it can be seen that when the water depth decreases the
difference-frequency gets more negative, while the sum-frequency gets
more positive, meaning the second order effects increase. Fig. 4.3 shows
that in finite water depth the difference-frequency is most significant for
2D waves, resulting in a smaller 2D wave compared to 3D. In deep water
the total 2D wave ends up being larger than the 3D because the difference
frequency effect is neglected, as earlier stated.
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Figure 4.3: Principal sketch of 2D and 3D waves in deep and finite water. Taken
from Hesten (2011).
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Forristall (2000) includes the second-order effects by using a two-parameter
Weibull distribution based on the assumption of the surface elevations as
a stationary narrow-banded process. The distribution of the normalized
wave crests, w,, is of interest because they contribute more to scour as
they are higher than the trough.

The nonlinear crest height is given by w. = n,/arms where n, is the
nonlinear surface elevation. At a fixed point in a sea state with stationary
narrow-banded waves, consistent with Stokes second-order regular waves
in finite water depth, w, and U,, are given by Dean and Dalrymple (1984)
as:

we = @+ O(kparms) (30)
Upy = @+ O(kplrms) (31)
where []'m = Up/Urms is the the non-dimensional nonlinear maximum

horizontal particle velocity at the seabed. O(kpa,ms) is the second-order
terms which are proportional to the characteristic wave steepness kpa,ms,
where k, is the wave number in a narrow-banded seastate. Eq. (30) can
be reorganized such that @ = w. — O(kparms). Substitution of this into
Eq. (31) results in U = we + O(kparms). When comparing this result
with Eq. (31), it appears that @ can be replaced by w, in the linear term
of Uy, because the error involved is of second order, Myrhaug and Ong
(2014):

a = we (32)

Even though a is assumed to equal to w,, the distribution of them will be
different. Eq. (25) will be employed when using the Forristall distribu-
tion to find necessary statistical parameters. Forristall (2000) derived the
following cumulative distribution function:

)/3

P(w.) =1— e (5 for we > 0 (33)

where o and 3 are Weibull parameters. These are obtained by simulations

based on Sharma et al. (1981) theory that includes the second order sum-
frequency and difference-frequency effects. Forristall (2000) expressed the
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Weibull parameters a and 3 for long-crested (2D) and short-crested (3D)
waves:

asp = 0.3536 + 0.28925; + 0.1060U, (34)
Bap = 2 — 2.15975; + 0.0968U,.2 (35)

asp = 0.3536 + 0.25685] + 0.0800U, (36)
B3p =2 — 1.79128; — 0.5302U, + 0.284U,> (37)

where S7 is the wave steepness, and U, is the Ursell number. These
parameters characterize the degree of nonlinearity in the waves. When
S1 = U, = 0, the waves become sinusoidal such that the Forristall distri-
bution reduces to the Rayleigh distribution. The wave steepness and the
Ursell number are defined as:

Sl = q T12 (38)
H,

U, = 39
k:%h?’ (39)

where 77 is the mean wave period, and k; is the corresponding wave
number. The seastate is narrow-banded such that 77 = T}, which by
the dispersion relation, Eq. (5), implies that k; = k,. The Forristall
distribution is based on simulations for U, < 1. The value of the wave
steepness is given as S7 < 0.1412 to avoid breaking waves.

The pdf is obtained by derivation of Eq. (33) such that p(w.) = dP(w.)/dw:

/8 We )B—le_(\;ugca)ﬁ

p(we) = E(\/ga for w.>0 (40)
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4.2.1 The truncated Forristall distribution

If w, is defined within the interval w.; < w. < weo, this is accounted for
by letting w,. follow the truncated Forristall distribution, where the cdf is
given as:

6_(’\(;%}1)ﬁ —_ 6_(\1/%:(1 )E
P(wC) = _(wcl )B _(M)ﬂ fOl" wcl S wc S wCQ (4]‘)
e \/ga — e \/ga

The pdf is obtained by derivation of Eq. (41) such that p(w.) = dP(w.)/dw:

1 —(ZlHp
(Shs) Bl e e
p(we) = \/%?1 T =y for we < we < Wea (42)
e 8« —e 8a
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5 The Time Scale of Scour and
Backfilling

This chapter derives a method where empirical empirical formulas for the
time scale of scour and backfilling are presented and reformulated, such
that random waves can be included. This allows the time scale to be found
for a given seastate in linear or nonlinear waves. The empirical formulas
were obtained by linear fit of experimental data, which can be found in
Sumer and Fredsge (2002) and Sumer et al. (2012). They presented the
time scale non-dimensionally as T*, which is independent of the diameter
and related to real time by:

2
T2 (43)

9(3 - 1>d§0

Note that all the experiments were performed in live bed conditions. The
data were plotted as functions of § and KC' in waves, and the addi-
tional parameter U, in waves plus current. For each experiment the
parameters have been calculated based on the properties of the incom-
ing waves, current and the sand grains. The corresponding S was mea-
sured with necessary instrumentation such that 7' could be found from
the slope method or the area method by the formulas S; = S(1 — e~ %/7)
and Sy =S+ (S; — S)e_t/T, given in Eq. (10) and (11).

The formulas for the time scale will vary depending on the different sce-
narios, which will be referred to as CASE 1- CASE 6. In CASE 1- CASE
4, scour is caused by random waves alone, while in CASE 5 and 6, back-
filling is caused by currents and waves combined. The first section will
present the time scale of scour. The formulas are taken from Fredsge et al.
(1992) and Sumer et al. (1992) where the experiments were performed in
regular waves. The second section presents the time scale of backfilling
taken from Sumer et al. (2012) where the vertical pile were subjected to
irregular waves during the experiments.
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5.1 The time scale of scour

5.1.1 Method

The following method is used to express KC and 6 by their r.m.s. values
and the normalized wave height:

The maximum value of the Shields parameter below waves is obtained by
substituting 7o /p in Eq. (12) with 7y42,00/p from Eq. (2):

Tmam,oo/p

oy = —mazc/P
g(s — 1)dso

(44)

When Eq. (44) is divided by its r.m.s. value, Shields parameter is ex-
pressed non-dimensionally as:

Om
0. = 4
Orms ( 5)
where y
Trms/ P
erms =~ N 46
9(s —1)dso (46)

When combining Eqs. (44) - (46) the normalized Shields parameter equals:

0, = Tmaxpo//) (47)
Trms/p
By substituting Eq. (6) into Eq. (2) the following is obtained:
1 A _
Tmam,oo/p = 50(7) dUrzn (48)
20

Trms/ p is expressed similarly, but A and U are replaced by A,p,s and Uyps:

1 A _
Trms/p = §C(ﬂ) dUTQmS (49)
20
Egs. (47) - (49) result in the following expression for the normalized
Shields parameter:

(50)



By the assumption of a narrow banded process, the following relation of
the ratio of Uy, /Urms can be seen from Eq. (4):

m A A
Un w oo __a (51)

Urms Armswp Arms Qrms

By combining Eqs. (24), (32), (50) and (51), the normalized Shields pa-
rameter becomes:

0. = = a2 =2 (52)

such that
em = Hrmsd27d = Hrmswgid (53)

The normalized Keulegan Carpenter number is found by dividing the KC-
number, Eq. (8), by its r.m.s. value, Eq. (15). Under the assumption of
a narrow banded sea state the following relation is obtained:

Kkc  U.T. U,
K c — = = = = W, 4
O = RO~ Uiy~ Uy 250 (54)

such that
KC = KCrpsa = KCrpswe, (55)

Note that even though the linear normalized wave amplitude @ and the
nonlinear normalized wave crest w. are equal, they are distributed differ-
ently. In the following formulas the time scales will be presented by we,
but T* will also be calculated for linear waves.

5.1.2 The time scale of scour below pipelines (CASE 1)

Fredsge et al. (1992) showed that the time scale of scour below pipelines
can be expressed as a function of only the Shields parameter in waves and
currents. They did experiments with varying KC numbers, presented in
Fig. 5.1, and concluded that the dependency of KC could be neglected.
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Figure 5.1: Non-dimensional plot of time scale against Shields parameter for
waves. The bed is originally plane and the gap between the pipe and bed is zero.

Taken from Fredsge et al. (1992).

Fig. 5.2 shows that the data sets for steady currents and waves correlate.
By linear fit to the data, Fredsge et al. (1992) obtained the following

expression:

T =10

(56)

where r; = 1/50 and s; = 5/3. The tests were performed within

0.05 <60 <0.19.
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Figure 5.2: Non-dimensional plot of time scale against Shields parameter. Steady
current and waves. Plane bed, the gap between pipe and bed is zero. The data for
the current experiments are obtained in Mao (1986) and Kjeldsen et al. (1973).
Wave data and figure are taken from Fredsoe et al. (1992).

By substituting 6,, in Eq. (56) with the expression for 6,, given in Eq.
(53), the dimensionless time scale becomes:

T* = iy w0 (57)

Cc

Eq. (57) can be reorganized and expressed by the dimensionless constant
t:

T*
t= = 127D = v (58)

where

v=2s1(2—d) (59)

The purpose of defining ¢ is that it is easier to compare the scour char-
acteristics for linear, nonlinear 2D and nonlinear 3D solutions of the time
scale by this value. The ratio of ¢t will reflect the ratio of T for a given
value of 0,,s and KCps (CASE 2 - 4). Tt is possible to derive ¢ in CASE
1 - CASE 4, where the only value that will differentiate the cases is v,
making the calculation simple.
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5.1.3 The time scale of scour around vertical slender piles
(CASE 2)

Sumer et al. (1992) investigated the time scale of scour around vertical
piles and concluded that T* decreases with increasing 6,,,, consistent with
the results obtained for pipelines. This can be seen in Fig. 5.3, which
also shows the time scales dependency on the KC' number. As seen from
Fig. 3.5, higher KC-numbers result in higher equilibrium scour depths S
for a given D, and therefore, more sediment must be transported to reach
S. This results in longer time. Based on their results, they obtained the
relation:

KC .t

T* = Tl(m) (60)

where 7 = 1076 and s; = 3. The tests were performed within
7T< KC <34 and 0.07 <0 <0.19.
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Figure 5.8: Time scale of scour around pile. Taken from Sumer et al. (1992).

By substituting 6,, and KC' in Eq. (60) with the expressions for 6,, and
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KC given in Egs. (53) and (55), the dimensionless time scale becomes:

KCT’TTLS S — —
(s -
where
. T* _ U)C_Sl(l_d) = w," (62)
Tchrmsslegr‘rngs
such that
v=s1(1—4d) (63)

5.2 The time scale of backfilling

The formulas of the time scale for backfilling were derived by Sumer et al.
(2012) for irregular waves, and therefore presented by KCppms, Orms and
Ucwrms. However, in this thesis it is assumed that these parameters can be
reduced to KC, 0, and U, in the formulas for the time scale in the event
of regular waves alone or regular waves plus current. A similar assumption
were made by Sumer and Fredsge (2002). They found that S/D from Eq.
(13) was valid for irregular waves plus current when K C was replaced by
KCpms and g and r by Egs. (19) and (20), represented by Ucyrms. They
stated that these formulas could be applied in regular waves plus current
by replacing K Cims and Ueyrms With KC' and Ugy,.

5.2.1 Method

As mentioned in the introduction, the equations from Sumer et al. (2012)
were assumed to be valid for regular waves plus current. Now it is further
assumed that these equations are valid for individual waves in an irregular
narrow-banded seastate. This results in the following:

(64)

The expressions for 6, will be similar to Eq. (44), where Tiuz,00/p is
replaced by Eq. (2) containing f,,, which is replaced by Eq. (6), where
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A = Up,/wp under the assumption of individual waves in a narrow-banded
sea state:

0.5 ¢ (zowp)? Uy, 3=
Om =
g9(s — 1)dso

(65)

Egs. (64) and (18) are multiplied with Uppms/Urms and Eq. (65) with
(Upms/Urms)>~%. By using the relation U,,/U,ms = w. from Eq. (54),
KC and 6, end up beeing equal to Egs. (53) and (55). Ug, becomes:

Ue
v, = —— "¢ 66
= U w0l (96)
By re-arranging Uecyrms given in Eq. (21), the following is obtained:
UcwrmsUrms
U= ——7F7— 67
¢ 1- Ucwrms ( )
which is substituted into Eq. (66) resulting in:
Ucwr
Ucw o cwrms (68)

B wc(l - Ucw'rms) + Ucwrms

5.2.2 The time scale of backfilling around slender verti-
cal piles below waves when the initial scour hole was
generated by current (CASE 3)

Sumer et al. (2012) defined the non-dimensional time scale for backfilling
in the same manner as for scour; linear fit to data of experimental results.
The time scale for each experiment was obtained by the tangent method
according to the definition in Eq. (11). Fig. 5.4 presents results where the
initial scour depth (5;) was generated by current and the final depth (Sy)
was caused by waves alone, characterized by KC'y on the x-axis. In the
further context, the index ¢ will always present the initial conditions for
the scour hole, while the index f describes the waves causing backfilling.

From Fig. 3.5 it was seen that when KC = oo (the current situation),
S/ D reaches its highest possible value. When backfilling begins the time
is dependent on KCy as this will indicate how big the final depth is. If
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Ky is high the final scour hole is closer to the initial hole, resulting
in less backfilling and therefore shorter time. The time scale decreases
with increasing 6y due to the same reason as described earlier; increased
0 causes faster sediment transportation.

Definitions of KCy and 6y by Sumer et al. (2012) are r.m.s. values such
that their equation for the time scale becomes:

T* = (65, KCprms) (69)

frms

were s1 = 2 and so = 1.45. The experiments were performed within
5 < KCppms <53 and 0.07 < 05 < 0.15.

103 . . :
¢ ] |
L 0.07 10.09-0.11|0,12-0.15 Db . i
L 15 ]
0.= 0.072 < 25

102 ! > 40 |5
E 0,= 0.095 3
™ | e=015 ]
10'E E
10°% .
1 L a1l L L4 gl 1 L1 |||:

10° 101 102 108

KCy
Figure 5.4: Time scale of backfilling. Initial equlibrium scour depth is generated

by a current (KC = o0). Taken from Sumer et al. (2012).

Orms and K Cip,s in Eq. (69) reduce to 6,, and K C under the assumption of
individual waves in a narrow-banded seastate. They are thereby replaced
with Egs. (53) and (55) such that the dimensionless time scale becomes:

T — (931 chrms)—sgwc—sg(sl(Q—d)—i—l) (70)

frms

where
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t=T*(03!

frms

K Cpppns)™ = wy 21270 — gy (71)

[

such that
v=s92(51(2—d)+1) (72)

5.2.3 The time scale of backfilling around slender piles be-
low waves when the initial scour hole was generated
by waves (CASE 4)

In this case of backfilling around a slender vertical pile the initial scour
hole is generated by waves. Sumer et al. (2012) performed experiments
on this presented in Fig. 5.5. For a given value of 2K C t, a smaller value
of KC; causes a smaller initial hole and the time it takes to reach the
final value will therefore be shorter. Definitions of KCy and 6; by Sumer
et al. (2012) are r.m.s. values such that their equation for the time scale
becomes:

KCfT’ms —

T = (r1 —20% 52 73
(rl Kcirms f'rms) ( )
where 71 = 70, s1 = 2 and sy = 1.45. The experiments were performed in
the ranges: 11 < KCjppms < 32, 4 < KCfppps < 25 and

0.07 < Ofpms < 0.15, resulting in 0.02 < 6%, KCfpms < 0.56.

rms
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Figure 5.5: Time scale of backfilling. A: Initial equilibrium scour depth generated
by current, Fq. (69) B: Initial equilibrium scour depth is generated by waves, Eq.
(73). Taken from Sumer et al. (2012).

Orms and KCpp,s in Eq. (73) reduce to 6, and KC under the assumption
of individual waves in a narrow-banded sea state, and are thereby replaced
with Egs. (53) and (55) such that the dimensionless time scale becomes:

KC rms S%“ms
* (Tl }—};C f )—szwc—sg(sl(Q—d)—f—l) (74)
wmrms
where
KC rms si‘ms

t=T* (7“1#)52 - wc—s2(51(2—d)+1) = w Y (75)

such that
v==s9(51(2—d)+1) (76)
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5.2.4 Backfilling around vertical slender piles in combined
waves and current when initial scour hole is gener-
ated by current (CASE 5)

Fig. 5.6 shows the time scale of backfilling around a slender pile by current
and waves combined when the initial hole was generated by a current.
From Fig. 3.5 it was seen that the scour depth increases with increasing
K until it reaches a constant value corresponding to the depth generated
by current. This means that the stronger the current, corresponding to
higher U.,, the bigger is the final depth, which results in less time of
backfilling. Therefore, the time scale approaches zero when the current-
wave ratio is U, > 0.7. Sumer et al. (2012)s definition of KCy, 0y, and
Ugy are as mentioned r.m.s. values, resulting in the following empirical
expression based on the experiments presented in the figure:

0.65

T =19-
( KCfpms — 0.01)%

+2)(Uewrms — 0.7) for Ucyrms < 0.7
(77)

@3

frms

where s; = 2 and so = 1.68. The tests were performed within
4 < KCfppms <20 and 0.07 < Oy < 0.11.
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Figure 5.6: Time scale of backfilling in combined waves and current. Initial scour
hole generated by current. Horizontal lines: FEq. (69), curved lines: Eq.(77).
Taken from Sumer et al. (2012).

KCrms, Orms, and Ueyrms in Eq. (77) are reduced to KC, 6, and U,
given in Egs. (55), (53), and (68), under the assumption of individual
waves in a narrow-banded sea state. This results in:

T =1.9—
0.65 i 2)( Ucwrms
ch’/‘ms — 001) wc(l - Ucwrms) + Ucwrms

((wil(H)+ Tps1 ~07)

frms

(78)

It was seen in Eq. (77) that the validity is within Ueyprms < 0.7, resulting
in the following criterion for Eq. (78):

Ucwrms
0.7 79
wc(l - Ucwrms) + Ucwrms < ( )
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5.2.5 Backfilling around large piles in combined waves and
current when initial scour hole is generated by cur-

rent (CASE 6)

Fig. 5.7 shows the time scale of backfilling around a large pile by current
and waves combined when the initial hole was generated by a current.
Similarly to Fig. 5.6, the time scale decreases when the current becomes
stronger because the final depth increases, resulting in less time of back-
filling. It should be noted that the amount of data is limited such that
extrapolation must be done with caution. The scour will not vary with
any significance when the diffraction parameter D/L changes from 0.07
to 0.12, Sumer and Fredsge (2002), as seen in Fig. 3.13. This is due to
the small variation in the flow pattern. However, in Fig. 3.12 it can be
observed that S/D changes between KCy = 0.7 to KCy = 1.5. Sumer
et al. (2012) present the following empirical expression based on their ex-
periments presented in Fig. 5.7:

15.15
o B (0 for Une<07 (60)

ms

where s; = 2.38. The experiments were performed within
0.7 < KCfppms < 1.5 and 0.101 < 0,5 < 0.105.
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Figure 5.7: Time scale of backfilling in combined waves and current around large
piles. Initial scour hole generated by current. Taken from Sumer et al. (2012).

KCps and Ugyrms in Eq. (80) can be replaced by KC' and Uy, given in
Egs. (55) and (68) under the assumption of individual waves in a narrow-
banded sea state. This results in:

15.15 Ucwrms

T = -
(I(C'frmswc)s1 wc(l - Ucwr‘ms) + Ucwrims

—07) (81

where Eq. (79) must be fulfilled.
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6 The Stochastic Method

In this Chapter, a stochastic method for calculating the expected value of
time scale of scour and backfilling is described. As seen in Ch. 5 and 5.2.4,
the formulas of the timescale expressed by the normalized wave crest were
derived, allowing input of random waves, which will be distributed by the
Rayleigh and Forristall pdfs shown in Ch. 4.

This stochastic approach is based on the following assumptions:

e In a given sea state, only the 1/n’th highest waves contribute to
scour.

e The seastate has lasted longer than the timescale of the scour.

e The method is only valid for live-bed conditions. This assumption
appears because the formulas for the time scale are obtained based
on experiments where 6 > 6,,.

e The surface elevation is a stationary narrow-banded random process.
This assumption is connected to the probability distributions that
were shown Ch 4. Now they will be used to find the time scale.

Myrhaug and Ong (2011) found that the scour depth and width below
pipelines caused by the (1/10)’th highest waves represent the upper values
of the random wave-induced scour, and suggest that this can be used for
design purposes. n = 10 is therefore applied in this thesis. 6. = 0.05
when the seabed is flat, which is assumed here.

6.1 The time scale in random waves

The time scales caused by random waves were derived in Ch. 5.1.1 as
CASE 1-4. All the formulas of the dimensionless time scale T™ could be
expressed by ¢ as the only parameter dependent on the distribution of the
wave amplitudes/crests. This is used in the following method to calculate
the expected value of the time scale of scour or backfilling.
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6.1.1 Linear random waves

The expected value of the dimensionless time scale t for linear waves is
expressed as:

oo

Elt(@]a > i) =n [ Ha)p(a)da (82)

dl/n
where p(a) is the probability density function given by Eq. (27) and t(a)
is the normalized dimensionless time scale from Egs. (58), (62), (71) and
(75), given as t(a) = a~". By inserting ¢(a) and p(a) into Eq. (82), the
expected value of the dimensionless time scale is found as:

E[t(@)]a > a1/, = n / 220 e=% da (83)

&l/n
where @y /,, is the linear normalized wave height exceeded by the probability
1/n. It is found by substituting G by G, in the cdf from Eq. (26) such
that 1 — P(a,/,) = 1/n can be solved with respect to @,/,. This results
in:

aym = Vinn (84)

6.1.2 2D and 3D nonlinear random waves

The expected value of the time scale for nonlinear waves is expressed:

[e.9]

Blt(wolwe > wa] =n [~ twe)plwe)due (55)

Wel/n

where p(w.) is the probability density function given by Eq. (40) and
t(w.) is the normalized dimensionless time scale given by Eqgs. (58), (62),
(71) and (75) as t(w.) = w_". By inserting t(w.) and p(w.) into Eq. (85),
the expected value of the dimensionless time scale is found as:

Elt(we)|we > Weq jn] = np /oo ﬂ x5 dw (86)
c c cl/n i (\/ga)ﬁ c
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where w,; /, is the normalized nonlinear wave height exceeded by the prob-
ability 1/n. It is found by substituting w. by wy/, in the cdf from Eq.
(33) such that 1 — P(w/,) = 1/n can be solved with respect to wey -
This results in:

Wer = V8a(Inn)"/? (87)

6.1.3 Comparison of nonlinear and linear results

The time scales T* in CASE 1 - CASE 4 for linear, nonlinear 2D, and
nonlinear 3D waves can be compared by the non-dimensional time scale t.
t is independent of KC}p,s and 6,5, but the ratio of t will represent the
ratio of T* for given values of 6,,,s and KC,.,s. For linear waves, t(a) will

be constant for each case, while for nonlinear waves t(w.) will vary with
only U, and Sj.

The ratio of the expected values of ¢ for the nonlinear Forristall distribu-
tion and the linear Rayleigh distribution is obtained by dividing Eq. (86)
by Eq. (83):

[e'¢) wfflfv —( wca),g
Rl = "8 Jug s (Rmp € e (88)
B n aolo/ 26(1-v) x e=0%dg

The expected value for the nonlinear solution can be solved by assuming
long-crested or short-crested waves. The ratio of the 3D and 2D solution
is found by substituting o and § in Eq. (86) with asp, B3p, aep, and Bap
from Eqs. (34) - (37):

B3D 1—w )/BSD

wec? Vo
nﬁ?’D fwc 1/n ( fasD)ﬁSD xe P dwe 29
BQD 1—v _ %)/bp ( )
nﬁgp fie xe V8azp dw,

We,1/n ( \fazD)’BQD

6.2 The time scale in random waves plus current

The time scales for random waves plus current were derived in Ch. 5.2.4
and the final expressions for 7™ are shown in Eqs. (78) and (81). In these
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equations, it is not possible to express the w.s as one factor in T*. Due
to this, the whole expression of T must be included in the integral. A
truncated distribution must be applied because there exists a lower limit
of w, due to the criterion U, < 0.7.

6.2.1 Linear random waves plus current

The expected value of the non-dimensional time scale of scour or backfilling
in linear waves is found by the following formula:

E[T* |4 > dyy,] =n / T*(a)p(a)da (90)

where p(a) is the truncated pdf for the Rayleigh distribution given in
Eq. (29). By inserting a2 = co as the upper value, the following pdf is
obtained:

(91)

The 1/n highest waves in the truncated Rayleigh distribution is found by
solving

1 — P(a < ay/,) = 1/n where the cdf is given by Eq. (28) where a2 = oo,
such that:

a1/n, = \/Inn + a3 (92)

a1 is the smallest value the linear non-dimensional wave amplitude can
have in order to make Eq. (78) valid. This value is found by solving Eq.
(79) with respect to @, (shown as w,) for each value of Ucyrms-

6.2.2 2D and 3D nonlinear waves plus current

The expected value of the non-dimensional time scale for scour or back-
filling in nonlinear waves is found by the following formula:

E[T* | we > weypn] = n / T T (we)p(we) duw, (93)

Wel/n
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where p(w,) is the truncated pdf for the Forristall distribution given in
Eq. (42). By inserting wee = oo as the upper value the following pdf is
obtained:

(LN e () ()
p(we) = (\/go) pwlte (94)

The (1/n)’th highest waves in the truncated Forristall distribution is found
by solving 1 — P(we < we/n) = 1/n where the cdf is given by Eq. (41) for
wo = 00, such that:

Wel/p = ﬁa[(%é)ﬁ +In n] v (95)

weq is the smallest value the nonlinear non-dimensional wave amplitude
can have in order to make Eq. (78) valid. This value is found by solving
Eq. (79) with respect to w,. for each value of Ugyyms-
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7 Method, Example Values and
Limits

To calculate the dimensionless time scale T™ by the Forristall distribution,
some example values of parameters have to be given. This is because the
pdf is dependent on «a and 3, which are functions of S; and U,, Egs. (38)
and (39), expressed by the parameters Hg, T, k, and h. H, and h are
constant through the example calculations shown along with the other
fixed parameters in Table 7.1. The procedure for finding 7}, and k, will
vary in the different cases and will be described in this chapter. All the
calculations are performed in MATLAB.

Caution must be taken when applying different parameters. Some limits
appear through the method and are described earlier. They are summa-
rized below:

o Different validity areas of KC' and 6 are given for each case of T™*.
0rms and K Cp s are replaced directly.

e Ursells criterion: U, <1
e Arms 5
e (¢,d) =(1.39, 0.52) for 10 < Soms < 10

The criteria check is performed in Microsoft Excel and the resulting pa-
rameters can be found in Appendix A as tables given for each case.

Due to the Ursell criterion, an upper limit of KC,,s appears and sub-
stitutes the initial upper limit given for the time scale if it is higher. By
applying the criterion and inverting the expression for U, given in Eq.
(39), a lower value of k, results when inserting the example values from
Table 7.1:

H;
kp > 55 = 0.0548 (96)

Urms is obtained when replacing a, k and w in Eq. (4) with its r.m.s.
values:

_ Wplrms
Urms = Gah(k,h) &7)
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When U, is substituted into Eq. (15) where T}, is replaced by 2m/wp,
the following is obtained:

2T Qs

K ™S — 1N . 177 1\
¢ D sinh(k,h)

(98)

arms is calculated in accordance with the Rayleigh distribution given in
Eq. (25) as Hs/2v/2. When replacing k, in Eq. (98) with k, from Eq.
(96), an upper value of KC,,s appears for each of the diameters given
in Table 7.1. The time scale for the different diameters will be compared
such that the lowest upper value must be used. For the slender pile regime
(diameters given in row 3), the upper values of KC,.,s becomes 23, 15 and
12. The upper values given by the validity area of the formulas are always
higher than 12, meaning that this limit will be applied. In the large pile
regime (diameters given in row 4), the upper limits of K C,,,s are 4,3 and 2.
However, the upper limit of the initial validity area of 7™ is KCyps = 1.5
and therefore this value must be applied.

Given parameters

Water depth (h) 10m

Significant wave height (Hy) 3m

Diameter (D) (0.5, 0.75, 1.0) m (CASE 2-5)
Diameter (D) (3,4, 5) m (CASE 6)

Ratio quartz sand/fluid density (s) | 2.65

Median grain diameter (dsg) 0.001 m (CASE 1 and 4)
Constant from friction formula (¢) | 1.39

Constant from friction formula (d) | 0.52

Arms 1.061m

Table 7.1: Example values for a typical field condition, Myrhaug et al. (2009).

7.1 Scour below pipelines in waves (CASE 1)

0ms is the only varying parameter in the equation for the time scale of
scour below pipelines, given in Eq. (57). An interval of 6,,,s is given
such that the corresponding £, and w), can be found. This is done in the
following procedure: the expression for 6,.,,s is found by substituting U,,
and zp with Upps and dsp/12 in Eq. (65). The equation is inverted and
expressed as Upps:
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19d _ (1=d) | 1/(2—d)
2% 12% 0,5 g(s — 1)dsp ) (99)

Urms:( wdc
p

To make the dispersion formula, Eq. (5), valid for a narrow-banded seast-
ate, which is one of the assumptions of the method, k£ and w are replaced
by k, and w, resulting in:

wp = 1/ gkptanh(k,h) (100)

When requiring Eq. (99) to equal Eq. (97) and inserting Eq. (100) for w,
in both of the equations, k, will be the only unknown for the given 6,,,
and can therefore be found. Further, wj, is calculated by the dispersion
formula such that U, and S; can be solved.

The limit A,,s/20 is controlled for each value of 0p,s. Apps is found as
Upms/wp and zg is given as dso/12 where dsg is found in Tab. 7.1. All the
resulting parameters can be found in Appendix A. 1.

7.2 Scour and backfilling around slender piles be-
low waves (CASE 2 and 3)

An interval of of KC),s and three example values of 0,,,s are given, see
Table 7.2, along with the other parameters from Tab. 7.1.

CASE | Shields parameter (0,y,s)
2 (0.07, 0.13, 0.18)
3 (0.07, 0.10, 0.15)

Table 7.2: Given values of Oy for CASE 2 and 3.

ky, is found for each value of the given KC,s by inverting Eq. (98):

2T Ayms )

1
k, = —sinh ™ —"%_
. sin (KcrmsD

; (101)

The frequency is found from Eq. (100) such that U, and S; can be calcu-
lated for each value of KC,,s. Note that 0,,,s; will not affect the values
of U, and Sy but they will affect T™*.
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It remains to check the criterion A,,,s/zo for each value of the three given
values of Oppms. Orms is given by Eq. (65) when replacing Uy, with Upps,
resulting in:

0 _ 0.5¢ (zowp)d Upns 2~ (102)

When evaluating Eq. (102), it can be seen that a consequence of holding
0,ms constant is that zg must change accordingly to fulfil the equation. z
is obtained when replacing dsg with 12zp such that the equation can be
reorganized and expressed:

1
24 O —1)\dt
20 — (dg((;—d))) (103)
Wp ¢ Urms

When calculating the real time, Eq. (43), the change in zp must be ac-
counted for in each value of KC,.,,s. All the resulting parameters can be
found in Appendices A. 2 and A. 3.

7.3 Backfilling around a slender pile below waves

when the initial hole is generated by waves
(CASE 4)

CASE 4 is plotted for different values of 62, .KCyps. The procedure is
quite similar as for CASE 2 and 3 described in the previous section; K Cyy,s
is given and the corresponding k, is found from Eq. (101) such that w,
and thereby U, and Sy are found. However, in this case, 0,5 is not given,
allowing zg to hold its constant value given in Tab. 7.1. 6,,,s is found

from Eq. (102) for each value of KCpps.
To be able to find T*, values for KCj,s are given, see Table 7.3.

CASE | Keulegan-Carpenter number (K Cjpms)
4 (11, 20, 32)

Table 7.3: Given values of KCippms for CASE 4.
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7.4 Backfilling in waves plus current (CASE 5
and 6)

The time scale of backfilling in current plus waves will be given for different
values of Ugyrms, Eq. (21). For each plot of the time scale, values of KC)ps
and 0,,s are given, see Table 7.4.

CASE | Keulegan-Carpenter number (K Cy,s) | Shields parameter (6,,s)

5 (4, 8, 11) (0.08, 0.07, 0.09)
6 (0.7, 1.5) (0.101, 0.105)

Table 7.4: Given values of Oppms and KCrps for CASE 5 and 6.

The wave number is calculated by Eq. (101) and will now represent the
wave number for waves and current combined. The frequency obtained by
the dispersion formula from Eq. (100) is now relative:

wy = y/gkptanh(kyh) (104)

Further, U, is calculated by Eq. (97) such that U, can be calculated for
the given interval Ueyrms = [0,0.7] by Eq. (67). The absolute frequency
can now be found for each value of U,:

wp = kpUe + 1/ gkptanh(kph) (105)

The Ursell number will be constant in each of the three plots, since k), is
constant. Sy is varying with the absolute frequency.

The criterion zy/A,ns is controlled by calculating zg given by Eq. (103).
Similarly as for CASE 2 and 3, a consequence of holding 6,.,,s constant is
that zg changes. It should be mentioned that the time scale T* for CASE
6 is not dependent on 6,5, it is only used to check the criterion, while T*
for CASE 5 is directly dependent on the value of 6,,,s. When finding the
real time T given by Eq. (43), both of the cases are dependent on 6.,
through zg.
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8 Results and Discussion

This chapter presents the expected value of the time scale for scour and
backfilling, calculated by the stochastic method and displayed graphically
with its dependency of KCpps, Orms and Uegyrms. The time scale is given
non-dimensionally as 7™, and in real time by 7" given in minutes. Compar-
isons are made between linear, second-order long-crested and second-order
short-crested waves in all cases.

It was described in Ch. 4.2 that when applying the Forristall distribution,
second-order effects are included resulting in higher and sharper wave
crests compared to the linear sinusoidal waves represented by the Rayleigh
distribution. This results in a faster scour process and therefore less time
before the equilibrium scour depth is reached when applying Forristall,
which will be seen in all the results.

The water depth regime for the different cases will decide whether the
short-crested or the long-crested waves give the shortest time scale. From
Fig. 4.2 it is seen that the second-order effects almost cease in deep water.
The difference frequency effect becomes so small that Forristall neglects
it, resulting in higher 2D waves as illustrated in Fig. 4.3. However, most
of the results lie within the finite water depth regime where the difference
frequency effect causes the 3D waves to be higher than the 2D waves,
resulting in a decreased time scale. This is physically sound because when
the waves are directionally spread, the waves will hit each other and there-
fore form shapes that are unlikely to be linear sinusoidal waves. The water
regime of each case can be found in Appendix A where h/L < 0.05 char-
acterize shallow water waves, 0.05 < h/L < 0.5 is the intermediate region
and h/L > 0.5 is deep water, Pettersen (2004).

An assumption for all the formulas of the time scale is the live-bed criterion
(0 > 0.r). In this project, the initial bed is always flat resulting in 0., =
0.05. From Fig. 2.6 it can be seen that when the Shields parameter is
above this value, the equilibrium scour depth will not increase even though
0 increases. This means that for all the cases, an increase in 6 will result
in higher sediment transport and therefore shorter time, but not a bigger
scour depth.

All the results for vertical piles are plotted for various numbers of K Cjys.
Fig. 3.4 shows that the bed shear stress increases around the pile when
the KC-number increases such that the amount of sediment that must be
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transported also increases. This results in a bigger scour hole for a given
D, as illustrated in Fig. 3.5, and therefore a longer time in the event of
scour.

For the stochastic method proposed in this project, it was seen that for
a given sea state, only the (1/10)th highest waves were assumed to con-
tribute to scour. This means that the random waves included in the
formulas for the time scale, are quite high resulting in lower time scales
than those seen from the original formulas.

The time scale T* presented by Sumer et al. (1992), Fredsge et al. (1992)
and Sumer et al. (2012) are independent of D. In the previous chapter it
was seen that the dependency on the diameter appears through the KC-
number, Eq. (98), which is inverted to find k, and thereby w, in order to
solve U, and S;. This will however not influence the Rayleigh pdf such
that T™ calculated by the Rayleigh distribution is independent of D for
all the cases.

Note that each case has its own validity area of K Cyy,s and 0,5, presented
along with 7% in Chs. 5 and 5.2.4. The intervals on the x-axes are chosen
accordingly. The upper value of KC. s is limited by the Ursell criterion
as 12 for CASE 2-5 as seen in Ch. 7.

8.1 The time scale of scour

8.1.1 The time scale of scour below pipelines (CASE 1)

Fig. 8.1 shows the isocurves of the ratios Ry and R for the dimensionless
time scale ¢ for scour below a pipeline. Figs. 8.1a and 8.1b display R 2p
and Ry 3p given in Eq. (88) where R;2p gives the ratio of the dimen-
sionless time scale ¢ for nonlinear long-crested to linear waves, while 1 2p
gives the ratio of ¢ for nonlinear short-crested to linear waves. Fig. 8.1c
gives the ratio of ¢ for short-crested and long-crested waves, given in Eq.
(89). As seen from the equations, the solutions are dependent on « and
B, which are determined by U, and S;. Note that ¢, and therefore R; and
Ry are independent of 6,,,s and KC,,,s, but the ratio of ¢t will represent
the ratio of T™ for given values of 0,,,,s and KCj,s. The distribution of
the wave amplitude/crest is the only parameter that will vary when giving
different values of U, and Sj.
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In Figs. 8.1a and 8.1b it appears that R; decreases with increased S
and U,. This is physically sound because increasing S; and U, means
increasing the second-order effects, resulting in flow structures with higher
intensity. This causes a lower time scale for the nonlinear solution, while
the linear one obviously remains constant.

With high nonlinearity, the nonlinear time scale is 40% as low as the linear
time scale for Ry op, while for Ry 3p the nonlinear solution is even lower.
When comparing one value of an isocurve in the two plots, the Ry 3p curve
generally appears more to the left. This means that the 3D solution gives
a lower time scale for a given value of U, and S;. However, when studying
the isocurves in R;2p they appear linear, while the R 3p curves are bent
and have a steeper slope. A result of this is that the isocurves for Ry 2p
appear more to the left compared to Ry 3p when Sy is high and U, is low.
This can be seen more clearly in Fig. 8.1c where this area has positive
isocurves showing that the time scale for 2D waves is lowest. It can also
be seen in Ry that the highest nonlinearity indicated by high values of U,
and Sp, gives the biggest difference in the time scale for short crested and
long crested waves where 3D is 80% of the 2D time scale.

The tendencies shown in Fig. 8.1 are also found in Myrhaug and Ong
(2014) in Fig. 2, where R; and Rj represent the ratios of the burial depth
for nonlinear to linear and short-crested to long-crested waves. In this
thesis, the time scale will be shorter for sharper and bigger waves while
S/D will on the other hand increase. This means that Fig. 2 in Myrhaug
and Ong (2014) shows the opposite of what is seen here; the isocurves in
Ry are generally larger than 1, except for the combination of high values
of S1 and low values of U,.
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Figure 8.1: Isocurves for the ratios Ry, Eq. (88) and Ro, Eq. (89) for the
dimensionless time scale t of scour below a pipeline. a)Ry2p - nonlinear long-
crested to linear. b)R1 3p - nonlinear short-crested to linear. ¢) Ra - short-crested
to long-crested.

Fig 8.2 shows the expected value of the time scale T™* of scour below a
pipeline, presented in Eq. (57) and calculated with the stochastic method
proposed in Ch. 6.1. It shows that the time scale decreases with increased
Orms due to higher sediment transport. The short-crested waves result in
a higher time scale than the long-crested, this is most significant for lower
values of 0,.,,s. From Appendix A. 1, Tab. A.2, it can be seen that lower
values of 6,5 give higher values of h/L,, indicating deep water waves,
which are long relative to the water depth. In this case the wave set-down
effects are small, while the set-up effects are larger for 2D than 3D waves.
This is also verified when studying S; and U, from Tab. A.2, revealing
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low values of U, combined with high values of S7, which result in a lower
time scale for 2D waves as shown in Fig. 8.1c.

Fig. 8.3 shows the expected value of the time scale T' of scour below a
pipeline, given in minutes. This is obtained by using the relation between
T* and T from Eq. (43). It can be seen from the figure that an increase
in D results in higher time scale. This can be explained by the decreased
vortex shedding frequency for higher diameters, which can be seen when
studying the Strouhals number, S = f, D/U, where S equals 0.2 within a
big velocity area such that the vortex shedding frequency can be expressed
as:

(106)

From Tab. A.2 it is seen that for a given value of 0,5, Uqms is constant,
resulting in lower vortex shedding frequency when D increases.
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Figure 8.2: The expected value of the time scale T* of scour below a pipeline for
linear and second-order waves.
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Figure 8.3: The expected value of the time scale T (min) of scour below a pipeline
for linear and second-order waves. Given for D = 0.5m, D = 0.75m and D = 1m.

8.1.2 Scour around vertical slender piles (CASE 2)

Fig. 8.4 displays the isocurves of the ratios R and Ry for the dimensionless
time scale t of scour around a slender vertical pile, plotted versus S7 and
U,.. The trend in these figures is similar to that described for pipelines
in the previous section; the isocurves for a given value of Ry 3p generally
appear more to the left compared to Rlsp, indicating a lower time scale
for a given value of U, and S7. The combination of low values of U, and
high values of S7 also gives shorter time scale for long-crested waves in
this case. Keep in mind that these ratios are independent of 6,,,; and
KCims, the only varying parameters are U, and Sj.

The highest difference in the time scale ¢ between the short-crested and
long-crested waves can be seen from Fig. 8.4c where it appears in the area
of highest second-order effects where t for 3D waves is 92 % of 2D waves.
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Figure 8.4: Isocurves for the ratios Ry, Eq. (88) and Ry, Eq. (89) for the
dimensionless time scale t of scour around a slender vertical pile. a)Ry 2p: Non-
linear long-crested to linear. b)Ry sp: Nonlinear short-crested to linear. ¢) Ra:
Short-crested to long-crested.

Fig. 8.5 shows the expected value of the time scale T* of scour around
a vertical slender pile for 6,,,s = 0.07, 0,,s = 0.13 and 6,,,s = 0.18,
presented by Eq. (61) and calculated by the stochastic method proposed
in Ch. 6.1. It shows that the time scale decreases with increased 6,,,s due
to higher sediment transport.

In Appendix A. 2, Tab. A.4, it can be seen that for D = 0.5 m and
KCyms = 7, the combination of S1 and U, corresponds to an isocurve in
Fig. 8.4c where R» is just below 1. When K C,,,s increases, S1 decreases
and U, increases, moving the point in Ry downwards to the right. This
indicates a lower value of R2 and therefore an even lower value of the time
scale of the 3D solution, compared to the 2D. This is consistent with Fig.
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8.5 where it can be observed that the difference in the time scale for short-
crested and long-crested waves increases with KC...,,s. When comparing
the values of S7 and U, for a given KC,.,,s for the 3 diameters, it can be
seen that higher D always gives a point more downward to the right in
Ry, causing a higher difference in 2D and 3D. This is also consistent with
Fig. 8.5.
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As earlier mentioned, the time scale T™* for linear waves is independent of D
because the Rayleigh distribution function is not dependent on U, and S
such that the distribution of the wave amplitudes therefore is independent
of the given KC,,s, for details see Ch. 7.2. D will affect the value of
S1 and U, and is therefore responsible for a small variation in 7™ for
nonlinear waves. However, D is totally accounted for in the time scale T
by the relation 7' = T*D?//g(s — 1)d3, from Eq. (43). This means that
the variation of the time scale for different diameters should be evaluated
in T and not in T*. Fig. 8.6 shows the time scale T given in minutes and
it can be observed that the time scale increases with increased D. This
is consistent with the values of f, in Appendix A. 2, Tab A.4, Col. 9
where it can be seen that for a given KC,.,s, f, decreases with increased
diameter.

Fig. 8.6 displays T for 6,,,s = 0.07 and 6,,,; = 0.18, and it shows the
opposite of what would be expected; the highest value of 0,.,,s gives the
highest value of the time scale. For a given value of KC,,,s, h, Hs, D, s,
dso, ¢ and d (see Tab. 7.1), this would not be physically sound. However,
in this case, a mathematical consequence of holding #,,,; at a constant
value, is that dsg varies for each given KC},s and D. From Appendix
A. 2, Tab. A.5, Col. 2,4 and 6, it can be observed that for a given value
of KCpps, 2o decreases when 6,.,,s increases. Tab A.4 shows that for a
given KC,,,s and D, there will be one resulting value of U,p,s and Apps.
This means that the only parameter varying in the equation for the shear
stress given by Eq. (2), is zo. The reduced zy for higher 0,,,s therefore
results in a lower shear stress, which explains the increased time scale for
higher 6,,,s. Note that the value of zy will not affect 7 but it comes into
T through Eq. (43) where d5y appears in the denominator.

The problem with the varying zp could be avoided if 6,.,,s was calculated
for each given value of KCy,s with a given zg, similar to the procedure in
CASE 4 described in Ch. 7.3. However, the present results are displayed
for a given 6,5 for simpler comparison with the results from Sumer et al.
(1992).
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8.2 The time scale of backfilling

When KC,,,s increases for a given D, the scour hole will also increase
until a certain depth corresponding to the depth generated by a current.
In the cases of backfilling, smaller values of K C'f;.,s indicate smaller value
of the final scour depth, resulting in longer time.

8.2.1 Backfilling by waves when the initial hole was gener-
ated by current (CASE 3)

Fig. 8.7 displays the isocurves for the ratios R; and Ry for the dimen-
sionless time scale t of backfilling around a slender vertical pile, plotted
versus S1 and U,. The trend in these figures is similar to those described
for scour below pipelines and around vertical piles in the previous section.
The main difference is that in Figs. 8.7a and 8.7b, the value of ¢ for non-
linear waves is as low as 10 % of the linear ¢, which is much lower than
what is shown for scour where it was 40 — 60 %, when the nonlinearity is
high. The largest difference in the time scale between the short-crested
and long-crested waves can be seen from Fig. 8.7c where it is below 0.8
when the second-order effects are high.
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Figure 8.7: Isocurves for the ratios Ry, Eq. (88) and Ry, Eq. (89) for the
dimensionless time scale t of backfilling around a slender verical pile. a)Ri2p:
Nonlinear long-crested to linear. b)R13p: Nonlinear short-crested to linear. c)
Ry : Short-crested to long-crested.

Fig. 8.8 shows the time scale T™ of backfilling by waves around a vertical
slender pile where the initial hole was generated by a current, described in
Eq. (70) and calculated with the stochastic method proposed in Ch. 6.1.
The same tendencies as mentioned earlier can be seen: higher 0,.,,s gives
shorter time scale and the nonlinear time scale is shorter than the linear.
When studying U, and S; (App. A. 3, Tab. A.7) in relation with the
isocurves from 8.7c, it can be seen that Ry decreases when K C,.,,s becomes
higher. This indicates that the difference between the 2D and 3D solution
increases relatively for high values of K C,.,5, even though it looks like the
solutions approach each other in Fig. 8.8 due to the decreased time scale.

Fig. 8.9 shows the variation of T with 0,.,,s for D = 0.5m and D = 1m.
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When reading the values of U, and S; for D = 0.5 m (App. A. 3, Tab.
A.7), it can be seen from the isocurves in Fig. 8.7c that Ry is higher than
1 when K5 is low. Therefore, the time scale in 2D waves appear lower
than for 3D waves when D = 0.5 and KC,,s is low. This is most visible
when 6,,,s = 0.07 because it gives the highest time scale. Keep in mind
that Ry is independent of 6,,,;. When D = 1 m, Ry is lower than 1 for
all the values of KC,,,s, which can be seen in Fig. 8.9b where the 3D
solution gives the smallest time scale.

Fig. 8.10 shows the expected value of the time scale T given in minutes
for O,ms = 0.07 and 0,,,s = 0.15. Higher values of D give lower vortex
shedding frequency (App. A. 3, Tab. A.7), and therefore increased time
scales. However, this figure shows that when KCjp,s is low, D = 0.5 m
gives the highest time scale. This can be explained when considering Tab.
A.8, where D = 0.5 m gives the highest values of A,,,s/zp for low values
of KCyps, indicating the lowest friction given by Eq. (6). As KCpps
increases, Ayms/zo becomes smallest for D = 0.5m, indicating the highest
friction and therefore the lowest time scale.
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8.2.2 Backfilling by waves when the initial hole was gener-
ated by waves (CASE 4)

This section shows the time scale of backfilling by waves when the initial
scour was generated by waves with KCjrpms = 32, KCjpms = 20 and
KCirms = 0.11, described by Eq. (74) and calculated by the stochastic
method proposed in Ch. 6.1. In this case, the time scale is plotted versus
(02K C)pms. As described in Ch. 7.3, U, and S; were found from the given
KCpms in addition to the global parameters. Based on K Cjps, Orms Was
calculated from Eq. (102) where dsp was given. In contrast to CASE 2
and 3, 0,,,s therefore varies with each value of KCjy,s.

The experiments of the time scale were performed by Sumer et al. (2012)
with the following lower and upper values:

4 < KCpps <25 (107)
0.07 < Opms < 0.15 (108)

resulting in:
0.02 < (02K C)pms < 0.56 (109)

The upper limit of KC},,s in the stochastic method appears at 12 due to
the Ursells criteria, which is lower than the upper limit from Eq. (107).
Even so, (?KC) frms calculated in this thesis becomes higher than the
upper value from Eq. (109). This is because 6,5 calculated in this method
becomes higher than the upper limit from Eq. (108), for most of the given
values of KCyp,s (see App. A. 4, Tab. A.10). This will result in a
smaller validity area, especially when comparing the 3 diameters. For
example when KCp,s = 4, this method results in (02KC)ppns = 0.13
(for D = 1m) and when KCips = 12, (02KC)pms = 0.54 (D = 0.5 m).
Therefore, extrapolation is performed by using KC,.,,s = 3 as the lower
value and KCi,,s = 13 as the upper value. This gives the validity area
0.07 < (02K C) frms < 0.55, which is used in all the following plots.

The isocurves from this case will equal those for CASE 3, because v given
by Egs. (72) and (76), are the same for the two cases.
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Fig. 8.11 shows the time scale T* of backfilling around a slender vertical
pile when the initial hole was generated by waves corresponding to a given
initial value of the Keulegan-Carpenter number; denoted K Cjps. When
KCpms is small, the initial scour depth for a given D is small and therefore
it takes shorter time to reach the final depth. Fig. 8.11a displays the time
scale for nonlinear waves when D = 1 m and for linear waves, which are
independent of D. Fig. 8.11b shows that the variation of T™ for different
values of D is small for nonlinear waves.

Fig. 8.12 shows the time scale T' given in minutes for backfilling around
a vertical slender pile when the initial hole was generated by waves for
D =0.5m and D = 1 m. When studying S; and U, (App. A. 4, Tab.
A.10) for D = 0.5 m, in relation with the isocurves from Fig. 8.7c, it
can be seen that Ry is higher than 1 until KC},,s = 7, which corresponds
to (0?KC)pms = 0.2. This is consistent with Fig. 8.12a where it can
be seen that after this point, the time scale for the short-crested waves
becomes smaller than for the long-crested waves. Note that Rs is equal
for the plots having the same D, but the tendency is more visible when
T* is high. When considering D = 1 m, Ry is lower than 1 already at
KCyms = 4, corresponding to (02K C)ypms = 0.13. Fig. 8.12 also shows
that the time scale is higher when D increases due to the reduced vortex
shedding frequency (App. A. 4, Tab. A.10), consistent with previous
results.
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8.2.3 Backfilling around a slender pile by waves and
current when initial hole was generated by
a current (CASE 5)

Fig. 8.13 displays the time scale T™ of backfilling by waves and current
around a slender vertical pile where the initial hole was generated by a
current, described in Eq. (78) and calculated with the stochastic method
proposed in Ch. 6.2. When the value of Eq. (78) exceeds the value for
backfilling by waves alone given by Eq. (70), T* takes the values from
waves alone. This is because when the current becomes more dominant,
the intensity increases and therefore backfilling by waves alone should
give the smallest time scale. When evaluating Ueyrms from Eq. (21) for
a given KCpps and 0,45, Uppms remains constant such that U, is the only
parameter increasing when Ugy,ms increases in each of the 3 examples.
More details are found in Ch. 7.4 and in Appendix A. 5.

Fig. 8.13 shows that the linear solution decreases at a higher rate than
the nonlinear solution when the current increases. The isocurves for this
case is not plotted but this behaviour should corresponds to an increase
in Ry. This is consistent with the results from Fig. 4 in Ong et al. (2013)
where R represents the ratio between the nonlinear and linear S/ D, which
decreases for increased Ugyrms. As earlier mentioned, it is expected that
Ry and Ry representing S/D should behave the opposite way compared
to R; and Rs for the time scale because increased intensity decreases the
time scale, but increases S/D.

Fig. 8.13 is plotted for 3 different combinations of KC,,,s and 0,,,s.
When comparing the plots of (K Cypsi, Orms1) and (K Crms2, Orms2), where
Orms is fixed, the effect of varying KC,,,s can be evaluated. It can be
observed in Fig. 8.13b that R; should decrease when KC.,,s increases;
Ri(KCyrms1) = 6.5/13.15 = 0.48 while R;(KCrms2) ~ 2.3/6 = 0.38. This
is consistent with the results in Fig. 4 from Ong et al. (2013). It shows that
Ry for S/D increases with higher K C.,s, which appears as a reduction of
R; for the time scale.

Fig. 8.14 displays the time scale T' given in minutes for backfilling by
waves and current, for KCp,s = 4 and KCyys = 7. It can be observed
that the increase in K C,.,,s results in a shorter time of backfilling because
the initial and final depth are closer. In the following, the variation of Rs
with KCpps will be evaluated:
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When D = 0.5m and KC,,s = 4 (Fig. 8.14a), the 2D solution is lower
than the 3D, which should result in a positive value of Rs. This is due
to the low value of U, (see App. A. 5, Tab. A.12, example 1). When
D = 0.5m and KCyps = 7 (Fig. 8.14b ) it can be seen that Ry has
decreased (going closer to 1). The reduction in Rs also appears in the other
diameters when K C,.,,s increases. This is consistent with the results from
Ong et al. (2013), Fig. 4 where Ry for S/D increases for higher KCs.

It should be noted that there is some inconsistency with the present re-
sults calculated by the stochastic method, compared to Fig. 5.6 from
Sumer et al. (2012). In Fig. 5.6, the point where T™ calculated by waves
and current equals the value for waves alone (horizontal line), appears at
higher values of U,,, for lower values of KC. The present results show the
opposite; this point moves to the right for increased KC,,s. The reason
for this behaviour is not known.
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Figure 8.13: The expected value of the time scale T* of backfilling around a
slender pile in waves and current combined when the initial hole was generated
by a current. (KCrmsi, Orms1)=04, 0.07), (KCrms2, Orms2)=(7, 0.07)
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8.2.4 Backfilling around a large pile by waves and current
when initial hole was generated by current (CASE 6)

Figs. 8.15 and 8.16 display the time scale of backfilling by waves and
current around a large vertical pile where the initial hole was generated
by a current, described in Eq. (80) and calculated with the stochastic
method proposed in Ch. 6.2. Fig. 8.15 shows the dimensionless time scale
T* given for D = 3m and D = 5 m, where it can be observed that the
time scale decreases when K C,.,s increases, similar to CASE 5. Fig. 8.16
shows that the time scale T' given in minutes is significantly larger than
for the slender pile. This can be explained by the large diameter, which
appears in second potential in the conversion from 7™ to 7' in Eq. (43).
This results in extremely low vortex shedding frequency, which can be seen
in Appendix A. 6, Tabs. A.16- A.18. When D = 3m and KC,,,s = 0.7,
the time scale for 2D waves is lower compared to 3D waves due to the low
value of U,., which can be seen in Tab. A.16. In the remaining plots, the
short-crested waves gives the lowest time scale.
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9 C(Conclusions and Further Work

9.1 Conclusion

The time scale of scour is highly dependent on the strength of incom-
ing flow near the seabed. Overall, the time scale of scour and backfill-
ing becomes smaller in second-order long-crested and second-order short-
crested waves compared to linear sinusoidal waves. This is due to the
presence of nonlinear effects that indicate higher and sharper waves and
thereby higher nearbed velocities. Most of the results lie within finite
water depth where the set-down effects causes the short-crested waves to
be higher and sharper than the long-crested waves. The time scale of
the short-crested waves becomes even smaller relative to the long-crested
waves when KC,,,s increases. However, when the nonlinear effects be-
come small corresponding to deeper water waves (long waves relative to
the depth), the long-crested waves might appear as slightly larger than
the short-crested waves resulting in a smaller time scale for long-crested
waves. The effects become most significant for small numbers of KCjs.
This is because Forristall (2000) neglects the set-down effects in deep wa-
ter and includes only the sum-frequency, which is larger for long-crested
than for short-crested nonlinear waves.

The method proposed in this thesis should be applied as a first approxima-
tion to find the time scale of scour and backfilling in random waves below
pipelines and around vertical piles, and for backfilling around vertical piles
in random waves plus current. Comparisons with data are required to val-
idate the results.
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9.2 Further work

Petersen (2015) performed experiments presented in Fig. 9.1 for scour
around vertical piles in waves and current combined, and derived the em-
pirical formula 7% = 0.00289~2, which is valid within 0.3 < U, < 0.5. In
the present thesis, the formula T* = 0.0028 #—310(~1:88 670 (Uew-0.5)) has
been fitted to the result for 0.5 < U, < 0.7. It is of interest to apply the
stochastic method, but an improvement of the formula is necessary. In
the experiments, the lowest value of T* is 0.17 and occurs at U, ~ 0.73.
The formula should be modified such that values below this are invalid.
This is necessary because the stochastic method with n = 10 decreases
the time scale.

10 T T T T T T
10’ °e
0=0.07 -
o & &
_ _ &
. . 0=0.10 5—e
|_
U“
10 ¢ =0.15 o—o
@+
10
1 1 1 1 1 1 ]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
CW

Figure 9.1: The time scale T of scour around a vertical slender pile in current
and waves combined for 8 = 0.07, § = 0.10 and 6 = 0.15.

In addition efforts should be made to understand the origin of the discrep-
ancy found between our results and Sumer et al. (2012) (see Figs. 5.6, 8.13
and 8.14).

96



References

Catatio-Lopera, Y. A. and Garcia, M. H. (2007). Geometry of scour hole
around, and the influence of the angle of attack on the burial of finite
cylinders under combined flows, Ocean Engineering 34(5): 856-869.

Dean, R. G. and Dalrymple, R. A. (1984). Water wave mechanics for
engineers and scientists, Englewood Cliffs, New jersey .

Faltinsen, O. (1993). Sea loads on ships and offshore structures, Vol. 1,
Cambridge university press.

Forristall, G. Z. (2000). Wave crest distributions: Observations and
second-order theory, Journal of Physical Oceanography 30(8): 1931-
1943.

Fredsge, J., Sumer, B., Arnskov, M. et al. (1992). Time scale for wave/cur-
rent scour below pipelines, The First International Offshore and Polar
Engineering Conference, International Society of Offshore and Polar
Engineers.

Hesten, P. (2011). Scour around wind turbine foundations, marine
pipelines and short cylinders due to long-crested and short-crested non-
linear random waves plus currents, Master’s thesis, Department of Ma-
rine Technology, Faculty of Engineering Science and Technology, NTNU.

Isaacson, M. (1979). Wave-induced forces in the diffraction regime, Me-
chanics of wave-induced forces on cylinders pp. 68-89.

Kjeldsen, S. P., Gjorsvik, O., Bringaker, K. and Jacobsen, J. (1973). Local
scour near offshore pipelines, Paper available only as part of the complete
Proceedings of the Second International Conference on Port and Ocean
Engineering Under Arctic Conditions (POAC), August 27-30.

Longuet-Higgins, M. S. (1952). On the statistical distributions of sea
waves, J. mar. Res. 11(3): 245-265.

Mao, Y. (1986). The interaction between a pipeline and an erodible bed,
SERIES PAPER TECHNICAL UNIVERSITY OF DENMARK 1(39).

Myrhaug, D. (2004). Marin dynamikk - Uregelmessig sjo, Marine Tech-
nology centre, Trondheim, Norway.

97



Myrhaug, D., Holmedal, L. E., Simons, R. R. and Maclver, R. D. (2001).
Bottom friction in random waves plus current flow, Coastal engineering
43(2): 75-92.

Myrhaug, D. and Ong, M. (2012). Random wave-induced scour around
marine structures using a stochastic method, Marine Technology and
Engineering, CENTEC Anniversary Book, CRC' Press .

Myrhaug, D. and Ong, M. C. (2011). Random wave-induced onshore
scour characteristics around submerged breakwaters using a stochastic
method, Ocean Engineering 37(13): 1233-1238.

Myrhaug, D. and Ong, M. C. (2014). Burial and scour of truncated cones
due to long-crested and short-crested nonlinear random waves, Ocean
Systems Engineering 4(1): 21-37.

Myrhaug, D., Ong, M. C., Fgien, H., Gjengedal, C. and Leira, B. J.

(2009). Scour below pipelines and around vertical piles due to second-
order random waves plus a current, Ocean Engineering 36(8): 605-616.

Ong, M. C., Myrhaug, D. and Hesten, P. (2013). Scour around vertical
piles due to long-crested and short-crested nonlinear random waves plus
a current, Coastal Engineering 73: 106-114.

Petersen, T. U. (2015). Private communication.

Pettersen, B. (2004). TMR4247 Marin teknikk 3 - Hydrodynamikk, Marine
Technology centre, Trondheim, Norway.

Sharma, J., Dean, R. et al. (1981). Second-order directional seas and asso-
ciated wave forces, Society of Petroleum Engineers Journal 21(1): 129
140.

Soulsby, R. (1997). Dynamics of marine sands: a manual for practical
applications, Thomas Telford.

Sumer, B., Christiansen, N., Fredsoe, J. et al. (1992). Time scale of scour
around a vertical pile, The Second International Offshore and Polar
Engineering Conference, International Society of Offshore and Polar
Engineers.

Sumer, B. M., Christiansen, N. and Fredsge, J. (1997). The horseshoe
vortex and vortex shedding around a vertical wall-mounted cylinder
exposed to waves, Journal of Fluid Mechanics 332: 41-70.

98



Sumer, B. M. and Fredsge, J. (1990). Scour below pipelines in waves,
Journal of waterway, port, coastal, and ocean engineering 116(3): 307—
323.

Sumer, B. M. and Fredsge, J. (2001a). Scour around pile in combined
waves and current, Journal of Hydraulic Engineering 127(5): 403-411.

Sumer, B. M. and Fredsge, J. (2001b). Wave scour around a large ver-
tical circular cylinder, Journal of waterway, port, coastal, and ocean
engineering 127(3): 125-134.

Sumer, B. M. and Fredsge, J. (2002). The mechanics of scour in the
marine environment, World Scientific Publishing Co Pte Ltd.

Sumer, B. M., Petersen, T. U., Locatelli, L., Fredsge, J., Musumeci, R. E.
and Foti, E. (2012). Backfilling of a scour hole around a pile in waves and

current, Journal of Waterway, Port, Coastal, and Ocean Engineering
139(1): 9-23.

Wist, H. T. (2003). Statistical properties of successive ocean wave pa-
rameters, PhD thesis, Department of Marine Technology, Faculty of
Engineering Science and Technology, NTNU.

99



100



Appendix A

A.1 - CASE1

Given parameters

Water depth (h) 10m
Significant wave height (Hy) 3m
Diameter (D) -
Shields parameter (6,,s) Col. 1
Ratio quartz sand/fluid density (s) | 2.65
Median grain diameter (dsg) 0.001m

Constant from friction formula (¢) | 1.39
Constant from friction formula (d) | 0.52

rms value of wave amplitude (ams) | 1.06 m
Bed roughness (zp) 0.0000833 m

Table A.1: Given parameters CASE 1

orms k:p Wp Urms Ar'ms h/Lp Sl U’r Arms/ZO
G < N < N ) Y I I 10 I 0 N
0.05 | 0.27 1.61 024 0.15 042 0.13 0.04 1783
0.06 | 0.25 1.55 0.27 0.18 0.40 0.12 0.05 2113
0.07 | 024 150 031 020 037 0.11 0.05 2449
0.08 | 0.22 146 0.34 0.23 0.35 0.10 0.06 2795
0.09 | 0.21 142 037 026 033 0.10 0.07 3153
0.10 | 0.12 137 0.40 0.29 0.32 0.09 0.08 3525
0.11 1 0.19 133 043 033 0.30 0.09 0.08 3915
0.12 | 0.18 1.29 047 036 0.29 0.08 0.09 4327
0.13 | 0.17 1.25 050 040 0.27 0.08 0.10 4765
0.14 | 0.16 1.21 053 044 026 0.07 0.11 5236
0.15 | 0.15 1.17 0.56 0.48 0.24 0.07 0.13 5746
0.16 | 0.15 1.13 059 053 0.23 0.06 0.14 6308
0.17 | 0.14 1.09 0.63 058 0.22 0.06 0.16 6938
0.18 | 0.13 1.04 0.66 0.64 020 0.05 0.18 7660
0.19 | 0.12 0.99 0.70 0.71 0.19 0.05 0.21 8517

Table A.2: Resulting values CASE 1



A. 2

- CASE 2

Given parameters

Water depth (h) 10m

Significant wave height (Hy) 3m

Diameter (D) Col. 1

Shields parameter (0,s) Tab. A.5, Row 1
Keulegan-Carpenter number (KC),s) | Col. 2

Ratio quartz sand/fluid density (s) 2.65

Median grain diameter (dsg) -

Constant from friction formula (c) 1.39

Constant from friction formula (d) 0.52

rms value of wave amplitude (@rms) 1.06 m

Bed roughness (zp) Tab. A.5, Col. 3,5,7

Table A.3: Given parameters CASE 2

D Kcrms kp Wp Urms Ar’ms h/Lp D/Lp fv Sl Ur
[m] (e (=) (2] [m [ H Gl B0
7 0.14 1.10 0.61 056 0.22 0.011 0.25 0.06 0.15
8 0.13 1.04 066 064 020 0.010 0.27 0.05 0.18
0.50 9 0.12 098 0.70 0.72 0.19 0.009 0.28 0.056 0.21
10 0.11 093 0.74 080 0.17 0.009 0.30 0.04 0.25
11 0.10 0.88 0.77 088 0.16 0.008 031 0.04 0.29
12 0.10 084 080 096 0.15 0.008 032 0.03 0.33
7 0.11 090 076 084 0.17 0.013 0.20 0.04 0.27
8 0.10 0.84 0.80 096 0.15 0.011 0.21 0.03 0.33
0.75 9 0.09 0.78 0.83 1.07 0.14 0.010 0.22 0.03 0.39
10 0.08 072 086 119 0.13 0.010 0.23 0.03 047
11 0.07 068 089 131 0.12 0.009 0.24 0.02 0.55
12 0.07 0.63 091 143 0.11 0.008 0.24 0.02 0.64
7 0.09 076 0.84 1.11 0.13 0.010 0.17 0.03 0.42
8 0.08 0.69 0.88 1.27 0.12 0.009 0.18 0.02 0.52
1.00 9 0.07 063 091 143 0.11 0.008 0.18 0.02 0.64
10 0.06 058 093 159 0.10 0.00r 0.19 0.02 0.77
11 0.06 0.54 095 175 0.09 0.007 0.19 0.01 0.91
12 0.05 0.50 096 191 0.08 0.006 0.19 0.01 1.07

Table A.4: Resulting values CASE 2

II




Orms = 0.07 Orms = 0.13 Orms = 0.18
D Kcrms 20 A'rms/zo 20 Arms/ZO 20 Ar’ms/ZO
[m] [ [m] [] [m] [l [m] [
7 0.00050 1104 0.00014 4010 0.00007 7900
8 0.00059 1071 0.00016 3890 0.00008 7662
0.50 9 0.00067 1064 0.00019 3864 0.00009 7611
10 0.00074 1076 0.00020 3907 0.00010 7696
11 0.00079 1102 0.00022 4004 0.00011 7887
12 0.00084 1141 0.00023 4145 0.00012 8165
7 0.00077 1087 0.00021 3949 0.00012 7779
8 0.00084 1141 0.00023 4145 0.00012 8165
0.75 9 0.00088 1219 0.00024 4426 0.00012 8719
10 0.00091 1316 0.00025 4780 0.00013 9417
11 0.00092 1432 0.00025 5199 0.00013 10241
12 0.00092 1563 0.00025 5677 0.00013 11182
7 0.00089 1249 0.00025 4537 0.00012 8937
8 0.00092 1391 0.00025 5052 0.00013 9953
1.00 9 0.00092 1563 0.00025 5677 0.00013 11182
10 0.00090 1763 0.00025 6401 0.00013 12609
11 0.00090 1989 0.00024 7222 0.00012 14226
12 0.00085 2240 0.00023 8136 0.00012 16027
Table A.5: Resulting values CASE 2
A.3 -CASE 3
Given parameters
Water depth (h) 10m
Significant wave height (Hy) 3m
Diameter (D) Col. 1
Shields parameter (0,,s) Tab. A.8, Row 1

Keulegan-Carpenter number (K Cp,s) | Col. 2
Ratio quartz sand/fluid density (s) 2.65

Median grain diameter (ds) -
Constant from friction formula (c) 1.39

Constant from friction formula (d) 0.52
rms value of wave amplitude (ayms) 1.06 m
Bed roughness (zp) Tab. A.8, Col. 3,5,7

Table A.6: Given parameters CASE 3

II1




D KCrms kp Wp Urms Arms h/Lp D/Lp fv Sl Ur
[m] I O ) - B O I G H
5 0.17 1.25 0.50 040 0.27 0.014 0.20 0.08 0.10
6 0.15 1.17 0.56 048 0.24 0.012 0.22 0.07 0.13
7 0.14 1.10 0.61 056 0.22 0.011 0.25 0.06 0.15
0.50 8 0.13 1.04 0.66 064 020 0.010 0.26 0.05 0.18
9 0.12 098 0.70 0.72 0.19 0.009 0.28 0.05 0.21
10 0.11 093 074 08 0.17 0.009 03 0.04 0.25
11 0.10 0.88 0.77 088 0.16 0.008 031 0.04 0.29
12 0.10 0.84 0.80 095 0.15 0.008 0.32 0.03 0.33
5 0.13 1.07 0.64 060 0.21 0.016 0.17 0.06 0.17
6 0.12 098 0.70 0.72 0.19 0.014 0.19 0.05 0.21
7 0.11 090 076 084 0.17 0.013 0.20 0.04 0.27
0.75 8 0.10 084 080 095 0.15 0.011 0.21 0.03 0.33
9 0.09 0.78 0.83 1.07 0.14 0.010 0.22 0.03 0.39
10 0.08 0.72 0.86 1.19 0.13 0.010 0.23 0.03 047
11 0.07 0.67 089 131 0.12 0.009 0.24 0.02 0.55
12 0.07 0.63 091 143 0.11 0.008 0.24 0.02 0.64
5 0.11 093 074 080 0.17 0.017 0.15 0.04 0.25
6 0.10 0.84 0.80 095 0.15 0.015 0.16 0.03 0.33
7 0.08 0.76 0.84 1.11 0.13 0.013 0.17 0.03 0.42
1.00 8 0.08 0.69 088 127 0.12 0.012 0.18 0.02 0.52
9 0.0 0.63 091 143 0.11 0.011 0.18 0.02 0.64
10 0.06 0.58 093 159 0.10 0.010 0.19 0.02 0.77
11 0.06 0.54 095 175 0.09 0.009 0.19 0.01 0.91
12 0.06 050 09 191 0.08 0.008 0.19 0.01 1.07

Table A.7: Resulting values CASE 8

v




Orms = 0.07 Orms = 0.10 Orms = 0.15
D Kcrms 20 Arms/zo 20 Arms/zo 20 Arms/ZO
o I I O e T T e I
5 0.00030 1310 0.00014 2755 0.00006 6412
6 0.00041 1176 0.00019 2473 0.00008 5754
7 0.00050 1104 0.00024 2322 0.00010 5403
0.50 8 0.00059 1071 0.00028 2252 0.00012 5241
9 0.00067 1063 0.00032 2237 0.00014 5206
10 0.00074 1076 0.00035 2262 0.00015 5264
11 0.00079 1102 0.00038 2318 0.00016 5394
12 0.00084 1141 0.00040 2400 0.00017 5584
5 0.00055 1084 0.0026 2279 0.00011 5303
6 0.00067 1064 0.00032 2237 0.00014 5205
7 0.00077 1087 0.00037 2286 0.00016 5321
0.75 8 0.00084 1141 0.00040 2400 0.00017 5584
9 0.00088 1219 0.00042 2563 0.00018 5964
10 0.00091 1316 0.00043 2767 0.00019 6441
11 0.00092 1432 0.00044 3010 0.00019 7004
12 0.00092 1563 0.00044 3286 0.00019 7648
5 0.00074 1076 0.00035 2262 0.00015 5264
6 0.00084 1141 0.00040 2400 0.00017 5584
7 0.00089 1249 0.00042 2626 0.00018 6113
1.00 8 0.00092 1391 0.00044 2925 0.00019 6807
9 0.00092 1563 0.00044 3286 0.00019 7648
10 0.00090 1763 0.00043 3706 0.00018 8625
11 0.00088 1989 0.00042 4181 0.00018 9730
12 0.00085 2240 0.00041 4710 0.00017 10962
Table A.8: Resulting values CASE 3
A.4 - CASE 4
Given parameters
Water depth (h) 10m
Significant wave height (Hj) 3m
Diameter (D) Col. 1
Shields parameter (0yms) Col. 6
Keulegan-Carpenter number (K Cis) | Col. 2
Ratio quartz sand/fluid density (s) 2.65
Median grain diameter (ds0) 0.001
Constant from friction formula (c) 1.39
Constant from friction formula (d) 0.52
rms value of wave amplitude (@) 1.06 m
Bed roughness (zo) 0.0000833

Table A.9: Given parameters CASE 4

\Y%




D | KCmms | ky  wp  Upms Oms 02,04 h/L, D/L, fo S1 Ur  Apms/2o
[m] B ) (% H KGCwms [ [ H o [
4 0.19 1.43 0.43 0.108 0.046 0.31 0.015 0.17 0.09 0.08 3820
5 0.17 1.25 0.50 0.130 0.09 0.27 0.014 0.20 0.08 0.10 4775
6 0.15 1.17 0.56 0.150 0.13 0.24 0.012 0.22 0.07 0.13 5730
7 0.14 1.10 0.61 0.166 0.19 0.22 0.011 0.25 0.06 0.15 6685
0.5 8 0.13 1.04 0.66 0.180 0.26 0.20 0.010 0.27 0.05 0.18 7639
9 0.12 098 0.70 0.191 0.33 0.19 0.009 0.28 0.05 0.21 85944
10 0.11  0.93 0.74 0.200 0.40 0.17 0.009 0.30 0.04 0.25 9549
11 0.10 0.88 0.77 0.207 0.47 0.16 0.008 0.31 0.04 0.29 10504
12 0.10 0.84 0.80 0.212 0.54 0.15 0.008 0.32 0.03 0.33 11459
13 0.09 0.80 0.82 0.216 0.61 0.14 0.007 0.33 0.03 0.37 12414
3 0.18 1.29 0.46 0.119 0.043 0.29 0.022 0.12 0.08 0.09 4297
4 0.15 1.17 0.56 0.150 0.09 0.24 0.018 0.15 0.07 0.13 5730
5 0.13 1.07 0.64 0.173 0.15 0.21 0.016 0.17 0.06 0.17 7162
6 0.12 098 0.70 0.191 0.22 0.19 0.014 0.19 0.056 0.21 8594
0.75 7 0.11  0.90 0.76 0.203 0.29 0.17 0.013 0.20 0.04 0.27 10027
8 0.10 0.84 0.80 0.212 0.36 0.15 0.011 0.21 0.03 0.33 11459
9 0.09 0.76 0.83 0.217 0.42 0.14 0.010 0.22 0.03 0.39 12892
10 0.08 0.72 0.86 0.220 0.49 0.13 0.010 0.23 0.03 047 14324
11 0.07 0.68 0.89 0.221 0.54 0.12 0.009 0.24 0.02 0.55 15756
12 0.07 0.63 091 0.221 0.59 0.11 0.008 0.24 0.02 0.64 17189
3 0.15 1.17 0.56 0.150 0.07 0.24 0.024 0.11 0.07 0.13 5730
4 0.13 1.04 0.66 0.180 0.13 0.20 0.020 0.13 0.05 0.18 7639
5 0.11  0.93 0.74 0.200 0.20 0.17 0.017 0.15 0.04 0.25 9549
6 0.10 0.84 0.80 0.212 0.27 0.15 0.015 0.16 0.03 0.33 11459
1 7 0.09 0.76 0.84 0.218 0.33 0.13 0.013 0.17 0.03 0.42 13369
8 0.08 0.69 0.88 0.221 0.39 0.12 0.012 0.18 0.02 0.52 15279
9 0.07 0.63 0.91 0.221 0.44 0.11 0.011 0.18 0.02 0.64 17189
10 0.06 0.58 0.93 0.220 0.48 0.10 0.010 0.19 0.02 0.77 19099
11 0.06 0.54 0.95 0.217 0.52 0.09 0.009 0.19 0.01 0.91 21008
12 0.05 0.50 0.96 0.214 0.55 0.08 0.008 0.19 0.01 1.07 22918
Table A.10: Resulting values CASE J
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A.5 -CASES5
Given parameters
Water depth (h) 10m
Significant wave height (Hy) 3m
Diameter (D) Row 1
Keulegan-Carpenter number (KCppy,s) | Row. 2
Ratio quartz sand/fluid density (s) 2.65
Median grain diameter (dso) -
Constant from friction formula (c) 1.39
Constant from friction formula (d) 0.52
r.m.s. value of wave amplitude (arms) | 1.06 m
Bed roughness (zg) Row 19
Table A.11: Given parameters CASE 5
D=05m
Example 1 Example 2 Example 3
KCrpms =4, Opms =0.07 | KCrps =7, Opps = 0.07 | KCrps =4, Oppms = 0.09
kp [rad/m] | 0.1919 kp [rad/m] | 0.1400 kp [rad/m] | 0.1919
wy [rad/s] | 1.3426 wy [rad/s] | 1.1026 wy [rad/s] | 1.3426
Urms [m/s] | 0.4274 Urms [m/s] | 0.6142 Urms [m/s] | 0.4274
Ucwrms Uc wp fv Sl Uc wp fv Sl Uc wp fv Sl
G s O e 5 I O ) N O 5 I G O s B < B
0.0 0.00 1.34 0.17 0.09|0.00 110 0.25 0.06|0.00 1.34 0.17 0.09
0.1 0.05 1.35 0.17 0.09 | 0.07 1.11 0.25 0.06|0.05 1.35 0.17 0.09
0.2 0.11 136 017 0.09]|015 112 025 0.06|011 136 0.17 0.09
0.3 0.18 1.38 0.18 0.09|0.26 114 0.25 0.06|0.18 138 0.18 0.09
0.4 0.29 140 0.18 0.10|0.41 116 0.26 0.07]0.29 140 0.18 0.10
0.5 043 142 018 010|061 119 0.26 0.07|043 142 0.18 0.10
0.6 0.64 147 0.19 0.10]0.92 123 0.27 0.07]0.64 147 0.19 0.10
0.7 1.00 1.53 0.20 0.11 |143 130 0.29 0.08 | 1.00 1.53 0.20 0.11
h/L, ] |0.3053 h/L, ] |0.2228 h/L, ] |0.3053
D/L, [] |0.0153 D/L, [] |o0.0111 D/L, [] |0.0153
Uy [[] | 0.0815 U, [[] ]0.1531 Uy [[] |0.0815
Apms  [m] | 0.3183 Apms  [m] | 05570 Apms  [m] | 0.3183
20 [m] | 0.0002 20 [m] | 0.0004 20 [m] | 0.00012
Apms/z0 [ | 1560 Arms/z0 || 1459 Arms/z0 || 2633

Table A.12: Resulting values CASE 5, D = 0.5m
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D =0.75m

Example 1 Example 2 Example 3

KCyms =4, Oyms = 0.07 | KCrms =T, Orms = 0.07 | KCyms = 4, O,ms = 0.09

kp [rad/m] | 0.1538 kp [rad/m] | 0.1060 kp [rad/m] | 0.1538

w, [rad/s] | 1.1731 wy [rad/s] | 0.9036 w, [rad/s] | 1.1731

Urms [m/s] | 0.5601 Urms [m/s] | 0.7551 Urms [m/s] | 0.5601

Ucwrms Uc wp fv Sl Uc wp fv Sl Uc wp fv Sl

0 5 = O N 5 I 5 O < N O G O =3 B < I
0.0 0.00 1.17 0.15 0.07|0.00 090 0.20 0.04 |0.00 1.17 0.15 0.07
0.1 0.06 1.18 0.15 0.07{0.09 091 0.20 0.04|0.06 1.18 0.15 0.07
0.2 0.14 119 0.15 0.07{0.19 092 021 0.04|0.14 119 0.15 0.07
0.3 0.24 121 0.15 007|032 093 0.21 0.04 024 121 0.15 0.07
0.4 0.37 123 0.16 0.07 {050 096 0.21 0.04|0.37 1.23 0.16 0.07
0.5 0.56 1.26 0.16 0.08|0.76 098 0.22 0.05]|0.56 126 0.16 0.08
0.6 0.84 1.30 0.17 0.08|1.13 1.02 023 0.05)|0.84 1.30 0.17 0.08
0.7 1.31 137 0.18 0.09 | 176 1.09 024 0.06| 131 137 0.18 0.09

h/L, ] |0.2449 h/L, ] |0.1686 h/L, ] |0.2449

D/L, [] |0.0184 D/L, [] |0.0126 D/L, [] |0.0184

U, [ |o0.1267 U, [ | o0.2672 U, 1 | 0.1267

Arms  [m] | 0.4775 Arms  [m] | 0.8356 Arms  [m] | 0.4775

20 [m] | 0.0004 20 [m] | 0.0008 20 [m] | 0.0002

Apms/20 [-] | 1176 Apms/z0 [-] | 1087 Apms/z0 [-] | 1985

Table A.13: Resulting values CASE 5, D = 0.75m
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D=1m

Example 1 Example 2 Example 3
KCyms =4, Oyms = 0.07 | KCrms =T, Orms = 0.07 | KCyms = 4, O,ms = 0.09
kp [rad/m] | 0.1283 kp [rad/m] | 0.0847 kp [rad/m] | 0.1283
w, [rad/s] | 1.0390 wy [rad/s] | 0.7569 w, [rad/s] | 1.0390
Urms [m/s] | 0.6615 Urms [m/s] | 0.8433 Urms [m/s] | 0.6615
Ucwrms Uc wp fv Sl Uc wp fv Sl Uc wp fv Sl
5 O 5 < O - < O < N - 5 O < B - B
0.0 0.00 1.04 0.13 0.05|000 076 0.17 0.03|0.00 1.04 0.13 0.05
0.1 0.07 1.05 0.13 0.05|0.09 076 0.17 0.03|0.07 1.05 0.13 0.05
0.2 0.17 1.06 0.13 0.05|0.21 077 0.17 0.03|0.17 1.06 0.13 0.05
0.3 0.28 1.08 0.14 0.06 {036 0.79 0.18 0.03]0.28 1.08 0.14 0.06
0.4 0.44 1.10 0.14 0.06 | 0.56 0.80 0.18 0.03|0.44 1.10 0.14 0.06
0.5 0.66 1.12 0.14 0.06 084 083 0.18 0.03|0.66 1.12 0.14 0.06
0.6 099 117 015 0.07|1.27 086 029 0.04 099 1.17 0.15 0.07
0.7 154 124 0.16 0.07|197 092 021 004|154 124 0.16 0.07
h/L, ] |0.2043 h/L, ] |0.1348 h/L, ] |0.2043
D/L, [] | 0.0204 D/L, [] |0.0135 D/L, [] |0.0204
U, [ |o0.1821 U, [ | 0.4181 U, [ |o0.1821
Apms  [m] | 0.6366 Arms  [m] | 11141 Apms  [m] | 0.6366
20 [m] | 0.0006 20 [m] | 0.0009 20 [m] | 0.0004
Apms/z0 [-] | 1071 Apms/z0 [-] | 1249 Apms/z0 [-] | 1808
Table A.14: Resulting values CASE 5, D =1m
A.6 -CASE®G6
Given parameters
Water depth (h) 10m
Significant wave height (Hy) 3m
Diameter (D) Row 1
Keulegan-Carpenter number (K Cpps) | Row. 2
Ratio quartz sand/fluid density (s) 2.65
Median grain diameter (dso) -
Constant from friction formula (c) 1.39
Constant from friction formula (d) 0.52
r.m.s. value of wave amplitude (arms) | 1.06 m
Bed roughness (2) Row 19

Table A.15: Given parameters CASE 6
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D=3m

Example 1 Example 2

KCrms = 0.7, Opms = 0.101 | KCrms = 1.5, Oppys = 0.105

kp [rad/m] | 0.1872 kp [rad/m] | 0.1184

wy [rad/s] | 1.3234 w, [rad/s] | 0.9812

Urms [m/s] | 0.4423 Urms [m/s] | 0.7027

Ucwrms Uc wp fv Sl Uc wp fv Sl

0 G G - 5 I 3 0 A I
0.0 0.00 1.32 0.030 0.09 | 0.00 0.98 0.047 0.05
0.1 0.05 1.33 0.030 0.09 | 0.08 0.99 0.047 0.05
0.2 0.11 1.34 0.030 0.09 | 0.18 1.00 0.048 0.05
0.3 0.18 1.36 0.030 0.09 | 0.30 1.02 0.049 0.05
0.4 0.29 138 0.031 0.09 | 047 1.04 0.049 0.05
0.5 0.44 141 0.031 0.10 | 0.70 1.06 0.051 0.06
0.6 0.66 145 0.032 0.10 | 1.05 1.11 0.053 0.06
0.7 1.03 152 0.034 0.11 | 1.64 1.18 0.056 0.07

h/L, ] |0.2980 h/L, ] |0.1885

D/L, [ |0.0894 D/L, [] |0.0565

U, [ | 0.0856 U, [ | 02139

Apms  [m] | 0.3342 Apms  [m] | 0.7162

20 [m] | 0.0001 20 [m] | 0.0003

Arms/zo [] | 3212 Arms/z0 [-] | 2476

Table A.16: Resulting values CASE 6, D =3 m




D=4m

Example 1 Example 2

KCyms = 0.7, yms = 0.101 | KCyps = 1.5, rms = 0.105

kp [rad/m] | 0.1602 kp [rad/m] | 0.0958

wy [rad/s] | 1.2036 w, [rad/s] | 0.8355

Urms [m/s] | 0.5364 Urms [m/s] | 0.7979

Ucwrms Uc Wp fv Sl Uc Wp fv Sl

0 G G - 5 I A - O 0 I O I
0.0 0.00 1.20 0.027 0.07 | 0.00 0.84 0.040 0.03
0.1 0.06 1.21 0.027 0.07 | 0.09 0.84 0.040 0.03
0.2 0.13 1.23 0.027 0.07 | 0.20 0.85 0.041 0.04
0.3 0.23 1.24 0.028 0.07 | 0.34 0.87 0.041 0.04
0.4 0.36 1.26 0.028 0.08 | 0.53 0.89 0.042 0.04
0.5 0.54 129 0.029 0.08 | 0.80 091 0.044 0.04
0.6 0.80 1.33 0.030 0.09 | 1.20 0.95 0.045 0.04
0.7 1.25 140 0.031 0.10 | 1.86 1.01 0.048 0.05

h/L, ] |0.2549 h/L, ] |0.1524

D/L, [ |0.1020 D/L, [ |0.0610

U, [ | 0.1169 U, [ | 03272

Arms  [m] | 0.4456 Arms  [m] | 0.9549

20 [m] | 0.0002 20 [m] | 0.0004

Apms/z0 [-] | 2619 Apms/z0 [-] | 2656

Table A.17: Resulting values CASE 6, D =4m
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D=5m

Example 1 Example 2

KCrms = 0.7, Opms = 0.101 | KCrms = 1.5, Oppys = 0.105

kp [rad/m] | 0.1400 kp [rad/m] | 0.0800

wy [rad/s] | 1.1026 w, [rad/s] | 0.7222

Urms [m/s] | 0.6142 Urms [m/s] | 0.8620

Ucwrms Uc wp fv Sl Uc wp fv Sl

0 G G - N 5 O A -3 O 0 I I
0.0 0.00 1.10 0.025 0.06 | 0.00 0.72 0.034 0.03
0.1 0.07 1.11 0.025 0.06 | 0.10 0.73 0.034 0.03
0.2 0.15 1.12 0.025 0.06 | 0.22 0.74 0.035 0.03
0.3 0.26 1.14 0.025 0.06 | 0.37 0.75 0.036 0.03
0.4 0.41 1.16 0.026 0.07 | 0.57 0.77 0.037 0.03
0.5 0.61 1.19 0.027 0.07 | 0.86 0.79 0.038 0.03
0.6 0.92 1.23 0.027 0.07 | 1.29 0.83 0.039 0.03
0.7 1.43 1.30 0.029 0.08 | 2.01 0.88 0.042 0.04

h/L, ] |0.2228 h/L, ] |0.1274

D/L, [] |o.0111 D/L, [ |o0.0637

U, [ |0.1531 U, [ | 04683

Apms  [m] | 05570 Apms  [m] | 1.1037

20 [m] | 0.0002 20 [m] | 0.0004

Arms/z0 [-] | 2370 Arms/z0 [-] | 3064

Table A.18: Resulting values CASE 6, D =5m
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Appendix B

Parameters

function [n Hs h g s d50 arms c d]=Parameters|()

$THIS FUNCTION GIVES THE GLOBAL PARAMETERS TO ALL THE FUNCTIONS
$USED IN THIS PROJECT. THESE VALUES ARE THE SAME IN ALL THE CASES
$EXCEPT d50, WHICH IS CONSTANT IN CASE 1 AND 4. THE GLOBAL
$PARAMETERS WILL NOT BE REPEATED IN THE OTHER FUNCTIONS.

n=10; %wave fraction [m]

Hs=3; %significant wave heigh [m]

h=10; %water depth [m]

g=9.806; %aceleration of gravity [m/s"2]

5=2.65; %specific gravity [-]

d50=0.001; %diameter sand grains [m]

arms=Hs/ (2xsqrt (2)); %the rms value of the wave amplitude [m]
c=1.39; %constant from the friction formula [-]

d=0.52; %constant from the friction formula [-]

end

B.1 -CASE1

Rayleigh

function [R R1 R2 R3]=Rayleigh (x)

$CASE 1: THIS FUNCTION USES THE RAYLEIGH DISTRIBUTION TO CALCULATE
$THE EXPECTED VALUE OF THE TIME SCALE FOR SCOUR BELOW A PIPELINE,
$FOR DIFFERENT VALUES OF THE SHIELDS PARAMETER (trms).

DESCRIPTION OF SYMBOLS
the normalized linear wave amplitude

X

%$R: The expeced value of the time scale Tx for all D

%R1: D=0.50 m — The expeced value of the time scale T (min).
%$R2: D=0.75 m - The expeced value of the time scale T (min).
%$R3: D=1.00 m - The expeced value of the time scale T (min).
%$Et: The expected value of t [-1.

%ET: The expected value of Tx [—-].

syms X;
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[n Hs h g s d50 arms c d]=Parameters();

s1=5/3;
rl=1/50;
v=sl%* (2-d);

i=0;
for trms=0.05:0.001:0.19
i=i+1;

xmin=sqrt (log(n));
x=(xmin:0.01:5);

Et=trapz (x,2*n+* (x) ." (1-Vv) .xexp (= (x) ."2));
ET=Et*xrl*trms” (-sl);

$SRESULTING DATA OF T=*
R(i,1)=trms;
R(i,2)=ET

end

$RESULTING DATA OF T FOR D=0.50 m, D=0.75 m and D=1.00 m.
RI1(:,1)=R(:,1);

R1(:,2)=R(:,2)*0.5"2/ (sqrt (g* (s—1)*(d50)"3))/60;
R2(:,l)=R(Z,l)

R2(:,2)=R(:,2)*0.75"2/ (sqrt (g* (s—1) * (d50) ) /60;
R3(:,1)=R(:,1);

R3(:,2)=R(:,2)%172/ (sqgrt (gx (s—1) % (d50) ))/60;
end

Forristall

function [F F1 F2 F3]=Forristall (x)

$CASE 1: THIS FUNCTION USES THE FORRISTALL DISTRIBUTION TO
$CALCULATE THE EXPECTED VALUE OF THE TIME SCALE FOR SCOUR BELOW
$A PIPELINE, FOR DIFFERENT VALUES OF THE SHIELDS PARAMETER (trms) .

%kp 1is solved by iteration such that wp also can be found (to find
%Ur and S1). The requirement is that Urms from Eq. (103) equals
$Urms=wp*arms/sin (kpxh) . In the equation Urms=Urms, wp are replaced
%by wp=sqgrt (gxkpxtanh (kpxh) and the equation are reorganized such
$that all the kps appears inn ledd 2. The only unknown value for

%a given trms is then kp, which is solved in the "while" loop by
%iteration: kp changes until the criterion leddl=ledd2 is fulfilled.
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DESCRIPTION OF SYMBOLS

%$x: The normalized second order wave crest.

%F: The expeced value of the time scale Tx for all D.

%F1: D=0.50 m - The expeced value of the time scale T (min).
%$F2: D=0.75 m - The expeced value of the time scale T (min).
%$F3: D=1.00 m - The expeced value of the time scale T (min).

%$Et_2D: The expected value of t
$Et_3D: The expected value of t
$ET_2D: The expected value of Tx
$ET_3D: The expected value of Tx

for 2D waves.
for 3D waves.
for 2D waves.

for 3D waves.

%$nu: desired numbers behind comma. The computation time will be
$very long if not shortening the numbers, due to the requirement
%$leddl=ledd2.

sSyms x;
[n Hs h g s d50 arms c d]=Parameters();

s1=5/3;
rl=1/50;
v=sl#* (2-d);
nu=4;

i=0;
for trms=0.05:0.001:0.19
i=i+1;

kp=0.05; S%$start wvalue

leddl1=0;

ledd2=1/armsx* ((2%«12" (d) *trmsxgx (s—1) *d50” (1-d)) /c) "~ (1/(2-d));
ledd2= round(ledd2* (10”nu))/ (10"nu);

while leddl~=ledd2
leddl=(sqgrt (gxkp*tanh (kpxh))) " (1+d/ (2-d) )/ (sinh (kp=*h)) ;
leddl= round(leddlx (10”nu))/ (10"nu);
kp=kp+10” (- (nu+2));

end

kp=kp-10" (- (nu+2)) ;
wp=sqrt (gxkpxtanh (kpxh));
Tp=2xpi/wp;

S1=2+pi*Hs/ (g*xTp"2);
Ur=Hs/ (kp"2+h"3);

%parameters 2D model
alpha2=0.3536+0.2892%xS1+0.1060%Ur;
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beta2=2-2.1597%S1+0.0968xUr"2;
xmin_2D=sqrt (8) xalpha2x* (log(n)) " (1/ (beta2));
x2D=(xmin_2D:0.01:5);

%$parameters 3D model
alpha3=0.3536+0.2568%351+0.0800%Ur;
beta3=2-1.7912%S1-0.5302%Ur+0.284xUr"2;
xmin_3D=sqrt (8) xalpha3x (log(n)) " (1/ (beta3));
x3D=(xmin_3D:0.01:5);

Et_2D=trapz (x2D,n*beta2x* (x2D) .” (beta2-1-v) / ((sqrt (8) xalpha2)". ..

(beta2)) .xexp (- ((x2D) ./ (sqrt (8) xalpha2)) .” (beta2)));
Et_3D=trapz (x3D,n*beta3* (x3D) .” (beta3-1-v) / ((sgrt (8) xalpha3) "
(beta3)) .xexp (= ((x3D) ./ (sqrt (8)xalpha3)) .” (beta3l)));

ET_2D=Et_2D*rlxtrms” (-sl);
ET_3D=Et_3D*rlxtrms” (-sl);

$RESULTING DATA OF T=*
F(i,1)=trms;
F(i,2)=ET_2D;
F(i,3)=ET_3D;

end

$RESULTING DATA OF T FOR D=0.5 m, D=0.75 m and D=1 m

Fl(:, )—F(',l)i

Fl(:,2)=F(:,2)*0.5"2/ (sqrt (g* (s— )*(d50)A3 ) /60;
Fl(:,3)=F(:,3) 0.5%2/ (sqrt (g* (s—1) * (d50) *3)) /60;
F2(:,1)=F(:,1);

F2(:,2)=F(:,2)*0.75"2/ (sqgrt (g% (s—1) * (d50) *3)) /60;
F2(:,3)=F(:,3)*0.75"2/ (sqrt (g% (s—1) * (d50) *3)) /60;
F3(:,1)=F(:,1);

F3(:,2)=F(:,2)*172/ (sgrt (gx (s—1) = (d50)"3))/60;
F3(:,3)=F(:,3)*1"2/ (sqrt (g* (s—1) = (d50)~3)) /60;
end

Plot

function P=Plot (x)
$CASE 1: THIS FUNCTION PLOTS THE TIME SCALE FOR SCOUR BELOW A
$PIPELINE, FOR DIFFERENT VALUES OF THE SHIELDS PARAMETER (trms) .

%$Retrieving data from the Rayleigh distibution
[R R1 R2 R3]=Rayleigh();

$R: Data for E[Tx*].

$R1: D=0.50 m - Data for E[T] (min).
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$R2: D=0.75 m - Data for E[T] (min).
$R3: D=1.00 m - Data for E[T] (min).

%Retrieving data from the Forristall distribution
[F F1 F2 F3]=Forristall();

Data for E[Tx*].

D=0.50 m - Data for E[T] (min).

D=0.75 m - Data for E[T] (min).

D=1.00 m - Data for E[T] (min).
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ST

hl=figure;

set (hl, 'Position', [5 5 700 500], 'Visible', 'off'")

h=semilogx (R(:,1),R(:,2),'D",F(:,1), F(:,2),"'c—", ...

F(:,1), F(:,3),"'k:");

hleg=legend('Rayleigh', 'Forristall (2D)', 'Forristall (3D)',...
'"Location', "northeast');

set (hleg, 'Fontsize',13)

set (h, 'LineWidth', 2.5)

axis ([0.05 0.19 0 0.8]);

u=[0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19];

set (gca, "XTick',u, 'Fontsize',14);

xlabel ('"\theta_ {r m s}', 'Fontsize',24);

ylabel ('"E[Tx]"', "Fontsize',22);

hgexport (gcf, '../../Figures/CASE1/CASEl.png', ...
hgexport ('factorystyle'), 'Format', 'png')

$T for D=0.5 m, D=0.75 m and D=1 m
hl=figure;
set (hl, 'Position', [5 5 700 500], 'Visible','off")

h=semilogx (R1(:,1),R1(:,2),'c'",F1(:,1),F1(:,2),"'c—",
F1(:,1),F1(:,3),'c:",
R2(:,1),R2(:,2),'kK",F2(:,1),F2(:,2),"'k——",
F2(:,1),F2(:,3),'k:",
R3(:,1),R3(:,2),'m",F3(:,1),F3(:,2), 'm—", ...
F3(:,1),F3(:,3), 'm:");
hleg=legend('Rayleigh D=0.50 m', '"Forristall (2D) D=0.
'Forristall (3D) D=0.
'Rayleigh D=0.75 m', 'Forristall (2D) D=0.
'Forristall (3D) D=0.
'Rayleigh D=1.00 m', 'Forristall (2D) D=L1.
'Forristall (3D) D=1.

'Location', 'northeast');
set (hleg, '"Fontsize',13)
set (h, 'Linewidth', 2.5)
axis([0.05 0.19 0 100 1);
u=[0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19];
set (gca, "XTick',u, 'Fontsize',14);
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xlabel ('\theta_{r m s}', 'Fontsize', 24);

ylabel ('E[T]', '"Fontsize',22);

hgexport (gcf, '../../Figures/CASE1/CASEIl_T.png', ...
hgexport ('factorystyle'), 'Format', 'png')

end

Iso

function i=iso ()

$CASE 1: THIS FUNCTION USES THE RAYLEIGH AND THE FORRISTALL
$DISTRIBUTION TO FIND THE RATIO BETWEEN THE NONLINEAR AND
$LINEAR SOLUTION (R1) AND THE RATIO BETWEEN THE 3D AND 2D
$SOLUTION (R2), FOR THE TIME SCALE OF SCOUR BELOW PIPELINES.
$R1 AND R2 ARE PLOTTED AS ISOCURVES VERSUS URSELLS NUMBER
% (Ur) AND THE STEEPNESS (S1).

DESCRIPTION OF SYMBOLS

The normalized linar wave amplitude.

2D: The normalized second-order wave crest for 2D waves.
3D: The normalized second-order wave crest for 3D waves.

by

de oo de o
X
el

X

syms x_R x_2D x_3D;
[n Hs h g s d50 arms c d]=Parameters();

s1=5/3;
v=slx* (2-d);

o=zeros (101,101);
h=zeros (101,101);

Ur=-0.01;
for i=1:101

Ur=Ur+0.01;

h(:,1)=Ur;
S1=-0.0015;
for j=1:101

S1=51+0.0015;
o(3,:)=81;

alpha2=0.3536+0.2892x51+0.1060%Ur;

beta2=2-2.1597%5140.0968*Ur"2;
alpha3=0.3536+0.2568xS1+0.0800%Ur;
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beta3=2-1.7912%51-0.5302xUr+0.284xUr"2;

xmin_R=sqgrt (log(n));
xmin_2D=sqgrt (8) ralpha2x (log(n)) " (1/ (beta2));
xmin_3D=sqgrt (8) ralpha3* (log(n)) " (1/ (beta3));

x_R=(xmin_R:0.01:5);
x_2D=(xmin_2D:0.01:5);
x_3D=(xmin_3D:0.01:5);

%$The expected value of t
e_R=2+n*(x_R) ." (1-v) .xexp (- ((x_R) ."2));
e_2D=nxbetal«* (x_2D) ." (beta2-1-v) / ((sqgrt (8) xalpha2) ."beta?2) ...

.xexp (= ((x_2D) ./ (sqgrt (8) .xalpha?)) . "beta2);
e_3D=nx*betal3* (x_3D) ." (beta3-1-v)/ ((sqgrt (8) xalpha3) . beta3) ...
.xexp (= ((x_3D) ./ (sqgrt (8) .xalpha3)) . "beta3);

%The expected value of Tx
E_R=trapz(x_R,e_R);
E_2D=trapz (x_2D,e_2D);
E_3D=trapz(x_3D,e_3D);

$R1
R1_2D=(E_2D)/ (E_R);
R1_3D=(E_3D)/ (E_R);

SR2
R2=E_3D/E_2D;

%$data for plot
k1(j,1)=R1_2D;
k2(3,1)=R1_3D;
k3(j,1)=R2;
end
end

$PLOT

$R1_2D

hl=figure;

set (hl, 'Position', [5 5 700 500],'Visible','off")
cl=contour (h,o,kl, 'b', '"Linewidth',2.5);
clabel (cl, 'Fontsize',18);

u=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 171;
set (gca, 'XTick',u, 'Fontsize',18);

u=[0 0.02 0.04 0.06 0.08 0.10 0.12 0.14];
set (gca, 'YTick',u, 'Fontsize',18);

xlabel ('U_{R}"', '"Fontsize',22);

ylabel ('S_{1}', '"Fontsize',22);
title('R_{1,2D}'", 'Fontsize',22)
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hgexport (gcf, '../../Figures/CASEL1/CASEl_R1l_2D.png', ...
hgexport ('factorystyle'), 'Format', 'png');

%$R1_3D

hl=figure;

set (hl, 'Position', [5 5 700 500], 'Visible', 'off")

cl=contour (h,o0,k2, 'b', "LineWidth',2.5);

clabel (cl, 'Fontsize',18);

u=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 17];

set (gca, 'XTick',u, 'Fontsize',18);

u=[0 0.02 0.04 0.06 0.08 0.10 0.12 0.147;

set (gca, '"YTick',u, 'Fontsize',18);

xlabel ('U_{R}"', "Fontsize',22);

ylabel ('S_{1}"', '"Fontsize',22");

title('R_{1,3D}', 'Fontsize',622)

hgexport (gcf, '../../Figures/CASE1/CASE1_R1_3D.png', ...
hgexport ('factorystyle'), 'Format', 'png');

$R2

hl=figure;

set (hl, 'Position', [5 5 700 500], 'Visible', '"off")

cl=contour (h,o0,k3, 'b', 'LinewWidth',2.5);

clabel (cl, 'Fontsize',18);

u=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 171;

set (gca, "XTick',u, 'Fontsize',18);

u=[0 0.02 0.04 0.06 0.08 0.10 0.12 0.14];

set (gca, 'YTick',u, 'Fontsize',18);

xlabel ('U_{R}"', "Fontsize',22);

ylabel ('S_{1}', '"Fontsize',22);

title('R_{2}', 'Fontsize',22)

hgexport (gcf, '../../Figures/CASE1/CASE1_R2.png', ...
hgexport ('factorystyle'), 'Format', 'png');

end

B.2 - CASE 2

Rayleigh

function [R R1 R2 R3]=Rayleigh (x)

$CASE 2: THIS FUNCTION USES THE RAYLEIGH DISTRIBUTION TO CALCULATE
$THE EXPECTED VALUE OF THE TIME SCALE OF SCOUR AROUND A VERTICAL
$SLENDER PILE FOR DIFFERENT VALUES OF THE SHIELDS PARAMETER (trms)
$AND KEULEGAN-CARPENTER NUMBERS (KCrms) .
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%The expected value of the time scale is shown for 3 different
$values of the trms. T+ is independent of D for Rayleigh

o0 o o

AN~

o
°

o
°
o)

$because trms is given. Since trms is given, the grain size
z0,d50) will change for each value of KCrms. To find T by
nowing Tx, z0 must be calulated.

DESCRIPTION OF SYMBOLS

x: the normalized linear wave amplitude

% The expected value of the time scale Tx for all D

%R1: D=0.50 m - The expeced value of the time scale T (min).
%$R2: D=0.75 m - The expeced value of the time scale T (min).
%R3: D=1.00 m - The expeced value of the time scale T (min).
$Et: The expected value of t [-].

$ET: The expected value of Tx [-].

syms X;

[n Hs h g s d50 arms c d]=Parameters();

trmsl1=0.07;
trms2=0.13;
trms3=0.18;

s1=3;
r1=10"(-6);
v=sl%* (1-d);

for 3=1:3

if j==1
D=0.5;
elseif j==
D=0.75;
else
D=1;
end

i=0;
for KCrms=7:0.01:12
i=i+1;

kp=1/hxasinh (2+pixarms/ (D*KCrms) ) ;
wp=sgrt (kpxg*xtanh (kpxh));
Urms=wp*arms/ (sinh (kpxh));

z0_1=(24/ (wp~d) »trmslxgx (s—1)/ (c*Urms” (2-d))) " (1/(d-1));

z0_2=(24/ (wp~d) strms2+gx (s—1) / (c*Urms” (2-d) ) )~ (1/(d-1));
z0_3=(24/ (wp~d) *trms3*gx (s—1) / (c*Urms” (2-d) ) )~ (1/(d-1));
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xmin=sqrt (log(n));
x=(xmin:0.01:5);
Et=trapz(x,2*n%* (x) ." (1-v) .xexp (- (x) ."2));

ET_1=Et*rl1+KCrms.” (sl)*trmsl” (-sl);
ET_2=Et*rl+KCrms.” (sl)*trms2” (-sl);
ET_3=Et*rl+KCrms.” (sl)*trms3” (-sl);

$RESULTING DATA OF T«
R(i, 1)=KCrms;

R(i,2)=ET_1;
R(i,3)=ET_2;
R(i,4)=ET_3;

$RESULTING DATA OF T

if D==0.5
R1(i,1)=KCrms;
R1(i,2)=ET_1+D"2/ (sqgrt (g* (s—1)*(12xz0_1)"3))/60;
R1 (i, 3)=ET_2xD"2/ (sqrt (g* (s—1) % (12%z0_2)"3)) /60;
R1(i,4)=ET_3%*D"2/ (sqrt (g* (s—1)«*(12xz0_3)"3))/60;
elseif D==0.75
R2(i,1)=KCrms;
R2(i,2)=ET_1+D"2/ (sqrt (g* (s—1) % (12xz0_1)"3))/60;
R2(i,3)=ET_2*D"2/ (sqgrt (g* (s—1) % (12xz0_2)"3)) /60;
R2 (i,4)=ET_3+D"2/ (sqrt (g* (s—1)* (12%*z0_3)"3))/60;
else
R3(i,1)=KCrms;
R3(i,2)=ET_1+D"2/ (sqrt (g* (s—1)*(12%z0_1)"3))/60;
R3(i,3)=ET_2%D"2/ (sqrt (g* (s—1) % (12xz0_2)"3))/60;
R3(i,4)=ET_3*D"2/ (sqgrt (g* (s—1) % (12xz0_3)"3))/60;
end
end
end
end
Forristall

function [F1l, F2, F3]=Forristall (x)

$CASE 2: THIS FUNCTION USES THE FORRISTALL DISTRIBUTION TO
$CALCULATE THE EXPECTED VALUE OF THE TIME SCALE FOR SCOUR
$AROUND A VERTICAL SLENDER PILE FOR DIFFERENT VALUES OF
$THE SHIELDS PARAMETER (trms) AND KC NUMBER (KCrms) .

The expected value of the time scale is shown for 3 different

%values of the trms. Since trms is given, the grain size
%$(z0,d50) will change for each value of KCrms, affecting T.
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DESCRIPTION OF SYMBOLS

The normalized second order wave crest.

D=0.50 m - The expected value of the time scale Tx
ol 1-7) and T (min) (col 8-13).

D=0.75 m - The expected value of the time scale Tx
col 1-7) and T in minutes (col 8-13).

F3: D=1.00 m - The expected value of the time scale Tx
(col 1-7) and T (min) (col 8-13).

—~ T~ X
N Qe

o° o d° o° d° o o o

$Et_2D: The expected wvalue of t [-] for 2D waves.

$Et_3D: The expected value of t [-]

$ET_2D: The expected value of Tx [-] for 2D waves.
(-]

$ET_3D: The expected value of Tx for 3D waves.

for 3D waves.

syms X;
[n Hs h g s d50 arms c d]=Parameters();

s1=3;
r1=10"(-6);
v=slx* (1-d);

trms1=0.07;
trms2=0.13;
trms3=0.18;

for 3=1:3
if j==
D=0.5;
elseif j==
D=0.75;
else
D=1;
end

i=0;
for KCrms=7:0.01:12
i=1+1;

kp=(1/hxasinh (2+xpixarms/ (DxKCrms))) ;
wp=sgrt (kp*xgxtanh (kpxh) ) ;
Tp=2xpi/wp;
Urms=wp*arms/ (sinh (kpxh));

z0_1=(24/ (wp~d) »trmslxgx (s—1)/ (c*xUrms” (2-d) ...

)) M (1/(d-1));
z0_2=(24/ (wp~d) »trms2xgx (s—1) / (c*xUrms” (2-d) . ..
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)) " (1/(d-1));

z0_3=(24/ (wp”~d) *trms3*gx (s—1) / (c*Urms” (2-d) . ..

)) M (1/(d-1));

S1=2*pixHs/ (g*xTp"2);
Ur=Hs/ (kp"2+h"3);

$parameters for 2D model
alpha2=0.3536+0.2892xS1+0.1060+Ur;
beta2=2-2.1597%«51+0.0968%Ur"2;

xmin_2D=sqgrt (8) xalpha2x (log(n)) " (1/ (beta2));

x2D=(xmin_2D:0.01:5);

%$parameters for 3D model
alpha3=0.3536+0.2568xS1+0.0800+Ur;
beta3=2-1.7912x51-0.5302+Ur+0.284xUr"2;

xmin_3D=sqgrt (8) ralpha3* (log(n)) " (1/ (beta3));

x3D=(xmin_3D:0.01:5);

Et_2D=trapz (x2D, nxbeta2x (x2D

alpha2) "~ (beta2)) .xexp (- ((x2D

Et_3D=trapz (x3D, nxbetal3* (x3D
(

alpha3) " (beta3)) .*exp (- ((x3D

)
)
) .
)
ET_2D_1=Et_2D*rl1*KCrms.”" (sl)*trmsl” (-sl);
ET_3D_1=Et_3D*rl*KCrms.”" (sl)+trmsl” (-sl);

ET_2D_2=Et_2D*rl1*KCrms.”" (sl)*trms2” (-sl);
ET_3D_2=Et_3D*xrl*KCrms.”" (sl) trms2” (-sl);

ET_2D_3=Et_2D*rl1*KCrms.”" (sl)*trms3” (-sl);
ET_3D_3=Et_3D*xrl*KCrms.”" (sl) trms3” (-sl);

$RESULTING DATA
if D==0.5
ST *
1(i,1)=KCrms;
1(i,2)=ET_2D_1;
1(i,3)=ET_3D_1;
1(i,4)=ET_2D_2;
1(i,5)=ET_3D_2;
1(i,6)=ET_2D_3;
1(i,7)=ET_3D_3;

s T

Fl(l 8)= ET_2D_1+D"2/ (sqgrt (g (s—1) % (12xz0_1
1(i,9)= ET_3D_1+D"2/ (sqgrt (g* (s—=1)« (12%z0_1
1(i,10)=ET_2D_2xD"2/ (sqrt (g (s—1) * (12xz0_2

Fl(1,11)—ET_3D_2*DA2/(sqrt(g*(sfl)*(l2*zo_2

XXIV
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beta3-1-v)/ ((sqrt (8)
./ (sqrt (8) ralpha3)) .”

(beta3)));

)/60;
) /60;
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end
end
end

Plot

F1(i,12)=ET_2D_3%D"2/ (sqrt (g*(s-1)* (12%xz0_3)"3))/60;
F1(i,13)=ET_3D_3*D"2/ (sqrt (gx (s—1)*(12%«z0_3)"3))/60;

elseif D==0.75

ST+
F2(i,1)=KCrms;
F2(i,2)=ET_2D_1;
F2(i,3)=ET_3D_1;
F2(i,4)=ET_2D_2;
F2(i,5)=ET_3D_2;
F2(i,6)=ET_2D_3;
F2 (i, 7)=ET_3D_3;
$T

i,8)= ET_2D_1D"
i,9)= ET_3D_1+D"
i,10)=ET_2D_2«D"
ET_3D_2+D"
=ET_2D_3D"
i,13)=ET_3D_3+D"

F2 (
F2 (
F2 (
F2(i,11)
F2(i,12)
F2 ( )

else

ST *
F3(i,1)=KCrms;
F3(i,2)=ET_2D_1;
F3(i,3)=ET_3D_1;
F3(i,4)=ET_2D_2;
F3(i,5)=ET_3D_2;
F3(i,6)=ET_2D_3;
F3(i,7)=ET_3D_3;

ST

F3(i,8)= ET_2D_1D"
F3(i, 9)= ET_3D_1D"
F3(i,10)=ET_2D_2D"
F3(i,11)=ET_3D_2+D"
F3(i,12)=ET_2D_3+D"
F3(i,13)=ET_3D_3D"

end

function P=Plot (x)
THIS FUNCTION PLOTS THE EXPECTED VALUE OF THE TIME
$SCALE OF SCOUR AROUND A VERTICAL SLENDER PILE FOR DIFFERENT

$CASE 2:

2/ (sqrt (g% (s-1)* (12%z0_
2/ (sqrt (g* (s—1) * (12xz0_
2/ (sqrt (g* (s—1) * (12xz0_
2/ (sqrt (g* (s=-1)* (12%z0_
2/ (sqrt (g* (s—1) * (12%z0_
2/ (sqrt (g* (s—1) * (12xz0_
2/ (sqrt (g* (s=1) * (12xz0_
2/ (sqrt (g% (s-1)* (12%z0_
2/ (sqrt (g* (s—1) * (12xz0_
2/ (sqrt (g% (s=1)* (12%z0_
2/ (sqrt (g% (s-1)* (12%z0_
2/ (sqrt (g* (s—1) * (12xz0_

XXV

1)73))/60;
1)73))/60;
2)73))/60;
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3)"3))/60;
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%$VALUES OF THE SHIELDS PARAMETERS AND KC NUMBERS.

Retrieving data from the Rayleigh distibution

— o

R R1 R2 R3]=Rayleigh();
% R: Data for of E[Tx*].
% Rl: D=0.50 m - Data for E[T].
% R2: D=0.75 m - Data for E[T].
% R3: D=1.00 m - Data for E[T].

%Retrieving data from the Forristall distribution

[F1 F2 F3]=Forristall();

Fl: D=0.50 m - Data for E[T*] (Col 1-7) and E[T] (Col 8-13).
F2: D=0.75 m - Data for E[T*] (Col 1-7) and E[T] (Col 8-13).
F3: D=1.00 m - Data for E[Tx] (Col 1-7) and E[T] (Col 8-13).

o

o o

$T for D=0.5 m, D=0.75 m and D=1 m for trms=0.07
hl=figure;

set (hl, 'Position', [5 5 700 500], 'Visible', 'off")
h=semilogx (R(:,1),R(:,2),'b",F1(:,1), F1(:,2),"'c—",
Fl(:,1), F1(:,3),"'c:"
F2(:,1), F2(:,2), " 'k——",
F2(:,1), F2(:,3), "k:",
F3(:,1), F3(:,2), 'm—",
F3(:,1), F3(:,3), ' 'm:");
hleg=legend('Rayleigh', 'Forristall (2D) D=0.50 m', ...
'Forristall (3D) D=0.50 m',...
'Forristall (2D) D=0.75 m',...
'Forristall (3D) D=0.75 m', ...
'Forristall (2D) D=1.00 m', ...
'Forristall (3D) D=1.00 m',...
'Location', "'northwest');

set (hleg, 'Fontsize',13)

set (h, 'Linewidth', 2.5)

u=[7 8 9 10 11 12];

set (gca, 'XTick',u, 'Fontsize',14);

axis ([7 12 0 2.5]);

xlabel ('"KC_{r m s}','Fontsize',22);

ylabel ('E[Tx]"', '"Fontsize',22);

hgexport (gcf, '../../Figures/CASE2/CASE21.png', ...
hgexport ('factorystyle'), 'Format', 'png');

$Tx for D=0.5 m, D=0.75 m and D=1 m for trms=0.13 and trms=0.18
hl=figure;

set (hl, 'Position', [5 5 700 500], 'Visible', 'off")

h=semilogx (R(:,1),R(:,3),'b",F1(:,1), F1(:,4),"'c—",...
Fl(:,1), F1(:,5),"'c:"', ...
F2(:,1), F2(:,4), 'k—",...
F2(:,1), F2(:,5),"'k:", ...
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hleg=legend('Rayleigh',

F3(:,1), F3(:,4), 'm—"',
F3(:,1), F3(:,5), 'm:",
R(:,1),R(:,4),'",F1(:,1), F1(:,6),'c—",
F1(:,1), F1(:,7),"'c:"
F2(:,1), F2(:,6),'k—",
F2(:,1), F2(:,7), 'k:',
F3(:,1), F3(:,6), 'm——"', ...
F3(:,1), F3(:,7), 'm:");
'Forristall (2D) D=0.50 m',
'Forristall (3D) D=0.50 m',
'"Forristall (2D) D=0.75 m',.
'Forristall (3D) D=0.75 m',
'Forristall (2D) D=1.00 m',.
'"Forristall (3D) D=1.00 m',
'Location', '"northwest');

set (hleg, '"Fontsize',13)

set (h,

'LineWidth',

2.5)

u=[7 8 9 10 11 12];
set (gca, "XTick',u, 'Fontsize',14);

axis([7 12 0 0.35

1)s

xlabel ('KC_{r m s}', 'Fontsize',22);

ylabel ('"E[Tx]"', '"Fontsize',22);
hgexport (gcf, '.

$T for D=0.5 m,

hl=figure;
set (hl,

'Position',
h=semilogx (R1(:,1),R1(:

/2),'c
R2(:,1),R2(:,2),'k
R3(:[1)IR3(:12)I|m

hleg=legend('Rayleigh

set (h,

'LineWidth',

'Rayleigh

'Rayleigh

"L F2(:,

'S E3 (e,

'Format',

Fl(:,

1),

1),
F2(:,1),
1),
1)

F1l
Fl
F2
F2
F3
F3

F3(:,

’

:,8)

(
(
(
(
(:,8)
(

D=0.50 m', ...

'Forristall
'Forristall

D=0.75 m', ...

'Forristall
'"Forristall

D=1.00 m', ...

'Forristall
'Forristall

'Location', 'northwest');
set (hleg, 'Fontsize',13)

2.5)

u=[7 8 9 10 11 12];
set (gca, "XTick',u, 'Fontsize',14);
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(3D)

2 9)y
:,8),
5, 9),

:,9), 'm:

./../Figures/CASE2/CASE22.png"', ...

hgexport (' factorystyle'), 'png');

D=0.75 m and D=1 m for trms=0.07

[5 5 700 500], 'Visible', 'off")
'IFl(:Il)!

L} 1
,'c PR

IC:|’
,'m==", ...
D=0.
D=0
D=0.75
D=0.75

D=1.

50 m', ...
m',...

m',...
mY
y e

00 m'", ...
D=1.00 m', ...



axis([7 12 0 10 1);

xlabel ('KC_{r m s}', 'Fontsize',22);

ylabel ('"E[T] "', 'Fontsize',22);

title('\theta_{r m s}=0.07', 'Fontsize',17)

hgexport (gcf, '../../Figures/CASE2/CASE2Tl.png', ...
hgexport ('factorystyle'), 'Format', 'png');

$T for D=0.5 m, D=0.75 m and D=1 m for trms=0.18

hl=figure;

set (hl, 'Position', [5 5 700 500], 'Visible', 'off'")

h=semilogx (R1(:,1),R1(:,4),'c',F1(:,1), F1(:,12),"'c—", ...

Fl(:,1), F1(:,13
F2(:

v

Y, 'c: ', L.
R2(:,1),R2(:,4),'k",F2(:,1), ,12), Tk—", ...
F2(:,1), F2(:,13), "k:", ...
R3(:,1),R3(:,4), 'm",F3(:,1), F3(:,12), 'm—"', ...
F3(:,1), F3(:,13), 'm:");
hleg=legend('Rayleigh D=0.50 m', ...

'Forristall (2D) D=0.50 m', ...
'Forristall (3D) D=0.50 m',...
'Rayleigh D=0.75 m', ...
'Forristall (2D) D=0.75 m', ...
'Forristall (3D) D=0.75m', ...
'Rayleigh D=1.00 m', ...
'Forristall (2D) D=1.00 m', ...
'Forristall (3D) D=1.00 m',...
'Location', 'northwest');

set (hleg, 'Fontsize',13)

set (h, 'LinewWidth', 2.5)

u=[7 8 9 10 11 12];

set (gca, 'XTick',u, 'Fontsize',14);

axis ([7 12 0 101);

xlabel ('KC_{r m s}', 'Fontsize',22);

ylabel ('E[T]', 'Fontsize',22);

title('\theta_{r m s}=0.18", 'Fontsize',17)

hgexport (gcf, '../../Figures/CASE2/CASE2T3.png', ...

hgexport ('factorystyle'), 'Format', 'png');
end

Iso

function i=iso ()

$CASE 2: THIS FUNCTION USES THE RAYLEIGH AND THE FORRISTALL
$DISTRIBUTION TO FIND THE RATIO OF THE NONLINEAR AND LINEAR
$SOLUTION (R1) AND THE RATIO OF THE 3D AND 2D SOLUTION (R2),
$FOR THE TIME SCALE OF SCOUR AROUND VERTICAL SLENDER PILES.
$%R1 AND R2 ARE PLOTTED AS ISOCURVES VERSUS URSELLS NUMBER
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%(Ur) AND THE STEEPNESS (S1).

$DESCRIPTION OF SYMBOLS

$x_R: The normalized linar wave amplitude.

$x_2D: The normalized second-order wave crest for 2D waves.
%$x_3D: The normalized second-order wave crest for 3D waves.

syms x_R x_2D x_3D;
[n Hs h g s d50 arms c d]=Parameters();

sl1=3;
v=sl#* (1l-d);

o=zeros (101,101);
h=zeros(101,101);

Ur=-0.01;
for i=1:101

Ur=Ur+0.01;
h(:,1)=Ur;

S1=-0.0015;
for j=1:101

S1=S1+0.0015;
o(j,:)=S1;

alpha2=0.3536+0.2892x51+0.1060%Ur;
beta2=2-2.1597x5140.0968+Ur"2;
alpha3=0.3536+0.2568x51+0.0800%Ur;
beta3=2-1.7912%51-0.5302+Ur+0.284xUr"2;

xmin_R=sqgrt (log(n));
xmin_2D=sqgrt (8) ralpha2x (log(n)) " (1/ (beta2));
xmin_3D=sqgrt (8) xalpha3x (log(n)) " (1/ (betal3));

x_R=(xmin_R:0.01:5);
x_2D=(xmin_2D:0.01:5);
x_3D=(xmin_3D:0.01:5);

$THE EXPECTED VALUE t

e_R=2+n* (x_R) ." (1-v) .xexp (- ((x_R) ."2));

e_2D=nxbetal* (x_2D) ." (beta2-1-v) / ((sqgrt (8) xalpha2) . beta2. ..
) .*xexp (= ((x_2D) ./ (sqrt (8) .*xalpha2)) ."beta2);

e_3D=n=*betal3* (x_3D) ." (beta3-1-v)/ ((sqrt (8) ralpha3) . beta3...
) .xexp (= ((x_3D) ./ (sqrt (8).*alpha3)) . beta3l);
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E_R=trapz(x_R,e_R);
E_2D=trapz (x_2D,e_2D);
E_3D=trapz(x_3D,e_3D);

SR1
R1_2D=(E_2D)/ (E_R);
R1_3D=(E_3D)/ (E_R);

SR2
R2=E_3D/E_2D;

%data for plot
k1(j,1)=R1_2D;
k2(3,1)=R1_3D;
k3(j,1)=R2;
end
end

$PLOT

$R1_2D

hl=figure;

set (hl, 'Position', [5 5 700 500], 'Visible','off")
cl=contour (h,o,kl, 'b', '"LineWidth',2.5);
clabel (cl, 'Fontsize',18);

u=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 17;
set (gca, 'XTick',u, 'Fontsize',18);

u=[0 0.02 0.04 0.06 0.08 0.10 0.12 0.147;
set (gca, 'YTick',u, 'Fontsize',18);

xlabel ('U_{R}', '"Fontsize',22);

ylabel ('S_{1}', '"Fontsize',22);
title('R_{1,2D}'", 'Fontsize',22)

hgexport (gcf, '../../Figures/CASE2/CASE2_RI1_2D.png',...
hgexport ('factorystyle'), 'Format', 'png');

%$R1_3D

hl=figure;

set (hl, 'Position', [5 5 700 500], 'Visible','off")
cl=contour (h,o0,k2, 'b', 'LinewWidth',2.5);

clabel (cl, 'Fontsize',18);

u=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 171;

set (gca, 'XTick',u, 'Fontsize',18);

u=[0 0.02 0.04 0.06 0.08 0.10 0.12 0.147;

set (gca, 'YTick',u, 'Fontsize',18);

xlabel ('U_{R}', '"Fontsize',22);

ylabel ('S_{1}', '"Fontsize',22");

title('R_{1,3D}'", 'Fontsize',22)

hgexport (gcf, '../../Figures/CASE2/CASE2_R1_3D.png', ...

hgexport ('factorystyle'), 'Format', 'png');
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$R2

hl=figure;

set (hl, 'Position', [5 5 700 500], 'Visible', 'off'")

cl=contour (h,o0,k3, 'b', '"LinewWidth',2.5);

clabel (cl, 'Fontsize',18);

u=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 17];

set (gca, 'XTick',u, 'Fontsize',18);

u=[0 0.02 0.04 0.06 0.08 0.10 0.12 0.1471;

set (gca, '"YTick',u, 'Fontsize',18);

xlabel ('U_{R}"', "Fontsize',22);

ylabel ('S_{1}', '"Fontsize',22);

title('R_{2}', 'Fontsize',b22)

hgexport (gcf, '../../Figures/CASE2/CASE2_R2.png', ...
hgexport ('factorystyle'), 'Format', 'png');

end

B.3 - CASE 3

Rayleigh

function [R, R1l, R2, R3]=Rayleigh (x)

$CASE 3: THIS FUNCTION USES THE RAYLEIGH DISTRIBUTION TO CALCULATE
$THE EXPECTED VALUE OF THE TIME SCALE OF BACKFILLING BY WAVES ALONE
$AROUND A PILE WHEN THE INITIAL HOLE WAS GENERATED BY A CURRENT.

%The expected value of the time scale is shown for 3 different
%$values of the trms. T+ is independent of D for Rayleigh

$because trms is given. Since trms 1is given, the grain size
z0,d50) will change for each value of KCrms. To find T by

nowing Tx, z0 must be calulated.

o ol o

N~

%Et: The expected value of t [-1.

)

$ET: The expected value of Tx [-].

%Rayleigh because trms is given.

%R1: D=0.50 m - The expeced value of the time scale T (min).
%$R2: D=0.75 m - The expeced value of the time scale T (min).
%R3: D=1.00 m - The expeced value of the time scale T (min).
syms X;

[n Hs h g s d50 arms c d]=Parameters();

sl=2;
s2=1.45;
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v=82#* (sl* (2-d)+1);

trmsl1=0.07;
trms2=0.10;
trms3=0.15;

for j=1:3
if j==
D=0.5;
elseif j==
D=0.75;
else
D=1;
end

i=0;
for KCrms=5:0.01:12
i=i+1;

kp=1/hxasinh (2+pixarms/ (DxKCrms) ) ;
wp=sqgrt (gxkpxtanh (kpxh) ) ;
Urms=wpxarms/ (sinh (kpxh));

z0_1=(24/ (wp~d) *trmsl*gx (s=1)/ (c*Urms” (2-d)) )~ (1/(d-1));
z0_2=(24/ (wp~d) *trms2*gx (s—1) / (c*Urms” (2-d) ) )~ (1/(d-1));
z0_3=(24/ (wp~d) *trms3*gx (s—1) / (c*Urms” (2-d) ) )~ (1/(d-1));

xmin=sqgrt (log(n)) ;
=(xmin:0.01:5);
Et=trapz(x,2*n%* (x) ." (1-v) .xexp (- (x) ."2));

ET_1=Et*trmsl” (-slxs2)*KCrms." (-s2);
ET_2=Et*trms2” (-slxs2)*KCrms." (-s2);
ET_3=Et*trms3” (-slxs2)*KCrms." (-s2);

$RESULTING DATA of T=*
R(i,1)=KCrms;

R(i,2)=ET_ 1
R(i,3)=ET
R(i,4)=ET_

$RESULTING DATA OF T

if D==0.50
1(i,1)=KCrms;
1(i,2)=ET_1+D"2/ (sgrt (gx (s—1)*(12%xz0_1) ) /60;
1(i,3)=ET_2+D"2/ (sqrt (g* (s—1)* (12x20_2) ) /60;
1(i,4)=ET_3%D"2/ (sgrt (gx (s—1)* (12%xz0_3) ) /60;

elself D==0.75
R2(i,1)=KCrms;
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R2(1,2)=ET_1+D"2/ (sqrt (g* (s=1)* (12xz0_1)"3)) /60;
R2 (i, 3)=ET_2D"2/ (sqrt (gx (s—1)* (12%z0_2)"3))/60;
R2(1,4)=ET_3*D"2/ (sqgrt (g* (s—1)* (12xz0_3)"3)) /60;

else
R3(i,1)=KCrms;
R3(i,2)=ET_1+D"2/ (sqrt (gx (s—1)* (12%«z0_1)"3))/60;
R3(i,3)=ET_2*D"2/ (sqgrt (g* (s—1) % (12xz0_2)"3))/60;
R3 (i, 4)=ET_3x%D"2/ (sqrt (g* (s—1) % (12%z0_3)"3)) /60;
end
end
end
end
Forristall

function [F1l F2 F3]=Forristall (x)

$CASE 3: THIS FUNCTION USES THE FORRISTALL DISTRIBUTION TO CALCULATE
$THE EXPECTED VALUE OF THE TIME SCALE OF BACKFILLING BY WAVES ALONE
$AROUND A PILE WHEN THE INITIAL HOLE WAS GENERATED BY A CURRENT.

The expected value of the time scale is shown for 3 different
values of the trms. Since trms is given, the grain size
(z0,d50) will change for each value of KCrms, affecting T.

o° oo oo

DESCRIPTION OF SYMBOLS

%$x: The normalized second-order wave crest.

%$F1: D=0.50 m — The expected values of the time scale Tx
$(col 1-7) and T (min) (col 8-13).

%$F2: D=0.75 m - The expected value of the time scale Tx
$(col 1-7) and T in minutes (col 8-13).

%$F3: D=1.00 m - The expected value of the time scale Tx
% (

col 1-7) and T (min) (col 8-13).

for 2D waves.
for 3D waves.
for 2D waves.
for 3D waves.

%$Et_2D: The expected value of t
%Et_3D: The expected value of t
SET_2D: The expected value of Tx
%$ET_3D: The expected value of Tx
syms X;

[n Hs h g s d50 arms c d]=Parameters();
s1=2;

s2=1.45;

v=s2%* (sl* (2-d)+1);

trmsl1=0.07;
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trms2=0.10;
trms3=0.15;

for j=1:3

if j==1
D=0.5;
elseif j==2
D=0.75;
else
D=1;
end

i=0;

for KCrms=5:0.01:12
i=i+1;
kp=1/hxasinh (2+pixarms/ (DxKCrms) ) ;
wp=sgrt (gxkp*tanh (kpxh));
Tp=2*pi/wp;
Urms=wpxarms/ (sinh (kpxh));

(24/ (wpnd) *trmslxgx (s-1)/ (cxUrms”™ (2-d) . ..
/(d=1));
(24/ (wp™d) *trms2+gx (s—-1) / (cxUrms”™ (2-d) . ..
/(d-1));
=(24/ (wp"d) xtrms3xg* (s—1) / (cxUrms” (2-d) . ..
1/(d-1));

=l

~ N ~ N — N
=l

0_1
) o
0_2
)" A
0_3
) o

S1=2*pixHs/ (g*xTp"2);
Ur=Hs/ (kp"2+h"3);

%$parameters for 2D model
alpha2=0.3536+0.2892%51+0.1060xUzr;
beta2=2-2.1597+xS14+0.0968+Ur"2;
xmin_2D=sqgrt (8) ralpha2x (log(n)) " (1/ (beta2));
x2D=(xmin_2D:0.01:5);

%$parameters for 3D model
alpha3=0.3536+0.2568%351+0.0800xUr;
beta3=2-1.7912%351-0.5302+«Ur+0.284xUr"2;
xmin_3D=sqrt (8) xalpha3* (log(n)) "~ (1/ (betal));
x3D=(xmin_3D:0.01:5);

Et_2D=trapz (x2D,n*xbetal* (x2D) .” (beta2-1-v) / ((sqrt (8) ...
alpha2) " (beta2)) .xexp (- ((x2D) ./ (sqrt (8) ralpha2)) .” (beta2)));

Et_3D=trapz (x3D,n*beta3* (x3D) . (beta3-1-v) / ((sqrt (8) ...
alpha3) " (beta3)) .xexp (- ((x3D) ./ (sqrt (8) ralpha3)) .” (beta3l3)));
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ET_2D_1=Et_2Dxtrmsl” (-slxs2)xKCrms." (-s2);
ET_3D_1=Et_3D*trmsl” (-slxs2)*«KCrms.”" (-s2);

ET_2D_2=Et_2Dxtrms2” (-slxs2) *KCrms." (-s2);
ET_3D_2=Et_3Dxtrms2” (-sl*xs2) *KCrms." (-s2);

ET_2D_3=Et_2D*trms3” (-sl*xs2)«KCrms." (-s2);
ET_3D_3=Et_3Dxtrms3” (-sl*xs2)*KCrms." (-s2);

$RESULTING DATA

if D==0.5
ST *
Fl(i,1)=KCrms;
F1(i,2)=ET_2D_1;
F1(i,3)=ET_3D_1;
F1(i,4)=ET_2D_2;
F1(i,5)=ET_3D_2;
Fl1(i, 6)=ET_2D_3;
F1(i,7)=ET_3D_3;

$T

F1(i,8)=ET_2D_1+D"2/ (sgrt (g* (s—1)* (12xz0_1)"3))/60;

F1(i,9)=ET_3D_1+D"2/ (sqgrt (g* (s=1)* (12xz0_1)"3))/60;

F1(i,10)=ET_2D_2xD"2/ (sqrt (g (s—1)*(12%«z0_2)"3))/60;

F1(i,11)=ET_3D_2%D"2/ (sqrt (g% (s—-1)*(12%xz0_2)"3))/60;

F1(i,12)=ET_2D_3%D"2/ (sqrt (g% (s-1)* (12%xz0_3)"3))/60;

F1(i,13)=ET_3D_3%D"2/ (sqrt (g*(s-1)*(12%xz0_3)"3))/60;
elseif D==0.75

ST *

F2(i,1)=KCrms;

F2(i,2)=ET_2D_1;

F2(i,3)=ET_3D_1;

F2 (i, 4)=ET_2D_2;

F2(i,5)=ET_3D_2;

F2(i,6)=ET_2D_3;

F2 (i, 7)=ET_3D_3;

$T

F2(i,8)=ET_2D_1*D"2/ (sqrt (g* (s—1)*(12xz0_1)"3))/60;

F2(i,9)=ET_3D_1+D"2/ (sgrt (g* (s—1) (12xz0_1)"3))/60;

F2(i,10)=ET_2D_2xD"2/ (sqrt (gx (s—1)* (12%«z0_2)"3))/60;

F2(i,11)=ET_3D_2%D"2/ (sqrt (g*(s—-1)* (12%xz0_2)"3))/60;

F2(i,12)=ET_2D_3*D"2/ (sqrt (g* (s—1)* (12%xz0_3)"3))/60;

F2(i,13)=ET_3D_3*D"2/ (sqrt (g (s—1)* (12%z0_3)"3))/60;
else

ST *

F3(i,1)=KCrms;
F3(i,2)=ET_2D_1;
F3(i,3)=ET_3D_1;
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F3(i,4)=ET_2D_2;

(
F3(i,5)=ET_3D_2;
F3(i,6)=ET_2D_3;
F3(i,7)=ET_3D_3;
$T
F3(i,8)=ET_2D_1%D"2/ (sqrt (g* (s-1) (12xz0_1)"3))/60;
F3(i,9)=ET_3D_1xD"2/ (sqgrt (g* (s=1) (12xz0_1)"3))/60;
F3(i,10)=ET_2D_2*D"2/ (sgrt (g* (s-1)* (12xz0_2)"3))/60;
F3(i,11)=ET_3D_2%D"2/ (sqrt (g* (s—1)*(12%xz0_2)"3))/60;
F3(i,12)=ET_2D_3%D"2/ (sqrt (g% (s-1)* (12%xz0_3)"3))/60;
F3 (i, 13)=ET_3D_3*D"2/ (sqrt (g (s—1)* (12%«z0_3)"3))/60;
end
end

end

end

Plot

function P=Plot (x)

$CASE 3: THIS FUNCTION PLOTS THE EXPECTED VALUE OF THE TIME SCALE
$OF BACKFILLING BY WAVES ALONE AROUND A PILE WHEN THE INITIAL HOLE
$WAS GENERATED BY A CURRENT.

Retrieving data from the Rayleigh distibution

— o

R R1 R2 R3]=Rayleigh();
% R: Data for of E[Tx*].
% Rl1: D=0.50 m - Data for E[T].
% R2: D=0.75 m - Data for E[T].
% R3: D=1.00 m - Data for E[T].

%Retrieving data from the Forristall distribution

[F1, F2, F3]=Forristall();

Fl: D=0.50 m - Data for E[T*] (Col 1-7) and E[T] (Col 8-13).
F2: D=0.75 m - Data for E[Tx] (Col 1-7) and E[T] (Col 8-13).
F3: D=1.00 m - Data for E[Tx] (Col 1-7) and E[T] (Col 8-13).

o° o o

$T+ with trms=0.07 and D=0.5 m, D=0.75 m and D=1 m
hl=figure;

set (hl, 'Position', [5 5 700 500],'Visible', 'off'")
h=semilogx (R(:,1),R(:,2),'b",F1(:,1), F1(:,2),"'c—",
Fl(:,1), F1(:,3),"'c:"
F2(:,1), F2(:,2),"'k——",
F2(:,1), F2(:,3),'k:", ..
F3(:,1), F3(:,2), 'm—",
F3(:,1), F3(:,3),'m:");
hleg=legend('Rayleigh', 'Forristall (2D) D=0.50 m', ...
'"Forristall (3D) D=0.50 m', ...
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'Forristall (2D) D=0.75 m', ...
'"Forristall (3D) D=0.75 m',...
'Forristall (2D) D=1.00 m',...
'Forristall (3D) D=1.00 m', ...

'"Location', "northeast');
set (hleg, '"Fontsize',13)
set (h, 'LineWidth', 2.5)
u=[5 6 7 8 9 10 12];
set (gca, "XTick',u, 'Fontsize',14);
axis([5 12 0 101);
xlabel ('KC_{f r m s}', '"Fontsize',22);
ylabel ('"E[Tx]"', '"Fontsize',22);
title('\theta_{f r m s}=0.07", 'Fontsize',17)
hgexport (gcf, '../../Figures/CASE3/CASE31l.png', ...
hgexport ('factorystyle'), 'Format', 'png');

T+ with trms=0.15 and D=0.5 m, D=0.75 m and D=1 m
hl=figure;

set (hl, 'Position', [5 5 700 500], 'Visible', 'off")
h=semilogx (R(:,1),R(:,4),'d'",F1(:,1), F1(:,6),'c—",
F1(:,1), F1(:,7),"'c:"
F2(:,1), F2(:,6),'k——",
F2(:,1), F2(:,7),"'k:", ..
F3(:,1), F3(:,6), 'm——",
F3(:,1), F3(:,7), 'm:");
hleg=legend('Rayleigh', 'Forristall (2D) D=0.50 m',
'Forristall (3D) D=0.50 m',
'"Forristall (2D) D=0.75 m',
'Forristall (3D) D=0.75 m',
'Forristall (2D) D=1.00 m',

'Forristall (3D) D=1.00 m',...
'Location', 'northeast');
set (hleg, 'Fontsize',13);
set (h, 'LinewWidth', 2.5)
u=[5 6 7 8 9 10 11 12];
set (gca, "XTick',u, 'Fontsize',14);
axis([5 11 0 1.11);
xlabel ('KC_{f r m s}', '"Fontsize',22);
ylabel ('"E[Tx]"', '"Fontsize',22);
title('\theta_{f r m s}=0.15", '"Fontsize',17)
hgexport (gcf, '../../Figures/CASE3/CASE33.png', ...
hgexport ('factorystyle'), 'Format', 'png');

$T+ for D=0.5 m - All theta
hl=figure;
set (hl, 'Position', [5 5 700 500], 'Visible', 'off")

h=semilogx (R(:,1),R(:,2),"'c'",F1(:,1), F1l(:,2),"'c—",...
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hleg=legend('Rayleigh

set (h,

'LineWidth',

'Forristall
'Forristall
'Rayleigh

'Forristall
'Forristall
'Rayleigh

'Forristall
'Forristall

(2D)
(3D)

F1(:,1), F1(:,3),'c:', ...
,1),R(:,3),'k",F1(:,1), F1(:,4),'k——",...

F1(:,1), F1(:,5),"'k:", ...
,1),R(:,4), ' m",F1(:,1), F1(:,6), 'm—", ...

F1(:,1), F1(:,7),'m:");

\theta_{frms}=0.07", ...
\theta_{frms}=0.07", ...
\theta_{frms}=0.07", ...

\theta_{frms}=0.10", ...
\theta_{frms}=0.10", ...
\theta_{frms}=0.10", ...

\theta_{frms}=0.15", ...
\theta_{frms}=0.15", ...
\theta_{frms}=0.15", ...

'Location', 'northeast');
set (hleg, '"Fontsize',10)

u=[5 6 7 8 9 10 12];
set (gca, "XTick',u, 'Fontsize',14);
axis ([5 12 0 101);
xlabel ('KC_{f r m s}', '"Fontsize',22);
ylabel ('"E[Tx]"', '"Fontsize',22);
title('D=0.5 m', '"Fontsize',17)

hgexport (gcf, '.

2.5)

$T+ for D=1.0 - All theta

hl=figure;
set (hl,

'Position',
h=semilogx (R(:,1),R(:

R(:

1), R(:

hleg=legend('Rayleigh

set (h,

'LineWidth',

'Forristall
'Forristall
'Rayleigh

'Forristall
'Forristall
'Rayleigh

'Forristall
'Forristall

,2), ¢!, F3(:
F3
R(:,1),R(:,3),'k',F3
F3

14)I'm'lF3

(2D)
(3D)

./../Figures/CASE3/CASE3_D05.png', ...
hgexport ('factorystyle'),

'Format', 'png');

[5 5 700 500], 'Visible', 'off")
, 1), F3(:,2),'c—",
(:,1), F3(:,3),"'c:", ...
(:,1), F3(:,4), 'k—",...
(:,1), F3(:,5),"'k:", ...
(:,1), F3(:,6), ' m—", ...
F3(:,1), F3(:,7),'m:");

\theta_{rms}=0.07", ...
\theta_{rms}=0.07",....
\theta_{rms}=0.07", ...

\theta_{rms}=0.10", ...
\theta_{rms}=0.10", ...
\theta_{rms}=0.10", ...

\theta_{rms}=0.15", ...
\theta_{rms}=0.15", ...
\theta_{rms}=0.15", ...

'Location', 'northeast');

set (hleg, "Fontsize', 10)
u=[5 6 7 8 9 10 12];

2.5)
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set (gca, "XTick',u, 'Fontsize',14);

axis([5 12 0 101);

xlabel ('KC_{f r m s}', '"Fontsize',22);

ylabel ('"E[Tx]"', '"Fontsize',22);

title('D=1 m', 'Fontsize',17)

hgexport (gcf, '../../Figures/CASE3/CASE3_D10.png', ...
hgexport ('factorystyle'), 'Format', 'png');

$T for all D and trms=0.07
hl=figure;
set (hl, 'Position', [5 5 700 500], 'Visible', 'off")

h=semilogx (R1(:,1),R1(:,2),'c'",F1(:,1), F1(:,8),"'c—"
F1(:,1), F1(:,9),'c:"',

R2(:,1),R2(:,2),'k",F2(:,1), F2(:,8), "k—-"

F2(:,1), F2(:,9),"'k:",

R3(:,1),R3(:,2), ' m'",F3(:,1), F3(:,8), 'm——"'

F3(:,1), F3(:,9), 'm:")

hleg=legend('Rayleigh D=0.50 m', 'Forristall
'Forristall

'Rayleigh D=0.75 m', 'Forristall

'Forristall

'Rayleigh D=1.00 m', 'Forristall

'Forristall

'Location', 'northeast');
set (hleg, 'Fontsize',13)
set (h, 'Linewidth', 2.5)
u=[5 6 7 8 9 10 12];
set (gca, 'XTick',u, 'Fontsize',14);
axis ([5 12 0 501);
xlabel ('KC_{f r m s}', '"Fontsize',22);
ylabel ('E[T]', 'Fontsize',22);
title('\theta_{f r m s}=0.07", '"Fontsize',17)
hgexport (gcf, '../../Figures/CASE3/CASE3Tl.png', ...
hgexport ('factorystyle'), 'Format', 'png');

%$T all D and trms=0.15
hl=figure;
set (hl, 'Position', [5 5 700 500], 'Visible', 'off'")

h=semilogx(R1(:,1),R1(:,4),'c'",F1(:,1), F1(:,12)," "'c—
Fl(:,1), F1(:,13),'c:"
R2(:,1),R2(:,4),"'k",F2(:,1), F2(:,12), "k—
F2(:,1), F2(:,13), "k:'
R3(:,1),R3(:,4),'m",F3(:,1), F3(:,12), 'm——
F3(:,1), F3(:,13), 'm:"'
hleg=legend('Rayleigh D=0.50 m', 'Forristall
'Forristall
'Rayleigh D=0.75 m', 'Forristall
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'Forristall (3D) D=0.75 m', ...
'Rayleigh D=1.00 m', 'Forristall (2D) D=1.00 m', ...
'Forristall (3D) D=1.00 m',...

'Location', "'northeast');
set (hleg, 'Fontsize',13)
set (h, 'Linewidth', 2.5)
u=[5 6 7 8 9 10 12];
set (gca, 'XTick',u, 'Fontsize',14);
axis([5 12 0 601);
xlabel ('KC_{f r m s}', '"Fontsize',22);
ylabel ('E[T]', 'Fontsize',22);
title('\theta_{f r m s}=0.15", '"Fontsize',17)
hgexport (gcf, '../../Figures/CASE3/CASE3T2.png', ...
hgexport ('factorystyle'), 'Format', 'png');

end

Iso

function i=iso ()

$CASE 3: THIS FUNCTION USES THE RAYLEIGH AND THE FORRISTALL
$DISTRIBUTION TO FIND THE RATIO OF THE NONLINEAR AND LINEAR
$SOLUTION (R1) AND THE RATIO OF THE 3D AND 2D SOLUTION (R2),

$FOR THE TIME SCALE OF BACKFILLING AROUND VERTICAL SLENDER PILES.
%$R1 AND R2 ARE PLOTTED AS ISOCURVES VERSUS URSELLS NUMBER

(Ur) AND THE STEEPNESS (S1).

o0 o o

DESCRIPTION OF SYMBOLS
_R: The normalized linar wave amplitude.

2D: The normalized second-order wave crest for 2D waves.
_3D: The normalized second-order wave crest for 3D waves.

XX

o° o oo oo

X

syms x_R x_2D x_3D;

[n Hs h g s d50 arms c d]=Parameters();
s1=2;

s2=1.45;

v=s2+* (sl* (2-d)+1);

o=zeros (101,101);
h=zeros (101,101);

Ur=0.01;
for i=1:101

Ur=Ur+0.01;
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h(:,1)=Ur;

S1=0.0015;
for j=1:101

S1=51+0.0015;
o(j,:)=S1;

alpha2=0.3536+0.2892xS1+0.1060%Ur;
beta2=2-2.1597x51+0.0968*Ur"2;
alpha3=0.3536+0.2568%xS1+0.0800%Ur;
beta3=2-1.7912%51-0.5302+«Ur+0.284xUr"2;

xmin_R=sqgrt (log(n));
xmin_2D=sqgrt (8) ralpha2x (log(n)) "~ (1/ (beta2));
xmin_3D=sqrt (8) xalpha3* (log(n)) " (1/ (beta3));

Xx_R=(xmin_R:0.01:5);
x_2D=(xmin_2D:0.01:5);
x_3D=(xmin_3D:0.01:5);

$THE EXPECTED VALUE t
e_R=2+n%* (x_R) ."(1-v) .xexp (= ((x_R) ."2));

e_2D=nxbetal* (x_2D) ." (beta2-1-v) / ((sgrt (8) xalpha2) .~. ..
beta2) .*xexp (- ((x_2D) ./ (sqrt (8) .xalpha2)) ."beta?2);

e_3D=nxbetal3* (x_3D) ." (beta3-1-v)/ ((sqrt (8) xalpha3) .”. ..
beta3) .*xexp (- ((x_3D) ./ (sqrt (8) .*xalpha3)) ."beta3l);

E_R=trapz (x_R,e_R);
E_2D=trapz (x_2D,e_2D);
E_3D=trapz(x_3D,e_3D);

SR1
R1_2D=(E_2D)/ (E_R);
R1_3D=(E_3D)/ (E_R);

%R2
R2=E_3D/E_2D;

$data for plot
k1(j,1)=R1_2D;
k2 (j,1)=R1_3D;
k3 (3j,1)=R2;
end
end

$PLOT

$R1_2D
hl=figure;
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set (hl, 'Position', [5 5 700 500],'Visible','off")
cl=contour (h,o,kl, 'b', "LineWidth',2.5);

clabel (cl, 'Fontsize',18);

u=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 17];

set (gca, 'XTick',u, 'Fontsize',18);

u=[0 0.02 0.04 0.06 0.08 0.10 0.12 0.1471;

set (gca, 'YTick',u, 'Fontsize',18);

xlabel ('U_{R}"', "Fontsize',22);

ylabel ('S_{1}', '"Fontsize',22);

title('R_{1,2D}', 'Fontsize',622)

hgexport (gcf, '../../Figures/CASE3/CASE3_R1_2D.png', ...

hgexport ('factorystyle'), 'Format', 'png');

%$R1_3D
hl=figure;

set (hl, 'Position', [5 5 700 500],'Visible','off")
cl=contour (h,o,k2, 'b", "LinewWidth',2.5);

clabel (cl, 'Fontsize',18);

u=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 171;

set (gca, 'XTick',u, 'Fontsize',18);

u=[0 0.02 0.04 0.06 0.08 0.10 0.12 0.147;

set (gca, 'YTick',u, 'Fontsize',18);

xlabel ('U_{R}"', '"Fontsize',22);

ylabel ('S_{1}', '"Fontsize',22");

title('R_{1,3D}', 'Fontsize',622)

hgexport (gcf, '../../Figures/CASE3/CASE3_R1_3D.png',...

hgexport ('factorystyle'), 'Format', 'png');

%$R2

hl=figure;

set (hl, 'Position', [5 5 700 500],'Visible', 'off")

cl=contour (h,o0,k3, 'b', '"LinewWidth',2.5);

clabel (cl, 'Fontsize',18);

u=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 17];

set (gca, 'XTick',u, 'Fontsize',18);

u=[0 0.02 0.04 0.06 0.08 0.10 0.12 0.147];

set (gca, 'YTick',u, 'Fontsize',18);

xlabel ('"U_{R}'"', "Fontsize',22);

ylabel ('S_{1}"', 'Fontsize',22);

title('R_{2}', 'Fontsize',b22)

hgexport (gcf, '../../Figures/CASE3/CASE3_R2.png',...
hgexport ('factorystyle'), 'Format', 'png');

end
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B.4 - CASE 4

Rayleigh

function [R1 R2 R3]=Rayleigh (x)

$CASE 4: THIS FUNCTION USES THE RAYLEIGH DISTRIBUTION TO CALCULATE

$THE EXPECTED VALUE OF THE TIME SCALE FOR BACKFILLING AROUND A PILE
$SWHEN THE INITIAL HOLE WAS GENERATED BY WAVES. THE TIME SCALE WHEN

$THE INITIAL HOLE WAS GENERATED BY A CURRENT (CASE 3) IS OF INTEREST FOR
%$COMPARISON.

$The time 1is calculated for 3 different initial values of KC (KCirms),
%and plotted versus KCfrmsxtfrms”2 where tfrms is calculated for the
%given KCfrms.

DESCRIPTION OF SYMBOLS

the normalized linear wave amplitude

R1:D=0.50 m - The expected values of the time scale Tx
col 1-5) and T (min) (col 6-9).

X

2: D=0.75 m - The expected values of the time scale Tx
col 1-5) and T (min9) (col 6-9).
3 D=1.00 m - The expected values of the time scale Tx

o° o° o° o° o o° o o

—_ o~ 0~
Q
o
et

1-5) and T(min) (col 6-9).

%$Et: The expected value of t [-1.

%$ET: The expected value of Tx [-] (CASE 3)
$ET_1, ET_2 and ET_3: The expected value of Tx [-] (CASE 4)
syms X;

[n Hs h g s d50 arms c d]=Parameters();

KCirmsl=11;
KCirms2=20;
KCirms3=32;

s1=2;

s2=1.45;

rl=70;
v=s2%* (sl* (2-d)+1);

for 3=1:3
if J==
D=0.5;
elseif j==
D=0.75;
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i=0;
for KCrms=2:0.1:13
i=i+1;

kp=1/h*asinh (2xpi*xarms/ (D+xKCrms) ) ;

wp=sqgrt (gxkp*tanh (kpxh));

Arms=arms/ (sinh (kp*h));

Urms=wp*Arms;

trms=0.5*c* (wpxd50/12) *d*«Urms” (2-d) / (g* (s—-1) »d50) ;

%The expected value of Tx

xmin=sqgrt (log(n));

x=(xmin:0.01:5);

Et=trapz (x,2*n%* (x) ." (1-Vv) .xexp (= (x) ."2));

$CASE 3
ET=Et*trms” (-sl*s2) *KCrms”" (-s2) ;

$CASE 4

ET_1=Et«* (r1l*xKCrms.* (trms) .” (sl) /KCirmsl) .” (-s2);
ET_2=Et* (r1lxKCrms.* (trms).” (sl) /KCirms2) ." (-s2);
ET_3=Et«* (rl1*xKCrms.* (trms) .” (sl) /KCirms3) .” (-s2);

$RESULTING DATA

if D==0.5
ST *
R1(i,1)=KCrms*trms”2;
R1(i,2)=ET_1;
R1(i,3)=ET_2;
R1(i,4)=ET_3;
R1(i,5)=ET;
$T
R1
R1
R1
R1

i,6)=ET_1%D"2/sqrt (g* (s—-1) *xd50"3) /60;
i,7)=ET_2xD"2/sqrt (g* (s-1) xd50"3) /60;
i,8)=ET_3%D"2/sqrt (g* (s—-1) *xd50"3) /60;
i,9)=ET*D"2/sqrt (g* (s—-1) xd50"3) /60;

elseif D==0.75
ST«
R2(i,1)=KCrms*trms"2;
R2(1,2)=ET_1;
R2(1,3)=ET_2;
R2(1i,4)=ET_3;
R2 (1, 5)=ET;
$T
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R2 (i, 6)=ET_1+D"2/sqrt (g (s—1) xd5073) /60;
R2 (i, 7)=ET_2+D"2/sqrt (g (s—1) xd50"3) /60;
R2 (i, 8)=ET_3+D"2/sqrt (g (s—1) xd5073) /60;
R2 (i, 9)=ET*D"2/sqrt (g* (s-1)*d50"3) /60;

else
ST *
R3(i,1)=KCrms*trms”2;
R3(1,2)=ET_1;
R3(1i,3)=ET_2;
R3(i,4)=ET_3;
R3 (i, 5)=ET;
$T
R3(i,6)=ET_1+D"2/sqgrt (g (s—1) xd50"3) /60;
R3(i,7)=ET_2+D"2/sqrt (g (s—1) *d50"3) /60;
R3(i,8)=ET_3*D"2/sqgrt (g (s—1) *d50"3) /60;
R3(1,9)=ET+«D"2/sqrt (g% (s-1)*d50"3) /60;
end
end
end
end

Forristall

function [F1l F2 F3]=Forristall (x)

$CASE 4: THIS FUNCTION USES THE FORRISTALL DISTRIBUTION TO CALCULATE
$THE EXPECTED VALUE OF THE TIME SCALE FOR BACKFILLING AROUND A PILE
$SWHEN THE INITIAL HOLE WAS GENERATED BY WAVES. THE TIME SCALE WHEN
$THE INITIAL HOLE WAS GENERATED BY A CURRENT (CASE 3) IS OF INTEREST
$FOR COMPARISON.

$The time 1is calculated for 3 different initial values of KC (KCirms),
%and plotted versus KCfrmsxtfrms”2 where tfrms is calculated for the
%given KCfrms.

DESCRIPTION OF SYMBOLS
the normalized nonlinear wave amplitude

D=0.50 m - The expected values of the time scale Tx
ol 1-9) and T (min) (col 10-17).
D=0.75 m - The expected values of the time scale Tx
col 1-9) and T (min) (col 10-17).
D=1.00 m - The expected values of the time scale Tx
col 1-9) and T in minutes (col 10-17).

b
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w
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SET_2D and ET_3D: The expected value of Tx [-] (CASE 3)
$ET_1_2D, ET_1 3D - ET 2 2D, ET 2 3D - ET_3_2D, ET 3_3D:
%The expected value of Tx [-] (CASE 4) for each case of
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$different KCirms

syms X;

[n Hs h g s d50 arms c d]=Parameters();

KCirmsl=
KCirms2=
KCirms3=
sl=2;

s2=1.45;
rl=70;

v=s2%* (sl

for j=1:
if

else
else

end

for

11;
20;
32;

*(2-d)+1);

3

D=0.5;
if ==
D=0.75;

D=1;

i=0;
KCrms=2:0.1:13
i=i+1;

kp=1/hxasinh (2+pixarms/ (DxKCrms) ) ;

wp=sqgrt (gxkp*tanh (kpxh));

Tp=2+pi/wp;

Arms=arms/ (sinh (kp*h));

Urms=wp*Arms;

trms=0.5*c* (wpxd50/12) *d+«Urms” (2-d) / (g* (s-1) »d50) ;

S1=2xpi*Hs/ (g*xTp"2);
Ur=Hs/ (kp"2xh"3);

$parameters for 2D model
alpha2=0.3536+0.2892%51+0.1060xUr;
beta2=2-2.1597%S1+0.0968%Ur"2;
xmin_2D=sqgrt (8) ralpha2x* (log(n)) " (1/ (beta2));
x2D=[xmin_2D:0.01:57;

$parameters for 3D model
alpha3=0.3536+0.2568%S1+0.0800%Ur;
beta3=2-1.7912%S1-0.5302+xUr+0.284*Ur"2;
xmin_3D=sqgrt (8) ralpha3x (log(n)) " (1/ (beta3));
x3D=[xmin_3D:0.01:57;

XLVI



$THE EXPECTED VALUE OF THE TIME SCALE T=*
Et_2D=trapz (x2D, n*beta2* (x2D) . "
.xexp (- ((x2D)
Et_3D=trapz (x3D,nxbetal3* (x3D) ."
.xexp (= ((x3D)

alpha2)”

alpha3)”

$CASE 3

(beta2))

(beta3))

./ (sgrt (8) xralpha2)) .”
(beta3-1-v)/ ((sqrt (8) %
./ (sgrt (8) xralpha3)) .”

ET_2D=Et_2D*trms” (-s2xsl) *xKCrms”" (-s2) ;
ET_3D=Et_3Dxtrms” (-s2xsl) *KCrms”" (-s2) ;

%CASE 4

ET_2D_1=Et_2D* (rl1+«KCrms*trms”2/KCirmsl) " (-s2);
ET_3D_1=Et_3D* (rl*KCrms*trms”2/KCirmsl) " (—

ET_2D_2=Et_2D* (rl1+«KCrms*trms”2/KCirms2) " (-s2);
ET_3D_2=Et_3D* (rl*KCrms*trms”2/KCirms2) " (-

ET_2D_3=Et_2D* (rl1+«KCrms*trms”2/KCirms3) " (-s2);
ET_3D_3=Et_3D* (rl*KCrms*trms”2/KCirms3) " (—

$RESULTING DATA

if

D==0.5

ST

Fl1(i,1)=KCrms*trms"2;

Fl

i,2)=ET_2D_1;
i,3)=ET_3D_1;
i,4)=ET_2D_2;
i,5)=ET_3D_2;
i,6)=ET_2D_3;
i,7)=ET_3D_3;

Fl
Fl
3T

(

(

(
F1(
1
(

(

(

elseif D==

ST«

i, 10
i, 11
i, 12
i,13
i, 14
i, 15
i, 16
i, 17

i,8)=ET_2D;
i,9)=ET_3D;

0.75

=ET_2D_1%xD"2/sqrt
ET_3D_1%D"2/sqgrt
ET_2D_2%D"2/sqgrt
ET_3D_2%D"2/sqrt
ET_2D_3%D"2/sqgrt
ET_3D_3xD"2/sqgrt
ET_2D*D"2/sqrt (g (s—1) *xd50"3) /60;
=ET_3D*D"2/sqrt (g (s-1) *d5073) /60;

g*
gx
g*
g*
gx
g
(

(

*

(gx(
(g*(
(g=(
(gx(
(g= (
(g (s

F2(i,1)=KCrms*trms"2;
F2(i,2)=ET_2D_1;
F2(i,3)=ET_3D_1;

XLVII

s—-1) )
s-1) )
s—1) ) /60;
s-1) )
s—1) )

(beta2-1-v)/ ((sqgrt (8)

(beta2)));

(beta3)));

/60;
/60;

/60;
/60;

1) xd5073) /60;



F2
F2
F2
F2
F2

i,4)=ET_2D_2;
i,5)=ET_3D_2;
i,6)=ET_2D_3;
i,7)=ET_3D_3;
i,8)=ET_2D;

F2(i,9)=ET_3D;

$T

2(i,10)=ET_2D_1+D"2/sqrt (g« (s—1) «d50~3) /60;
2(i,11)=ET_3D_1+D"2/sqgrt (g* (s—1)*d50"3) /60;
2(i,12)=ET_2D_2+D"2/sqrt (g (s-1)*d5073) /60;
2(i,13)=ET_3D_2+D"2/sqrt (g+ (s-1) +d5073) /60;
2(i,14)=ET_2D_3*D"2/sqrt (g* (s—1)*d50"3) /60;
2(i,15)=ET_3D_3*D"2/sqrt (g* (s—1) «d50°3) /60;
2(i,16)=ET_2D*D"2/sqgrt (g (s—1) xd50"3) /60;
2(i,17)=ET_3D*D"2/sqrt (g (s—1) *d50"3) /60;

else

ST *
3(i,1)=KCrmsxtrms”"2;
3(i,2)=ET_2D_1;
3(i,3)=ET_3D_1;

F3(i,4)=ET_2D_2;
3(i,5)=ET_3D_2;
3(i,6)=ET_2D_3;
3(i,7)=ET_3D_3;
3(i,8)=ET_2D;
3(i,9)=ET_3D;

$T
3(1i,10)=ET_2D_1xD"2/sqgrt (g (s-1)+«d50"3)/60;
3(i,11)=ET_3D_1+D"2/sqrt (g* (s—1)*d50"3)/60;
3(i,12)=ET_2D_2+D"2/sqrt (g* (s-1)*d50"3) /60;
3(i,13)=ET_3D_2+D"2/sqrt (g (s-1) *d5073) /60;
3(i,14)=ET_2D_3*D"2/sqrt (g* (s—1)*d50°3) /60;
3(i,15)=ET_3D_3%D"2/sqrt (g* (s-1)*d50"3) /60;
3(i,16)=ET_2D+D*2/sqrt (g (s-1) *d5073) /60;
3(i,17)=ET_3D*D"2/sqgrt (g (s—1) *xd50"3) /60;
end
end
end
end
Plot

function P=Plot (x)

$CASE 4: THIS FUNCTION PLOTS THE EXPECTED VALUE OF THE TIME SCALE FOR
$BACKFILLING AROUND A PILE WHEN THE INITIAL HOLE WAS GENERATED BY WAVES.
$THE TIME SCALE WHEN
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%$Retrieving data from the
[R1 R2 R3]=Rayleigh{();

Rayleigh distibution

% Rl: D=0.50 m - Data for E[Tx] (Col 1-5) and E[T] (Col
% R2: D=0.75 m - Data for E[Tx] (Col 1-5) and E[T] (Col
% R3: D=1.00 m - Data for E[T*] (Col 1-5) and E[T] (Col
%$Retrieving data from the Forristall distribution
[F1 F2 F3]=Forristall();
% Fl: D=0.50 m - Data for E[Tx] (Col 1-9) and E[T] (Col
% F2: D=0.75 m - Data for E[Tx] (Col 1-9) and E[T] (Col
$ F3: D=1.00 m - Data for E[T*] (Col 1-9) and E[T] (Col
$T+ for D=1 m; All cases of KCi
hl=figure;
set (hl, 'Position', [5 5 700 500],'Visible' 'off'")
h=semilogx (R3(:,1),R3(:,2),'c'",F3(:,1),F3(:,2),"'c—",
F3(: ),F3( ,3),'c:',
3(:,1),R3(:,3),'b",F3(: ,1),F3( ,4), "b—",
F3(:,1),F3(:,5),"'b:",
3(:,1),R3(:,4), ,F3(:,1),F3(:,6), "k—",
F3(:,1),F3(:,7),"'k:",
3(:,1),R3(:,5), 'm",F3(:,1),F3(:,8), 'm—",
F3(:,1),F3(:,9),'m:");

hleg=legend('Rayleigh
'Forristall
'Forristall
'Rayleigh
'Forristall
'Forristall
'Rayleigh
'Forristall
'Forristall
'Rayleigh
'Forristall
'Forristall
set (h, 'LineWidth', 2.5)
set (hleg, 'Fontsize',11)
axis([0.07 0.55 0 2.2 1);
u = [0.07 0.1 0.2 0.3 0.4
set (gca, 'XTick',u, 'Fontsi
xlabel (' (\theta”2KC)_ {f r
ylabel ('E[T*]",

title('D=1 m', 'Fontsize',
hgexport (gcf,'../../Figur
hgexport ('factorystyl

$Tx for all D and all KCi

(2D)
(3D)

(2D)
(3D)

(2D)
(3D)

'Fontsize',

KC_{i rm s}=11",
KC_{i r m s}=11",
KC_{i r m s}=11",

KC_{i r m s}=20",
KC_{i r m s}=20",
KC_{i r m s}=20",

KC_{i r m s}=32",
KC_{i r m s}=32",
KC_{i r m s}=32",

KC_{i r m s}=\infty"

0.55]1;
14);
'Fontsize',

ze',
m s}t',
22)
17)
es/CASE4/CASE41.png', ...
e'),'Format', 'png')

22)

(except current)
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KC_{i r m s}=\infty"', ...
KC_{i r m s}=\infty');

10-17)
10-17)
10-17)



hl=figure;

set (hl,

h=semilogx (F1(:,1),F1(:
,1),F1(:,4
;1) FL (s,
s 1), F2(:,
y1),F2(:,
1), F2(:,
1), F3(:,
1), F3(:,
,1),F3(:,6

hleg=legend(h([1 2 7 8

set (h,

'Position’',

Fl(:
FL(:
F2(:
F2(:
F2(:
F3(:
F3(:
F3(:
(

'LineWidth',

[5 5 700 500], 'Visible','o
,2),'c—",F1(:,1),F1
),'c——',F1(:,1),F
),'c—',F1(:,1),F
), "k—",F2(:,1),F
), 'k—"',F2(:,1),F
)
)
)
)

2.5)

set (hleg, 'Fontsize',13)

axis ([0.07 0.55 0.01 0.35]);
u = [0.07 0.2 0.3 0.4 0.55];
set (gca, 'XTick',u, 'Fontsize',14);
xlabel (' (\theta”2KC)_{f r m s}', 'Fontsize',b 22)

ylabel ('"E[Tx]"', "Fontsize',22)

, 'k—",F2(:,1),F
,'m—"',F3(:,1),F
, 'm—"',F3(:,1),F
'm-——"',F3(:,1),F3
13 14]), 'Forristall

'Forristall
'Forristall
'Forristall
'Forristall
'Forristall

(
1(
1
2
2(
2
3¢
3¢

(
(
(
(
(
(
(

.7
.7

.7

hgexport (gcf, '../../Figures/CASE4/CASE42.png', ...
hgexport ('factorystyle'), "Format', 'png')

%T for D=0.5m
hl=figure;

set (hl,

h=semilogx(R1(:,1),R1(:,6),'c',F1(:,1),F1

'Position’',

R1(:,1),R1(:,7),'D",F1(:,

R1(:,1),R1(:,8),'k",F1(:,

[5 5 700 500],'Visible', 'off")

hleg=legend('Rayleigh
'Forristall (2D)
'Forristall (3D)
'Rayleigh
'Forristall (2D)
'Forristall (3D)
'Rayleigh
'Forristall (2D)
'Forristall (3D)
set (hleg, 'Fontsize', 13)

set (h, 'Linewidth', 2
axis ([0.07 0.55 0 23]);

c:',

'c:',

'c:',

k',

k',

k',

'm:"',

'm:"',

‘m:");
=0.50
=0.50
=0.75
=0.75
=1.00
=1.00
c——",.
c:',
'b77',
', .
Te——t,
ki) ;

(:,10),"
Fl1(:,1),F1(:,11),
1),F1(:,12),
Fl(:,1),F1¢(:,13),
1),F1(:,14),
Fl1(:,1),F1(:,15),
KC_{i rm s}=11",
KC_{i r m s}=11",
KC_{i r m s}=11",.
KC_{i r m s}=20",
KC_{i r m s}=20",
KC_{i r m s}=20",
KC_{i r m s}=32",
KC_{i r m s}=32",..
KC_{i r m s}=32");
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u = [0.07 0.1 0.2 0.3 0.4 0.55];

set (gca, 'XTick',u, 'Fontsize',14);

xlabel (' (\theta”2KC)_{f r m s}', 'Fontsize',22)

ylabel ('"E[T] "', '"Fontsize',22)

title('D=0.5 m', '"Fontsize',17)

hgexport (gcf,'../../Figures/CASE4/CASE4AT]1.png', ...
hgexport ('factorystyle'), 'Format', 'png')

$T for D=1 m
hl=figure;
set (hl, 'Position', [5 5 700 500], 'Visible', 'off")

h=semilogx (R2(:,1),R2(:,6),'c'",F2(:,1),F2(:,10),"'"c—", ...
F2(:,1),F2(:,11),"'c:", ...
R2(:,1),R2(:,7),'D",F2(:,1),F2(:,12), "b——", ...
F2(:,1),F2(:,13),'b:", ...
R2(:,1),R2(:,8),'k",F2(:,1),F2(:,14), "k——", ...
F2(:,1),F2(:,15),"'k:");
hleg=legend('Rayleigh KC_{1 m s}=11",

)

)

)

)

)

r
'Forristall (2D) KC_{i r m
'Forristall (3D) KC_{i r m
'Rayleigh KC_{i r m s}=20",...
'Forristall (2D) KC_{i r m
'Forristall (3D) KC_{i r m
'Rayleigh KC_{i r
'Forristall (2D) KC_{i r m
'Forristall (3D) KC_{i r m
set (hleg, '"Fontsize',13)

set (h, 'Linewidth', 2.5)
axis ([0.07 0.55 0 53 1);
u= [0.07 0.1 0.2 0.3 0.4 0.55];
set (gca, 'XTick',u, 'Fontsize',14);
xlabel (' (\theta”2KC)_{f r m s}', 'Fontsize', 22)
ylabel ('"E[T] "', '"Fontsize',22)
title('D=1 m', 'Fontsize',17)
hgexport (gcf, '../../Figures/CASE4/CASE4AT3.png', ...
hgexport ('factorystyle'), 'Format', 'png')
end

B.5 -CASES5

wcl

function xl=wcl ()
$CASE 5: THIS FUNCTION FINDS THE LOWER VALUE OF wc FOR EACH
$VALUE OF Ucwrms.

LI



%$The highest value of wcmin is 1 and will appear when
$Ucwrms=0.7. When Ucwrms decreases, the denominator can
%be higher before "ledd" equals 0.7. This means that
$wcmin will decrease for decreases value of Ucrwms.

1=0;
for Ucwrms=0:0.01:0.7
j=0;
1=1+1;
for x=1:-0.001:0
ledd=Ucwrms./ (x.* (1-Ucwrms) +Ucwrms) ;
if ledd>=0.7

Jj=j+1;
x=x-0.001;
if j==1;
x=x+0.002;
x1(1,1)=x;
end
end
end
end
end
Rayleigh

function [R R1 R2 R3]=Rayleigh (x)

$CASE 5: THIS FUNCTION USES THE RAYLEIGH DISTRIBUTION TO CALCULATE
$THE EXPECTED VALUE OF THE TIME SCALE FOR BACKFILLING IN WAVES +
$CURRENT AROUND A SLENDER VERTICAL PILE WHEN THE INITAL HOLE WAS
$GENERATED BY A CURRENT. THE TIME SCALE IS CALCULATED FOR DIFFERENT
$VALUES OF THE CURRENT WAVE VELOCITY (Ucwrms) .

$When the time scale exceeds the value of waves alone (CASE 3),
%the time scale takes this value. The time scale is shown for 3
%$different values of (KCrms, trms). Tx is independent of D for
%$Rayleigh because trms is given. %Since trms is given, the grain
%$size (z0,d50) will change for each value of KCrms. To find T when
%$knowing T*, z0 must be calulated.

DESCRIPTION OF SYMBOLS

the normalized linear wave amplitude

The expected value of the time scale Tx is
D=0.50 m - The expeced value of the time scale T (min).
D=0.75 m - The expeced value of the time scale T (min).
D=1.00 m - The expeced value of the time scale T (min).

X

]
[NS]

o0 o0 o0 o0 oo oP
)
~

ps)
w

LII



%Et: The expected value of t [-].

$ET1: The expected value of Tx [-] (CASE 3).
$ET2: The expected value of Tx [-] (CASE 5).
syms Xx;

[n Hs h g s d50 arms c¢ d]=Parameters();
[x1]=wcl();

KCrmsl=4;
KCrms2=7;
KCrms3=4;

trms1=0.07;
trms2=0.07;
trms3=0.09;

$CASE 3

sl=2;

s2=1.45;
v=82+* (sl* (2-d)+1);

xmin=sqrt (log(n));
x=(xmin:0.01:5);
Et=trapz (x,2+n% (x) .~ (1-v) .xexp (- (x) ."2) ) ;

ET11=Et*trmsl” (-sl*s2)*«KCrmsl” (-s2);
ET12=Et*trms2” (-sl*s2) *KCrms2" (-s2) ;
ET13=Et*trms3” (-sl*xs2)«KCrms3”" (-s2);

$CASE 5
sl=2;
for 1=1:3
if 1==
D=0.5;
elseif 1==
D=0.75;
else
D=1;
end
for i=1:3
if i==1;

KCrms=KCrms1;

trms=trmsl;
elseif i==

KCrms=KCrms2;
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trms=trms2;
else

KCrms=KCrms3;

trms=trms3;
end

kp=1/hxasinh (2+pixarms/ (D*KCrms) ) ;
wr=sgrt (gxkp*tanh (kpxh));
Urms=wrxarms/ (sinh (kpxh));

J=0;
for Ucwrms=0:0.01:0.7
j=3+1;

Uc=Ucwrms*Urms/ (1-Ucwrms) ;
wp=Uc*kp+sqgrt (gxkp*tanh (kpxh));

z0_1=(24/ (wp”~d) xtrmsl*gx (s—1)/ (c*Urms” (2-d)) )"~ (1/(d-1));
z0_2=(24/ (wp”~d) xtrms2+g* (s—1) / (c*Urms” (2-d) ) )~ (1/(d-1));
z0_3=(24/ (wp”~d) *trms3*gx (s—1) / (c*Urms” (2-d) ) )~ (1/(d-1));

x1ln=sqgrt (log (n)+(x1(3))"2);
=[x1In:0.001:5];

pd=2+n.xx.*xexp ((x1(J))."2-(x)."2);
ET=trapz(x,pd.*(1.9-(0.65./ (nthroot ((trms.” (sl).
KCrms.*x.” (sl (2-d)+1)-0.01) . (42) 25))+2) .x. ..
(Ucwrms./ (x.* (1-Ucwrms) +Ucwrms)-0.7)));

if i==1;

ET2 (3, 1) =ET;
elseif i==2;
ET2(3,2)=ET;
else
ET2 (3, 3)=ET;
end
end
end

$COMPARING VALUES
for i=1:71 %if the value from CASE 5 exceeds the value from
$CASE 3, T* takes the value of CASE 3.

if ET2(i,1)>ET11;
ET_1(i,1)=ET11;
else
ET_1(i,1)=ET2(i,1);
end
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if ET2(i,2)>ET12;
ET_2(i,1)=ET12;
else
ET_2(i,1)=ET2(1i,2);
end

if ET2(i,3)>ET13;
ET_3(i,1)=ET13;
else
ET_3(i,1)=ET2(1i,3);
end
end
$SRESULTING DATA OF T=x
(:,1)=(0:0.01:0.7);
(:,2)=ET_ 1
(:,3)=ET_
(:,4)=ET 3,

SR R V)

’

$RESULTING DATA OF T

if D==0.5
R1(:,1)=(0:0.01:0.7);
R1(:,2)=ET_1%0.5"2/ (sqrt (g*(s—1)+ (12xz0_1)"3))/60;
R1(:,3)=ET_2x0.5"2/ (sqgrt (g* (s—1)* (12%z0_ 2)A3) /60;
R1(:,4)=ET_3%x0.5"2/ (sgrt (gx (s—1)*(12%xz0_3)"3))/60;
elseif D==0.75
R2(:,1)=(0:0.01:0.7);
R2(:,2)=ET_1%x0.75"2/ (sqgrt (g* (s=1) % (12xz0_1) ))/60;
R2(:,3)=ET_2%0.75"2/ (sqrt (g* (s—1) x (12x20_2)"~3)) /60;
R2(:,4)=ET_3%0.75"2/ (sgrt (gx (s—1)* (12xz0_3)"3)) /60;
else
R3(:,1)=(0:0.01:0.7);
R3(:,2)=ET_1%x1"2/ (sqrt (g*(s—1)*(12%z0_1)"3))/60;
R3(:,3)=ET_2%x1"2/ (sqrt (g* (s—1) x (12%z0_2)"3)) /60;
R3(:,4)=ET_3%1"2/ (sqrt (gx (s—1)* (12%z0_3)"3))/60;
end
end
end
Forristall

function [F1l F2 F3]=Forristall (x)

$CASE 5: THIS FUNCTION USES THE FORRISTALL DISTRIBUTION TO CALCULATE
$THE EXPECTED VALUE OF THE TIME SCALE FOR BACKFILLING IN WAVES +
$CURRENT AROUND A SLENDER VERTICAL PILE WHEN THE INITAL HOLE WAS
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%$GENERATED BY A CURRENT. THE TIME SCALE IS CALCULATED FOR DIFFERENT
%$VALUES OF THE CURRENT WAVE VELOCITY (Ucwrms) .

%$When the time scale exceeds the value of waves alone (CASE 3),
%the time scale takes this value. The time scale is shown for 3
%$different values of (KCrms, trms). Since trms is given, the grain
%$size (z0,d50) will change for each value of KCrms. To find T when
$knowing T*, z0 must be calulated.

DESCRIPTION OF SYMBOLS
The normalized second-order wave crest.

D=0.50 m - The expected values of the time scale Tx
ol 1-7) and T(min) (col 8-13).
D=0.75 m - The expected value of the time scale Tx
col 1-7) and T in minutes (col 8-13).
D=1.00 m - The expected value of the time scale Tx
col 1-7) and T (min) (col 8-13).
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%Et: The expected value of t [-1.

SET1l: The expected value of Tx [-] (CASE 3)
$ET2: The expected value of Tx [-] (CASE 5)

syms X;

[n Hs h g s d50 arms c d]=Parameters();
[x1]=wcl();

KCrmsl=4;
KCrms2=7;
KCrms3=4;

trmsl1=0.07;
trms2=0.07;
trms3=0.09;

for 1=1:3
if 1==
D=0.5;
elseif 1==
D=0.75;
else
D=1;
end

for i=1:3
if i==1;
KCrms=KCrmsl;
trms=trmsl;
elseif i==2;
KCrms=KCrms2;
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trms=trms2;
else

KCrms=KCrms3;

trms=trms3;
end

kp=1/hxasinh (2+pixarms/ (D*KCrms) ) ;
wr=sgrt (gxkp*tanh (kpxh));
Urms=wrxarms/ (sinh (kpxh));

J=0;
for Ucwrms=0:0.01:0.7
j=3+1;

$CASE 3
S1=2*pi*Hs/ (g (2*«pi/wr)"2);
Ur=Hs/ (kp"2+h"3);

$parameters 2D model
alpha2=0.3536+0.2892%xS1+0.1060%Ur;
beta2=2-2.1597x351+0.0968%Ur"2;
xmin_2D=sqgrt (8) xalpha2x* (log(n)) "~ (1/ (beta2));
x2D=(xmin_2D:0.001:5);

$parameters 3D model
alpha3=0.3536+0.2568+xS1+0.0800xUr;
beta3=2-1.7912xS1-0.5302+Ur+0.284xUr"2;
xmin_3D=sqgrt (8) xalpha3* (log(n)) "~ (1/ (beta3));
x3D=(xmin_3D:0.001:5);

$CASE 3

sl=2;

s2=1.45;
v=82%* (sl* (2-d)+1);

Etl_2D=trapz (x2D,nxbetal2«* (x2D) .” (beta2-1-v) /...

((sgrt (8) ralpha2) " (beta2)) .xexp (= ((x2D) ./...
(sgrt (8) xalpha2)) .” (beta2)));

Etl_3D=trapz (x3D,nxbetal3* (x3D) .” (betal3-1-v) /...

((sgrt (8) xralpha3) " (beta3)) .*exp (- ((x3D)./...
(sgrt (8) xalpha3)) .” (beta3)));

ET1_2D=Etl_2Dxtrms” (-sl*s2) *KCrms" (-s2) ;
ET1_3D=Etl_3Dxtrms” (-sl*s2) *KCrms" (-s2) ;

if i==

ET11_2D (1, j)=ET1_2D;
ET11_3D(1, j)=ET1_3D;
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else
E
E

else
E
E

end

%CAS
sl=2
Uc=U
wp=U
Tp=2

if i==

T12_2D (1, j)=ET1_2D;
T12_3D(1, j)=ET1_3D;
T13_2D (1, j)=ET1_2D;
T13_3D(1, j)=ET1_3D;

E 5

2

cwrmsxUrms/ (1-Ucwrms) ;
cxkpt+sqgrt (gxkpxtanh (kpxh));
*pil/wp;

z0_1=(24/ (wp~d) xtrmsl*gx (s—1) / (c*Urms” (2-d)) )"~ (1/(d-1));

z0_2

=(24/ (wp™d) xtrms2*gx* (s—1) / (c*Urms” (2-d) ) )~ (1/

(

d-1));

z0_3=(24/ (wp”~d) xtrms3*gx (s—1) / (c*Urms” (2-d) ) )~ (1/(d-1));

S1=2
Ur=H

$par
alph
beta
xmin
x2D=

$par
alph
beta
xmin
x3D=

for

*pi*xHs/ (g* (2xpi/wp) *2);
s/ (kp”2+h”3);

ameters 2D model
a2=0.3536+0.2892%xS1+0.1060xUr;
2=2-2.1597%314+0.0968+Ur"2;

_2D=sqgrt (8) xalpha2* (log(n) )~ (1/ (beta2));

(xmin_2D:0.001:5);

ameters 3D model
a3=0.3536+0.2568%xS1+0.0800xUr;
3=2-1.7912%51-0.5302xUr+0.284xUr"2;

_3D=sqgrt (8) xalpha3* (log(n)) " (1/ (beta3l));

(xmin_3D:0.001:5);

y=1:2

if y==
alpha=alphaZ2;
beta=beta2;

else
alpha=alpha3;
beta=beta3;

end

x1n=sqgrt (8) xalphax ( (x1(j)/ (sqrt (8) ralpha)) ...
~ (beta)+log(n))~(1l/beta);

x=(x1n:0.001:5);

pd=(nx (1/ (sgrt (8) ralpha)) " (beta) *beta.»x.". ..

(beta-1) .*exp ((x1(j)/ (sqgrt (8) xalpha)) " (beta)) ...

.xexp (- (x./ (sgrt (8) xalpha)) . beta)) ;
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ET2=trapz (x,pd.* (1.9-(0.65./ (nthroot ( (trms."...
(sl) .xKCrms.*x." (sl*(2-d)+1)-0.01) .7(42),25))+2).
((Ucwrms./ (x.* (1-Ucwrms) +Ucwrms) )—-0.7)));

$Writes data for 2D
if y==1;
if i==
ET21_2D (1, j)=ET2;
elseif i==
ET22_2D (1, j)=ET2;
else
ET23_2D (1, j)=ET2;
end

%$Writes data for 3D
else
if i==
ET21_3D (1, j)=ET2;
elseif i==
ET22_3D (1, j)=ET2;
else
ET23_3D (1, j)=ET2;
end
end
end
end
end

%$LOOP COMPARING BACKFILLING WAVES/WAVES+CURRENT
for j=1:71
if ET21_2D(1,3J)>ET11_2D(1,3) S%Sexample 1
ET_2D_1(1,3)=ET11_2D(1,3);
else
ET_2D_1(1,3)=ET21_2D(1,3);
end

if ET21_3D(1, 3)>ET11_3D (1, 3j);
ET_3D_1(1,3)=ET11_3D(1,73);
else
ET_3D_1(1,3)=ET21_3D(1,73);
end

if ET22_2D (1, 3j)>ET12_2D(1,3j) S%Sexample 2
ET_2D_2(1,3)=ET12_2D(1,73);

else
ET_2D_2(1,3)=ET22_2D(1,3);

end

if ET22_3D(1,3j)>ET12_3D(1,3);
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ET_3D_2(1,3)=ET12_3D(1,73);
else

ET_3D_2 (1, j)=ET22_3D (1, 3);
end

if ET23_2D(1,3)>ET13_2D (1, )

ET_2D_3(1,3)=ET13_2D(1,3);
else

ET_2D_3 (1, j)=ET23_2D (1, 3);
end

if ET23_3D(1,3)>ET13_3D(1,3);

end

ET_3D_3(1,3)=ET13_3D(1,73);
else

ET_3D_3 (1, Jj)=ET23_3D (1, 3);
end

$RESULTING DATA

if D==0.5
F1(:,1)=(0:0.01:0.7);
Fl(.,2)=ET_2D_1;
Fl(:,3)=ET_3D_1;
Fl(:,4)=ET_2D_2;
F1(:,5)=ET_3D_2;
Fl(:,6)=ET_2D_3;
F1l(:,7)=ET_3D_3;
F1(:,8)=ET_2D_1%0.5"2/ (sqrt (g*(s—1)*(12xz0_1)"3))/60;
F1l(:,9)=ET_3D_1%0.5"2/ (sqrt (g* (s—1)*(12*z0_1)"3))/60;
F1(:,10)=ET_2D_2%0.5"2/ (sqgrt (g (s=1) % (12xz0_2)"3))/60;
Fl(:,11)=ET_3D_2%0.5"2/ (sqrt (g~ ( )*x (12%20_2)"3))/60;
F1(:,12)=ET_2D_3%0.5%2/ (sqrt (g (s—1)* (12xz0_3)"3))/60;
F1(:,13)=ET_3D_3%0.5"2/ (sqgrt (gx* ( yx (12%z0_3)73))/60;
elseif D==0.75
F2(:,1)=(0:0.01:0.7);
F2(:,2)=ET_2D_1;
F2(:,3)=ET_3D_1;
F2(:,4)=ET_2D_2;
F2(:,5)=ET_3D_2;
F2(:,6)=ET_2D_3;
F2(:,7)=ET_3D_3;
F2(:,8)=ET_2D_1%0.75"2/ (sqrt (g (s—1) * (12%z0_1)"3)) /60;
F2(:,9)=ET_3D_1%0.75"2/ (sqrt (gx (s—1) * (12xz0_1) ))/60;
F2(:,10)=ET_2D_2%0.75"2/ (sqrt (g* (s=1) * (12xz0_ 2)A ))/60;
F2(:,11)=ET_3D_2%0.75"2/ (sqrt (g* (s—1) x (12%z0_2) ~3)) /60;
F2(:,12)=ET_2D_3%0.75"2/ (sqrt (g* (s—1) » (12%*z0_3) *3)) /60;
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F2(:,13)=ET_3D_3%0.75"2/ (sqrt (g* (s—1) » (12%*z0_3)"*3))/60;
else
F3(:,1)=(0:0.01:0.7);
F3(:,2)=ET_2D_1;
F3(:,3)=ET_3D_1;
F3(:,4)=ET_2D_2;
F3(:,5)=ET_3D_2;
F3(:, 6)=ET_2D_3;
F3(:,7)=ET_3D_3;
F3(:,8)=ET_2D_1%1"2/ (sqrt (g* (s-1)* (12%z0_1)"3))/60;
F3(:,9)=ET_3D_1%1"2/ (sgrt (g (s—1)*(12xz0_1)"3))/60;
F3(:,10)=ET_2D_2%1"2/ (sqgrt (g* (s-1)* (12%z0_2)"3))/60;
F3(:,11)=ET_3D_2%1"2/ (sqrt (g* (s-1)* (12%z0_2)"3))/60;
F3(:,12)=ET_2D_3%1"2/ (sqrt (g* (s-1)* (12xz0_3)"3))/60;
F3(:,13)=ET_3D_3%1"2/ (sqrt (g (s—1)* (12*z0_3)"3))/60;
end
end
end
Plot

function P=Plot (x)
$CASE 5:

THIS FUNCTION USES PLOTS THE TIME SCALE FOR BACKFILLING IN

SWAVES + CURRENT AROUND A SLENDER VERTICAL PILE WHEN THE INITAL HOLE

$WAS GENERATED BY A CURRENT,

%$Retrieving data from the

Rayleigh distibution

[R R1 R2 R3]=Rayleigh();

$ R: Data for of E[Tx*].

% Rl: D=0.50 m - Data for E[T].

% R2: D=0.75 m - Data for E[T].

% R3: D=1.00 m - Data for E[T]

%$Retrieving data from the Forristall distibution
[F1 F2 F3]=Forristall();

% Fl: D=0.50 m - Data for E[Tx] (Col 1-7) and E[T]
% F2: D=0.75 m - Data for E[T*] (Col 1-7) and E[T]
% F3: D=1.00 m - Data for E[Tx] (Col 1-7) and E[T]
$T+ for D=0.5m

hl=figure;

set (hl, 'Position', [5 5 700 500],'Visible','off")

h=plot (R(:,1),R(:,2),'b",F1(
Fl(:
R(:,1),R(:,3),'k",F1(:

0, 1), F1(:,2),'b—", ...

,1),F1(:,3),'b:", ...

y 1), F1(:,4), "k—", ...
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FOR DIFFERENT VALUES OF Ucwrms.

(Col 8-13).
(Col 8-13).
(Col 8-13).



Fl(:,
R(:,1),R(:,4), 'm",F1(:,
Fl(:,

1)

1

)

1)

JEFL(:,
JFL(:,
JEFL(:,

S)y

6),"
7),'m

hleg=legend('Rayleigh
'Forristall 2D
'Forristall 3D
'Rayleigh
'Forristall
'Forristall
'Rayleigh
'Forristall
'Forristall

',10)

2.5)

2D
3D

2D
3D
set (hleg, 'Fontsize
set (h, 'LineWidth',
axis ([0 0.7 0 18])

u [0 0.1 0.2 0.3 0.4 0.5

t (gca, 'XTick',u);
[0 2 46 8 10 12 14 16

u

set (gca, '"YTick',u, '"Fontsize',

xlabel ('U_{cwrms}', '"Fontsiz
ylabel ('"E[Tx]"', "Fontsize',2
title('D=0.5 m', 'Fontsize
hgexport (gcf, '../.

hgexport ('factorystyle'

$T+ for D=1 m
hl=figure;

set (hl, 'Position', [5 5 70
h=plot (R(:,1),R(:,2),'b",

R(:,1),R(:,

R(:,1),R(:,4),'m",F3
hleg=legend('Rayleigh
'Forristall
'Forristall
'Rayleigh
'Forristall
'Forristall
'Rayleigh
'Forristall
'Forristall
10)
2.5)

2D
3D

2D
3D
set (hleqg, 'Fontsize',
set (h, 'Linewidth',
axis ([0 0.7 0 18])

u [0 0.1 0.2 0.3 0.4 0.5
set (gca, "XTick',u);

\theta_{rmsl},
\theta_{rmsl},
\theta_{rmsl},
\theta_{rms2},
\theta_{rms2},
\theta_{rms2},
\theta_{rms3},
\theta_{rms3},
\theta_{rms3},

0.6 0.71;

18];
14);
e',22)
2)

"y 17)
./Figures/CASE5/CASE5_D=0.5.png', ...
'png')

), 'Format',

0 50017,
F3(:
F3(:

1), 1 2)y
)y

) E3(:
)y

)y

(

(:,
(" 1 4)y
( F3(:
( F3(:
(., y,F3(:,7),
\theta_{rmsl},
\theta_{rmsl},
\theta_{rmsl},
\theta_{rms2},
\theta_{rms2},
\theta_{rms2},
\theta_{rms3},
\theta_{rms3},
\theta_{rms3},

.7

1
1
1
, 1

0.6 0.71;
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'Visible',

,3),'b

7 5) !
1 6),!

lk.l
m——"', ...

")

KC_{rmsl}',
KC_{rmsl}',
KC_{rmsl}',
KC_{rms2}',
KC_{rms2}',
KC_{rms2}',
KC_{rms3}',
KC_{rms3}',

KC_{rms3}

'off")
'b**',
oo e .

k=", ...

)i

'm

")

KC_{rmsl}',
KC_{rmsl}',
KC_{rmsl}',
KC_{rms2}',
KC_{rms2}',
KC_{rms2}',
KC_{rms3}',
KC_{rms3}',

KC_{rms3}

")



u=[0246 810 12 14 16 18];

set (gca, 'YTick',u, 'Fontsize',14);

xlabel ('U_{cwrms}', 'Fontsize',22)

ylabel ('"E[Tx]"', "Fontsize',22)

title('D=1.0", '"Fontsize',17);

hgexport (gcf,'../../Figures/CASE5/CASES5_D=1.png', ...
hgexport ('factorystyle'), 'Format', 'png')

$T for ex 1, D=0.5 m, D=0.75 m and D=1 m
hl=figure;

set (hl, 'Position', [5 5 700 500 'Visible', 'off")

1,
h=plot(R1(:,1),R1(:,2),'c",F1(:,1),F1(:,8),"'c—"
Fl(:,1),F1(:,9),'c
R2(:,1),R2(:,2),'k",F2(:,1),F2(:,8), "k—", ...
F2(:,1),F2(:,9),"k:", ...
R3(:,1),R3(:,2),'m",F3(:,1),F3(:,8), 'm—",...
F3(:,1),F3(:,9),'m:");
hleg=legend('Rayleigh D=0.50 m', 'Forristall 2D D=0.50 m', ...
'Forristall 3D D=0.50 m', ...
'Rayleigh D=0.75 m', 'Forristall 2D D=0.75 m', ...
'Forristall 3D D=0.75 m', ...
'Rayleigh D=1.00 m', 'Forristall 2D D=1.00 m',...
'Forristall 3D D=1.00 m")
set (hleg, 'Fontsize',10)
set (h, 'LineWidth', 2.5)
axis ([0 0.7 0 1001)
u=[00.10.20.30.40.50.60.7];
set (gca, 'XTick',u, 'Fontsize',14);
xlabel ('U_{cwrms}', 'Fontsize',22)
ylabel ('"E[T]', '"Fontsize',22)
title ('KC_{rms}=4, \theta_{rms}=0.07', 'Fontsize',17);
hgexport (gcf,'../../Figures/CASE5/CASES1_T.png', ...
hgexport ('factorystyle'), 'Format', 'png')
$T for ex 2, D=0.5 m, D=0.75 m and D=1 m
hl=figure;
set (hl, 'Position', [5 5 700 500], 'Visible', 'off")
h=plot (R1(:,1),R1(:,3),'c'",F1l(:,1),F1l(: ,10),'cf7',
F1(:,1),F1(:,11),"'c:"
R2(:,1),R2(:,3),'k",F2(:,1),F2(:,10), "k——
F2(:,1),F2(:,11), "k:"
R3(:,1),R3(:,3),'m",F3(:,1),F3(: ,lO),'m——',...
F3(:,1),F3(:,11), 'm:");
hleg=legend('Rayleigh D=O.50 m ,'Forrlstall 2D D=0.50 m', ...
'Forristall 3D D=0.50 m', ...
'Rayleigh D=0.75 m', 'Forristall 2D D=0.75 m',
'Forristall 3D D=0.75 m', ...
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'Rayleigh D=1.00 m', 'Forristall 2D D=1.00 m',...
'Forristall 3D D=1.00 m');
set (hleg, 'Fontsize',10)
set (h, 'Linewidth', 2.5)
axis ([0 0.7 0 521)
u= [00.10.20.30.40.50.60.71;
set (gca, 'XTick',u, 'Fontsize',14);
xlabel ('U_{cwrms}', 'Fontsize',22)
ylabel ('"E[T] ', '"Fontsize',22)
title ('KC_{rms}=7, \theta_{rms}=0.07', 'Fontsize',17);
hgexport (gcf, '../../Figures/CASE5/CASES2_T.png', ...
hgexport ('factorystyle'), 'Format', 'png')

%$T for ex 3, D=0.5 m, D=0.75 m and D=1 m
hl=figure;
set (hl, 'Position', [5 5 700 500

] 4
h=plot (R1(:,1),R1(:,4),'c",F1(:,1),F1(:,12),"'c—",
Fl1(:,1),F1(:,13),'c:"
R2(:,1),R2(:,4),'k",F2(:,1),F2(:,12), "k—",
F2(:,1),F2(:,13), "k:", ...
R3(:,1),R3(:,4), 'm",F3(:,1),F3(:,12), 'm——", ...
F3(:,1),F3(:,13), 'm:");
hleg=legend('Rayleigh D=0.50 m', 'Forristall 2D D=0.50 m', ...
'Forristall 3D D=0.50 m', ...
'Rayleigh D=0.75 m', 'Forristall 2D D=0.75 m', ...
'Forristall 3D D=0.75 m', ...
'Rayleigh D=1.00 m', 'Forristall 2D D=1.00 m',...
'Forristall 3D D=1.00 m'");

set (hleg, 'Fontsize',10)

set (h, 'Linewidth', 2.5)

axis ([0 0.7 0 110])

u=[00.10.20.30.40.50.60.71;

set (gca, 'XTick',u, 'Fontsize',14);

xlabel ('U_{cwrms}', 'Fontsize',22)

ylabel ('E[T] ', '"Fontsize',22)

title ('KC_{rms}=4, \theta_{rms}=0.09', 'Fontsize',17);

hgexport (gcf,'../../Figures/CASE5/CASES3_T.png', ...
hgexport ('factorystyle'), 'Format', 'png')

end

B.6 - CASE 6

wcl

function xl=wcl ()
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$CASE 6: THIS FUNCTION FINDS THE LOWER VALUE OF wc FOR EACH
$VALUE OF Ucwrms.

%The highest value of wcmin is 1 and will appear when
$Ucwrms=0.7. When Ucwrms decreases, the denominator can
%be higher before "ledd" equals 0.7. This means that
$wcmin will decrease for decreases value of Ucrwms.

1=0;
for Ucwrms=0:0.01:0.7
j=0;
1=1+1;
for x=1:-0.001:0
ledd=Ucwrms./ (x.* (1-Ucwrms) +Ucwrms) ;
if ledd>=0.7

J=3+1;
x=x-0.001;
if j==1;
x=x+0.002;
x1(1,1)=x;
end
end
end
end
end
Rayleigh

function [R R1 R2 R3]=Rayleigh (x)

$CASE 6: THIS FUNCTION USES THE RAYLEIGH DISTRIBUTION TO CALCULATE
$THE EXPECTED VALUE OF THE TIME SCALE FOR BACKFILLING IN WAVES +
$CURRENT AROUND A LARGE VERTICAL PILE WHEN THE INITAL HOLE WAS
$GENERATED BY A CURRENT. THE TIME SCALE IS CALCULATED FOR DIFFERENT
$VALUES OF THE CURRENT WAVE VELOCITY (Ucwrms) .

$The time scale is shown for 2 different values of (KCrms, trms).
%$T+ is independent of D for Rayleigh because trms is given.
%$Since trms is given, the grain size (z0,d50) will change

%$for each value of KCrms. To find T when knowing Tx, z0 must be
$calulated.

$DESCRIPTION OF SYMBOLS
%$x: the normalized linear wave amplitude
%R: The expected value of the time scale Tx

%R1: D=3 m - The expeced value of the time scale T (min).
%$R2: D=4 m - The expeced value of the time scale T (min).
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$R3: D=5 m - The expeced value of the time scale T (min).
$ET: The expected value of Tx [-].
syms x;

[n Hs h g s d50 arms c d]=Parameters();
[x1]=wcl();

KCrmsl1l=0.7;
trmsl1=0.101;

KCrms2=1.5;
trms2=0.105;

s1=2.38;
for D=3:5
for i=1:2
if i==1;
KCrms=KCrms1;
else
KCrms=KCrms2;
end

kp=1/hxasinh (2+pixarms/ (D*KCrms) ) ;
wr=sgrt (gxkp*tanh (kpxh));
Urms=wrxarms/ (sinh (kpxh));

j=0;
for Ucwrms=0:0.01:0.7
Jj=3+1;

Uc=Ucwrms*Urms/ (1-Ucwrms) ;
wp=Ucxkpt+sqgrt (gxkpxtanh (kpxh) ) ;

z0_1=(24/ (wp~d) *trmsl*gx (s—1)/ (c*Urms” (2-d)))
z0_2=(24/ (wp”~d) *trms2*gx (s—1) / (c*Urms” (2-d) ) )

xln=sqgrt (log(n)+(x1(3))"2);

x=(x1n:0.001:5);
pd=2+n.xx.*xexp ((x1(J))."2-(x)."2);

>

ET=trapz (x,pd.* (-15.15./ ((KCrms.*x) .~ (s1))) .*...

(Ucwrms./ (X.* (1-Ucwrms) +Ucwrms) —-0.7) ) ;
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$RESULTING DATA

R(3j,1)=Ucwrms;

if i==
R(j,2)=ET;
else
R(3,3)=ET;
end
if D==
R1(j,1)=Ucwrms;
if i==1;
R1 (3, 2)=ET*D"2/ (sqrt (g* (s—1) = (12*z0_1)"3)) /60;
else
1(j,3)=ET+«D"2/ (sqrt (gx (s—1) % (12%z0_2) ) /60;
end
elseif D==
R2(j,1)=Ucwrms;
if i==1;
R2(j,2)=ET*D"2/ (sqrt (g* (s—1)* (12xz0_1) ) /60;
else
R2 (3, 3)=ET*D"2/ (sqrt (g* (s—1) x (12xz0_2) )/60;
end
else
R3(j,1)=Ucwrms;
if i==1
R3(j,2)=ET*D"2/ (sqrt (g* (s—1)* (12xz0_1) ) /60;
else
R3(]J,3)=ET*D"2/ (sqgrt (g* (s=1) * (12xz0_2) ))/60;
end
end
end
end
end
end
Forristall

function [F1l F2 F3]=Forristall (x)

$CASE 6: THIS FUNCTION USES THE FORRISTALL DISTRIBUTION TO CALCULATE
$THE EXPECTED VALUE OF THE TIME SCALE FOR BACKFILLING IN WAVES +
$CURRENT AROUND A LARGE VERTICAL PILE WHEN THE INITAL HOLE WAS
$GENERATED BY A CURRENT. THE TIME SCALE IS CALCULATED FOR DIFFERENT
$VALUES OF THE CURRENT WAVE VELOCITY (Ucwrms) .
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$The time scale is shown for 2 different values of (KCrms, trms).
%$Since trms is given, the grain size (z0,d50) will change for each
%$value of KCrms. To find T when knowing Tx, z0 must be calulated.

DESCRIPTION OF SYMBOLS
The normalized second-order wave crest.

X:

Fl: D=0.50 m - The expected values of the time scale Tx
(col 1-5) and T (min) (col 6-9).

F2: D=0.75 m - The expected value of the time scale Tx*
(

col 1-5) and T in minutes (col 6-9).
F3: D=1.00 m — The expected value of the time scale Tx
(col 1-5) and T (min) (col 6-9).

o° o d° o° d° o o° oP

$Et: The expected value of t [-].
$ET: The expected value of Tx [-].

Syms x;

[n Hs h g s d50 arms c d]=Parameters();
[x1]=wcl();

s1=2.38;

KCrmsl1=0.7;
trmsl=0.101;

KCrms2=1.5;
trms2=0.105;

for D=3:1:5

for i=1:2
if i==1;
KCrms=KCrmsl;
else
KCrms=KCrms2;
end

kp=1/h*asinh (2xpi*arms/ (D+xKCrms) ) ;
wr=sqgrt (gxkpxtanh (kpxh)) ;
Urms=wr*arms/ (sinh (kp*h)) ;

J=0;
for Ucwrms=0:0.01:0.7
Jj=3+1;

Uc=Ucwrms+Urms/ (1-Ucwrms) ;

wp=Ucxkp+sqgrt (gxkprtanh (kp*h) ) ;
Tp=2+*pi/wp;
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z0_1=(24/ (wp”~d) *trmsl*gx (s—1) / (c*Urms” (2-d)) )~ (1/(d-1));
z0_2=(24/ (wp”~d) *trms2+g* (s—1) / (c*Urms” (2-d) ) ) ;

>
=
~
Q.
~

S1=2+pi*Hs/ (g*xTp"2);
Ur=Hs/ (kp"2+h"3);

$parameters 2D model
alpha2=0.3536+0.2892xS1+0.1060%Ur;
beta2=2-2.1597%351+0.0968*Ur"2;

%parameters 3D model
alpha3=0.3536+0.2568%S1+0.0800%Ur;
beta3=2-1.7912%S1-0.5302+Ur+0.284%Ur"2;

for y=1:2
if y==
alpha=alpha?2;
beta=beta2;
else
alpha=alpha3;
beta=beta3;
end

x1n=sqrt (8) xralphax ((x1(Jj)/ (sgrt (8)alpha))"...
(beta)+log(n)) " (1/beta);
x=(x1n:0.001:5);

pd=(nx (1/ (sqgrt (8) ralpha)) " (beta) xbeta.xx.™. ..
(beta-1) .xexp ((x1(J)/ (sqgrt (8) xralpha)) ~ (beta)) .*...
exp (- (x./ (sqrt (8) xalpha)) . "beta));

ET=trapz (x,pd.* (-15.15./ ((KCrms.*x) .~ (s1))) .x...
(Ucwrms./ (x.* (1-Ucwrms) +Ucwrms) -0.7) ) ;

$RESULTING DATA
F1l(j,1)=Ucwrms;
F2(3j,1)=Ucwrms;
F3(j,1)=Ucwrms;

if D==
Data for 2D

-
Hh
-
Il
Il
—
o

F1(3j,2)=ET;

F1(3j,6)=ET*D"2/ (sqrt (g* (s—1)* (12*z0_1)"3))/60;
else

F1(3j,4)=ET;

F1(3j,8)=ET*D"2/ (sqrt (g* (s—1)* (12*z0_2)"3))/60;
end
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else % Data for 3D
if i==
Fl(j,3)=ET;
F1(j,7)=ET*D"2/ (sqgrt (g (s—1) * (12xz0_1)"3))/60;
else
F1(j,5)=ET;
F1(3j,9)=ET*D"2/ (sqrt (g* (s—1)x (12*z0_2)"3))/60;
end
end
elseif D==
if y==1; % Data for 2D
if i==1
F2(j,2)=ET;
F2(j,6)=ET*D"2/ (sqrt (g* (s—1)* (12xz0_1) ) /60;
else
F2(j,4)=ET;
F2(3j,8)=ET*D"2/ (sqrt (g* (s—1)* (12xz0_2) ) /60;
end
else % Data for 3D
if i==1
F2(j,3)=ET;
F2(3,7)=ET*D"2/ (sqrt (g* (s—1) x (12xz0_1) ) /60;
else
F2(j,5)=ET;
F2(3,9)=ET*D"2/ (sqrt (g* (s—1) x (12%xz0_2) ) /60;
end
end
else
if y==1; % Data for 2D
if i==
F3(j,2)=ET;
F3(j,6)=ET+«D"2/ (sgrt (gx (s—1) % (12%xz0_1) )/60;
else
F3(j,4)=ET;
F3(j,8)=ET*«D"2/ (sgrt (gx (s—1) % (12%xz0_2) ) /60;
end
else % Data for 3D
if i==
F3(3,3)=ET;
F3(j,7)=ET*D"2/ (sqrt (g* (s—1)* (12xz0_1) ) /60;
else
F3(3,5)=ET;
F3(3j,9)=ET*D"2/ (sqrt (g* (s—1)* (12xz0_2) ) /60;
end
end
end

end
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end
end
end
end

Plot

function P=Plot (x)

$CASE 6: THIS FUNCTION USES PLOTS THE TIME SCALE FOR BACKFILLING IN
$SWAVES + CURRENT AROUND A LARGE VERTICAL PILE WHEN THE INITAL HOLE
$WAS GENERATED BY A CURRENT, FOR DIFFERENT VALUES OF Ucwrms.

%Retrieving data from the Rayleigh distibution
[R R1 R2 R3]=Rayleigh();

R: Data for of E[Tx*].

Rl: D=3 m - Data for E[T].

R2: D=4 m - Data for E[T].

R3: D=5 m - Data for E[T].

o°

o° o o

%$Retrieving data from the Forristall distibution

[F1 F2 F3]=Forristall();

Fl: D=3 m - Data for E[Tx] (Col 1-5) and E[T] (Col 6-9).
F2: D=4 m - Data for E[Tx] (Col 1-5) and E[T] (Col 6-9).
F3: D=5 m - Data for E[Tx] (Col 1-5) and E[T] (Col 6-9).

o\

o° o

$T+ for ex 1 and 2 for D=3 m

hl=figure;

set (hl, 'Position', [5 5 700 500], 'Visible', 'off'")

h=plot (R(:,1),R(:,2),'b",F1(:,1),F1(:,2), 'b—", ...

Fl(:,1),F1(:,3),"'b:", ...
R(:,1),R(:,3),'k",F1(:,1),F1(:,4)," 'k—",...
Fl(:,1),F1(:,5),'k:");

hleg=legend('Rayleigh KC_{rms}=0.7",...
'Forristall 2D KC_{rms}=0.7",
'Forristall 3D KC_{rms}=0.7",...
'Rayleigh KC_{rms}=1.5",...
'Forristall 2D KC_{rms}=1.5",
'Forristall 3D KC_{rms}=1.5");

set (hleg, 'Fontsize',12)

set (h, 'LineWidth', 2.5)

axis ([0 0.7 0 71)

u= [00.10.20.30.40.50.60.71;

set (gca, "XTick',u, 'Fontsize',12);

xlabel ('U_{cwrms}', 'Fontsize',22)

ylabel ('"E[Tx]"', "Fontsize',22)

title('D=3 m', 'Fontsize',17);

hgexport (gcf,'../../Figures/CASE6/CASE6D3.png', . ..
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hgexport ('factorystyle'), 'Format', 'png')

$T+ for ex 1 and 2 for D=4 m
hl=figure;

set (hl, 'Position', [5 5 700

500], 'Visible', "off")

h=plot (R(:,1),R(:,2),'D",F2(:,1),F2(:,2), 'b—", ...

F2(:,1),F2(:,3),'b:", ...
R(:,1),R(:,3),"k",F2(:,1),F2(:,4),'k—", ...
F2(:,1),F2(:,5),"'k:");

hleg=legend('Rayleigh KC_{rms}=0.7", ...
'Forristall 2D KC_{rms}=0.7"', ..
'Forristall 3D KC_{rms}=0.7"', ...
'Rayleigh KC_{rms}=1.5",...
'Forristall 2D KC_{rms}=1.5",
'Forristall 3D KC_{rms}=1.5");

set (hleg, 'Fontsize',12)

set (h, 'Linewidth', 2.5)

axis ([0 0.7 0 71)

[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7];

set (gca, "XTick',u, 'Fontsize',12);

xlabel ('U_{cwrms}', 'Fontsize',22)

ylabel ('E[T*]', '"Fontsize',22)

title('D=4 m', 'Fontsize',17);

hgexport (gcf,'../../Figures/CASE6/CASE6D4 .png', . . .
hgexport ('factorystyle'), 'eng')

u =

'Format',

$Tx for ex 1 and 2 for D=0 m
hl=figure;
set (hl, 'Position', [5 5 700 500], 'Visible', 'off")
h=plot (R(:,1),R(:,2),'b",F3(:,1),F3(:,2), 'b—", ...
F3(:,1),F3(:,3),"'b:", ...
R(:,1),R(:,3),'k",F3(:,1),F3(:,4),"'k——",...
F3(:,1),F3(:,5),"'k:");

hleg=legend('Rayleigh KC_{rms}=0.7"',...
'Forristall 2D KC_{rms}=0.7"', ..
'Forristall 3D KC_{rms}=0.7",...
'Rayleigh KC_{rms}=1.5",...
'Forristall 2D KC_{rms}=1.5",
'Forristall 3D KC_{rms}=1.5");

set (hleg, '"Fontsize',12)

set (h, 'Linewidth', 2.5)

axis ([0 0.7 0 771)
u=[00.10.20.30.40.50.60.7];
set (gca, "XTick',u, 'Fontsize',12);
xlabel ('U_{cwrms}', 'Fontsize',22)
ylabel ('"E[Tx]"', "Fontsize',22)
title('D=5 m', 'Fontsize',17);
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hgexport (gcf, '../../Figures/CASE6/CASE6GDS.png', . . .
A\l A\l
png')

hgexport ('factorystyle'),

$T for all D for ex 1.
hl=figure;

set (hl, 'Position', [5 5 700 500
h=plot (R1(:,1),R1(:,2),'c",F1l(:

F1(

R2(:,1),R2(:,2),"'k",F2(

F2(

R3(:,1),R3(:,2), 'm",F3(:

F3(

hleg=legend('Rayleigh D=3
'Rayleigh D=4

'Rayleigh D=5

set (hleg, 'Fontsize',11)
set (h, 'LineWidth', 2.5)

~

'Format',
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