
Numerical Investigation of 3D Flow 
Around Two Tandem Cylinders

Ragnhild Birgitte Hidle 
Kalvig

Marine Technology

Supervisor: Bjørnar Pettersen, IMT
Co-supervisor: Mia Prsic, IMT

Department of Marine Technology

Submission date: June 2015

Norwegian University of Science and Technology



 







Abstract

Circular cylinders in tandem arrangement are used in many marine applications like dual
pipelines and dual risers. Turbulent flow in 3D around two tandem cylinders is simulated
numerically using Large Eddy Simulation (LES) with a Smagorinsky subgrid scale model.
The Reynolds number based on the cylinder diameter of 1 meter and free stream velocity of
U = 1.31 m/s is 13100, which is in the subcritical flow regime. The center-to-center spacing
between the cylinders is S/D = 5. The software used for the numerical simulation is the open
source code OpenFOAM.

The physics of the flow around the cylinders has been investigated by studying velocity- and
pressure fields, especially in the gap region between the two cylinders. The results are pre-
sented as following: Vorticity distribution in the gap showing vortex formation and impinge-
ment onto the downstream cylinder. Velocity distributions in the wake and gap showing
wake flow. Mean and Root Mean Square (RMS) pressure distributions over the cylinder sur-
faces. Drag- and lift coefficients for the two cylinders. Strouhal number at different locations
in the domain and surface streamlines showing separation.

The flow picture for this spacing and Reynolds number proved to be jump flow, where vor-
tices are formed and shed behind the upstream cylinder, travel over the gap and impinge the
downstream cylinder. This causes large pressure fluctations and forces on the downstream
cylinder. This was reflected in the pressure distributions and force coefficients. The Strouhal
number was the same behind both cylinders which indicates synchronized shedding of vor-
tices. The downstream cylinder sees a chaotic inflow due to vortices shed from upstream
cylinder. This was reflected in the velocity streamlines. There was indications that the re-
sults for the downstream cylinder did not converge for the simulation duration in this work.
In general the LES turbulence model gave good results that were in agreement with previous
work.
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Sammendrag

Sirkulære sylindere arrangert i tandem er mye brukt i den marine offshore industrien, for
eksempel doble rørledninger eller doble stigerør. Turbulent strømning i 3D rundt to tan-
dem sylindere har blitt numerisk modellert ved bruk av Large Eddy Simulation (LES) med en
Smagorinsky subgrid skala modell. Reynoldsnummeret var 13100 basert på sylinderdiame-
teren på 1 meter og fristrømshastigheten på U = 1.31 m/s. Dette er i det subkritiske strømn-
ingsregimet. Avstanden mellom sylinderne, senter-til-senter er S/D = 5. Programvaren som
er brukt til simuleringene er open source koden OpenFOAM.

Fysikken av strømningen rundt sylinderne har blitt undersøkt ved å studere hastighets- og
trykkfelt, spesielt i regionen mellom syliderne. Resultatene er presentert på følgende måte:
virvling i gapet mellom sylinderne som viser virvelformasjon og -kollisjon med nedstrøms-
sylinder. Hastighetsprofiler i kjølevannet av sylinderne som viser strømning i kjølevannet.
Gjennomsnittelig og fluktuerende trykkfordeling over sylinderoverflatene. Drag- og løftko-
effisienter for de to sylinderne. Strouhaltall i forskjellige posisjoner i domenet og strømn-
ingslinjer på overflaten av sylinderne som viser separasjon.

Strømningsbildet for denne avstanden mellom sylinderne og Reynoldsnummer viste seg å
være ’jump flow’, hvor virvler formes og avløses bak oppstrømssylinderen, transporteres over
mellomrommet og kræsjer i nedstrømssylinderen. Dette fører til store trykkfluktueringer og
krefter på nedstrømssylinderen. Dette ble reflektert i trykkfordelingen og kraftkoeffisientene.
Strouhaltallet var likt bak begge sylinderne, noe som indikerer synkronisert virvelavløsning.
Nedstrømssylinderen har en kaotisk instrømning på grunn av virvelavløsningen fra opp-
strømssylinder. Dette var reflektert i strømningslinjene for hastighet. Det var indikasjoner på
at resultatene for nedstrømssylinderen ikke var konvergert for simuleringsvarigheten i dette
arbeidet. Generelt ga LES tubulensmodellen gode resultater som var i samsvar med tidligere
arbeid.
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Chapter 1

Introduction

Circular cylinders are frequently encountered in the marine offshore industry. Examples are
risers used for drilling and bringing hydrocarbons to the surface, the hull of a SPAR-platform,
pipelines on the seabed, fish nets in fish farms, suction piles and the columns of a semi sub-
mersible. All of these examples represent different configurations of circular cylinders. Ex-
amples of applications with two or more circular cylinders are multiple risers expanded from
the side of a rig, the legs of an offshore platform and dual pipelines. The tandem cylinders
arrangement os the basis of the multiple cylinder case.

All of these different configurations of circular cylinders will induce flows behind them that
will be different to each other. It is very interesting to investigate how fluid flow is affected
by the change in arrangement of the cylinders. Any type of blockage or change in geometry
will lead to changes on the flow which can result in unexpected response of the construc-
tions. It is not only in the offshore industry we encounter circular cylinders in a variety of
configurations. Most of the research done on the topic is based on the aviation industry
where air flow over components on air planes were investigated. Chimneys, TV towers, wind
turbines, nuclear power plants as well as heat exchangers are some other examples of circu-
lar cylinder application in engineering technology. It is interesting to understand the flow
around tandem cylinders to be able to optimize designs and avoiding large movements of
the downstream cylinder.

1.1 State of the art

It is obviously of huge practical importance to understand as much as possible about flow
around circular cylinders. Due to the extensive use of them in numerous engineering de-
signs, the topic has already received a large amount of attention. There exist numerous re-
views of the state of the art of flow around circular cylinders, see for example Berger and
Wille (1972), Bearman (1984) and Sarpkaya (2004). These papers sums up the theoreti-
cal background and what has been done regarding experiments in addition to the results
of these. M. M. Zdravkovich has written books regarding this topic, and the first volume,
Zdravkovich (1997), focuses on the fundamentals. Previous research are revised in the book.
Circular cylinders is here and in other literature called bluff bodies because they generate a
separated flow over a large part of the surface, (Bearman, 1984).

1



2 CHAPTER 1. INTRODUCTION

In recent years, the focus has mainly been to find good numerical and mathematical models
for analyzing the flow around a circular cylinder. Gabbai and Benaroya (2005) reviewed the
mathematical and numerical methods for investigating the flow.

As previously mentioned, most of the research done on fluid flow around circular cylinders
originates from aerodynamics. The first known research done on tandem cylinders (to the
knowledge of this author) dates back to 1915 and 1933 when cylinders and streamlined struts
were used to support wings on aeroplanes, (Pannell et al., 1915) and (Biermann and Her-
rnstein Jr, 1933). The latter defined the interference drag, CDi which is the difference be-
tween the drag coefficients of tandem struts and the struts tested separately. This was done
for a Reynolds number of Re=0.65 · 105 − 1.63 · 105, which is in the subcritical flow regime.
It was found that the drag of the downstream cylinder was decreased in the proximity of
the upstream cylinder. The lowest CDi was for the minimum spacing of S/D=1, where S is
the center-to-center distance between the cylinders and D is the cylinder diameter, and in-
creased with increasing spacing. For spacings of more than 4 diameters, the magnitude of
interference did not change much. The upstream cylinder had a CDi of approximately zero
with the exception for a spacing of 3.5 diameters. Here, the cylinder got a negative CDi . At
this location, a rapid decrease in the downstream cylinder CDi occurred. Since this first pa-
per was published, numerous people have done research on tandem cylinders, and extensive
reviews have also been published, for example Sumner (2010).

The minimum in CDi was assumed to be due to a change of flow pattern in the gap be-
tween the cylinders (Zdravkovich and Pridden, 1977). Zdravkovich and Pridden (1977) re-
fer to an article written by Zdravkovich and Stanhope, (Zdravkovich and Stanhope, 1972),
where experiments with the gap flow as well as the wake flow was traversed with a hot-wire.
The Reynolds number region was the same as for the experiments by Biermann and Her-
rnstein Jr (1933). In this way the velocity profiles could be found. It was revealed that for a
spacing of 3.5 diameters the flow regime in the gap changed suddenly, represented by a dis-
continuity in the pressure coefficient profile. This spacing was called critical spacing. At this
spacing, vortices form behind the upstream cylinder and impinges the downstream cylinder,
(Zdravkovich, 2003), chapter 26.2.3.

Igarashi (1981) measured mean and rms pressures, Cp and C ′
p , respectively, and used the

results to classify the flow in five different categories for different spacings and Reynolds
numbers. The experiments were conducted for a Reynolds number range of 8.7 ·1036Re 6
5.2 · 104 and spacings of 1.03 6 S/D 6 5.He also pointed out some Reynolds number de-
pendencies of the flow. Especially in the range of 1.03 6 L/D 6 2 it was found a large Re-
dependency on the flow pattern. In Re-regions where the flow pattern did not change for
a certain spacing, it was found that the profiles of C ′

p had the same shape, but different
magnitude. Igarashi also pointed out that unstable and bistable flows occur in the transi-
tion between two flow patterns. In these types of flows, different flow pictures are present
for the same Re and it switches between them. The reattachment points for reattachment
flow regime were also discussed, and discrepancies in different research were pointed out.
Igarashi concluded that the reattachment point depends on Reynolds number and spacing.

Later, Ljungkrona and Sundén (1993) also stated that the flow between and around two
cylinders in tandem depended on Reynolds number and spacing. They did flow visualization
of flow around tandem cylinders for 3.3 ·103 < Re < 12 ·1036 and spacings of 1.25 < L/D < 4
by application of smoke-wire technique. Pressure measurements were done for 3·103 < Re <
4·104 and for spacings of S/D = 1.25,2.0, and 4.0. They found the change of flow pattern to be
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reflected in the mean and rms pressure distributions and the Strouhal number, St. They also
connected the change in critical spacings for different Reynolds numbers to the change in
vortex formation length for the same Re and used this to explain the changes in flow patterns
with changing spacing and Re. Alam et al. (2003) also reported the importance of spacing
on different parameters, but focused on the fluctuating forces. They also commented on the
influence of separation point on the forces.

Recently, better methods have been developed for flow visualization and numerical meth-
ods have been applied to simulate flows. Particle Image Velocimetry (PIV) was used by Lin
et al. (2002) to in more detail see the flow structure in the gap between two cylinders in tan-
dem and in the near wake of the downstream cylinder. Alam (2014) used surface oil-flow
visualization to investigate the connection between fluctuating lift- and drag coefficient and
St, and the dependency of Re and spacing. Flow patterns were also further investigated and
the ’kink’ in CD distribution, commented by Zdravkovich and Pridden (1977), was explained
as when the shear layer from the upstream cylinder reattaches onto the front surface of the
downstream cylinder and sweeps to the other side of that cylinder.

CFD has as mentioned been given a lot of attention in recent years. But there has been signif-
icant discrepancies in the results for the different research done, independently of different
solver models. This was reported by Eça et al.. This article describes the scatter of results for
numerical simulation of flow around a single cylinder, so it is logical to assume that this also
is the case for tandem cylinders.

Because of the highly complex flow picture around two tandem cylinders, a significant amount
of data power is required to do numerical simulations of the flow. This was not available in
the beginning, and the first numerical research were thus conducted for two-dimensional
flow at low Reynolds numbers. Meneghini et al. (2001), for example, modeled 2D flow
around tandem cylinders for Reynolds numbers of 100 and 200 using the fractional step
Finite Element Method (FEM). Due to the development of new technology and the use of
supercomputers, it is now possible to simulations for more complex flows of higher Re and
in 3D. Papaioannou et al. (2006) reported that a 2D simulation under-predicts the critical
spacing which leads to error in results for forces and Strouhal numbers for a range of spac-
ings with different flows. Later, Afgan et al. (2011) did Large Eddy Simulations (LES) on two
side-by-side circular cylinders in subcritical Reynolds numbers and found that the solution
is not influenced for a spanwice length of 4 diameters.

More recent tandem cylinder simulations where LES-models are used includes Kitagawa
and Ohta (2008). They did LES simulations with Smagorinsky subgrid-scale model for tan-
dem cylinders with spacings in the range of 2 6 S/D 6 5 and with Reynolds number Re =
2.2 ·104. The model will be explained in section 3.5. The focus of the research was to study
the behavior of the vortices shed from the upstream cylinder and the effect these have on the
downstream cylinder. Uzun and Hussaini (2012) used delayed detached eddy simulations
for cylinders with spacings S/D = 3.7 and Reynolds number Re = 166,000. The scope was
to evaluate the sensitivity to grid resolution and used up to 133 million grid points. Sainte-
Rose et al. used variational multi-scale LES and classic LES methods to simulate flow around
tandem cylinders. The scope of this research was to demonstrate the suitability of the varia-
tional multi-scale method.

Tandem cylinders have also been investigated in other configurations. Springer et al. mod-
eled two tandem circular cylinders that were subjected to vibrations. A combination of a
FEM model and detached eddy simulation was used. Assi and Bearman did experiments on
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Vortex Induced Vibrations (VIV) and Wake Induced Vibrations (WIV) of two tandem cylin-
ders with fairings. Recently, Abrahamsen-Prsic (2015) did LES simulations to model tandem
cylinders in the vicinity of a wall. This is the research that inspired the scope of this thesis.

1.2 Motivation

CFD is a useful tool for analyzing flows, both disturbed and undisturbed. When we analyze
flow around bodies with CFD, we can get information which we cannot get from experi-
ments. We can see how the flow actually will behave around the body. Velocities and pres-
sure can be measured in all points of the simulated domain and the actual forces inflicted
on the body can be obtained. CFD simulation is also cheaper than doing experiments, and
at the present time CFD can replace or compliment many experiments. This author believes
that CFD will play a huge role in flow analysis in the future, even more than it does today. It
is desired to further develop CFD as a tool for doing different types of simulations to make
this happen.

The flow around tandem cylinders at high Reynolds numbers can be described as very com-
plex and large variations in the flow picture can be seen when changing parameters such as
spacing between the cylinders and Reynolds number. This arrangement of circular cylinders
is also very relevant for practical use. The Reynolds number of 13100 is a Reynolds number
that is often obtained in full scale applications of tandem cylinders. Tandem arrangements
are frequently encountered in the offshore industry and accidents have happened due to for
example large motions of risers. It is thus need for research on the topic. Understanding the
flow around tandem cylinders is also fundamental for understanding the flow around mul-
tiple cylinders. With the possibility to use the super-computer Vilje at NTNU, it is possible
to model the flow around tandem cylinders in a way that would be impossible with a normal
computer.

As of now, the forces inflicted on a body from the fluid flow, and the response this body have
to be modeled in separate ways. This is due to the use of different models for the fluid and the
structure of the body. In a CFD simulation we can give the body forced oscillations or keep it
fixed. However, by further development of the CFD programs, and by use of new technology
and more powerful computers, it might be possible in the future to combine the structural
and hydrodynamical models. Then the response of the body can be modeled directly from
the forces the fluid flow is inflicting on it. CFD is thus a tool that is very relevant for future use
and exciting to learn about. The author finds it very important to be able to use the program
correctly, such that the flow is modeled in the best way.

A program that is widely used for CFD simulations is OpenFOAM. This is the program used
in this study. OpenFOAM is an open source which means that you can easily modify the
software to use for different applications. It is easy to access the program files and inspect
them or change them, which makes it possible to understand what the program is actually
doing. OpenFOAM has some disadvantages that follows from the wide spectra of schemes
and solvers. There is no default settings in the program, and with the numerous available
schemes it is easy to make a mistake while setting up the computation. For an OpenFOAM
user it is thus important to understand the schemes and boundary conditions implemented
on the simulation to get results that are reliable.
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1.3 Structure of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 gives an overview of the theory behind flow over circular cylinders and further
literature review as well as an overview of numerical simulation.

Chapter 3 gives an introduction to the numerical schemes in OpenFOAM which is applied
in this work.

Chapter 4 describes the numerical setup in this thesis. Boundary conditions, grid verifica-
tion and post processing tools and methods will be assessed.

The results of the work are presented in chapter 5 by vorticity distribution, wake flow, pres-
sure distributions, drag- and lift coefficients, Strouhal number and flow separation.

A conclusion is provided in chapter 6.
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Chapter 2

Background theory

The flow around circular cylinders is characterized by numerous complex physical phenom-
ena. Even more so is the flow over two circular cylinders in tandem arrangement. To be able
to understand the flow around tandem cylinders it is important to know the basics of flow
around one circular cylinder. Each cylinder in tandem arrangement will see the same as-
pects of flow as a single cylinder, but due to the presence of another cylidner, there will be
some disturbances.

In this chapter, the theory behind these physical phenomena will be explained. The different
aspects of flow characteristics will be explained individually such as to make it as simple and
lucid as possible. The flow around tandem cylinders will also be assessed in this chapter.

2.1 Flow around one circular cylinder

Zdravkovich (1997) defines four regions of disturbed flow around a bluff body:

• One narrow region of retarded flow in front of the cylinder where the flow "hits" the
body in the stagnation point.

• Boundary layer close to the surface of the body. Both on the top and bottom.

• Regions of disturbed flow over and under the body.

• The wake behind the body.

The extent of these regions is dependent on the size, shape and orientation of the body as
well as the viscocity and the velocity of the fluid. The characterization of disturbed flow is
that the local velocity varies in direction, magnitude and time.

The fluid dynamics research is said to have started with Archimedes and his formulation
of the buoyancy principle around 200 BC. After this many individuals contributed to the
development of the fluid dynamics theory (Cengel and Cimbala, 2010). In the beginning,
potential flow theory was developed to describe the flow around bluff bodies. In this theory
it is assumed that the flow is incompressible, irrotational and inviscid. The two latter is not
the case for a water flow, especially close to the body. In reality the fluid particles closest to
the body will move with the same velocity as the body. This means that for a body with zero
velocity, the fluid particles at the body sirface will too have zero velocity. In addition, there

7
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is a requirement that there can not be any sudden changes in the velocity. Due to this, a
boundary layer is present close to the cylinder (Pettersen, 2007).

Generally, for non-separated flow at high Reynolds number, the viscous effects are small and
can be neglected. For a circular cylinder this is in the angle interval before flow separation
and outside the boundary layer. In this region potential flow theory is considered valid.

To be able to model complex flows around different kinds of geometries and configuarions,
we need to take into account that the flow can be rotational and viscous. This will have a
major impact on the flow structure.

2.1.1 Boundary layer

The boundary layer makes us unable to use potential theory equations like the simplified
Euler and Bernoulli which are only valid for potential theory (Cengel and Cimbala, 2010).
It was Prandtl, (Prandtl, 1904), who first acknowledged that the boundary layer existed in
his pioneering paper from 1904. Potential theory cannot be used to model the flow in the
boundary layer. Here frictional forces are significant and the flow thus becomes viscous.
The tangential shear stress is proportional to the velocity gradient, τ∼ ∂u

∂y .

As mentioned earlier, the velocity cannot make sudden changes. In addition to the fact that
the velocity on the cylinder surface is zero, the change in velocity at a distance from the
cylinder has to be gradual. The thickness of the boundary layer is defined as the distance
from the cylinder surface where the horizontal velocity becomes equal to 0.99 of the outer
velocity, u(y) = 0.99U (x), (Schlichting and Gersten, 2000).

The boundary layer thickness is assumed to be O(
1p
Re

)D . Roughly, its value is given as:

δ= Dp
Re

(2.1)

The velocity profiles in the boundary layer is not the same all over the cylinder and thus the
boundary layer thickness changes over the surface. This can be seen in figure 2.1. The red-
dotted lined in figure 2.1 shows the boundary layer thickness. The velocity profiles at certain
points is given along the cylinder curface. The velocity gradient ∂u

∂y is clearly largest close to
the surface, and the presence of the velocity gradient implies that the flow in the boundary
layer is viscous.

It can be seen that the boundary layer ends where the velocity profiles are fully developed.
The y-axis represents the distance from the cylinder surface. At a certain point the flow will
separate from the surface. This is called the separation point. At point E, backflow is ident-
fied. This will cause a roll-up of the shear layer and lead to vortex formation.
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Figure 2.1: Boundary layer aspects on a circular cylinder. Figure taken from Pettersen (2007).

2.1.2 Flow separation

An easy explanation of flow separation is that the flow leaves the surface of the body. After
the boundary layer has separated from the body, it moves downstream as a free shear layer.
As mentioned in section 2.1.1, the backflow of the fluid particles closest to the body surface
at a point after the seperation point will result in formation of a vortex here. The vortices
created at the surface will seperate from the body and move downstream in the wake. This
creates a chaotic wake flow, especially for high Reynolds numbers. The wake is the region
behind the body with distubed flow due to the presence of the body itself.

For a bluff body with sharp edges, such as a square or triangular cylinder, the flow will sepa-
rate at the sharp edges. This is not the case for a circular cylinder. The separation points can
move as a result of changes in the flow picture in the region (Zdravkovich, 1997).

Separation of flow over a circular cylinder is directly connected to the pressure distribution
in the boundary layer, (Schlichting and Gersten, 2000). In potential flow theory, there is no
friction in the flow. The pressure distribution over the cylinder surface would thus be sym-
metric. This can be seen in figure 2.2, where pressure distributions are plotted for poential
and real flow for a Reynolds number of 100. θ is given as 0 degrees in front of the cylinder
where the incoming flow hits the cylinder.

For potential flow, the pressure gradient is negative over the first half of the cylinder and the
pressure is thus decreasing. This is because the fluid accelerates to get past the thicker part
of the cylinder. The opposite happens when the fluid pass the first half of the cylinder and it
is decelerated and the pressure increases. Because the fluid is frictionless, there is no loss of
energy and the pressure distribution is symmetric.

The real fluid accelerates over the first half of the cylinder and we se similarities to the poten-
tial pressure distribution. The acceleration causes the breaking effect of the boundary layer
to be less significant. Owing to the friction in the boundary layer, particles, especially those
close to the body surface, lose large amount of their kinetic energy (Schlichting and Gersten,
2000). The loss of kinetic energy can be seen in figure 2.2 as the pressure coefficient of the
real flow has smaller values than that of the potential flow.

On the other half of the cylinder, the pressure gradient is positive. The fluid has now moved
past the thickest point of the cylinder and the velocity is decreasing, causing the pressure to
increase again. The kinetic energy of the particles is now too small to overcome the pressure
increase the potential flow experience over the second half. The motion of the particles are
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thus stopped. This effect is strongest closer to the cylinder surface since the velocity gradient,
and thus friction, is largest here. The result is that the particles will start to move in the
opposite direction due to the external pressure, (Schlichting and Gersten, 2000), which is
the backflow phenomena identified in figure 2.1. The velocity gradient is thus less than
zero, and the backflow will cause vortex formations behind the cylinder, (Pettersen, 2007).

The separation point, however, is located in front of the backflow point, and can be seen as
where the pressure coefficient curve flatten out. This is marked by the blue circle in figure
2.1. The velocity gradient is zero in this point. It is easily seen that there is no separation point
or vortex formation in potential flow theory, due to the symmetric pressure distribution. This
coincides with the irrotational flow assumption of potential flow theory.

Matematically, it is stated that at the surface of the cylinder (y=0), u = 0, v = 0, τ0 =µ∂u
∂y 0

. The

Navier Stokes equation for the boundary layer is given as:

u
∂u

∂x
+ v

∂u

∂y
=− 1

ρ

∂p

∂x
+ν∂

2u

∂y2
(2.2)

The Navier Stokes equation will be described shortly in section 2.1.3.

Because of the given terms equal to zero, equation 2.2 is reduced to:

∂p

∂x
= ν∂

2u

∂y2
(2.3)

From equation 2.3 it follows that when the pressure gradient, ∂p
∂x , is negative, ∂2u

∂y2 < 0 at

the wall. This means that the velocity gradient, ∂u
∂y , is maximum at first and then decreases

outwards in the boundary layer. The velocity profile associated with this is shown in figure
2.3 as the velocity profile at θ = 50 degrees.

If ∂p
∂x > 0, it means that we have an adverse pressure gradient and the pressure will enforce

the breaking of the boundary layer. This can be seen in the velocity profiles. Now, ∂2u
∂y2 > 0,

and the velocity gradient will thus decrease at first, then increase. This is seen in the velocity
profiles at θ = 120 degrees and θ = 130 degrees in figure 2.3. As the adverse velocity gradient
becomes larger, this breaking effect will become more prominent and at a point the velocity
gradient will become zero and the flow separates. The velocity profile at θ = 120 degrees
shows a zero velocity gradient close to the wall. The separation point will be close to this
point. At θ = 130 degrees, the velocity gradient is negative close to the wall, and here we will
see backflow.
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Figure 2.2: Pressure distributions for real fluid and potential fluid plotted over the cylinder
surface. Results for real fluid is taken from simulations done in the master project, fall 2014.

Figure 2.3: Velocity profiles at 3 different locations along the cylinder surface for Re=100
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The location of the separation point is dependent on the Reynolds number of the flow. When
the Reynolds number is high and the flow becomes turbulent the separation point is further
back on the cylinder such that the wake gets narrower. This is because turbulent flows can
overcome much larger adverse pressure gradients without separating, (Schlichting and Ger-
sten, 2000).

When the pressure is integrated over the cylinder surface, the pressure-induced drag force
can be found. From figure 2.2 it is clear that the net pressure over the cylinder surface is
non-zero for the real fluid and the pressure-induced drag force is thus non-zero. For poten-
tial fluid, the pressure can be described by Bernoulli’s equation. The equation involves one
term with si n2(θ). This term is independent on the value of θ and the pressure is thus sym-
metrical around the cylinder. This results in zero pressure-induced drag force. This is known
as d’Alembert’s paradox (Pettersen, 2007). The pressure-induced drag is not the only con-
tribution to the drag force. The viscous fluid will cause a friction force on the cylinder which
contributes to the drag force. In the laminar flow regime (at low Reynolds numbers) this
contribution is significant, about 20% in the transitional wake region. At higher Reynolds
numbers the effect of viscous friction can be neglected (Zdravkovich, 1997).

Vortex shedding and oscillating forces

This section is based on theory from Sumer and Fredsøe (1997). Vortex shedding happens
when Reynolds number is larger than about 40. Before this a pair of vortices forms behind
the cylinder and stays there. If the Reynolds number is increased from 40, the wake becomes
unstable and vortices will be shed alternately from each side of the cylinder.

When the flow separates from the cylinder surface, a shear layer is formed in which there is
vorticity. This vorticity causes the shear layer to curl up into a vortex which eventually will
be shed from the cylinder. This happens when one vortex becomes larger then the one on
the other side due to small disturbances. The large vortex will draw the smaller one across
the wake. The two vortices have opposite signs. This means that they rotate in opposite
directions. This will lead to the supply of vorticity to the large vortex will be cut off and thus
shed. The smaller vortex will now grow larger and the same thing will happen for this one.
The process repeats itself again and again.

We distinguish between two types of forces acting on a circular cylinder in incoming flow;
the lift force and the drag force. The lift and drag force coefficients are given as:

CL = FL
ρ
2U 2S

(2.4)

CD = FD
ρ
2U 2S

(2.5)

Where S is a characteristic length. For a circular cylinder, S=D. FL and FD are the forces
obtained by integrating the pressure over the cylinder surface. Looking back to figure 2.2,
we see the pressure distribution over the cylinder surface for potential flow and real flow. If
the pressure is integrated over the cylinder surface, the force acting on the cylinder will be
obtained. Becuase the pressure force is normal to the cylinder surface, it is decomposed in
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a vertical components and horizontal component. The vertical component is the lift force
while the horizontal component is the drag force.

It is this vortex shedding that causes the oscillation of the lift- and drag forces on a cylinder.
The lift forces oscillate with a mean value of zero because the lift is only induced by the
alternating vortex separation while the drag force has a non-zero mean value. This is because
the skin friction also gives a drag force in addition to the pressure induced drag which is
a result of the vortex shedding. Figure 2.4 shows the vortex shedding process for a single
cylinder at Reynolds number of 100.

(a) t/Tv =0 (b) t/Tv =0.17

(c) t/Tv =0.34 (d) t/Tv =0.51

(e) t/Tv =0.68 (f) t/Tv =0.85

Figure 2.4: Plot of magnitude of vorticity for Reynolds number 100 that shows vortex shed-
ding from a single cylinder. Figures are taken from master project fall 2014.

In figure 2.4 we see that vortex A has just cut another vortex off from the vorticity in the shear
layer and a new vortex, B, has developed. B is then dragged across the wake and separates A,
and a new vortex, C, is created. Vortex A is transported downstream in the wake. In the last
picture, vortex C is about to separate B and a new vortex, D, is developing.

The frequency of the vortex shedding is expressed dimensionless by the Strouhal number.
This is given as:

St = fv D

Uc
(2.6)
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Where fv is the vortex shedding frequency. The lift force oscillates with this frequency. This
is because the lift changes direction as the vortex shedding changes side of the cylinder. This
is due to sensitivity to variations in the transverse direction. The drag force on the other hand
is not, and oscillates with frequency 2 fv .

If the flow is not steady but oscillating, the vortex shedding is dependent on the oscillation
period. If the period is too small the vortices do not have time to develop and shed before
the flow changes direction. There will thus be no vortex shedding. This could be the case of a
circular cylinder piercing the free surface and the flow is induced by waves (Pettersen, 2007).
The Keulegan-Carpenter number is used to classify these cases. The Keulegan-Carpenter
number is given as:

KC = Uc T

D
(2.7)

Where Uc is the incoming velocity, T is the flow oscillation period and D is the cylinder di-
ameter. Vortices will shed for a KC-number higher than 7-8.

Reynolds number

The Reynolds number is named after Osborne Reynolds who found out that the flow regime
of the fluid mainly depends on the ratio of inertia forces to viscous forces (Cengel and Cim-
bala, 2010). It is given as:

Re = Intertia forces

Viscous forces
= Vav g D

ν
= ρVav g D

µ
(2.8)

If the ratio of the inertia forces and viscous forces is the same for two flows in the same direc-
tion, there is a geometrical similarity of the streamlines. This is called mechanical similarity,
(Schlichting and Gersten, 2000). In the case of a cylinder with incoming uniform flow, Vav g

will be equal to the incoming flow velocity Uc . D is a characteristic length which in this case
is the cylinder diameter. µ is the dynamic viscosity of the fluid.

At high Reynolds numbers the inertia forces will dominate the viscous forces. This can be
seen from equation 2.8 since the inertia forces are related to the fluid velocity. This also ex-
plain why the viscous friction forces can be neglected at high Reynolds numbers. Another
consequence of this is that the viscous forces cannot compensate for the random fluctua-
tions in the fluid, and it thus becomes turbulent. At lower Reynolds numbers this is not the
case. Here the viscous forces are significant and they keep the fluid in line, and thus laminar
flow.

Depending on what the Reynolds number of the flow is, different flow regimes will occur. An
overview of the different flow regimes and for which Reynolds number they occur is given in
figure 2.5. The figure is taken from Sumer and Fredsøe (1997).
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Figure 2.5: Regimes of flow around a circular cylinder in a steady current. Figure taken from
Sumer and Fredsøe (1997).

In OpenFOAM the Reynolds number itself is not specified, but it is accounted for when spec-
ifying the dynamic viscosity. This is the only parameter that is given to the program. We thus
choose a Reynolds number that we want to simulate for in addition to an incoming velocity.
The cylinder diameter is known as well as the fluid density, ρ. Equation 2.8 is then solved
with respect to µ and the value of it is given to the program.

2.1.3 Modeling the fluid motions correctly - Navier Stokes equations

The boundary layer approximations mentioned earlier is, as the name implies, only an ap-
proximation. The equation is an approximation of is the Navier-Stokes equation. This equa-
tion is considered to model the fluid motion of viscous fluids satisfyingly. The Navier-Stokes
equation will not be derived here, but it will be described shortly. The equation is given as:

∂U

∂t
+U ·∇U =−∇p

ρ
+ν∇2U+ g (2.9)
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Equation 2.9 is a set of unsteady, nonlinear, second order, partial differential equations (Cen-
gel and Cimbala, 2010) and is currently impossible to solve analytically for complex flow
fields. It has four unknowns and there is only three equations, one for each dimension. The
continuity equation is thus used as the fourth equation. The continuity equation is described
in section 3.1.1.

The Navier-Stokes equation can be solved numerically, and that is what OpenFOAM is doing.

2.2 Flow around tandem circular cylinders

When a second cylinder is placed in the vicinity of the first one, considerable changes hap-
pen to the flow, vortex shedding and magnitude of forces, (Zdravkovich, 2003) relative to a
single cylinder. It was first believed that the presence of the second cylinder would have no
effect on the first one, but early experiments showed that this was not the case.

2.2.1 Interference regions

The cylinders can be arranged in inifintely many different ways, but three categories of ar-
rangement are identified; tandem arrangement, sidy-by-side arrangement and staggered ar-
rangement. In connection with the different arrangement of the cylinders, there are many
different kinds of flow interference. Figure shows the different interference regions. The fig-
ure is taken from Zdravkovich (2003).

Figure 2.6: Regions of interference around a circular cylinder. Figure taken from Zdravkovich
(2003).

In this work, attention is only given to the tandem arrangement, and we see from figure 2.6
that the tandem arrangement is in the wake interference region, which is marked by the red
dotted line in figure 2.6. In this region, the downstream cylinder is submerged in the wake of
the upstream cylinder and sees a disturbed incoming flow. The tandem cylinders experience
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two types of wake interference; with or without vortex shedding from the upstream cylinder,
but there are also subdivisions. Zdravkovich (2003) gives the following classification of the
interference regimes.

• W-T1. Regime with no reattachment of the separated shear layer from the upstream
cylinder onto the downstream cylinder. This happens for spacings 1 < S/D < 1.1−
1.3. The eddy street behind the cylinders is formed by the free shear layers from the
upstream cylinder. It is often said that the two cylinders act as a single body in this
regime.

• W-T2. In this region the free shear layer from the upstrem cylinder reattaches onto the
downstream cylinder eiter alternately, permanently or intermittently. Now, the vortex
shedding only takes place behind the downstream cylinder. 1.1−1.3 < S/D < 3.5−3.8

• W-T (1 or 2). This is a bistable regime. 3.0 < S/D < 4.0. An intermittent change-over
takes place with and without vortex shedding from the upstream cylinder.

• W-T (1+2) is the coupled vortex shedding regime. 3.8 < S/D < 5− 6. There are two
vortex streets that are synchronized in phase and frequency. The vortices shed from
the upstream cylinder pair with the vortices behind the downstream one.

• W-T (1,2). Here we see uncoupled vortex shedding, which happens for spacings S/D >
5−6.

All spacings are dependent on the Reynolds number. This was pointed out by Ljungkrona
et al. (1991). Figure 2.7 shows that the critical spacing between two tandem cylinders vary
with changing Re. The profile follow the one of the vortex formation length for one single
cylinder. The figure is taken from Ljungkrona and Sundén (1993).

Figure 2.7: Critical spacing between two tandem cylinders and vortex formation length for a
cingle sylinder as a function of Reynolds number. Figure taken from Ljungkrona and Sundén
(1993).

The variation in critical spacing causes the interference regimes mentioned above not to be
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set for certain spacings, but also to be dependent on Reynolds number.

2.2.2 Flow patterns

The different types of interference will naturally induce different flow patterns around the
tandem cylinders. These flow patterns will vary with spacing and Reynolds number, as the
interference regions do. Igarashi (1981) classified different flow patterns for different spac-
ings anr Reynolds numbers. This classification is shown in figure 2.8 and 2.9. Both figures
are taken from Igarashi (1981).

Figure 2.8: Classification of flow patterns for different spacings and Reynolds numbers. Fig-
ure taken from Igarashi (1981).

Figure 2.9: Different flow patterns for tandem cylinders. Figure taken from Igarashi (1981).

These patterns are described as follows, (Igarashi, 1981):
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• A: The separated shear layer from the upstream cylinder does not reattach onto the
downstream cylinder. The two cylinders act like a single body.

• B: Vortex formation of the shear layer and vortex shedding in the near wake of the
downstream cylinder and reattachment of the other shear layer onto the downstream
cylinder are synchronized. The frequency of the vortex shedding is nearly constant
irrespective of the free stream velocity.

• C: Quasi-stationary vortices are formed between the cylinders.

• D: The quasi-stationary vortices become unstable and the vortex shedding is detected
intermittently.

• E: The separated shear layer from the upstream cylinder rolls up intermittently for a
moment in front of the downstream cylinder. This is a bistable flow between D and F.

• E’: A bistable flow whose one pattern continues for a long time is predominant.

• F: The separated shear layer from the upstream cylinder rolls up in front of the down-
stream cylinder.

• G: Unstable flow in the transition regin between patterns A, B and C.

For pattern A, the downstream cylinder is located inside the vortex formtion region of the
upstream cylinder and the free shear layers wrap around it. The shear layers become elon-
gated compared to the ones of a single cylinder, the wake becomes narrower and vortex
shedding happens for a higher Strouhal number, (Sumner, 2010). Ljungkrona and Sundén
(1993) reported in their studies that the vortices behind tandem cylinders with flow pattern
A is stronger for lower Reynolds numbers (Re = 3.3 ·103) and the intensity decreases as the
Reynolds number increases. This due to the longer formation length for the lower Reynolds
numbers (see figure 2.7). The downstream cylinder suppresses the vortex formation more
and more as the Reynolds number increases.

The reattachment region comprises patterns B, C, D, E, E’ and G, (Sumner, 2010). Here, the
shear layer from the upstream cylinder can no longer enclose the downstream cylinder and
they start to reattach to it instead. Eddies may form in the gap between the cylinders. The
gap flow is very complex and it has not yet been found a complete explanation of what hap-
pens in this region. In pattern B, there is a synchronization of reattachment of the upstream
shear layer ont the downstream cylinder and a vortex shed from the opposite side of the
downstream cylinder. In pattern C, quasi-stationary eddies are formed in the gap and the
reattachment is nearly continous. When the spacing is increased, intermittent vortex shed-
ding from the upstrem cylinder can happen in the gap. This is pattern D in the classification
of Igarashi (1981).

In pattern F, there is vortex shedding from both cylinders. This happens as the critical spac-
ing between the cylinder is reached. The vortices shed from the upstream cylinder impinges
the downstream one and this triggers the vortex shedding of the downstream cylinder. This
flow pattern is also called co-shedding because of this phenomena.

The difference between a bistable flow and an unstable flow is that the flow picture of an
unstable flow last only for a very short time before it changes, while that of a bistable flow
has a certain duration.
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2.2.3 Pressure distributions and fluctations

The pressure distributions around tandem circular cylinders tell us much of what happens
regarding the flow picture. Because the pressure is a primary output from numerical simu-
lations, this data gives us the most accurate information since it has not been subjected to
manipulation in the software. It is thus important to recognize some of the most prominent
characteristics of the pressure distribution profiles to be able to indentify flow pictures.

There are obviously many dissimilarities between the pressure distribution of a single cir-
cular cylinder (as seen in sigure 2.2) and those of tandem cylinders. Because the pressure
distributions change with different flow pictures, these will vary with Reynolds number and
spacing.

The different types of Cp distributions for the upstream and downstream cylinders are given
by Zdravkovich (2003) as:

Upstream cylinder:

(i) A positive pressure coefficient, Cp , in the stagnation point region

(ii) Favorable and adverse pressure gradients along the surface

(iii) Almost constant base pressure coefficient for upstream cylinder, Cpb1. Where the base
pressure is the pressure at θ = 180 degrees.

Downstream cylinder:

(i) The base pressure behind the upstream cylinder, Cpb1 faces the upstream side of the
gap and the gap pressure on the downstream cylinder, Cpg 2 is exerted along the front
side of the downstream cylinder. Cpb1 = Cpg 2 indicates that there is a lack of flow in
the gap.

(ii) If Cpg 2 <Cpb1, CD2 is negative and the drag force acts as a thrust

(iii) There are two symmetric peaks in the pressure at the sides of the downstream cylinder
for S/D ∼ 2. This indicates reattachment of the shear layers from the upstream cylinder
onto the downstream cylinder. These peaks are not seen for very small and very large
spacings.

These types of pressure distributions were based on the results of experiments done by Hori
(1959). These experiments were done for spacings of S/D = 1.2,2,3. And Reynlds number
Re = 8 ·103.

Later, Igarashi (1981) did extensive research on the pressure distribution around tandem
cylinders in the subcritical flow regime. Figure 2.10 is taken from his experiments. They
show the pressure distribution around the uprestream and downstrea cylinder for Re = 3.5 ·
104 and spacings varying from S/D = 1.03−3.97.
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(a) Upstream cylinder

(b) Downstream cylinder

Figure 2.10: Pressure distribution around tandem cylinders. Figures taken from Igarashi
(1981).

In figure 2.10a we can cleary see the Cp characteristics listed above. In the stagnation point
(at 0 degrees) there is a positive pressure coefficient. After this point we see a favorable pres-
sure gradient. The pressure gradient switches sign at about 70 degrees and we get an adverse
pressure gradient. For small spacings the base pressure coefficient for the upstream cylinder
shows a rather flat curve. The base pressures are almost the same as the gap pressure coef-
ficients of the downstream cylinder shown in figure 2.10b, which indicates quasi-stationary
vortices in the gap region, (Igarashi, 1981). The spacing S/D = 3.97 is larger than the critical
spacing for this Reynolds number, and the pressure distribution of the upstream cylinder
shows a profile similar to the one of a single cylinder. The separated shear layers now roll up
in front of the downstream cylinder.

The Cp characteristics of the downstream cylinder can be recognized in figure 2.10b. For
spacings up to the critical spacing, the pressure coefficient has a negative value in the gap
and maximas at the reattachment and separation points. For the smallest spacing there is
no reattachment preak and the two cylinders thus act as a single body where the shear layers
from the upstream cylinder wrap around the downstream one without reattaching. For the
largest spacing, the pressure distribution shows a similar profile as for a single cylinder with
turbulent separation, (Igarashi, 1981). This is coherent with vortices shed from the upstream
cylinder impinging the downstream cylinder, creating a more turbulent flow.

Figure 2.11 shows the pressure fluctations around tandem cylinders for the same Reynolds
number and spacing range as figure 2.10. The figure is taken from the same research.



22 CHAPTER 2. BACKGROUND THEORY

(a) Upstream cylinder (b) Downstream cylinder

Figure 2.11: Pressure fluctations around tandem cylinders. Figures taken from Igarashi
(1981).

In figure 2.11a, the peaks in the RMS are located at the separation point. For spacings up
to the critical spacing, these values are small, (Igarashi, 1981). Beyond the critical spacing,
the profile is similar to the one of a single cylinder but the magnitude of the maximas are
lager. The second maxima at this curve is due to the vortex formation which happens after
the separation point. The reversed flow of the separated shear layer reattaches onto the rear
part of the cylinder and separates again at the position of the second peak in the RMS profile.

The RMS distributions along the downstream cylinder show more chaotic profiles. For spac-
ings up to the critical spacing and larger than the spacings of single body behaviour, there
are two peaks in the RMS profiles. One is for the reattachment point and the other is for the
separation point. The increase in RMS at the front part of the downstream cylinder with in-
creased spacings shows that the fluid flow is more active in the gap as the spacing increases.
The largest value of the RMS is seen for the spacing greater than the critical spacing. Here,
the downstream cylinder sees a chaotic inflow. For the smallest spacing there is only one
peak in the RMS profile and this is the separation peak, due to the two cylinders acting as a
single body.

2.2.4 Strouhal number

Xu and Zhou (2004) did extensive research on Strouhal numbers in the wake of tandem
cylinders with spacings of 1 < S/D < 15 and Reynolds numbers of 800 < Re < 4.2 ·104. Figure
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2.12 shows how the Strouhal number vary with spacing and Reynolds number.

Figure 2.12: Strouhal number data for two tandem circular cylinders in cross-flow as a func-
tion of the spacing: ∇, Re = 1.2 ·103 (Xu and Zhou, 2004); �, Re = 2.9 ·103 (Xu and Zhou,
2004); ◦, Re = 7 ·103 (Xu and Zhou, 2004); �, Re = 4.2 ·104 (Xu and Zhou, 2004); solid line,
Re = 2.2 ·104 (Igarashi, 1981). Figure taken from Xu and Zhou (2004).

For small spacings, when the cylinders act like a single body, the Strouhal number is ini-
tially larger than that of a single cylinder. It then decreases rapidly with increasing spacing,
Sumner (2010). Zdravkovich (2003) explains this with the narrow wake the two cylinders
create. At the critical spacing there is a discontinous jump in the Strouhal number which
corresponds to the change in flow pattern when vortices are shed in the gap. Just before the
critical spacing is reached, Igarashi (1981) reported that two distinct Strohual numbers can
be identified. This is due to the bistable flow (flow pattern E in figure 2.9).

In the spacing region of 1.18 < S/D < 2.06 Igarashi (1981) reported a large dependency on
Reynolds number. This is clear in figure 2.12 as the discrepancies between the profiles for
the different Re is larger.

In the co-shedding region for spacings larger than the critical spacing, the Strohual number
is the same for the upstream and the downstream cylinder, Xu and Zhou (2004).

2.2.5 Three-dimensionality

Three-dimensionality is especially important for turbulent flows, as the flow is more dis-
turbed and rotational. As mentioned in chapter 1.1, the early numerical simulations of flow
was done in 2D. This due to the lack of data power and memory. For tandem cylinders, the
2D simulations modeled the flow picture in a satisfying way, but there were large errors in the
forces and Strouhal numbers obtained from the simulations, (Papaioannou et al., 2006). It
was found by Papaioannou et al. (2006) that 2D simulations over-predicts the CD of the up-
stream cylinder while under-predicting that of the downstream cylinder. It was concluded
that this was due to the vortices in the 2D simulations were stronger than those of the 3D
simulation.
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According to Faltinsen (1990), for a 3D cylinder we speak of correlation length. This is a part
of the cylinder where the hydrodynamic forces have the same phase, i.e. the lift force has the
same phase along a length and the drag force have the same phase along a length. Because
the change in phase of the lift-, and drag-force changes along the span of the cylinder, there
is a reduction in the total lift-, and drag force on the 3D cylinder compared to a 2D cylinder.
This is due to a cancellation effect due to the unsynchronized shedding from the different
correlation lengths. The vorticity picture in 3D is very complicated and the effects of the vor-
tices in different directions interacting with each other is reflected in the forces. Figure 2.13
shows the correlation length for a circular cylinder with respect to Reynolds number. The
decrease in correlation length for turbulent flows with Re > 105 is due to the disorganized
flow at this Reynolds number. It is thus more difficult to maintain the same phase of the
forces over a long span of the cylinder.

Figure 2.13: Correlation length for a circular cylinder with respect to Reynolds number. Fig-
ure taken from Greco (2013).

Wu et al. (1994) examined the flow field in the wake of circular cylinders in tandem arrange-
ment and focused on the spanwise coherence of the velocity field. It was found that in the
reattachment regime, the correlation length for the downstream cylinder was longer than
that of a single cylinder. In this regime there are no vortices behind the upstream cylinder. In
the co-shedding regime the opposite effect was discovered. Now, the correlation length was
smaller than that of a single cylinder. It was concluded that the vortex impingment on the
downstream cylinder enforced the turbulence in the flow and thus caused the correlation
length to be smaller.

It is clear that for a 3D simulaion, a cylinder length of 4D is enough to capture the 3D effects.
This was also stated by Papaioannou et al. (2006).

2.3 OpenFOAM

OpenFOAM is an open source CFD software package that comes with a series of different
solvers. It can thus be applied for many different engineering problems, including incom-
pressible flow as used in this work. Since it is an open source program, all codes are available
for the user to inspect and manipulate for individual use. Some basic tutorials can be found
on the OpenFOAM web site, but there is no detailed description of the program. However,
there are places to look for understanding regarding how the program works. The Open-
FOAM programmers guide (Foundation, 2013) found in the program files explains which
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methods OpenFOAM uses for solving the equations. In addition to this, there are noumer-
ous forums on the internet where the use of the program is discussed.

OpenFOAM uses the finite volume method to solve partial differential equations (PDEs).
This method expresses the conservation of one or more quantities by discretization. The el-
ements in the mesh used for the simulations act like many control volumes which the PDEs
are integrated over. These integrations result in balance equations which are discretized with
respect to some unknowns (Eymard et al., 2010). The solution is defined in the cell centers.
The numerical method of OpenFoam will be described further in chapter 3.
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Chapter 3

Numerical solver methods in OpenFOAM

As mentioned earlier, a CFD software relies on numerical modeling. The problem that is go-
ing to be solved is often described by partial differential equations (PDEs). When we look
at a circular cylinder in a fluid, these equations are the Navier-Stokes equations. To be able
to solve these equations the program needs to discretize them. This means that approxi-
mate algebraic relations that represent the PDEs are derived. Since the algebraic equations
are only approximations, we get a residual, an error. The user can define the residual to be
as small as the user finds satisfactory. There are various ways of doing this discretization.
OpenFOAM uses the finite volume method. This method is explained in section 3.2. To be
able to solve the equations, a mesh has to be generated. The governing equations is then dis-
cretized over this mesh. When the flow is turbulent, a turbulence model needs to be applied.
The large eddy simulation model used in this work is presented in section 3.5.

OpenFOAM has numerous solvers and algorithms and the user specify in the system case
folder which ones that are going to be used. To explain all of these different solvers will be
far too extensive for the scope of this work and thus, only the applications used in this work
will be presented. The equations and explanations used in this chapter is mainly based on
theory from Versteeg and Malalasekra (1995) and Ferzinger and Peric (2002).

3.1 Governing equations of fluid flow

In this section the governing equations of fluid motions are described by the conservation
laws. These laws include conservation of mass and conservation of momentum, and to-
gether they make a basis for the description of fluid flow. The integral form of these equa-
tions over a given control volume will be explained.

3.1.1 Mass conservation - the continuity equation

The mass conservation is based on the fact that no mass should disappear or be added in-
side the element. It is just a way of setting up an equation that explains that the mass that
flows into an element should also flow out of it. Terms considered are the rate of increase of
mass inside the element and the net rate of flow of mass across the element boundaries. On
integral form this becomes:
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∂

∂t

∫
Ω
ρdΩ+

∫
S
ρU ·ndS = 0 (3.1)

Here,Ω is the entire fluid domain and S is the surface of the domain.

Since ρ is constant over the entire domain for an incompressible fluid, ∂ρ∂t = 0 and the mass
conservation equation becomes:

∫
S
ρU ·ndS = 0 (3.2)

It means that the net flux over the element surface is equal to zero at all times. The mass
conservation equation is also called the continuity equation.

3.1.2 Momentum conservation

This law is based on Newtons second law where the energy added to the fluid particle equals
the sum of the forces acting on it. There are two types of forces acting on a fluid particle.
These are surface forces and body forces. Surface forces are pressure forces and viscous
forces while body forces can be gravity force, centrifugal force, Coriolis force and electro-
magnetic force. Normally the surface forces are given in a separate term in the conservation
equation and the body force effects is represented by source terms. The integral form of the
conservation equation is:

∂

∂t

∫
Ω
ρUdΩ+

∫
S
ρUU ·ndS =

∫
S
Γ∇U ·ndS +

∫
Ω

PdΩ (3.3)

Where P is the source term. The equation also includes a diffusive term on the right hand
side. On the left hand side there is a rate of change-term and a convective term.

The diffusive term can be written as:

− (p + 2

3
µ∇·U)I+2µD (3.4)

where

D = 1

2
(∇U+ (∇U)T ) (3.5)

Since ∇·U = 0 for incompressible flow, equation 3.4 can be written as:

Γ∇U =−pI+µ(∇U+ (∇U)T ) (3.6)

This expression for Γ∇·U can now be put into equation 3.3. By also dividing the equation by
ρ We get:
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∂

∂t

∫
Ω

UdΩ+
∫

S
UU ·ndS =−

∫
S

p̃ndS +ν
∫

S
(∇U+ (∇U)T ) ·ndS +

∫
Ω

PdΩ (3.7)

p̃ is the kinematic pressure: p̃ = p
ρ . This equation can be recognized as an integral version of

equation 2.9.

These integral forms of equations are used by OpenFOAM and are integrated over the ele-
ments and discretized.

3.2 The Finite Volume Method

The finite volume method is a discretization technique used in OpenFOAM. The basis for
this method is the mesh of the computational domain. The mesh consists of many cells.
In this project hexahedronal elements are used. These consists of eight nodes, one in each
corner. Lines are drawn between each node and four lines makes up one face. Figure 3.1
shows to neighbor hexahedronal cells with some parameters that are defined in the finite
volume method.

Figure 3.1: Neighbour cells with parameters used in the finite volume method. Figure taken
from OpenFOAM Programmer’s guide, (Foundation, 2013)

In this figure, P and N define the cell centers, d is the distance between the centers, f is the
label for a surface and S f is the surface normal vector.

Equation 3.7 is convection-diffusion equations including a source term. The pressure and
velocities are coupled. These values thus have to be solved simultaneously.

The steady convection and diffusion problem of a property φ with a source can be written
as:

∫
S
ρφu ·ndS =

∫
S
Γ∇φ ·ndS +

∫
Ω

SφdV (3.8)



30 CHAPTER 3. NUMERICAL SOLVER METHODS IN OPENFOAM

If a 1D-problem is considered, integration over an element will look like this:

(ρuSφ)e − (ρuSφ)w = (ΓS
∂φ

∂x
)e − (ΓS

∂φ

∂x
)w + S̄VR (3.9)

Here, subscript w defines the left element border, subscript e is the right element border, Γ
is a diffusion coefficient, S̄VR is the mean value of the source term over the element and VR

is the volume of the element.

To get the discretized equations for the problem, the terms in equation 3.9 must be approx-
imated. Two variables, F and D, which represent the convective flux per unit area and diffu-
sion conductance respectively, are defined as:

F = ρu (3.10)

D = Γ

∆x
(3.11)

The integrated equation 3.9 can now be written as:

Feφe −F wφw = De (φE −φR )−DW (φR −φW )+Su +SrφR (3.12)

And from the continuity equation it follows that:

Fe −Fw = 0 (3.13)

The velocity is assumed to be known. To solve the equation φ needs to be discretized at the
cell faces.

OpenFOAM solves all the flow variables at the cell center value. We thus have one value per
cell and this value represents the average of the values in this cell. This could lead to prob-
lems when the pressure and velocity terms are coupled. For example if the pressure values
in every second cell is the same (the checker board pressure field), the pressure gradient ap-
proximated by linear interpolation in the center of one cell would be zero. To account for
this, the volume fields have a boundary field. This is a new variable that saves the velocity
values at the faces.

Between the cell centers the value of the parameters can be found in many different ways.
OpenFOAM has a wide range of schemes that can be used. As mentioned it will be too ex-
tensive to go into all these different schemes, but the one that is used in the analyses done
in this work will be presented. This is the Gauss linear scheme. Here, linear interpolation is
used to find the values between two elements.

3.3 Linear interpolation

This type of interpolation method uses the values in two cell centers to find the value at the
surface between them.
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φe = 1

2
(φR +φE ) (3.14)

φw = 1

2
(φW +φR ) (3.15)

Substituting this into 3.12 for a uniform grid gives:

[(Dw + Fw

2
)+ (De − Fe

2
)+ (Fe −Fw )−Sr ]φR = (Dw + Fw

2
)φW + (De − Fe

2
)φE +Su (3.16)

or
aRφR = aWφW +aEφE (3.17)

3.4 Solution algorithm PISO for pressure-velocity coupling

As mentioned earlier, it was assumed that the velocity field was known in the convection
of the variable φ. In general this is not the case. The velocity field is found as a part of the
solution process. As we know, the Navier-Stokes equation has non-linear terms and all the
parameters are coupled. The hardest parameter to find is the pressure. It appears in both
momentum equations but there are no equation describing the pressure.

The problems with the equations are normally solved by an iterative solution method. There
are different methods for finding the entire flow field. In the simulations done in this work,
the PISO (Pressure Implicit with Splitting of Operators) solver has been used.

The PISO algorithm is a pressure-velocity calculation procedure. It involves one predictor
step and two corrector steps.

In the predictor step, the pressure field is guessed as p∗. This pressure fields give velocity
components u∗ and v∗. But unless p∗ is correct, the velocity fields u∗ and v∗ will not satisfy
the continuity equation.

The first corrector step then gives new velocity fields (u∗∗ and v∗∗) which satisfy the dis-
cretized continuity equation. The equations for the corrected values of u and v will not be
given here, but they are substituted into the discretized continuity equation which yields the
pressure correction (p

′
) equation. This is then used to find the velocity components u∗∗ and

v∗∗.

In the second corrector step, a twice-corrected velocity field is found by solving the momen-
tum equations again. A new pressure correction equation is defined such that

p∗∗∗ = p∗∗+p
′′ = p∗+p

′ +p
′′

(3.18)

where p
′′

is the second pressure correction. The twice-corrected velocity field is substituted
into the discretized continuity equation and this results in the pressure correction equation.
This equation is solved to find p

′′
and then the twice-corrected pressure, p∗∗∗.

This process is done iterative, such that it is repeated until convergence.
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3.5 Turbulence modeling and LES

A turbulent flow is characterized by randomness of transport variables with respect to time
and space, mixing and a wide range of length- and time scales. The basic entities of a tur-
bulent flow are rotating masses called eddies. The eddies are of different sizes. The largest
eddies extract kinetic energy from the mean flow due to the instabilities in the flow. The
energy will transfer from the large eddies to the smaller eddies where it is mopped up due
to viscous dissipation. There is a large range of eddy sizes and the difference between the
largest and the smallest eddies is quite large. Based on the Kolmogorov length scale, the ra-
tio between the largest and the smallest eddies are related to the Reynolds number in the
following way:

η

l
∼ Re− 3

4 (3.19)

η is the length of the smallest eddies and l is the length of the largest eddies. Thus, as the
Reynolds number gets bigger, the difference in sizes gets bigger. All of the length scales needs
to be captured while modeling the turbulent flow to get the entire physics of the flow. This
is very challenging in numerical simulation. There is a randomness in turbulent flow and
the instantaneous velocity of the flow can be described as u = ū +u′ where ū is the mean
component of the velocity and u′ is the fluctuating component. Modeling the turbulence
can be done in different ways.

At this time, Reynolds Averaged Navier-Stokes (RANS) is the most commonly used turbu-
lence model in numerical simulation. In RANS modeling, the flow variables are split into a
mean (time averaged) part and a turbulence (fluctuating) part. The fluctuating part of the
variable is modeled with a turbulence model. An example of a turbulence model is the k −ε
model. If the turbulent part is very large, RANS is not a suitable model to use. Examples
of flows where this is the case are wake flows and flows with large separation, such as flow
around bluff bodies. The RANS-model will not be further discussed in this work.

A turbulence model more suitable for bluff-body flow is the Large Eddy Simulation (LES)
model. In LES, the large scale eddies are solved by the discretized equations, while the
smaller eddies are modeled. In turbulent flows at high Reynolds number, the smaller eddies
are nearly isotropic and behave in a general way. The larger eddies, which extract kinetic en-
ergy from the flow, are anisotropic and their behavior is dependent on boundary conditions,
geometry of the domain and body forces. It is the large eddies that makes turbulence mod-
eling tricky, and this problem is avoided in LES. The drawback of using LES is that it requires
that the mesh close to surfaces is very fine. This results in a very small time step and thus
very long computational time and the requirement of large computer memory and power.

To separate the large eddies from the smaller ones, LES uses a spatial filtering operation. A
cutoff length is chosen and the eddies that are longer than this cutoff length will be resolved
in the flow computation. In CFD computations with the finite volume method, only one
value of each flow parameter is retained in each grid cell. The cutoff length is thus chosen to
be the same as the grid length because finer details are lost anyways due to them not being
captured by the grid. The eddies smaller than the cutoff length are filtered out together with
the effect these will have on the larger eddies. This effect needs to be accounted for and this
is done by a subgrid scale model.
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On the filtered form, the incompressible continuity and momentum equations ( 3.2 and 2.9)
becomes (Versteeg and Malalasekra, 1995):

∂ūi

∂xi
= 0 (3.20)

∂ūi

∂t
+ ∂ūi ū j

∂x j
=− 1

ρ

∂p̄

∂xi
+µ∂

2ūi

∂x2
j

− ∂τi j

∂x j
(3.21)

The overbar indicates a filtered flow variable which is space-filtered and not a time averaged
parameter as it does in the RANS method. i , j = 1,2,3 and refers to the velocity component
in the streamwise (x), crossflow (y) and spanwise (z) flow direction and xi represents the
respective directions. The last term, τi j , is a set of stresses caused by the filtering operation
and is given as (Versteeg and Malalasekra, 1995):

τi j = ui u j − ūi ū j (3.22)

Since a big portion of these terms accounts for the convective momentum transport due
to interactions between the unresolved subgrid scale eddies, they are often called subgrid
scale stresses. The subgrid scale stresses must be modeled. There are several subgrid scale
models, but the one used in this work is the Smagorinsky model. This model, (Prsic et al.,
2014), assumes that the turbulent stresses behave in the same way as the large scale strain
rate tensor, Si j :

τi j − 1

3
δi jτkk =−2νt S̄i j (3.23)

νt is the subgric-scale eddy viscosity and δi j is the Kronecker delta. In the resolved field, the
strain rate tensor can be written as:

S̄i j = 1

2
(
∂ūi

∂x j
+ ∂ū j

∂xi
) (3.24)

νt is a function of the strain rate tensor and the subgrid-scale length, l :

νt = l 2|S̄i j | (3.25)

|S̄i j | =
√

2S̄i j S̄i j (3.26)

The subgrid-scale length is given as:

l =Cs∆̄ (3.27)

where∆ is the cutoff length. Cs is the Smagorinsky constant and in this work it has a constant
value of 0.2.
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Chapter 4

Numerical setup

All CFD codes contain three elements, or stages. These main elements are the pre-processor,
the solver and the post-processor, (Versteeg and Malalasekra, 1995). These elements can
also be considered as stages in the simulation process. In the pre-processing stage, the ge-
ometry of the computational domain is defined and a mesh is generated. The correct gov-
erning equations are chosen to solve the physical problem and appropriate boundary condi-
tions are specified. The pre-processing stage is crucial for the entire computation. The user
has to have enough knowledge to make the right decisions in this stage. The solver stage is
done entirely by the software. The user has to specify which kind of solver method is going
to be used. The post-processing stage is where results are taken out and presented in various
ways.

In the previous chapter some numerical methods and governing equations in OpenFOAM
were presented. In this chapter the schemes used in this work will be further specified and
described. The chapter is organized as follows: In section 4.1 the computational domain
and grid are presented followed by a description of the boundary conditions in section 4.2.
A verification of the computational grid is conducted in section 4.3. The specifications of the
solver method is presented in section 4.4 and in section 4.5 some tools used for visualization
will be described such that it is clear how the results are obtained and thus easier to compare
results to other work in a correct way.

Since this work is inspired by the previous work by Abrahamsen-Prsic (2015) and Prsic et al.
(2014), the boundary conditions and mesh used in the simulations are the same as used in
the mentioned work. The aspects of the mesh, boundary conditions and post-processing
tools will still be described here, with references to the above mentioned research.

4.1 Computational domain and grid

This section describes the geometry of the computational domain and how it is represented
by a grid. The choice of domain size is an essential part of the analysis. It is important that
the domain is large enough to capture al the effects of the flow around the cylinders. If it is
too small, the boundaries could have an unwanted effect on the flow parameters in the do-
main. The grid generation is a widely discussed aspect. It is not yet a standard for generating
satisfying meshes and whole books are written on the topic. The grid has to be small enough
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to capture the flow variations in the entire domain. Close to the cylinders and other places
in the domain that could be subjected to large and detailed variations in the flow, the grid
has to be very fine. It is easy to think that if the entire domain is divided in to infinitely many
fine cells, the solution would be perfect. But to this day the computer capacity is not large
enough to make this possible. A compromise must be made by distributing the cells in a way
that lets the most important locations in the domain have a finer mesh.

4.1.1 Domain

A 2D, non-scaled version of the computational domain used in this work is shown in figure
4.2. In reality the domain is a 3D rectangular shape. The domain extends from 10D in front
of the upstream cylinder center to 27D behind the downstream cylinder. The cylinders both
have diameters of D = 1 meter. The height of the domain in the y-direction is 20D where the
top and bottom of the domain are boundaries that shall represent an infinite fluid domain.
The inflow at the left boundary (flow is from left to right) is a uniform flow in x-direction of
magnitude U that represent a Reynolds number of 13100. The length of the domain in the
spanwise z-direction is 4D, which is sufficient to capture the 3D effects of the flow. The spac-
ing between the cylinder centers is 5D. The domain dimensions were based on the research
on flow around tandem cylinders in the vicinity of a wall with incoming flow of Reynolds
number 13100 by Abrahamsen-Prsic (2015) which again was based on the experience from
the research by Prsic et al. (2014). It was concluded that the domain was big enough since
other research had obtained satisfying results with smaller domains with higher Reynolds
number.

The spanwise length of the domain was proven to be sufficient to capture the three-dimensionality
of the flow by Prsic et al. (2014) that simulated a single cylinder in an incoming flow with the
same Reynolds number.

By using the same dimensions as Abrahamsen-Prsic (2015), comparison of the results with
this research will be independent of effects of domain size.

4.1.2 Grid

The domain is discretized in a structured multiblock grid with of a body fitted O-mesh around
the cylinders and H-mesh in the outer parts of the domain. The mesh consists of hexahe-
dronal elements. The O-mesh is divided into different zones such that is possible to easily
control the element size throughout the domain. The mesh closest to the cylinder and in the
gap should be very fine while the outer parts of the domain should have a coarser mesh.

When applying a structured grid care has to be taken to obtain elements that are not highly
skewed or distorted. These are problems that are avoided in an unstructured grid, but for
simple geometries like circular cylinders, structured meshes with hexahedronal cells is nor-
mally used. In this mesh, attention is payed to the transition of cell size between the zones.
It is important to have a gradual transition of the size to avoid numerical instabilities.

Figure 4.1 shows some aspects of the grid. Figure 4.1 (a) shows the entire discretized domain
with its different blocks. The grid consists of 14.3 million cells. Closest to the cylinders there
is a small O-mesh of width 0.2D that provides good control of the cell size closest to the



4.1. COMPUTATIONAL DOMAIN AND GRID 37

cylinders. A second elliptic O-mesh of height 5D is extended around both cylinders. This
region represent a transition from the very fine mesh in the closest vicinity of the cylinder to
the coarser mesh in the outer parts of the domain. In the gap between the cylinders another
O-mesh is used with a very fine resolution to capture the details of the complex flow in this
region. The other parts of the domain, respectively the top, bottom and front of the domain
and the far wake region, is discretized with relatively coarse H-grids. The most critical parts
of the domain are the gap region and close to the cylinder surfaces. These areas have to be
represented by a fine mesh to capture all the changes in the flow. The mesh is highly graded
at the inner O-mesh and slightly graded in the outer bocks. Figure 4.1 (b) shows details of
the mesh in the region close to one of the cylinders and the gap. The cells closest to the
cylidner surface is 0.1733% of the cylinder diameter and there are 254 elements distributed
along the cylinder circumference. The meshes around the two cylinders are identical. The
number of elements in the spanwise z-direction is 95. The origin of the domain is placed in
x = y = z = 0, which is in the center of the upstream cylinder.

Figure 4.1: (a): 2D slice of the mesh in the x-y-plane showing blocks and element refinement.
(b): close-up showing mesh details in the O-grid around the cylinders.
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4.2 Boundary and initial conditions

Theoretically, it is desired that the computational domain is infinitely large such that no ef-
fect of the boundaries on the solution of the flow parameters. This is not possible in practice.
To make the simulations as cheap and efficient as possible it is need for a small domain with
few elements. The boundary conditions implied on the boundaries are thus essential for the
solution. The boundaries must be defined such that they in a best possible way will represent
an infinite domain.

Figure 4.2 shows a 2D slice of the computational domain with its boundary conditions and
parameters. The velocity is given as a vector, U = (u, v, w). At the inlet, the velocity vector
is given a fixed value of U = (1.31,0,0). Physically this means that there is only flow in the
x-direction. The pressure is a scalar and it has no specific direction. At the inlet the pressure
is set as zero gradient. This means that the pressure does not change value in any direction.
This means that there is no change in the pressure magnitude close to the inlet. This coin-
cides with the requirement that there should be no drastic changes close to the inlet (or any
other boundaries) such that the boundary will affect the flow parameters considerably.

At the outlet the pressure is set to a fixed value of 0, and the velocity vector has a zero gradient.
The physical meaning of the fixed value zero of the pressure is that at the outlet pressure is
equal to the pressure of the undisturbed fluid. This is a somewhat tricky boundary condition
since the wake flow behind a bluff body is affected by vortices a very long distance from the
body. The vortices dissipate and die out to some extent, but there is still irregularities in the
flow. The assumption is thus that the outlet is so far away from the body that this boundary
condition will have no effect on the flow parameters at the body. The boundary conditions
are also listed in table 4.1 for readability.

Figure 4.2: 2D slice of computational domain showing parameters and boundary conditions

The cylinders have a no-slip boundary condition. This means that all the velocity compo-
nents are zero, which coincides with the no-slip phenomena of water particles at solid bod-
ies. The pressure has a zero gradient boundary condition. This boundary condition is widely
used in the literature for solid bodies and walls.

The top and bottom of the domain has a slip boundary condition. This boundary condi-
tion means that if the parameter is a scalar, it is set to zero gradient. If it is a vector, the
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Table 4.1: Overview of boundary conditions for different patches

Patch Velocity BC Pressure BC

Top and Bottom ∂U
∂z = 0, ∂U

∂x = 0, v = 0 ∂p
∂xi

= 0

Inlet v = w = 0, u = 1.31 ∂p
∂xi

= 0

Outlet ∂U
∂xi

= 0 p = 0

Cylinders U = 0 ∂p
∂xi

= 0

normal components has a fixed value of zero while the tangential components have zero
gradients. Physically it has the same meaning as the symmetry boundary condition used by
Abrahamsen-Prsic (2015) and Prsic et al. (2014) and is the same boundary condition as used
by Sainte-Rose et al.. It represents no flow through the top and bottom of the domain by
setting v = 0 while the x- and z-components of the velocity are free and fluid is thus allowed
to flow along the boundaries. It is important that the boundaries are adequately far away
from the cylinders such that the induced velocity in the y-direction is negligible.

The side boundaries of the domain, perpendicular to the cylinder axis, have periodic bound-
ary conditions called cyclic. This boundary condition enables two patches to be physically
connected. The patches are paired up with the patches on the opposite side of the domain.
The cyclic boundary condition causes the flux of a flow parameter out of the patch domain
to be equal to the flux into the patch domain. This is mirrored to the paired patch on the
opposite side. This boundary condition has been successfully applied in previous work by
for example Kitagawa and Ohta (2008), Sainte-Rose et al. and Uzun and Hussaini (2012).

The simulation was impulsively started, such that the initial condition of the flow was u =
1.31, v = w = 0 and p = 0. It should be mentioned that p in this context is the difference
between the pressure at a certain point and the pressure in the infinite fluid, p = p ′−p∞.

4.3 Grid verification

Since a grid convergence study is beyond the scope of this thesis work, an evaluation of the
grid used is presented in this section. The grid used is developed by Abrahamsen-Prsic
(2015), which again based the grid on the one used in Prsic et al. (2014). Grid convergence
studies were performed in these above mentioned articles. The grid in this work was devel-
oped from the coarsest grid with 16.5 million cells from Abrahamsen-Prsic (2015) which
gave good results.

When performing a grid convergence study, the convergence is often based on the values of
CD , C̄D , CL and St. What must be kept in mind is that these are parameters that are derived
from the ’raw’ data of the computation, namely the pressure, p, and the velocities, u, v, and
w. The values of the derived parameters may suffer from manipulation errors. It is thus more
interesting in a grid evaluation to look at the primary outputs from the computation.

One of the most crucial areas in a grid is the boundary layer. To get good results the bound-
ary layer needs to be resolved with a lot of elements. There is no default for the number of
elements there should be in the boundary layer other than ’enough’. Naturally, as previously
mentioned, a LES simulation requires a more refined mesh, especially in the boundary layer,
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to capture all the flow aspects here. A way to check whether there are enough elements in
the boundary layer is to plot the velocity profile here. It is important to have a smooth profile
such that the value of the velocity gradient is as correct at possible. Other parameters, such
as vorticity, is calculated using the velocity gradient and it is thus important that the value is
correct. In figure 4.3 the instantaneous velocity profiles at three locations on the cylinder is
plotted together with the grid points.

The three locations represent velocity profiles of three very different shapes. The upper part
of the boundary layer is clearly good enough resolved due to the small changes and tights
spacing of grid points. To the right of the full velocity profiles a detailed plot of the inner
part of the velocity profile is plotted. This region contains the most critical changes in values
from grid point to grid point. In the figures to the right in figure 4.3 the straightness between
the grid points can be seen. This is the effect that is unwanted when resolving the boundary
layer. However, the form of the velocity profile is in all very smooth and details are preserved.
It is thus concluded that the boundary layer mesh is sufficiently refined.

Figure 4.3: Plots of velocity profiles in the boundary layer for different radial locations to-
gether with the grid points. Details of the inner part of the velocity profiles are given in the
corresponding right figures.

In a conventional grid convergence study numerous simulations are done with different
meshing and time steps to be able to choose the grid and time step that gives an accept-
able solution, that is when the solution converges. Since this study already have been per-
formed in the mentioned research by Abrahamsen-Prsic (2015), and because it is very time
consuming, a similar study have not been performed in this work. However, to in a similar
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way confirm that the grid is satisfyingly refined, a simulation with half the amount of ele-
ments in x-direction in the gap has been performed. The rest of the grid is kept similar to
the original one. Due to the sensitivity of the solution to mesh refinement in the gap region,
doing simulations with coarser mesh here will be a good indicator whether the chosen mesh
gives results within the converged range. Table 4.2 shows how the results varied with the two
meshes.

Table 4.2: Results comparison of lift and drag coefficient of fine and coarse mesh

Case #Elements [million] ¯CD1 ¯CD2 C ′
L1 C ′

L2
Fine mesh 14.3 1.2 0.48 0.46 0.98
Coarse mesh 11.3 1.3 0.45 0.56 1.05

The results are quite similar to each other and both meshes gives results within the range that
is represented in different research, (see table 5.2). This could show that both the grids gives
converged results. Abrahamsen-Prsic (2015) reported that the results varied in a small scale
between the finest meshes. Some small variations are thus accepted. This further shows
that the fine grid of 11.3 million cells is safe beyond convergence. The averaging has been
done over the same amount of vortex shedding periods as for the main simulation which
is 30 periods. The similarity of the results indicate that the fine mesh give reliable results.
However, the time history of the lift and drag coefficient of the coarse mesh differs in details
from the ones of the fine mesh. These time histories can be seen in figure A.5 in appendix
A.1. The time histories for the fine mesh are presented in section 5.4. There are thus some
effect of the coarser mesh in the gap region.

4.4 Solver settings

The PISO-algorithm is described in chapter 3.4, however there can be many different set-
tings to the solver. The tolerance for the iteration process is set to 10−6 for pressure, and 10−5

for velocity. This is defined in the fvSolution-script in the system-folder. The different scripts
used in this work can be found in appendix B.

Equation discretization is the process of converting the PDEs into a set of algebraic equations
that in matrix form can be given in vector form and integrated over the cell volumes and
surfaces. There are many different functions available in OpenFOAM to discretise the terms
in the PDEs. The chosen methods are given in the fvSchemes-script. In this work the Crank
Nicolson method is used for time integration and the gradient terms are solved by Gauss
linear and Gauss limited. All these schemes are of second order accuracy, (Foundation,
2013).

The subgrid scale model used is as presented in 3.5 the Smagorinsky model. Lysenko
et al. (2012) did LES-simulations of flow around a smooth circular cylinder using a conven-
tional Smagorinsky subgrid scale model and a dynamic k−equation eddy viscosity subgrid
scale model. It was found that the dynamic subgrid scale model agreed best with results
from other CFD simulations but both subgrid scale models agreed with experimental re-
sults. Breuer (1998) did LES simulations of flow with the same conditions as Lysenko et al.
(2012) with subgrid scale models Smagorinsky and dynamic Smagorinsky as well as with no
subgrid scale model. It was found that the solution changed little with respect to the subgrid
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scale models used, but the results agreed most with experimental results when subgrid scale
models were implemented. It is thus believed that a Smagorinsky subgrid scale model gives
satisfying and reliable results for flow over a circular cylinder at high Reynolds numbers. It
is thus believed that this can be implemented on tandem cylinders as well. The model is
also used for simplicity when comparing results to Abrahamsen-Prsic (2015) and Prsic et al.
(2014), since it is the same model used in this research.

4.5 Visualization

The visualization of the results is done in the program ParaFoam which is the main post-
processor implemented in OpenFOAM. It is a wrapper for the third-party product Paraview.
When using visualization tools, one have to be aware of that the tool itself manipulates the
results obtained from the simulation. In ParaFoam, you can choose cell based or point based
representation. The cell based representation assumes the value to be constant in the entire
cell while the point representation interpolates the values in the points, and a smooth field is
seen. It should be noted that ParaFoam gives the parameter values at the cell corners while
OpenFOAM stores the value at the cell center. This is likely to cause some interference in the
visualization.

This section presents the physics and mathematics behind some parameters that are visual-
ized.

4.5.1 Vortex identification

One aspect of visualization that has been widely discussed and confused is the vortex iden-
tification. In their famous paper, Jeong and Hussain (1995) presented definitions that are
used to visualize vortices. Two requirements for a vortex were given as (i) There must be a
net circulation about the vortex core, and (ii) The geometry of the vortex should be a Galilean
invariant, which means that they are in the same reference frame. In this section methods
used in OpenFOAM and ParaFoam for vortex identification is briefly explained and visual-
ized.

Vorticity

A way of identifying a vortex that has been used is the vorticity magnitude. Vorticity in 3D is
given as, (Cengel and Cimbala, 2010):
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− ∂v

∂z
)~i + (

∂u

∂z
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∂x
)~j + (

∂v
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− ∂u
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)~k (4.1)

It is described by a particle that has angular velocity and rotates about a point, the vortex
core. The particles closest to the vortex core has the largest vorticity magnitude and it decays
outwards. The higher velocity in the vortex core is also associated with a low pressure region.
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Vorticity magnitude gives fairly good results in the free stream but causes troubles in shear
flow, especially if the shear is comparable to the magnitude of vorticity. Such definition can
thus not be used in a boundary layer.

Q-criterion and λ2-criterion

The Q-criterion and λ2-criterion is based on the velocity gradient tensor, ∇u, (Jeong and
Hussain, 1995). The eigenvalues, σ, of ∇u satisfies the equation:

σ3 −Pσ2 +Qσ−R = 0 (4.2)

P, Q, and R are three invariants of ∇u where P = 0 for incompressible flow and

Q = 1
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R = det (ui , j ) (4.4)

S andΩ are symmetric and antisymmetric components of ∇u.

The second invariant, Q, physically represents a balance between shear strain rate and vor-
ticity magnitude at a certain point, (Jeong and Hussain, 1995). Imagine that the strain is
what ’kills’ a vortex by withholding the rotation. If Q > 0 the vorticity magnitude is larger
than the shear strain and a vortex can thus appear. This is called the Q-criterion.

Another definition arises from considering the local pressure minimums from the gradient
of the Navier-Stokes equations. By taking the symmetric part of this gradient it is given that,
(Jeong and Hussain, 1995):

DSi j

Dt
−νSi j ,kk +Ωi kΩk j +Si k Sk j =

1

ρ
p,i j (4.5)

A local pressure minimum requires two positive eigenvalues of the tensor p,i j . The two first
terms in equation 4.5 represent unsteady irrotational straining and viscous effects, respec-
tively, and are not considered when finding contributions to the pressure minimum. A vortex
core is thus defined as a connected region with two negative eigenvalues of S2 +Ω2, (Jeong
and Hussain, 1995). S2 +Ω2 is symmetric and has real eigenvalues λ1 > λ2 > λ3, so the re-
quirement thatλ2 < 0 will be the definition of a vortex core. This is known as theλ2-criterion.

It is not easy to understand from the definitions of the Q-criterion and λ2-criterion what the
difference between them is. Jeong and Hussain (1995) claim that the λ2-criterion gives the
best results of vortex visualization, though it is also concluded that the two criterion tend
to be similar for different vortex structures. In reality, all cases are different and the Q-, and
λ2-criterion it compared in figure A.2 and A.3 in appendix A.

When comparing figure A.2a with A.3a, and figure A.2b with A.3b it is clear that the lower
values of λ2 and Q shows more coherent structures than the higher values due to the lower
threshold the vorticity magnitude has to overcome relative to the strain. Also, when compar-
ing the iso-surfaces for λ2 and Q it can be concluded that the differences between them are
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negligible. Only some minor differences can be seen in figure A.2b and A.2a in the sepa-
ration line. Here, λ2 iso-surface seem to give a more detailed picture of the vorticity in the
region, while the Q iso-surface looks more dense. In figure A.4, however, it is shown that
vorticity iso-surface shows a lot more coherent structures for the same values as Q and λ2.
All iso-surfaces are taken at the same time in the simulation.

4.5.2 Streamlines

Another way of visualizing results that needs to be explained is the streamlines. Cengel
and Cimbala (2010) defines a streamline as a curve that is everywhere tangent to the in-
stantaneous local velocity vector, which means that they indicate the fluid flow direction.
Streamlines are often used to find separation points, especially on circular cylinders where
this point is geometrically fixed. Streamlines are defined mathematically by, (Cengel and
Cimbala, 2010):

dr

V
= d x

u
= d y

v
= d z

w
(4.6)

A streamline cannot be seen in real life experiments but are often implemented by visualiza-
tion programs to indicate flow direction. Streamlines must not be confused with pathlines
and streaklines. A pathline draws ut the actual path of a fluid particle in the flow and a streak-
line is the lines seen in experiments when smoke, dye or particles are injected into the flow.
From these definitions it follows that the streamline is an instantaneous flow pattern at a
given point in time while the other two are drawn up over time. However, if the flow is steady,
the streamlines, pathlines and streaklines are identical. This is not the case in unsteady flow,
which can change with time. Streamlines must thus be used with care, not trusted blindly.
It only gives an instantaneous picture of what happens in the flow field. Streamlines of the
mean velocity field is thus utilized as a more accurate use of streamlines.

ParaFoam uses an application called surfaceLIC to visualize streamlines. LIC means line in-
tegral convolution and the technique consists of convolving noise with a vector field and
then producing a streaking pattern that follows the tangents of the vector field, (Organisa-
tion, 2015).



Chapter 5

Results

In this chapter the results obtained from the simulations are presented. As a summary, ta-
ble 5.1 gives details of the computational grid as well as time step, ∆t , of the simulation.
The non-instantaneous results are taken over a period of approximately 30 vortex shedding
periods. Recently it has been discussed whether this is a too short period to represent a cor-
rect sampling of the results. Lysenko et al. (2012) claimed that a simulation duration of 150
vortex shedding periods was satisfying in order to get a fully convergent mean flow field.
The available time in this work was not sufficient to do such long simulations. However, the
simulation duration in this work is the same as in Abrahamsen-Prsic (2015) and Prsic et al.
(2014).

Table 5.1: Details of simulation

# Elements 14.3 million
#Elements on cylinder circumference 254

#Elements in boundary layer 40
∆t 0.0001

S/D 5
Re 13100

The results presented in this chapter comprises the vorticity distribution in section 5.1,
showing vortex formation and separation from the upstream cylinder and the impingement
on the downstream cylinder, wake flow in section 5.2 presented by velocity distributions in
the wake and gap, mean- and RMS pressure distributions in section 5.3, drag-, and lift coef-
ficients in section 5.4, Strouhal number in section 5.5 and separation presented by velocity
streamlines in section 5.6.

5.1 Vorticity distribution

Figure 5.1 shows the vorticity distribution visualized by the Q-criterion at the middle of the
cylinder axis, z = 2. The distribution shows how a vortex (A) shed from the upstream cylinder
impinges the downstream cylinder and how a new vortex (B) is created on the downstream
cylinder. When vortex A impinges the downstream cylinder, it deforms. This is seen in figure
5.1 b) and c). This makes the flow very unsteady and turbulent, and we get a very chaotic flow

45
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picture around the downstream cylinder. Simultaneous to the impingement a new vortex,
B, is formed at the same side on the downstream cylinder. This is most likely due to the
"boost" it gets from the impingement. The two vortices merges to some degree and when a
new vortex impinges the other side of the downstream cylinder, they are shed together. This
is called synchronized vortex shedding. This, as well as the impingement is what causes the
large forces on the downstream cylinder. This is further described in section 5.4

The degree of merging of the two vortices depend on the strength of the vortices from the
upstream and downstream cylinder and on the impingement angle, (Kitagawa and Ohta,
2008). In this instantaneous flow, the vortices does not merge fully.
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Figure 5.1: Instantaneous vorticity distribution at the mid-span of the cylinders visualized
by the Q-criterion. a) vortex A is approaching the downstream cylinder, b) vortex A impinges
the downstream cylinder and vortex B is created, c) vortex A is broken up and merges with
vortex B
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5.2 Wake flow

It is important to get an understanding of what happens in the wake flow behind the cylin-
ders to be able to corroborate the results obtained from the simulation. Some results can
be somewhat complicated to interpret, especially if they are based on secondary parameters
of the simulation. As previously mentioned, the primary outputs of the Navier-Stokes equa-
tions are velocity and pressure. All other variables are computed based on these primary
outputs.

Figure 5.2 shows the time-, and space averaged u-velocity profile in the gap behind the up-
stream cylinder and in the wake behind the downstream cylinder. The results of Prsic et al.
(2014) for a single cylinder in uniform flow of the same Reynolds number is plotted together
with the two profiles for comparison. The x-axis represents the distance from the respective
cylinder center. The value on the y-axis is the normalized velocity u/Uc , where Uc is the free
stream velocity of value 1.31. Looking at the upstream cylinder distribution, it is clear that
there is a large effect on the u-velocity from the downstream cylinder. The profile follows
the one of the single cylinder up to the distance of 2D behind the cylinder center. After this
point, the velocity profile of the tandem upstream cylinder quickly decreases down to 0 at
the point where the downstream cylinder is located (at x/D = 4.5) while the profile of the
single cylinder increase further and stabilizes at a value of about u/Uc = 0.7. The upstream
cylinder does not obtain this value of u-velocity. This lower velocity in the gap region is likely
lead to discrepancies between results of a single cylinder and the upstream tandem cylinder.

(a) Upstream cylinder (b) Downstream cylinder

Figure 5.2: Normalized time-, and space averaged u-velocity profile in the wake behind the
cylinders along the x-axis, plotted together with the normalized time-, and space averaged
u-velocity profile of a single cylinder, single cylinder results from Prsic et al. (2014)

The velocity distribution in the wake behind the downstream is allowed to develop to the
level of the single cylinder, but it takes a longer distance behind the cylinder before this level
is obtained. The converged level for the single cylinder is obtained after a distance of ap-
proximately 3D, while it takes 14D for the downstream tandem cylinder. This is due to the
highly turbulent incoming flow onto this cylinder. Naturally, there will also be discrepancies
in the results of the downstream cylinder from a single cylinder.

Figure 5.3 shows the velocity profiles of the velocity component u, plotted along the y-axis at
a distance 0.6D behind the cylinder surface. The distance in the y-direction is shown on the
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x-axis of the figures. The y-axis represents the magnitude of the normalized u-velocity. The
first thing to note is that the profile behind the downstream cylinder is somewhat different
than that of the upstream cylinder, which has a shape that is similar to that of a single cylin-
der. The decrease in velocity at the sides is not as significant for the downstream cylinder as
it is for the upstream. This is due to the more chaotic flow around the downstream cylinder
which is spread out over a larger span in the y-direction. Outside of the boundary layer of
the upstream cylinder, the velocity decreases quite rapidly towards the free stream velocity,
and the flow here can be considered as potential (ref section 2.1). This is not the case for
the downstream cylinder. Regarding the magnitude of the velocity, the upstream cylinder
experiences a higher peak value than the downstream cylinder. This could be due to the
smearing out of the vortices shed from the upstream cylinder. Figure 5.4 is a caption of the
mean velocity, Ū taken at the mid span of the cylinders and illustrates this phenomena.

(a) Upstream cylinder (b) Downstream cylinder

Figure 5.3: Normalized time-, and space averaged u-velocity profile in the wake behind the
cylinders along the y-axis

Figure 5.4: Snapshot of the mean velocity taken at the mid span of the cylinders. Vertical
lines are drawn where sampling for y cross-section is done
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5.3 Mean and RMS pressure distributions

Mean pressure

Figure 5.5 shows the pressure distribution over the upper half of the cylinder surfaces for the
upstream and downstream cylinder. The coefficient is plotted at the spanxize location z = 2
which is at the middle of the cylinder span. In the figures there are also plotted results from
previous work. For detailed plots of the results in this work only, see figure A.1 in appendix
A. θ on the x-axis of the figures denotes the angle starting from the upstream side of the
cylinder such that θ = 0 is in the front stagnation point of the cylinder.

The upstream cylinder mean pressure distribution resembles that of a single cylinder. This
is because the spacing between the two cylinders is greater than the critical spacing for the
current Reynolds number, (see figure 2.7). Vortices are allowed to be formed behind the
upstream cylinder and separated from it. This flow picture is called jump flow (flow pic-
ture F of Igarashi (1981), ref. section 2.2.2). We can see that separation occurs at about
θ = 90−100 due to the flattening of the pressure curve (ref. section 2.1.2). The minimum
value of the mean pressure coefficient of approximately C̄p =−1.3 is located at θ = 70. This
agrees relatively well with the experimental results of Ljungkrona and Sundén (1993) and
Igarashi (1981). In Ljungkrona and Sundén (1993), whose conditions are nearest to the ones
on this work, the minimum value for Reynolds number Re = 1.2 · 104 and spacing S/D = 4
was C̄p = −1.2. Considering the slight differences in Reynolds number and spacing, this is
an acceptable difference. The results of Prsic et al. (2014) also agree very well, only that the
minimum value is slightly lower. This could be due to the presence of the downstream cylin-
der in this work whereas Prsic et al. (2014) describes a single cylinder, (ref. section 5.2). The
results also agrees well with the numerical results of Kitagawa and Ohta (2008).

Figure 5.5: Mean pressure distribution over the cylinder surface. top: upstream cylinder,
bottom: downstream cylinder. Blue line: current work, •: Ljungkrona et al. (1991), Re =
12 · 103 S/D = 4, dashed line: Kitagawa and Ohta (2008) Re = 2.2 · 104 S/D = 4, solid line:
Prsic et al. (2014) Re = 1.31 ·104 Single cylinder

The downstream cylinder mean pressure distribution in figure 5.5 also resembles the one of
a single cylinder but has a more irregular shape than the ones of the above mentioned pre-
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vious work. Due to the vortices that roll up in front of the downstream cylinders, the inflow
onto this cylinder is more turbulent and chaotic than that of the upstream cylinder and this
is reflected in the pressure distribution. In the interval 0 < θ < 110 the results resembles the
ones of Ljungkrona and Sundén (1993) and Kitagawa and Ohta (2008) with the minimum
located at slightly to the left of the others. The minimum value of C̄p =−0.95 is similar to all
three cases. One has to keep in mind that the Reynolds number and spacings are not iden-
tical in these cases. For θ > 110, C̄P decreases into a new local minimum and then increases
again. The increase in pressure in the tail, that is at the downstream stagnation point of the
downstream cylinder, indicates that the vortices that rolls up behind this cylinder touches
back onto the cylinder after separation. This tendency is not seen in the above mentioned
work, where C̄p tends to increase steadily and settle at a certain value. This discrepancy in
the shape of the mean pressure coefficient could be due to the averaging process. Kitagawa
and Ohta (2008) averaged over approximately 50 vortex shedding periods which most likely
gives a more reasonable averaged profile.

To illustrate this, figure 5.6 shows the mean pressure coefficient distribution of the upstream
and downstream cylinder plotted for different averaging periods. The upstream cylinder in
the top figure has a fast converging distribution. The distribution converges after only 12
seconds of averaging. The downstream cylinder distribution in the bottom picture shows a
lot more varying distribution for different averaging periods, and there are also small differ-
ences between the two last averaging periods of 80 and 90 seconds. These are marked by a
black circle in the figure. One can thus argue that the shape may change if the solution in av-
eraged over an even longer period of time. The figure also shows that the second minimum
becomes less prominent for the longer averaging periods.
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(a) Upstream cylinder

(b) Downstream cylinder

Figure 5.6: Convergence of mean pressure coefficient distribution for upstream and down-
stream cylinder.

RMS pressure

The RMS, or fluctuating, pressure distribution, gives an indication of where on the cylinder
surface the separation and possibly reattachment happens. The fluctuation magnitude also
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indicates the force magnitude. Figure 5.7 shows the time averaged RMS pressure distribu-
tion over the two cylinder surfaces. The distribution is plotted over the cylnider surfaces at
the mid-span of the cylinders, at z = 2. The distributions is plotted together with the re-
sults of Igarashi (1981) for comparison. Note that in the right figure, the distributions of the
current case and for spacing S/D = 3.82 are scaled after the right axis.

Figure 5.7: Distribution of RMS pressure fluctuation around two tandem cylinder surfaces.
Figure based on Igarashi (1981). Blue line: current work, dotted line in (a): single cylinder,
H or I: S/D = 3.82.

There are clearly some discrepancies between the results of Igarashi (1981) and this work.
Keeping in mind that Igarashi (1981) had a Reynolds number of Re = 3.5·104, which is higher
than that of this work. Looking at the upstream cylinder distribution, the distribution of this
work follows the shape of the compared distributions of the single cylinder and the cylinders
of spacing S/D = 3.82 in the interval 0 < θ < 90, but the values are shifted down. The starting
values of Igarashi (1981) is 0.05 while it is approximately 0 in the current results. Shifting
the profile to match the start value of the Igarashi (1981) profiles, the distribution would
follow more accurately the one of a single cylinder. The first peak in the distribution is due
to separation and it is located near the separation point. The second peak, which is not as
prominent in the current results as it is for Igarashi (1981), is due to the separated flow rolling
up into a vortex and the reverse flow reattaching onto the cylinder. It separates again at the
second peak.

Compared to the upstream cylinder, the pressure fluctuations on the downstream cylinder
are very large. Also here, there are two peaks in the profile. The first and largest peak is due
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to the impingement of the vortices shed from the upstream cylinder onto the downstream
cylinder. This happens at θ = 40. It is not certain that the impingement location is con-
stant for every vortex, remembering that this is a time-averaged distribution. The first peak
is smaller in this work than that of Igarashi (1981). The second peak is according to Igarashi
(1981) due to the separation of vortices from the downstream cylinder. In this work the peak
is located at approximately θ = 150 while Igarashi (1981) found it to be at θ = 110. It is not
likely, looking at figure 5.8, that this peak is due to separation. The two points, θ = 110 in
red and θ = 150 in yellow, are marked in the figure. The streamlines shows U. It is clear that
θ = 110 is closer to where the separation occurs. The second peak of the current work distri-
bution could however be due to the reattachment of the reverse flow back onto the cylinder,
as for the upstream cylinder. The number of peaks on the downstream RMS pressure distri-
bution has been subjected to discrepancies for other research as well. Kitagawa and Ohta
(2008) found that the downstream cylinder only had one peak in the RMS pressure distribu-
tion for a spacing of S/D = 4, while Ljungkrona et al. (1991) presented a distribution with
two peaks. There seems to be a discrepancy between numerical and experimental results.
The absence of the second peak could be a result of the turbulence model not being able to
pick up the details of the chaotic flow around the downstream cylinder. Kitagawa and Ohta
(2008) used the same LES turbulence model with the Smagorinsky subgrid scale as in the
present work. The discrepancies between the present results and Igarashi (1981) could also
have something to do with the different spacings. Igarashis largest spacing was 3.82 while it
is 5 in this work. One can discuss whether the RMS profile of the downstream cylinder in this
work looks more like that of the upstream cylinder. The first peak is larger due to the vortex
impingement, but the second peak is located at approximately the same position and the
profiles are somewhat similar. The large spacing could make the downstream cylinder less
affected by the upstream cylinder and rather cause it to act as a single cylinder in a highly
unsteady turbulent incoming flow.

Figure 5.8: SurfaceLIC streamlines of U on downstream cylinder at z = 2 with points marked
in yellow at θ = 110 and red at θ = 150.

Compared to the distributions of cylinders with spacings smaller than the critical spacing,
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the RMS pressure is much larger for the cylinders with spacing above the critical spacing.
The shear layer is allowed to roll up behind the upstream cylinder and form vortices that are
shed from the upstream cylinder. This causes large pressure fluctuations at the separation
points. This peak is also seen on the upstream cylinder for the arrangement below the critical
spacing, but it has a much smaller magnitude. The peak of the reverse flow reattaching onto
the cylinder is not seen for these arrangements. This is due to the flow that separates from
the upstream cylinder reattaches onto the downstream cylinder. There is not much flow in
the gap between the cylinders. This is reflected in the very low RMS value at the tail of the
upstream cylinder. For the downstream cylinder, the difference between over and under
critical spacing is that the cylinders under critical spacings has a reattachment peak and a
separation peak, while the cylinders above critical spacing does not have the reattachment
peak. In stead they have the impingement peak of much higher magnitude.

5.4 Drag and lift coefficients

Figure 5.9 shows the time history for the lift-, and drag coefficients for the tandem cylin-
ders. The horizontal axis shows the time span. The dashed line in the figures represents the
downstream cylinder and the solid line represents the upstream cylinder. For the lift coeffi-
cient there are clearly variations in time of the value. This thus supports the theory of time
averaging over a long period of time as mentioned in the introduction to this chapter. When
looking at the time- and space averaged results it is important to keep in mind these large
variations in time and that the details of these variations are faded out when time averaging
is performed.

Comparing the lift coefficient time series to the one of Abrahamsen-Prsic (2015) we see that
the values at the free side of the cylinder, that is the side with no wall proximity, are quite
similar to the ones obtained in this work. The maximum value lies around 1.5 for the down-
stream cylinder, which is also the case for the minimum values in this work. The symmetry
is because there is no wall proximity in the case in this work. The values for the upstream
cylinder lift coefficient is somewhat lower than that of Abrahamsen-Prsic (2015). One thing
to note is that the lift force on the downstream cylinder is large compared to that of the
upstream cylinder. This could be due to two things: the impingement of the vortex shed
from the upstream cylinder on the downstream cylinder and the formation of a vortex on
the downstream cylinder. Both of these induce a lift force on the cylinder. The force is large
due to the synchronization of the impingement and the vortex formation, (Kitagawa and
Ohta, 2008), (ref. section 5.1). The vortex separation and impingement shown in figure
5.1 corresponds to the last vortex shedding period shown in the drag and lift time histories
shown in figure 5.9. This vortex is of the weak ones, seen from the lower peak values of the
lift coefficient for the upstream and downstream cylinder. This is most likely the reason for
the relatively non-merged vortices shown in figure 5.1.



56 CHAPTER 5. RESULTS

(a) Time history of the lift coefficient for upstream and downstream cylinder.

(b) Time history of the drag coefficient for upstream and downstream cylinder.

Figure 5.9: History of lift and drag coefficients for upstream and downstream cylinder. Top
picture: lift coefficient, bottom picture: drag coefficient. Dashed line: upstream cylinder,
solid line: downstream cylinder.

Regarding the phase of the lift coefficients for the upstream and downstream cylinder, the
peaks of the downstream lift is shifted somewhat to the right of the peaks of the upstream
lift. An impingement of a vortex shed from the underside of the upstream cylinder onto
the downstream cylinder leads to a vortex shed from the upside of this cylinder. It is thus
somewhat complicated to see the correlation between the two curves. Figure 5.10 shows a
more detailed version of figure 5.9. It zooms in on the last vortex shedding period shown
in figure 5.9. The figure shows that it takes about 4 seconds for the vortex shed from the
upstream cylinder to move over the gap and impinge the downstream cylinder. Every tick on
the x-axis represent 0.2 seconds.
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Figure 5.10: Lift coefficient time series of 1 vortex shedding period. Dashed line: upstream
cylinder, solid line: downstream cylinder.

The time history of the drag coefficient shown in figure 5.9b is characterized by non-stationary
fluctuations. Note should again be taken to that these non-predictable fluctuations will have
a large effect on the averaging process. A large deviation could possibly had happened di-
rectly after this simulation was ended, and would contribute to a different averaging result.
The reason for these irregularities in the drag coefficient is the different strength of the vor-
tices shed from the upstream cylinder and the variable impingement position on the down-
stream cylinder, (Kitagawa and Ohta, 2008).

The mean drag coefficient and the lift coefficient RMS for the upstream and downstream
cylinder are given and compared to referred work in table 5.2. The results of this study
mostly agree with the compared results. Naturally the results of Abrahamsen-Prsic (2015)
have some deviations which are probably due to the wall proximity. The drag is higher for
both cylinders which would be expected when there is a blockage of the flow such as a wall.
The rather small discrepancies from the other cases are possibly related to the difference
in Reynolds number. Such a span of results is often seen in numerical investigations, and
especially when compared to experimental results. Experiments follow completely differ-
ent premises than a numerical simulation. Results tend to change for different experiments
done with the same conditions. Some discrepancies in results are thus expected and ac-
cepted.

5.5 Strouhal number

To find the Strouhal number behind the upstream and the downstream cylinder, a fast fourier
transform is used on the signal of velocity component v in the wake behind the two cylin-
ders. The probes are located at coordinates (1, 0.3, 2) and (8, 0.3, 2). These points are shown
in figure 5.11.
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Table 5.2: Mean drag and lift RMS for different cases

Case Re ·104 ¯CD1 ¯CD2 C ′
L1 C ′

L2
Present work 1.31 1.1615 0.48 0.49 0.98
Igarashi (1981) 3.55 1.3 0.45
Prsic et al. (2014) 1.31 1.3132 0.5454

Abrahamsen-Prsic
(2015), L5 t2

1.31 1.32 0.64 0.53 0.92

Kitagawa and Ohta
(2008)

2.2 1.13 0.5 0.2 1

Ljungkrona et al.
(1991)

2 1.25 0.45

Figure 5.11: Probe locations marked in the computational domain with coloring of velocity
U

Figure 5.12 shows the fast fourier transform spectra of the Strouhal frequency at the two
probe locations. Clear peaks are seen at Stouhal number of about 0.2, which is expected.
This supports the theory of the co-shedding flow regime, or synchronized vortex shedding.
The exact value for he peak Strouhal numbers are 0.1966 for probe 1 and 0.1893 for probe
2. These results agree well with Kitagawa and Ohta (2008) and Igarashi (1981), only that
Igarashi (1981) observed a slightly higher Strouhal number of 0.2. There is also a good agree-
ment with the results from Xu and Zhou (2004) for Re = 2.9 · 103, (ref. figure 2.12). The
small discrepancy between the probe 1 and probe 2 Strouhal number could be the location
of probe two. Ideally, the probe should be positioned closer to the downstream cylinder.
At its present location, errors could occur due to the some dissipation of the vortices. This
could also be some of the reason for the numerous other smaller peaks in the probe 2 specter,
though this is also expected in a more turbulent and thus more fluctuating flow.

When compared to the lift coefficient fluctuations, the frequency of the fluctuations in the v-
component of the velocity corresponds to the frequency of the lift coefficient. The Strouhal
number could thus be read from the lift-coefficient curves. This is done in many cases, but
there are some uncertainties in this. It is always better to read the frequency from the primary
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outputs from the computations, like the velocity. The Strouhal number of the lift-coefficient
for the upstream and downstream cylinders are 0.195 and 0.1928, respectively.

(a) fast fourier transform specter of Strouhal frequency magnitude for probe 1 behind upstream cylin-
der

(b) fast fourier transform specter of Strouhal frequency magnitude for probe 2 behind downstream
cylinder

Figure 5.12: Strouhal frequency specra for probes behind upstream and downstream cylin-
der

5.6 Separation

To visualize the separation angle along the span of the cylinders, the application wall bounded
streamlines in OpenFOAM is used. This function is used to visualize near wall flows, and
streamlines are made very close to the surface. The script for this application is located in
the system-folder. In appendix B.2 you can find the scipt used in this work. Figure 5.13 and
5.14 shows the streamlines for the instantaneous velocity and mean velocity, respectively.
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(a) Upstream cylinder (b) Downstream cylinder

Figure 5.13: Surface streamlines for the instantaneous velocity Uc at the cylinder surfaces

(a) Upstream cylinder (b) Downstream cylinder

Figure 5.14: Surface streamlines for the mean velocity Uc at the cylinder surfaces

Figure 5.13a shows the instantaneous velocity streamlines for the upstream cylinder. When
compared to figure 5.13b, which shows the downstream cylinder, it is clear that the flow over
the upstream cylinder is more regular. This has also been the conclusion of the previously
given results in this chapter, but this figure visualizes it very well. Another thing that should
be noted is the difference in the averaged velocity streamlines between the gap side of the
upstream cylinder and the wake side of the downstream cylinder, at θ = 180 for both cylin-
ders. Behind the upstream cylinder it looks like the flow is curled up and gathered at certain
points along the span, while the flow is more even behind the downstream cylinder. This
could be some effect of the presence of the downstream cylinder on the upstream cylinder.
The separation lines are shown in figure 5.15, where a red line is drawn along the line. The
screen shots are taken from above the cylinders (looking down on the x-z plane), with the
flow coming from the top and moving downwards.
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(a) Streamlines of U on the upstream cylinder

(b) Streamlines of U on the downstream cylinder

(c) Streamlines of U mean on the upstream cylinder

(d) Streamlines of U mean on the downstream cylinder

Figure 5.15: Separation lines of the upstream and downstream cylinder for U and U mean

Figure 5.15a shows the separation line of U for the upstream cylinder. The line is quite
even along the entire cylinder span at about θ = 90. However, there are small irregularities
over the span. This is expected due to the 3D effects discussed in chapter 2.2.5. There are
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correlation lengths over the cylinder span which have the same vortex shedding phase and
the separation also seems to happen at the same angle. Towards the ends of the cylinder
span, there are larger irregularities that stands out from the rest of the span. These could be
due to the some effect of the boundary condition at the domain ends perpendicular to the
cylinder axis.

The downstream cylinder in figure 5.15b is characterized by a more chaotic flow than the
upstream cylinder. There is no even separation line and the flow separates over a wider range
of degrees, 100 < θ < 110. Looking at figure 5.13b, there seems to be a second flow line at
about θ = 150. This could be due to some backflow reattaching back onto the cylinder and
could also have something to do with the second peak in the RMS pressure distribution for
the downstream cylinder discussed in section 5.3.

The separation lines of the averaged velocity streamlines are shown in figure 5.15c and 5.15d
and are much more even than those of the instantaneous velocity streamlines. The upstream
cylinder has a separation line at about θ = 90, which was also the case for the instantaneous
separation line. This supports the theory of the shorter averaging period needed for the
upstream cylinder results before convergence. As seen in figure 5.15d this is not the case for
the downstream cylinder at about θ = 100. The separation thus occur a bit further along the
cylinder surface than for the upstream cylinder. The separation line is more even than it is
for the instantaneous velocity, but it is still not completely even. This could again mean that
the flow should be averaged over a longer time before the results of the downstream cylinder
could be trusted to represent completely converged results. It should be noted that the mean
velocity streamlines are taken for the latest time step.
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Conclusion

6.1 Conclusion

Numerical simulations of a turbulent 3D flow of Reynolds number Re = 1.31 ·104 over two
circular cylinders in tandem. The center to center spacing between the cylinders was S/D =
5. A LES turbulence model with a Smagorinsky subgrid scale model was used to model the
turbulence. The following conclusion can be drawn by reviewing the results of this work.

• Agreement with previous research. The author has not found any previous research
done with the exact same flow parameters and geometries as this study. However,
many studies have been performed with other Reynolds numbers and spacings, both
numerically and experimental. Comparison with results from such research will give
an indication on the credibility of the results. In general the results agree well with
the previous studies of Igarashi (1981), Kitagawa and Ohta (2008) and Ljungkrona
and Sundén (1993). Some discrepancies were found to the experimental studies of
Ljungkrona and Sundén (1993) and Igarashi (1981), especially in the RMS pressure
distribution.

• Flow picture. For the spacing S/D = 5 and Reynolds number Re = 1.31 ·104, the free
shear layer roll up behind the upstream cylinder and form vortices that are shed from
the cylinder. This was visualized with a vortex identification scheme. The forma-
tion length of the vortices are smaller than the spacing between the cylinders at thie
Reynolds number and vortices are thus allowed to form behind the upstream cylinder.
The vortices move backwards over the gap region between the cylinders and impinge
the downstream cylinder. This flow picture is called jump flow. The incoming flow
onto the downstrem cylinder was characterized by large turbulence.

• Vortex shedding and oscillatory forces. Due to the impingement of the vortices shed
from the upstream cylinder onto the downstream cylinder, large oscillatory forces are
subjected onto the downstream cylinder. The lift on the downstream cylinder has a
magnitude that is about double of the lift on the upstream cylinder. The large lift force
is due to the synchronizing between the impingement of vortices shed from the up-
stream cylinder onto the downstream cylinder and formation of a new vortex on the
downstream cylinder. This is called synchronized vortex shedding. This was reflected
in that the Strouhal nunmber for both the cylinders being similar.
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• Velocity distributions in the wake. The downstream cylinder had a noticable effect
on the u-velocity component distribution along the axis parallel to the flow. The dis-
tribution did not follow the distribution profile of a single cylinder wake. Neither did
the distribution behind the downstream cylinder due to the chaotic flow picture. The
velocity distribution along the axis normal to the flow was for the upstream cylinder
similar to the one of a single cylinder, while the downstream cylinder distribution was
characterized by the chaotic flow.

• Pressure distributions. The mean pressure distribution of the upstream cylinder re-
sembles the one of a single cylinder. Some discrepancies from the case of Prsic et al.
(2014) was found, most likely due to the downstream cylinder presence. The down-
stream cylinder distribution resembled one of a single cylinder with turbulent separa-
tion due to the turbulent inflow.

• Separation. Instantaneous and averaged surface velocity streamlines show that the
downstream cylinder sees a much more chaotic flow than the upstream one, and the
separation line is very irregular. The averaged streamlines show that the separation
happens at about θ = 90 for the upstream cylinder and θ = 100 for the downstream
cylinder. They also show that the separation line for the downstream cylinder is still
not completely even, which could mean that the results should be averaged over a
longer time period to get fully converged results.

• Turbulence model. The LES turbulence model with the Smagorinsky subgrid scale
model gave satisfying results that agreed well with previous research. There are some
flow details on the downstream cylinder that does not seem to be captured by the LES
turbulence modeling. The absence of a second peak in the RMS pressure distribution
for the downstream cylinder indicates this.

6.2 Practical relevance

As mentioned in chapter 1, circular cylinders are frequently encountered in the marine off-
shore industry among numerous other. Two circular cylinders in the vicinity of each other
are utilized in many applications. It is thus important to understand how the flow around
tandem cylinders affect each cylinder. For the spacing used in this work, the flow picture
is jump flow. Vortices roll up behind the upstream cylinder and impinges the downstream
cylinder, which lead to large fluctuating pressure on the downstream cylinder. The down-
stream cylinder will thus experience large movements and needs must be taken to protect
this cylinder from fatigue and damage.

The Reynolds number used in this work is 13100, which is in the subcritical flow regime.
With the kinematic viscosity of about ν = 1.4− 1.6 · 10−6m2/s and with current- and wave
induced velocities, the Reynolds number for cylinders with diameter in the size range of 1
meter could be somewhat higher than in this work. But the subcritical flow regime will show
the turbulence effect of the flow. Since the flow picture, drag- and lift coefficients, Strouhal
number, etc. is dependent on Reynolds number there could be some differences in the re-
sults when the Reynolds number is increased. Howeer, the largest changes are normally seen
when the flow changes from laminar to turbulent. Simulations of a turbulent flow thus give
a realistic impression of what will happen to the cylinders in a real environment.
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6.3 Recommentadions for further work

Free stream flow over tandem cylinders is a basis for numrous other investigations. The ar-
rangement is the simplest when it comes to flow around multiple cylinders, with two equal
sized smooth cylinders in incoming flow hitting perfectly straight on. Though it is a very
good basis for understanding flow around tandem cylinders, the reality is not always as sim-
ple. With this in mind, here are some suggestions to other investigations that can be done
with this work as a basis;

• Do the same simulation with another turbulence model. It is interesting to see how
much influence the turbulence model has on the results. Ideally, we would like the
turbulence model to model the turbulence perfectly. This is very often not the case.
One model that work perfectly for one case could give errors for another. It is thus
interesting to compare two different turbulence models for one case.

• Different arrangements. Instead of the cylinders being completely in line with ea-
chother, they could be arranged in a staggered configuration. That would have the
same effect as the flow coming in with an angle to the x-axis of the present arrange-
ment. It would be interesting to see the what different disturbances that would occur.

• New spacing. One could also do the same simulation with another spacing. A smaller
spacing would be most relative to further work since one probably would capture other
flow pictures. Spacings close to the critical spacing is relevant for further work, since
very complex flows occur here, like bistable flow.

• Different cylinder diameters. In stead of two equal diameter cylinders, one cylinder
could be of a different size, like it often is in reality. The cylinders would then see very
different Reynolds numbers, which is interesting to see the effect of.

• VIV suppressions on one or both cylinders. To avoid the chaotic incoming flow onto
the downstream cylinder and thus large forces, simulations with VIV suppression can
be done. This is already a hot topic and some simulations has been carried out.

• Allowing the cylinders to move. In this work the cylinders have been restrained from
movement to simplify the simulations. In reality the cylinders would vibrate due to the
vortex separation and impingement. A simulation with a coulped CFD and finite ele-
ment analysis (FEA) solvers could in the future be implemented to see the fluid effect
on the construction and the response of the structure which again has an influence on
the fluid behaviour.
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Appendix A

Visualization and results

Mean pressure coefficient for upstream and downstream cylinder:

I



II APPENDIX A. VISUALIZATION AND RESULTS

Figure A.1: Mean pressure distribution over the cylinder surface. top: upstream cylinder,
bottom: downstream cylinder.

Iso-surafces for the Q-, and λ2-criterion for different values:



III

(a) Instantaneous λ2 = 10 iso-surface colored by vorticity magnitude

(b) Instantaneous Q = 10 iso-surface colored by vorticity magnitude

Figure A.2: Iso-surface for λ2 and Q of value 10 taken from simulations with Re = 13100.
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(a) Instantaneous λ2 = 29 iso-surface colored by vorticity magnitude

(b) Instantaneous Q = 29 iso-surface colored by vorticity magnitude

Figure A.3: Iso-surface for λ2 and Q of value 29 taken from simulations with Re = 13100.



A.1. DRAG- AND LIFT TIME HISTORY OF COARSE MESH V

Figure A.4: Instantaneous vorticity magnitude=10 iso-surface from simulations with Re =
13100.

A.1 Drag- and lift time history of coarse mesh

Time history of the drag- and lift coefficient of the coarse mesh.
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(a) Time history of the lift coefficient

(b) Time history of the drag coefficient

Figure A.5: Drag- and lift coefficient time histories for the coarse mesh
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OpenFOAM scripts

B.1 controlDict

1 /*--------------------------------*- C++ -*------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 1.6 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 \*-----------------------------------------------------------------*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object controlDict;
15 }
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
17

18 libs (
19 "libOpenFOAM.so"
20 "libsimpleSwakFunctionObjects.so"
21 "libswakFunctionObjects.so"
22 "libgroovyBC.so"
23 );
24

25 application pisoFoam;
26

27 startFrom latestTime;
28

29 startTime 150.0001;
30

31 stopAt endTime;
32

33 endTime 150.0002;
34

35 deltaT 1e-4;
36

VII
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37 writeControl timeStep;
38

39 writeInterval 1;
40

41 purgeWrite 0;
42

43 writeFormat ascii;
44

45 writePrecision 6;
46

47 writeCompression uncompressed;
48

49 timeFormat general;
50

51 timePrecision 6;
52

53 runTimeModifiable no;
54

55 functions
56 {
57

58 /*forces1
59 {
60 type forces;
61 functionObjectLibs ("libforces.so");
62 patches (cyl1);
63 pName p;
64 UName U;
65 rhoName rhoInf;
66 rhoInf 1;
67 log false;
68 CofR (0 0 0);
69 outputControl timeStep;
70 outputInterval 1;
71 }
72

73 forceCoeffs1
74 {
75 type forceCoeffs; //coeffs Cd, Cl
76 functionObjectLibs ("libforces.so");
77 patches (cyl1);
78 pName p;
79 UName U;
80 rhoName rhoInf;
81 rhoInf 1;
82 log false;
83 CofR (0 0 0);
84 liftDir (0 1 0);
85 dragDir (1 0 0); //direction of drag - x
86 pitchAxis (0 0 0); //pitch axis 0 ???
87 magUInf 1.31;
88 lRef 4; //referent lenght (1 or for 3D calc change)
89 Aref 4; //referent projection of impact area (D*l)
90 outputControl timeStep;
91 outputInterval 1;
92 }
93

94
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95 forces2
96 {
97 type forces;
98 functionObjectLibs ("libforces.so");
99 patches (cyl2);

100 pName p;
101 UName U;
102 rhoName rhoInf;
103 rhoInf 1;
104 log false;
105 CofR (5 0 0);
106 outputControl timeStep;
107 outputInterval 1;
108 }
109

110 forceCoeffs2
111 {
112 type forceCoeffs; //coeffs Cd, Cl
113 functionObjectLibs ("libforces.so");
114 patches (cyl2);
115 pName p;
116 UName U;
117 rhoName rhoInf;
118 rhoInf 1;
119 log false;
120 CofR (5 0 0);
121 liftDir (0 1 0);
122 dragDir (1 0 0); //direction of drag - x
123 pitchAxis (0 0 0); //pitch axis 0 ???
124 magUInf 1.31;
125 lRef 4; //referent lenght (1 or for 3D calc change)
126 Aref 4; //referent projection of impact area (D*l)
127 outputControl timeStep;
128 outputInterval 1;
129 }
130

131

132

133

134

135

136

137 probes
138 {
139 type probes;
140 functionObjectLibs ("libsampling.so");
141 enabled true;
142 outputControl timeStep;
143 outputInterval 1;
144 probeLocations
145 (
146 (1 0.3 2)
147 (-8 0 2)
148 (4.6 0.35 2)
149 (8 0.3 2)
150 );
151

152 fields
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153 (
154 p U
155 );
156 }
157 */
158 fieldAverage1
159 {
160 type fieldAverage;
161 functionObjectLibs ("libfieldFunctionObjects.so");
162 enabled true;
163 outputControl outputTime;
164 fields
165 (
166 U
167 {
168 mean on;
169 prime2Mean on;
170 base time;
171 }
172

173 p
174 {
175 mean on;
176 prime2Mean on;
177 base time;
178 }
179 );
180 }
181 #include "wallBoundedStreamLines"
182

183 }
184

185

186 // *************************************************************** //

B.2 wallBoundedStreamLines

1 /*--------------------------------*- C++ -*------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 2.3.0 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 \*-----------------------------------------------------------------*/
8

9 // Interpolate U to create near-wall UNear
10 near
11 {
12 // Where to load it from
13 functionObjectLibs ("libfieldFunctionObjects.so");
14

15 type nearWallFields;
16

17 // Output every
18 outputControl outputTime;
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19

20 // Fields to be sampled. Per field original name and mapped field to
21 // create.
22 // Note: fields only get updated when writing!
23 fields
24 (
25 (U UNear)
26 (UMean UMeanNear)
27 (p pNear)
28 (pMean pMeanNear)
29 );
30

31 // Patches/groups to sample (regular expressions)
32 patches (cyl1 cyl2);
33

34 // Distance to sample
35 distance 0.005;
36 }
37

38 // Use UNear to track along wall
39 wallBoundedStreamLines
40 {
41 // Where to load it from (if not already in solver)
42 functionObjectLibs ("libfieldFunctionObjects.so");
43 type wallBoundedStreamLine;
44

45 // Output every
46 outputControl outputTime;
47

48 setFormat vtk; //gnuplot; //xmgr; //raw; //jplot;
49

50 // Velocity field to use for tracking.
51 UName UNear;
52

53 // Interpolation method. Default is cellPoint. See sampleDict.
54 //interpolationScheme pointMVC;
55

56 // Tracked forwards (+U) or backwards (-U)
57 trackForward true;
58

59 interpolationScheme cellPoint;
60

61 // Names of fields to sample. Should contain above velocity field!
62 fields (p U UNear);
63

64 // Steps particles can travel before being removed
65 lifeTime 100;
66

67 // Cloud name to use
68 cloudName wallBoundedParticleTracks;
69

70 // Seeding method. See the sampleSets in sampleDict.
71 seedSampleSet patchSeed; //cloud;//triSurfaceMeshPointSet;
72

73 uniformCoeffs
74 {
75 type uniform;
76 axis x; //distance;
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77

78 start (0.0035 0.0999 0.0001);
79 end (0.0035 0.0999 0.0099);
80 nPoints 20;
81 }
82 cloudCoeffs
83 {
84 type cloud;
85 axis x; //distance;
86 points ((0.351516548679288 -0.0116085375585099 2));
87 }
88 patchSeedCoeffs
89 {
90 type patchSeed;
91 patches (cyl1 cyl2);
92 axis x; //distance;
93 maxPoints 20000;
94 }
95 }
96

97

98 // *************************************************************** //

B.3 fvSchemes

1 /*--------------------------------*- C++ -*-----------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox|
4 | \\ / O peration | Version: 1.6 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 \*----------------------------------------------------------------*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object fvSchemes;
15 }
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *//
17

18 ddtSchemes
19 {
20 default CrankNicolson 0.5;
21 }
22

23 gradSchemes
24 {
25 default Gauss linear;
26 grad(p) Gauss linear;
27 grad(U) Gauss linear;
28 }
29

30 divSchemes
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31 {
32 default none;
33 div(phi,U) Gauss linear;
34 div(phi,k) Gauss limitedLinear 1;
35 div(phi,B) Gauss limitedLinear 1;
36 div(phi,nuTilda) Gauss limitedLinear 1;
37 div(B) Gauss linear;
38 div((nuEff*dev(T(grad(U))))) Gauss linear;
39 }
40

41 laplacianSchemes
42 {
43 default none;
44 laplacian(nuEff,U) Gauss linear corrected;
45 laplacian((1|A(U)),p) Gauss linear corrected;
46 laplacian(DkEff,k) Gauss linear corrected;
47 laplacian(DBEff,B) Gauss linear corrected;
48 laplacian(DnuTildaEff,nuTilda) Gauss linear corrected;
49 }
50

51 interpolationSchemes
52 {
53 default linear;
54 interpolate(U) linear;
55 }
56

57 snGradSchemes
58 {
59 default corrected;
60 }
61

62 fluxRequired
63 {
64 default no;
65 p ;
66 }
67

68

69 // ************************************************************ //

B.4 fvSolution

1 /*--------------------------------*- C++ -*-----------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox|
4 | \\ / O peration | Version: 1.6 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 \*----------------------------------------------------------------*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
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14 object fvSolution;
15 }
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *//
17

18 solvers
19 {
20 p
21 {
22 solver PCG;
23 preconditioner DIC;
24 tolerance 1e-06;
25 relTol 0.05;
26 }
27

28 pFinal
29 {
30 solver PCG;
31 preconditioner DIC;
32 tolerance 1e-06;
33 relTol 0;
34 }
35

36 U
37 {
38 solver PBiCG;
39 preconditioner DILU;
40 tolerance 1e-05;
41 relTol 0;
42 }
43

44 k
45 {
46 solver PBiCG;
47 preconditioner DILU;
48 tolerance 1e-05;
49 relTol 0;
50 }
51

52 B
53 {
54 solver PBiCG;
55 preconditioner DILU;
56 tolerance 1e-05;
57 relTol 0;
58 }
59

60 nuTilda
61 {
62 solver PBiCG;
63 preconditioner DILU;
64 tolerance 1e-05;
65 relTol 0;
66 }
67 }
68

69 PISO
70 {
71 nCorrectors 2;
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72 nNonOrthogonalCorrectors 0;
73 }
74

75

76 // **************************************************************//

B.5 LESProperties

1 /*--------------------------------*- C++ -*------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 1.6 |
5 | \\ / A nd | Web: www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 \*-----------------------------------------------------------------*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "constant";
14 object LESProperties;
15 }
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
17

18 LESModel Smagorinsky;
19

20 delta cubeRootVol;
21

22 printCoeffs on;
23

24 cubeRootVolCoeffs
25 {
26 deltaCoeff 1;
27 }
28

29 PrandtlCoeffs
30 {
31 delta cubeRootVol;
32 cubeRootVolCoeffs
33 {
34 deltaCoeff 1;
35 }
36

37 smoothCoeffs
38 {
39 delta cubeRootVol;
40 cubeRootVolCoeffs
41 {
42 deltaCoeff 1;
43 }
44

45 maxDeltaRatio 1.1;
46 }
47
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48 Cdelta 0.158;
49 }
50

51 vanDriestCoeffs
52 {
53 delta cubeRootVol;
54 cubeRootVolCoeffs
55 {
56 deltaCoeff 1;
57 }
58

59 smoothCoeffs
60 {
61 delta cubeRootVol;
62 cubeRootVolCoeffs
63 {
64 deltaCoeff 1;
65 }
66

67 maxDeltaRatio 1.1;
68 }
69

70 Aplus 26;
71 Cdelta 0.158;
72 }
73

74 smoothCoeffs
75 {
76 delta cubeRootVol;
77 cubeRootVolCoeffs
78 {
79 deltaCoeff 1;
80 }
81

82 maxDeltaRatio 1.1;
83 }
84

85

86 // *************************************************************** //
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