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Abstract

This thesis describes the development and testing of a new irradiance sensor.
Light from the sun affects all life on earth, and recent studies give reason
to believe that some life might even react to the microscopic levels of light
found in the Arctic polar night. Commercial light meters are not sensitive
enough to register the light in these dark periods of the year, thus the need
for a new sensor has emerged.

During a field campaign in Ny-Ålesund in January 2014, conducted as part of
the Marine Night Research project, a prototype of the sensor was first tested.
The results were promising, and work began to develop a more complete
software system that is able to measure the light environment of the Arctic
for extended periods of time. The development of this sensor system, and
initial tests, are described in this thesis.

This part of the project ended with a working system that is to be tested
on the next field campaign of the Marine Night project, in January 2015. A
manual has been written for the users, and is included as part of this thesis.
Also included is the code documentation, intended for the future developers
of the system.
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Sammendrag

Denne masteroppgaven beskriver utviklingen og testingen av en ny type irra-
dianssensor. Sollyset påvirker alt liv på jorden, og nyere forskningsresultater
tyder på at noen livsformer kan være avhengig av de mikroskopiske lysnivåene
i den arktiske vinteren. Forskerene som studerer disse livsformene, trenger en
ny type lysmåler, siden målerene som er tilgjengelig i dag ikke er følsomme
nok for denne mørke tiden på året.

I forbindelse med et forskningstokt i Ny-Ålesund i januar 2014, ble en proto-
type av denne nye sensoren testet. Toktet ble utført som en del av forsk-
ningsprosjektet Marine Night. Resultatene var lovende, og arbeidet begynte
dermed for å utvikle et mer komplett system. Dette nye systemet skal kunne
måle de arktiske lysforholdene gjennom lange perioder av året. Utviklingen
av dette sensorsystemet og de første testene er beskrevet i denne oppgaven.

Dette prosjektet endte med et system som tilfredsstiller de primære kravene
fra forskerne. Det skal testes på det neste toktet i regi av Marine Night, i Ny-
Ålesund i januar 2015. En brukermanual har blitt skrevet for dette toktet,
og er vedlagt som en del av oppgaven. Dokumentasjon av vesentlige deler
av koden er også vedlagt, og skal være til hjelp for framtidige utviklere av
systemet.
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Preface

This master thesis is written during the fall semester of 2014 as the final part
of the master program Engineering and ICT at the department of Marine
Technology at the Norwegian University of Science and Technology (NTNU)
in Trondheim.

This thesis is written in close cooperation with researchers from the Marine
Night research project. Marine Night is part of the larger Mare Incognitum
research project, registered as project number 226417 with The Research
Council of Norway.

The thesis is edited as a collection of papers with a résumé in front. The first
paper is titled Development of a Prototype Sensor for Measuring Irradiance
in the Polar Night, and the second paper is titled Testing and Verification of
a Low Light Irradiance Sensor.
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1 Introduction

1.1 The need for a new sensor

Until recently, it was a widely held belief that biological processes in the
Arctic slows down or stops during the polar night. In Berge et al. [2009],
the opposite is shown to be true. Using acoustic measurements, the process
known as Diel Vertical Migration (DVM) is shown to persist through the
Arctic winter. DVM represents a huge movement of biomass, and is of great
importance to the Arctic marine ecosystem.

Further, Berge et al. [2009] argues that DVM in the Arctic polar night is
controlled by variations in solar and lunar light intensity. Light intensities
in the polar night are miniscule, and well below the intensities where the
human eye is effective. To study the effects of the light in the polar night,
the intensity of the light must be reliably measured. Such low intensities calls
for a sensor which is much more sensitive than what is generally available in
the market today, thus it must be custom made.

A camera called the Single Photon Counting Camera (SPC2), made by Micro
Photon Devices1, was chosen as a new light measurement instrument. It is
a precision instrument, capable of single photon detection with an efficiency
from 15% to over 40% in the 400nm to 700nm band. The sensitivity of this
camera will enable researchers to quantify the light levels of the Arctic polar
night, and further investigate the biological processes during winter in the
high Arctic.

1.2 Development of the new sensor

The SPC2 provides the possibility of measuring tiny intensities of light, but
it is not delivered with suitable software for this purpose. The company
provides a Software Developer Kit (SDK) and a test application, which is able
to capture images and try out the camera. This project needed to capture
time series of light measurements; for this purpose, the test application fell
short. Thus it was necessary to build a custom made software package.

The new light sensor was developed for researchers in marine biology, asso-
ciated with the research program Marine Night2. Together with Professor

1http://www.micro-photon-devices.com/
2http://www.marinenight.mare-incognitum.no
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Geir Johnsen3, a detailed specification of the software system was drawn up.
This specification is included in Appendix B.

1.3 Structure of the thesis

This thesis is presented as a collection of two papers with a résumé in front.
The purpose of the résumé is to collect and present background theory and
concepts in one place, leaving the papers to concentrate more on the results.

Section 2 describes the developed software system. The software architec-
ture is presented and explained, along with some methods on software de-
velopment. Also described is the theory and implementation of robust data
storage.

Section 3 presents some possibilities for further development of the sensor.
This section contains ideas and plans for future use, especially concerning
use of the sensor together with underwater platforms.

Paper 1 is called Development of a Prototype Sensor for Measuring Irradiance
in the Polar Night, and describes the first testing and deployment of the
sensor during the January 2014 Marine Night field campaign.

Paper 2 is called Testing and Verification of a Low Light Irradiance Sensor.
It details several experiments that were performed to determine the new
sensor’s correct operation. The tests were simple, but illustrates that the
sensor is giving output in the correct range, and that it is capable of capturing
the dynamics of changing light conditions.

The appendices include the user manual, software specification and the code
documentation. The user manual is intended for the end users of the soft-
ware, while the code documentation is intended for future developers and
maintainers of the software modules. There is some repetition in the texts in
the appendices, especially in the user manual and the code documentation.
This is intentional, so that the manuals can be read independently of the
thesis.

A zip archive accompanying this thesis includes the source code for the soft-
ware system.

3Professor Geir Johnsen, Department of Biology, NTNU
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2 Software system

This section describes the software package that was developed as part of
this thesis. The software package has been developed using the test-driven
development technique. Subsection 2.1 discusses test-driven development,
and the test first concept. Subsection 2.2 describes the software specifica-
tion, and discusses the its importance. Subsection 2.4 presents the software
architecture, and details the ideas behind it, especially the decision to sepa-
rate the server and web applications into two independent modules. Finally,
subsection 2.5 discusses some theory on robust storage, and demonstrates
how this is implemented in the server application.

2.1 Development concepts

The software was developed following the guidelines of test-driven develop-
ment. This development technique increases confidence in the correctness of
the program, and has also been found to increase productivity [Erdogmus,
2005].

2.1.1 Test-driven development

Test-Driven Development (TDD) is a technique based on writing functional
tests for a piece of production code before writing the code itself. A typical
TDD workflow is as follows:

1. Writing the test. The first step in TDD is to read and understand the
requirements, and write a functional test. The test is often written
in a unit testing framework, such as JUnit4 if one is developing Java
applications, or Mocha5 for the node.js platform.

The requirements must be described in a clear, concise manner, with as
little ambiguity as possible. This is the job of the specification, which
will be discussed further in subsection 2.2. Writing the test first forces
the developer to really understand the requirements beforehand.

2. Run all tests. This step should conclude with all previous tests suc-
ceeding, and the new test failing. This confirms that the new test is
adding new information to the system, in the sense that it requires

4http://junit.org
5http://mochajs.org
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new code to pass. It also confirms for the developer that the testing
platform works, and that the new test is actually looking for the new
functionality.

3. Write production code. New code is now added to the code base. Only
the minimal code needed to make the test pass is added at this stage.

4. Re-run tests. All tests are now run again, to make sure that the new
test passes. If it does not, the developer goes back to the previous step.
This cycle is repeated until all tests pass.

5. Refactoring. As the code base grows larger, refactoring becomes in-
creasingly important. Duplication must be removed, code can be moved
to where it more logically belongs, and code can be rewritten to increase
readability or maintainability. At this point, all functionality is covered
by the functional tests. After refactoring, all tests can be run again to
make sure that the refactoring has not introduced any new bugs.

According to a study from the National Research Council of Canada [Er-
dogmus, 2005], following the TDD technique leads developers to write more
tests, be more productive and it raises the minimum quality of the finished
software. It also increases confidence in the correctness of the program, which
is especially important for a long running process such as this.

2.2 Software specification

A software specification is a detailed list of the customer’s requirements for
the software system. The specification is a crucial part of the development
process, because the specification document lists the requirements for the
system. Both functional and non-functional requirements should be doc-
umented. Functional requirements specifies how the program should work.
Non-functional requirements specify other requirements to the software, such
as uptime requirements for a server. It is vital that both the customer and the
developer fully understands and adheres to the specification. Any changes to
the requirements, either functional or non-functional, should first be listed
in the specification.

A detailed specification was developed together with Prof. Geir Johnsen. The
final specification is included in Appendix B. The document is divided first
into Software functionality and Hardware functionality, then into subgroups
under these headings. Each subgroup, such as Capturing images and Storing
data, is further divided into priority groups. Priority A are requirements

4



for a functional system. These have top priority. Priority B tasks are not
absolutely required, but functionality that the customer would like to see in
the system. Priority C tasks are tasks meant for future development, and
have lowest priority.

The specifications were consciously made with too many tasks for this de-
velopment cycle. Thus it also lists future adaptations of the system that are
not realized at this point.

2.3 Selecting a language and framework for the server

2.3.1 Requirements

The server must communicate with the SPC2 sensor. Communication and
control of the sensor is done through a C library. Hence, the server must be
able to call C functions.

Writing a server program from scratch is time consuming and unnecessary.
Frameworks exist that will handle the low level details, allowing developers
to focus on the parts that are unique to their implementation. The choice
of language should have a good framework that will make development easy
and efficient.

To enable the client to communicate with the server, and indirectly with the
sensor, the server must expose some kind of API (Application Programming
Interface). This server will expose a REST API, which uses an internet
media type (often JSON) to transfer data through standard HTTP methods,
such as GET, POST, PUT and DELETE. The client will then make AJAX
calls to query the server and control the sensor. AJAX is an acronym for
Asynchronous Javascript + XML and is the standard technique to make
asynchronous calls to an API on the client side. Nowadays, JSON is often
favored over XML as the data format language of choice. The choice of
programming language and framework should facilitate the creation of this
API.

The API must be secured against unauthorized use and attacks. For this
application, basic access authentication6 will suffice. The choice of language
and framework should enable the developer to easily implement this authen-
tication scheme.

6https://developer.mozilla.org/en-US/docs/Web/HTTP/Basic_access_authentication
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2.3.2 Candidate: C++

The server has to make calls to a C library, and this is most easily done from
C/C++. Thus, one candidate programming language for the server is C++.

Writing a REST API in C++ is not common. The language is more often
used for applications where either hardware access or speed of computation
are top priority. Thus, there are not many server frameworks written in C++.
One exception is Microsoft’s C++ REST SDK (codename “Casablanca”)7.

2.3.3 Candidate: Java/Spring

Spring is a framework for Java EE. From the spring webpage8:

Spring helps development teams everywhere build simple, portable,
fast and flexible JVM-based systems and applications.

Java is, in the author’s opinion, easier to use than C++. Spring enables rapid
development of a REST API, through the use of Java annotations and the
Model-View-Controller software architectural pattern. Basic authentication
is also available through the use of the BasicAuthenticationFilter class.

To call the C library from the SPC2 SDK, Java makes use of JNI, the Java
Native Library. Using the JNI with a precompiled library, requires three
steps:

1. Write a declaration in Java for the library function you want to call.
This declaration must use the native keyword, to specify that the code
is written in some native language, in this case C.

2. Create a C header file for use by the native code. This is done auto-
matically with the javah tool.

3. Implement the native method in C. This requires the developer to write
another C program which is a wrapper around the library, and which
includes the header created in step 2.

2.3.4 Candidate: node.js and express

From the node.js webpage9:
7https://casablanca.codeplex.com/
8http://spring.io
9http://nodejs.org
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Node.js is a platform built on Google Chrome’s JavaScript run-
time for easily building fast, scalable network applications. Node.js
uses an event-driven, non-blocking I/O model that makes it lightweight
and efficient, perfect for data-intensive real-time applications that
run across distributed devices.

Express10 is an addon to node.js. It is a

[. . . ] minimal and flexible Node.js web application framework that
provides a robust set of features for web and mobile applications.

Together, node.js and express makes the job of creating a REST API and
securing it with basic authentication very easy. Node.js is made for building
network applications, and includes many time saving modules, such as http.
http is a module that

[. . . ] supports many features of the protocol which have been tra-
ditionally difficult to use.

For calling code from the C library, node.js has an addon called node-ffi;
the Node.js Foreign Function Interface. It enables node.js developers to load
and call dynamic libraries using pure JavaScript. node-ffi also handles the
conversion of types between JavaScript and C.

2.3.5 Conclusion

The server will be developed with node.js and Express. Node.js appears
to offer the easiest and most time saving solution, being purposely built
for developing network applications. Also, the node-ffi module appears
much easier to use than the Java Native Interface, which will save much
development time.

Java and Spring was not chosen, mostly because of its complexity. While
it is perfectly feasible to write this program with Spring, node.js seems to
present a much cleaner, easier solution without much of the overhead. For a
simple project such as this, Spring seems to complex.

C++ was not chosen for three reasons. First, it appears to be much too
complex for this simple project. Second, the lack of frameworks seem to
indicate that C++ is not much used for this kind of development. Third, the
developer does not have much experience with C++, and using it for this

10http://expressjs.com
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project would require some time studying the language itself. That time is
better spent on developing the actual program.

2.4 Architecture of the server application

The architecture of the server application is visualized in figure 1.

Figure 1: The architecture of the server application.

The design of the applications modules follows the Single Responsibility Prin-
ciple, a term coined by Robert C. Martin [Martin, 2002]. The principle states
that A class should have only one reason to change. Extending this from
classes to modules, each of the modules in the server application should have
only one responsibility. Thus, the module data-access handles all commu-
nication with the databases, data-processor collects functions which pro-
cesses data in some way, e.g. calculating the number of photons per second
from the raw data. The spc2-sdk and c-api modules handles communica-
tion with the camera, on different levels of abstraction. The c-api module
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is written in C, and communicates directly with the camera’s library of func-
tions. It exists to abstract away C pointers from the node.js application. The
spc2-sdk module exists to translate the C function calls into javascript.

The server module contains the top-level logic for the entire application.
It defines the Application Programmer Interface (API) that enables other
application to communicate with the SPC2 camera. The API is built as a
REST API, which means that all communication with the API is done with
standard HTTP request methods, such as GET and POST. It is built as an
Express application [Express.js, 2014], and handles the routing of requests
from the clients to the other modules.

An important feature of the architecture is that there is no cross-communication
between modules on the same level of abstraction. This is intentional, and
assures that each model can be used as a black box abstraction. Thus, each
module can be extended and maintained independently of the others. As
an example, if in the future there is a desire to change the database system
to the latest and greatest database, one need only rewrite the data-access
module. It does not depend on any of the other modules, and can be replaced
by another, assuming that the new module provides the same functions as
the existing.

2.4.1 Separation of server and web application

The server application and the web application have been developed as two
separate modules. This decision increases the complexity, as the two could
have been merged and created as one web application.

The reason for the separation is future use. For this project, it is assumed
that the camera will be used to create time series of light measurements, and
remote access through a web application is a reasonable way to communicate
with the sensor.

In the future, it is very likely that the camera will be part of an underwater
sensor platform, either moored or mounted on an underwater vehicle. In this
case, it may still be desirable to use the server/client architecture, but not
with a web application client. The server code can then easily be reused, or
modified for new use, without concern for the web application part.

9



2.5 Robust storage

This section will present some theory on the robust storage, before detailing
the way data storage is implemented in the server application. The theory
in this section is based on Burns and Wellings [2009].

Two approaches that can help designers improve the reliability of their sys-
tems are fault prevention and fault tolerance. Prevention attempts to elimi-
nate sources of faults. Tolerance enables the system to continue functioning
in the presence of faults.

2.5.1 Fault prevention

There exists two stages of fault prevention; fault avoidance and fault removal.
Avoidance tries to limit the introduction of potentially faulty components
during the construction of the system. For hardware, avoidance includes the
following strategies:

• Use the most reliable components.

• Use refined techniques for interconnecting components and assembling
subsystems.

• Package the hardware to eliminate interference.

It is virtually impossible to write fault free code. Even bugs that are very
unlikely to occur can come to the surface in a long running program. To
improve the quality of software, developers can

• rigorously specify the requirements.

• use proven design methodologies.

• use analysis tools to verify properties of the software.

• use languages that facilitate modular structure and abstractions.

No matter how careful the developers are, faults will inevitably be present
in the system after its construction. Hence, the second stage of prevention is
fault removal. Fault removal consists of procedures for finding and removing
bugs. A ubiquitous example of fault removal is system testing, in all its
forms. Unfortunately, testing can almost never be exhaustive, due to the
complexity of most larger software systems.

• A test can only prove the presence of faults, not their absence.
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• It may be impossible to test under realistic circumstances.

• Errors may not manifest themselves before the system goes operational.

In spite of all testing and verification, hardware components will fail. Fault
prevention is therefore insufficient if the system must continue operating
without the aid of maintenance personnel.

2.5.2 Fault tolerance

In many ways, fault tolerance is the counter example to fault avoidance.
While avoidance focuses on not experiencing faults in the first place, fault
tolerance assumes that faults will be present, and implements strategies to
continue operating despite this fact. It is important that fault tolerant sys-
tems caters for unforeseen faults, as well as the anticipated ones. Fault
tolerance can be implemented on three levels of complexity:

Full fault tolerance The system continues to operate in the presence of
faults, albeit for a limited time period. It experiences no significant
loss of functionality or performance. This state of operation is not
possible to sustain indefinitely.

Graceful degradation Also called fail soft. The system continues to oper-
ate, accepting a partial degradation of functionality or performance.

Fail safe The system saves its state and comes to a halt.

2.5.3 Redundancy

Redundancy is a common way to implement fault tolerance. Protective re-
dundancy is adding extra elements to the system, enabling it to detect and
recover from faults. While redundancy increases the fault tolerance of the
system, it also increases the complexity. The aim then, must be to minimize
redundancy, while at the same time maximizing reliability.

One specific implementation of redundant fault tolerance is static redun-
dancy. Here, faulty components are masked out, or hidden from the system.
As an example, in Triple Modular Redundancy, three identical components
work in parallel, and a voting circuit masks out an eventual faulty compo-
nent. This can be extended with more components, and is in the general
case called N Modular Redundancy.
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Dynamic redundancy is code running inside a component, which tests the
component and indicates the system if the component is faulty. It provides
no redundancy in itself, in the sense that another component must take over
for the faulty one.

2.5.4 Redundancy implementation in the server application

To achieve robust storage in the server application, it makes use of a feature
in MongoDB called replication. The documentation [MongoDB, 2014] states:

A replica set in MongoDB is a group of mongod processes that
maintain the same data set. Replica sets provide redundancy and
high availability, and are the basis for all production deployments.

Hence, MongoDB has static redundancy built in, albeit under a different
name. Replication works with a set of mongod processes, mongod being the
process that runs an instance of the database system. One of the processes
is named the primary and receives all write commands from the client. The
client in this case being the SPC2 server application. Every other mongod
process is called a secondary. Every secondary process ensures that they have
the same data set as the primary by applying the primary’s operations.

To maintain the set of database processes, each member of the replica set
sends heartbeats to all other members every two seconds. If one member is
not heard from in 10 seconds, it is assumed offline. Then, the remaining
members elect a new primary among themselves.

In the server application, the addresses of database processes is entered into
the config file. On startup, the application, through the mongoose module
[Mongoose.js, 2014], will connect to the replica set, and provide seamless
static redundancy. The application assumes that the mongod processes are
configured and belongs to the same replica set. This process is detailed in
the user manual in appendix A.

2.6 User acceptance test

On 24 November 2014, an acceptance test was performed with the user11.
The software was presented, along with a table of the priority A requirements
from the specification. The results are shown in table 1.

11The user in this context is Prof. Geir Johnsen, Department of Biology, NTNU.
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Functionality Accepted?
Set and change integration time and dead-time correction Yes
Save information about camera lens. Yes
Reset parameters to default values. No
Store values for all parameters. Yes
Capture images in automatic mode. Yes
Store data in a reliable and secure manner. Yes
Each image, or equivalent data, must be stored. Yes
Store result in quantum scale. No
Parameters must be stored with the data. Yes
Calibration factor must be stored with the data. Yes
User access to stored data. Yes
Download entire database. No
Display captured data as plot in web interface. Yes
Remote access to the sensor, both read and write access. Yes
Secured against unauthorized access. No

Table 1: Results from the acceptance test.

Overall, the user was satisfied with the product. There were a couple of
points that needed to be addressed before delivery.

• The functionality to reset parameters to their default values was dropped.
The function was not yet implemented, but the user did not think that
the reset functionality had much value. Parameters will have to be ad-
justed for every experiment, and it would be very difficult to find good
defaults.

• In addition to the values that were already stored in the database, the
user would like to also record temperature. The camera does not have
a temperature sensor, and the logging of temperature were not in the
original specifications. It was decided that temperature logging would
not be implemented in this version.

• When examining the quantum scale output, the numbers seemed to be
too low. The fault would need to be found and corrected.

• Downloading the entire database was not implemented, but the user
decided to drop it. The database files can be downloaded over ssh if
needed.

• Security was not implemented yet, thus it was not accepted.
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2.6.1 Delivery

The corrections from the acceptance test were made, and the software system
was delivered and accepted on 15 December 2014.
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3 Future adaptations

3.1 Underwater operations

When the sensor has been thoroughly tested on land, the next step will
be to further develop it for use underwater. Accurate measurements of the
underwater light environment is crucial for further research on marine life
in the polar night. In Berge et al. [2012], the activities of bioluminescent
zooplankton in the Arctic is described. The zooplankton is shown to follow a
diel vertical migration pattern, that does not follow any detectable changes
in illumination. This suggests that the zooplankton either react to light that
is too low for current sensor solutions to register, or that the levels of light
are so low that other mechanisms must be driving these vertical migrations.
A better understanding of the available light in the underwater environment
could help drive this line of research forward.

The SPC2 is capable of high speed captures at up to 48 000 kHz. This could
be utilized to measure light dynamics, e.g. of the bioluminescent zooplankton
described in Berge et al. [2012]. Continuous measurements at high speed
could give a level of detail in the light measurements that is not possible
with slower or less sensitive sensors.

For the sensor to be usable in underwater missions, a number of modifications
and further developments will have to be done. Most importantly, the sensor
needs an underwater housing. The camera is not built for underwater use,
thus a custom housing will need to be built. The housing must have room
for the camera itself, a computer for controlling the camera, a logging unit
for storing the collected data, and a power supply. The sensor might be de-
ployed on a number of different platforms, such as Autonomous Underwater
Vehicles (AUV), Remotely Operated Vehicles (ROV) or stationary platforms,
such as a moored sensor station. The housing will need to take into account
the restraints of the platform, such as weight allowances, geometric shape,
and possibly hydrodynamic efficiency in the case of the AUV.

The sensor’s software will have to be further developed for underwater use.
At this point, the software is designed for prolonged use in a safe environment
indoors. The focus has been on reliability and ease of use. For an underwater
operation, the specification will change in a major way. Reliability will be
important, perhaps more so. The sensor must continue working, even when
failures are present. The sensor must be autonomous, such that it can be
started at the beginning of the mission, and left running without user input
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until the platform it is deployed on is recovered. Lastly, if the sensor needs to
interface with the platform’s systems, special interface code might be called
for.

3.2 Power system

The camera is powered by a 5V, 2.4A power source, resulting in a 12W
power requirement. Power for the controlling computer is also required, and
is typically around 60W.

In an indoors environment, for relatively short periods of time, power supply
reliability is usually not a problem. For the sensor’s future intended use,
where it is expected to reliably measure the available light for months on
end, reliable power can be an issue. Especially if the sensor is deployed in
a location where maintenance is hard to come by, the power supply must
always be available.

A constant power supply can be obtained with a battery. The battery must
be sized to provide the sensor with power for longer than the worst case
outage, within reason. A further development of the sensor would be to
investigate the possibilities of an outage and calculate the probable worst
case scenario. A battery package could then be designed to power the sensor,
while the battery itself is charged as long as there is available power.
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Development of a Prototype Sensor for
Measuring Irradiance in the Polar Night
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Abstract: This report describes the process of developing a prototype sensor for measuring
the low levels of irradiance in the Arctic polar night. A highly sensitive photon imager, capable
of single photon detection, was used for this purpose. The special purpose software developed
for the prototype is also described. The prototype was deployed at 78◦55′ N during the Marine
Night research campaign. Experimental results are presented and discussed, along with results
from another prototype, for comparison.
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1. INTRODUCTION

The purpose of this project was to develop a prototype
for measuring the low levels of light in the polar night.
This project report details the different aspects of this
project, such as description of the prototype hardware and
development of the required software. Also included are
experimental results and suggestions for further work.

This project was done as part of the Marine Night
project 1 . Marine Night aims to increase our understand-
ing about the marine biological processes during the polar
night, and the light environment is a crucial part of this.
Recently discovered marine biological processes (Berge
et al., 2009) are among the motivating factors for this re-
search project. One of the hypotheses is that the organisms
are able to react to light changes in the polar night, which
seem insignificant to the human eye.

Experiments with the prototype light sensor were carried
out during the Marine Night field campaign in Ny-Ålesund
from 13 to 28 January, 2014. Ny-Ålesund is the world’s
northernmost permanent settlement, and with its position
at 78◦55′ N 11◦56′ E, it is perfectly situated for studies of
the polar night. The purpose of the campaign was twofold:
to carry out the research activities of the Marine Night
project, and to educate students taking part in the course
AB-334: Underwater Robotics in the Arctic Polar Night at
the University Centre in Svalbard. The author was enrolled
in said course.

The paper is organized as follows: section 2 presents the
theory and characteristics of light, and its importance for
life in the Arctic; section 3 presents the prototype sensor
and the software that was developed for it; and section 4
presents the results from the Marine Night campaign.

1 http://www.mare-incognitum.no

2. THEORY

2.1 The polar night

Due to the inclination of the earth, the Arctic regions
experience polar night during the winter season. The polar
night is a period of the year in which the sun never rises
above the horizon. For a few hours at midday, there is
some available light due to scattering of the sunlight in
the atmosphere (Sakshaug et al., 2009), but for most of
the day the environment is seemingly completely dark.

In Ny-Ålesund, the sun sets on 25 October and does not
rise again until 17 February. This has a major effect on life
in the Arctic. Primary production halts during the winter
months, and until recently it was believed that most all
life came to a stop during winter. Recent observations,
however, has shown that this is not the case (Berge et al.,
2009).

2.2 The physics of visible light

The following subsection is based on Young and Freedman
(2012).

Fig. 1. Illustration of the visible spectrum

Visible light is electromagnetic radiation with a wave-
length (λ) in the range 400 nm to 700 nm. Radiation with
either shorter or longer wavelengths are invisible to the
human eye. The color of the visible light is a function of
its wavelength, see figure 1. Visible light ranges from violet
with a wavelength around 400 nm, through blue, green,
yellow and orange to red, which has a wavelength in the
range 620 nm to 700 nm.



The wavelengths of visible light also coincides with
the wavelengths of Photosynthetically Available Radiation
(PAR), which is discussed in section 2.4.

In the above description, light is assumed to behave like
a wave, with a given wavelength and frequency. In some
situations, such as when describing colors, this model
works very well. However, light can also be modeled as
discrete particles, called photons. Modern physics actually
sees light as something which behaves both like a wave
and like a particle. This is called the wave-particle duality.
The manifestation of light either as particles or as waves
depend on the mode of measurement; it is not possible to
observe both modes at the same time.

In the particle mode, light is characterized by the energy
of each particle, and the particle flux. Photons have no
inherent color, but when they reach the eye, the energy
of the photon is translated by the brain into colors.
Brightness is associated with the photon flux; a higher flux
corresponds to a brighter source of light. The wave model
and the particle model is connected according to Planck’s
law:

e = h̄c/λ

e is the energy, h̄ = 6.62 × 10−34 J s is Planck’s constant,
and c is the speed of light in a vacuum. From Planck’s law,
it is seen that the energy is inversely proportional to the
wavelength. From this, it can be deduced that a photon
in the blue band of the spectrum has an inherent energy
that is roughly 1.6 times greater than a photon in the red
band.

Photons in the visible band all carry enough energy
to bring about photosynthesis, and it is the number of
photons that matter, not the total energy. Therefore, the
particle model is well suited when studying the effect of
light on biological life (Sakshaug et al., 2009).

The photon counter described in section 3 measures the
incoming light as photons.

2.3 The characteristics of light

Light can be characterized by its intensity, spectral char-
acteristics, polarization and direction.

The intensity of light is measured as irradiance (E).
Irradiance is measured either on a quantum scale, with
units µmol photons/m2s, or on an energy scale, with units
µW/m2. The irradiance value is a function of the direction.
This is called the cosine effect, see section 2.5.

Irradiance is often specified as either downwelling irra-
diance (Ed) or upwelling irradiance (Eu). Downwelling
irradiance is caused by light coming from above, such as
sunlight hitting the ocean surface. Upwelling is reflected
light coming from below, such as sunlight reflected off the
seafloor in shallow waters. The sum of irradiance from all
directions in one point is called scalar irradiance (E0).
Scalar irradiance most closely resembles what is seen by
marine organisms (Sakshaug et al., 2009), and is therefore
the preferred unit of measurement for these purposes.

The spectral composition of light quantifies how much
energy there is in each waveband on the visible spectrum.

Figure 2 shows an example of how the spectral composi-
tion of sunlight varies with the sun’s altitude. The sun’s
altitude is defined as the angle between the horizon and
the center of the sun’s disk.

Fig. 2. Spectral composition of sunlight at different solar
altitudes. Taken from Sakshaug et al. (2009).

On the Marine Night campaign, the focus was to investi-
gate wether there is discernible differences in the available
light throughout the day during the polar night. Hence,
irradiance was the most important characteristic. Irradi-
ance was measured with the SPC2 photon imager and the
IMO sensor, see sections 4.1 and 4.2.

2.4 The biological importance of light

The information in this subsection is taken from Sakshaug
et al. (2009).

Light from the sun is a prerequisite for all life on earth.
This light is electromagnetic radiation with a wavelength
from 10 × 10−14 m to 2000 km. The human eye can register
light waves in the band 400 nm to 700 nm.

Photosynthetically Available Radiation (PAR) is defined
as the total radiation available in this band. PAR is
expressed either in µmol/m2/s, i.e. the flux of photons per
area per time, or as irradiance; W/m2.

2.5 Light in the Arctic

At high altitudes, the rays from the sun strike the earth at
a much more oblique angle than closer to the equator. The
result is that the available light is spread out over a larger
area, lowering the intensity. This lowering of intensity is
proportional to the cosine of the angle of the rays to the
surface, thus this is often referred to as the cosine effect.

Summer in the Arctic is characterized by midnight sun,
and winter by the polar night. During the polar night, the
sun never rises above the horizon, and during the summer
the sun never sets. The midday, midsummer elevation of
the sun is strongly dependent on latitude. It is 23.45◦ for
the North Pole, 34◦ for Ny Ålesund and 43◦ for Tromsø.
However, during the summer months the 24 h integrated
irradiance can be almost as great in these latitudes as in
the tropics, due to the sun being up all night (Sakshaug
et al., 2009).

2.6 Attenuation of light

When radiation from the sun hits the atmosphere, it is
attenuated by the gases it travels through. Oxygen, water



and carbon dioxide all cause attenuation of the irradiance.
At higher altitudes, because of the cosine effect, the light
must travel a longer distance through the atmospheric
gases. In fact, at latitudes < 30◦, the distance is about
twice as long as for zenith radiation, i.e. when the sun is
directly overhead. Hence attenuation is stronger for light
hitting the Arctic regions than for any lower latitude.

The attenuation at different wavelengths can also be seen
from figure 2. At low solar altitudes, the direct radiation
in the blue band is strongly attenuated, due to scattering
in the atmosphere. Thus, direct radiation at low angles
is mostly in the red band. As the angles approach zero,
the available light will appear blue again, because direct
radiation decreases much faster than indirect radiation.
The indirect radiation in mostly in the blue band.

Another severe source of irradiance attenuation is clouds.
Depending on the type of clouds and their thickness, the
irradiance can be attenuated by as little as 20% and as
much as 70%. During the Arctic summer, fog is often
encountered over open water in calm weather. Also, the
cloud cover associated with a passing low pressure system
can cause the daily average surface irradiance to drop to
40%, compared to a clear day. In terms of irradiance, 40%
corresponds to roughly 500 µmol/m2s.

Clouds can also increase the radiation, if they are bright
white and are not covering the sun. Light will then be
reflected off them, and return to the earth surface. The
increase in radiation can be as much as 10%.

Lastly, reflection is an important factor in the attenuation
of light below the sea surface. Glassy water, i.e. water
with no waves, reflects the most light, especially for low
solar elevations. This sea state is normal in ice filled Arctic
waters. A rougher sea state causes lower reflection.

The proportion of the downwelling irradiance that is
reflected back into the atmosphere is known as the albedo.
Albedo ranges from 0 to 1, 0 being total absorption, and
1 being total reflection. While the average albedo of the
whole earth is 0.31, values for ice and snow is much higher,
and can be as high as 0.97 for ice covered with fresh snow.
The average albedo for the Arctic Ocean during summer
is about 0.46.

The reflecting properties of ice causes a destabilizing,
positive feedback in the climate change system. In cold
periods, more ice forms, causing more light to be reflected
and further lowering the ocean temperature. In the course
of warm periods, the ice melts, which accelerates the
heating of the ocean.

3. METHOD

The sensor used for this project is an SPC2 Photon Imager,
developed by Micro Photon Devices 2 . The SPC2 Photon
Imager is a camera, capable of imaging the light field
by counting the number of incoming photons during the
acquisition period. In the Marine Night campaign, the
photon imager has been used to measure the light field
in the Arctic polar night.

The photon imager is shown in figure 3.
2 http://www.micro-photon-devices.com/Contact

Fig. 3. The SPC2 Photon Imager

3.1 Capabilities of the photon imager

The information in this section is taken from the SPC2
User Manual.

The photon imager captures images of the light field in
much the same way as a normal camera does. Light enters
through the lens and is measured by the sensor on the
imager’s circuit board. The lens is mounted on a standard
c-mount, which enables the camera to easily utilize many
different lenses. The lens used for these measurements was
a Tamron 8mm, with 1.4 maximum aperture. The field
of view of the camera with this lens was estimated to be
about 20◦.

The light detecting sensor in the SPC2 is very different
from the sensors found in conventional cameras. It consists
of an array of 32 × 32 pixels. Each pixel is made up from
a single-photon avalanche diode detector, with integrated
electronics for digital processing. Because of this fully
digital acquisition of the light signal, the camera has a high
noise immunity, thus giving a very clean output signal.

The SPC2 is capable of acquiring images at up to
49 000 frames/s, with a negligible dead-time. Dead-time is
the amount of time that passes between the end of one
acquisition and the start of the next. The Application
Programming Interface (API) also has a subroutine that
enables dead-time correction, which can further reduce the
effect of dead-time.

The SPC2 can be operated in two modes; normal and ad-
vanced. Each pixel contains an 8-bit counter, which counts
the number of photons detected during the exposure time.
In normal mode, the exposure time is fixed to 20.74 µs,
ensuring that the counter will not overflow. Longer expo-
sures are possible by integrating multiple frames. Because
of the noise immunity, this integration does not increase
the noise. In advanced mode, the user can set the exposure
time, for better control of the camera. Longer exposures
makes counter overflow possible, and this must be checked
for and handled by the user.



Other parameters include number of acquired frames, and
number of frames to integrate on each acquisition 3 . When
the camera is commanded to acquire images, it returns
a set of images. The number of images in this set is the
number of acquired frames, which must be set beforehand.
In normal mode, the number of integrated frames is set to
decide the exposure time.

3.2 Application Programming Interface (API)

The SPC2 Photon Imager includes an API, written in the
C language. An API is an interface between two systems,
in this case the SPC2 camera and the user’s application.
It is used for writing programs to control the camera,
and includes multiple functions for connecting, setting
parameters and acquiring images, to name a few. The API
was used for writing the custom software that was used on
the campaign. A few of the most important functions are
detailed below.

SPC2_Constr is used for getting a handle to the camera.
A handle is an object which is a unique identifier to the
camera, and it is used to communicate with it. The handle
must be acquired before any other functions can be called.

SPC2_Set_Camera_Par sets the camera parameters; ex-
posure 4 , the number of frames per acquisition, and the
number of integrated frames. This function must be called
before acquiring any images.

SPC2_Snap acquires a set of images, as specified in
the parameters. The acquired images are stored in the
working memory of the camera, and must be retrieved
by one of the other functions; SPC2_Average_Img or
SPC2_Save_Img_Disk.

SPC2_Average_Img returns one image, which is an average
of the previously acquired images.

3.3 Software developed for the project

A software package (from now on referred to as the
program) was developed during the campaign, to enable
the SPC2 to measure the ambient light in the polar night.
Some interesting light events were expected on 18 and 19
January. To ensure that the sensor would be operational in
time for these events, a minimal set of specifications were
developed by the end users 5 . The sensor had to be able
to:

• Measure the ambient light once per minute
• Store the measurements safely

The program acquires an image approximately once every
minute. Each returned image is the average of 100 images,
each of which is the integrated result of 5 frames. This
average is then stored in a database. In addition, the
program calculates the photon count per second, and
stores that in the same database. The photon count is
calculated by summing the values of each pixel in the
image, which represents the photon count detected by
3 In normal mode
4 Only in advanced mode.
5 The users in this context are Prof. Geir Johnsen, Dep. of Biology,
NTNU, and Prof. Jørgen Berge, Dep. of Arctic and Marine Biology,
University of Tromsø.

the representative pixel on the sensor. This sum is then
divided by the acquisition time, to get the photon count
per second.

3.4 Database

The database system used in the program is a SQLite
database. From the web page 6 :

SQLite is a software library that implements
a self-contained, serverless, zero-configuration,
transactional SQL database engine. SQLite is
the most widely deployed SQL database engine
in the world. The source code for SQLite is in
the public domain.

The above description highlights why SQLite was chosen
for this project. It is self-contained, meaning that the
program can run on any machine without having to set
up a database server. That the source code is in the public
domain means that anyone is free to use the software for
any purpose, i.e. no licence is needed 7 . Finally, SQLite is
used in many large projects by well-known companies 8 ,
which implies that it is a well tested and stable software
product.

Fig. 4. The database schema for the program

Figure 4 shows the database schema that was used for the
program. The database consists of four tables:

• Measurement is the central table. It stores the time
and value of each measurement. The time is local
time; the value is in photons/s. This table has a many-
to-one relationship to both Position and Lens.

• Position records the position where the measurement
was taken. Latitude and Longitude are the coordi-
nates, and Direction is the direction the camera was
facing when the measurements were taken.

• The table Lens stores information about the lens used
for the measurements. It is identified by its name,
maximum aperture and focal length.

• Image contains the image returned from the camera.
It is stored as binary data, and can be retrieved in a
double array of length 1024. Image has a one-to-one
relationship to Measurement.

6 http://www.sqlite.org
7 http://www.sqlite.org/copyright.html
8 http://www.sqlite.org/famous.html



3.5 Experimental setup

The SPC2 camera was set up outside the Marine Lab in
Ny-Ålesund. The Marine Lab is situated just outside the
settlement and next to the pier. It has a veranda facing
northwards, towards Kings Bay. This is where the camera
was deployed, with the lens facing out towards the bay.

When doing light measurements, light pollution is a
problem. Light pollution is measured light from artificial
sources, such as street lights or headlamps on cars or boats.
To get reliable measurements, light pollution must be
reduced as much as possible. At the Marine Lab, this was
accomplished by covering all the windows with black plas-
tic. The street lights around the lab had also been switched
off for the duration of the campaign. Some light pollution
from cars, and especially the research vessel R/V Helmer
Hanssen, was unavoidable. The times of these events were
noted, so they could be disregarded in further study of
the data material. In addition to these precautions, the
camera was positioned against the north wall of the Marine
Lab, facing towards the bay. This way, the Marine Lab
shielded the camera from any artificial light coming from
the settlement of Ny-Ålesund.

The camera was mounted on a tripod, with its power
and data communication cable leading from the camera
through an open window, to a computer. The computer
was running the software described in section 3.3. At this
point, the camera needed no attention from an operator. It
was left to take measurements from 18 – 26 January, 2014.
In addition to the camera, another prototype irradiance
sensor was running. This sensor is described in section 3.6.

The camera is not built for outdoor use. Thus, it needed to
be protected from the weather. Protection was fashioned
out of plastic bags. It was rudimentary, but sufficient for
the weather conditions during the campaign.

3.6 IMO irradiance sensor

The IMO irradiance sensor is developed by In-situ Marine
Optics 9 located in Perth, Australia. It is a prototype, with
model name ISSU and serial no. 2. It has been developed
to address the problem of measuring very low levels of
irradiance, such as is seen during the Arctic polar night.

The IMO sensor measured photons as digital counts, from
which E can be calculated. It also measured temperature
in ◦C.

In contrast to the SPC2 camera, the IMO sensor was
purpose built for marine use. It is built for underwater
use, and is equipped with a battery pack and a logging
computer. Thus, it is fully autonomous and able to take
measurements in a much wider range of conditions.

3.7 Limitations

The field of view of the camera was estimated to be 20◦.
Thus, the camera will only capture part of the lightfield.
For most of the time, the measurements were done in
diffused light. Diffused light is the opposite of direct
light, meaning that it is reflected or transmitted through
9 http://www.insitumarineoptics.com/contact.html

a medium, such as clouds. This is the available light
on an overcast day. In these conditions, it was assumed
that the camera captured a representative value of the
total irradiance, because the irradiance would be roughly
equal in every direction. On days with a point source of
light, such as the moon, the measured values would be
drastically different depending on the orientation of the
camera. A camera pointing at the moon would measure
much higher values than if it was pointing elsewhere.

The camera is sensitive to temperature changes. The cam-
era was tested indoors, in close to constant ambient light.
During this time, the temperature increased noticeably.
Also, the photon count kept increasing, although the am-
bient light was more or less constant. During this test, the
sensor was programmed to capture images every second.
During the measurements, the imager was placed outside,
in temperatures between −16 ◦C to 3 ◦C. Thus, heating
of the camera was not a problem. If the camera is to
be used in warmer temperatures, especially indoors, the
temperature issue would have to be addressed.

The camera is not made for underwater use. An underwa-
ter housing must include battery power and a computer
running the necessary software, making it completely au-
tonomous. For now, measurements can only be made in
air.

The software for the camera is of very limited capability.
The only thing it does at the moment, is to capture images
every minute, and save the average image and the sum in a
database. Full featured software should be able to capture
and display test images, set parameters and configure
different types of logging.

3.8 Calibration

The values from the IMO sensor was used to calculate
a rough calibration constant for the SPC2 camera. By
matching the peaks in the data set from the IMO sensor
with the same peak from the camera, and assuming that
the data from the camera was representative for the entire
light field 10 , a rough calibration constant was calculated.

The data from the IMO sensor was filtered using a Butter-
worth filter. This reduced most of the dark current, so the
data was easier to analyze. Disregarding the outliers, which
are likely anthropogenic in nature, the maximum of the
dataset was 1.8232 × 10−4 This occurred on 21 January,
12:26:47 CET. The corresponding time was found on the
graph of the data from the camera. The photon count at
that time was 1.9298 × 107. Thus, the calibration factor
was:

1.8232 × 10−4

1.9298 × 107
= 9.4476 × 10−12 (1)

Using this factor, the values from the camera were con-
verted from photons/s to µmol photons/m2s.

4. EXPERIMENTAL RESULTS

4.1 SPC2 photon imager

The measurements done with the SPC2 camera is shown
in figure 5. The horizontal axis shows the time; each tick
10See discussion in section 3.7



mark is placed at noon on the given date. The vertical
axis shows EPAR values; the combined value of E for all
wavelengths in the 400 nm to 700 nm band.

On most days, there is a peak in the measurements around
noon. The peak is lower or higher, depending on the
weather conditions. Some days, like 20 January, hardly
has a peak at all. This was a snowy day, with a low cloud
cover.

Micro Photon Devices claim that the sensor has a very
high noise immunity, as described in section 3.1. This is
verified by figure 5. There is little, if any, trace of electronic
noise.

Figure 5 shows the values in EPAR. The output from the
program is in photons/s. A rough calibration has been
done, based on the values from the IMO sensor. This
calibration procedure is explained in section 3.8.

Fig. 5. Light conditions in Ny-Ålesund, measured with the
SPC2 camera.

On clear days, such as 19 January, there is a clear peak at
noon. This corresponds well with photographs that were
taken at the same time. This is shown in figure 6. The
background photograph is taken with a fisheye lens just
outside the Marine Lab. The blue line on the plot shows
exactly when the photo was taken.

Fig. 6. Light conditions at midday. Background photo:
Geir Johnsen.

The graph also corresponds well with the conditions at
night. Figure 7 shows the irradiance values at night, under
a clear sky. The low light levels can be verified both on the
photograph and on the plot.

Fig. 7. Light conditions on a clear night. Background
photo: Geir Johnsen.

The plot also shows multiple isolated spikes. The spikes
are several orders of magnitude larger than the average
measurements. These spikes most likely correspond with
artificial light sources, such as headlamps on vehicles, and
the floodlights of the research vessel R/V Helmer Hanssen,
which docked at the pier on several occasions during the
campaign.

There is some missing data roughly between 03:00 and
noon on 19 January. This was due to a computer restart
following system updates. It was discovered in the morning
and the program was restarted. The missing data is seen
as a straight line in the plot between tick marks 18 and
19.

4.2 IMO sensor

The irradiance measurements from the IMO sensor are
shown in figure 8. These measurements are clearly more
noisy than the corresponding values from the SPC2 cam-
era. However, there are clear peaks around noon for both
Tuesday 21 January and Wednesday 22 January. This
corresponds well with the measurements from the camera;
both showing a lower peak on the 22nd.

The IMO sensor came with calibration instructions to
convert the raw measurements into EPAR, which is shown
on the plot.

5. FURTHER WORK

The SPC2 camera as an irradiance sensor is a prototype.
In its current form it lacks many features. Detailed in this
section are suggestions for further work that would make
the camera a functional sensor for measuring irradiance in
the marine environment.

5.1 Calibration

The conversion from photon count to irradiance is a rough
estimate. For more refined results a conversion factor for
the sensor must be calculated. Finding the conversion
factor would most likely be achieved by measuring different
light sources with known irradiance values, and calculating
the conversion factor based on those measurements.



Fig. 8. Light conditions in Ny-Ålesund, measured with the
IMO sensor. Measurements taken between Tuesday 21
January and Thursday 23 January.

5.2 Software

The software has only basic functionality. In a full-featured
system, it should be able to

• Set the camera parameters
• Take test images and display them to the user
• Adjust the parameters online, according to preset

goals
• Show a live update of the acquired data
• Run in both headless mode, for autonomous logging,

and with a graphical user interface

5.3 Autonomous unit

The prototype is limited in its usefulness by the fact
that it needs to be connected to a computer to run. A
functional system should be able to operate autonomously.
Thus, it would need both a computer to run the software,
and a power supply. For the computer, it should be as
small as possible, and preferably running a low resource
demanding operating system. That would imply porting
the program for the camera to the new operating system
also. The power demand of the whole system must then
be calculated, to come up with a power supply that is
reasonably small and lightweight, but still can run the
camera for an acceptable length of time.

6. CONCLUSION

This paper has described the development of a prototype
irradiance sensor, using the SPC2 Photon Imager, which
measures the photon count of the ambient light field.
Development of the sensor included both development
of the necessary software, deployment of the sensor in
the Arctic environment during the polar night, and a
comparison of the measurements from this sensor with
those of another prototype.

The results from the prototype sensor were promising. The
measurements clearly showed differences in the ambient
light levels throughout the day. These measurements will
be of value to researchers studying life in the high Arctic
during the polar night.
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Abstract: A new sensor has been designed and developed for measuring the low levels of
irradiance in the Arctic polar night. As a part of the development, a number of experiments
have been carried out to ensure that the sensor performs as expected. The experiments test the
sensor’s ability to capture the dynamics of the changing light and its measurement noise. The
sensor’s correctness is also tested, by comparing the output to another sensor. The tests are
mostly positive, indicating that the sensor works as expected.

1. INTRODUCTION

Researchers working at the University Center on Sval-
bard (UNIS) have discovered that life forms in the Arctic
might be dependent on the light in the polar night (Berge
et al., 2009). The level of illumination during the polar
night is often too low for the human eye to register.
Also, commercially available light meters are not sensitive
enough to measure these microscopic light values. The
need to measure these low light levels has led to the
testing and development of a new irradiance sensor, which
is presented in this paper.

The new sensor is based on a product from Micro Photon
Devices (MPD) 1 , called the Single Photon Counter Cam-
era (SPC2). The SPC2 is capable of single photon detec-
tion, with low dark counting rates and capturing frame
rates up to 48 000 kHz. The camera was tested during
the January 2014 campaign of the Marine Night research
project in Ny-Ålesund, Svalbard, and showed promising
results. Most importantly, the camera was able to capture
the light dynamics of the polar night, with very little
measurement noise. See Lønne (2014) for details.

Together with the camera, the new sensor also consists of
two pieces of newly developed software. The sensor is built
around the client/server model. A server application runs
on a computer that is connected to the camera, and the
user interacts with the sensor through a client application,
which runs in a web browser. The server is responsible
for communicating with the camera, saving measurements
from the camera in a robust and safe way, and enabling
clients to take measurements and retrieve data. The client
is responsible for presenting the user with an interface that
offers sufficient control, but at the same time is easy to use.
The overall structure of the new sensor system is shown in
figure 1.

Testing and verifying the sensor is part of the overall
system testing. Before the sensor can be used in the field,
users must have confidence in the equipment, and be
relatively sure that it will perform as expected.

1 Micro Photon Devices, Via Stradivari 4, I-39100 Bolzano, Italy

Fig. 1. The structure of the sensor system.

This paper describes the initial testing and verification
of the sensor. Simple test cases are performed, to verify
that the sensor performs as expected, and that it registers
reasonable irradiance values. Section 2 lists the expected
functionality of the sensor, and what the end users expect
it to be capable of. Section 3 presents some theory on
the different ways to measure illuminance and irradiance,
and presents the foot-candle, which is used in one of the
experiments. Section 5 describes the setup of the different
tests, and briefly discusses their limitations and their
strong points. Section 4 discusses the different calibration
options that the sensor offers, and why they may be
useful. Section 6 presents the results of the tests. Section 7
presents the conclusion of the tests, and finally, section 8
lists possibilities for how the sensor’s capabilities can be
extended in the future.



2. EXPECTATIONS

The SPC2 was initially tested in January 2014, during
the polar night in Ny-Ålesund, Svalbard. Ny-Ålesund is
located at 78◦55′30′′ N, 11◦50′20′′ E and is well within the
polar night region. The initial tests were successful, in the
sense that the camera was able to capture the little light
that was present at this time of the year with high fidelity.
Also, the results were comparable with those measured by
other sensors, taken at the same location.

The new sensor is expected to perform as well as last
time. It is also expected to record time series of the
light conditions in Ny-Ålesund for an extended period
of time. Thus, the software is expected to be reasonably
robust, and the storage facilities must be able to safely
record the data. The data must be protected against such
eventualities as power outages and hardware failure.

Together with the users of the sensor, a specification of
the sensor functionality was drawn up before development
began. The specifications are discussed in detail in the
résumé that accompanies this paper. One point that is
contrasting to the last iteration of the sensor, is that it
must have remote control capabilities. The users expect to
monitor and control the sensor from any other location,
over the internet.

Ultimately, the most important expectation is that the
sensor stores correct measurements, and that the users are
confident in its continued, safe operation.

3. THEORY

3.1 PAR measurements

The sensor measures light as a count of the incoming
photons in a given time frame. The count is then con-
verted to µmol/m2s, which is a standard way to quantify
Photosynthetically Active Radiation, or PAR. All photons
in the PAR band carry enough energy to start photosyn-
thesis. It is the number of photons that count, not the
total energy. Thus, it is convenient to measure irradiance
on the quantum scale when talking about photosynthesis
(Sakshaug et al., 2009).

PAR can also be expressed in energy units; W/m2. This
is preferred when doing energy calculations, such as mea-
suring solar energy flux in the polar regions.

Converting between µmol/m2s and W/m2 is difficult un-
less the spectral distribution is known. Photons carry
different amounts of energy for different wavelengths, and
this must be accounted for in the conversion.

3.2 The lux scale

Another scale for measuring illuminance is the lux scale.
This scale was designed for measuring illuminance indoors,
and for architecture. The scale is therefore adjusted for
the spectral sensitivity of the human eye. The human eye
responds well to light in the green band, while plants
absorb light mostly in the red and blue bands of the
spectrum. In fact, algae and higher plants hardly respond
to green light at all.

In Sakshaug et al. (2009), there is an “average” conversion
factor from klx to µmol/m2s in the range 14–18. This
conversion factor must be used with care, as the spectral
composition can change a lot, especially in water. For
sunlight however, the spectral distribution varies little as
long as the elevation of the sun is greater than 10◦.

3.3 The foot-candle

The foot-candle, abbreviated fc, is a unit of illuminance.
It is the amount of light one foot away from a point source
of one candle. It is equal to one lumen per square foot.

The fc unit is intuitive, and makes possible a rough
procedure to calibrate a light meter. One foot candle is
roughly equal to 10 lux, and 1 klx is roughly equal to
14 µmol/m2s to 18 µmol/m2s (see Sakshaug et al. (2009),
appendix A).

4. CALIBRATION PROCEDURES

There are three elements of the camera that must be
calibrated; the sensor’s active area diameter, noise and the
photon detection efficiency. The information on calibration
comes from communications with the manufacturers of the
camera, Micro Photon Devices.

Active area The active area of the sensor is perfectly
determined by the manufacturing process. It needs no
further calibration. The active area diameter is 20 µm.

Noise Noise is called Dark Counting Rate (DCR) by
MPD. It is the photon count registered by the camera in a
completely dark environment. The procedure to calculate
it is as follows:

(1) Put the camera in a completely dark environment,
and acquire a frame with a long exposure time. MPD
recommended 10 s.

(2) Divide the count in each pixel with the exposure time
to get the DCR for each pixel. Use the data as-is, or
sum it to get DCR for the whole pixel array.

(3) Check that the measured DCR is compatible with
MPD’s measurements, which are provided with the
camera.

Photon detection efficiency Measuring the photon detec-
tion efficiency is a simple concept, but difficult in practice.
The difficulties lie in that the procedure calls for calibrated
monochromatic source, and a method for determining the
exact power the camera sees at the given wavelength.

MPD has performed tests of photon detection efficiency for
every wavelength from 400 nm to 1000 nm, with a 50 nm
step. The results are included with the camera, and are
also shown in figure 2. The dotted lines show the PAR
band, i.e. 400 nm to 700 nm. The camera counts photons
up to 1000nm.

If the spectral distribution of the measured light is known,
figure 2 can be used directly to calibrate the sensor. The
raw measurements would be saved by the sensor, and



Fig. 2. Photon detection efficiency.

adjusted later using a weighted average, with the weights
taken from the spectral distribution of the incoming light.

A more realistic scenario is that the spectral distribution is
unknown. In the case of the polar night, all available light
is indirect. The indirect light is mostly blue (Sakshaug
et al., 2009). The SPC2 is also most sensitive in the blue
band, making the polar night an ideal environment for
this sensor. The users will have to make some assumptions
about the actual spectral distribution, and calibrate the
measurements according to these assumptions.

5. TEST SETUP

5.1 24 hour time series

This test aimed to capture the light dynamics in a 24 hour
period. The test was performed in Trondheim, Norway.
The camera was situated in a window, inclined at roughly
30◦ from the horizontal, with the lens pointing to the
sky. The test was performed in an urban area, so some
light pollution should be expected, but the camera was
positioned to avoid pollution as much as possible.

To protect the camera’s buffers from numerical overflow,
the camera operates in normal mode. In this mode, the
camera captures frames with constant exposure time of
20.74 µs. Multiple frames are integrated, or summed, to
achieve a longer exposure time. For this experiment, the
exposure time was set to 10ms, which corresponds to
482 frames per image. 482 frames does not add up to
exactly 10ms, but rather 9.997ms, because the exposure
time can only be set in discrete steps.

No calibration was done prior to this experiment, so the
calibration factor was set to 1. Each data point is the
average of 5 images.

5.2 Dark counting rate

When the camera is placed in a completely dark environ-
ment, it will get counts from the photon counters. These
counts are false positives, and contribute to the noise in
the measurements. The noise is referred to as the Dark
Counting Rate (DCR).

To measure the DCR, it was necessary to capture images
in a completely dark environment. This was achieved by
capturing images in a dark room. To further minimize
stray light, the lens was removed from the camera, and
the sensor was covered with a cap. The camera was then
positioned face down on a table.

Measuring the dark counting rate requires that the images
are acquired with a long exposure time. Because the
camera operates in normal mode, the exposure time has
to be a multiple of 20.74 µs, and the number of captured
frames is limited to 65535. Thus, the maximum exposure
time is limited to ≈ 1 s. The exposure time was set to
48216 frames, which is ≈ 1 s.

Multiple images were captured with these settings, and
formed the basis for the DCR calculations.

5.3 Measuring the irradiance of a candle.

The camera was positioned 1 foot away from a burning
candle, facing the light. The camera and the candle were
placed in a dark room. Multiple irradiance measurements
were taken of the candle’s flame. The measurements were
then converted to the unit foot-candle, to verify that the
sensor’s output was reasonable.

This experiment was performed as a rough verification of
the sensor’s output values. In Sakshaug et al. (2009) a
crude conversion between kilolux and µmol is given as

1 klx ≈ 14− 18 µmol/m2s

Since 1 foot-candle is approximately 10 lx, a candle can be
used as a basic verification of the sensor’s output.

5.4 Comparing the SPC2 to the Walz Diving PAM

To investigate if the SPC2 were measuring reasonable
values, it was compared to another light meter. The
comparison was done with a Diving PAM underwater
fluorometer manufactured by Walz 2 . The Diving PAM is

[...] a worldwide unique instrument for study-
ing in situ photosynthesis of underwater plants,
including sea grasses, macroalgae, and zooxan-
thellae in corals. 3

The Diving PAM has a lower limit of reliable measure-
ments at about 1 µmol/m2s.

The experiment was performed on 19 December 2014, in
the afternoon between 14.30 and 15.00 local time. The two
sensors were set to measure the outside ambient light. The
weather was clear.

The light sensor on the Diving PAM is much smaller than
the lens on the SPC2. The SPC2 is believed to be able
2 Heinz Walz GMBH, Eichenring 6 - 91090 Effeltrich, Germany
3 From the company’s website: www.walz.com



to capture a larger light field than the Diving PAM. Also,
the light sensor on the Diving PAM is cosine corrected,
meaning that a diffuser is placed over the light sensor to
account for light coming in at different angles. These two
differences will probably account for some deviations in
the results.

5.5 Capturing the light field as an image

Lastly, the sensor was tested as a more conventional
camera, to see how well it performed when capturing
images of the light field. This experiment used the Capture
test image function of the web application, which captures
an image of the light field, converts it to the PNG format
and displays it to the user.

Two images were captured, in normal daylight conditions
indoors. In the first image, only the ambient light was
present. The second image was captured with the same
settings, but with an artificial light source pointed at the
camera, to see if it is possible to discern light sources on
the images.

6. RESULTS

6.1 24 hour time series

Figure 3 shows the result of measuring the irradiance in
Trondheim for 24 hours, on 15 and 16 December 2014. The
graph shows a couple of interesting facts.

First, irradiance values when the sun is below the horizon
is approximately constant. The values are in the range
0µmol/m2s to 0.5µmol/m2s. Typical irradiance values at
night is between 0 and 1 µmol/m2s, which proves that the
values from the sensor are perfectly reasonable. The sky
was clear on the night of the 15th, which corresponds well
with the constant measurements. Some small disturbances
can be seen; they are believed to be caused by light
pollution from the urban environment.

On 16 December, the sun rose at 09:58, local time. A detail
of figure 3 is shown in figure 4, which shows the period just
before and after sunrise. The graph is seen to rise sharply
just after 08:30, which agrees well with the timing of the
sunrise.

As the sun comes over the horizon, the sensor seems
to have saturated. This was confirmed by checking the
original measurement data. All counters had saturated.

Figure 5 shows a detail for the sunset. It is almost a
mirror image of the sunrise. The local sunset was at 14:32,
and the irradiance can be seen to sharply drop some
time after that. The saturation of the sensor hides the
dynamics between 14:30 and 15:00 from view. After 15:00,
the irradiance is seen to drop steady to a constant value
below 1, as expected.

6.2 Dark counting rate

The camera’s sensors are laid out in an array with di-
mensions 32 × 32. A visualization of the dark counting
rate for the entire array is shown in figure 6. Dark colors
correspond to low dark counting rates, and light colors,

Fig. 3. 24 hour time series

Fig. 4. Sunrise detail for the 24 hour time series

toward yellow, signify high dark counting rates. Because of
the long exposure time, some of the pixels have saturated.

MPD guarantees that the dark counting rate will be within
certain bounds. Specifically, they guarantee that half of
the pixels will have a dark counting rate below 4000 cps
(counts per second). Also, 75% of the array should have
dark counting rates below 25000 cps.

For the test image shown in figure 6, 729 pixels have a
DCR value under 4000 cps, and 841 pixels have a DCR
value less than 25000 cps. In percentages, that is 71.19%
and 82.13%, respectively.

The lowest dark counting rate in the array was 1955 cps.
The maximum is unknown, because the pixels with the



Fig. 5. Sunset detail for the 24 hour time series

Fig. 6. The Dark Counting Rate (DCR), or noise, for all
the pixels in the camera.

highest counts had saturated. The mean of the DCR values
was 13815, and the standard deviation was 22039. Figure 7
shows the dark counting rates in a histogram, where the
y axis represents the number of pixels, and the x axis
represents the counts per second. Clearly, most of the
pixels have DCR values which are less than 10000 cps.

6.3 Irradiance of a candle

Figure 8 shows 10 irradiance measurements of a burning
candle at a distance of approximately 1 ft. The red line
shows the mean value, which is 8.1283 µmol/m2s.

1 foot-candle is approximately 10 lx. 1 klx is approximately
14–18 µmol/m2s, see section 5.3. Converting the measured
irradiance of the candlelight to foot-candles, gives a value
which is about 50 times too large, before taking into
account the photon detection efficiency.

Fig. 7. Histogram showing the dark counting rates for all
the pixels in the camera.

Fig. 8. Irradiance measurements of a candle. The red line
shows the mean of the dataset. Note that the y axis
does not start at zero.

There are multiple possible sources for this error. First, the
experiment is very simple. It is not known for certain how
much light is emitted by the candle; it was only assumed
to be 1 foot-candle at a distance of 1 ft.

The conversion factor in Sakshaug et al. (2009) is valid in
sunlight. In this experiment, it has been assumed that the
conversion factor holds, which it might not. Converting
between µmol/m2sand lx is dependent on the spectral
distribution, and without knowing it, the conversion is
suspect.

Other factors that might have affected the result, but
unlikely in a major way, are reflectance of the light from
nearby walls, and background light.

Finally, the sensor might be in error. However, other
tests, such as the 24 hour irradiance measurements, have
proved to be reasonable. Thus, it seems prudent to rule



out the possible sources of error before assuming that the
measurements are in the wrong.

Clearly, other experiments must be performed to assess the
correctness of the sensor. This is a task for future studies.

6.4 Comparison with the Walz Diving PAM

The Diving PAMmeasured values in the range 3µmol/m2s
to 6µmol/m2s, while the SPC2 measured 8µmol/m2s to
9µmol/m2s. Thus, the results differed with a factor of
about 2.

The Diving PAM has a much lower sensitivity, which
probably accounts for some of the error. Also, the SPC2
has never been calibrated against a known light source,
meaning that its absolute values must be treated with
some suspicion.

The values were within the same order of magnitude,
which implies that the SPC2’s measurements are within
reasonable limits. Further calibration and a more rigorous
procedure is needed to confirm this more accurately.

6.5 Images of the light field

An image of the light field indoors is shown in figure 9.
The image was captured in a room with windows in the
morning, when the sun was up. The exposure time is 15ms.

The resolution of the image is 32 × 32 pixels, where each
pixel’s value is based on the photon count of a single
photon detector. It is nearly impossible to recognize any-
thing in the image, although contrasts show up reasonably
clearly. An object with a high contrast to its background
should be possible to recognize.

Fig. 9. Image of the light field.

Figure 10 shows an image of the same room, with a point
source of light pointed towards the camera. The point
source is a flashlight. The camera is not saturated, as the
image is still gray; saturated pixels are completely white.

The contrasts from figure 9 is gone, presumably because
of the new light source. It is nearly impossible to discern
anything in the image, except for some darker patches in
the corners.

Most importantly, it is hard to identify the light source in
the image. In figure 10, the light source is pointed out with
the arrow. The light from the flashlight causes increased
counts in almost all pixels, causing the entire image to
become more indistinct.

When using the sensor to capture images of the night sky,
or the polar night environment, users have expressed that
it would be advantageous to be able to identify point light
sources, such as the moon. On the basis of these tests, it
seems like it would not be possible to identify point sources
from the images. The identification would have to be done
some other way, e.g. by simultaneously taking images with
a traditional camera.

Fig. 10. Image of a point source of light. Light source
marked with an arrow.

7. CONCLUSION

The experiments that have been described in this paper,
were meant to test the new sensor system, and confirm
that the measurements it provides are reasonable. Most of
the experiments were successful in this regard.

The 24 hour time series demonstrated that the sensor is
able to measure the dynamics of the light field. It also
established that the sensor has a saturation limit which
can cause measurement problems when the difference
in irradiance is large. For measuring light in the polar
night, this should not pose much of a problem, since the
irradiance levels are relatively low throughout the day. For
other uses, this issue will have to be addressed, either by
manual intervention or by extending the sensor to set the
exposure time autonomously.

The dark counting rate experiment shows that the DCR
values are very reasonable, and well within the guaranteed



levels from the manufacturer. Additionally, the experiment
increases the confidence in the new sensor system, in that
it captures and delivers the correct images.

Measuring the irradiance from a candle was not success-
ful. No conclusions will be drawn from this experiment,
because there are too many uncertainties, which are dis-
cussed in section 6.3.

Comparison with the Walz Diving PAM showed that the
sensor’s output falls in a reasonable range. This indicates
that the sensor’s measurements needs further calibration,
but that it is absolutely fit for the purpose.

Finally, the images of the light field goes some way
in demonstrating the camera’s effectiveness in visually
describing the incoming light. With some training, it
might be possible to discern points of interest on these
images. The resolution is so low, however, that all such
identifications must be treated as uncertain.

8. FURTHER WORK

8.1 Automatic adjustment of exposure time

As was seen in the 24 hour time series experiment, there is
a need for adjusting the exposure time when the light levels
change. In the interest of minimal manual adjustment, it
would be preferable if the sensor adjusted the exposure
time automatically, to avoid saturating the photon coun-
ters when light levels rise above a critical level.

Each element in the captured image is a 16 bit counter,
meaning that the maximum value it can represent is 65535.
The automatic adjuster algorithm could be implemented
as a regulator, with the aim of keeping the mean value of
the measurements well below this limit, but also above the
dark counting rate. By capturing a test image, the mean
of the counters can be calculated, and the exposure time
set accordingly.

8.2 Calibration against a known light source

For the sensor to be able to reliably measure irradiance in
absolute values, it needs to be calibrated against a known
source of light. The spectral signature of the light source
must also be known, such that the calibration can take
into account the photon detection efficiency at different
wavelengths.

8.3 Alarms

The specification of the sensor lists alarms as a priority B
task. This is not yet implemented due to time constraints.

The sensor should alert the user of any trouble it encoun-
ters during operation. Examples of problems could be hard
drive failure, causing one of the databases to shut down.
It could also be other sources of hardware failure, such as
problems connecting to the camera, or problems with the
power supply. The alarm system should also warn the user
in the event of software failures, such as failure to save
measurements. A more sophisticated alarm system could
also monitor the output of the sensor, and issue warnings
when the output seems suspect. Problematic output could

be very high or low measurements, or a significant increase
in noise, which could be an indication of hardware prob-
lems.

The alarms would have to be issued to the user through
the user interface, e.g. on a list on the main page of the
web application. The interface would need some way of
dismissing the alarm when the cause has been fixed.
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A User manual

The following pages contain the user manual, meant for the end users of the
system. It details installation of the server and the web application, and the
user interface.
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User manual for the SPC2 software package

Lars Lønne
larslonn@stud.ntnu.no

14 December, 2014

1 Installation

1.1 Connecting the camera to the server

1.1.1 Inputs

The SPC2 camera has five inputs. Only two of them will be used for this
application. One is the power, which has no label, and the other is the USB.
Figure 1 shows the inputs on the camera.

1.1.2 Connections

Connect the USB cable to the camera and to the server. Connect the power
cable to the camera. The camera can take up to 10 seconds to start up after
the power has been connected.

1.2 Databases

The server application needs at least one database to save measurements,
settings and metadata in. The database must always be available, so failure
preventions must be considered when implementing the database solution.

The chosen database system is MongoDB. It was chosen because it is an
open-source, document driven database, which works particularly well with
node.js, which is the platform that the server application is written in. It

1



Figure 1: SPC2 inputs

also supports the notion of replica sets, which is an easy way of implementing
redundancy.

This section describes how to set up redundant databases, and how to tell
the server application which databases to use.

1.2.1 Getting MongoDB

MongoDB can be downloaded from the download page. Choose the correct
download for your system and follow the installation instructions.

For many systems, such as Mac OS X and many flavors of Linux, MongoDB
can also be installed through a package manager. See the MongoDB web
page for details.

Once the installation is finished, you can proceed with the next section.

1.2.2 Replica sets

MongoDB supports redundancy through what it calls replica sets. This
means that the application connects to two or more instances of the database
at the same time. One of the databases is designated as the primary, and
the others are secondary. The data is first saved to the primary database,
and then replicated on the secondaries. In case of a failure, such as a power

2



outage or a hardware failure, one of the secondaries is elected to be the new
primary, and the system can continue in its normal mode of operation.

Important: Replica sets should always have an odd number of members, to
ensure that elections proceed smoothly. Thus, 3 members should be sufficient
to endure most problems.

The MongoDB manual recommends that replica set members in production
environments maintain as much separation as possible. Storing the different
databases on separate hard drives should be a minimum requirement. Run-
ning on separate machines is better, and on separate machines in separate
locations would be ideal. Strive to separate the running databases as much
as possible. Never run all the instances from one hard drive.

1.2.3 Starting mongod

A MongoDB database instance is started with the command mongod, which
stands for mongo daemon. It takes a number of command line options, some
of which are detailed here. The rest can be found on mongod’s help page,
accessible with the command mongod --help. Options are specified on the
command line, with two dashes preceding it, such as mongod --option.

port <port-number> specifies the port that the process will listen on. The
default port is 27017, and should be used if the instances are running on
separate machines. If the database processes are all running on one ma-
chine, they must listen on separate port numbers. Starting on 27017 and
incrementing for each one is a good choice.

dbpath <path> specifies the path to the database files. This depends on the
host machine, but /data/db is often used.

replSet <set-name> specifies the name of the replica set that the process
belongs to. It can really be anything, as long as all the members belong to
the same replica set. An example could be “spc2-repl-set”.

logpath <path> saves the database logs to the file at <path> instead of
printing it to the console. This should always be enabled. If you want the
process to append to the logfile instead of overwriting it, use --logappend.

An example of how to start a mongod instance:

mongod --port 27018 --dbpath /data/db --replSet spc2-repl-set0
--logpath /var/log/mongod.log

3



This would start a mongod instance, listening on port 27018, saving data at
/data/db, belonging to the replica set spc2-repl-set0 and saving its logs
at /var/log/mongod.log.

1.2.4 Adding members to the replica set

Open a mongo shell on the machine that runs the primary process. This can
be any of the processes. A mongo shell is opened by issuing the command

mongo --port <port-number>

<port-number> is the port number that the process on this machine listens
on. E.g. if the process was started with

mongod --port 27018 ...

you would start the shell with the command

mongo --port 27018

Once the shell has started, run the command

rs.initiate()

This will initiate the replica set, and add this process as the primary. When
it has finished, issue the following command for each of the other members
in the replica set:

rs.add("<member-address>")

<member-address> is the address of the other process that was started.
When all processes has been added to the replica set, run

rs.status()

to confirm that everything is set up correctly. All members in the set should
be listed in the members property. If they are not, or you encounter any
other errors, consult the documentation.

1.2.5 Creating the settings collection

For the server application to run, the settings and the cameraspecs collec-
tions must exist in the database. In the scripts directory, there is a script
called populate-db.js that will create a settings object and save it to the
database.
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Open the script and edit the line that says

conn = new Mongo(’spc2-server:27017’)

Change spc2-server to the hostname of your machine, and change 27017
to the port your mongod process is running on.

Next, run the script with the following command:

mongo <hostname>:27017 scripts/populate-db.js

Change <hostname> and 27017 if your database is running on a different host
and/or port. The settings and cameraspecs collections should now exist
in the database.

1.2.6 The server application config file

When the databases are up and running, the addresses must be entered into
the server application config file, so that the server can connect to them.
Open the config file, and update it so it includes the following lines:

dbHostAddresses:
- <address1:port1>
- <address2:port2>
- ...

databaseName: spc2db

Each member of the replica set must be listed on its own line under dbHostAddresses.
Make sure that the file only includes one instance of the dbHostAddresses
list and the databaseName variable.

1.3 Server

1.3.1 Prerequisites

The server is a node.js application with MongoDB databases. Setting up
the databases is described in the database section. To run the server appli-
cation, the node.js platform must be installed. See the node.js webpage for
instructions.

Also, before proceding, the camera should be connected to the server.
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1.3.2 The config file

The server’s configuration file is called config.yaml, and should exist in
the same directory as server.js. server.js is the main file of the server
application.

The database specific entries in the configuration file are dealt with in the sec-
tion on databases. Specifically, the variables dbHostAddresses and databaseName
should exist and have its correct values.

The config file may include a variable called port, which specifies which port
the server should listen for connections on. If port is not specified, the server
defaults to listening on port 8080.

The config also has an entry named sensorArea, which should be 3.14e-10.
This is the surface area of the sensor in the camera, and is used by the server
application for calculating the irradiance values.

1.3.3 Installing dependencies

The server application depends on a number of external modules to function.
The dependencies are all listed in the file package.json and can be installed
using npm; the node package manager. npm is installed with the node platform,
and should be available on your system.

Run npm install to install all dependencies.

1.3.4 External dependencies

The server application depends on http://www.graphicsmagick.org for con-
verting the test images from TIFF to PNG format. It must be installed on the
machine that the server application is running on.

On an Ubuntu Linux server, it is installed like this:

sudo apt-get install graphicsmagick

If you are running a different system, consult the GraphicsMagick webpage.
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1.3.5 Compiling the C API

The last step before starting the server is compiling the C API. This job is
done with the tool scons. If it is not installed on your machine, install it
now through your package manager.

SConstruct files are provided for both Mac OS X and Linux. Compile the
C API by calling scons like this:

scons -f SConstruct.linux

Change linux to osx if you are running on a Mac.

1.3.6 Starting the server

The server application includes a startup script called run-server.sh. It is
written in bash, and will run on all Mac OS X and Linux systems. It will
not run on Windows, except through Cygwin or something similar.

The server is run using a program called supervisor, which restarts the
server in case of failures. If this program is not installed, it can be installed
with npm:

npm install -g supervisor

Then, run the script to start the server:

./run-server.sh

1.3.7 Running

The server should now be running. It will try to connect to the camera
and the database, and log any errors to the console. Usual problems at this
stage is not having the camera connected, or not having a running database
process.

The server should now be up and running, and listening for HTTP requests
on the configured port, or 8080 by default.
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1.4 Web application

The web application is a couple of simple pages for controlling and monitoring
the SPC2 camera, through the server. This section assumes that the server
is running, and that you have the server address.

1.4.1 Setup

The web application requires minimal setup. First, it needs to know is
the address to the server. This information must be entered in the file
js/config.js, which is a standard javascript file.

Change the host and port to the address and port number of your server.
Do not change the /api part. A sample config.js is shown below.

var host = ’http://129.241.143.245’,
port = 8080;

var config = {
//
apiUrl: host + ’:’ + port + ’/api’

}

Second, the web application’s dependencies must be installed. This is done
in two steps, because it uses both npm and bower to handle its dependencies.
Change to the top directory, where the file package.json is located. Run
the command

npm install

This should install all the dependencies for node.js. Then, change to the
resources directory and run the command

bower install

This should install all dependencies for the web application itself.

1.4.2 Hosting

The web application is also a node.js application, and can be started with
the command

NODE_ENV=production node app.js
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Important: It uses basic authentication to authenticate the user. If security
is a concern, the web application must run on https only.

2 Web interface

The web interface is the main interface for end users. Through it, users
can examine the latest measurements, set capture parameters and download
data from the camera. This section describes each part of the web interface
in detail, and explains how to use it.

2.1 The main page

Figure 2: Main page

This is the main page of the application. By default, it shows a graph of the
measurements taken in the past six hours. Time in GMT is on the x axis,
while light measurements on the quantum scale is on the y axis.

By moving the mouse pointer over the graph, it is possible to read the exact
measurement at that time instant.

Below the graph are the graph controls. By choosing the from and to date
and clicking the Draw graph button, you can show measurements for a specific
time range. Beware that all the data must be read from the database, so if
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you choose a large time range, it might take some time before the graph is
shown again.

2.2 The Control page

Figure 3: Control page

The Control page enables you to control the camera operations. There are
two options, controlling Automatic capturing and capturing test images.

Automatic capturing is used for capturing time series of light measurements.
It has two buttons, which starts and stops the automatic capturing mode.
In this mode, the camera captures a series of images at given time intervals.
The average of these images is stored in the database, along with the capture
parameters that were active when the image was aquired. Also stored are
the total photons per second that was detected, and the irradiance value on
the quantum scale, micromol photons per square meter per second. The time
interval is set on the Settings page.

Capture test image is for testing different integration times. Integration time
is analogous to exposure on a traditional camera. Enter the integration time
in milliseconds and press the button to capture an image. After the image
has been captured and sent from the server, it will appear below the button.
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2.3 The Settings page

Figure 4: Settings page

The settings page allows you to set the capture parameters for the camera,
and save information about the lens used with the camera.

2.3.1 Capture parameters

The SPC2 camera works is very different from a traditional camera, and this
is reflected in the parameters. The camera actually counts the number of
photons it detects during its exposure time. However, if the user is allowed
to set the exposure time directly, the photon counters might overflow, and
the results would be undefined. To prevent this, the camera has a constant
exposure time of 20.74 microseconds. The data captured during this time is
referred to as a frame.

To enable longer exposures than 20.74 microseconds, the camera sums mul-
tiple frames. This sum of frames is referred to as an image. Integration time
indirectly specifies how many frames we want to sum in each image. The
number of frames is set to the value that comes closest to the specified time.
The integration time is in milliseconds.
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Each measurement takes a number of images, and returns the average of
those images. The number of images captured each time is specified in the
input field Number of images.

Dead-time is the time from the camera detects a photon, until it is ready
for detection again. Dead-time correction is an algorithm that tries to com-
pensate for this unproductive time. It can be turned on and off with the
checkbox.

Calbration factor is a factor that is multiplied with the calculated irradiance,
before it is saved in the database. Use it if you need to calibrate the camera.

Capture interval is the amount of time between each measurement in auto-
matic mode. The interval is in seconds.

Note: Although unlikely in practice, it is possible to set parameters such
that each measurement takes longer than the interval between measurements.
Avoid this.

2.3.2 Lens specifications

In this section you can record the specifics about the lens used with the cam-
era. The information is stored in the database with a timestamp, such that
it is possible to go back and see which lens was in use for the measurements.

2.4 The Download page

Figure 5: Download page

This page contains only one form, that allows you to download measurements
from the database. Fill in the from and to dates, and click Download data.

The data is a standard comma separated values file (CSV), with a header.
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B Specification

The following pages contain the software specification. It is discussed in more
detail in section 2.
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Software specification

The purpose of this document is to specify a software system (“the program”)
for controlling the SPC2 Photon Imager (“the sensor”).

Software functionality

The purpose of the sensor is to measure light by imaging the light field using
photon counters. The raw output from the sensor is an image with 32 × 32
pixel resolution. Each of these pixels represent the photons counted by one
counter during the exposure. I.e. the sensor consists of 1024 individual
counters.

The main purpose of the program is to control the sensor. The program must
be able to send commands to, and receive information from the sensor.

The following specifications are prioritized into three categories: Priority A,
Priority B and Priority C. Functionality listed under Priority A is minimum
functionality that must be implemented for the program to be functional.
Priority B lists functions that are non-essential, but important for a good
user experience. Functionality listed under Priority C are requests from the
end users that most likely will not be implemented in this development cycle
due to time constraints. Priority C functions will not be attempted until A
and B are complete.

Capturing images

The sensor captures images of the light field in frames, which is defined as
an exposure of 20.74 µs. The parameter integration time decides how many
frames should be summed up in the output image from the sensor.

Dead-time is the time it takes to restore the photon detector after detection of
a photon. During this time, no detection takes place. This effect introduces a
non-linearity in the measurements, which can be reduced by a setting known
as dead-time correction. This correction is most effective at low to moderate
light intensities.

Priority A
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• The program must enable the user to set and change integration time
and dead-time correction.

• Focal length, field of view and aperture all depend on the lens used and
are not controlled by the program. The program must include a text
field where info about the lens can be entered. This info will be saved
in the database with the captured data.

• Shutter speed is controlled indirectly by the integration time.
• The program must set default values for all parameters, and the pro-

gram should be able to reset the parameters to the default values.
Examples of default values could be integration time = 0.5 s, and dead-
time correction on. Actual values will be decided after testing the
sensor in its operational environment.

• The program must store the values for all parameters, i.e. the param-
eters must not change or be reset by any other means than user inter-
action.

• The program must be able to capture images in automatic mode. Auto-
matic mode means that the program captures an image every t seconds,
where t is specified by the user.

Priority B

• Enable the user to capture test images. A test image is an image
captured at the command of the user. The program may then show
the image to the user, along with data connected to the image, such as
the irradiance in quanta or energy mode.

Storing data

Priority A

• The program must store all data from the sensor in a reliable and secure
manner. Each captured image, or equivalent data, must be stored.

• The stored data should be calibrated to the quantum scale, i.e. it
should be stored as µmol/m2s.

• The parameters of the sensor must be stored with the data, for future
recalculation and confirmation.

• A calibration factor, if calculated, should be stored with the captured
data. This way, the original measurements (raw counts) are always
available.
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• The storing of data must be robust, meaning that captured data from
the sensor must be stored, even if there exists some problem with the
database or the program.

Priority B

• Implement alarms to warn the user about storage problems.
• Also store data calibrated to the energy scale, i.e. µW/m2.

Access to stored data

Priority A

• The program must enable the user to access data stored in the database.
The program must offer the user to download the entire database, either
as a database file, or as a dump of the database.

• The program should display the captured data through a web inter-
face in the form of a plot. The units on the displayed data should be
µmol/m2s.

Priority B

• The program should also make parts of the collected data available,
such as data captured within a specified timeframe. This timeframe is
specified by the user. The data can then be downloaded as a structured
plain text file, such as CSV.

Remote access

Priority A

• The program must enable the user remote access to the sensor. This
means that the user must be able to access the captured data over a
network, either the internet or a local network.

• Read access must be provided remotely, i.e. the user must be able to
inspect and download captured data.
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Priority B

• Controlling the sensor, e.g. by setting parameters, may be provided
remotely.

Security

Priority A

• The program must be secured against unauthorized access.
• The program must ensure that the user is authenticated before the user

is allowed to download data or set sensor parameters.

Priority B

• Access to view the captured data may be allowed without authentica-
tion.

Hardware functionality

Power supply

Priority B

• Review the available power supply.
• Plan a robust and failsafe system for continuous power supply to the

sensor.

Priority C

• Implement the planned power supply system.

Future adaptation: Underwater operations

Priority C

• Review systems and methods for adapting the sensor to underwater
operations.

• Plan/design a system for adapting the sensor to underwater operations,
e.g. on landers and mobile platforms such as AUV/ROV.
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C Code documentation

This appendix includes the documented code for the server application. The
documentation was autogenerated with docco12, an open source documenta-
tion generator.

The code documentation is primarily intended for future developers and
maintainers, who want to understand and extend the code.

The code is also included in the accompanying zip archive.

12http://jashkenas.github.io/docco/
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server.js

server.js

var express = require('express');
var app = express();
var basicAuth = require('basic-auth');
var async = require('async');
var bodyParser = require('body-parser');
var confert = require('confert')
var config = confert('config');
var winston = require('winston');
var apiRouter = express.Router();
var jsonParser = bodyParser.json();
var fs = require('fs');

sdk, dataAccess and processor are local modules that handle the connection
to the camera, access to the database and intermediate processing of data,
respectively.

var sdk = require('./modules/spc2-sdk/spc2-sdk.js');
var dataAccess = require('./modules/data-access/data-access.js');
var processor = require('./modules/data-processor/data-processor.js');
var autoCapture;

var logger = new (winston.Logger)({
transports: [

new (winston.transports.Console)({level: 'debug', colorize: true})
]

});

HTTP access control (CORS)

The following middleware adds the Access-Control-Allow-Origin to every re-
sponse. The purpose of this is to allow clients to make requests to this domain,
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which is different from the domain the request was made from. For more
information, see this article on MDN.

app.use(function(req, res, next) {
res.header("Access-Control-Allow-Origin", "*");
res.header("Access-Control-Allow-Headers",

"Origin, X-Requested-With, Content-Type, Accept");
next();

});

Application Programming Interface

The rest of the file sets up the routes for the API, and defines the functions to
be called for requests to those routes. Common for all of the routes is that they
respond with 200 on success, and either 400 or 500 for errors on the client or
server side, respectively.
Use the apiRouter for all calls to addresses starting with /api.

app.use('/api', apiRouter);

Checks for a connection to the camera. Responds with 200 if successful, and
500 if a connection does not exist, and a new one can not be made.

apiRouter.get('/connected', function(req, res) {
var connected = sdk.init();
res.sendStatus(connected ? 200 : 500);

});

Disconnects from the camera. Note that this route responds to POST requests,
while /connected responds to GET. The reason for this is reflected in the name of
the routes, also. /connected is meant as a status request, as in the question is
the camera connected? /disconnect on the other hand, assumes that the camera
is connected, and that the user issues the command disconnect the camera.

apiRouter.post('/disconnect', function(req, res) {
var disconnected = sdk.destroy();
res.sendStatus(disconnected ? 200 : 500);

});

Gets data from the database, between the dates given in the route name. from
and to must be on a form that is recognized by Date.parse. The recommended
format is the ISO 8601 format, because it is clear and unambiguous.
On success, the data is written to a CSV file and offered to the user as a
download.
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apiRouter.get('/getData/:from/:to', function(req, res) {
var from = new Date(req.params.from);
var to = new Date(req.params.to);
if (!from || !to) {

var msg = 'Date format passed to /getData is not valid.';
logger.warn(msg);
res.status(400).send(msg);

} else {
var data = dataAccess.getData(from, to, processData);

}

function processData(err, results) {
if (err)

return logger.error(err);

processor.createCSV(results, downloadFile);
}

function downloadFile(err, path) {
if (err)

return logger.error(err);

var filename = 'data.csv';
res.download(path, filename, function(err) {

processor.deleteFile(path);
});

}
});

Calls to this route returns the same data as calls to /getData, but in JSON
format. It is used for plotting data in the web application.

apiRouter.get('/plotData/:from/:to', function(req, res) {
var from = new Date(req.params.from);
var to = new Date(req.params.to);
if (!from || !to) {

var msg = 'Date format passed to /plotData is not valid.';
logger.warn(msg);
res.status(400).send(msg);

} else {
var data = dataAccess.getData(from, to, function(err, results) {

if (err) return logger.error(err);

var plotData = [];
results.forEach(function(result) {
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var time = result.time.getTime(),
value = result.quantumScale;

plotData.push({ time: time, value: value });
});
logger.info('Sending plotdata');
res.send(plotData);

});
}

});

Sets parameters for the camera, and stores the parameters in the database.
This route expects the parameters as a JSON object included in the request.
The object should have the properties integrationTime and nImages.
integrationTime is the exposure time of the camera in milliseconds, and
nImages is the number of images captured in each snap. The actual measurement
stored in the database is the average of these nImages.

apiRouter.post('/setParameters', jsonParser, function(req, res) {
var args = req.body;
if (!args) {

return res.sendStatus(400);
}

var integrationTime = parseFloat(args.integrationTime, 10);
var nImages = parseInt(args.nImages, 10);

if (!integrationTime || !nImages) {
var errMsg = 'Params to /setParameters are not valid numbers.';
logger.error(errMsg);
return res.status(400).send({error: errMsg});

}

The camera operates in normal mode, where one exposure is 20.74 microseconds.

var exposureTime = 20.74e-6;
var nIntegratedFrames = Math.round(integrationTime/exposureTime);

async.parallel([
function setCameraParameters(callback) {

var status = sdk.setCameraParameters(nIntegratedFrames, nImages);
callback(null, status);

},
function saveParameters(callback) {

var settings = {};
settings.numIntegratedFrames = nIntegratedFrames;
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settings.numImages = nImages;
dataAccess.updateSettings(settings, callback);

}
], function after(err, results) {

if (err) return logger.error(err);
var status = results[0];
res.status(status.success ? 200 : 500).send(status);

});
});

Sets the interval between each measurement when in automatic capture
mode. The POST request must include a JSON object with the property
captureInterval. The interval is given in seconds.

apiRouter.post('/setCaptureInterval', jsonParser, function(req, res) {
var postData = req.body;
if (!postData || !postData.captureInterval) {

logger.error('Invalid data sent to /setCaptureInterval');
logger.debug('postData: ' + postData);
return res.sendStatus(400);

}
dataAccess.updateSettings({

secondsBetweenCaptures: postData.captureInterval
}, function callback(err) {

if (err) {
logger.error(err);
res.sendStatus(500);

}
logger.info('Updated capture interval');
res.sendStatus(200);

});
});

Sets the calibration factor for the measurements. Each measurement is multiplied
with the calibration factor before it is stored in the database. The calibration
factor is stored with each measurement.

apiRouter.post('/setCalibrationFactor', jsonParser, function(req, res) {
var postData = req.body;
if (!postData || !postData.calibrationFactor) {

logger.error('Invalid data sent to /setCalibrationFactor');
logger.debug('postData: ' + postData);
return res.sendStatus(400);

}
dataAccess.updateSettings({
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calibrationFactor: postData.calibrationFactor
}, function callback(err) {

if (err) {
logger.error(err);
res.sendStatus(500);

}
logger.info('Set calibration factor');
res.sendStatus(200);

});
});

Enables the dead-time correction algorithm. After a sensor has detected a
photon, it needs to reset before it is ready for detection again. During this
reset, no detections will be made. This time is called the dead-time. Dead-time
correction is an algorithm that tries to correct the errors in the measurements
due to the dead-time.

apiRouter.post('/enableDeadTimeCorrection', function(req, res) {
var statusObj = sdk.setDeadTimeCorrection(true);
dataAccess.updateSettings({

deadTimeCorrection: true
}, function(err) {

if (err) {
logger.error('Could not update dead-time correction in settings: ' + err);
res.sendStatus(500);

}
res.status(statusObj.success ? 200 : 500).send(statusObj);

});
});

Disables the dead-time correction.

apiRouter.post('/disableDeadTimeCorrection', function(req, res) {
var statusObj = sdk.setDeadTimeCorrection(false);
dataAccess.updateSettings({

deadTimeCorrection: false
}, function(err) {

if (err) {
logger.error('Could not update dead-time correction in settings: ' + err);
res.sendStatus(500);

}
res.status(statusObj.success ? 200 : 500).send(statusObj);

});
});
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Captures a single image and returns a JSON object, containing the image data
as a base64 encoded string. The image data is in the imageBase64 property.

apiRouter.get('/getTestImage', function(req, res) {

Expects a query parameter intTime, which specifies the integration time in
milliseconds.

var intTime = req.query.intTime * 1;
if (!intTime || intTime === NaN || intTime <= 0) {

logger.error('/getTestImage: invalid parameter intTime: ' + intTime);
res.sendStatus(400);

}
var nIntFrames = time2Frames(intTime);
sdk.captureTestImage(nIntFrames, function(path) {

fs.readFile(path, function(err, data) {
if (err) {

logger.error('/getTestImage: Could not read image file: ' + err);
return res.sendStatus(500);

}
var base64Data = data.toString('base64');
res.status(200).send({

imageBase64: base64Data
});

});
});

});

Starts automatic capturing. Automatic capturing means that the camera cap-
tures a set of images at set intervals. The average of these images are stored in
the database as a measurement, along with the capture parameters. Most of the
functionality of this route is encapsulated in the autoCapture closure.

apiRouter.post('/startAutoCapture', function(req, res) {
logger.info('Starting autocapture');
autoCapture.start();
res.sendStatus(200);

});

Stops automatic capturing.

apiRouter.post('/stopAutoCapture', function(req, res) {
logger.info('Stopping autocapture');
autoCapture.stop();
res.sendStatus(200);

});
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The user can store metadata about the camera in the database for later refer-
ence. This route accepts the meta data as a JSON object, and saves it to the
database. The JSON object may include the properties focalLength, aperture
and description.

apiRouter.post('/saveCameraSpecs', jsonParser, function(req, res) {
var postData = req.body;
if (!postData) {

logger.error('Invalid data or no data posted to /saveCameraSpecs');
return res.sendStatus(400);

}
dataAccess.saveCameraSpecs(postData, function(err) {

if (err) {
logger.error('Could not save camera specs: ' + err);
res.sendStatus(500);

} else {
logger.info('New camera specs saved');
res.sendStatus(200);

}
});

});

Returns the stored settings from the database. Settings include the number of
integrated frames, the number of images captured in each snap, seconds between
each capture in automatic mode, the calibration factor and a boolean telling us
if dead-time correction is enabled or not.

apiRouter.get('/getSettings', function(req, res) {
dataAccess.getSettings(function gotSettings(err, result) {

if (err) {
logger.error('Could not get settings: ' + err);
res.sendStatus(500);

} else {
logger.debug('Getting settings object');
res.status(200).send(result);

}
});

});

Returns the stored camera specifications from the database. These are the
specifications stored with /saveCameraSpecs.

apiRouter.get('/getCameraSpecs', function(req, res) {
dataAccess.getCameraSpecs(function gotSpecs(err, result) {
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if (err) {
logger.error('Could not get camera specs: ', err);
res.sendStatus(500);

} else {
logger.debug('Getting camera specs');
res.status(200).send(result);

}
});

});

Startup

Creates the server instance and starts listening for requests.

var listenOn = config.port || 8080;
var server = app.listen(listenOn, function () {

Attempt to connect to the camera.

var connected = sdk.init();
if (!connected) {

logger.error('Could not connect to camera. Exiting.');
process.exit(1);

}

The following functions are called in series, because the database must be
connected before the other functions can be called.

async.series([
function connectToDatabase(callback) {

dataAccess.connect(config.dbHostAddresses, config.databaseName, callback);
},

This creates the autoCapture closure. The reason for using a closure, is to
encapsulate the intervalObject, which is needed for stopping a running timer.

function createAutoCaptureClosure(callback) {
autoCapture = (function() {

var intervalObject;
return {

start: function() {
dataAccess.getSettings(function(err, settings) {

if (err)
return logger.error('Could not start auto capture: ' + err);
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The timer function uses the sdk to capture an image and saves the data to the
database. The camera parameters are saved along with the measurement.

intervalObject = setInterval(function() {
var measurement = sdk.captureImage();
measurement.numIntegratedFrames = settings.numIntegratedFrames;
measurement.numImages = settings.numImages;
measurement.photonsPerSecond =

processor.getPhotonsPerSecond(settings.numIntegratedFrames,
measurement.data);

measurement.quantumScale =
processor.convertToQuantumScale(measurement.photonsPerSecond,

settings.calibrationFactor);
measurement.calibrationFactor = settings.calibrationFactor;
dataAccess.saveMeasurement(

measurement,
function(err, m) {

if (err) return logger.error(err);
else return logger.debug('Measurement saved at ' + m.time);

});
}, settings.secondsBetweenCaptures * 1000);

})
},
stop: function() {

clearInterval(intervalObject);
}

};
})();
callback(null);

},
function setStoredParameters(callback) {

Gets settings from database and apply them to camera. If any errors occurs
here, the application assumes that either the camera is not connected, or the
database is not running. Either way, there is no point for the application to
start up, so it just exits.

dataAccess.getSettings(gotSettings);

function gotSettings(err, settings) {
if (err) {

logger.error('Could not get settings from database: ' + err);
process.exit(1);

}
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var status = sdk.setCameraParameters(settings.numIntegratedFrames,
settings.numImages);

if (!status.success) {
logger.error('Could not set camera parameters');
process.exit(1);

}

status = sdk.setDeadTimeCorrection(settings.deadTimeCorrection);
if (!status.success) {

logger.error('Could not set dead-time correction');
process.exit(1);

}

logger.info('Camera parameters have been set');
callback(null);

}
}], function initDone(err) {

logger.info('Initialization done.');
});

var host = server.address().address;
var port = server.address().port;
logger.info('Server listening at http://%s:%s', host, port);

});

Returns the number of integrated frames that comes closest to the given integra-
tion time. integrationTime is the time in milliseconds.

function time2Frames(integrationTime) {
var micro = 1e-6,

milli = 1e-3;
var exposureTime = 20.74 * micro;
var timeInSeconds = integrationTime * milli;
var frames = Math.round(timeInSeconds / exposureTime);
return frames;

}
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data-access.js

data-access.js

Purpose

This module includes functions that read and write to the database. It acts as
an abstraction layer between the server application and the database, hiding the
database details from view.

MongoDB

The server uses MongoDB as its database. Mongoose is a node.js module for
interfacing with MongoDB.

var mongoose = require('mongoose');
var db;

var winston = require('winston');
var logger = new (winston.Logger)({

transports: [
new (winston.transports.Console)({level: 'debug', colorize: true})

]
});

Module functions

var dataAccess = module.exports;

Connects to the database(s). Addresses is a list of addresses to running mongod
instances. The use of multiple databases assures redundancy in case some of
them fail.

function connect(addresses, databaseName, callback) {
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Concatenates the addresses to one URI that mongoose accepts.

var uri = concatAddresses(addresses, databaseName);
var options = {

Sets keepalive to true, to make sure that the database connection doesn’t time
out.

server: {
socketOptions: {

keepAlive: 1
}

},
replset: {

socketOptions: {
keepAlive: 1

}
}

};
mongoose.connect(uri, options);
db = mongoose.connection;
db.on('error', logger.error);

Asynchronously sets up the database schemas, once the connection has been
made.

db.once('open', function defineModels() {

The schema for a measurement. data holds the original data from the camera,
and time holds the timestamp from when the measurement was made. The
rest of the fields are saved with the measurement to make sure the results are
reproducible.

var Measurement = mongoose.Schema({
data: [{type: Number, min: 0}],
time: Date,
numIntegratedFrames: Number,
numImages: Number,
photonsPerSecond: Number,
quantumScale: Number,
calibrationFactor: Number

});
mongoose.model('Measurement', Measurement);
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Defines the settings schema. Settings include the camera parameters, the capture
interval and the calibration factor.

var Settings = mongoose.Schema({
numIntegratedFrames: { type: Number, min: 1 },
numImages: { type: Number, min: 1 },
secondsBetweenCaptures: Number,
calibrationFactor: { type: Number, min: 0 },
deadTimeCorrection: Boolean

});
mongoose.model('Settings', Settings);

Schema for saving metadata about the camera.

var CameraSpecs = mongoose.Schema({
time: Date,
focalLength: String,
aperture: String,
description: String

});
mongoose.model('CameraSpecs', CameraSpecs);

if (callback && typeof callback === 'function')
callback(null);

});
};

Disconnects from the database.

function disconnect() {
mongoose.connection.close();

}

Concatenates multiple addresses into one string. Used for connecting with
mongoose.

function concatAddresses(addresses, databaseName) {
var pattern = /^(mongodb:\/\/)?(\S+)/;
var arr = addresses.reduce(function(acc, address) {

var matches = pattern.exec(address);
return acc.concat(matches[2]);

}, []);
return 'mongodb://' + arr.join(',') + '/' + databaseName;

}
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Standard get functions.

function getMeasurementModel() {
return mongoose.models.Measurement;

}

function getSettingsModel() {
return mongoose.models.Settings;

}

function getCameraSpecsModel() {
return mongoose.models.CameraSpecs;

}

Saves a new measurement to the database. Saves are done asynchronously, and
the provided callback is called when the save is complete.

function saveMeasurement(measurement, callback) {
var Measurement = getMeasurementModel();
var m = new Measurement(measurement);
m.save(callback);

}

Similar to saveMeasurement, but updates instead of saving a new object.

function updateSettings(newSettings, callback) {
var Settings = getSettingsModel();
Settings.update({},

{ $set: newSettings },

upsert means to insert if a record does not exist, and update otherwise.

{ upsert: true },
callback);

}

Identical to saveMeasurement, but for camera specs.

function saveCameraSpecs(specs, callback) {
var CameraSpecs = getCameraSpecsModel();
var cs = new CameraSpecs(specs);
cs.save(callback);

}
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Reads the settings from the database.

function getSettings(callback) {
logger.debug('called getSettings');
getSettingsModel().findOne({}, callback);

}

Reads the camera specs from the database. Each set of specs are saved by itself,
with a timestamp. This function gets the last one.

function getCameraSpecs(callback) {
getCameraSpecsModel()

.find()

.sort('-time')

.limit(1)

.exec(callback);
}

Get measurements taken between from and to. All parameters must be specified.

function getData(from, to, callback) {
if (!from || !to || !callback) {

return logger.error('data-access: getData called with invalid arguments.');
}

logger.info('Getting measurements between ' + from.toUTCString() +
' and ' + to.toUTCString());

var model = getMeasurementModel();
model.find({ time: { $gte: from, $lt: to } }, callback);

}

Defines the interface to this module. dataAccess is an alias for module.exports,
which is the object exported from a node.js module.

dataAccess.connect = connect;
dataAccess.disconnect = disconnect;
dataAccess.getMeasurementModel = getMeasurementModel;
dataAccess.getSettingsModel = getSettingsModel;
dataAccess.getCameraSpecsModel = getCameraSpecsModel;
dataAccess.saveMeasurement = saveMeasurement;
dataAccess.updateSettings = updateSettings;
dataAccess.getSettings = getSettings;
dataAccess.getCameraSpecs = getCameraSpecs;
dataAccess.getData = getData;
dataAccess.saveCameraSpecs = saveCameraSpecs;
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data-processor.js

data-processor.js

Purpose

This module is a collection of functions that manipulate data in some way, and
where the function are too large to include in the other modules without violating
the single responsibility principle. Conversions and calculations on the data
typically belongs here.

var winston = require('winston');
var logger = new (winston.Logger)({

transports: [
new (winston.transports.Console)({level: 'debug', colorize: true})

]
});
var config = require('confert')(process.cwd() + '/config');
var tmp = require('tmp'),

fs = require('fs'),
async = require('async'),
os = require('os');

var processor = module.exports;

function sum(coll) {
return coll.reduce(add);

}

function add(x, y) {
return x + y;

}
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Module functions

Calculates the number of photons per second measured in an image. The image
is an array, where each element represents one photon detector in the camera.

processor.getPhotonsPerSecond =
function photonsPerSecond(numIntegFrames, image) {

if (numIntegFrames <= 0) {
logger.error('Called photonsPerSecond with invalid numIntegFrames');
return 0;

}

In normal mode, the exposure time is always a multiple of 20.74 microseconds.

var exposureTime = numIntegFrames * 20.74e-6;
var detectedPhotons = sum(image);
return detectedPhotons/exposureTime;

};

Converts the photons per second count to the quantum scale (micromol photons
per square meter per second). Requires that we know the sensor area, which is
specified in the config file.

processor.convertToQuantumScale =
function quantumScale(photonsPerSecond, calibrationFactor) {

var avogadro = 6.022141e+23;

var area = config.sensorArea || 0;
if (area === 0) {

logger.warning('Sensor area is not defined in the config file.' +
'Returning 0 for the quantum scale.');

return 0;
}

return photonsPerSecond * 1e6/avogadro / area * calibrationFactor;
};

Builds a standard CSV (comma separated values) file, with , as the separator,
and a descriptive header. results is an array of measurement objects from the
database. Note: Measurements are not sorted.

processor.createCSV =
function createCSV(results, callback) {

var header = 'time,numIntegratedFrames,numImages,photonsPerSecond,'
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+ 'quantumScale,calibrationFactor' + os.EOL;
tmp.file(function tmpFileCreated(err, path) {

if (err)
return logger.err(err);

logger.debug('Created temp file ' + path);

var stream = fs.createWriteStream(path, {
flags: 'w',
encoding: 'utf8'

});

stream.write(header);

Process each measurement object in the results. There is no guarantee that the
results will be processed in order, ref. the async module.

async.each(results, addResultToFile, function(err) {
if (err)

logger.error('createCSV: Could not write to stream: ' + err);
stream.end();

});

stream.on('finish', function() {
callback(null, path);

});

Called for each measurement object in the results array. Assembles a CSV line
and writes it to the file.

function addResultToFile(result, cb) {
delete result.data;
var s = '' +

result.time.toISOString() + ',' +
result.numIntegratedFrames + ',' +
result.numImages + ',' +
result.photonsPerSecond + ',' +
result.quantumScale + ',' +
result.calibrationFactor + os.EOL;

stream.write(s);
cb();

}
});

};
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Deletes/unlinks a file. Typically used to delete a file created with the createCSV
function, when the user has downloaded it.

processor.deleteFile =
function deleteFile(path) {

fs.unlink(path, function(err) {
if (err)

return logger.error('Could not unlink file: ' + err);

logger.debug('Unlinked file: ' + path);
});

};
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spc2-sdk.js

spc2-sdk.js

Purpose

This is the translation of the SDK from C to javascript. This module uses
the module ffi, which stands for foreign function interface. It lets us create
javascript functions from the C functions, by defining them as parameters to the
ffi.Library function.

External modules

var ffi = require('ffi');

ref and ref-array simplifies handling of C pointers and arrays from javascript,
by using its predefined types.

var ref = require('ref');
var ArrayType = require('ref-array');
var winston = require('winston');
var logger = new (winston.Logger)({

transports: [
new (winston.transports.Console)({level: 'debug', colorize: true})

]
});

tmp is a module for creating temporary files.

var tmp = require('tmp');

gm is a module for working with images. It requires GraphicsMagick to be
installed.

var gm = require('gm');
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Type definitions

Here we define the C types and C array types that we’re going to need in the
library function calls.

var ushort = ref.types.ushort;
var double = ref.types.double;
var DoubleArray = ArrayType(double);
var UShortArray = ArrayType(ushort);

Creating the javascript functions

The call to ffi.Library creates a javascript object, which contains javascript
functions for all the C library functions that were specified in the parameters.
After this call, the functions can be called just like any other javascript function.
Each library function is defined with its name, return type and the types of its
arguments.

var lib = ffi.Library('./libapi', {
'init': ['bool', []],
'destroy': ['bool', []],
'apply_settings': ['bool', []],
'set_background_img': ['bool', [UShortArray]],
'set_background_subtraction': ['bool', ['bool']],
'set_camera_par': ['bool', ['ushort', 'uint32']],
'set_deadtime': ['bool', ['ushort']],
'set_deadtime_correction': ['bool', ['bool']],
'set_live_mode': ['bool', ['bool']],
'get_img_position': ['bool', [UShortArray, 'uint32']],
'get_live_image': ['bool', [UShortArray]],
'get_snap': ['bool', []],
'prepare_snap': ['bool', []],
'average_image': ['bool', [DoubleArray]],
'save_image_to_disk': ['bool', ['uint32', 'uint32', 'string', 'string']]

});

Module functions

var sdk = module.exports;

Connect to the camera.
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sdk.init = function init() {
logger.info('Connecting/checking connection to camera');
return lib.init();

};

Disconnect from the camera.

sdk.destroy = function destroy() {
return lib.destroy();

};

Enables or disables dead-time correction. The argument enable is a boolean
which decides wether to enable (true) or disable (false) the correction algorithm.

sdk.setDeadTimeCorrection = function setDeadTimeCorrection(enable) {
var success = true;
success = success && lib.set_deadtime_correction(enable);
success = success && lib.apply_settings();
var statusObj = { success: success };
if (!success) {

var verb = enable ? 'enable' : 'disable';
var errMsg = 'Could not ' + verb + ' dead-time correction.';
logger.error(errMsg);
statusObj.error = errMsg;

}
return statusObj;

};

Sets the camera’s capture parameters; the number of integrated frames, and the
number of images per snap.

sdk.setCameraParameters = function setCameraParameters(nIntegratedFrames, nImages) {
var success = lib.set_camera_par(nIntegratedFrames,

nImages);
if (!success) {

logger.error('Could not set camera parameters.');
}
success = lib.apply_settings();
if (!success) {

logger.error('Could not apply camera settings.');
}
return {success: success};

};
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Captures an image according to the parameters set with sdk.setCameraParameters.
The returned image is an array of values, each value representing one photon
detector in the camera. The values are the averages of all images captured in
the snap.

sdk.captureImage = function captureImage() {
var time = new Date();

prepareAndGetSnap();

var image = new DoubleArray(1024);
var gotImage = lib.average_image(image);
if (!gotImage) return logger.error('Could not get average image of snap.');

var arr = new Array(1024);
for (var i = 0; i < 1024; i++) {

arr[i] = image[i];
}

return {
data: arr,
time: time

};
};

This function also captures an image, like sdk.captureImage, but its purpose is
a little different. Instead of capturing multiple images and returning the average
data, this function captures just one image, and returns the image data as a tiff
file. It also accepts parameters as input. It is used for capturing test images, to
test the parameters before enabling automatic capture mode.

sdk.captureTestImage =
function captureTestImage(nIntegratedFrames, callback) {

if (!nIntegratedFrames) {
logger.error('captureTestImage missing parameters');
return {};

}

sdk.setCameraParameters(nIntegratedFrames, 1);
prepareAndGetSnap();

tmp.file(function fileCreated(err, path) {
if (err) return logger.error('captureTestImage: Could not create tmp file.');

var startImg = 1,
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endImg = 1,
fileFormat = 'tiff-no-compression';

var imageSaved = lib.save_image_to_disk(startImg, endImg, path, fileFormat);

if (!imageSaved) {
logger.error('captureTestImage: Could not save test image to disk.');
callback('');

} else {
logger.info('captureTestImage: Test image saved.');
var pngPath = path + '.png';
gm(path).write(pngPath, function imageConverted(err) {

if (err) {
logger.error('Could not convert image to png: ' + err);
return callback('');

}
logger.info('captureTestImage: Image converted');
callback(pngPath);

});
}

});
}

Helper function. Used in both sdk.captureImage and sdk.captureTestImage.

function prepareAndGetSnap() {
var prepared = lib.prepare_snap();
if (!prepared) return logger.error('Could not prepare camera for snap.');

var gotSnap = lib.get_snap();
if (!gotSnap) return logger.error('Could not get snap.');

}
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