

to capture a larger light field than the Diving PAM. Also,
the light sensor on the Diving PAM is cosine corrected,
meaning that a diffuser is placed over the light sensor to
account for light coming in at different angles. These two
differences will probably account for some deviations in
the results.

5.5 Capturing the light field as an image

Lastly, the sensor was tested as a more conventional
camera, to see how well it performed when capturing
images of the light field. This experiment used the Capture
test image function of the web application, which captures
an image of the light field, converts it to the PNG format
and displays it to the user.

Two images were captured, in normal daylight conditions
indoors. In the first image, only the ambient light was
present. The second image was captured with the same
settings, but with an artificial light source pointed at the
camera, to see if it is possible to discern light sources on
the images.

6. RESULTS
6.1 24 hour time series

Figure 3 shows the result of measuring the irradiance in
Trondheim for 24 hours, on 15 and 16 December 2014. The
graph shows a couple of interesting facts.

First, irradiance values when the sun is below the horizon
is approximately constant. The values are in the range
0 pmol /m?s to 0.5 mol /m?s. Typical irradiance values at
night is between 0 and 1 pmol/m?s, which proves that the
values from the sensor are perfectly reasonable. The sky
was clear on the night of the 15th, which corresponds well
with the constant measurements. Some small disturbances
can be seen; they are believed to be caused by light
pollution from the urban environment.

On 16 December, the sun rose at 09:58, local time. A detail
of figure 3 is shown in figure 4, which shows the period just
before and after sunrise. The graph is seen to rise sharply
just after 08:30, which agrees well with the timing of the
sunrise.

As the sun comes over the horizon, the sensor seems
to have saturated. This was confirmed by checking the
original measurement data. All counters had saturated.

Figure 5 shows a detail for the sunset. It is almost a
mirror image of the sunrise. The local sunset was at 14:32,
and the irradiance can be seen to sharply drop some
time after that. The saturation of the sensor hides the
dynamics between 14:30 and 15:00 from view. After 15:00,
the irradiance is seen to drop steady to a constant value
below 1, as expected.

6.2 Dark counting rate

The camera’s sensors are laid out in an array with di-
mensions 32 x 32. A visualization of the dark counting
rate for the entire array is shown in figure 6. Dark colors
correspond to low dark counting rates, and light colors,

24 hour irradiance in Trondheim, 15 - 16 December 2014

Irradiance [w moli m? s]

L

Dec 16 00:00 Dec 16 L 16 12:00 Dec 16 18:00

16:00 Dec
Local time
Fig. 3. 24 hour time series

Sunrise in Trondheim, 16 December 2014

Irradiance [w moli m® 5]

Lo:.:.all-ti-.me
Fig. 4. Sunrise detail for the 24 hour time series

toward yellow, signify high dark counting rates. Because of
the long exposure time, some of the pixels have saturated.

MPD guarantees that the dark counting rate will be within
certain bounds. Specifically, they guarantee that half of
the pixels will have a dark counting rate below 4000 cps
(counts per second). Also, 75% of the array should have
dark counting rates below 25000 cps.

For the test image shown in figure 6, 729 pixels have a
DCR value under 4000 cps, and 841 pixels have a DCR
value less than 25000 cps. In percentages, that is 71.19%
and 82.13%, respectively.

The lowest dark counting rate in the array was 1955 cps.
The maximum is unknown, because the pixels with the

Sunset in Trondheim, 16 December 2014

Irradiance [p mol! m? s]

15:30
Local time

Fig. 5. Sunset detail for the 24 hour time series

Fig. 6. The Dark Counting Rate (DCR), or noise, for all
the pixels in the camera.

highest counts had saturated. The mean of the DCR values
was 13815, and the standard deviation was 22039. Figure 7
shows the dark counting rates in a histogram, where the
y axis represents the number of pixels, and the x axis
represents the counts per second. Clearly, most of the
pixels have DCR values which are less than 10000 cps.

6.3 Irradiance of a candle

Figure 8 shows 10 irradiance measurements of a burning
candle at a distance of approximately 1 ft. The red line
shows the mean value, which is 8.1283 pmol /m?s.

1 foot-candle is approximately 10 Ix. 1 klx is approximately
14-18 pmol /m?s, see section 5.3. Converting the measured
irradiance of the candlelight to foot-candles, gives a value
which is about 50 times too large, before taking into
account the photon detection efficiency.

Count

n
o
El

3 4
Counts per second <10*

Fig. 7. Histogram showing the dark counting rates for all
the pixels in the camera.

Irradiance measurements of a candle at 1 ft

o

8.14 = o o

Ll
]

|
o

Irradiance [p molfm? s]

e

! | | ! ' : ' |
1 2 3 4 5 [7 8 a 10
Measurement number

Fig. 8. Irradiance measurements of a candle. The red line
shows the mean of the dataset. Note that the y axis
does not start at zero.

There are multiple possible sources for this error. First, the
experiment is very simple. It is not known for certain how
much light is emitted by the candle; it was only assumed
to be 1 foot-candle at a distance of 1 ft.

The conversion factor in Sakshaug et al. (2009) is valid in
sunlight. In this experiment, it has been assumed that the
conversion factor holds, which it might not. Converting
between pmol/m?sand 1x is dependent on the spectral
distribution, and without knowing it, the conversion is
suspect.

Other factors that might have affected the result, but
unlikely in a major way, are reflectance of the light from
nearby walls, and background light.

Finally, the sensor might be in error. However, other
tests, such as the 24 hour irradiance measurements, have
proved to be reasonable. Thus, it seems prudent to rule

out the possible sources of error before assuming that the
measurements are in the wrong.

Clearly, other experiments must be performed to assess the
correctness of the sensor. This is a task for future studies.

6.4 Comparison with the Walz Diving PAM

The Diving PAM measured values in the range 3 pmol /m?s
to 6 umol/m?s, while the SPC2 measured 8 pmol/m?s to
9 pmol/m?2s. Thus, the results differed with a factor of
about 2.

The Diving PAM has a much lower sensitivity, which
probably accounts for some of the error. Also, the SPC2
has never been calibrated against a known light source,
meaning that its absolute values must be treated with
some suspicion.

The values were within the same order of magnitude,
which implies that the SPC2’s measurements are within
reasonable limits. Further calibration and a more rigorous
procedure is needed to confirm this more accurately.

6.5 Images of the light field

An image of the light field indoors is shown in figure 9.
The image was captured in a room with windows in the
morning, when the sun was up. The exposure time is 15 ms.

The resolution of the image is 32 x 32 pixels, where each
pixel’s value is based on the photon count of a single
photon detector. It is nearly impossible to recognize any-
thing in the image, although contrasts show up reasonably
clearly. An object with a high contrast to its background
should be possible to recognize.

Fig. 9. Image of the light field.

Figure 10 shows an image of the same room, with a point
source of light pointed towards the camera. The point
source is a flashlight. The camera is not saturated, as the
image is still gray; saturated pixels are completely white.

The contrasts from figure 9 is gone, presumably because
of the new light source. It is nearly impossible to discern
anything in the image, except for some darker patches in
the corners.

Most importantly, it is hard to identify the light source in
the image. In figure 10, the light source is pointed out with
the arrow. The light from the flashlight causes increased
counts in almost all pixels, causing the entire image to
become more indistinct.

When using the sensor to capture images of the night sky,
or the polar night environment, users have expressed that
it would be advantageous to be able to identify point light
sources, such as the moon. On the basis of these tests, it
seems like it would not be possible to identify point sources
from the images. The identification would have to be done
some other way, e.g. by simultaneously taking images with
a traditional camera.

Fig. 10. Image of a point source of light. Light source
marked with an arrow.

7. CONCLUSION

The experiments that have been described in this paper,
were meant to test the new sensor system, and confirm
that the measurements it provides are reasonable. Most of
the experiments were successful in this regard.

The 24 hour time series demonstrated that the sensor is
able to measure the dynamics of the light field. It also
established that the sensor has a saturation limit which
can cause measurement problems when the difference
in irradiance is large. For measuring light in the polar
night, this should not pose much of a problem, since the
irradiance levels are relatively low throughout the day. For
other uses, this issue will have to be addressed, either by
manual intervention or by extending the sensor to set the
exposure time autonomously.

The dark counting rate experiment shows that the DCR
values are very reasonable, and well within the guaranteed

levels from the manufacturer. Additionally, the experiment
increases the confidence in the new sensor system, in that
it captures and delivers the correct images.

Measuring the irradiance from a candle was not success-
ful. No conclusions will be drawn from this experiment,
because there are too many uncertainties, which are dis-
cussed in section 6.3.

Comparison with the Walz Diving PAM showed that the
sensor’s output falls in a reasonable range. This indicates
that the sensor’s measurements needs further calibration,
but that it is absolutely fit for the purpose.

Finally, the images of the light field goes some way
in demonstrating the camera’s effectiveness in visually
describing the incoming light. With some training, it
might be possible to discern points of interest on these
images. The resolution is so low, however, that all such
identifications must be treated as uncertain.

8. FURTHER WORK
8.1 Automatic adjustment of exposure time

As was seen in the 24 hour time series experiment, there is
a need for adjusting the exposure time when the light levels
change. In the interest of minimal manual adjustment, it
would be preferable if the sensor adjusted the exposure
time automatically, to avoid saturating the photon coun-
ters when light levels rise above a critical level.

Each element in the captured image is a 16 bit counter,
meaning that the maximum value it can represent is 65535.
The automatic adjuster algorithm could be implemented
as a regulator, with the aim of keeping the mean value of
the measurements well below this limit, but also above the
dark counting rate. By capturing a test image, the mean
of the counters can be calculated, and the exposure time
set accordingly.

8.2 Calibration against a known light source

For the sensor to be able to reliably measure irradiance in
absolute values, it needs to be calibrated against a known
source of light. The spectral signature of the light source
must also be known, such that the calibration can take
into account the photon detection efficiency at different
wavelengths.

8.3 Alarms

The specification of the sensor lists alarms as a priority B
task. This is not yet implemented due to time constraints.

The sensor should alert the user of any trouble it encoun-
ters during operation. Examples of problems could be hard
drive failure, causing one of the databases to shut down.
It could also be other sources of hardware failure, such as
problems connecting to the camera, or problems with the
power supply. The alarm system should also warn the user
in the event of software failures, such as failure to save
measurements. A more sophisticated alarm system could
also monitor the output of the sensor, and issue warnings
when the output seems suspect. Problematic output could

be very high or low measurements, or a significant increase
in noise, which could be an indication of hardware prob-
lems.

The alarms would have to be issued to the user through
the user interface, e.g. on a list on the main page of the
web application. The interface would need some way of
dismissing the alarm when the cause has been fixed.

REFERENCES

Berge, J., Cottier, F., Last, K.S., Varpe, O., Leu, E.,
Soreide, J., Eiane, K., Falk-Petersen, S., Willis, K.,
Nygard, H., Vogedes, D., Griffiths, C., Johnsen, G.,
Lorentzen, D., and Brierley, A.S. (2009). Diel vertical
migration of Arctic zooplankton during the polar night.
Biology Letters, 5(1), 69-72.

Lgnne, L. (2014). Development of a prototype sensor for
measuring irradiance in the polar night.

Sakshaug, E., Johnsen, G.H., and Kovacs, K.M. (2009).
Ecosystem Barents Sea. Tapir Academic Press.

A User manual

The following pages contain the user manual, meant for the end users of the
system. It details installation of the server and the web application, and the
user interface.

32

User manual for the SPC2 software package

Lars Lgnne
larslonn@stud.ntnu.no

14 December, 2014

1 Installation

1.1 Connecting the camera to the server
1.1.1 Inputs

The SPC2 camera has five inputs. Only two of them will be used for this
application. One is the power, which has no label, and the other is the USB.
Figure 1 shows the inputs on the camera.

1.1.2 Connections

Connect the USB cable to the camera and to the server. Connect the power
cable to the camera. The camera can take up to 10 seconds to start up after
the power has been connected.

1.2 Databases

The server application needs at least one database to save measurements,
settings and metadata in. The database must always be available, so failure
preventions must be considered when implementing the database solution.

The chosen database system is MongoDB. It was chosen because it is an
open-source, document driven database, which works particularly well with
node. js, which is the platform that the server application is written in. It

Figure 1: SPC2 inputs

also supports the notion of replica sets, which is an easy way of implementing
redundancy.

This section describes how to set up redundant databases, and how to tell
the server application which databases to use.

1.2.1 Getting MongoDB

MongoDB can be downloaded from the download page. Choose the correct
download for your system and follow the installation instructions.

For many systems, such as Mac OS X and many flavors of Linux, MongoDB
can also be installed through a package manager. See the MongoDB web
page for details.

Once the installation is finished, you can proceed with the next section.

1.2.2 Replica sets

MongoDB supports redundancy through what it calls replica sets. This
means that the application connects to two or more instances of the database
at the same time. One of the databases is designated as the primary, and
the others are secondary. The data is first saved to the primary database,
and then replicated on the secondaries. In case of a failure, such as a power

outage or a hardware failure, one of the secondaries is elected to be the new
primary, and the system can continue in its normal mode of operation.

Important: Replica sets should always have an odd number of members, to
ensure that elections proceed smoothly. Thus, 3 members should be sufficient
to endure most problems.

The MongoDB manual recommends that replica set members in production
environments maintain as much separation as possible. Storing the different
databases on separate hard drives should be a minimum requirement. Run-
ning on separate machines is better, and on separate machines in separate
locations would be ideal. Strive to separate the running databases as much
as possible. Never run all the instances from one hard drive.

1.2.3 Starting mongod

A MongoDB database instance is started with the command mongod, which
stands for mongo daemon. It takes a number of command line options, some
of which are detailed here. The rest can be found on mongod’s help page,
accessible with the command mongod --help. Options are specified on the
command line, with two dashes preceding it, such as mongod --option.

port <port-number> specifies the port that the process will listen on. The
default port is 27017, and should be used if the instances are running on
separate machines. If the database processes are all running on one ma-
chine, they must listen on separate port numbers. Starting on 27017 and
incrementing for each one is a good choice.

dbpath <path> specifies the path to the database files. This depends on the
host machine, but /data/db is often used.

replSet <set-name> specifies the name of the replica set that the process
belongs to. It can really be anything, as long as all the members belong to
the same replica set. An example could be “spc2-repl-set”.

logpath <path> saves the database logs to the file at <path> instead of
printing it to the console. This should always be enabled. If you want the
process to append to the logfile instead of overwriting it, use --logappend.

An example of how to start a mongod instance:

mongod --port 27018 --dbpath /data/db --replSet spc2-repl-set0
--logpath /var/log/mongod.log

This would start a mongod instance, listening on port 27018, saving data at
/data/db, belonging to the replica set spc2-repl-set0 and saving its logs
at /var/log/mongod.log.

1.2.4 Adding members to the replica set

Open a mongo shell on the machine that runs the primary process. This can
be any of the processes. A mongo shell is opened by issuing the command
mongo --port <port-number>

<port-number> is the port number that the process on this machine listens
on. E.g. if the process was started with

mongod --port 27018 ...

you would start the shell with the command
mongo --port 27018

Once the shell has started, run the command
rs.initiate()

This will initiate the replica set, and add this process as the primary. When
it has finished, issue the following command for each of the other members
in the replica set:

rs.add ("<member-address>")

<member-address> is the address of the other process that was started.
When all processes has been added to the replica set, run

rs.status()

to confirm that everything is set up correctly. All members in the set should
be listed in the members property. If they are not, or you encounter any
other errors, consult the documentation.

1.2.5 Creating the settings collection

For the server application to run, the settings and the cameraspecs collec-
tions must exist in the database. In the scripts directory, there is a script
called populate-db. js that will create a settings object and save it to the
database.

Open the script and edit the line that says
conn = new Mongo(’spc2-server:270177)

Change spc2-server to the hostname of your machine, and change 27017
to the port your mongod process is running on.

Next, run the script with the following command:
mongo <hostname>:27017 scripts/populate-db.js

Change <hostname> and 27017 if your database is running on a different host
and/or port. The settings and cameraspecs collections should now exist
in the database.

1.2.6 The server application config file

When the databases are up and running, the addresses must be entered into
the server application config file, so that the server can connect to them.
Open the config file, and update it so it includes the following lines:

dbHostAddresses:
- <addressl:portl>
- <address2:port2>

databaseName: spc2db

Each member of the replica set must be listed on its own line under dbHostAddresses.
Make sure that the file only includes one instance of the dbHostAddresses
list and the databaseName variable.

1.3 Server
1.3.1 Prerequisites

The server is a node.js application with MongoDB databases. Setting up
the databases is described in the database section. To run the server appli-
cation, the node.js platform must be installed. See the node.js webpage for
instructions.

Also, before proceding, the camera should be connected to the server.

1.3.2 The config file

The server’s configuration file is called config.yaml, and should exist in
the same directory as server.js. server.js is the main file of the server
application.

The database specific entries in the configuration file are dealt with in the sec-
tion on databases. Specifically, the variables dbHostAddresses and databaseName
should exist and have its correct values.

The config file may include a variable called port, which specifies which port
the server should listen for connections on. If port is not specified, the server
defaults to listening on port 8080.

The config also has an entry named sensorArea, which should be 3.14e-10.
This is the surface area of the sensor in the camera, and is used by the server
application for calculating the irradiance values.

1.3.3 Installing dependencies

The server application depends on a number of external modules to function.
The dependencies are all listed in the file package. json and can be installed
using npm; the node package manager. npm is installed with the node platform,
and should be available on your system.

Run npm install to install all dependencies.

1.3.4 External dependencies

The server application depends on http://www.graphicsmagick.org for con-
verting the test images from TIFF to PNG format. It must be installed on the
machine that the server application is running on.

On an Ubuntu Linux server, it is installed like this:
sudo apt-get install graphicsmagick

If you are running a different system, consult the GraphicsMagick webpage.

1.3.5 Compiling the C API

The last step before starting the server is compiling the C API. This job is
done with the tool scons. If it is not installed on your machine, install it
now through your package manager.

SConstruct files are provided for both Mac OS X and Linux. Compile the
C API by calling scons like this:

scons -f SConstruct.linux

Change linux to osx if you are running on a Mac.

1.3.6 Starting the server

The server application includes a startup script called run-server.sh. It is
written in bash, and will run on all Mac OS X and Linux systems. It will
not run on Windows, except through Cygwin or something similar.

The server is run using a program called supervisor, which restarts the
server in case of failures. If this program is not installed, it can be installed
with npm:

npm install -g supervisor
Then, run the script to start the server:

./run-server.sh

1.3.7 Running

The server should now be running. It will try to connect to the camera
and the database, and log any errors to the console. Usual problems at this
stage is not having the camera connected, or not having a running database
process.

The server should now be up and running, and listening for HT'TP requests
on the configured port, or 8080 by default.

1.4 Web application

The web application is a couple of simple pages for controlling and monitoring
the SPC2 camera, through the server. This section assumes that the server
is running, and that you have the server address.

1.4.1 Setup

The web application requires minimal setup. First, it needs to know is
the address to the server. This information must be entered in the file
js/config.js, which is a standard javascript file.

Change the host and port to the address and port number of your server.
Do not change the /api part. A sample config. js is shown below.

var host = ’http://129.241.143.245°,
port = 8080;

var config = {

//
apiUrl: host + ’:’ + port + ’/api’
}

Second, the web application’s dependencies must be installed. This is done
in two steps, because it uses both npm and bower to handle its dependencies.
Change to the top directory, where the file package.json is located. Run
the command

npm install

This should install all the dependencies for node.js. Then, change to the
resources directory and run the command

bower install

This should install all dependencies for the web application itself.

1.4.2 Hosting

The web application is also a node.js application, and can be started with
the command

NODE_ENV=production node app.js

Important: It uses basic authentication to authenticate the user. If security
is a concern, the web application must run on https only.

2 Web interface

The web interface is the main interface for end users. Through it, users
can examine the latest measurements, set capture parameters and download
data from the camera. This section describes each part of the web interface
in detail, and explains how to use it.

2.1 The main page

AT L)
52 SPC2 data: 7.60 pmolim®s

pmol/m?s

from to Draw graph

Figure 2: Main page

This is the main page of the application. By default, it shows a graph of the
measurements taken in the past six hours. Time in GMT is on the x axis,
while light measurements on the quantum scale is on the y axis.

By moving the mouse pointer over the graph, it is possible to read the exact
measurement at that time instant.

Below the graph are the graph controls. By choosing the from and to date
and clicking the Draw graph button, you can show measurements for a specific
time range. Beware that all the data must be read from the database, so if

you choose a large time range, it might take some time before the graph is
shown again.

2.2 The Control page

Automatic capturing

In automatic capture mode, the sensor captures an image, processes it and saves the data to the database in reguiar intervals. The interval is
controlled from the Setings page. The buttons below start and Stop automatic capture.

Stant automatic capture | Stop automatic capture

Capture test image

Capture a test image by setting the integration time and pressing ‘Capture test image". The test image can be used to find the correct
integration time for automatic capture.

Integration time
Be aware that the integration time set here is not saved. It is only used for capturing the test image. To seta permanent integration time,
use the form on the Settings page.

15 Capture test image

Figure 3: Control page

The Control page enables you to control the camera operations. There are
two options, controlling Automatic capturing and capturing test images.

Automatic capturing is used for capturing time series of light measurements.
It has two buttons, which starts and stops the automatic capturing mode.
In this mode, the camera captures a series of images at given time intervals.
The average of these images is stored in the database, along with the capture
parameters that were active when the image was aquired. Also stored are
the total photons per second that was detected, and the irradiance value on
the quantum scale, micromol photons per square meter per second. The time
interval is set on the Settings page.

Capture test image is for testing different integration times. Integration time
is analogous to exposure on a traditional camera. Enter the integration time
in milliseconds and press the button to capture an image. After the image
has been captured and sent from the server, it will appear below the button.

10

2.3 The Settings page

Set capture parameters
The sensor parameters integration time and dead-time correction are set here.
Changing settings
Automatic capturing will use the parameters that were in effect when it started. Changing parameters after it has

started wil not affect the running process. To make automatic capture Use new settings, go back to the *Control*
page and restart the capture process.

Integration time
15

Number of images

10

Deac-time correction
Callbration factor

1

Gapture interval
60

Submit

Set lens specifications
T detalls about the fens used wih the sanor ca b saved wih ths for. The data s stored n the database With
tmestamp.

Focal length

amm

Aperture

"

Description

Made in Japan by Tamron

Submit

Figure 4: Settings page

The settings page allows you to set the capture parameters for the camera,
and save information about the lens used with the camera.

2.3.1 Capture parameters

The SPC2 camera works is very different from a traditional camera, and this
is reflected in the parameters. The camera actually counts the number of
photons it detects during its exposure time. However, if the user is allowed
to set the exposure time directly, the photon counters might overflow, and
the results would be undefined. To prevent this, the camera has a constant
exposure time of 20.74 microseconds. The data captured during this time is
referred to as a frame.

To enable longer exposures than 20.74 microseconds, the camera sums mul-
tiple frames. This sum of frames is referred to as an image. Integration time
indirectly specifies how many frames we want to sum in each image. The
number of frames is set to the value that comes closest to the specified time.
The integration time is in milliseconds.

11

Each measurement takes a number of images, and returns the average of
those images. The number of images captured each time is specified in the
input field Number of images.

Dead-time is the time from the camera detects a photon, until it is ready
for detection again. Dead-time correction is an algorithm that tries to com-
pensate for this unproductive time. It can be turned on and off with the
checkbox.

Calbration factor is a factor that is multiplied with the calculated irradiance,
before it is saved in the database. Use it if you need to calibrate the camera.

Capture interval is the amount of time between each measurement in auto-
matic mode. The interval is in seconds.

Note: Although unlikely in practice, it is possible to set parameters such
that each measurement takes longer than the interval between measurements.
Avoid this.

2.3.2 Lens specifications
In this section you can record the specifics about the lens used with the cam-

era. The information is stored in the database with a timestamp, such that
it is possible to go back and see which lens was in use for the measurements.

2.4 The Download page

Download data

Ghoose the time span which you want data for with the form below.

to Download data
© December2014 ©
Mo Tu We Th Fr Sa Su
1f-2]3[4] 5[6] 7]
8 9 10 11 12 13 14

22 23 24 25 26 27 28
2 30 3

Figure 5: Download page

This page contains only one form, that allows you to download measurements
from the database. Fill in the from and to dates, and click Download data.

The data is a standard comma separated values file (CSV), with a header.

12

B Specification

The following pages contain the software specification. It is discussed in more
detail in section 2.

45

Software specification

The purpose of this document is to specify a software system (“the program”)
for controlling the SPC2 Photon Imager (“the sensor”).

Software functionality

The purpose of the sensor is to measure light by imaging the light field using
photon counters. The raw output from the sensor is an image with 32 x 32
pixel resolution. Each of these pixels represent the photons counted by one
counter during the exposure. l.e. the sensor consists of 1024 individual
counters.

The main purpose of the program is to control the sensor. The program must
be able to send commands to, and receive information from the sensor.

The following specifications are prioritized into three categories: Priority A,
Priority B and Priority C. Functionality listed under Priority A is minimum
functionality that must be implemented for the program to be functional.
Priority B lists functions that are non-essential, but important for a good
user experience. Functionality listed under Priority C' are requests from the
end users that most likely will not be implemented in this development cycle
due to time constraints. Priority C functions will not be attempted until A
and B are complete.

Capturing images

The sensor captures images of the light field in frames, which is defined as
an exposure of 20.74us. The parameter integration time decides how many
frames should be summed up in the output image from the sensor.

Dead-time is the time it takes to restore the photon detector after detection of
a photon. During this time, no detection takes place. This effect introduces a
non-linearity in the measurements, which can be reduced by a setting known
as dead-time correction. This correction is most effective at low to moderate
light intensities.

Priority A

e The program must enable the user to set and change integration time
and dead-time correction.

e Focal length, field of view and aperture all depend on the lens used and
are not controlled by the program. The program must include a text
field where info about the lens can be entered. This info will be saved
in the database with the captured data.

e Shutter speed is controlled indirectly by the integration time.

e The program must set default values for all parameters, and the pro-
gram should be able to reset the parameters to the default values.
Examples of default values could be integration time = 0.5, and dead-
time correction on. Actual values will be decided after testing the
sensor in its operational environment.

e The program must store the values for all parameters, i.e. the param-
eters must not change or be reset by any other means than user inter-
action.

e The program must be able to capture images in automatic mode. Auto-
matic mode means that the program captures an image every t seconds,
where t is specified by the user.

Priority B

e Enable the user to capture test images. A test image is an image
captured at the command of the user. The program may then show
the image to the user, along with data connected to the image, such as
the irradiance in quanta or energy mode.

Storing data

Priority A

e The program must store all data from the sensor in a reliable and secure
manner. Each captured image, or equivalent data, must be stored.

e The stored data should be calibrated to the quantum scale, i.e. it
should be stored as pmol /m?s.

e The parameters of the sensor must be stored with the data, for future
recalculation and confirmation.

e A calibration factor, if calculated, should be stored with the captured
data. This way, the original measurements (raw counts) are always
available.

e The storing of data must be robust, meaning that captured data from
the sensor must be stored, even if there exists some problem with the
database or the program.

Priority B

e Implement alarms to warn the user about storage problems.
e Also store data calibrated to the energy scale, i.e. W /m?.

Access to stored data

Priority A

e The program must enable the user to access data stored in the database.
The program must offer the user to download the entire database, either
as a database file, or as a dump of the database.

e The program should display the captured data through a web inter-
face in the form of a plot. The units on the displayed data should be
nmol /m?s.

Priority B

e The program should also make parts of the collected data available,
such as data captured within a specified timeframe. This timeframe is
specified by the user. The data can then be downloaded as a structured
plain text file, such as CSV.

Remote access

Priority A

e The program must enable the user remote access to the sensor. This
means that the user must be able to access the captured data over a
network, either the internet or a local network.

e Read access must be provided remotely, i.e. the user must be able to
inspect and download captured data.

Priority B

e Controlling the sensor, e.g. by setting parameters, may be provided
remotely.

Security

Priority A

e The program must be secured against unauthorized access.
e The program must ensure that the user is authenticated before the user
is allowed to download data or set sensor parameters.

Priority B

e Access to view the captured data may be allowed without authentica-
tion.

Hardware functionality
Power supply

Priority B

e Review the available power supply.
e Plan a robust and failsafe system for continuous power supply to the
Sensor.

Priority C

e Implement the planned power supply system.

Future adaptation: Underwater operations

Priority C

e Review systems and methods for adapting the sensor to underwater
operations.

e Plan/design a system for adapting the sensor to underwater operations,
e.g. on landers and mobile platforms such as AUV/ROV.

C Code documentation

This appendix includes the documented code for the server application. The
documentation was autogenerated with docco'?, an open source documenta-
tion generator.

The code documentation is primarily intended for future developers and
maintainers, who want to understand and extend the code.

The code is also included in the accompanying zip archive.

2http://jashkenas.github.io/docco/

30

server.js

server.js

var express = require('express');

var app = express(Q);

var basicAuth = require('basic-auth');
var async = require('async');

var bodyParser = require('body-parser');
var confert = require('confert')

var config = confert('config');

var winston = require('winston');

var apiRouter = express.Router();

var jsonParser = bodyParser.json();
var fs = require('fs');

sdk, dataAccess and processor are local modules that handle the connection
to the camera, access to the database and intermediate processing of data,
respectively.

var sdk = require('./modules/spc2-sdk/spc2-sdk.js');

var dataAccess = require('./modules/data-access/data-access.js');

var processor = require('./modules/data-processor/data-processor.js');
var autoCapture;

var logger = new (winston.Logger) ({
transports: [
new (winston.transports.Console)({level: 'debug', colorize: truel})
]
b

HTTP access control (CORS)

The following middleware adds the Access-Control-Allow-Origin to every re-
sponse. The purpose of this is to allow clients to make requests to this domain,

which is different from the domain the request was made from. For more
information, see this article on MDN.

app.use(function(req, res, next) {
res.header("Access-Control-Allow-Origin", "*");
res.header ("Access-Control-Allow-Headers",
"Origin, X-Requested-With, Content-Type, Accept");
next();
B

Application Programming Interface

The rest of the file sets up the routes for the API, and defines the functions to
be called for requests to those routes. Common for all of the routes is that they
respond with 200 on success, and either 400 or 500 for errors on the client or
server side, respectively.

Use the apiRouter for all calls to addresses starting with /api.
app.use('/api', apiRouter);

Checks for a connection to the camera. Responds with 200 if successful, and
500 if a connection does not exist, and a new one can not be made.

apiRouter.get('/connected', function(req, res) {
var connected = sdk.init();
res.sendStatus(connected 7 200 : 500);

B;

Disconnects from the camera. Note that this route responds to POST requests,
while /connected responds to GET. The reason for this is reflected in the name of
the routes, also. /connected is meant as a status request, as in the question is
the camera connected? /disconnect on the other hand, assumes that the camera
is connected, and that the user issues the command disconnect the camera.

apiRouter.post('/disconnect', function(req, res) {
var disconnected = sdk.destroy();
res.sendStatus(disconnected ? 200 : 500);

B;

Gets data from the database, between the dates given in the route name. from
and to must be on a form that is recognized by Date.parse. The recommended
format is the ISO 8601 format, because it is clear and unambiguous.

On success, the data is written to a CSV file and offered to the user as a
download.

apiRouter.get('/getData/:from/:to', function(req, res) {

var from = new Date(req.params.from);

var to = new Date(req.params.to);

if (Mfrom || !to) {
var msg = 'Date format passed to /getData is not valid.';
logger.warn(msg) ;
res.status(400) .send(msg) ;

} else {
var data = datalAccess.getData(from, to, processData);

function processData(err, results) {
if (err)
return logger.error(err);

processor.createCSV(results, downloadFile);

}

function downloadFile(err, path) {
if (err)
return logger.error(err);

var filename = 'data.csv';
res.download(path, filename, function(err) {
processor.deleteFile(path);
s
+
B

Calls to this route returns the same data as calls to /getData, but in JSON
format. It is used for plotting data in the web application.

apiRouter.get('/plotData/:from/:to', function(req, res) {

var from = new Date(req.params.from);

var to = new Date(req.params.to);

if (Mfrom || !to) {
var msg = 'Date format passed to /plotData is not valid.';
logger.warn(msg) ;
res.status(400) .send(msg) ;

} else {
var data = datalAccess.getData(from, to, function(err, results) {

if (err) return logger.error(err);

var plotData = [];
results.forEach(function(result) {

var time = result.time.getTime(),
value = result.quantumScale;
plotData.push({ time: time, value: value });
B;
logger.info('Sending plotdata');
res.send(plotData);
b;
}
b

Sets parameters for the camera, and stores the parameters in the database.
This route expects the parameters as a JSON object included in the request.
The object should have the properties integrationTime and nImages
integrationTime is the exposure time of the camera in milliseconds, and
nImages is the number of images captured in each snap. The actual measurement
stored in the database is the average of these nImages.

apiRouter.post('/setParameters', jsonParser, function(req, res) {
var args = req.body;
if (largs) {
return res.sendStatus(400);

}

var integrationTime = parseFloat(args.integrationTime, 10);
var nImages = parselnt(args.nImages, 10);

if (!integrationTime || !nImages) {
var errMsg = 'Params to /setParameters are not valid numbers.';
logger.error (errMsg) ;
return res.status(400).send({error: errMsg});

}
The camera operates in normal mode, where one exposure is 20.74 microseconds.

var exposureTime = 20.74e-6;
var nIntegratedFrames = Math.round(integrationTime/exposureTime) ;

async.parallel([

function setCameraParameters(callback) {
var status = sdk.setCameraParameters(nIntegratedFrames, nImages);
callback(null, status);

},

function saveParameters(callback) {
var settings = {};
settings.numIntegratedFrames = nIntegratedFrames;

settings.numImages = nImages;
dataAccess.updateSettings(settings, callback);
}
], function after(err, results) {
if (err) return logger.error(err);
var status = results[O0];
res.status(status.success ? 200 : 500).send(status);
s
b;

Sets the interval between each measurement when in automatic capture
mode. The POST request must include a JSON object with the property
captureInterval. The interval is given in seconds.

apiRouter.post('/setCapturelnterval', jsonParser, function(req, res) {
var postData = req.body;
if (!postData || !postData.capturelnterval) {
logger.error('Invalid data sent to /setCapturelnterval');
logger.debug('postData: ' + postData);
return res.sendStatus(400);
}
dataAccess.updateSettings ({
secondsBetweenCaptures: postData.capturelnterval
}, function callback(err) {
if (err) {
logger.error(err);
res.sendStatus(500) ;
}
logger.info('Updated capture interval');
res.sendStatus (200) ;
s
s

Sets the calibration factor for the measurements. Each measurement is multiplied
with the calibration factor before it is stored in the database. The calibration
factor is stored with each measurement.

apiRouter.post('/setCalibrationFactor', jsonParser, function(req, res) {

var postData = req.body;

if (!postData || !postData.calibrationFactor) {
logger.error('Invalid data sent to /setCalibrationFactor');
logger.debug('postData: ' + postData);
return res.sendStatus(400);

}

dataAccess.updateSettings ({

calibrationFactor: postData.calibrationFactor
}, function callback(err) {
if (err) {
logger.error(err);
res.sendStatus(500) ;
}
logger.info('Set calibration factor');
res.sendStatus(200) ;
s
b

Enables the dead-time correction algorithm. After a sensor has detected a
photon, it needs to reset before it is ready for detection again. During this
reset, no detections will be made. This time is called the dead-time. Dead-time
correction is an algorithm that tries to correct the errors in the measurements
due to the dead-time.

apiRouter.post('/enableDeadTimeCorrection', function(req, res) {
var statusObj = sdk.setDeadTimeCorrection(true);
dataAccess.updateSettings ({
deadTimeCorrection: true
}, function(err) {

if (err) {
logger.error('Could not update dead-time correction in settings: ' + err);
res.sendStatus(500) ;
}
res.status(statusObj.success 7 200 : 500).send(status0bj) ;
s

»;
Disables the dead-time correction.

apiRouter.post('/disableDeadTimeCorrection', function(req, res) {
var statusObj = sdk.setDeadTimeCorrection(false);
dataAccess.updateSettings ({
deadTimeCorrection: false
}, function(err) {

if (err) {
logger.error('Could not update dead-time correction in settings: ' + err);
res.sendStatus(500) ;
}
res.status(statusObj.success ? 200 : 500).send(status0bj);
B

B

Captures a single image and returns a JSON object, containing the image data
as a base64 encoded string. The image data is in the imageBase64 property.

apiRouter.get('/getTestImage', function(req, res) {

Expects a query parameter intTime, which specifies the integration time in
milliseconds.

var intTime = req.query.intTime * 1;
if (!'intTime || intTime === NaN || intTime <= 0) {
logger.error('/getTestImage: invalid parameter intTime: ' + intTime);
res.sendStatus (400) ;
}
var nIntFrames = time2Frames(intTime) ;
sdk.captureTestImage (nIntFrames, function(path) {
fs.readFile(path, function(err, data) {
if (err) {
logger.error('/getTestImage: Could not read image file: ' + err);
return res.sendStatus(500) ;
}
var base64Data = data.toString('base64');
res.status(200) .send ({
imageBase64: base64Data
b;
s
B
b

Starts automatic capturing. Automatic capturing means that the camera cap-
tures a set of images at set intervals. The average of these images are stored in
the database as a measurement, along with the capture parameters. Most of the
functionality of this route is encapsulated in the autoCapture closure.

apiRouter.post('/startAutoCapture', function(req, res) {
logger.info('Starting autocapture');
autoCapture.start();
res.sendStatus (200) ;

b

Stops automatic capturing.

apiRouter.post('/stopAutoCapture', function(req, res) {
logger.info('Stopping autocapture');
autoCapture.stop() ;
res.sendStatus (200) ;

B

The user can store metadata about the camera in the database for later refer-
ence. This route accepts the meta data as a JSON object, and saves it to the
database. The JSON object may include the properties focalLength, aperture
and description.

apiRouter.post('/saveCameraSpecs', jsonParser, function(req, res) {
var postData = req.body;
if (!postData) {
logger.error('Invalid data or no data posted to /saveCameraSpecs');
return res.sendStatus(400);
}
dataAccess.saveCameraSpecs (postData, function(err) {
if (err) {
logger.error('Could not save camera specs: ' + err);
res.sendStatus(500) ;
} else {
logger.info('New camera specs saved');
res.sendStatus(200) ;
}
s
s

Returns the stored settings from the database. Settings include the number of
integrated frames, the number of images captured in each snap, seconds between
each capture in automatic mode, the calibration factor and a boolean telling us
if dead-time correction is enabled or not.

apiRouter.get('/getSettings', function(req, res) {
dataAccess.getSettings (function gotSettings(err, result) {
if (err) {
logger.error('Could not get settings: ' + err);
res.sendStatus(500) ;
} else {
logger.debug('Getting settings object');
res.status(200) .send(result);
}
B
s

Returns the stored camera specifications from the database. These are the
specifications stored with /saveCameraSpecs.

apiRouter.get (' /getCameraSpecs', function(req, res) {
dataAccess.getCameraSpecs(function gotSpecs(err, result) {

if (err) {
logger.error('Could not get camera specs: ', err);
res.sendStatus(500) ;

} else {
logger.debug('Getting camera specs');
res.status(200) .send (result);

}

s
IR

Startup

Creates the server instance and starts listening for requests.

var listenOn = config.port || 8080;
var server = app.listen(listenOn, function () {

Attempt to connect to the camera.

var connected = sdk.init();

if (!'connected) {
logger.error('Could not connect to camera. Exiting.');
process.exit(1);

}

The following functions are called in series, because the database must be
connected before the other functions can be called.

async.series([
function connectToDatabase(callback) {
dataAccess.connect(config.dbHostAddresses, config.databaseName, callback);

}’

This creates the autoCapture closure. The reason for using a closure, is to
encapsulate the intervalObject, which is needed for stopping a running timer.

function createAutoCaptureClosure(callback) {
autoCapture = (function() {
var intervalObject;
return {
start: function() {
dataAccess.getSettings (function(err, settings) {
if (err)
return logger.error('Could not start auto capture: ' + err);

The timer function uses the sdk to capture an image and saves the data to the
database. The camera parameters are saved along with the measurement.

intervalObject = setInterval(function() {
var measurement = sdk.captureImage();
measurement .numIntegratedFrames = settings.numIntegratedFrames;
measurement .numImages = settings.numImages;
measurement .photonsPerSecond =
processor.getPhotonsPerSecond(settings.numIntegratedFrames,
measurement.data) ;
measurement.quantumScale =
processor.convertToQuantumScale (measurement . photonsPerSecond,
settings.calibrationFactor) ;
measurement.calibrationFactor = settings.calibrationFactor;
dataAccess.saveMeasurement (
measurement,
function(err, m) {
if (err) return logger.error(err);
else return logger.debug('Measurement saved at ' + m.time);
I
}, settings.secondsBetweenCaptures * 1000);
i)
1,
stop: function() {
clearInterval (intervalObject);
+
s
HO;
callback(null);
1,

function setStoredParameters(callback) {

Gets settings from database and apply them to camera. If any errors occurs
here, the application assumes that either the camera is not connected, or the
database is not running. Either way, there is no point for the application to
start up, so it just exits.

dataAccess.getSettings(gotSettings);

function gotSettings(err, settings) {
if (err) {
logger.error('Could not get settings from database: ' + err);
process.exit(1);

}

10

}

var status = sdk.setCameraParameters(settings.numIntegratedFrames,
settings.numImages) ;
if (!status.success) {
logger.error('Could not set camera parameters');
process.exit(1);

}

status = sdk.setDeadTimeCorrection(settings.deadTimeCorrection);
if (!status.success) {
logger.error('Could not set dead-time correction');
process.exit(1);

}

logger.info('Camera parameters have been set');
callback(null);

}], function initDone(err) {
logger.info('Initialization done.');

B;

var host = server.address() .address;
var port = server.address().port;
logger.info('Server listening at http://%s:%s', host, port);

19N

Returns the number of integrated frames that comes closest to the given integra-
tion time. integrationTime is the time in milliseconds.

function time2Frames(integrationTime) {

var

var
var
var

micro = le-6,
milli = 1le-3;

exposureTime = 20.74 * micro;

timeInSeconds = integrationTime * milli;

frames = Math.round(timeInSeconds / exposureTime);
return frames;

11

data-access.js

data-access.js

Purpose

This module includes functions that read and write to the database. It acts as
an abstraction layer between the server application and the database, hiding the
database details from view.

MongoDB

The server uses MongoDB as its database. Mongoose is a node.js module for
interfacing with MongoDB.

var mongoose = require('mongoose');
var db;

var winston = require('winston');
var logger = new (winston.Logger) ({
transports: [
new (winston.transports.Console)({level: 'debug', colorize: truel})
]
b

Module functions
var dataAccess = module.exports;

Connects to the database(s). Addresses is a list of addresses to running mongod
instances. The use of multiple databases assures redundancy in case some of
them fail.

function connect(addresses, databaseName, callback) {

Concatenates the addresses to one URI that mongoose accepts.

var uri = concatAddresses(addresses, databaseName);
var options = {

Sets keepalive to true, to make sure that the database connection doesn’t time
out.

server: {
socketOptions: {
keepAlive: 1
}
},
replset: {
socketOptions: {
keepAlive: 1
}
}
+;
mongoose.connect (uri, options);
db = mongoose.connection;
db.on('error', logger.error);

Asynchronously sets up the database schemas, once the connection has been
made.

db.once('open', function defineModels() {

The schema for a measurement. data holds the original data from the camera,
and time holds the timestamp from when the measurement was made. The
rest of the fields are saved with the measurement to make sure the results are
reproducible.

var Measurement = mongoose.Schema({
data: [{type: Number, min: 0}],
time: Date,
numIntegratedFrames: Number,
numImages: Number,
photonsPerSecond: Number,
quantumScale: Number,
calibrationFactor: Number

s

mongoose.model ('Measurement', Measurement);

Defines the settings schema. Settings include the camera parameters, the capture
interval and the calibration factor.

var Settings = mongoose.Schema ({
numIntegratedFrames: { type: Number, min: 1 },
numImages: { type: Number, min: 1 },
secondsBetweenCaptures: Number,
calibrationFactor: { type: Number, min: 0 7},
deadTimeCorrection: Boolean

b

mongoose.model ('Settings', Settings);
Schema for saving metadata about the camera.

var CameraSpecs = mongoose.Schema ({
time: Date,
focallength: String,
aperture: String,
description: String
IOF

mongoose.model ('CameraSpecs', CameraSpecs);

if (callback && typeof callback === 'function')
callback(null);
s
};

Disconnects from the database.

function disconnect() {
mongoose.connection.close();

}

Concatenates multiple addresses into one string. Used for connecting with
mongoose.

function concatAddresses(addresses, databaseName) {
var pattern = /7 (mongodb:\/\/)7?(\S+)/;
var arr = addresses.reduce(function(acc, address) {
var matches = pattern.exec(address);
return acc.concat(matches[2]);
}, [D;
return 'mongodb://' + arr.join(',') + '/' + databaseName;

}

Standard get functions.

function getMeasurementModel() {
return mongoose.models.Measurement;

}

function getSettingsModel() {
return mongoose.models.Settings;

}

function getCameraSpecsModel() {
return mongoose.models.CameraSpecs;

}

Saves a new measurement to the database. Saves are done asynchronously, and
the provided callback is called when the save is complete.

function saveMeasurement(measurement, callback) {
var Measurement = getMeasurementModel() ;
var m = new Measurement (measurement) ;
m.save(callback) ;

}
Similar to saveMeasurement, but updates instead of saving a new object.

function updateSettings(newSettings, callback) {
var Settings = getSettingsModel();
Settings.update({},
{ $set: newSettings },

upsert means to insert if a record does not exist, and update otherwise.

{ upsert: true 1},
callback);

Identical to saveMeasurement, but for camera specs.

function saveCameraSpecs(specs, callback) {
var CameraSpecs = getCameraSpecsModel();
var cs = new CameraSpecs(specs);
cs.save(callback) ;

}

Reads the settings from the database.

function getSettings(callback) {
logger.debug('called getSettings');
getSettingsModel () .findOne ({}, callback);
}

Reads the camera specs from the database. Each set of specs are saved by itself,
with a timestamp. This function gets the last one.

function getCameraSpecs(callback) {
getCameraSpecsModel ()
.find ()
.sort('-time')
limit (1)
.exec(callback) ;

}
Get measurements taken between from and to. All parameters must be specified.

function getData(from, to, callback) {
if (!from || !'to || !callback) {
return logger.error('data-access: getData called with invalid arguments.');

}

logger.info('Getting measurements between ' + from.toUTCString() +
' and ' + to.toUTCString());
var model = getMeasurementModel();
model.find({ time: { $gte: from, $1t: to } }, callback);
}

Defines the interface to this module. dataAccess is an alias for module.exports
which is the object exported from a node.js module.

dataAccess.connect = connect;

dataAccess.disconnect = disconnect;
dataAccess.getMeasurementModel = getMeasurementModel;
dataAccess.getSettingsModel = getSettingsModel;
dataAccess.getCameraSpecsModel = getCameraSpecsModel;
dataAccess.saveMeasurement = saveMeasurement;
dataAccess.updateSettings = updateSettings;
dataAccess.getSettings = getSettings;
dataAccess.getCameraSpecs = getCameraSpecs;
dataAccess.getData = getData;
dataAccess.saveCameraSpecs = saveCameraSpecs;

data-processor.js

data-processor.js

Purpose

This module is a collection of functions that manipulate data in some way, and
where the function are too large to include in the other modules without violating
the single responsibility principle. Conversions and calculations on the data
typically belongs here.

var winston = require('winston');
var logger = new (winston.Logger) ({
transports: [
new (winston.transports.Console)({level: 'debug', colorize: truel})

]
B
var config = require('confert') (process.cwd() + '/config');
var tmp = require('tmp'),
fs = require('fs'),
async = require('async'),
os = require('os');

var processor = module.exports;

function sum(coll) {
return coll.reduce(add);

}

function add(x, y) {
return x + y;

}

Module functions

Calculates the number of photons per second measured in an image. The image
is an array, where each element represents one photon detector in the camera.

processor.getPhotonsPerSecond =
function photonsPerSecond(numIntegFrames, image) {
if (numIntegFrames <= 0) {
logger.error('Called photonsPerSecond with invalid numIntegFrames');
return O;

}
In normal mode, the exposure time is always a multiple of 20.74 microseconds.

var exposureTime = numIntegFrames * 20.74e-6;
var detectedPhotons = sum(image);
return detectedPhotons/exposureTime;

};

Converts the photons per second count to the quantum scale (micromol photons
per square meter per second). Requires that we know the sensor area, which is
specified in the config file.

processor.convertToQuantumScale =
function quantumScale(photonsPerSecond, calibrationFactor) {
var avogadro = 6.022141e+23;

var area = config.sensorArea || 0;
if (area === 0) {
logger.warning('Sensor area is not defined in the config file.' +
'Returning O for the quantum scale.');
return O;

return photonsPerSecond * le6/avogadro / area * calibrationFactor;

};

Builds a standard CSV (comma separated values) file, with , as the separator,
and a descriptive header. results is an array of measurement objects from the
database. Note: Measurements are not sorted.

processor.createCSV =
function createCSV(results, callback) {
var header = 'time,numIntegratedFrames,numImages,photonsPerSecond, '

+ 'quantumScale,calibrationFactor' + os.EOL;
tmp.file(function tmpFileCreated(err, path) {
if (err)
return logger.err(err);

logger.debug('Created temp file ' + path);

var stream = fs.createWriteStream(path, {
flags: 'w',
encoding: 'utf8'

B;

stream.write(header);

Process each measurement object in the results. There is no guarantee that the
results will be processed in order, ref. the async module.

async.each(results, addResultToFile, function(err) {
if (err)
logger.error('createCSV: Could not write to stream: ' + err);
stream.end();

B

stream.on('finish', function() {
callback(null, path);
B;

Called for each measurement object in the results array. Assembles a CSV line
and writes it to the file.

function addResultToFile(result, cb) {
delete result.data;
var s = '' +
result.time.toISOString() + ',' +
result.numIntegratedFrames + ',' +
result.numImages + ',' +
result.photonsPerSecond + ',' +
result.quantumScale + ',' +
result.calibrationFactor + os.EQOL;
stream.write(s);
cbQ;
¥
b
};

Deletes/unlinks a file. Typically used to delete a file created with the createCSV
function, when the user has downloaded it.

processor.deleteFile =
function deleteFile(path) {
fs.unlink(path, function(err) {
if (err)
return logger.error('Could not unlink file: ' + err);

logger.debug('Unlinked file: ' + path);
s
s

spc2-sdk.js

spc2-sdk.js

Purpose

This is the translation of the SDK from C to javascript. This module uses
the module £fi, which stands for foreign function interface. It lets us create
javascript functions from the C functions, by defining them as parameters to the
ffi.Library function.

External modules
var ffi = require('ffi');

ref and ref-array simplifies handling of C pointers and arrays from javascript,
by using its predefined types.

var ref = require('ref');
var ArrayType = require('ref-array');
var winston = require('winston');
var logger = new (winstomn.Logger) ({
transports: [
new (winston.transports.Console)({level: 'debug', colorize: truel})
]
s

tmp is a module for creating temporary files.
var tmp = require('tmp');

gm is a module for working with images. It requires GraphicsMagick to be
installed.

var gm = require('gm');

Type definitions

Here we define the C types and C array types that we’re going to need in the
library function calls.

var ushort = ref.types.ushort;
var double = ref.types.double;
var DoubleArray = ArrayType(double);
var UShortArray = ArrayType(ushort) ;

Creating the javascript functions

The call to £ffi.Library creates a javascript object, which contains javascript
functions for all the C library functions that were specified in the parameters.
After this call, the functions can be called just like any other javascript function.
Each library function is defined with its name, return type and the types of its
arguments.

var lib = ffi.Library('./libapi', {
'init': ['bool', []1],
'destroy': ['bool', [11,
'apply_settings': ['bool', [1],
'set_background_img': ['bool', [UShortArrayl],
'set_background_subtraction': ['bool', ['bool'l],
'set_camera_par': ['bool', ['ushort', 'uint32']],
'set_deadtime': ['bool', ['ushort'l],
'set_deadtime_correction': ['bool', ['bool'l],
'set_live_mode': ['bool', ['bool'l],
'get_img_position': ['bool', [UShortArray, 'uint32']],
'get_live_image': ['bool', [UShortArrayl],
'get_snap': ['bool', [1],
'prepare_snap': ['bool', [1],
'average_image': ['bool', [DoubleArrayl],
'save_image_to_disk': ['bool', ['uint32', 'uint32', 'string', 'string']]

B;

Module functions

var sdk = module.exports;

Connect to the camera.

sdk.init = function init() {
logger.info('Connecting/checking connection to camera');
return 1lib.init(Q);

};
Disconnect from the camera.

sdk.destroy = function destroy() {
return lib.destroy();
s

Enables or disables dead-time correction. The argument enable is a boolean
which decides wether to enable (true) or disable (false) the correction algorithm.

sdk.setDeadTimeCorrection = function setDeadTimeCorrection(enable) {
var success = true;
success = success && lib.set_deadtime_correction(enable);
success = success && lib.apply_settings();
var statusObj = { success: success };
if (!success) {
var verb = enable 7 'enable' : 'disable';
var errMsg = 'Could not ' + verb + ' dead-time correction.';
logger.error (errMsg) ;
statusObj.error = errMsg;
}
return statusObj;

};

Sets the camera’s capture parameters; the number of integrated frames, and the
number of images per snap.

sdk.setCameraParameters = function setCameraParameters(nIntegratedFrames, nImages)
var success = lib.set_camera_par(nIntegratedFrames,
nImages) ;

if (!success) {

logger.error('Could not set camera parameters.');
b
success = lib.apply_settings();
if (!success) {

logger.error('Could not apply camera settings.');
b

return {success: success};

Captures an image according to the parameters set with sdk . setCameraParameters.
The returned image is an array of values, each value representing one photon
detector in the camera. The values are the averages of all images captured in
the snap.

sdk.captureImage = function captureImage() {
var time = new Date();

prepareAndGetSnap() ;

var image = new DoubleArray(1024);
var gotImage = lib.average_image(image) ;
if (!gotImage) return logger.error('Could not get average image of snap.');

var arr = new Array(1024);
for (var i = 0; 1 < 1024; i++) {
arr[i] = image[i];

}
return {
data: arr,
time: time
1
}s

This function also captures an image, like sdk. captureImage, but its purpose is
a little different. Instead of capturing multiple images and returning the average
data, this function captures just one image, and returns the image data as a tiff
file. It also accepts parameters as input. It is used for capturing test images, to
test the parameters before enabling automatic capture mode.

sdk.captureTestImage =
function captureTestImage(nIntegratedFrames, callback) {
if (!'nIntegratedFrames) {
logger.error('captureTestImage missing parameters');
return {};

}

sdk.setCameraParameters(nIntegratedFrames, 1);
prepareAndGetSnap() ;

tmp.file(function fileCreated(err, path) {
if (err) return logger.error('captureTestImage: Could not create tmp file.');

var startimg = 1,

endImg = 1,
fileFormat = 'tiff-no-compression';
var imageSaved = lib.save_image_to_disk(startImg, endImg, path, fileFormat);

if (!imageSaved) {
logger.error('captureTestImage: Could not save test image to disk.');
callback('');
} else {
logger.info('captureTestImage: Test image saved.');
var pngPath = path + '.png';
gm(path) .write(pngPath, function imageConverted(err) {

if (err) {
logger.error('Could not convert image to png: ' + err);
return callback('');
X
logger.info('captureTestImage: Image converted');
callback(pngPath) ;
s

}
DR
}

Helper function. Used in both sdk.captureImage and sdk.captureTestImage.

function prepareAndGetSnap() {
var prepared = lib.prepare_snap();
if (!prepared) return logger.error('Could not prepare camera for snap.');

var gotSnap = lib.get_snap();
if (!gotSnap) return logger.error('Could not get snap.');
}

