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Summary
This master thesis considers the thrust allocation problem of the Remotely Operated
Vehicle Minerva, operated by the NTNU Applied Underwater Robotics Laboratory.
The Minerva is reported to have some issues with the yaw capability when subject
to current. Thus, motivating the testing of thrust allocation algorithms prioritizing
yaw capability.

To get familiarized with the Minerva, and the Minerva control and simulation sys-
tems, the dynamical model of Minerva is presented. In order to present the dynami-
cal model, relevant background information is given. Then, the dynamical behavior
and limitations of the Minerva are discussed. Further, the thruster configuration,
and current thrust allocation scheme is presented.

Three constrained thrust allocation algorithms are proposed; Recursive nullspace-
based thrust allocation, optimal thrust allocation, and optimal recursive thrust al-
location. The optimal recursive thrust allocation are the combination of the first
two proposed algorithms. The recursive algorithms are motivated by the desire to
ensure enough thruster capacity is available to produce the required yaw moment.
After satisfying the yaw allocation, the remaining thrust capacity can be utilized to
allocate the degrees of freedom in subsequent steps The algorithms are then tested
in both open-loop, and closed-loop condition, to ensure functionality.

A simulation case study to test the effectiveness, and compare the performance of
the three proposed thrust allocation algorithms were carried out. From open-loop
tests it was found that the thruster weighting matrix of the 2nd step of the recur-
sive 3-step nullspace-based thrust allocation algorithm, are of great importance for
the overall performance of the algorithm when applied for the Minerva. Leaving
the 2nd step thruster weighting matrix as the identity matrix, caused the recursive
3-step algorithm to perform poorer than the pseudoinverse thrust allocation. From
closed-loop tests, the proposed implementation of the optimal recursive thrust al-
location algorithm is seen to be flawed. The optimal recursive algorithm allocated
the thrusters such that the rotational direction of the thrusters were constantly
changed back and forth, inducing instability in an otherwise stable system. Such
utilization will drastically increase wear and tear of the thrusters. Further, it was
found from testing that the optimal thrust allocation algorithm could achieve yaw
priority by means of modifying the slack variables. By making the cost on the slack
variable corresponding to yaw higher, in order 1000 times higher, than the other
slack variables, yaw priority are achieved.

Finally, concluding remarks are given; The proposed optimal recursive thrust al-
location algorithm as implemented for the Minerva is seen to be flawed. Therefor
there is no point in HIL-testing of the algorithm, as proposed in this thesis. Lastly,
recommendations for further work are presented.
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Sammendrag
Denne diplomoppgaven ser på thrust-allokeringsproblemet med den fjernstyrte un-
dervannsroboten Minerva, som drives av NTNU ”Applied Underwater Robotics Lab-
oratory”. For Minerva er det rapportert å være noen problemer med girevne når den
er påvirket av strømkrefter. Dette motiverte testing av thrust-allokeringsalgoritmer
med girevne som prioritet.

For å bli kjent med Minerva, og Minervas kontroll- og simuleringssystemer, er
den dynamiske modellen av Minerva presentert. For å kunne presentere den dy-
namiske modellen er relevant bakgrunnsinformasjon gitt. Deretter blir den dy-
namiske oppførsel og begrensninger for Minerva diskutert, og thruster-konfigurasjonen,
og den nåværende thrust-allokeringen, presentert.

Tre thrust-allokeringsalgoritmer med begrensning på allokert thrustkraft er fores-
lått: Rekursiv nullspacebasert thrustallokering, optimal thrustallokering, og opti-
malrekursiv thrustallokering. Den optimalrekursive thrustallokering er en kombi-
nasjonen av de to første foreslåtte algoritmene. Valget av de rekursive algoritmene
er motivert av ønsket om å sikre at nok thrusterkapasitet er tilgjengelig for å pro-
dusere det nødvendige giringsmomentet. Etter tilfredsstillende girallokering kan den
gjenværende thrustkapasiteten utnyttes til å allokere kraft til de gjenværende fri-
hetsgradene i påfølgende trinn. Algoritmene blir deretter testet både i åpen sløyfe-
og lukket sløyfetilstand, for å sikre funksjonalitet.

Det ble utført en simuleringstudie for å teste effektiviteten og sammenligne resul-
tatene fra de tre foreslåtte thrust-allokeringsalgoritmene. Fra åpen-sløyfetester ble
det funnet at thrustervektmatrisen fra trinn 2 i den rekursive tre-trinns nullrom-
baserte thrust-allokeringsalgoritmen er av stor betydning for den totale ytelsen av al-
goritmen når det er anvendt for Minerva. Ved å la thrustervektingsmatrisen i trinn 2
forbli identitetsmatrisen, produserer den rekursive tre-trinnsalgoritmen dårligere re-
sultat enn pseudoinvers thrustallokering. Fra lukket-sløyfetester viste det seg at den
foreslåtte implementeringen av den optimalrekursive thrust-allokeringsalgoritmen
var feil. Den optimalerekursive algoritmen allokerte thrusterene, slik at rotasjonsret-
ningen for thrusterne stadig ble skiftet frem og tilbake, og dermed induserte usta-
bilitet i et ellers stabilt system. Slik utnyttelse vil drastisk øke slitasje av thrusterne.
Videre ble det fra testingen funnet at den optimale thrust-allokeringsalgoritme kan
oppnå girprioritet ved å modifisere slack-variablene. Ved å øke kostnaden på slack-
variabelene tilhørende gir med en størrelse orden 1000 ganger større enn de andre
slakk-variablene, oppnås girprioritet.

Til slutt er avsluttende merknader gitt: Den foreslåtte optimalrekursive thrust-
allokeringsalgoritmen som ble implementert for Minerva viste seg å være feil. Derfor
er det ikke noe poeng i videre HIL-testing av algoritmen, som foreslått i denne
oppgaven. Endelig blir anbefalinger for videre arbeid presentert.
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Chapter 1

Introduction

1.1 Background

As stated in the thesis assignment, ”for the dynamic positioning (DP) of marine
vessels, the limiting capacity of stationkeeping in heavy environmental conditions is
the thruster configuration and the maximum resultant force and moment that can
be produced for surge, sway and yaw motions. The DP control law provides a com-
manded net force/moment to be produced by the propulsion system to compensate
the environmental loads. A thrust allocation algorithm distributes this net force/mo-
ment in an efficient manner to a commanded force and direction for each individual
thruster based on their rated power, location in the hull, thruster type, and individual
constraints”.

Further, ”the Remotely Operated Vehicle (ROV) named Minerva is operated by the
NTNU Applied Underwater Robotics Laboratory (AUR-lab). It contains a 3D DP
system, developed in-house by NTNU, that can be used for underwater stationkeeping
and low-speed path-following. In sideways current there have been some issues in
experiments, in situations when the thrusters saturate, the yaw moment are affected
too early”. Thus, a constrained thrust allocation algorithm, prioritizing the yaw
moment, is thought to be beneficial to the ROV Minerva.

1.2 Objective

The objective of this thesis will be to propose a constrained thrust allocation algo-
rithm for the ROV Minerva, prioritizing the yaw moment. This is thought achieved
by combining the recursive nullspace-based thrust allocation, with an optimal (QP)
thrust allocation, into an optimal constrained recursive thrust allocation algorithm.
The proposed thrust allocation algorithm is then to be tested. For each success-
ful level of testing, the level of testing will be increased. Tentatively, performing
full-scale tests on the ROV Minerva.

1.3 Contributions and outline of the thesis

Chapter 2 presents references on the dynamic modeling of the ROV Minerva, and
the developed control systems running it. Further, references on DP, tracking, and
path-following control laws are presented. Lastly references on control allocation
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are presented, with particular focus on thrust allocation. Of particular interest to
this thesis are the recursive thrust allocation, and the optimal thrust allocation.

Chapter 3 gives relevant background information in order to present the dynamical
control model for the ROV Minerva. Then, the configuration, dynamical behavior,
and limitations of the Minerva are discussed. Further, presenting the Minerva sim-
ulation and control systems, both non-HIL and HIL. Lastly, presenting the thruster
configuration and current thrust allocation scheme, for which the aim of this thesis
is to improve. Chapter 3 are in great extent taken from the work carried out in
Kajanus (2014, spring).

Chapter 4 presents the constrained recursive nullspace-based thrust allocation algo-
rithm applied to the Minerva design case. The algorithm is tested in both open-loop,
and closed-loop, with the results from the tests are presented and discussed.

Chapter 5 presents the constrained optimal (QP) thrust allocation algorithm ap-
plied to the Minerva design case. The algorithm is tested in both open-loop, and
closed-loop, with the results from the tests are presented discussed.

Chapter 6 presents the constrained optimal recursive thrust allocation algorithm
applied to the Minerva design case. The optimal recursive algorithm is the combi-
nation of the algorithms presented in the two previous chapters. The algorithm is
tested in both open-loop, and closed-loop, with the results from the tests presented
are discussed.

Chapter 7 compares the performance of the thrust allocation algorithms presented
in the three previous chapters, with the pseudoinverse thrust allocation utilized in
the Minerva simulation system.

Chapter 8 gives the concluding remarks, and recommendations for further work.

1.4 Notation

In this thesis lower case boldface letters/symbols are used to represent vectors, while
upper case boldface letters/symbols are used to represent matrices.
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Chapter 2

Literature review
This chapter aims to give an overview over relevant references related to the ROV
Minerva control system, and the dynamical modeling it is based on. Further, refer-
ences for the recursive nullspace-based thrust allocation, and optimal thrust alloca-
tion, are presented.

2.1 The Minerva dynamic modeling, and control
system

The dynamical model of the ROV Minerva is presented in amongst other Kirkeby
(2010); Candeloro (2011); Sørensen et al. (2012); In Kirkeby (2010) the focus are on
testing of DP, and tracking controllers for the ROV Minerva. While in Candeloro
(2011) the development and testing of observer for the ROV Minerva are presented.
Sørensen et al. (2012) presents results from full scale testing of the dynamic po-
sitioning (DP) and tracking system, developed for the Minerva by MSc students,
PhD-candidates and NTNU researchers in the period 2010-2011. The software sim-
ulator resulting from the before mentioned sources, where implemented into the
LabVIEW software from National Instruments as part of the work carried out in
Tolpinrud (2011, 2012), and is what formed the basis for the current control system
for Minerva.

The Minerva simulation and control systems utilizes the ”Fossen‘s Robot-Like Vec-
torial Model for Marine Craft” found in Fossen (2011); This is a compact and elegant
way to arrange the equation needed to describe the 6 DOF motion of a marine ves-
sel. The Fossen model agrees with the SNAME equations and notation, but on an
vectorial form rather than the SNAME component form. The SNAME component
form can be found in amongst others in Faltinsen (1990).

For references on DP, tracking, and path-following control laws the textbooks from
Fossen (2011); Sørensen (2011); Fossen (1991), and references therein, are a good
source for the interested reader.

In Skjetne (2013) a parameter analysis of the ROV Minerva, looking into the cause
and effect of the time-varying center of gravity (CG), are presented. Further ref-
erences of dynamical modeling of marine vessels can be found in Sørensen (2011),
Fossen (2011, 1991), Lewandowski (2004), and Do and Pan (2009).
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2.2 Control allocation

For thrust and control allocation there are a variety of approach and references,
ranging from the simple pseudo inverse Fossen (2011); Sørensen (2011), till opti-
mizing problems Fossen (2011, 1991) for maneuvering, tracking, path following etc.
The Control Allocation - A survey by Johansen and Fossen (2012), and references
therein, gives a good overview over various control allocation schemes and references.

2.2.1 Recursive nullspace-based thrust allocation

When developing DP-system for ice condition, the ability to ensure the heading of
the vessel into the ice forces is of upmost importance. This is due to the fact that
the bow of the vessel typically gives the least projected area for which the ice force
can act on. Thus, strictly prioritizing the DOF‘s when allocating the thruster forces,
such that the effect of the ice force is minimized. This is what motivated the papers
Kjerstad et al. (2013); Skjetne and Kjerstad (2013). The Recursive Nullspace-Based
Thrust Allocation (Skjetne and Kjerstad, 2013), forms the basis for the proposed
3-step recursive thrust allocation algorithm in this thesis.

2.2.2 Optimal thrust allocation

The linear quadratic (QP) constrained formulation that the optimal thrust allocation
proposed in this thesis, is based on Fossen (2011). The textbook (Fossen, 2011) is
found to be a good source, and starting point, for any problem I have been asked
to solve. In Ruth (2008) a number on references on QP are found, covering the
unconstrained quadratic thrust allocation problem, aswell as the linearly quadratic
constrained thrust allocation problem. Further sources where the QP problem are
proposed, and applied to various applications are found in Diehl (2011); Wold (2013);
Veksler et al. (2014).

For implementation of QP solvers in the Minerva control and simulation system, see
National Instruments (fall 214); MathWorks (fall 214), respectively.
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Chapter 3

Minerva design case
This chapter will present key-concepts and necessary background in order to present
the dynamical control model for the ROV Minerva. Further Minerva‘s configuration,
dynamical behavior and limitations will be discussed. Then the current simulation
system, both HIL and Non-HIL, will be presented.

3.1 Background

Reference frames

For the ROV Minerva two reference frames are needed; the NED frame and the
body-frame, also denoted as {n} and {b}, respectively. The following descriptions
are based on the descriptions found in Fossen (2011), and illustrated in Figure (3.1).

The North-East-Down (NED): Is fixed to the earth‘s surface as a tangent plane,
defined by the longitudinal (l) and latitudinal (µ) coordinates. The x-, y,- z-axis of
the NED-frame points in the directions North (true), East and Down (normal the
earth‘s surface).

The ROV is utilized for local applications, so flat Earth navigation is assumed,
and thus {n}-frame is assumed inertial. This assumption is necessary in order for
Newton‘s law to apply.

Body-frame: Is a local frame, fixed to the body of the ROV. This is typically
centered in the center of origin (CO) of the object, with axis pointing in the direction
coinciding with the primary axes of inertia.

{b}

xb

yb

zb

{n}

xn

yn

zn

Figure 3.1: Illustration of body and NED reference frames. Courtesy ROV sketch:
Wordpress.
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To describe the relationship between the {n} and the {b} frame, a rotation matrix
is needed. Based on the Euler angles (Θnb), then according to Fossen (2011), the
transformation matrix can be given according to

JΘ(η) =
[
Rn
b (Θnb) 0

0 TΘ(Θnb)

]
∈ R6×6 , and Θnb =

φθ
ψ

 ∈ S3. (3.1)

The two components of the transformation matrix in (3.1) are the rotation matrix
for linear velocity (Rn

b (Θnb)), and angular velocity (TΘ(Θnb)), which can be given
according to (3.2).

Rn
b (Θnb) :=

 cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 ∈ R3×3,

TΘ(Θnb) =

 1 sφ tθ cφ tθ
0 cφ −sφ
0 sφ

cθ
cφ
cθ

 ∈ R3×3.

(3.2)

An important limitation with the Euler angle representation is the singularity for θ
= ± 90◦. However, this is not a problem for Minerva. More details and alternative
altitude representations can be found in Fossen (2011).

Degrees of Freedom

In order to fully describe the motion of an object in space, 6 Degrees of Freedom
(DOF) are needed. These are three translational and three rotational motions. With
basis in the {b}-frame, they are denoted {Surge, Sway, Heave} and {Roll, Pitch,
Yaw}, respectively. The positive translational motion is in the direction of the {b}-
axis, whereas the rotational motion is the rotation around these respective axis as
illustrated in the figure below.

Table 3.1: Summarization of SNAME notation for marine vessel; DOF {1,2,3} are for
linear motions. DOF {4,5,6} are for rotations.

DOF Motion / Forces / Linear velocities / Positions /
# Rotation moments angular velocities Euler angles
1 Surge X u x
2 Sway Y v y
3 Heave Z w z
4 Roll K p φ
5 Pitch M q θ
6 Yaw N r ψ

Noteworthy is that the order of the state space is given as, Order = 2 × DOF, and
thus the order of a system operating in 6 DOF will be 12.
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xb

yb

zb

{b}

Surge

Sway

Heave

Roll

Pitch

Yaw

Figure 3.2: Illustration of 6 DOF motion in body-frame, {b}. Courtesy ROV sketch:
Wordpress.

Process Model and Control Model

Further the terms Process Model (PM) and Control Model (CM) must be estab-
lished.
According to Sørensen (2011, p.177) they can be defined as

• Process Model: “a comprehensive description of the actual process and
should be as detailed as needed using high fidelity models”.

• Control Model: “a simplified mathematical description containing only the
necessary an important physical properties of the process”.

In Section 3.2 the Minerva control model will be presented.

Configuration Space and Workspace

Yet another set to terms to be defined is the configuration space (CS) and the
workspace (WS). From Definition 9.2 and Definition 9.5 in Fossen (2011, p.236-
237), they can be stated respectively as

• Configuration Space: “The n-dimensional configuration space is the space
of possible positions and orientation that a craft may attain, possibly subject
to external constraints”.

• The workspace: The m-dimensional workspace “is a reduced space of di-
mension m < n in which the control objective is defined”.

where their dimensions can be found

n := dim(ηcs) , m := dim(ηws) < n. (3.3)

The ROV Minerva is operated in 6 DOF, and thus the dimension of the CS will be
n = 6. As Minerva is only actuated in 4 DOF, {Surge, Sway, Heave, Yaw }, the
dimension of the WS will be m = 4. The two unactuated states { Pitch, Roll } are
passively stable.
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Kinematics and Kinetics

In classical mechanics the study of dynamics can be divided into two parts, namely
kinematics and kinetics. This subdivision of the dynamical problem is convenient,
and is utilized in the Fossen‘s Robot-Like Vectorial Model for Marine Craft’. A short
description of this subdivision follows.

The Kinematics - from the Greek word Kinemat, meaning movement. The kine-
matic sub problem deals only with the geometrical aspects of motion, and is evalu-
ated in the inertial frame.

The Kinetics - from the Greek word Kinetikos meaning moving. The kinetic sub
problem deals with the forces causing motion, and is evaluated in the body-frame .

3.2 Dynamical modeling of ROV Minerva

The 4DOF control model for ROVMinerva, using the ”Fossen‘s Robot-Like Vectorial
Model for Marine Craft” (?), can be given according to (3.4).

i) η̇ = JΘ(η)ν
ii) Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ + τother + J−1

Θ (η) b(t) (3.4)

The kinematic equation (i) relates the velocities (η̇) of the vessel in the {n}-frame,
through a transformation matrix

(
JΘ(η)

)
, to translational and rotational velocities

(ν) of the vessel in the {b}-frame. While the kinetic equation (ii) describes all
rigid-body (rb), hydrodynamic, environmental, and actuator forces, expressed in
the {b}-frame. The {n}-frame is assumed to be inertial.

Representing the attitude with Euler angles (Θ), the 4 DOF displacement vector
(η) and the velocities (ν) can be defined as

η :=


N
E
D
ψ

 ∈ R3 × S1 , ν :=


u
v
w
r

 ∈ R4×1. (3.5)

The actuator forces vector is defined as

τactuators :=
[
X Y Z N

]>
∈ R4×1, (3.6)

giving the forces in {Surge, Sway, Heave} [N] and moment in {Yaw} [Nm] respec-
tively. The remaining forces is collected in the force vector τother, and is the sum-
mation of all other forces affecting the vessel, and can for Minerva be given as

1τother = τumbilical. (3.7)
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Further the kinetic equation (ii) have the following components

• M = MRB + MA, is the mass matrix.

• C = CRB + CA, is the Coriolis and centripetal matrix due to the rotation
between
{b} and {n} frames.

• D = DL + DNL, is the linear and non-linear damping.

• g, is the restoring vector.

• b(t), is a slowly varying bias vector, modelled as a first order Markov process,
accounting for the current force.

By assuming starboard-port symmetry, with yg = Ixy = Iyz = Izx = 0, then according
to Fossen (2011) the mass matrix can be defined as

M =



m−Xu̇ 0 −Xẇ 0 mzg −Xq̇ 0
0 m− Yv̇ 0 −mzg − Yṗ 0 mxg − Yṙ
−Xẇ 0 m− Zẇ 0 −mxg − Zq̇ 0

0 −mzg − Yṗ 0 Ix −Kṗ 0 −Izx −Kṙ

mzg −Xq̇ 0 −mxg − Zq̇ 0 Iy −Mq̇ 0
0 mxg − Yṙ 0 −Izx −Kṙ 0 Iz −Nṙ


(3.8)

With the ROV parameters as reported in Kirkeby (2010)

m = 460 [kg]
l = 1, 44 [m]
b = 0.82 [m]
h = 0.80 [m]
Ix = 1

12m(b2 + l2) = 105, 2633 [kg m2]
Iy = 1

12m(l2 + h2) = 104, 0213 [kg m2]
Iz = 1

12m(b2 + h2) = 50, 3087 [kg m2]

(3.9)

and the calculated hydrodynamic added mass, assumed boxed-shaped body with
values reduced by 20% to compensate for overestimation

Xu̇ = −293 [kg]
Yv̇ = −302 [kg]
Zẇ = −326 [kg]
Kṗ = −52 [kg m2]
Mq̇ = −52 [kg m2]
Nṙ = −57 [kg m2]
Yṙ = −6 [kg m]

(3.10)

and Xẇ = Xq̇ = Yṗ = Zq̇ = Kṙ = 0.

Further, according to Fossen (2011), assuming a diagonal damping matrix
1 For a surface vessel also the wind (τwind) and wave (τwaves) forces would be included in the

τother.
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D(ν) = diag{ −Xu −Xu|u||u|,−Yv − Yv|v||v|,−Zw − Zw|w||w|,
−Kp −Kp|p||p|,−Mq −Mq|q||q|,−Nr −Nr|r||r|}

(3.11)

with the calculated values from Kirkeby (2010)

−Xu = −29 −Xu|u| |u| = −292
−Yv = −41 −Yv|v| |v| = −584
−Zw = −254 −Zw|w| |w| = −635
−Kp = −34 −Kp|p| |p| = −84
−Mq = −59 −Mq|q| |q| = −148
−Nr = −0, 2 −Nr|r| |r| = −1

(3.12)

The coriolis and centripetal matrix (C) can be parameterized in several ways, as a
function of the mass matrix. See Fossen (2011) for further details.

3.3 Configuration, dynamical behavior and limi-
tations

The ROV is rated for 700 m depth, but the current umbilical is of about 300 m
length, and this limits the operation depth and radius accordingly. That being said,
this is sufficient for the typical AUR-lab need. As there are no automatics connected
with the umbilical cable spool, one must remain vigilant to ensure the ROV is not
constrained by a too short umbilical feed. The ROV operator controls the umbilical
feeding manually, this can end in critical situation where cable could be stuck in
ROV, or degrade ROV performance.

Further the ROV is equipped with a range of sensors to provide the required mea-
surements for the operation of the ROV. These are:

• DVL (Doppler Velocity Log): Gives velocity over ground (surge, sway, and
heave) by utilizing the Doppler effect. The DVL is also equipped with an
acoustic altimeter, which measure the ROV‘s height above the seabed. An
important measurement as there may be deviations between depths in the
map and the actual depth; And even more important as the depth sensor is
of lesser quality. The aft mounting of the DVL causes a time delay in altitude
readings.

• HiPAP (High Precision Acoustic Positioning): The HiPAP are mounted on the
RV Gunnerus. A transponder mounted on the ROV gives the relative position
of the ROV to RV Gunnerus.

• IMU (Inertial Measurement Unit): Can based on a 3-axis rate gyros and
accelerometers (linear), give estimates of position and attitude (orientations)
of the ROV. The IMU are also equipped with a 3-axis magnetometer.
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• Pressure sensor: Gives the depth of the ROV based on hydrostatic pressure.
The onboard pressure sensor was of pore quality, and needed often recalibra-
tion. An additional pressure sensor of high quality has been retrofitted.

• Magnetic compass: Gives heading angle of the ROV based on the earths mag-
netic field. The measurement from the magnetic compass is of low quality,
due to soft and hard iron effects.

• Sonar (active): Gives a image of the ROV‘s surroundings, analogous with a
radar image.

The ROV control station is also set up with the software NaviPac from EIVA. The
software package is equipped with maps from CMAP and gives the position of the
ROV. The software also have capabilities for filtering of measurements (?).

The ROV is also equipped with several cameras and light fixtures, all bow mounted;
and with a hydraulic manipulator for intervention purposes. This is also bow
mounted, on starboard side. None of this equipment is accounted for in the cur-
rent Minerva model. The weight of the manipulator and camera equpiment causes
a constant roll angle on the ROV. This has been attempted compensated by the
supplier, Sperre AS, by adding extra buoyancy on the starboard side. This is at
best semi-successful. This roll angle introduces a coupling effect between heave and
sway. In the ROV model, heave is assumed uncoupled, but as the ROV is tilted in
a constant roll angle, motion in heave causes sway motion, and vice versa.

For prolonged deployments, the ROV becomes negatively buoyant. Thus a worst
case scenario where the communication with the ROV is lost due to broken umbilical,
the application do not fail to safe, to the potential cost of lost ROV. A update of
the buoyancy element of the ROV may be in order. Also worth mentioning is the
case where the ROV is operated with the manipulator extended, possibly with a
hanging load. This most certainly alter the dynamical behavior negatively. This is
not accounted for. This, according the PhD-candidate M.Candeloro associated with
the AUR-lab, makes the ROV difficult to handle.

The umbilical excite the passively stable DOF‘s of the ROV, the main contribution
is in pitch, but it also contribute in some extent to roll motion. Another concern
with the umbilical is that it is no model of the cable in the control system, thus
making it impossible to account for the cable induced drag forces beforehand. Pitch
motion is also excited by the aft thrusters; They are mounted below the CO, and
thus causing a pitch moment around CO. The thusters have a frequency limitation
of 7 Hz.

Further, worth mentioning are that there are observed a resonance effect when op-
erating the control system in DP mode. Another concern using the NaviPac, is that
it is an proprietary software, i.e. it is unknown how the signals from HiPaP and
GPS is filtered.

Lastly is the issue with the loading / unloading of the control container. One can
argue that this is more related to RV Gunnerus, but even so, it would be extremely
hard to operate the ROV without it‘s control system. The container has a water
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leakage that causes the mass of the container to increase over time. A temporary
quick fix to remedy the situation, was applied in the form of reducing the length of
the loading chain. Thus reducing the loading moment on the crane, and thereby still
having capacity for loading / unloading. The work to equip a new control container
is initiated.

An illustration of ROV Minerva‘s sensor equipment is seen in Figure (3.3).

DVL
IMU

ROV console

Joystick

switch
RV Gunnerus

NaviPAC
η

HiPaP

GPS

a,v

m,ω,ω̇t

d,ψ

d,a,ψ,rt

t

Figure 3.3: Illustration showing ROV Minerva‘s sensor equipment.
Picture courtesies: RV Gunnerus, Fredrik Skoglund; IMU, Xsens; DVL, Seatronics;
cRIO + LabVIEW logo, NI; ROV console, iN-DepthSystems; Switch, WiringProd-
ucts; PC, Puzzledworld.
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3.4 ROV Minerva simulation systems

The Minerva simulation systems represent the two first steppings stones on the way
to test software on the LabVIEW control system for ROV Minerva. The structure of
the control system can simplified be illustrated as in Figure (3.4), where the control
system is running in the computer, connected by ethernet cable to the cRIO (Com-
pact Reconfigurable Input-Output module) communicating with the ROV through
the umbilical.

Control System cRIO ROV Minerva

ethernet umbilical

Figure 3.4: Illustration of the hardware structure for the ROV Minerva control system.
Pictures with courtesy: PC, Puzzledworld; cRIO + Logo, NI; Minerva, TU.

The Minerva simulation system consist of the following simulators;

• Software simulator; MATLAB®/Simulink. (NonHIL).
• HIL simulator; LabVIEW.

where the difference in complexity is illustrated Figure 3.5 and Figure 3.6, respec-
tively. The simulation system is discussed further in the following subsections.

Figure 3.5: Illustration of the hardware structure for the software simulator of ROV
Minerva. Pictures with courtesy: PC, Puzzledworld; Logo, MATLAB®.

There is also an alternative 6DOF software simulator in Simulink made by PhD-
cadidate Daniel de Fernandes, but this is not further discussed in this report.

Currently another software simulator, in LabVIEW, are being developed as part of
the master thesis of a fellow MSc student, Martin Lauritzsen, at the Department
of Marine Technology. This is achieved by adding the option of removing the cRIO
dependency from the LabVIEW HIL simulator.

A major difference between the software simulators in Simulink and LabVIEW, is
that while LabVIEW is real time software, Simulink is not.
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Control System

Simulated ROV dynamics

ethernet

com

Figure 3.6: Illustration of the hardware structure for the HIL simulator for ROVMinerva.
Pictures with courtesy: PC, Puzzledworld; cRIO + Logo, NI; ROV sketch, Wordpress.

3.4.1 MATLAB®/Simulink software simulator

The software simulator, or non-HIL simulator, described in the following, was devel-
oped as part of the master thesis of Kirkeby (2010). It has been further developed
by MSc students and PhD-cadidates associated with the AUR-lab.

The structure of the top-level block diagram of the software simulator can be seen
in Figure (3.7),

Figure 3.7: Block diagram in SimuLink showing the top level for the software simulator
of the ROV Minerva.
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where the four main block of the model are;

• The Controller block, far left in the diagram.
• The Thrust Allocation block.
• The ROV Dynamics block, large block far right in the diagram.
• The Save Data block, red color.

The simulator is developed for discrete time, using Zero-Order-Hold (ZOH) discretiz-
ing, and the feedback variables are η and ν. In the following a short description of
the main blocks will be given.

The controller block contains a reference generator which takes way points (WP)
as a step input. The input is smoothened through a reference filter, before the
signal is fed to the LQ DP-controller. Further, the controller block takes the po-
sition/attitude (η) and velocities (ν) as feedback input from the ROV Dynamics
block.

The ROV Dynamics block computes the dynamics of the ROV accoording to
equations given by Kirkeby (2010) as

η̇ = J(η)ν , {η,ν} ∈ R6×1

ḃ = −T−1
b b+Ebw

Mν̇ +C(ν)ν +D(ν)ν + g = J(η)−1b+ τ
(3.13)

with the components as discussed in Section 3.2. The ROV dynamics block are
in great extent made of components from the MSS-toolbox. Thus, the required
block diagram libraries (*.slx) needed to run the model are included in the attached
Minerva software CD in Appendix A.

The Save Data block sends all values from the model to the MATLAB® workspace.
This is convenient if you need to access the data.

Lastly is the Thrust Allocation block which contains thrust allocation by pseu-
doinverse, modifying the commanded thrust for thrust loss factors, and converting
allocated force to rpm. This block will be modified, and added the option of the
thrust allocation algorithms to be presented in this thesis.

3.4.2 LabVIEW HIL simulator

The LabVIEW HIL simulator was based on the MATLAB®/Simulink created by
Kirkeby (2010). The migration into LabVIEW was part of the master thesis of
Tolpinrud (2012). The development of the dynamic positioning and tracking system
for the ROV Minerva was done by PhD candidates and MSc students connected with
the AUR-lab, as presented in Sørensen et al. (2012). The system is continuously
being developed further by PhD candidates and MSc students associated with the
Department of Marine Technology.

As illustrated in Figure 3.4, the control system Njord, communicates with the simu-
lated ROV through the cRIO. This is also the case for the HIL simulator, illustrated
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Chapter 3. Minerva design case

in Figure 3.6, but in this case the ROV is removed from the control loop and the
dynamics are simulated.

Hardware setup

As part of the work during this project, a new dedicated HIL-simulation station
for the ROV Minerva, was set-up at the NTNU HIL-lab at Marintek. Use NTNU
credentials, i.e. username and password to log on to the workstation.

The HIL simulator can be accessed / utilized in any of the following ways;

• Simulate at HIL-lab, room nr. 157 at Marintek (to access Marintek contact
the reception).

• Connect to the HiL-station by ”Remote access”, and run system as one would
do at the HIL-lab.

• Run control system (Njord) and Graphical User Interface (Frigg) on a windows
2 PC with LabVIEW 2012 SP1 + device drivers installed. Connect (over IP)
to the HIL project running on the PC at HIL-lab.

Table 3.2: Summarization of HIL-simulator station information.

Component Name IP adress (fixed) Network name
PC - 129.241.140.109 hil2.ivt.ntnu.no
cRIO Minerva-HILSim 129.241.140.108 hil1.ivt.ntnu.no

The cRIO has standalone capability, i.e. the control system or the HIL simulator,
can be loaded into the cRIO and run from the onboard processing unit. This feature
is currently not utilized.

HIL-simulator

The Minerva HIL simulator consists of the following three LabVIEW projects;

1. AURLab ROV Control System.lvproj.
2. Graphical User Interface for Control System.lvproj.
3. HILpro.lvproj.

An illustration of the file structure of these three projects, with their main VI‘s, are
seen in Figures 3.8 - 3.10.

To run the HIL simulator, follow these steps;

• Locate folders HIL simulator and ContrSyst in the Public Documents
folder. Copy these into your own user documents folder.

• Locate and open the three projects; Njord, Frigg and HIL Simulator.
2The LabVIEW HIL simulator can not be run from mac OS, this is due too the required tollbox

“Timeseries” is not a part of the software bundle for mac (per 2014).
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Project: AURLab ROV Control System.lvproj
- My Computer

”Folder and file structure”

Njord Control System.vi

Minerva-HILSim (129.241.140.108)

Figure 3.8: Illustrating the file structure of the LabVIEW project ”AURLab ROV Con-
trol System.lvproj”, showing the main VI, ”Njord Control System.vi” and the connection
to the cRIO named ”Minerva-HILSim”.

Project: Graphical User Interface for Control System.lvproj
- My Computer

”Folder and file structure”

Graphical User Interface - Frigg.vi

Figure 3.9: Illustrating the file structure of the LabVIEW project ”Graphical User
Interface for Control System.lvproj”, showing the main VI, ”Graphical User Interface -
Frigg.vi”.

Project: HIL pro.lvproj
- My Computer

”Folder and file structure”

HIL sim sys.vi

Figure 3.10: Illustrating the file structure of the LabVIEW project ”HILpro.lvproj”,
showing the main VI, ”HIL sim sys.vi”.

• Open main VI‘s of the respective projects and press Run. See Figures 3.11 and
3.12 for how to identify whether or not the project are in working condition.

• On the GUI, press ”Connect”;
- The Startup Panel.vi is triggered; from the ”ROV Selector” choose Minerva.

• Press ”Start Control Loop” on GUI;
- The SetOriginPanel.vi is triggered; from the ”Coordinate System” choose
UTM.

The system is now started up and ready to run. For simulation, choose between ”DP
OPERATION” or ”TRACKING” mode. The ”JOYSTICK” mode does not have a
functionality in the HIL simulator. The system running in ”DP OPERATION”
mode is seen in Figure 3.13. To stop the system press ”EXIT”, this will break the
connection and stop Njord and Frigg. The HIL simulator must be stopped manually.
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Chapter 3. Minerva design case

Figure 3.11: Screenshot of a working LW
project, before Run is pressed, indicated by
solid white arrow.

Figure 3.12: Screenshot of a working LW
project, after Run is pressed, indicated by
solid black arrow.

Figure 3.13: Screenshot of the running GUI Frigg from the HIL simulation system. The
map view in center of the GUI will show the ROV position, indicated by the solid green
symbol, along with the desired position (red ROV trace) and the measured position (blue
ROV trace).

The HIL simulator generate several log files; The most relevant log file to this project
are the ”Logfiles_pro” which organize the logged parameters into separate files for
η, ν and τ . The aditional logging of the allocated thrust, both force (f) and rpm
(n) will be required. The HIL-simulator are attached in Appendix A.
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3.5 Thruster configuration, and current thrust al-
location scheme

Thrust allocation is the task of distributing the generalized forces, to the thrusters of
the ROV, to achieve the desired change in position and orientation. In this context
the generalized forces denotes forces [N] and moments [Nm], and can be defined
according to (3.14)

τ :=
[
f

r × f

]
. (3.14)

The forces is represented by the thruster force vector, f = [ fx fy fz ]> , and the
moment arms, r = [ lx ly lz ]> , giving the location of the thrusters with respect
to CO of the ROV. The moment is obtained as the cross product of the thruster
arm vector, and the thruster force vector.

An illustration of the ROV Minerva with thruster placement, and positive force
direction of the thrusters, is given in Figure 3.14. As illustrated in the figure,
thrusters T3 and T4 are fixed at a constant azimuth angel with respect to the {b}-
frame, of -10◦ and 10◦ respectively. These angels allow thrusters T3 and T4 to produce
forces in both x- and y-direction, and is accounted for by decomposing these forces
according to fx,i = ficos(α1) and fy,i = fsisin(α1) when establishing the thruster
configuration matrix.

COF
T2p
vert F T2s

vert

T1 Flat

T3

Fport

T4

Fstb

x

y

Figure 3.14: Illustration of thruster layout, with positive force direction, for ROV Min-
erva
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For the 6 DOF case, evaluated with the thruster parameters of Minerva, (3.14) can
be expanded according to (3.15)

τx
τy
τz
τφ
τθ
τψ


=



fx
fy
fz

fzly − fylz
fxlz − fzlx
fylx − fxly


=



0 0 0.9848 0.9848
1 0 −0.1736 0.1736
0 1 0.0 0.0
−0.3 0 0.0521 0.0521

0 0 −0.2954 0.2954
0.166 0 0.3353 −0.3353




flat
fz
fport
fstb

 = Bf .

(3.15)

The thruster data utilized in the Minerva simulation and control systems, as given
by Kirkeby (2010), are given in Table 3.3 and Table 3.3. In Table 3.3 the geometric
properties of the thrusters are summarized, while the thrust related properties are
summarized in Table 3.4.

Table 3.3: Summarization of the thruster data for ROV Minerva as implemented in the
control and simulation systems.

Thruster Symbol Coordinates (x,y,z) Azimuth angle [deg]
Lateral T1 r1 = ( 0.166 , 0, 0.30) α1 = 90◦
Vertical T2p/T2s r2 = ( 0, 0, 0) -
Port T3 r3 = (-0.57 , -0.24, 0.30) α3 = -10◦
Starboard T4 r4 = (-0.57 , 0.24, 0.30) α4 = 10◦

Table 3.4: Summarization of the thrust parameters for ROV Minerva as implemented in
the MATLAB®/Simulink simulatior.

Thrusters Lateral Vertical Port Starboard
Parameters (T1) (T2p/T2s) (T3) (T4)
Max revolutions [rpm] 1450 1450 1450 1450
Bollard Pull [N] 195 195 239 239
Diameter [m] 0,19 0,22 0,22 0,22
Thrust coeff.: Kfwd

T / Kaft
T [-] 0,24 / 0,15 0,24 / 0,15 0,24 / 0,15 0,24 / 0,15

Thrus loss: θfwd / θbwd [-] 1.04 / 1.04 0.58 / 0.58 0.72 / 0.53 0.72 / 0.53

The simulation, and control systems of Minerva are commanded in thruster revolu-
tions (rpm), and thus the desired generalized force vector must be transformed to
rpm. The mapping between force and shaft speed is achived according to (3.16).

f = ρKTD
4θ|n|n [N ]

n = sign(f)
√
|f |
c

[rpm] ⇒ c := ρKTD
4θ

(3.16)

Denoting {c+, c−} as the thrust coefficient in positiv and negativ rotational di-
rection, respectively. Further, accounting for two thrusters i vertical direction by
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Chapter 3. Minerva design case

mutliplying {c+
vert, c−vert} with 2. The coefficients utilized in the mapping between

forces and rpm, in the Minerva (LabVIEW) controll system, are given in Table 3.5.

Table 3.5: Summarization of the thrust coefficients utilized in the mapping between force
and rpm, utilized in the control system of Minerva.

Thruster Symbol c+ c−

Lateral Tlat 0.943×10−4 0.943×10−4

Vertical Tvert 2·0.925×10−4 2·0.74×10−4

Port Tport 1.115×10−4 0.328×10−4

Starboard Tstb 1.115×10−4 0.328×10−4

In chapters 4 - 6, the following thrust allocation algorithms;

1. Constrained 3-step recursive nullspace-based thrust allocation,
2. Constrained optimal thrust allocation, QP formulation,
3. Constrained optimal recursive thrust allocation, recursive QP formulation

are applied to Minerva, and implemented into the MATLAB®/Simulink simulation
system. The thrust allocation algorithms is then tested in the following two steps
to show performance:

1. MATLAB® script; testing with a ”ramp-up” commanded thrust vector.
2. MATLAB®/Simulink software simulation; test cases to be defined in the fol-

lowing

The proposed testing regime can be illustrated as seen in figures 3.15 - 3.16.

τramp−up Thrust allocation plot
falloc

Figure 3.15: Illustration of script testing set-up

Reference Controller ThrAlloc ROV dynamics plot
τd τc nalloc factual

−

Figure 3.16: Illustration of MATLAB®/Simulink testing set-up

As seen from (3.15), the thruster configuration of Minerva have a one-to-one mapping
for thrust allocation in heave. I.e., no improvements can be achieved for the thruster
utilization i z-direction. Thus, the focus in this thesis will be on the in-plane forces
and moment, { X, Y, N }.

In the Minerva control and simulation system, the unconstrained pseudoinverse
method are utilized. The limitation of the control, are applied at thruster level, i.e.
the commands are cut of at ± 1450 [rpm], before the command are given to the
thrusters. The unconstrained thrust allocation clearly offers less control of the end
result, as the obtained thrust will differ from the allocated thrust. Further, the thrust
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configuration matrix utilized in the HIL-simulator/control system, seen in (3.15), are
badly scaled. Thus, the psudoinverse is found by single value decomposition (SVD).

For reference purposes, a constrained 1-step recursive nullspace-based thrust algo-
rithm was implemented. This was later removed beacuse of the implementation was
in particular unbeneficial for the heave allocation. This is due to how the recursive
nullspace-based thrust allocation algorithm are design; When a thruster saturates,
all thrusters get limited to the current level of utilization. Thus, when a in-plane
thruster saturates, the vertical thruster would also be limited to their current level.
This applies to all DOFs being allocated whitin the current step, or any subsequent
steps, of the recursive nullspace-based thrust allocation.

For that reason, a recursive 3-step nullspace-based thrust allocation algorithm are
proposed for the Minerva; Allocating heave in the 1st step, yaw in the 2nd step, and
lastly allocating surge and sway in the 3rd step. This will ensure full utilization
of the vertical thruster, whitout any loss of yaw capacity. I.e. a recursive 3-step
nullspace-based thrust allocation algorithm, prioritizing in this sequence {Z, N, XY},
are proposed and tested in the following. This prioritazion will ensure full utilization
in heave, and at the same time obtain the sought yaw prioritazion.

The proposed recursive 1-step algorithm are attached in Appendix D, for reference.
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Constrained recursive pseudoinverse-
based thrust allocation

Neglecting the coupling effect between {Roll, Pitch}, and the actuated DOF‘s
{Surge, Sway, Heave, Yaw}, the thruster configuration matrix from from (3.15)
can be simplified accoring to 4.1

B =


cos(α1) 0 cos(α3) cos(α4)
sin(α1) 0 sin(α3) sin(α4)

0 1 0 0
l1x 0

(
l3x sin(α3)− l3y cos(α3)

) (
l4x sin(α4)− l4y cos(α4)

)


=


0 0 0.9848 0.9848
1 0 −0.1736 0.1736
0 1 0.0 0.0
0.166 0 0.3353 −0.3353

 ∈ R4×4,

(4.1)
giving the basis for which the thrust allocation algorithms are to be based.

4.1 Problem formulation

Considering the control allocation problem based on the linear thrust model from
Skjetne and Kjerstad (2013);

τ = T f , f = Ku ⇒ τ = TKu = Bu, (4.2)

where f is the constrained thruster vector and T is the thruster configuration matrix
from (3.15). The diagonal gain matrixK is calculated such that the allocated thrust
vector satisfies the constraint set U, given according to

U = {u ∈ R4×1 : Au ≤ c, A ∈ R8×4, c ∈ R8×1}. (4.3)

Saturating the thruster in force, with the parameters from Table 3.4, using
n = nmax = 1.450 [rpm] in (3.16) Au ≤ c = fsat, can be given as;
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

−1 0 0 0
1 0 0 0
0 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 0 −1
0 0 0 1




ulat
uvert
uport
ustb

 ≤



−f1,min
f1,max
−f2,min
f2,max
−f3,min
f3,max
−f4,min
f4,max


[N ] (4.4)

4.2 Design of recursive nullspace-based thrust al-
location for Minerva

For reasons discussed in section 3.5; A recursive 3-step nullspace-based thrust allo-
cation algorithm are proposed. Allowing full utilization of thrust capability in heave
(Z), while at the same time achieving the sought yaw moment (N) prioritization,
over surge (X), and sway (Y) force allocation.

4.2.1 3-step recursive algorithm; { Z, N, XY }:

In the 3-step recursive nullspace-based thrust allocation algortihm { Z, N, XY },
the thrust is allocated to satisfy the following DOF‘s prioritazion;

1. Heave (Z)
2. Yaw (N)
3. Surge and Sway (XY)

where the remaining thrust capability from the previous step, are allocated to satisfy
the next step. As seen in (4.1), for the ROV Minerva Heave is uncoupled the
horizontal DOF‘s { Surge, Sway, Yaw }, and thus no Yaw capability is lost in
allocating Heave first.

Based on (3.15) and (4.1), defining τz := τZ , τψ := τN and τxy := col(τX , τY ) and
rearranging the B-matrix accordingly, such that

 τzτψ
τxy

 =

 b
>
z

b>ψ
B>xy

u3step ,


u3step ∈ R4×1

{b>z , b>ψ} ∈ R1×4

B>xy ∈ R2×4
. (4.5)

The weighting matrices {Wz, Wψ, Wxy} ∈ R4×4 required for the algorithm, are left
as tuning parameters to be defined in Section ??.

Let u3step = v1a + v1n and target the heave force,

τz = b>z (v1a + v1n). (4.6)
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Defining the weighted pseudoinverse for Z;
(
b>z
)†
wz

:= W−1
z bz

(
b>zW

−1
z bz

)−1
∈ R4×1, (4.7)

and the corresponding nullspace orthogonal projection matrix

Qz := I − (b>z )†wzb
>
z ∈ R4×4. (4.8)

Further, defining

v1a := (b>z )†τz and v1n := Qzv2a , {v1a,v1n} ∈ R4×1, (4.9)

such that
τz = b>z (v1a + v1n) = b>z (b>z )†τz + b>z Qzv2a ∈ R4×1 (4.10)

is satisfied. Obtaining the Z candidate

vz =
(
b>z
)†
wz
τz ∈ R4×1 (4.11)

Checking each component of vz if the allocated thrust are feasible;

Avz ≤ fsat. (4.12)

If vz is infeasible, the magnitude is adjusted with a gain, k1 ∈ [0,1],

κAvz = fsat

⇓

κi =


fsat,i
a>i vz

, if a>i vz 6= 0

1 , if a>i vz = 0
, i = 1, ..., 8

(4.13)

where k1 is choosen as the minimum of the set

k1 = min
i=1,..,8

{κi}. (4.14)

Obtaining the Z allocation, satisfying the constraint set, as

uz = k1vz = k1
(
b>z
)†
wz
τz ∈ R4×1. (4.15)

In the 2nd step, let v1n = v2a + v2n and target the yaw moment,

τψ = b>ψ (v1a + v1n)
= b>ψ (uz +Qz(v2a + v2n))
= b>ψuz + b>ψQz(v2a + v2n).

(4.16)

Defining the weighted pseudoinverse for N;
(
b>ψQz

)†
wψ

:= W−1
ψ Qzbψ

(
b>ψQzW

−1
ψ Qzbψ

)−1
∈ R4×1, (4.17)

Page 25



Chapter 4. Constrained recursive pseudoinverse-based thrust allocation

and the corresponding nullspace orthogonal projection matrix

Qψ := I −
(
b>ψQz

)†
wψ
b>ψQz ∈ R4×4. (4.18)

Further, defining

v2a :=
(
b>ψQz

)†
wψ
τψ and v2n := Qψv3a , {v2a,v2n} ∈ R4×1. (4.19)

such that
τψ = b>ψuz + b>ψQz

(
b>ψQz

)†
wψ
τψ + b>ψQzQψv3a (4.20)

is satisfied. Obtaining the N candidate

vψ =
(
b>ψQz

)†
wψ

(τψ − b>ψuz) ∈ R4×1. (4.21)

Checking each component of vψ if the allocated thrust are feasible;

AQzvψ ≤ (fsat −Auz). (4.22)

If vψ is infeasible, the magnitude is adjusted with a gain, k2 ∈ [0,1],

κAQzvψ = (fsat −Auz)
⇓

κi =


(fsat,i − a>i uz)
a>i Qzvψ

, if a>i vψ 6= 0

1 , if a>i vψ = 0
, i = 1, ..., 8

(4.23)

where k2 is choosen as the minimum of the set

k2 = min
i=1,..,8

{κi}. (4.24)

Obtaining the N allocation, satisfying the constraint set, as

uψ = k2vψ = k2
(
b>ψQz

)†
wψ

(τψ − b>ψuz) ∈ R4×1. (4.25)

In the 3rd and final step, let v2n = v3a and target the surge and sway forces,

τxy = B>xy(v1a + v1n)
= B>xy

(
uz +Qz(v2a + v2n)

)
= B>xyuz +B>xyQzuψ +B>xyQzψv3a ∈ R2×1.

(4.26)

Defining the weighted pseudoinverse for XY;

(
B>xyQzψ

)†
wxy

:= W−1
xy QzψBxy

(
B>xyQzψW

−1
xy QzψBxy

)−1
∈ R4×2. (4.27)
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Further, defining
v3a :=

(
B>xyQzψ

)†
wxy
τxy ∈ R4×1 (4.28)

such that
τxy = B>xyuz +B>xyQzuψ +B>xyQzψ

(
B>xyQzψ

)†
wxy
τxy (4.29)

is satisfied. Obtaining the XY candidate

vxy =
(
B>xyQzψ

)†
wxy

(
τxy −B>xy(uz +Qzuψ)

)
∈ R4×1. (4.30)

Checking each component that the allocated thrust are feasible;

AQzψvxy ≤ (fsat −Auz −AQzuψ). (4.31)

If vxy is infeasible, the magnitude is adjusted with a gain, k3 ∈ [0,1],

κAQzψvxy = (fsat −Auz −AQzuψ)
⇓

κi =


(fsat,i − a>i uz − a>i uψ)

a>i Qzψvxy
, if a>i vxy 6= 0

1 , if a>i vxy = 0
, i = 1, ..., 8

(4.32)

where k3 is choosen as the minimum of the set

k3 = min
i=1,..,8

{κi}. (4.33)

Obtaining the N allocation, satisfying the constraint set, as

uxy = k3vxy = k3
(
B>xyQzψ

)†
wxy

(
τxy −B>xy(uz +Qzuψ)

)
∈ R4×1. (4.34)

The total allocated control vector is then

u3step = uz +Qzuψ +QzQψuxy ∈ R4×1. (4.35)
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4.3 Simulation to show performance of algorithm

To show performance of the thrust allocation algorithm, the following test regime,
within the MATLAB®/Simulink software, are proposed to ensure functionality of
the algorithm;

1. Open-loop; script testing, giving a commanded ”ramp-up” thrust vector, τc, ramp−up.
2. Closed-loop; DP in set-point η =

[
10 10 50 45

]>
subject to a current veloc-

ity, vcurrent = 1.15 [knots] with a direction North (0 [deg] in the NED frame).

The same proposed test regime will be applied to the thrust allocation algorithms
to be presented in following chapters. Then, a comparative simulation case study is
carried out and presented in Chapter 7.

As there are no improvements to be gained in the heave (Z) allocation for Minerva,
the focus of the following discussions will be on the horizontal DOF‘s {X Y N}.

Further, the recursive nullspace-based thrust allocation implemented in two versions;
One recursive 3-step where the thruster weighting matrices are defined as the identity
matrix. And one recursive 3-step where the thruster weighting matrix for the 2nd
step, allocating the yaw moment, is given such that the thrusters are utilized to favor
the yaw moment. The thruster weighting matrices utilized for the 3-step recursive,
and the 3-step weighted recursive algorithm are given in (4.36).

3-step; {Wz,Wψ,Wxy} = I4×4

weighted 3-step : {Wz,Wxy} = I4×4 , Wψ 6= I4×4
(4.36)

4.3.1 MATLAB® script testing

In the 1st level of testing, the 3-step recursive nullspace-based thrust allocation
algorithm is tested with a τramp−up commanded thrust vector. This open-loop testing
enables the direct comparison of the performance of the algorithms. Thus, the
recursive 3-step algorithms are compared with the existing pseudoinverse thrust
allocation currently utilized in the Minerva simulation and control system.

Seen in Figure 4.1 are the τramp−up in red, the resulting forces from τpseudo in blue,
and the resulting forces from the recursive algorithms τ3step and τ3step,W in green
and magenta respectively. Comparing the τ3step with the τ3step,W , it is clear that
the thruster weighting matrix utilized in the yaw allocation step for Minerva are of
great importance for the overall performance of the algorithm; The recursive 3-step
algorithm, without weighting the thrusters usage in the 2nd step, achieves about
90 [Nm] yaw moment, whereas the pseudoinverse achieves 100 [Nm]. The weighted
recursive 3-step algorithm, utilizing the thrusters to favour yaw allocation, achieves
approx. 140 [Nm], close the maximum of 150 [Nm].
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In Figure 4.2, showing the thruster usage (in rpm), giving the resulting forces from
Figure 4.1; After approx. 42 seconds the recursive 3-step algorithm saturates the
starboard thruster (Tstb). As the algorithm reaches saturation, the allocation is kept
at that level. This leaves the port thruster (Tport) utilized at 1 000 [rpm], whilst
the lateral thruster Tlat is utilized at approx. 1 400 [rpm]. Seen in Figure 4.1, when
Tstb saturates at 42 seconds, the maximum yaw moment from the recursive 3-step
algorithm is reach at approx. 90 [Nm], as previously stated. At the same time, both
the surge and sway force are dropped to more or less zero force. This is expected,
as this is how the recursive algorithm is designed.

Figure 4.1: 1st level of testing; Testing the 3-step recursive nullspace-based thrust allo-
cation algorithm with a τramp−up control vector. Showing the resulting body forces and
moment.
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Figure 4.2: 1st level of testing; Testing the 3-step recursive nullspace-based thrust al-
location algorithm with a τramp−up control vector. Showing the thruster responses in
rpm.

Further, the weighted recursive 3-step algorithm, where the thruster weighting ma-
trix for the 2nd step are implemented to favor the yaw moment, have a significant
improved performance. Compared both to the recursive 3-step algorithm, and the
pseudoinverse. Further, considering the weighted recursive 3-step algorithm; Look-
ing at Figure 4.2, Tstb is allocated close to the saturation limit in negative rotational
direction after approx. 32 seconds. At the same time Tport and Tlat starts to drop.
Then, the allocation to Tstb is reduced, while Tport and Tlat are allocated further
until Tport saturates after approx. 50 seconds. The saturation of Tport gives the
maximum level of allocated surge, and sway force from the weighted recursive 3-
step algorithm; The surge force is allocated at the same level as the surge allocation
from the pseudoinverse, approx. 250 [N]. The sway force is allocated less than the
pseudoinverse, approx. 150 [N] and 110 [N] respectively. After Tport saturates, Tstb
is again allocated in negative rotational direction, until Tstb saturates after approx.
70 seconds. This is when the maximum allocated yaw moment from the weighted
recursive 3-step algorithm is reached at approx. 140 [Nm].

For the heave allocation, as expected all three algorithms allocate identically, since
there are none improvements to be gained for Minerva in heave due to the thruster
configuration.
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4.3.2 MATLAB®/Simulink software simulation

Based on the findings in subsection 4.3.1, the weighted recursive 3-step nullspace-
based thrust allocation algorithm is tested in the 2nd level of the proposed testing
regime. The MATLAB®/Simulink simulation, running the algorithm in a closed loop
system, prevents the direct comparison of the different thrust allocation algorithms
(unlike the the case for the 1st level of testing) since the allocation in time step
tn+1 is dependent on the response in time step tn. Thus, the aim of the 2nd level
of testing is to show that the the proposed thrust allocation algorithm can run the
system in closed-loop, and the performance of the algorithm will be discussed. The
errors from the algorithm will be discussed in in Chapter 7.

Conducting the 2nd level of testing, simulating DP in set-point η =
[
10 10 50 45

]>
subject to a current velocity of vcurrent = 1.15 [knots] with a northern direction
(0 [deg] in the NED frame).

Figure 4.3: 2nd level of testing; Running the MATLAB®/Simulink simulator with the
weighted recursive 3-step nullspace-based thrust allocation algorithm in closed-loop. Show-
ing the ROV position in the North-East plane.
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Figure 4.3 show the position of the Minerva in the North-East plane. Seen in the
figure; The current is to strong for the Minerva to be able to keep the commanded
position. Thus, as yaw allocation have priority over surge and sway allocation, the
ROV starts to drift while the thrust allocation algorithm utilizes the thrusters to
obtain the commanded yaw angle.

In Figure 4.4 the 6 DOF response of the Minerva are seen; The 3 translational DOF,
{1, 2, 3} in the left column. And the 3 rotational DOF, {4, 5, 6} in the right column.
As seen in the figure, the ROV are modeled with coupling effect between the un-
actuated (DOF {4, 5}), and the actuated (DOF {1, 2, 3, 6}). Important to notice are
that the un-actuated DOF are passively stable, with (small) exponential decaying
responses. Further, looking at DOF 3; It is seen that the ROV is modeled positively
buoyant. This coherent with the case for the real Minerva. As the simulation is
started, the ROV starts to rise, before the thrust allocation counteracts and keeps
the ROV at the desired depth of 50 [m]. Then, looking at the responses in DOF
{1, 2, 6}; The north and east position is moving further and further away from the
desired position, while the yaw angle converges to the desired heading of 45 [deg].
This is consistent with what is seen in Figure 4.3.

Figure 4.4: 2nd level of testing; Running the MATLAB®/Simulink simulator with the
weighted recursive 3-step nullspace-based thrust allocation algorithm in closed-loop. Show-
ing the 6 DOF response of the ROV.
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Figure 4.5: 2nd level of testing; Running the MATLAB®/Simulink simulator with the
weighted recursive 3-step nullspace-based thrust allocation algorithm in closed-loop. Show-
ing the resulting body forces and moment.

Figure 4.6: 2nd level of testing; Running the MATLAB®/Simulink simulator with the
weighted recursive 3-step nullspace-based thrust allocation algorithm in closed-loop. Show-
ing the allocated thruster revolutions.
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Figure 4.5 shows the resulting body forces and moment, from the allocated thruster
usage, seen in Figure 4.6. The commanded force vector (τc) is seen in red, while
the response from the recursive 3-step thrust allocation algorithm are seen in blue.
When the port thruster (Tport) saturates at -1450 [rpm] after approx. 2 seconds,
further allocation to surge and sway stops. This is due to the fact that yaw are
prioritized, and allocated in the step prior to the surge and sway allocation. Thus
when Tport saturates allocating the yaw moment, all thrusters capacity (according
to the recursive algorithm) are utilized, and no further surge and sway allocation
are possible.

Further, looking at the surge and sway force in Figure 4.5; When the commanded
forces are not obtained in time step tn, the command is increased further in time step
tn+1. Thus, continuously increasing the commands until the limits of the controller
are reached.

In Chapter 7, the position error ηerror = |ηdes - ηactual|, and the forces error τerror
= |τcmd - τalloc| of the recursive nullspace-based thrust allocation algorithm are
compared with the corresponding errors resulting from the pseudoinverse thrust
allocation.
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Constrained optimal thrust allo-
cation

In the constrained optimal thrust allocation problem, a standard quadratic program-
ming (QP) problem formulation is chosen. In general, the QP can be formulated
according to (5.1);

argmin
x
{ x>Hx + f>x }, (5.1)

subject to the linear equality, and inequality constraints

Ax = b ,

Cx ≤ d.
(5.2)

As there are none linear term in the thrust allocation problem, the f vector is a
zero vector, i.e. f ≡ 0. Thus, the quadratic term, x>Hx, is applied to the linear
thruster model from (4.2).

5.1 Problem formulation

Based on (5.1), the optimal thrust allocation problem is set up as a standard QP
problem where the thrust force is minimized with respect to thrust force squared.
To allow for thruster saturation, slack variables s are introduced. The equaliy
constraint in (4.2) is exended to Bu = τ + s, i.e. ensuring ∃ud|Bud = τc + s. The
cost function of the optimization problem is then given according to (5.3),

[ud, sd] = argmin
u,s

{ u>Wu + s>Qs }, (5.3)

where both W and Q are positive definite diagonal matrices. The slack variables
should not assume values unless some thruster has saturated. To achieve this, slack
variables are made much more expensive than u, by selecting Q >>W . By order
of magnitude ≥ 1 000 times. Further, the QP should satisfy the following linear
equality, and inequality constraints;

Bu = τc + s,
Cu ≤ d.

(5.4)

Choosing the problem; quadratic in the states, and choosing the weighting matrices
positive definite, i.e. {W , Q} > 0. guarantees the set to be convex, and a global
minimum that solves the problem can be found.
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5.2 Design of optimal thrust allocation for Min-
erva

Defining the new state vectors;

z := [ u> s> ]> ∈ R8×1,
p := [ τ> u>min u>max ]> ∈ R12×1,

(5.5)

transforming the optimization problem defined in (5.3), into a QP problem param-
eterized in z according to (5.6);

zd = argmin
z
{ z>Φz } (5.6)

subject to the constraints
A1 z = C1p ,

A2 z ≤ C2p ,
(5.7)

where the combined weighting matrix Φ, is given by (5.8),

Φ =
[
W4×4 04×4
04×4 Q4×4

]
∈ R8×8. (5.8)

The weighting matrices for thruster usage (W ), and for the slack variables (Q), are
chosen as diagonal matrices according to (5.9);

W = I4×4 , Q = 1 000 · I4×4. (5.9)

Further, the equality constraints matrices are given according to (5.10);

A1 =
[
B4×4 −I4×4

]
∈ R4×8,

C1 =
[
I4×4 04×4 04×4

]
∈ R4×12,

(5.10)

and lastly, the inequality constraints matrices are given according to (5.11);

A2 =
[
−I4×4 04×4
I4×4 04×4

]
∈ R8×8,

C2 =
[

04×4 −I4×4 04×4
04×4 04×4 I4×4

]
∈ R8×12.

(5.11)

The optimization problem is then solved numerically with the MATLAB® function
quadprog.m, returning the zd solving the problem defined in (5.6)-(5.7).

The MATLAB® QP solver is called with the sequence;

[z_d] = quadprog(PHI,f,A2,b2,A1,b1), (5.12)

where PHI = Φ, b1 := C1 p ∈ R4×1 and b2 := C2 p ∈ R8×1.
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5.3 Simulation to show performance of algorithm

To verify the functionality of the constrained optimal thrust allocation algorithm,
the test cases proposed in section 4.3, are performed on the algorithm. Repeted here
for readability;

1. Open-loop; script testing, giving a commanded ”ramp-up” thrust vector, τc, ramp−up.
2. Closed-loop; DP in set-point η =

[
10 10 50 45

]>
subject to a current veloc-

ity, vcurrent = 1.15 [knots] with a direction North (0 [deg] in the NED frame).

Further, for the optimal thrust allocation algorithm, DOF prioritization can be
achieved, by penalizing the slack variable corresponding to the DOF to be prioritized.
If this penalty is made much bigger (by order of magnitude ≥ 1 000 times) than
the other slack variables, this will give a strict prioritization of this DOF Thus,
two optimal thrust allocation algorithms are implemented; One optimal algorithm,
prioritize the DOFs {XYZN} equally. And one optimal weighted, prioritize the
DOF‘s according to {N, XYZ }. The slack variable weighting matrices utilized for
the optimal algorithm, and weighted optimal algorithm, are given in (6.23) as Q
and Qw respectively;

Q = 1 000 diag
( [

1 1 1 1
] )

, Qw = 1 000 diag
( [

1 1 1 1000
] )
.

(5.13)

5.3.1 MATLAB® script testing

In the 1st level of testing, the optimal thrust allocation algorithms is tested with
a τramp−up commanded thrust vector. This open-loop testing, enables the direct
comparison of the performance of the algorithms. Thus, the optimal algorithm is
compared with the existing pseudoinverse thrust allocation currently utilized in the
Minerva simulation, and control systems.

Seen in Figure 5.1 are the τramp−up in red, the resulting forces from τpseudo in blue,
and the resulting forces from the optimal algorithms τopt and τopt,W in green and
magneta respectively. τopt prioritize the DOFs {XYZN} equally, while τopt,W prior-
itize acording to {N, XYZ }, as previously stated. In Figure 5.2, the thruster usage
(in rpm), giving the resulting body forces and moment in Figure 5.1, are seen.

Comparing the optimal algorithm with the pseudoinverse, it is seen that when the
the port thruster (Tport) saturates at approx. 50 seconds, the maximum yaw moment,
and surge force from the pseudoinverse algorithm is obtain. The sway force is
allocated further, until approx. 60 seconds when the lateral thruster (Tlat) saturates.
This, leaving the starboard thruster (Tstb), utilized at approx. 1/3 of the capacity
in positiv direction. For the optimal algorithm, Tport also saturates at approx. 50
seconds. When saturating a thruster, the optimal algorithm start to allocated to
the slack variable with the lowest cost. At 50 seconds with τN < τY < τX , the least
cost for the optimal algorithm are to allocate to the slack variable corresponding to
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yaw. This causes the max obtained yaw moment from the optimal algorithm to be
achieved, at the same level as for the pseudoinverse, before declining in amplitude
to approx. 1/3 of the pseudoinverse.

When the pseudoinverse keeps Tstb at a constant revolution, the optimal algorithm
continues to ulize Tstb until is saturates at max rpm in positive direction, i.e. 1.450
[rpm]. This causes the optimal algorithm to achieve significant higher surge force,
and somewhat improved sway force than the pseudoinverse, but at the expence of
approx. 1/3 of the yaw moment.

Figure 5.1: 1st level of testing; Testing the optimal thrust allocation algorithm with a
τramp−up control vector. Showing the resulting body forces and moment.

Then, comparing the optimal, and the optimal weighted algorithms; It is seen from
Figure 5.1 and Figure 5.2 that the stauration occurs at the same time for the optimal
and optimal weighted algorithms. Where the optimal algorithm utilizes Tstb to it‘s
maximum capacity in positive rotational direction, the optimal weighted algorithm
utilized Tstb to it‘s maximum capcity in negtive rotational direction. Further, where
the optimal algorithm reaches max allocated yaw moment at approx. 50 seconds,
when Tport saturates, the optimal weigted algorithm continues to allocate yaw mo-
ment until the max obtainable yaw moment for the Minerva is reached, at 150 [nm].
At the same time, the optimal weighted algorithm allocates less to surge; The allo-
cated surge force from the optimal weighted algorithm declines until approx. 1/2 of
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what the pseudoinverse algorithm achieves. And approx. 1/4 of what the optimal
algorithm achieves. Further, the large yaw moment allocation from the weighted
optimal algorithm, comes at the expence of approx. 1/4 less sway force than the
optimal algorithm, and approx. 1/8 less than the pseudoinverse algorithm.

Figure 5.2: 1st level of testing; Testing the optimal thrust allocation algorithm with a
τramp−up control vector. Showing the thrusters rpm‘s.

The main difference in the total thruster usage by the algorithm are that the op-
timal algorithm utilizes the full potential of Tport in positive rotation, the optimal
weigted algorithm utilizes the full potential of Tport in negative rotation, whilst the
pseudoinverse algorithm only utilize Tport at about 1/3 of the capacity.

For the heave allocation, again as expected, all three algorithms allocates the heave
identically.

5.3.2 MATLAB®/Simulink software simulation

Based on the findings in subsection 5.3.1, the optimal weighted thrust allocation
algorithm is tested in the 2nd level of the proposed testing regime. As commented
subsection 4.3.2; The MATLAB®/Simulink simulation, running the algorithm in a
closed loop system, prevents the direct comparison of the different thrust allocation
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algorithms. Thus, the aim of the 2nd level of testing is to show that the the proposed
thrust allocation algorithm can run the system in closed-loop, and the performance
of the algorithm will be discussed. The errors from the algorithm will be discussed
in in Chapter 7.

Conducting the 2nd level of testing, simulating DP in set-point η =
[
10 10 50 45

]>
subject to a current velocity of vcurrent = 1.15 [knots] with a northern direction
(0 [deg] in the NED frame).

Figure 5.3: 2nd level of testing; Running the MATLAB®/Simulink simulator with the
optimal weighted thrust allocation algorithm in closed-loop. Showing the ROV position
in the North-East plane.
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Figure 5.3 show the position of the Minerva in the North-East plane. Seen in the
figure; The current is to strong for the Minerva to be able to keep the commanded
position. As opposed to the case seen in Figure 4.3, the drift off when running
the system with the weighted optimal algorithm converges to a constant deviation.
Further, as the weighted optimal algorithm prioritizes yaw over surge and sway, the
heading angle converges to the desired heading. This heading priority comes from
the large penalty put on the allocation to the slack variable corresponding to yaw.

Figure 5.4: 2nd level of testing; Running the MATLAB®/Simulink simulator with the
optimal weighted thrust allocation algorithm in closed-loop. Showing the 6 DOF response
of the ROV.

In Figure 5.4 the 6 DOF response of the Minerva are seen; The 3 translational
DOF, {1, 2, 3} in the left column. And the 3 rotational DOF, {4, 5, 6} in the right
column. As discussed in subsection 4.3.2; The exitacion of the unacatuated DOF due
to coupling effects, are passively stable with (small) exponential decaying repsonces.
Further, the positivly buoyant ROV start to rise as the simulation is started, before
the thrust allocation counteracts and keeps the ROV at the desired depth of 50 [m].
Then, looking at the responses in DOF {1, 2, 6}; The north and east position is
moving away from the desired position, before converging to a constant deviation
from the desired position, while the yaw angle converges to the desired heading of
45 [deg]. Again consistent with what is seen in the North-East plot, in Figure 5.3.
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Figure 5.5: 2nd level of testing; Running the MATLAB®/Simulink simulator with the
optimal weighted thrust allocation algorithm in closed-loop. Showing the resulting body
forces and moment.

Figure 5.6: 2nd level of testing; Running the MATLAB®/Simulink simulator with the op-
timal weighted thrust allocation algorithm in closed-loop. Showing the allocated thruster
revolutions.

Page 42



Chapter 5. Constrained optimal thrust allocation

Figure 5.5 shows the resulting body forces and moment, from the allocated thruster
usage, seen in Figure 5.6. The commanded force vector (τc) is seen in red, while the
response from the weighted optimal thrust allocation algorithm are seen in blue.

When the port thruster (Tport) saturates at -1450 [rpm] after approx. 2 seconds, fur-
ther allocation to surge and sway stops. The cost of allocating surge and sway force
have thus become more costly than allocating to the corresponding slack variables.
The slack variable corresponding to yaw, have a cost 1000 times more expensive
than those of surge and sway. Thus, ensuring the desired yaw moment are obtained.

Further, looking at the surge and sway force in Figure 5.5; When the commanded
forces are not obtained in time step tn, the command is increased further in time step
tn+1. Thus, continuously increasing the commands until the limits of the controller
are reached.

In Chapter 7, the position error ηerror = |ηdes - ηactual|, and the forces error τerror
= |τcmd - τalloc| of the weighted optimal thrust allocation algorithm are compared
with the corresponding errors resulting from the 3-step recursive nullspace-based,
and the pseuodinverse thrust allocation algorithms.
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Constrained optimal recursive thrust
allocation

Combining the constrained recursive nullspace-based thrust allocation algorithm (Chap-
ter 4), with the constrained optimal thrust allocation algorithm (Chapter 5), gives
the basis for the constrained optimal recursive thrust allocation algorithm in this
chapter.

6.1 Problem formulation

The problem formulation for the optimal recursive thrust allocation are identical
the problem formulation for the optimal thrust allocation algorithm, but restated
here for readability.

Based on (5.1), the optimal thrust allocation problem is set up as a standard QP
problem where the thrust force is minimized with respect to thrust force squared.
Further, including slack variables in order to ensure the existens of a solution to the
problem, i.e. ∃ud|Bud = τc + s, i.e.

[ud, sd] = argmin
u,s

{ u>Wu + s>Qs }, (6.1)

satisfying the following linear equality, and inequality constraints;

Bu = τc + s,
Cu ≤ d.

(6.2)

6.2 Design of optimal recursive thrust allocation
for Minerva

Defining τzψ := col(τZ , τN) and τxy := col(τX , τY ), rearranging the B-matrix from
(4.1) accordingly, such that

[
τzψ
τxy

]
=
[
B>zψ
B>xy

]
uopt.rec. ,


uopt.rec. ∈ R4×1

B>zψ ∈ R2×4

B>xy ∈ R2×4
. (6.3)

Let uopt.rec. = v1a + v1n and target the heave force and yaw moment,

τzψ = B>zψ(v1a + v1n) ∈ R2×1, (6.4)
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where v1a is the control vector to be allocated in the current step, and v1n is an
auxiliary control for the next step. v1n is defined in the kernel of B>zψ using the
nullspace matrix, Qzψ := I − (B>zψ)†B>zψ ∈ R4×4, i.e.

v1n ∈ N (B>zψ) ⇒ v1n := Qzψv2 (6.5)

such that
τzψ = B>zψ(v1a + v1n) = B>zψv1a +B>zψQzψv2 ∈ R2×1 (6.6)

is satisfied. Further, defining the new state vectors;

zzψ := [ u>1a s>zψ ]> ∈ R6×1,
pzψ := [ τ>zψ u>min u>max ]> ∈ R10×1,

(6.7)

transforming the 1st step of the optimization problem, defined in (6.1), into a QP
problem parameterized in zzψ according to (6.8);

zzψ,d = argmin
zzψ

{ z>zψΦ1zzψ } (6.8)

subject to the constraints
A11 zzψ = C11pzψ ,

A12 zzψ ≤ C12pzψ ,
(6.9)

where the combined weighting matrix Φ1 for ZN, is given by (6.10),

Φ1 =
[
W4×4 04×2
02×4 Qzψ

]
=
[
I4×4 04×2
02×4 Qzψ

]
∈ R6×6. (6.10)

Further, the equality constraints matrices are given according to (6.11);

A11 =
[
B>zψ −I2×4

]
∈ R2×6,

C11 =
[
I2×2 02×4 02×4

]
∈ R2×10,

(6.11)

and lastly, the inequality constraints matrices are given according to (6.12);

A12 =
[
−I4×4 04×2
I4×4 04×2

]
∈ R8×6,

C12 =
[

04×2 −I4×4 04×4
04×2 04×4 I4×4

]
∈ R8×10.

(6.12)

The 1st step of the optimization problem is then solved numerically with the MATLAB®

function quadprog.m, returning the zzψ,d solving the problem defined in (6.8)-(6.9).

The MATLAB® QP solver is called with the sequence

[z_d1] = quadprog(PHI1,f,A12,b12,A11,b11), (6.13)

where PHI1 = Φ1, b11 := C11 pzψ ∈ R2×1 and b12 := C12 pzψ ∈ R8×1.
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In the 2nd step, let v1n = v2 and target the surge and sway forces such that

τxy = B>xy(v1a + v1n) = B>xyuzψ +B>xyv2 ∈ R2×1 (6.14)

is satisfied. Further, defining the new state vectors;

zxy := [ u>2a s>zψ ]> ∈ R4×1,
pxy := [ (τxy −B>xyuzψ)> (umin − uzψ)> (umax − uzψ)> ]> (6.15)

transforming the 2nd step of the optimiztion problem defined in (6.1), into a QP
problem parameterized in zxy.

zxy,d = argmin
zxy

{ z>xyΦ2zxy } (6.16)

subject to the constraints
A21 zxy = C21pxy ,

A22 zxy ≤ C22pxy ,
(6.17)

where the combined weighting matrix Φ2 for XY, is given by (6.18),

Φ2 =
[
W4×4 04×2
02×4 Qxy

]
=
[
I4×4 04×2
02×4 Qxy

]
∈ R6×6. (6.18)

Further, the equality constraints matrices are given according to (6.19)

A21 =
[

(B>xyQzψ) −I2×4
]

∈ R2×6,

C21 =
[
I2×2 02×4 02×4

]
∈ R2×10,

(6.19)

and lastly, the inequality constraints matrices are given according to (6.20)

A22 =
[
−I4×4 04×2
I4×4 04×2

]
∈ R8×6,

C22 =
[

04×2 −I4×4 04×4
04×2 04×4 I4×4

]
∈ R8×10.

(6.20)

The 2nd step of the optimization problem is then solved numerically with the MATLAB®

function quadprog.m, returning the zxy,d solving the problem defined in (6.16)-
(6.17).

The MATLAB® QP solver is called with the sequence

[z_d2] = quadprog(PHI2,f,A22,b22,A21,b21), (6.21)

where PHI2 = Φ2, b21 := C21 pxy ∈ R2×1 and b22 := C22 pxy ∈ R8×1.

The total constrained optimal recursive allocated control vector is then

uopt.rec. = uzψ +Qzψuxy ∈ R4×1. (6.22)
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6.3 Simulation to show performance of algorithm

To verify the functionality of the constrained optimal recursive thrust allocation
algorithm, the test cases proposed in section 4.3, are performed on the algorithm.
Repeted here for readability;

1. Open-loop; script testing, giving a commanded ”ramp-up” thrust vector, τc, ramp−up.
2. Closed-loop; DP in set-point η =

[
10 10 50 45

]>
subject to a current veloc-

ity, vcurrent = 1.15 [knots] with a direction North (0 [deg] in the NED frame).

For the optimal recursive algorithm, the cost of utilizing the slack variables are equal
for all DOF; Thus, the yaw (and heave) priority are obtained by allocating them in
the 1st step, having full thruster capacity available. Then, in the 2nd step surge and
sway are allocated with the remaining thruster capacity from the 1st step. This is
unlike the yaw priority obtained from the weighted optimal algorithm; The entire
thrust allocation are solved whitin one step. And the yaw priority are achieved by
penalizing allocation to the slack variable corresponding to yaw.

The slack weighting matrices utilized in the 1st and 2nd step of the algorithm, {Qzψ,
Qxy} respectively, are given in (6.23).

Qzψ = Qxy =
[

1000 0
0 1000

]
(6.23)

6.3.1 MATLAB® script testing

In the 1st level of testing, the optimal recursive thrust allocation algorithms is tested
with a τramp−up commanded thrust vector. This open-loop testing, enables the
direct comparison of the performance of the algorithms. Thus, the optimal recursive
algorithm is compared with the existing pseudoinverse thrust allocation currently
utilized in the Minerva simulation, and control systems.

Seen in Figure 6.1 are the τramp−up in red, the resulting forces from τpseudo in blue,
and the resulting forces from the optimal recursive algorithm τopt−rec in green. The
optimal recursive algorithm prioritize the DOFs according to {ZN, XY} as previously
stated. In Figure 5.2, the thruster usage (in rpm), giving the resulting body forces
and moment in Figure 5.1, are seen.

Comparing the optimal recursive algorithm with the pseudoinverse, it is seen that
when the port thruster (Tport) saturates at approx. 50 seconds, the maximum yaw
moment, and surge force, from the pseudoinverse algorithm is obtained. Sway force
is allocated further, untill the lateral thruster (Tlat) saturates at approx. 60 seconds.
After the 2nd thruster saturates, the pseudoinverse is unable to allocate further,
leaving the starboard thruster utilized in approx. 1/3 of the capacity, with positive
rotation.

The optimal recursive algorithm, prioritizing heave and yaw, achieves full yaw allo-
cation (for Minerva) after approx. 70 seconds. Seen in Figure 6.2, when Tport starts
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to reach it‘s saturation limit, after approx. 30 seconds, the allocation to Tport is
kept at approx. 1 200 [rpm]. At the same time, the allocation to Tstb is changed
from positive to negative rotation, and allocated until Tstb saturates at approx. 70
seconds. When Tlat saturates after approx. 60 seconds, Tport is allocated further
until Tport also saturates after approx. 70 seconds.

Figure 6.1: 1st level of testing; Testing the optimal recursive thrust allocation algorithm
with a τc ramp-up control vector. Showing the resulting body forces and moment.

Seen in Figure 6.1 at approx. 30 seconds, when Tport is keept at approx. 1 200 [rpm],
and Tstb changes rotation direction, the optimal recursive algorithm reaches more or
less the limit for surge force allocation. This, at a level of about 1/2 of what the
pseudoinverse achieves. Further, at approx. 60 seconds when Tport and Tstb is close to
saturating, in positive and negative rotational direction respectively, the sway force
reaches the allocation limit. At a level slightly less than the pseudoinverse. Overall,
the optimal recursive algorithm achieves a greater yaw moment of about 50 [Nm]
more than the pseudoinverse algorithm. Allocating the maximum achievable yaw
moment of Minerva, 150 [Nm]. This comes at the expence of a significantly less surge
force allocation, about half of the approx. 280 [N] achieved by the pseudoinverse
algorithm. Further, the optimal recursive algorithm achieve a slightly less sway force
allocation. The main difference in total thruster usage, is that the optimal recursive
algorithm utilizes the full potential of Tport, whilst the pseudoinverse algorithm only

Page 49



Chapter 6. Constrained optimal recursive thrust allocation

utilize Tport at about 1/3 of the capacity.

Further, as seen in Figure 6.2; In the interval 60-70 second the Tlat have some
unexplained drops in thruster usages. This manifests iself in the sway allocation,
seen in Figure 6.1.

Figure 6.2: 1st level of testing; Testing the optimal recursive thrust allocation algorithm
with a τc ramp-up control vector. Showing the thrusters rpm‘s.

For the heave allocation, again as expected, both algorithms allocates the heave
identically.
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6.3.2 MATLAB®/Simulink software simulation

In this subsection the optimal recursive thrust allocation algorithm is tested in
the 2nd level of the proposed testing regime. As commented subsection 4.3.2; The
MATLAB®/Simulink simulation, running the algorithm in a closed loop system,
prevents the direct comparison of the different thrust allocation algorithms. Thus,
the aim of the 2nd level of testing is to show that the the proposed thrust allocation
algorithm can run the system in closed-loop, and the performance of the algorithm
will be discussed. The errors from the algorithm will be discussed in in Chapter 7.

Conducting the 2nd level of testing, simulating DP in set-point η =
[
10 10 50 45

]>
subject to a current velocity of vcurrent = 1.15 [knots] with a northern direction
(0 [deg] in the NED frame).

Figure 6.3: 2nd level of testing; Running the MATLAB®/Simulink simulator with the
optimal recursive thrust allocation algorithm in closed-loop. Showing the ROV position
in the North-East plane.

Figure 6.3 show the position of the Minrva in the North-East plane. Seen in the
figure; The current is to strong for the Minerva to be able to keep the commanded
position. Thus, as yaw allocation have priority over surge and sway allocation, the
ROV starts to drift while the thrust allocation algorithm utilizes the thrusters to
obtain the commanded yaw angle. This is similar the obtained results from the
3-step recursive nullspace-based algorithm.

In Figure 6.4 the 6 DOF response of the Minerva are seen; The 3 translational DOF,
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{1, 2, 3} in the left column. And the 3 rotational DOF, {4, 5, 6} in the right column.
Again as discussed in subsection 4.3.2; The exitacion of the unacatuated DOF due
to coupling effects, are passively stable with (small) exponential decaying repsonces.
Further, the positivly buoyant ROV start to rise as the simulation is started, before
the thrust allocation counteracts and keeps the ROV at the desired depth of 50
[m]. Then, looking at the responses in DOF {1, 2, 6}; The north and east position
is moving further and further away from the desired position, while the yaw angle
converges to the desired heading of 45 [deg]. This is consistent with what is seen in
Figure 4.3.

Figure 6.4: 2nd level of testing; Running the MATLAB®/Simulink simulator with the
optimal recursive thrust allocation algorithm in closed-loop. Showing the 6 DOF response
of the ROV.

Figure 6.5 shows the resulting body forces and moment, from the allocated thruster
usage, seen in Figure 6.6. The commanded force vector (τc) is seen in red, while the
response from the optimal recursive thrust allocation algorithm are seen in blue.

After approx. 2 seconds the lateral thruster (Tlat), and the port thruster (Tport)
seems to reach saturation, at approx +1300 [rpm] and -1300 [rpm] respectively.
This, corresponding to approx. a 10% loss of maximum thrust capacity. When this
happens, further allocation to surge and sway stops.
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Figure 6.5: 2nd level of testing; Running the MATLAB®/Simulink simulator with the
optimal recursive thrust allocation algorithm in closed-loop. Showing the resulting body
forces and moment.

Figure 6.6: 2nd level of testing; Running the MATLAB®/Simulink simulator with the op-
timal recursive thrust allocation algorithm in closed-loop. Showing the allocated thruster
revolutions.
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Open-loop test of the constrained optimal recursive thrust allocation algorithm (seen
in figures 6.1 - 6.2) shows that the proposed optimal recursive algorithm are able
to fully utilize the thrusters, i.e. allocating the thrusters until saturation level of
± 1450 [rpm]. The open-loop test did however display some strange behaviour,
with some ”thruster drop” for the lateral thruster, in the interval 60-70 seconds, as
previously commented.

The recursive algorithm is suboptimal, since the second step of the algorithm search
a space that is limited by the first step. In the first step a solution is found, and this
solution determines the set over which the second step can find its solution. Since
the first step does not include all possible solutions, and then let the second step
optimize over all solutions, the algorithm becomes suboptimal. In contrast does the
weighted optimal algorithm find a global minima since it searches the entire space.
However, what solution is found depend on the tuning of the cost function.

Further, what appear to be consived as the reduced thruster limits of approx. ±
1300 [rpm], are indeed significant part of the reason the optimal recursive algorithm
are unable to reach and maintain a constant devoation from the set-point, as the
weighted optimal algorithm did. Looking at Figure 6.5; When the commanded forces
in surge and sway are not obtained in time step tn, the command is increased further
in time step tn+1. Thus, continuously increasing the commands until the limits of
the controller are reached.

In Chapter 7, the position error ηerror = |ηdes - ηactual|, and the forces error τerror
= |τcmd - τalloc| of the weighted optimal thrust allocation algorithm are compared
with the corresponding errors resulting from the 3-step recursive nullspace-based,
and the pseudoinverse thrust allocation algorithms.
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Simulation case study
In this chapter a simulation case study is carried out in the MATLAB®/Simulink
software. The aim of the case study is to compare the performance of the thrust
allocation algorithms;

• 3-step weighted recursive nullspace-based thrust allocation algorithm,
• Weighted optimal thrust allocation algorithm,
• Optimal recursive thrust allocation algorithm,

presented in chapters 4 - 6, respectively. The performance of these algorithms are
compared with the pseudoinverse thrust allocation currently utilized in the Minerva
control and simulation systems.

7.1 Comparison of thrust allocation algorithms

7.1.1 MATLAB® script testing

First, the thrust allocation algorithms are compared in open-loop, comanding the
algorithms with a τramp−up. As previously described, the open-loop testing alllow for
direct comparison of the allocated thrust. The aim of the open-loop comparison is
to give an overview of the overall performance of the proposed algorithms, compared
with the pseudoinverse thrust allocation.

Figure 7.1 shows the resulting body forces and moment, from the allocated thruster
usage, seen in Figure 7.2. As seen in Figure 7.1; All three proposed thrust allocation
algorithm achieve (or very close to) the maximum yaw moment of 150 [Nm]. The
two recursive algorithms achieves this by allocating yaw in the step prior to surge
and sway allocation, while the weighted optimal algorithm achievs the yaw priority
by penalizing allocation to the slack variable corresponding to yaw. Compared with
the pseudoinverse thrust allocation, the three proposed algorithms achieves greater
allocated yaw moment, but at the expence of reduced surge force, and somewhat
reduces sway force. Looking at the heave allocation, all algorithms achieve the same
heave force, as they should due to the thruster configuration of Minerva where heave
is decoupled. Considering the thruster usage of the algorithms, seen in Figure 7.2;
Based on the overall thruster usage, the utilization of the starboard thruster (Tstb),
seems to differentiate the thrust allocation algorithms. The pseudoinverse thrust
allocation utilizes (Tstb) at approx. 1/3 of the capacity in positive rotational direc-
tion, the three propsed thrust allocation algorithms utilizes the starboard thruster
(Tstb) to its maximum capacity in negative rotational direction.
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Figure 7.1: Case study, comparing the proposed thrust allocation algorithms with the
pseudoinverse; Open-loop testing with a τramp−up. Showing the resulting body forces and
moment.

Figure 7.2: Case study, comparing the proposed thrust allocation algorithms with the
pseudoinverse; Open-loop testing with a τramp−up. Showing the allocated thruster revolu-
tion.
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7.1.2 MATLAB®/Simulink software simulation

In the following, the closed-loop performance of the three presented thrust alloca-
tion algorithms, are compared with the performance of the pseudoinverse thrust
allocation. The following two cases are simulated;

• Case 1: DP in set-point η =
[
10 10 50 45

]>
subject to a current velocity,

vcurrent = 1.15 [knots] with a direction North (0 [deg] in the NED frame).

• Case 2: Change in pose from η0 =
[
10 10 50 20

]>
to η1 =

[
10 10 50 65

]>
subject to a current velocity, vcurrent = 1.05 [knots] with a direction East (90
[deg] in the NED frame).

As previously discussed, there are no improvements to be gained in the heave allo-
cation for Minerva. Thus, no focus are put on the discussion of heave actuation, nor
the corresponding errors related to heave actuation in the following discussions.

Close-loop simulation; Case1. DP in set-point η0.

Case 1 is identical with the 2nd level of testing for the individual algorithm testing,
and thus only the following errors are discussed for this case;

• Position error: ηerror = |ηdes - ηactual|,
• Force error: τerror = |τcmd - τalloc|.

The system responses from the simulation, running the system with the pseudoin-
verse thrust allocation, are attached in Appendix B, for reference. The following
plots are seen in figures B.1 - B.4, respectivly;

• North-East plot.
• 6 DOF responses.
• resulting body forces and moment.
• Allocated thruster rpm.

In Figure 7.3, the instantaneous error, τerror = |τcmd - τalloc| are seen. Important to
notice in the 3rd subplot; The yaw error from pseudoinverse allocation are plotted
against the left y-axis, where yleft ∈ [0, 30]. The yaw errors from the {3-step
recursive, weighted optimal, optimal recursive} algorithms are plotted against the
right y-axis, where yright ∈ [0, 0.3]. I.e. there is a magnitude difference of 100
times between the yaw error from the pseudoinverse allocation, and the yaw errors
from {3-step recursive, weighted optimal, optimal recursive} allocations. The unit
of both axis are moment [Nm]. Both the recursive algorithms, {3-step recursive,
optimal recursive}, have a yaw error of approx. 0 [Nm], while the weighted optimal
have a yaw error of approx. 0.2 [Nm]. The yaw errors of the algorithms {3-step
recursive, weighted optimal, optimal recursive}, are all neglectable compared with
the yaw error from the pseudoinverse, of approx. 28 [Nm].

The surge and sway error, in the 1st and 2nd subplot respectivly, are both plotted
against a common left y-axis, with unit force [N]. Looking at the sway error in the 2nd
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subplot; The recursive algorithms {3-step recursive, optimal recursive} both have a
significantly larger sway error than the error from the pseudoinverse. The sway error
from the weighted optimal are also larger than the error from the pseudoinverse, but
less than half the errors of the recursive algorithms. Where the sway error from the
pseudoinverse have a magnitude of approx. 20 [N], the weighted optimal have a error
magnitude of approx. 35 [N], and the recursive algorithms have a error magnitude
of approx.100 [N].

Further, looking at the surge error in the 1st subplot; The surge errors from the pseu-
doinverse, and the weighted optimal algorithms are of same magnitude of approx.
80 [N]. Both recursive algorithms have a surge error of greater magnitude, approx.
100 [N] for the recursive 3-step, and approx. 135 [N] for the optimal recursive.

Figure 7.3: Case study, comparing the proposed thrust allocation algorithms with the
pseudoinverse; Case 1, DP in set-point. Comparing the instantaneous forces errors, τerror.

In Figure 7.4 the cumulative position error (ηerror) are seen. The 1st subplot show
the xy-position error, measured in meter [m], while the 2nd subplot shows the error
in heading, measured in degrees [deg]. Clearly the heading error are the focus in the
thesis, but a measure of the overall performance of the algorithms are of interest,
thus including a xy-position error plot.

Looking at the 2nd subplot; The cumulative heading error of the pseoduinverse al-
location are approx. 10 degreesa after about 60 seconds: While the cumulative
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heading errors from the algorithms {3-step recursive, weighted optimal, optimal re-
cursive} are approx. 2 degrees, i.e. the proposed algorithms have a yaw error of 1/5
of the pseudoinverse yaw error. Then, looking at the 1st subplot; The xy-position
error between the proposed algorithms {3-step recursive, weighted optimal, opti-
mal recursive} differs considerably. All larger than the xy-position error from the
pseudoinverse, which are approx. 2 meters after about 60 seconds. The recursive
algorithms {3-step recursive, optimal recursive} have a xy-position error of 10 me-
ter, and 20 meters, respectivly. While the weighted optimal xy-position error are
approx. 3 meters. Thus, the xy-position error of the weighted optimal algorithm
are slightly larger the error from the pseudoinverse, while the recursive algorithms
{3-step recursive, optimal recursive} have an xy-position error that is 5 times, and
of 10 times larger, respectivly.

Figure 7.4: Case study, comparing the proposed thrust allocation algorithms with the
pseudoinverse; Case 1, DP in set-point. Comparing cumulative position errors, ηerror.
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Close-loop simulation; Case 2. Change of pose from η0 to η1.

In the following, the 2nd simulation case of the simulation case study is presented.
The simulation case is repeated here for readability;

• Case 2: Change in pose from η0 =
[
10 10 50 20

]>
to η1 =

[
10 10 50 65

]>
subject to a current velocity, vcurrent = 1.05 [knots] with a direction East (90
[deg] in the NED frame).

As previously discussed, the closed-loops system responses can not be compared
directly. Thus, the focus of the following discussions will once again be on the
follwoing errors;

• Position error: ηerror = |ηdes - ηactual|,
• Force error: τerror = |τcmd - τalloc|.

Before the errors are presented and discussed, the resulting body forces, and mo-
ment from the system, running simulation case 2 are presented shortly for better
understanding of the error discussions. The resulting body forces, and moment cor-
responding to the proposed thrust allocation algorithms, {3-step recursive, weighted
optimal, optimal recursive}, along with the resulting body forces,and moment from
the pseudoinverse thrust allocation, are seen in figures 7.5 - 7.8, respectivly.

Further, the following plots generated based on the simulations;

• North-East plot,
• 6 DOF responses,
• resulting body forces and moment,
• Allocated thruster rpm.

These are attached in Appendix C, for reference. Seen in figures C.1 - C.20;

Looking at Figure 7.5, it is seen that the resulting body forces and moment are not
met, running the system with the pseudoinverse thrust allocation. Then, looking
at figures 7.6 - 7.8, corresponding to thrust allocation algorithms {3-step recursive,
weighted optimal, optimal recursive} respectively; All the proposed thrust alloca-
tion algorithms achieve the sought yaw prioritization, but are not able to achieve
the desired forces in surge and sway. This corresponds with what was seen in sim-
ulation case 1. Further, all algorithms achieve the desired heave allocation, as they
should. As mentioned before the heave force is decoupled. The allocation is heave
will therefore not differ between the algorithms, and the heave allocation is therefore
not part of the remainder of the discussion. An important difference from simulation
case 1, is seen in Figure 7.8, showing the resulting body forces and moment from
the proposed optimal recursive thrust allocation algorithm. Although the sought
yaw priority is obtained, the overall system performance of the thrust allocation
algorithm are seen to be unacceptable. Simulating case 2 with reduced current ve-
locity, the optimal recursive algorithm shows improved behaviour. These responses
are seen in figures C.17 - C.20 in Appendix C.
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Figure 7.5: Case study; Case 2, change of pose. Showing the resulting body forces and
moment, running the system with the pseudoinverse thrust allocation.

Figure 7.6: Case study; Case 2, change of pose. Showing the resulting body forces and
moment, running the system with the 3-step recursive thrust allocation.
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Figure 7.7: Case study; Case 2, change of pose. Showing the resulting body forces and
moment, running the system with the weighted optimal thrust allocation.

Figure 7.8: Case study; Case 2, change of pose. Showing the resulting body forces and
moment, running the system with the optimal recursive thrust allocation.
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As the implementation of the recursive optimal algorithm is faulty, the algorithm
are discarded from the following discussions.

Figure 7.9: Case study, comparing the proposed thrust allocation algorithms with the
pseudoinverse; Case 2, change of pose. Comparing the instantaneous forces errors, τerror.

In Figure 7.9, the instantaneous error, τerror = |τcmd - τalloc| is seen. It is important
to notice that in the 3rd subplot, the yaw error from the pseudoinverse allocation are
plotted against the left y-axis, where yleft ∈ [0, 30]. The yaw errors from the 3-step
recursive, and the weighted optimal algorithms are plotted against the right y-axis,
where yright ∈ [0, 0.003]. I.e. there is a magnitude difference of 104 between the yaw
error from the pseudoinverse allocation, and the yaw errors from 3-step recursive,
and weighted optimal recursive allocations. The unit of both axis are moment [Nm].
The 3-step recursive recursive algorithms have a yaw error of approx. 0 [Nm], while
the weighted optimal have a yaw error of approx. 0.002 [Nm]. The yaw errors of
the algorithms {3-step recursive, weighted optimal}, are both neglectable compared
with the yaw error from the pseudoinverse, of approx. 28 [Nm].

The surge and sway error, in the 1st and 2nd subplot respectivly, are both plotted
against a common left y-axis, with unit force [N]. Looking at the sway error in the
2nd subplot; The sway errors of the proposed thrust allocation algorithms produce
larger sway error, than the error from the pseudoinverse allocation. The error from
the algorithms {3-step recursive, weighted optimal} are of approx. magnitude .60
[N], and 40 [N], respectivly. Compared with the sway error from the pseudoinverse,
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of approx. 18 [N], the error from the algorithms {3-step recursive, weighted optimal}
are aprox 3 times, and 2 times higher, respectivly. Noteworthy is that the yaw error
from the weighted optimal converges to the end value after approx. 20 second, while
the yaw error from the pseudoinverse builds up over the whole period.

Further, looking at the surge error in the 1st subplot; All three algorithm end up
with a surge error of approx. 80 [N]. The algorithms {3-step recursive, weighted
optimal} converges to this value after approx. 20 seconds, while the error from the
pseudoinverse builds up, and reaches this value after approx. 50 seconds.

In Figure 7.10 the cumulative position error (ηerror) are seen. The 1st subplot show
the xy-position error, measured in meter [m], while the 2nd subplot shows the error
in heading, measured in degrees [deg]. Again the heading error are the focus in the
thesis, but a measure of the overall performance of the algorithms are of interest,
thus including a xy-position error plot.

Figure 7.10: Case study, comparing the proposed thrust allocation algorithms with the
pseudoinverse; Case 2, change of pose. Comparing cumulative position errors, ηerror.

Looking at the 2nd subplot; The cumulative heading error of the pseoduinverse
allocation are approx. 11 degrees after about 60 seconds: While the cumulative
heading errors from the algorithms {3-step recursive, weighted optimal} are approx.
3 degrees, i.e. the proposed algorithms have a yaw error of approx. 1/4 of the
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pseudoinverse yaw error.

Then, looking at the 1st subplot; The xy-position error between the proposed algo-
rithms {3-step recursive, weighted optimal} are of approx. same magnitude, where
the error from the 3-step recursive algorithm are slightly larger than the error from
the weighted optimal algorithm. Both larger than the xy-position error of the pseu-
doinverse. Where the magnitude of the xy-position error from the algorithms {3-step
recursive, weighted optimal} are approx. 2.75 [m], the xy-position error from the
pseudoinverse a approx. 1.75 [m]. Thus, the xy-position errors from the algorithms
{3-step recursive, weighted optimal} are close to 60 % larger than the error from
the pseudoinverse.

7.2 Discussion

In the open-loop test, all three proposed thrust allocation algorithms {3-step re-
cursive, weighted optimal, optimal recursive} displayed similar behaviour, achieving
the desired yaw priority. The pseudoinverse allocation reach a yaw moment of 100
[Nm], 2/3 of max. achievable yaw moment for Minerva of 150 [Nm]. The three pro-
posed thrust allocation algorithms all reached, or very close to, the full yaw moment
of 150 [Nm]. The 3-step recursive obtained lightly less than max. yaw moment
than the {weighted optimal, optimal recursive} algorithms. Then, looking at the
surge force allocation; All the proposed thrust allocation algorithm reach approx.
the same final surge force level, of approx. 145 [N]. The pseudoinverse reach a surge
force level of approx. 265 [N]. I.e. approx. 45 % less surge force was achieved by the
proposed algorithms, compared with the pseudoinverse. Further, it is worth men-
tioning that while the recursive optimal algorithm peaked at the surge force level of
approx. 145 [N], the {3-step recursive, weighted optimal} algorithms peaked at the
same surge force level as the pseudoinverse, at approx. 265 [N], before declining in
magnitude to the same surge force level of approx. 145 [N] at the optimal recursive
algorithm. Then, looking at the obtained sway force; The difference between the
proposed thrust allocation algorithms {3-step recursive, weighted optimal, optimal
recursive}, and the pseudoinverse was much less than what was seen for the yaw
moment, and for the surge force. The sway force from the pseudoinverse peaked at
approx. 160 [N], and the 3-step recursive algorithm at 112 [N], and the {weighted op-
timal, optimal recursive} algorithms at 130 [N]. Important to notice for the optimal
recursive algorithm was the somewhat strange ”drop-outs” of the lateral thruster
utilization, resulting in ”drop-outs” in the obtained sway force. This phenomenon
occured whitin the time interval 65-75 seconds.

Then, testing the proposed thrust allocation algorithms {3-step recursive, weighted
optimal, optimal recursive} in closed-loop, comparing with the closed-loop perfor-
mance of the pseudoinverse thrust allocation. The closed-loop testing differs from
the open-loop test because the command in time step tn+1, is dependent on the
response of the system in time step tn. Thus, the performance of the algorithms
can not be compared directly, and this is why the following discussions focus on the
errors τerror, and ηerror. The τerror was choosen to be presented as the instantaneous
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error, while the ηerror was choosen to be presented as the cumulative error. This
choise was made because this was found to be the best way to present, and discuss
the errors. Further, the closed-loop simulations shows that the sooner a thruster
saturated (and stays saturated), the larger the error τerror will become. This is due
to when the command τ nc is not achieved by the algorithms, the command in the
following step τ n+1

c , will be increased in order to achieve τd. This continues until
τmaxc of the controllers is reached.

Summarizing the findings from the two simulation cases; Case 1, DP in set-point,
and case 2, change of pose. First, evaluating the performance of the proposed
optimal recursive thrust allocation algorithm. In simulation case 1 the performance
of the optimal recursive algorithm appeared to be acceptable. The desired yaw
priority was obtained, with a yaw error of less than 1/100 compared with the yaw
error from the pseudoinverse. For the surge, and sway force the optimal recursive
algorithm performed poorer than the pseudoinverse, with an error of approx. 2
times, and 5 times the magnitude, respectivly. This is clearly related to what appears
to concieved as the reduced saturation limit of ± 1300 [rpm] (seen in Figure 6.6) in
the 2nd step of the optimal recursive algorithm. I.e. 10 % reduction of max. capacity
of the thrusters. In the open-loop test, the optimal recursive algorithm reached the
± 1450 [rpm] saturation limits. Simulating case 2, the performance of the optimal
recursive algorithm was even worse. Again the yaw priority was achieved, with
a error of less than 10−4 than the yaw error from the pseudoinverse. In the 2nd
step, the optimal recursive algorithm utilizes the thrusters such that the rotational
direction of the thrusters are constantly changed back and forth. Causing instability
in the otherwise stable system, seen in figures C.14 - C.16. This is clearly increasing
wear and tear of the thruster, and thereby reducing their life time. Further, this
utilization produces inferior thrust allocation performance, than the pseudionverse
algorithm, as well as the other two propoced algorithms. The obvious conclusion
from this, is that the proposed optimal recursive thrust allocation for Minerva, is
infeasible.

Then, summarizing the findings on the {3-step recursive, weighted optimal} thrust
allocation algorithms. Looking first at the τerror. The yaw error from the proposed
thrust allocation algorithms are significantly less than the corresponding yaw error
from the pseudoinverse, 1/100 for case 1, and 10−4 for case 2. The error from the
weighted optimal algorithm are slightly larger than the error from the 3-step recur-
sive, but both at neglectable compared with the yaw error from the pseudoinverse.
The yaw error from the weighted optimal thrust allocation algorithm, can be re-
duced further, by increasing the cost of the corresponding slack variable. This will
come at the expence of achieved surge, and sway force.

Further, looking at the sway errors, both the algorithms {3-step recursive, weighted
optimal} produced larger sway errors, than the corresponding errors from the pseu-
doinverse. The sway errors from the 3-step recursive algorithm where for both cases
larger than the sway error from the weighted optimal algorithm. 3 times higher for
case 1, and 2 times higher for case 2. Looking at the surge errors, the differences
where not as obvious; For case 1 the surge error from the weighted optimal where at
the same level as the surge error from the pseudoinverse. The surge error from the
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3-step recursive was slightly larger. In case 2, both the {3-step recursive, weighted
optimal} algorithms produce very similar surge error, of same magnitude. For this
case, also the surge error from the pseudoinverse reached the same level, but at a
later time in the simulation.

Looking at the ηerror, and in particular on the heading error, both the {3-step re-
cursive, weighted optimal} algorithms shows a significant imporved performance,
compared to the heading error of the pseudoinverse. For case 1 the heading error
from the 3-step recursive was slightly less than the heading error from the weighted
optimal. For case 2 the heading errors from both {3-step recursive, weighted op-
timal} algorithms where of same magnitude. Compared to the heading error from
the pseudoinverse, the heading error from the {3-step recursive, weighted optimal}
algorithms where approx 1/5, for both cases, after about 60 seconds. For the xy-
position error, there were greater differences between the two cases. Looking at case
1, the xy-position error from the weighted optimal algorithm where slightly larger
than the xy-position error from the pseudonverse. The xy-position error from the
3-step regursive algorithm where approx. 5 times larger after about 60 seconds, than
the xy-position error from the pseudoinverse. For case 2 the xy-position error were
of same magnitude for both {3-step recursive, weighted optimal} algorithms. The
xy-position error from the pseudoinverse where approx. 2/3 of the xy-position errors
from the {3-step recursive, weighted optimal} algorithms, after about 60 seconds.

Overall, based on the testing carried out in this thesis, the performance of the
weighted optimal algorithm, seemed better than the performance of the recursive
3-step algorithm. This is in accordance with the expectations to the results before-
hand.
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Chapter 8

Conclusion and further work
In this final chapter, concluding remarks on the material presented in this thesis will
be made. Then, suggestions for further work will be given.

8.1 Conclusion

In this thesis three constrained thrust allocation algorithms, prioritizing the yaw
moment, are proposed for the ROV Minerva. The three proposed thrust allocation
algorithms are; 3-step recursive nullspace-based algorithm, the optimal (QP) algo-
rithm, and the optimal recursive (recursive QP) algorithm. Before testing the thrust
allocation algorithms in the Minerva MATLAB®/Simulink software simulator, the
algorithms where tested in open-loop condition, in a MATLAB® script.

Testing of the 3-step recursive nullspace-based thrust allocation algorithm showed
that the thruster weighting matrices utilized in the algorithm are of great signif-
icance for the performance of the algorithm, when applied to the Minerva design
case. In particular, the thruster weighting matrix utilized in the 2nd step allocating
yaw, is important. Leaving the thruster weighting matrix as the identity matrix
causes the proposed recursive 3-step algorithm to perform poorer compared to the
pseudoinverse algorithm. Both with respect to achieved yaw moment, but also with
respect to the total achieved surge, and sway force. The choice of making the recur-
sive nullspace-based thrust allocation a 3-step algorithm for the Minerva, ensured
that the full heave potential could be utilized, and at the same time obtaining the
desired yaw priority.

The optimal (QP) thrust allocation algorithm was intended to be an intermediate
step on the path to merge the recursive nullspace-based thrust allocation algorithm,
with a method to apply optimal constraints to each step of the algorithm. This
will result in a optimal recursive thrust allocation algorithm. The weakness of the
recursive nullspace-based thrust allocation algorithm is how the thrusts are cut off.
Within each step a gain, k ∈ [0,1], is calculated to reduce the allocated thrust if the
magnitude exceeds the capacity of the thrusters. This constraining method might
not yield the optimal result, motivating the merging of the recursive nullspace-based
algorithm, with an optimal algorithm. From testing it was found that the optimal
thrust allocation algorithm could achieve DOF priority by penalizing the slack vari-
able corresponding to that DOF. Although the weighted optimal thrust allocation
algorithm is not recursive, the sought yaw prioritizing, is achieved by penalizing the
corresponding slack variable in the optimal thrust allocation algorithm. Further,
how the weighted optimal thrust allocation prioritizes the DOFs, are easily modified
by changing the cost on the individual slack variable.
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Chapter 8. Conclusion and further work

For the optimal recursive (recursive QP) thrust allocation, a two-step recursive algo-
rithm was proposed. Allocating {Heave, Yaw} in the 1st step, and {Surge, Sway} in
the 2nd step. The open-loop test of the algorithm showed good promise of functional-
ity. Some unexplained ”drop outs” in the thruster usage was observed. Proceeding
with the closed-loop test, the optimal recursive algorithm displayed unacceptable
performance during the 2nd test case. The thrusters were allocated such that the
rotational direction constantly was changed back and forth, inducing instability in
an otherwise stable system. Further, this oscillatory allocation would indeed reduce
the lifetime of the thrusters. Thus, concluding from this behavior that the proposed
optimal recursive algorithm, as implemented was flawed.

Further consideration of the weighted optimal algorithm vs. the optimal recur-
sive algorithm; Where the weighted optimal algorithm searches the entire solution
space, finding a global minima, only the first step of the optimal recursive algorithm
searches over the same solution space. In the first step a solution is found, and
this solution determines the set over which the second step can find its solution.
Since the first step does not include all possible solutions, and then let the second
step optimize over all solutions, the algorithm becomes suboptimal. However, what
solution is found depend on the tuning of the cost function.

The proposed optimal recursive thrust allocation algorithm as implemented for the
Minerva are seen to be flawed. Therefor there is no point in HIL-testing of the
algorithm, as proposed in this thesis.

8.2 Recommendations for further work

The proposed 2-step optimal recursive thrust allocation algorithm as implemented
for the Minerva, is proven to be flawed. The erroneous implementation is believed
to be related to the 2nd step of the algorithm. Further investigations as to why
the proposed 2-step optimal recursive thrust allocation algorithm fails, should be
considered. An extension to a 3-step optimal recursive, allocating with the following
prioritization {Heave, Yaw, Surge & Sway}, should be considered. Due to the
uncoupled heave allocation for Minerva, this prioritization will not lead to any loss
of yaw capability. If an 3-step optimal recursive thrust allocation algorithm are
tested, special attention should be focused towards the thruster weighting matrix
in the 2nd step, as discussed for the 3-step recursive nullspace-based algorithm.
Depending on simulation results from the MATLAB®/Simulink simulator, further
HIL-testing, and possibly model tests on Minerva should be considered.

Although the proposed weighted optimal thrust allocation algorithm is not recursive,
the sought yaw prioritization is achieved. Further HIL-testing of this algorithm
should be considered. If satisfactory results from HIL-testing are obtained, further
model tests on the Minerva should also be considered.

The reported issue with time-varying center of gravity (CG) when utilizing the
manipulator (with heavy load) on Minerva, causing CG to move in front of the
lateral thruster, should be investigated.
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Chapter 8. Conclusion and further work

In the Minerva control system the thrust allocation is achieved by unconstrained
pseudoinverse. The commanded thrusts are then constrained at thruster level, i.e.
cutting off the command at ± 1450 [rpm]. Constraining directly on the thruster,
rather on the commands to the thrusters, not considering the thruster capability,
may cause unexpected behavior. Thus, producing different resulting body forces and
moment than what is expected from the allocated thrust, due to thruster saturation.
Further, the thruster configuration matrix in the control system is badly scaled.
This is due to augmented expressions for the un-actuated DOFs, most likely done
to obtain system responses in roll, and pitch. Thus, the pseudoinverse matrix for
thrust allocation is found by single value decomposition. How these issues affect the
system should be further investigated.
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Appendix A

Minerva software CD
This appendix contains a CD with; MATLAB® scripts, and MATLAB®/Simulink
software simulator, with required toolboxes, to run the software simulator. The
software are set-up for testing of the proposed thrust allocation algorithms {recursive
3-step, weighted optimal, optimal recursive}. Also included are the LabVIEW HIL
simulator.

The MATLAB®/Simulink scripts, and block diagrams, are tested with a mac running
OSX 10.10 (Yosemite), with MATLAB® R2014b. Whilst the HIL-simulator is tested
on a PC running on Wondows 7 Enterprise, with National Instruments LabVIEW
2012.
- Minerva software

1 Matlab scripts
2 Simulink simulator [Non-HIL]
3 LabVIEW simulator [HIL]
4 Toolboxes
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Appendix B

Simulation case 1; Pseudoinverse
thrust allocation

In this appendix, the system responces from running the system with the pseudoin-
verse thrust allocation are attached. The simulation case are repeated for readabil-
ity;

• Case 1: DP in set-point η =
[
10 10 50 45

]>
subject to a current velocity,

vcurrent = 1.15 [knots] with a direction North (0 [deg] in the NED frame).

These responces are needed in order to be able to compare the errors;

• Position error: ηerror = |ηdes - ηactual|,
• Force error: τerror = |τcmd - τalloc|,

as discussed in Chapter 7

Figure B.1 shows the position of the ROV in the North-East plane. The Minerva
are unable to keep the position as thruster saturation occurs, due to the strenght of
the current.

In Figure B.2 the 6 DOF responce of the Minerva are seen; The 3 translational
DOF, {1, 2, 3} in the left column. And the 3 rotational DOF, {4, 5, 6} in the right
column. The responces in roll and pitch are small, and exponentially decaying. For
the responce in heave, it is seen that the ROV is rising towards the surface, before
this is counteracted by the heave allocation. This is due to the modeled positive
buoyancy of the ROV, as is the case for the actual ROV. Looking at the north
and east positions, the ROV moves away from the set-point, before converging to
a constant deviation in north position. The deviation in east postion are steadily
increasing. Furhter, the yaw angle the error increases, before converging towards
the referance.

Figure B.3 shows the resulting body forces and moment, from the allocated thuster
usage, seen in Figure B.4. When the staboard thruster (Tstb) saturates after approx.
2 seconds, the pseudoinverse algorithm are unable to meet the desired forces and
moment.
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Appendix B. Simulation case 1; Pseudoinverse thrust allocation

Figure B.1: Case 1, DP in set-point. Running the system with the pseudoinverse thrust
allocation. Showing the ROV position in the North-Easth plane.

Figure B.2: Case 1, DP in set-point. Running the system with the pseudoinverse thrust
allocation. Showing the 6 DOF responce of the ROV.
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Appendix B. Simulation case 1; Pseudoinverse thrust allocation

Figure B.3: Case 1, DP in set-point. Running the system with the pseudoinverse thrust
allocation. Showing the resulting body forces and moment.

Figure B.4: Case 1, DP in set-point. Running the system with the pseudoinverse thrust
allocation. Showing allocated thruster revolutions.
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Appendix C

Simulation case 2;
In this appendix additional plots from simulation of case 2, change in pose from
η0 =

[
10 10 50 20

]>
to η1 =

[
10 10 50 65

]>
subject to a current velocity,

vcurrent = 1.05 [knots] with a direction East (90 [deg] in the NED frame), from the
cases study are attached. The following plots;

• North-East plot,
• 6 DOF responces,
• Resulting body forces,
• Allocated thruster rpm

generated from running the system with the following thrust allocation algorithms;

C.1 Pseudoinverse thrust allocation,
C.2 3-step weighted recursive nullspace-based thrust allocation algorithm,
C.3 Weighted optimal thrust allocation algorithm,
C.4 Optimal recursive thrust allocation algorithm,

are seen in figures C.1 - C.20, respectivly

For the optimal recursive algorithm in C.4, the results from simulating the case with
a 50 % reduction in current velocity, has also been attached. As seen from figures
C.17 - C.20, the performance of the algorithm improves, but are still displaying
strange behavior.
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Appendix C. Simulation case 2;

C.1 Pseudoinverse thrust allocation

Figure C.1: Case 2, change in pose; Running the system with the pseudoinverse thrust
allocation. Showing the ROV position in the North-East plane.

Figure C.2: Case 2, change in pose; Running the system with the pseudoinverse thrust
allocation. Showing the 6 DOF responce of the ROV.

Page X



Appendix C. Simulation case 2;

Figure C.3: Case 2, change in pose; Running the system with the pseudoinverse thrust
allocation. Showing the resulting body forces and moment.

Figure C.4: Case 2, change in pose; Running the system with the pseudoinverse thrust
allocation. Showing the allocated thruster revolution.
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Appendix C. Simulation case 2;

C.2 Recursive 3-step nullspace-based thrust allo-
cation

Figure C.5: Case 2, change in pose; Running the system with the recursive 3-step thrust
allocation. Showing the ROV position in the North-East plane.

Figure C.6: Case 2, change in pose; Running the system with the recursive 3-step thrust
allocation. Showing the 6 DOF responce of the ROV.
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Appendix C. Simulation case 2;

Figure C.7: Case 2, change in pose; Running the system with the recursive 3-step thrust
allocation. Showing the resulting body forces and moment.

Figure C.8: Case 2, change in pose; Running the system with the recursive 3-step thrust
allocation. Showing the allocated thruster revolution.
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Appendix C. Simulation case 2;

C.3 Weighted optimal thrust allocation

Figure C.9: Case 2, change in pose; Running the system with the weighted optimal
thrust allocation. Showing the ROV position in the North-East plane.

Figure C.10: Case 2, change in pose; Running the system with the optimal thrust
allocation. Showing the 6 DOF responce of the ROV.
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Appendix C. Simulation case 2;

Figure C.11: Case 2, change in pose; Running the system with the optimal thrust
allocation. Showing the resulting body forces and moment.

Figure C.12: Case 2, change in pose; Running the system with the optimal thrust
allocation. Showing the allocated thruster revolution.
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Appendix C. Simulation case 2;

C.4 Optimal recursive thrust allocation

C.4.1 Optimal recursive thrust allocation, full current ve-
locity

Figure C.13: Case 2, change in pose; Running the system with the optimal recursive
thrust allocation. Showing the ROV position in the North-East plane.

Figure C.14: Case 2, change in pose; Running the system with the optimal recursive
thrust allocation. Showing the 6 DOF responce of the ROV.
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Appendix C. Simulation case 2;

Figure C.15: Case 2, change in pose; Running the system with the Optimal recursive
thrust allocation. Showing the resulting body forces and moment.

Figure C.16: Case 2, change in pose; Running the system with the Optimal recursive
thrust allocation. Showing the allocated thruster revolution.
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Appendix C. Simulation case 2;

C.4.2 Optimal recursive thrust allocation, reduced current
velocity

Figure C.17: Case 2, change in pose, reduces current velocity; Running the system with
the optimal recursive thrust allocation. Showing the ROV position in the North-East
plane.

Figure C.18: Case 2, change in pose, reduces current velocity; Running the system with
the optimal recursive thrust allocation. Showing the 6 DOF responce of the ROV.
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Appendix C. Simulation case 2;

Figure C.19: Case 2, change in pose, reduces current velocity; Running the system with
the Optimal recursive thrust allocation. Showing the resulting body forces and moment.

Figure C.20: Case 2, change in pose, reduces current velocity; Running the system with
the Optimal recursive thrust allocation. Showing the allocated thruster revolution.
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Appendix D

Recursive 1-step nullspace-based
thrust allocation

1-step DOF prioritization, { XYZN }:

In the 1-step DOF prioritization, { XYZN }, the DOF‘s are equally prioritized.
Left unconstrained, and defining the weighting matrix (W ) as the identity matrix
(I), the 1-step recursive algorithm produces the same result as thrust allocation by
pseudoinverse.

Defining the weighted pseudoinverse for
(
B
)†
w

:= W−1B
(
B>W−1B

)−1
∈ R4×4, (D.1)

The weighting matrices (W ) are choosen as the identity matrix (I4×4) for simplicity.

v =
(
B
)†
w
τ ∈ R4×1. (D.2)

Then, checking each actuator that the allocated thrust are feasible;

Av ≤ fsat. (D.3)

If v is infeasible, the magnitude is adjusted with a gain, k ∈ [0,1], calculated from

κAv = fsat ⇒ κi =


fsat,i
a>i v

, if a>i v 6= 0

1 , if a>i v = 0
, i = 1, ..., 8 (D.4)

where k is choosen as the minimum of the set

k = min
i=1,..,6

{κi}. (D.5)

Obtaining the allocated thrust vector, satisfying the constraint set as

u = kv = k
(
B
)†
w
τ ∈ R4×1. (D.6)
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