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The fixed interface vibration modes describe the natural vibration shapes of the
structure for the case when the boundary is clamped. These modes φi have a cor-
responding frequency ωi, as is shown in figure 3.4. Similar to the static constraint
modes, no external force is applied to the internal DoF. Using equation 3.17 as the
starting point, it is again assumed that fi = 0 and the interface is fixed by enforcing
ub = 0. The second line of the equations of motion then reads:

Miiüi +Kiiui = 0 (3.23)

In order to find the internal response ui, the nontrivial solution of the eigenvalue
problem is required: (

Kii − ω2
i,nMii

)
φi,n = 0 (3.24)

In equation 3.24 φi,n represents the nth fixed interface vibration mode and ωi,n is
the corresponding eigenfrequency. As for the Guyan method, the internal DoF are
split into a static and a dynamic part. Now, instead of neglecting the dynamic part,
ui,dyn is retained and can be approximated by the superposition of a truncated
number of vibration modes:

ui,dyn ≈
m∑

n=1

φi,nηi,n = Φiηi (3.25)

The matrix Φi is the collection of all n included fixed vibration modes φi,n and the
vector ηi contains the corresponding modal amplitudes. Combining equation 3.20
and 3.25, the response of the internal DoF can be written as:

ui ≈ ΨC,iub +Φiηi (3.26)

Rewriting equation 3.26 into matrix notation yields the CB reduction basis RCB:[
ub

ui

]
≈

[
I 0

ΨC,i Φi

] [
ub

ηi

]
= RCBq (3.27)

Finally, the reduced system of equations is obtained:

M̃q̈ + K̃q = f̃ (3.28)

The reduced mass and stiffness matrix and the external force vector are again ob-
tained by premultiplying with the transpose of the reduction basis RT

CB:⎧⎪⎨
⎪⎩
M̃ = RT

CBMRCB

K̃ = RT
CBKRCB

f̃ = RT
CBf
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Where M̃ , K̃ and f̃ have the following form:

K̃ =

[
K̃bb 0
0 Ω2

i

]
K̃bb = Kbb −KbiK

−1
ii Kib

M̃ =

[
M̃bb M̃bζ

M̃ζb I

]
M̃bb = Mbb −MbiK

−1
ii Kib −KbiK

−1
ii Mib +KbiK

−1
ii MiiK

−1
ii Kib

M̃ζb = ΦT
i

(
Mib −MiiK

−1
ii Kib

)
= M̃T

bζ

f̃ =

[
fb +ΨT

C,ifi

ΦT
i fi

]

The term Ω2
i is a diagonal matrix, containing the eigenfrequencies of the fixed

interface vibration modes.

3.6 Modal Truncation Augmentation

As described in section 3.5, in the Craig-Bampton method the assumption is made
that no external loading acts on the internal DoF ui. When the model is subjected
to external loading on the internal DoF, this might lead to an inaccurate calculation
of the response. The accuracy of the response of the internal DoF depends on
the how well the reduction basis is able to describe the response to the external
loading. Generally speaking, the approximation is accurate when the modes that
are not included in the reduction basis, are not excited by the external loading.
The two key parameters of interest here are spectral and spatial convergence. The
difference between the two and their importance in model reduction is discussed in
section 3.6.1. A way to increase spatial convergence is by adding Modal Truncation
Augmentation vectors (MTAs) to the reduction basis. The derivation of the MTAs is
introduced in section 3.6.2.

3.6.1 Spectral and spatial convergence

Spectral and spatial convergence are both important in the generation of an accu-
rate reduced model. The two parameters can be described as follows:

• Spectral convergence: The accuracy of the response prediction depends on
how well the frequency content of the reduction basis and the external force
match. When the structure is excited by a spectrum of external loading, e.g. a
wave spectrum, a rule of thumb states that all substructure’s modes up to 1.5
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3.6. MODAL TRUNCATION AUGMENTATION 43

times the highest loading frequency should be retained in the reduction basis
[43]. However, only a high level of spectral convergence does not guarantee
an accurate forced response.

• Spatial convergence: A second factor in the forced response accuracy is the
spatial convergence. This parameter indicates how well the shape of the in-
cluded modes is able to represent the spatial distribution of the external load-
ing. A way to improve spatial convergence is to include more modes, but
the extra modes are expensive to compute and lead to a larger and less effi-
cient reduction basis. Furthermore, the convergence rate still depends on the
correlation between the extra modes and the spatial load vectors.

The difference between the two types of convergence is best illustrated with an
example. Figure 3.5a shows the cantilever beam subjected to a vertical force fv,
exciting the structure at a frequency ω that lies between the frequencies ω1 and ω2,
corresponding to the first two fixed interface vibration modes.

(a) Vertical force on internal DoF. (b) Horizontal force on internal DoF.

Figure 3.5: Maximum force and moment error for the different interpolation meth-
ods.

One can imagine that the response shape of the structure can be approximated by
a combination of the second static constraint mode (figure 3.3b) and the first two
fixed interface vibration modes (figure 3.4). The fact that the shapes in the reduc-
tion basis can represent the deformation shape, means that the reduced model has
good spatial convergence for this specific loading. Furthermore, since the loading
frequency of fv lies between the frequencies corresponding to the included modes
(ω1 and ω2), the reduced model also ensures good spectral convergence. In short,
spatial convergence is related to the shape of the response, spectral convergence to
its frequency.

This becomes more clear when the same point force is applied horizontally in terms
of fh in figure 3.5b. The spectral convergence is equally well represented as for the
vertically loaded beam, however the deformation shape of the structure, in which
only the left most element deforms axially, can not be represented by the fixed in-
terface vibration shapes at all. The static constraint mode in figure 3.3b is able
to describe the deformation of the first element to a certain degree but since that
shape also deforms the other three elements, this reduced model will have a low
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44 3. STRUCTURAL MODELING

accuracy due to lack of spatial convergence. This example clearly illustrates the
difference between the two types of convergence and the importance to capture
both in the reduced structural model.

One way to overcome the lack of spatial convergence is to add more fixed interface
vibration modes. The problem with this approach is that it can be time consuming
to find out which of these modes accurately describe the deformation induced by
the external force. In the current example, the eigenmode capturing the axial defor-
mation of the first element of the beam is often one of the modes corresponding to
the higher eigenfrequecies. Since the reduction basis is normally filled with mode
shapes corresponding to frequencies ranging from low to high, many shapes would
have to be added in order to include the axial deformation shape. If one would
add all fixed interface vibration modes, which are mass- and stiffness-orthogonal
with respect to each other, the model converges to the exact solution. However,
this defeats the purpose of the model reduction as in fact no reduction is realized.

Instead of adding extra structural modes to increase spatial convergence, another
method was developed to find a set of dedicated, load dependent vectors. This
method is known as Modal Truncation Augmentation (MTA) and has demonstrated
significant accuracy improvement in the forced dynamic response [9], [31]. The
modes that are computed based on the MTA method are called psuedo modes and
are able to capture the spatial part of the forced response that the other types of
modes in the reduction basis can be unable to describe accurately.

3.6.2 Derivation MTAs

For the derivation of the MTA vectors, a simple system is considered which is con-
strained such that no rigid body modes exist. The equations of motion are given
by:

Mü+Ku = f (3.29)

Again, the response u is split in a static and a dynamic part:

u = ustat + udyn (3.30)

As in the derivation of the static constraint modes, the static response is found by
setting the accelerations to zero:

ustat = K−1f (3.31)

Inserting equation 3.30 and 3.31 into 3.29, the dynamic part of the response is
given by:
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3.6. MODAL TRUNCATION AUGMENTATION 45

Müdyn +Kudyn = −MK−1f̈ (3.32)

The same procedure can now be repeated for equation 3.32, where the response
udyn is again subdivided into a quasi-static and a dynamic part, relative to the
quasi-static part:

udyn = ystat + ydyn (3.33)

Consequently, the accelerations üdyn are set to zero to find the quasi-static response
ystat:

ystat = K−1
(−MK−1

)
f̈ (3.34)

When equation 3.33 and 3.34 are substituted into 3.32, the dynamic part ydyn is
given by:

Mÿdyn +Kydyn =
(−MK−1

)2 d4f

dt4
(3.35)

This procedure of representing the dynamic response by a quasi-static and dynamic
response relative to that, can be repeated many times. This yields the following
equation:

u = ustat + udyn

= ustat + ystat + ydyn

= ustat + ystat + zstat + . . .+wdyn

(3.36)

Substituting the quasi-static solution into equation 3.36, the total response can be
written as follows:

u =
m∑
j=0

K−1
(−MK−1

)j d2jf
dt2j

+wdyn (3.37)

Equation 3.37 represents the response of the system as a superposition of quasi-
static solutions up to the order m. The dynamic solution is approximated by the
truncated number of k retained vibration modes Φk. In order to be able to use
equation 3.37, the external force f(t) has to be decomposed into a spatial and a
spectral (time-dependent) part:

f(t) =

g∑
p=1

fpαp(t) = Fα(t) (3.38)

Where fp is the pth spatial vector and αp represents the corresponding time-dependent
amplitude. A limited number g of such spatial vectors are collected in F and are
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46 3. STRUCTURAL MODELING

assumed to be able to represent the external loading. How these vectors can be ob-
tained using the Proper Orthogonal Decomposition (POD) technique is explained
in appendix E. The time-dependent variable α(t) is discarded since only the spa-
tial vectors are required to enhance the spatial convergence of the reduction basis.
Substituting the force distribution vector (equation 3.38) into the first term on the
right hand side of equation 3.37, the modal truncation augmentation vectors can
be written as:

Φ̃M,j = K−1
(−MK−1

)j
F (3.39)

The columns in the Φ̃M,j matrix represent the MTA vectors (in short MTAs) of the
order j; the number of vectors depends on the spatial force vectors p used in F .
Physically, the first order MTAs (j = 0) represent the structure’s static response to
the external loading in F . For the second order vectors (j = 1), the static displace-
ments due to these forces are first converted to inertia forces (times M) and then
converted to quasi-static displacements (times K−1) as a result of these inertia
forces. In short, the MTAs provide a load-dependent quasi-static correction to the
solution.

Both the MTA vectors Φ̃M,j and the vibration modes Φr are included in the reduc-
tion basis. It is possible that there might be some "information overlap", i.e. the
modes partly span the same space. This would result in a non-sparse matrix and
could even lead to linearly dependent reduction matrix, introducing numerical sta-
bility issues. This problem can be avoided by subtracting the contribution of the
vibration modes from the MTAs:

Φ̃M,j =
(
K−1 −ΦkΩ

−2
k ΦT

k

) (
MK−1

)j
F

=
(
I −ΦkΦ

T
kM

) (
K−1M

)j
K−1F

= P
(
K−1M

)j
K−1F

(3.40)

Where the projection matrix P = I −ΦrΦ
T
r M , is used to orthogonalize the MTAs

with respect to the vibration modes. The different orders of the MTAs can now be
collected as follows:

Φ̃M =
[
Φ̃M,1 . . . Φ̃M,j . . . Φ̃M,k

]
(3.41)

In this equation k represents the highest order of the MTAs. Due to the previously
described orthogonalisation, the MTAs are orthogonal with respect to the vibration
modes, but not necessarily mutually orthogonal. To again avoid non-sparsity and
numerical issues, the MTAs can be orthonormalized by solving the reduced eigen-
value problem in the space of the MTAs, also known as the interaction problem:
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(
Φ̃T

MKΦ̃M

)
y = σ2

(
Φ̃T

MMΦ̃M

)
y (3.42)

Where σ2 is a diagonal matrix that contains the pseudo-frequencies belonging to
the MTAs. The eigenvectors are contained in y and the matrix Φ̃M contains all the
non-orthonomalized MTAs. The orthonomalized MTAs are then found using:

ΦM = Φ̃My (3.43)

Finally, the MTAs can be mass normalized using the following relations:

ΦT
MMΦM = I

ΦT
MKΦM = σ2

(3.44)

The reason why MTAs are often referred to as psuedo-modes is because they do
possess the orthogonality properties of the vibration modes but are not fundamen-
tal properties of the system, i.e. they are not solutions to the system’s eigenvalue
problem. Furthermore, it is noted that the pseudo-frequencies contained in σ2

are always higher than those of the vibration modes Ω2
k. This is logical because

the MTAs take into account the relevant contributions of the discarded vibration
modes.

3.7 Augmenting the Craig-Bampton method

In this section the general MTA procedure as explained in section 3.6, is applied to
augment the Craig-Bampton method. The starting point of the derivation is again
the second line of the equations of motion (3.17). Separating the internal and
boundary DoF gives:

Miiüi +Kiiui = −Mibüb −Kibub + fi (3.45)

As for the general MTA procedure, the response of the internal DoF is split into a
static and a dynamic part:

ui = ui,stat + ui,dyn (3.46)

The static response is found by substituting equation 3.46 into 3.45 and neglecting
the intertia forces:

ui,stat = K−1
ii fi −K−1

ii Kibub = K−1
ii fi +ΨC,iub (3.47)

The first term on the right hand side is neglected in the classic derivation of the
Craig-Bampton method, i.e. no external load on the internal DoF. In this augmented
version of the Craig-Bampton method, the excitation force is specifically taken into
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account by the MTA vectors in order to improve the spatial convergence of the
reduced model. The second term represents the static constraint modes, as derived
in section 3.5.1. Inserting equation 3.46 and 3.47 into equation 3.45 yields the
following expression for the dynamic response ui,dyn:

Miiüi,dyn +Kiiui,dyn = − (MiiΨC,i +Mib) üb −MiiK
−1
ii f̈i (3.48)

The columns of the term between brackets on the right hand side of equation 3.48
represent the load vectors, associated to the interface accelerations. The equation
is rewritten as follows:

Miiüi,dyn +Kui,dyn = Y üb −MiiK
−1
ii f̈i (3.49)

Where Y = (−MiiΨC,i −Mib) is introduced for a more compact notation. The
next step is to split ui,dyn into a quasi-static part yi,stat and a dynamic part yi,dyn

relative to that. The expression for the quasi-static part is again obtained by setting
üi,dyn = 0:

yi,stat = K−1
ii Y üb −K−1

ii MiiK
−1
ii f̈i (3.50)

The expression for yi,stat is inserted into the definition of ui,dyn, which is conse-
quently substituted into equation 3.49. Isolating the terms for the dynamic solution
yi,dyn on the left hand side gives:

Miiÿi,dyn +Kyi,dyn = K−1
ii MiiK

−1
ii Y

d4ub

dt4
+

(
MiiK

−1
ii

)2 d4fi

dt4
(3.51)

Repetition of this process yields a similar sequence as was found in equation 3.36,
however the response here is for the internal DoF ui. Substituting the obtained
expression yields:

ui =ΨC,iub −K−1
ii Y üb −K−1

ii MiiK
−1
ii Y

d4ub

dt4
+ . . .

+K−1
ii fi −K−1

ii MiiK
−1
ii f̈i +

(
K−1

ii Mii

)2
K−1

ii

d4fi

dt4
+ . . .

+wi,dyn

(3.52)

The first term on the right hand side of equation 3.52 represents the static con-
straint modes, which are normally already present in the Craig-Bampton reduction
basis. An approximation of the last term, the dynamic solution, is present in the
Craig-Bampton reduction basis through a superposition of fixed interface vibration
modes Φi. The remaining terms can be separated into two groups; one group con-
taining the terms with the external force on the internal DoF and an other group
containing the interface excitation terms.
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Similar to the procedure explained in section 3.6, it is assumed that the external
loading fi can be described by a superposition of k spatial vectors, contained in the
matrix F(k). The time-dependent term of the external loading is again disregarded.
In order to assure that the MTAs are orthogonal with respect to the fixed-interface
vibration modes, a similar projection step is carried out. Here the projection matrix
is defined as P = I−ΦiΦ

T
i Mii. The MTA vectors can now be calculated according

to:

Φ̃MTA,j = P
(
K−1

ii Mii

)j
K−1

ii

[
Y F(k)

]
j = 0, . . . ,m (3.53)

The number of MTAs per order now equals the number of interface DoF plus the
number of load vectors. The vectors are orthonormalized with respect to Mii and
Kii by solving a similar interaction problem to equation 3.42. The same properties
as described in equation 3.44 are finally obtained using mass normalisation. The
difference is that the properties here are valid for the mass and stiffness matrix of
the internal DoF, Mii and Kii. The solution of the internal DoF ui can now be
represented including the MTA vectors:

ui ≈ ΨC,iub +Φiηi +ΦMTAζi (3.54)

Where the vector ζi contains the modal amplitudes of the MTAs. The augmented
Craig-Bampton reduction basis is now given by:

[
ub

ui

]
≈

[
I 0 0

ΨC,i Φ ΦMTA

]⎡
⎣ub

ηi

ζi

⎤
⎦ = RACBqACB (3.55)

Similar to the original Craig-Bampton method, all interface DoF are retained. The
reduced mass and stiffness matrix are obtained by projecting their equivalent full
matrices onto the reduction basis:

M̃ = RT
ACBMRACB

K̃ = RT
ACBKRACB

(3.56)

Using these expressions, the reduced equations of motion can be written as:

⎡
⎣M̃bb M̃bζ M̃bφ

M̃ζb I 0

M̃φb 0 I

⎤
⎦
⎡
⎣üb

η̈i

ζ̈i

⎤
⎦
⎡
⎣K̃bb 0 0

0 Ω2
i 0

0 0 σ2

⎤
⎦
⎡
⎣ub

ηi

ζi

⎤
⎦ =

⎡
⎣ f̃i

f̃M

f̃b

⎤
⎦+

⎡
⎣ 0
0
gb

⎤
⎦ (3.57)

In addition to terms already defined in equation 3.5.2, the terms in the reduced
matrices are defined as:

M̃ζb = M̃T
bζ = ΦT

i

(
Mib −MiiK

−1
ii Kib

)
(3.58)

CONFIDENTIAL



50



4
Modeling and case study

4.1 Introduction

Based on the theoretical background provided in chapters 2 and 3, the implemen-
tation of both the wave and the structural model is described in this chapter. Fur-
thermore, the setup for the case study is discussed on which the results presented
in the following two chapters are based. The current chapter starts with section
4.2, describing the implementation and verification of the wave model. Section
4.3 explains how the full structural model is build up and which type of reduced
models are used in the case study. Section 4.4 elaborates on the details of the case
study in which a full load case table is used to calculate the fatigue loading in the
jacket foundation, using wave-only loading.

Figure 4.1 provides a flowchart of the implementation of the combined wave and
structural model. During the preprocessing all member properties are collected and
the wave spectrum is generated based on the sea state inputs. Next, the wave kine-
matics are calculated using the Inverse Fast Fourier Transform (IFFT) method. If a
member is located in the splash zone the kinematics are adjusted using the moving
coordinate. Subsequently, the wave kinematics are converted to nodal forces by
means of the Morison equation and the shape functions of the members. Again, a
distinction is made between fully submerged members and members in the splash
zone. This is done to increase computational efficiency. The blocks containing the
wave kinematics and wave force procedures are colored to indicate that these steps
are repeated for each of jacket members. Finally, the dynamic simulation is per-
formed, either using a full or a reduced foundation model. In case the reduced
model requires MTAs, the complete force field is subjected to the POD method to
extract the dominant mode shapes. The response is obtained using the Newmark
time integration method. All theses steps are discussed throughout this chapter.
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Figure 4.1: Flowchart of the combined wave and structural model.

4.2 Wave model

This section aims to explain both the implementation and the verification of the
wave model. The wave model is an extension of the work of Van der Meulen [41]
and is a unidirectional implementation of Sharma and Dean’s formulation of the
second-order pertubation model [36]. Section 4.2.1 starts with the formulation of
the irregular wave model, providing the linear and second-order equations. The
IFFT method is used in order to significantly increase the computational efficiency
of the wave model. The basic principles and application in the wave model are
explained in section 4.2.2. Consequently, the Morison equation is used to translate
wave kinematics into wave forces. Details regarding this approach and the influ-
ence of the type of force distribution are discussed in section 4.2.3. Finally, the
wave model is compared to the software USFOS in section 4.2.4 for a verification
in terms of the resultant wave forces.
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4.2.1 Irregular wave model

As described in section 2.7, the velocity potential can presented as the sum of the
linear part and the second-order pertubation:

Φ(x, z, t) = Φ(1)(x, z, t) + Φ(2)(x, z, t) (4.1)

Similarly, the total surface elevation is given by:

η(x, t) = η(1)(x, t) + η(2)(x, t) (4.2)

The following two sections describe the first- and second-order expressions for the
second-order pertubation model.

First order expressions
The first-order velocity potential is given by:

Φ(1)(x, z, t) = −
N∑

m=1

bm
cosh km(z + d)

cosh kmd
sin(ψm) (4.3)

Where the amplitude and the phase functions are given by equation 4.4 and 4.5,
respectively:

bm =
amg

ωm
(4.4)

ψm = ωmt− kmx− φm (4.5)

In equation 4.3 it should be noticed that it has been multiplied with -1, compared
to equation 2.6 (sin(x) = −sin(−x)). This is done in order to provide a more
transparent reformulation in section 4.2.2 on the Inverse Fast Fourier Transform.
The first-order surface elevation is given by:

η(1)(x, t) =

N∑
m=1

amcos(ψm) (4.6)

The phase angles φm are uniformly distributed between 0 and 2π, the amplitudes
am are Rayleigh distributed and are drawn from the wave spectrum S(fm):

am =
√

2S(fm)Δf (4.7)

Note that the wave spectrum is given in Hz, rather than in angular frequency. The
transformation is done easily through Δfm = Δωm/(2π). The first-order horizontal
and vertical velocity u and w are obtained by taking the spatial derivative of the
velocity potential:
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u(1)(x, z, t) =
∂Φ(1)

∂x
=

N∑
m=1

kmbm
cosh km(z + d)

cosh kmd
cos(ψm) (4.8)

w(1)(x, z, t) =
∂Φ(1)

∂z
= −

N∑
m=1

kmbm
sinh km(z + d)

cosh kmd
sin(ψm) (4.9)

The first-order accelerations are then obtained by taking the time derivative of the
two velocity terms, respectively:

u̇(1)(x, z, t) =
∂u(1)

∂t
= −

N∑
m=1

ωmkmbm
cosh km(z + d)

cosh kmd
sin(ψm) (4.10)

ẇ(1)(x, z, t) =
∂w(1)

∂t
= −

N∑
m=1

ωmkmbm
sinh km(z + d)

cosh kmd
cos(ψm) (4.11)

Second-order expressions
The second-order contributions consist of two parts, i.e. the sum and difference
components. The velocity potential is build up accordingly, Φ(2) = Φ(2−) + Φ(2+)

and is defined as follows:

Φ(2)(x, z, t) = −1

4

N∑
m=1

N∑
n=1

[
bmbn

cosh k±mn(z + d)

cosh k±mnd

D±
mn

(ωm ± ωn)
sin(ψm ± ψn)

]
(4.12)

Where

D−
mn =

(
√
Rm −√

Rn)[
√
Rn(k

2
m −R2

m)−√
Rm(k2n −R2

n)]

(
√
Rm −√

Rn)2 − k−mntanh k−mnd

+ 2
(
√
Rm −√

Rn)
2(kmkn +RmRn)

(
√
Rm −√

Rn)2 − k−mntanh k−mnd

(4.13)

D+
mn =

(
√
Rm +

√
Rn)[

√
Rn(k

2
m −R2

m) +
√
Rm(k2n −R2

n)]

(
√
Rm +

√
Rn)2 − k+mntanh k+mnd

+ 2
(
√
Rm +

√
Rn)

2(kmkn −RmRn)

(
√
Rm +

√
Rn)2 − k+mntanh k+mnd

(4.14)

The wave numbers k−mn, k+mn and the variables Rm, Rn are defined as:
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k−mn = |km − kn| (4.15)

k+mn = km + kn (4.16)

Rm =
ω2
m

g
(4.17)

The second-order surface elevation η(2) is given by:

η(2)(x, t) =

N∑
m=1

N∑
n=1

[
aman

(
B−

mncos(ψm − ψn) +B+
mncos(ψm + ψn)

)]
(4.18)

Where the transfer functions for the second-order amplitude are defined as:

B±
mn =

1

4

[
D±

mn − (kmkn ±RmRn)√
RmRn

+ (Rm +Rn)

]
(4.19)

Finally, the second-order kinematics are derived in a similar manner as their linear
counterparts. The horizontal and vertical velocity are given by:

u(2)(x, z, t) =
∂Φ(2)

∂x
=

N∑
m=1

N∑
n=1

Z±
mncos(ψm ± ψn) (4.20)

w(2)(x, z, t) =
∂Φ(2)

∂z
= −

N∑
m=1

N∑
n=1

Q±
mnsin(ψm ± ψn) (4.21)

The accelerations are again found by taking the time derivative of the velocities:

u̇(2)(x, z, t) =
∂u(2)

∂t
= −

N∑
m=1

N∑
n=1

Z±
mn(ωm ± ωn) sin(ψm ± ψn) (4.22)

ẇ(2)(x, z, t) =
∂w(2)

∂t
= −

N∑
m=1

N∑
n=1

Q±
mn(ωm ± ωn) cos(ψm ± ψn) (4.23)

Where the variables Z±
mn and Q±

mn are introduced to collect the amplitude terms:

Z±
mn =

1

4
bmbn

cosh k±mn(z + d)

cosh k±mnd

D±
mn

(ωR,m ± ωR,n)
k±mn (4.24)

Q±
mn =

1

4
bmbn

sinh k±mn(z + d)

cosh k±mnd

D±
mn

(ωR,m ± ωR,n)
k±mn (4.25)
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4.2.2 Inverse Fast Fourier Transform

As described in section 2.8, the contributions of the individual regular waves can
be superimposed in order to create a regular wave train. However, many frequency
components are required to accurately describe the sea spectrum and the superpo-
sition method can therefore become a computationally expensive procedure. This
is especially true for the second-order contributions where a double summation is
involved. A more efficient approach is to use the Inverse Fast Fourier Transform.
This is method is based on the Fourier Transform, which is a technique that allows
a signal in the time-domain to be transformed into a spectrum in the frequency do-
main. Using the IFFT, the individual wave contributions are efficiently calculated
in the frequency domain and consequently summed and transformed to the time-
domain, generating the desired time-series for the irregular wave.

IFFT definition
An illustration of the use of the IFFT is provided in the following explanation, using
the first-order surface elevation η(1) as an example. The required simulation time
T needs to be discretized into N time steps of Δt. The size of the time step is
directly related to the computational time and must therefore be chosen carefully.
The time step must be sufficiently small in order to accurately capture the behavior
of the waves with a period around the peak period of the spectrum. It is important
to realize that the sum contribution of the second-order introduces another peak at
twice the peak frequency of the spectrum. To discretize T , a time vector tp = pΔt is
introduced, where p = 1, 2, ..., N . The angular frequency is discretized in the same
way, introducing the frequency vector ωm = mΔω, where m = 1, 2, ..., N . Using
these vectors, the first-order surface elevation can now be presented in a discretized
format:

η(1)(x, tp) =

N∑
m=1

amcos(ωmtp − kmx− φm) (4.26)

Equation 4.26 can be reformulated according to Euler’s complex exponential func-
tion, exp(iφ) = cos(φ) + i sin(φ):

η(1)(x, tp) = �
{

N∑
m=1

am exp(−i(kmx+ φm)) exp(i(mΔω)(pΔt))

}
(4.27)

Where � stands for the real part of the expression. The multiplication of the time
and frequency bin width can be rewritten to ΔωΔt = 2π/N , yielding:

η(1)(x, tp) = �
{

N∑
m=1

X(1)
η (ωm) exp

(
i
2πm

N
p

)}
(4.28)
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From equation 4.27 to 4.28, the amplitude am and the first exponential term are
gathered in the Fourier coefficient of the the first-order surface elevation, X(1)

η :

X(1)
η (x, ωm) = am exp(−i(kmx+ φm)) (4.29)

It is observed that the Fourier coefficient is not time-dependent but rather a function
of the frequency ωm. Equation 4.30 describes the inverse of the Discrete Fourier
Transform of X(1)

η . Using the IFFT algorithm [4], this transform can be calculated
in an efficient manner and the first-order surface elevation can thus be reformulated
as:

η(1)(x, tp) = �
{

IFFT
[
X(1)

η (x, ωm)
]}

(4.30)

Fourier coefficient
Following the described definition, the Fourier coefficients for all first- and second-
order wave variables can be derived. In this way, a complete formulation of the
wave problem is established in the frequency domain. By means of a more short
formulation, the dependency on x and ωm is dropped from the notation, e.g.
X

(1)
η,m(x, ωm) is now simply written as X(1)

η,m:

X(1)
η,m = am exp(−i(kmx+ φm)) (4.31)

Considering the first-order the horizontal and vertical velocity u(1) and w(1), the
Fourier coefficients are defined according to equation 4.32 and 4.33, respectively:

X(1)
u,m =

gkm
ωm

cosh km(z + d)

cosh kmd
X(1)

η,m (4.32)

X(1)
w,m = −gkm

ωm

sinh km(z + d)

cosh kmd
X(1)

η,m (4.33)

Consequently, the Fourier coefficients for the acceleration terms are given by:

X
(1)
u̇,m = −ωmX(1)

u,m (4.34)

X
(1)
ẇ,m = ωmX(1)

w,m (4.35)

Applying the IFFT to the above defined Fourier coefficients, the first-order kinemat-
ics are found. � refers to the imaginary part of the expression.
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u(1)(x, z, tp) = �
{

IFFT
[
X(1)

u,m

]}
(4.36)

w(1)(x, z, tp) = �
{

IFFT
[
X(1)

w,m

]}
(4.37)

u̇(1)(x, z, tp) = �
{

IFFT
[
X

(1)
u̇,m

]}
(4.38)

ẇ(1)(x, z, tp) = �
{

IFFT
[
X

(1)
ẇ,m

]}
(4.39)

The second-order terms can be expressed by means of Fourier coefficients in a
similar way. The Fourier coefficient of the second-order surface elevation is given
by equation 4.40:

X(2)
η,nm = amanB

±
mnexp (−i((kmx± knx) + (φm ± φn))) (4.40)

The second-order surface elevation can then be discretized and reformulated to:

η(2)(tp) = �
{

N∑
m=1

N∑
n=1

X(2)
η,mn exp

(
i
2π(m± n)

N
p

)}
(4.41)

In order to further increase computational efficiency, [1] describes a method which
reduces the double summation in 4.41 into a single summation:

η(2)(tq) = �
{

M∑
m=1

Y
(2)
η,j exp

(
i
2πj

M
q

)}
(4.42)

The introduction of equation 4.42 allows the second-order surface elevation to be
calculated according to the newly defined Fourier coefficient Y (2)

η,j :

η(2)(tq) = �
{

IFFT
[
Y

(2)
η,j

]}
(4.43)

This formulation requires the definition of this single-summation Fourier coefficient
Y

(2)
η,j . As can be seen from equation 4.43, a new time vector tq is introduced. This

is required in order to be able to represent the highest sum-frequencies. Hence, the
index vector q is defined as q = 1, 2, ...,M where M = 2N . The new time vector is
then defined as tq = qΔt. The single-summation method is based on the collection
of the original Fourier coefficients X

(2)
η,mn for every possible combination of index

pairs of m and n, adding up to j. For example, the double-summation index pairs
(m,n) = (1, 3), (3, 1) and (2, 2), all contribute to the sum interactions of j = 4. The
coefficients for the difference-contribution can be formulated in a similar way. Since
the IFFT formulation of η(2)(tq) (equation 4.43) requires positive values of j, the
difference index vector is defined as j = |m− n|. The single summation coefficient
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Y
(2−)
η,j with j = 1 thus contains contributions from X

(2)
η,mn with (m,n) = (1, 2)

and (2, 1). Using the above described properties of the single-summation Fourier
coefficients, the sum- and difference-coefficients are fully described by equation
4.44 and 4.45, respectively:

Y
(2+)
η,j =

⎧⎪⎪⎨
⎪⎪⎩
0 j ≤ 2,∑∑
︸ ︷︷ ︸
m+n =j

X
(2+)
η,mn 2 ≤ j ≤ M. (4.44)

Y
(2−)
η,j =

⎧⎪⎪⎨
⎪⎪⎩
∑∑
︸ ︷︷ ︸
|m-n| =j

X
(2−)
η,mn 1 ≤ j ≤ (N − 1),

0 j > (N − 1).

(4.45)

The second-order surface elevation is now completely defined in terms of the single-
summation Fourier coefficients. The second-order velocities and accelerations are
first discretized using the same approach as for the surface elevation:

u(2)(x, z, tp) = �
{

N∑
m=1

N∑
n=1

X(2)
u,mn exp

(
i
2π(m± n)

N
p

)}
(4.46)

w(2)(x, z, tp) = �
{

N∑
m=1

N∑
n=1

X(2)
w,mn exp

(
i
2π(m± n)

N
p

)}
(4.47)

u̇(2)(x, z, tp) = �
{

N∑
m=1

N∑
n=1

X
(2)
u̇,mn exp

(
i
2π(m± n)

N
p

)}
(4.48)

ẇ(2)(x, z, tp) = �
{

N∑
m=1

N∑
n=1

X
(2)
ẇ,mn exp

(
i
2π(m± n)

N
p

)}
(4.49)

The double-summation Fourier coefficients for the second-order kinematics are pro-
vided in equation 4.50 to 4.53:

X(2)
u,mn = Z±

mn exp (−i(kmx± knx) + (φm ± φn)) sgn(m± n)) (4.50)

X(2)
w,mn = −Q±

mn exp (−i(kmx± knx) + (φm ± φn)) sgn(m± n)) (4.51)

X
(2)
u̇,mn = −(ωm ± ωn)X

(2)
u,mn (4.52)

X
(2)
ẇ,mn = (ωm ± ωn)X

(2)
w,mn (4.53)

The signum function sgn(x) in equation 4.50 is an odd function and is defined as:

CONFIDENTIAL



60 4. MODELING AND CASE STUDY

sgn(x) =

⎧⎪⎨
⎪⎩
−1 x < 0,

0 x = 0,

1 x > 0.

(4.54)

The procedure to reformulate the second-order surface elevation in terms of the
single-summations Fourier coefficients can also be applied to the second-order kine-
matics. The IFFT of the obtained coefficients then yields the discretized second-
order horizontal velocity and acceleration, as presented in equation 4.55 and 4.58,
respectively, where the single summation Fourier coefficients are represented by
the several Y (2)

j terms:

u(2)(x, z, tq) = �
{

IFFT
[
Y

(2)
u,j

]}
(4.55)

w(2)(x, z, tq) = �
{

IFFT
[
Y

(2)
w,j

]}
(4.56)

u̇(2)(x, z, tq) = �
{

IFFT
[
Y

(2)
u̇,j

]}
(4.57)

ẇ(2)(x, z, tq) = �
{

IFFT
[
Y

(2)
ẇ,j

]}
(4.58)

The formulation of the second-order kinematics completes the single-summation
IFFT description of the wave problem. Using this implementation, the model is
capable of a far more efficient computation compared to the time domain super-
position, without loss of accuracy. Furthermore, the Taylor-expansion model as
described in section 2.6, is used to stretch the kinematics to the free surface. This
model is consistent up to the second order. This concludes the wave kinematics
procedure as illustrated by the flowchart of the model in figure 4.1.
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4.2.3 Wave forces

The kinematics model fully describes the first- and second-order wave motion.
Next, the structural properties come into play when the hydrodynamic forces are
calculated using the Morison equation. This section corresponds to the wave forces
procedure depicted in the flowchart in figure 4.1. The theoretical background on
the Morison equations is provided in section 2.9 but the equation itself is repeated
here for convenience:

dF = 1
4ρCMπD2u̇dz + 1

2ρCDDu|u|dz (4.59)

As discussed, the kinematic terms u and u̇ in equation 4.59 imply the velocity and
acceleration normal to the structural element. As the kinematics model is applied
in the global axis system, a rotation to the element local axis system is required
to calculate the forces on each of the individual jacket members. This axis system
is defined by two rotations: firstly with angle α around the z-axis and secondly
with angle −β around the new y’-axis. The definition of the local axis system is
illustrated in figure 4.2 where the subscripts g and l indicate the global and local
axis system, respectively. The different L terms represent the projected length of
the structural element.

Figure 4.2: Definition of the local axis system.
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The rotation matrix T is defined as follows:

T =

⎡
⎣cos(−β) 0 −sin(−β)

0 1 0
sin(−β) 0 cos(−β)

⎤
⎦
⎡
⎣ cos(α) sin(α) 0
−sin(α) cos(α) 0

0 0 1

⎤
⎦

=

⎡
⎣ cos(α)cos(β) sin(α)cos(β) sin(β)

−sin(α) cos(α) 0
−cos(α)sin(β) −sin(α)sin(β) cos(β)

⎤
⎦

(4.60)

Where α and β are defined as:

α = atan
(
Ly

Lx

)
(4.61)

β = −atan
(
Lz

Lp

)
(4.62)

Hence, based on the start and end coordinates of a structural member, its orienta-
tion can be established and the global kinematics can be expressed in its local axis
system:

Vl =

⎡
⎣ul

vl
wl

⎤
⎦ = T

⎡
⎣ug

vg
wg

⎤
⎦ (4.63)

For a three dimensional member, the Morison equation can be written as:

F = 1
4ρCMπD2V̇l +

1
2ρCDDVnVl (4.64)

Where Vn is the total normal velocity and is the resultant of the velocities along the
local y- and z-axis, vl and wl respectively:

Vn =
√

v2l + w2
l (4.65)

The Morison equation is used to calculate the hydrodynamic force in N/m at a num-
ber of points along the jacket member, defined by the hydrodynamic discretization.
Eventually the forces (and moments) applied on the member need to be translated
to nodal forces in the structural end nodes of the member. This is necessary because
the hydrodynamic forces are applied to the structural nodes of the FE model in the
dynamic simulation. Some steps have to be taken in order to get from the sec-
tional forces in the "hydrodynamic nodes" to forces and moments in the structural
nodes of the member. The sectional forces first need to be interpolated to obtain a
distributed force q(x) along the member. This distributed force is then multiplied
with the shape functions of the structural element Ne

i (x) which describe the trans-
lation into nodal forces and moments. Finally, this new function is integrated along
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the length of the member to obtain the nodal forces and moments, according to
equation 4.66:

f =
n∑

i=1

∫ xi+1

xi

N eT (x)q(x)dx (4.66)

An example of the use of the shape functions is given here by means of a 2D beam
element. The beam element has four DoF, two translations and two rotations, and
can be described by the following set of shape functions:

Ne
1 (x) = 1− 3x2

Le2
+

2x3

Le3

Ne
2 (x) = x− 2x2

Le2
+

x3

Le2

Ne
3 (x) =

3x2

Le2
− 2x3

Le3

Ne
4 (x) =

x3

Le2
− x2

Le

(4.67)

For the choice of interpolation function q(x) the model offers three different op-
tions: quadratic, linear and constant. The three distributions are illustrated in
figure 4.3.

Figure 4.3: Quadratic, linear and constant interpolation of the sectional forces.

The most straightforward method is linear interpolation, where the kinematics and
the sectional forces are calculated in the predefined hydrodynamic nodes. To be
able to describe a quadratic distribution over an element, an additional center point
is required. For the constant distribution, a point force is calculated in the center
of each element, based on the average of the end forces of the element.
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The choice of interpolation function has an influence on the accuracy and the cal-
culation time of the simulation. Where the quadratic distribution yields the most
accurate solution, the constant interpolation performs best in terms of calculation
time. The latter is due to the fact that both the linear and the quadratic method
require an integration over the discretization length while for the constant method
a simple multiplication suffices. The difference in accuracy for the three interpo-
lation methods is presented in figure 4.4. A distinction is made between a fully
submerged member and a member in the splash zone. The considered member has
a length of 10 m, which means for example that the hydrodynamic discretization
length is 1 m when using 10 elements.
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Figure 4.4: Maximum force and moment error for the different interpolation meth-
ods.

It can be seen that, as expected, the quadratic function performs best in terms of
accuracy. The linear and the constant functions provide the same level of accu-
racy. This is because integrating the linearly distributed force over the discretiza-
tion length yields the same result as multiplying the average of the end forces with
that same length. Furthermore, it is observed that maximum error is made for the
moment in the splash zone. This is due to the fact that not only accuracy of the
amplitude of the force but also that of the moment arm is dependent on the dis-
cretization length. The difference in terms of calculation time is illustrated in figure
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4.5 for 6000 time steps (10 min simulation time with Δt = 0.1 s). It can be seen that
the constant method requires the least amount of time, which especially true for
the fully submerged member. As is illustrated in the flowchart of the model (figure
4.1), when a member is fully submerged, the shape function is time-independent
and thus needs to be calculated only once. In combination with the simple multipli-
cation operation of the constant method, this yields a very time-efficient procedure
(figure 4.5b). Due to the fact that shape function is time-dependent in the splash
zone, the difference between the three methods is less pronounced there (figure
4.5a).
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Figure 4.5: Calculation time for the different interpolation methods.

After the multiplication of the shape functions and the distribution function, the
result is integrated according to equation 4.66. This yields the nodal forces and
moments in terms in the element local axis system. Since these forces eventually
have to be applied in the dynamic analysis, the final step is rotate the nodal forces
back the global axis system. This completes the calculation of the wave forces, in
accordance with the third block in the model flow chart (figure 4.1).

4.2.4 Verification

The wave load model is verified using the software USFOS [25]. USFOS does not
have the capabilities to model second-order irregular waves, nor can it use the Tay-
lor expansion method for the kinematics. In order to make a fair comparison, linear
regular waves are used with a vertical extrapolation of the wave kinematics. An ex-
ample is given for a member in the splash zone, inclined along the propagation
direction of the wave as depicted in figure 4.7. Figure 4.6 shows the comparison of
the inertia force in x-direction between the Matlab model and USFOS, both in the
time and in the frequency domain.

The example case uses a hydrodynamic discretization of 1 m and a time step of 0.1
s. It can be seen in figure 4.6a that the time signals match well. An obvious dis-

CONFIDENTIAL



66 4. MODELING AND CASE STUDY

0 1 2 3 4 5
−2

−1

0

1

2

x 10
4

Time (s)

F
or

ce
 (

N
)

 

 

Matlab
USFOS

(a) Time domain.

0 0.5 1 1.5 2
10

0

10
5

Frequency (Hz)

S
pe

ct
ra

l d
en

si
ty

 (
m

2 s)

 

 
Matlab
USFOS

(b) Frequency domain.

Figure 4.6: Inertia force on a inclined member in the splash zone.

crepancy is the zigzag pattern in the USFOS curve where the Matlab model yields
a smooth curve. The zigzag pattern is due to the hydrodynamic discretization of
the member. In USFOS, when the midpoint of an element becomes submerged the
full element is being considered to be subjected to wave loading. This causes a
continuous over- and undershooting of the actual wave forces, where the error be-
comes larger with an increasing hydrodynamic discretization. In the Matlab model,
the first dry node is always put on the free surface such that the wave kinematics
and the corresponding wave forces are calculated exactly up to the surface. An
illustration of the procedure is given in figure 4.7.

(a) Determine location of the surface node. (b) Place the first dry node on the surface.

Figure 4.7: Moving coordinate Matlab model.

The moving coordinate ensures that the wave forces are calculated exactly up to
the free surface which results in the smooth curve shown in figure 4.6a. The use
of a moving coordinate has the advantage that the structural discretization can be
easily enlarged without the introduction of the zigzag error. The fact that this error
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can have an influence on the dynamic response of the structure is illustrated by
figure 4.6b. It can be seen that the zigzag pattern in the time domain introduces
nonphysical effects in the frequency domain. For example, when an artificial force
is introduced near one of the eigenfrequencies of the structure, it can cause an ar-
tificial response.

A verification is also carried out for the complete OC4 jacket structure (see section
4.3.1). The results of this verification in terms of resulting force in x-direction are
presented in appendix C. The figures show that the Matlab model produces the
same results as USFOS, only with a smoother curve. The zigzag pattern is less pro-
nounced for the complete jacket since the total force on the jacket consists also of
many submerged members, for which this effect is not present. It can be concluded
that the Matlab model produces the correct results in terms of linear wave loads.
The implementation of the moving coordinate ensures a smooth and exact repre-
sentation of the forces and allows for a relatively large structural discretization.

4.3 Structural model

This section elaborates on the structural side of the model. First, the structural
properties of the jacket and the tower that are used in the case study (section 4.4)
are discussed in section 4.3.1. Secondly, the procedure how to get from hydrody-
namic forces to stresses in the jacket members is discussed in section 4.3.2. Finally,
the different reduced models that are used in the case study are introduced in sec-
tion 4.3.3.

4.3.1 Jacket and tower model

In order to perform the case study described in section 4.4, a structural model of a
jacket and a wind turbine are required. For the jacket model the "UpWind reference
jacket" is used that was developed for the Offshore Code Collaboration Continua-
tion (OC4) project. The jacket is hereafter referred to as the OC4 jacket and its
detailed design is described in [45]. The tower model is based on the tower of the
Siemens’ 4MW offshore wind turbine, the SWT-4.0-130. The implementation of the
jacket and tower is discussed below.

Jacket
The OC4 jacket is designed for 50 m water depth and has a total height of 68 m.
The structure has four main legs which are interconnected via four bays of cross
bracing. Figure 4.8 shows the OC4 jacket and the member properties are summa-
rized in table 4.1.
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Figure 4.8: OC4 jacket [45].

Property set Component Dout (m) t (mm)

1 (grey) x- and mud braces 0.8 20
2 (red) leg at lowest level 1.2 50
3 (blue) leg 2nd to 4th level 1.2 35
4 (orange) leg crossing TP 1.2 40

Table 4.1: Member properties OC4 jacket [45].

The jacket model implementation is based on [44] where the four legs and the
bracing are modeled in Ansys using linear beam elements. The stiffness of the con-
nection to the sea bed is assumed to be high and is therefore modeled as a rigidly
clamped connection. Because of this assumption, any soil effects are excluded from
the system. On the top side the jacket is connected to the tower via the transition
piece (TP). This is again a rigid connection and the interface to the tower is made
using a 6-DoF coupling. This is the only boundary node of the jacket as is further
explained in section 4.3.3. Marine growth, water inside the free-flooded legs and
added mass are included in the mass model of the jacket in terms of nodal point
masses, as described in [44].

Tower
The SWT-4.0-130 tower has a base diameter of 5.5 m and tapers to a top diameter
of 3.1 m. The total height of the tower is 68.8 m where the RNA is modeled as a
lumped mass. This means that in the simulations no wind loads, controller settings
or other aerodynamic related forces are taken into account. The tower has a 6-DoF
interface at the bottom that corresponds to the interface of the jacket.

Damping is applied to the complete system by means of Rayleigh damping. The
damping is tuned such that the first eigenfrequencies have a damping value of
around 5% logarithmic decrement, corresponding to 0.8% damping ratio. Ap-
pendix B provides an overview of the eigenfrequencies of the complete OWT model
and visualizations of first ten eigenmodes.
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4.3.2 From hydrodynamic forces to member stresses

The geometry of the structure is first used to determine the hydrodynamic forces.
In accordance with the Morison equation, these forces are dependent on the wave
kinematics and the geometrical properties of the jacket members. As no relative
velocity is taken into account, these forces contain no information about the re-
sponse of the jacket. The response is considered separately in a dynamic analysis
where the hydrodynamic forces are applied to the jacket nodes as external forces.
Using the mass, damping and stiffness matrices representing the structural charac-
teristics, the equations of motion are solved for the displacements, velocities and
accelerations:

Mü+Cu̇+Ku = f (4.68)

The Newmark time integration method is used to solve the equations of motion, as
described in appendix F. This eventually yields the structure’s response in the global
axis system. When considering the structural integrity of the system, the stresses
in the structural members are of interest. These stress time signals can then be
expressed in terms of fatigue damage, using rainflow counting and subsequently
applying the S-N curve and the Palmgren-Miner rule. To accurately compute the
fatigue damage in the member, stress concentration factors are required to account
for local stress behavior, e.g. around the welds of the jacket nodes. The actual fa-
tigue damages are important in the design phase of a foundation but to a lesser
extent for the comparative study in this thesis. Therefore only the stresses are con-
sidered in chapter 5, as they provides a more transparent comparison of the two
wave models. The stress time signals are converted to stress range bins using rain-
flow counting to determine the dominant excitation ranges.

To obtain the stress in a jacket member, the internal force vector fe [12 × 1] is
calculated for each time step from the element stiffness matrix Ke [12 × 12] and
the displacements of the end nodes ue [12 × 1]:

fe = Keue (4.69)

The internal force vector contains the time series of the forces and moments in all
three directions for the two end nodes of the member. In order to calculate the
normal stress σxx, the normal force and the resulting bending moment need to
computed. First the resulting moment Mr is calculated according to equation 4.70:

Mr =
√
M2

y +M2
z (4.70)

Also taking into account the normal force Fx, the normal stress is calculated ac-
cording to equation 4.71:
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σxx =
Mrr

Iy
+

Fx

A
(4.71)

Where the area A and the area moment of inertia Iy are given by:

A = π
(
r2o − r2i

)
(4.72)

Iy = 1
4π

(
r4o − r4i

)
(4.73)

Which in turn are defined by the outer diameter ro and inner diameter ri:

ro =
D

2
(4.74)

ri =
D

2
− t (4.75)

The shear stress σxy is dependent on the resultant shear force Fr and the torsional
moment Mx. The resultant shear force is computed as follows:

Fr =
√
F 2
y + F 2

z (4.76)

The shear stress then given by:

σxy =
Mxr

Jx
+

4Fr

3A

r2o + rori + r2i
r2o + r2i

(4.77)

Where the area moment of inertia Jx is given by:

Jx = 1
2π

(
r4o − r4i

)
(4.78)

To capture the total stress in an element, the Von Mises stress can be calculated.
The location along the circumference is of the member where the maximum stress
occurs is not specifically considered. The Von Mises stress can therefore be simpli-
fied according to equation 4.79:

σvm =
1√
2

√
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6σ2

xy + 6σ2
yz + 6σ2

zx

=
1√
2

√
2σ2

xx + 6σ2
xy

(4.79)

The Von Mises stress σvm is the stress that is referred to in chapter 5.
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4.3.3 Reduced models

One of the goals of the thesis is to determine the most optimal reduced model, in
terms of accuracy and computational time. In order to do so, several of the methods
discussed in chapter 3 are applied to the OC4 jacket. Table 4.2 summarizes the
different reduced models that are used in the case study.

Name Method Stat. modes Vib. modes MTAs

CB00 Guyan 6 0 0
CB20 CB 6 20 0
CB10M10 ACB 6 10 10
M20 MTA only 6 0 20

Table 4.2: Reduced models used in the case study.

The reduced models are a combination of static constraint modes, fixed interface
vibration modes and MTAs. The different types of modes are illustrated in ap-
pendix B. Each of the models contains the six static constraint modes, based on
the interface node of the jacket, where the foundation is attached to the tower. As
the CB00 model only contains these modes, this is in fact the Guyan model. The
variation in the use of the other two types of modes is made in order to investigate
the influence and relative importance of spectral and spatial convergence. For the
jacket model, only the top node is considered a boundary node, all other nodes are
internal nodes. As discussed in chapter 3, both the Guyan method and the Craig-
Bampton method, do not take into account any loading on the internal DoF. As
nearly all of the internal DoF of the jacket are subjected to external, hydrodynamic
loading, the Augmented Craig-Bampton method is a promising way to enhance spa-
tial convergence. The models contain only first order MTAs and the assembly of the
foundation model and the tower model is performed using primary assembly.

4.4 Case study

The objective of this thesis consists of two parts. Firstly, the difference in response is
investigated when using a linear or a nonlinear irregular wave model. Secondly, the
performance of several reduced models is compared in terms of spectral and spatial
convergence. In order to be able to perform these tasks, a set of load cases is defined
to which the jacket structure is subjected. The data for this load case table is based
on measurements from a typical project in the German Bight. The data consists of
scatter diagrams (Hs − Tp) for twelve wave directions. In total this would lead to
around 1200 different load cases that need to be considered. It is noted that these
load cases are just wave-only scenarios, in which no wind loading is taken into
account. When wind conditions would also be considered, the variability in wind
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speed, direction and operational settings of the OWT would increase the number
of load cases to over 10.000. This is what is done in the development phase of
an offshore wind farm, but due to time and computational constraints, even the
1200 wave-only load cases can not all be considered in this thesis. Therefore a
simplification of the input data is required. The load case table and the procedure
to obtain it are explained in section 4.4.1. All other input parameters for the case
study are presented in table 4.3.

Description Var. Value Unit

Water depth d 50 m
Water density ρ 1025 kg/m3

Hydrodyn. discr. Δx 1 m
Time step Δt 0.1 s
Simulation time Tsim 600 s
Cut-in frequency ωin 0 rad/s
Cut-out frequency ωout 4·ωp rad/s
Drag coefficient Cd 1 -
Inertia coefficient Cm 2 -

Table 4.3: Input parameters for the case study.

4.4.1 Load case table

As stated before, the input data consists of a scatter diagram for each of the twelve
wave directions, for example as presented in table 4.4. The wave height is pre-
sented in terms of Hm0

but is used here as Hs (see section 2.7.2).

Table 4.4: Scatter diagram for wave direction 330◦.

In order to reduce the number of load cases to manageable proportions, a weighed
average Tp is calculated for each Hs bin. This procedure reduces each of the twelve
scatter diagrams to just a single load case per Hs. This method is hereafter referred
to as the weighted Tp method. Applying this method to all directions yields a load
case table of manageable proportions. Since the significant wave height data is
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provided in bins of 0.5 m, every two bins are assigned that same value for Tp. This
leads to the simplified load case table as presented in table 4.5. The values in the
table represent the weighted Tp and the cell color indicates the relative occurrence
of each sea state.

Table 4.5: Simplified load case table for the case study: values represent
weighted Tp and color indicates the relative occurrence.

Now that the both the significant wave heights and corresponding peak periods are
defined, only one parameter is missing as an input to the JONSWAP spectrum; the
peak enhancement factor γ. This factor can be calculated as a function of Hs and
Tp according to equation 4.80.

γ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

5 for
Tp√
Hs

≤ 3.6

exp

(
5.75− 1.15

Tp√
Hs

)
for 3.6 <

Tp√
Hs

≤ 5

1 for 5 <
Tp√
Hs

(4.80)

With values for γ calculated, JONSWAP spectra can be created for each of the load
cases. The load case table is used for both the comparison between the linear and
nonlinear wave models (chapter 5), as well as for the performance analysis of the
reduced models (chapter 6). Three different seeds are used for each of the Hs −Tp

combinations in order to improve statistical stability while maintaining a manage-
able number of load cases. No current is taken into account in any of the load cases.
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A verification of the weighted Tp procedure is provided in appendix D. There the
response triggered by the weighted Tp load case is compared to a weighted re-
sponse of all individual load cases for two Hs bins. It is found that the weighted
Tp case can yield a significantly different response in an absolute sense. However,
the method seems to approximate the ratio of the stresses induced by the nonlin-
ear wave model over the linear wave model relatively well. As the objective of the
thesis is comparative by nature, the weighted Tp approach is assumed to be a valid
simplification. The influence of this approach is only checked in terms of the wave
model comparison as it is assumed that the model reduction study is not affected.
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5
Results: linear vs. nonlinear waves

5.1 Introduction

The first objective of this thesis is treated in this chapter, i.e. determining the in-
fluence on jacket response of using a nonlinear wave model compared to a linear
model. This influence is quantified on several levels. In section 5.2 the total stress
in each of the individual members is calculated based on the load case table pre-
sented in section 4.4.1. This analysis determines the contribution of the nonlinear
waves in terms of local effects. The nonlinear contributions are also examined on a
more global scale in terms of the energy in the complete system. The comparison is
carried out for the OWT model with a first eigenfrequency of 0.38 Hz and 5% log-
arithmic decrement damping. In order to check the sensitivity of the results, two
sensitivity studies are carried out which are discussed in section 5.3. The damp-
ing sensitivity is analyzed by creating a structural model of which the logarithmic
damping is enlarged from 5% to 30%. The sensitivity in terms of the eigenfre-
quency of the OWT is also considered. A second alternative model is created by
adjusting the stiffness matrix of the jacket. This causes the eigenfrequency of the
complete OWT system to be scaled down from 0.38 Hz to 0.28 Hz. The conclusions
of this chapter are finally summarized in section 5.4.

5.2 Stress in jacket members

This section elaborates on the stresses in the jacket members. As discussed in sec-
tion 4.3.2, the stresses here are presented in terms of Von Mises stress. Figure
5.1 illustrates the vertical stress distribution over the jacket. Figure 5.1b shows
three focus members of the OC4 jacket that correspond to red bars in the figures
on either side of it. The figure on the left side (5.1a) represents the normalized
total stress distribution over the jacket members. This is obtained by calculating
the stress in each member for all load cases in the load case table. Consequently,

75



76 5. RESULTS: LINEAR VS. NONLINEAR WAVES

rainflow counting is performed on the stress signal and the stress range bins are
simply multiplied by their number of occurrence and summed. The total stresses
per load case are then weighted based on their relative occurrence in the load case
table. This yields a total stress per member which is finally normalized to stress of
the heaviest loaded member. The figure on the right hand side (5.1c) shows the
ratio of the total stress induced by the nonlinear model with respect to the linear
model.
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Normalized total stress
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(a) Normalized weighted total
stress.

(b) Focus mem-
bers [25].

6 4 2 0
Total stress increase (%)

(c) Stress increase from non-
linear wave model.

Figure 5.1: Vertical stress distribution over jacket members.

In figure 5.1a it can be observed that the bottom part of one of the legs is the
heaviest loaded member (3). The second heaviest loaded member is located half
way down the jacket in the same leg (2). When looking at the stress ratios (figure
5.1c) it can be seen that the stress increase for these members is relatively low, i.e.
the leg members experience a 2 to 3% stress increase. The nonlinear contribution
increases when moving towards the splash zone. The highest ratio is found in one
the cross bracings (1). In turn, the member with the highest ratio turns out to only
have a minor contribution in terms of the total stress. To gain some more insight
into how these stress levels are build up, focus member 3 is further analyzed below.
Figure 5.2 shows the weighted number of occurrence of all stress bins, for both the
linear and the nonlinear wave model.
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(a) Stress ranges from 0 to 2 · 105 Pa.
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(b) Stress ranges from 6 to 8 · 105 Pa.

Figure 5.2: Weighted occurrence of stress ranges for focus member 3.

From figure 5.2a it can be seen that the difference between the linear and the non-
linear loading is most pronounced in the lower stress ranges. In the higher stress
ranges the difference is harder to quantify as a small increase in the stress range
will cause that specific occurrence to jump to the next stress bin. This explains the
ambivalent pattern shown in figure 5.2b. The stress increase in the lower stress re-
gions might be attributed to the sum frequency effect in the nonlinear waves. This
effect generates high frequent, small amplitude waves which in turn cause stress
with a similar properties.

The results presented so far are in terms of total stress, weighted over all load cases.
This gives a good indication of global stress distribution in the jacket. In order to
analyze the stress behavior in a single member, the stress in focus member 2 is
considered separately. To also distinguish between the contributions of different
load cases, three sea states are considered with varying values for the peak period.
The load cases correspond to the cases considered in the verification of the load
cases table (Hs = 1.5 m), presented in appendix D. A spectral analysis is performed
on the member stresses in focus member 2, which is presented in figure 5.3a. The
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corresponding linear wave spectra are shown in figure 5.3b.
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(a) Stress in focus member 2.
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(b) Linear wave spectra.

Figure 5.3: Stress in focus member 2, induced by different sea states (Hs = 1.5 m).

This comparison is made to demonstrate that the different sea states trigger a dif-
ferent response in the jacket members. The peak period of the wave spectrum with
Tp = 4.5 s is relatively close the first two eigenfrequencies of jacket. It is observed
that a large response is triggered around the first two eigenfrequencies and even
around the third and fourth eigenfrequency some response is present. The wave
spectrum with Tp = 9.1 s displays only a minor response around the first two eigen-
frequencies. For the case with a peak period of 14.5 s no stress is induced around
the eigenfrequencies of the structure and only around the frequencies of the wave
spectrum some response is triggered. The comparison is only shown for the linear
wave spectra as these load cases have a very low amount of nonlinearity.

Another global measure to compare the two wave models is in terms of the poten-
tial and kinetic energy in the system. The potential energy represents the global
deformation energy in the system and is a function of displacement and stiffness.
The kinetic energy in the system indicates the level of dynamic response and is a
function of velocity and mass. A low amount of kinetic energy thus points to a
quasi-static response. In a fully resonant response the potential and kinetic energy
are continuously exchanged (not taking damping into account). The potential and
kinetic energy are calculated according to equation 5.1 and 5.2, respectively:

Ep = 1
2q

TKq (5.1)

Ek = 1
2v

TMv (5.2)
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Figure 5.4 shows a time window around the maximum kinetic energy, induced by
the highest sea state in the load case table (Hs = 10.25 m, Tp = 11.50 s). The
energies are normalized with respect to maximum energy in the linear time series
(t = 52 s). It can be seen that the nonlinear waves have a significant contribution
to the kinetic energy in the system and thus trigger more dynamic effects than the
linear model. On average over this time window, the energy induced by the nonlin-
ear model is a factor 2.73 larger than that of the linear model. The highest sea state
in the load case table is selected to clearly demonstrate the relative difference be-
tween the two wave models. For lower sea states the effect will be less pronounced,
but still present.
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Figure 5.4: Maximum kinetic energy induced by the highest sea state (Hs = 10.25
m, Tp = 11.50 s), normalized with respect to the maximum linear energy (t = 520
s).

5.3 Sensitivity study

The results obtained in the previous section are checked here for sensitivity in terms
of the eigenfrequency and the damping. In order to do so, two new structural mod-
els are created. For the first model the stiffness of the jacket foundation is scaled
back to 37% of its reference stiffness to reduce the eigenfrequency of the complete
structural model from 0.38 Hz to 0.28 Hz. This model is hereafter referred to as the
frequency model. For the second model the frequency content remains unchanged
but the damping value is increased 5% logarithmic decrement to 30% for the first
two modes. This is done to simulate the aerodynamic damping that is generated by
the rotor in operating conditions. This model is hereafter referred to as the damp-
ing model. Both models are subjected to the same set of wave loads as the reference
model in section 5.2. The results are compared in terms of total stress and the ratio
of the stresses, as well as the amount of energy in the system. Figure 5.5 shows
the weighted nonlinear stress for all three models, normalized with respect to the
maximum value of the reference model (figure 5.5a).
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(c) Damping model.

Figure 5.5: Total nonlinear stress normalized on the maximum value in figure 5.5a.

It can be clearly seen that the frequency model has the to endure the largest
stresses. On average the stress is increased with about 400% compared to the
reference model. The large spikes correspond to the leg members of the jacket.
A similar distribution can be observed for the reference model and the damping,
however significantly smaller in amplitude. It is noted that the results in figure
5.5a are the same as the data presented in figure 5.1a. Where the difference be-
tween the reference model and the frequency model is very large, the difference
with the damping model is only small. Both observations can be explained based
on the physical changes that the model adjustments imply. Due to the lowering of
the eigenfrequencies of the frequency model its response spectrum moves more to-
wards the wave spectrum by which the structure is excited. This causes significantly
higher response than for the reference model, subjected to the same loading. The
damping model has the same frequency content as the reference model but only ex-
periences a higher damping of the response in the first two eigenmodes. The stress
in the jacket members is on average around 20% lower for the damping model.

Figure 5.6 shows the difference between the three models but now in terms of the
increase in stress due to the use of the nonlinear wave model compared to the
linear wave model. It is noted that the results presented in figure 5.6a represent
the same data as 5.1c. Figure 5.6b shows the results for the frequency model and
figure 5.6c represents the data for the damping model.
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Figure 5.6: Stress increase of nonlinear wave model compared to the linear model.

It can be seen that the damping model yields the highest stress increase for the
use of the nonlinear wave model. While the absolute stress significantly increased
for the frequency model, the ratio of the nonlinear model over the linear model
demonstrates a small decrease compared to the reference model. Further inspec-
tion of the response of the frequency model shows that, since the response to the
linear waves increased so much, the second-order contribution becomes less pro-
nounced and therefore shows a relatively smaller stress increase. The damping
model demonstrates an increase in the nonlinear contribution with respect to the
reference model. This can be explained by the fact that added damping is applied
two the first two eigenmodes, which are closest to the linear wave spectrum. Since
the response that is excited by the linear spectrum experiences a relatively higher
damping, the nonlinear waves will naturally have a larger contribution.

Similar to the previous section, the different models are also compared in terms
of kinetic energy in the system. Figure 5.7 provides an overview of the linear and
nonlinear kinetic energy for the three models. It is noted that figure 5.7a is the same
as figure 5.4, but it is repeated here in order to make a clear comparison between
the models. The values of the other two figures are normalized with respect to the
maximum value of the linear kinetic energy in the reference model.
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(a) Reference model (average increase factor 2.73).
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(b) Frequency model (average increase factor 1.85).
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(c) Damping model (average increase factor 2.30).

Figure 5.7: Maximum kinetic energy induced by the highest sea state (Hs = 10.25
m, Tp = 11.50 s), normalized with respect to the maximum linear energy for the
reference model (figure 5.7a).

The conclusions that can be drawn from figure 5.7 correspond well to conclusions
based on the stress in the jacket members. First of all, it is noticed that the fre-
quency model experiences a significantly higher kinetic energy than the reference
model in an absolute sense. However, the ratio between the nonlinear and the
linear energy again turns out to be smaller for the frequency model. Considering
figure 5.7c, the influence of the increased damping is clearly illustrated by the be-
havior of the kinetic energy. Not only are the absolute values lower than in the
reference case, also the amount of cycles for the kinetic energy to damp out is
considerably less. For this specific case the average factor by which the energy is
increased by the nonlinear model is slightly smaller than for the reference model.
Concluding, the stress in the jacket members and the kinetic energy in the com-
plete system generally demonstrate the same trends, both in absolute terms and in
relative terms.
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The two wave models are not only compared in terms of the response that they
trigger, but also in terms of calculation time. In order to determine the difference,
a number of runs is performed using the two models. In relation to the flowchart in
figure 4.1, these runs include the whole process except for the dynamic simulation.
A simulation time of Tsim = 600 s is used with a time step of Δt = 0.1 s. The
average calculation time Tc for the two models is presented in table 5.1:

Model Tc (s)

Linear 110
Nonlinear 200

Table 5.1: Average calculation times for linear and nonlinear wave model.

It can be seen that the nonlinear wave model causes a significant increase in the
calculation time of the wave loads. However, this increase should not be considered
by itself as the generation of the wave loads is only part of the calculation routine
to determine the structure’s response. Rather, the increase should be considered
in terms of the combined calculation time of the wave load generation and the
dynamic simulation. The calculation times of the dynamic simulation are discussed
in chapter 6 and a final comparison is made in chapter 7.

5.4 Conclusions

The influence of the nonlinear wave model is compared to the linear wave model
in terms of the total, weighted stress in the jacket members and energy in the
complete system. For the reference model the following conclusions can be drawn
based on section 5.2:

• Depending on the location of the member, the stress due to the nonlinear
wave model can be 1% to 6% higher than for the linear wave model.

• The difference between the linear and the nonlinear wave model is most pro-
nounced in the splash zone.

• When considering a single member, the stress increase is most pronounced in
the lower stress ranges.

• The nonlinear wave model triggers more dynamic response than the linear
wave model.

Furthermore, it is demonstrated that the Tp value of a sea state has a large influ-
ence on the response in the jacket members. In section 5.3 a sensitivity study is
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performed to check the influence of the eigenfrequency and the damping on the
results obtained in section 5.2. The most important conclusions of the sensitivity
study can be summarized as follows:

• Moving the structure’s eigenfrequency towards the peak frequency of the
wave spectrum significantly increases the stress in the members (on average
400%).

• Increasing the damping of the structure decreases the stress in the members
(on average 20%).

• The damping model experiences the highest stress increase when using the
nonlinear wave model compared to the linear wave model.

• Despite the strong increase in absolute terms, the relative contribution of the
nonlinear waves becomes smaller for the frequency model.

• Increasing the damping on the first two modes causes a relatively higher con-
tribution of the nonlinear wave model.

• The conclusions that are drawn based on the stress in the jacket members and
the energy in the complete system are in good agreement with each other.

It is noted that the comparison is conducted for wave-only load cases. When wind
loading is included the difference between the two wave models is expected to be
less pronounced.
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6
Results: Model reduction

6.1 Introduction

In this chapter the performance of the reduced models is presented and discussed.
The goal here is to establish a link between the wave loading on the one hand, and
the model reduction strategy on the other. Does different wave loading require a
different (type of) reduced model? And if so, what would be an optimal model
reduction strategy to accurately and efficiently handle a complete set of load cases?
In order to answer these questions, nonlinear wave loads are calculated based on
the load case table presented in section 4.4.1, and consequently a dynamic analysis
is carried out using four different types of reduced models. As introduced in sec-
tion 4.3.3, a Guyan model (CB00), a Craig-Bampton model (CB20), an Augmented
Craig-Bampton model (CB10M10) and a MTA-only model (M20) are initially used
and compared in terms of spectral and spatial convergence. The results of this com-
parative study are presented in section 6.2. In that same section different variants
of the CB10M10 and M20 model are proposed with the objective to define a more
generic reduced model.

Section 6.3 investigates the energy distribution over the included modes in the
reduction basis for the CB10M10 models. As all results presented in section 6.2
and 6.3 are based on wave-only load cases, a sensitivity study of the effects of
wind loads is discussed in section 6.4. The influence is measured both in terms of
the overall model performance as well as the energy distribution over the different
modes. Finally, the most important conclusions of this chapter are summarized in
section 6.5.
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86 6. RESULTS: MODEL REDUCTION

6.2 Model comparison

The four main models as described in the introduction of this chapter are used
to calculate the response of the complete OWT for the full loads case table. The
performance of the models is compared in terms of their spectral and spatial con-
vergence. The first is measured in terms of the error on the eigenfrequency of the
system, the latter in terms of the error in the potential energy. The results of this
comparison are presented in section 6.2.1. In the quest of a reduced model that is
more generically applicable, several alternatives are compared in section 6.2.2.

6.2.1 Main models

The main models are first compared in terms of spectral convergence. This is done
by calculating the eigenfrequencies of the complete OWT model, both with the full
model as well as with the reduced models. The difference compared to the full
model is plotted in figure 6.1.
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Figure 6.1: Relative error on the eigenfrequencies of the OWT.

It can be seen that the two models that include the fixed interface vibration mode
shape (CB20 and CB10M10) have a significantly higher spectral convergence than
the models without these mode shapes (CB00 and M20). This can be explained by
the fact that the latter two models do not contain any dynamic information that is
based on the structural properties of the jacket. These models are only accurate to
a frequency of around 2.5 Hz after which the error becomes larger than 1%. The
CB10M10 model provides accurate spectral information up to 6 Hz and the CB20
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model even up to 8 Hz. Some very small errors are illustrated by the clear spikes in
the green and the pink curve between 4 and 8 Hz. The corresponding frequencies
turn out to only trigger localized effects in the jacket, which can be very well de-
scribed by certain fixed interface vibration modes that are included in the reduction
basis. This is illustrated by comparing the eigenfrequencies of the complete OWT
with those of the fixed interface vibration modes. For example, the 11th and the
17th mode of the complete system have exactly the same eigenfrequency as the 3rd

and the 9th fixed interface vibration mode, respectively.

It is remarked that the errors illustrated in figure 6.1 do not tell the whole story
about accuracy of the response. Firstly, the errors should always be considered in
combination with the forcing characteristics. For example when considering wave-
only loads, the excitation frequencies can be found in the range of 0.05 to 0.5
Hz. When considering the frequency errors from this perspective, all four models
demonstrate a good spectral convergence in this frequency range. Secondly, as il-
lustrated in section 4.3.3, spectral convergence is only part of the story. In order
to investigate the performance of the models in terms of spatial convergence, the
response of the OWT is calculated for the full load case table using all four reduced
models. For each of the load cases the potential energy is calculated, which repre-
sents the deformation energy captured in the system. From the time series of the
potential energy the mean and the standard deviation of the signal is computed and
the errors with respect to the full model are plotted in figure 6.2a and 6.2b, respec-
tively. The error on the mean of the potential energy refers to the model’s ability to
represent the mean deformation, whereas the standard deviation is a measure to
indicate the model’s performance in terms of representing the oscillatory nature of
the external force, establishing a link to the fatigue loads.
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(b) Error standard deviation potential energy.

Figure 6.2: Potential energy errors for all load cases for different reduced models.
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Figure 6.2a and 6.2b both show the same trend: the CB00 and the CB20 model
show relatively large errors while the CB10M10 and M20 models hardly show any
error at all. These figures clearly demonstrate the value of using MTAs. Where
the fixed interface vibration modes are the main driver for obtaining a good spec-
tral convergence, the MTAs clearly have a valuable contribution when it comes to
spatial convergence. The positive effect of the MTAs was to be expected as they
are especially designed for the purpose of allowing the structure to deform in a
specific load-induced shape. However, the almost negligible level of error of the
models including MTAs in the reduction basis is remarkable. This can be seen as a
clear illustration of the main drawback of the Guyan and the CB-only models and
the main advantage of the use of MTAs, i.e. the representation of an external force
on the internal DoF. Due to the fact that nearly all jacket DoF are considered as
internal DoF (only the top DoF are boundary DoF), while most of these DoF are
exposed to external, hydrodynamic loading, make the MTAs specifically valuable in
the model reduction of a jacket structure.

Similar to the linear and nonlinear wave model, the calculation times of the reduced
structural models is also considered. Referring back to the flowchart in figure 4.1,
only the dynamic simulation is considered here. In order to determine the gain in
calculation time, a number of simulations is performed using the software package
BHawC. The simulations are run for a simulation time of Tsim = 600 s, using a time
step of Δt = 0.02 s. No distinction is made between the different types of reduced
model as all nearly have the same size relative to the full model. The results are
presented in table 6.1:

Model DoF Tc (min)

Full 1300 250
Reduced 400 30

Table 6.1: Average calculation times for full and reduced model.

The values of the calculation time Tc in table 6.1 demonstrate the power of the
reduced models. The dynamic simulation is performed nearly ten times faster using
a reduced model compared to a full model. As shown before, the price to pay for
this significant time reduction is very small, i.e. the CB10M10 and M20 models
display an almost negligible error. These results establish that the use of reduced
models not only causes a large gain in computational efficiency, but achieves this
while guaranteeing a high level of accuracy.
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6.2.2 Generic model

For the CB10M10 and the M20 models described in the previous section, the MTAs
were calculated based on the applied force for each specific load case. This means
that, when considering all 489 load cases in the load case table (169 cases times
3 seeds) one ends up with 489 different reduced models. Despite the fact that
these specifically designed models clearly provide the highest level of accuracy, the
computational time of all the sets of MTAs and obvious bookkeeping issues provide
certain drawbacks to this model reduction strategy. Therefore, in this section sev-
eral other strategies are investigated to find a more generically applicable reduced
model.

In order to end up with a smaller amount of reduced models, a number methods is
considered in which several load cases are clustered. In the case where the MTAs
are calculated for each specific load case, the POD technique (see appendix E) is
applied to the force vectors of that specific case. In the different clustering methods
the snapshot matrices of the hydrodynamic force of the considered load cases are
first normalized. Next, they are concatenated in time such that the matrix to which
the POD is applied covers multiple load cases. The MTAs obtained using this strat-
egy thus contain the dominant modes triggered by a combination of load cases. The
clustering is performed for three different scenarios, namely per direction (dir), per
significant wave height bin (hs) and for all load cases combined (tot). The perfor-
mance of these models is compared to that of the models designed for each specific
(spec) load case. Table 6.2 provides an overview of the number of reduced models
using each of these strategies. It is noted that the difference in terms of calculation
time to obtain the different models is negligible.

Model Clustering # models

spec N.A. 489
dir per direction 12
hs per Hs bin 11
tot all load cases 1

Table 6.2: Different reduced models strategies.

The above mentioned clustering strategies are implemented in the two models con-
taining the MTAs: CB10M10 and M20. Again, the response for all load cases is
calculated using these reduced models and the results in terms of the error in mean
and the standard deviation of the potential energy are plotted in figure 6.3a and
6.3b, respectively. It is noted that the CB10M10spec and M20spec models in figure
6.3 represent the same data as CB10M10 and M20 in figure 6.2.
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Figure 6.3: Potential energy errors for all load cases for different realizations of the
CB10M10 and M20 models.

Based on figure 6.3 a number of observations can be made:

• All models perform relatively well. For all load cases all models provide an
error smaller than 1%, both in terms of the mean and the standard deviation
of the potential energy.

• For both model types (CB10M10 and M20) the same trend can be observed:
the specific model performs best, the dir models performs better than the hs
models, which in turn performs better than the tot models. The reason that
the dir models provide the best alternative to the spec models can be found
in the fact that loading from the same direction will generally deform the
structure in the same direction, whereas the MTAs in the hs models need to
be able to describe deformations from all directions. For the single tot model
it is obviously an even bigger challenge to accurately represent every single
load case.

• The M20 models perform slightly better than the CB10M10 models. Including
ten more MTAs thus improves the spatial convergence more than including
ten fixed interface vibration modes.
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Judging from the final conclusion one might wonder why to use fixed interface
vibration modes at all. However, it is remarked that the load cases considered here
only include wave loading, and no wind loading is taken into account. As discussed
in section 6.2.1, the performance of a reduced model in terms of spectral and spatial
convergence strongly depends on the forcing characteristics. Due to the relative
low frequency content of the wave forces, the corresponding low frequency range
is effectively the only region where the models are tested. As figure 6.1 illustrated,
in the low frequency region all models have a relatively good spectral convergence.
From figure 6.2 and 6.3 it became apparent that for that frequency range the spatial
convergence is dominant when it comes to overall accuracy. When wind loading is
included the system is subjected to forces containing a higher spectral content, such
as for example around the blade passing frequency. In section 6.4 it is investigated
whether the same conclusions can be drawn in terms of model accuracy when the
load cases also include wind loading.

6.3 Modal contribution

In section 6.2 both the fixed interface vibration modes and the MTAs have demon-
strated their value. In this section the CB10M10 model is decomposed in order
to gain more insight in which of the specific modes within the reduced model is
contributing most. To do so, a low, medium and high wave-only load case is se-
lected and consequently the mean potential energy per mode is calculated. This is
done by reducing the stiffness matrix K with only a single mode (i) from the re-
duction basis R and then pre- and post-multiplying that with corresponding modal
amplitude qi (equation 6.1).

Epi(t) = qi(t)R
T
i KRi qi(t) (6.1)

Once the time signals of the potential energy per mode are obtained, the mean
energy per mode is calculated and the values are normalized. The results for the
low, medium and high wave-only (W-O) load cases can be observed in figure 6.4.
The first ten modes represent the fixed interface vibration modes (blue), the last
ten modes represent the MTAs (red).
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(a) Low sea state: Hs = 0.75 m, Tp = 6.34 s.
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(b) Medium sea state: Hs = 4.25 m, Tp = 9.25 s.
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(c) High sea state: Hs = 8.25 m, Tp = 11.50 s.

Figure 6.4: Normalized potential energy per CB10M10 mode (wave-only loading).

Some interesting observations can be made when considering the differences in
energy distribution for the three sea states. For the low sea state, almost all energy
is absorbed by the first MTA mode. This could be explained by the fact that for this
sea state little global response of the structure is triggered and that most deforma-
tion, however small, takes place on a local scale. As the sea state increases more
potential energy is captured by the CB modes. Especially looking at figure 6.4c, the
transition of the energy from the MTAs to the CB modes is clearly visible. Following
the same rationale, the high sea state has more impact on a global scale and the CB
modes therefore can offer a larger contribution in the description of the response
shapes.
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Also, as the sea state increases, the energy captured by the MTAs becomes more
distributed over several modes instead of only the single mode for the low sea
state. The higher the significant wave height becomes, the larger the spreading
becomes in terms of instantaneous surface elevation. Consequently, it is logical that
more load-dependent shapes are required to capture the response triggered by the
increasingly diverse loading. The same behavior can be observed when considering
figure 6.5.
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Figure 6.5: Cumulative energy captured by the first ten MTAs for the different sea
states.

The curves in figure 6.5 represent the cumulative proper orthogonal values (POVs)
of the first ten MTAs, corresponding the low, medium and high sea state. As ex-
plained in appendix E, the POVs indicate how much energy the corresponding
POM captures. Figure 6.5 demonstrates that for a low sea state, almost all en-
ergy is captured by the first POM/MTA and the other nine modes hardly have any
contribution. In the case of the high sea state the first mode captures around 87%
of the energy and the next couple of modes still provide a significant contribution.
The difference between the energies illustrated by figures 6.4 and 6.5, is that the
first describes the potential energy captured in the dynamic simulation whereas the
latter is solely based on the POVs of the external force and is thus independent of
the structure. Since the two methods indicate the same trend, the development
of a certain procedure could be considered where based on the POVs, a minimum
number of MTAs is determined per load case before each dynamic simulation. Us-
ing this procedure, the reduced model size can be optimized in terms of accuracy
and calculation time, for each specific load case.
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6.4 Wind load sensitivity

In section 6.2 the performance of the different reduced models was based on wave-
only load cases. In this section also wind loading is included while using the same
load case table in terms of wave loading. The same wind loading is applied to all
load cases. This is not a realistic scenario due to the correlation between wind
speed and wave height. In order to obtain correct values for the loading in an ab-
solute sense it would be required to apply a dedicated wind load corresponding to
each of the sea states. However, as the current study is a sensitivity analysis for the
performance of the reduced models, only a single wind load case is considered. The
wind loading is calculated for the rated wind speed, thereby subjecting the tower
to the maximum trust force, and is applied as a point force to the tower top.

In this section only the CB10M10 and M20 models are considered. The results
for both the wave-only (W-O) cases as well as the wave-wind (W-W) cases are
provided in figure 6.6a and 6.6b, respectively. Again, it is noted that the results
for the CB10M10 W-O and M20 W-O are the same as the results initially shown in
figure 6.2 for CB10M10 and M20.
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(a) Error mean potential energy.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

CB10M10 W−O M20 W−O CB10M10 W−W M20 W−W

E
rr

or
 (

%
)

(b) Error standard deviation potential energy.

Figure 6.6: Potential energy errors comparison for wave-only (W-O) cases and wave-
wind (W-W) cases.
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An interesting observation that can be made based on figure 6.6, is that where
M20 models performed better for wave-only loads, the CB10M10 models perform
better for the wave-wind load cases. The reason for this can be found in the fact
that the wind loads are introduced into the jacket through the interface node with
the tower. The deformation shapes corresponding to this type of loading are more
likely to be well represented by the CB modes (mainly global behavior) than by
the MTAs (mainly local behavior). Also, since the wind loading contains more high
frequent components, the difference in spectral convergence between the CB10M10
and the M20 models will play a more important role too. Figure 6.7 shows the
distribution of the potential energy over the different CB10M10 modes, for the
same low, medium and high load case as in figure 6.4.
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(a) Low sea state: Hs = 0.75 m, Tp = 6.34 s.
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(b) Medium sea state: Hs = 4.25 m, Tp = 9.25 s.
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(c) High sea state: Hs = 8.25 m, Tp = 11.50 s.

Figure 6.7: Normalized potential energy per CB10M10 mode (wave-wind loading).
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It can be seen that energy captured by the MTAs remains almost the same compared
to the wave-only cases, but the CB modes represent a relatively higher part of the
energy. The influence is largest for the low sea state, which can be explained by
the fact that the same wind load will have a relative larger contribution on the
low sea state case. The higher contribution of the CB modes corresponds to the
increased accuracy of the CB10M10 model, as was illustrated by figure 6.6. Next to
the extra energy in the CB modes, it is also likely that a lot of the extra energy due
to the wind load is captured by the Guyan modes. Despite the fact that they do not
contain any dynamic information, the Guyan modes should be able to reasonably
well represent the response due to the mean trust force.

6.5 Conclusions

A number interesting findings have been done in the previous sections, both in
terms of accuracy and computational efficiency of the reduced models. The most
important conclusions are summarized as follows:

• Including fixed interface vibration modes significantly increases the spectral
convergence of the reduced model.

• Including MTAs significantly increases the spatial convergence of the reduced
model.

• Spatial convergence proves to be dominating for the wave-only cases, thereby
making the M20 models the most accurate.

• Using a reduced model decreases the computational time nearly with a factor
10 compared to the full model.

• When wind loading is included, the features of the fixed interface vibration
modes become more attractive and the CB10M10 model is the most accurate.

• In terms of energy distribution over the individual modes: for low sea states
the MTAs almost carry all energy, for higher sea states the CB modes become
more important.

• All models containing MTAs provide a high level of accuracy. Depending on
the allowable error, the tot model provides an attractive alternative to the spec
models.

Overall it can be concluded that when a reduced model is carefully assembled, it
can lead to a very significant reduction in computational time with a negligible loss
of accuracy.
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7
Conclusions and recommendations

7.1 Introduction

The overall goal of this thesis is to build a bridge between the fields of wave mod-
eling and structural modeling. In order to do so in an efficient manner, this broad
statement was delimited in terms of the thesis objective, as presented in section 1.4:

Develop an efficient, integrated calculation strategy for the dynamic fatigue load
analysis of a jacket-based OWT subjected to nonlinear irregular wave loading.

This objective was subsequently split up into the two following main tasks:

1. Implement a second-order irregular wave model for a jacket foundation and
examine the difference with respect to a linear model.

2. Investigate model reduction techniques and develop an efficient application
for the load analysis of an OWT.

This subdivision was made as both topics first required an in-depth analysis before
being able to establish the relation between the two. In this final chapter the most
important findings are summarized and used to determine to what extent the thesis
objective is fulfilled.

7.2 Conclusions

The conclusions presented here are in accordance with the setup of the thesis:
firstly the impact of the nonlinear wave model is discussed, secondly the findings
regarding the reduced models are addressed. Finally, the relation between the two
disciplines is established in relation to the thesis objective.
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7.2.1 Linear vs. nonlinear wave model

A case study was performed using a typical site in the German Bight. The linear and
nonlinear wave model were compared in terms of member stresses and energy in
the complete system. For a weighted summation of the response of all load cases,
it was found that the stresses in the members increase by 1% to 6% when using the
nonlinear wave model. The increase is dependent on the member location and is
most pronounced near the splash zone. Considering the kinetic energy in the sys-
tem, the nonlinear wave model demonstrated a significant increase in the dynamic
response of the structure.

A sensitivity study showed that the eigenfrequencies and the damping of the struc-
ture play an important role in determining the response of the structure, both in
absolute terms as well as in relative (nonlinear vs. linear) terms. Despite the fact
that the results from the case study are clearly site- and structure-dependent, it
can be concluded that the nonlinear wave model contributes significantly to the re-
sponse of the structure. The increase in computational time of the nonlinear model
(Tc = 200 s) is relatively large compared to the linear model (Tc = 110 s), but the
overall impact is small in relation to the subsequent dynamic response simulation
(Tc = 30 min). It is therefore concluded that, for the sake of accuracy, the nonlinear
wave model should be used instead of the linear model in the fatigue load analysis
of a jacket-based offshore wind turbine.

7.2.2 Reduced model comparison

In the comparison of the reduced models, all models were subjected to nonlinear
wave loading based on the load case table. The response to these load cases was
calculated for the different reduced models and their performance was evaluated
in terms of spectral and spatial convergence. It was established that the addition
of fixed interface vibration modes significantly improves the spectral convergence,
compared to a reduced model only containing static constraint modes (CB00).
However, only including fixed interface vibration modes (CB20) still yielded a rel-
atively large error in terms of potential energy in the system.

This problem was overcome by increasing the spatial convergence through the in-
clusion of Modal Truncation Augmentation vectors. Both models including these
MTAs (CB10M10 and M20) demonstrated very small errors (max. 0.08%) in terms
of potential energy compared to the full model. By clustering the load cases it
was found that even a single reduced model (tot) yielded only a small error (max.
1%). In order to accurately describe the response to the relatively broad loading
spectrum of wave and wind loading, it is concluded that the reduced model should
include both fixed interface vibration modes and MTAs.
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The great added value of the use of reduced models was exposed when considering
the calculation time of the dynamic simulation. An average sized reduced model
(± 400 DoF) is able to perform the dynamic analysis nearly ten times quicker than
the full model (± 1300 DoF). When the reduced model is carefully composed, this
substantial time reduction does not come at the price of a significant loss of accu-
racy.

Summarizing the findings above, it is concluded that the thesis objective is ful-
filled. The nonlinear irregular wave model has been successfully implemented and
its influence has been compared to the linear model. Furthermore, a strategy has
been developed to compose an accurate and efficient reduced model, tailored to
the specific external loading. Together these tools provide an efficient, integrated
calculation strategy for the dynamic fatigue load analysis of a jacket-based OWT sub-
jected to nonlinear irregular wave loading.

7.3 Recommendations

Two categories of recommendation are made based on the work performed in this
thesis. The first category focuses on the simplifications that were made and what to
do differently when performing a complete load analysis. The second category con-
sists of recommendations regarding further development of the model and general
ideas regarding future work.

7.3.1 Complete load analysis

• Use a full load case table
Due to time constraints, the load case table used in the case study was based
on a weighted Tp. As was illustrated in appendix D, this method can intro-
duce large errors in terms of the absolute stresses. When performing a full
stress analysis all specific Hs−Tp combinations need to be considered, as the
response of the structure is highly dependent on the Tp value. Another option
to obtain a smaller load case table would be to calculate a weighted Hs for
each Tp.

• Use stress concentration factors to determine fatigue damage
For this thesis the stress concentration factors of the jacket members have not
been taken into consideration. When performing a full fatigue analysis the
stress concentration factors are required to translate the stresses into dam-
ages. It would be interesting to investigate how the nonlinear/linear ratio in
terms of stresses compares to the same ratio in terms of fatigue damage.
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7.3.2 Future work

• Include a deterministic wave model
Currently the model is able to handle nonlinear irregular waves, but no non-
linear regular waves. This would be a practical addition from a designers
point of view. In terms of the corresponding reduced model it is expected
that the trend indicated by figure 6.5 will continue, i.e. the larger the wave
height, the more MTAs are required to capture the increased spatial variation.
Also, since an extreme wave is characterized by a high steepness, the impact-
like loading of the wave is likely to trigger higher frequent response in the
structure. In order to accurately represent this, more modes will have to be
included in the reduction basis.

• Develop a POV-based error estimation method
The energy distribution over the modes in the reduction basis has been shown
to be heavily dependent on the external loading. An optimal balance between
the fixed interface vibration modes and the MTAs could be established using
the POVs. Based on the POVs it can be determined how much of the energy
in the wave loading is captured by the corresponding POMs. Since the energy
distribution over the POMs and the MTAs showed great resemblance, it is
suggested to establish a relation between the error in response energy (com-
pared to the full model) and the error in POM energy (compared including all
POMs). Clearly the POVs already provide a useful indication for the amount
of POMs to be incorporated to capture the energy in the wave loading, but
a relation to the response error would even be more interesting from a load
analysis point of view.

• Reconsider the safety factor on fatigue loads
Through the implementation of the nonlinear wave model, the wave loads
on the jacket foundation can be determined with a higher level of accuracy.
Generally fatigue loads are calculated using a linear irregular wave model.
To account for the inherent underestimation of the loads a safety factor is
applied to the dynamic response. The use of a more accurate model allows
for a smaller safety factor, which in turn might lead to lower loads and a less
overdimensioned foundation. It is noted that a saving in terms of materials
does not directly translate to a proportional cost reduction. This is due to
the fact the fabrication of a jacket is relatively labor intensive. Therefore,
further research is suggested in which the relation between the wave model
accuracy, the use of the safety factor and its influence on the foundation costs
are investigated.
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A
Derivation wave problem

In this appendix a detailed derivation of the wave problem is given. The linearized
equations in section A.4 form the starting point of section 2.3.

A.1 Equations of motion

The derivation of the equations governing the surface waves starts at the conserva-
tion laws. The velocity field can be described by the vector V = (u, v, w) at time
t at the point x = (x, y, z), in a Cartesian coordinate system fixed in space. The
velocity vector field defines the instantaneous velocity of the fluid at any location
in space.

V = ui+ vj + wk (A.1)

Here i, j and k are unit vectors defined along the x-, y- and z-axis, respectively.
Assuming an incompressible fluid, the density ρ is constant, the continuity equation
simplifies and describes the conservation of mass. In an incompressible fluid the
velocity V = (u, v, w) satisfies the continuity equation at each point in the fluid.

∇ · V = 0 (A.2)

Where ∇ is the vector differential operator, defined by the partial derivatives ∂
∂x , ∂

∂y ,
∂
∂z . Next, the conservation of momentum is used to establish a momentum balance.
This relation is based on Newton’s second law, which states that the net force on
an object is equal to the rate of change of its momentum ρV . Since ρ is constant,
the left hand side of the momentum is equation is described by the acceleration
field. This is obtained by taking the substantial derivative of the velocity field.
The equation for the substantial derivative of a function F (x, y, z, t) is provided in
equation A.3:
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102 A. DERIVATION WAVE PROBLEM

DF

Dt
=

∂F

∂t
+ V · ∇F (A.3)

Here V is the velocity field at time t. When applying the substantial derivative
to the velocity field, the acceleration field is obtained in accordance with equation
A.4:

DV

Dt
=

∂V

∂t
+ V · ∇V (A.4)

Here the first term is referred to as the local acceleration and rest of the acceleration
terms are called convective accelerations. These accelerations in the fluid need to be
balanced by the external forces acting on it. The right hand side of the momentum
equation consist of the body forces, the pressure forces and the viscous forces. The
body forces are included in the vector F . A valid assumption for the water waves
is that only body force acting on the fluid is the gravity potential [39]. Therefore F
only has a contribution in the z-direction: F = (0, 0,−g). The pressure forces are
due to the scalar pressure field p = p(x, y, z, t). The viscous forces are given by a
multiplication of the kinematic viscosity ν with the Laplace operator of the velocity
field. The latter is a differential operator takes the divergence of the gradient of
velocity field. Equating the acceleration field with the forces acting on the fluid,
the momentum equation is found:

DV

Dt
= F − ∇p

ρ
+ ν∇2V (A.5)

Equation A.2 and A.5 together represent the Navier-Stokes equations.

A.2 Potential flow

The Navier-Stokes equations can describe wide variety of flow phenomena. Com-
putation Fluid Dynamics (CFD) is one of the fields using these equations to numer-
ically solve flow problems. However, analytical solutions to these equations only
exist for simple problems. Therefore two assumptions are made in order to simplify
the governing equations. The first assumption is that the fluid is inviscid. Viscous
forces are important in wave boundary layers, but not important for the overall
wave motion. By neglecting the viscous term in the momentum equation, the Euler
equations are found:

DV

Dt
= F − ∇p

ρ
(A.6)

Next, the vorticity vector Ω is introduced which is defined as the curl of the velocity
vector:
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A.2. POTENTIAL FLOW 103

Ω ≡ ∇× V =

⎛
⎝ i j k

∂
∂x

∂
∂y

∂
∂z

u v w

⎞
⎠ (A.7)

Equation A.7 yields:

Ω ≡
(
∂w

∂y
− ∂v

∂z
,

∂u

∂z
− ∂w

∂x
,

∂v

∂x
− ∂u

∂y

)
(A.8)

The second assumption is that the fluid is irrotational. When a fluid is irrotational,
the velocity potential Φ can be introduced as follows:

V = ∇Φ (A.9)

Equation A.9 shows that the velocities can now be obtained by taking the gradient
of the velocity potential. The velocity potential is a more convenient way of repre-
senting the velocities since one now deals with the scalar Φ instead of the vector
V . When inserting the velocity potential into the vorticity vector (equation A.7), it
can be seen that the vorticity of a fluid described by a velocity potential is in fact
zero.

Ω ≡
(

∂2Φ

∂y∂z
− ∂2Φ

∂z∂y
,

∂2Φ

∂z∂x
− ∂2Φ

∂x∂z
,

∂2Φ

∂x∂y
− ∂2Φ

∂y∂x

)
= (0, 0, 0) (A.10)

When inserting the velocity potential in equation A.2 (continuity), the following
relation is obtained:

∇2Φ = 0 (A.11)

The velocity potential thus has to satisfy the above equation. This equation is
known as the Laplace equation and is the governing equation for potential wave
theory. So far, the fluid is assumed to be incompressible, inviscid and irrotational.
Based on the fact that the fluid is irrotational, it can be concluded that:

Ωx =
∂w

∂y
− ∂v

∂z
= 0 → ∂w

∂y
=

∂v

∂z
(A.12)

By implementing this into the Euler equations, the following relations for the x-
direction are obtained. Here only the x-direction is considered for illustrative pur-
poses, but the same procedure can used for the y- and z-direction.

∂u

∂t
+ u

∂u

∂x
+ v

∂v

∂x
+ w

∂w

∂x
+

1

ρ

∂p

∂x
= 0 (A.13)
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104 A. DERIVATION WAVE PROBLEM

∂u

∂t
+

∂

∂x

(
u2 + v2 + w2

2
+

p

ρ
+ gz

)
= 0 (A.14)

∂

∂x

(
∂Φ

∂t
+

|∇Φ|2
2

+
p

ρ
+ gz

)
= 0 (A.15)

Spatial integration of equation A.15 yields the following:(
∂Φ

∂t
+

|∇Φ|2
2

+
p

ρ
+ gz

)
= C1(x, t) (A.16)

Using a similar approach, equation A.17 and A.18 are obtained for the y- and z-
direction, respectively. (

∂Φ

∂t
+

|∇Φ|2
2

+
p

ρ
+ gz

)
= C2(y, t) (A.17)

(
∂Φ

∂t
+

|∇Φ|2
2

+
p

ρ
+ gz

)
= C3(z, t) (A.18)

Since equations A.16, A.17 and A.18 have the same left hand side, the following
must hold:

C1(x, t) = C2(y, t) = C3(z, t) (A.19)

This must be true for any set of (x,y,z) coordinates and since C2 and C3 for example
do not depend on x, nor can C1. The same holds for the y- and z-direction and
hence it can be stated that all integration coefficients can condensed into a single
coefficient that is not dependent on space, only on time.

C1(x, t) = C2(y, t) = C3(z, t) = C(t) (A.20)

This yields the following equation which is known better as the Bernoulli equation:(
∂Φ

∂t
+

|∇Φ|2
2

+
p

ρ
+ gz

)
= C(t) (A.21)

The equation can be further simplified by including the time dependency of C into
the velocity potential and thereby making C a constant which can be set to zero.(

∂Φ

∂t
+

|∇Φ|2
2

+
p

ρ
+ gz

)
= 0 (A.22)

The Bernoulli equation is nonlinear and is true for unsteady, irrotational and invis-
cid fluid motion.
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A.3 Boundary conditions

In order to be able to find a solution to for the velocity potential, certain boundary
conditions need to be imposed on the problem.

Kinematic bottom boundary condition
The sea bottom is impermeable, hence the vertical velocity there is equal to zero.
This requirement is described by equation A.23 and is referred to as the kinematic
bottom boundary condition (KBBC).

∂Φ

∂z
= 0 for z = −d (A.23)

Kinematic free surface boundary condition
Before deriving the kinematic free surface boundary condition (KFSBC), the mean-
ing of a substantial derivative is recalled here. The definition is provided in equa-
tion A.3. Next, z is expressed in terms of the instantaneous free surface:

z = η(x, y, t) (A.24)

Then, the function F (x, y, z, t) is defined as follows:

F (x, y, z, t) = z − η(x, y, t) = 0 (A.25)

The basic assumption for the KFSBC is that a particle at the free surface, stays at
the free surface. This entails that equation A.25 is always satisfied and that the
substantial derivative of F is equal to zero.

∂

∂t
(z − η(x, y, t)) +∇Φ · ∇(z − η(x, y, t)) = 0 (A.26)

The KFSBC can than be formulated as:

∂η

∂t
+

∂Φ

∂x

∂η

∂x
+

∂Φ

∂y

∂η

∂y
− ∂Φ

∂z
= 0 for z = η(x, y, t) (A.27)

Here the fluid velocity V is expressed in terms of the velocity potential Φ.

Dynamic free surface boundary condition
The dynamic free surface boundary condition (DFSBC) imposes the statement that
the water pressure at the free surface is equal to the constant atmospheric pressure
p0. If the constant C in the Bernoulli equation (A.21) is set equal to p0

ρ , then the
DFSBC is given as follows:

∂Φ

∂t
+

|∇Φ|2
2

+ gz = 0 for z = η(x, y, t) (A.28)
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106 A. DERIVATION WAVE PROBLEM

A.4 Linearization of the wave problem

The Laplace equation (A.11), constrained by the two kinematic (A.23 and A.27)
and the dynamic (A.28) boundary conditions describe the fully nonlinear wave
problem in 3D. The two nonlinear free surface boundary conditions have to be sat-
isfied at the instantaneous free surface. The issue is that the position of the free
surface is not known before solving the problem. The nonlinear terms can be dis-
carded by linearizing the wave problem. The governing assumption here is that
the wave amplitude H is small with respect to the wave length L, hence the wave
steepness H/L is small. This removes the nonlinear terms from the equations and
entails that the boundary conditions are now to be satisfied at the mean sea level
(MSL), z = 0, instead of at the instantaneous free surface η. Finally, only 2D waves
in the x-z plane are considered here and therefore the y-direction is dropped from
the equations.

The kinematic bottom boundary condition (A.23) is not affected by these simplifi-
cations but is mentioned here again for a full description of the 2D wave problem:

∂Φ

∂z
= 0 for z = −d (A.29)

The kinematic free surface boundary condition (A.27) is linearized to:

∂Φ

∂z
=

∂η

∂t
for z = 0 (A.30)

The dynamic free surface boundary condition loses the quadratic velocity term and
is now described by:

∂Φ

∂t
+ gη = 0 for z = 0 (A.31)

The 2D Laplace equation is obtained by disregarding the y-term in 3D Laplace
equation (A.11).

∂2Φ

∂x2
+

∂2Φ

∂z2
= 0 for − d ≤ z ≤ 0 (A.32)

The Laplace equation (A.32) and the three boundary conditions stated above (A.29,
A.30 and A.31), formulate the 2D linearized wave problem. To summarize, this
problem is based on the assumptions of a 2D incompressible, inviscid and irrota-
tional fluid and a small wave steepness.
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B
Eigenfrequencies and eigenmodes

This appendix contains the eigenfrequencies and eigenmodes of different structural
models. The information corresponding to the complete OWT model is presented
in section B.1. The three types of mode shapes are illustrated in the following sec-
tions: static constraint modes (section B.2), fixed interface vibration modes (section
B.3) and Modal Truncation Augmentation modes (section B.4). Finally, the eigen-
frequencies and corresponding damping values of the models used in the sensitivity
study in section 5.3, are provided in section B.5.

B.1 Complete OWT model

# Full (Hz) CB00 (Hz) CB20 (Hz) M20 (Hz) CB10M10 (Hz)

1 0.381 0.381 0.381 0.381 0.381
2 0.384 0.384 0.384 0.384 0.384
3 1.048 1.050 1.048 1.048 1.048
4 1.089 1.091 1.089 1.091 1.089
5 1.183 1.184 1.183 1.184 1.183
6 1.918 1.929 1.918 1.918 1.918
7 2.232 2.251 2.233 2.251 2.234
8 3.205 3.520 3.212 3.520 3.215
9 3.696 5.110 3.696 3.706 3.697

10 3.729 5.201 3.729 5.201 3.731
11 4.435 5.506 4.435 5.364 4.435
12 4.664 8.668 4.665 5.422 4.666
13 4.729 8.712 4.729 6.273 4.729
14 4.734 11.452 4.734 6.595 4.736
15 4.736 16.939 4.736 6.960 4.736
16 5.395 16.975 5.425 8.163 5.454
17 5.599 27.614 5.599 8.712 5.599
18 6.134 27.632 6.149 8.746 6.201
19 6.198 39.337 6.213 11.279 6.408
20 6.387 40.704 6.394 11.721 6.413

Table B.1: First 20 eigenfrequencies for different reduced models.
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Figure B.1: First ten eigenmodes of the OWT.
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B.2 Static constraint modes
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Figure B.2: All six static constraint modes.
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B.3 Fixed interface vibration modes

# Freq. (Hz)

1 4.091
2 4.091
3 4.435
4 4.699
5 4.736
6 4.855
7 4.855
8 5.206
9 5.599
10 6.281

Table B.2: First 10 frequencies of the fixed interface vibration modes.
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Figure B.3: First ten Craig-Bampton modes.
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B.4 Modal Truncation Augmentation modes
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Figure B.4: First five MTAs for the high load case of section 6.3.

B.5 Models sensitivity study

Reference model Damping model Frequency model

# Freq. (Hz) Damp. (%) Freq. (Hz) Damp. (%) Freq. (Hz) Damp. (%)

1 0.381 5.049 0.381 29.951 0.281 5.070
2 0.384 5.030 0.384 30.131 0.282 5.059
3 1.048 5.426 1.048 5.855 0.811 5.136
4 1.089 5.539 1.089 6.242 0.833 5.208
5 1.183 5.812 1.183 5.812 0.996 5.771
6 1.918 8.277 1.918 8.617 1.711 8.722
7 2.232 9.419 2.232 9.521 1.944 9.751
8 3.205 13.079 3.205 13.079 2.239 11.081
9 3.695 14.962 3.695 15.011 2.467 12.117

10 3.728 15.088 3.728 15.130 2.562 12.552
11 4.434 17.822 4.434 17.822 2.697 13.173
12 4.662 18.711 4.662 18.711 2.838 13.823
13 4.726 18.962 4.726 18.968 2.880 14.014
14 4.731 18.981 4.731 18.987 2.916 14.182
15 4.733 18.989 4.733 18.989 2.932 14.255
16 5.391 21.560 5.391 21.560 3.366 16.270
17 5.596 22.360 5.596 22.360 3.405 16.449
18 6.129 24.454 6.129 24.526 3.909 18.803
19 6.194 24.707 6.194 24.770 4.006 19.256
20 6.382 25.447 6.382 25.447 4.012 19.288

Table B.3: First 20 eigenfrequencies for models used in the sensitivity study in chap-
ter 5, damping values are given in terms of logarithmic decrement.
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C
Verification USFOS: OC4 jacket

In this appendix the verification of the Matlab code with the software package
USFOS is illustrated graphically. The complete OC4 jacket is subjected to a regular
wave with H = 2.5 m and T = 5 s. Figure C.1 shows the comparison of the
total force in x-direction over the one wave period. A detailed representation of
the window around the maximum force is presented in figure C.2. Both figures
demonstrate that the two models match perfectly. The fact that the Matlab curve
is smoother than the USFOS curve is due to the implementation of the moving
coordinate, as explained in section 4.2.4.
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Matlab: dx = 1m, dt = 0.05s, Tcalc = 10.43s
USFOS: dx = 1m, dt = 0.05s, Tcalc = 6.65s

Figure C.1: Overview: comparison total force in x-direction Fx.
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Figure C.2: Zoomed in: comparison total force in x-direction Fx.
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D
Verification load case table

The validity of the weighted Tp method is verified in this appendix. For illustration
purposes, a schematic representation of this method is depicted in the top line of
figure D.1. The bottom line shows the procedure in which a specific Tp is used for
each load case. The stresses based on the linear and nonlinear wave model are
indicated with L and NL and the subscripts ref and spec refer to the reference case
of the weighted Tp and the load cases using a specific Tp, respectively.

Figure D.1: Numerical example of the weighted Tp (top) vs. the specific Tp (bottom).

When taking a weighted Tp the shorter, steeper waves that contributed most to the
nonlinear effects are not specifically considered. At the same time, the longer, flat-
ter waves that typically have a low amount of nonlinearity, are not specifically taken
into account either. In order to check the influence of this simplification, two Hs

bins are selected and the wave loads are calculated for each specific Hs − Tp com-
bination. Consequently, the stresses in all members are calculated and weighted
based on their number of occurrence. This total stress per member can then be
compared to the stress obtained from the single load case that is calculated using
the weighted Tp. The simplification is expected to mainly influence the compar-
ison between the linear and nonlinear wave model and not the performance of
the reduced models. Therefore, the results are measured in terms of the ratio of
the stresses induced by the nonlinear wave model over those from the linear model.
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Hs = 1.5 m Hs = 7.5 m

Lref

Lspec
96% 5.5%

NLref

NLspec
98% 7.6%

NLref

Lref
0.7% 22%

NLspec

Lspec
0.5% 19%

Table D.1: Total stress increase
(0.38 Hz).

Hs = 1.5 m Hs = 7.5 m

Lref

Lspec
143% 16%

NLref

NLspec
135% 15%

NLref

Lref
1.4% 13%

NLspec

Lspec
2.6% 15%

Table D.2: Total stress increase
(0.28 Hz).

For this sensitivity study the dominant wave direction (330◦) is selected in order to
investigate the load cases with the highest impact on the structure’s total loading.
Within this direction the most dominant significant wave height bin is taken, which
gives an average Hs of 1.5 m (figure 4.4). In order to also incorporate the influence
of the wave height on this sensitivity study, the same comparison is carried out for
a high Hs bin, i.e. 7.5 m. To be able to capture the comparison in a single value,
the average of the total stress in all members is compared. On the one hand it is
investigated how well the reference load case of the weighted Tp is able to represent
the total stress, compared to a weighted average of all the load cases with a specific
Tp. On the other hand, it is of great interest what the influence of a weighted Tp

has on the ratio between the stresses induced by the linear and nonlinear wave
model. In tables D.1 and D.2 the results are presented where the values represent
the ratios of the mean of the total stress in all members. Table D.1 contains the
values for the original structural model as described in section 4.3. In table D.2 the
results are presented for a more flexible structural model check the sensitivity of
the values in table D.1.

First of all, when considering the top two rows of table D.1, several observations
can be made. It can be noticed that the reference case produces a higher total stress
than the weighted specific cases for both Hs bins. The fact that this is significantly
higher for the low Hs bin derives from the large spreading in Tp values (figure 4.4).
In the case of Hs = 1.5 m the Tp values range from 3.5 s to 22.5 s, whereas for the
case where Hs = 7.5 the peak period values only range from 11.5 s to 15.5 s. It
is therefore likely that a weighted Tp in the latter case will produce a result that is
more coherent with the results from the specific cases. Secondly, when observing
the results from the bottom two rows, some more interesting conclusions can be
drawn. As expected, the cases with the high significant wave height yield a much
higher second-order contribution than the low Hs cases. The most important find-
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ing is that the ratio of the reference case and that of the specific cases show only
a small discrepancy. In the top two rows the reference case has shown to overesti-
mate the total stress compared to the weighted specific cases. When looking at the
nonlinear contribution, the reference case and the specific case show very similar
results. This last finding seems to indicate that despite the fact that the reference
case overestimates the total stress in absolute sense (top two rows), the relative im-
portance of the second-order contribution is still captured quite accurately (bottom
two rows). Table D.2 shows similar trends and the ratios of the nonlinear stress
over the linear stress are fairly close together.

It is noted that all results in tables D.1 and D.2 strongly depend on the actual real-
ization of the random signal. As for each of the specific load cases a different input
spectrum is used, also the seed is different for all load cases. This requires the
averaging of the total stresses of the specific load cases since no direct time series
comparison can be made with the reference signal. The extent to which the single
realization of the reference load case is able to capture the results from the specific
load cases is dependent on that realization. Overall it can be concluded that the
simplification of the load case table through the weighted average Tp has a signifi-
cant impact on the calculated stresses in the jacket members. This is especially true
when considering the stress in an absolute sense, where the error is largest when
the reference case is supposed to represent a wide range of Tp values. The ratio
between the stresses caused by the first- and second-order wave model seems to
be captured well by the reference case. However, to increase statistical stability a
larger number of seeds should be used. Finally, the results presented above provide
enough confidence to use the reduced load case table for this comparative study
but also indicate that a full load case table should be used when performing an
actual fatigue load analysis.
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E
Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) method, also know as Principal Com-
ponent Analysis (PCA), is a mathematical data analysis method to efficiently extract
the principal components from large, complex data sets. The POD method describes
an orthogonal linear transformation, which transforms data dependent on n possi-
bly correlated variables to a reduced or equal set of uncorrelated variables, referred
to as principal components. For the mathematical description of the POD method
the reader is referred to [21]. Here only the practical implementation for this thesis
is discussed.

Starting with some time-varying signal, a number of snapshots m can be obtained.
Each of these snapshots represents a vector zi which contains the values of n output
variables. The z vectors are collected in the matrix Z:

Z = [z1 . . . zm] =

⎡
⎢⎣z11 . . . z1m

...
. . .

...
zn1 . . . znm

⎤
⎥⎦ (E.1)

In this thesis the Z matrix is filled with a wave load time series, typically consisting
of 6000 vectors (each time step of a 10 minute simulation) each with approximately
1000 entries (representing the unreduced DoF of the jacket). Based on the Z matrix
the so-called sample covariance matrix can be constructed:

C =

m∑
i=1

E
[
(zi − μ) (zi − μ)

T
]

(E.2)

Where μ is the average of the snapshots. The snapshots can be chosen such that
they have a zero mean:

xi = zi − μ (E.3)
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Now the covariance matrix can expressed accordingly:

C =
1

m

m∑
i=1

xix
T
i =

1

m
XXT (E.4)

The eigensolutions to the (n × n) covariance matrix C characterize the POD and
are given by:

Cφj = λjφj (E.5)

The eigenvectors φj represent the proper orthogonal modes (POMs). The eigenval-
ues λi represent the proper orthogonal vectors (POVs) which are an indication for
the energy captured by the corresponding in POM.

Another way to obtain the POMs and the POVs is to apply the Singular Value De-
composition (SVD) method to X. The SVD of the real-valued X matrix can be
written as:

X = UΣV T (E.6)

Where U is the (n × n) matrix containing left singular vectors, Σ is the (n × m)
matrix containing the singualr values and V is the (m×m) matrix of right singular
vectors. Since U and V are unity matrices, the following holds:

XXT = UΣV TV ΣTUT = U
(
ΣΣT

)
UT (E.7)

XTX = V ΣTUTUΣV T = V
(
ΣΣT

)
V T (E.8)

The right hand side of equations E.7 and E.8 describes the eigenvalue decomposi-
tion of XXT and XTX, respectively. By taking the square root of the eigenvalues
of XXT the singular values of X are obtained. These values correspond to the
POVs multiplied with the number of samples m. In turn, the left singular vec-
tors U of X correspond to the eigenvectors of XXT and thus to the POMs. The
SVD method has two advantages over the POD method. Firstly, extra information
is extracted in the form of matrix V , which contains the time modulation of the
corresponding POM, normalized by the singular value. Secondly, as it avoids the
calculation of the covariance matrix, it is more computationally efficient to apply
the SVD method to the snapshot matrix than the POD to the covariance matrix
[20].
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F
Newmark time integration method

The Newmark time integration method was developed in 1959 and is nowadays still
widely used. The method is an efficient single-step integration procedure. The basic
idea of the method is that the displacements and velocities at time tn+1 = tn + h
can be found based on values at time tn. This is done by means of a Taylor series
expansion of the state vector. The velocities and displacements at time tn+1 can be
calculated according to equation (F.1) and (F.2), respectively:

q̇n+1 = q̇n +

∫ tn+1

tn

q̈(τ)dτ (F.1)

qn+1 = qn + hq̇n +

∫ tn+1

tn

(tn+1 − τ)q̈(τ)dτ (F.2)

Subsequently, the integral of the acceleration terms is approximated using a nu-
merical quadrature. To this end q̈(τ) is defined in the time interval [tn, tn+1] as a
function of q̈n and q̈n+1 at the interval limits:

∫ tn+1

tn

q̈(τ)dτ = (1− γ)hq̈n + γhq̈n+1 + rn (F.3)∫ tn+1

tn

(tn+1 − τ)q̈(τ)dτ =
(
1
2 − β

)
h2q̈n + βh2q̈n+1 + r′n (F.4)

Where rn and r′n are the corresponding error measure. The constants γ and β are
the parameters of the quadrature scheme. They can be chosen freely, leading to dif-
ferent levels of accuracy and stability of the method. By substituting equation (F.3)
and (F.4) into equation (F.1) and (F.2) respectively, the following approximation
equations for the Newmark method are obtained:
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q̇n+1 = q̇n + (1− γ)hq̈n + γhq̈n+1 (F.5)

qn+1 = qn + hq̇n +
(
1
2 − β

)
h2q̈n + βh2q̈n+1 (F.6)

Here the assumption is made that the equations of motion are linear, i.e. the ma-
trices M , C and K are independent of q. Finally, the acceleration q̈n+1 can be
computed as follows:

(
M + γhC + βh2K

)
q̈n+1 = fn+1 −C (q̇n + (1− γ)hq̈n)

−K
(
qn + hq̇n +

(
1
2 − β

)
h2q̈n

) (F.7)

Solving this equation implies inverting a linear system of equations associated with
the time stepping matrix S:

S = M + γhC + βh2K (F.8)

For a constant time step the S matrix only needs to be evaluated once. When
the acceleration terms are calculated, the velocities and displacements follow from
equation (F.5) and (F.6), respectively.

F.1 Implicit Newmark scheme

For the implicit Newmark scheme the state vector at time tn+1 is a function of
its own time derivative, meaning that β �= 0. A linear set of equations has to be
solved to find q̈n+1, before q̇n+1 and q̈n+1 can be computed. To ensure the system’s
stability, the following should hold: γ � 1

2 and β � 1
4 (γ + 1

2 )
2.

F.2 Explicit Newmark scheme

For the explicit Newmark scheme the state vector at time tn+1 can be calculated
directly from the results at the previous time step, hence β = 0. No system of
equations has to be solved now. Stability of the system is secured when γ � 1

2 and
h < 2

ω , where h is the time step and ω is the highest possible eigenfrequency in the
system.
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