
Deep-seated faults and hydrocarbon 
leakage in the Snøhvit Gas Field, 
Hammerfest Basin, southwestern 
Barents Sea

Mohammed Seid 
Mohammedyasin

Petroleum Geosciences

Supervisor: Stephen John Lippard, IGB
Co-supervisor: Professor Ståle Emil Johansen, IPT

Kamaldeen Olakunle Omosanya, IPT

Department of Geology and Mineral Resources Engineering

Submission date: June 2015

Norwegian University of Science and Technology



 



 

 

 

Mohammed Seid Mohammedyasin 

 

 

Deep-seated faults and hydrocarbon leakage in the 

Snøhvit Gas Field, Hammerfest Basin, southwestern 

Barents Sea 

 

 

 

Master’s thesis in Petroleum Geosciences 

Trondheim, June 2015 

 

Supervisor: Prof. Stephen John Lippard (IGB) 

Co-supervisors: Dr. Kamal’deen Olakunle Omosanya (IPT) 

                          Prof. Ståle Emil Johansen (IPT) 

 

 
Norwegian University of Science and Technology  

Faculty of Engineering Science and Technology 

Department of Geology and Mineral Resources Engineering 

 

 

 

 

   



 

 

 

  



 

i 

 

Abstract 

High-quality 3D seismic data are used to analyze the history of fault growth and hydrocarbon 

leakage in the Snøhvit Field, southwestern Barents Sea. The aim of this work is to evaluate the 

role of tectonic fracturing as a mechanism driving fluid-flow in the study area.  To achieve this 

aim, an integrated approach including seismic interpretation, multiple seismic attribute analysis, 

fault modeling and displacement analysis was used. 

 

The six major faults in the study area are dip-slip normal faults which are characterized by 

complex lateral and vertical segmentation. The three main episodes of fault reactivation 

interpreted were in late Jurassic (Kimmeridgian), early Cretaceous and Paleocene times. Fault 

reactivation in the study area is mainly through dip-linkage. Throw-distance plots of the 

representative faults also revealed along-strike linkage and multi-skewed C-type profiles. The 

throw profiles show that faults in the study area evolved through polycyclic activity involving 

both blind propagation, syn-sedimentary activity and that they have their maximum 

displacement at the reservoir zone. The expansion and growth indices provide evidence for 

coeval fault activity with sedimentation and interaction of the faults with a free surface during 

their evolution. 

 

Hydrocarbon-related high-amplitude anomalies in the study area have negative amplitude, 

reverse polarity and are unconformable with structural reflectors.  The interpreted fluid 

accumulations are spatially located at the upper tips of the major faults and gas chimneys. Four 

episodes of fluid migration in the study area are linked to periods of fault reactivation and 

Neogene glaciations. An important piece of information from this is that fluid leakage in the 

Snøhvit Gas Field is driven by tectonic fracturing, uplift and erosion. The interpreted deep-

seated faults are the main conduits for shallow fluid accumulations. 
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Chapter 1 Introduction 

1.1 Rationale  

Fluid-flow or migration is associated with excess pore-fluid pressure which can be attributed to 

temporal and spatially varying processes, such as rapid sediment loading (Dugan and Flemings, 

2000), uplift and erosion (Doré and Jensen, 1996), dissociation of gas hydrate (Mienert et al., 

2005), polygonal faulting (Andresen and Huuse, 2011; Cartwright et al., 2007; Gay et al., 2011; 

Ostanin et al., 2012a), and leakage from deep and shallow source and reservoir rocks 

(Heggland, 1998; Hovland and Judd, 1988; Solheim and Elverhøi, 1985).  Focused fluid-flow 

systems usually serve as conduits for fluids and sediment remobilization. They have been the 

interest of many studies and yet significant works are needed (Barnett et al., 1987; Cartwright 

et al., 2007; Dupré et al., 2010; Gay et al., 2011; Huuse et al., 2010).  

 

Vertical migration of gas through subsurface strata can cause widely distributed acoustic low-

velocity zones. The gas causes fluctuations in the compressional velocity field which again 

causes scattering and deterioration of the seismic wave and create regions of chaotic seismic 

signals (Arntsen et al., 2007). Hence, fluid-flow processes can be manifested on seismic profiles 

as seabed pockmarks, mud volcanoes, and methane derived carbonate mounds, and in the 

subsurface as seismic blow-out pipes, vertical seismic/gas chimneys, paleo-pockmarks and 

amplitude anomalies (Vadakkepuliyambatta et al., 2013). In the Barents Sea, glacial lineations 

and iceberg plough marks (Andreassen et al., 2008; Elverhøi and Solheim, 1983) are also 

related with the presence of gaseous hydrocarbons (Chand et al., 2008). 

 

The flow mechanism can be triggered by the presence of stratigraphic boundaries, leaking faults 

and increase in seafloor temperature during fast deposition of glacio-marine sediments (Chand 

et al., 2012). Out of all these trigger mechanisms, the role of tectonism or faulting in 

hydrocarbon migration/leakage on continental margins is still poorly understood. Fluids can  

migrate laterally and vertically through fault zones, salt diapirs, erosional surfaces like active 

canyons and paloecanyons, polygonal faults or buried chimneys (Gay et al., 2011).  

 

In the special case of the Snøhvit Field, uplift and erosion has been invoked as the major factor 

for fluid leakage at the detriment of tectonics and other mechanisms (Cavanagh et al., 2006; 

Chand et al., 2014, 2008; Laberg et al., 1998; Ostanin et al., 2012b). For example, Cavanagh et 

al. (2006) and Rodrigues Duran et al. (2013) proposed multiphase erosion including glacial 
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erosion, loading/unloading, and Cenozoic exhumation as the main causes of hydrocarbon 

migration in the Hammerfest Basin. On the other hand, Ostanin et al. (2013) discussed the role 

of fault reactivation and polygonal faulting as a mechanism driving fluid leakage in the area. 

Most of these works were based on basin modelling, seabed fluid flow features and shallow 

seismic characterization. Hence, there is an impetus to understand and further investigate the 

influence of deep-seated faulting as a mechanism for fluid migration in the Hammerfest Basin. 

 

This work is therefore done to elucidate the growth history and displacement character of faults 

in the Snøhvit Field, their mode of reactivation and relationship with fluid migration or leakage. 

The study area is located in the Hammerfest Basin within longitude 71o to 72oN and latitude 

21o to 24oE, between the Loppa High to the north and the Finnmark Platform to the south. It is 

separated from the Loppa High by the Asterias Fault Complex (AFC), from the Tromsø Basin 

to the west by southern segment of the Ringvassoy-Loppa Fault Complex, and from the 

Finnmark Platform by the Troms-Finnmark Fault Complex (TFFC) (Figure 1.1).   
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Figure 1.1 The location map and the tectonic framework of southwestern Barents Sea and the Snøhvit Field (red rectangle) within the Hammerfest 

Basin (modified from Gabrielsen et al.,1990; Nickel et al., 2012). N.B:  The red line is the location of Figure 2.2 
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1.2 Aims of the study 

• To assess the history of fault growth using multiple approaches including  seismic 

interpretation,  seismic attribute analysis and fault displacement analysis  

• To find evidence for fluid leakage by mapping seismic high-amplitude anomalies 

• To investigate and link fault activity as a mechanism for fluid leakage in the study area.  

• To understand timing of hydrocarbon leakage, their driving mechanisms and overall 

fluid plumbing system. 

 

1.3 Analysis of fluid flow features on seismic reflection data  

Fluid flow features on seismic data can be visualized as gas chimney and seismic pipes, high-

amplitude anomalies (HAAs), buried and seabed pockmarks.  

 

1.3.1  Gas chimneys 

Gas chimneys are acoustic maskings  which create dimmed and distorted amplitudes and does 

not show any clear stacking unlike seismic pipes which show vertical stacking of high or low 

amplitude anomalies (Andresen, 2012; Berndt, 2005; Løseth et al., 2011, 2001; Moss and 

Cartwright, 2010). They are described in different ways in the literature as columnar 

disturbances, wipeout zones, dimmed and distorted amplitudes in seismic data (Andresen and 

Huuse, 2011; Berndt, 2005; Heggland, 1998; Heggland et al., 1999; Hustoft et al., 2010; Løseth 

et al., 2009). The gas chimneys in this study are associated with high-amplitude anomalies 

(HAAs) at their roof zones (Figure 1.2a). 

 

1.3.2  Seismic high-amplitude anomalies (SHAA) 

Seismic high-amplitude anomalies represent the change in acoustic properties related to 

lithology or sub-surface fluid accumulations (Alves et al., 2015; Calvès et al., 2008; Løseth et 

al., 2009). Direct hydrocarbon indicators (DHI’s) such as bright spots, flat spots, polarity 

reversal etc., are seismic high-amplitude anomalies related to hydrocarbons in the subsurface 

(Løseth et al., 2009).  High-amplitude anomalies (HAAs) can have opposite polarity to the 

seabed i.e., “soft-on-hard” anomalies or similar in polarity with the seabed, “hard-on-soft” 

anomalies (Alves et al., 2015)  (Figure 1.2b & c).  
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Figure 1.2 Gas chimney and high-amplitude anomalies . Gas chimney root, stem and roof zones 

are outlined and the green line indicates lateral migration along permeable formations or gas 

charging into sediments in this study area (b) Vertically stacked high-amplitude anomalies in 

the hanging-wall part of a fault in response to upward gas leakage along the fault zone (c)  

Acoustic masking related to gas chimney (A), surrounded by high amplitude (B), and outer 

zone of dim amplitude anomalies (C) related to gas charged slightly permeable layers and 

evenly distributed gas in sediments, respectively (Løseth et al., 2009). 

 

1.3.3  Pockmarks 

Pockmarks are isometric cone to sub-circular shape depressions on the seafloor (Figure 1.3). 

The accepted conceptual model of pockmark formation is by upward migration of gas through 

faults and fractures in sediments which forms gas accumulation pockets in the near-seabed. 

Further accumulation results in doming and tensional fractures on the sea floor leading to the 

formation of unit pockmarks (Hovland and Judd, 1988). The coalescence of these unit 

pockmarks in time forms numerous composite pockmarks.  However, the type of fluid can be 

any fluid. Different conceptual models have been tested in order to understand about pockmark 

forming mechanisms. Pockmarks form by fluid escape and first proposed by Josenhans et al., 
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(1978) can be into two modes; (1) by catastrophic  eruption of gas from overpressured shallow 

gas accumulations, and (2) continuous fluid discharge hindering or dissolving sediments around 

the seep (Hovland and Judd, 1988; Pilcher and Argent, 2007).  The failure of the capillary 

pressure was suggested as the main cause for the formation of the pockmarks. Seal fails when 

buoyancy pressure exceeds the capillary pressure during hydrate crystallization and gas 

accumulations, which leads to the formation of large escape of gases to the seafloor initiating 

dissolution of the surrounding sediment by ocean water and forms pockmarks (Cathles et al., 

2010).  The linear arrangement of pockmarks indicates their association with fault zones 

(Haskell et al., 1999). 

 

 
 

Figure 1.3 Pockmarks of different sizes (West African continental margin) forming 

depressions on the seabed (Pilcher and Argent, 2007). 

 

1.4 Fluid plumbing systems 

Deep-sourced hydrocarbon plumbing systems are often sourced from thermogenic gas 

migration and shallow sourced gas migration can be from organic gas (Andresen and Huuse, 

2011; Andresen, 2012; Ostanin et al., 2012b). The main trigger and driving mechanisms are: 

thermogenic maturation, salt tectonics, sedimentary loading and sea-level fluctuations 

(Andresen, 2012; Jolly and Lonergan, 2002). Timing of the main faulting and reactivation 
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phases can be use to predict periods of fluid-flow if the hydrocarbon has been mature before 

(Figure 1.4). 

 

 

 

Figure 1.4 Hydrocarbon plumbing systems (Lower Congo Basin, offshore Angola) illustrating 

the fluid sources, migration pathways and the resulted fluid flow features in the subsurface 

and on the seabed (modified from Andresen, 2012). 

  



Chapter 1 Introduction  Mohammedyasin 

 

8 

 

1.5 Analysis of fault nucleation, growth, linkage and reactivation 

Traditional fault analysis was based on simple blind faults (Watterson, 1986). Displacement 

distributions along normal blind faults usually show maximum displacements (dmax) at the 

centre of the fault plane, gradually decreasing towards the tips (Barnett et al., 1987). Individual 

blind faults have symmetrical and directionally skewed displacement-distance (t-x) plots in the 

fault initiation stage (Figure 1.5c). Displacement profiles may vary from mesa-type, cone-type 

to hybrid profiles comprising both C- and M-types (Kim and Sanderson, 2005; Muraoka and 

Kamata, 1983). The position of dmax for C-type profiles corresponds to the nucleation point 

where fault propagation was initiated (Mansfield and Cartwright, 1996). 

 

However, in complex tectonic settings faults can have complicated nucleation, growth and 

reactivation histories (Bellahsen and Daniel, 2005; Walsh et al., 2002). This produces complex 

geometries and displacement patterns of the faults. Syn-sedimentary faults on the other hand 

can have upward increasing throw-depth profiles (Figure 1.5b). Hybrid displacement and 

distance plots suggest fault linkage and segmentation (Walsh and Watterson, 1989). Elliptical 

fault displacement profiles are consistent with the propagation of blind faults (Baudon and 

Cartwright, 2008). 

 

After initial growth, different faults can be reactivated along the dip-slip direction and linked at 

displacement minima (Figure 1.5a & d). Fault reactivation along the dip and interaction along 

the strike directions can significantly modify the throw and displacement profiles, respectively. 

Similarly, lateral growth and interaction of faults can result into different fault segments along 

strike (Figure 1.5e).  Linkages of the segments merge some of the segments during interaction 

(Figure 1.5f). Finally, all the segments can join together to form a through-going larger fault 

(Figure 1.5g). Analyzing these profiles can provide hints into the growth history of faults and 

their consequence on hydrocarbon migration. 
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Figure 1.5 Fault reactivation and interaction during fault growth: (a) fault reactivation is in the dip direction (b) throw-depth profile for syn-

sedimentary fault, (c) isolated/blind faults and (d) dip linkage of the faults in (b) and (c). Fault interaction along the strike direction in three 

stages, i.e. (e) initiation (f) interaction and linkage along the strike and (g) through-going fault stages (Gawthorpe and Leeder, 2000).
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1.6 Thesis structure  

This thesis is divided into five chapters; introduction, regional geological setting of the area, 

data and methods, results, and discussion and conclusions, respectively. The content of each 

Chapter is highlighted in Table 1.1. 

 

Table 1.1 The structure of the thesis and the main contents in each of the Chapters. 


 

c C
 

Content 

C
h
ap

te
r 

1
 

 This chapter gives a brief overview about hydrocarbon migration on continental 

margins and also provides the rationale and aims of this work  

 Introduces fluid flow features 

 Gives the background to fault nucleation and growth through graphical 

illustrations 

C
h
ap

te
r 

2
 

 Briefly summarizes the tectonics of the southwestern Barents Sea area 

 Summarizes the stratigraphy and depositional environment of the study area 

 The source, reservoir and seal rocks are systematically summarized from 

previous works  

C
h
ap

te
r 

3
  The work flow and the methods used for this study 

 3D seismic stratigraphic and fault interpretation 

 Mapping of high-amplitude anomalies  

C
h
ap

te
r 

4
  This chapter is divided into three main parts as it presents the main results from: 

(1) seismic stratigraphic interpretation; (2) fault analysis and displacement plots 

(t-z, t-x, EI and GI), (3) Seismic high amplitude anomalies 

C
h
ap

te
r 

5
 

 The main results and findings are discussed by emphasizing fault reactivation 

and growth history, and controls of the deep-seated faults on hydrocarbon 

migration from the source to the shallow subsurface. Based on this the main 

sources of hydrocarbons are identified and timing of migration phases are 

reconstructed  

 Finally, the main conclusions of this work are drawn; recommendations and 

future research directions are suggested 
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Chapter 2 Geological Setting  

2.1 Tectonic evolution of the southwestern Barents Sea 

The tectonic history of the western Barents Sea (Figure 2.1) can be traced back to the 

Caledonian Orogeny that strikes through northernmost Norway and northeastwards into the 

Barents Shelf (Barrère et al., 2009; Breivik et al., 2005, 2002; Gee et al., 2008; Gernigon and 

Brönner, 2012; Gernigon et al., 2014; Gudlaugsson et al., 1998; Marello et al., 2013; Ritzmann 

and Faleide, 2007; Roberts, 2003). The Caledonian fabric is obscured in most parts of Barents 

Sea, except on Svalbard by late Proterozoic and Mesozoic sedimentary basins (Breivik et al., 

2002; Gee et al., 2008).  

 

Extensional tectonics during late Palaeozoic in the western Barents Sea segmented the basins 

into fan-shaped array of block-faulted basins separated by highs (Faleide et al., 1984; 

Gudlaugsson et al., 1998; Rønnevik and Jacobsen, 1984). The Upper Carboniferous to Lower 

Permian shallow marine carbonate with evaporite deposits are overlain by late Permian clastic 

deposition in response to Uralian Orogeny (Johansen et al., 1992).  

 

Triassic crustal extension in the North Atlantic and locally important differential compaction 

over the late Paleozoic grabens has played an important role in accommodation space 

development (Glørstad-Clark et al., 2010). Intense rifting in mid Jurassic to early Cretaceous 

occurred in the southwestern Barents Sea (Faleide et al., 2008, 1993). Westward shift in 

extensional rifting increased the amount of megasequences with time towards the present day 

continental-ocean boundary in the southwestern Barents Sea (Klitzke et al., 2014).  

 

In late Cretaceous to Paleocene continental breakup between Norway and Greenland was taken 

up by strike-slip movements along the De Geer Zone. The southwestern Barents Sea margin 

developed during the Eocene opening of the Norwegian-Greenland Sea (Breivik et al., 1998; 

Faleide et al., 2008). Deep marine conditions persisted in the SW Barents Sea throughout 

Eocene time, with deposition of significant sandy submarine fans during the Middle Eocene 

(Ryseth et al., 2003). The passive margin evolved in response to subsidence and sediment 

loading during the widening and deepening of the Norwegian-Greenland Sea. Sedimentation 

was modest until the late Pliocene when the Northern Hemisphere glaciation led to rapid 

progradation. Increase in sedimentation rate formed huge, regional depocentres near the shelf 

edge offshore Mid-Norway and in front of bathymetric troughs in the northern North Sea and 
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western Barents Sea (Faleide et al., 2008). Uplift and glacial erosion during Pliocene to 

Pleistocene (Dimakis et al., 1998; Doré and Jensen, 1996; Dörr et al., 2012; Faleide et al., 1996; 

Green and Duddy, 2010; Henriksen et al., 2011; Vorren et al., 1991) has evolved the  deep 

marine fans in the adjacent oceanic domains along the northern and western passive  margins 

(Knies et al., 2009). 

 

2.2 Evolution of the Hammerfest Basin 

The graben in the Hammerfest Basin has been affected by the extensional tectonics in the 

Carboniferous (Berglund et al., 1986) and further evolved during the Caledonian orogenic 

collapse (Gernigon et al., 2014; Ritzmann and Faleide, 2007). This causes tilting of the Loppa 

High and Hammerfest Basin in late Carboniferous to early Permian with reactivation of the 

underlying basement fault trends (Figure 2.2). Differential basin subsidence with depocenters 

in the northeastern and southwestern part of the Hammerfest Basin during Permian coincided 

with the reactivation of the Troms-Finnmark Fault Complex and showed that the Asterias Fault 

Complex was not active during this period (Berglund et al., 1986). 

 

Well defined early Triassic sediments onlap on north-south oriented structural highs and 

indicate their tectonic reactivation during this period. The post-rift erosion during the 

Cretaceous over the Loppa High and local tectonic uplift has caused deep erosion into Triassic 

in the western part of the AFC. Intense syn- and post-rift erosion during the Cretaceous resulted 

a locally thinner basin towards its center and thicker towards the periphery of the basin. The 

late Triassic was a period of quiescence and deposition. From late Triassic to mid Jurassic 

deposition was controlled by the interplay of tectonic subsidence, eustatic sea level and 

sediment input. The mid Jurassic represents a change from sandstones to shales across the 

Bathonian–Callovian unconformity (Breivik et al., 1998). Sea level rise during mid Jurassic led 

to the deposition of the Stø Formation (Berglund et al., 1986). This formation is the main 

reservoir in the Snøhvit Field, and represents a tectonically controlled transgressive wave-

dominated estuary (Ottesen et al., 2005). Subsequent erosion of structural highs and deposition 

was restricted to both shallow and deep marine deltas along the northern and southern margins 

of the basin (Ottesen et al., 2005).  However, the initial sediment distribution was controlled by 

doming accompanied by E-W trending normal faulting (Faleide et al., 1984) and with the 

formation of horst and graben structures. During late Jurassic the Hekkingen Formation was 

deposited (Berglund et al., 1986). 
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Marine sedimentation started as a result of transgression of the central part of the Hammerfest 

Basin during mid Palaeocene. A SSW progradation of sediment from the platform areas to NNE 

of the basin occurred during the late Palaeocene. Subsidence and continued erosion was 

dominant during Oligocene and Miocene (Knutsen and Vorren, 1991). 

 

2.3 Stratigraphy and depositional setting of the Snøhvit Field 

The Snadd Formation depositional environments range from offshore through shelf and shallow 

marine to paralic and fluvial (Figure 2.1). Flooding surfaces are used to divide the formation 

into stratigraphic level and sequences stratigraphic hierarchies. 

 

The Middle to Upper Triassic formations are characterized by interbedded shales and 

sandstones that contain coal fragments and carbonaceous rocks overlain by shaly and silty units 

that contain increasingly interbedded sandstones upward (Linjordet and Olsen, 1992). 

 

The early to mid-Jurassic formations are characterized by shallow marine to coastal plain 

depositional environments with fluctuating coastlines. They consist of the Tubåen, Nordmela 

and Stø Formations, stratigraphically from bottom to top (Figure 2.1). The Tubåen Formation 

has thick sandstone bodies with thin shale beds. It is conformably overlain by silty shales and 

very fine grained sandstones of the Nordmela Formation. The Nordmela Formation consists of 

fining upward sandstones and is conformably overlain by the Stø Formation (Figure 2.1). 

Between the mid to late Jurassic a major hiatus was observed from five wells drilled in the 

Snøhvit area. The hiatus is followed by organic rich shales of the Hekkingen Formation 

deposited on a marine shelf with anaerobic bottom water conditions (Linjordet and Olsen, 

1992). 
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Figure 2.1 Lithostratigraphy of the Hammerfest Basin , modified from (Ohm et al., 2008), major 

hiatuses/erosion events are left blank in the stratigraphic column.  

 

The second hiatus is between the Upper Jurassic and Lower Cretaceous strata and the third is 

between the Lower and Upper Cretaceous strata. The Cretaceous stratigraphy is dominated by 

by shales and claystones with thin sandstone and siltstone, and interbedded limestones with 

claystones to the top parts. The fourth hiatus is between the Cretaceous and Tertiary strata 

(Linjordet and Olsen, 1992) and followed by the claystones. Paleocene to Eocene claystones 

containing stringers of sand, siltstone, dolostone and tuffs are dominant at the base and soft clay 

to the upper part of the Pliocene to Pleistocene sequences, separated by a major hiatus (Linjordet 

and Olsen, 1992).  The several phases of glacial erosion have removed the Eocene to Miocene 
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sediments, and followed by deposition of the claystone and sandstone dominated Nordland 

Group at the top. 

 

2.3.1 Source, reservoir and seal rocks 

The Hekkingen, Nordmela, Snadd and Kobbe Formations are the potential source rocks in the 

Hammerfest Basin, and in particular for the Snøhvit Field (Linjordet and Olsen, 1992). The 

Upper Jurassic Hekkingen formation is the most prolific oil prone source rock with 10% organic 

carbon (TOC) (Rodrigues Duran et al., 2013), hydrogen index (HI) goes upto 300 mgHC/g 

TOC, and hydrocarbon negative index (S2). The Hekkingen Formation was deposited under 

marine conditions but mixed with terrestrial sediment influx. The variation reflects the distance 

of the paleocoastline and terrigeneous influx in anoxic conditions in the early diagenetic phase 

(Ohm et al., 2008). It is dominated by mixed organic sources, and has reached to the oil window 

in the Snøhvit and Goliat Fields. The hydrocarbon maturation in this formation is reached the 

oil window in the Snøhvit field. Even though most of the hydrocarbon is generated in the 

Hekkingen Formation, its contribution to the reservoirs is restricted by the underlying seal rock 

(Fuglen Formation) and most of the migration out of the source rocks is from the Hekkingen 

Formation (Rodrigues Duran et al., 2013). 

  

The Nordmela Formation has less variation in maturity and input organic matter than the 

Hekkingen Formation. It is dominated by alluvial shale containing kerogen which influenced 

by terrestrial organic matter (OM).The Snadd Formation has a wide variation in depositional 

environment within the mixed organic sources or transitional environment area, and terrestrial 

to marine environment, while the Kobbe Formation is more influenced by organic sources in 

which the terrestrial inputs were restricted (Ohm et al., 2008). 

 

The Stø and Tubåen Formations are the main reservoir rocks. The Stø Formation is the main 

reservoir in the Hammerfest Basin, and also in the Snøhvit Field, dominated by moderately 

well-sorted mature sandstones. It was deposited in prograding coastal regimes with marked 

shale/siltystone intervals within the sand layers that represent regional transgression in the late 

Toarcian and late Aalenian (Dalland et al., 1988). The Tubåen Formation is dominated by 

sandstone with subordinate shales and minor coals. The upper and lower parts are sand rich and 

separated by a shaly interval. It believed that this formation was deposited in high energy 

marginal marine environment (Dalland et al., 1988). 
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The Fuglen and upper part of the Hekkingen Formations are the seal rocks. The Fuglen Formation is 

dominated by mixed organic sources and slightly less marine environment than the Hekkingen 

Formation (Ohm et al., 2008). It is characterized by pyritc mudstones with interbedded thin brownish 

limestones (Dalland et al., 1988). The Triassic source rocks, Snadd and Kobbe Formations, are generally 

oil mature and over mature to gas mature in the Hammerfest Basin. The TOC content for the Snadd and 

Kobbe Formations goes upto 2% and 3% and HI of 150 mgHC/g TOC and 200 mgHC/g TOC, 

respectively. The shallow depth gas anomalies would be the result of large volume gas migration form 

the Triassic source rocks and an upward migration of gas from the Hekkingen Formation due to lack of 

top seal layers (Rodrigues Duran et al., 2013).  
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Figure 2.2 Stratigraphy of dip line BSSO1-104 showing the Hammerfest Basin , the Troms-Finnmark Platform and the Loppa High separated by 

the Troms-Finnmark Fault Complex and Asterias Fault Complex respectively (Modified from Gabrielsen et al., 1990). Where LC: Lower 

Carboniferous; BP: Base of Permian; P1: top of Permian; ILTR: Intra-lower Triassic; BMTR: Base of Middle Triassic; IUTR: Intra-upper Triassic; 

BUJ: Base of Upper Jurassic; ILK1, ILK1, ILK2 & ILK3 are Lower Cretaceous; UK: Upper Cretaceous; BT: Base of Triassic and BQ: Base of 

Quaternary.
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Chapter 3 Data and Methods 

3.1 Three-dimensional seismic data 

This study uses a pre-stack time-migrated (PSTM), zero-phase 3D seismic data covering an 

area of approximately 486 km2 in water depths of 250 to 3600 m in the Snøhvit Field. The study 

area is located in the Hammerfest Basin, SW Barents Sea (Figure 1.1), within latitude 71ο28'17" 

to 71ο43'40" and longitude 20ο16'43" to 21ο43'53". The seismic data (SIS FM TVFGC) was 

processed by Geco-Prakla, Stavanger, in 1997. It consists of 825 inlines and 3775 crosslines, 

each measuring approximately 47 km and 10 km in length. The inlines are oriented in NNE-

SSW direction perpendicular to fault strike while the crosslines are oriented parallel to fault 

strike. The vertical sampling interval and bin spacing for the seismic volume are 4 ms and 12.5 

x 12.5 ms, respectively.  

 

The data is displayed in SEG normal polarity (American convention), such that a downward 

decrease in acoustic impedance corresponds to a negative amplitude reflection or trough and a 

downward increase in acoustic impedance is represented by positive amplitude reflection or 

peak. Troughs in this work are displayed as red reflectors while the white and black reflectors 

represent the zero crossings and peak, respectively. 

 

Zero-phase seismic data are the most widely used in seismic interpretation work because (1) 

time and amplitude are co-located, (2) symmetrical wavelet with the majority of the energy 

being concentrated in the central lobe, (3)  the time of tracked horizons coincides with the travel 

time of the subsurface interface causing the reflection, and (4) the resolution is better than other 

wavelets of the same content in frequency (Brown, 2004; Brown, 2008). Zero-phase seismic 

data are characterized by symmetrical wavelet, maximum amplitude at the center of the wavelet 

and have better resolution than minimum phase (Figure 3.1). However, acquisition and 

processing are mostly done in minimum phase which are phase shifted to enhance interpretation 

especially stratigraphic interpretation.  

 

The data quality is affected by acoustic masking in the western and northern parts of the seismic 

volume. It was impossible to pick the faults and horizons within and across these locations. 

Besides, the data quality is also affected by the intense faulting in the western part of the field 

(Figure 3.2). The reflectors in the Triassic, Permian and Carboniferous successions are also 
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lacking continuity, which makes it difficult to pick the horizons with a high degree of 

confidence. 

 

 
 

Figure 3.1 Phase and polarity standards (Brown, 2008). A shift in polarity in European and 

American convention is represented differently for zero-phase and ±90 phases. For zero-phase, 

an increase in acoustic impedance displayed as peak (red) in the European convention and 

trough (blue) in American convention (a) , such as in carbonate (b) while when the wave pass 

from high to low acoustic impedance (c & d) the reverse  will be displayed, such as in 

hydrocarbon sand (c & d). The shift in polarity can also be displayed as +90 or -90 polarity and 

each of them has different representation in American and European conventions. 
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Figure 3.2 Acoustic masking (gas chimney) at southwestern part of the field affected continuity 

of the horizons and the degree of confidence in the seismic interpretation. Acoustic masking in 

the study area is related to gas or fluid leakage from the subsurface. The location of the seismic 

line is shown in (b). N.B: TWTT-Two Way Travel Time, HAA- High-amplitude Anomaly. 

 

3.1.1 Seismic resolution  

Seismic resolution is the ability to distinguish between two separate objects in order to be seen 

in seismic data. The seismic resolution is dependent on the wavelength (λ) which in turn is 

inversely proportional to the frequency (f) and the velocity of the wave. The minimum 

wavelength in order to distinguish two discernible features should be one fourth of the 

wavelength (Brown, 2004). Hence, low frequency data has lower vertical resolution than high 

frequency data of the same object while high frequency seismic can resolve smaller features 

better. For the seismic volume used in this thesis, vertical resolution is 10 m and 15 m using 

average velocity of 2000 m/s TWTT and a dominant frequency of 50 Hz (see equations 1 and 

2).  

 

The horizontal resolution refers to the minimum lateral proximity between two points that can 

still be recognized as individual points rather than one (Yilmaz and Doherty, 1987). Horizontal 

or lateral migration depends on the spacing of the recording hydrophones and the width of the 

Fresnel zone. For a perfectly migrated seismic reflection data, the lateral resolution is equal to 

the bin spacing which is 12.5 m for the seismic cube used in this work. Migration enhances 
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lateral resolution; specifically the pre-stack and depth migrations have better lateral resolution 

than post-stack and time migrations, respectively.  

λ =
v

f
………………………………………………………………………………...eq.1 

λ =
2000

50
 = 40 m for shallower horizons at velocity of 2000 m/s TWTT 

λ =
3000

50
  = 60 m by assuming 3000 m/s TWTT for deeper horizons 

t =
λ

4
……………………………………………………….......................................eq.2 

 

t =
40

4
 =10 m for shallower horizons 

t =
60

4
 =15 m for deeper horizons 

 

3.2 Borehole or well data 

Five exploration wells were used for stratigraphic correlation and depth conversion. The wells 

include 7120/5-1, 7120/6-1, 7120/6-2 S, 7121/4-1 and 7121/5-1 (Table 3.1). Important wireline 

logs such as sonic (us/ft), density (g/cc), gamma ray (API), neutron (PU) and caliper logs 

(inches) were used for lithology identification, correlation, hydrocarbon mapping, and 

estimation of time-to-depth relationship. All of the five exploration wells were drilled on the 

Snøhvit graben structure, and are plugged and abandoned (NPD, 2015). Besides the wells, core 

photos in each of the wells in the target zones enhanced further stratigraphic characterization.  

 

Table 3.1 The general information of the five wells in the study area, where MD: measured 

depth, TVD: true vertical depth (NPD, 2015). 

 

Well name MD/TVD 

(m) 

Water 

depth (m) 

Oldest Penetrated 

age 

Oldest formation 

penetrated 

Content 

7120/5–1 2700/2699 296 Late Triassic Fruholmen shows 

7120/6–1 2820/2820 314 Late Triassic Tubeån Oil/gas 

7120/6–2S 3242/3035 321 Late Triassic Snadd Oil/gas 

7121/4-1 2609/2609 335 Late Triassic Fruholmen Oil/gas 

7121/5–1 3200/3197 336 Late Triassic Snadd Oil/gas 

 

 Seismic interpretation 

The main methods used in this work include: (1) mapping of the horizons, faults, and high 

amplitude anomalies (2) fault and horizon modelling (3) fault displacement analysis and (4) 

seismic attribute analysis using root mean square (RMS) amplitude, variance and chaos. The 

overall workflow is summarized in Figure 3.3. 
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3.3.1 Mapping of horizons, faults and high-amplitude anomalies 

The workflow for this section is outlined on Figures 3.3 and 3.4  , respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Flowchart showing the overall workflow followed in this thesis together with all the 

methods used, where HAA: high amplitude anomalies; RMS: Root Mean Square amplitude. 
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Figure 3.4  Detail workflow for mapping and modelling of faults and horizons, and mapping 

and RMS amplitude analysis of HAAs used in Petrel. DHI: direct hydrocarbon indicators.  
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Mapping of horizons 

The first task in mapping of the horizons is well-to-seismic tie in which formation tops from 

the boreholes were linked to their time-equivalent reflectors on the seismic data (Figure 3.5). 

The horizons in this work were interpreted using the 2D autotracking tool in Petrel®2014 across 

individual seismic profiles (Figure 3.6). Subsequently, the interpretation was extended into the 

seed grid at inlines and crossline spacing of 10 (equivalent to 125 m). The complete grids were 

later converted into surfaces in order to display the horizons as isochron maps (Figure 4.6). In 

situations where the reflectors are continuous, the 3D autotracking tool was used instead. The 

misties across horizons were corrected with the aid of the seed grid shown in Figure 3.6. 

Overall, eleven (11) major horizons were interpreted picked and discussed in Chapter 4. 

Furthermore, isochore or two-way travel time (TWTT) maps were generated from the isochron 

maps in order to assess areas characterized by thickness variation and affected by faulting. Ten 

isochore or TWTT thickness maps were generated from the eleven interpreted isochron maps.  
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Figure 3.5 Seismic-to-well tie was used for horizons mapping in which formation tops from 

boreholes were linked to their time-equivalent reflectors on seismic data. 
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Figure 3.6 Seed gridding used for horizon interpretation . The 2D auto tracked lines were 

interpolated using 3D auto tracking technique. The seismic interpretation was done at fine 

gridding of 10 inlines and crosslines (equivalent to 125 m).  

 

Fault interpretation 

Faults on the seismic sections can be recognized based on their discontinuous reflectors which 

indicate their location, and the dip separation can be estimated by correlation of similar 

reflectors across the faults (Brown, 2004). Vertically displaced discontinuous reflectors and 

reflection shadows along the fault zone were used to observe and pick faults. The dip separation 

was observed on vertical seismic section and the horizontal traces on fault surface maps were 

visualized (cf. Fossen, 2010).  The vertical (throw) dip separations were measured at fault cut-

off points on the hanging wall and footwall sections (Figure 3.9). Faults in this study were 

manually interpreted across section profiles at inline and crossline interval of 5 (62.5 m). 
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Interpretation of seismic high-amplitude anomalies (HAA) 

The nature and polarity of the seabed was used to distinguish between high-amplitude 

anomalies related to lithology from those connected to fluid leakage and accumulations. There 

is an acoustic impedance contrast when seismic waves move from the sea water to the seabed 

and into the underlying bedrocks as a result of increase in velocity and density (Sheriff and 

Geldart, 1995).  Anomalies similar in polarity with the seabed are treated as “hard-on-soft” i.e., 

related to the lithology or diagenetic effects. The anomalies with opposite polarities when 

compared to the seabed are characterized as “soft-on-hard” which are the result of fluid leakage 

or accumulations in the subsurface (Alves et al., 2015).   

 

The first step in mapping the anomalies is to examine the phase and polarity of the seabed, then 

find ‘soft-on-hard’ reflections in the seismic volume. The second step is to examine whether 

this anomaly is structurally conformable with the background reflectors (Figure 2.22). This 

helps to distinguish the soft-on-hard reflectors that are flat spots or hydrocarbon water contacts. 

Since this is not enough to identify them, amplitude extraction above and below the anomalies 

was done to further characterize the anomalies as those related to fluid accumulations or direct 

hydrocarbon indicators (Figure 3.11). 

3.3.2 Fault and horizon framework modelling  

The fault framework modelling of all the mapped faults was done in the time domain and an 

average interval velocity of 2 km/s was used to calculate the dip and dip direction of the faults 

(Figure 3.7). However, these dip values can be also calculated using the strike, horizontal length 

and vertical depth of the faults. The average dip and dip direction of all faults was estimated 

from the modelled fault framework. Furthermore, graphical analysis of the faults includes the 

use of rose diagrams and equal area plots. Fault attitudes such as strike and dip data, were 

imported into graphical fault analysis tool GEOrient software. Rose diagrams are circular 

frequency histograms that are used for plotting directional (azimuthal) data such as fault strike 

(e.g., Figure 4.10). On the other hand, equal area projections are used to plots fault dip and 

strike (e.g., Figure 4.11). Both plots are used to identify the orientation of the faults that controls 

the vertically upward/focused fluid flow in the study area. Fault and horizons models are 

prerequisite for fault analysis especially when using the RDR plugin® in Petrel® 2014 (Figure 

3.7 and 3.8). 
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3.3.3  Fault displacement analysis 

In order to understand the history of fault growth, linkage and reactivation, fault displacement 

data are used (Omosanya and Alves, 2014; Tvedt et al., 2013). Fault displacement data used in 

this thesis include the plot of displacement- distance (t-x), throw-depth (t-z), expansion and 

growth indices. Throw of faults was measured as a difference between the hangingwall and 

footwall depth/time of a given horizon, and was constrained by the differences between the 

hangingwall and footwall cut-off value on the seismic profiles (Figure 3.9). 

 

Throw-depth (t-z) plots were determined from the throw across faulted horizons, and then 

plotted against depths to the midpoints between the respective hanging-wall and footwall cut-

offs (Baudon and Cartwright, 2008a, 2008b; Reeve et al., 2015). These plots provide insights 

about potential reactivation of fault by dip linkage (Mansfield and Cartwright, 1996; Omosanya 

and Alves, 2014; Tvedt et al., 2013), and also distinguishing faults that developed through syn-

sedimentary activity from blind or radial propagation of tips (Childs et al., 2003; Omosanya 

and Alves, 2014). 

 

Time-to-depth relationship from check-shot velocity data nearby four wells (7120/5-1, 7120/6-

1, 7121/4-1 and 7121/5-1) was determined to compare throw values in time (ms TWTT) and 

depth (m). The best fitting polynomial function was determined from time-depth domain 

relationships (Figure 3.10a). The correlation coefficient is nearly one (0.9996) showing that the 

depth in time and depth domain are strongly correlated and the average interval velocity used 

for this conversion (2 km/s) was correct. So, plotting the throw profiles in time and in depth 

domain is the same (Figure 3.10b and c). 

 

Expansion Index (EI)   has been used to define periods of most significant fault growth form 

normal faults (Beach, 1984; Bischke, 1994; Gibbs, 1983; Mansfield and Cartwright, 1996; 

Pochat et al., 2009; Thorsen, 1963) but does not contain any information about absolute slip 

rate (Cartwright et al., 1998).  Expansion indices and t-z plots can be used to constrain timing 

of fault activity. It is the ratio of footwall to hangingwall stratal thickness  

(Figure 4.17 and Eq. 3). 
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𝐸𝐼 =
Thickness of hangingwall strata

Thickness of footwall starata
……………………………………….……………Eq.3 

Where, EI > 1 represents thickening in the hangingwall 

 

The Growth Index (GI) is the ratio of the difference in thicknesses between the hangingwall 

and the footwall strata divided by the thickness of hangingwall strata (Figure 4.18 and Eq. 4).  

Growth index records can indicate the timing and depict the growth history of faults (Henriksen 

et al., 2011; Hongxing and Anderson, 2007; Pochat et al., 2009).  It is a measure of relative 

throw rate to the sedimentation rate in the footwall.   

 

 GI =
Thickness of hangingwall strata − Thickness of footwall strata

Thickness of hangingwall strata
…………………….Eq.4 

 

Throw and displacement profile analyses provide clear picture of fault propagations, 

reactivations and linkages which thereby are inked to timing of fluid leakage in the study area. 

These indirect inferences were used in the role of the faults on fluid and hydrocarbon plumbing 

in the study area. 
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Figure 3.7 Fault modelling (a) Example of un-modeled major faults and (b) modelled 

equivalent of the major faults. Fault modelling is used to remove and reduce uncertainty 

associated with fault mapping. 
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Figure 3.8 Horizon modelling (a) Examples of interpreted and un-modeled stratigraphic 

surfaces (b) Modeled time isochron maps for horizons H1 to H11.  
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Figure 3.9 Throw estimation from the hanging-wall and footwall cut-offs. The dip displacement 

is the square root of the sum of the square of heave and throw. 
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Figure 3.10 Time-to-depth relationship  a) Plots of throw profile in time and depth domains 

using checkshot data from nearby wells (7120/5-1, 7120/6-1, 7121/4-1 and 7121/5-1). The 

correlation coefficient of correlation (R) is ~1showing that there is perfect linear relationship 

between throw in time and depth. (b) Throw-time (ms) plot and (c) Throw-depth (m) are similar 

in geometry and shape profiles. 
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3.3.4 Seismic attribute analysis 

Seismic attributes were extracted from the seismic volume to analyze the high-amplitude 

anomalies and assess their relationship with stratigraphy or geomorphic features. The seismic 

attribute used include RMS amplitude, chaos, variance and the geobody extraction. 

 

Root Mean Square (RMS) amplitude was computed between the horizons and used to detect 

the occurrence of high-amplitude anomalies (HAA).  RMS amplitude is calculated as the square 

root of the sum of the squared amplitudes divided by the number of samples (Brown, 2004). 

The RMS amplitudes combined the effect of positive and negative amplitude that possibly due 

to the presence of hydrocarbon or fluid. Hence, RMS amplitude seismic attributes are sensitive 

to sandstone-bearing depositional systems or fluid in a siliciclastic environment (e.g. Figure 

3.11). 

 

Chaos attribute map the chaotic signal pattern contained within a seismic data and are a measure 

of the "lack of organization” in the dip and azimuth estimation method. Chaos in the signal can 

be affected by gas migration paths, salt body intrusions, and for seismic classification of chaotic 

texture (e.g. Figure 4.34). Subsequently, variance seismic attribute measures dissimilarity of 

seismic traces (e.g. Figure 4.33). Variance maps convert a volume of continuity into a volume 

of discontinuity, highlighting structural and stratigraphic boundaries (Brown, 2004).  

 

The combined attributes are used to show the migration pathways, highlight gas chimneys and 

the static fluid accumulations. The results from these attribute analysis are input for the geobody 

extraction. The opacity of the geobodies is filtered using the color of the high-amplitude 

anomalies at frequency threshold of 20%. 

 



Chapter 3 Data and Methods  Mohammedyasin 

 

36 

 

 
 

Figure 3.11 Seismic attribute cubes (a) RMS cube showing the low amplitude (black) and high amplitude (red) (b) and (c) variance and chaos cube 

showing gas chimneys and (d) the box probe of RMS amplitude highlighting the geometry of the high-amplitude anomalies. 
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Chapter 4 Interpreted horizons, faults and High-amplitude 

anomalies 

 Seismic stratigraphy of the study area 

Eleven (11) horizons were interpreted in the study area from the seabed reflector (H11) to the 

top Carboniferous (H1). The seabed is characterized by numerous E-W and N-S orientated 

seabed furrows or plough marks (Figure 4.1).  The linear E-W furrows are dominantly observed 

in the eastern and western parts of the seabed while the non-linear N-S furrows are observed at 

the central parts of the seabed. The upper tips of most of the faults at the Torsk Formation were 

interpreted beneath the large depressions on the seabed reflector. These are pockmark features, 

which vary in size from mega-pockmarks (> 1km wide) to giant pockmarks (> 100 m wide) 

and large pockmarks (< 100 m wide) (Figure 4.1). 

 

 

 

Figure 4.1 Interpreted seabed furrows and pockmarks. The furrows are generally oriented E-

W directions while the pockmarks are oriented in both the E-W and N-S directions. 

The interpreted horizons were used to divide the stratigraphy of the study area into ten units. 

These units reflect the influence of faulting and presence of high-amplitude anomalies 
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suspected to be fluid leaked from the reservoir rock. The characteristic of each of the units is 

discussed as follows:- 

 

Unit 1 

The top of Unit 1 (U1) is marked by H1 at c.3500 ms TWTT (3844 m). This unit is the deepest 

unit in the study area and is Carboniferous in age (Gabrielsen et al., 1990).  It is characterized 

by strong, continuous and high amplitude reflectors. Unit 1 is composed of channel deposits 

and carbonates (Ohm et al., 2008). 

 

Units 2 to 8 

Unit 2 (U2) and Unit 3 (U3) consist of Permian rocks and are relatively flat in the NNW part 

of the field and are also affected by acoustic masking on the top central part of U3. The bottom 

part of the U2 is slightly thickening towards the SSE direction with average thickness by 100 

m. On the contrary, the top part of U2 is thickening towards NNW direction (Figure 4.3). Unit 

4 (U4) is thick along the graben structure and thin on the horst. This unit is composed of the 

Triassic Fruholmen, Snadd and Kobbe Formations (Ohm et al., 2008).  

 

Furthermore, Unit 5 (U5) corresponds to the reservoir zone and it is marked by sediments 

between H4 and H5. Unit 5 has uniform in thickness throughout the section. This unit is further 

divided into sub-unit 5a (U5a) which consists of Tubåen and Nordmela Formations, and sub-

unit 5b (U5b) comprises of Stø, Hekkingen and Knurr Formations from bottom to top. U5a is 

relatively uniform in thickness throughout the field and approximately 100-200 m (100-200 ms 

TWTW) thick (Figure 4.9). The thickness of U5b varies in the western and eastern parts of the 

field. In the western part, U5b has thickness of below 50 (50 ms TWTT) and it is up to 200 m 

(200 ms TWTT) in the eastern part (Figure 4.10). The thickness maps also show thickness 

differences on both sides of the footwall and hangingwall of the major faults. 

 

Unit 6 (U6) comprises the Kolje Formation and follows the topography of the Unit 5. It can be 

subdivided into lower and upper sub-units, U6a and U6b which are separeted by a strong 

continuous reflector (Figure 4.2).  U6a is very thin on the graben structure and thick in the horst 

part which indicates that it is an infilling of the accommodation created by Jurassic faults. On 

the other hand, the U6b reflector is flat implying that accommodation space was not further 

created during its deposition. 
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Unit 7 (U7) comprises the Kolmule Formation and is relatively uniform in thickness. Unit 8 

(U8) is composed of the Kveite and Kviting Formations and has very strong reflectors with 

intense discontinuities. It is highly faulted and characterized by high amplitude anomalies. 

  

Units 9 and 10 

Unit 9 (U9) comprise the Torsk Formation and is further subdivided into lower and upper parts 

(U9a and U9b). The lower part (U9a) is between horizon H9 and an arbitrary horizon (Ha) that 

marks the upper tips of the major faults, gas chimneys and shallowest HAA anomalies.   The 

sediments in this unit are downlapping towards the bottom reflector (H3) and thinning towards 

the SSE. Lenticular features (on crossline 1497 and inline 2448) are observed at the top 

prograding unit (U9b). The upper part (U9b) unit is toplapping towards H10 and underlain by 

a NNW to SSE retrograding lower part (Figure 4.2). 

 

Unit 10 (U10) corresponds to the Nordland Group and it is the topmost unit deposited in the 

area. At its lower part, Unit 10 is marked by the regional angular unconformity called the Upper 

Regional Unconformity (URU). This unconformity marks the commencement of Pliocene to 

Pleistocene glaciations. 
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Figure 4.2: Seismic stratigraphy of the Snøhvit Field showing the major units with their 

interpreted formation tops and the summarised tectonic history of the study area (modified from 

Ostanin et al., 2013).  See the location on Figure 4.6a. Ha is an arbitrary horizon that divides 

Unit 9 into U-9a and U-9b. 
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Figure 4.3 Channel features on the crosslines (a) Uninterpreted and (b) interpreted seismic 

sections showing channels interpreted within Unit 1. The channel sets change in character from 

NNW direction to SSE, shown as A, B and C. See the location of the line on Figure 4.6a. 
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Figure 4.4 (a) Uninterpreted and (b) interpreted seismic sections showing the interpreted 

channel and slump deposits . The concave upward feature can be traced down to the WSW 

direction. See the location of the line on Figure 4.6b.  
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Figure 4.5 (a) Uninterpreted and (b) interpreted seismic sections showing thickening along 

WSW dipping fault and drag of sediments along the flank of the horst structure in Unit 5 

(Reservoir zone). Turbidites were also recognized in Unit 7. See the location of this line on 

Figure 4.6c.  
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Figure 4.6 Structural time (isochron) maps of the key horizons (a) H6 (b) H5 and (c) H4. The 

major faults offsetting these horizons are characterized by steep gradients. The black dotted-

circle indicates areas of poor data quality linked to the presence of gas chimney, yellow dots 

indicated the location of the boreholes. 
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Figure 4.7 Two-Way Travel Time thickness (isochore) maps between horizons H4 and H5 

(Unit 5a) and horizons H5 and H6 (Unit 5b) showing thickening and thinning to the west, 

respectively. 
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4.2 Fault analysis  

4.2.1 Interpreted faults 

Sixty-two faults (62) faults were interpreted and used for fault characterization and categorized 

based on size into three major categories; (1) Type A or major faults- are faults offsetting the 

reservoir zone and which are extended down to Triassic, Permian and Carboniferous 

formations and  include the major deep-seated faults (F1, F2, F3, F4, F5, F5 and F6),  (2) Type 

B or intermediate faults which were identified throughout the seismic volume and are more 

dominant within the Palaeocene to Pliocene units, and (3) Type C or minor faults which are 

more dominant within the late Cretaceous (within Kveite/Kviting Formations) and Eocene 

(Figures 5.1, 5.2 and 5.3) intervals. The major faults are extensive laterally (> 10 km) and are 

vertically continuous down to deeper depths of 3000 m and more (Figure 4.9). The intermediate 

faults are found in both shallow and deeper depths, but more dominant at shallower depths 

(Figure 4.10). The minor faults occur dominantly within Unit 8 in the Kveite/Kviting 

Formations (Figure 4.11). 

 

Six representative major faults were selected for displacement analysis (F1 to F6) and to 

examine the role of faulting in fluid leakage in the area (Figure 4.7). Fault 1 (F1) is located in 

the southern part of the study area (Figure 4.3). This fault offsets Unit 4 to Unit 9 (Figure 4.7b).  

Fault 2 (F2) is located at the southern end of the field (Figure 4.3).  Fault 3 (F3) is the longest 

fault (Figure 4.15) and is the most deep-seated fault in the study area and it is located in the 

central part of the field where it divides the field into northern and southern segments of the 

graben structure. Fault 4 (F4) is located in the western part of the field (Figure 4.9). 

 

The general strike direction of the faults is parallel to the inlines and perpendicular to the 

crosslines. The faults are striking E-W, NE-SW and ENE-WSW with dips in the SE and NW 

directions (Figures 4.11 and 4.12). The NE-SW striking faults are the major faults that 

dominantly tip out upward to shallower depths (600 ms TWTT or 600 m) and tip out downward 

in the carboniferous Formations (H1). Some of the shallower faults are oriented differently and 

have a N-S trend. The major faults separate the field into different segments of graben 

structures dipping towards the NW and SE (Figure 4.10). The ENE-WSW striking faults are 

the dominant in the western highly faulted part of the field. These faults change their strike to 

the south-western and north-western ends of the field. The biggest acoustic masking is 

observed to east of this part, which extend vertically from the H9 to H7. Furthermore, the 
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western part of the field is dominated by NNE-SSW striking faults. Most of the faults appear 

as linear (2D) and planar geometry (3D) and some of them are curved in the western part of 

the field (Figure 4.10).  

 

 

 

Figure 4.8 (a) Uninterpreted and (b) interpreted seismic profile showing the three major faults 

in the study area (F1, F3 and F5). See the location on Figure 4.7a 
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Figure 4.9 2D planar view of modelled faults showing the Type A, Type B, and Type C faults 

in the study area. The major faults and intermediate faults are ENE-WSE oriented except F4. 

Most of the minor faults are oriented E-W. The location of the five wells used in this study are 

also shown, i.e., 7120/5-1, 7120/6-2 S, 7120/6-1, 7121/4-17121/5-1. 

 

 

 

Figure 4.10 Fault plane geometry, rose diagram and equal area plot for the six major faults 

(Type A) in the study area. The faults extend down to the Triassic, Permian and Carboniferous 

formations and their upper tips are reaching to Eocene. 
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Figure 4.11 Fault plane geometry, rose diagram and equal area plot for the intermediate faults 

(Type B) in the study area.. 

 

 

 

Figure 4.12 Orientation of minor faults (Type C) in the eastern and the western parts of the 

field. 
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The strikes and dips of F1, F2 and F3, and F4, F5 and F6 are relatively similar but with different 

dip directions. The strike/dip of F1, F2 and F3 are 076°/60°SE, 078°/64°SE and 078°/68°NW, 

respectively. For F4, F5 and F6 strike and dips are 083/65SE, 082/60NW and 084/36NW, 

respectively. The dip of the faults varies from ~40° to 80° with dominant strike of 070°- 

080°/60°-070°SE/NW (See Appendix Table A1). 

 

4.2.3 Drag along faults 

Fault drag along the flanks of the major faults on Units U-6a and U5 has been observed. Both 

normal and reverse drags are observed along H4, H5 and H6 (Figure 4.14).  The cause of the 

these drag structures may be related to: (1) lithological changes; (2) sudden change in throw 

and displacement along these horizons from normal drag at the first phase and progressive 

sediment buildup along the fault plane to form reverse drag, and (3) more regionally caused by  

subsidence followed by uplift  causing normal and reverse drags. The first and second reason 

is more possible because of the drag effect is observed only in these units and variation of the 

normal and reverse drag on F3. This may imply variation in degree and timing of reactivation 

of each of the faults.  
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Figure 4.13 Normal and reverse drag example along the faults forming convex and concave up 

(indicated by green arrow) along the slip of the fault, respectively.  The drag along F3 on H5 

and H6 forms reverse drags, reflectors deflect upward while on H4 the drag is a normal drag 

(NB: This figure is enlarged on the drag structure of  Figure 4.5). 



Chapter 4 Results  Mohammedyasin 

 

52 

 

4.2.4 Throw versus depth (t-z) plots 

Fault 1 (F1) has a gentle negative t-z gradient (-3.4), and a decrease in throw with depth from 

its basal tip to H8 with maximum throw of ~140 m on H5 (Figure 4.14). The maximum t-z 

gradient is recorded on H5 for all faults except F6 in which the maximum gradient is on horizon 

H3.  Further upward from H3 the gradient is steep. Some increase in throw has been observed 

for less than 100 m. Toward the upper part, throw values decrease up to minimum throw values 

of ~10 m and zero at upper tips.  

 

The lower parts of Fault 2 (F2) and F1 have similar t-z plot profiles. F2 has a  negative t-z 

gradient (~5.5), a decrease in throw as depth increases, with an increase in values from its basal 

tips to the H4 and maximum throw value of ~130 m measured on H5 (Figure 4.14).  The throw 

values decrease from H5 to H6. However, above H6 the throw profiles are opposite to F2, 

generally increasing towards the upper tip. Towards the upper tip, the throw gradient decreases 

rapidly to zero.  

 

Fault 3 (F3) has a very gentle t-z gradient in its lower part and decreases in throw values 

upward. Below H4 the gradient becomes steep and negative (~-2.8) and increases further to 

H5, with the maximum throw value of ~65 m (Figure 4.14). Toward the upper part, the throw 

values decreases until it reaches zero at the upper tip. 

 

Fault 4 (F4) has steep gradient to its basal part with maximum throw values of ~70 m on H5. 

The throw values decrease from H6 upward and become zero (at the middle) (Figure 4.14). 

Similarly, Fault 5 (F5) has steep negative t-z gradient in its lower part and the throw increases 

towards H4 with maximum of ~110 m between H4 and H5 (Figure 4.14). The throw value 

decreases from the H5 to its upper part with different values of positive t-z gradients. 

 

Fault 6 (F6) and F4 have positive t-z gradients throughout their profiles, gentle t-z gradient in 

the lower part which decrease towards the middle (Figure 4.14).  The minimum gradient in the 

middle of the F6 profiles could suggest dip linkage, but with further modification of throw 

values during fault reactivation.  
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Figure 4.14 Throw-depth (t-z) plots of the six major faults from (a) to (f) for F1 to F6, 

respectively.  F1, F2, F3 and F5 have relatively steep gradients towards the lower part of the 

throw profiles with maximum throw at H5 with increase from the H4 to H5.  The general shape 

of t-z profile of F3, F4 and F6 shows dip linkage while F1, F2 and F5 does not show this 

character. N.B: the red dot indicates location of the maximum throw value. 
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4.2.5 Displacement versus distance (t-x) plots 

The displacement-distance (t-x) plots of F1 have lower displacement from the origin and 

progressively increase with distance along the H4 horizon (Figure 4.15c).  The maximum 

displacement value has been recorded on H5 for most of the faults. The displacement along 

this horizon is almost zero (Figure 4.15b). This is related to lateral merge of two or more 

different faults along the strike.  This fault has generally multi-skewed C-type profiles and 

maximum displacement peak varies in each of the three key horizons with two dominant 

maximum displacement (dmax) (see Appendix Figure A1). Based on this, two major segments 

have been identified (Figure 4.15a). 

The displacement-distance (t-x) plots of F2 are changing displacement frequently along the H4 

(Figure 4.17). The t-z plot along the H5 increases from its origin and 370 m maximum 

displacement was recorded on this horizon (Figure 4.15e). The t-x plots of H5 and H6 are 

relatively similar except some increase towards the origin along H6 (Figure 4.15d and 

Appendix Figure A2). 

 

The displacement-distance (t-x) plots of F3 increases with distance (Figure 4.15g-i). Along H4, 

an abrupt displacement increase has been observed along H5 reaching up to an average 

displacement of 700 m (Figure 4.15h and also see Appendix Figure A3). 

 

In contrary to F3, the t-x plots of F4 have a maximum displacement (550 m) at smaller distance 

and minimum at higher distances (1.7 km) (Figure 4.16a-c). The maximum displacement is 

along H5 and lower upward (H6) and downward (H4) (Appendix Figure A4). The t-z plot of 

this fault is highly segmented along H4 (Figure 4.16a).  

 

The displacement of F5 along the three horizons (H6, H5 and H4) is generally upward from 

H8 to H6. There is rapid local variation in displacement constant with the maximum 

displacement at H5 and lower at H6 and H4 (Figure 4.16d-f). 

 

The displacement profile of F6 is different form the faults described before. The higher 

displacement was between 500 m to 5000 m (Figure 4.16g-i). The t-x plot along H4 has C-type 

profile along the H6 and H4 and M-type profile along the H5 (Muraoka and Kamata, 1983). 
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Figure 4.15  Distance-displacement (t-x) plots of F1, F2 and F3 along H6 , H5 and H4. The displacement is higher at shorter distance for H6 and 

H5 and for H8 at larger distances, and the displacement along H6 is less than along H5 and H4. The profiles are in general multi-skewed C-type 

profiles. 



Chapter 4 Results                                                                                                                                                Mohammedyasin 

56 

 

 
Figure 4.16 Distance-displacement (t-x) plots of F4, F5 and F6 along horizons H6, H5 and H4. The t-x profiles of F4 and F5 (a-f) show multi-

skewed C-type profiles while F6 has skewed C-type profile on H4 and F6 and M-type profile on H5
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4.2.6 Expansion and growth indices 

Fault 1 (F1) has expansion indices of greater than 1 for U5, U6 and U8 which implies 

thickening of sediments in the hangingwall section of the fault (Figure 4.17). No change in EI 

was observed for units U4 and U7 (Figure 4.17) while strata thinning at U9 are signified by EI 

< 1. The maximum expansion of F1 occurs on U5b. The maximum growth index was recorded 

on U8 (GI = 0.018) (Figure 4.18). The expansion indices along Fault 2 (F2) show thickening 

of hangingwall strata on Unit 5 and no change in thickness from U6 to U9 (Figure 4.17). In 

contrast, the growth index of U5 is negative and > 0 upward to U7, U8 and U9. 

 

Similarly, the expansion indices of Fault 3 (F3) are almost one on all of the Units except U5. 

The maximum growth index is on U5 (0.28). In contrast to the above, fault expansion and 

growth indices for Fault 4 (F4) have thickening on the hangingwall strata of U6, U7 and U9 

and thinning on U4, U5 and U8 (Figure 4.17).  Most of the stratal units have negative GI values. 

On U6 the growth index approaches 0.5 indicating the reverse drag as observed on the seismic 

sections (Figure 4.18). This could be informative for the negative values of GI are related to 

reverse drag by compression during the uplift. The normal fault reverse drag on U5 corresponds 

to the minimum growth index (GI = - 2) values along F3.  

 

For Fault 5 (F5), there is strata thickening of the hangingwall section for U5b, U6, and U9 

(Figure 4.17) and there is no thickness variation on the U2 (EI = GI = 0). The maximum 

expansion and growth indices measured on U5b along F5 are 1.1 and 0.3, respectively. And, 

progressively decrease in expansion and growth indices upward till U8 (Figures 4.17 & 4.18).  

 

Consequently, The expansion indices strata units along Fault 6 (F6) does not show thickness 

variation on U4, U5a and U6 and maximum expansion index of  1.4 and growth index of 0.3 

has been recorded on U5b (Figure 4.18). Generally, the expansion and growth indices indicates 

thickening on the hangingwall stratal and fault growth on U5.  
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Figure 4.17 The expansion index for the major faults showing strata thinning/thickening. EI > 

1 implies thickening of the hangingwall section while EI < 1 means thinning. 
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Figure 4.18: The growth index for the major faults . GI > 1 implies the fault interacted with a 

free surface during its growth while GI < 1 means blind faults. 
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4.3 High-amplitude anomalies (HAAs) 

4.3.1 Interpreted HAAs 

Soft-on-hard anomalies in this work are thought to be related to subsurface fluid accumulations 

and were mapped based on the following criteria; (1)  their high amplitude values, (2) opposite 

polarity to the seabed reflectors, and (3) structurally unconformable to the background 

reflectors (Alves et al., 2015; Calvès et al., 2008). Nine high-amplitude anomalies or ‘soft-on-

hard’ reflections were interpreted and displayed in Figure 4.19. The anomalies are spatially 

dominant in the eastern and western parts of Unit 9. Most of the anomalies (A1, A2, A3, A6, 

A7, A8) occur approximately at the same stratigraphic (600-700 ms TWTT) level within the 

Torsk Formation while anomalies A4 and A5 are hosted within the Kveite/Kviting Formations.  

On the E-W oriented seismic sections, most of them are intersected by the upper tips of the 

deep-seated normal faults, while the others are juxtaposed by the minor faults. 

 

 Furthermore, RMS amplitude extraction was done on the seismic volume and the nine mapped 

soft-on-hard HAAs were further examined. The result shows more anomalies which were not 

visualized during anomaly mapping. The geometry and character of each of the anomalies are 

discussed as follows: 

  

 

 

Figure 4.19: 2D planar view of the interpreted HAAs and their spatial distribution in the 

Snøhvit Field. Anomalies A2, A3, A5, A7 and A9 are oriented NW-SE, A6 and A8 NNE-SSW, 

A1 in the N-S and A4 E-W. 
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Anomaly 1 (A1) 

Anomaly 1 (A1) is located in the western part of the study area approximately 600 m below 

the seabed. The anomaly is characterized by strong, high-amplitude reflectors, with reverse 

polarity to the seabed (Figure 4.20a & b). It is structurally unconformable with the background 

reflectors and cross-cuts stratigraphy. A1 is bounded on the top by a strong toplapping reflector 

of the Ha (arbitrary horizon, erosional unconformity) and on the bottom by the downlapping 

bottom reflectors of the host package.  The anomaly extends 4.3 km in the north-south direction 

and 2.5 km in the east-west direction (Table 4.1) and covers an area of ~10.8 km2 (Figure 

4.20c). Spatially, this anomaly is intersected by a deep-seated fault (F4) and some other NNE-

SSW trending faults (Figure 4.29). The bright nature of the NW-SE fault zone on the time slice 

may show a channel flowing along the fault scarps (Figure 4.20c and see Appendix Figure A7).  

 

Anomaly 2 (A2) 

Anomaly 2 (A2) is located in the northwest margin of the field, oriented in N-S direction and 

approximately 3.6 km in a N-S direction and 1.3 km in an E-W direction (Figure 4.19 and 

Table 4.1). This anomaly has strong negative amplitude and shows reverse polarity as 

compared to the seabed. The reflectors in this anomaly are structurally unconformable with the 

background reflectors (Figure 4.21a & b).  Below this anomaly the reflectors are affected by 

the acoustic masking of a gas chimney.  This gas chimney is the second largest gas chimney 

and extends from the Triassic to Paleocene formations. The anomaly is located 616 m below 

the seabed and covers an area of ~3.2 km2. It is intersected by upper the tips of fault F4 and 

some local small faults (Figure 4.21c). 

 

Anomaly 3 (A3) 

Anomaly 3 (A3) is located to the eastern part of A2 in the northwestern part of the field and 

extends 3.3 km in a N-S direction and 1.2 km in an E-W direction (Table 4.1), approximately 

664 m below the seabed. It is characterized by strong amplitude reflectors, polarity reversal as 

compared to the seabed and structurally unconformable with the background reflectors (Figure 

4.22a & b).  It covers an area of approximately ~3.2 km2 (Figure 4.19).  The RMS amplitude 

shows local variation in this anomaly and is intersected by east-west trending faults and by the 

upper tip of fault F4 (Figure 4.22c). 
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Anomaly 4 (A4) 

Anomaly 4 (A4) is located in the southwestern margin of the field,  is  approximately 3.8 km 

in an E-W direction and 2 km in a N-S direction (Figure 4.23c and Table 4.1), and 

approximately 1300 m below the seabed, covering an area of ~6.2 km2.  The reflectors in this 

anomaly have relatively similar high-amplitudes except where the polarity reversal has been 

identified on the anomaly (Figure 4.23a & b). It is also structurally conformable with the 

background reflectors in Unit 8 (Figure 4.23a). The amplitude decreases upward towards to the 

east and it is separated by the NE-SW striking faults from the other anomaly to the northwest. 

It is located on the upper part of the major fault F4 (Figure 4.23a). 

 

Anomaly 5 (A5) 

Anomaly 5 (A5) is located in the central part of the field approximately 2.3 km north-south 

direction and 1 km in east-west direction (Figure 4.19 and Table 4.1).  The reflectors are locally 

high and strong in the anomaly zone and polarity reversal has been noticed as compared to the 

seabed (Figure 4.24b). It also structurally conformable with the background reflectors (Figure 

4.24a).  It is located in a depth of 1112 m and its calculated area from the surface maps is ~2 

km2.  However the RMS amplitude extraction shows as the anomaly further extents of the 

anomaly, to the east with very strong RMS amplitude and to the west relatively lower amplitude 

distributed within the zone of polygonal faults. This suggests that the polygonal faults have 

been serving as local conduit which distribute the fluids laterally or vertically (A’5) (Figure 

4.24c). 

 

Anomaly 6 (A6) 

Anomaly 6 (A6) is located in the central part of the volume in a depth of approximately 724 m 

beneath the seabed. It is extended 7.5 km in a NE-SW direction and 3.6 km in an E-W direction 

(Table 4.1) and covers an area of ~23.5 km2 (Figure 4.19 ). This anomaly is located on the top 

of the largest gas chimney zone. This gas chimney reaches to the Triassic formations with 

decreasing masking effect downwards.  The reflectors in the anomaly are structurally 

unconformable to the background reflectors (Figure 4.25a). Polarity reversal relative to the 

seabed has been observed (Figure 4.25b). The boundary of this anomaly has a diffuse boundary 

to relatively lower RMS amplitude to the margin. Some other anomalies have been also 

identified at the same stratigraphic level which is distributed through the local smaller faults 

(Figure 4.25c). 
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Anomaly A7 

Anomaly 7 (A7) is located in the eastern part of the field and is approximately 7 km in a NW-

SE direction and 4 km in a SW-NE direction (Table 4.1). It is located at a depth of 700 m below 

the seabed and covers an area of ~23 km2. The reflectors in this anomaly are characterized by 

high amplitudes which have opposite polarity to the seabed (Figure 4.26a & b). The reflectors 

in this anomaly zone also show reverse polarity as compared to the seabed (Figure 4.26b). Its 

distribution in a NE-SW direction may be influenced by local faults (Figure 4.26c).  

 

Anomaly 8 (A8) 

Anomaly 8 (A8) is located in the northeastern part of the field and is approximately 5 km in a 

NE-SW direction and 3 km in a NW-SE direction (Figure 4.19 and Table 4.1).  It is located at 

approximately 670 m below the seabed and covers an area of ~14.5 km2. The reflectors of this 

anomaly are very strong amplitude characterized by polarity reversal as compared to the seabed 

and structurally unconformable with the background reflectors (Figure 4.27a & b). This 

anomaly is lined-up with upper tip of F5 and some polygonal faults to the western and southern 

parts (Figure 4.27c). 

 

Anomaly 9 (A9) 

Anomaly 9 (A9) is located in the central part of the field and is the deepest and the smallest 

anomaly. It extends approximately 0.7 km in a N-S direction and 0.4 km in a E-W direction 

(Table 4.1). The anomaly located at a depth of 2360 m and covers an area of ~ 0.5 km2.  It has 

no spatial relationship with the major faults. Discontinuities have been observed even though 

faults were not identified in the region, probably related to depositional features. The anomaly 

was identified based on its locally strong amplitude reflectors and polarity reversal as compared 

to the seabed. Besides, the anomaly is structurally conformable with the background reflectors 

(Figure 4.28a & b). Even though it is small in size the RMS attribute is similar character, strong 

and which clearly isolated from the background (Figure 4.28c). 
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Table 4.1 The geometry and orientation of the anomalies , where the average length of the 

anomalies is twice of their width, and have spherical and rectangular shapes in a planar view 

(see Figure 4.19). 

HAA Length (m) Width (m) Aspect ratio Shape Elongation direction 

A1 4252 2534 0.595955 Rectangular NW-SE 

A2 3615 1302 0.360166 Spherical NW-SE 

A3 3272 1248 0.381418 Rectangular NW-SE 

A4 3827 1953 0.510321 Spherical E-W 

A5 2340 983 0.420085 Spherical NW-SE 

A6 7549 3648 0.483243 Rectangular N-S 

A7 6942 4111 0.592192 Spherical NW-SE 

A8 4942 2990 0.605018 Rectangular N-S 

A9 681 362 0.531571 Rectangular NW-SE 

  

 

 

Figure 4.20:  Anomaly A1 on the seismic section (a) as compared to the seadbed (b) seismic 

wiggle, showing polarity reversal of the anomaly as compared to the seabed and (c) RMS 

amplitude of A1 oriented north-south direction covering an area of 10.8 km2  and some other 

anomalies at the same stratigraphic position. The NNE-SSW and N-E oriented faults are also 

reocognized on this RMS amplitude map at a depth of 616 m. The bright in the NW-SE fault 

zone may indicate a channel flowing along fault scarps. The green line is the location of the 

seismic section on (a). 
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Figure 4.21 Anomaly A2 on seismic section (a) showing high-amplitude reflectors with to  the 

seadbed (b) seismic wiggle, showing polarity reversal of the anomaly as compared to the 

seabed, and (c) the RMS amplitude map of A2 which extended in north-south direction 

covering an area of ~3.2 km2. Polygonal faults may cause distribution of the anomaly as smaller 

pods. The green line is the location of the seismic section on (a). 
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Figure 4.22 Anomaly A3  on a seismic section (a) showing high amplitude reflectors with (b) 

a polarity reversal as compared to the seabed reflector, and (c) RMS amplitude showing the 

extent of the anomaly covering an area of 3.16 km2 and the relationship with polygonal faults. 

This anomaly is on the same stratigraphic position with A2. The green line is the location of 

the seismic section on (a). 
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Figure 4.23 Anomaly A4 on a seismic section (a) where  the top of the gas chimney is bounded 

by downlapping clinoform (package B) showing the control of the stratigraphy on the fluid 

accumulations. (b) This amomaly has high amplitude reflectors having a reverse polarity to the 

seabed and (c) covering and area of 6.2 km2 , at ~1292 m depth, bisected by a fault which 

extends from the anomaly to northwest. The green line is the location of the seismic section on 

(a). 
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Figure 4.24 Anomaly A5 on a seismic section (a) showing high amplitude (b) in a reverse 

polarity and conformable to the background reflectors. (c) The anomaly during mapping 

(dotted line) was estimated smaller than extracted from RMS amplitude. The polygonal faults 

have an influence to disperse fluids laterally and vertically. The green line is the location of the 

seismic section on (a). 
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Figure 4.25 Anomaly A6 on a seismic section (a)  showing the gas chimney which extends 

down to the Triassic formations (b) It has polarity reversal as compared to the seabed and 

structurally unconformable to the background reflectors. (c) This anomaly is highly affected 

by the polygonal faults which act as local conduit for laterally and vertically migrating fluids. 

The flow pattern is from south to the north direction and diffused out through the local 

polygonal faults and covers an area of 23.5 km2. The green line is the location of the seismic 

section on (a). 
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Figure 4.26 Anomaly A7 on a seismic section (a)  showing high-amplitude reflectors, (b) cross-

cutting the local stratigraphy with opposite polarity to the seabed. (c) The RMS amplitude 

extraction shows circular shaped and diffused anomaly oriented in NE-SW direction covering 

an area of ~23 km2. To the west of this anomaly is relatively lower amplitude anomaly, and 

extended in a NW-SE direction along polygonal faults. A8 is also visible at this depth 

increasing in amplitude downward. The green line is the location of the seismic section on (a). 
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Figure 4.27 Anomaly A8 on a seismic section (a) showing high amplitude reflectors (b) in a 

reverse polarity as compared to the seabed, unconformably with the background reflectors. (c) 

It is located approximately at a depth of 672 m, in the western part of the field, covering an 

area of ~14.5 km2. The green line is the location of the seismic section on (a). 
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Figure 4.28 Anomaly A9 on seismic section (a) at 2360 m, in the Triassic formations (b) 

which has reverse polarity and conformable to the background reflectors. (c) The RMS 

amplitude also show this anomaly, covering an area of 0.5 km2.  The green line is the location 

of the seismic section on (a). 

 

 

 

 

 



Chapter 4 Results   Mohammedyasin 

 

73 

 

4.3.2 Spatial relationship of faults and high-amplitude anomalies (HAAs) 

The HAAs are spatially related to the major Jurassic faults (Figure 4.29. Most of the HAAs are 

located on the hangingwall upper part of these faults.  Furthermore, the seabed fluid flow 

features line up along the fault tips.  Most observed pockmarks and buried pockmarks lie over 

the fault tips. The spatial relation of the seabed pockmarks is not restricted to upper tips of the 

major faults but also to the shallow intermediate antithetic faults (Figure 4.2). These antithetic 

faults have been acting as subsurface fluid conduits. The other interesting observation is that 

the HAAs have been observed on the top part of the major gas chimneys.  

 

Figure 4.29 The spatial relationship of HAAs and the major faults . The HAAs are located on 

the top tips of the major faults (F1, F2, F3, F4 and F5), more towards the hangingwall side of 

the faults. 
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4.3.3 HAAs related to lithology 

Very high-amplitude anomalies are dominantly observed in the western part of Unit 8, the 

reservoir zone and in Carboniferous Formations (Unit 1).  These hard-on-soft anomalies have 

similar polarity to the seabed and are structurally conformable to the background reflectors. 

The anomaly in Figure 4.30 shows very high amplitude anomaly related to lithology in the Unit 

8. The HAAs in the reservoir region are partly related to lithology and the presence of 

hydrocarbons (Figure 4.32).  The HAAs in this zone are continuous throughout Unit 5. 

  

 
 

 

Figure 4.30 Lithology related HAA located in the western part of the Unit 8 (Kveite/Kviting 

Formations) related to the lithological effect (Z = -1048 ms).  

The anomalies in Unit 1 also show shifting upward to the west as the depth decreases. The 

geometry and shifting pattern of these features supports to interpret as a channel. However, 

flow patterns were difficult to recognize based on the extracted amplitude (Figure 4.31a & b). 
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Figure 4.31  Interpreted channel feature using RMS attribute show shifting of flow from E to 

W direction (see Figures 4.3 and 4.4). 

 

4.3.4 Migration pathways and hydrocarbon plumbing systems 

Most of the HAAs are located in the hanging-wall and the upper part of the major deep-seated 

faults (e.g., A2, A3, A7 and A8). Others are spatially linked to the topmost part of the gas 

chimneys (e.g. A1 and A6). The geobodies extracted through RMS amplitude show both fluid 

and lithological related high-amplitude anomalies (Figure 4.32). The top and the bottom part 

were extracted for the fluid related anomalies while the lithological related anomalies extracted 

more solid geobodies (Figure 4.32).  

 

The gas chimneys in this attribute could not be extracted. Conversely, the chaos and variance 

attributes were used instead to extract the gas chimneys in the south-western and north-eastern 

parts of the seismic volume (Figures 4.33 & 4.34). The variance extractions for the three major 

gas chimneys show vertically tabular (Gas chimney 1), conical (Gas chimney 2) and patchy 
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circular (Gas chimney 3) shapes (Figures 4.33 & 4.34). The gas chimneys extend from 3000ms 

(~3 km). The area of each gas chimney was estimated approximately as 12 km2, 60 km2 and 

17 km2, from Gas chimneys 1, 2 and 3, respectively. Based on this, approximately 276 billion 

m3 volume of fluids has been migrated from the gas chimneys alone. 

 

 
 

Figure 4.32 Fluid-related and lithology-related HAAs . The HAAs (red) and lithological 

related high-amplitude (blue) extracted from RMS amplitude using opacity threshold value of 

20%.  However, A6 is located on the top of the biggest gas chimney and it was not extracted 

with this threshold value. 
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Figure 4.33 Gas chimneys extraction from variance attribute at the western (Gas chimney 1), 

southwestern (Gas chimney 2) and northeastern (Gas chimney 3) parts of the study area 

extracted as geobodies. Gas chimney 2 is the biggest gas chimney in the field where Anomaly 

6 is located on the top pf this gas chimney. 

 

 

Figure 4.34 Gas chimneys extraction from chaos attribute in the southwestern and northeastern 

part of the study area. However, the lower part in this volume is not related to the gas chimney, 

and could be related to the lithological effect. 
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Chapter 5 Discussion and Conclusions 

5.1 Discussion 

  History and growth of faults in the study area 

Faults in the study area are normal dip-slip faults (Figures 4.8 to 4.13). Fault drag observed on 

some of the faults provided insights to mechanical heterogeneity and complex evolution of the 

faults (Figure 4.13). The displacement plots in Chapter 4 were used to assess the period of fault 

nucleation, reactivation and their interactions through time. The t-z profiles for the deep-seated 

faults can be grouped into three types; (a) those characterized by centrally located point of 

maximum displacement (dmax) and general decrease in gradient at their upper and lower tips 

e.g., F1, F2 and F5, (b) those profiles with a general upward increase in gradient increasing 

e.g., F3 and F4, and (c) a profile characterized by the two points of maximum displacement 

where the upper tip displayed a gradual decrease in fault throw. Except for faults F4 and F6, 

the other faults have their point of maximum displacement at horizon H5. If the point of 

nucleation coincides with the point of maximum displacement, then most of the deep-seated 

faults in the study area nucleated from H5. However, the points of maximum displacement can 

vary as a factor of mechanical heterogeneity, fault segmentation, and linkage. Similarly, the t-

x plots also complex geometries such as C-type, M-type and multi-skewed C-type profiles 

(Figures 4.15 and 4.16). It is noted that the shape of the profiles is variable across horizons H4 

to H6. Both throw plots show that the studied faults are characterized by both complex lateral 

and vertical segmentation.  

 

Furthermore, analysis of the t-z profiles in terms of their mode of propagation revealed that the 

faults display multiple mode of propagation including radial propagation and syn-sedimentary 

activity. For example, Fault F1 shows evidence for syn-sedimentary activity from Horizon H4 

to H6 while the rest of the profile shows blind propagation character. The lower part of  faults 

F1, F2 and F5, and upper part of F4 have syn-sedimentary fault growth. Only faults F3 and F6 

show that they developed solely through blind propagation of their tips as they are 

characterized by elliptical to sub-elliptical profiles with centrally located displacement maxima 

(Figure 4.14). In terms of their interaction with sedimentation, the growth and expansion 

indices show that the majority are syn- sedimentary at their upper most sections while some of 

them did not interact with a free surface during their growth (Figures 4.17 & 4.18). Majority 

of the faults have growth indices  > 0.1 suggesting that strata growth on their hanging-wall 
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section exceeds the footwall section. For example, F1 shows a t-z profile with both syn-

sedimentary and blind character. At horizons H4 to H6, where the faults propagated by syn-

sedimentary activity, F1 was also formed coevally with sedimentation, but never exposed 

above any of the stratigraphic units during its growth. Hence, the majority of the deep-seated 

faults were formed by coalescence of initial isolated fault strands and were later reactivated. 

Evidence for reactivation is shown as displacement minima along some of the t-z profiles e.g., 

faults F1 and F4 (Figure 4.14). These points of dip linkage indicates that the upper and the 

lower segments of F1 and F4 have been linked  by reactivation through dip linkage (Mansfield 

and Cartwright, 1996; Omosanya and Alves, 2014; Tvedt et al., 2013).  

 

Fault reactivation by dip linkage was only inferred for the deep-seated faults. In the study area, 

the non-reactivated faults include: (1) the shallow minor faults extending down to the 

Paleocene Unit 8 (Kveite/Kviting Formations) and upwards above URU (Upper Regional 

Unconformity), localized faults in Upper Cretaceous (Unit 8), Paleocene (Unit 9a), and Eocene 

(Unit 9b) Formations, and (2) eroded faults terminated upward to Unit 5 (Figure 4.5). Since the 

oldest non-reactivated faults were found in Upper Cretaceous to younger formations, it is 

proposed that fault reactivation was dominant in pre-late Cretaceous times presumably at the 

end of Jurassic i.e. during Kimmeridgian extensional tectonics. Evidence for the Kimmeridgian 

tectonics is shown by faults F1 and F2 with significant change in their t-z profiles at horizon 

H6 (Late Jurassic). The obvious displacement minima or dip-linkage is noted at horizon H7 

which is Lower Cretaceous. In addition, a minor evidence for fault reactivation during 

Paleocene times is shown by F1 at Horizon H9 which is the base of the Torsk Formation. 

Hence, three episodes of fault reactivation in late Jurassic, early Cretaceous and Early 

Paleocene times are proposed. 

 

The minor faults are common above Unit 8 and are characterized by straight fault arrays, and 

are probably formed after the fault reactivation phases. Some of the minor faults intersected 

unit U9a and tip out upward to the topmost part of U9b and are dominantly antithetic to the 

major reactivated faults. The maximum throw of these faults is estimated on Horizon Ha i.e., 

the late Eocene Unconformity (Figure 4.2). Similarly, most of the reactivated faults penetrated 

upward from Unit 4 to Unit 9, hence their fault arrays are highly segmented (Figure 4.8Figure 

4.8). As noted earlier, their maximum throw and displacement is recorded on H5. In the study 

area, the throw values of reactivated faults are greater than non-reactivated faults. Average 

throw values of 100 ms TWTT (100 m) were estimated for the reactivated faults. Reactivated 
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major faults in the study area are presumably formed by one of three modes: (a) by upward 

propagation of existing faults, (b) by dip-linkage, and (c) interaction and linkages along strike 

i.e, strike-linkage (Baudon and Cartwright, 2008; Omosanya and Alves, 2014; Tvedt et al., 

2013; Jackson and Rotevatn, 2013). As the preferred direction of fault reactivation is directly 

related to the orientation of the fault plane relative to the principal stress direction, the strain 

causes reactivation, friction coefficients and cohesion, fault segmentation, maximum 

dimension and throw values (Sibson, 1985; Baudon and Cartwright, 2008; Richard and Krantz, 

1991; White et al., 1986). The principal stress direction during the first fault reactivation at the 

end of Jurassic can be inferred as N-S from the E-W orientated faults and probably shifted 

towards ENE-WSW as indicated by NNW-SSE oriented major faults. 

 

5.1.2  Implications of fault growth and reactivation for hydrocarbon migration 

The timing of fault activity has direct application on hydrocarbon migration and sealing of 

faults (McClay, 1990). Knowing accurate time of fault reactivation phases would be an 

important factor for hydrocarbons spilling out of the structures which is critical for evaluation 

of seal risk and seal integrity (Gartrell et al., 2002; Hooper, 1991; Cartwright et al., 2007). In 

addition, understanding the complete phases of reactivation can provide insights on subsurface 

fluid-flow or hydrocarbon migration. Identifying reactivated and non-reactivated faults and 

their modes/mechanisms of linkage can bring better understanding about the possible migration 

pathways for hydrocarbon migration from the source-to-trap and leakage from trap-to-near 

subsurface and seabed/surface. 

 

Different indicators have been examined to understand whether the faults are sealing or 

leaking.  The first evidence is the spatial proximity of the major faults with the high-amplitude 

anomalies (HAAs). In Figure 4.29, it is shown that the majority of the HAAs are located on 

and are intersected by the major faults. The second evidence is the high throw values estimated 

for the major faults especially at the reservoir zone in which it was predicted that high fracturing 

has led to hydrocarbons migrating out of the reservoirs. These high throw or displacement 

values along the reservoir zone are not unrelated to the high degree of reactivation. The third 

evidence is the presence of gas chimneys that penetrated all the way upward from the Triassic 

(Snadd and Kobbe Formations) to the Paleocene to Eocene (Torsk) Formations.  Pockmarks 

are useful to constrain the timing of episodes of fluid flow which can be traced on the seismic 

reflections (Judd and Hovland, 2007). The pattern and regular spacing of the pockmarks on the 
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seabed (Ligtenberg, 2005), and their spatially alignment vertically with the faults, provided 

insights on the timing of hydrocarbon leakage and migration pathways.  Seabed pockmarks in 

the study area are lined up with the upper tips of the Paleocene-Eocene small faults and these 

faults are linked downward to the HAAs. This indicates these faults were the conduits for fluids 

from the shallow fluid accumulations, HAAs, to the seabed.   

 

As for fault reactivation, the multiple drags interpreted on Unit 5 show that the fault zones are 

probably highly fractured. Fault reactivation can mechanically fracture and brecciate fault 

zones creating secondary porosity and can also spill hydrocarbons out of the reservoir.  Since 

the HAAs are affected and juxtaposed by the small faults, it implies that the fluid accumulations 

have migrated to their current stratigraphic position before the onset of the Paleocene-Eocene 

faulting phase. Based on this, the last episode of fluid migration from the source rock to the 

shallow subsurface accumulation is before the onset of Paleocene-Eocene faulting. 

Furthermore, the shallow fluid accumulations are not also affected by the late Cretaceous faults 

as observed as observed seismic sections and RMS amplitude time slices. This suggests the 

first phase of fluid migration was probably during the late Jurassic. It is  recalled that this 

corresponds to the Kimmeridgian tectonics and the first episode of fault reactivation. The 

second and third phases of fluid migration could be follow the late Cretaceous and Paleocene 

fault reactivations. However, it is hard to constrain the amount of fluid migrated during each 

of the phases. The degree of fault reactivation during late Cretaceous is relatively less, which 

in turn implies that the amount of fluid leaked or migrated during this period is less relative to 

late Jurassic and Paleocene times.  Pockmarks and furrows on the URU and seabed would are 

evidence that fluid-flow was active during the early stages of glaciation and is an ongoing 

process in the study area (Løseth et al., 2009). Hence, a phase of fluid migration may have 

taken place shortly after the last glacial maximum as documented by the large number of buried 

pockmarks on the URU (see the works of Ostanin et al., 2012a, 2012b, 2013). 

 

5.1.3  Source of fluids, types and their migration pathways  

The nine high-amplitude anomalies in this work have reversed or opposite polarities, negative 

high amplitudes, and can be further classified based on their conformability with their 

background structural reflectors. The first groups of anomalies are structurally conformable 

and are aligned in the same direction to the background reflectors, e.g., A4, A5 and A9. Based 

on their flatness, these are difficult to interpret as flat spots especially when the seismic volume 
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is interpreted in the time domain. Alternatively, their flat geometry may imply they are static 

fluid accumulations. In addition, this group of anomalies is not spatially related to the major 

faults and is controlled largely by the stratigraphic or geomorphic structures.  A4 and A5 are 

hosted in Unit 8 while A9 is hosted in Unit 4. The second group of anomalies (A1, A2, A3, 

A6, A7 and A8) are structurally unconformable to the background reflectors and are also 

interpreted as fluid accumulations. They are hosted in Unit 9 and spatially located on the upper 

parts of the major faults.  Apart from the high-amplitude anomalies, fluid flow features 

interpreted in the study area include iceberg plough marks, pockmarks and gas chimneys. 

 

The source area for fluids or hydrocarbons in the study area includes; (a) Triassic formations, 

since the gas chimneys extend from Unit 4 upward to Eocene Unit 9, and (b) Jurassic intervals 

through which the deep-seated faults intersected (Figure 5.1). The variance and chaos attributes 

indicate that the major gas chimneys in the southwestern and northeastern part of the field 

originated from the Triassic source and reservoir rocks. The areal extent of acoustic masking 

increases upward from the reservoir zone indicating that more hydrocarbons were leaked from 

the reservoir through the chimneys.  Faults can act as fluid-flow barriers or conduits depending 

on the nature of the fault. The fault zone can be brecciated and fractured to enhance porosity, 

permeability, and fluid migration pathways. On the other hand, fault-related diagenesis, clay 

smearing can block the permeability of the fault zone in which case it will act as a subsurface 

fluid-flow barrier. Since most of the anomalies are located on the hanging-wall side of the 

deep-seated faults and for the fact that, the throws estimated along most of the faults are more 

than 30 ms (30 m), it is hypothesized that faults are conduits for the hydrocarbon-related 

anomalies. Although no fault seal analysis was done in this work, the degree of fault 

juxtaposition across the faults provided proof for fluid leakage and transmission through the 

faults. Hence, the mechanism of fluid leakage is through tectonic fracturing. At shallow levels 

or during the proposed fourth episode of fluid migration, hydro-fracturing is thought to be 

enhanced by uplift and erosion. These are main mechanisms driving fluid migration during the 

glaciation periods.  
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Figure 5.1 Conceptual diagram illustrating the hydrocarbon plumbing system in the study area, 

the spatial relationship between the deep-seated faults, shallow fluid accumulations and fluid-

flow features like pockmarks. The red dashed arrow indicates the migration pathways from the 

source to the shallow fluid accumulations. The smaller faults start approximately at the depth 

of shallow fluid accumulations and line-up upward with pockmarks on the seabed. Most of 

these faults are antithetic to the major faults. N.B: URU is the Upper Regional Unconformity. 

 

In addition to tectonic stress and intense faulting, sea level fluctuations and depositional 

loading/unloading caused by differential and disequilibrium compaction and erosion related to: 

uplift (Jolly and Lonergan, 2002); lateral pressure transfer during fault interaction and 

reactivation (Andresen et al., 2009); overpressure  caused by  influx of fluids from the source 

and the reservoir (Huuse et al., 2010; Osborne and Swarbrick, 1997); tilting of the reservoir; 

diagenetic transformations (Davies et al., 2008, 2006); and  seal  failure are other mechanisms 

that could enhance hydrocarbon migration and plumbing systems in the study area. Migration 

is possible through vertical transmission of fluid through the faults and laterally along the 

margins of the gas chimneys (Figure 5.1).   
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5.2 Conclusions  

• Six major deep-seated faults extending from Upper Carboniferous to Eocene have been 

linked with hydrocarbon migration from the reservoir rocks in the Snøhvit Field, 

Hammerfest Basin. These faults have their maximum throw values at the reservoir 

interval and have possible been reactivated during late Jurassic (Kimmeridgian) 

tectonic activity. 

• Throw and displacement profiles of the major faults in the study area show that the 

faults have a polycyclic fault history involving both blind propagation and syn-

sedimentary activity.  

• The faults are characterized by complex lateral and vertical segmentation or linkage. 

Most of the major faults interacted and linked along the strike direction having multi-

skewed C-type profiles. Fault reactivation was dominantly through dip-linkage. 

• The expansion indices of the deep-seated major faults are consistent with displacement 

analysis and show thickening along the hanging-wall side on Unit 5 which is the 

reservoir zone. The growth indices signified the major faults are interacted with the free 

surface, except F6, which is a blind fault. 

• Three phases of fault reactivation in Late Jurassic, Early Cretaceous and Paleocene-

early Eocene predated fluid migration in the study area.  Migration of hydrocarbons 

took place after each phase of fault reactivation since the source rocks were mature 

before the fault reactivation. 

• Nine high-amplitude anomalies related to hydrocarbon are mapped and analyzed using 

multiple seismic attribute. Of these anomalies, six of them are structurally 

unconformable and interpreted as fluid accumulations. The fluid accumulations are 

spatially located in the upper parts of the major faults (A2, A3, A7 and A8) and on the 

top of gas chimneys (A1 and A6). Structurally conformable HAAs (A4, A5 and A9) 

are stratigraphically controlled and have no spatial relationship with the major deep-

seated faults. 

• The major deep-seated faults are the main hydrocarbon migration pathways from the 

Triassic source rocks and the Jurassic reservoirs; further leakage to the seabed was 

through the smaller Paleocene to Early Eocene faults.  
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• The main driving and trigger mechanisms for fluid-flow in the study area are tectonic 

fracturing and/or hydro-fracturing. Fluids or hydrocarbons migrated laterally and 

vertically from Jurassic and Triassic units into shallow levels. Fluid-flow is an active 

process in the Snøhvit Field as evidenced by the presence of present-day seabed 

pockmarks and furrows. 

 

5.3  Recommendations 

High-quality seismic data is needed for better stratigraphic interpretations, fault analysis and 

migration pathway detection. Specifically reconstructing the phases of fault reactivation and 

periods of fluid migration are difficult. Further work on fault seal analysis is needed to fully 

understand the migration pathways identified from multi-seismic attribute analysis. Basin 

modelling, rock physics and AVO analysis are recommended to identify the fluid types and 

history of hydrocarbon generation and maturation. 
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Appendix Table  A1 The attitudes of interpreted faults 

Fault Strike Dip dip direction Fault Strike Dip dip direction 

F1 75 62 161 F32 80 65 210 

F2 78 57 110 F33 37 50 286 

F3 73 62 345 F34 56 78 273 

F4 50 63 100 F35 69 41 138 

F5 77 66 310 F36 48 59 294 

F6 82 59 345 F37 52 50 120 

F7 77 49 351 F38 75 50 200 

F8 62 51 127 F39 57 43 299 

F9 78 70 166 F40 60 41 136 

F10 85 53 347 F41 60 50 326 

F11 88 69 10 F42 179 48 130 

F12 76 54 344 F43 4 69 137 

F13 71 53 5 F44 27 59 306 

F14 81 40 337 F45 10 60 159 

F15 56 69 205 F46 176 44 230 

F16 126 67 287 F47 2 62 236 

F17 46 71 354 F48 130 64 359 

F18 47 75 320 F49 170 45 255 

F19 40 70 345 F50 167 44 241 

F20 39 41 22 F51 167 47 251 

F21 78 50 196 F52 164 44 242 

F22 70 53 160 F53 78 33 6 

F23 80 40 150 F54 80 31 25 

F24 77 46 142 F55 61 39 5 

F25 96 51 204 F56 71 42 310 

F26 92 53 174 F57 65 40 160 

F27 85 27 346 F58 67 37 159 

F28 84 61 192 F59 56 38 151 

F29 74 38 344 F60 55 38 125 

F30 70 48 163 F61 68 41 320 

F31 63 56 320 F62 71 38 168 
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Figure A1 Distance-displacement (t-x) plots of F1 along H6 (a), H5 (b) and H4 (c).The 

displacement is higher at shorter distance for H6 and H5 and for H8 at larger distances, and 

the displacement along H6 is less than along H5 and H4. The profiles are in general multi-

skewed C-type profiles. 
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Figure A2 The general trend of distance-displacement (t-x) plot of F2 along H6 (a), H5 (b) 

and H4 (c).The profiles are in general multi-C-type profiles. 
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 Figure A3 The distance-displacement (t-x) plots of F3 along (a) H6, (b) H5 and (c) H4; 

showing a general increase in displacement at larger distances. The profiles are in general 

multi-C-type profiles. 
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Figure A4 Distance-displacement (t-x) plot of F4 and showing of the profiles along (a) H6, (b) H5 

and (c) H4; a general decrease in displacement at larger distances. The profiles are multi skewed C-

type profiles. 
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Figure A5 Distance-displacement (t-x) plots of F5 along (a) H6, (b) H5 and (c) H4 showing general 

decrease in displacement at larger distance on H4 and H5 while on H6 the displacement increase at 

larger distances. The profiles are in general multi-skewed C-type profiles. 
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Figure A6 Distance-displacement (t-x) plots for F6 on H6, H5 and H4 shows constantly maximum 

displacement from 1 to 5 km distance along H7 and H4 and lower displacement along H6. The profile 

on H6 and H4 are skewed C-type profile while on H5 shows M-type profile. 
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Figure A7 Summary for A1 to A5 , the criteria used for identification of the fluid type. 

Anomalies 4 and 5 can be flat spot or any static fluid accumulations/ 



Appendix  Mohammedyasin 

 

IX 

 

 

 

 

Figure A8 Summary for A6 to A9 , the criteria used for identification of the fluid type. 

Anomaly 9 can be flat spot or any static fluid accumulations/ 

 

 


