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Abstract 

This master’s thesis presents an optical mapping method, Hyperspectral Imaging (HI) and its 

application to marine geological mapping - Underwater Hyperspectral Imaging (UHI). UHI 

uses similar technology as terrestrial HI to detect and identify objects on the seafloor by their 

optical signatures (reflectance spectra) in visible light (400-700 nm). The main aim of the thesis 

is to determine properties of marine sediments that can be detected and identified by UHI, and 

secondly to evaluate its applicability in context of established mapping methods in marine 

geology. The thesis focuses on carbonate content in marine sediments and the potential use of 

UHI for mapping and monitoring bioclastic carbonate sediments and other carbonate deposits 

on the seabed. 

The work is based on literature studies of established marine geology mapping methods, 

previous work on geological HI and the development of UHI, in addition to new laboratory 

work. Spectral reflectance of different minerals, marine sediments with varying carbonate 

content and carbonate crusts were measured. A hyperspectral imager attached to a 

stereomicroscope was used to capture spectral reflectance from the samples and to create 

hyperspectral images. A Jaz spectrometer was used to validate the reflectance spectra obtained 

from the hyperspectral images.  

Both the HI and the Jaz results showed reflectance spectra of dry samples and samples 

submerged in seawater. The two spectrometers showed relatively similar results, apart from the 

red (>600 nm) and blue (<500 nm) parts of the spectra, indicating that the Jaz spectrometer has 

better sensitivity than the HI spectrometer. Supervised classification of hyperspectral images 

showed that it is possible to classify the samples by their optical signature.  

This study shows that UHI can supplement marine geological mapping with remotely sensed 

geochemical data of high resolution. UHI can detect geochemical properties such as changes in 

carbonate content based on the whiteness of the sediment, and iron and organic content based 

on spectral absorption features. Variations in grain size can be detected by varying reflectance 

intensity. Challenges include detection of marine minerals with absorption features only in the 

ultraviolet and infrared part of the electromagnetic spectrum. Such minerals include calcite and 

aragonite, thus UHI classification of carbonate deposits on the seabed has its limitations. 
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Sammendrag 

Masteroppgaven presenterer en optisk kartleggingsmetode, hyperspektral avbildning (HI) for 

anvendelse i maringeologisk kartlegging, kalt undervanns hyperspektral avbildning (UHI). 

Metoden bruker en tilsvarende teknologi som landbasert HI for å måle spektral reflektans av 

synlig lys (400-700 nm) fra havbunnen, som kan brukes til å identifisere objekter basert på 

unike optiske signaturer. Formålet med masteroppgaven er å bestemme hvilke marine 

sedimentegenskaper som kan gjenkjennes og identifiseres ved hjelp av UHI, med fokus på 

karbonatsedimenter. Det er videre gjort en vurdering av UHI for bruk i kartlegging og 

overvåkning av bioklastiske sedimenter og andre karbonatforekomster på havbunnen. 

Oppgaven er basert på et litteraturstudie av etablerte maringeologiske kartleggingsmetoder, 

tidligere studier av geologisk HI og utviklingen av UHI, i tillegg til nytt laboratoriearbeid. 

Reflektans fra forskjellige prøver av marine mineraler, sedimenter med varierende 

karbonatinnhold samt karbonatskorper ble målt. Målingene ble utført med en hyperspektral 

avbilder koblet til et stereomikroskop som produserte hyperspektrale bilder. Et Jaz 

spektrometer brukt for å bekrefte reflektansspektrene fra de hyperspektrale bildene. 

Både HI- og Jaz-resultatene viser reflektans-spekter av tørre prøver og prøver i sjøvann. Begge 

metodene viste relativt lik optisk signatur av prøvene, men i den blå (<500 nm) og røde (>600 

nm) delen av spektrene var Jaz spektrometeret mer sensitivt enn HI spektrometeret. Kontrollert 

klassifisering av prøvene viste at prøvene kan klassifiseres basert på optiske signaturer i synlig 

lys. 

Studiet viser at UHI kan bidra med høyoppløselige fjernmålinger av geokjemiske egenskaper 

til marine sedimenter som et supplement til etablerte maringeologiske kartleggingsmetoder. 

Endringer i karbonatinnhold kan måles ved å se på hvithetsgrad i sedimentene, mens 

jerninnhold og organisk innhold kan identifiseres fra formen til spekteret. Variasjoner i 

kornstørrelse kan bestemmes av endringer i reflektansintensitet. Utfordringer kan oppstå ved 

bestemmelse av mineraler som ikke absorberer synlig lys, men som absorberer ultrafiolett og 

infrarødt lys. Reflektans i disse delene av det elektromagnetiske spekteret er vanskelig å måle 

under vann. Kalsitt og aragonitt er eksempler på slike mineraler, UHI har således sine 

begrensinger ved bruk i kartlegging av karbonatforekomster på havbunnen. 

  



IV  

 

 

  



 

V 

 

Preface 

The master’s thesis is written at the Department of Geology and Mineral Resources Engineering 

(IGB) at the Norwegian University of Science and Technology (NTNU). The laboratory work 

was carried out at Trondhjem Biological Station (TBS), which is NTNU's center for marine 

biological research, located at Trolla in Trondheim. The thesis is written in co-operation with 

the Geological Survey of Norway (NGU), which has been responsible for provision of some of 

the geological material for the laboratory work.  

The main supervisor at NTNU has been Associate Professor Steinar Løve Ellefmo (IGB), and 

assistant supervisors at NTNU have been Professor Geir Johnsen (Department of Biology) and 

Associate Professor Murat Van Ardelan (Department of Chemistry). Supervisors at NGU have 

been Margaret Dolan and Terje Thorsnes. 

I would like to express my gratitude to all the people helping me with this thesis. First of all, I 

would like to thank Steinar and Geir for brilliant guidance and their great engagement in this 

project, Murat for his help with the setup of the laboratory experiments, and Ragnhild Pettersen 

and Inga Aamot for teaching me how to perform HI- and Jaz-analyses.  

At NGU, I would first like to thank Terje for introducing me to UHI for the first time at a 

Midsummer Eve gathering in my parents’ neighborhood, selecting me as a master student on 

this project and providing me summer internships at NGU. It has been very interesting to learn 

about marine geology and the new mapping technologies that are being developed. Secondly, I 

would like to thank Margaret for guidance and help with the thesis, and everyone that provided 

me with geological material for my laboratory work. 

I would also like to thank my friends and family for supporting me through this last hectic time 

of my studies. And at last, but not least, an extra thank to my dad for reading through my thesis 

and giving me helpful advices, to Matias for being patient, listening to my whining and 

encouraging me, and to all my classmates that did not finish their studies in five years and 

joined the “sixth graders”. You rock! 

 

Sigrun Melve Aarrestad, Trondheim 14.12.2014  

http://www.ntnu.edu/igb
http://www.ntnu.edu/biology
http://www.ntnu.edu/chemistry


VI  

 

  



 

VII 

 

Table of Contents  

 

Abstract ....................................................................................................................................... I 

Sammendrag ............................................................................................................................. III 

Preface ....................................................................................................................................... V 

Table of Contents.................................................................................................................... VII 

List of Figures .......................................................................................................................... XI 

List of Tables ......................................................................................................................... XVI 

 

Chapter 1 Introduction ........................................................................................................ 1 

1.1 Background .................................................................................................................. 1 

1.2 Aims, outline and limitations ....................................................................................... 3 

1.2.1 The aims of the study ........................................................................................... 3 

1.2.2 Limitations ........................................................................................................... 3 

1.2.3 Outline .................................................................................................................. 4 

Chapter 2 Marine carbonate sediments and geological mapping of the seabed ............. 7 

2.1 Marine sedimentation of calcium carbonate ................................................................ 7 

2.1.1 Properties of marine sediments ............................................................................ 7 

2.1.2 Abundant minerals in marine sediments .............................................................. 9 

2.1.3 Calcite and aragonite ............................................................................................ 9 

2.1.4 Carbonate deposits on the seabed ....................................................................... 10 

2.1.5 Environmental stressors on CaCO3 in seawater ................................................. 11 

2.2 Traditional mapping of marine sediments ................................................................. 14 

2.2.1 Acoustic methods ............................................................................................... 15 

2.2.2 Video-analysis of the seabed .............................................................................. 16 

2.2.3 Sampling of sediments ....................................................................................... 17 

2.2.4 Mapping of bioclastic sediments and cold-water coral reefs ............................. 17 



Table of Contents 

VIII  

 

2.3 Chapter summary ....................................................................................................... 19 

Chapter 3 Marine optics and optical remote sensing ...................................................... 21 

3.1 Optical properties of the sea and of geological material ........................................... 21 

3.1.1 Light theory ........................................................................................................ 21 

3.1.2 Apparent and inherent optical properties of seawater ........................................ 23 

3.1.3 Case 1 and case 2 waters .................................................................................... 25 

3.1.4 Remote sensing reflectance ................................................................................ 25 

3.1.5 Optical properties of geological material ........................................................... 26 

3.2 Optical remote sensing .............................................................................................. 29 

3.2.1 Principles of multispectral and hyperspectral remote sensing ........................... 29 

3.2.2 Classification based on optical signature ........................................................... 30 

3.2.3 The start of marine optical remote sensing - mapping ocean color.................... 32 

3.2.4 Case studies related to geological hyperspectral imaging .................................. 33 

3.2.5 Case studies related to hyperspectral imaging of the seabed ............................. 37 

3.3 Underwater Hyperspectral Imaging ........................................................................... 45 

3.3.1 The underwater hyperspectral imager ................................................................ 45 

3.3.2 Underwater platforms ......................................................................................... 45 

3.3.3 Optical processing .............................................................................................. 46 

3.3.4 Previous work on UHI at NTNU ........................................................................ 47 

3.4 Chapter summary ....................................................................................................... 49 

Chapter 4 Materials and Methods .................................................................................... 51 

4.1 Materials .................................................................................................................... 51 

4.1.1 Mineral samples ................................................................................................. 51 

4.1.2 The artificial sediment samples .......................................................................... 53 

4.1.3 Natural sediment samples ................................................................................... 54 

4.1.4 Carbonate crust samples ..................................................................................... 57 

4.2 Methods ..................................................................................................................... 59 



Table of Contents 

 

IX 

 

4.2.1 Artificial sediment mix ....................................................................................... 59 

4.2.2 Submerging samples .......................................................................................... 60 

4.2.3 Hyperspectral imaging ....................................................................................... 60 

4.2.4 Data processing using the software yaPlaySpecX .............................................. 63 

4.2.5 Supervised classification using Image Calculator ............................................. 65 

4.2.6 Jaz spectrometer ................................................................................................. 66 

4.2.7 Sources of errors and variability ........................................................................ 69 

Chapter 5 Results ............................................................................................................... 71 

5.1 General description of laboratory results ................................................................... 71 

5.2 Results from the mineral samples .............................................................................. 73 

5.2.1 Reflectance spectra ............................................................................................. 74 

5.2.2 Supervised classification .................................................................................... 80 

5.3 Results from the artificial sediment samples ............................................................. 81 

5.3.1 Reflectance spectra ............................................................................................. 83 

5.3.2 Superrvised classification ................................................................................... 85 

5.4 Results from the natural sediment samples ............................................................... 86 

5.4.1 Reflectance spectra ............................................................................................. 87 

5.4.2 Supervised classification .................................................................................... 90 

5.5 Results from the carbonate crusts .............................................................................. 91 

5.5.1 Reflectance spectra ............................................................................................. 94 

5.5.2 Supervised classification .................................................................................... 96 

Chapter 6 Discussion .......................................................................................................... 97 

6.1 Discussion of laboratory results ................................................................................ 97 

6.1.1 Hyperspectral Images ......................................................................................... 97 

6.1.2 Reflectance spectra ............................................................................................. 98 

6.1.3 Supervised classification .................................................................................. 104 

6.1.4 Evaluation of the methodology of the laboratory work ................................... 106 



Table of Contents 

X  

 

6.2 Use of UHI in marine geological mapping .............................................................. 107 

6.2.1 Mapping marine sediments .............................................................................. 107 

6.2.2 Application in industry ..................................................................................... 111 

6.2.3 Challenges and limitation of UHI for geological purposes .............................. 112 

Chapter 7 Conclusions and recommendations .............................................................. 117 

7.1 Conclusions ............................................................................................................. 117 

7.2 Further work ............................................................................................................ 118 

Chapter 8 References ....................................................................................................... 119 

 

Appendices 

A - RGB images of all samples 

B - Hyperspectral images 

C - HI spectra of each sample 

D - Visual description of natural sediment samples provided by NGU 

 

 

  



 

XI 

 

List of Figures 

The list of figures includes shortened capture-texts. 

 

Figure 2.1 Udden-Wentworth grain-size scale for clastic sediment (Boggs, 2010; Wentworth, 

1922). .......................................................................................................................................... 8 

Figure 2.2 Multibeam bathymetry and backscatter mapping of the seabed (to the left) provides 

data for interpretation. The figure is modifyed from Buhl-Mortensen et al. (2010). ............... 15 

Figure 2.3 Synthetic aperture sonar image showing a biogenic mound surrounded by a 30 m 

wide zone of bioclastic sediments (Bellec et al., 2014). .......................................................... 16 

Figure 3.1 Electromagnetic radiation from the sun (Sakshaug et al., 2009). .......................... 22 

Figure 3.2 In blue ocean water (to the left), the color is blue because the deepest penetrating 

wavelength is around 450 nm. Fjord water (to the right), has a green color where the deepest 

penetrating wavelength is around 550 nm (Sakshaug et al., 2009). ......................................... 23 

Figure 3.3 The absorption spectra of phytoplankton, CDOM, oceanic water and suspended non-

living material (Johnsen et al., 2013). ...................................................................................... 25 

Figure 3.4 Diffuse reflectance spectra of natural (H-1) and synthetic hematite (H-2). Note the 

absorption features below 530 nm and at 850 nm (Sherman et al., 1982). .............................. 27 

Figure 3.5 Scattering efficiency (Qscatt) at 550 nm of single non-absorbing particles as a 

function of grain size. Dotted line show the scattering coefficient of a suspension with 1 g/m3 

of particles, b = scattering coefficient (Kirk, 1994). ................................................................ 28 

Figure 3.6 Model illustrating the hyperspectral imager, the “push broom” technique and the 

spectral image cube (Volent et al., 2007). ................................................................................ 30 

Figure 3.7 The method of choosing monochromatic images from the spectral image cube to 

make specific identification images. (Volent, 2009). ............................................................... 31 

Figure 3.8 Illustration of spectral mixing and unmixing (Malenovský et al., 2007). .............. 32 

Figure 3.9 A) Laboratory reflectance measurements of goethite, hematite and jarosite. B) 

Reflectance measurements of minerals from AVIRIS hyperspectral scanner (Sabins, 1999). 34 

Figure 3.10 Reflectance spectra of soils with varying soil organic carbon (SOC) content 

(Bartholomeus et al., 2008). ..................................................................................................... 36 



List of Figures 

XII  

 

Figure 3.11 In situ optical reflectance spectra of bleached hermatypic coral, terrigenous mud 

and carbonate sand in a coral reef community. Modified from Hochberg et al. (2003). ......... 38 

Figure 3.12 Remote sensing reflectance, RRS, of whitings, mud, sand and algal-covered 

grapestone sediment (Dierssen et al., 2009). ............................................................................ 39 

Figure 3.13  A) In situ reflectance spectrum of sand. B) Habitat map created using hyperspectral 

data. C) Substrate classes in figure B overlaid on model-derived bathymetry (Fearns et al., 

2011). ................................................................................................................................... 40-41 

Figure 3.14 Hyperspectral images from Collinderodden and Blixodden, Van Mijen-fjorden, 

Svalbard (2000). A) RGB image (490nm, 554nm and 633nm), B) Image in 730nm (IR), 578 

and 490nm C) Unsupervised classification. (Johnsen et al., 2009). ......................................... 42 

Figure 3.15 Local hyperspectal imaging of a river plume taken from a mountain Platåfjellet 

(428 masl), Isfjorden, Svalbard (2007). (Johnsen et al., 2009). ............................................... 42 

Figure 3.16 A) RGB image of area 1. B) Classification results of kelp forest from BSC 

statistics. C) Correcting for the optical properties of the water.  D) Results after DHE to increase 

contrast. (Volent et al., 2007). .................................................................................................. 44 

Figure 3.17 Illustration of ROV and AUV as platforms for the underwater hyperspectral 

imager, n = amount of pixels in X-direction (Johnsen et al., 2013). ........................................ 46 

Figure 3.18 Unsupervised classification of minerals using different algorithms to identify OOI. 

(Johnsen et al., 2013). ............................................................................................................... 48 

Figure 3.19 Imagery from an underwater hyperspectral imager showing a 20 m transect of a 

coral reef (Ludvigsen et al., 2013). Image from Ecotone © (with permission). ...................... 48 

Figure 4.1 Images of the minerals. M = muscovite, K = k-feldspar, Q = quartz, Cs = calcite 

marble (sand), Cc = calcite marble (clay), Cp = pure calcium carbonate, H = hematite. .......... 52 

Figure 4.2 Artificial sediments. 0-100 % explain the weight percent of CaCO3 in the 

sediment....................................................................................................................................54  

Figure 4.3 The selection of the samples provided by NGU around Magerøya in Finnmark, 

Norway. The figure is a modification of a map provided by NGU. ........................................ 55 

Figure 4.4 Natural sediment samples. OM = organic mud, FS = fine sand, MS = medium sand, 

SS = shell sand, SG = shell gravel. .......................................................................................... 56 

Figure 4.5 Carbonate crusts. Original surface to the left (P1210035_1B), fresh surface to the 

right (P1210006_4A). The marked red squares are the areas captured by the HI. .................. 58 



List of Figures 

 

XIII 

 

Figure 4.6 The splitter used to homogenously mixing the minerals. Yellow arrow show the 

sample input, black arrows show the separated samples.......................................................... 60 

Figure 4.7 A) HI setup. B) Setup of the samples measured by the HI in the moving directon. 

C) The setup of the submerged samples and the reference plate with a petri dish with seawater.

 .................................................................................................................................................. 61 

Figure 4.8 Cuvette setup for dry and submerged samples. The samples on the same row were 

simultaneously measured by the hyperspectral imager.. .......................................................... 63 

Figure 4.9 Illustration of the method for making average spectra from HI images.. .............. 65 

Figure 4.10 Illustration of the improvement from one pixel spectrum to five and ten averaged 

pixels spectra, n = number of averaged pixels. ........................................................................ 65 

Figure 4.11 Jaz spectrometer setup. ........................................................................................ 68 

Figure 4.12 Problems with submerging of samples. A) Floating of sediments on the top of the 

water surface (sample H1). B) Shirking of fine grained calcium carbonate (sample Cp1). .... 69 

Figure 4.13 Gray squares mark the area of the sample surface.  Dark circles limit the areas used 

to make the average reflectance spectra. .................................................................................. 70 

Figure 5.1 A) Upwelling radiance (Lu) of the HI light source and B) The light source spectrum 

from the Jaz measurements.. .................................................................................................... 72 

Figure 5.2  RGB-images and monochromatic images (570nm) of minerals (set 1) from the HI 

measurements. A) Dry samples. B) Submerged samples. ........................................................ 73 

Figure 5.3 A) Average reflectance spectra from HI, M = muscovite, M(w) = submerged 

muscovite spectra. B) Reflectance spectra from Jaz spectrometer of muscovite samples ....... 74 

Figure 5.4 A) Average reflectance spectra from HI, K = k-feldspar, K(w) = submerged k-

feldspar. B) Reflectance spectra from Jaz spectrometer of k-feldspar samples. ...................... 75 

Figure 5.5 A) Average reflectance spectra from HI, Q = quartz, Q(w) = submerged quartz. B) 

Reflectance spectra from Jaz spectrometer of quartz samples. ................................................ 75 

Figure 5.6 A) Average reflectance spectra from HI, Cs = calcite marble (sand), Cs(w) = 

submerged calcite marble (sand). B) Reflectance spectra from Jaz spectrometer of calcite 

marble (sand) samples. ............................................................................................................. 76 



List of Figures 

XIV  

 

Figure 5.7 A) Average reflectance spectra from HI, Cc = calcite marble (clay), Cc(w) = 

submerged calcite marble (clay).  B) Reflectance spectra from Jaz spectrometer of calcite 

marble (clay) samples. .............................................................................................................. 76 

Figure 5.8 A) Average reflectance spectra from HI, Cp = pure calcium carbonate, Cp(w) = 

submerged pure calcium carbonate. B) Reflectance spectra from Jaz spectrometer of calcium 

carbonate samples. ................................................................................................................... 77 

Figure 5.9 Reflectance spectra from Jaz spectrometer of hematite samples. .......................... 78 

Figure 5.10 Reflectance spectra from HI measurement used for making average spectra of 

hematite. ................................................................................................................................... 79 

Figure 5.11 Supervised classification of minerals with pixel defined classes (n=100) on top of 

monochromatic images (570nm).. ............................................................................................ 80 

Figure 5.12 RGB-images and monochromatic images (570nm) of artificial sediments ......... 82 

Figure 5.13 A) Reflectance spectra of the dry artificial sediment samples from HI 

measurements. B) Reflectance spectra of the dry artificial sediment samples from Jaz 

measurements. .......................................................................................................................... 83 

Figure 5.14 A) Reflectance spectra of the submerged artificial sediments from HI 

measurements. B) Reflectance spectra of the submerged artificial sediment samples from Jaz 

measurements. .......................................................................................................................... 84 

Figure 5.15 Reflectance at 570 nm for dry sediments (A) and submerged sediments (B)...... 84 

Figure 5.16 Supervised classification of the artificial sediments ............................................ 85 

Figure 5.17 RGB-images and monochromatic images of natural sediments. A) Dry samples. 

B) Submerged samples. ............................................................................................................ 86 

Figure 5.18 Average reflectance spectra from HI (A) and Jaz (B) of organic mud. ............... 87 

Figure 5.19 Average reflectance spectra from HI (A) and Jaz (B) of fine sand...................... 87 

Figure 5.20 Average reflectance spectra from HI (A) and Jaz (B) of medium sand. .............. 88 

Figure 5.21 Average reflectance spectra from HI (A) and Jaz (B) of shell sand. ................... 88 

Figure 5.22 Average reflectance spectra from HI (A) and Jaz (B) of shell gravel.................. 89 

Figure 5.23 Supervised classification of the natural sediments. ............................................. 90 

Figure 5.24 RGB-images and HI monochrmatic images of the fresh surface of sample 

P1210006_4A.. ......................................................................................................................... 92 



List of Figures 

 

XV 

 

Figure 5.25 RGB-images and HI monochrmatic images  of a original surface of sample 

P1210035_1B.. ......................................................................................................................... 93 

Figure 5.26 Average reflectance spectra from HI and Jaz for dry and submerged carbonate crust 

(fresh surface). A) Cemented grains, B) Aragonite, C) Jaz ..................................................... 94 

Figure 5.27 Average reflectance spectra from HI and Jaz for dry and submerged carbonate crust 

(original surface). A) Suface a, B) Surface b, C) Surface c, D) Jaz ......................................... 95 

Figure 5.28 Supervised classification of the fresh carbonate crust surface. ............................ 96 

Figure 6.1 Illustration of the attenuation of light in seawater.. ............................................. 113 

Figure 6.2 Illustration of the seabed and possible geological application of UHI.. .............. 115 

 

  



 

XVI  

 

List of Tables 

 

Table 6.1 Comparison of marine mapping methods. Numbers are based on subsea systems from 

Kongsberg Maritime (2014), except UHI numbers that are based on Johnsen et al. 

(2013)………………………………………………………………………………………. 111 

  



 

1 

 

Chapter 1  Introduction 

 

 

1.1 Background 

Seabed mapping is often used to provide information on bathymetry, geology, biology and the 

environmental status of the ocean floor (Buhl-Mortensen et al., 2010). However, there are many 

challenges in seabed mapping. For instance, acoustic remote sensing is restricted by large water 

depths - and optical mapping methods are constrained by limited light penetration and turbidity 

in the oceans. To meet these challenges, new technologies are constantly being developed and 

tested, to widen our understanding and knowledge of the seabed. Co-operation between marine 

geology, biology and technology is important for further development of enabling technologies, 

and applications of these, both in marine science and for environmentally sustainable utilization 

of the seabed. 

High quality maps of the seabed increase our understanding of relations between different 

marine processes. Marine geologists use acoustic remote sensing methods together with 

sediment sampling and underwater video and photography of the seabed to interpret and make 

maps (Buhl-Mortensen et al., 2010). Limitations of these approaches include the distance to the 

targets of interest and the influence of human interpretation.  

This master’s thesis presents an optical mapping method, Hyperspectral Imaging (HI), and its 

application to marine geological mapping - Underwater Hyperspectral Imaging (UHI). UHI is 

a mapping method where a hyperspectral imager is used underwater to capture optical 

properties of the seabed. Objective interpretations of optical properties have potential to create 

both quantitative and qualitative seabed maps (Johnsen et al., 2013).  

The study also forms a part of the methodology development in Norway’s national offshore 

seabed mapping program MAREANO (www.mareano.no). MAREANO is a co-operation 

program between The Geological Survey of Norway, Institute of Marine Research and The 

Norwegian Mapping Authority (Buhl-Mortensen et al., 2010). Optical remote sensing 

technologies, such as UHI, can potentially provide a complement to established marine 

mapping methods used in the MAREANO program.  

Detecting minerals, soil properties and marine sediments by hyperspectral imaging from 

satellites and airplanes have been performed successfully on land and in coastal oceans 
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(Dierssen et al., 2009; Fearns et al., 2011; Johnsen et al., 2009; Kruse, 2010; Mulder et al., 

2011; Sabins, 1999; van der Meer et al., 2012; Volent et al., 2007). Moving the hyperspectral 

imager underwater can potentially provide many benefits because of the proximity to the 

targets. UHI as a technique has been developed and patented by the Norwegian University of 

Science and Technology’s (NTNU’s) spin-off company Ecotone AS and tested on different 

biological and geological objects (Johnsen et al., 2013; Ludvigsen et al., 2014). The tests were 

carried out both in laboratory and in field using underwater Remotely Operated Vehicles 

(ROVs) as platform for the imager. Results show great potential for seabed mapping by UHI, 

but further studies of the geological application of the method are needed. 
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1.2 Aims, outline and limitations 

 

1.2.1 The aims of the study 

The main aim of this master’s thesis is to determine properties of marine sediments that can be 

detected and identified by UHI and secondly evaluate its applicability in the context of 

established mapping methods used in marine geology. The focus will be on calcium carbonate 

content in marine sediments, but other properties are also discussed. The reason for this focus 

is the potential application of UHI for mapping and monitoring bioclastic sediments and other 

carbonate features in cold waters, which are of relevance to MAREANO and other projects. 

The following methods have been used to achieve the aims: 

 Literature study of established marine geology mapping methods, previous work on 

geological HI and UHI. 

 

 Laboratory work using a hyperspectral imager attached to a stereomicroscope to 

measure the spectral reflectance of different minerals, marine sediments with varying 

carbonate content and carbonate crusts. In addition to the imager, a Jaz spectrometer 

was used to get validations of the HI reflectance spectra. 

 

 Semi-automated processing of the data. The software yaPlaySpecX was used to extract 

reflectance spectra from hyperspectral images of all samples and the software Image 

Calculator was used for creating supervised classification figures of the hyperspectral 

images. 

 

1.2.2 Limitations 

The theme of the thesis was developed in co-operation with NGU and focuses on certain topics 

of relevance to the MAREANO project. Evaluating mapping in cold-water regions is therefore 

set as a limitation, and the application of UHI on carbonate sediments in tropical waters is not 

discussed. The thesis focuses on marine geology, therefore biological mapping of coral reefs 

are not discussed. 

The HI equipment and the software used are custom made, and are prototypes of the equipment 

used by Ecotone AS. The limitations of the equipment affect the results gained. The thesis does 

not include a thorough evaluation of the software, but the value of the results obtained from the 
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software are discussed. The HI and Jaz measurement were not done underwater due to 

limitations of the laboratory equipment. Only the samples were submerged by water in the 

laboratory, while all equipment are underwater when UHI is used in field measurements.  

Fieldwork has not been carried out as a part of this thesis, but the author did participate in a 

NTNU cruise in the Trondheim Fjord in February 2014, where UHI was scheduled to be tested 

by NTNU and Ecotone AS. Due to technical problems with the ROV, no UHI data were 

acquired. The author did also participate in a MAREANO cruise in the Barents Sea during a 

summer internship at NGU, August 2013. This was in favor for understanding the mapping 

methods used by MAREANO in the field. 

 

1.2.3 Outline 

The master’s thesis has the following structure: 

Chapter 1: Introduction 

Outlines the purpose of the thesis and its limitations. 

Chapter 2: Marine carbonate sediments and geological mapping of the seabed 

Introduces marine geological theory on calcium carbonate and environmental influences 

on marine carbonate deposits. Established mapping methods such as acoustic remote 

sensing, shallow seismic, underwater photography, video and sediment sampling are 

described to provide a background to the advantages of UHI in this setting. 

Chapter 3: Optical remote sensing 

Introduces theory of marine optics and optical remote sensing. In addition, several case 

studies related to hyperspectral remote sensing are included to show the development of 

the technology and mapping method the last decades. The principles of UHI and 

previous studies of this method are also found in this chapter. 

Chapter 4: Materials and methods 

Presents the materials and the methods used in the laboratory work, including sources 

of errors and variability. 

  



1.2 Aims, outline and limitations  

5 

 

Chapter 5: Results 

Presents results from the laboratory work. The results include light source spectra, RGB 

images and monochromatic images of samples, followed by reflectance spectra from HI 

and Jaz. Supervised classification figures are also included. 

Chapter 6: Discussion 

The laboratory results are discussed in addition to an evaluation of UHI for geological 

mapping based on the results and the literature. 

Chapter 7: Conclusions and recommendations 

Gives the conclusions of the study and suggestions to further work. 
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Chapter 2  Marine carbonate sediments and 

geological mapping of the seabed 

 

 

2.1 Marine sedimentation of calcium carbonate 

The knowledge of marine sedimentation and sediment properties especially concerning calcium 

carbonate (CaCO3) in cold environments is important for understanding the variety of carbonate 

sediments along the Norwegian seabed and in other cold-water environments. The 

environmental stressors on CaCO3 in the ocean give the background for the importance of 

monitoring these type of sediments in the oceans.  

 

2.1.1 Properties of marine sediments  

Marine sediments are often defined by their visual properties and grain-size according to Boggs 

(2010). The main lithology, defined by dominant clastic or organic components, is normally 

used for definitions. Organic components include gyttja (organic mud from decayed organisms 

and plants) and peat (partially decayed vegetation). Clastic sediments are divided into 

categories after grain size. Gravel, sand, silt and clay are the main categories, which further are 

divided into coarse, medium and fine. The most used grain size-scale is the Udden-Wentworth 

scale (Figure 2.1). In addition, the fraction of bioclastic fragments (biogenic shell and skeletal 

fragments) and siliclastic fragments (transported terrestrial rock and minerals) can be used to 

characterize the sediments.  
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Figure 2.1 Udden-Wentworth grain-size scale for clastic sediments (Wentworth, 1922 in Boggs, 

2010). 

 

Grain size is fundamental for analyzing and interpreting a sediment. A proper analysis can 

reflect the depositional history of the sediment including weathering and erosion processes. 

After performing the grain size analysis in laboratory, a statistical treatment of the grain size 

data is carried out. This is useful when finding mean grain size and sorting. Sorting is a measure 

of the range of grain sizes present, and is mathematically expressed by standard deviation. 

Normally a less accurate visual description of sorting is made, varying from extremely poorly 

sorted to very well sorted.  

A particle’s shape is described by three factors - form, roundness and surface texture. Form is 

determined by the three major axis of a grain (long, intermediate and short). The degree of 
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spherity is used to describe the form - equant or platy. Roundness describes the edges on the 

surface of the particle, if they are smooth or angular. Usually roundness analyses are performed 

visually by comparing to a grain roundness scale. The surface texture of a grain can be polished, 

frosted (matted) or contain marks like fractures and scratches. The grains have to be observed 

under a microscope to be described by surface texture. 

Grain orientation and packing are properties describing the fabric of the sediment. Elongated 

or platy shaped grains are orientated in different ways depending on shape and outer influence 

like water currents and mass flows. Packing of a sediment is a function of grain size, shape and 

degree of compaction. It reflects the spacing between the grains and the density patterns of the 

sediments (Boggs, 2010). 

 

2.1.2 Abundant minerals in marine sediments 

Terrigenous sediments in the ocean origin from weathered and eroded rocks on land and consist 

of rock and mineral fragments of the source rock. Quartz and feldspar in fine and coarse fraction 

are abundant minerals in terrigenous sediments. Micas like biotite and muscovite are clay 

minerals often found in these sediments as well. Biogenous sediments consist of hard parts of 

shell-building organisms. These can be both carbonates and silicates found in large amount on 

the seabed and are often mixed with a red pelagic clay. The terrigenous red clay has its color 

because of an iron or manganese oxide coating on the minerals (Pinet, 2009).  

 

2.1.3 Calcite and aragonite 

Calcite and aragonite are polymorph minerals of the chemical structure CaCO3. The minerals 

have different crystal structures – the calcite structure is rhombohedral, while the aragonite 

structure is orthorhombic. Aragonite reacts easily to calcite in water. Modern marine carbonate 

minerals are often aragonite, but in deep waters, calcite dominates (Boggs, 2010). 

Magnesium (Mg) and calcium (Ca) ions have the same size and charge, which makes it easy 

for magnesium to substitute calcium in the calcium carbonate minerals. The amount of 

magnesium varies in calcite. Low-magnesium calcite consists of less than 4% magnesium, 

while high-magnesium calcite have more than 4%. In another carbonate mineral, dolomite 

(CaMg(CO3)2), magnesium have occupied half of the sites of the calcium ions. The crystal 

lattice consists of planes of Mg2+-ions alternating with planes of CO3
2- and Ca2+ ions. 
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Shells and skeleton from dead organisms are found in bioclastic sediments, which is a mix of 

minerogenic and biogenic material. The amount of biogenic material in sediments vary with 

the different living conditions for the organisms. Shell-building organisms like molluscs, 

gastropods, pteropods, chitons, cephalopods, coccolithophores (plankton algae), stromatolites, 

corals and annelids, normally use aragonite in their shell. Echinoids, crinoids, benthonic 

foraminifera and coralline red and green algae are often high-magnesian calcite, while the 

planktonic foraminifera, coccolithophores and brachiopods use low-magnesian calcite to build 

shell (Boggs, 2010).  

 

2.1.4 Carbonate deposits on the seabed 

The largest carbonate provinces are located in sub-tropical environments with clear warm water 

and lack of siliclastic input giving feasible conditions for coral-growth. In addition, cold-water 

corals are found in cooler environments, both on the continental shelf and slope and in fjords. 

There are several cold-water coral habitats along the Norwegian coast, like the Sula Reef in 

Nord-Trøndelag and the Røst reef in Nordland. These are some of the world’s largest known 

cold-water coral reefs, built by the stone coral Lophelia pertusa. The framework of the stone 

coral consists of aragonite, and the coral can build carbonate mounds in shallow and deep 

waters. Cold-water coral mounds are large carbonate structures from several periods of coral 

reef development. Coral rubble and dead coral blocks from the reef extend its periphery, and 

bioclastic sediments are found in marginal zones around the mounds (Fosså et al., 2005; 

Hovland & Mortensen, 1999; Roberts et al., 2006). 

Carbonate sand and gravel (shell sand and gravel) deposits are important resources in the 

carbonate industry and consist of partly decayed carbonate shells and skeleton from marine 

organisms. These deposits are described by Bøe & Olsen (2011). The most important organisms 

are molluscs, balanidae, sea urchins and red calcareous algae. The growth of these organisms 

depends on ecological parameters such as food availability, light climate (intensity, spectral 

compositions and day length), current speed and direction, bottom topography, water chemistry, 

wave activity and siliclastic sediment input. Deposits are normally found in areas with high 

wave and current activity, e.g. in narrow straits, on the landward side of islets and in bays with 

harsh climate. However, deposits can also be found in deeper marine basins (Bøe & Olsen, 

2011).  
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According to Boggs (2010) grain size is mostly controlled by shell-building organisms, but can 

also be altered by recrystallization from abiotic precipitation of CaCO3. Silt and sand sized 

clasts can also origin from terrestrial denudation of carbonate rocks. Ooids, peloids and 

grapestones are different kind of carbonate clasts. Ooids are circular grains consisting of 

concentric rings of calcite or aragonite coated around a core of shell fragment, pellet or a 

mineral grain. Ooids normally occur in areas with bottom currents and agitated-water 

conditions, but also in waters with high saturating levels of calcium bicarbonate. Grains of 

microcrystallin or cryptocrystallin calcite or aragonite without internal structure are called 

peloids. They are smaller than ooids and are produced by undigested mud from organisms 

feeding on the seabed. Carbonate grains can be aggregated by carbonate matrix (micrite) or 

carbonate cement (sparry calcite) and are then called grapestones or lumps. Micrite are small 

calcite or aragonite crystals deposited together with the rest of the sediment, while sparry calcite 

are recrystallized calcite or aragonite growing after deposition (Boggs, 2010).  

Carbonate crusts can be found around hydrothermal vents or where methane gas leaks from the 

seabed. Microorganisms that use methane gas and reduced sulfides in their metabolism can start 

the process of calcite and aragonite precipitations. The carbonate precipitates as cement in the 

marine sediments surrounding the gas leaks resulting in carbonate crusts (Hovland et al., 1987). 

Early generation carbonate occur as cement filling the pore space in the sediments. These 

cemented sediments are occasionally broken in mm- to cm-scale clasts, which also are lithified 

by carbonate. A late stage carbonate formation occur at cavity rims within the crust forming 

concentric layers of pure aragonite (Aivo Lepland, pers. comm., November 2014). 

In the deeper oceans, the seafloor is covered with pelagic sediments. Clay and silt are the 

dominating grain sizes accumulating from particles suspended in the ocean and from planktonic 

organisms with siliceous and calcareous shells. The deposits from organisms are called 

biogenous ooze, consisting of more than 30% biogenous material (Pinet, 2009).  

 

2.1.5 Environmental stressors on CaCO3 in seawater 

The surface ocean takes up about a third of the anthropogenic CO2 from human fossil use and 

deforestation (Doney et al., 2009). The atmospheric CO2 levels have increased the last centuries, 

and this could affect the environment in the ocean. Inorganic dissolution and precipitation of 

CaCO3, both calcite and aragonite, are influenced by the amount of dissolved CO2 in the water, 

because CO2 affect the acidity of the water by releasing hydrogen ions (Boggs, 2010).  
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The CO2 uptake in the ocean causes pH reductions and affects chemical balances, which results 

in ocean acidification. This possible feedback from an increased atmospheric CO2 level is called 

“the other CO2 problem” (Doney et al., 2009). Raven et al. (2005) indicate that the average pH 

in the ocean surface water has decreased by approx. 0.1 units since preindustrial times. 

Theoretically, the amount of CO2 will affect the amount of CaCO3 precipitation. In natural 

conditions, this is not always the case. The ocean has a high alkalinity implicating that small 

amounts of CO2 will not change the pH of the water, because the ocean will work as a buffering 

media (Boggs, 2010). However, regarding large amounts of CO2, studies have shown that it 

will affect the CaCO3 content in the sediment (Hall-Spencer et al., 2008; Raven et al., 2005). 

The oceans ability to absorb atmospheric CO2 depends on photosynthetic CO2 assimilation of 

inorganic carbon to organic carbon (food source and vertical flux of particles embedded at the 

seafloor) and CaCO3 dissolution, both in the water column and in sediments (Boggs, 2010). 

The saturation state for CaCO3 affect the formation and dissolution rates which varies over 

centuries and longer timescales. A change in saturation state can affect the living organisms in 

the ocean, because of ocean acidification. Laboratory studies show that acidification can cause 

reduced calcification rates, even in aragonite and calcite saturated waters (Raven et al., 2005). 

A change in the saturation levels of calcite and aragonite to a shallower water depth can change 

and restrict current areas of coral growth. A study by Hall-Spencer et al. (2008) was done on a 

benthic community around volcanic CO2 vents. They found an absence and reduction of 

calcareous organisms around the vents, due to lower pH caused by high level of CO2. 

Although an acidification of seawater in theory will affect calcification rates, this is not proved 

for long-term increase of CO2 partial pressure. The complexity of the ocean and the ability for 

the calcium carbonate producing species to adapt to these conditions, make this question 

difficult to answer. Direct geological or historical evidence of changes in the ocean acidity 

causing decrease in calcification rate is lacking. There are many processes affecting the carbon 

cycle and the carbonate system in the seawater through history, e.g. continental weathering, 

volcanism, ocean chemistry, sea floor spreading and biological evolution, which all makes the 

geological evidence hard to interpret (Doney et al., 2009).  

Norway has a potential for Carbon dioxide Capture and Storage (CCS) in empty oil and gas 

reservoirs in the North Sea. Scientists at the FME SUCCESS-center (Center for environment-

friendly energy research, Subsurface CO2 storage – Critical Elements and Superior Strategy) 

study technology and consequences related to CCS. The CCS technology has shown a great 

progress the last years, due to the interest of lowering CO2 emissions from the industry. The 
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consequences of storing CO2 can be damaging for the marine environment, with concerns 

including CO2 leakages and resulting acidification of the water. Leakages from the seafloor can 

be difficult to monitor because of natural variations of the acidity in the ocean. The leakages 

can be too small for sensors to detect, and the area of the reservoirs is too large to be observed 

simultaneously. There is therefore a need for a better monitoring technique (FME SUCCESS, 

2014). Based on the theoretical background, a decrease in calcium carbonate content in the 

sediments over time could be an indication of CO2 leakage, and thus the carbonate content may 

be used as a monitoring parameter (Johnsen et al., 2013). 

There are several other stressors on CaCO3 in the ocean described in Boggs (2010), including 

mechanisms leading to less CO2. This is mainly caused by an increase in temperature or a 

decrease of water pressure. Warm water holds less CO2. Water pressure is lowered when waves 

agitate during storm activities or because of breaking waves towards land, circulation of deep 

pressurized water to shallower waters or an atmospheric pressure decrease, and will affect the 

partial pressure of CO2 in the ocean. Low salinity and low ionic strength indicate a low amount 

of other ions than Ca2+ and CO3
-, favoring precipitation of CaCO3. Ions like Mg2+ will interfere 

with the chemical composition of the CaCO3, making it unstable and increase the solubility. 

The crystal structure of aragonite is more resistant against magnesium incorporation, so in 

magnesium rich oceans, aragonite will be favored (Boggs, 2010). 

Due to the special conditions in which CaCO3 precipitates, calcite and aragonite will not be 

found everywhere in the ocean (Pinet, 2009). The calcium carbonate compensation depth 

(CCD) is the depth where dissolution and precipitation of CaCO3 is in equilibrium. Deeper than 

this limit, which has an average depth of 4500m, the CO2 level is high and CaCO3 will be 

dissolved in the water. The conditions on deep water are cold and the water pressure is high. 

The aragonite have a shallower limit than calcite, because aragonite is more soluble than calcite. 

The lysocline is the limit where the dissolution of CaCO3 strongly increases. Both this limit and 

the CCD is deeper in the Atlantic than in the Pacific Ocean, and deeper around equator than in 

polar areas, because of different oceanic conditions (Pinet, 2009). 

Other important biological processes affecting and regulating the CO2 concentration in the 

ocean, includes skeletal and shell building organisms, photosynthesis, biological induced 

precipitation and decay of dead organisms (Boggs, 2010). For instance photosynthetic plankton 

algae (phytoplankton), producing ~45% of primary production globally heavily influences CO2 

uptake from light reactions in photosynthesis and releasing CO2 trough respiration (Falkowski 

& Raven, 2013). 
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2.2 Traditional mapping of marine sediments 

The most common modern day approach for mapping marine sediments starts with acoustic 

remote sensing from a marine vessel followed by different methods of visual observation and/or 

physical sampling of seafloor sediments for ground truthing. Sampling sites are chosen from 

the information gained by remote observation. Information like sediment types, sedimentary 

processes, marine environments and seabed topography can be mapped by this approach, which 

is useful in disciplines like geotechnical mapping, environmental monitoring, fishing industry 

and marine habitat mapping (Van Lancker et al., 2012).  

The MAREANO program uses this marine mapping approach to obtain information regarding 

the marine geology and habitats of the Norwegian seabed (Buhl-Mortensen et al., 2010). The 

majority of ground truth data is visual obtained from underwater towed video observations. 

However, physical samples are obtained at around 20% of the sampling stations.  

Figure 2.2 shows an example from Buhl-Mortensen et al. (2010) of how MAREANO data are 

used for interpretation of coral formations. A hill is found in the terrain model (A), the 

backscatter data show a strong reflection on the hill (B), the sediment classification map, 

sampling and seismic data show moraine sediments with rocks and boulders (C) and video 

observations verify that corals are present on this hill (D). 
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Figure 2.2 Multibeam bathymetry and backscatter mapping of the seabed (to the left) provides data for 

interpretation. A) A stone rigde is located on the terrain model from bathymetry data. Small hills are 

interpreted as coral formations. B) The backscatter map show a strong reflection on the ridge. C) A 

sediment classification map showes rocks and blocks on the rigde (red color). Blue = fine grained 

sediments, pink = bedrock, yellow = sand and gravel. Sampling and seismic data of the ridge were 

interepreted as moraine materail on top of a sedimentary bedrock.  D) Video lines verify the occurrence 

of corals. The figure is modifyed from Buhl-Mortensen et al. (2010).  

 

2.2.1 Acoustic methods 

Side-scan sonar, single-beam and multi-beam echosounders (MBES) are the technology used 

to gain backscatter information. Acoustic backscatter data are used to discriminate between 

seafloor characteristics based on different intensities of backscattering of the returning echo. 

Information on geotechnical properties such as compaction, porosity, sorting and grain size are 

possible to estimate from the backscatter signal using appropriate software, but often 

interpretation is performed on the basis of the decibel amplitude value of a backscatter image, 

which indicates the strength of the returned signal from the seabed. Soft, fine-grained sediments 

are relatively easy to interpret, because of a strong linear correlation between the signal strength 

and grain-size. Hard and variable substrate will have more incoherent backscatter signals, 

varying with hardness and textural seabed parameters (Van Lancker et al., 2012).  

Bathymetry data are used for making a digital terrain model of the seabed, which often is 

visualized as a shaded relief image in two dimensions, or can be rendered in three dimensions 

using appropriate software. Bathymetry data give information on landforms, depth and 

orientation of the terrain. It is an advantage to use MBES for seabed mapping, because this can 

simultaneously collect both backscatter and bathymetry data (Brown et al., 2011). 

Coral formations 

Green: Strong reflection 

Blue: Weak reflection 

Stone ridge 

A B 

C D 
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High resolution seismic data can be used in addition to backscatter and bathymetry data to 

interpret the top sediments of the seabed. TOPAS, which is a parametric sub-bottom profiler, 

is normally used on MAREANO cruises for collecting shallow seismic data. Top sediment 

layers can be interpreted from the seismic profiles, revealing sediment thickness and sediment 

characteristics (Bellec et al., 2014). Penetration depth capability of this sub-bottom profiler can 

reach ~200 m (Kongsberg Maritime, 2014).  

Synthetic Aperture Sonar (SAS) mounted on Autonomous Underwater Vehicles (AUVs) is an 

emerging acoustic technology giving ultrahigh-resolution sonar images (Figure 2.3) and 

bathymetry data of the seabed (Bellec et al., 2014). It is possible to get very close to the seabed 

using an AUV as a platform and the resolution of SAS data can reach a few centimeters. With 

the HiSAS synthetic aperture sonar developed by the Norwegian Defense Research 

Establishment (FFI) and Kongsberg Maritime, the theoretical coverage of the seabed is 2.6 

km2/h with 20*20 mm resolution (Ludvigsen et al., 2014). SAS is not currently one of the 

standard methods used in the MAREANO program, but it offers great potential for future 

application and is due to be tested by MAREANO in 2015 (Margaret Dolan, pers. comm., 

December 2014). 

 

 

Figure 2.3 Synthetic aperture sonar image showing a biogenic mound surrounded by a 30 m wide zone 

of bioclastic sediments (Bellec et al., 2014). 

 

2.2.2 Video-analysis of the seabed 

Video transects of approx. 700 m are used for visual interpretation of the seabed on the 

MAREANO cruises. The method is described in Buhl-Mortensen et al. (2010). On average, 

there is taken one video-transect per 100 square kilometers. Two cameras are connected to a 
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video rig, which can capture sea bottom as deep as 3000 m. The rig is towed close to the seabed 

while capturing the main video transect and lands on the seabed at the start and end of each 

transect to allow for technical setup and zooming in for detailed observations of geology and 

biology. Ancillary sensors on the rig measure position, depth, height, temperature, current and 

particle content.  

In the field, preliminary interpretation of different sediment types and bottom fauna are logged 

and geo-referenced in a database. The video transects are analyzed in detail on land and are 

used to compare different areas. Advantages of analyzing the seabed by video are the 

application on all bottom types in all kind of terrain and the minimal risk of disturbing the 

habitats (Buhl-Mortensen et al., 2010). 

 

2.2.3 Sampling of sediments 

Sampling has to be carried out to directly measure the properties of the sediments. Different 

sampling methods useful for different kinds of sediments are described in Buhl-Mortensen et 

al. (2010) and in Bellec et al. (2014). A grab is suitable for gravel and samples the uppermost 

10 cm of the sediments. A box-corer is better for cohesive fine-grained material and obtains a 

sample of the 50 cm top sediments. The grab is not suitable for hard bottoms with large rocks 

and boulders, because these can prevent the grab from closing. Undisturbed samples are hard 

to get, because of loss of the finest fraction. A multi-corer is a good alternative to the box corer 

when needing several samples and more material. Six plastic tubes are used to get undisturbed 

samples of the uppermost 50 cm sediments. Multicore samples also provide the necessary 

material for organic and inorganic geochemical analysis.  

Sampling will only provide point data, which have to be supported by additional information 

of the seabed from acoustic methods or video data. Field-geologists visually describe the 

samples, and sub-samples are often sent to laboratories for further analysis. Visual description 

are done on board the MAREANO cruises according to the SOSI (“Samordnet Opplegg for 

Stedfestet Informasjon”) - classification (Bellec et al., 2014; Buhl-Mortensen et al., 2010; 

Statens Kartverk, 2006). 

 

2.2.4 Mapping of bioclastic sediments and cold-water coral reefs 

A method for shell bed mapping is described by Bøe & Olsen (2011). They used shallow 

seismic, TOPAS, to map possible shell beds and the thickness of the deposit. The data were 
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used to select areas for sediment sampling by grab. Carbonate content and thickness of the 

deposits were used to classify the areas as “proved shell beds” or “possible shell beds”. Detailed 

water depth data were used to define the limits of the shell beds found in basins and flat areas. 

In the 1990s, shell sand mapping at NGU was carried out to map carbonate resources. Today, 

shell sand samples are often used for mapping biological diversity, e.g. as part of the National 

program for mapping and monitoring of marine biodiversity in Norway (Bekkby et al., 2011). 

Sample data can be used in oceanographic and biological modelling. Only the top 20-30 cm of 

the bottom sediments are mapped and the limit for classifying the sediment as pure shell sand 

is a carbonate content of 85%. Sediments with a carbonate content of 50-85% are classified as 

impure shell sand (Bøe & Olsen, 2011). 

Acoustic methods can be used to detect coral reefs, because these have characteristic 

bathymetric and backscatter signatures (Brown et al., 2011). However, there are some problems 

due to spatial scale and interpretation difficulties described below. In an article by Somoza et 

al. (2014) cold water coral reefs and mounds mapping methods by indirect acoustic and direct 

sampling were described. Bathymetry, backscatter and seismic data were collected at the 

Galicia Bank west of Portugal at depths of 1125 m to 620 m. The exposed mounds were possible 

to detect in seismic profiles by their dome structure and the lacking internal changes of seismic 

impedance. The buried mounds were observed as cone structures in the seismic profiles and 

mapped by combining backscatter and bathymetry data. The mounds showed very high 

intensity backscatter values compared to the surrounding sediments. It was not possible to map 

the living reefs by backscatter or bathymetry because the grid cell size of the terrain model were 

50 m, which was too large for recognizing reefs. Seismic and coral sampling were used for 

mapping living reefs, where they were characterized as acoustically transparent domes.  

In a report from NGU (Bellec et al., 2014), the grid resolution of the multibeam bathymetry 

used was 5 m, but still the minimum dimensions for interpreting structures as mounds were 20 

m in diameter. The report also highlights the difficulties of distinguishing bioclastic sediments 

from bedrock and identifying biogenic mounds in slide areas because of the morphological 

similarity to mounds created by sliding. 
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2.3 Chapter summary 

 

 Marine sediments are defined by their clastic or organic content, visual characteristics 

and grain size. 

 

 Calcite and aragonite are polymorph minerals of CaCO3 found in marine sediments. 

 

 Carbonate deposits in cold waters include bioclastic sand, carbonate crusts, cold-water 

coral reefs and biogenous ooze. 

 

 Inorganic dissolution and precipitation of CaCO3, both calcite and aragonite, are 

influenced by the amount of dissolved CO2 in the water. 

 

 Traditional seabed mapping methods used by marine geologists include acoustic 

mapping (backscatter, bathymetry and shallow seismic data), video recordings and 

sediment sampling.  
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Chapter 3  Marine optics and optical remote sensing 

 

 

3.1 Optical properties of the sea and of geological material 

Optics describe the physics of light when it interferes with a matter. Light theory, how light 

behaves in water and optical properties of different material are basic knowledge for 

understanding UHI and its applications to marine geological mapping.  

 

3.1.1 Light theory 

Light is electromagnetic radiation behaving both as a stream of particles and as waves (Kirk, 

1994). Light particles are called photons or quanta, and every particle has a wavelength and a 

wave frequency. Wavelength is expressed in nanometer (nm) and the spectral range of the 

electromagnetic radiation from the sun can be separated into gamma rays, ultraviolet light (UV), 

visible light, infrared light (IR) and radio waves (Figure 3.1). The visible light ranges from 400-

700 nm. The human eye interprets the different wavelengths as colors based on the energy of 

the photons. A photon in the red band of the spectrum has more energy than a photon in the 

blue band. The amplitude of the wave or the flux of the photons determine the brightness of the 

light (Kirk, 1994). 
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Figure 3.1 Electromagnetic radiation from the sun (Sakshaug et al., 2009). 

 

The radiant flux is the time rate of flow of radiant energy, expressed in watts (W). Radiance, L, 

is the radiant flux per solid angle per unit area at a plane perpendicular to the direction of flow, 

and has the unit Wm-2sr-1. Irradiance, E, is the radiant flux per unit area of a surface where the 

area is an infinitesimal element. The unit of E is Wm-2. Downwelling, Ed, and upwelling 

irradiance, Eu, are the irradiance from the downwelling light and the upwelling light 

respectively. The ratio between Eu and Ed is the reflectance parameter, R (Kirk, 1994). 

When the light interferes with a matter, the photons can be reflected, transmitted, absorbed and 

scattered. Absorption removes photons, scattering changes the direction of the photons. 

Transmittance occur when the photons penetrate through the matter. If the light beam hits a 

smooth surface a specular reflection occurs where the angle of the reflected light equals the 

incident angle. Diffuse reflection happens when the light hits a rough surface and the light beam 

is scattered in several directions (Jerlov, 1976). 

As light propagates through water, light is absorbed and scattered in the water column. UV- 

and IR-light are heavily attenuated in water. In clear ocean water, the deepest penetrating light 

is in the blue part of the spectrum with a maximum 1% light depth of ~300 m, which is the 

depth where the light energy is 1% of the energy at the surface. Compared with fjord waters, 

where the color is in the green part (Figure 3.2), maximum 1% light depth is ~50 m (Volent, 

2009). 
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Figure 3.2 In blue ocean water (to the left), the color is blue because the deepest penetrating wavelength 

is approx. 450 nm. Fjord water (to the right), has a green color where the deepest penetrating 

wavelength is approx. 550 nm (Sakshaug et al., 2009). 

 

3.1.2 Apparent and inherent optical properties of seawater 

The optical properties of seawater can be described in two ways, the apparent (AOPs) and the 

inherent optical properties (IOPs) (IOCCG, 2000). When experimenting with optical 

measurements in the laboratory or in situ, it is very important to have control on the AOPs and 

IOPs of the water. 

AOPs are used to describe the properties of the water dependent on the geometrical distribution 

of the ambient light field and the substances in the water (Johnsen et al., 2013). This property 

changes when the light field changes. The apparent color of the sea in Figure 3.2 is an example 

of an AOP. Measurements from passive sensors include parameters like the diffuse attenuation 

coefficients for upwelling (Ku(λ), m-1) and downwelling irradiance (Kd(λ), m-1). These 

parameters describe the rate of decrease of irradiance as a function of optical path length 

(Johnsen et al., 2009). The ratio between these is ocean reflectance (R(λ)):  

 

𝑅(𝜆) =
𝐾𝑢(𝜆)

𝐾𝑑 (𝜆) 
       [Eq. 1] 

 

IOPs are independent of the ambient light field and describes the properties of water only 

affected by its contents. The properties are measured using an active light source, resulting in 

independence of variations in the angular distribution of the incident light field. The absorption 

coefficient (a(λ), m-1) and the scattering coefficient (b(λ), m-1) are IOPs used to find the total 
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volume attenuation coefficient (c(λ), m-1), which describes the light beam attenuation (Johnsen 

et al., 2009): 

 

𝑐(𝜆)  =  𝑎(𝜆) + 𝑏(𝜆)        [Eq. 2] 

 

AOPs are easy to measure, but hard to interpret, while IOPs are hard to measure, but much 

easier to interpret (Johnsen et al., 2013). 

Substances in water affecting its optical properties are water molecules, phytoplankton, colored 

dissolved organic matter (CDOM) and total suspended matter (TSM). Water molecules absorb 

in the blue part of the spectrum and scatter in the red part of the spectrum. Phytoplankton are 

living organisms using light for photosynthesis. The main pigment in phytoplankton absorbing 

photons is chlorophyll a (Chla). It absorbs photons highest in the green (440 nm) and the red 

(675 nm) part of the spectrum. CDOM originate from the decomposition of organic material 

(plant and planktonic tissue) and is only absorbing, not scattering. It has a maximum absorbance 

in the UV and blue part of the spectrum. TSM can be separated into particulate organic material 

(POM) and particulate inorganic material (PIM) (Johnsen et al., 2009). Due to the intense 

scattering from TSM, absorbance is difficult to measure. However, absorbance of PIM has been 

measured to be high in the red end of the spectrum, gently decreasing with increasing 

wavelength (Johnsen et al., 2013). The absorption spectra of suspended substances are shown 

in Figure 3.3. 



3.1 Optical properties of the sea and of geological material 

25 

 

 

Figure 3.3 The absorption spectra of phytoplankton, CDOM, oceanic water and suspended non-living 

material (Johnsen et al., 2013). 

 

3.1.3 Case 1 and case 2 waters 

Analyses of optical signals of marine objects need algorithms to correct for the optical 

properties of the substituents in the water. Different algorithms are needed for different types 

of water, which can be divided into case 1 and case 2 waters (Jerlov, 1976): 

 Case 1 waters include blue oceanic waters. The optical properties of these waters are 

mainly affected by the phytoplankton concentration as the other components play a 

small role. The concentration of Chla can be estimated. 

 

 Case 2 waters are optically complex waters, with larger amounts of other constituents 

as well as phytoplankton. Information of CDOM and TSM concentrations, in addition 

to the Chla concentration can be found. This is typical coastal waters affected by 

freshwater runoff from rivers. 

 

3.1.4 Remote sensing reflectance 

Remote sensing reflectance (RRS (λ)) for water is defined as “the normalized radiant signal just 

above the water surface” (Johnsen et al., 2009). This coefficient describes the upwelling light 
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and is used to derive the in-water optical constituents. Remote sensing reflectance is different 

from reflectance (R(λ)) in the way that upwelling radiance (Lu (λ)) is substituted instead of 

irradiance (Eu (λ)): 

 

𝑅𝑅𝑆 (𝜆) =
𝐿𝑢 (𝜆) 

𝐸𝑑 (𝜆) 
       [Eq. 3] 

 

 

3.1.5 Optical properties of geological material  

Several minerals absorb radiation, making them easy to identify by position and character of 

absorption features (van der Meer et al., 2012; Viscarra Rossel et al., 2006). Ultraviolet, visible-

near infrared to thermal infrared (UV-VNIR-TIR) light are used for identification of minerals. 

Absorption features in reflectance spectra of minerals in the UV - VNIR region (approx. 0.1 - 

1μm) are dependent on transition metal ions (e.g., Fe, Cr, Co, Ni). These ions obtain absorption 

features due to electronic processes (e.g. transitions like Fe2+ - Fe3+). There are four major 

electronic processes resulting in absorption features according to Hunt (1977) - the crystal-field 

effect, charge transfer, color centers and conduction band transitions.  

Crystal-field transitions occur when absorption of electromagnetic radiation changes the energy 

state of transition elements in a mineral. The outermost electrons of the ion determine the energy 

levels. Crystal-fields are electrostatic fields due to surrounding anions or dipolar groups, which 

can influence the arrangement of the energy levels. This results in different spectra for the same 

ion. The position of an absorption feature will thus depend on the site the ion occupies in the 

mineral (Hunt, 1977). Hematite is a mineral with absorption features below 530 nm and at 850 

nm due to crystal-field transitions, with reflectance spectra as shown in Figure 3.4 (Sherman et 

al., 1982). 
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Figure 3.4 Diffuse reflectance spectra of natural (H-1) and synthetic hematite (H-2). Note the 

absorption features below 530 nm and at 850 nm (Sherman et al., 1982). 

 

Charge transfer is the process when an electron migrate between neighboring ions, or between 

ions and ligands, due to absorbed energy (Hunt, 1977). Features occurring from charge transfer 

are more intense than features from crystal-field transitions. Some minerals show absorption 

features from lattice defects called color centers, this is particularly minerals like halides where 

the features cannot be explained by chemistry or impurities.  

Free electrons can transfer from a low-energy valence band to a high-energy conduction band. 

In some mineral spectra, it is possible to observe the transition from intense absorption in the 

conduction band to complete transmission in the forbidden gap, which is the zone of energy 

between the two bands. This is shown as well defined absorption edges in the spectrum (Hunt, 

1977). 

In the shortwave infrared (SWIR) region (approx. 1-3 μm) absorption features are dependent 

on vibrational processes in water molecules, hydroxyl (OH), carbonate (CO3), sulfate (SO4) and 

ammonium (NH4) (Kruse, 2010; van der Meer et al., 2012). There are a restricted number of 

motions in a molecule, and each of these vibrations has a quantum number and a frequency. If 

the normal vibration is excited by more quanta of energy an overtone occurs. Vibrations and 

overtones are seen as absorption features in the SWIR region of the spectrum (Hunt, 1977). The 

most regular minerals in rocks have spectral features due to vibrational processes in the TIR 

region (approx. 3-15μm), this include carbonates, silicates and mafic minerals (Mulder et al., 

2011). 



Chapter 3 Marine optics and optical remote sensing 

28  

 

The grain size of the particles also affect the absorption and scattering of light. The internal 

pathway determine the absorption ability. According to Beers law, a larger grain with a longer 

internal pathway may absorb more photons than a small grain. Based on this theory, the 

reflection drops when the grain size increases (van der Meer et al., 2012). Hunt (1977) shows 

in his article that the smallest particle sizes have the highest reflectance, but also the least 

contrast of the features in the spectral band. 

White minerals like calcite and quartz do not absorb visible light, but scattering of light from 

these minerals intensifies the reflectance (Kirk, 1994). For non-absorbing spherical particles 

the scattering efficiency, Qscatt is highest for particles with diameter ~1.6 μm at 550 nm and 

decreases and increases in oscillations for larger grain sizes. This is shown in Figure 3.5 from 

Kirk (1994). The black curve is a scattering result of a single particle, while the dotted line is 

the result of suspended particles to show how the scattering varies with particle size for a fixed 

concentration by weight. When the diameter decreases, the amount of particles increases. The 

result of this is a maximum scattering at 1.1 μm and smaller oscillations of the scattering 

coefficient for larger grains.  

 

 

Figure 3.5 Scattering efficiency (Qscatt) at 550 nm of single non-absorbing particles as a function of 

grain size. Dotted line show the scattering coefficient of a suspension with 1 g/m3 of particles, b = 

scattering coefficient (Kirk, 1994). 
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3.2 Optical remote sensing 

Optical remote sensing is a mapping and monitoring technique using optical signatures to 

discriminate between different substances. Multispectral and hyperspectral spectrometers 

attached to platforms like satellites and airplanes are used to detect optical signals from the 

surface of the earth.  

 

3.2.1 Principles of multispectral and hyperspectral remote sensing 

The spectral resolution of the human eye is limited to three wavelengths, red (~600 nm), green 

(~550 nm) and blue (~450 nm), giving us a trichromatic perception of colors (RGB-vision). 

Television, cameras and other artificial digital image displays and sensing systems normally 

use “pseudo-true” colors in RGB images, with bands centered at 450 nm, 550 nm and 650 nm. 

A multispectral imager, used for remote sensing from satellites, captures more than three wave 

bands. Typically, it uses 10-20 bands in the ultraviolet, visible and near-infrared part of the 

electromagnetic spectrum. Multispectral (>5 nm wavebands) and hyperspectral imaging are 

based on the same principles, but the HI  has a better spectral resolution than the multispectral, 

providing wavelengths with 1 nm spectral resolution (Johnsen et al., 2013). 

A hyperspectral imager is a spectrometer equipped with a camera. The spectrometer separates 

reflected solar energy from the surface into spectral bands, which are narrow wavelength 

intervals (Sabins, 1999). In this study, the senor used for the camera is a charge coupled device 

sensor producing images of the target consisting of pixels with different optical properties. 

Images are captured through an entrance slit and are reconstructed into an image of the entire 

area of interest with high spectral and spatial resolution, by merging the spectral profiles into 

an image cube (Figure 3.6). This is called the “push-broom technique” (Volent et al., 2007). 
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Figure 3.6 Model illustrating the hyperspectral imager, the “push broom” technique and the spectral 

image cube. L1 = front lens, S = entrance slit, L2 = collector lens, P = grism, L3 = camera lens and 

CCD = imaging detector (Charged Coupled Device), n = amount of pixels in X-direction (Volent et al., 

2007). 

 

3.2.2 Classification based on optical signature  

A hyperspectral image provides a full reflectance spectrum per image pixel. The reflectance 

spectrum shows the reflectance per wavelength (1 nm resolution). Spectral features are 

observed as peaks and drops in the spectrum and determine the optical signature (shape of the 

spectrum), which can be obtained from a pixel and used to classify the objects in the pixel 

(Johnsen et al., 2009). In addition, the intensity of the optical signature can be used to separate 

objects. By using the optical signatures of objects on the seabed it is possible to identify and 

map the biogeochemical patterns of interest. Monochromatic images can be extracted from the 

image cube (Figure 3.7). These images show the upwelling radiance intensity of the selected 

wavelength and intensities are given in mWm-2nm-1 (Johnsen et al., 2013). 

Pettersen (2013) describes two methods of classifying objects based on optical signature. A 

supervised classification of a hyperspectral image can be accomplished by choosing classes 

based on optical signature and use these to classify pixels in the image. Statistical software is 

used for the classification. An unsupervised classification is done without predefined classes. 
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This classification is also accomplished by statistical software where pixels are classified based 

on differences in radiation and reflectance.  

 

  

Figure 3.7 The method of choosing monochromatic images from the spectral image cube to make 

specific identification images. At the cutting surfaces, the pixels of horizontal planes show reflection 

intensities at one specific wavelength (Volent, 2009). 

 

A problem in classification of pixels occurs when the pixel consists of several objects with 

different optical signatures called endmembers (Malenovský et al., 2007). This can be solved 

by algorithms of spectral unmixing, illustrated in Figure 3.8. Optical signatures of objects are 

mixed in one pixel after recording and can be unmixed by reversing this process, resulting in 

abundance maps. Reflectance spectra of objects that can be used to reconstruct the recorded 

mixed spectra are chosen as endmembers. These spectra can be found in spectral libraries, by 

field reflectance measurements, or they can be extracted from the remote sensed image. Only 

the fraction of the endmember is known and spatial distribution cannot be reconstructed. 
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Figure 3.8 Illustration of spectral mixing and unmixing. Spectral mixing occurs during recording of 

the pixel and spectral unmixing of this pixel can find the abundance of endmembers. RMSE = root 

mean square error, indicating lacking endmembers in the pixel (Malenovský et al., 2007). 

 

3.2.3 The start of marine optical remote sensing - mapping ocean color 

Remote sensing of ocean color is used to find dissolved and suspended particles in the world 

oceans and to get qualitatively and quantitatively measurements of these (Johnsen et al., 2009). 

Satellites are equipped with spectrometers, also called spectral radiometer imagers or 

spectroradiometers, which detect spectral characteristics of the upwelling light from the surface, 

in the visible and infrared spectral range. The satellites provide a global coverage of the 

reflected sunlight, giving useful information of ocean conditions such as sea-surface 

temperatures, algal blooms, snow and ice cover. This is a passive observation, because the 

measurements are based on sunlight as light source. Sunlight restricts the recordings due to 

cloud cover, lack of light during nighttime and polar night at high latitudes. 

In 1978, NASA launched the first dedicated ocean color sensor, the Coastal Zone Color Scanner 

(CZCS), the Nimbus-7 satellite. This was a multispectral sensor, storing six spectral wave 

bands. Data collected were used to identify and map areas of biological productivity, suspended 

inorganic material, fresh water run-off, pollution and shallow coastal areas. The first sensors 

had a need for improvement, concerning insufficient spectral, spatial and temporal resolution, 

sensitivity of the sensors and algorithms for atmospheric corrections. Today, the technology of 
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the instruments are much better and several sensors are attached to satellites orbiting the earth 

giving high-resolution images (Johnsen et al., 2009). 

Local remote sensing from aircraft-platforms can be used to map coastal areas. Several studies 

have shown that recently developed airborne hyperspectral imaging is an excellent tool to map 

coastal features as kelp forests (Volent et al., 2007), sea-ice age/geomorphology, ocean color, 

particles from freshwater and glacial runoff in addition to vegetation and minerals on land. 

Compared to satellite remote sensing, airborne remote sensing does not have problems 

regarding cloud cover and needs less atmospheric correction for the upwelling light. Aircrafts 

can monitor closer to the target, which gives a higher spatial resolution (about 1 m per image 

pixel spatial resolution) than satellites (typically 300-1000 m spatial resolution) (Johnsen et al., 

2009). 

 

3.2.4 Case studies related to geological hyperspectral imaging 

Hyperspectral imaging from satellites and airplanes are used in geological mapping on land. 

Optical remote sensing of geology started in the 1980s with the Landsat multispectral scanner 

using VNIR bands. The Landsat Thematic Mapper (TM) caused an uptake in the geological 

remote sensing by allowing mapping of lithology, minerals, structural geology, volcanic 

deposits and volcano monitoring, coral reef mapping, natural oil seep detection and landslide 

mapping. In the Goldfield mining district in Nevada, United States, TM images were used for 

recognizing iron rich minerals (goethite (FeO(OH)), hematite (Fe2O3), jarosite 

(KFe3+
3(OH)6(SO4)2)). Figure 3.9A shows the laboratory reflectance spectra for these minerals, 

which have low reflectance in the blue region and high in the red and IR regions (Sabins, 1999).  

A review of optical remote sensing used for geological mapping on land is given by van der 

Meer et al. (2012). The Advanced Spaceborne Thermal Emission and Reflectance Radiometer 

(ASTER), was launched in 1999. This was an imaging multispectral radiometer with three 

channels in the VNIR region, six channels in the SWIR region and five channels in the TIR. 

Data collected were used to produce geological maps of clay minerals (kaolinite, illite), sulfate 

minerals (alunite), carbonate minerals (calcite, dolomite), iron oxides (hematite, goethite) and 

silica (quartz). The information was used to map alteration facies of the bedrock.  

Hyperspectral images have been available for the last 20 years. Since 1998, NASA has operated 

a hyperspectral spectrometer - the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 

with 224 bands in the 0.4-2.5 μm region. HyMAP, the Australian Hyperspectral MAPper, in 
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addition to AVIRIS, are the most used hyperspectral imagers for geological mapping. HyMAP 

has 126 bands in the 0.4-2.5 μm region. Many companies develop hyperspectral imagers and 

there are several ongoing hyperspectral missions, for instance there are two hyperspectral 

imagers circling the planet Mars (van der Meer et al., 2012).  

Several studies on applications of HI for geologic exploration have been successful (Chabrillant 

et al., 2002; Kruse et al., 2003; Mulder et al., 2011; Sabins, 1999; van der Meer et al., 2012). 

Spectral libraries for different materials’ specific reflectance spectrum are provided at several 

institutes, including both minerals and rocks (e.g. USGS Spectral Library). The mining industry 

is the main driver and most studies relates to hydrothermal systems. Such systems consist of 

spectrally active minerals, like hydroxyl-bearing minerals, ammonium-bearing minerals, 

phyllosilicates, iron oxides and carbonates (van der Meer et al., 2012).  

In the study of Goldfield mining district by Sabins (1999), TM images could not identify 

specific alteration minerals because of the limited spectral resolution. In Figure 3.9B, some of 

these minerals are listed with their reflectance spectrum recorded by AVIRIS hyperspectral 

scanner with a spectral resolution of 50 bands in the region 2-2.5 μm. As seen in the figure, 

quartz is missing defined spectral features in this range of wavelengths and cannot be 

recognized by VNIR or SWIR light reflection. To detect quartz, the HI has to be equipped with 

a thermal IR region.  
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Figure 3.9 A) Laboratory reflectance measurements of goethite, hematite and jarosite. The TM bands 

and ranges are shown in the figure. B) Reflectance measurements of minerals from AVIRIS 

hyperspectral scanner. AVIRIS have 50 bands ranging from 2.00-2.50 μm, giving a better resolution 

compared with the multispectral TM band 7(Sabins, 1999). 

 

Mine tailings are also possible to analyze with HI according to van der Meer et al. (2012). The 

distribution of acid-generating minerals as pyrite and the oxidation product can be used as an 

indicator on pollution (Riaza & Müller, 2010; Shang et al., 2009).  

A study from Cuprite (Nevada, US) and Northern Death valley (California and Nevada, US), 

shows reflectance spectra of different minerals and gives a comparison of spectra from different 

sites and different sensors. NASA’s AVIRIS (airborne) and Hyperion (spaceborne) 

hyperspectral sensors were used for the optical imaging of these areas. This study shows that 

there are some differences in the reflectance spectra due to remote sensing at different heights 

and when the same mineral is measured at separate locations. Because of a smaller signal-to-

noise ratio in the Hyperion measurements than the AVIRIS, the reflectance spectra cannot be 

A 

B 
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used to separate mineral variability or crystal structure differences. The study also shows that 

minerals with similar spectral signatures can result in mapping errors when making regional 

maps based on the reflectance, such as muscovite and kaolinite, and buddingtonite and alunite 

(Kruse et al., 2003). 

In a review of the use of remote sensing in soil mapping, Mulder et al. (2011) present studies 

showing possibilities of mapping soil mineralogy, soil texture (sand, silt and clay), soil organic 

carbon, soil moisture, iron content, soil salinity, carbonates and soil weathering state. The 

spectral features determining these soil properties are found in the VNIR, SWIR and TIR 

regions. 

Bartholomeus et al. (2007) showed that HI could be used to find the iron content in soils where 

hematite was the main iron bearing mineral. The results show an overall decrease in reflectance 

when the iron content increases. Redness indexes of the soil reflectance were calculated and 

this index gave a medium correlation with the iron content. 

A correlation between the soil organic carbon (SOC) content and the slope of the reflectance 

spectra in visible light is shown in an article by Bartholomeus et al. (2008). The slope of the 

reflectance spectra between 400-800 nm increases with increasing SOC content (Figure 3.10). 

 

 

Figure 3.10 Reflectance spectra of soils with varying soil organic carbon (SOC) content (Bartholomeus 

et al., 2008). 

 

A study by Chabrillant et al. (2002) examined HI for use in identification and mapping of 

expansive soils. Regional mapping of clay minerals by HI was successful. The study shows that 
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it is possible to discriminate between pure smectite and mixed layers of illite/smectite in an 

outcrop in the region 1.9-2.4 μm, based on absorption bands. This is interesting in the 

application of HI for drill core analysis and outcrop analysis. 

 

3.2.5 Case studies related to hyperspectral imaging of the seabed 

Bottom types give different reflectance spectra depending on several factors like the 

mineralogical and organic content of the sediment and the biology of the seabed. For instance, 

microalgae typically absorb in the blue and red part of the visible spectrum (due to pigments 

like chlorophylls, carotenoids and phycobiliproteins) and bacteria in the blue part of the 

spectrum due to carotenoids. Organic content in sediments are often degradation products. The 

absorption features of the degradation products of chlorophylls have slightly different spectral 

signatures than the living, but they also absorb in blue and red. Color of shell sand varies due 

to pigments that can keep the coloration long after death. For instance, pink shell reflects red 

light in the samples and this color comes from phycobiliproteins, which are light harvesting 

pigments for photosynthesis (Roy et al., 2011). 

It is important to consider that satellites and airborne remote sensing, due to the absorption and 

scattering of UV and IR light in the water, only can detect the visible light reflectance from the 

seabed. Studies on reflection and remote sensing of shallow sea bottoms show a range of 

different reflectance spectra. Hochberg et al. (2003) measured visible light reflectance of 

different algae, corals, sea grass, terrigenous mud and carbonate sand. The study shows that 

bottom-types can be discriminated based on their characteristic spectral shape of the reflectance 

spectrum, and that the reflectance spectra are consistent across biogeographic regions. Figure 

3.11 shows some of the reflectance spectra. Carbonate sand has a different scale because of its 

high reflection. The spectra is a result of the calcium carbonate sand grains and chlorophyll in 

benthic microalgae. In contrast, the terrigenous mud shows a very low reflection. The sand has 

a similar reflectance spectrum shape as a bleached coral, so these can be misinterpreted.   
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Figure 3.11 In situ optical reflectance spectra of bleached hermatypic coral, terrigenous mud and 

carbonate sand in a coral reef community. Spectra were measured by a diver-carried portable 

spectrometer. Shaded areas give the ranges in percent at which all spectra lie within. Light gray=2.5-

97.5%, medium-gray=12.5-87.5%, dark grey=25-75% and black=37.5-62.5%. White lines show mean 

reflectance. Modified from Hochberg et al. (2003). 

 

In a study by Dierssen et al. (2009) remote sensing reflectance was derived from MODIS 

images at 1 km resolution across the Bahama Banks. The aim was to see if remote sensing could 

be used to observe whitings consisting of suspended fine-grained aragonite mud. Sediments in 

the region consist of carbonate muds and fine sands. Figure 3.12 shows remote sensing 

reflectance from whitings and carbonate sands. The fine-grained spectrum shows a turquoise 

color, while the sand spectrum shows a green color. In addition to less reflection from larger 

grain sizes, the sand consisting of grapestones was covered by algal-biofilm. For the whitings, 

the reflection is stronger than for the seabed mud, due to a more proximal occurrence to the sea 

surface and the small particles. 
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Figure 3.12 Remote sensing reflectance, RRS, of whitings, mud, sand and algal-covered grapestone 

sediment. All measurements are taken at places with 5m water depth, Andros and Exuma are names of 

the sampling spots. Colors in the figure reflect a quantified apparent color of the sediments (Dierssen 

et al., 2009). 

 

Fearns et al. (2011) used HI from an airborne HyMap sensor to produce a habitat map of a 

shallow water region in Western Australia. Three classes of bottom types were classified based 

on in situ measurements of reflectance using a hyperspectral radiometer – sand (Figure 3.13A), 

sea grass and brown algae. The reflection within each pixel corresponding to the different 

classes were displayed with different colors in the map (Figure 3.13B). In addition, pixels 

containing mixed substrates were included in the model. The map was overlaid on a bathymetry 

map giving a 3D picture of the seabed (Figure 3.13C). 
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Figure 3.13  A) In situ reflectance spectrum of sand. B) Habitat map created using hyperspectral data. 

Grey regions are islands, exposed reef, land and breaking waves. White squares indicate sampling sites. 

C) Substrate classes in figure B overlain on model-derived bathymetry (Fearns et al., 2011). 

 

Two examples of local HI from Svalbard are shown in Figure 3.14 and Figure 3.15. The first is 

a result of airborne remote sensing showing unsupervised classification of water, land 

vegetation and rocks. Three different marine silt sediments (unknown content) and three types 

of rock (unknown rock types) were detected in the classification. In the second example, a 

hyperspectral imager is stationary placed on a mountain top in combination with an autonomous 

underwater vehicle (AUV) collecting in situ data in the water. The figure show the reflectance 

spectrum from a river plume containing suspended red clay and how the reflectance differ from 

water around the river plume (Johnsen et al., 2009). 

 

C 
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Figure 3.14 Hyperspectral images from Collinderodden and Blixodden, Van Mijen-fjorden, Svalbard 

(2000). A) RGB image (490 nm, 554 nm and 633 nm) to get optical signature from shallow water, B) 

Image in 730 nm (IR), 578 nm and 490 nm to get optical signature from vegetation on land. C) 

Unsupervised classification of different optical signatures (Johnsen et al., 2009). 

 

 

Figure 3.15 Local HI of a river plume taken from a mountain Platåfjellet (428 masl), Isfjorden, Svalbard 

(2007). The plume water from the river Bjørndalselva contains reddish silt, giving the reflectance 

spectrum at Site 1. Site 3 give the reflectance spectrum of the ocean water and the bottom. A difference 

spectrum indicates the different optical properties of the river plume and ocean water. A slit from the 

HI show a monochromatic image (490 nm) and the optical properties of the sites given this wavelength 

(Johnsen et al., 2009). 
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Volent et al. (2007) performed an airborne HI project in Kongsfjord (Ny Ålesund, Spitsbergen) 

from a height of 2950 m. The study showes that HI of coastal waters is a cost efficient method 

for kelp forest and bottom substrate mapping. The bottom substrate contained sediments with 

grain size from stones (up to 10 cm) to clay, but there are no information on the mineralogical 

content. In situ measurements were done simultaneously to verify the results from the HI. 

Figure 3.16 shows spectral imager results from area 1 out of three areas examined. The 

identification process was carried out in five steps. First, kelp areas were identified by scuba-

divers and in RGB images (A). This was used for target recognition by using a Bayesian 

Supervised Classification (BSC) technique (B). The monochromatic image at 560 nm gave the 

deepest penetration of light in the water column. Upwelling radiance at Lu(495 nm) was 

subtracted from Lu(560 nm), because this wavelength represented the optical properties of the 

seawater, and had to be corrected for (C). Finally, a Differential Histogram Equalization (DHE) 

technique gave the image better contrast (D). 
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Figure 3.16 A) RGB image of area 1. B) Classification results of kelp forest from BSC statistics. C) 

Correcting for the optical properties of the water.  D) Results after DHE to increase contrast. (Volent 

et al., 2007). 
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3.3 Underwater Hyperspectral Imaging 

An article by Johnsen et al. (2013) gives a good review of Underwater Hyperspectral Imaging 

(UHI) in the context of creating biogeochemical maps of the seabed, including a description of 

the hyperspectral imager, potential underwater platforms and processing of optical data.  

 

3.3.1 The underwater hyperspectral imager 

When a hyperspectral imager is attached to airborne platforms, the light source used is 

electromagnetic radiation from the sun. This is a passive method of remote sensing, without 

control of the light source. Moving the imager below the water surface and using an artificial 

light source give better control of the measurements and make this an active remote sensing 

method. With an artificial light source, it is possible to measure the seabed at depths below the 

1% sunlight depth (Figure 3.2). The underwater hyperspectral imager gives the opportunity to 

get closer to the target and get a better spatial and spectral resolution of the optical 

measurements of the objects of interest (Johnsen et al., 2013). 

 

3.3.2 Underwater platforms 

To use the hyperspectral imager underwater it needs a water pressure housing and to be 

deployed on mobile underwater robots, which make it possible to map areas of 1 m2 - 1000 km2 

(Johnsen et al., 2013). Remotely operated vehicles (ROVs) and autonomous underwater 

vehicles (AUVs) are possible platforms for the imager (Figure 3.17). Pitching, yawing and 

rolling of the platforms can disturb the recorded images and have to be measured and allowed 

for. 

The ROV is deployed to and tethered from a ship, giving an on-line control of the instrument 

and collection of the data stream. In addition, sensors for measuring water column optical 

properties (Chla, CDOM and TSM) and acoustic sensors to map bathymetry and bottom 

substrate can be attached to the ROV. 

The AUV has a propeller-driven system with high power capacity and good sampling 

capabilities over large distances. Using a AUV as a platform, instead of a ROV, makes it 

unnecessary to use tether and ship-based crew. The small AUVs can dive down to 100-500 m 

depth, while the large AUVs can reach depths of 6000 m and travel distances of several hundred 

kilometers. A large AUV is therefore the best alternative as platform for the imager. Other 
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benefits are the altitude control on the AUV and the possibility to predefine sampling patterns 

(Johnsen et al., 2013). 

 

 

Figure 3.17 Illustration of ROV and AUV as platforms for the underwater hyperspectral imager, n = 

amount of pixels in X-direction (Johnsen et al., 2013). 

 

3.3.3 Optical processing 

The optical properties of the water column affect underwater hyperspectral measurements. The 

distance between the imager and the target make optical processing of the imagery necessary. 

Substances in the water absorb and scatter the light from the light source and affect the true 

reflectance of the target. UHI uses an active light source where the intensity and spectral 

characteristics vary with the lamp. These two factors in addition to the ambient light at the water 

depth, have to be corrected for to find the true reflectance of the target. The raw upwelling 

radiance (Lu raw (λ)) is divided by the spectral characteristics of the light source, the ambient 

light and the water constituents (Lu light (λ)) to record the true reflectance (Pettersen, 2013; 

Volent et al., 2007, 2009): 

 

𝑅(𝜆)   =  
𝐿𝑢 𝑟𝑎𝑤 (𝜆) 

𝐿𝑢 𝑙𝑖𝑔ℎ𝑡 (𝜆) 
      [Eq. 4] 

 

An optically white or grey plate, reflecting all colors, can be used to find the Lu light (λ). The 

plate must be places on a known distance from the imager, preferably close to the target. It is 
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also possible to estimate the inherent and apparent optical properties of the water by modelling. 

Properties of the water column are then measured by sensors on the platform (Johnsen et al., 

2013). 

 

3.3.4 Previous work on UHI at NTNU 

UHI was tested in Hopavågen, central Norway, as a marine biology experiment looking at 

different benthic organisms such as the cold-water coral Lophelia pertusa. Hyperspectral 

images of white, orange and dead corals were captured and other material like sand and rocks 

on the sea bottom were included in the images. A custom made cart running on tracks on the 

seabed was used as a platform for the imager. A halogen and a LED lamp were used as light 

sources and a spectroradiometer measured the spectral output of these (Johnsen et al., 2013; 

Pettersen, 2013).  

In addition to corals, images of natural seafloor fauna, bottom substrate (shell, sand and rocks), 

minerals, metals, and kelp species were captured by UHI. The images of the minerals were used 

in a study of changes in geochemistry. Manganese nodules and artificial mixed sediments of 

different content like manganese oxide (MnO2), manganese sulfate (MnSO4), ferric oxide 

(Fe2O3) and ferric sulfate (FeSO4) were used. The images showed a distinct discrimination of 

the different geochemical objects seen in Figure 3.18. Different algorithms such as spectral 

angle mapper, binary encoding, spectral information divergence and minimum distance were 

used in an unsupervised classification. The spectral information divergence method proved to 

be the best algorithm for discrimination between the objects (Johnsen et al., 2013). 
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Figure 3.18 Unsupervised classification of minerals using different algorithms to identify objects of 

interest. Blue = blue metal frame, orange = rusted piece of iron, magenta = manganese nodules, yellow 

= substrate 1 dominated by ferric sulfate, brown = substrate 2 dominated by oxidized iron, green = 

substrate 3 consisting of ferric sulfate, red = red pencil. The biofilm content and the amount of oxidized 

elements varies between the substrates (Johnsen et al., 2013). 

 

The Applied Underwater Robotics Laboratory (AUR-Lab) at NTNU and the Norwegian 

Defence Research Establishment (FFI) arranged a collaborative cruise in the Trondheim Fjord 

in 2012 where UHI was tested on coral reef on the Tautra Ridge (Ludvigsen et al., 2014). The 

UHI sensor, measuring optical signatures in the range 350-850 nm, was connected to a ROV 

together with two 250 W halogen lamps. The altitude of the ROV was 1.5-3 m above the sea 

floor, mapping 20-30 m long and 2-3 m wide transects with a speed of 0.2-0.3 m/s. Figure 3.19 

display a 20 m long UHI transect from this survey (Ludvigsen et al., 2013). The image show 

reflection in red, green and blue and it is possible to see the condition of the reef. Red color 

indicate the coral Paragorgia arborea, white is Lophelia pertusa and brown color is dead 

Lopheila. The results of this image show successful reflectance spectra in the pixels covering 

the entire visible light range. 

 

 

Figure 3.19 Imagery from an underwater hyperspectral imager showing a 20 m transect of a coral reef 

(Ludvigsen et al., 2013). Image from Ecotone © (with permission). 
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3.4 Chapter summary 

 

 The ratio between Eu and Ed is the reflectance parameter, R. 

 

  UV- and IR-light are heavily attenuated in water, thus visible light reflectance is used 

in optical reflectance measurements under water. 

 

 AOPs and IOPs describe the optical properties of seawater affecting optical reflectance 

measurements. 

 

 Absorption features in reflectance spectra of minerals are found in the UV-VNIR region, 

and are determined by electronic and vibrational processes. 

 

 Grain size affects the reflectance from sediments. 

 

 Optical remote sensing (including hyperspectral imaging) is a mapping and monitoring 

technique using optical signatures obtained from imaging spectrometers to discriminate 

between different objects.  

 

 A hyperspectral imager is a spectrometer equipped with a camera. The spectrometer 

separates reflected solar energy from the surface into spectral bands, which are narrow 

wavelength intervals. 

 

 Several studies on applications of satellite-borne and airborne HI for geologic 

exploration have been successful, both on terrestrial geology and on shallow sea bottom 

substrate. 

 

 The underwater hyperspectral imager offers the opportunity to get closer to the target 

and get high spatial and spectral resolution of the optical measurements of the objects 

on the seabed. 
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Chapter 4  Materials and Methods 

 

 

4.1 Materials 

In the laboratory work, reflectance spectra were made of seven mineral samples, nine artificial 

sediment samples composed by the minerals, five natural sediment samples and two carbonate 

crust samples. 

 

4.1.1 Mineral samples 

Six mineral samples were provided by the mineral processing laboratory at NTNU – calcite 

from calcite marble (both sand and clay samples), quartz, k-feldspar, muscovite and hematite. 

Pure calcium carbonate was provided by NGU. The descriptions of the minerals and the 

quantitatively estimates of mineral percentage are based on interpretation from 

stereomicroscopy. A visual grain size classification was performed according to the 

classification scheme in Figure 2.1. Figure 4.1 shows images of the mineral samples. 

The reason for selecting these minerals was to compound a realistic artificial marine sediment. 

Quartz and feldspars are abundant minerals in marine sediments. Muscovite was used because 

this was available as a pure mineral in the laboratory. Hematite sand was added to give the 

sediment a darker color and this could also represent the iron (red clay) often found with 

carbonates in marine sediments. The calcite marble was available in two grain sizes, and was 

thus used to look at reflectance related to grain size.  
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Figure 4.1 Images of the minerals. M = muscovite, K = k-feldspar, Q = quartz, Cs = calcite marble 

(sand), Cc = calcite marble (clay), Cp = pure calcium carbonate, H = hematite. 

 

Muscovite (M) has the chemical formula KAl2(AlSi3O10)(F,OH)2. The sample had a light gray 

color and grain size ranged from clay size to medium sand. Since muscovite is a sheet-silicate 

mineral, the grains had a platy shape with large ratio between the long and short axes of the 

grain. The surface area of the sample dominated of grains oriented with the largest face 

upwards. Muscovite and the other mineral samples are crushed from larger samples in 

laboratory and the grains therefore had angular edges. 

K-feldspar (K) has the chemical formula KAlSi3O8 and is a tecto-silicate mineral. The sample 

had an orange color. Other minerals could have been present in the sample, but the amount was 

Cp Cc Cs 

Q K M 

H 

2mm 
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less than 1%. Main grain size was medium sand. The grain shape was equant with smooth 

surfaces due to the mineral’s cleavage. 

The pure quartz (Q) sample had a dominating grain size of fine sand fraction. Quartz is a tecto-

silicate mineral with formula SiO2. The grain shape was equant with a rough surface typical for 

quartz. 

Calcite marble, CaCO3, in clay fraction (Cc) and in medium sand fraction (Cs) were crushed 

Akselberg graphite-spotted calcite marble from the company Brønnøy Kalk AS. The samples 

contained ~98% calcite and the remaining ~2% consists of graphite, pyrite, quartz, feldspar and 

smaller amounts of apatite and diopside (Ingjerd Olden Bunkholt, pers. comm., October 2014). 

The grain shape of the sand fraction sample was equant and the surfaces were determined by 

the calcite’s rhombohedra cleavage. 

The pure calcium carbonate (Cp), CaCO3, used as the carbonate part in the artificial sediment 

mix was precipitated in a laboratory (Thermo Fisher Scientific). Grain size was clay fraction. 

Crystal lattice was unknown, but the crystal lattice of calcite is often dominating in precipitated 

CaCO3.  

Hematite (H) is an iron oxide with chemical formula Fe2O3. This sample consisted of ~98% 

hematite and ~2% other minerals (iron silicates and quartz). The grains had a black color with 

red metallic shine and the grain size was medium sand with equant shapes. The hematite grains 

the grains had smooth surfaces, which can lead to specular reflection.  

 

4.1.2 The artificial sediment samples 

An artificial sediment was composed by quartz, k-feldspar, muscovite and hematite, called the 

basis sediment. Pure calcium carbonate were added to the basis sediment in different amounts 

resulting in eight samples containing 0 wt%, 0.5 wt%, 1 wt%, 2 wt%, 4 wt%, 10 wt%, 25 wt% 

and 50 wt% CaCO3 (Figure 4.2). The sample Cp was used as the 100 wt% CaCO3 sample in the 

HI and Jaz measurements. The method of mixing these samples is described in chapter 4.2. 
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Figure 4.2 Artificial sediments. 0-100 % explain the weight percent (wt%) of CaCO3 in the sediment. 

 

4.1.3 Natural sediment samples 

NGU provided the natural sediment samples for the laboratory tests. They were collected in 

2013 close to the shore on the western and eastern part of Magerøya in Finnmark, Norway 

(Figure 4.3). The purpose of the cruise (cruise 1306) was of mapping shell sand deposits for 

use in shell sand modelling, but no field report exists. Field scientists at NGU have made a 

visual description of these sediments, shown in appendix D. Water depths ranges from 30-66 

m. Out of 14 samples provided - five samples were used for tests in this study, due to their 

variety in grain size and carbonate content. Images of the sediments are shown in Figure 4.4. 
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Figure 4.3 The selection of the samples provided by NGU around Magerøya in Finnmark, Norway. Red 

dots show the positions of all the samples NGU has sampled around Magerøya, the green dots show the 

position of the samples provided to this study. The blue dots show the five samples selected for 

reflectance measurements – OM = organic mud, FS = fine sand, MS = medium sand, SS = shell sand, 

SG = shell gravel. The figure is a modification of a map provided by NGU. 

 

 

The following description of the sediments are based on information given by NGU and 

interpretation of the sediments from stereomicroscopy. The sediments were dried in a drying 

cabinet for 24 hours on 60°C. Sample P1306026 (organic mud) needed 48 hours to dry. This 

sample hardened in large lumps of dry mud and was crushed in a mortar. 

 

5 km 

All sediment samples (NGU cruise 1306)  
Provided samples by NGU 
Selected samples for the lab-tests 

OM 

FS 

MS SS 
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Figure 4.4 Natural sediment samples. OM = organic mud, FS = fine sand, MS = medium sand, SS = 

shell sand, SG = shell gravel. 

 

Sample P1306026, was an organic mud (OM), consisted of ~95% organic material and clay 

minerals (unidentified) and ~5% shell fragments. The sample was light brown in color and 

moderately sorted. 

Sample P1306148, fine sand (FS), consisted of ~40% carbonates (shell fragments, 

foraminifera), ~30% quartz, ~10% clay minerals, ~5% organic material, ~15% unidentified 

minerals. The foraminifera were double the size of the other minerals, and the sample was 

poorly sorted with a main grain size of fine sand. Shell fragments of coarse sand fraction 

occurred. Carbonates had rounded shapes while the other minerals had angular shapes. The 

sample had a dark, greyish brown color. 

Sample P1306127, medium sand (MS), consisted of ~50% carbonates (shell fragments, 

foraminifera), ~40% quartz and ~10% unidentified minerals. The amount of organic material 

and clay minerals were low. The foraminifera and shell fragments were larger than the other 

minerals, and the sample was poorly sorted. Carbonates had rounded shapes while the other 

minerals had angular shapes. Color was olive grey and light brown.  

OM FS MS 

SS SG 2mm 
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Sample P1306019, was classified as shell sand (SS). It consisted of ~90% shell, corals and 

shell fragments of coarse grain size. It was moderately sorted with medium sand fraction quartz, 

and some shells fragments of very coarse sand fraction. Colors were white, pink, green and 

purple. 

Sample P1306042, was classified as shell gravel (SG). This sample consisted of ~90% shell, 

corals and shell fragments. Quartz was the dominating mineral apart from the carbonates. The 

quartz fragments were of coarse sand fraction and had angular shapes. It was moderately sorted 

with a main grain size of gravel. Colors were white, pink, green and purple. 

 

4.1.4 Carbonate crust samples 

In addition to the sediment and mineral samples, two carbonate crusts were analyzed. These 

were also provided by NGU, and were collected on a research cruise in the southwestern 

Barents Sea in 2012. They were sampled approx. 60 km in distance from each other. One of the 

crusts, sample P1210035_1B, still have the original surface. The other sample, P1210006_4A, 

is cut in a cross section, showing a fresh surface of the crust. These were found at depths of 390 

m and 320 m, respectively. Figure 4.5 show the crusts and the marked red squares are the areas 

captured by the HI. 

The carbonate crusts consisted of grains and shell from marine sediments cemented together by 

aragonite (Aivo Lepland, pers. comm., November 2014). This gave the crust a grey color. The 

grain size of the cemented sediments ranged from fine sand to gravel. Concentric layers of pure 

aragonite were seen in cavities within the crust, forming white cavity rims. The original surface 

had a darker gray color. The surface consisted of organic mud and skeleton and shells of 

different organisms like bristle worms (Polychaete) and moss animals (Bryozoa), which 

covered the aragonite cement and sediment grains.  
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Figure 4.5 Carbonate crusts. Original surface to the left (P1210035_1B), fresh surface to the right 

(P1210006_4A). The marked red squares are the areas captured by the HI. 
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4.2 Methods 

A hyperspectral imager connected to a stereomicroscope was used for capturing hyperspectral 

images of the samples. To verify the reflectance spectra from the HI, a Jaz spectrometer was 

used to get the true reflectance spectra from the surface of the samples. However, no guidelines 

exist on how these devices should be used for sediment samples, and the experiments are based 

on trial and error. 

The mineral and sediment samples were added to cuvettes (10mm*10mm*45mm). To get more 

significant results, three replicates of each sample were measured by HI and Jaz. This resulted 

in a division of samples into three sets. Sample sets of minerals and natural sediments were 

numbered 1, 2 and 3, while the artificial sample sets were named A, B and C. 

 

4.2.1 Artificial sediment mix  

The artificial sediments were made mixing 100g quartz, 100g k-feldspar, 50g muscovite and 

100g hematite. The minerals were mixed with a “splitter” by adding the minerals with a spade. 

The “splitter” splits the mineral into two parts of similar size, as seen in Figure 4.6. It is 

important to fill the spade completely in its width to avoid segregation in the spade. Mineral 

samples are homogenously mixed when this procedure is repeated seven times. The sample was 

separated into seven parts of ~50g. Calcium carbonate mass were measured to find the correct 

weight to be mixed with the artificial sediment. The CaCO3 mass was calculatd by using the 

equation: 

 

𝑥

𝑚+𝑥
∗ 100 = 𝑝       [Eq. 5] 

 

where x = calcium carbonate mass [g], m = artificial sediment mass [g], p = percent calcium 

carbonate in the mixed sediment (wt%). 

The sediment and the calcium carbonate were homogenously mixed with the splitter, and each 

sample was added to three cuvettes (resulting in set A, set B and set C). Seven different mineral 

mixtures were made containing 0.5 wt%, 1 wt%, 2 wt%, 4 wt%, 10 wt%, 25 wt% and 50 wt% 

CaCO3. It is important to note that the CaCO3 content in this experiment is expressed as weight 

percent, while visual classifications, often used for descriptions of marine sediments, provide 

area percent of the CaCO3 content. 
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Figure 4.6 The splitter used to homogenously mixing the minerals. Yellow arrow show the sample input, 

black arrows show the separated samples. 

 

4.2.2 Submerging samples 

Water used for submerging the samples was filtered seawater from 200 m depth in the 

Trondheim fjord collected from a pump at TBS. The water was filtered through 0.2 μm sterile 

syringe filters (cellulose acetate) attached to a 500 ml syringe (BD Perfusion) when it was added 

to the samples. The sample surfaces were covered by 2-4 mm water. Some samples contracted 

due to the water, and had to be refilled to reach the same height in the cuvette as the other 

samples.  

 

4.2.3 Hyperspectral imaging 

Instrumentation 

The hyperspectral imaging instruments were set up according to Pettersen et al. (2013) and 

Volent et al. (2009). The hyperspectral imager used in the measurements is custom made and 

is a solid-state push-broom imager, 2 cm long, 4 cm wide, 600 g, with power requirement of 12 

V, 139 mA. Frame rate was set to 25 images per second and the camera was equipped with a 

12-mm Schneider (f:1.2) front lens with aperture set to 2.8 to enhance depth of field. The 

spectral resolution was one nanometer in the region 420-680 nm. The spatial resolution 

perpendicular to the moving direction was approx. 2 mm/pixel. Data from the imager were 

stored as video files (avi-format) from a digital video recorder (Route Scene Navigator 2.4.4 - 

Video Navigation). The hyperspectral imager was connected to a Leitz Leica MZ6 

stereomicroscope. A Leitz CLS 150X halogen lamp was used as light source, emitting light 

through two optical fiber bundles. The light bundles had an angel of about 45° to the sample 

surface. The samples were placed on a moving table with a stepper motor moving the samples 
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2.6 mms-1. A Canon 20D DSLR-camera fitted to the stereomicroscope through a phototube was 

used for capturing RGB pictures of the samples. See Figure 4.7 for setup. 

 
 

Figure 4.7 A) HI setup showing the hyperspectral imager and DSLR camera connected to a 

stereomicroscope. The digital videorecorder is seen to the right in the picture, and the HI slit image is 

shown on the screen. B) Setup of the samples measured by the imager in the moving directon. Referance 

plate is shown to the left. C) The setup of the submerged samples and the reference plate with a petri 

dish with seawater. 
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The methodology of the HI-measurements 

The HI measurements were carried out for three replicates of each of the dry and submerged 

samples. See Figure 4.8 for cuvette setup of the samples measured simultaneously by the 

imager. High-resolution RGB images of each replicate samples, both dry and submerged, were 

captured by the DSLR camera. 

By using this method, several samples were analyzed at identical light conditions. The darkest 

samples, like hematite and organic mud, were measured separately because they needed other 

light conditions than the white minerals. The previous setup of the cuvettes was changed 

because the dark samples became darker when they were submerged in water and needed other 

light conditions. For the carbonate crusts, only one section of each surface was measured, due 

to restrictions in the spatial resolution of the slit in the imager.  

A white Spectralon optical reference plate with 50% reflection of 400-700 nm was used as a 

white reference to correct for the spectral lamp output and other light sources in the room. In 

wet conditions, the reflection properties of the Spectralon changes, thus the plate was not 

submerged in water. As an alternative, a Petri dish with ~2 mm filtered seawater was put on top 

of the reference plate when the submerged samples were measured. Pettersen et al. (2013) have 

shown that the distance and inherent optical properties in the water do not have a significant 

impact on the reflectance signature when a reference plate is used for correction.  
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 DRY SAMPLES: 

 
  
  

 
 

 SUBMERGED SAMPLES: 

 

 

Figure 4.8 Cuvette setup for dry and submerged samples. The samples on the same row were 

simultaneously measured by the hyperspectral imager. Numbers refer to the sample set (1, 2 and 3) of 

the minerals and natural sediment samples. Letters (A, B and C) refer to the sample set of the artificial 

sediments. Ref = reference plate and Refw = submerged reference plate. 

 

4.2.4 Data processing using the software yaPlaySpecX 

yaPlaySpecX is a custom-made software used to extract monochromatic images and raw 

reflectance spectra from pixels in the images. It is possible to make monochromatic images for 

every 1 nm wavelength. The images were made at a wavelength of 570 nm, which proved to 

give the best signal-to-noise ratio. 

Raw spectra (Lu raw (λ)) and the light source spectrum (Lu light (λ)), were extracted as mean 

spectra of chosen pixels. This function is called “running mean spectra” in yaPlaySpecX. The 

spectral data were saved as text-files. The mean spectra obtained in this program do not show 

standard errors of the averaging of data.  

The following approach was used for making the resulting reflectance spectra of the samples: 

 To make raw spectra, five chosen pixels were averaged within three areas of the sample 

resulting in three raw spectra of each sample (illustrated in Figure 4.9). A number of 

five pixels was chosen because it gave a smoother plot as demonstrated in Figure 4.10. 

 M = muscovite 
 K = k-feldspar 
 Q = quartz 
 Cs = calcite marble (sand) 
 Cc = calcite marble (clay) 
 Cp = pure CaCO3 
 H = hematite 

 

 OM = organic mud 
 FS = fine sand 
 MS = medium sand 
 SS = shell sand 
 SG = shell gravel 
 % = wt% CaCO3  
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This figure shows an improvement of the spectrum from a single spectrum to a mean 

spectrum of five pixels and a mean spectrum of ten pixels. The improvement from one 

to five pixels is good, while five to ten is small. By averaging five spectra in three 

different areas, it is easier to control the reflectance differences of the spectra used for 

the resulting reflectance spectra. Therefore, five pixels were chosen. This was important 

when measuring the surface of these samples, because the mineral content of the surface 

areas varies. If more pixels were used for averaging, the variation due to different 

content would vanish. 

 

 The pixels were chosen randomly within the areas, but they could not be overexposed 

or underexposed by the light source. Overexposed pixels showed flat spectra at 

maximum radiance intensity and underexposed pixels had a low signal-to-noise ratio. 

 

 Fifty pixels from the white reference were averaged to find the mean spectrum of the 

light source. Fifty pixels were used because the reference plate did not have variations 

across the surface. The spectral reflectance values of the reference plate were doubled, 

because the plate only reflected 50% of the light. 

 

 The resulting reflectance spectrum R(λ) of each sample was obtained using eq. 4 in 

chapter 3.3.3. The resulting reflectance spectrum of one material is an average of the 

nine spectra obtained from the three replicate samples. Each resulting spectrum has a 

standard error (SE) to show the variation of the estimated spectra from these nine 

averaged spectra. The resulting spectra have a spectral range from 460-680 nm. Values 

beyond these were excluded because of a low signal-to-noise factor in these parts of the 

spectrum. 

 

Standard errors (SE) of the reflectance (R) were calculated by the following equations, using 

the standard deviation (SD) of an assortment: 

 

𝑆𝐷 =  √
∑(𝑥−�̅�)2

𝑛−1
       [Eq. 6] 

𝑆𝐸 =  
𝑆𝐷

√𝑛
        [Eq. 7] 

 

where x = the reflectance values and n = number of values. 
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Figure 4.9 Illustration of the method for making mean spectra from hyperspectral images. Five 

randomly chosen pixels were averaged in selected areas of the sample surface (to the left). Nine mean 

spectra like these (to the right) were averaged to get the resulting spectrum of the material. 
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Figure 4.10 Illustration of the improvement from one pixel spectrum to five and ten averaged pixels 

spectra, n = number of averaged pixels. 

 

4.2.5 Supervised classification using Image Calculator 

Supervised classifications of samples were accomplished using Image Calculator, which is a 

custom-made software for classifying objects in hyperspectral images. The software was 

developed on the purpose of performing image analysis on img-files, generated by imaging 

spectrometers. It is possible to use a minimum distance classification or a Bayes classification 

with Gaussian probability densities, and the latter was used for the classifications according to 

Volent et al. (2007). A minimum distance analysis uses the mean vectors for each class and 
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calculates the distance from each unknown pixel to the mean vector for each class. The pixels 

are classified as the closest class. The Bayes classification assumes that the statistics for each 

class in each band are normally (Gaussian) distributed and calculates the probability that a given 

pixel belongs to a specific class. Each pixel is classified as the class with the highest probability 

(Richards, 1999). These calculations were done with default settings in the software.  

Fifteen monochromatic images with 15 nm steps ranging from 465-675 nm made in 

yaPlaySpecX were used in the classification. It is possible to use two different class-defining 

approaches in the program - sector defined classes and pixel defined classes. According to 

Pettersen et al. (2013), pixel defined classification gives a better control of the defined classes. 

100 pixels of each sample were used to define the classes. The pixels chosen were not 

overexposed or in shadow areas. Only objects in the same hyperspectral image can be classified 

simultaneously. This software limitation resulted in a limited assortment of the hyperspectral 

images chosen for classification. 

 

4.2.6 Jaz spectrometer 

Instrumentation and setup 

A spectrometer, SpectroClip-JAZ-TR (Ocean Optics Inc.), was used to measure reflection from 

the same samples as measured by the HI. This spectrometer is not an imager like the HI. It 

measures reflectance of wavelengths from 400-700 nm and has a better sensitivity in the red 

and blue part of the light spectrum than the HI spectrometer and all RGB cameras and video 

recorders.  The Ocean Optics software SpectraSuite was used for controlling the measurements. 

The setup of the Jaz is described underneath and is based on guidelines from the SpectraSuite 

software manual (Ocean Optics, 2009) and recommendations from Inga Aamot at TBS (pers. 

comm., March 2014). 

The spectrometer (Jaz) was connected to a Leica M80 stereomicroscope placing the detecting 

optical fiber inside the microscope’s left phototube, 90° to the sample surface to measure both 

specular and diffuse reflection. Setup is shown in Figure 4.11. A 100 W halogen cold light 

source “Intralux® 4100” was used, and two optical fiber bundles were placed in a 45° angle to 

the surface of the sediment. This setup made it possible to check that the detecting fiber’s field 

of view was completely and evenly illuminated, and only capturing the sediment and not the 

surroundings.  To make sure that light transmitted through the sample was not reflected from 

the surface below, it was important to have a “light trap” - a black surface underneath the 

sample. Light conditions were the same for all measurements. 
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After connecting the Jaz Spectrometer to a computer, the measuring was controlled by the 

SpectraSuite software to extract reflectance spectra from each surface. A dark box were 

constructed around the microscope with a black curtain, so that light from other light sources, 

e.g. day light or stray light from fluorescence tubes, did not disturb the signal. 

To measure reflectance in SpectraSuite, a white and a dark reference were needed. An optically 

white and spectrally neutral Spectralon reference plate was used as the “white” reference - this 

is supposed to reflect 75% of the light and all wavelengths equally. For the submerged samples, 

a Petri dish with filtered seawater was placed on top of the reference plate. The dark reference 

was used to correct for background noise in the signal, and this was measured by turning off 

the light source. “Boccar width” and “scans of average” were both set to 3, in order to get a 

smoother curve. The corrections for the white and dark reference were done automatically in 

the software by the following equation (OceanOptics, 2009): 

 

%𝑅(𝜆) =
𝑆(𝜆) – 𝐷(𝜆)

𝑅(𝜆) − 𝐷(𝜆)
∗ 100%     [Eq. 8] 

 

%R(λ) = reflectance expressed as percentage 

S(λ) = the intensity from the sample at wavelength λ  

R(λ) = the intensity from the white reference at wavelength λ 

D(λ) = the intensity from the dark reference at wavelength λ 
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Figure 4.11 Jaz spectrometer setup. 

 

Methodology of the Jaz measurements 

All surfaces of the samples were measured by the Jaz spectrometer, both dry and submerged in 

water. Three areas of the carbonate crust surfaces were selected from the section measured by 

the HI. 

The reflectance data were copied from the software into Excel-files to make reflectance spectra 

plots. The SpectraSuite software gave the reflectance values in R% (0-100) and then 

transformed to R with values of 0-1. Since the correction for the light spectrum was made in 

the software, it automatically corrected for a light reflectance of 75% resulting in overestimated 

reflectance. A correction factor of 0.75 was multiplied to R to get the correct reflectance. This 

is shown in the equations underneath, using eq. 4 from chapter 3.3.3: 

 

𝑅(𝜆)  =  
𝐿𝑢 𝑟𝑎𝑤(𝜆) 

 0.75𝐿𝑢 𝑙𝑖𝑔ℎ𝑡 (𝜆)
 

 
⇒ 0.75𝑅(𝜆)  =  

𝐿𝑢 𝑟𝑎𝑤(𝜆) 

 𝐿𝑢 𝑙𝑖𝑔ℎ𝑡 (𝜆)
   [Eq. 9] 
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Light source 

JAZ 

Black box 

Sensor 
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4.2.7 Sources of errors and variability 

Different readings could come from differences in composition of the samples. Impurities in 

the mineral samples could have influenced the reflectance measurements from both the HI and 

the Jaz. The three replicates of each sample did not have exactly the same composition. 

Interpretation errors of the content in the samples are also possible, since these were based on 

visual interpretations through a stereomicroscope.  

There were some problems concerning the submerging of the samples. Some of the material 

floated to the surface of the water (Figure 4.12A) and had to be removed because it covered the 

sample surface. Some samples shrank when adding water (Figure 4.12B), and more material 

had to be added to the cuvette. The dry samples and the submerged samples did therefore not 

have identical surfaces. Clay sized minerals were easily suspended in the water and settled on 

the surface of some samples. This happened especially for the artificial sediments with high 

content of calcium carbonate.  

 

    

Figure 4.12 Problems with submerging of samples. A) Floating of sediments on the top of the water 

surface (sample H1). B) Shirking of fine grained calcium carbonate (sample Cp1). 

 

The light conditions in the room could have influenced the HI measurements despite the 

correction by using the reference plate. There were some daylight coming through the window 

blinds, but there were no direct daylight on the samples.  

The Jaz spectra were used as a verification of how the HI spectra should look like, but the 

reflectance measurements of these two methods were not identical. In the HI measurements it 

was possible to choose which and how many pixels that should be used for the mean spectra. 

A B 
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Pixels were picked in three limited areas of each sample. The Jaz spectrometer automatically 

made a mean spectrum from a larger area, and it was not possible to choose pixels. The 

difference of the areas used for reflectance measurements is illustrated in Figure 4.13. In 

addition, HI measures radiance with a fixed angle through a slit, while Jaz measures reflectance 

from several angles. 

 

    

Figure 4.13 Light gray squares mark the area of the sample surface.  Dark circles limit the areas used 

to make the mean reflectance spectra. 

 

  

Jaz HI 
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Chapter 5  Results 

 

 

5.1 General description of laboratory results 

RGB images were captured by the DSLR-camera through the stereomicroscope. The 

monochromatic images are results from the HI measurements described in the previous chapter. 

Only images from set 1 of the mineral and sediment samples are included in the results, images 

of set 2 and set 3 are found in appendix A and B. For larger RGB images of set 1, see appendix 

A. The monochromatic images show reflection of light at 570 nm, which is the spectral band 

with the best reflectance signals in the measurements. 

Reflectance spectra from HI measurements are mean spectra plotted with standard errors. 

Normal distribution is assumed and it is 68% probability that the estimated spectra is found 

within estimated spectra +/- one standard error. Reflectance values have a scale from 0-1, where 

1 refers to 100% reflection of incoming light.  

The results from the Jaz show reflectance spectra from all three series, for both dry and 

submerged samples. Three measurements were considered as too few to make mean spectra 

values. An exception was made for the artificial sediments, where the spectra of the three 

replicates were averaged to make the figure easier to understand. 

The light source spectra from the reference plate measured by the HI and Jaz are shown in 

Figure 5.1. Respectively, the reference plate reflected 50 % and 75 % of all visible light, equally 

for all wavelengths. 
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Figure 5.1 A) Upwelling radiance (Lu) of the HI light source and B) The light source spectrum from the 

Jaz measurements (copied from SpectraSuite settings of the white reference). Value refer to upwelling 

radiance measured in counts per time (integration time = 10 358 μs). 
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5.2 Results from the mineral samples 

RGB images and monochromatic images (570 nm) from HI measurements of the minerals in 

set 1 are presented in Figure 5.2. Color of the image frames correspond to the color of the 

reflectance spectra of the samples. 

 

A: DRY SAMPLES 

 

RGB 

  

HI, monochromatic images (570nm) 

 

 

B: SUBMERGED SAMPLES 

 

RGB 

 

HI, monochromatic images (570nm) 

 

Figure 5.2  RGB-images and monochromatic images (570nm) of minerals (set 1) from the HI 

measurements. A) Dry samples. B) Submerged samples. M = muscovite, K = k-feldspar, Q = quartz, Cs 

= calcite marble (sand), Cc = calcite marble (clay), Cp = pure calcium carbonate, H = hematite, (w) = 

submerged samples.  

 

  

M1 K1 Q1 Cs1 Cc1 Cp1 H1 

M1(w) K1(w) Q1(w) Cs1(w) Cc1(w) Cp1(w) H1(w) 
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5.2.1 Reflectance spectra  

Reflectance spectra of each mineral sample are presented below - muscovite (Figure 5.3), k-

feldspar (Figure 5.4), quartz (Figure 5.5), calcite marble sand (Figure 5.6), calcite marble clay 

(Figure 5.7), pure calcium carbonate (Figure 5.8) and hematite (Figure 5.9 and Figure 5.10).  

 

 

    

Figure 5.3 A) Average reflectance spectra from HI, M = muscovite, M(w) = submerged muscovite. 

Error bars show standard error (SE) of the estimated spectra from n=9 reflectance spectra. B) 

Reflectance spectra from Jaz spectrometer of muscovite samples from set 1 (M1), set 2 (M2) and set 3 

(M3), and of submerged muscovite from set 1 (M1(w)), set 2 (M2(w)), and set 3 (M3(w)). 

 

  

B A 
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Figure 5.4 A) Average reflectance spectra from HI, K = k-feldspar, K(w) = submerged k-feldspar. Error 

bars show standard error (SE) of the estimated spectra from n=9 reflectance spectra. B) Reflectance 

spectra from Jaz spectrometer of k-feldspar samples from set 1 (K1), set 2 (K2) and set 3 (K3), and of 

submerged k-feldspar from set 1 (K1(w)), set 2 (K2(w)), and set 3 (K3(w)). 

 

    

Figure 5.5 A) Average reflectance spectra from HI, Q = quartz, Q(w) = submerged quartz. Error bars 

show standard error (SE) of the estimated spectra from n=9 reflectance spectra. Note that reflectance 

scale is set to 2, because of an apparent reflection larger than 100%. B) Reflectance spectra from Jaz 

spectrometer of quartz samples from set 1 (Q1), set 2 (Q2) and set 3 (Q3), and of submerged quartz 

from set1 (Q1(w)), set 2 (Q2(w)), and set 3 (Q3(w)). 

 

 

B 

A B 

A 
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Figure 5.6 A) Average reflectance spectra from HI, Cs = calcite marble (sand), Cs(w) = submerged 

calcite marble (sand). Error bars show standard error (SE) of the estimated spectra from n=9 

reflectance spectra. Note that reflectance scale is set to 2, because of an apparent reflection larger than 

100%. B) Reflectance spectra from Jaz spectrometer of calcite marble (sand) samples from set 1 (Cs1), 

set 2 (Cs2) and set 3 (Cs3), and of submerged calcite marble (sand) from set 1 (Cs1(w)), set 2 (Cs2(w)), 

and set 3 (Cs3(w)). 

 

    

Figure 5.7 A) Average reflectance spectra from HI, Cc = calcite marble (clay), Cc(w) = submerged 

calcite marble (clay). Error bars show standard error (SE) of the estimated spectra from n=9 reflectance 

spectra. Note that reflectance scale is set to 2, because of an apparent reflection larger than 100%. B) 

Reflectance spectra from Jaz spectrometer of calcite marble (clay) samples from set 1 (Cc1), set 2 (Cc2) 

and set 3 (Cc3), and of submerged calcite marble (clay)  from set 1 (Cc1(w)), set 2 (Cc2(w)), and set 3 

(Cc3(w)). 

 

A B 

A B 
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Figure 5.8 A) Average reflectance spectra from HI, Cp = pure calcium carbonate, Cp(w) = submerged 

pure calcium carbonate. Error bars show standard error (SE) of the estimated spectra from n=9 

reflectance spectra. Note that reflectance scale is set to 2, because of an apparent reflection larger than 

100%. B) Reflectance spectra from Jaz spectrometer of calcium carbonate samples from set 1 (Cp1), 

set 2 (Cp2) and set 3 (Cp3), and of submerged calcium carbonate from set 1 (Cp1(w)), set 2 (Cp2(w)), 

and set 3 (Cp3(w)). 

 

  

A B 
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The Jaz spectra of hematite are shown in Figure 5.9. Hematite is the mineral with the largest 

variations in shape of the HI spectra extracted from three areas in each sample (Figure 5.10). A 

resulting mean spectrum of these nine HI spectra is therefore not representative for the mineral 

and not included in the results.  

 

 

Figure 5.9 Reflectance spectra from Jaz spectrometer of hematite samples from set 1 (H1), set 2 (H2) 

and set 3 (H3), and of submerged hematite from set 1 (H1(w)), set 2 (H2(w)), and set 3 (H3(w)). 
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Figure 5.10 Reflectance spectra from HI measurement used for making man spectra of hematite. a, b 

and c define the areas where 5 pixels were extracted from a sample in a hyperspectral image to make 

an average spectra plot, a = area 1, b = area 2 and c = area 3. 
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5.2.2 Supervised classification 

A Bayesian supervised classification of six mineral samples, consisting of muscovite, k-

feldspar, quartz, calcite marble (both sand and clay samples) and pure calcium carbonate, is 

shown in Figure 5.11. The classes are pixel defined in Image Calculator using 100 pixels for 

each class. The classification results were overlaid on monochromatic images at 570 nm. 

 

Pixel defined classes: 

   

M1 – K1 – Q1 – Cs1 – Cc1 – Cp1 

Classification: 

 

 

 

 

 

 

 
Figure 5.11 Bayesian supervised classification of minerals with pixel defined classes (n=100) on top of 

monochromatic images (570nm). Samples used are M1, K1, Q1, Cs1, Cc1 and Cp1.  
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5.3 Results from the artificial sediment samples 

RGB and monochromatic images of the artificial sediments with a carbonate content varying 

from 0-100 wt% are shown in Figure 5.12. The colors of the sample frames correlate to the 

colors of the reflectance spectra of the corresponding sample. 
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A: DRY SAMPLES 

 

 
RGB 

 
HI, monochromatic images (570nm) 

 
B: SUBMERGED SAMPLES 

 

 
RGB 

 
HI, monochromatic images (570nm) 

 
 

Figure 5.12 RGB-images and monochromatic images (570nm) of artificial sediments (set A) from the 

HI measurements. 0-100% explain the wt% of CaCO3 in the sediment, (w) = submerged samples. Frame 

colors reflect the colors in the reflectance spectra in the reflectance spectra. 

 

0% 0.5% 1% 2% 4% 

10% 25% 50% 100% 

0%(w) 0.5% (w) 1%(w) 2%(w) 4%(w) 
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5.3.1 Reflectance spectra 

Figure 5.13 and Figure 5.14 the reflectance spectra of the artificial sediments with increasing 

carbonate content. Error bars are not included in the reflectance spectra, but the variation of the 

HI measurements are possible to see in appendix C. The Jaz measurements show average 

spectra of three samples. Figure 5.15 shows HI reflectance at 570 nm for all samples, this plot 

is included to give a better presentation of the samples with a low carbonate content. The 

artificial sediment samples without CaCO3 is not included due to logarithmic values on the x-

axis. 

 

 

    

Figure 5.13 A) Reflectance spectra of the dry artificial sediment samples from HI measurements. Each 

spectra is an average of n=9 HI spectra. B) Reflectance spectra of the dry artificial sediment samples 

from Jaz measurements. Each spectra is an average of n=3 Jaz spectra. 

 

A B 
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Figure 5.14 A) Reflectance spectra of the submerged artificial sediments from HI measurements. Each 

spectra is an average of n=9 HI spectra. B) Reflectance spectra of the submerged artificial sediments 

from Jaz measurements. Each spectra is an average of n=3 Jaz spectra. 

 

 

    

Figure 5.15 Reflectance at 570 nm for dry sediments (A) and submerged sediments (B). Data points are 

average reflectance intensity from nine HI spectra, error bars show one standard deviation. 
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5.3.2 Superrvised classification 

Figure 5.16 shows a Bayesian supervised classification of the classes “basis sediment” and 

“CaCO3”. One hundred pixels were used to define the classes. These two classes were chosen 

to find out if CaCO3 could be recognized in the samples. The classification results were overlaid 

on monochromatic images at 570 nm. 

 

Pixel defined classes: 

 

0 - 0.5 - 1 - 2 - 4 - 10 - 25 - 50 - 100 wt% CaCO3 

Classification: 

 

 

 

 

Figure 5.16 Bayesian supervised classification of the artificial sediments with pixel defined classes 

(n=100) on top of monochromatic images (570nm).  
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5.4 Results from the natural sediment samples 

RGB images and monochromatic images of the natural sediments (set 1) are shown in Figure 

5.17.  

 

A: DRY SAMPLES 
 

 
RGB 

  
HI, monochromatic images (570 nm) 

 

B: SUBMERGED SAMPLES 
 

 
RGB 

 
HI, monochromatic images (570 nm) 

 

Figure 5.17 RGB-images and monochromatic images (570nm) of natural sediments (set 1) from the HI 

measurements. OM = organic mud, FS = fine sand, MS = medium sand, SS = shell sand, SG = shell 

gravel. (w) = submerged samples. 
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5.4.1 Reflectance spectra 

The reflectance spectra of the natural sediments are seen in Figure 5.18 (organic mud), Figure 

5.19 (fine sand), Figure 5.20 (medium sand), Figure 5.21 (shell sand) and Figure 5.22 (shell 

gravel).  

    

Figure 5.18 A) Average reflectance spectra from HI, OM = organic mud, OM (w) = submerged organic 

mud. Error bars show standard error (SE) of the estimated spectra from n=9 reflectance spectra. B) 

Reflectance spectra from Jaz spectrometer of organic mud samples from set 1 (OM1), set 2 (OM2) and 

set 3 (OM3), and of submerged organic mud from set 1 (OM1(w)), set 2 (OM2(w)), and set 3 (OM3(w)). 

 

    

Figure 5.19 A) Average reflectance spectra from HI, FS = fine sand, FS(w) = submerged fine sand. 

Error bars show standard error (SE) of the estimated spectra from n=9 reflectance spectra. B) 

Reflectance spectra from Jaz spectrometer of fine sand samples from set 1 (FS1), set 2 (FS2) and set 3 

(FS3), and of submerged fine sand from set 1 (FS1(w)), set 2 (FS2(w)), and set 3 (FS3(w)). 

B A 

A B 
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Figure 5.20 A) Average reflectance spectra from HI, MS = medium sand, MS(w) = submerged medium 

sand. Error bars show standard error (SE) of the estimated spectra from n=9 reflectance spectra. B) 

Reflectance spectra from Jaz spectrometer of medium sand samples from set 1 (MS1), set 2 (MS2) and 

set 3 (MS3), and of submerged medium sand from set 1 (MS1(w)), set 2 (MS2(w)), and set 3 (MS3(w)). 

  

    

Figure 5.21 A) Average reflectance spectra from HI, SS = shell sand, SS(w) = submerged shell sand. 

Error bars show standard error (SE) of the estimated spectra from n=9 reflectance spectra. B) 

Reflectance spectra from Jaz spectrometer of shell sand samples from set 1 (SS1), set 2 (SS2) and set 3 

(SS3), and of submerged shell sand from set 1 (SS1(w)), set 2 (SS2(w)), and set 3 (SS3(w)). 
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B A 



5.4 Results from the natural sediment samples 

89 

 

    

Figure 5.22 A) Average reflectance spectra from HI, SG = shell gravel, SG(w) = submerged shell 

gravel. Error bars show standard error (SE) of the estimated spectra from n=9 reflectance spectra. B) 

Reflectance spectra from Jaz spectrometer of shell gravel samples from set 1 (SG1), set 2 (SG2) and set 

3 (SG3), and of submerged shell gravel from set 1 (SG1(w)), set 2 (SG2(w)), and set 3 (SG3(w)). 

  

B A 
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5.4.2 Supervised classification 

A Bayesian supervised classification of natural sediments (set 1) with classes “fine sand”, 

“medium sand”, “shell sand” and “shell gravel” is shown in Figure 5.23. Pixel defined classes 

were made using 100 pixels per class. The classification results were overlaid on 

monochromatic images at 570 nm. 

 

Pixel defined classification: 

 

FS1 - MS1 - SS1 - SG1 

Classification: 

 

 

 

 

 

Figure 5.23 Bayesian supervised classification of the natural sediments with pixel defined classes 

(n=100) on top of monochromatic images (570nm). Samples used are FS1, MS1, SS1 and SG1.  
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5.5 Results from the carbonate crusts 

RGB images and monochromatic images of the carbonate crusts are shown in Figure 5.24 (fresh 

surface) and Figure 5.25 (original surface). Colored markings show the areas where pixels used 

to make the HI reflectance spectra were chosen.  

Yellow circles show the areas limiting the Jaz and HI measurements of cemented grain surface 

(CG1, CG2 and CG3) of the fresh surface. A closer image of these circles are found within the 

black circles. Red markings limit the areas of HI reflectance measurements of aragonite. There 

were not done any Jaz measurements of aragonite areas, because these areas were too small for 

the circle area measured by Jaz. 

The areas measured by the Jaz of the original surface are numbered S1 (surface 1), S2 (surface 

2) and S3 (surface 3), and objects measured by HI are named Sa (surface a), Sb (surface b) and 

Sc (surface c). Sa consists of carbonate shell from bristle worms (Polychaete), Sb consists of 

organic mud and Sc of skeleton of moss animals (Bryozoa). Sa covers the same area as S1 in 

the Jaz measurements. Sb is included in S1 and Sc covers the same area as S2. S3 consists of 

carbonate skeleton from other organisms. 
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RGB 

 

  

 
HI, monochromatic images (570nm) 

 

Figure 5.24 RGB-images and HI monochrmatic images (570nm) of the fresh surface of sample 

P1210006_4A. CG = cemented grain and explain where the Jaz measurements are captured. Yellow 

circles limit the areas of HI measuremnts of CG, while the red lines limit the areas of HI measuremnts 

of the aragonite. 
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RGB 

 

 

 
HI, monochromatic images (570nm) 

 

Figure 5.25 RGB-images and HI monochrmatic images (570nm) of a original surface of sample 

P1210035_1B. S(1,2,3) = surface (1,2,3) and explain where the Jaz measurements are captured. Blue 

lines limit the areas of HI measuremnts of surface a (Sa), green lines limit the area of surface b (Sb), 

while the orange lines limit the areas of surface c (Sc). 
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5.5.1 Reflectance spectra 

Reflectance spectra of the carbonate crust surfaces are presented in Figure 5.26 (fresh surface) 

and Figure 5.27 (original surface). The HI spectra of the fresh surface include aragonite 

cemented grains (CG) and pure aragonite. The Jaz spectra include only the cemented grain areas 

(CG1, CG2 and CG3). The reflectance spectra of the original surface include measurement of 

three different objects (HI) and three different areas (Jaz).  

   

   

 

Figure 5.26 A) Average reflectance spectra from HI, CG = cemented grains, CG (w) = submerged 

cemented grains. Error bars show standard error (SE) of the estimated spectra from n=9 reflectance 

spectra. B) Average aragonite reflectance spectra from HI. Error bars show standard error (SE) of the 

estimated spectra from n=9 reflectance spectra. C) Reflectance spectra from Jaz spectrometer of 

cemented grain areas (CG1, CG2, CG3, CG1(w), CG2(w), CG3(w)). 
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Figure 5.27 A) Average reflectance spectra from HI for dry and submerged surface a (Sa, Sa(w)). B) 

Average reflectance spectra from HI for dry and submerged surface b (Sb, Sb(w)). C) Average 

reflectance spectra from HI for dry and submerged surface c (Sc, Sc(w)). Error bars show standard 

error (SE) of the estimated spectra from n=9 reflectance spectra. D) Reflectance spectra from Jaz 

spectrometer of the dry and submerged surface (S1, S2, S3, S1(w), S2(w), S3(w)). 
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5.5.2 Supervised classification 

A Bayesian supervised classification was carried out for the dry fresh surface of carbonate crust. 

The result is shown in Figure 5.28. The two classes, “cemented grains” and “aragonite” were 

defined by 100 pixels each, and the classification results were overlaid on monochromatic 

images at 570 nm. 

 

Pixel defined classes: 

 
 
Classification: 

 
 

Figure 5.28 Bayesian supervised classification of the fresh carbonate crust surface of sample 

P1210006_4A with pixel defined classes (n=100) on top of monochromatic images (570nm).  
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Chapter 6  Discussion 

 

 

6.1 Discussion of laboratory results 

The hyperspectral images, reflectance spectra and supervised classifications show both 

advantages and disadvantages of using UHI to map sediment properties on the seabed. 

 

6.1.1 Hyperspectral Images 

The main problem regarding capturing of the hyperspectral images was to find the correct light 

setting to optimize illumination evenness. White and dark samples had to be separated, because 

there was a need for brighter light to capture the dark samples inducing overexposure of the 

white samples. There was also a problem with overexposure using the reflectance reference 

plate. In these cases, only the areas at the edges of the image were used to provide a reference 

spectrum of the reference plate. A reference plate with lower reflectivity would have been 

preferable for these samples.  

Hematite was the most difficult sample to capture with respect to exposure control. This was 

due to specular reflection from the surfaces oriented in certain directions, giving overexposure 

problems (glints). In addition to this, underexposure of mineral surfaces of other orientations 

resulted in no reflectance data. Submerging in water gave more overexposure problems because 

the samples became darker and needed brighter light. If the hematite grains were crushed down 

to clay size, it might have been less problems with overexposure due to smaller mineral 

surfaces. Other minerals can also provide glints as seen in hyperspectral images of muscovite, 

k-feldspar, quartz and calcite marble, but glints in these samples are not as dominating as in the 

hematite sample.  

When the grain size of the sample was smaller than 1 mm, it was difficult to distinguish distinct 

grains in the hyperspectral images, making it difficult to choose pixels with known content. It 

was possible to detect dark minerals in the calcite marble sample with sand fraction. These dark 

minerals had low signal-to-noise ratio, and it was not possible to extract spectral information 

from these. In brighter light conditions, the signal-to-noise ratio of these grains increased, but 

also resulted in overexposure of the calcite grains.  
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The entire fresh surface of the carbonate crust is in focus in the hyperspectral image in Figure 

5.24. The crust with the original surface was difficult to get in focus due to varying topography 

of the sample. This resulted in the uppermost parts in focus and blurry edges of the crust. In this 

case, a smaller aperture could have been used, providing better depth of field that increases the 

overall focus of samples with varying topography. From the hyperspectral images of the crusts, 

it is easy to see that dark areas became darker and white became whiter, which gave problems 

with under- and overexposure.  

An improvement of the HI camera to get a better dynamic range would decrease the over- and 

underexposure problems. Both dark and white minerals can then be mapped in similar light 

conditions. The radiometric resolution defined as bit per pixel (bit depth) gives the dynamic 

range of the image. With more bits, better exposure control and color intensity dynamics are 

obtained. This is important when taking spectral measurements in areas, which include both 

very dark and bright parts (Johnsen et al., 2013). The prototype HI used in this study has a lower 

dynamic range than the UHI used by Ecotone AS, which give less under- and overexposed 

images, and make it possible to get spectral information also in shadow areas. Shadow areas in 

in situ mapping can also be compensated by using sufficient illumination evenness. 

 

6.1.2 Reflectance spectra 

The main differences between the HI and Jaz measurements are seen in the blue (<500 nm) and 

the red (>600 nm) part of the spectrum, where the Jaz spectra show a higher reflectance intensity 

than HI relative to the rest of the spectra. In general, the HI spectra show higher reflectance 

values than the Jaz spectra. 

The Jaz spectra show less variation in the shape, but variations of reflectance intensity often 

occur. The HI spectra show more variations in shape as well. A reason could be that reflectance 

intensity was measured in different ways by HI and by Jaz. This affected the measurements and 

resulted in differences in the spectra. HI measured radiance at a given angular direction and per 

pixel, while Jaz measured this at a much larger area (circle) making an “average” reflectance 

spectrum representing a much larger area than HI. Thus, Jaz measurements provided smoother 

spectra with less variation in reflectance than HI. However, HI can detect small differences in 

R in a given object, which Jaz cannot detect.  

The reflectance spectra measured by HI show large fluctuations in red and blue light. The reason 

for this can be the HI sensor’s low sensitivity in these parts of the light spectrum caused by low 
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photon flux from the lamp in blue and red (Figure 5.1A). The optical fiber bundles did not have 

equal properties for blue light and red light since they attenuate photons of different colors 

differently.  The upwelling radiance of the light source has a spectral range from approx. 440-

690 nm, with an intensity peak at ~570 nm decreasing to zero reflection at the ends of the 

spectral range. The signal-to-noise ratio decreases with lower and higher wavelengths than 570 

nm. Another light source and a camera sensor with higher spectral sensitivity in blue and red 

can  decrease the uncertainties in these parts of the spectra. When the reflectance is high, both 

the HI and the Jaz spectra are in agreement and exhibit a convex shape. This is probably due to 

intense scattering of light, which is highest for particles at 1.1-1.6 μm (clay fraction) as seen in 

Figure 3.5. 

A systematic trend in the Jaz spectra are two peaks at  ~550 nm and ~600 nm. These peaks are 

not seen in the spectra with low (R<0.1) or high intensity (R>0.9). This is caused by a systematic 

error in the light source correction in the SpectraSuite program. As seen on the light source 

radiance spectrum in Figure 5.1B, two peaks are present at these wavelengths. These peaks are 

therefore ignored in further discussions of the shape of these spectra, assuming that they are flat 

where the peaks are present. 

Variations in reflectance intensity of the replicate measurements can be explained by the 

variations in orientation of the grains or by varying sensitivity across the hyperspectral image. 

The three replicate samples had different surfaces with respect to orientation and content of 

impurities. All samples had rough surfaces, which mean that the measured reflectance is diffuse. 

Specular reflection from smooth surfaces on the mineral grains also occurred. Diffuse and 

specular reflection varied and affected the reflectance. Another reason for the variation of HI 

intensity was the varying sensitivity of sensed light across the slit. In the edges of the image, 

the sensitivity was lower than the middle of the image, which gave a lower reflectance intensity 

at the edges. 

Concerning HI measurements of fine-grained samples (<1 mm), it was not possible to know the 

mineral composition of selected pixels because the resolution was not high enough. This can 

be a reason for variations in the measurements due to spectral mixing. In situ UHI 

measurements obtain lower spatial resolution and small differences in any given sediment are 

therefore  averaged, resulting in less variation per image pixel. 
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Mineral samples 

Figure 5.3A shows the HI reflectance spectra of muscovite. Both the dry and the submerged 

sample spectra show an increase in reflectance intensity from 460 nm to 610 nm, indicating 

absorption of blue light. Error bars are largest in the red part of the spectrum, and is larger for 

the dry sample than the submerged sample. Figure 5.3B of the Jaz spectra also show an increase 

of intensity in the same interval, though with a much gentler slope. In Hunt (1977), a spectral 

feature in muscovite spectra caused by OH stretches is found at 2.2 μm, which is far beyond 

the visible light spectrum and do not explain the absorption feature in blue. A possible 

explanation for the apparent absorption in blue light can be that the HI was not sensitive enough 

to detect reflectance from grains in different orientation, due to the high spatial resolution.  

Figure 5.4A shows large error bars in the reflectance spectrum for dry k-feldspar, especially in 

blue and red parts. The large variations of the k-feldspar HI spectrum are due to intensity 

variations. The submerged k-feldspar spectrum has smaller standard errors and does not show 

the same variations in the measurements. The mineral has an orange color, which is in 

accordance with the higher reflection of red light compared to blue light. This is seen in both 

the HI and Jaz spectra (Figure 5.4).  

Quartz and calcite reflectance spectra have spectral features in the infrared part of the spectra 

because of vibrational processes (Hunt, 1977). These features are not seen in the reflectance 

spectra obtained in this study because infrared reflectance was not detected. These minerals are 

white in color, which means they reflect all visible light and have flat spectra without distinct 

absorption features in visible light.  

Quartz and all of the carbonate samples show HI spectra with convex shape of the dry samples 

(Figure 5.5A, Figure 5.6A, Figure 5.7A and Figure 5.8A). The Jaz spectra show flat spectra for 

all these samples, except for dry pure CaCO3 where the convex shape also is present (Figure 

5.8B). The reason for getting high values in the red and blue light, is the extreme scattering of 

light due to the small size of the particles. In addition to the convex shape, all of these minerals 

show a reflectance higher than R = 1. The reflectance of a mineral cannot be more than 100%, 

so this is probably also due to scattering of light. Scattering can be induced by overexposure of 

the samples, but in this case, the mineral samples were not overexposed. 

Based on these results, it is not possible to discriminate between quartz and carbonate minerals 

on their optical signature in visible light. However, the results of calcite marble in sand fraction 

compared to clay fraction show a possibility of detecting variations in grain size because the 

clay samples show a higher reflectance than sand. If the grains are assumed to be non-absorbing 
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and approximately spherical, these results are in agreement with the scattering theory found in 

literature (Kirk, 1994). The other minerals contaminating the calcite marble can be the reason 

for a lower reflectance of the calcite marble clay sample compared to the pure CaCO3 sample. 

The HI reflectance spectra of hematite show large variations and interesting spectral features 

not seen in the other mineral samples. Sherman et al. (1982) found reflectance spectra of several 

iron oxides and showed that they were most diagnostic and highly absorbing in the region 300-

1000 nm. They typically show a flat behavior up to 530 nm where a change in the slope occurs 

and reaches a peak at 800 nm. This is due to crystal field transitions. 13 hematite spectra out of 

18 in Figure 5.10 show slope changes between 460 nm and 510 nm. These can be related to the 

same transitions as in the hematite spectra in Figure 3.4. Only four of these seem to have an 

increased reflectance towards the infrared region.  

The variations in the spectra of hematite can be a result of mixed spectra of hematite and other 

minerals, or it can be a result of a low signal-to-noise ratio. The Jaz spectra do not show these 

spectral features. They show a very low reflectance and only a reflectance peak at 550 nm and 

not at 600 nm like the other mineral spectra (Figure 5.9). The reason is probably due to the 

difficulties in the reflectance measurements of this mineral. 

 

Changes in CaCO3 content 

The HI spectra of dry samples of the artificial sediments show a change from a concave to a 

convex curve with increasing CaCO3 content (Figure 5.13A). The spectra show a reflectance 

intensity increase from low to high weight percent, except from the sample with 0.5 wt% CaCO3 

that has a higher intensity than the sample with 1 wt% CaCO3. In Figure 5.15A it is possible to 

see an increasing trend of the reflectance intensity from 2 wt% CaCO3 to 100 wt% CaCO3 for 

the dry samples. The Jaz measurements are in good agreement with the HI measurements 

regarding the increase of intensity with CaCO3 content. 1 wt% CaCO3 and 2 wt% CaCO3 show 

the same reflectance intensity (Figure 5.13B). 

For the submerged samples, the HI results show less coherence between the increased intensity 

and CaCO3 content than for the dry samples (Figure 5.14A). Spectra of 0-2 wt% CaCO3 do not 

show an increase in reflectance based on increased CaCO3 content. In addition, the spectra of 

4 wt% and 10 wt% CaCO3 intersect, but 10wt% CaCO3 has higher reflectance than 4 wt% 

CaCO3 in most parts of the spectrum. The Jaz spectra show a better discrimination between the 

samples with more than 4 wt% CaCO3 (Figure 5.14B). Figure 5.15B show a total increase in 

intensity, but not an increase between neighboring points. 
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As seen in this experiment, samples with varying CaCO3 content are possible to discriminate 

by reflectance intensity. The increase in CaCO3 made the sediment whiter and thus reflecting 

more light. The best results were obtained for large changes in CaCO3 content (>4 wt% CaCO3). 

For the small changes, it is difficult to see a significant coherence of increasing CaCO3 content 

and an increasing reflectance. There is a larger amount of quartz than CaCO3 in these samples. 

As seen in Figure 5.5, quartz has a high intensity reflectance, and this could be a reason for 

uncertainties in the intensity variations of these samples.  

The calcium carbonate used in this experiment had a small grain size, which reflected more 

light than grain sizes of sand or gravel. If a larger grain size had been used, the result might 

have been different. The changes from concave to convex shape of the reflectance spectra can 

be explained by an increase in scattering because of an increasing amount of clay grain size 

when CaCO3 content increased. 

 

Natural sediment samples 

The Jaz measurements show that submerged samples have lower reflectance than dry samples, 

and that reflectance increases with increasing carbonate content which are in accordance with 

the artificial sediment experiment. HI measurements show a higher reflectance in blue and red 

light when the carbonate content increases because of an increase of white minerals.  

The organic mud samples absorbed all light up to 500 nm for dry samples and 520 nm for 

submerged samples according to the HI measurements (Figure 5.18A). The reflectance peak is 

at 630 nm. The Jaz spectra show a small increase in reflectance between 520 nm and 660 nm, 

and in contrast to the HI measurements, they show some reflectance in the region lower than 

500 nm for the dry sample (Figure 5.18B). The HI measured reflectance from the submerged 

samples is extremely low, but has the same shape as the dry sample. The small standard errors 

explain the small variability across the sample surface.  

The high absorption in the blue region is probably due to the organic content of the sample, 

which is in accordance with the article by Bartholomeus et al. (2008) on reflectance of soil 

organic carbon (SOC). In addition to organic carbon, iron oxides can be present in the organic 

mud resulting in absorption of blue light. Hunt (1977) explains that weathered material is the 

reason for the most commonly observed feature in the spectra of terrestrial geological material. 

Weathered material where both iron and oxygen are present, have spectra with intensity fall-

off from the visible into the ultraviolet region. This intensity fall-off due to weathering can also 

be present in marine sediments. In addition, the fine sand and the medium sand samples show 
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an increase from the blue to the red part of the spectra (Figure 5.19 and Figure 5.20). Biological 

film due to growth of bacteria and microalgae may affect absorption properties of natural 

sediments. Microalgae absorb in the red and blue part of the spectra, while bacteria typically 

absorb in the blue part (Roy et al., 2011).   

The large variation in the red region of the fine sand spectra from the HI measurements can be 

explained by intensity variations. Jaz spectra of organic mud, fine sand and medium sand show 

an absorption feature at ~670 nm. This is also shown in the HI spectra. These spectra are in 

accordance with the in situ spectra of bottom types in the study by Hochberg et al. (2003), 

which determined the absorption features to be a result of chlorophyll from a benthic microalgae 

(Figure 3.13). Since possible microalgae in the natural sediment samples are dead, the 

degradation products, which also absorb blue and red light, can explain the absorption (Roy et 

al., 2011).  

The shell sand and shell gravel spectra are quite similar in shape and intensity (Figure 5.21 and 

Figure 5.22). These spectra also show an increase in intensity from the blue to the red region, 

but they are missing the absorption feature at 670 nm. The low reflectance of blue light could 

be a result of organic content or iron, but it could also be a result of the pink color of the shells 

due to pigments absorbing blue light. Shell gravel samples show larger fluctuations in 

reflectance intensity than the shell sand samples, and the reason for this is probably the larger 

grain size. When the grain size increases, the importance of the grain distribution on the surface 

becomes larger. 

 

Carbonate crusts 

In the HI reflectance spectra of the fresh surface, it is possible to see a difference between the 

areas of cemented grains (CG) and the areas of pure aragonite (Figure 5.26). The shape of the 

CG reflectance spectra is similar to the fine and medium sand of the natural sediment samples 

because these areas have a similar content of mixed carbonate and non-carbonate material. The 

reflectance intensity increases from blue to red light in both the cemented grains and the 

aragonite spectra. The aragonite reflectance spectra show a rapid increase of intensity for longer 

wavelengths than 660 nm, while the CG reflectance spectra show a gentle decrease of intensity. 

Concerning the Jaz measurements, the spectrum of area CG1 shows a more intense reflectance 

increase from blue to red light than in the other two spectra. The fresh surface has an orange 

color indicating weathering of iron and this can be the reason for the intensity fall-off into the 

blue region. 
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For the carbonate crust with the original surface, a variation of the spectra of the different 

surface areas can be seen (Figure 5.27). Absorption of blue light is present in the spectra of all 

areas - this is probably due to organic material as in the organic mud sample. Surface a consists 

of the carbonate shell from bristle worms and has a characteristic spectrum increasing from low 

reflectance in blue light to high reflectance in red light. Surface b is organic mud and shows a 

low reflectance. Red and blue light are not reflected from the submerged surfaces of this organic 

mud. Surface c, which consists of carbonate skeleton from other marine organisms, absorb blue 

light and has similar reflectance spectra as the reflectance spectra of surface b.  

The Jaz reflectance spectra are similar in shape and have small variations in reflectance 

intensity, except the S1(w) reflectance spectrum that shows a reflectance intensity higher than 

all the other samples. This is due to a smaller distance between the light source and objects in 

the area, increasing the reflectance. Similarities of the shapes of these spectra are due to the 

averaged pixels of areas with mixed content, in contrast to the variation of the HI spectra 

extracted from selected pixels/areas. 

 

Changes due to submerging 

A general trend in both HI and Jaz spectra is that submerged samples show lower reflectance 

intensity than the dry samples. Minerals show a decrease of reflectance intensity with a value 

(R) of approx. 0.2-0.3 when they are submerged in seawater. Submerged natural sediments 

show a varying decrease of the reflectance intensity. For instance, fine sand only show a 

decrease in the red region. A smaller variation of the submerged HI spectra compared to the dry 

sample HI spectra is also observed. This may be due to less scattering of light from submerged 

samples. This is not seen in the Jaz spectra. However, there are only small differences in shape 

of the spectra due to the submerging, which indicate that the submerged reference plate was 

able to correct for the absorption/scattering of light in the seawater. The small differences are 

seen as higher absorption in blue and red part of the spectra. 

 

6.1.3 Supervised classification 

Supervised classifications were carried out to check if it is possible to get successful 

classifications despite few identifying spectral features in the reflectance spectra. Dark areas 

and shadows were often misclassified as the darkest class in the classification (e.g. muscovite). 

Because several pixels in the samples had mixed contents, it was expected that there would be 

some misinterpretation in the classifications and several pixels were not identified by the 
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defined classes. Differences in orientation of grains and light conditions also resulted in 

unclassified pixels. 

The classification of the mineral samples was the most successful (Figure 5.11). Hematite was 

not a part of this classification because the hyperspectral image did not include this mineral. 

Pixels in the k-feldspar sample were all correct, probably because this mineral has an orange 

color, while the other minerals are white. No other pixels were classified as k-feldspar. Even 

though all the other minerals are white, there were many correctly classified pixels of these 

minerals as well. 

The classification of carbonate content in the artificial sediments was not as successful as the 

mineral classification (Figure 5.16). Calcium carbonate were only classified in the samples with 

more than 10 wt% calcium carbonate. This can be due to mixed mineral content in the pixels. 

Despite this, it was possible to classify differences between the basis sediment without calcium 

carbonate and the sediment with 50-100 wt% calcium carbonate. 

Fine sand was the best classified natural sediment sample (Figure 5.23). The samples with 

medium sand, shell sand and shell gravel all consisted of grain sizes of similar minerals varying 

from fine to coarse sand. This made the classification of the samples difficult, because all the 

classes were represented in one sample. However, it is possible to see classifications of the 

major content in the samples. Pixels were classified as fine sand in all four samples, but mostly 

in samples FS1 and MS1. Pixels of medium sand were mostly classified in MS1, but a small 

amount of pixels were classified as medium sand in FS1, SS1 and SG1 as well. Shell sand pixels 

were mostly classified in the correct sample, but some pixels are classified as shell sand in MS1 

and SG1. Shell gravel pixels were mostly found on large grains in the SG1 sample, but some 

pixels were also classified as shell gravel in SS1 and MS1.  

The classification of the fresh surface of a carbonate crust managed to discriminate between the 

aragonite areas and the cemented grain areas (Figure 5.28). Since aragonite is the mineral 

cementing the grains there were some aragonite-classified pixels in between the cemented 

grains classified pixels. The HI images of the original surface were too dark to give a good 

classification, so a classification of this sample was not included in the results. 

The results from the supervised classification show that it is possible to discriminate between 

different minerals, even though the reflectance spectra were without absorption features. The 

classification of the three calcium carbonate samples show that Image Calculator differentiate 

samples with different grain size and with different types of carbonate minerals. 
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A statistical verification of the classification success and errors are not accomplished in this 

thesis because there is no automated method of statistical analyses in the software making it a 

time-consuming task. However, Pettersen (2013) gives an example of a statistical verification 

of  classification images of corals, counting the successful and unsuccessful pixels and placing 

them in classification matrixes. Without this verification, the classification success of the results 

in this study can only be deemed approximately correct. An aspect, which can cause errors in 

classifications, is the amount of pixels defining the classes. There were used 100 pixels for 

defining the samples in these classifications. A large number of class-defining pixels increases 

the probability of the pixels to be defined in a class. With a smaller number, the classifications 

get less unsuccessful classified pixels. 

 

6.1.4 Evaluation of the methodology of the laboratory work 

The cuvette setup of the samples was an appropriate setup for the reflectance tests of dry 

samples. Disadvantages of the setup were the shadows from the cuvette walls giving lower 

reflectance intensity in the edges of the samples. Choosing five pixels in three independent 

areas of the sample gave good results for making mean spectra, since the surface area of the 

samples are small. However, this will not work in situ at the seabed when the spatial resolution 

is lower. Several pixels and larger areas have to be used to get a better averaging of the spectra. 

Because of the diversity of the content of sediments, mixed spectra can be found in the pixels. 

The spectral unmixing method (Figure 3.8), can be recommended for this purpose. Absorption 

features can then be separated and it is possible to find the abundance of the endmember classes. 

Submerging some of the samples gave some problems. Suspended minerals in the water column 

above the sample surface probably increased the scattering of light. The contraction of wet 

sediments and sediment floating on the top the water membrane might have been less 

problematic if the sample holder (cuvette) had a larger area (e.g. Petri dish). However, if Petri 

dishes had been used, it would not be possible to capture hyperspectral images of several 

samples simultaneously. In addition, the distribution of the minerals in the sample surfaces 

changed during submerging. This is seen in the RGB images - for instance, the hematite grains 

are gathered in upper right corner in several of the artificial sediment samples (Figure 5.12).  
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6.2 Use of UHI in marine geological mapping 

The results from the laboratory tests and the literature study show that UHI can be used to detect 

and identify some properties of marine sediments including geochemical and organic contents 

and grain size. The data obtained from UHI are in addition of very high resolution. 

 

6.2.1 Mapping marine sediments 

The major question concerning the UHIs usefulness in marine geological mapping, is how it 

can contribute to, or complement the traditional mapping methods. These methods were 

described in chapter 2.2. UHI is a non-destructive and efficient method of mapping the seabed. 

It has better resolution at large depths than other remote sensing mapping methods, because of 

the proximity to the target. The automated classification of the sediments reduces the subjective 

interpretation of the data. The classification is limited and not comparable to qualitative analysis 

of sampled sediments, but it can be used as an efficient method of measuring the abundance of 

some sediment properties and sediment contents.  

 

Detecting and identifying properties of marine sediments  

Literature shows that HI can measure mineralogy, soil texture (sand, silt and clay), soil organic 

carbon, soil moisture, iron content, salinity, carbonates and weathering state of terrestrial soil 

(Mulder et al., 2011). Not all of these properties are possible to measure in underwater settings, 

due to the limitations of using light only in the visible spectrum. Studies of airborne HI used to 

identify and discriminate different marine features on shallow water seabed including sediments 

show some possibilities that can be applicable underwater (Fearns et al., 2011; Johnsen et al., 

2009; Volent et al., 2007).  

Both the laboratory results and literature indicate that UHI can detect variations in grain size, 

iron content, organic content and carbonate content (Johnsen et al., 2013). Grain size variations 

can be detected by variations in reflectance intensity and not by spectral shape. Variations of 

carbonate content can be detected by the whiteness of the sediment, shown by the artificial 

sediment experiment and by the natural sediment samples. Iron content and organic content can 

potentially be estimated from absorption features in the reflectance spectra.  

Orientation of grains, sorting and particle shape affected the laboratory measurements. 

However, it is not possible to determine these properties based on reflectance results, neither in 

laboratory nor in the field. UHI map with longer distances from the object during in situ 
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measurements than done in laboratory measurements. This means that small differences in 

scattering properties not are detected because each image pixel will detect a much larger area 

of a given sediment site. Numerical and graphical distributions of grain size and sorting are not 

possible to obtain from UHI. 

Topography influences the reflectance intensity measurements. Objects close to the light source 

show a higher reflectance than objects with a longer distance to the light source. This is shown 

in the HI monochromatic image of the carbonate crust with the original surface (Figure 5.25). 

Boulders might be identified from hyperspectral images of the seabed if these show a higher 

reflectance due to higher altitude than the surrounding sediments, or if they have different 

optical signatures than the surrounding sediments.  

Acoustic backscatter can provide proxy signals indicating variations in grain size of sediments. 

Backscatter resolution is generally a compromise between coverage (swath width) and 

resolution (feature detection). Similarly, UHI has to find a compromise survey altitude for 

light/detection ability. In practice, it is likely that the optimal survey altitude for UHI is lower 

than for multibeam backscatter by HiSAS mapping. This may result in a better coverage of 

grain size variations by HiSAS than UHI. 

 

Detecting and identifying mineralogy 

Literature show that the most abundant minerals in marine sediments (quartz, carbonates, 

feldspar, micas etc.) have most distinctive absorption features in IR and UV light. Since these 

parts of the electromagnetic spectrum are heavily attenuated in water, UHI cannot be used to 

make qualitative maps of all minerals compounding a particular sediment. Only some specific 

minerals can be classified in visible light. None of the traditional remote sensing mapping 

methods can detect minerals in the sediments. Sampling has to be carried out to find the 

sediment mineral content. Even though UHI does not give a classification of all minerals, it can 

be used to find the presence of some minerals. 

White minerals will not show absorption features in visible light. Therefore it is not possible to 

distinguish between minerals like calcite, aragonite and quartz by absorption features. However, 

the results from supervised classification show that differences in reflectance intensity can be 

used in discrimination. This will not be as easy in natural conditions, because the whiteness of 

these minerals vary with location. 
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The k-feldspar results show classification due to an orange color. No information on reflectance 

of k-feldspar was found in available literature. A classification based on color of this mineral 

will not be reliable, because the color of the same kind of mineral can vary. 

Literature shows that transition metals are possible to detect in UV-VNIR light. This include 

metals like iron (Fe), copper (Cu), silver (Ag), gold (Au), cobalt (Co), manganese (Mn), nickel 

(Ni), zinc (Zn), chromium (Cr), molybdenum (Mo), titanium (Ti) etc. Several of these have 

absorption features in visible light. Laboratory results in this study show that hematite has 

spectral features in visible light, but the feature positions vary between the samples. UHI tested 

by Johnsen et al. (2013) show that manganese nodules, Fe2O3, FeSO4, MnO2 and MnSO4 can 

be classified by an unsupervised classification of the images. (Figure 3.18). 

Pelagic red clay is often found in marine sediments (Pinet, et al., 2009). The color comes from 

iron oxide coating on the minerals, which would be possible to trace with UHI. An example 

from Svalbard measuring red clay reflectance in a river plume (Figure 3.15) support this theory 

(Johnsen et al., 2009). 

 

Detecting and identifying carbonate deposits 

Both the natural sediment samples and the artificial sediment samples show an increase of 

reflectance intensity with increasing carbonate content. The samples of natural sediments 

demonstrate reality better than the artificial sediments. In addition to the overall increased 

reflectance, the natural sediments show a difference in shape of the spectra, where the spectra 

reflect more light in blue and red part for increasing carbonate content, indicating that the 

sediment is whiter. This is probably due to decreasing organic material in the natural sediments, 

not present in the artificial sediment mix. This is important to note when transferring these 

reflectance properties to mapping sediments in situ. 

Based on these experiments, carbonate deposits can be recognized by their high reflectance for 

all wavelengths in visible light. For instance, shell sand and shell gravel deposits can be mapped 

by their high ratio of white material resulting in a high reflectance values. This is a more 

efficient method to find the spatial distribution of shell sand than the traditional method of shell 

sand mapping described in chapter 2.2.4. Still, to find the thickness of the deposits seismic data 

interpretation must be used. In addition, carbonate ooze would be possible to map by UHI. This 

gives possibilities of mapping the CCD contour line as well, which goes down to 4500 m depth 

at some locations. 
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Carbonate crusts, coral reefs, carbonate mounds and the spatial distribution of bioclastic 

sediment surrounding these can possibly be mapped by their high reflectance values. These 

deposits will have high reflectance intensity due to topography as well. It is possible to get 

closer and map smaller reefs by UHI than by the mapping methods described in Somoza et al. 

(2014) in chapter 2.2.4. The morphological similarity between carbonate mounds and mounds 

created by sliding described in Bellec et al. (2014), may be distinguished by UHI. 

Dierssen et al. (2009) described reflectance mapping of whitings (suspended aragonite needles) 

in the Bahamas by airborne HI. Their results on optical signatures of whitings and carbonate 

sand are different from the results in this study. This may be due to the reflectance 

measurements through 5 m of tropical seawater, while the reflectance in this study was 

measured through 2 mm of filtered seawater. However, the spectra in the Bahamas study show 

that carbonate mud have higher reflectance than carbonate sand and that algal biofilm lowers 

the reflectance, which are in accordance with this study. 

 

Spatial resolution of mapping methods 

Spatial resolution include the proximity to the target and the signal-to-noise ratio of the sensor. 

The distance to target being ~2 m using UHI gives a resolution of ~2 mm making this method 

ideal for mapping underwater habitat variations on sub-meter scales (Johnsen et al., 2013).  

The spatial resolution of other mapping techniques with equipment used by MAREANO are 

compared to the UHI in Table 6.1 – this include multibeam echosounder (MBES), TOPAS 

shallow seismic, video analysis and synthetic aperture sonar (SAS). The maximum mapping 

depth and range of application is also included in the table. Video and SAS have a very good 

spatial resolution, but video can only be used for visual interpretations and SAS cannot map 

geochemistry. To map topography and determining sediment properties such as grain size and 

geotechnical properties like compaction, porosity and sorting, SAS might be a better choice 

than UHI. 
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Table 6.1 Comparison of marine mapping methods. Numbers are based on subsea systems from 

Kongsberg Maritime (2014), except UHI numbers that are based on Johnsen et al. (2013). 

Method Range of application Spatial resolution Max. depth 

UHI Automated method of mapping 

metals, grain size, iron content, 

organic content and carbonate 

content. 

~2 mm ~6000 m with 

AUV 

MBES 

EM 710 

EM 302 

Bathymetry and backscatter 

(topography, grain size, 

compaction, porosity and 

sorting). 

Depending on depth and 

sensor (5-50 m grid size 

on terrain maps) 

~2000 m      

(EM 710) 

~7000 m      

(EM 302) 

TOPAS 

PS 18 

Shallow seismic Depending on depth and 

sensor (range resolution 

>15 cm) 

~11 000 m 

Video Visual description, mapping 

marine habitats. 

~2 cm ~3000 m 

SAS Bathymetry and backscatter 

(topography, grain size, 

compaction, porosity and 

sorting). 

~2 cm ~3000 m with 

AUV (HiSAS) 

 

 

6.2.2 Application in industry 

A field where UHI can be useful, based on the results of the carbonate changes, is in the oil and 

gas industry. This shows a potential for application in monitoring changes of carbonate content 

in sediments around gas leakages from carbon capture in reservoirs. The laboratory results show 

that only large changes in carbonate content can be traced, but this might be different for sensors 

with better sensitivity. There is also a potential to detect spreading of cutting materials on the 

seabed if these consist of minerals that can be identified by the hyperspectral imager and 

distinguished from the rest of the sediments. 

The ability to detect and classify amounts of metals on the seabed is a great advantage in the 

marine mining industry. Enormous resources of different metals eroded from land are found on 

the seabed. Manganese nodules are formed by terrestrial manganese transferred to the deep by 

biogeochemical cycling. Metals like Cu, Fe, Zn, Au and Ag are also found around hydrothermal 

vents (“black smokers”) in plate tectonic areas. These precipitate from the vent fluids as 
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polymetallic sulfate when they react with seawater sulfate (Rona, 2003). These metals are all 

transition elements and can potentially be mapped by UHI. Since the mining industry is the 

main driver in geological hyperspectral imaging, good information on reflectance from different 

metals may be expected to come from industrial driven research. 

Another field of application of UHI is in the land based mining industry. Deposition of mine 

tailings in fjords is a subject of current interest. This is a potential method of monitoring how 

the deposits spread on the seabed because grain size, mineralogy and other factors may be 

different from the natural sediments in the fjord. Another possibility can be to trace acid-

generating minerals such as pyrite and the oxidation product as indicator on pollution. Tracing 

of these minerals in terrestrial mine-tailings by HI have been successful (Riaza & Müller, 2010; 

Shang et al., 2009). 

The laboratory results (supervised classification) show that the whiteness of different samples 

is highly applicable for discrimination analyses. This can be used to find the whiteness of 

carbonate deposits in the mining industry. There are several other fields were terrestrial HI can 

be useful, but these will not be discussed here. One examples is the detection of expansive clay 

by HI, which can be used in engineering geology and geotechnical mapping (Chabrillant et al., 

2002). 

 

6.2.3 Challenges and limitation of UHI for geological purposes 

The main problem of UHI for geological mapping is that IR and UV light is heavily attenuated 

in seawater. If a method of using IR and UV light underwater is developed, the UHI will get a 

larger range of application. Sensing IR and UV reflectance could be possible if the light source 

and sensor get close enough to the sediments. The attenuation of visible light and the limits of 

UV and IR light depths are shown in Figure 6.1. For deep ocean water (case 1 water), the 

distance has to be less than 6 m (1% light depth) to sense light at 700 nm and the distance 

decreases rapid to less than 2 m at 750 nm. In fjord water (case 2 water) the 1% light depth is 5 

m at 700 nm. This give an indication of how close the UHI has to be to the seabed, which would 

be less than 1 m. 

The vertical attenuation coefficient of UV light is smaller, which indicate a better potential for 

reflectance measurements in this part of the spectra. Light at 400 nm can be measured at several 

100 meters depth and decreases to 2 m at 200 nm. At 1 m distance from the seabed, UV light 
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with wavelength down to 200 nm can be measured. In fjord waters, the vertical attenuation 

coefficient is larger and UV light get a 1% light depth at less than 10 m.  

 

 
 

Figure 6.1 Illustration of the attenuation of light in seawater. Vertical red lines indicate the limit of IR 

light, and vertical blue lines the UV light limit. The cross of the vertical and horizontal lines show the 

vertical attenuation coefficient and 1% light depth at these limits. Modification of figure 3.2 (Sakshaug 

et al., 2009). 

 

The attenuation in water is not the only challenge regarding IR and UV reflectance 

measurements. The UHI sensor needs to be developed more UV and IR sensitive for this 

purpose as well. Measuring UV light is difficult because the reflectance instruments attenuate 

light in the instruments and there is a need for developing other optical fibers and spectrometer 

instruments. The prototype HI sensor used in this study had low sensitivity at wavelengths 

below 420 nm and above 680 nm, and would not be sufficient for this purpose. A sensor with 

better UV and IR sensitivity (350-850 nm) and with higher spatial and radiometric resolution 

has recently been developed by Ecotone AS and tested on a ROV. The result was successful, 

covering large areas of seabed and creating geo-localized seabed maps (Johnsen et al., 2013; 

Ludvigsen et al., 2014). 

With normal operation of the present AUVs, the distance between the UHI sensor and light 

source, and the seabed is a challenge. Development of more advanced AUVs, being able to stop 

and get close to the seabed for close-up imagery, could be a way of overcoming this problem. 

A similar approach can be envisaged for ROV based UHI imagery acquisition. 

UV 

IR 
UV 

IR 
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Other limitations of optical measurements of the seabed include algal/bacterial biofilm and 

fauna on the seabed, covering sediments and features like carbonate crust and boulders. 

Reflectance from these features can be obscured by the biofilm. The crust with the original 

surface in this study is partly covered by organic mud, so this can also obscure the reflectance 

results.  

Since white minerals are difficult to classify by reflectance spectra shape, it is possible that 

other minerals with high reflectance like quartz can be misclassified as calcium carbonate. Then 

the calcium carbonate content will be overestimated. In addition, the absorption features of iron 

content and organic content can be difficult to distinguish.  

The variations in sediment content across different locations give site-specific optical signatures 

and mixed spectra. This has to be considered in in situ UHI measurements of sediments. A 

possible mapping approach can be - setting the optical signature of different content (iron, 

metals etc.) as endmembers and identify them within the reflectance spectra of the recorded 

pixels. A spectral unmixing has to be carried out for the pixels to make abundance maps of the 

seabed. Fearns et al. (2011) showed HI data from airborne mapping overlaid on bathymetry 

data. A similar approach probably makes it easier to verify the results from UHI. If bathymetry 

data from SAS could be used in addition to the optical signatures from UHI, the result would 

be high resolution 3D maps with great interpretation possibilities. 

Because of these limitations, UHI cannot replace the traditional mapping methods to map 

seabed geology, but it can serve as a valuable contribution that facilitates the acquisition of 

geochemical remote sensing data with good spatial resolution. Such data can also be used to 

calibrate other data, such as multibeam backscatter data. Figure 6.2 show an illustration of some 

of the marine geological applications of UHI, including metals from black smokers, coral reefs 

and carbonate sediments. 
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Figure 6.2 Illustration of the seabed and possible geological application of UHI. Features are not in 

correct scale. 

  

Iron content 
Organic content 
Grain size 

 

Carbonate content 
Grain size 

 

Metals 
 

 

Black 
smoker 
 

 

Coral reef 
 

 



 

116  

 

 

  



 

117 

 

Chapter 7  Conclusions and recommendations 

 

 

7.1 Conclusions 

Literature studies and laboratory results give a reason to believe that the following properties 

of marine sediments can be detected and identified by UHI: 

 Iron content and organic content due to absorption features in UV and visible light. 

 

 Minerals containing transition metals (e.g. hematite) with absorption features in UV and 

visible light. 

 

 Grain size changes due to changes in reflectance intensities. 

 

 Carbonate content variations due to the whiteness of the sediment. This can be used in 

mapping of bioclastic sediments, carbonate crusts and coral reefs. 

 

Challenges regarding UHI in marine geological mapping include the following points: 

 UHI has limited abilities to detect spectral reflectance of UV and IR light due to 

attenuation in seawater and limitations in the instruments. 

 

 The most abundant minerals in marine sediments are “white” minerals (quartz, calcium 

carbonate, feldspar, muscovite, etc.), which do not show spectral features in visible light 

and therefore are difficult to distinguish, based on optical signature. In addition, the 

absorption features from iron content and organic content can be difficult to distinguish. 

 

 Biofilm on the sediments and seabed features can obscure the reflectance signal from 

minerals. 

 

Comparing UHI to established mapping methods results in the following conclusions:  

 UHI can detect geochemical properties - no other remote sensing mapping method can 

do this. 

 

 UHI give better spatial resolution at large depths than traditional mapping methods. 

 

 UHI do not give precise qualitative values of sediment content, thus it cannot replace 

sediment sampling and analysis. 

 

 Using high-resolution bathymetry data and UHI data together show great potentials of 

mapping a range of geological properties of the seabed with high spatial resolution. 
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7.2 Further work 

UHI is a marine mapping method with great potentials. However, to verify its range of 

applications, there is a need for further studies and development of the instruments. The newest 

developed equipment and software, with fewer limitations than the equipment used in this 

thesis, must be used in further research to obtain more precise data. Here are some 

recommendations for further work: 

 Develop more UV and IR sensitive instruments and test these underwater. 

 

 Test UHI on geological material in situ (carbonate changes, grain size, organic material, 

iron content, metals etc.). Combine these measurements with established mapping 

methods and compare the data gained. 

  

 Find more information on optical remote sensing of metals and optical signatures of 

these. This can be relevant for exploration of marine minerals. 

 

 Develop a methodology of mapping sediments in situ with UHI, e.g. using spectral 

unmixing of the reflectance spectra. 
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Appendix A – RGB images of all samples  
 

Table A.1 RGB images off all samples (dry and submerged). Scale of images: 10*10 mm. 

Sample Dry Submerged 

M1 

  
M2 

  
M3 

  



K1 

  
K2 

  

K3 

  



Q1 

  
Q2 

  
Q3 

  



Cs1 

  
Cs2 

 
  

Cs3 

  



Cc1 

  
Cc2 

 
 

Cc3 

 
 



Cp1 

 
 

Cp2 

 

 
Cp3 

 
 



H1 

  

H2 

  
H3 

  



OM1 

  
OM2 

  
OM3 

  



FS1 

  
FS2 

  
FS3 

  



MS1 

  
MS2 

  
MS3 

 
 



SS1 

 
 

SS2 

  
SS3 

  



SG1 

  
SG2 

  

SG3 

  



0%A 

 
 

0%B 

 
 

0%C 

  



0.5%A 

 
 

0.5%B 

 
 

0.5%C 

  



1%A 

 
 

1%B 

  
1%C 

  



2%A 

 
 

2%B 

 
 

2%C 

 
 



4%A 

  

4%B 

  
4%C 

  



10%A 

  
10%B 

 
 

10%C 

  



25%A 

  

25%B 

  
25%C 

  



50%A 

 
 

50%B 

 
 

50%C 

  

 



Appendix B – Hyperspectral images 

  

Table B.1 Monochromatic images of mineral samples. Scale of images: cuvette samples are 10*10 

mm. The reference plate is seen to the left in the images. 

Minerals 

 
Set 1 (dry) at 590 nm 

 
Set 1 (w) at 570 nm 

 
Set 2 (dry) at 590 nm 

 
Set 2 (w) at 570 nm 

 
Set 3 (dry) at 590 nm 

 
Set 3 (w) at 570 nm 

 
Muscovite (set 1, set 2 

and set 3) at 570 nm (w) 

 



Hematite (set 1, set 2 and 

set 3) at 640 nm (dry) 

 
Hematite (set 1, set 2 and 

set 3) at 570 nm (w) 

 
 

 

Table B.2 Monochromatic images of the artificial sediment samples. Scale of images: cuvette samples 

are 10*10 mm. 

Artificial sediments  

 
Set A at 

570 nm 

(dry) 

 
Set A at 

570 nm 

(w) 

 
Set A at 

570 nm 

(w) 

 
Set B at 

570 nm 

(dry) 

 
Set B at 

570 nm 

(w) 

 

 



Set B at 

570 nm 

(w) 

 

 
Set C at 

570 nm 

(dry) 

 

 
Set C at 

570 nm 

(w) 

 

 
Set C at 

570 nm 

(w) 

 

 
 

 

Table B.3 Monochromatic images of natural sediment samples. Scale of images: cuvette samples are 

10*10 mm. 

Natural sediments 

 
Set 1 at 640 nm (dry) 

 

 
Set 1 at 570 nm (w) 

 

 
Set 2 at 640 nm (dry) 

 

 



Set 2 at 570 nm (w) 

 

 
Set 3 at 640 nm (dry) 

 

 
Set 3 at 570 nm (w) 

 

 
OM (set 1, set 2 and set 3) 

at 590 nm (dry) 

 

 
OM (set 1, set 2 and set 3) 

at 570 nm (w) 

 

 
Fine sand (set 1, set 2 and 

set 3) at 570 nm (w) 

 

 
 

 

  



Table B.4 Monochromatic images of carbonate crust samples. Scale of images: height of the images 

are approx. 12 mm. 

Carbonate crusts 

 
Fresh 

surface at 

570 nm 

(dry) 

  
Fresh 

surface at 

570 nm 

(w) 

  
Original 

surface at 

570 nm 

(dry) 

  
Original 

surface at 

570 nm 

(w) 

  
 

  



 

 

 

 

 

 

 

 



Appendix C – HI spectra of each sample 

 

Reflectance spectra from HI measurements used in the estimation of the mean spectra of each 

sample are presented in: 

Table C.1 – Minerals (except hematite, which is shown in the results) 

Table C.2 – Artificial sediments 

Table C.3 – Natural samples 

Table C.4 – Carbonate crusts 

a, b and c spectra in each sample represent spectra from three different areas of sample 

surface. 

 

  



Table C.1 Mineral samples 
R

ef
le

ct
an

ce
 (

R
) 

M1 M2 M3 

   

M1 (w) M2 (w) M3 (w) 

   

K1 K2 K3 

   

K1(w) K2(w) K3(w) 

   

 Wavelength [nm] 

 



R
ef

le
ct

an
ce

 (
R

) 
Q1 Q2 Q3 

   

Q1 (w) Q2 (w) Q3 (w) 

   

Cs1 Cs2 Cs3 

   

Cs1(w) Cs2(w) Cs3(w) 

   

 Wavelength [nm] 

 

 



R
ef

le
ct

an
ce

 (
R

) 
Cc1 Cc2 Cc3 

   

Cc1(w) Cc2(w) Cc3(w) 

   

Cp1 Cp2 Cp3 

   

Cp1(w) Cp2(w) Cp3(w) 

   

 Wavelength [nm] 

 

  



Table A.2 Artificial sediment samples 
R

ef
le

ct
an

ce
 (

R
) 

0%A 0%B 0%C 

   

0%A (w) 0%B (w) 0%C (w) 

   

0.5%A 0.5%B 0.5%C 

   

0.5%A (w) 0.5%B (w) 0.5%C (w) 

   

 Wavelength [nm] 

 



R
ef

le
ct

an
ce

 (
R

) 
1%A 1%B 1%C 

   

1%A (w) 1%B (w) 1%C (w) 

   

2%A 2%B 2%C 

   

2%A (w) 2%B (w) 2%C (w) 

   

 Wavelength [nm] 

 

 



R
ef

le
ct

an
ce

 (
R

) 
4%A 4%B 4%C 

   

4%A (w) 4%B (w) 4%C (w) 

   

10%A 10%B 10%C 

   

10%A (w) 10%B (w) 10%C (w) 

   

 Wavelength [nm] 

 

 



R
ef

le
ct

an
ce

 (
R

) 
25%A 25%B 25%C 

   

25%A (w) 25%B (w) 25%C (w) 

   

50%A 50%B 50%C 

   

50%A (w) 50%B (w) 50%C (w) 

   

 Wavelength [nm] 

 

 



 
R

ef
le

ct
an

ce
 (

R
) 

100%A 100%B 100%C 

   

100%A (w) 100%B (w) 100%C (w) 

   

 Wavelength [nm] 

 

  



Table B.3 Natural sediment samples 
R

ef
le

ct
an

ce
 (

R
) 

OM1 OM2 OM3 

   

OM1 (w) OM2 (w) OM3 (w) 

   

FS1 FS2 FS3 

   

FS1(w) FS2(w) FS3(w) 

   

 Wavelength [nm] 

 



 
R

ef
le

ct
an

ce
 (

R
) 

MS1 MS2 MS3 

   

MS1 (w) MS2 (w) MS3 (w) 

   

SS1 SS2 SS3 

   

SS1(w) SS2(w) SS3(w) 

   

 Wavelength [nm] 

 



R
ef

le
ct

an
ce

 (
R

) 
SG1 SG2 SG3 

   

SG1 (w) SG2 (w) SG3 (w) 

   

 Wavelength [nm] 

 

  



Table B.4 Carbonate crust samples 

 

R
ef

le
ct

an
ce

 (
R

) 

CG1 CG2 CG3 

   

CG1 (w) CG2 (w) CG3 (w) 

   

CaCO31 CaCO32 CaCO33 

   

CaCO31(w) CaCO32(w) CaCO33(w) 

   

 Wavelength [nm] 



 
R

ef
le

ct
an

ce
 (

R
) 

Sa1 Sa2 Sa3 

   

Sa1 (w) Sa2 (w) Sa3 (w) 

   

Sb1 Sb2 Sb3 

   

Sa1(w) Sb2(w) Sb3(w) 

   

 Wavelength [nm] 

 



 
R

ef
le

ct
an

ce
 (

R
) 

Sc1 Sc2 Sc3 

   

Sc1 (w) Sc2 (w) Sc3 (w) 

   

 Wavelength [nm] 

 

  



 



Appendix D – Visual description of natural sediment samples provided by NGU 
 

Table D.1 A visual description by NGU of the samples provided to the laboratory tests. 

Prøve-
nummer Vanndyp 

Skjellsand-
kategori 

Sedkorn 
Str_Tekst 

Karbonatinnhold-
prosent 

Sortering 
Visuelt 

Prosentandel 
Skjellbiter 
over 1cm Farge 

Kornfraksjoner 
avtagende Fauna 

Kalk-
alger Kommentar Bildefil 

P1306019 30 Rein skjellsand Grov sand 90 G <1 Gråhvit gs,ms,vgs     
Tobis (fisk), Munida 
(crustacea) P6172323 

P1306020 28 Rein skjellsand Grov sand 90 G 1 Gråhvit gs,ms,vgs A,B E 4 kuskjell, 1 blåskjell P6172324 

P1306021 18 Rein skjellgrus Sandholdig grus 90 G 1 Gråhvit gr,vgs,ms A     P6172325 

P1306025 28 Ikke skjellsand Organisk slam 0 G <1 Brun s,l,vfs G   
brun algae blandet it 
sedimenter, dårlig lukt P6182332 

P1306026 36 Ikke skjellsand Organisk slam 0 G <1 Brun s,l,vfs     

brun algae blandet it 
sedimenter, dårlig lukt, 
noen få skjellbiter P6182333 

P1306042 42 Rein skjellgrus Sandholdig grus 90 M 5 Hvit/grå/rosa gr,vgs,gs     knust og uknust skjell P6182354 

P1306046 33 Rein skjellgrus Sandholdig grus 90 M 8 Hvit/lila/grå gr,vgs     noen små stein P6182367 

P1306054 28 Rein skjellsand Grov sand 85 G 3 hvit,grå,+div vgs,gs,gr,ms D E liten E (rugl) P6182375 

P1306079 9 Ikke skjellsand Sand 20 G 1 mørk brun/grå/svart ms,fs A   
liten prøve. blandet 
korn farger P6202405 

P1306108 85 
Urein 
skjellgrus Sandholdig grus 70 M 1 brun + div gr,vgs,gs     

2 forsøk.grus av små 
kuskjeller + polychaete 
rør. Litt sand, noen 
stein. P6212448 

P1306118 51 
Urein 
skjellgrus Sand 50 G <1 lysbrun + div ms,gs,vgs A   små levende kuskell.  P6212464 

P1306127 66 Ikke skjellsand Sand 40 G <1 olivengrå/lysbrun ms,gs,fs D   
litt knust 
skjell/polychaete rør P6212471 

P1306131 76 Ikke skjellsand Sand 30 G <1 lysbrun + svart ms,gs,vgs,gr     

noen stein 1-7cm 
(several angular), noen 
skjellbiter P6212473 

P1306148 58 Ikke skjellsand Fin sand 10 G <1 mørk gråbrun fs,s,gs     
darlig lukt. Litt brun 
algae. P6222501 

 


