
Mechanism parametrization, modeling
and FE-meshing

Rasmus Korvald Skaare

Mechanical Engineering

Supervisor: Ole Ivar Sivertsen, IPM

Department of Engineering Design and Materials

Submission date: June 2015

Norwegian University of Science and Technology

iii

Preface
This is a Master’s Thesis written in the course TMM4901 - Engineering Design,

Calculation and Manufacture, accomplished during the spring 2015 at the

Department of Engineering Design and Materials, Norwegian University of Science

and Technology (NTNU) in Trondheim.

The thesis is a continuation of my project thesis fall 2014 based on a KBE pilot

implementation in AML developed by Ole Ivar Sivertsen during a sabbatical year

(2013-2014) when he was visiting TechnoSoft Inc. in Ohio, USA.

I would like to thank Professor Ole Ivar Sivertsen for his never-ending enthusiasm,

guidance, feedback and lots of inspiring discussions throughout the entire duration

of the thesis work. Much appreciated help was also given by Professor Bjørn

Haugen, as well as Trapper Schuler and TechnoSoft Inc. providing the AML

software used and technical support.

Trondheim, June 17, 2015

Rasmus Korvald Skaare

iv

v

Abstract
This thesis is written to show the development of an application used for mechanism

parametrization, modeling and finite element meshing. Concepts from Knowledge

Based Engineering (KBE) are applied and the possibility of using the Sheth – Uicker

convention (SU) for parameterizing the links and joints of a mechanism is explored.

A KBE application has been developed in the Adaptive Modeling Language (AML)

implementing design rules and mechanism theory in a parametric model. The

application features customization of the shape, dimension and cross section of links

regardless of the number of joints connected. Incidence relationships together with

joint position, type and direction are given as input and dimensions are calculated

based on the connectivity of the mechanical system. The application also

automatically meshes the model.

From the work done automated modelling and meshing of mechanisms is

demonstrated from given input parameters, and is an important step on the way to

automate the entire mechanism design process. The application provides concept

and ideas and a solid framework for further development that has the potential to

drastically reduce routine work in the design process of mechanisms.

vi

vii

Sammendrag
Denne rapporten er skrevet for å vise utviklingen av en applikasjon brukt for

parametrisering, modellering og finite element meshing av mekanismer. Konsepter

fra Kunnskapsbasert Engineering (KBE) er tatt i bruk og muligheten for å bruke

Sheth og Uickers konvensjon (SU) for parametrisering av lenker og ledd i en

mekanisme er studert.

En KBE applikasjon har blitt utviklet i Adaptive Modeling Language (AML) ved å

implementere designregler og mekanismeteori i en parametrisk modell.

Applikasjonen inneholder funksjonalitet for tilpasning av form, dimensjon og valg

av type tverrsnitt på lenker uavhengig av antallet av ledd den er tilkoblet.

Koblingene sammen med leddens posisjon, type og retning er gitt som inndata og

dimensjonene er beregnet basert på koblingene av mekansimen. Applikasjonen

mesher også modellen automatisk.

Ut fra arbeidet som er gjennomført blir automatisert modellering og meshing av

mekanismer demonstrert fra gitte inndataparametre, og dette er et viktig skritt på

veien for å automatisere hele designprosessen av mekanismer. Applikasjonen

presenterer konsepter og ideer og er et solid rammeverk for videre utvikling som har

potensial til å drastisk redusere rutinearbeid i designprosessen av mekanismer.

viii

ix

Table of Contents

Preface iii

Abstract v

Sammendrag vii

Table of Contents ix

List of Figures xii

Notations xiii

1 Introduction 1

1.1 Background 1

1.2 Research questions 2

1.3 Related work 2

1.4 Structure 3

2 Theory 5

2.1 Knowledge Based Engineering 5

2.1.1 Modeling tools (with KBE) 5

2.1.2 Modeling techniques 5

2.1.3 Design process automation 6

2.2 Mechanisms 7

2.2.1 Constraints 8

2.2.2 Links 10

2.2.3 Topology 11

2.3 Parameterization of mechanisms 12

2.3.1 Representations of finite displacements 12

2.3.2 Kinematic modeling convention 15

2.4 Finite Element Analysis 18

2.4.1 Meshing 18

2.4.2 Boundary conditions 19

3 Methodology 21

x

3.1 Adaptive Modeling Language 21

3.2 Runtime environment 21

3.3 Editor 22

3.4 Documentation 22

3.5 Source code management 23

3.6 Programming style 25

4 Development process 27

4.1 Application input 27

4.1.1 Mechanism library 27

4.1.2 Node list 27

4.1.3 Constraint list 27

4.1.4 Shape-file 28

4.1.5 Data models 28

4.1.6 Collections 29

4.2 Initial frame placements 29

4.3 Link geometry 31

4.3.1 SU parameters 32

4.3.2 Connection shape 33

4.3.3 Shape parameterization 35

4.3.4 Sweep 37

4.3.5 Surfaces 39

4.4 Joint geometry 41

4.5 Assembly 42

4.6 Meshing 44

4.7 Analysis 45

5 Results 47

6 Discussion 55

7 Conclusions 59

8 Further work 61

References 63

xi

Appendix A Additional results A-1

Appendix B AML Reference Manual B-7

Appendix C AML setup C-15

Appendix D Source code D-21

Appendix E Risk analysis E-22

xii

List of Figures
Figure 2-1 Four bar mechanisms: Planar, spherical, spatial (Bennett), and no

relative motion 8

Figure 2-2 The six lower-pairs: (a) helical joint, (b) revolute joint, (c) prismatic joint,

(d) cylindric joint, (e) spherical joint, (f) planar joint. 9

Figure 2-3 Example of binary, ternary and quaternary link 10

Figure 2-4 Structural (left) and graph representation of a four bar mechanism 11

Figure 2-5 Line configurations of Zij and Zjk for a chain of links Li, Lj, Lk together

with named frames.(Bongardt, 2013) 16

Figure 2-6 Example mechanism with named links, joints and frames. and

parameters for a displacement between frames FDj and FAj. (Bongardt, 2013)

 17

Figure 2-7 Typical finite element geometries in one through three

dimensions.(Felippa, 2004) 19

Figure 2-8 Common types of Rigid Body Elements, RBAR, RBE2 and RBE3. 20

Figure 4-1 Frame placements on male element (left) and female element of revolute

joint 30

Figure 4-2 Number of possible connections between joints 31

Figure 4-3 Generated spline curves of planar mechanism, joint axes in blue 35

Figure 4-4 Generated spline curve and geometry for spherical mechanism, joint axes

in blue 37

Figure 4-5 Sweeps with different varying orientation and different sized cross

section 39

Figure 5-1 Model tree in mechanism application 47

Figure 5-2 Joint positions and joint frames 48

Figure 5-3 Building blocks of a link 48

Figure 5-4 Examples of shape and cross sections of a link 49

Figure 5-5 Positioning of joint and assembly of link 49

Figure 5-6 Assembly of ternary link 50

Figure 5-7 Different topological variations of a quaternary link 50

Figure 5-8 Position of sub-frame and main frame on sperical joint 50

Figure 5-9 Joint element size varying with cross section on same link and paired

element. 51

Figure 5-10 Meshing of links with different cross sections 51

Figure 5-11 Nodes on mating surfaces of joint elements and node in joint center 51

Figure 5-12 Four bar mechanism and Watt mechanism generated by the application

 52

Figure 5-13 Mesh generated by the application of models in Figure 5-12 52

xiii

Figure 5-14 Lower control arm from car suspension 53

Figure 5-15 Double wishbone suspension showing different variations of models and

mesh 54

Figure 0-1 Different cross sections and dimensions of a binary link A-5

Figure 0-2 Different shapes of a binary link A-5

Figure 0-3 Different morphological variations of a ternary link A-6

Notations
General notation

A vector is denoted by a small bold letter, e.g., a, a matrix by capital bold letter, e.g.,

M. Lines, links, joints, and frames are denoted by capital letters. For operations, the

following are needed: the sign · indicates a scalar, vector, or matrix multiplication.

In this thesis, the notation of transposing (.)T is not used for vectors: instead of

writing aT · b, a shorter notation is used with the symbol ∗ to indicate the sum of

element-wise multiplications, such that 𝒂 ∗ 𝒃 = ∑ 𝑎𝑖 ∙ 𝑏𝑖. Two orthogonal projections

are used in this thesis. First, the orthogonal projection of a vector b ∈ ℝd onto some

vector a ∈ ℝd is denoted as 𝜋𝐚(𝒃).

𝜋𝐚(𝒃) =
𝒃 ∗ 𝒂

𝒂 ∗ 𝒂
∙ 𝒂 = argmin

𝜅∙𝒂,𝜅∈ℝ
𝑑𝑖𝑠𝑡(𝜅 ∙ 𝒂, 𝒃)

Second, the orthogonal projection of a vector b ∈ ℝd into the orthogonal complement

a⊥ ∈ ℝd of some vector a is denoted as 𝜏𝐚(𝒃).

𝜏𝐚(𝒃) = 𝒃 −
𝒃 ∗ 𝒂

𝒂 ∗ 𝒂
∙ 𝒂 = argmin

𝒑∈𝒂⊥∈ℝ
𝑑𝑖𝑠𝑡(𝒑, 𝒃)

Latin lower case letters

x, y, z axes-vectors of frame F

p location vector

ω direction vector

v0 orthogonal moment vector

Latin upper case letters

F frame, local coordinate system

xiv

𝐹(𝑖𝑗)𝑖
, 𝐹(𝑖𝑗)𝑗

 frames at joint Jij

Gij, Gjk lines

Jij joint connecting Li and Lj

Li link

Zij, Zjk lines through joint axes on Jij and Jjk

Abbreviations

AI Artificial Intelligence

AML Adaptive Modeling Language

CAD Computer Aided Design

CAE Computer Aided Engineering

DOF Degree Of Freedom

FEA Finite Element Analysis

GUI Graphical User Interface

KBE Knowledge Based Engineering

MPC Multi-Point Constraint

NURBS Non-uniform rational basis spline

OOP Object Oriented Programming

PDE Partial Differential Equation

REPL Read Eval Print Loop

SU Sheth – Uicker

TSI TechnoSoft Inc.

1

1 Introduction

1.1 Background

Automation in engineering design is typically referred to as Knowledge Based

Engineering (KBE) (Rocca, 2012), (Pinfold & Chapman, 1999). Over the last 15

years, KBE has been successful in a wide variety of defense and commercial

applications including aerospace, automotive, and capital equipment, resulting in

technologies like KBeDesign™ from Aker Solutions1 and Collaborative Hypersonic

Airbreathing Vehicle Environment (CoHAVE) at NASA (Chemaly, 2006). KBE has

for many years been the exclusive domain of a few and highly competitive industries

(aerospace and automotive in particular) and has not entered mainstream academic

research.

A mechanical system, or a mechanism, is defined as a collection of links which may

be interconnected by joints that constrain the relative motions between them. In the

design process of a mechanical system there are three basic stages; type synthesis

(selecting the type of mechanism), number synthesis (deciding the numbers of links

and the types and numbers of joints connecting them) and dimensional synthesis

(assigning detailed shapes, dimensions and material properties). (Uicker, Ravani, &

Sheth, 2013)

Modelling and simulating a mechanical system using CAE is extensive work,

requiring each link and joint to be modelled, assembled and meshed, before running

the simulation and analyzing the results. If this requires modifications of any

shapes or dimensions it will most certainly cause discrepancies leading to further

remodeling. Changing any decisions made earlier in the design process, like the type

of mechanism or number and type joints or links, will require most of subsequent

work to be redone. This process is repeated several times before the final design is

ready for production. (Sivertsen, 2014)

Introducing automation in the design process of mechanisms will reduce routine

design and repetitive work. Using a KBE system with integrated design and

simulation tools can implement design rules and mechanism theory in a parametric

model. A geometric model is then generated and idealized, and meshing and

simulation are run automatically. An optimization is then run comparing the design

1 http://www.kbedesign.com

http://www.kbedesign.com/

2

against performance criteria, generating new input to the model and iterating

towards the final design.

To create a parametric model a representation for mechanisms are needed. It should

hold the essential parameters, describing the “shape” and motion of each link, for a

complete description of the mechanism. Bongardt (2013) reviews different

conventions for specifying kinematics of mechanisms and emphasizes the practical

and theoretical preferences of the generalized convention developed by Sheth and

Uicker (1971). This convention delivers sets of parameters used to parametrize joint-

and link displacements. This representation enables comparison between the

topology and the geometry of different mechanisms.

1.2 Research questions

The research questions defined below will give the background for the work done in

this report.

RQ1: How can Sheth – Uicker convention be utilized to automate the

generation of link geometry?

RQ2: How can different links be represented using one generic class?

RQ3: How will the physical dimensions of links and joints affect each other?

RQ4: How can mesh generation be automated to create a link between

modeling and simulation?

1.3 Related work

The basis and inspiration for the work conducted in this thesis is based on the

Proposed Approach for Introducing Automation in Mechanism Design by Sivertsen

(2014). Sivertsen (2014) presents key concepts and elements for implementing

Knowledge Based Engineering (KBE) in automation of the design process for

mechanisms and developed a pilot implementation using the TechnoSoft Inc. (TSI)

supported Adaptive Modeling Language (AML). This is a mechanism analysis and

simulation model based on a Finite Element (FE) algorithms. The application

parameterizes the joint positions and from that automatically generates the links

and joints. The application also features a way to make a solid model of the

mechanism. Classes for different types of common mechanisms are predefined, and

default shapes for links and joints are provided.

3

1.4 Structure

Chapter 2 presents theory and research from KBE, the SU convention and mesh

generation. Chapter 3 is a review of the tools and methods used for the work with

this thesis. Chapter 4 presents the development of the mechanism application and

looks into modeling links based on the SU convention and mesh generation in AML.

The results are presented in chapter 5 and in chapter 6 the research questions are

discussed. Conclusions are presented in chapter 7 and suggestions for further work

are found in chapter 8.

4

5

2 Theory

2.1 Knowledge Based Engineering

Knowledge Based Engineering (KBE) is the art of using computerized knowledge to

automate engineering design. Software tools used to practice KBE offer an advanced

modeling paradigm with an open architecture, enabling the automation of the entire

product development cycle, integrating product configuration, design, analysis,

visualization, production planning, inspection, and cost estimation.

Pinfold and Chapman (2001) called it “an engineering method that represents a

merging of object oriented programming (OOP), artificial intelligence(AI) techniques

and computer-aided design technologies, giving benefit to customized or variant

design automation solutions’’.

Developing a KBE application is mostly about writing code using a KBE

programming language. But before starting with development, the typical

methodological approach to practice KBE is to start with the identification, then the

acquisition and, finally, the codification of the relevant knowledge that will have to

be embedded in the KBE application. (Rocca, 2012).

2.1.1 Modeling tools (with KBE)

In order to apply the concepts of KBE a KBE system is required. A KBE system

provides a framework for developing KBE applications which are flexible, detailed

and dynamic domain knowledge models, supporting design of even very complex

products. KBE-systems make the engineers able to write dedicated programs that

perform complex and specific engineering task efficiently with the purpose of

reducing product development time and cut engineering costs. E.g. before it took

engineers weeks to iterate to a final design including geometry, simulations and

documentation, with a KBE application this is now archived within days due to

reuse of knowledge and design.

2.1.2 Modeling techniques

The top-down and bottom-up approach are both design strategies of information

processing and knowledge ordering in software and product design and

development. In the top-down approach the critical information is placed on a

hierarchal top level and branches down to all lower component levels in the product.

6

Conversely, in the bottom-up approach, all base elements are modeled separately in

detail and finally assembled into larger (sub-) assemblies.

A method to facilitate reuse is by dividing geometric transformation into two

categories; morphological and topological. This way, the geometric models are given

the knowledge which controls the geometrical transformations required for design

automation. Morphological changes are manipulation of defined geometric entities

inside an object such as shape, dimensions, position and orientation, e.g. it is enough

to re-evaluate the instance. Topological changes are used to dynamically change and

control the number and type of objects by adding, replacing or removing objects in

the object tree, i.e. by using dynamic series of objects.

Morphological changes can be utilized in the model by making reusable design

components from base elements. The component’s design variable can be set on

instantiation or inherited from parent components. The topological changes can be

achieved by identifying the type and number of instances needed and dynamically

attach them to the model. This approach is a modified top-down approach, referred

to as dynamic top-down modeling, where the objects are linked to each other in a

hierarchic relational structure.

The development of more general models with focus on flexibility and robustness,

will allow engineers to work on a higher abstraction level where the use of low level

CAD functions (i.e. points, lines, sweeps and extrusions) during the modeling and

simulation phase is minimized if not fully eliminated. (Amadori, Tarkian, Ölvander,

& Krus, 2012)

2.1.3 Design process automation

A classic approach in the engineering design process involves using design tools for

component modelling and then specifics simulation tools for meshing, pre-

processing, calculation, post-processing for the first design concept tested, and then

it is necessary to start again for the next design modification. It is a methodical

series of steps that often need to be repeated many times before production phase

can be entered.

One aim of KBE tools and methods is to facilitate the connection between the design

process and numerical simulations by integrating design and simulation tools in a

collaborative environment. The purpose is to create a real link between the

geometry of a component and the simulation context to automate the simulation

task for the engineers to reduce time consumption spent on routine work.

7

KBE models with embedded design rules and engineering knowledge allows the

geometry of a generic component to be modified from a set of parameters (Rocca,

2012). The transition from the geometric model to a numerical model is automated

using an idealized model and mesh discretization to generate a finite element model.

A finite element analysis (FEA) is done using integrated simulation software and

the results are evaluated against specified criterions. The design optimization loop

is run through several iterations by deriving a new set of parameters and generating

new geometry. This streamlines the design process and allows engineers to test

several component architectures very quickly and identify the main design concepts.

(Roth, Chamoret, Badin, & Gomes, 2011)

2.2 Mechanisms

A mechanism is a collection of bodies (links) that may be interconnected by joints to

constrain their relative motions. They form a mechanical system with one body

fixed, with the purpose of altering a given input motion to produce a different output

motion. The basic components of a mechanism can be characterized as follows:

 Body (link): A mechanical body is a physical component that usually is

considered rigid. Its primary function is to hold fixed geometric relationships

between its joint elements. Links can be subdivided into categories depending

on the number of joints incident with that link.

 Constraint (joints): A joint is defined as a connection between two links.

The primary kinematic function of a joint is to constrain the relative motions

allowed between the connected bodies.

Mechanisms are in general divided into three categories, see Figure 2-1 :

 Planar: all moving points describe planar curves which all lie in parallel

planes.

 Spherical: each moving body (or its extension) has one point that remains

stationary as the system moves, and in which the stationary points of all

bodies lie at a common location.

 Spatial: does not include any restrictions on the relative motions of their

bodies.

8

Figure 2-1 Four bar mechanisms: Planar, spherical, spatial (Bennett), and no relative motion

2.2.1 Constraints

Because a joint connects two mechanical bodies, the joint is not a separate physical

entity in itself, but the interface composed of the contact surfaces on the two

connected bodies. The two contact surfaces, when considered separately, are each

referred to as a joint element and, when joined together, the surface of contact

physically adds some constraint(s) to the relative motion between two links. The

elements’ shapes make it natural to refer to one of them as the solid/male element

and the other as the hollow/female element. A coordinate system is placed in each

element, and the relative motions permitted between the joint elements are

assigned to variable parameters. Because these parameters are required as degrees

of freedom in relative motion allowed by the joint, they are referred to as joint

variables. As the mechanism moves, the linear transformation is described with a

transformation matrix using functions of the joint variable(s).

Joint pairs are categorized into lower pairs and higher pairs. The six lower-pairs

(Figure 2-2) have surface contact between their joint elements, whereas higher-pairs

have line or point contact between their elemental surfaces. The lower pairs are

described briefly as follows with the joint axis of a pair defined as the rotation,

translation, or spindle axis, shown as the z-axes of the joints in Figure 2-2.

(a)

(b)

(c)

9

(d)

(e)

(f)

Figure 2-2 The six lower-pairs: (a) helical joint, (b) revolute joint, (c) prismatic joint,

 (d) cylindric joint, (e) spherical joint, (f) planar joint.

A revolute joint only allows rotation, between the paired elements, around a joint

axis defined by the geometry. The revolute joint has only one degree of freedom

(DOF) and the joint variable is the relative rotation (∆θ) between the joint elements.

A prismatic joint only allows relative axial translation, of the paired elements with

respect to each other, defined by the geometry of the joint. This type of joint also has

one DOF, and the joint variable is the relative axial translation (∆s) between the

joint elements.

A cylindrical joint is equivalent to a revolute joint in series with a prismatic joint

with coaxial joint axes. It permits rotation about, and independent translation

along, the joint axis defined by the geometry of the joint. Therefore, the cylindrical

joint is a two DOFs joint and ∆θ and ∆s are both joint variables.

A helical joint allows two paired elements to rotate about, and translate along, the

joint axis. However, the rotational angle ∆θ and the axial distance ∆s are related to

the each other. Hence, the helical joint is a one DOF joint and either ∆θ or ∆s may be

used as the joint variable defining the relative displacement of the elements.

A spherical joint is equivalent to three revolute joints intersecting at a central point

and allows one element to rotate freely with respect to the other. Hence, the

spherical joint has three DOFs and the joint variables may be chosen as three angles

∆θ, ∆θ′, and ∆θ′′.

A planar joint is constituted of two planar surfaces, constrained to remain in contact

but with two translational DOFs on a plane and a rotational DOF about the joint

axis normal to the plane of contact. Hence, the plane joint is three DOFs joint and

three joint variables can be chosen as ∆s, ∆s′, and ∆θ.

10

In addition to the six lower pairs, two more joint types are included as they give

advantages in the simulation of mechanical systems. The rigid joint constrains all

motion between two links, and is therefore used as a stiff connection with no joint

variables and zero DOFs. The open/free joint has six unconstrained DOFs that do

not provide any constraint on displacement or rotation the “connected” bodies.

(Uicker et al., 2013)

2.2.2 Links

In general, the bodies of different types of mechanical systems come in an unlimited

variety of shapes, sizes, mass, properties, and so on. The individual bodies making

up a mechanism are called members or links. A member is a connection between two

joints. Two or more members connected together such that no relative motion can

occur between them will be considered as one link. The number of joints that are

incident on a link determines its topological variation known as the degree of a link.

Thus, a unary body has degree one, a binary body has degree two; a ternary body

has degree three, and so on as shown in Figure 2-3.

Figure 2-3 Example of binary, ternary and quaternary link

In kinematics, the study of relative motion among the various links of a mechanism,

a body is considered rigid if its deformation under stress is negligibly small. Because

masses are also neglected, the inertia effects and the forces that cause the motion

are not taken into account.

However, for light-weight and high-speed mechanisms, the elastic effects of a

mechanical body may become significant and must be taken into consideration.

Deformations and flexibilities of mechanical bodies require a separate and

comprehensive treatment, where each link has elastic (and also thermal) properties

characteristic of its shape and material.

Dimensional synthesis deals with assigning detailed shapes, dimensions and

material properties to the links in a mechanism. The shape is the path a member

has between two constraints; usually it is a straight line for planar mechanisms and

11

an arc for spherical mechanism, but it can have any kind of spatial configuration e.g.

as seen in a car suspension system. When loading a mechanical system, the second

moment of area of the cross section of a link is an important property that affects

both the deflection and stress caused by compression, tension, shear, bending and

torsion forces. The shape and cross section of the members on a link will determine

the morphological variation of a link. To determine the exact dimensional properties

it is desirable to perform a nonlinear analysis, which also takes elastic effects into

consideration. But a good initial approximation can be obtained by calculating the

forces in a truss system and applying classical beam theory.

2.2.3 Topology

The topological configuration of a mechanism can be expressed using an incidence

table, oriented graph or an incidence matrix. They are useful formats representing

the incidence relationships between links and joints, and the direction of a joint

specifying which element is male and female. The fixed link is labelled zero.

Figure 2-4 Structural (left) and graph representation of a four bar mechanism

Constraint From link To link

A 0 1

B 2 1

C 0 3

D 2 3

Table 1: Incidence table representing the mechanism in Figure 2-4

From the incidence relationships a topological analysis can be performed – studying

the number of bodies, the number and type of joints, the pattern in which the bodies

B

D
2

1
3

C
0

A

A B

C D

0

1

2

3

12

and joints are arranged, the number and pattern of closed loops2, and other such

characteristics that are determined by the connectivity of the system. These formats

are applicable to a wide variety of mechanisms and suited for manipulation by a

computer.

2.3 Parameterization of mechanisms

Sheth and Uicker (1971) present a generalized convention for measuring and

describing the critical dimensional parameters of the components of a mechanical

system. This is done by formulating mathematical models of the links and the

constraints imposed on these links which in turn can be combined to form the

overall system model on which various analysis procedures can be applied. Such a

convention is called a kinematic convention and delivers a set of parameters that

first and foremost can be used to parameterize the displacements which appear in

the computational routines of kinematics. Bongardt (2013) shows that the Sheth–

Uicker (SU) convention features advantages compared against the more popular

Denavit–Hartenberg convention, covering the complexity of any mechanism,

supporting systems containing multiple loops and with arbitrary constraints

imposed on the links. The theory behind the SU convention is quite comprehensive

and presented in detail here, because it is important for the context of work

presented in later this thesis.

2.3.1 Representations of finite displacements

A frame F is used as a term for a local coordinate system, describing its rotation and

translation relative to the origin. In kinematics, the axes of frames are ordered and

interpreted according to a common principle:

1. The z-axis is the major axis of F. It indicates the dominant direction of a

frame. In case that F is attached to J, the z-axis coincides with the joint axis.3

2. The x-axis is the minor axis of F. It indicates the secondary direction of a

frame. In case that F is attached to J, the configuration of J is indicated by

the x-axis.

3. The y-axis is the redundant axis of F. Its direction follows from the right-hand

rule, i.e., y = z × x.

In matrix notation a frame is given by

2 if every link is connected to every other link by at least two distinct paths, the kinematic chain

forms one or more closed loops
3 E.g. the rotation, translation, or spindle axis.

13

𝑭 = [
 𝒙 𝒚 𝒛 𝒑

 0 0 0 1
]

where x, y, z and p are elements of ℝ3 and p is the location of the frame F.

The homogeneous matrix of a displacement M incorporates a linear rotation (via

rotation matrix R) and an affine linear translation (via the translation vector t ∈ ℝ3

that is linearized by the addition of the fourth dimension), denoted as

𝑴 = [
 𝑹 𝒕
 0 1

]

Then, the spatial displacement matrix M between the two frames from FD to FA is

expressed via

𝑴 = (𝑭𝐷)−1 ∙ 𝑭𝐴

The parametric form of the line, G, passing through two points a and b, with 𝝎 =

𝒃 − 𝒂, reads:

𝐺 = 𝐺(𝒂, 𝝎) = 𝒂 + 𝝀 ⋅ 𝝎

Where p denotes an anchor point of the line, and ω denotes the direction vector of

the line. The homogeneous form of a line, G, passing through two points a = (a0, a)

and b = (b0, b) reads:

𝐺 = 𝐺(𝒂, 𝒃) = (𝑎0𝒃 − 𝑏0𝒂, 𝒂 × 𝒃) = (𝝎, 𝒗𝟎)

Where vector ω is referred to as the direction and vector v0 as the orthogonal

moment of the line. The coordinates of the homogeneous form are also called Plücker

coordinates.

Considering two lines, 𝐺𝑖𝑗 = (𝝎𝑖𝑗, 𝒗𝟎𝑖𝑗
) and 𝐺𝑗𝑘 = (𝝎𝑗𝑘, 𝒗𝟎𝑗𝑘

) their relative poses can

conveniently be analysis using homogenous coordinates. In Table 2, the four possible

poses of a pair of lines are compared.

Configuration
Common

Points
Directions Distance Special Points

coincident infinite
linear

dependent
d = 0 anchor midpoint

parallel none
linear

dependent
d > 0

anchor midpoint

projections

intersecting one
linear

independent
d = 0 intersection point

14

skew none
linear

independent
d > 0 closest points

Table 2 : Four relative poses (coincident, parallel, intersecting, skew) of two lines

together with some characteristic entities. (Bongardt, 2013)

The following sequence of statements is used to determine the configuration of a

pair of lines. They are coplanar (coincident, parallel, or intersecting) if and only if:

1

2
∙ (𝝎𝑖𝑗 ∗ 𝒗𝟎𝑗𝑘

+ 𝒗𝟎𝑖𝑗
∗ 𝝎𝑗𝑘) = 0

and coincident or parallell if:

|𝝎𝑖𝑗 × 𝝎𝑗𝑘| = 0

and coincident if:

|(𝝎𝑖𝑗 × 𝒗𝟎𝑖𝑗
− 𝝎𝑗𝑘 × 𝒗𝟎𝑗𝑘

) × 𝝎𝑖𝑗| = 0

In case of skew or intersecting lines, for each line, one can find a point that has

closest distance to the other line. For example, the closest point on 𝐺𝑖𝑗 to 𝐺𝑗𝑘 will be

denoted by 𝜋𝐺𝑖𝑗
(𝐺𝑗𝑘) via the orthogonal projections for lines as

𝜋𝐺𝑖𝑗
(𝐺𝑗𝑘) = argmin

𝒑𝑖𝑗∈𝐺𝑖𝑗

𝑑𝑖𝑠𝑡(𝒑𝑖𝑗, 𝐺𝑗𝑘)

For the case of intersecting lines, the closest points 𝜋𝐺𝑖𝑗
(𝐺𝑗𝑘) and 𝜋𝐺𝑗𝑘

(𝐺𝑖𝑗) coincide

with the intersection point 𝐺𝑖𝑗 ∩ 𝐺𝑗𝑘. The distance of intersecting lines is dist(𝒑𝑖𝑗, 𝐺𝑗𝑘)

= 0. If two lines, 𝐺𝑖𝑗 and 𝐺𝑗𝑘, are given in parametric form as

𝐺𝑖𝑗 = 𝒑𝑖𝑗 + 𝝀𝑖𝑗 ⋅ 𝝎𝑖𝑗

𝐺𝑗𝑘 = 𝒑𝑗𝑘 + 𝝀𝑗𝑘 ⋅ 𝝎𝑗𝑘

Then the closest points 𝜋𝐺𝑖𝑗
(𝐺𝑗𝑘) and 𝜋𝐺𝑗𝑘

(𝐺𝑖𝑗) , with 𝒅𝑖𝑗,𝑗𝑘 = 𝒑𝑗𝑘 − 𝒑𝑖𝑗 are given by

𝜋𝐺𝑖𝑗
(𝐺𝑗𝑘) = 𝒑𝑖𝑗 + 𝝀𝑖𝑗

∗ ⋅ 𝝎𝑖𝑗
𝝀𝑖𝑗

∗ =
(𝝎𝑖𝑗 × 𝝎𝑗𝑘) ∙ (𝒅𝑖𝑗,𝑗𝑘 × 𝝎𝑗𝑘)

(𝝎𝑖𝑗 × 𝝎𝑗𝑘)2

𝜋𝐺𝑗𝑘
(𝐺𝑖𝑗) = 𝒑𝑗𝑘 + 𝝀𝑗𝑘

∗ ⋅ 𝝎𝑗𝑘
𝝀𝑗𝑘

∗ =
(𝝎𝑖𝑗 × 𝝎𝑗𝑘) ∙ (𝒅𝑖𝑗,𝑗𝑘 × 𝝎𝑖𝑗)

(𝝎𝑖𝑗 × 𝝎𝑗𝑘)2

In case of coincident and parallel lines, neither 𝜋𝐺𝑖𝑗
(𝐺𝑗𝑘) nor 𝜋𝐺𝑗𝑘

(𝐺𝑖𝑗) can be

determined from the geometry, since all points provide the same (minimal) distance

15

to the other line. However, given the anchor points 𝒑𝑖𝑗 and 𝒑𝑗𝑘 of the lines, the

midpoint 𝒎𝑖𝑗,𝑗𝑘 of those two 𝒎𝑖𝑗,𝑗𝑘 =
1

2
(𝒑𝑖𝑗 + 𝒑𝑗𝑘) is determined. Then, the closest

point of 𝐺𝑖𝑗 to this midpoint 𝒎𝑖𝑗,𝑗𝑘 is determined as 𝜋𝐺𝑖𝑗
(𝒎𝑖𝑗,𝑗𝑘) and defined to be “the

closest point” 𝜋𝐺𝑖𝑗
(𝐺𝑗𝑘) on 𝐺𝑖𝑗 to 𝐺𝑗𝑘 . For the other line 𝐺𝑗𝑘 , the computation works

analogously.

A generalization of the closest point 𝜋𝐺𝑖𝑗

∗ (𝐺𝑗𝑘) on 𝐺𝑖𝑗 to 𝐺𝑗𝑘 is defined as follows:

𝜋𝐺𝑖𝑗

∗ (𝐺𝑗𝑘) = {

𝜋𝐺𝑖𝑗
(𝐺𝑗𝑘) 𝑖𝑓 𝑙𝑖𝑛𝑒𝑠 𝐺𝑖𝑗 , 𝐺𝑗𝑘 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔 𝑜𝑟 𝑠𝑘𝑒𝑤

1

2
𝜋𝐺𝑖𝑗

(𝒑𝑖𝑗 + 𝒑𝑗𝑘) 𝑖𝑓 𝑙𝑖𝑛𝑒𝑠 𝐺𝑖𝑗, 𝐺𝑗𝑘 𝑎𝑟𝑒 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑜𝑟 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

The generalized closest point 𝜋𝐺𝑖𝑗

∗ (𝐺𝑗𝑘) on 𝐺𝑖𝑗 equals (1) the closest point on line 𝐺𝑖𝑗 in

case of skew lines, (2) the intersection point in case of intersecting lines, (3) the

midpoint of the anchor points in case of coincident lines, (4) the projection midpoint

of the anchor points in case of parallel lines, see Table 2.

The generalized perpendicular direction given two lines 𝐺𝑖𝑗 and 𝐺𝑗𝑘 with

directions 𝝎𝑖𝑗, 𝝎𝑗𝑘 and anchor points 𝒑𝑖𝑗, 𝒑𝑗𝑘, the 𝝎𝑖𝑗,𝑗𝑘
∗ is then defined as follows:

𝝎𝑖𝑗,𝑗𝑘
∗ =⊥∗ (𝝎𝑖𝑗 , 𝝎𝑗𝑘) = {

 𝝎𝑖𝑗 × 𝝎𝑗𝑘 𝑖𝑓 𝑙𝑖𝑛𝑒𝑠 𝐺𝑖𝑗 , 𝐺𝑗𝑘 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔 𝑜𝑟 𝑠𝑘𝑒𝑤

 𝜏 𝝎𝑖𝑗
(𝒑𝑗𝑘 − 𝒑𝑖𝑗) 𝑖𝑓 𝑙𝑖𝑛𝑒𝑠 𝐺𝑖𝑗 , 𝐺𝑗𝑘 𝑎𝑟𝑒 𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑜𝑟 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

By means of the last definitions, it is possible to determine a ‘shortest connection’

between two lines with given anchors, independently of how these are opposed to

each other.

2.3.2 Kinematic modeling convention

The relative axis orientation of kinematic joints located at two ends of the same link

is invariable while in motion. Let Zij and Zjk be two lines of joint axes that share one

index j because the two joints are connect with the same link Lj. In this section,

pairs of lines (of joint axes) and frames located on these are considered. Let an

arbitrary chain of links which are connected by joints be fixed by Li-Lj-Lk passing

link Lj. Let 𝐹(𝑖𝑗)𝑖
, 𝐹(𝑖𝑗)𝑗

, 𝐹𝑖𝑗𝑘̂, 𝐹𝑖̂𝑗𝑘, 𝐹(𝑗𝑘)𝑗
 and 𝐹(𝑗𝑘)𝑘

 be the consecutive frames associated

the chain of links. Then, for the frames that are attached to link Lj, the following

short notation is defined:

𝐹𝐷𝑗
= 𝐹(𝑖𝑗)𝑗

 𝐹𝐶𝑗
= 𝐹𝑖𝑗𝑘̂ 𝐹𝐵𝑗

= 𝐹𝑖̂𝑗𝑘 𝐹𝐴𝑗
= 𝐹(𝑗𝑘)𝑗

16

The ‘hat’ used in the triple index 𝑖𝑗𝑘̂ can be read as a ‘not’. For example: “the frame

𝐹𝑖𝑗𝑘̂ belongs to the line tuple (Zij, Zjk). It lies on the closest point of the line pair that

does not lie on the line which contains the index k in its name”.

Figure 2-5 Line configurations of Zij and Zjk for a chain of links Li, Lj, Lk

together with named frames.(Bongardt, 2013)

To define the constant shape-parameters for a link, the common perpendicular is

found between the joint axes Zij and Zjk. Initially each link has one coordinate

system attached to each joint connected to the link. The frame 𝐹𝐷𝑗
on link 𝐿𝑗 in joint

𝐽𝑖𝑗 is an arbitrarily chosen coordinate system which includes the joint axis Zij, but

without reference to common perpendicular. A second frame 𝐹𝐴𝑗
 is also defined, fixed

in the constraint of joint 𝐽𝑗𝑘 on link 𝐿𝑗. It is chosen such its z-axis lies along the joint

axis of Zjk. The x-axes of the frames are chosen conveniently, e.g. according with the

local geometry of the link they are attached to.

An augmented frame is placed in each of the closest points on Zij and Zjk, with the z-

axis aligned along the joint axis and the x-axis along the common perpendicular.

The y-axis is aligned to complete the right hand coordinate system. The geometric

meaning of six parameters of the SU convention is given in Table 3 and visually

presented in Figure 2-6.

Symbol Geometric Description Alignment

γ const. angular distance of 𝒙𝐷𝑗
 and 𝒙𝐶𝑗

 around 𝒛𝐷𝑗

c const. linear distance of 𝒙𝐷𝑗
 and 𝒙𝐶𝑗

 along 𝒛𝐷𝑗

β const. angular distance of 𝒛𝐶𝑗
 and 𝒛𝐵𝑗

 around 𝒙𝐶𝑗

b const. linear distance of 𝒛𝐶𝑗
 and 𝒛𝐵𝑗

 along 𝒙𝐶𝑗

α const. angular distance of 𝒙𝐵𝑗
 and 𝒙𝐴𝑗

 around 𝒛𝐵𝑗

a const. linear distance of 𝒙𝐵𝑗
 and 𝒙𝐴𝑗

 around 𝒛𝐵𝑗

17

Table 3: Geometric meaning of the six parameters of the Sheth – Uicker convention. The six

parameters (γ, c, β, b, α, a) describe the link displacement.(Bongardt, 2013)

Figure 2-6 Example mechanism with named links, joints and frames. and parameters for a

displacement between frames FDj and FAj. (Bongardt, 2013)

Below is the pseudo code of the method for calculating augmented frame placements

for the SU convention.

(In) Two frames 𝐹𝐷𝑗
= 𝐹(𝑖𝑗)𝑗

 and 𝐹𝐴𝑗
= 𝐹(𝑗𝑘)𝑗

at joints 𝐽𝑖𝑗 and 𝐽𝑗𝑘 and attached to link

Lj.

(Out) Two augmenting frames 𝐹𝐶𝑗
= 𝐹𝑖𝑗𝑘̂ and 𝐹𝐵𝑗

= 𝐹𝑖̂𝑗𝑘 attached to Lj.

(⊥) The common perpendicular 𝒙𝑖𝑗,𝑗𝑘
∗ =⊥∗ (𝑍𝑖𝑗 , 𝑍𝑗𝑘) of lines Zij and Zjk is computed.

(p) The location 𝒑𝐶𝑗
 and 𝒑𝐵𝑗

of frames 𝐹𝐶𝑗
and 𝐹𝐵𝑗

are fixed to the closest points

𝜋𝑍𝑖𝑗

∗ (𝑍𝑗𝑘) and 𝜋𝑍𝑖𝑗

∗ (𝑍𝑗𝑘) of lines Zij and Zjk.

(z) The z-axes 𝒛𝐶𝑗
 and 𝒛𝐵𝑗

of frames 𝐹𝐶𝑗
and 𝐹𝐵𝑗

are aligned along the z-axis of 𝒛𝐷𝑗

and 𝒛𝐴𝑗
of frames 𝐹𝐷𝑗

and 𝐹𝐴𝑗
.

(x) Do the lines 𝒛𝐶𝑗
= 𝑍𝑖𝑗 and 𝒛𝐵𝑗

= 𝑍𝑗𝑘 of frames 𝐹𝐷𝑗
and 𝐹𝐴𝑗

share (at least) one

common point?

18

Yes. (in case of coincident and

intersecting z-axes)

• The x-axes 𝒙𝐶𝑗
 and 𝒙𝐵𝑗

of frames

𝐹𝐶𝑗
and 𝐹𝐵𝑗

are aligned along the x-

axes 𝒙𝐷𝑗
 and 𝒙𝐴𝑗

of 𝐹𝐷𝑗
and 𝐹𝐴𝑗

No. (in case of parallel and skew z-axes)

• The x-axes 𝒙𝐶𝑗
 and 𝒙𝐵𝑗

of frames

𝐹𝐶𝑗
and 𝐹𝐵𝑗

are aligned along the

direction of the common

perpendicular 𝒙𝑖𝑗,𝑗𝑘
∗ .

(y) The y-axes 𝒚𝐶𝑗
 and 𝒚𝐵𝑗

of frames 𝐹𝐶𝑗
and 𝐹𝐵𝑗

are aligned so that they complete

the right-hand coordinate system.

2.4 Finite Element Analysis

Mechanical systems are complex arrangements of structural and mechanical

components with different design purposes and mechanical behavior. The analysis of

mechanisms presents many unique challenges depending on the type of

applications, operating speed, external and internal loading of the components. The

mechanical system may experience small or large deformations that could lead to a

change of mechanism performance.

Nonlinear mechanism simulations are critical in understanding and solving flexible

mechanical systems. Due to the complexity of the mechanical components it may be

practical to handle such systems through a finite element (FE) approach. Effective

time domain dynamic simulations of multibody systems in an FE environment have

been described by Sivertsen (2001).

The Finite Element Method (FEM) is a numerical technique for finding approximate

solutions to boundary value problems for partial differential equations (PDE). It

partitions a geometric model into a number of smaller regions, called finite

elements, and is able to solve PDEs on almost any arbitrarily shaped region.

To solve partial differential equations with the finite element method, three

components are needed:

 a discrete representation of a region, i.e. a mesh

 a partial differential equation

 boundary conditions that link the equation with the region

2.4.1 Meshing

The collection of the finite elements that, as a sum, make up the entire region is

called a mesh. Finding the numerical solution is then based on computing the

19

solution on the smaller elements and then combining the partial solutions into a

solution over the entire mesh.

The system is defined by components called elements which are joined together at

discrete points called nodes defining the element geometry. Finite element size and

shape are chosen according to the required accuracy of the results. Elements can

have intrinsic dimensionality of one, two or three space dimensions as shown in

Figure 2-7.

1D 2D 3D

Beam Triangles Quadrilaterals Tetrahedrons Hexahedrons

2-noded

3-noded

3-noded

6-noded

4-noded

8-noded

4-noded

10-noded

8-noded

20-noded

Figure 2-7 Typical finite element geometries in one through three dimensions.(Felippa, 2004)

A node is a coordinate location in space where the degrees of freedom (DOFs) are

defined. The DOFs for this point represent the possible movement of this point due

to the loading of the structure. The DOFs also represent which forces and moments

are transferred from one element to the next. The results of a finite element analysis

are usually given at the nodes.

2.4.2 Boundary conditions

In order to control the relative motions of a mechanical system boundary conditions

between links are applied by constraining two or more points to be coincident

throughout the simulation. Support constraints are used to restrain the structure

against relative rigid body motion. This is done by attaching them to a “ground

structure” which is viewed as the external environment. The resulting boundary

conditions are often called motion constraints.

20

Multi Point Constraints (MPCs) are used to specify relations between DOF at

different nodes to provide connectivity between substructures. These are functional

equations that connect two or more displacement components. The degrees of

freedom involved in each MPC are separated into master and slave freedoms. The

slave freedoms are dependent to the master and then explicitly eliminated. The

modified equations do not contain the slave freedoms.

Figure 2-8 Common types of Rigid Body Elements, RBAR, RBE2 and RBE3.

Rigid Body Element, which is a form of MPC defining a rigid connection between the

nodes in which nodes can be rigidly attached to each other. It adds an infinite

stiffness to the model at these nodes. The three most common types of Rigid Body

Elements are shown in Figure 2-8.

 RBAR: Rigid Bar with six DOF at each end

 RBE2: A MPC that defaults with six DOF for its independent node and the

user can then choose what DOF to enforce upon the dependent nodes. The

MPC creates a rigid mechanism between the independent and dependent

nodes.

 RBE3: A MPC that defines the constraint behavior of the independent nodes

as a function of its dependent nodes. The element has no default DOF and the

user must choose the MPC’s constraints carefully to prevent a free body

mechanism. The MPC interpolates the overall constraint behavior of the

dependent nodes upon the independent node. This formulation imparts no

rigidly between the independent and dependent nodes. One key application is

the smearing of a force from the independent node to the dependent nodes.

21

3 Methodology
This thesis is in the scope of the KBE area and the focus has been on the technical

development of the KBE application. The emphasis on codification of knowledge

about mechanism theory was done prior to this thesis and was mainly acquired from

A Digital Computer Based Simulation Procedure for Multiple Degree of Freedom

Mechanical (Sheth, 1972), Virtual testing of mechanical systems, theories and

techniques (Sivertsen, 2001) and Matrix Methods in the Design Analysis of

Mechanisms and Multibody Systems (Uicker et al., 2013). A summary of the

research conducted was presented in the project thesis, Introducing automation in

design of mechanism (Skaare, 2014).

3.1 Adaptive Modeling Language

TechnoSoft Inc. provides a KBE system using an object oriented programming

language called AML (Adaptive Modelling Language). Originally written in Lisp

(which is still the favored language in AI research and implementation), AML allows

modeling the domain knowledge as a coherent network of classes. The AML

paradigm provides a common interface to a solid modeler (Parasolid™) in addition to

mesh generator (MSC Patran) and FEA solver (MSC Nastran).

AML was naturally chosen as the KBE-system for this thesis because Sivertsen

closely collaborated with TSI during a sabbatical year in USA 2013-2014. He

developed a pilot implementation in AML which was further studied and developed

during the project thesis. The required software for this thesis was provided from

TSI through Trapper Schuler.

3.2 Runtime environment

All development was committed on a 64-bit computer running Microsoft Windows 7

Home Premium (Service Pack 1) with AML Version 5.85.0 installed. Apart from the

standard AML installation, the Analysis interface and Nastran interface modules,

and some patches, were loaded separately (see Appendix C AML setup). The

analysis module used was aml-analysis-module-pack-type-3-01-06, provided by TSI.

This also includes the Nastran interface which manages all communication between

an instance of an AML and the MSC Nastran software application. To work,

Nastran must be installed and the path to nastran.exe-file and the directory for

writing files relating to the analysis must be specified in the logical path file.

:nastran-path "C:\Program Files\Siemens\NX 9.0\NXNASTRAN\bin"

22

:nastran-data "C:\Users\Rasmus\Documents\NTNU\Masteroppgave\nastran-

data"

To standard way of running AML is by initiating the AML interpreter from an

editor or directly from the command line. Interaction with the interpreter is done by

writing commands and executing them with return. If an error occurs a pop-up

dialog shows up, where the user can choose to “debug” or “abort”. The debugging

feature is no longer supported and choosing the “debug” option only prints the stack

trace to the console. When debugging an error, the error messages are often hard to

decipher.

3.3 Editor

AML comes with a XEmacs editor included and at the center of XEmacs is the AML

console. The console allows the developer to interact with the running AML process

through a REPL (Read Eval Print Loop) interface in one of the XEmacs buffers. The

developer is, amongst other, able to compile and run code, interact with the compiled

models and send commands to the AML system. The XEmacs integration features

Lisp-style syntax highlighting, as well as highlighting of some AML-specific

expressions are available.

AML does currently not support any other editors, but Elstad and Granlund (2013)

shows that integration with Sublime Text 2 is possible by making an REPL for

AML, this was not compatible with AML 5.85.0.

3.4 Documentation

The AML Reference Manual (TechnoSoft, 2010) is a documentation including

examples and explanation of different language constructs available in AML. It

covers many but not all features in the AML package. TechnoSoft also delivers the

AML Basic Training Manual (TechnoSoft, 2012). This manual is meant as a

beginner’s course to AML by covering the most important features. The training

manual thoroughly explains 11 exercises and came with a .zip file including source

code for three supplement exercises and 7 additional examples. Together with the

Reference Manual this is the only documentation provided by TSI. The Reference

Manual is not available online, but bundled in the software. For convenience of the

reader, a short summary is found in Appendix B. The full version is available

through the Department of Engineering Design and Materials at NTNU.

When needed, Trapper Schuler from TechnoSoft has given support through email.

Most problems have been solved through trial and error. When stuck, the inbuilt

23

functions describe, apropos and methods-for-class are useful tools for finding class-

names, function- and method arguments. The “inspect-tool” in the AML GUI works

well when determining property-names.

3.5 Source code management

The source code was managed through the definition of a system named mechanism-

system. Organizing the code into systems is a method for reusing code. Using

systems also allows the code to be treated as a module that may be loaded, compiled,

and archived as a single entity.

The definition of a system appears in the file named system.def using the define-

system construct. The system.def must be in the directory returned when

(logical-path :mechanism-system) is executed.

 (define-system :mechanism-system

 :files '(

 "data-models.aml"

 "constraints.aml"

 "cross-sections.aml"

 "analysis.aml"

 "links.aml"

 "collections.aml"

)

)

For the system to be found for compiling or loading, the mechanism-system must be

an entry in the logical path file.

:mechanism-system /code/mechanism-model/

The directory structure for the mechanism-system should then look like the

following:

code/

mechanism-model/

system.def ;; File containing the system definition.

sources/

data-models.aml ;; Source code file.

constraints.aml ;; Source code file.

cross-sections.aml ;; Source code file.

analysis.aml ;; Source code file.

links.aml ;; Source code file.

collections.aml ;; Source code file.

24

When the system is compiled the source code is read from the files specified in

define-system. Compiling the system archives the source code with the binary files

created, so editing an older version is possible by using the archived source code.

The following compiles the system files

> (compile-system :mechanism-system)

And creates mechanism-system-1 subdirectory structure shown below.

MECHANISM-SYSTEM-1/

system.def

sources/

data-models.aml ;; Archived source code file.

constraints.aml ;; Archived source code file.

cross-sections.aml ;; Archived source code file.

analysis.aml ;; Archived source code file.

links.aml ;; Archived source code file.

collections.aml ;; Archived source code file.

bins64/

 compilation.dat ;; Archived binary patch files

data-models.btc64 ;; Archived binary file.

constraints.btc64 ;; Archived binary file.

cross-sections.btc64 ;; Archived binary file.

analysis.btc64 ;; Archived binary file.

links.btc64 ;; Archived binary file.

collections.btc64 ;; Archived binary file.

When a system is loaded the binary files from the subdirectory that were created

during the last compilation are loaded if no version number is supplied. If the source

code is changed the changes will not be loaded until after a compile-system is

performed. Running previously written AML-programs requires the system to be

compiled or loaded first.

> (load-system :mechanism-system)

25

3.6 Programming style

AML follows the general common Lips coding conventions. Except from that lines

with lone right parentheses are encouraged in the AML documentation.

The application has been created with focus on making reusable class features. The

relationships between geometric elements and the hierarchical structure in the

model was carefully planned, but also changed several times.

In true OOP style, objects are used for storing information. Lists consist of object

references rather than static values and properties often contain references to other

objects in the model tree.

Properties are declared as high up in the model tree as convenient. This makes use

of the referencing in AML, which climbs the model tree looking for a value. Same

with default, it will look up the tree for a property with the same name. If one is

found, the value of that property is used. Otherwise, the specified default-formula is

used. It is a common practice to organize common properties and objects of an AML

model or class at one “place” within the model so other properties and objects can

access them easily.

26

27

4 Development process
During the work with this thesis a KBE application has been developed

demonstrating the main concepts, parametrization, modeling and meshing, proposed

for automation in design of mechanism. The full source code of the application

developed is found in Appendix D, and any references made to inbuilt class names or

functions in AML are described in Appendix B.

4.1 Application input

An initial description of a mechanism is needed as input to the KBE application and

to store the mechanism. The format had to be both user and computer readable,

giving the user the option to introduce new mechanisms or choose and edit an

existing design in the mechanism application.

4.1.1 Mechanism library

Each mechanism is stored in a separate folder in the mechanism library, located in

code/mechanism-model/library. The application reads subfolders from the

library and lets the user select a mechanism. Nodes, constraints and shapes are

read from the selected mechanism.

4.1.2 Node list

All points of interest in the application are stored in coordinates.txt, a list of

nodes containing xyz-coordinates. A node is considered a joint if it is connecting two

links together. An unconnected node can be a design point for links, an application

point for springs, dampers, application of forces or torques, or position, velocity and

acceleration plots of coupler curves. Each node is stated as follows:

(x-coordinate y-coordinate z-coordinate)

Example input from the coordinates.txt file of the four bar mechanism:

0.0 0.0 0.0

0.0 0.15 0.0

0.3 0.0 0.0

0.3 0.375 0.0

0.6 0.6 0.0

4.1.3 Constraint list

28

The incidence relationships between links and joints are stored in

constraints.txt, an expanded incidence table which also includes joint-type,

joint-axis direction and additional joint variables. This format was chosen because it

is list based an easily read from the application and edited by users compared to an

incidence, graph or matrix, representation. Each constraint is stated as follows:

(node-index joint-type (link-incidence-list) (joint-direction) (joint-

variables))

Example input from the constraints.txt file of the four bar mechanism:

0 "revolute" "(1 0)" "(0 0 1)" "()"

1 "revolute" "(1 2)" "(0 0 1)" "()"

2 "revolute" "(3 0)" "(0 0 1)" "()"

3 "revolute" "(3 2)" "(0 0 1)" "()"

The link-incidence-list is specified as (list from-link to-link). Each joint is a

connection between two links and the order specifies which link is connected to the

male-element (from-link) and the female-element (to-link) of the joint.

4.1.4 Shape-file

For each of the members composing a link, dimensional properties are stored in

shapes.txt. With a reference to member on a link or specifying default properties,

cross section type, dimensions and optional design points are defined. Each shape is

stated as follows:

(link-index member-index (cross-section-type) (shape-dimensions)

(points-list) (weight-list))

Example input from the shapes.txt file of the four bar mechanism:

2 1 "nil" "(0)" "()"

default default "line" "(0.02 0.02)" "()"

4.1.5 Data models

Some basic data-models are defined to utilize the object oriented nature of AML.

Point-, vector- and frame-objects are already defined in the AML package, but are

extended to take advantage of object referencing. E.g. a vector is defined from one

point-object and a direction and a frame is defined from one point-object and two

vector-objects. When several objects refer to the same point-object, all objects are

automatically updated if this value changes.

29

4.1.6 Collections

All information read from file is stored in collections as subobjects created using

series-object. Coordinates are stored as point-objects, joints are stored as joint-

models and shapes are stored as shape-model. A folder collection is also created with

reference to all the subfolders in the library. From the unique link-references found

in the incidence table, a collection of links is created. Each link has references to the

joint elements which it is connected to. The topology of the mechanism is determined

by the number and connectivity of the links and joints, and can be change by

providing a different set of input to the application.

4.2 Initial frame placements

In the SU convention, the joint elements are related to each other by a coordinate

system (frame) in each element. For lower pairs, the origins or z-axis of the frames

are coincident and describes the relative motion between them. The frames are

arbitrary chosen but related by the joint variables.

While working with this thesis it became apparent that the physical part of link is

not always connected to the joint center. An extra frame is therefore added to

separate between the displacement caused by the solid geometry of the joint and the

link. Bongardt (2013) inconspicuously mentions to include a joint displacement, but

it is uncertain if they consent. This frame, constituting a construction frame, is used

as a reference for the shape of a link and a represent the displacement caused by the

interface of the joint element. When calculating the parameters of the SU

convention, the construction frame is used as reference for the frames FDj and FAj.

The lower kinematic pairs are all characterized by a joint axis which describes the

axis of rotation and/or translation. A general-joint-solid-model is made containing

the joint information read from input, the male and female element are both

subobjects oriented according to the initial joint variables. Their x-axis are directed

towards the next joint on the first connected member.

(define-class master-joint-model

:inherit-from (general-joint-solid-model)

:properties (

 ;;

)

:subobjects (

(male-element-solid-model :class (read-from-string (concatenate

!constraint-type "-male-element"))

)

30

(female-element-solid-model :class (read-from-string (concatenate

!constraint-type "-female-element"))

)

)

)

Both joint elements, includes two frames, a main frame, located in the joint center,

and sub-frame specifying where the construction of the link starts.

(define-class joint-element-model

:inherit-from (general-joint-solid-model)

:properties (

gender (read-from-string (remove "-element-solid-model" (write-to-

string (object-name !superior))))

gender_int (case ^gender ('male 0) ('female 1))

link-incidence (nth ^gender_int ^^link-incidence)

link-ref-incident-on-constraint (get-link-ref ^links ^link-

incidence)

)

:subobjects (

(main-frame :class 'frame-data-model

)

(sub-frame :class 'sub-frame-model

)

)

)

The position of the sub-frame is calculated from the geometry of the joint, see 4.4

Joint geometry. Examples of frame placements for a revolute joint are shown in

Figure 4-1. Note that the main-frame and sub-frame are coincident for the female

element since the joint center and link start in the same position.

Figure 4-1 Frame placements on male element (left) and female element of revolute joint

sub-frame

main-frame

sub-frame

main-frame

31

4.3 Link geometry

All links are considered as a connection between joints. They can be characterized as

a collection of members, where each member connects two joints. A link will have a

topological configuration determined by the degree of the link. While the shape and

dimensions of the members will determine the morphology

The joints incident on a link are collected from the joint collection. Each link then

has a number of joints n, attached to it. For a binary link (n=2) there is only one

possible connection between the two joints. For a ternary link (n=3) there are three

possible connections between the three joints. Calculating all possible connections

between n numbers of joints is a complete graph problem. The complete graph on n

joints is denoted by Kn. The number of possible connections is given by
𝑛

2
(𝑛 − 1).

K2: 1 K3: 3 K4: 6 K5: 10

Figure 4-2 Number of possible connections between joints

Each edge in the graph Kn is equivalent to a member on the link connecting two

joints. For the link to be connected each joint has to be connected to at least one

other joint. Not all connections on a link are necessary, for K3 and higher the user

can select the preferred connections. The possible connections are calculated using

the following algorithm, taking a list of joints on a link as argument.

(defun list-combinations (p)

(let (

(l (if (typep p 'list)

 p

 (if (typep p 'fixnum)

(loop for i from 0 to (1- p) collect i)

 (list))))

 (n (length l))

)

(loop for j from 0 to (- n 2)

 append (loop for k from (1+ j) to (1- n)

 collect (list (nth j l) (nth k l))

)

)

32

)

)

For each link the joints incident on that link are collected looping through the joint

collection. And the possible joints combinations for the members are calculated

using list-combinations.

constraints-incident-on-link-list (loop for kid in (the constraints-ref-list)

for con = (get-constraint-incidence kid ^link-index)

when con collect con

)

connection-between-2-constraints-combinations (list-combinations ^constraints-

incident-on-link-list)

Below is an example of the return values from list-combinations with joint indexes

as argument. With four joints there are six possible connections between the joints

0, 1, 2 and 3.

> (list-combinations (list 0 1 2 3))

((0 1) (0 2) (0 3) (1 2) (1 3) (2 3))

4.3.1 SU parameters

For each member, its joint references are selected according to its index on a link.

connection-between-constraints (nth ^index ^^connection-between-2-

constraints-combinations)

The reference to the sub-frame in each joint element is set.

frame_D (the sub-frame (:from (nth 0 ^connection-between-constraints)))

frame_A (the sub-frame (:from (nth 1 ^connection-between-constraints)))

The parameters for line Zij and Zjk are extracted from the frames.

pij (convert-coords ^frame_D '(0 0 0) :from :local :to :global)

wij (convert-vector ^frame_D '(0 0 1) :from :local :to :global)

pjk (convert-coords ^frame_A '(0 0 0) :from :local :to :global)

wjk (convert-vector ^frame_A '(0 0 1) :from :local :to :global)

The SU convention is implemented in AML from the theory presented by Bongardt

(2013). The line configuration, the closest point on each line and the common

perpendicular are calculated from the corresponding methods. The augmented

frames are placed before calculating the SU parameters. An extract is shown below,

and the full source code is found in Appendix D.

33

(define-class connection-model

:inherit-from ()

:properties (

line-config (line-pose (the superior))

inter_points (inter_section (the superior) ^line-config)

perpendicular-dir (perp-dir (the superior) ^line-config)

param_a (vector-length (subtract-vectors (the origin (:from

^frame_A)) (the origin (:from ^frame_B))))

param_b (vector-length (subtract-vectors (the origin (:from

^frame_B)) (the origin (:from ^frame_C))))

param_c (vector-length (subtract-vectors (the origin (:from

^frame_C)) (the origin (:from ^frame_D))))

)

:subobjects (

(frame_B :class 'frame-data-model

(point-ref :class 'point-data-model

 coordinates (nth 0 ^^^inter_points)

)

(z-vector-ref :class 'vector-data-model

 direction ^^wij

)

(x-vector-ref :class 'vector-data-model

 direction ^^perpendicular-dir

)

)

(frame_C :class 'frame-data-model

(point-ref :class 'point-data-model

 coordinates (nth 1 ^^^inter_points)

)

(z-vector-ref :class 'vector-data-model

 direction ^^wjk

)

(x-vector-ref :class 'vector-data-model

 direction ^^perpendicular-dir

)

)

)

)

4.3.2 Connection shape

The shape of a member connecting to constraints is represented using a spline

curve. Splines are commonly used in computer graphics for generating and

representing curves and surfaces, and work by interpolating control points to obtain

34

smooth continuous functions. The start and end points of the curve is given by FDj

and FAj. The points in-between are either automatically generated or given by

design points in the Shape-file (see 4.1.4). This makes it is possible to achieve a high

degree of flexibility, but still generates a simplified curve when no extra control

points are specified.

NURBS (Non-Uniform Rational Basis Splines) generalizes both B-splines and

Bézier curves and is given by nurb-curve-object in AML. Like B-splines, they are

defined by their order, and a knot vector, and a set of control points determining the

shape of the curve, but unlike simple B-splines, the control points each have a

weight. When the weight is equal to 1, a NURBS is simply a B-spline.

An additional frame is placed at the start and the end of the connection, with the x-

axes tangential to the spline curve. These will be used for positioning the cross

section of a member. The nurb-curve-object is given in the connection-model which is

also used for calculating the SU parameters seen below:

(define-class connection-model

:inherit-from (nurb-curve-object)

:properties (

start-point (the origin (:from ^frame_D))

end-point (the origin (:from ^frame_A)))

start-weight (list (append ^start-point (list 1)))

end-weight (list (append ^end-point (list 1)))

points (let (

(shape-points (loop for p-index in (the point-list

(:from ^shape-ref))

 for w in ^weight-points

collect (append (the coordinates (:from (nth p-

index ^point-ref-list))) (list w))))

)

(if shape-points

 (append ^start-weight shape-points ^end-weight)

 (append ^start-weight ^middle-points ^end-weight)

)

)

;; automated points are given in middle-points

)

:subobjects (

 (spline-frame_start :class 'frame-data-model

)

(spline-frame_end :class 'frame-data-model

)

)

35

)

4.3.3 Shape parameterization

The SU parameters allows for a flexible convention describing the linear

displacement of over a link. An interesting problem is to create geometry of a link

using these parameters. There is not any research found in using the SU

parameters to generate geometry, but some key concepts are presented here.

For a planar mechanism, where the z-axes of the joints are parallel, design points

are generated at half distance along the common perpendicular from each sub-

frame. This creates a straight line for joints with coincident xy-planes and also work

for any other parallel configuration with the parameters a and c greater than 0

shown in Figure 4-3.

(let (

(start-tangent (add-vectors ^start-point

(multiply-vector-by-scalar (normalize ^perpendicular-dir) (half

^param_b))))

(end-tangent (add-vectors ^end-point

(multiply-vector-by-scalar (normalize ^perpendicular-dir) (- (half

^param_b)))))

(start-weight (list 0.5))

(end-weight (list 0.5))

)

(if (roughly-same-point start-tangent end-tangent)

(list (append start-tangent start-weight))

(list (append start-tangent start-weight) (append end-tangent end-

weight))

)

)

Figure 4-3 Generated spline curves of planar mechanism, joint axes in blue

36

In case of intersecting joint axes where both joints lie on the same circle, the

NURBS curve can be used to approximate an arc4 shown in Figure 4-4. Below is a

possible way of integrating this in the application.

(let (

(center (nth 0 ^inter_points))

(middle-point (add-vectors center (multiply-vector-by-scalar (normalize

(add-vectors (subtract-vectors ^start-point center) (subtract-vectors

^end-point center))) ^param_a)))

(angle-start-middle (/ (angle-between-2-vectors (subtract-vectors

^start-point center) (subtract-vectors middle-point center)) 2))

(start-tangent (add-vectors center (multiply-vector-by-scalar (normalize

(add-vectors (subtract-vectors ^start-point center) (subtract-vectors

middle-point center))) (/ ^param_a (cosd angle-start-middle)))))

(angle-middle-end (/ (angle-between-2-vectors (subtract-vectors middle-

point center) (subtract-vectors ^end-point center)) 2))

(end-tangent (add-vectors center (multiply-vector-by-scalar (normalize

(add-vectors (subtract-vectors middle-point center) (subtract-vectors

^end-point center))) (/ ^param_a (cosd angle-middle-end)))))

(start-weight (list (sind (/ (angle-between-2-vectors

(subtract-vectors start-tangent ^start-point)

(subtract-vectors start-tangent middle-point)

) 2))))

(middle-weight (list 1))

(end-weight (list (sind (/ (angle-between-2-vectors

(subtract-vectors end-tangent middle-point)

 (subtract-vectors end-tangent ^end-point)

) 2))))

)

(list (append start-tangent start-weight) (append middle-point middle-

weight) (append end-tangent end-weight))

)

4 http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-circles.html

http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-circles.html

37

Figure 4-4 Generated spline curve and geometry for spherical mechanism, joint axes in blue

In case of coincident or skew configuration there is no straight forward solution. The

coincident joints can be connected by a half circle or a straight line while the skew

joints can be connected by any spatial shape. It is therefore more convenient for the

user to specify design point to ensure the desired shape.

4.3.4 Sweep

To make a solid geometry of a member the splines are used as guides for sweeping

cross sections between the constraints, creating a sweep-object using general-sweep-

class. Any desired cross section can be used, typical types are included but

additional can be added by inheriting from section-model. The code for the circular

cross section is shown below. Note that if a cross section is symmetric, an additional

point must be imprinted on the section-curve for the cross section at each end

creating and extra vertex that matches when sweeping.

(define-class circular-section

 :inherit-from (imprint-class section-model)

 :properties (

 target-object ^disc

 tool-object-list (list ^p1)

 diameter (average ^width ^height)

 (disc :class 'disc-object

 diameter ^^diameter

)

 (p1 :class 'point-object

 coordinates (list (/ ^diameter 2) 0 0)

)

)

38

)

A cross section is placed at the start and end of each guide. The start and end cross

section has a reference to the frames placed at the start and end points. This allows

for creating a variational sweep, often seen on different links in mechanisms such as

a car suspension.

Below is code extract from general sweep class:

(define-class member-solid-model

:inherit-from (general-sweep-class)

:properties(

;;; sweep parameters

profile-objects-list (list

^cross-section_D

^cross-section_A

)

path-points-coords-list (list

 (the origin (:from ^frame_D))

 (the origin (:from ^frame_A))

)

profile-match-points-coords-list (list

(vertex-of-object ^cross-section_D)

(vertex-of-object ^cross-section_A)

)

)

:subobjects (

(connection :class 'connection-model

)

(cross-section_D :class !cross-section-type

reference-object (the spline-frame_start (:from

^connection))

orientation (list

(rotate 90 :x-axis)

(rotate 90 :z-axis)

)

)

(cross-section_A :class !cross-section-type

reference-object (the spline-frame_end (:from ^connection))

orientation (list

(rotate 90 :x-axis)

(rotate 90 :z-axis)

)

)

)

)

The type of class instantiated for the cross sections is treated as a variable, meaning

the object type can change dynamically during runtime. The class option-property-

39

class is used for properties whose value is equal to one element of a list of available

options. The cross section type is represented with an option menu, the list of names

of classes that directly inherit from the section-model are used as options. If a new

cross section is defined and inherits from section-model, it will be an option in the

list.

Each sweep-object has a property called cross-section-type declared as follows.

(cross-section-type :class 'option-property-class

label "Cross-section Type"

mode 'menu

formula (nth 0 !options-list)

options-list (reverse

(class-direct-defined-subclasses 'section-model)

)

labels-list (loop for option in !options-list

collect (remove "-section" (write-to-string option))

)

)

A few different examples of cross sections are shown in Figure 4-5 where the start

and end cross section matches for different orientations and sizes. This works for

any new cross-section added. Pro tip: When creating a cross section using difference-

object, specify simplify? t, or sweeping will not work.

Figure 4-5 Sweeps with different varying orientation and different sized cross section

4.3.5 Surfaces

Possible combinations of 3 connections to create surface, check against visible

members that are available.

If three splines are connected creating a loop it is possible to create a surface using

surface-from-three-edge-curves-class. The number of possible surfaces are given

by
𝑛

6
(𝑛 − 2)(𝑛 − 1), where n is the number of constraints on a link. To possible

combinations of splines was calculated using these algorithms, taking the number of

joints as argument.

40

(defun list-3-subset-combinations (p)

(let (

(l (if (typep p 'list)

p

(if (typep p 'fixnum)

(loop for i from 0 to (1- p)

collect i) (list))))

(n (length l))

)

 (loop for i from 0 to (- n 3)

append (loop for j from (1+ i) to (- n 2)

append (loop for k from (1+ j) to (1- n)

collect (list (nth i l) (nth j l) (nth k l))

)

)

)

)

)

The first function calculates the combinations of three constraints creating a loop.

> (list-3-subset-combinations 4)

((0 1 2) (0 1 3) (0 2 3) (1 2 3))

For a link with 4 joints (see K4 in 4.3) there are 4 possible combinations of the joints

0, 1, 2 and 3. But it is the combination of splines connected that has to be calculated.

 (defun list-combinations (p)

(let (

(l (if (typep p 'list)

p

(if (typep p 'fixnum)

(loop for i from 0 to (1- p)

collect i) (list))))

 (n (length l))

)

(loop for j from 0 to (- n 2)

append (loop for k from (1+ j) to (1- n)

collect (list (nth j l) (nth k l))

)

)

)

)

The function list-combinations (given in 4.3) is used to calculated the possible

combinations of the three constraints given from 3-edge-loop-combinations. Then the

below function checks for the occurrence of this combination in the connection-

combinations and returns the position that equals the splines’ index.

41

(defun sweep-loop-combinations (n)

(let (

(c-loops (3-edge-loop-combinations n))

(sweep-con (connection-combinations n))

)

(loop for ci from 0 to (1- (length c-loops))

for list-com = (list-combinations (nth ci c-loops))

collect (loop for si from 0 to (1- (length list-com))

collect (position (nth si list-com) sweep-con)

)

)

)

)

The above function calculates the position of a constraint combination and returns

the indexes of the connected three splines creating a surface. Below is an example of

combinations of three splines that could create a surface.

> (sweep-loop-combinations 4)

((0 1 3) (0 2 4) (1 2 5) (3 4 5))

To make sure only members that are displayed will be used to create a surface their

indexes are collected and the combinations are calculated and compared to the

possible configurations.

visible-members-index (loop for mem in ^visible-members-ref-list

collect (the index (:from mem))

)

valid-surface-loops (intersection ^closed-loops-combinations (list-3-

subset-combinations ^visible-members-index))

The possible surfaces are then created using series-object and a thickness is added

through surface-thickened-class.

4.4 Joint geometry

The joints are stored in the constraint collection and are not defined on the links.

Instead each joint element has a reference to a link, and each link to its joint

elements. To model the solid geometry of the joint, the dimension is determined

from the members connected to the joint element and its pair element.

The reason for this is based on the idea that the joints are transferring the forces

between links, if the links are sufficiently sized the joints can be expresed as a

function of the link’s dimension. For the demonstrational purpose of this thesis the

joint elements are chosen to be a factor bigger than the link. An exact funtional

42

relationship between link and joint dimensions can be derived and later

implemented in the application.

The sub-frame is translated away along the joint axis according to the joint

dimension to allow for space between links. The position of the sub-frame is

dependent on joint and element type.

A local-max-dimension of a joint is found by looping through all members connected

to a joint element, if they are currently displayed. It checks if the joint is connected

to the start or end cross section, and collectes the maximum height and width of the

members connected. Local-max-dimension are calculated as follows.

(loop for member in (the members-ref-list (:from (the link-solid-geometry

(:from ^link-ref-incident-on-constraint))))

for pos = (position !superior (the connection-between-constraints (:from

member)))

when (and pos (the display? (:from member)))

maximize (if (= pos 0)

 (max-width (the cross-section_D (:from member)))

 (max-width (the cross-section_A (:from member))))

into max-w

and maximize (if (= pos 0)

 (max-height (the cross-section_D (:from member)))

 (max-height (the cross-section_A (:from member))))

into max-h

finally (return (list max-w max-h))

)

The maximum width and height of the local and the paired element is then used as

parameter for determining the dimensions of the joint and will also be used to

determine the placement of the sub-frames.

max-width (* ^scale-factor (max

(first (the local-max-dimension (:from ^female-element-solid-model)))

(first (the local-max-dimension (:from ^male-element-solid-model))))

)

max-height (* ^scale-factor (max

(second (the local-max-dimension (:from ^female-element-solid-model)))

(second (the local-max-dimension (:from ^male-element-solid-model))))

)

4.5 Assembly

43

Since the joint elements in reality are connected to a link, they should be assembled

together with the other members and the surfaces. This is done by collecting the

parts of a joint element which are union or difference into separate lists.

union-list (loop for l in ^constraints-incident-on-link-list

append (the union-list (:from l))

)

difference-list (loop for l in ^constraints-incident-on-link-list

append (the difference-list (:from l))

)

Each link then collects the objects from its connected elements and assembels them

using a union-object. At last a difference-object is created. This is to make sure the

hollow parts of joint elements are subtracted from the link where necessary.

(union-element :class 'union-object

object-list (append

^surfaces-ref-list

^visible-members-ref-list

^^union-list

)

simplify? t

)

(difference-element :class 'difference-object

object-list (append

(list ^union-element)

^difference-list

)

simplify? t

)

To prepare the geometry for meshing, periodic or symmetric surfaces need to be

imprinted, this is done with the geometry-with-split-periodic-faces-class.

Each link is separated in to three models, the geometric model, the meshed model,

the class used for analysis.

(link-solid-geometry :class 'link-geometry-class

)

(link-mesh-model :class 'link-mesh-class

geometry-model-object ^link-solid-geometry

mesh-database ^^mesh-database

)

(analysis :class 'analysis-link-model-class

mesh-model-object ^^link-mesh-model

44

)

4.6 Meshing

In the context of meshing AML uses a methodology of geometry attribute tagging

and tag propagation which allows resultant geometry from a boolean operation to

refer back to the tags attached to the original geometry. This makes it possible to

control mesh refinement on individual parts of the resultant geometry. All geometric

classes that inherit from tagging-object will be tagged. The properties below are used

to determine which entities of the geometry is to be tagged (points, edges, surfaces,

solids) and attributes used in the context of meshing (maximum edge size, minimum

edge size, curvature refinement, etc.).

tag-dimensions '(0 1 2 3)

tag-attributes '(0.25 0.0625 0 0.1 0 10.0 1e-5)

Meshing of the links is achieved through a single class, the paver-mesh-class. The

assembled link geometry to be meshed is given to this object and it in turn creates

the necessary information to pass to the meshing process.

(link-mesh :class 'paver-mesh-class

object-to-mesh ^^geometry-model-object

mesh-database-object ^^mesh-database

element-shape :quadtri

solid-mesh? nil

)

After the mesh is generated, mesh entities can be queried using tagged-objects to

retrieve nodes, elements, edges, faces, and regions from the mesh. By choosing a line

as a cross section, the links are meshed as shell elements. By specifying solid-mesh?

t and choosing a :tet element shape it should also be possible to generate a solid

mesh, but this did not work.

To correctly simulate the boundary constraints between links, each mesh need to

have a node in the joint center. The mating surface of a joint element is often not

located at the joint center. A node is therefore created using mesh-node-class, which

creates a node at the joint center.

(joint-center-node :class 'mesh-node-class

coordinates (the origin (:from ^main-frame))

mesh-object (the link-mesh (:from (the link-mesh-model (:from

^link-ref-incident-on-constraint))))

)

45

The nodes associated with the mating surfaces are queried, using mesh-nodes-query-

class, by referencing to the tagged object which constitutes the surface geometry.

(mating-surface-nodes :class 'mesh-nodes-query-class

tagged-object-list (list ^^imprinted-pin)

mesh-object (the link-mesh (:from (the link-mesh-model (:from

^link-ref-incident-on-constraint))))

)

4.7 Analysis

The analysis can be performed using the integrated MSC Nastran software or

external software. It has not been possible to find out if AML currently supports

dynamic multibody analysis and it is instead more convenient to use an external

application for the job.

FEDEM 5 developed at NTNU by Sivertsen, uses a finite element approach to

dynamic simulation of mechanisms combining kinematics and structural analysis.

FEDEM can import FE models in the MSC Nastran Bulk Data File (.bdf) and

needs a Model file (.fmm) and a Solver input file (.fsi) in addition to run a

simulation.

The Nastran Bulk Data File can be exported from AML. The nastran-analysis-class

manages all communication between an instance of an analysis-model-class and the

MSC Nastran software application. Demanding the run-nastran@ property will

write the bulk data file (.bdf) with all node sets, element sets, property sets, load

cases (boundary conditions), analysis types, and materials to the analysis directory

and start the Nastran application.

(nastran-interface :class 'nastran-analysis-class

analysis-model-object ^superior

model-name (the folder (:from ^^mechanism-selection))

nastran-file-name (concatenate (write-to-string (object-name

^^superior)) ".bdf")

nastran-version (nth 2 '(:nei-nastran :msc-nastran :nx-nastran))

)

The additional data for the Model file (.fmm) and a Solver input file (.fsi) data can

be extracted from the AML model. A method was written for collecting the

orientation matrices of frames located in joint positions and calculating the

transformation matrices between them to create the output needed for the files.

5 http://www.fedem.com/

http://www.fedem.com/

46

For the boundary conditions to be included in the bulk data file an analysis-

constraint-class must be set in the analysis-load-case-class. For each link the nodes

on the mating surfaces should be connected to the joint center with a MPC. In

Nastran this is done using a RBE2 or RBE3. The analysis-constraint-class serves as

a general class that is inherited into all other constraint classes. AML does not

provide any documentation for other than analysis-constraint-displacement-class,

but the classes analysis-constraint-multi-point-type-1-between-1-to-many-nodes-class

and analysis-rigid-body-element-type-1-class seem fit for the job. Below is an

example usage of the two classes.

(mpc :class 'analysis-constraint-multi-point-type-1-between-1-to-many-

nodes-class

mesh-query-1 (the joint-center-node (:from ^^link-mesh-model))

 mesh-query-2 (the mating-surface-nodes (:from ^^link-mesh-model))

)

(rbe :class 'analysis-rigid-body-element-type-1-class

dependent-nodes-query-object (the mating-surface-nodes (:from

^^link-mesh-model))

independent-node-query-object (the joint-center-node (:from

^^link-mesh-model))

)

Either of them can be set in the analysis-load-case-class but running Nastran gives

an error and it does not work. Support from TSI was unsuccessful and lead to a stop

to the further development. The remaining work before the application is ready to

export the mesh and create valid for simulation is to extract the node numbers

connected to the joint center from the mesh and formatting this with the rest of the

output.

47

5 Results
The goal was to make an application that works for as wide a variety of mechanism

as possible. Let’s have a closer look at how this works. Starting up the application, a

few predefined mechanisms are available in a drop down menu. The four bar

mechanism was selected and the model tree is shown

Figure 5-1 Model tree in mechanism application

From the model tree all the parts of the mechanism are shown and it is possible to

draw the wanted elements. The link geometry can be draw directly, but let’s take a

look at which role the different elements have in the application. Drawing all the

point elements displays the joint positions given as input to the application, those

are used for positioning the frames for each joint element

48

Figure 5-2 Joint positions and joint frames

Let have a closer look at link 1, connected between the two male joint elements of

the joints furthest the left in Figure 5-2. The link is connected between the sub-

frames of the joint elements (z-axis in blue), which is the starting point of the spline

curve connecting the joints. As default for parallel joint axes, the curve generated is

a straight line and the spline-frames are coincident with the sub-frames. If the

shape of the curve is altered using design points, the x-axes of the spline-frame are

oriented tangentially to the curve. This is to make sure the cross section is oriented

correctly.

Figure 5-3 Building blocks of a link

The dimensions of the start and end cross section can be customized, as well as the

cross section type. When the wanted shape, dimension and type is selected, the link

geometry can be drawn, the possibilities are endless, some examples are shown in

Figure 5-4.

49

Figure 5-4 Examples of shape and cross sections of a link

From the dimensions of the link, the size of the joint is calculated. This is used to

position the sub-frame relative to the joint center, where the main frame is placed.

When the dimensions of the joint and link are both set, they are assembled together

in the link-solid-geometry as seen in Figure 5-5.

Figure 5-5 Positioning of joint and assembly of link

The different shape, dimensions and cross section types of a member of a link are

characterized as morphological variations. The difference between a binary, ternary

and quaternary link are the number of members on the link. Since all links are

made from one generic class, the same morphological variations applies to links of

higher degree as well. In Figure 5-6 is an example of a ternary link with female

joint elements. Note that the sub-frame and main-frame of the joint are coincident.

50

Figure 5-6 Assembly of ternary link

For quaternary links, the number of possible members is higher than needed to

connect the joints. This means there are topological variations of the link. Figure 5-7

shows topological variations of a quaternary link.

Figure 5-7 Different topological variations of a quaternary link

Figure 5-8 Position of sub-frame and main frame on sperical joint

The position of the sub-frame is calculated from the joint size and is dependent on

the joint dimension, a spherical joint is seen in Figure 5-8. But in order for the joint

elements to match, they have to be the same dimension. As seen from Figure 5-9,

joint element size is dependent on the dimension of the connected cross section on

both elements of a joint. The dimensions of the paired element might as well be

controlling to the size of a joint.

51

Figure 5-9 Joint element size varying with cross section on same link and paired element.

After a link is modelled it can be meshed. This is done in using from the link-mesh-

model in the model tree. If a line is selected as cross section, the mesh will be a shell

element model.

Figure 5-10 Meshing of links with different cross sections

From the mesh, nodes or elements from a tagged part can be queried. The nodes

from the mating surfaces of the joint elements and a node in the joint center are

needed to create the MPC, from Figure 5-11 shows the queried nodes from a

revolute joint and a spherical joint. But as mentioned it was not possible to make a

MPC between them in the analysis

Figure 5-11 Nodes on mating surfaces of joint elements and node in joint center

The links and joints are the basic building block of the mechanism. A major

importance is that the application correctly assembles them according to the given

topology. Figure 5-12 shows and example of a four bar mechanism generated with

circular and line cross section on the links and a Watt mechanism with circular

cross section links. For any mechanism, when the points defining the joint positions

52

are changed, the model will update automatically. The same applies to changing the

shape, dimension and type of cross section or visible members on a link. If changing

the topology of a mechanism, e.g. removing or adding a joint, the instance tree is

updated, and the whole model is redrawn.

Figure 5-12 Four bar mechanism and Watt mechanism generated by the application

From the model the mesh for the wanted links can be generated. If any changes are

made to the model, the mesh is automatically updated to match the new geometry.

Figure 5-13 shows the mesh generated for the models shown in Figure 5-12.

Figure 5-13 Mesh generated by the application of models in Figure 5-12

53

When the mesh is ready the analysis class can be run and Nastran bulk file

generated. The .bdf file contains overview over the elements and nodes of the mesh

connected to a link.

To test out a more challenging shape of a link, the lower control arm of a car

suspension was modelled. The shapes of the members were controlled using design

points and the link was successfully meshed as seen in Figure 5-14.

Figure 5-14 Lower control arm from car suspension

A little more interesting example is to model a double wishbone car suspension. An

early proof of concept was implemented in the program, created using the same

input format as with the other examples. Some additional design points have been

specified for the members where the automatic curve generation didn’t give the

wanted shape. Below are a few input variations of the suspension mechanism, the

different parts are of course possible to mesh as well, as shown in Figure 5-15.

54

Figure 5-15 Double wishbone suspension showing different variations of models and mesh

55

6 Discussion
During the development, code has presented and explained in order to argument for

the design and implementation choices. The results shown are promising, but hard

to evaluate against any performance criteria. The different research questions

stated are revisited and discussed here.

RQ1: How can Sheth – Uicker convention be utilized to automate the

generation of link geometry?

The parameters provide an efficient way to describe the link displacements in a

mechanism. When the link’s size is fixed its parameters are unrelated to position

and orientation. This is useful when calculating the displacement from a new joint

position or orientation, but requires joint variables to change accordingly in order to

not create any inconsistencies of the assembly.

In the application the joint position and orientation are parameterized, this is much

easier and more intuitive than using the SU parameters as input to the application.

This mean the link size is not fixed and subject to change given by the joint input. If

one were to use the SU parameters as input it would be necessary to reassemble the

model whenever a parameter changes. The SU parameters are mainly considered as

analysis tool and are not as useful when designing a mechanism model.

What makes the SU parameters more interesting is to use them to generate the

shape of a link. This creates a parametrized shape relative to the joints that is still

valid when the position or orientation of the joint changes. The SU convention is not

the only way to achieve shape parameterization, but because of its importance in

mechanism theory it was natural to study it as a part of this thesis. As we have

seen this works for planar and spherical mechanism, but with an incident or skew

line configuration there isn’t one general shape that works as good. An option may

be to make a library of parameterized shapes which then are selected for a member.

RQ2: How can different links be represented using one generic class?

Identifying and utilizing morphological and topological variations of links shows

that it is possible to make a generic class that can model an unlimited variety of

links regardless of degree, shape and dimension. This approach creates a flexible

and robust model. Functionality for adding surfaces between closed curves is

presented but only works for three curves and not in every case. Another

implementation using parameterized surface should be considered.

56

Currently the custom design points are given using global coordinates. This may

lead to problems if the joint positions move, causing an unwanted shape of the link.

A better approach would be to define position relative to the joints e.g. by using the

shape parameters.

RQ3: How will the physical dimensions of links and joints affect each other?

In the initial stages of development the application closely followed the concepts of

the SU convention. This lead to problems when the curves used for generating the

shape did not start in the same position as the frames used in the SU convention.

This displacement was caused by the physical dimensions of a joint and was solved

by adding a “construction” frame. Still preserving the parameters of SU when no

physical joint is present, (as seen in the case with shell elements), the frame adds a

physical dimension to the joint displacement where there before only was relative

motion described by joints variables.

The position of the construction frame is unknown until the joint dimensions are

known. This was solved by relating joint size to link size, it could have been done the

other way around, depending on what’s the critical components of the system.

The frame also gives more flexibility for choosing which part of a joint is considered

to be the joint center. This is convenient when positioning the frames related by the

joint variables and the node specifying the connection to the surrounding mating

surfaces by a multi-point constraint.

RQ4: How can mesh generation be automated to create a link between

modeling and simulation?

The meshing functionality in AML and the procedure presented shows that it is

possible to automate the modeling and meshing process. Not everything worked as

hoped, but AML has a lot of functionality for mesh generation implemented. The

main problem is that it is poorly documented and TSI was not able to give any

support.

Before simulation, Nastran had to be run in order for the mesh to be exported as a

.bdf file. This is not very efficient as Nastran tries to run an analysis from the data

given in AML. The model is already meshed and it would be better to export the

mesh information directly from AML. It was not necessary for demonstration of this

thesis, but regarding future work it should be considered to either write custom

functions to export mesh information or run the entire analysis in AML with

Nastran. It is not certain if AML currently supports dynamic multibody analysis

and it may not be as efficient as the FEDEM software.

57

Other thoughts

In contrast to other popular programming languages, AML does not have an online

community and few internet resources exist. A Google Scholar search of “aml

technosoft” or “adaptive modeling language technosoft” gives 180 results, with only

a handful of code examples. If something doesn’t work, there is usually no way to

find the answer. It would also be worth putting some extra effort into using AML in

a more modern editor. XEmacs is considered outdated, and a more extensible and

customizable editor such as Sublime Text 2 would increase productivity and lower to

threshold for getting started with AML.

58

59

7 Conclusions
This thesis explores to possibilities of using the Sheth – Uicker convention together

with Knowledge Based Engineering for developing an application used in design

automation of mechanisms. The concepts have been implemented and tested using

the TechnoSoft Inc. supported Adaptive Modeling Language.

A proposal for including an extra frame in addition to the SU convention gives an

extra reference for describing the joints displacement caused by the solid geometry

of a joint element and creates a basis for generating the shape of a link.

The SU parameters do not prove to be significant as an input format or in designing

the mechanism model but show promising results as a basis for generating the

shape of links. It is not a universal technique, but also allows the shape to be

customized with additional design points.

A generic class that can model an unlimited variety of links regardless of degree,

shape and dimension is developed showing the flexibility and robustness of using

concepts from KBE in modelling.

The application is the start of a solid framework for developing a fully automated

design process of mechanisms. The application successfully shows automated

modelling and meshing of mechanisms from given input parameters.

60

61

8 Further work
The following section suggests possible areas for further development of the

application.

The application currently only supports reading input from file. A better GUI for

editing mechanism specifications in the application should be made, also allowing

saving an edited model to file. Refining the input format may be necessary and

possibly look at database integration with AML. Other formats may be easier to

integrate with other applications. The input format should also handle parameters

for handling mesh refinement in critical areas detect in simulation.

The SU parameters are a powerful way of representing the link and joint

displacements. It would be interesting to see if these parameters could be even more

tightly integrated with the application especially regarding mechanism synthesis

and kinematic analysis.

Examples of lower pair joints are shown in the application, more joint types and also

higher pairs should be implemented.

The initial dimension of links has a default value unless input is given. Using

classical beam theory and solving the mechanism as a truss system can give a good

initial estimation of required link dimension. This will reduce the work done by an

optimization loop.

The mesh size is currently set manually, calculating an initial mesh size depending

on part size should be implemented and also identifying and applying mesh

refinement in critical areas.

Multi-Point Constraints do not currently work in the application. Looking deeper

into this and ways of exporting mesh data generated in AML both with and without

running Nastran should be considered. It might also be possible to run the full

analysis in AML without the need for external software. This should be looked

further into.

The results acquired from an analysis should be interpreted and compared against

objective functions. This should generate new input to the application and make it

possible to run an optimization loop.

62

63

References
Amadori, K., Tarkian, M., Ölvander, J., & Krus, P. (2012). Flexible and robust CAD

models for design automation. doi: 10.1016/j.aei.2012.01.004

Bongardt, B. (2013). Sheth-Uicker convention revisited. Mechanism and Machine

Theory, 69, 200-229. doi: DOI 10.1016/j.mechmachtheory.2013.05.008

Chemaly, A. (2006). Adaptive Modeling Language and Its Derivatives. NASA Tech

Briefs.

Elstad, T. A., & Granlund, S. H. (2013). Integrating general-purpose software design

tools into KBE-development. (Project thesis), Norwegian University of

Technology and Science, Trondheim.

Felippa, C. A. (2004). Introduction to finite element methods: Department of

Aerospace Engineeing Sciences, University of Colorado Boulder.

Pinfold, M., & Chapman, C. (1999). Design engineering – a need to rethink the

solution using knowledge based engineering.

Pinfold, M., & Chapman, C. (2001). The application of a knowledge based

engineering approach to the rapid design and analysis of an automotive

structure.

Rocca, G. L. (2012). Knowledge based engineering: Between AI and CAD. Review of

a language based technology to support engineering design. doi:

10.1016/j.aei.2012.02.002

Roth, S., Chamoret, D., Badin, J., & Gomes, S. (2011). Crash FE Simulation in the

Design Process - Theory and Application. Numerical Analysis - Theory and

Application. doi: 10.5772/23813

Sheth, P. N. (1972). A Digital Computer Based Simulation Procedure for Multiple

Degree of Freedom Mechanical

Systems with Geometric Constraints. University of Wisconsin, Madison, WI:

University Microfilms, Inc., Ann Arbor, MI.

Sheth, P. N., & Uicker, J. J. (1971). A Generalized Symbolic Notation for

Mechanisms. Journal of Engineering for Industry, ASME Transactions, 93,

102-112.

Sivertsen, O. I. (2001). Virtual testing of mechanical systems, theories and

techniques: Swets & Zeitlinger B.V., Lisse.

64

Sivertsen, O. I. (2014). Proposed Approach for Introducing Automation in

Mechanism Design.

Skaare, R. K. (2014). Introducing automation in design of mechanism. (Project

thesis), Norwegian University of Science and Technology, Trondheim.

TechnoSoft. (2010). AML Reference Manual 5.0B5. TechnoSoft Inc.

TechnoSoft. (2012). AML Basic Training Manual V3.06: TechnoSoft Inc.

Uicker, J. J., Ravani, B., & Sheth, P. N. (2013). Matrix Methods in the Design

Analysis of Mechanisms and Multibody Systems: Cambridge University Press.

A-1

Appendix A Additional results

A.1 Four bar mechanism

Here are the input files used for generating the four bar mechanisms with circular

and shell cross section. The coordinates.txt and constraints.txt are the same, by

changing from “line” to “circular” in shapes.txt the mechanism changes.

constraints.txt

0 "revolute" "(1 0)" "(0 0 1)" "()"

1 "revolute" "(1 2)" "(0 0 1)" "()"

2 "revolute" "(3 0)" "(0 0 1)" "()"

3 "revolute" "(3 2)" "(0 0 1)" "()"

4 "open" "(0 2)" "(0 0 1)" "()"

coordinates.txt

0.0 0.0 0.0

0.0 0.15 0.0

0.3 0.0 0.0

0.3 0.375 0.0

0.6 0.6 0.0

shapes.txt

2 1 "nil" "(0.02 0.02)" "()"

default default "line" "(0.02 0.02)" "()"

shapes.txt

A-2

2 1 "nil" "(0.02 0.02)" "()"

default default "circular" "(0.02 0.02)" "()"

A.2 Watt-1 mechanism

Here are the input files used for generating the six bar mechanisms, also known as

watt mechanism.

constraints.txt

0 "revolute" "(0 1)" "(0 0 1)" "()"

1 "revolute" "(0 2)" "(0 0 1)" "()"

2 "revolute" "(3 1)" "(0 0 1)" "()"

3 "revolute" "(3 4)" "(0 0 1)" "()"

4 "revolute" "(3 2)" "(0 0 1)" "()"

5 "revolute" "(5 2)" "(0 0 1)" "()"

6 "revolute" "(5 4)" "(0 0 1)" "()"

coordinates.txt

0.0 0.0 0.0

0.5 0.0 0.0

-0.1 0.4 0.0

0.2 0.6 0.0

0.4 0.4 0.0

0.6 0.6 0.0

0.4 0.8 0.0

0.3 0.9 0.0

0.7 0.7 0.0

A-3

shapes.txt

default default "circular " "(0.04 0.04)" "()"

A.3 Double wishbone suspension

Here are the input files used for generating the double wishbone suspension.

constraints.txt

0 "revolute" "(0 1)" "(-1 0 0)" "()"

1 "spheric" "(1 2)" "(0.1 0 1)" "((0 0 1))"

2 "spheric" "(1 3)" "(0.1 0 -1)" "((0 0 -1))"

3 "spheric" "(1 4)" "(0 0 1)" "((0 0 1))"

4 "revolute" "(2 5)" "(0 1 0)" "()"

5 "revolute" "(2 5)" "(0 -1 0)" "()"

6 "revolute" "(3 6)" "(0 1 0)" "()"

7 "revolute" "(3 6)" "(0 -1 0)" "()"

8 "open" "(0 4)" "(0 0 1)" "()"

9 "open" "(0 5)" "(0 0 1)" "()"

10 "open" "(0 6)" "(0 0 1)" "()"

coordinates.txt

0.0 0.0 0.0

0.25 0.0 1.0

0.25 0.0 -1.0

0.1 0.5 0.0

1.25 0.5 1.0

1.25 -0.5 1.0

1.25 0.5 -1.0

1.25 -0.5 -1.0

1.75 0.25 0.0

1.5 0.0 1.0

1.5 0.0 -1.0

A-4

0.0 0.0 0.8

0.0 0.0 -0.8

1.0 -0.5 1.0

1.0 0.5 1.0

1.0 -0.5 -1.0

1.0 0.5 -1.0

0.0 0.3 0.0

shapes.txt

3 0 "rectangle" "(0.1 0.05)" "(16)" "(0.5)"

3 1 "rectangle" "(0.1 0.05)" "(15)" "(0.5)"

3 2 "rectangle" "(0.1 0.05)" "(2)" "(0.4)"

2 0 "rectangle" "(0.1 0.05)" "(14)" "(0.5)"

2 1 "rectangle" "(0.1 0.05)" "(13)" "(0.5)"

2 2 "rectangle" "(0.1 0.05)" "(1)" "(0.4)"

2 default "rectangle" "(0.1 0.05)" "()"

1 0 "rectangle" "(0.6 0.1 0.2 0.1)" "(11)"

1 1 "rectangle" "(0.6 0.1 0.2 0.1)" "(12)"

1 2 "rectangle" "(0.1 0.1)" "(17)"

1 3 "nil" "(0.1 0.1)" "()"

1 4 "nil" "(0.1 0.1)" "()"

1 5 "nil" "(0.1 0.1)" "()"

1 default "circular" "(0.1 0.1)" "()"

default default "circular" "(0.04 0.04)" "()"

A.4 Spherical four bar mechanism

constraints.txt

0 "revolute" "(1 0)" "(0.7071 -0.7071 0.0)" "()"

A-5

1 "revolute" "(1 2)" "(0.866 0.5 0.0)" "()"

2 "revolute" "(3 0)" "(0.75 -0.433 0.5)" "()"

3 "revolute" "(3 2)" "(0.813797 0.296198 0.5)" "()"

coordinates.txt

0.7071 -0.7071 0.0

0.866 0.5 0.0

0.75 -0.433 0.5

0.813797 0.296198 0.5

shapes.txt

default default "circular" "(0.08 0.08)" "()"

A.5 Additional images

To demonstrate some of the capabilities of the application some screenshots have

been taken which show the output generated by varying the input parameters. In

Figure 0-1, different types of cross section and dimensions are demonstrated and in

Figure 0-2 the shapes have been tweaked using design points.

Figure 0-1 Different cross sections and dimensions of a binary link

Figure 0-2 Different shapes of a binary link

Since all links are defined from one common class the same customization is also

possible for ternary links. Figure 0-3 shows different morphological variations of a

ternary link.

A-6

Figure 0-3 Different morphological variations of a ternary link

Here are some additional images of mechanism generated using the application.

B-7

Appendix B AML Reference Manual
Below are commonly used functions and classes, some of them covered in the AML

Reference Manual (TechnoSoft, 2010), others not.

B.1 Functions

apropos [FUNCTION]

Arguments: (symbol)

Optional arguments: (package)

concatenate [FUNCTION]

Remaining arguments: (strings)

Example concatenate:

> (concatenate "a" "b" "c")

;; returns: "abc"

compile-system [FUNCTION]

Arguments: (system)

Keyword arguments: (:force? :forget? :new? :all? :compiled?)

describe [FUNCTION]

Arguments: (object)

logical-path [FUNCTION]

Arguments: (pathname)

Remaining arguments: (directories/file-name)

Example logical-path:

> (logical-path :aml "modules")

"C:\Program Files\Technosoft\AML\AML5.85_x64\modules"

make-sequence [FUNCTION]

Arguments: (type size)

Keyword arguments: (:initial-element)

B-8

Example make-sequence:

> (make-sequence 'array 5)

;; returns: (nil nil nil nil nil)

> (make-sequence 'string 3 :initial-element '#\a)

;; returns: "aaa"

map [FUNCTION]

Arguments: (type function list)

Remaining arguments: (lists)

Example map:

> (map 'fixnum '1+ '(1 2 3 4))

;; returns: (2 3 4 5)

> (map 'fixnum '- '(1 2 3 4) '(8 8 8 8))

;; returns:(-7 -6 -5 -4)

methods-for-class [FUNCTION]

Arguments: (class-or-instance)

position [FUNCTION]

Arguments: (item sequence)

Keyword arguments: (:key :from-end :test :test-not :start end)

read-from-string [FUNCTION]

Arguments: (string)

Optional arguments: (eof-errorp eof-value)

Keyword arguments: (:start :end :values?)

Example read-from-string:

> (read-from-string "string")

;; returns: string

> (read-from-string "4")

;; returns: 4

> (read-from-string "(list 1 2 0)")

;; returns: (list 1 2 0)

> (read-from-string "(1 0 0)")

;; returns: (1 0 0)

B-9

* [FUNCTION]

Optional arguments: ((number1 (default 1)) (number2 (default 1)))

Remaining arguments: (numbers)

Example ##. * example

> (*)

;; returns: 1

> (* 2)

;; returns: 2

> (* 2 3)

;; returns: 6

> (* 2 3 4)

;; returns: 24

B.2 Classes

analysis-constraint-class [CLASS]

This class serves as a general class that is inherited into all other constraint classes.

analysis-load-case-class [CLASS]

This class manages the boundary conditions of a part in a finite element analysis. A

load case is a combination of a set of loads and a set of constraints.

Properties:

• constraint-objects-list

• load-objects-list

analysis-model-class [CLASS]

This is the base class which manages communication and all interfaces with the

analysis application. Analysis types available, :buckling, :modal, :linear-static

:direct-complex-eigenvalues, :modal-complex-eigenvalues, :static-aeroelastic-

response, :multi, :flutter, :mfreq, :nonlinear-static, :nonlinear-implicit.

Properties:

• analysis-type

• mesh-object

• material-catalog-object

B-10

• load-case-objects-list

• materials-list

• property-set-objects-list

• element-set-3d-objects-list

• element-set-2d-objects-list

• element-set-1d-objects-list

• node-set-objects-list

analysis-node-set-class [CLASS]

This class is used to specify which nodes will eventually be used in an analysis by

setting the node-set-objects-list property on an instance of the analysis-model-class.

Properties:

• query-objects-list

difference-object [CLASS]

The difference-object will create a single geometric instance consisting of only the

regions of two objects that are not in common. If the first object in the property

object-list is a NULL geom, then the result is a NULL geom.

Inheritance: boolean-object

Properties:

• simplify?

general-sweep-class [CLASS]

This class creates a sheet or solid body by sweeping a set of wire or sheet profiles

along a curve path.

Properties:

• profile-objects-list

• path-points-coords-list

• profile-match-point-coords-list

• simplify?

• path-object

• tangential-sweep?

geometry-with-split-periodic-faces-class [CLASS]

B-11

This class creates geometry generated by imprinting a sheet-object instance into a

symmetrical part of the source-object and results in an intersection curve embedded

in surface of the source-object

Properties:

• source-object

nastran-analysis-class [CLASS]

This class manages all communication between an instance of an analysis-model-

class and the MSC Nastran software application, enables the writing of a bulk data

file (deck), and enables the running of Nastran.

Properties:

• analysis-model-object

• analysis-directory

• nastran-file-name

• data-file

• run-nastran@

nurb-curve-object [CLASS]

Inheritance: nurb-object, curve-object

Properties:

• degree

• points

• knots

• rational?

• homogeneous?

Example nurb-curve-object:

(define-class nurb-curve-test

:inherit-from (nurb-curve-object)

:properties (

points '((0 0 0)

(1 -1 0)

(2 1 0)

(3 2 0)

(4 1 0)

(5 0 0)

(6 -2 0)

B-12

(7 0 0))

degree 2

)

)

series-object [CLASS]

This class creates an arbitrary number of subobjects. The classes, quantity and

properties of the subobjects created are based on the property formulas of class-

expression, quantity, and init-form provided. Each subobject created has three

properties called index, series-previous and series-next automatically added to it.

Properties:

• series-prefix

• init-form

• quantity

• class-expression

surface-from-three-edge-curves-class [CLASS]

This class generates a surface patch from three connected curve objects. The three

curves must form a closed loop. The geometry of each curve object must be a single

curve.

Properties:

• edge-1-object

• edge-2-object

• edge-3-object

B.3 Methods

vertex-of-object [METHOD]

Defined on Classes: graphic-object

Arguments: (instance)

Optional arguments: (vertex-id)

convert-coords [METHOD]

B-13

Defined on Classes: position-object

Arguments: (instance point)

Keyword Arguments: (:from :to)

B.4 Macros

default [MACRO]

When specified as the formula for a property, default will look up the tree for a

property with the same name. If one is found, the value of that property is used.

Otherwise, the specified default-formula is used.

Optional Arguments: (default-formula)

define-class [MACRO]

Define is used to define a new AML class. Defining a new class allows instances of

that class to be created.

Arguments: (name)

Keyword arguments: (:inherit-from :properties :subobjects)

define-system [MACRO]

The main mechanism for defining systems. The definition should appear in a system

definition file named system.def.

Arguments: (system-name)

Keyword arguments: (:require-libs :require-systems :require-loaded-systems :files

:require-resources)

the [MACRO]

the is used to reference an object or a property in an AML object tree. The default

behavior is as follows: A reference to an instance that inherits from property-class

will return the value of that property. A reference to any other object will return the

instance of the object.

Optional Arguments: (reference-path)

B-14

Keyword Arguments: (:from :eval? :dependencies?)

C-15

Appendix C AML setup
The AML Reference Manual (TechnoSoft, 2010) gives a short introduction to the

core system components of AML, here is a short summary, with a supplementary

explanation of the interpreter and editor integration and examples of the aml-

init.tsi and logical.pth-files used in this thesis.

C.1 Interpreter

The AML process can be initiated directly from the command line. To start AML in

the console, a minimal environment has to be set up using a batch file or running

the following statement from the command line in the AML working directory.

> AMLConsole.exe AML.exe AML.img

The AML process is launched from AML.exe with the AML.img. This gives us a

running AML interpreter in the command line. Interacting with the interpreter is

then as simple as writing commands in the command line, and executing them with

return. Errors also give rise to a pop-up dialog, where the user can choose to debug

or abort. Choosing the debug option prints the stack trace to the console.

C.2 Editors

Text editors can use an REPL (Read Eval Print Loop) application to control the AML

process and implement the full functionality of the AML interpreter. Currently

XEmacs is the only editor supported by AML. But Elstad and Granlund (2013)

makes an AML REPL for Sublime Text 2, unfortunately this does not work with

AML 5.85.0. Oluf Tonning (2013) used the approach to successfully integrate the

AML development framework into the Eclipse IDE.

The main benefit of integrating AML into Sublime is to give the developer several

options to choose from. Some of the features include a modern default key-binding,

familiar from most other applications. One example is Ctrl-c for copy and Ctrl-v for

paste. Sublime has a more modern GUI, with a tab system that closely matches

modern tabbed applications, like web browsers. Browsing and editing the project

files and folders can easily be done in the left side bar of the editor. Sublime has a

large and active plug-in community. This gives the developer access to , easily

installed to the Sublime package manager. A mini-map on the right side of the

editor, gives the developer an instant overview of the open file.

C-16

C.3 Images

An image is the main underlying file from which AML starts. An image holds all the

AML classes, methods and functions definitions. The user can create a new AML

"image" file that includes user defined classes, methods and functions. This image

file can replace the default .img file the current AML version is using. Saving an

AML image file should be done before calling the function aml.

C.4 Packages

Packages allow the user to define code in multiple name-spaces. Typically, most

development will be done in the :aml package. Therefore, the user needs to state

(in-package :aml) at the beginning of all AML source code files because you will be

using functionality from the :aml package. When using functionality between

packages, you must specify the package name as a prefix.

C.5 Modules

This function compacts a collection of AML systems and their resources into one

module. An AML module consists of a directory containing one .btc file (that

includes all .btc files from all required AML systems) and other resource

directories based on the "require-libs" and "require-resources" keywords of the

included AML systems. Modules are loaded into AML using the function load-

module. A directory named "module-name-version" will be created by create-module.

C.6 Patches

A software patch is a file that fixes or enhances a compiled AML system. System

management in AML incorporates patches for automatic loading. Patching a system

allows incremental minor enhancements to an AML system without the need to

recompile a system. Once patch files have been created, the files will be loaded

automatically when a system is loaded. If the system is already loaded and a new

patch is created it can be loaded without loading the complete system by using the

function patch-system. Patch-system will load patches of the system version that is

currently loaded into memory.

;; patch-system [FUNCTION] (system-name)

> (patch-system :system)

;; Loading file "system\SYSTEM-1\patches\bins\patch-0001.btc"

C-17

C.7 aml-init.tsi

The aml-init.tsi file is located in the AML working (or startup) directory on

WINDOWS platforms and in the user's home directory on UNIX platforms. The file

is executed after AML interpreter is initialized.

(in-package :aml)

;; Loading patches

(patch-system :aml)

;; Loading modules

(load-module "aml-analysis-module-pack-type-3" :path "C:\\Program

Files\\Technosoft\\AML\\AML5.85_x64\\modules\\")

C.8 logical.pth

AML has the capability of defining logical-path-reference variables to locate

resources on the file system. They are defined in logical paths files. On Unix

platform, a user logical paths file (logical.paths) can be created under the user's

home directory. On WINDOWS platforms, a logical paths file (logical.pth) exists

under the AML working (or startup) directory and the user can append entries to it.

The logical paths file contains lines with logical-path-reference and corresponding

path definitions.

:aml "C:\Program Files\Technosoft\AML\AML5.85_x64\"

:tmp c:\temp\

:temp c:\temp\

:home :aml

:lib :aml lib\

:patches :aml patches\

:bitmaps :aml bitmaps\

:ui-bitmaps :aml gui\bitmaps\

:visual-object-editor :aml visual-object-editor\

:ts-server-home :aml pserver\

:geometry-exchange :aml geometry-exchange\

:geometry-exchange-exec :geometry-exchange bin\

:model-save :aml model-save\

:model-load-exec :model-save bin\

:additional-modules :aml modules\

:mechanism-system

"C:\Users\Rasmus\Documents\NTNU\Masteroppgave\code\mechanism-model\"

:nastran-path "C:\Program Files\Siemens\NX 9.0\NXNASTRAN\bin"

C-18

:nastran-data

 "C:\Users\Rasmus\Documents\NTNU\Masteroppgave\nastran-data"

C.9 Source code management

The management of source code is accomplished through the definition of systems. A

system is a set of source code files that are grouped together. Defining a system

allows the code in a system to be treated as a module that may be loaded, compiled,

and archived as a single entity. Compiling a system archives the source code with

the binary files so updating older versions is possible by using the archived code. A

system also compiles binaries for multiple platforms within a version to allow

different platforms to be operating with the same system version. A system may

require other systems to automatically load before loading or compiling itself.

Organizing code into systems that may be loaded is a methodology for the reuse of

code. A logical path is a reference to files and directories in the system. AML has the

capability of defining logical-path-reference variables to locate resources on the file

system. They are defined in logical paths files. The logical path file stores the logical

path references, making modification easy. These references are converted by the

use of the logical-path function. The logical.pth file is typically located in the

working directory of the AML process. The logical-path function uses the logical

paths file to convert a logical-path-reference to a path definition. The path definition

is a string that is retrieved from the logical paths file.

The define-system construct is the main mechanism for creating systems. The

definition should appear in a system definition file named system.def.

(define-system :MY-SYSTEM

:require-systems ’(:base-system :extension-system)

:files ’(

“file1.aml”

“file2.aml”

“file3.aml”

)

)

The system.def must be in the directory returned when (logical-path :my-system) is

executed. The :my-system must be an entry in the logical path file for the system to

be found for compiling or loading.

:my-system /home/apps/my-system/

A directory structure for a system used in this thesis, named my-system, looks like

the following:

C-19

/home/

apps/

my-system/

system.def ;; File containing the system definition.

sources/

file1.aml ;; Source code file.

file2.aml ;; Source code file.

file3.aml ;; Source code file.

When a system is compiled the source code is read from the files specified in define-

system. Compilation of a system will create system versions (archives) that contain

the source from time of compile and the binary files created by those source files.

Binary files are created in a subdirectory named for the machine type in the system

version subdirectory. That subdirectory will be used by load-system to load the

binary files. A system tracks the binary files created and will not compile source

files that have not changed since the last being compiled unless the force? keyword

is t. Only the newest version or a new version may be compiled. The following

compiles the system files the first time on a Windows; machine and creates MY-

SYSTEM-1 subdirectory structure shown below

> (compile-system :my-system)

New directory structure, creating a new subdirectory of my-system.

/home/

apps/

my-system/

system.def File containing the system definition.

sources/

file1.aml Source code file.

file2.aml Source code file.

file3.aml Source code file.

MY-SYSTEM-1/

system.def

sources/

file1.aml Archived source code file.

file2.aml Archived source code file.

file3.aml Archived source code file.

bins64/

compilation.dat ;; Archived binary patch files

file1.btc64 Archived binary file.

file2.btc64 Archived binary file.

file3.btc64 Archived binary file.

When a system is loaded the binary files that were created during the last

compilation are loaded if no version number is supplied. When a version number is

supplied the binaries for the machine will be loaded from a compile that may not be

C-20

the newest. This allows versions to be in production and newer versions to be under

development. If the source code is changed the changes will not be loaded until after

a compile-system is performed. A system also tracks the version of the binary files

that are loaded so that successive loading of the same system will not take time load

files that are unchanged.

Running previously written AML-programs cannot be done without first starting the

AML interpreter. A system can be loaded and compiled on startup by editing the

logical.pth file or with commands directly in the AML interpreter. But running

previously written AML-programs with batch scripts is not possible since the batch-

process cannot interact with the interpreter after it is launched.

D-21

Appendix D Source code

06/17/15 system.de0

;;;--
;;; System : :mechanism-system
;;; Purpose : AML Mechanism Model
;;;
;;;
;;; Author : Rasmus Korvald Skaare
;;;

(in-package :AML)

(defvar #MECHANISM-LIBRARY# "")
(setf #MECHANISM-LIBRARY# (logical-path :mechanism-system "library"))

(define-system :mechanism-system
 :files '(
 "data-models.aml"
 "constraints.aml"
 "cross-sections.aml"
 "analysis.aml"
 "links.aml"
 "collections.aml"
)
)

0

 Page 1 

0

06/17/15 data-models.am0

;; Use point-object to define position properties
(define-class point-data-model
 :inherit-from (point-object data-model-node-mixin)
 :properties (
 (coordinates :class 'editable-data-property-class
;;; label "Coordinates"
;;; formula '(0 0 0)
)

 property-objects-list (list
 (list (the superior coordinates self)
 '(apply-formula? t))
)
)
)

;; Direction vector
(define-class vector-data-model
 :inherit-from (vector-class data-model-node-mixin)
 :properties (
 ;;superior reference traverse
 point-ref (default ^point-default)
 (point-default :class 'point-data-model
 coordinates '(0 0 0)
)
 (direction :class 'editable-data-property-class
;;; label "Direction"
 formula (default)
)
 length 0.2

 base-point (the coordinates (:from (the superior point-ref)) 
)
 ;;sec-point (add-vectors ^base-point (multiply-vector-by-scal
ar ^direction ^length))

 property-objects-list (list
 (list (the coordinates self (:from (th
e superior point-ref)))
 '(apply-formula? t))
 (list (the superior direction self)
 '(apply-formula? t))
)

)
)

;; Frame, coordinate system
(define-class frame-data-model
 :inherit-from (coordinate-system-class data-model-node-mixin)
 :properties (
 ;;traverse to superior reference
 point-ref (default (the point-default (:from ^z-vector-ref)) 
)
 z-vector-ref (default ^z-vector-default)
 (z-vector-default :class 'vector-data-model
 direction '(0 0 1)
)
 x-vector-ref (default ^x-vector-default)
 (x-vector-default :class 'vector-data-model

0

 Page 1 

0

06/17/15 data-models.am0

 direction '(1 0 0)
)
 vector-k (the direction (:from ^z-vector-ref))
 vector-i (the direction (:from ^x-vector-ref))
 origin (the coordinates (:from ^point-ref))
 vector-j (cross-product ^vector-k ^vector-i)
 length 0.1

 property-objects-list (list
 (list (the coordinates self (:from ^p
oint-ref))
 '(apply-formula? t))
 (list (the direction self (:from ^z-ve
ctor-ref))
 '(apply-formula? t))
 (list (the direction self (:from ^x-v
ector-ref))
 '(apply-formula? t))
)
)
)

;;; (define-class su-vector-model
;;; :inherit-from (vector-data-model)
;;; :properties(

;;; (define-class su-frame-model
;;; :inherit-from (frame-data-model)
;;; :properties(
;;; vector-k (the direction (:from (the superior

0

 Page 2 

0

06/17/15 constraints.am0

;;; -----------------------------
;;; CONSTRAINT DEFINITIONS
;;; -----------------------------

(define-class general-joint-solid-model
 :inherit-from (frame-data-model)
 :properties (
 max-element-size 0.004
 scale-factor (default 1.2)

 point-ref (default nil)
 direction (default nil)
 (z-vector-ref :class 'vector-data-model
 direction ^^direction
)
 (x-vector-ref :class 'vector-data-model
 direction (arbitrary-normal-to-vector ^^direction)
)

 constraint-type (default nil)

 from-link (nth (position (nth 0 ^link-incidence) ^^link-list)
 ^^link-ref-list)
 to-link (nth (position (nth 1 ^link-incidence) ^^link-list) ^
^link-ref-list)

 link-incidence (default nil)

 link-ref-incident-on-constraint nil

 constraint-variable (default (list))
)
)

(define-class master-joint-model
 :inherit-from (general-joint-solid-model)
 :properties (

 max-width (* ^scale-factor (max (first (the local-max-dimensi
on (:from ^female-element-solid-model))) (first (the local-max-dimension (:f
rom ^male-element-solid-model)))))
 max-height (* ^scale-factor (max (second (the local-max-dimen
sion (:from ^female-element-solid-model))) (second (the local-max-dimension 
(:from ^male-element-solid-model)))))

 link-ref-incident-on-constraint (list
 (the link-ref-incident-on-co
nstraint (:from ^male-element-solid-model))
 (the link-ref-incident-on-co
nstraint (:from ^female-element-solid-model))
)
)
 :subobjects (
 (male-element-solid-model :class (read-from-string (concatena
te !constraint-type "-male-element"))

)
 (female-element-solid-model :class (read-from-string (concate
nate !constraint-type "-female-element"))
 (point-ref :class 'point-data-model
 coordinates (convert-coords ^^superior '(0 0 0
) :from :local :to :global)

0

 Page 1 

0

06/17/15 constraints.am0

)
 direction (convert-vector ^superior '(0 0 1) :from :local
 :to :global)

)
)
)
(define-class sub-point-model
 :inherit-from (point-data-model)
 :properties (
 reference-object ^main-frame
 coordinates '(0 0 0)
)
)
(define-class sub-frame-model
 :inherit-from (frame-data-model)
 :properties (
 (point-ref :class 'point-data-model
 coordinates (convert-coords ^sub-point-ref (the coordinat
es (:from ^sub-point-ref)))
;;; coordinates (add-vectors (the coordinates (:from ^poi
nt-ref))
;;; (multiply-vector-by-scalar (
normalize ^direction) 0))
)
)
)

(define-class joint-element-model
 :inherit-from (general-joint-solid-model)
 :properties (
 union-list nil
 difference-list nil

 display? t
 gender (read-from-string (remove "-element-solid-model" (writ
e-to-string (object-name !superior))))
 gender_int (case ^gender ('male 0) ('female 1))
 link-incidence (nth ^gender_int ^^link-incidence)
 link-ref-incident-on-constraint (get-link-ref ^links ^link-in
cidence)

 local-joint-index (position !superior (the constraints-incide
nt-on-link-list (:from ^link-ref-incident-on-constraint)))
 members-connected-to-joint-element (loop for member in (the m
embers-ref-list (:from (the link-solid-geometry (:from ^link-ref-incident-on
-constraint))))
 when (position !superior
 (the connection-between-constraints (:from member)))
 collect member
)
 local-max-dimension (loop for member in (the members-ref-list
 (:from (the link-solid-geometry (:from ^link-ref-incident-on-constraint))))
 for pos = (position !superior (the conn
ection-between-constraints (:from member)))
 when (and pos (the display? (:from memb
er)))
 maximize (if (= pos 0)
 (max-width (the cross-sect
ion_D (:from member)))
 (max-width (the cross-sectio
n_A (:from member)))) into max-w

0

 Page 2 

0

06/17/15 constraints.am0

 and maximize (if (= pos 0)
 (max-height (the cros
s-section_D (:from member)))
 (max-height (the cross-
section_A (:from member)))) into max-h
 finally (return (list max-w max-h))
)

 (sub-point-ref :class 'sub-point-model
)
)
 :subobjects (
 (main-frame :class 'frame-data-model
 ;; inherited frame properties used in main-frame and sub-
frame
 (x-vector-ref :class 'vector-data-model
 direction (let (
 (first-sweep (nth 0 ^members-connected
-to-joint-element))
 (x-dir (subtract-vectors
 (the coordinates (:from (the 
point-ref (:from (nth 0 (the connection-between-constraints (:from first-swe
ep)))))))
 (the coordinates (:from (the 
point-ref (:from (nth 1 (the connection-between-constraints (:from first-swe
ep)))))))
))
 (x-dir-normal (cross-product ^^directi
on (cross-product ^^direction x-dir)))
)
 (if (equal 0 (vector-length x-dir-norm
al))
 x-dir-normal
 (arbitrary-normal-to-vector ^^direct
ion)
)
)
)
)

 (sub-frame :class 'sub-frame-model
)
 (joint-center-node :class 'mesh-node-class
 coordinates (the origin (:from ^main-frame))
 mesh-object (the link-mesh (:from (the link-mesh-model (:
from ^link-ref-incident-on-constraint))))
)
)
)

(define-method get-constraint-incidence master-joint-model (link-index)
 (let (
 (pos (position link-index !link-incidence))
)
 (when pos
 (nth pos (children (the) :class 'general-joint-solid-model))
)
)
)

(define-method get-constraint-incidence joint-element-model (link-index)
 (when (member link-index ^link-incidence) (the self))

0

 Page 3 

0

06/17/15 constraints.am0

)

(define-class open-constraint-class
 :inherit-from (master-joint-model)
 :properties (
)
)
(define-class open-male-element
 :inherit-from (joint-element-model)
 :properties (
 (sub-point-ref :class 'sub-point-model
 orientation (list
 (translate (list 0 0 (/ (- ^^max-height) 1) 
))
)
)
)
)
(define-class open-female-element
 :inherit-from (joint-element-model)
 :properties (
 (sub-point-ref :class 'sub-point-model
;;; orientation (list
;;; (translate (list 0 0 (/ ^^max-height 2) 
))
;;;)
)
)
)

(define-class rigid-constraint-class
 :inherit-from (master-joint-model)
 :properties (
)
)

(define-class helical-constraint-class
 :inherit-from (master-joint-model)
 :properties (
;;; joint-variables 'theta or 's
 ;;; to element
;;; (temp-element :class 'vector-data-model
;;; point-ref ^^point-ref
;;; direction ^^direction
 orientation (list
 (translate !direction :distance (nth 0 !co
nstraint-variable))
)
;;;)
)

)

(define-class prismatic-constraint-class
 :inherit-from (master-joint-model)
 :properties (
;;; joint-variables 's

0

 Page 4 

0

06/17/15 constraints.am0

 ;;; to element
;;; (temp-element :class 'vector-data-model
;;; point-ref ^^point-ref
;;; direction ^^direction
 orientation (list
 (translate !direction :distance (nth 0 !co
nstraint-variable))
)
;;;)
)
)

(define-class cylindric-constraint-class
 :inherit-from (master-joint-model)
 :properties (
;;; joint-variables 'theta and 's
 ;;; to element
;;; (temp-element :class 'vector-data-model
;;; point-ref ^^point-ref
;;; direction ^^direction
 orientation (list
 (translate !direction :distance (nth 0 !co
nstraint-variable))
)
;;;)
)
)

(define-class planar-constraint-class
 :inherit-from (master-joint-model)
 :properties (
;;; joint-variables 's, s' and theta

;;; (temp-element :class 'vector-data-model
;;; orientation (list
;;; (translate
;;; (angle-between-2-vectors (the superior 
solid-element direction) (nth 0 ^^constraint-variable))
;;; (cross-product (the superior solid-elem
ent direction) (nth 0 ^^constraint-variable))
;;; :axis-point (the coordinates (:from (th
e superior solid-element point-ref)))
;;;)
;;;)
;;;)
)
)

(define-class revolute-constraint-class
 :inherit-from (master-joint-model)
 :properties (
 diameter 0
 ;;; dimensions to make sure connected joints match
;;; diameter 0
;;; joint-variables 'theta
)
)

(define-class revolute-male-element
 :inherit-from (joint-element-model)
 :properties (

0

 Page 5 

0

06/17/15 constraints.am0

 union-list (when (and (plusp ^max-width) (plusp ^max-height) 
)
 (list ^imprinted-pin ^eye)
)
;;; union-list (list ^pin ^eye)
 object-list (list ^imprinted-pin ^eye)
 simplify? nil
;;; reference-object (the superior superior)
 (imprinted-pin :class '(tagging-object geometry-with-split-pe
riodic-faces-class)
 source-object ^^pin
 tag-dimensions '(1 2 3)
 tag-attributes (list ^^max-element-size .1
 0 0.1 0 20.0 1.0e-5)
)

 (pin :class 'cylinder-object
 reference-object ^main-frame
 height (* 2 ^^max-height ^^scale-factor)
 diameter (/ ^^max-width 2)
 orientation (list
 (translate (list 0 0 (- (/ ^height 4))))
)
)
 (eye :class '(tagging-object cylinder-object)
 tag-dimensions '(1 2 3)
 tag-attributes (list ^^max-element-size .1
 0 0.1 0 20.0 1.0e-5)
 reference-object ^sub-frame
 height ^^max-height
 diameter ^^max-width
;;; orientation (list
;;; (translate (list 0 0 0))
;;;)
)
 (sub-point-ref :class 'sub-point-model
 orientation (list
 (translate (list 0 0 (/ (- ^^max-height) 1) 
))
)
)
)
 :subobjects (

 (mating-surface-nodes :class 'mesh-nodes-query-class
 tagged-object-list (list ^^imprinted-pin)
 mesh-object (the link-mesh (:from (the link-mesh-model (:
from ^link-ref-incident-on-constraint))))
 color 'green
)
)
)
(define-class revolute-female-element
 :inherit-from (difference-object joint-element-model)
 :properties(
 union-list (when (and (plusp ^max-width) (plusp ^max-height))
 (list ^fork)
)
 difference-list (when (and (plusp ^max-width) (plusp ^max-heig
ht))
 (list ^imprinted-pin-hole)
)

0

 Page 6 

0

06/17/15 constraints.am0

 object-list (list ^fork ^imprinted-pin-hole)
;;; reference-object (the superior superior)

 (imprinted-pin-hole :class '(tagging-object geometry-with-spl
it-periodic-faces-class)
 source-object ^^pin-hole
 tag-dimensions '(1 2 3)
 tag-attributes (list ^^max-element-size .1
 0 0.1 0 20.0 1.0e-5)
)

 (pin-hole :class 'cylinder-object
 reference-object ^main-frame
 height (* 4 ^^max-height ^^scale-factor)
 diameter (/ ^^max-width 2)
;;; orientation (list
;;; (translate (list 0 0 (/ ^height 4)))
;;;)
)

 (fork :class '(tagging-object cylinder-object)
 tag-dimensions '(1 2 3)
 tag-attributes (list ^^max-element-size .1
 0 0.1 0 20.0 1.0e-5)
 reference-object ^sub-frame
 height ^^max-height
 diameter ^^max-width
;;; orientation (list
;;; (translate (list 0 0 (* ^height ^^scale-
factor)))
;;;)
)

 (sub-point-ref :class 'sub-point-model
;;; orientation (list
;;; (translate (list 0 0 (/ ^^max-height 2) 
))
;;;)
)
)
 :subobjects (

 (mating-surface-nodes :class 'mesh-nodes-query-class
 tagged-object-list (list ^^imprinted-pin-hole)
 mesh-object (the link-mesh (:from (the link-mesh-model (:
from ^link-ref-incident-on-constraint))))
 color 'green
)
)
)

(define-class spheric-constraint-class
 :inherit-from (master-joint-model)
 :properties (

;;; joint-variables 'theta, theta' and theta''
 ;;; to element
;;; (temp-element :class 'vector-data-model
;;; point-ref ^^point-ref
;;; direction ^^direction
 orientation (list

0

 Page 7 

0

06/17/15 constraints.am0

 (rotate
 (angle-between-2-vectors ^direction (nth 0 
^constraint-variable))
 (cross-product ^direction (nth 0 ^constrain
t-variable))
 :axis-point (the coordinates (:from ^point-
ref))
)
)
;;;)
)
)

(define-class spheric-male-element
 :inherit-from (union-object joint-element-model)
 :properties (
 tag-dimensions '(1 2 3)
 tag-attributes (list ^^max-element-size .1
 0 0.1 0 20.0 1.0e-5)
 union-list (when (and (plusp ^max-width) (plusp ^max-height) 
)
 (list ^imprinted-stud ^imprinted-ball ^plate)
)
 object-list (list ^imprinted-stud ^imprinted-ball ^plate)

 (imprinted-stud :class '(tagging-object geometry-with-split-p
eriodic-faces-class)
 source-object ^^stud
 tag-dimensions '(1 2 3)
 tag-attributes (list ^^max-element-size .1
 0 0.1 0 20.0 1.0e-5)
)
 (stud :class 'cylinder-object
 reference-object ^sub-frame
 height (vector-length (subtract-vectors (the origin (:fro
m ^sub-frame)) (the origin (:from ^main-frame))))
 diameter (/ (the diameter (:from ^ball)) 2)
 orientation (list
 (translate (list 0 0 (/ ^height 2)))
)
)
 (imprinted-ball :class '(tagging-object geometry-with-split-p
eriodic-faces-class)
 source-object ^^ball
 tag-dimensions '(1 2 3)
 tag-attributes (list ^^max-element-size .1
 0 0.1 0 20.0 1.0e-5)
)
 (ball :class 'sphere-object
 reference-object ^main-frame
 diameter (* 3 (/ ^^max-width 4))
)
 (plate :class '(tagging-object cylinder-object)
 tag-dimensions '(1 2 3)
 tag-attributes (list ^^max-element-size .1
 0 0.1 0 20.0 1.0e-5)
 reference-object ^^sub-frame
 diameter ^^max-width
 height ^^max-height
)

 (sub-point-ref :class 'sub-point-model

0

 Page 8 

0

06/17/15 constraints.am0

 orientation (list
 (translate (list 0 0 (- 0 (/ ^^max-height 2
) (* 1 (the diameter (:from ^^ball))))))
)
)
)
 :subobjects (
;;; (sub-frame :class 'frame-data-model
;;; reference-object ^^main-frame
;;; point-ref (the point-default (:from ^z-vector-ref))

 (mating-surface-nodes :class 'mesh-nodes-query-class
 tagged-object-list (list ^^imprinted-ball)
 mesh-object (the link-mesh (:from (the link-mesh-model (:
from ^link-ref-incident-on-constraint))))
 color 'green
)
)
)

(define-class spheric-female-element
 :inherit-from (difference-object joint-element-model)
 :properties (
 union-list (when (and (plusp ^max-width) (plusp ^max-height) 
)
 (list ^imprinted-socket)
)
 difference-list (when (and (plusp ^max-width) (plusp ^max-hei
ght))
 (list ^imprinted-hole)
)
 object-list (list ^imprinted-socket ^imprinted-hole)

 (imprinted-hole :class '(tagging-object geometry-with-split-p
eriodic-faces-class)
 source-object ^^hole
 tag-dimensions '(1 2 3)
 tag-attributes (list ^^max-element-size .1
 0 0.1 0 20.0 1.0e-5)
)
 (hole :class 'sphere-object
 reference-object ^sub-frame
 diameter (* 3 (/ ^^max-width 4))
)
 (imprinted-socket :class '(tagging-object geometry-with-split
-periodic-faces-class)
 source-object ^^socket
 tag-dimensions '(1 2 3)
 tag-attributes (list ^^max-element-size .1
 0 0.1 0 20.0 1.0e-5)
)

 (socket :class 'intersection-object
 object-list (list ^sphere ^cyl)
 reference-object ^sub-frame
)

 (sphere :class 'sphere-object
 diameter ^^max-width
)

 (cyl :class 'cylinder-object

0

 Page 9 

0

06/17/15 constraints.am0

 height ^^max-height
 diameter ^^max-width
)
)
 :subobjects (
 (mating-surface-nodes :class 'mesh-nodes-query-class
 tagged-object-list (list ^^imprinted-hole)
 mesh-object (the link-mesh (:from (the link-mesh-model (:
from ^link-ref-incident-on-constraint))))
 color 'green
)
)
)

(define-class solid-knuckle90-male-constraint
 :inherit-from (union-object joint-element-model)
 :properties (
 union-list (when (and (plusp ^max-width) (plusp ^max-height) 
)
 (list !superior)
)
;;; union-list (list ^pin ^eye)
 object-list (list ^imprinted-pin ^eye)
 simplify? t
;;; reference-object (the superior superior)
 (imprinted-pin :class '(tagging-object geometry-with-split-pe
riodic-faces-class)
 source-object ^^pin
 tag-dimensions '(1 2 3)
 tag-attributes (list ^^max-element-size .1
 0 0.1 0 20.0 1.0e-5)
)

 (pin :class 'cylinder-object
 reference-object ^main-frame
 diameter (* 2 ^^max-height ^^scale-factor)
 height (/ ^^max-width 2)
;;; orientation (list
;;; (translate (list 0 0 (/ ^height 4)))
;;;)
)
 (eye :class '(tagging-object cylinder-object)
 tag-dimensions '(1 2 3)
 tag-attributes (list ^^max-element-size .1
 0 0.1 0 20.0 1.0e-5)
 reference-object ^sub-frame
 diameter ^^max-height
 height ^^max-width
;;; orientation (list
;;; (translate (list 0 0 0))
;;;)
)

)
 :subobjects (
 (sub-frame :class 'frame-data-model
 reference-object ^^main-frame
 point-ref (the point-default (:from ^z-vector-ref))
 orientation (list
 (translate (list 0 0 (/ (- ^^max-height) 2) 
))

0

 Page 10 

0

06/17/15 constraints.am0

)
)
 (mating-surface-nodes :class 'mesh-nodes-query-class
 tagged-object-list (list ^^imprinted-pin)
 mesh-object (the link-mesh (:from (the link-mesh-model (:
from ^link-ref-incident-on-constraint))))
 color 'green
)
)
)
;;; -----------------------------
;;; END CONSTRAINT DEFINITIONS
;;; -----------------------------

0

 Page 11 

0

06/17/15 cross-sections.am0

;;Superclass used for querying class-names
(define-class section-model
 :inherit-from(tagging-object position-object)
 :properties (
 ;; must be set on init from parent object

 max-element-size 0.004
 tag-dimensions '(1 2)
 tag-attributes (list ^max-element-size .1
 0 0.1 0 20.0 1.0e-5)
;;; width (set-initial-dimension (the self) :default-value 0.
04)
;;; height (set-initial-dimension (the self) :default-value 0
.04)

)
)
(define-method max-width section-model ()
 !width
)

(define-method max-height section-model ()
 !height
)

(define-method set-initial-dimension property-object (&key (property-list (l
ist (object-name (the self)))) (default-value 0.02))
 (let ()
 (loop for property in property-list
 do
;;; (change-value (the-list (list property 'self) :from ^^z-vector_A-r
ef) (max default-value (the-list (list property) :from ^^z-vector_A-ref)))
;;; (change-value (the-list (list property 'self) :from ^^z-vector_D-r
ef) (max default-value (the-list (list property) :from ^^z-vector_D-ref)))
)
 default-value
)
)

(define-class circular-section
 :inherit-from (imprint-class section-model)
 :properties (
 target-object ^disc
 tool-object-list (list ^p1)
;;; diameter is average or max of width/height?
 diameter (average ^width ^height)
 (disc :class 'disc-object
 diameter ^^diameter
)
 (p1 :class 'point-object
 coordinates (list (/ ^diameter 2) 0 0)
)
)
)
(define-method max-width circular-section ()
 !diameter
)
(define-method max-height circular-section ()
 !diameter
)

(define-class circular-tube-section
 :inherit-from (imprint-class section-model)

0

 Page 1 

0

06/17/15 cross-sections.am0

 :properties (
 target-object ^diff-object
 tool-object-list (list ^p1 ^p2)

 outer-diameter (average ^width ^height)
;;; 20% of diameter
 thickness (* 0.2 ^outer-diameter)

 (p1 :class 'point-object
 coordinates (list (/ ^outer-diameter 2) 0 0)
)
 (p2 :class 'point-object
 coordinates (list (/ (- ^outer-diameter ^thickness) 2) 0 
0)
)

 (diff-object :class 'difference-object
 object-list (list ^outer-circular ^inner-circular)
 simplify? t
)

 (outer-circular :class 'circular-section
 diameter ^outer-diameter
)
 (inner-circular :class 'circular-section
 diameter (- ^outer-diameter ^thickness)
)
)
)
(define-method max-width circular-tube-section ()
 !outer-diameter
)
(define-method max-height circular-tube-section ()
 !outer-diameter
)

(define-class rectangle-section
 :inherit-from (imprint-class section-model)
 :properties (
;;; inherit from section-model
 width (default 0.04)
 height (default 0.01)

 target-object ^sheet
 tool-object-list (list ^p1)
 (p1 :class 'point-object
 coordinates (list (/ ^width 2) 0 0)
)
 (sheet :class 'sheet-object
 width ^^width
 height ^^height
)
)
)

(define-class rectangle-tube-section
 :inherit-from (section-model difference-object)
 :properties (
;;; inherit from section-model
 width (default 0.04)
 height (default 0.01)

0

 Page 2 

0

06/17/15 cross-sections.am0

 object-list (list ^outer-rectangle ^inner-rectangle)
;;; 20% of average of width/height?
 thickness (* 0.2 (average ^width ^height))
 simplify? t

 (outer-rectangle :class 'sheet-object
 width ^^width
 height ^^height
)
 (inner-rectangle :class 'sheet-object
 width (- ^^width ^thickness)
 height (- ^^height ^thickness)
)
)
)

;;; (define-class square-section
;;; :inherit-from (rectangle-section section-model)
;;; :properties (
;;; height ^width
;;;)
;;;)
;;; (define-class square-tube-section
;;; :inherit-from (rectangle-tube-section section-model)
;;; :properties (
;;; height ^width
;;;)
;;;)

(define-class line-section
 :inherit-from (line-object section-model)
 :properties (
;;; inherit from section-model
 height (default 0.04)
 point1 (list 0 (- (/ ^height 2)) 0)
 point2 (list 0 (/ ^height 2) 0)
)
)
;; noe joint displacement for shell model
(define-method max-width line-section ()
 !height
)
;;
(define-method max-height line-section ()
 0
)

(define-class I-beam-section
 :inherit-from (union-object section-model)
 :properties (
;;; inherit from section-model
 width (default 0.04)
 height (default 0.04)

 object-list (list ^top-flange ^web ^bottom-flange)
 ;;10% of width/height
 flange-thickness (* 0.1 ^height)
 web-thickness (* 0.1 ^width)
 simplify? t

 (top-flange :class 'sheet-object
 width ^^width

0

 Page 3 

0

06/17/15 cross-sections.am0

 height ^flange-thickness
 orientation (list
 (translate (list 0 (half ^^height) 0))
)
)
 (web :class 'sheet-object
 width ^web-thickness
 height ^^height
)
 (bottom-flange :class 'sheet-object
 width ^^width
 height ^flange-thickness
 orientation (list
 (translate (list 0 (- (half ^^height)) 0))
)
)

)
)

(define-method max-height I-beam-section ()
 (+ !flange-thickness !height)
)

(define-class H-beam-section
 :inherit-from (union-object section-model)
 :properties (
;;; inherit from section-model
 width (default 0.04)
 height (default 0.04)

 object-list (list ^left-flange ^web ^right-flange)
 ;; 10% of width/height
 flange-thickness (* 0.1 ^width)
 web-thickness (* 0.1 ^height)
 simplify? t

 (left-flange :class 'sheet-object
 width ^flange-thickness
 height ^^height
 orientation (list
 (translate (list (half ^^width) 0 0))
)
)
 (web :class 'sheet-object
 width ^^width
 height ^web-thickness
)
 (right-flange :class 'sheet-object
 width ^flange-thickness
 height ^^height
 orientation (list
 (translate (list (- (half ^^width)) 0 0))
)
)
)
)
(define-method max-width H-beam-section ()
 (+ !width !flange-thickness)
)

0

 Page 4 

0

06/17/15 cross-sections.am0

(define-class hexagon-section
 :inherit-from (imprint-class section-model)
 :properties (
 target-object ^poly
 tool-object-list (list ^p1)
 R (/ (average ^width ^height) 2)
 (poly :class 'polygon-object
 vertices (list
 (list ^R 0 0)
 (list (/ ^R 2) (- (/ (* ^R (sqrt 3)) 2)) 0)
 (list (- (/ ^R 2)) (- (/ (* ^R (sqrt 3)) 2)) 0)
 (list (- ^R) 0 0)
 (list (- (/ ^R 2)) (/ (* ^R (sqrt 3)) 2) 0)
 (list (/ ^R 2) (/ (* ^R (sqrt 3)) 2) 0)
)
 dimension 2
)
 (p1 :class 'point-object
 coordinates (list 0 (/ (* ^R (sqrt 3)) 2) 0)
)

)
)

(define-method max-width hexagon-section ()
 (* 2 !R)
)
(define-method max-height hexagon-section ()
 (* !R (sqrt 3))
)

(define-class polygon-section
 :inherit-from (polygon-object section-model)
 :properties (
 vertices '((1 1 0) (-1 1 0) (-1 -1 0) (1 -1 0))
 dimension 2
)
)

0

 Page 5 

0

06/17/15 analysis.am0

(define-class link-mesh-class
 :inherit-from (object)
 :properties (
 mesh-object ^link-mesh
 geometry-model-object (default nil)
 (node-set :class 'analysis-node-set-class
 query-objects-list (list (the nodes-query (:from ^^link-m
esh)))
)
)
 :subobjects (
 (link-mesh :class 'paver-mesh-class
 object-to-mesh ^^geometry-model-object
 mesh-database-object ^^mesh-database
;;; for solid mesh use: element-shape :tet
 element-shape :quadtri
 solid-mesh? nil
)

 (link-mesh-surface-elements :class 'mesh-elements-2d-query-cl
ass
 tagged-object-list (append
 (the union-list (:from ^^geometry-mod
el-object))
 (the visible-members-ref-list (:from 
 ^^geometry-model-object))
)

 mesh-object ^^link-mesh
)

 (link-mesh-solid-elements :class 'mesh-elements-3d-query-clas
s
 tagged-object-list (append
 (the union-list (:from ^^geometry-mod
el-object))
 (the visible-members-ref-list (:from 
 ^^geometry-model-object))
)
 mesh-object ^^link-mesh
)

 (mating-surface-nodes :class 'mesh-nodes-query-class
 tagged-object-list (the mating-surface-list (:from ^^geom
etry-model-object))
 mesh-object ^^link-mesh
)

 (fixed-nodes :class 'mesh-nodes-query-class
 tagged-object-list (list
 (the fixed-edge (:from ^^geometry-mod
el-object))
)
;;; mesh-object ^^link-mesh
)
 (loaded-nodes :class 'mesh-query-nodes-from-interface-class
 interface-object (the point-ref (:from (the constraint-el
ement (:from (nth 0 ^^solid-constraints-ref-list)))))
 mesh-object ^^link-mesh
)

0

 Page 1 

0

06/17/15 analysis.am0

)
)
(define-class analysis-link-model-class
 :inherit-from (analysis-model-class)
 :properties (
 mesh-model-object nil
 mesh-database-object ^^mesh-database

 z-load (default -100.0)
;;; analysis-type :linear-static
 load-case-objects-list (list ^load-case-1)
 material-catalog-object ^material-catalog
 materials-list (list 'steel)
 property-set-objects-list (list ^link-material-properties)

 element-set-2d-objects-list (list ^link-analysis-surface-elem
ents)
 element-set-3d-objects-list (list ^link-analysis-solid-elemen
ts)

 mesh-object (the link-mesh (:from ^mesh-model-object))
 node-set-objects-list (list (the node-set (:from ^mesh-model-
object)))
)
 :subobjects (
 (material-catalog :class 'material-catalog-class
)
 (link-material-properties :class 'analysis-property-set-2d-ty
pe-1-class
 material-name "Steel"
 thickness 0.3
)

 (link-analysis-surface-elements :class 'analysis-element-set-
2d-type-1-class
 query-objects-list (list
 (the link-mesh-surface-elements (:fro
m ^^mesh-model-object))
)
 property-set-object ^^link-material-properties
)
 (link-analysis-solid-elements :class 'analysis-element-set-3d
-type-1-class
 query-objects-list (list
 (the link-mesh-solid-elements (:from 
^^mesh-model-object))
)
 property-set-object ^^link-material-properties
)
 (fixed-nodes-constraint :class 'analysis-constraint-displacem
ent-class
 target-object (the fixed-nodes (:from ^^mesh-model-object
))
 tx 0.0
 ty 0.0
 tz 0.0
 mx 0.0
 my 0.0
 mz 0.0
)
 (nodal-load :class 'analysis-load-force-nodal-class

0

 Page 2 

0

06/17/15 analysis.am0

 target-object (the loaded-nodes
 (:from ^^mesh-model-object))
 load-vector (list 0.0 0.0 ^^z-load)
)
 (load-case-1 :class 'analysis-load-case-class
;;; load-objects-list (list ^nodal-load)
;;; constraint-objects-list (list ^^fixed-nodes-constrain
t)
)
 (nastran-interface :class 'nastran-analysis-class
 analysis-model-object ^superior
 model-name (the folder (:from ^^mechanism-selection))
 nastran-file-name (concatenate (write-to-string (object-
name ^^superior)) ".bdf")
 nastran-version (nth 2 '(:nei-nastran :msc-nastran :nx-na
stran))
;;; analysis-directory (logical-path "C:\\Users\\Rasmus\\
Documents\\NTNU\\Masteroppgave\\forelesning_150326\\mesh\\simple-beam\\")
)
)
)

0

 Page 3 

0

06/17/15 links.am0

;;replacing calculate-complete-graph-combi
(defun connection-combinations (n)
 (loop for j from 0 to (- n 2)
 append (loop for k from (1+ j) to (1- n)
 collect (list j k)
)
)
)
(defun list-combinations (p)
 (let (
 (l (if (typep p 'list) p (if (typep p 'fixnum) (loop for i from 0 to
 (1- p) collect i) (list))))
 (n (length l))
)
 (loop for j from 0 to (- n 2)
 append (loop for k from (1+ j) to (1- n)
 collect (list (nth j l) (nth k l))
)
)
)
)

(defun connections-on-constraints (n)
 (let (
 (combi (connection-combinations n))
 (tot-length (/ (* n (1- n)) 2))
)
 (loop for c from 0 to (1- n)
 collect (loop for i from 0 to tot-length
 when (member c (nth i combi))
 collect i
)
)
)
)

(defun sweep-loop-combinations (n)
 (let (
 (c-loops (3-edge-loop-combinations n))
 (sweep-con (connection-combinations n))
)
 (loop for ci from 0 to (1- (length c-loops))
 for list-com = (list-combinations (nth ci c-loops))
 collect (loop for si from 0 to (1- (length list-com))
 collect (position (nth si list-com) sweep-con)
)
)
)
)

(defun 3-edge-loop-combinations (n)
 (loop for i from 0 to (- n 3)
 append (loop for j from (1+ i) to (- n 2)
 append (loop for k from (1+ j) to (1- n)
 collect (list i j k)
)
)
)
)
(defun list-3-subset-combinations (p)
 (let (
 (l (if (typep p 'list) p (if (typep p 'fixnum) (loop for i from 0 to

0

 Page 1 

0

06/17/15 links.am0

o (1- p) collect i) (list))))
 (n (length l))
)
 (loop for i from 0 to (- n 3)
 append (loop for j from (1+ i) to (- n 2)
 append (loop for k from (1+ j) to (1- n)
 collect (list (nth i l) (nth j l) (nth k l)) 

)
)
)
)
)

(defun it-tolerance (d &optional (grade 5))
 (* (expt 10 (* 0.2 (- grade 1))) (+ (* 0.45 (expt d (/ 1 3))) (* 0.001 d))
)
)

(define-class surface-data-model
 :inherit-from (tagging-object surface-thickened-class)
 :properties (
 tag-dimensions '(1 2)
 tag-attributes (list ^^max-element-size .1
 0 0.1 0 20.0 1.0e-5)
 (display? :class 'flag-property-class
 formula (loop for i in ^edge-combination
 when (or (not (the display? (:from (nth i ^mem
bers-ref-list)))) (not (the connection geom (:from (nth i ^members-ref-list)
))))
 do (return nil)
 finally (> ^thickness 0)
)
)
 edge-combination nil
 source-object ^surface
 ;;surface thickness 20% of smalles cross-section height
 thickness (* 0.2 (loop for i in ^edge-combination
 minimize (max-height (the cross-section_D (:from 
(nth i ^members-ref-list))))
))
 front-thickness (/ ^thickness 2)
 back-thickness (/ ^thickness 2)
 render 'shaded
 color 'red

 property-objects-list (list
 (list (the superior display? self)
 '(automatic-apply? t)
)
)
)
 :subobjects (
 (surface :class 'surface-from-three-edge-curves-class
 edge-1-object (the connection (:from (nth (nth 0 ^edge-co
mbination) ^members-ref-list)))
 edge-2-object (the connection (:from (nth (nth 1 ^edge-co
mbination) ^members-ref-list)))
 edge-3-object (the connection (:from (nth (nth 2 ^edge-co
mbination) ^members-ref-list)))
)
)
)

0

 Page 2 

0

06/17/15 links.am0

)

(define-class surfaces-on-link-collection
 :inherit-from (series-object)
 :properties (
;;; closed-loops-combinations (3-edge-loop-combinations (leng
th ^sweeps-ref-list))
;;; closed-loops-combinations (3-edge-loop-combinations (leng
th ^constraints-incident-on-link-list))
 closed-loops-combinations (sweep-loop-combinations (length ^c
onstraints-incident-on-link-list))
 visible-members-index (loop for mem in ^visible-members-ref-l
ist
 collect (the index (:from mem))
)
 valid-surface-loops (intersection ^closed-loops-combinations 
(list-3-subset-combinations ^visible-members-index))
 quantity (length ^valid-surface-loops)
 class-expression 'surface-data-model
 series-prefix 'surface
 init-form '(
 edge-combination (nth ^index ^valid-surface-loops
)
)
)
)

;;; -----------------------------
;;; Sheth-Uicker DEFINITIONS
;;; -----------------------------

(define-class connection-model
 :inherit-from (nurb-curve-object)
 :properties (
 ;; traverse to superior reference for
;;; frame_D (the sub-frame (:from
;;; frame_A
 pij (convert-coords ^frame_D '(0 0 0) :from :local :to :globa
l)
 wij (convert-vector ^frame_D '(0 0 1) :from :local :to :globa
l)

 pjk (convert-coords ^frame_A '(0 0 0) :from :local :to :globa
l)
 wjk (convert-vector ^frame_A '(0 0 1) :from :local :to :globa
l)

 weight-points (append (the weight-list (:from ^shape-ref))
 (make-sequence 'list (- (length (the po
int-list (:from ^shape-ref))) (length (the weight-list (:from ^shape-ref))))
 :initial-element 1)
)
 start-point (the origin (:from ^frame_D))
 end-point (the origin (:from ^frame_A))

 middle-points (case ^line-config
 ('paralell (let (
 (start-tangent (add-vectors 
^start-point (multiply-vector-by-scalar (normalize ^perpendicular-dir) (half
 ^param_b))))

0

 Page 3 

0

06/17/15 links.am0

 (end-tangent (add-vectors ^e
nd-point (multiply-vector-by-scalar (normalize ^perpendicular-dir) (- (half 
^param_b)))))
 (start-weight (list 0.5))
 (end-weight (list 0.5))
)
 (if (roughly-same-point start-ta
ngent end-tangent)
 (list (append start-tangent 
start-weight))
 (list (append start-tangent st
art-weight) (append end-tangent end-weight))
)
))
 ;; if param_a == param_c && paramb=0
 ('intersecting (let (
 (center (nth 0 ^inter_po
ints))

 (middle-point (add-vecto
rs center (multiply-vector-by-scalar (normalize (add-vectors (subtract-vecto
rs ^start-point center) (subtract-vectors ^end-point center))) ^param_a)) 
)
 (angle-start-middle (/ (
angle-between-2-vectors (subtract-vectors ^start-point center) (subtract-vec
tors middle-point center)) 2))
 (start-tangent (add-vect
ors center (multiply-vector-by-scalar (normalize (add-vectors (subtract-vect
ors ^start-point center) (subtract-vectors middle-point center))) (/ ^param
_a (cosd angle-start-middle)))))

 (angle-middle-end (/ (an
gle-between-2-vectors (subtract-vectors middle-point center) (subtract-vecto
rs ^end-point center)) 2))
 (end-tangent (add-vector
s center (multiply-vector-by-scalar (normalize (add-vectors (subtract-vector
s middle-point center) (subtract-vectors ^end-point center))) (/ ^param_a (
cosd angle-middle-end)))))

 (start-weight (list (sin
d (/ (angle-between-2-vectors
 
(subtract-vectors start-tangent ^start-point)
 
(subtract-vectors start-tangent middle-point)
 
) 2))))
 (middle-weight (list 1))
 (end-weight (list (sind 
(/ (angle-between-2-vectors
 
(subtract-vectors end-tangent middle-point)
 
(subtract-vectors end-tangent ^end-point)
 
) 2))))
)
 (list (append start-tangent
 start-weight) (append middle-point middle-weight) (append end-tangent end-w
eight))
)
)

0

 Page 4 

0

06/17/15 links.am0

)
 start-weight (list (append ^start-point (list 1)))
 end-weight (list (append ^end-point (list 1)))

 points (let (
 (shape-points (loop for p-index in (the point-li
st (:from ^shape-ref))
 for w in ^weight-points
 collect (append (the coordinates
 (:from (nth p-index ^point-ref-list))) (list w))))
)
 (if shape-points
 (append ^start-weight shape-points ^end-weight)
 (append ^start-weight ^middle-points ^end-weight)
)
)
 rational? t
 homogeneous? t
 degree 2

 line-config (line-pose (the superior))
 inter_points (inter_section (the superior) ^line-config)
 perpendicular-dir (perp-dir (the superior) ^line-config)

 param_a (vector-length (subtract-vectors (the origin (:from ^
frame_A)) (the origin (:from ^frame_B))))
 param_b (vector-length (subtract-vectors (the origin (:from ^
frame_B)) (the origin (:from ^frame_C))))
 param_c (vector-length (subtract-vectors (the origin (:from ^
frame_C)) (the origin (:from ^frame_D))))

)
 :subobjects (
;;; cross section at start of spline
 (spline-frame_start :class 'frame-data-model
;;; reference-object ^frame_D
 point-ref ^point-ref_D
 z-vector-ref ^z-vector-ref_D

 (x-vector-ref :class 'vector-data-model
;;; direction ^^perpendicular-dir
 direction (subtract-vectors (nth 1 ^points)
 (nth 0 ^points))
)
)
;;; cross section at end of spline
 (spline-frame_end :class 'frame-data-model
;;; reference-object ^frame_A
 point-ref ^point-ref_A
 z-vector-ref ^z-vector-ref_A

 (x-vector-ref :class 'vector-data-model
;;; direction ^^perpendicular-dir
 direction (subtract-vectors (nth (1- (lengt
h ^points)) ^points) (nth (- (length ^points) 2) ^points))
)
)
 ;;augumented frames from SU-convention
 (frame_B :class 'frame-data-model
 (point-ref :class 'point-data-model
 coordinates (nth 0 ^^^inter_points)
)

0

 Page 5 

0

06/17/15 links.am0

 (z-vector-ref :class 'vector-data-model
;;; direction (the direction (:from ^^z-vec
tor-ref_D))
 direction ^^wij
)
 (x-vector-ref :class 'vector-data-model
 direction ^^perpendicular-dir
)
)

 (frame_C :class 'frame-data-model
 (point-ref :class 'point-data-model
 coordinates (nth 1 ^^^inter_points)
)
 (z-vector-ref :class 'vector-data-model
;;; direction (the direction (:from ^^z-ve
ctor-ref_A))
 direction ^^wjk
)
 (x-vector-ref :class 'vector-data-model
 direction ^^perpendicular-dir
)
)

)
)

;; Middle point
(defun m-point (p1 d1 p2 d2)
 (add-vectors p1 (proj_v d1 (multiply-vector-by-scalar (subtract-vectors p2
 p1) 0.5)))
)
;; Closest point
(defun cl-point (p1 d1 p2 d2)
 (let (
 (n1x (cross-product d1 d2))
 (n1d (dot-product n1x (cross-product p2 d2)))
 (n2d (dot-product n1x (cross-product p1 d2)))
 (d1s (dot-product n1x n1x))

 (l1s (multiply-vector-by-scalar d1 (/ n1d d1s)))
 (l2s (multiply-vector-by-scalar d1 (/ n2d d1s)))

)
 (add-vectors p1 (subtract-vectors l1s l2s))
)
)

;;determine configuration of two lines in relation too eachother
(define-method line-pose connection-model ()
 (let (
 (v0_1 (cross-product !pij !wij))
 (v0_2 (cross-product !pij !wij))
 (coplan (* 0.5 (+ (dot-product !wij v0_2) (dot-product v0_1 !wjk))
))

 (normal-mag (vector-length (cross-product !wij !wjk)))
 (coincident (vector-length (cross-product (subtract-vectors !pjk !pi
j) !wij)))
)

0

 Page 6 

0

06/17/15 links.am0

 (if (/= 0 coplan) 'skew (if (/= 0 normal-mag) 'intersecting (if (= 0 coi
ncident) 'coincident 'paralell)))
)
)

;; Generalized closest points
;; if lines Gij Gjk are intersecting or skew: closest point
;; if lines Gij Gjk are coincident or parallel: mid-point
;; Calculate intersection between lines
(define-method inter_section connection-model (line-config)
 (case line-config
 ('skew
 (list (cl-point !pij !wij !pjk !wjk) (cl-point !pjk !wjk !pij !wij))
)
 ('intersecting
 (list (cl-point !pij !wij !pjk !wjk) (cl-point !pjk !wjk !pij !wij))
)
 ('coincident
 (list (m-point !pij !wij !pjk !wjk) (m-point !pjk !wjk !pij !wij))
)
 ('paralell
 (list (m-point !pij !wij !pjk !wjk) (m-point !pjk !wjk !pij !wij))
)
)
)
;;get Generalized perpendicular direction
(define-method perp-dir connection-model (line-config)
 (let (
 (cross (cross-product !wij !wjk))
 (ortho-comp (orthogonal-projection-complement !wij (subtract-vectors
 !pjk !pij)))
)
 (case line-config
 ('skew cross)
 ('intersecting cross)
 ('coincident (read-from-string (pop-up-text-prompt
 :nb-entries 1
 :title "Please specify direction"
 :prompt "Type in x-vector"
 :init-text "(1 0 0)"
 :x-offset (/ (nth 0 (get-screen-size))
 2)
 :y-offset (/ (nth 1 (get-screen-size))
 2))))
 ('paralell ortho-comp)
)
)
)

;; the orthogonal projection of a vector b onto some vector a
;; pi_a(b)
(defun proj_v (a b)
 (multiply-vector-by-scalar a (/ (dot-product b a) (dot-product a a)))
)

;; the orthogonal projection of a vector b into the orthogonal complement of
 a of some vector a
;; tau_a(b)
(defun orthogonal-projection-complement (a b)
 (subtract-vectors b (proj_v a b))
)

0

 Page 7 

0

06/17/15 links.am0

;;; -----------------------------
;;; END Sheth-Uicker DEFINITIONS
;;; -----------------------------

(defun ellipse-find-minor-axis (a r theta)
 (/ (* r a (sin theta)) (sqrt (- (* a a) (* r r (cos theta) (cos theta)))))
)

(define-class member-solid-model
 :inherit-from (tagging-object general-sweep-class)
 :properties(
 tag-dimensions '(1 2 3)
 tag-attributes (list ^^max-element-size .1
 0 0.1 0 20.0 1.0e-5)

 (display? :class 'flag-property-class
 formula (when (the cross-section-type (:from ^shape-ref)) 
t)
)

 connection-between-constraints nil
 frame_D (the sub-frame (:from (nth 0 ^connection-between-const
raints)))
 frame_A (the sub-frame (:from (nth 1 ^connection-between-const
raints)))
 point-ref_D (the point-ref (:from ^frame_D))
 point-ref_A (the point-ref (:from ^frame_A))

 z-vector-ref_D (the z-vector-ref (:from ^frame_D))
 z-vector-ref_A (the z-vector-ref (:from ^frame_A))

 ;;unused property, should differentiate between commen-sweeps 
on start and end constraint
 common-sweeps (loop for constraint in ^connection-between-cons
traints
 collect (remove !superior (the link-ref-on-con
straint (:from constraint)))
)

 ;;cross section dimension, width 0.04 / height 0.04
 shape-ref nil
 width (nth 0 (the solid-dimensions (:from ^shape-ref)))
 height (if (< 1 (length (the solid-dimensions (:from ^shape-re
f))))
 (nth 1 (the solid-dimensions (:from ^shape-ref)))
 (nth 0 (the solid-dimensions (:from ^shape-ref)))
)
 width-end (if (< 2 (length (the solid-dimensions (:from ^shape
-ref))))
 (nth 2 (the solid-dimensions (:from ^shape-ref))
)
 (nth 0 (the solid-dimensions (:from ^shape-ref)))
)
 height-end (if (< 3 (length (the solid-dimensions (:from ^shap
e-ref))))
 (nth 3 (the solid-dimensions (:from ^shape-ref))
)
 (nth 1 (the solid-dimensions (:from ^shape-ref)))
)

0

 Page 8 

0

06/17/15 links.am0

 ;;; sweep parameters
 profile-objects-list (list
 ^cross-section_D
 ^cross-section_A
)
 path-points-coords-list (list
 (the origin (:from ^frame_D))
 (the origin (:from ^frame_A))
)
 profile-match-points-coords-list (list
 (vertex-of-object ^cross-sec
tion_D)
 (vertex-of-object ^cross-sec
tion_A)
)

 path-object ^connection
 tangential-sweep? t

 ;;; if two cross-sections, only nil works, with one cross-sect
ion t gives best mesh
 simplify? nil
 render 'shaded

 ;;; cross-section selection
 (cross-section-type :class 'option-property-class
 label "Cross-section Type"
 mode 'menu
 formula (if (the cross-section-type (:from ^shape-ref))
 (nth (position (write-to-string (the cross-sec
tion-type (:from ^shape-ref))) !labels-list) !options-list)
 (nth (position (write-to-string (the cross-secti
on-type (:from ^default-shape))) !labels-list) !options-list))
 options-list (reverse (class-direct-defined-subclasses 'se
ction-model))
 labels-list (loop for option in !options-list
 collect (remove "-section" (write-to-string 
option))
)
)
 property-objects-list (list
 (list (the superior cross-section-type 
self)
 '(automatic-apply? t)
)
 (the superior width self)
 (the superior height self)
 (the superior width-end self)
 (the superior height-end self)
 (list (the superior display? self)
 '(automatic-apply? t)
)
 '("Draw..." (button1-parameters :draw b
utton3-parameters :draw)
 ui-work-area-action-button-class)
 '("Undraw..." (button1-parameters :undr
aw button3-parameters :undraw)
 ui-work-area-action-button-class) 

)
)
 :subobjects (

0

 Page 9 

0

06/17/15 links.am0

 (connection :class 'connection-model
)

 (cross-section_D :class !cross-section-type
 reference-object (the spline-frame_start (:from ^connecti
on))
 orientation (list
 (rotate 90 :x-axis)
 (rotate 90 :z-axis)
)
)
 (cross-section_A :class !cross-section-type
 width ^width-end
 height ^height-end
 reference-object (the spline-frame_end (:from ^connection
))
 orientation (list
 (rotate 90 :x-axis)
 (rotate 90 :z-axis)
)
)
)
)

(define-method work-area-button1-action member-solid-model (params)
 (case params
 (:draw
 (draw self :draw-subobjects? nil)
)
 (:undraw
 (undraw self :subobjects? nil)
)
)
)
(define-method work-area-button3-action member-solid-model (params)
 (case params
 (:draw
 (draw self :draw-subobjects? t)
)
 (:undraw
 (undraw self :subobjects? t)
)
)
)

(define-class members-on-link-collection
 :inherit-from (series-object)
 :properties (
;;; traverse to superior reference:
;;; ^connection-between-2-constraints-combinations
;;; ^shapes-on-link
;;; ^constraint-connection-combination

 quantity (length ^connection-between-2-constraints-combinatio
ns)
 class-expression 'member-solid-model
 series-prefix 'member
 init-form '(
 connection-between-constraints (nth ^index ^^conn
ection-between-2-constraints-combinations)

 shape-ref (nth ^index ^^shapes-on-link)

0

 Page 10 

0

06/17/15 links.am0

)
)
)

(define-class link-geometry-class
;;; :inherit-from (tagging-object difference-object)
 :inherit-from (tagging-object geometry-with-split-periodic-faces-class)
 :properties (
 ;;used for geometry-with-split-periodic-faces-clas
 source-object ^difference-element

 max-element-size 0.005
 tag-dimensions '(1 2)
 tag-attributes (list ^max-element-size .1
 0 0.1 0 20.0 1.0e-5)

 default-shape (let(
 (def (loop for shape in (children ^^^shape
s :class 'shape-data-model)
 when (and
 (equal 'default (the sweep-in
dex (:from shape)))
 (equal ^link-index (the link-
ref (:from shape)))
)
 do (return shape)
)
)
)
 (if def def ^^default-shape)
)
 shapes-on-link (let (
 (shape-list (make-sequence 'list (length
 ^constraint-connection-combination) :initial-element ^default-shape))
)
 (loop for shape in (children ^^^shapes :clas
s 'shape-data-model)
 when (and (equal ^link-index (the link-ref
 (:from shape))) (not (equal 'default (the sweep-index (:from shape)))))
 do (replace shape-list (list shape) :start
1 (the sweep-index (:from shape)))
 finally (return shape-list)
)
)

 constraint-connection-combination (connection-combinations (l
ength ^constraints-incident-on-link-list))

;;; combination-on-constraint (connections-on-constraints (le
ngth ^constraints-incident-on-link-list))

 surfaces-ref-list (children ^surfaces :class 'surface-data-mo
del :test '(and !geom !display?))
 ;; only include sweeps which are not "turned off"
 members-ref-list (children ^sweeps :class 'member-solid-model
)
 visible-members-ref-list (children ^sweeps :class 'member-sol
id-model :test '!display?)

0

 Page 11 

0

06/17/15 links.am0

;;; solid-constraints-ref-list (children ^solid-constraints :
class 'solid-constraint-model)

 union-list (loop for l in ^constraints-incident-on-link-list
 append (the union-list (:from l))
)
 difference-list (loop for l in ^constraints-incident-on-link-
list
 append (the difference-list (:from l))
)

 object-list (append
 (list ^union-element)
;;; (list ^imprint-union-element)
 ^difference-list
)
 simplify? nil

 (imprint-union-element :class '(tagging-object geometry-with-
split-periodic-faces-class)
 tag-dimensions '(1 2)
 tag-attributes (list ^max-element-size .1
 0 0.1 0 20.0 1.0e-5)
 source-object ^^union-element
)

 (imprint-constraint-points :class '(tagging-object imprint-cl
ass)
 target-object ^^imprint-union-element
 tool-object-list (loop for c in ^constraints-incident-on-
link-list
 collect (the point-ref (:from c))
)
)
 (difference-element :class '(tagging-object difference-object
)
 tag-dimensions '(1 2)
 tag-attributes (list ^max-element-size .1
 0 0.1 0 20.0 1.0e-5)
 object-list (append
 (list ^union-element)
;;; (list ^imprint-union-element)
 ^difference-list
)
 simplify? t

)

 (union-element :class '(tagging-object union-object)
 tag-dimensions '(1 2)
 tag-attributes (list ^max-element-size .1
 0 0.1 0 20.0 1.0e-5)
 object-list (append ^surfaces-ref-list
;;; (list ^sewn-links)
 ^visible-members-ref-list
 ^^union-list)
 simplify? t
)
)
 :subobjects (
 (surfaces :class 'surfaces-on-link-collection
)

0

 Page 12 

0

06/17/15 links.am0

 (sweeps :class 'members-on-link-collection
)
)
)

(define-class link-model-class
 :inherit-from (object)
 :properties (
 ;; properties set from parent init-form
 constraints-incident-on-link-list nil
 connection-between-2-constraints-combinations (list-combinati
ons ^constraints-incident-on-link-list)
 link-index nil

)
 :subobjects (
 (link-solid-geometry :class 'link-geometry-class
)
 (link-mesh-model :class 'link-mesh-class
 geometry-model-object ^link-solid-geometry
 mesh-database ^^mesh-database
)
 (analysis :class 'analysis-link-model-class
 mesh-model-object ^^link-mesh-model
)
)
)

0

 Page 13 

0

06/17/15 collections.am0

(define-class collection-class
 :inherit-from (object)
 :properties (
 collection-type nil
)
)

(define-method read-from-file collection-class ()
 (let (
 (file-name (write-to-string !collection-type))
 (file-path (logical-path (the path (:from ^mechanism-selection)) (co
ncatenate file-name ".txt")))
 (function-name (read-from-string (concatenate "read-" file-name "-fr
om-file")))
)
 (if (and
 file-path
 (stringp file-path)
 (probe-file file-path)
)
 (with-open-file (file file-path :direction :input)
 (apply function-name (list file))
)
 (progn
 (message (format nil "\"~a\" is not a valid file path." file-path) :
append? t)
 nil
)
)
)
)

;;; Constraint collection
(define-class constraint-collection
 :inherit-from (series-object collection-class)
 :properties (
 ;;Traverse to Superior reference
;;; point-ref-list nil
 collection-type 'constraints
 constraint-list (read-from-file !superior)
 quantity (length ^constraint-list)
 class-expression '(read-from-string (concatenate (nth 1 (nth 
!index !constraint-list)) "-constraint-class"))
 series-prefix 'c
 init-form '(
 point-ref (nth (nth 0 (nth !index ^constraint-lis
t)) ^point-ref-list)
 constraint-type (nth 1 (nth !index ^constraint-li
st))
 link-incidence (nth 2 (nth !index ^constraint-lis
t))
 direction (normalize (nth 3 (nth !index ^constrai
nt-list)))
 constraint-variable (nth 4 (nth !index ^constrain
t-list))
)
)
)

(defun read-constraints-from-file (stream)
 (when stream
 (loop for line = (read-line stream nil :eof)

0

 Page 1 

0

06/17/15 collections.am0

 until (equal line :eof)
 for ls = (string-to-delimited-token-list line :delimiter #\tab :string
-token? nil)
 for c-data = (list
 (nth 0 ls) (nth 1 ls) (read-from-string (nth 2 ls)) (rea
d-from-string (nth 3 ls)) (read-from-string (nth 4 ls))
)
 collect c-data
)
)
)

(define-class point-collection
 :inherit-from (series-object collection-class)
 :properties (
;;; points-list (FORMATTED-list-FROM-FILE (logical-path MECHA
NISM-LIBRARY "coordinates.txt") :element-format '(x y z))
 collection-type 'coordinates
 points-list (read-from-file !superior)
 quantity (length ^points-list)
 class-expression 'point-data-model
 series-prefix 'p
 init-form '(
 coordinates (nth ^index ^points-list)
)
)
)

(defun read-coordinates-from-file (stream)
;;; (with-open-file (file (logical-path (the path (:from (the superior mec
hanism-selection))) "coordinates.txt") :direction :input)
 (when stream
 (loop for line = (read-line stream nil :eof)
 until (equal line :eof)
 for xyz = (read-from-string (format nil "(~a)" line))
 collect xyz
)
)
)

(define-class shape-data-model
 :inherit-from (object)
 :properties (
 link-ref (default 'default)
 sweep-index (default 'default)
 cross-section-type (read-from-string (remove "-section" (writ
e-to-string (default 'circular-section))))
 solid-dimensions '(0.04 0.04)
 point-list nil
 weight-list nil
)
)

(define-class shape-collection
 :inherit-from (series-object collection-class)
 :properties (
;;; points-list (FORMATTED-list-FROM-FILE (logical-path MECHA
NISM-LIBRARY "coordinates.txt") :element-format '(x y z))
 collection-type 'shapes

0

 Page 2 

0

06/17/15 collections.am0

 shapes-list (read-from-file !superior)
 quantity (length ^shapes-list)
 class-expression 'shape-data-model
 series-prefix 'shape
 init-form '(
 link-ref (nth 0 (nth ^index ^shapes-list))
 sweep-index (nth 1 (nth ^index ^shapes-list))
 cross-section-type (nth 2 (nth ^index ^shapes-lis
t))
 solid-dimensions (nth 3 (nth ^index ^shapes-list)
)
 point-list (nth 4 (nth ^index ^shapes-list))
 weight-list (nth 5 (nth ^index ^shapes-list))
)
)
)

;;; link-index sweep-index cross-section-type (dimensions) (points list)
(weight-list) degree (knot-list)

(defun read-shapes-from-file (stream)
;;; (with-open-file (file (logical-path (the path (:from ^mechanism-select
ion)) "shapes.txt") :direction :input)
 (when stream
 (loop for line = (read-line stream nil :eof)
 until (equal line :eof)
 for ls = (string-to-delimited-token-list line :delimiter #\tab :string-
token? nil)
 for shape-data = (list
 (nth 0 ls) (nth 1 ls) (read-from-string (nth 2 ls)) (
read-from-string (nth 3 ls)) (read-from-string (nth 4 ls)) (read-from-string
 (nth 5 ls))
)
 collect shape-data
)
)
)

(define-class link-collection
 :inherit-from (series-object)
 :properties (
 (cross-section-type :class 'option-property-class
 label "Cross-section Type"
 mode 'menu
 formula (nth 0 !options-list)
 options-list (reverse (class-direct-defined-subclasses 's
ection-model))
 labels-list (loop for option in !options-list
 collect (remove "-section" (write-to-string
 option))
)
)
 common-width 0.04
 common-height 0.04
 property-objects-list (list
 (the superior cross-section-type self)

 '("Set all cross-sections" (button1-pa
rameters :set-c button3-parameters :unset)
 ui-work-area-action-button-class)

 (the superior common-width self)
 (the superior common-height self)

0

 Page 3 

0

06/17/15 collections.am0

 '("Set all dimensions" (button1-parame
ters :set-d button3-parameters :unset)
 ui-work-area-action-button-class)
)
 ;;Traverse to Superior reference
;;; point-ref-list nil
;;; constraints-ref-list nil
 link-list (sort (copy-seq (remove-duplicates (append-list (lo
op for kid in (the constraints-ref-list)
 collect (th
e link-incidence (:from kid))
)
))
) '<)

 (init-default-shape :class 'shape-data-model
)

 default-shape (let(
 (def (loop for shape in (children ^^shapes
 :class 'shape-data-model)
 when (equal 'default (the link-ref 
(:from shape)))
 do(return shape)
))
)
 (if def def ^init-default-shape)
)

 quantity (length ^link-list)
;;; class-expression 'link-data-model
 class-expression 'link-model-class
 series-prefix 'link
 init-form '(
 link-index (nth ^index ^^link-list)
 constraints-incident-on-link-list (loop for kid i
n (the constraints-ref-list)
 for con = (ge
t-constraint-incidence kid ^link-index)
 when con coll
ect con
)
;;; constraints-incident-on-link-list (select-obj
ect :from (the superior superior constraints) :class 'constraint-model :test
 '(member (nth ^index ^^link-list) (the link-incidence)))
)
)
)

(define-method get-link-ref link-collection (link-index)
 (nth (position link-index !link-list) ^link-ref-list)
)

(define-method work-area-button1-action link-collection (params)
 (case params
 (:set-c
 (loop for l in ^link-ref-list
 do (loop for s in (the members-ref-list (:from (the link-solid-geomet
ry (:from l))))
 do (change-value (the cross-section-type self (:from s)) !cross-
section-type)
)

0

 Page 4 

0

06/17/15 collections.am0

)
)
 (:set-d
 (loop for l in ^link-ref-list
 do (loop for s in (the members-ref-list (:from (the link-solid-geomet
ry (:from l))))
 do (change-value (the width self (:from s)) !common-width)
 (change-value (the height self (:from s)) !common-height)
)
)
)
)
)

(define-class folder-info-model
 :inherit-from (object)
 :properties (
 path nil
 folder (subseq (remove #MECHANISM-LIBRARY# ^path) 1)
 label (replace (copy-seq ^folder) " " :start1 (position "-" ^
folder :test 'string-equal))

 class-name (let (
 (name (read-from-string (concatenate ^folder
 "-class")))
)
 (when (find-class name)
 name
)
)
)
)
(define-class folder-collection
 :inherit-from (series-object)
 :properties (

 ;; Removing ../ and ./
 library-subfolder-list (rest (rest (directory #mechanism-libr
ary#)))
 quantity (length ^library-subfolder-list)
 class-expression 'folder-info-model
 series-prefix 'folder
 init-form '(
 path (nth ^index ^^library-subfolder-list)
)
)
)

(define-class mechanism-collection
 :inherit-from (data-model-node-mixin)
 :properties (
 point-ref-list (children ^points :class 'point-data-model)
 constraints-ref-list (children ^constraints :class 'master-jo
int-model)
 link-ref-list (children ^links :class 'link-model-class)

 (mechanism-selection :class 'option-property-class
 labels-list (loop for subfolder in (children ^folders :cl
ass 'folder-info-model)
 when (the path (:from subfolder))
 collect (the label (:from subfolder))

0

 Page 5 

0

06/17/15 collections.am0

)
;;; labels-list (select-object :from ^folders :class 'fol
der-info-model :test '(the path) :eval '(the label))
 options-list (children ^folders :class 'folder-info-model
)

 mode 'menu
 formula (nth (position "four bar" !labels-list) !options-
list)
)

 property-objects-list (list
 (list (the superior mechanism-selectio
n self)
 '(automatic-apply? t))
)
;;; Storage

 ;;Property storing folder from library
 (folders :class 'folder-collection
)

 write-to-file (write-save-fedem-solver !superior)
)
 :subobjects (

 (constraints :class 'constraint-collection
)
 (points :class 'point-collection
)
 (links :class 'link-collection
)

 (shapes :class 'shape-collection
)

 (mesh-database :class 'meshdb-class
)
)
)

(define-method write-save-fedem-solver mechanism-collection ()
 (let (
 (idcount 10)
 (extidcount 0)
 (superelements nil)
 (triads nil)
)
 (with-open-file (stream (logical-path (the path (:from !mechanism-select
ion)) (concatenate "fedem_solver" ".fsi"))
 :direction :output
 :if-exists :overwrite
)
 (progn
 (loop for link in !link-ref-list
 do
 (setf idcount (1+ idcount))
 (setf extidcount (1+ extidcount))
 (setf superelements (append superelements (list idcount)))

 (loop for triad in (the solid-constraints-ref-list (:from link))

0

 Page 6 

0

06/17/15 collections.am0

 for frame = (vector-to-list (get-position-matrix (the main-fram
e (:from triad))))
 when (not (and (equal 0 (the index (:from link))) (equal "open" 
(superior (the constraint-element (:from triad))))))
 do
 (setf idcount (1+ idcount))
 (setf extidcount (1+ extidcount))
 (format stream "~a~%" "&TRIAD")
 (format stream "~t id = ~d~%" idcount)
 (format stream "~t extId = ~d~%" extidcount)
 (format stream "~t nDOFs = ~d~%" (if (equal 0 (the index (:from 
link))) 0 6))
 (format stream "~t ur = ~{~{~1,9e ~}~%~6t ~}" (list (append (su
bseq frame 0 3) (list (nth 12 frame)))
 (append (su
bseq frame 4 7) (list (nth 13 frame)))
 (append (su
bseq frame 8 11) (list (nth 14 frame)))
))
 (format stream "~%/~2%")

 and collect idcount into trs
 finally (setf triads (append triads (list trs)))
)

)
 (print triads)
 (setf extidcount 0)
 (loop for link in !link-ref-list
 for id = (the index (:from link))
;;; from 0 to (1- (length !link-ref-list))
 for triader = (nth id triads)
 for frame = (vector-to-list (get-position-matrix (the main-frame 
(:from (nth 0 (the solid-constraints-ref-list (:from link)))))))
 when (not (equal 0 id))
 do
 (setf idcount (1+ idcount))
 (format stream "~a~%" "&SUP_EL")
 (format stream "~t id = ~d~%" idcount)
 (format stream "~t extId = ~d~%" id)
 (format stream "~t numGenDOFs = 0~%")
 (format stream "~t numTriads = ~d~%" (length triader))
 (format stream "~t triadIds = ~{~d ~}~%" triader)
 (format stream "~t shadowPosAlg = 1~%")
 (format stream "~t massCorrFlag = -1~%")
 (format stream "~t stiffScale = 1.0~%")
 (format stream "~t massScale = 1.0~%")
 (format stream "~t alpha1 = 0.0, alpha2 = 0.0~%")
 (format stream "~t subPos = ~{~{~1,9e ~}~%~6t ~}" (list (append (
subseq frame 0 3) (list (nth 12 frame)))
 (append (
subseq frame 4 7) (list (nth 13 frame)))
 (append (
subseq frame 8 11) (list (nth 14 frame)))
 
))
 (format stream "~%/~2%")
 (print (the solid-constraints-ref-list (:from link)))
 (loop for triad in (the solid-constraints-ref-list (:from link))
 for i = (the index (:from triad))
;;; for un_frame = (vector-to-list (matrix-multiply (get-positio
n-matrix (the main-frame (:from triad))) (matrix-inverse frame)))

0

 Page 7 

0

06/17/15 collections.am0

 do
 (print i)
 (print triader)
 (format stream "~a~%" "&TRIAD_UNDPOS")
 (format stream "~t supElId = ~d~%" idcount)
 (format stream "~t triadId = ~d~%" (nth i triader))
;;; (format stream "~t undPosInSupElSystem = ~{~{~1,9e ~}~%~6t ~
}" (list (append (subseq un_frame 0 3) (list (nth 12 un_frame)))
;;; 
 (append (subseq un_frame 4 7) (list (nth 13 un_frame)))
;;; 
 (append (subseq un_frame 8 11) (list (nth 14 un_frame)))
;;; 
))
 (format stream "~%/~2%")
)
)
)
)
)
)

0

 Page 8 

0

E-22

Appendix E Risk analysis

