

AML

Basic Training

Manual
V3.06

TECHNOSOFTINC.

 i

 ii

TechnoSoft AML Basic Training

Manual: Version 3.06

TechnoSoft Inc.

11180 Reed Hartman Highway

Cincinnati, OH 45242

Copyright © 1992-2012 by TechnoSoft Inc.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by means, electronic, mechanical, photocopying, recording, or otherwise, without written
permission of TechnoSoft Inc. Information contained herein is solely for your information and is
not offered or to be construed as a warranty or contractual obligation.

 iii

 iv

1. Introduction ___ 1

1.1 Training Manual Organization, Syntax and Style __________________________ 1

1.2 AML Introduction __ 1
1.2.1 AML Modeling __ 1
1.2.2 Why object-oriented Methodology? __ 1

1.2.2.1 Objects/Subobjects ___ 2
1.2.2.2 Classes __ 3
1.2.2.3 Methods ___ 5

1.2.3 How Can AML Enable a Developer? ___ 5

1.3 Training Manual Syntax and Style _______________________________________ 6

2. Missile Case Study – AML Modeling Practices and Geometry Creation ________ 7

2.1 Explanation __ 7

2.2 The Final Geometry ___ 8

2.3 The Missile Geometry Class with Coordinate Systems ______________________ 9
2.3.1 Starting AML: ___ 16
2.3.2 AML Text Editing with XEmacs: __ 17
2.3.3 Starting the AML user Interface:__ 20
2.3.4 Ending an AML session: ___ 21

2.4 The Missile Geometry Class with Coordinate Systems and Components ______ 24

2.5 The Missile Geometry Class with Parametrically Designed Components ______ 33

2.6 The Missile Geometry Class with Optional Nose Type _____________________ 42

2.7 Geometric Booleans Enhance the Missile Geometry Class __________________ 53

2.8 Creation of a Fin Profile, Fin Extrusion, and Fin Array ____________________ 61

2.9 Missile Geometry with a Fin Array and Material Properties ________________ 75

2.10 Final Missile Geometry and Mass Properties _____________________________ 83

3. Introduction to AML Graphical User Interface (GUI) Design ______________ 96

3.1 Preview __ 96

3.2 Automated Model Interface Design _____________________________________ 96

4. AML Source Code Management (AML Systems) ________________________ 105

5. Defining Functions and Methods ____________________________________ 112

5.1 Defining Functions __ 112

5.2 Defining Methods ___ 113

6. Low Level User Interface Design _____________________________________ 116
6.1.1 Positioning and Sizing ___ 116
6.1.2 Layouts __ 119
6.1.3 Box Model Example __ 120
6.1.4 Optional Exercise___ 122

7. Meshing and Analysis ___ 124

 v

7.1 Attribute Tagging ___ 125

7.2 Meshing ___ 128

7.3 Mesh Queries __ 132

7.4 Finite Element Analysis __ 142

8. Exporting and Visualizing AML models in XML format __________________ 158

9. Additional Useful AML Constructs ___________________________________ 166

10. After the AML Basic Training _____________________________________ 167

10.1 Contacting TechnoSoft Inc. ___ 167

10.2 Advanced Training Topics ___ 167

11. Notes __

Use or duplication of this information is subject to the restrictions on page ii of this document. 1

1. Introduction

1.1 Training Manual Organization, Syntax and Style
This Manual is an introduction and overview to TechnoSoft's Adaptive Modeling Language
(AML) for designers and engineers. TechnoSoft planned it for AML student/developer use in
conjunction with instructor lecture and hands-on exercises covering AML applications. Like so
many software tools, hands-on experience makes textual descriptions more meaningful. With an
instructor, students can ask questions and get help as needed.

AML has many more facilities than those described in this Manual. Once students master and
understand exercises included in this Manual, they will be better able to understand and use other
AML extensions given in the AML Reference Manual to develop their applications.

After covering an introduction to modeling, object architecture, and AML, the instructor will
introduce each exercise. After the instructor's explanation, students should attempt to work the
exercise on their own. Anyone needing assistance can receive it from the instructor on an
individual basis.

1.2 AML Introduction

1.2.1 AML Modeling
Adaptive Modeling Language (AML) is a modeling language for concurrent engineering. AML
provides a paradigm for modeling and organizing vital engineering knowledge required for
integrating and automating entire engineering cycles from design to production.

AML is based on the concept of object-oriented programming. In object-oriented programming,
the building blocks of applications are objects; they are not procedures or functions. In this
introduction, the principles of object-oriented programming and the advantages of the
methodology over traditional programming techniques (procedural, modular) are introduced.

1.2.2 Why object-oriented Methodology?
Most software today is designed and implemented to solve a certain problem. The programmer
starts by examining the task to be performed and develops a strategy to deal with the task using
subroutines and procedures that don’t reflect the physical world. This makes code maintenance
quite difficult and inefficient. With object-oriented programming, the programmer starts by
examining the aspects of the real world that need to be modeled in order to perform the task. The
models developed use objects that reflect the physical world. Because the structure of the object-
oriented software reflects the real world, conceptualization, maintenance, and modification of the
software can be easily performed.

Using object-oriented technology, one can construct a model of some aspect of a company’s
operation. The model reflects real world entities and operations and can be used to solve a
number of related problems (reuse).

Object-oriented Methodology relies on the following mechanisms or principles

Use or duplication of this information is subject to the restrictions on page ii of this document. 2

• Objects
• Classes
• Inheritance
• Methods
Understanding these mechanisms will lead to an understanding of the object-oriented paradigm.

1.2.2.1 Objects/Subobjects
The basic building units of the object-oriented approach are objects. An object, in this paradigm,
is a uniform representation of a real world entity. In the object-oriented approach, the
programmer thinks in terms of physical world objects and the new data structures (objects) are
defined in terms of real world objects. Objects can be thought of as data abstractions that
contain a collection of related data elements (properties and sub-objects) and a set of procedures
(methods) that operate on the object elements. Objects have the following essential features:

• Objects interact with one another; this is achieved by message passing. Message passing in
AML is basically a call to a method that is associated with the object to be communicated
with. In AML an object can communicate with another object by changing the value of an
attribute that is associated with the object to be communicated with.

• Every object in the system has a unique identity. Object identity is the property in the object
that distinguishes the object from all other objects in the system. In an object-oriented
system the object identity is unique and independent of the value of the object attributes.

• In an object-oriented approach, the units of encapsulation are objects. An object
encapsulates state information (data) and behavior (operations). Operations are just a way of
changing the state of an object.

• If an object is logically related to one or more objects, then there is an association between
the objects. Associations can be implemented using attributes or by using an object to
represent the association.

• It is possible to build composite objects. A composite object is one which consist of parts
which themselves are objects (object-subobject relation). For example a car is made of
doors, body panels, frame, windshields, etc., where each part is an object.

The following is an example of problem decomposition where the user is asked to build a model
of a desk using an object-oriented programming language. The user can break the problem up
according to Figure 1 where the desk has a top panel, left panel, right panel, and a modesty panel.
After the objects that need to be modeled are identified the user can start working on the model.

Simple part hierarchy (object-subobject)

 Desk

 Top Panel

 Right Panel Left Panel

Modesty Panel

Figure 1

Use or duplication of this information is subject to the restrictions on page ii of this document. 3

In the desk example, the panel objects are all basically the same. It would be a waste of time and
effort to define each panel separately. It is more efficient to define a generic panel and
instantiate the generic panel to reflect the state of a specific panel.

1.2.2.2 Classes
In the object-oriented paradigm the tool for creating new data types is the class. A class can be
thought of as a template that is used to create objects (e.g., class is a recipe for making a cake,
while an object is a cake that was made using the recipe). The objects belonging to a particular
class are said to be instances of the class.

Classes allow objects to be defined in a very efficient manner. The methods and variables for a
class are defined once, in the class definition. Each instance of the class contains the actual
value of the variables. The following concepts are essential to understanding classes:

A class defines the structural definition of instances of the class. The class defines the names of
attributes (state) and methods (behavior) of an object belonging to this class.

Classes are used to create objects (instances of a class). An object belongs to exactly one class,
while a class can have a number of instances.

Inheritance is a very important mechanism for class definition. A class can be defined in terms
of existing classes establishing a superclass - subclass relationship. A subclass inherits the
attributes and operations of the superclass(es) and can add attributes and operations. A subclass
can be thought of as a specialization of the superclass. For example, assume that a user is to
model a number of cars (sedan, coupe, hatchback, ...). These cars have the same basic features (4
wheels, front windshield, ...). To model the system the user can define a superclass called
AUTOMOBILE that the rest of the classes inherit from. The simple class hierarchy is illustrated
in Figure 2.

Simple class hierarchy (superclass-subclass)

AUTOMOBILE

SEDAN HATCH BACK COUPE

Figure 2

A class can inherit from more than one class. This is referred to as multiple inheritance. This is
the case when a class of objects has to play multiple roles. For example, a dolphin class can
inherit from fish class and mammal class. A foreman of a site may play a dual role, functioning
both as a supervisor and as a builder. When multiple inheritance occurs a tree-like structure can
be developed to describe the class hierarchy (see Figure 3). This class hierarchy is important in
resolving conflicts; conflicts occur because superclasses can have the same attribute and/or
operation names. The conflicts have to be resolved before generating the final class definition.

Use or duplication of this information is subject to the restrictions on page ii of this document. 4

Multiple inheritance, Dolphin has properties of Fish and Mammal

FISH MAMMAL

DOLPHIN

Figure 3

In the Desk example, the programmer is likely to create a panel class that inherits from a BOX
class (assume that there is a predefined class called BOX). All the panels will be object
instances of the panel class (all panels have the same basic shape).

class PANEL
inherit-from BOX
properties

 width 10.0
 height 8.0
 depth 1.0

The panel class can then be used to define the panels in the desk.

class DESK
inherit-from
properties
 .
 .
subobjects
 {left-panel class panel
 width ..
 height ..
 depth ...
 orient appropriately
 }
 {right-panel class panel
 width ..
 height ..
 depth ...
 orient appropriately
 }

Use or duplication of this information is subject to the restrictions on page ii of this document. 5

1.2.2.3 Methods
In the object-oriented approach, the basic building blocks are objects. The objects that make a
model need to communicate with one another by calling methods (operation) that are associated
with the object to be modified. In object-oriented terminology objects communicate with one
another through messages. A message is simply the receiving object combined with the name of
one of its methods. One of the advantages of using methods is that they allow for name reuse
(overloading).

In AML a different class represents each kind of geometric shape. Through overloading, the user
can use the same name for the drawing method in every class. In AML, to draw a graphic object
all the user has to do is invoke draw on the object to be drawn. So to draw line-1 (line-1 is an
object of type line) the user invokes (draw line-1), to draw an arc the user invokes (draw arc-1)
etc. So if the user defines a new class LENS, the user can define a draw method on the class.
This allows user defined classes to behave in the same manor as system defined classes. If
overloading was not available, then the user would need to give a different operation name for
drawing objects of different classes. Thus, to draw a line, the user may have a draw-line
operation, to draw an arc a draw-arc operation maybe required and so on. Depending on the
object class, the user will then have to call the appropriate operation. Name reuse (overloading)
allows for the design of simple and elegant code.

1.2.3 How Can AML Enable a Developer?
TechnoSoft designed AML to support several specific functions. AML provides an extended
modeling foundation that allows designers to model a range of physical and non-physical factors
within a single AML model. For example, an AML model can carry object and component costs
as object properties so designers can directly determine how design decisions affect costs. Also,
manufacturing processes can be included as objects within AML models. Objects can have
properties linked together in complex dependencies. When a property of an object is changed,
AML automatically notifies all other properties dependent on that property so they are consistent
with the new value when re-demanded. AML can interface model design parameters to software
packages outside AML. For example, a designer can interface a life cycle estimation software
package with his AML design to compute the part's anticipated life as a property of the part. The
designer can interface the expected life property to a cost model.

AML includes the following functions to support designers.

• An object architecture-modeling paradigm allows designers to model in familiar terms.
• Full supported and portable between UNIX and Windows platforms (running natively)
• Single underlying object oriented architecture
• Open architecture for foreign applications’ seamless integration
• Innate UI builder
• Common syntax throughout the different modules
• Real time dependency tracking
• Demand driven computation
• Full support of IGES/STEP/DXF
• Support of various geometric Modelers with full model compatibility
• Dynamic objects and model builder
• Mixed wireframe, surface, and solid modeling
• Automatic dimensioning and detailing

Use or duplication of this information is subject to the restrictions on page ii of this document. 6

• Analysis modeling and meshing
• Activity based cost and operational modeling
• Model configuration management and visualization
• Distributed and collaborative modeling over a network of heterogeneous machines

In summary, AML is not limited to creating geometrical designs. AML is a highly usable design
tool that designers can address physical aspects of part design as well as broader problems
related to physical design.

1.3 Training Manual Syntax and Style
The format and style of the text in this manual will represent different things. The italicized text
is used to differentiate AML code from English words within normal text. Example code is
represented with the following fonts:

Example code in courier font .
Return values from AML given in bold courier font.

This manual presents AML programming through a case study. Each section of the case studies
has the following format:

• Title of the current step in the model creation,
• Brief explanation of the part model and its purpose in the model,
• New AML constructs used in creating this model part,
• Exercises and,
• Proposed solutions to the exercises with

• example code and
• code explanation.

� Special topics or statements are highlighted with the checkmark symbol.

Each new object or AML construct is explained, with examples, before the code is given. The
code is developed step by step, making small advances to finally complete a certain objective.
(Please note that the new AML constructs may have more properties than are given in this
manual.) The files build upon each other, changing slightly, while introducing new topics and
more efficient methodologies of programming in AML. It is very important to create these files
in AML, and create the model while following along with the manual. Each file builds upon the
previous file, therefore minimal typing is involved. The best way to learn AML is to practice
writing and using AML. Follow along in the examples and focus on understanding each step
before moving on to the next exercise.

Use or duplication of this information is subject to the restrictions on page ii of this document. 7

2. Missile Case Study – AML Modeling Practices and Geometry
Creation

2.1 Explanation
The case study used in this manual shows the functionality of AML through examples. The
study demonstrates the basic process by which a developer/engineer solves a problem using
geometric reasoning and software integration with AML.

The missile case study involves modeling a simple missile-like air vehicle. The training manual
shows class, function and method syntax and usage with application to the missile design
development. The goal is to produce a model that could be used for simple design simulation,
analysis, and “producability” assessment. The developer models the geometry of the missile and
learns how to integrate the geometry with other elements of the design process. The training
manual and instructor give simple examples to augment these topics.

Use or duplication of this information is subject to the restrictions on page ii of this document. 8

2.2 The Final Geometry
Figure 4 shows the final geometry of the missile geometry model.

Final geometry

Figure 4

By the end of this case study, you will be able to create the geometry in Figure 4, set up a
parametric Finite Element Mesh and Analysis, publish the model in a standard format for light-
weight distributed modeling and visualization, manage source code, all enabling the automatic
design and analysis of this model in a matter of seconds!

The following sections develop each component in the missile model (the coordinate systems,
nose, body section, aft section, fins), tag, mesh, analyze and publish the model for off-line
collaboration and visualization.

Use or duplication of this information is subject to the restrictions on page ii of this document. 9

2.3 The Missile Geometry Class with Coordinate Systems

Each missile component is positioned on the overall missile geometry using a coordinate system.
Figure 5 shows these coordinate systems in their final positions with respect to an overall missile
coordinate system. This overall missile coordinate system serves as a base reference for the
entire missile geometry. For example, a user may take this missile geometry and position it on an
airplane model using this coordinate system for a reference point.

Missile Coordinate Systems

Figure 5

Note that the missile-coordinate-system is not labeled in Figure 5.

New AML Constructs

This section covers the AML construction syntax for defining a class and/or object. In addition,
the following AML concepts and constructs are used:

• evaluating expressions
• list, quote, quoted lists
• object
• define-class

• specifying inheritance
• specifying properties
• specifying subobjects

• coordinate-system-class
• create-model
• starting and exiting AML
• overall model development procedures

Opening Comments

• AML is not case-sensitive.
• Data typing is not verified upon compilation in AML, but some data types are expected such

as a string, symbol, list, number, or an object.
• AML is both an interpreted and compiled language.

Use or duplication of this information is subject to the restrictions on page ii of this document. 10

EXPRESSIONS

AML uses prefix notation to evaluate expressions. That means that the operator appears first
followed by the arguments. Evaluation of the arguments occurs before the arithmetic operation.
This allows embedding of calculations within other calculations, also known as nesting. AML
uses typical coding notations for multiplication (*), division (/), addition (+), and subtraction (-).
Many other arithmetic, trigonometric, and vector and matrix functions are available in AML.
Please see the AML Reference Manual for further documentation of these functions.

Examples:
AML> (- 1 2)
-1
AML> (* 3 4)
12
AML> (/ 4 -2)
-2
AML> (+ (- 1 2) (* 3 4))
11

The entire syntax for the last example above is an expression that returns the value of 11, and the
arguments (- 1 2) and (* 3 4) are expressions that return -1 and 12, respectively. The arguments -
1 and 12 are also considered expressions which return themselves.

LISTS

A list is a collection of elements. Examples of lists are: (1 2 3), (a b c), ("Bob" "Jim" "Steve"),
(1 a "Bob"). A list may be specified in any of the following three formats.

Format:

(list arg1 arg2 ... argn)
or
(quote arg1 arg2 … argn)
or
‘(arg1 arg2 … argn)

Creating a list:
'(1 2 3) and (list 1 2 3) both create a list containing integer elements of 1, 2, and 3. However, the
two means of specifying the list are not identical. Using the function (list ...) causes each
element in the list to be evaluated. When using ‘(…) , AML will not evalutate the elements
inside of the parenthesis. The example (list 1 2 3) returns the same result as '(1 2 3) because each
of the elements evaluates to themselves. The example (list (* 1 2) (- 2 3) (+ 3 4)) returns (2 -1 7)
because AML evaluated each element inside the list.

Use or duplication of this information is subject to the restrictions on page ii of this document. 11

Examples:

With p1 defined as 1,
p2 defined as 2,
p3 defined as 3,

AML> '(p1 p2 p3)
(P1 P2 P3)
AML> (list p1 p2 p3)
(1 2 3)
AML> (list
 (+ p1 p2 p3)
 (- p1 p2 p3)
 (* p1 p2 p3)
 (/ p1 p2 p3)
)
(6 -4 6 1/6)

Some list extraction and query functions are: first, rest, last, nth, and length.

(first list)
(rest list)
(last list)
(nth index list)
(length list)

Note: nth returns the element in the list in the position specified by the index. The index of
the first element is 0 (zero). If the index goes beyond the length of the list, the result
nil is returned. The function first returns the first element in the list. It is equivalent
to nth with an index of 0 (zero).

Note: The functions rest and last both return lists. Rest returns everything except the first
element in the list. Last returns a list containing only the last element in the list.

Examples:
AML> (first '(a b c))
A
AML> (rest '(a b c))
(B C) ;;; Note: This is a list.
AML> (last '(a b c))
(C) ;;; Note: This is a list.
AML> (first (last '(a b c))
C
AML> (nth 0 '(a b c))
A
AML> (nth 1 '(a b c))
B
AML> (nth 1 (nth 0 (list '(1 2 3) "hello")))
2
AML> (nth 3 '(a b c))
NIL
AML> (length '(a b c))
3

Use or duplication of this information is subject to the restrictions on page ii of this document. 12

OBJECT [Class]

Object is the highest level class from which user-defined classes should inherit. While
developing AML source code, classes should not inherit from any class that is a super-class of
object.

Object is primarily used to define classes which will not have any associated geometry or graphic
representation. Often, this class is used to define classes which will be mixed with other classes
when defining objects. Most of the predefined classes in AML have object as a super-class.

DEFINE-CLASS [Construct]

Define-class, a fundamental AML construct, is used to describe the structure of new classes. All
predefined and user-defined AML classes are defined using this construct, including those in the
user interface, meshing, and analysis modules of the AML syntax. In any define-class, the
following may be specified:

1) The class or classes from which the new class should inherit (superclasses). This is required
for all new class definitions.

2) The properties of the new class and their formulas (attributes).

3) The subobjects of the new class (children).

The properties and subobjects given in the class definition add to those that exist in the
definitions of the classes super-classes. Properties and subobjects from the super-classes will be
replaced (overwritten) if they have the same name as any given in the new class definition.

Once defined using the define-class construct, instances of new classes can be created. Creating
an instance is done using the create-model and add-object commands. Create-model will create
a new instance of the class and make that instance the top of a new model (root object of the
model). Add-object is used to create an instance of a class as a subobject of an object that
already exists.

Format:

(DEFINE-CLASS class-name

:inherit-from ()

[:properties (property-specifications)]

[:subobjects (subobject-specification-lists)]

)

Use or duplication of this information is subject to the restrictions on page ii of this document. 13

Arguments:

class-name Any symbol giving the name of the class being defined.

:inherit-from A list of predefined classes this class inherits from.

:properties A list of property specifications. Each specification may be a simple
property/formula pair or an object specification list containing the name,
class, and property/formula pairs for the property object.

:subobjects A list of subobject specification lists containing the name, class, and
property/formula pairs for each subobject.

Notes:

• The class used in the specification for a subobject or a property object must be the name of a
pre-defined class. The code will not compile if the class has not been previously defined!

• Using a class name as a subobject name or a property name can be confusing and should be
avoided.

• All properties and subobjects must be uniquely named within the scope of a class definition.

Example:
(define-class EXAMPLE-SUBOBJECT-CLASS
 :inherit-from (object)
 :properties (
 id "OU812"
 part-number 2.0
)
)

(define-class EXAMPLE-MODEL-CLASS
 :inherit-from (object)
 :properties (
 model-name "Model For AML Basic Training"
)
 :subobjects (
 (sub-1 :class 'example-subobject-class
 part-number 3.0
)
 (sub-2 :class 'example-subobject-class
 id "ZZ184"
)
)
)

The subobjects refer to their “container object” as their parent or superior. The example-
model-class is the superior of sub-1 and sub-2 and sub-1 and sub-2 are condidered children of
example-model-class.

Specifying Inheritance

Inheritance is a mechanism for class reuse. Through inheritance, a class will have all of the same
properties, subobjects, and methods as the classes that it inherits from (its superclasses). The
:inherit-from section of the define-class construct accepts a list of classes to be used as
superclasses. If a property, subobject, or method is present in more than one of the superclasses,
the order of precedence is from left to right.

Use or duplication of this information is subject to the restrictions on page ii of this document. 14

Example:
(define-class MATERIAL-CLASS
 :inherit-from (object)
 :properties (
 material 'wood
 density 0.0
)
)

(define-class EXAMPLE-SUBOBJECT-CLASS
 :inherit-from (material-class)
 :properties (
 id "OU812"
 part-number 2.0
 material 'steel
)
)

(define-class EXAMPLE-MODEL-CLASS
 :inherit-from (object)
 :properties (
 model-name ”Model For AML Basic Training”
)
 :subobjects (
 (sub-1 :class 'example-subobject-class
 part-number 3.0
)
 (sub-2 :class 'example-subobject-class
 id "ZZ184"
 material 'aluminum
)
)
)

Specifying Properties

The optional :properties section of the define-class construct is used to assign properties and
their associated formulas to classes. Properties may be specified as a simple property/formula as
shown in the define-class example or as a property object specification (explained later in the
manual). The properties may be the names of new properties to be added to the class or names of
properties that are in the superclasses. If the names are the same as those in superclasses they are
considered overriding properties. The property specifications are used as the defaults during the
creation of instances.

� The formula of a property can be a function call, method call, any calculation, or simple
value that gets evaluated. These include functions to run programs, or even making calls to
Fortran or “C”.

Specifying Subobjects

The optional :subobjects section of the define-class construct must be a list of subobject
specifications. The subobjects are created as instances that are children of the class being
defined. The form of the subobjects requires the following format:

Use or duplication of this information is subject to the restrictions on page ii of this document. 15

(subobject-instance-name :class class-to-be-instantiated property-specifications)

The subobject-instance-name is any symbol that will become the name of the instance that is
created from the specification. The class-to-be-instantiated may be any expression that evaluates
to a class name in symbol form.

The property specifications at the subobject level are exactly the same as the :properties level for
define-class.

COORDINATE-SYSTEM-CLASS [Class]

The coordinate-system-class provides a cartesian orthogonal reference frame that can be used to
position other objects in a model. It adds a visible indicator of the coordinate frame position and
orientation and is used as a reference frame for other objects (including other coordinate-system-
class objects). A coordinate-system-class object is drawn as a set of axes in the local x, y, and z
directions; a box displaying x, y, and z; and the name of the coordinate-system-class object.
These components can be individually turned off. The z-axis (vector-k) is assumed to be the
cross product of vector-i and vector-j.

Properties:

origin The origin property specifies the position of the origin of the coordinate-
system-class object. Defaults to '(0 0 0).

vector-i The direction of the x-axis of the coordinate-system-class. Defaults to
'(1 0 0).

vector-j The direction of the y-axis of the coordinate-system-class. Defaults to
'(0 1 0).

Examples:
(define-class ANGLED-COORDINATE-SYSTEM-CLASS
 :inherit-from (coordinate-system-class)
 :properties (
 origin '(3 1.03 6)
 vector-i '(1 1 0)
 vector-j '(-1 1 0)
)
)

(define-class SET-OF-COORDINATE-SYSTEMS-CLASS
 :inherit-from (object)
 :subobjects (
 (coord-sys-1 :class 'coordinate-syst em-class
)
 (coord-sys-2 :class 'angled-coordina te-system-class
)
 (coord-sys-3 :class 'coordinate-syst em-class
 origin '(1 2 0)
 vector-i '(0 1 0)
 vector-j '(-1 0 0)
)
))

Use or duplication of this information is subject to the restrictions on page ii of this document. 16

CREATE-MODEL [Function]

Create-model allows the user to create a new model (instantiate a class) based on the class given
in the name argument. This creates a model (an instance, also known as an “object”) of a
particular class. This instance becomes the current model, also known as the “root” of the tree.
In AML, all models are placed in a part hierarchy such that all user defined models are children
of the model-manager. The model-manager has one predefined subobject called interface which
is the object where all of the AML user interface objects are stored. The model-manager is the
absolute root of all AML objects. To select the various user defined models, use the function
select-model.

Format:

(CREATE-MODEL class-name)

Arguments:

class-name The name for the model being created in symbol form; the name must be
a valid pre-defined class name.

Examples:
(define-class MATERIAL-CLASS
 :inherit-from (object)
 :properties (
 material 'wood
 density 0.0
)
)

AML> (create-model 'material-class)
#<MATERIAL-CLASS @ #x2224280a>

See Also:

select-model
delete-model

Starting AML, Text Editing, and Exiting AML

AML runs natively on both Unix and Windows platforms. TechnoSoft supports AML for Intel
based PC machines as well as Hewlett Packard, Sun, Silicon Graphics, and IBM UNIX
machines. AML applications are totally portable between the two platforms.

2.3.1 Starting AML:
For the Windows based machines, double click on the AML icon on the desktop (if available), or
find the AML Program Group from the Windows "Start" | "Programs" | "AML" button. Options
are provided to start AML with XEmacs (typically for development use) or from a standard

Use or duplication of this information is subject to the restrictions on page ii of this document. 17

command prompt window (typically for run-time use). If the XEmacs option is
selected, the XEmacs application will start for text editing purposes. Clicking on
the “Run AML” button will start the AML active command prompt buffer inside the
XEmacs environment.

2.3.2 AML Text Editing with XEmacs:
GNU XEmacs is a free, portable, extensible text editor. Free means that everyone may use and
redistribute it without a licensing fee. Portable means that it runs on many machines under many
different operating systems. Extensible means that you can customize all aspects of its usage
(key bindings, fonts, colors, windows and menus). TechnoSoft has customized XEmacs to best
suite the AML syntax and has incorporated an active command prompt in the XEmacs
environment.

Notation: This section uses standard XEmacs notation to describe keystrokes:

C-x x represents a key, depress both the control key and x at the same time.
M-x depress both the meta (also known as “Alt”) key and x at the same time.
C-M-x depress the control key, the meta key and x at the same time.
RET The return key.
SPC The space bar.
ESC The escape key.

Files, Buffers and Windows: XEmacs has three intimately related data structures:

Files: A file is the actual file on disk. You are never editing a file. Rather, you read a
copy into XEmacs to initialize a buffer and write a copy of a buffer to a file to save it.

Buffers: The buffer is the basic editing unit. One buffer corresponds to one piece of text
being edited. XEmacs can have any number of buffers active at any moment, but only a
single buffer selected. This is the buffer that your cursor is in, and where typed
commands take effect. A Buffer is deletable and deleting a buffer does not delete the file
on disk (though you may lose any editing changes you made if you do not save first).

Windows: A window is a view of a buffer. Due to limited screen space, all buffers may
not be viewed at once. You can split the screen, horizontally or vertically, into as many
windows as you like and view a different buffer in each window. It is also possible to
have several windows viewing different portions of the same buffer. Deleting a window
in no way deletes the buffer associated with the window. Each window has its own
mode line, but there is still only one minibuffer (the minibuffer is described later).

Mode Line: The last line at the bottom of a buffer is an informational, non removable mode
line. It displays important information including:

o The state of the buffer: modified (a pair of asterisks), unmodified (hyphens), or
read-only (a pair of % signs).

o The name of the file edited (*scratch* is a buffer available for non file work).

o The major mode (in parentheses).

o The amount of the file seen on the screen:

Use or duplication of this information is subject to the restrictions on page ii of this document. 18

o All - The entire file.

o Top - The top of the file.

o Bot - The bottom of the file.

o Percentage - NN% indicates the percentage of the file above the top of
the window.

The Minibuffer: The blank line below the mode line is the minibuffer. XEmacs uses the
minibuffer to display messages. XEmacs also requests input from the user at the minibuffer (it
may want you to type yes or no in answer to a question, the name of a file to edit, the long name
of a command, etc.).

Help: XEmacs has extensive online help, most of which is available via the help key, C-h. C-h
is a prefix key. Type C-h twice to see a list of subcommands; type it three times to get a window
describing all the subcommands.

Commands to Manipulate Files:

C-x C-f Find-file. Displays a file in a buffer for editing. Execution of this command
prompts for the name of the file. If that file is available in another buffer, it switches to
that buffer and does not actually read in the file from disk again. If not, find-file creates
a new buffer named for the file, and initializes it with a copy of the file. In either case,
the current window becomes a buffer containing the contents of the requested file (or
current editing of that file). If no file exists, the buffer is named after the file you
attempted to find and saving the buffer creates the file.
C-x C-s Save-buffer. Saves a file. More accurately, it writes a copy of the current buffer
out to the disk, overwriting the buffer's file and handling backup versions.
C-x w Save-buffer-as. Saves the current buffer to a file. The user is prompted for the
file's location.

Commands to Manipulate Buffers:

C-x b Switch-to-buffer. Prompts for a buffer name and switches the buffer of the
current window to that buffer. It does not change the window configuration. A new
buffer name creates a new empty buffer. The new buffer is empty (even if the new name
corresponds to a filename).
C-x C-b List-buffers. Pops up a window that lists all buffers and provides:
buffer-name, modification state, size in bytes, major mode and the possible file the
buffer is visiting.
C-x k Kill-buffer. Prompts for a buffer name and removes the entire data structure for
that buffer from XEmacs. The command provides an opportunity to save a modified
buffer. Note that this in no way removes or deletes the associated file, if any.

Commands to Control Display:

C-v Scroll-up. Scrolls forward (towards the end of the file) a windowful or a
specified number of lines. By default XEmacs leaves two lines of context from the
previous screen.
M-v Scroll-down. Just like C-v, but scrolls backwards.
C-l Recenter. Clears the screen and redisplays, scrolling the location where the

Use or duplication of this information is subject to the restrictions on page ii of this document. 19

cursor is residing to the vertical center of the screen
C-x 1 Display Single Buffer.
C-x 2 Split screen horizontally.

Undoing Changes:

C-x u Undo. Undo editing, backward in time. XEmacs has infinite undo ability, so
that even long chains of commands can be undone. XEmacs has redo capability
that allows for reverse direction while undoing, thereby undoing the undo.

Completion, Deleting and Killing:

To save typing, XEmacs offers various forms of completion: this means XEmacs tries to
complete partially typed file names, command names, etc. To invoke completion, try typing
TAB or SPC.

Emacs provides deletion commands based on the textual objects above. Deletion means to
remove text from the buffer without saving it. Most deletion commands operate on small
amounts of text. Killing saves the removed text to storage. You can retrieve (referred to as
yank) the text at any time.

Characters and Lines

C-d Delete-char. Deletes the character after the cursor.
DEL Delete-backward-char. Deletes the character before the cursor.
C-k Kill-line. Kills to the end of the current line, not including the new-line. Thus,
if you are at the beginning of a line, it takes two C-k's to kill the whole line and close up
the white space.

Yanking:

Yanking is an other term for retrieving killed text. This is what some systems call pasting. The
usual way to move or copy text is to kill it and then to yank it one or more times. You can kill in
one buffer, switch to another and yank the text there. To get back previous kills, move around
the kill ring (stack). Start with C-y to get the most recent kill, and then use M-y to move to the
previous spot in the kill ring by replacing the just-yanked text with the previous kill. Subsequent
M-y's move around the ring, each time replacing the yanked text. Stop at the text of interest.
Any other command (a motion command, self-insert, anything) breaks the cycling of the kill ring,
and the next C-y yanks the most recent kill again.

C-y Yank. Yank last killed text.
M-y Yank-pop. Replace re-inserted killed text with the previous killed text.

Searching:

Emacs has a variety of unusual and extremely powerful search and replace commands.
Incremental search is the most important. Begin an incremental search by typing in a character.
As each additional character is typed, XEmacs finds and shows where that string of characters is
found.

Use or duplication of this information is subject to the restrictions on page ii of this document. 20

C-s Isearch-forward. Incremental search forward.
C-r Isearch-backward. Incremental search backward.

To stop searching, either hit RET or type any other XEmacs command (which will both stop the
search and execute the command). Start the search for the next match by typing another C-s at
any point. Reverse the search by typing C-r. Modify the search by using DEL to delete and
change the character string.

Query Replace:

Query-replace (bound to M-%) is the most important command for replacing text. This
command prompts you for the text to replace, the text to replace it with, and then searches and
replaces within the current buffer.

M-% string RET newstring RET

Query-replace is interactive: at each match, and will prompt for decision what to do. The
following options are available:

SPC Replace the occurrence with newstring.
DEL Skip the next occurrence without replacing this one.
RET Terminate query-replace without performing this replacement.
ESC Same as RET.
. (Period) Perform this replacement but then terminate the query-replace.
! Perform this replacement and all the rest in the buffer without asking.

.Emacs file:

As XEmacs starts, it initializes by reading the “.emacs” file. XEmacs loads any customizations,
such as macros, found in the file. The .emacs file is written in the XEmacs Lisp language, which
is not to be confused with the AML.

References:

This section contains material taken from the Emacs tutorial (Copyright (c) 1985 Free Software
Foundation Richard M. Stallman. GNU Emacs Manual. Cambridge, MA: Free Software
Foundation. The complete text is also available on the WWW).

2.3.3 Starting the AML user Interface:
To start the AML user interface, type (aml) at the command prompt. The XEmacs
environment also has a button (shown at the right) that performs the same command. In
addition to displaying the AML user interface, this button will also minimize the
XEmacs environment.

Use or duplication of this information is subject to the restrictions on page ii of this document. 21

This function will bring up the AML menu header bar (shown above) which allows easy access
to AML models, layouts and other options when interacting with a model.

2.3.4 Ending an AML session:
The user may end the AML session by two methods:

1. The (quit) function closes the complete AML application process including the command
prompt and the AML user interface. The editor remains active (without an active AML
command prompt buffer).

2. If the AML menu header bar is displayed, press "Models" | "Exit AML", and then confirm
the exit. Note that this is the preferred mechanism of exiting AML if the AML user interface
has been started.

Overall Model Development Procedure

The overall procedure in model development involves the following steps:
• start the AML application,
• edit file(s) to make class definitions etc.,
• load the files into AML’s memory
• start the AML user interface,
• choose a layout from the "Layout" pull-down menu on the menu header bar,
• instantiate the classes using create-model or add-object
• and inspect/edit/manipulate the results in the AML environment.

Use or duplication of this information is subject to the restrictions on page ii of this document. 22

Exercise 1

After a close review of the class definitions and AML constructs described in the previous
section, develop the class definition for the missile geometry class only using coordinate-system-
class. Create a class called missile-geometry-class inheriting from object. The class should not
have any properties. It will have four instances of a coordinate-system-class class. Specify the
origin property of each instance to position each coordinate system instance along the x-axis with
a distance of 0.0, 1.0, 9.0, and 17.0 from the missile-coordinate-system. Figure 6 shows the
instance diagram for the desired hierarchy. The suggested names for the class/subobjects are
given first and the class types are given in square brackets [].

Instance Diagram for Exercise 1

missile-geometry-class [object]
missile-coordinate-system [coordinate-system-class]

origin
nose-coordinate-system [coordinate-system-class]

origin
mid-body-coordinate-system [coordinate-system-class]

origin
aft-body-coordinate-system [coordinate-system-class]

origin

Figure 6

Follow these steps to create the class and instantiate the object:
• Start the AML application by double clicking on the AML icon,
• Open a new file for AML source code editing,
• Insert the line (in-package :aml) at the beginning of the AML source code file (the instructor

will explain this after the exercise),
• Define the class as specified above in the new file,
• Save the file to the hard disk,
• Load the file into AML memory so that AML knows the definition of a missile-geometry-

class,
• Ensure that you have the appropriate AML inspection interface forms displayed (Ex. Menu

Form | Layout | AML Main Modeling Form),
• Create an instance of a missile-geometry-class using create-model at the command prompt,
• Verify that the model tree is current and shows the instance of a missile-geometry-class just

created,
• Inspect, draw, and modify the instance just created to show some changes in the geometry

using the AML browsing interface.

Use or duplication of this information is subject to the restrictions on page ii of this document. 23

Exercise 1 Solution

(in-package :aml)

(define-class missile-geometry-class
 :inherit-from (object)
 :properties (

)
 :subobjects (
 (missile-coordinate-system :class 'c oordinate-system-class
 origin (list 0.0 0.0 0.0)
)

 (nose-coordinate-system :class 'coor dinate-system-class
 origin (list 1.0 0.0 0.0)
)

 (mid-body-coordinate-system :class ' coordinate-system-class
 origin (list 9.0 0.0 0.0)
)

 (aft-body-coordinate-system :class ' coordinate-system-class
 origin (list 17.0 0.0 0.0)
)
)
)

Code Explanation

The first line of any AML source code file must be (in-package :aml). This function tells the
compiler to treat the following code as classes/methods/functions organized under a certain
bundle of specialized AML functionality. An in-depth discussion of packages is beyond the
scope of this manual and can be covered in the advanced training.

As specified with a standard class definition, the missile-geometry-class inherits from object.
Four coordinate system subobjects are defined with unique names. Each of the subobjects is an
instance of a coordinate-system-class with the origin property overwritten from the innate
definition of ‘(0 0 0).

Notice that all classes in AML must inherit from some other class. These classes can be standard
classes that are innate in the AML class library, or pre-defined user-defined classes. The user
may notice that some classes have a –object or a –class suffix. As AML evolves, new classes are
being added with a –class suffix. The developer is encouraged to use a –class suffix when
defining his/her own classes.

Use or duplication of this information is subject to the restrictions on page ii of this document. 24

2.4 The Missile Geometry Class with Coordinate Systems and Components
Figure 7 shows the missile geometry with three components: a conical nose, a cylindrical mid-
body, and a truncated conical aft-body. The next step in creating the missile geometry is to use
some of the innate geometric primitives in AML to represent the missile’s thin-shelled body
components.

Missile Nose (Conical), Mid-Body, and Aft-Body

 Figure 7

Note: The missile body’s radius is 1.0 and the aft body’s exit radius is 0.75.

New AML Constructs

The following AML concepts and constructs are used in this section:

• position-object
• graphic-object
• open-cone-object
• open-cylinder-object
• open-truncated-cone-object
• orientation functions
• keywords in constructs
• create-model (using keywords)
• AML documentation

Use or duplication of this information is subject to the restrictions on page ii of this document. 25

� The following classes (graphic-object and position-object) are base component classes
which are inherited into classes that a user can display within a "display canvas". Each has its
own specific purpose and provides certain properties that a user can manipulate in a subclass
such as changing an object's color, or the way it is rendered.

POSITION-OBJECT [Class]

The position-object provides the ability for objects to be oriented in space. All geometry is
created with its own local origin at the absolute (global) origin, ‘(0.0 0.0 0.0), by default.

Properties:

orientation The list of orientation commands used to position the object (see section
on orientation)

GRAPHIC-OBJECT [Class]

All objects that have geometry and graphics associated with them inherit from graphic-object.

Inherit-From:

 position-object

Properties:

color The value may be a symbol, a string, or a list of three numbers between
0 and 1 specifying the red, green, and blue components of the color.
Default is “white” . Other examples are ‘white, or ‘(0.2 1 0.5).

display? When t, an instance of this class will be capable of being drawn. When
nil, an instance cannot be displayed. Default t.

render ’boundary for wireframe graphics, ’shaded for a shaded representation,
and ’facet to connect the surface facets with lines. Other options are
available such as 'boundary-shaded, and 'facet-shaded.

line-width The width of the lines used to draw the object.

line-type The style of the lines used to draw the object.

OPEN-CONE-OBJECT [Class]

An open-cone-object is defined as an open ended hollow cone.

Use or duplication of this information is subject to the restrictions on page ii of this document. 26

Inherit-From:

 graphic-object

Properties:

diameter The diameter of the end circle. Default 0.5.

height The height is defined parallel to the z-axis. Default 2.0.

OPEN-CYLINDER-OBJECT [Class]

An open-cylinder-object is a open ended hollow cylinder.

Inherit-From:

 graphic-object

Properties:

diameter The diameter of the cylinder. Default 1.0.

height The height is defined parallel to the z-axis. Default 2.0.

Example:
(define-class OPEN-COLUMN-CLASS
:inherit-from (open-cylinder-object)
:properties (
 diameter 40.0
 height 150.0

 color 'white
)
)

See Also:

pipe-object

OPEN-TRUNCATED-CONE-OBJECT [Class]

An open-truncated-cone-object is defined as an open ended hollow frustum of a cone.

Inherit-From:

 graphic-object

Use or duplication of this information is subject to the restrictions on page ii of this document. 27

Properties:

start-diameter The diameter of the start face of the truncated cone located in the
negative z-direction space. Default is 1.0.

end-diameter The diameter of the end face of the truncated cone located in the positive
z-direction space. Default is 1.0.

height The height of the truncated cone. Default is 2.0.

Orientation Functions

All objects which inherit from position-object can be oriented in model space. An object’s
orientation can consist of any combination of translations and rotations. This orientation may be
“built-into” the object through its class definition, or applied to the object after instantiation
(creation) through the orientation form in the AML graphical user interface.

The format of the orientation property is as follows:

orientation (list (operation-1 args)

 (operation-2 args)

 ...

)

� The formula for orientation cannot be defined as a quoted list (‘) because it is not
evaluated in the same manner as other properties.

Consider the example of an open-cylinder-object translated and rotated away from its original
position.

(define-class example-cyl-class
 :inherit-from (open-cylinder-object)
 :properties (
 orientation (list (translate '(5.0 0.0 0.0))
 (rotate 45.0 '(0.0 1.0 0.0))
)
)
)

The orientation property specifies that the cylinder should first be translated a distance of 5.0
along the x-axis (of the global coordinate frame). After that, it is rotated by 45.0 degrees about
the y-axis, or the vector (0 1 0) of the global coordinate frame. The orientation operations are
built into the object, therefore any instance of this object will be immediately transformed to the
new orientation on creation. Note that the order of the operations in orientation is important.
Reversal of the operations,

 orientation (list (rotate 45.0 '(0.0 1.0 0.0))
 (translate '(5.0 0.0 0.0))
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 28

will result in a different final orientation. The orientation functions can contain expressions
which will be evaluated when the object is created. Thus, to move the open-cylinder-object
along the x-axis by a distance equal to twice its diameter and then rotate it, the following
orientation can be used using the referencing (see next section for explanation):

 orientation (list (translate (list (* 2.0 ^diame ter) 0.0 0.0)
 (rotate 45.0 '(0.0 1.0 0.0))
)

Example:
(define-class example-cyl-object
:inherit-from (open-cylinder-object)
:properties (
 orientation (list (translate '(5.0 0.0 0.0))
 (rotate 45.0 '(0.0 1.0 0.0))
 (translate '(2.0 1.0 0.0))
 (rotate 25.0 '(0 0 1))
)
)
)

Keywords

Within both methods and functions, there are arguments that are not required at the time of the
functions execution. They simply have a default condition which they evaluate to in the event
that they are not provided by the user/developer. These keywords help to maintain the ease of
programming in AML, without limiting its overall functionality. When called in a method or
function, a colon : is placed before the keyword, the keyword is given and then the keyword's
argument is given. In the following example the orientation command translate has a keyword
called distance that is called with a value of 3.158.

Example:
(define-class example-cyl-class
:inherit-from (open-cylinder-object)
:properties (
 orientation (list (translate '(1.0 0.0 0.0) :dist ance 3.158))
)
)

CREATE-MODEL [Function]

As has been previously shown, create-model allows the user to create a new model based on the
specified class. Now that the topic of keywords has been covered, this function is revisited to
demonstrate further capability available in create-model.

Format:

(CREATE-MODEL name [:class class-name])

Use or duplication of this information is subject to the restrictions on page ii of this document. 29

Arguments:

name A symbol describing the user defined name for the model being created.
If the class argument is not supplied, the name must be a valid class
name.

:class A symbol describing the class name. The default value for class is the
name. A valid class name is required.

Examples:
AML> (create-model 'model-1 :class 'object)
#<OBJECT @ #x2224280a>

This creates a model named model-1 of class object.

AML Documentation

AML Reference Manual:

TechnoSoft encourages AML developers to use the AML Reference Manual for questions about
AML syntax or class structure. For quick reference, the AML Reference Manual contains:

• a table of contents which separates the entire manual with respect to content,
• an index which separates AML constructs into

• General Constructs,
• Classes,
• Functions,
• And Methods.

Runtime Documentation:

AML has several methods of providing help while at an AML command prompt. In going
through this training manual, the AML developer may find the AML runtime documentation
functionality useful. TechnoSoft suggests using the apropos and describe at the command
prompt. apropos finds all text in the current AML session that matches a given symbol.
describe prints information about a given object.

AML> (describe 'create-model)
CREATE-MODEL is a SYMBOL.
 It is unbound.
 It is EXTERNAL in the TechnoSoft package and acce ssible in the
Adaptive-Modeling-Language, CHISELS, and VirtualGeo metryLayer packages.
 Its function binding is #<Function CREATE-MODEL>
 The function takes arguments (NAME &KEY CLASS D ELETABLE? INIT-FORM)
AML> (create-model 'missile-geometry-class)
#<MISSILE-GEOMETRY-CLASS @ #x21ec4322>
AML> (expand (the))
NIL
AML> (describe (the))

DEFINE-CLASS PROPERTIES:

Use or duplication of this information is subject to the restrictions on page ii of this document. 30

DEFINE-CLASS SUBOBJECTS:

 MISSILE-COORDINATE-SYSTEM #<COORDINATE-SYSTEM-CLASS>
 NOSE-COORDINATE-SYSTEM #<COORDINATE-SYSTEM-CLASS>
 MID-BODY-COORDINATE-SYSTEM #<COORDINATE-SYSTEM-CLASS>
 AFT-BODY-COORDINATE-SYSTEM #<COORDINATE-SYSTEM-CLASS>
NIL
AML> (apropos 'missile)
MISSILE
MISSILE-GEOMETRY-CLASS
MISSILE-COORDINATE-SYSTEM

� The trainee is encouraged to look in the AML reference manual to view the
documentation on the various orientation commands.

Use or duplication of this information is subject to the restrictions on page ii of this document. 31

Exercise 2

After a close review of the class definitions and AML constructs described in the previous
section, augment the class definition for the missile geometry class using instances of
coordinate-system-class, open-cone-object, open-cylinder-object, and open-truncated-cone-
object as subobjects in the missile-geometry-class. Note that Figure 8 shows properties that will
need to be changed in the various objects to make the missile geometry given in Figure 7. These
objects have more properties than shown here, but these are only the ones you will need to
change.

Instance Diagram for Exercise 2

missile-geometry-class [object]
missile-coordinate-system [coordinate-system-class]
nose-coordinate-system [coordinate-system-class]

origin
nose [open-cone-object]

diameter
height
orientation

mid-body-coordinate-system [coordinate-system-class]
origin

mid-body [open-cylinder-object]
diameter
height
orientation

aft-body-coordinate-system [coordinate-system-class]
origin

aft-body [open-truncated-cone-object]
start-diameter
end-diameter
height
orientation

Figure 8

Use or duplication of this information is subject to the restrictions on page ii of this document. 32

Exercise 2 Solution

(in-package :aml)

(define-class missile-geometry-class
 :inherit-from (object)
 :properties (

)
 :subobjects (
 (missile-coordinate-system :class 'c oordinate-system-class
 origin (list 0.0 0.0 0.0)
)

 (nose-coordinate-system :class 'coor dinate-system-class
 origin (list 1.0 0.0 0.0)
)

 (nose :class 'open-cone-object
 height 2.0
 diameter 2.0
 orientation (list
 (rotate -90 ' (0 1 0))
 (translate (l ist 1.0 0.0 0.0))
)
)

 (mid-body-coordinate-system :class ' coordinate-system-class
 origin (list 9.0 0.0 0.0)
)

 (mid-body :class 'open-cylinder-obje ct
 diameter 2.0
 height 14.0
 orientation (list
 (rotate 9 0 '(0 1 0))
 (translat e (list 9.0 0.0 0.0))
)
)

 (aft-body-coordinate-system :class ' coordinate-system-class
 origin (list 17.0 0.0 0.0)
)

 (aft-body :class 'open-truncated-con e-object
 start-diameter 2.0
 end-diameter 1.5
 height 2.0
 orientation (list
 (rotate 9 0 '(0 1 0))
 (translat e (list 17.0 0.0 0.0))
)
)
)
)

Code Explanation

Note that the missile-geometry-class now has several subobjects that have hard-coded properties.
To change the geometric configuration of the missile, the user would have to individually inspect
each object and change the values, or the developer would have to create a user interface link to
each property in the various locations through the model. Also, most of the properties rely on
each other and should be parametrically linked so the user/developer does not have to manage all
of the locations where the information is used. One instance of this can be seen in the missile's
radius controls the radii of the nose, mid-body, and the start diameter of the aft-body.

Use or duplication of this information is subject to the restrictions on page ii of this document. 33

2.5 The Missile Geometry Class with Parametrically Designed Components
The next step in creating the missile geometry is to augment the missile’s design by creating
parametric relations to certain "top-level" properties from which the components will derive their
necessary information. The coordinate systems will also drive the placement of the components
to further promote the parametric design.

New AML Constructs

The following AML concepts and constructs are used in this section:

• Data Model Concept (Common Computational Model)
• the referencing
• the shortcut… “!”
• superior
• superior shortcut… “^”
• reference-coordinate-system property in position-object

Organizing Data in a Central Location - Data Model Concept

AML provides a Knowledge Based Engineering (KBE) system for modeling and capturing
knowledge from different engineering domain disciplines. Products, Methods, and Processes are
represented in a common computational object hierarchy model facilitating the reuse of the
product as well process knowledge. It captures and organizes the vital engineering knowledge
and processes within a unified distributed object-oriented part model enabling the seamless
integration of engineering tools to automate the entire engineering cycle from conceptual design
to production. With this in mind, it is a common practice to organize common properties and
objects of an AML model or class at one “place” within the model so other properties and
objects can access them easily. The properties should contain knowledge/data about the
particular class such that all of the subobjects and sibling properties can access the common
information. In the case of the missile-geometry-class, the nose, mid-body and aft-body each
need the missile-general-body-radius property. This concept can be expanded to such areas as
cost analysis relying on the geometric and material properties of an object, the stress analysis of
an object relying on the geometric, material, and load properties within a model, and several
other examples.

THE Referencing

the is an AML construct which interrogates an object for its properties and subobjects. A
developer can use the referencing to “get” properties, objects, or values of properties from other
places in the instance hierarchy and to “describe” where they are located in the the instance
hierarchy. For example, consider an instance hierarchy of an airplane shown below in an
“instance diagram” where capitalized words represent objects and lower case words represent
properties of those objects:

Use or duplication of this information is subject to the restrictions on page ii of this document. 34

AIRPLANE [Level 1]
 maximum-speed [Level 2]
 wing-span [Level 2]
 number-of-engines [Level 2]
 WINGS [Level 2]
 WING-0001 [Level 3]
 span [Level 4]
 WING-0002 [Level 3]
 span [Level 4]
 RIBS [Level 4]
 RIB-0001 [Level 5]
 length [Level 6]
 width [Level 6]
 FUSELAGE [Level 2]
 length [Level 3]
 radius [Level 3]
 TAIL-SECTION [Level 2]
 ELEVATOR [Level 3]
 deflection-angle [Level 4]

Assuming this hierarchy, the developer can navigate through the instances and properties via the
referencing. Conceptually, the referencing has start point and an end point. The end point is the
name of the target object or property. The start point varies depending on where the the
reference is coded. From the AML prompt, the referencing “starts” from the root object in the
model tree. When writing code in files, the referencing starts from the current “level” in the tree.
From methods (described in the “Optional Topics” section of this manual), the referencing starts
from the instance the method is called on.

Assume the developer starts at the AIRPLANE level, and wants to obtain the value stored in span
from one of the WINGS. The following call is made from the command prompt (assuming the
current model is the AIRPLANE:

AML> (the airplane wings wing-0001 span)
40.21

Assume the developer starts at the AIRPLANE level, and wants to obtain the object stored in
WING-0001.

AML> (the airplane wings wing-0001)
#<WING-CLASS #x214H658>

This call returns an the instance of a wing-class which is an object data type versus the float data
type returned in the previous example.

A the reference will continue to look up the tree for an object or property with the name of the
target. It will go up to the superior superior of its own level, and then look at that object’s
children or properties to find the target. If one is found, the value of that property is returned.
Otherwise, the a similar operation is performed by going up another “superior” until it reaches
the root of the tree. If it does not find the target, the returns an error value.

Format:

(the name-1 name-2 ... name-n)

Use or duplication of this information is subject to the restrictions on page ii of this document. 35

Examples:
(define-class MATERIAL-CLASS
 :inherit-from (object)
 :properties (
 material 'wood
 density 0.0
)
)

(define-class EXAMPLE-SUBOBJECT-CLASS
 :inherit-from (material-class)
 :properties (
 id "OU812"
 part-number 2.0
 material 'steel
)
)

(define-class EXAMPLE-MODEL-CLASS
 :inherit-from (object)
 :properties (
 model-name "Model For AML Basic Training"
 id "OU812B4"
)
 :subobjects (
 (sub-1 :class 'example-subobject-class
 part-number 3.0
)
 (sub-2 :class 'example-subobject-class
 id "ZZ184"
 material 'aluminum
)
)
)

AML> (create-model 'example-model-class)
#<EXAMPLE-MODEL-CLASS #x214H658> �returns the object … an instance
AML> (the)
#<EXAMPLE-MODEL-CLASS #x214H658> �returns the object … an instance
AML> (the example-model-class)
#<EXAMPLE-MODEL-CLASS #x214H658> �returns the object … an instance
AML> (the example-model-class id)
”OU812B4” �returns the value of the property … a string
AML> (the example-model-class sub-1 id)
”OU812” �returns the value of the property … a string
AML> (the example-model-class sub-1)
#<EXAMPLE-SUBOBJECT-CLASS @ #x21c1fdea> �returns the object … an instance
AML> (the example-model-class sub-1 material)
STEEL �returns the value of the property … a symbol
AML> (the example-model-class sub-2 material)
ALUMINUM �returns the value of the property … a symbol

See Also:

Default

Use or duplication of this information is subject to the restrictions on page ii of this document. 36

! Shortcut

To produce more readable code, and to reduce typing, AML has a shortcut for the specified with
an exclamation point (!). The best way to introduce this shortcut is by example, but as a general
rule !xyz is exactly the same as (the xyz). Note that no spaces are allowed in this shortcut
between the exclamation point and the xyz.

Examples:

Assuming the same model is at the root (root-object), or current-model

AML> (the example-model-class)
#<EXAMPLE-MODEL-CLASS #x214H658>
AML> !example-model-class
#<EXAMPLE-MODEL-CLASS #x214H658>
AML> (the sub1 part-number)
3
AML> !sub1 part-number
#<EXAMPLE-SUBOBJECT-CLASS #x692H003>

Notice how the part-number argument given in the last example is ignored because spaces are
not allowed with the exclamation point shortcut.

SUPERIOR

The superior property makes the referencing more efficient and helps produce more readable
code. Essentially, each superior takes a the reference up one level. Note that this still is a the
reference and will continue to search up the tree if it does not find the target one level above
itself.

Example:

Assume the following class definitions:

(define-class EXAMPLE-SUBOBJECT-CLASS
:inherit-from (object)
:properties (
 id “OU812”
 part-number 2.0
 district-code nil
)
)
(define-class EXAMPLE-MODEL-CLASS
:inherit-from (object)
:properties (
 model-name "Model For AML Basic Training "
 code 45242
)
:subobjects (
 (sub-1 :class ‘example-subobject-class
 id (the superior superior sub-2 id)
 part-number 3.0

Use or duplication of this information is subject to the restrictions on page ii of this document. 37

 district-code (the superior superior code)
)

 (sub-2 :class ‘example-subobject-class
 id “ZZ184”
 district-code (the superior superior code)
)
)
)

The district-code of sub-1 and sub-2 get their values from their parents parent; example-model-
class. This is just one illustration that shows automation of data flow in AML with the use of
superior superior.

The id of sub-2 gets its value from redefinition at instantiation as a subobject to exapmle-model-
class. The id of sub-1 gets its value by employing a the-reference to the id of sub-2.

There is also a shortcut for the superior in AML specified with a ̂ (read as “the superior). The
shortcut is defined as:

^xyz = (the superior xyz) and

^^xyz = (the superior superior xyz) and so on …

Examples:
(define-class EXAMPLE-MODEL-CLASS
:inherit-from (object)
:properties (
 category “example models”
 code 45242
)
:subobjects (
 (sub-1 :class ‘example-subobject-class
 id (the superior superior sub-2 id)
 part-number 3.0
 district-code ^^code
)

 (sub-2 :class ‘example-subobject-class
 id “ZZ184”
 district-code ^^code
)

)
)

Note: Notice that the formula of sub-1 id could not change due to the nature of its the-
reference (it would need spaces in between the sub-2 and id which is not allowed).

POSITION-OBJECT (expanded to show reference-coordinate-system) [Class]

The position-object provides the ability for objects to be oriented in space. The position-object
definition is expanded here to show the reference-coordinate-system property which allows an
object to orient itself with respect to an instance of a coordinate-system-class.

Use or duplication of this information is subject to the restrictions on page ii of this document. 38

Properties:

orientation The list of orientation commands used to position the object (see section
on orientation)

reference-coordinate-system
Specifies the coordinate-system-class object which will be the reference
frame for this object. The reference-coordinate-system property must
point to an object of class coordinate-system-class. A value of nil
indicates that the global reference frame should be used. If the reference-
coordinate-system refers to any object which does not inherit from
coordinate-system-class, the global frame will be used. By default, the
reference frame is global. (Defaults to nil)

Examples:

The following example uses a box-object to demonstrate the use of the reference-coordinate-
system property. Note that in AML, a box's local origin is located at its centroid.

(define-class reference-coordinate-system-example-c lass
 :inherit-from (object)
 :properties (

)
 :subobjects (
 (absolute-coordinate-system :class ' coordinate-system-class
)
 (box-without-orientation :class 'box -object
)
 (box-coordinate-system :class 'coord inate-system-class
 origin (list 2.5 0.0 0.0)
 vector-i (list 1.0 1.0 0.0)
 vector-j (list -1.0 1.0 0.0)
)
 (box-with-ref-coord-sys :class 'box- object
 reference-coordinate-system ^^box-c oordinate-system
)
 (box-with-orientation :class 'box-ob ject
 reference-coordinate-system ^^box-c oordinate-system
 orientation (list
 (translate (list 1.0 2 .0 0.0))
)
)
)
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 39

Exercise 3

After a close review of the class definitions and AML constructs described in the previous
section, use the referencing to augment the class missile-geometry-class to contain the following
properties with their given values/formulas:

• missile-general-body-radius � 1.0
• missile-nose-length � 2.0
• missile-nose-radius � parameterize to missile-general-body-radius
• missile-mid-body-length � 14.0
• missile-mid-body-radius � parameterize to missile-general-body-radius
• missile-aft-body-length � 2.0
• missile-aft-body-start-radius � parameterize to missile-general-body-radius
• missile-aft-body-end-radius � 0.75

Use the reference-coordinate-system property of each class that inherits from position-object to
parameterize the missile's orientation. The missile-coordinate-system is the driving orientation
device for the entire missile geometry. The aft-body-coordinate-system should reference the
mid-body-coordinate-system which references the nose-coordinate-system which references the
missile-coordinate-system. Each missile geometry component should also reference their
respectively named coordinate-system. Figure 9 shows the instance diagram for the desired
hierarchy.

Instance Diagram for Exercise 3
missile-geometry-class [object]

missile-general-body-radius
missile-nose-length
missile-nose-radius
missile-mid-body-length
missile-mid-body-radius
missile-aft-body-length
missile-aft-body-start-radius
missile-aft-body-end-radius
missile-coordinate-system [coordinate-system-class]
nose-coordinate-system [coordinate-system-class]

origin
reference-coordinate-system

nose [open-cone-object]
diameter
height
orientation
reference-coordinate-system

mid-body-coordinate-system [coordinate-system-class]
origin
reference-coordinate-system

mid-body [open-cylinder-object]
diameter
height
orientation
reference-coordinate-system

aft-body-coordinate-system [coordinate-system-class]
origin
reference-coordinate-system

aft-body [open-truncated-cone-object]
start-diameter
end-diameter
height
orientation
reference-coordinate-system

Figure 9

Use or duplication of this information is subject to the restrictions on page ii of this document. 40

Exercise 3 Solution

(in-package :aml)

(define-class missile-geometry-class
 :inherit-from (object)
 :properties (
 missile-general-body-radius 1.0

 missile-nose-length 2.0
 missile-nose-radius ^missil e-general-body-radius

 missile-mid-body-length 14.0
 missile-mid-body-radius ^missil e-general-body-radius

 missile-aft-body-length 2.0
 missile-aft-body-start-radius ^missil e-general-body-radius
 missile-aft-body-end-radius 0.75
)
 :subobjects (
 (missile-coordinate-system :class 'c oordinate-system-class
 origin (list 0.0 0.0 0.0)
)

 (nose-coordinate-system :class 'coor dinate-system-class
 origin (list (* 0.5 ^^missile-nose-length) 0.0 0.0)
 reference-coordinate-system ^^miss ile-coordinate-system
)

 (nose :class 'open-cone-object
 height ^^missile-nose-length
 diameter (* ^^missile-nose-radius 2.0)
 orientation (list
 (rotate -90 ' (0 1 0))
)
 reference-coordinate-system ^^nose -coordinate-system
)

 (mid-body-coordinate-system :class ' coordinate-system-class
 origin (list
 (+ (/ ^^missile -nose-length 2.0)
 (/ ^^missile -mid-body-length 2.0)
)
 0.0
 0.0)
 reference-coordinate-system ^^nose- coordinate-system
)

 (mid-body :class 'open-cylinder-obje ct
 diameter (* ^^missile-mid-body-radius 2.0)
 height ^^missile-mid-body-length
 orientation (list
 (rotate 90 '(0 1 0))
)
 reference-coordinate-system ^^mid- body-coordinate-system
)

 (aft-body-coordinate-system :class ' coordinate-system-class
 origin (list
 (+ (/ ^^missile- mid-body-length 2.0)
 (/ ^^missile- aft-body-length 2.0)
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 41

 0.0
 0.0)
 reference-coordinate-system ^^mid- body-coordinate-system
)

 (aft-body :class 'open-truncated-con e-object
 start-diameter (* ^^missile-aft-body-start-radius 2.0)
 end-diameter (* ^^missile-aft-body-end-radius 2.0)
 height ^^missile-aft-body-length
 orientation (list
 (rotate 90 '(0 1 0))
)
 reference-coordinate-system ^^aft- body-coordinate-system
)
)
)

Code Explanation

The missile-geometry-class now has several properties that allow a user to control the geometric
parameters from one location. The subobjects have properties that refer to these top-level
properties via the references. These the references create dependencies on their respective target
properties or objects. AML manages these dependencies automatically without the need for any
further user/developer interactions. When the top-level properties change, the respective
properties in the subobjects will become “unbound”, meaning that they are no longer valid.
Upon need (also known as being demanded), the property’s formula will be recalculated thus
making the property “bound”. This is known as demand-driven calculation. Properties and
objects in AML are only calculated or instantiated when demanded.

� Notice how the property missile-general-body-radius controls the radii of the nose, mid-
body, and the start diameter of the aft-body. This demonstrates the power of a common
computational model. All requirements and data can be obtained and interfaced from one
common location. All parameters that may need this information can obtain it from one
consistently located place and all dependencies are automatically managed internally.

Use or duplication of this information is subject to the restrictions on page ii of this document. 42

2.6 The Missile Geometry Class with Optional Nose Type
Figure 10 shows the missile geometry with three components: a spherical nose, a cylindrical mid-
body, and a truncated conical aft-body. The next step in creating the missile geometry is to
augment the missile’s design components with the option of having a spherical shaped nose.
This introduces the AML syntax for using conditions and enabling various options to the user.

Missile Nose (Spherical), Mid-Body, and Aft-Body

Figure 10

New AML Constructs

The following AML concepts and constructs are used in this section:

• case
• if
• default
• solid-object
• sphere-object
• comments

Use or duplication of this information is subject to the restrictions on page ii of this document. 43

CASE [Function]

The case statement compares a test-key to a number of keys and evaluates the expressions that
are included with the first matching key.

Format:

(CASE test-key (key1 expressions) [(key2 expressions)]...[(keyN expressions)]

Arguments:

test-key Any expression that will evaluate to a result that gets compared against
all of the keys. This value must be a symbol or a number.

key A symbol or list of symbols or numbers that will be compared to test-
key. If the value is a list the key-test is compared to each of the keys in
the list. A key of t may be included as the last key to operate as a default
that will match in all instances.

expressions Any number of expressions to be evaluated if the key matches the test-
key.

Examples:
AML> (case 3
 (1 "Value: One")
 (2 "Value: Two")
 (3 "Value: Three")
 (t "Value: Unknown"))
"Value: Three"
AML> (case 5
 (1 "Value: One")
 (2 "Value: Two")
 (3 "Value: Three")
 (t "Value: Unknown"))
"Value: Unknown"
AML> (case 5
 (1 "Value: One")
 (2 "Value: Two")
 (3 "Value: Three")
)
NIL
AML> (case nil
 (john (+ 2 3))
 (steve (+ 6 3))
 (mark (+ 8 3))
 (t "Value: Unknown")
)
"Value: Unknown"
AML> (case 'cone
 (cone 'open-cone-object)
 (sphere 'sphere-object)
 (t 'open-cone-object))
OPEN-CONE-OBJECT
AML> (define-class conditional-subobject-class
 :inherit-from (object)
 :properties (

Use or duplication of this information is subject to the restrictions on page ii of this document. 44

 subobject-class-type 'box
)
 :subobjects (
 (sub-1 :class (case !subobject-cla ss-type
 (box 'box-objec t)
 (cone 'open-cone -object)
 (sphere 'sphere-ob ject)
 (t 'open-cone -object))
)
)
)

See Also:

Cond

IF [Function]

If the test-expression is not nil, the true-expression clause is evaluated and if the test-expression
is nil, the false-expression clause is evaluated. The false-expression clause is optional and will
return nil if not included. Because it only allows a single expression for the true-expression and
false-expression clauses, it is sometimes necessary to use a progn statement, which treats many
expressions as a single function, for one of these clauses.

� Use nil to represent a false value in AML. The only expression or data entity in AML
that is false is nil; all others are true. This means a number, an object, or a list are all true.

Format:

(IF test-expression true-expression [false-expression])

Arguments:

test-expression Any expression that will be used to determine whether to
evaluate the true-expression or false- expression.

true-expression Any single expression that will be evaluated when test-
expression is not nil.

false-expression Any optional single expression that will be evaluated when the
test-expression is nil.

Examples:
AML> (if (= 2 3) "This is true." "This is false.")
"This is false."
AML> (if (< 2 3) (+ 3 5) (- 3 5))
8
AML> (if (> 2 3) (+ 3 5))
NIL
AML> (if t (list “abc” 1 2) nil)
(“abc” 1 2)
AML> (if nil (list “abc” 1 2) nil)
NIL
AML> (if (+ 1 2 3) (list “abc” 1 2))

Use or duplication of this information is subject to the restrictions on page ii of this document. 45

(“abc” 1 2)

See Also:

and
or
when
=
equal
not
progn

DEFAULT [Function]

When specified as the formula for a property, default will look up the tree for an object with a
property with the same name. If one is found, the value of that property is returned. Otherwise,
the specified default-formula is used.

� The use of default creates a dependency and “climbs” the tree hierarchy similar to a the
reference.

Format:

(DEFAULT [default-formula])

Arguments:

default-formula
If the search up the tree for a property with the same name is
unsuccessful, the formula specified here will be used. If no formula is
specified, the default will be a popup-typein.

Example:
(define-class DEFAULT-TEST-CLASS
:inherit-from (object)
:properties (
 height 15
 width 10
 depth 6
 material 'steel
)
:subobjects (
 (box1 :class 'box-object
 height (default 13)
 width 9
 density 6
 surface-finish (default '(smooth 0.001))
)
 (box2 :class 'box-object
 height 11
 depth (default 5)
 material (default 'wood)
)
)
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 46

AML> (create-model 'default-test-class)
#<DEFAULT-TEST-CLASS #x19A38EC>
AML> (the height)
15
AML> (the box1 height)
15
AML> (the box1 width)
9
AML> (the box1 depth)
6
AML> (the box2 depth)
6
AML> (the box2 material)
STEEL
AML> (the box2 width)
10
AML> (the box1 surface-finish)
(SMOOTH 0.001)

� The use of default is highly encouraged in AML. This can provide many functional
advantages in writing and integrating classes. These are explained below:

• With specifically named properties, classes may be integrated together with little or no need
to manually enter specific the references to similarly named properties “above” the property
using default in its formula.

• This promotes modular and dynamic design. You can make general classes that “obtain”
properties from objects “above” them without specifically creating the references.

• The use of long, specific property name is encouraged. default takes advantage of this
practice to enable less code writing. This can also provide undesired results in properties
such as diameter, and height in such classes as cylinder-objecţ sphere, and box-object.

• As mentioned above, some properties may have the same name within a hierarchy. This may
lead to the property located “below” getting the value from “above”. This is seen in the
default-test-class example where (the box1 depth) is not specifically written in the code.
However, the default formula of depth from a box-object uses the default function.
Therefore, it will look “up” the tree for an other property called depth.

SOLID-OBJECT [Class]

Solid-object provides three dimensional geometric primitive objects a property to determine if
the geometry is solid or a hollow shell.

Inherit-From:

 object

Properties:

solid? When true, the geometry will be a solid. When nil, the geometry will be
created as a hollow shell. Changing the property will cause the
geometry to update. Default t.

Use or duplication of this information is subject to the restrictions on page ii of this document. 47

� Note the use of a question mark “?” in the solid? property. This is a convention in
AML modelling that denotes a property typically evaluating to true or false (t or nil).
When creating user-defined classes, this practice is also encouraged.

SPHERE-OBJECT [Class]

The sphere-object may be defined as a geometric shell or solid. Setting the solid? property to
true will create a solid.

Inherit-From:

 graphic-object, solid-object

Properties:

diameter Default 1.0

Example:
(define-class BEACH-BALL-CLASS
 :inherit-from (sphere-object)
 :properties (
 diameter 2.5

 color 'blue
 render 'shaded
 solid? nil
)
)

Comments

Comments in AML are specified with a semicolon “;”. Any words, numbers, expressions, or
characters after the semicolon will be ignored by the compiler until the beginning of the next
line.

Examples:
AML> (+ 5 1) ;you may type after the semicolon
6
AML> (define-class BEACH-BALL-CLASS
 :inherit-from (sphere-object)
 :properties (
 ;;user defined properties
 diameter 2.5
 color 'blue
 render 'shaded

 ;;internal properties
 solid? nil
 radius (/ ^diameter 2)
)
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 48

Exercise 4

After a close review of the class definitions and AML constructs described in the previous
section, define two new classes for to be instantiated as nose objects and two new classes for the
mid-body and aft-body respectively.

Figure 11 shows the instance diagram for a class called spherical-nose-class which inherits from
sphere-object. Figure 11 also shows the instance diagram for a class called conical-nose-class
which inherits from open-cone-object. Give each of these classes the necessary properties to
effectively use default when they are instantiated in the missile-geometry-class. Augment the
class definition for the missile geometry class to use instances of spherical-nose-class, and open-
conical-nose-class. Add a property called missile-nose-type that contains a symbol data type for
a formula. The symbol can be either ‘sphere or ‘cone. The nose subobject’s class type will
depend on this property’s value. In this example, the coordinate system of the spherical-nose-
class is located at the flat face of the object, not its center.

Some of the properties in the classes can effectively use default, especially if they are
specifically named. Change these properties so that their formulas will take advantage of the
default functionality, “look up”, to obtain values from similarly named properties when
instantiated inside of an other object. Namely, missile-nose-radius, and missile-nose-length can
take advantage of the default functionality.

Instance Diagrams for Exercise 4

spherical-nose-class [sphere-object]
missile-nose-radius
diameter

open-conical-nose-class [open-cone-object]

missile-nose-length
missile-nose-radius
height
diameter
orientation

open-cylindrical-body-class [open-cylinder-object]

open-truncated-cone-body-class [open-truncated-cone-object]

missile-geometry-class [object]

missile-general-body-radius
missile-nose-length
missile-nose-radius
missile-nose-type
missile-mid-body-length
missile-mid-body-radius
missile-aft-body-length
missile-aft-body-start-radius
missile-aft-body-end-radius
missile-coordinate-system [coordinate-system-class]
nose-coordinate-system [coordinate-system-class]

origin
reference-coordinate-system

nose [spherical-nose-class or open-conical-nose-class]
reference-coordinate-system

mid-body-coordinate-system [coordinate-system-class]
origin
reference-coordinate-system

Use or duplication of this information is subject to the restrictions on page ii of this document. 49

mid-body [open-cylindrical-body-class]
diameter
height
orientation
reference-coordinate-system

aft-body-coordinate-system [coordinate-system-class]
origin
reference-coordinate-system

aft-body [open-truncated-cone-body-class]
start-diameter
end-diameter
height
orientation
reference-coordinate-system

Figure 11

Use or duplication of this information is subject to the restrictions on page ii of this document. 50

Exercise 4 Solution

(in-package :aml)

(define-class spherical-nose-class
 :inherit-from (sphere-object)
 :properties (
 ;;user defined properties
 missile-nose-radius (default 1.0)

 ;;internal properties
 solid? nil
 diameter (* ^missile-nose -radius 2.0)
)
)

(define-class open-conical-nose-class
 :inherit-from (open-cone-object)
 :properties (
 ;;user defined properties
 missile-nose-length (default 2.0)
 missile-nose-radius (default 1.0)

 ;;internal properties
 height ^missile-nose-le ngth
 diameter (* ^missile-nose -radius 2.0)
 orientation (list
 (rotate -90 '(0 1 0))
)
)
)

(define-class open-cylindrical-body-class
 :inherit-from (open-cylinder-object)
 :properties (

)
)

(define-class open-truncated-cone-body-class
 :inherit-from (open-truncated-cone-object)
 :properties (

)
)

(define-class missile-geometry-class
 :inherit-from (object)
 :properties (
 ;;user defined properties
 missile-general-body-radius (default 1.0)

 missile-nose-length (default 2.0)
 missile-nose-radius (default ^missile-general-body-radius)
 missile-nose-type (default 'sphere)
 ;; options are 'sphere or 'cone

 missile-mid-body-length (default 14.0)
 missile-mid-body-radius (default ^missile-general-body-radius)

 missile-aft-body-length (default 2.0)
 missile-aft-body-start-radius (default ^missile-general-body-radius)
 missile-aft-body-end-radius (default 0.75)

Use or duplication of this information is subject to the restrictions on page ii of this document. 51

)
 :subobjects (
 (missile-coordinate-system :class 'c oordinate-system-class
 origin (list 0.0 0.0 0.0)
)

 (nose-coordinate-system :class 'coor dinate-system-class
 origin (if (equal ^^missile-nose-type 'cone)
 (list (* 0.5 ^^missile-nose-length) 0.0 0.0)
 (list ^^missile-nose-radius 0.0 0.0)
)
 reference-coordinate-system ^^miss ile-coordinate-system
)

 (nose :class (case !missile-nose-type
 (sphere 'spherical- nose-class)
 (cone 'open-conic al-nose-class)
 (t 'spherical- nose-class)
)
 reference-coordinate-system ^^nose -coordinate-system
)

 (mid-body-coordinate-system :class ' coordinate-system-class
 origin (if (equal ^^missile-nose-type 'cone)
 (list (+ (/ ^^missile-nose-length 2.0)
 (/ ^^missile-mid-body-length 2.0)
)
 0.0
 0.0)
 (list (/ ^^missile-mid-body-length 2.0) 0.0 0.0)
)
 reference-coordinate-system ^^nose- coordinate-system
)

 (mid-body :class 'open-cylindrical-body-class
 diameter (* ^^missile-mid-body- radius 2.0)
 height ^^missile-mid-body-leng th
 orientation (list
 (rotate 90 '(0 1 0))
)
 reference-coordinate-system ^^mid- body-coordinate-system
)

 (aft-body-coordinate-system :class ' coordinate-system-class
 origin (list
 (+ (/ ^^missile-mid-body-length 2.0)
 (/ ^^missile-aft-body-length 2.0)
)
 0.0
 0.0)
 reference-coordinate-system ^^mid- body-coordinate-system
)

 (aft-body :class 'open-truncated-cone-body-class
 start-diameter (* ^^missile-aft- body-start-radius 2.0)
 end-diameter (* ^^missile-aft-b ody-end-radius 2.0)
 height ^^missile-aft-bo dy-length
 orientation (list
 (rotate 90 '(0 1 0))
)
 reference-coordinate-system ^^aft- body-coordinate-system
)
)
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 52

Code Explanation

The missile-geometry-class now gives the user the ability to choose a nose type. The nose’s
class depends on the missile-nose-type property via a case statement. Notice the nose-
coordinate-system origin property also depends on the missile-nose-type with an if condition in
order to keep the nose tip aligned with the missile-coordinate-system. The mid-body and aft-
body subobjects inherit from a separate class to allow similar functionality for future
development as used in the nose-type options. The developer could provide other classes to
instantiate with a dependency on a missile-mid-body-type property or a missile-aft-body-type
property. This shows the extensibility of AML and some typical programming practices for
enhancing future code.

The nose subobject uses the default functionality in the missile-nose-radius and missile-nose-
length properties. The code could also be written as follows:

 (nose :class (case !missile-nose-type
 (sphere 'spherical- nose-class)
 (cone 'open-conic al-nose-class)
 (t 'spherical- nose-class)
)
 missile-nose-radius ^^missile-nos e-radius
 missile-nose-length ^^missile-nos e-length
 reference-coordinate-system ^^nose -coordinate-system
)

However, this would always add the missile-nose-length property to the nose object when it is an
instance of spherical-nose-class class when it is not needed. This also eliminates the need to re-
specify the relationships with the data model properties “above”.

The missile-nose-coordinate-system origin could use a case statement depending on the missile-
nose-type instead of using an if statement. The case statement may promote more robust code if
other nose types are added in the future.

Notice how the model behaves when changing the missile-nose-type property. Simply pressing
the “regen” button will not draw the nose after the nose type has been changed. This occurs
because the nose instance has been “smashed”, also known as being made “unbound”. At this
point, the complete nose instance is invalid, versus some particular geometry related properties
being invalid. The “regen” command only regenerates objects in the graphics window where the
properties that are needed for drawing have been smashed. To remedy this, the user should
“draw” the nose object again after changing the nose type.

� Properties should not refer to objects or properties which are located outside of their
class’ scope. The class should be able to be instantiated in a “stand-alone” state
allowing it to be placed in the model heirarchy at any location.

Use or duplication of this information is subject to the restrictions on page ii of this document. 53

2.7 Geometric Booleans Enhance the Missile Geometry Class
The next step in creating the missile geometry is to augment the missile’s design components so
they are all thin shelled objects. In this case study the objects are modeled in a simplified
manufacturing representation. The current geometry model is not accurate because the spherical
nose is positioned inside of the mid-body. The next exercise introduces geometric booleans to
eliminate the unneeded geometry. Figure 12 shows the comparison of the nose geometry before
and after a difference operation with the mid-body.

Geometry Comparison of the nose boolean

Figure 12

New AML Constructs

The following AML concepts and constructs are used in this section:

• expanded property specification
• construction objects
• cylinder-object
• difference-object

Expanded Property Specification

� Properties are also objects. They can have properties themselves and also inherit from
any predefined AML class. The specification is exactly like the subobject specification. For
related information, please see the PROPERTY OBJECTS section of the AML Reference
Manual.

Use or duplication of this information is subject to the restrictions on page ii of this document. 54

All properties specified using the abbreviated syntax are created as objects of class property-
object. This class has two properties: formula and value. In the abbreviated syntax, you are
actually specifying the formula property of a property-object.

Format:
(name
 :class class-name
 prop-1 formula-1
 …
 prop-n formula-n
)

Arguments:

name The name of the subobject.

class-name A predefined (by the user, or inherently defined) AML class, for
example: ‘box-object.

prop-x The name of a property defined on the class-name.

formula-x The formula which is replacing the define-class formula for property
prop-x.

Example:
;;defined using brief form of property specificatio n
(define-class EXAMPLE-MODEL-CLASS
 :inherit-from (object)
 :properties (
 category 'example
 code (if (equal ^category 'example)
 45242
 45789
)
)
)

;;redefined using expanded form of property specifi cation
(define-class EXAMPLE-MODEL-CLASS
 :inherit-from (object)
 :properties (
 (category :class 'property-object
 formula 'example
)
 (code :class 'property-object
 formula (if (equal ^category 'example)
 45242
 45789
)
 value 45111
)
)
)

� Please see the difference-object explanation below for an additional example of this
functionality used with construction objects.

Use or duplication of this information is subject to the restrictions on page ii of this document. 55

CYLINDER-OBJECT [Class]

A cylinder-object can be either a solid cylinder or a hollow cylindrical shell. It is hollow if the
solid? property evaluates to nil and solid otherwise.

Inherit-From:

 open-cylinder-object, solid-object

Properties:

diameter The diameter of the cylinder. Default 1.0.

height The height is defined parallel to the z-axis. Default 2.0.

CONSTRUCTION OBJECTS

This is a term commonly employed to refer to objects/subobjects that are needed to create the
resultant geometry of booleans, for example.

DIFFERENCE-OBJECT [Class]

The difference-object takes a list of objects in the object-list. Starting with the first object in the
object-list, it removes the parts of its geometry which intersect with the subsequent objects in the
list.

Properties:

object-list The list of objects which are to be differenced. Note that the order of the
objects determines the final geometry.

Example:
(define-class TUBE-CLASS
:inherit-from (difference-object)
:properties (
 inner-diameter 0.5
 outer-diameter 1.0
 height 1.0
 render 'shaded

 object-list (list ^stock ^hole)

 (stock :class 'cylinder-object
 height ^^height
 diameter ^^outer-diameter
 solid? t
)
 (hole :class 'cylinder-object
 height ^^height
 diameter ^^inner-diameter

Use or duplication of this information is subject to the restrictions on page ii of this document. 56

 solid? t
)
)
)

See Also:

Union-object
Trim-object
Sewn-object
Assembly-object
Group-object
Intersection-object
Divide-object
Sub-geom-object

Use or duplication of this information is subject to the restrictions on page ii of this document. 57

Exercise 5

After a close review of the class definitions and AML constructs described in the previous
section, augment the spherical-nose-class to inherits from a difference-object. The augmented
spherical-nose-class has two construction objects in its properties, one named complete-sphere is
of class sphere-object and the other named missile-body-object is of class cylinder-object. The
missile-body-object is a solid cylinder so that the portion of the complete-sphere which lies
inside the missile-body-object is removed. Add a property to the missile-geometry-class called
display-coord-systems?. This property is used to control the ability of the coordinate systems in
the subobjects to be drawn. Add a corresponding the reference in each of the coordinate system
subobjects' display? property to depend on this property. Figure 13 shows a portion of the
instance diagram for this exercise.

Instance Diagram for Exercise 5

spherical-nose-class [difference-object]
missile-nose-radius
object-list
complete-sphere [sphere-object]

diameter
missile-body-object [cylinder-object]

diameter
height
orientation

Figure 13

Use or duplication of this information is subject to the restrictions on page ii of this document. 58

Exercise 5 Solution

(in-package :aml)

(define-class spherical-nose-class
 :inherit-from (difference-object)
 :properties (
 ;;user defined properties
 missile-nose-radius (default 1.0)

 ;;internal properties
 object-list (list ^complete-sphere ^ missile-body-object)
 (complete-sphere :class 'sphere-obje ct
 diameter (* ^^missile-nose-radiu s 2.0)
 solid? nil
)
 (missile-body-object :class 'cylinde r-object
 height (* ^^missile-nose-radiu s 2.0)
 ;;ensures the cylinder is large enough
 diameter (* ^^missile-nose-radiu s 2.0)
 orientation (list
 (rotate 90 '(0 1 0))
 (translate (list (/ ^h eight 2.0) 0 0))
)
)
)
)

(define-class open-conical-nose-class
 :inherit-from (open-cone-object)
 :properties (
 ;;user defined properties
 missile-nose-length (default 2.0)
 missile-nose-radius (default 1.0)

 ;;internal properties
 height ^missile-nose-le ngth
 diameter (* ^missile-nose -radius 2.0)
 orientation (list
 (rotate -90 '(0 1 0))
)
)
)

(define-class open-cylindrical-body-class
 :inherit-from (open-cylinder-object)
 :properties (

)
)

(define-class open-truncated-cone-body-class
 :inherit-from (open-truncated-cone-object)
 :properties (

)
)

(define-class missile-geometry-class
 :inherit-from (object)
 :properties (
 ;;user defined properties
 missile-general-body-radius (default 1.0)

 missile-nose-length (default 2.0)

Use or duplication of this information is subject to the restrictions on page ii of this document. 59

 missile-nose-radius (default ^missile-general-b ody-radius)
 missile-nose-type (default 'sphere)
 ;; options are 'sphere or 'cone

 missile-mid-body-length (default 14.0)
 missile-mid-body-radius (default ^missile-general -body-radius)

 missile-aft-body-length (default 2.0)
 missile-aft-body-start-radius (default ^missile-g eneral-body-radius)
 missile-aft-body-end-radius (default 0.75)

 display-coord-systems? (default nil)

)
 :subobjects (
 (missile-coordinate-system :class 'c oordinate-system-class
 display? ^^display-coord-systems?
 origin (list 0.0 0.0 0.0)
)

 (nose-coordinate-system :class 'coor dinate-system-class
 display? ^^display-coord-systems?
 origin (if (equal ^^missile-nose- type 'cone)
 (list (* 0.5 ^^missile-nose-length) 0.0 0.0)
 (list ^^missile-nose-radius 0.0 0.0)
)
 reference-coordinate-system ^^miss ile-coordinate-system
)

 (nose :class (case !missile-nose-typ e
 (sphere 'spherical- nose-class)
 (cone 'open-conic al-nose-class)
 (t 'spherical- nose-class)
)
 reference-coordinate-system ^^nose -coordinate-system
)

 (mid-body-coordinate-system :class ' coordinate-system-class
 display? ^^display-coord-systems?
 origin (if (equal ^^missile-nose-t ype 'cone)
 (list (+ (/ ^^missile-nose-length 2.0)
 (/ ^^missile-mid-body-length 2.0)
)
 0.0
 0.0)
 (list (/ ^^missile-mid-body-length 2.0) 0.0 0.0)
)
 reference-coordinate-system ^^nose- coordinate-system
)

 (mid-body :class 'open-cylindrical-b ody-class
 diameter (* ^^missile-mid-body- radius 2.0)
 height ^^missile-mid-body-leng th
 orientation (list
 (rotate 90 '(0 1 0))
)
 reference-coordinate-system ^^mid- body-coordinate-system
)

 (aft-body-coordinate-system :class ' coordinate-system-class
 display? ^^display-coord-systems?
 origin (list
 (+ (/ ^^missile-mid-body-length 2.0)
 (/ ^^missile-aft-body-length 2.0)
)
 0.0
 0.0)

Use or duplication of this information is subject to the restrictions on page ii of this document. 60

 reference-coordinate-system ^^mid- body-coordinate-system
)

 (aft-body :class 'open-truncated-con e-body-class
 start-diameter (* ^^missile-aft- body-start-radius 2.0)
 end-diameter (* ^^missile-aft-b ody-end-radius 2.0)
 height ^^missile-aft-bo dy-length
 orientation (list
 (rotate 90 '(0 1 0))
)
 reference-coordinate-system ^^aft- body-coordinate-system
)
)
)

Code Explanation

Notice how the spherical-nose-class does not have any subobjects. The complete-sphere and
missile-body-object are considered “object properties”. They are more of a means to get to an
end product, rather than the end product. They are construction objects used to create the final
difference-object. These objects can be considered as a mechanism that is needed to achieve the
final geometry just as a height, width, and depth are needed to draw a box.

The subobjects of a class should typically not be used for utility operations. Subobjects should
be used to represent parts of a whole assembly. For example, think of modeling a bearing with
its internal components. The main class “bearing” would have subobjects “inner-race”, “outer-
race”, “rollers”, and “cage”. Each of these “sub parts” creates the whole bearing object,
therefore they should be subobjects.

When drawn (and expanded) an instance of a spherical-nose-class doesn’t have subobjects. The
object only has properties. Some of the properties are instances of property-object and others are
geometric objects. Note that object properties are never drawn when their parent is drawn. They
may, however, be drawn by specifically calling a draw method on them.

At this point in our modeling, we may not want to see the coordinate systems of the missile
components. Therefore, the display-coord-systems? property is added at the top-level of the
missile-geometry-class to control their display? property from one location. Some may argue
that the coordinate systems are construction objects that are used to build and orient the
components. In some cases this is true, but usually, a coordinate system is useful to have
displayed in a part tree and to have the ability to draw it easily. Notice the practice of having a
question mark at the end of any property that evaluates to t or nil.

Use or duplication of this information is subject to the restrictions on page ii of this document. 61

2.8 Creation of a Fin Profile, Fin Extrusion, and Fin Array
The next step in creating the missile geometry is to develop class definitions for aerodynamic
control fins. In this case study, the fins are very simple and used for demonstration purposes.
The fins are produced from a hexagonal profile that is extruded and then arrayed circularly.
Figure 14 shows the fin profile and its dimensions, Figure 15 shows the extruded profile, and
Figure 16 shows the extruded fin in a circular array.

Fin Profile

Figure 14

Fin Extrusion

Figure 15

Fin Thickness

Fin Chord

Fin Span

Use or duplication of this information is subject to the restrictions on page ii of this document. 62

Fin Circular Array

Figure 16

New AML Constructs

The following AML concepts and constructs are used in this section:

• let*
• polygon-object
• extrusion-object
• capped-surface-object
• circular-array-object
• name-generator
• generate-name
• add-object

Use or duplication of this information is subject to the restrictions on page ii of this document. 63

LET* [Construct]

The let* form is the most common mechanism for creating local variables. The let* construct
binds values to the variables in sequence which means that a variable may use a variable
previously defined in the same let* variable assignment.

Format:

(LET* (var-assignments) body)

Arguments:

var-assignments The let clauses are a list of variable formula lists and/or
variables.

body Any number of expressions to be evaluated within the context of
the assigned variables. The return value of the last expression
will be returned from the let* function.

Examples:
AML> (LET* ((a 3.0)
 (b (* 2 a))
)
 (+ 1.0 b)
)
7.0
AML> (LET* ((a 3.0)
 (b (* 2 a))
)
 (print a)
 (/ b a)
 (print b)
 (+ 1.0 b)
)
3.0
6.0
7.0

� Note that order matters in the variable assignment clauses. As seen in the previous
example, a must be declared before b.

The following example shows an implementation of the quadratic formula. The expt function
raises the first argument to the power given in the second argument. The sqrt function takes the
square root of the first argument.

AML> (LET* ((a 1)
 (b 3)
 (c 2)
 (radical (- (expt b 2) (* 4 a c)))
 (denominator (* 2 a))
 (numerator-plus (+ (- b) (sqrt radical)))
 (numerator-minus (- (- b) (sqrt radical)))
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 64

 (list
 (/ numerator-plus denominator)
 (/ numerator-minus denominator))
)
(-1.0 -2.0)

POLYGON-OBJECT [Class]

The polygon-object is a polygon composed of line segments. If the vertices do not specify a
closed polygon, the system will automatically connect the start and end points.

Properties:

vertices The list of points defining the segments of the polygon-object. Default
nil. These vertices must be planar if dimension is 2.

dimension The dimension determines if the object is a 1d entity (an outline) or a 2d
entity (a surface). The default value is 1 for 1d.

Example:
(define-class EXAMPLE-POLYGON-CLASS
 :inherit-from (polygon-object)
 :properties (
 vertices ’(
 (0.0 0.0 0.0)
 (1.0 0.0 0.0)
 (1.0 1.0 0.0)
 (0.0 1.0 0.0)
)
 dimension 2
)
)

;;demonstrates the use of let* in a property
(define-class RECTANGLE-CLASS
 :inherit-from (polygon-object)
 :properties (
 x-dim (default 1.0)
 y-dim (default 1.0)

 vertices (let* (
 (half-x (* 0.5 ^x-dim))
 (half-y (* 0.5 ^y-dim))
)
 (list
 (list half-x half-y 0.0)
 (list (- half-x) half-y 0.0)
 (list (- half-x) (- half-y) 0.0)
 (list half-x (- half-y) 0.0)
)
)
 dimension 2
)
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 65

EXTRUSION-OBJECT [Class]

The extrusion-object sweeps an object along a vector. The resulting geometry may be a solid or
surface and capped or not capped. When the geometry is solid it must be capped.

Properties:

swept-object The object that is to be extruded.

vector The list of x, y, and z vector components of the direction to extrude.

distance The length of extrusion.

Example:
(define-class RECTANGLE-CLASS
 :inherit-from (polygon-object)
 :properties (
 x-dim (default 1.0)
 y-dim (default 1.0)

 vertices (let* (
 (half-x (* 0.5 ^x-dim))
 (half-y (* 0.5 ^y-dim))
)
 (list
 (list half-x half-y 0.0)
 (list (- half-x) half-y 0.0)
 (list (- half-x) (- half-y) 0.0)
 (list half-x (- half-y) 0.0)
)
)
 dimension 2
)
)

(define-class EXAMPLE-BAR-EXTRUSION-CLASS
 :inherit-from (extrusion-object)
 :properties (
 x-dim (default 1.0)
 y-dim (default 1.0)
 bar-length (default 10)

 swept-object ^profile
 vector ‘(0.0 0.0 1.0)
 distance ^bar-length

 (profile :class ‘rectangle-class)
)
)

CAPPED-SURFACE-OBJECT [Class]

A capped-surface-object takes an open surface (such as an open-cylinder-object, or a skin-
surface-from-curves-object, ...) as a source-object, and creates either a capped surface (solid? =
nil) or a solid bounded by the capped surface (solid? = t).

Use or duplication of this information is subject to the restrictions on page ii of this document. 66

Properties:

source-object An instance of the open surface to cap.

solid? Default t to create a capped solid. When nil, the surface is only capped
and no solid geometry is created.

CIRCULAR-ARRAY-OBJECT [Class]

The array is created by making copies of the geometry of the source-object and placing them in a
circle around the center at the given diameter. The circle is normal to the rotate-axis. The first
copy is translated along the translate-axis and then rotated about the rotate-axis counter-
clockwise by the start-angle. Subsequent copies are each placed at a further counter-clockwise
position incremented by repeat-angle. The circular-array-object creates a single geometric
assembly-object. The array is similar to the circular-clonified-object object except that there is
only one object with a representation that is the complete array geometry. If individual geometry
is required, use the circular-clonified-object.

Properties:

source-object The object to be copied.

diameter The size of the circle of which the copies will be placed about. Default
1.0.

start-angle The angle at which to place the first array element (with reference to the
translate-axis). Default 0.0.

repeat-angle The angular spacing between two consecutive array elements. Default (/
360 !quantity)

translate-axis The reference vector for positioning the first copy. Default is the x-axis.

rotate-axis Defines the axis perpendicular to the plane of the circular array. Default
is the y-axis.

rotate-clones? Default t, it decides whether or not the copies will be individually
rotated as they are laid out in the circular pattern.

center The center of the circular pattern, it defaults to the center of the source-
object.

quantity The number of copies to create. Default 1.

assembly? t for creating an assembly and nil for creating a union. The default value
is t.

ref-point The local point on the source-object (and each copy) that lies on the
described circle. It defaults to the center of the source-object.

Use or duplication of this information is subject to the restrictions on page ii of this document. 67

See Also:

circular-clonified-object
linear-clonified-object
linear-array-object
series-object

� The following class and methods are introduced to promote the use of dynamic object
addition. As previously stated, the create-model function can be used to instantiate a
class. However, a typical application will have the concept of a model as the mechanism
to encapsulate an entire design. Thus an application may have one, two, or three models
and could have hundreds or thousands of objects within those models. In addition,
create-model performs other functions such as selecting the current model and setting the
the tracing to the currently created model. Therefore the name-generator class and the
add-object method are shown and their use is encouraged now. Even though the AML
construct define-method is not introduced until the "Optional Topics" portion of this
manual, the user will use methods throughout the training course such as draw, shade,
and expand.

NAME-GENERATOR [Class]

This class provides the ability to generate unique names by appending numbers to the end of the
names. This can be used when the user adds several objects to a model without specifically
naming each object manually (or writing an algorithm to do this). Especially for debugging, a
user can create a model of type name-generator and dynamically add objects to this model
without having to specifically name all of the objects. The name-generator class has methods to
automatically perform and manage the naming such as generate-name.

Properties:

previous-name-list
This property is used to store the names and current numbers of names
that have been generated. Default nil.

Use or duplication of this information is subject to the restrictions on page ii of this document. 68

auto-naming? A value of t will cause the generate-name method to automatically
generate the next name for the prefix specified. A value of nil will cause
the generate-name method to prompt the user to enter a name. Default t.

GENERATE-NAME [Method]

The generate-name method is used to append an incremental suffix to the name supplied.

Format:

(GENERATE-NAME instance name)

Arguments:

Instance An instance of a name-generator class.

name The base name to which the numbered suffix is appended.

Example:
AML> (create-model ‘name-generator)
#<NAME-GENERATOR @ #x117792a>
AML> (generate-name (the) ‘box)
BOX-0001
AML> (generate-name (the) ‘box)
BOX-0002
AML> (generate-name (the) ‘box)
BOX-0003
AML> (generate-name (the) ‘cylinder)
CYLINDER-0001
AML> (generate-name (the) ‘cylinder)
CYLINDER-0002
AML> (generate-name (the) ‘cylinder)
CYLINDER-0003
AML> (generate-name (the) ‘box)
BOX-0004
AML> (add-object (the) (generate-name (the) ‘box) ‘box- object)
#<BOX-OBJECT @ #x1c07552>
AML> (object-name *)
BOX-0005

Note: When at the AML command prompt, the * symbol returns the return value from the
function/method previously called. This can be used as an argument to AML functions/methods.

ADD-OBJECT [Method]

Add-object instantiates a class and adds the object to the object instance specified in the parent
argument with the name given in the name argument.

Format:

(ADD-OBJECT parent name class)

Use or duplication of this information is subject to the restrictions on page ii of this document. 69

Arguments:

parent The object instance that the new object will be added to.

name The name of the object instance to be added.

class The class of the object instance to be added.

Examples:
AML> (create-model ‘name-generator)
#<NAME-GENERATOR @ #x117792a>
AML> (add-object (the) ‘sphere-0001 ‘sphere-object)
#<SPHERE-OBJECT @ #x522567a>
AML> (add-object (the) ‘cylinder-0001 ‘open-cylinder-ob ject)
#<OPEN-CYLINDER-OBJECT @ #x392887a>
AML> (create-model ‘name-generator)
#<NAME-GENERATOR @ #x182579f>
AML> (add-object (the) ‘sphere-0064 ‘sphere-object)
#<SPHERE-OBJECT @ #x21f3f7a2>
AML> (add-object (the) ‘cylinder-0185 ‘open-cylinder-ob ject)
#<OPEN-CYLINDER-OBJECT @ #x21f5d5b2>
AML> (add-object (the) (generate-name (the)‘cyl) ‘open- cylinder-object)
#<OPEN-CYLINDER-OBJECT @ #x21f5f1b1>
AML> (add-object (the) (generate-name (the)‘cyl) ‘open- cylinder-object)
#<OPEN-CYLINDER-OBJECT @ #x44b5d511>

Whereas performing the following commands would create a different tree structure.

AML> (create-model ‘name-generator)
#<NAME-GENERATOR @ #x117792a>
AML> (create-model ‘sphere-0001 :class ‘sphere-object)
#<SPHERE-OBJECT @ #x522567a>
AML> (create-model ‘cylinder-0001 :class ‘open-cylinder -object)
#<OPEN-CYLINDER-OBJECT @ #x392887a>
AML> (create-model ‘name-generator)
#<NAME-GENERATOR @ #x182519f>
AML> (create-model ‘sphere-0064 :class ‘sphere-object)
#<SPHERE-OBJECT @ #x21f3f3a2>
AML> (create-model ‘cylinder-0185 :class ‘open-cylinder -object)
#<OPEN-CYLINDER-OBJECT @ #x21f9d5b2>

Notice the differences in the tree structures below. The create-model commands will
automatically rename the first instance of the name-generator as seen below:

Use or duplication of this information is subject to the restrictions on page ii of this document. 70

� Notice how the two methodologies of instantiation create different results. The process
of creating models should be considered as if the model represents one version of a
complete system/application. The process of adding objects allows a user to dynamically
build an instance hierarchy. Typically a user/developer would use create-model to create
one version of the application and then utilize add-object to create the bulk of an
application underneath one model. Also note that when using create-model, a
user/developer would then have to use select-model to change between the various
models whereas with add-object, all objects can be located within the same model.

� Notice how the generate-name method automatically generates a name based on a given
prefix. The trainee is encouraged to refer to the AML Reference Manual for a further
description of generate-name.

Use or duplication of this information is subject to the restrictions on page ii of this document. 71

Exercise 6

After a close review of the class definitions and AML constructs described in the previous
section, create the following class definitions:

• hexagonal-profile-class [polygon-object]
• fin-profile-class [hexagonal-profile-class]
• fin-class [capped-surface-object]
• fin-array-class [circular-array-object]

Use the let* construct in the formula of the vertices in the hexagonal-profile-class. The
dimensions for the hexagonal-profile-class assume that each panel’s chord projection to the x-
axis is 1/3 of the total chord. The vertices in the hexagonal-profile-class should depend on a
generic height and width property with respective default values of 1.0 and 0.2. This class is the
base class inherited into a more specific fin-profile-class which adds some “fin-specific”
properties called fin-chord and fin-thickness that feed the generic width and height properties
respectively.

The fin-class inherits from a capped-surface-object and contains two object properties called fin-
profile and fin-extrusion. The fin-extrusion uses the fin-profile as a swept-object. The fin-class
has a property called fin-span that specifies the length of the fin.

The fin-array-class inherits from circular-array-class and uses an instance of a fin-class as a
source object. The diameter should be twice the size of a user-defined property called fin-span-
offset which will later be set equal to the missile-general-body-radius. Also give the fin-array-
class a property called fin-quantity to specify the number of fins in the array.

� Note that all of the fin-xxxxx properties are given (repeated) in each of the classes leading
up to the fin-class. This is shown here to demonstrate the practice of creating classes
that can stand alone and are modular.

Instead of performing a create-model operation to make a new instance of the missile-geometry-
class, create a model of a name-generator and then continue to add new instances of the missile-
geometry-class to the name-generator object using add-object as you continue in the training
course. The instructor will demonstrate how to perform this through the user interface. The user
interface will automatically name the objects as you add them by calling the generate-name
method on the name-generator. Figure 17 shows the instance diagram.

Instance Diagram for Exercise 6

 hexagonal-profile-class [polygon-object]
 width
 height
 vertices

 fin-profile-class [hexagonal-profile-class]
 fin-cord
 fin-thickness
 width
 height

Use or duplication of this information is subject to the restrictions on page ii of this document. 72

 fin-class [capped-surface-object]
 fin-cord
 fin-thickness
 fin-span
 solid?
 source-object
 fin-profile [fin-profile-class]
 fin-extrusion [extrusion-object]
 swept-object
 distance
 vector

fin-array-class [circular-array-object]
 fin-cord
 fin-thickness
 fin-span
 fin-span-offset
 fin-quantity
 source-object
 diameter
 quantity
 ref-point
 center
 rotate-axis
 fin-source [fin-class]
 orientation

Figure 17

Use or duplication of this information is subject to the restrictions on page ii of this document. 73

Exercise 6 Solution

(in-package :aml)

(define-class hexagonal-profile-class
 :inherit-from (polygon-object)
 :properties (
 ;;user defined properties
 width (default 1.0)
 height (default 0.2)

 ;;internal properties
 vertices (let* (
 (half-w (/ ^width 2.0))
 (half-h (/ ^heigh t 2.0))
 (sixth-w (/ ^width 6.0))
)
 (list
 (list half-w 0.0 0.0)
 (list sixth-w half-h 0 .0)
 (list (- sixth-w) half -h 0.0)
 (list (- half-w) 0.0 0 .0)
 (list (- sixth-w) (- h alf-h) 0.0)
 (list sixth-w (- half- h) 0.0)
 ;;last point will be c losed automatically
)
)
)
)

(define-class fin-profile-class
 :inherit-from (hexagonal-profile-class)
 :properties (
 ;;user defined properties
 fin-cord (default 1.0)
 fin-thickness (default 0.2)

 ;;internal properties
 width ^fin-cord
 height ^fin-thickness
)
)

(define-class fin-class
 :inherit-from (capped-surface-object)
 :properties (
 ;;user defined properties
 fin-cord (default 1.0)
 fin-thickness (default 0.2)
 fin-span (default 3.0)

 ;;internal properties
 solid? nil
 source-object ^fin-extrusion

 (fin-profile :class 'fin-profile-cla ss

)

 (fin-extrusion :class 'extrusion-obj ect
 swept-object ^^fin-profile
 distance ^^fin-span
 vector '(0.0 0.0 1.0)
)
)
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 74

(define-class fin-array-class
 :inherit-from (circular-array-object)
 :properties (
 ;;user defined properties
 fin-cord (default 1.0)
 fin-thickness (default 0.2)
 fin-span (default 3.0)
 fin-span-offset (default 2.0)
 fin-quantity (default 4)

 ;;internal properties
 source-object ^fin-source
 diameter (* 2.0 ^fin-span- offset)
 quantity ^fin-quantity
 ref-point '(0.0 0.0 0.0)
 center '(0.0 0.0 0.0)
 rotate-axis '(0.0 0.0 1.0)

 (fin-source :class 'fin-class
 orientation (list
 (rotate 90.0 '(0 1 0))
)
)
)
)

Code Explanation

The developer creates a generic hexagonal-profile-class before creating the fin-profile-class.
This promotes code re-use and modular design as the generic class can be instantiated by itself or
inherited into other user-defined classes in the future. The let* construct organizes the formula
for the vertices to make the code more readable and efficient. If the code did not have the let*,
the computer would have to evaluate several exactly equal calculations repeatedly, thus making
the code inefficient. On the other hand, a developer should not try to use too many variables in a
let* if they are not necessary because that will cause unnecessary memory allocation.

Use or duplication of this information is subject to the restrictions on page ii of this document. 75

2.9 Missile Geometry with a Fin Array and Material Properties
Figure 18 shows the missile geometry with a fin array. The fin array is oriented with respect to
the missile-coordinate-system in this case study. This section of the manual also introduces
some additional properties to the missile components via a material-properties-class. This is a
user-defined class that is extensible beyond the scope covered in this case study. The class
simply gives each component a material name, material thickness, and material density. This
class demonstrates a use of multiple inheritance.

Missile Geometry with a Fin Array

Figure 18

New AML Constructs

The following AML concepts and constructs are used in this section:

• multiple-inheritance

Multiple Inheritance

Inheritance is a mechanism for class reuse. Through inheritance, a class will have all of the same
properties, subobjects, and methods as the classes that it inherits from (its superclasses). The
:inherit-from keyword accepts a list of classes to be used as superclasses. If a property,
subobject, or method is present in more than one of the superclasses, the order of precedence is
from left to right. If an :inherit-from statement contains the list (box-object cylinder-object), the
box-object geometry will be created. If the order of the list is reversed to (cylinder-object box-

Use or duplication of this information is subject to the restrictions on page ii of this document. 76

object), the cylinder-object geometry will be created. Note: It is not good code writing
practice to inherit from two classes that have graphic-object as a superclass.

Example:

(define-class material-class
 :inherit-from (object)
 :properties (
 density 1.0
 material 'wood
 color 'blue
)
)

(define-class multiple-inheritance-example-class
 :inherit-from (material-class box-object)
 :properties (
 depth 2.0
 width 3.0
 height 1.0

 density 2.649
)
)

AML uses the concept of “first come, first serve”. Thus the class given first in the :inherit-from
statement will take precedence over any classes given after. Eventhough they are not shown, the
multiple-inheritance-example-class has properties of color (set to 'blue) and material (set to
'wood). This can be demonstrated using the describe function at the command prompt as
follows.

> (create-model 'multiple-inheritance-example-class)
#<MULTIPLE-INHERITANCE-EXAMPLE-CLASS @ #x22f5bc2a>
> (describe (the))

DEFINE-CLASS PROPERTIES:

 DEPTH | Unbound |
 COLOR | Unbound |
 LAYER | Unbound |
 GEOM | Unbound |
 RENDER | Unbound |
 REFERENCE-OBJECT | Unbound |
 POSITION | Unbound |
 LINE-TYPE | Unbound |
 SOLID? | Unbound |
 DENSITY | Unbound |
 WIDTH | Unbound |
 DISPLAY? | Unbound |
 REFERENCE-COORDINATE-SYSTEM | Unbound |
 MATERIAL | Unbound |
 HEIGHT | Unbound |
 LINE-WIDTH | Unbound |
 ORIENTATION | Unbound |

DEFINE-CLASS SUBOBJECTS:

NIL
> (the color)
BLUE

Use or duplication of this information is subject to the restrictions on page ii of this document. 77

Exercise 7

After a close review of the AML constructs described in the previous section, create the
following class definitions:

• material-properties-class [object]
• missile-body-component-class [material-properties-class]

The material-properties-class will have three properties: material-thickness (default 0.01),
material-name (default ‘aluminum), material-density (default 165.0).

Add a property called missile-general-body-thickness to the missile-geometry-class. Augment all
of the body component classes so they inherit from missile-body-component-class, and update
their respective instances by adding a material-thickness property which references the missile-
general-body-thickness. Add an instance of fin-array-class to the missile-geometry-class.
Orient this with respect to the missile-coordinate-system using a property in the missile-
geometry-class called fin-distance-along-axis (use (default 12.0)). Add the necessary properties
of a fin-array-class to the missile-geometry-class in order to best use the default functionality.

The user may choose to create a separate coordinate system for the fin-array-class instance for
orientation and positioning, but this example uses the missile-coordinate-system as a reference-
coordinate-system.

Use or duplication of this information is subject to the restrictions on page ii of this document. 78

Exercise 7 Solution

(in-package :aml)

(define-class material-properties-class
 :inherit-from (object)
 :properties (
 ;;English units assumed
 material-thickness (default 0.01) ;ft
 material-name (default 'alu minum) ;symbol
 material-density (default 165. 0) ;lb/ft^3
)
)

(define-class missile-body-component-class
 :inherit-from (material-properties-class)
 :properties (

)
)

(define-class spherical-nose-class
 :inherit-from (difference-object missile-body-component-class)
 :properties (
 ;;user defined properties
 missile-nose-radius (default 1.0)

 ;;internal properties
 object-list (list ^complete-sphere ^ missile-body-object)
 (complete-sphere :class 'sphere-obje ct
 diameter (* ^^missile-nose-radiu s 2.0)
 solid? nil
)
 (missile-body-object :class 'cylinde r-object
 ;;* 2.0 ensures the cylinder height is large enough
 height (* ^^missile-nose-radiu s 2.0)
 diameter (* ^^missile-nose-radiu s 2.0)
 orientation (list
 (rotate 90 '(0 1 0))
 (translate (list (/ ^h eight 2.0) 0 0))
)
)
)
)

(define-class open-conical-nose-class
 :inherit-from (open-cone-object missile-body-component-class)
 :properties (
 ;;user defined properties
 missile-nose-length (default 2.0)
 missile-nose-radius (default 1.0)

 ;;internal properties
 height ^missile-nose-le ngth
 diameter (* ^missile-nose -radius 2.0)
 orientation (list
 (rotate -90 '(0 1 0))
)
)
)

(define-class open-cylindrical-body-class
 :inherit-from (open-cylinder-object missile-body-component-class)
 :properties (

Use or duplication of this information is subject to the restrictions on page ii of this document. 79

)
)

(define-class open-truncated-cone-body-class
 :inherit-from (open-truncated-cone-object missile-body-component-class)
 :properties (

)
)

(define-class hexagonal-profile-class
 :inherit-from (polygon-object)
 :properties (
 ;;user defined properties
 width (default 1.0)
 height (default 0.2)

 ;;internal properties
 vertices (let* (
 (half-w (/ ^width 2.0))
 (half-h (/ ^heigh t 2.0))
 (sixth-w (/ ^width 6.0))
)
 (list
 (list half-w 0.0 0.0)
 (list sixth-w half-h 0 .0)
 (list (- sixth-w) half -h 0.0)
 (list (- half-w) 0.0 0 .0)
 (list (- sixth-w) (- h alf-h) 0.0)
 (list sixth-w (- half- h) 0.0)
 ;;last point will be c losed automatically
)
)
)
)

(define-class fin-profile-class
 :inherit-from (hexagonal-profile-class)
 :properties (
 ;;user defined properties
 fin-cord (default 1.0)
 fin-thickness (default 0.2)

 ;;internal properties
 width ^fin-cord
 height ^fin-thickness
)
)

(define-class fin-class
 :inherit-from (capped-surface-object)
 :properties (
 ;;user defined properties
 fin-cord (default 1.0)
 fin-thickness (default 0.2)
 fin-span (default 3.0)

 ;;internal properties
 solid? nil
 source-object ^fin-extrusion

 (fin-profile :class 'fin-profile-cla ss

)

Use or duplication of this information is subject to the restrictions on page ii of this document. 80

 (fin-extrusion :class 'extrusion-obj ect
 swept-object ^^fin-profile
 distance ^^fin-span
 vector '(0.0 0.0 1.0)
)
)
)

(define-class fin-array-class
 :inherit-from (circular-array-object)
 :properties (
 ;;user defined properties
 fin-cord (default 1.0)
 fin-thickness (default 0.2)
 fin-span (default 3.0)
 fin-span-offset (default 2.0)
 fin-quantity (default 4)

 ;;internal properties
 source-object ^fin-source
 diameter (* 2.0 ^fin-span- offset)
 quantity ^fin-quantity
 ref-point '(0.0 0.0 0.0)
 center '(0.0 0.0 0.0)
 rotate-axis '(0.0 0.0 1.0)
 repeat-angle (/ 360.0 ^fin-qua ntity)

 (fin-source :class 'fin-class
 orientation (list
 (rotate 90.0 '(0 1 0))
)
)
)
)

(define-class missile-geometry-class
 :inherit-from (object)
 :properties (
 ;;user defined properties
 missile-general-body-radius (default 1.0)
 missile-general-body-thickness (default 0.01)

 missile-nose-length (default 2.0)
 missile-nose-radius (default ^missile-general-b ody-radius)
 missile-nose-type (default 'sphere)
 ;; options are 'sphere or 'cone

 missile-mid-body-length (default 14.0)
 missile-mid-body-radius (default ^missile-general -body-radius)

 missile-aft-body-length (default 2.0)
 missile-aft-body-start-radius (default ^missile-g eneral-body-radius)
 missile-aft-body-end-radius (default 0.75)

 fin-distance-along-axis (default 12.0)
 fin-cord (default 1.0)
 fin-thickness (default 0.2)
 fin-span (default 2.0)
 fin-span-offset (default ^mis sile-general-body-radius)
 fin-quantity (default 4)

 display-coord-systems? (default nil)

Use or duplication of this information is subject to the restrictions on page ii of this document. 81

)
 :subobjects (
 (missile-coordinate-system :class 'c oordinate-system-class
 display? ^^display-coord-systems?
 origin (list 0.0 0.0 0.0)
)

 (nose-coordinate-system :class 'coor dinate-system-class
 display? ^^display-coord-systems?
 origin (if (equal ^^missile-nose -type 'cone)
 (list (* 0.5 ^^missile-nose-length) 0.0 0.0)
 (list ^^missile-nose-radius 0.0 0.0)
)
 reference-coordinate-system ^^miss ile-coordinate-system
)

 (nose :class (case !missile-nose-typ e
 (sphere 'spherical- nose-class)
 (cone 'open-conic al-nose-class)
 (t 'spherical- nose-class)
)
 material-thickness ^^missile-general-body-thi ckness
 reference-coordinate-system ^^nose -coordinate-system
)

 (mid-body-coordinate-system :class ' coordinate-system-class
 display? ^^display-coord-systems?
 origin (if (equal ^^missile-nose-t ype 'cone)
 (list (+ (/ ^^missile-nose-length 2.0)
 (/ ^^missile-mid-body-length 2.0)
)
 0.0
 0.0)
 (list (/ ^^missile-mid-body-length 2.0) 0.0 0.0)
)
 reference-coordinate-system ^^nose- coordinate-system
)

 (mid-body :class 'open-cylindrical-b ody-class
 diameter (* ^^missile-mid-body- radius 2.0)
 height ^^missile-mid-body-leng th
 material-thickness ^^missile-general-body-thi ckness
 orientation (list
 (rotate 90 '(0 1 0))
)
 reference-coordinate-system ^^mid- body-coordinate-system
)

 (aft-body-coordinate-system :class ' coordinate-system-class
 display? ^^display-coord-systems?
 origin (list
 (+ (/ ^^missile-mid-body-length 2.0)
 (/ ^^missile-aft-body-length 2.0)
)
 0.0
 0.0)
 reference-coordinate-system ^^mid- body-coordinate-system
)

 (aft-body :class 'open-truncated-con e-body-class
 start-diameter (* ^^missile-aft- body-start-radius 2.0)
 end-diameter (* ^^missile-aft-b ody-end-radius 2.0)
 height ^^missile-aft-bo dy-length
 material-thickness ^^missile-general-body-thic kness
 orientation (list
 (rotate 90 '(0 1 0))
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 82

 reference-coordinate-system ^^aft- body-coordinate-system
)
 (fins :class 'fin-array-class
 orientation (list
 (rotate 90 '(0 1 0))
 (translate (list ^^fin-distance-along-axis
 0.0
 0.0)
)
)
 reference-coordinate-system ^^missile-coordina te-system
)

)
)

Code Explanation

The developer creates a generic material-properties-class before creating the missile-body-
component-class. This promotes code re-use and modular design as the generic class can be
instantiated by itself or inherited into other user-defined classes in the future. The inheritance
capability will provide advantages in the next exercises because we now have a common class
from which all of the body components inherit. This also can be helpful when using class
“filters” during object selections from graphic or tree.

Use or duplication of this information is subject to the restrictions on page ii of this document. 83

2.10 Final Missile Geometry and Mass Properties
This section of the manual introduces some additional properties to the missile components via a
mass-properties-class. This is a user-defined class that is extensible beyond the scope covered in
this case study. The class gives each component a mass and a surface area property. When
collected in a property at the top-level of the missile-geometry-class, this demonstrates the use of
loop, and some geometric queries.

New AML Constructs

The following AML concepts and constructs are used in this section:

• children
• volume-of-object
• when
• loop
• the referencing (expanded explanation)

CHILDREN [Method]

Returns the immediate subobjects of an instance. Note that this method returns a list of objects,
not the names of the objects

Format:

(CHILDREN instance [:class t])

Arguments:

instance The object instance whose subobjects you wish to find.

:class If a class is specified, only children inheriting from that class will be
returned. Default is t for all classes. Note, a list of classes may also be
specified here.

Example:

Assume that you have the following tree structure where each object inherits from the class of its
name:

Use or duplication of this information is subject to the restrictions on page ii of this document. 84

AML> (create-model ‘children-example-model)
<CHILDREN-EXAMPLE-MODEL #x1B88768>
AML> (children (the))
(#<BOX-OBJECT #x1A68338>)
AML> (children (the box-object-1))
(#<BOX-OBJECT #x1A8FDB8> #<CYLINDER-OBJECT #x1AC32D 8>)
AML> (children (the box-object-1 box-object-2) :class ' point-object)
(#<POINT-OBJECT #x1AB2048>)

Notice that the children method returns a list of object instances (handles to the objects).

See Also:

children (has more keywords)

subobjects method returns object names instead of object

select-object function to query/return all objects "under" an object

VOLUME-OF-OBJECT graphic-object [Method]

The value returned by this method depends on the dimension of the object. If the objects’s
dimension is 1, then the length is returned. If the objects’s dimension is 2, then the surface area is
returned. If the objects’s dimension is 3, then the volume is returned.

Format:

(VOLUME-OF-OBJECT instance)

Arguments:

instance An instance of a graphic object.

Example:
(define-class EXAMPLE-BOX-CLASS
 :inherit-from (box-object)
 :properties (
 height 3.5
 width 4.1
 depth (* 1.8 ^height)

 volume (volume-of-object !superior)
)
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 85

AML> (create-model 'EXAMPLE-BOX-CLASS)
#<EXAMPLE-BOX-CLASS @ #x21a2975a>
AML> (the height)
3.5
AML> (the volume)
90.40500258922566
AML> (create-model 'BOX-OBJECT)
#<BOX-OBJECT @ #x28a4575b>
AML> (volume-of-object (the))
1.0

(define-class EXAMPLE-LINE-CLASS
 :inherit-from (line-object)
 :properties (
 point1 '(0 0 0)
 point2 '(2.4 6.7 8.4)

 length (volume-of-object !superior)
)
)
AML> (create-model 'EXAMPLE-LINE-CLASS)
#<EXAMPLE-LINE-CLASS @ #x21a8dc7a>
AML> (the length)
11.009540930176211
AML> (create-model 'cylinder-object)
#<CYLINDER-OBJECT @ #x58b1fb2b>
AML> (volume-of-object (the))
1.570796326794895

See Also:

normal-to-face
center-of-object
dimension
several functions/classes to calculate tangency

when [Function]

The when statement is a conditional that evaluates a test and if the result is not nil then all of the
expressions of the body are evaluated.

Format:

(WHEN test body)

Arguments:

test Any expression that will be used to determine whether to evaluate the
body.

body Any number of expressions to be evaluated when test is true. The return
value of the last expression is returned from the when function.

Examples:
AML> (when (= 2 3)
 (+ 2 3)
 (print (/ 6 3))

Use or duplication of this information is subject to the restrictions on page ii of this document. 86

 (* 3 4)
)
NIL
AML> (when (< 2 3)
 (+ 2 3)
 (print (/ 6 3))
 (* 3 4)
)
2
12
AML> (when 'false
 (+ 2 3)
 (print (/ 6 3))
 (* 3 4)
)
2
12

LOOP

The loop facility may be used for virtually all iterations required. Due to the versatility of the
loop statement, there are many control parameters that are used to perform required tasks. These
control parameters are discussed according to their function.

Iteration Control

The following iteration controls must precede other loop arguments except for the with, initially ,
and finally arguments. There can be any number of iteration controls in a single loop statement.
The iterations occur simultaneously and the loop will finish when any one of the iterations is
completed. See loop in AML Reference Manual for more details.

for

The for argument is a general increment (decrement) control. There are a number of paramenters
that can be used to control how iteration should procede. The parameters are used with the loop's
for control to accomplish many different types of iteration.

Examples:
AML> (loop for i from 0 to 3
 do (print i))
0
1
2
3
NIL

See Also:
FROM, TO, DOWNTO, UPTO
DOWNFROM, UPFROM
BY
=
THEN
IN

Use or duplication of this information is subject to the restrictions on page ii of this document. 87

VALUE ACCUMULATION

The resulting accumulated value will be returned by the loop statement. When more than one
accumulation is needed in a single loop statement the into parameter is needed to create a local
variable to hold the results of the accumulations. If these accumulated values need to be returned,
use the finally and return statements. See loop in AML Reference Manual for more details.

sum

The sum argument accumulates a running total of its parameter

Examples:
AML> (loop for i from 1 to 10
 sum i)
55
AML> (loop for i in '(2 4 5 6 8 9)
 collect (+ i 2)
)
(4 6 7 8 10 11)

See Also:
append
collect
count
maximize
minimize

Conditional Execution

when

The when argument is used to perform some operations when a condition is true.

Examples:
AML> (loop for i from 0 to 10 by 3
 when (evenp i)
 do (print i)
 collect i)
0
6
(0 3 6 9)
AML> (loop for i from 0 to 10 by 3
 when (evenp i)
 do (print i) and
 collect i)
0
6
(0 6)
AML>

See Also:

Use or duplication of this information is subject to the restrictions on page ii of this document. 88

loop (more details)

THE Referencing with :from keyword

The the reference construct has several keywords to augment its functionality. One keyword
introduced here is :from which sets the starting point instance of a the reference to the specified
object or property given after the :from keyword. This argument must evaluate to an object or
property. Notice that all keywords in a the reference are given inside one set of parentheses to
distinguish the end of the instance traversal path and the start of the keywords.

Format:

(the name-1 name-2 ... name-n (:from (the name-1 name-2 … name-m)))

Examples:

Assuming a tree structure as follows …

AIRPLANE [Level 1]
 maximum-speed [Level 2]
 wing-span [Level 2]
 number-of-engines [Level 2]
 WINGS [Level 2]
 WING-0001 [Level 3]
 span [Level 4]
 WING-0002 [Level 3]
 span [Level 4]
 RIBS [Level 4]
 RIB-0001 [Level 5]
 length [Level 6]
 width [Level 6]

AML> (the airplane wings wing-0001 span)
40.1
AML> (the span (:from (the airplane wings wing-0001)))
40.1
AML> (children (the airplane wings))
(#<WING-CLASS #x1A8FDB8> #<WING-CLASS #x1AC32D8>)
AML> (loop
 for wing-kid in (children (the airplane wings))
 sum (the span (:from wing-kid))
)
80.2

� Notice that the wing-kid local variable is used within the loop construct. The wing-kid
variable evaluates to an instance of a wing class so that a span can be queried from it.

Use or duplication of this information is subject to the restrictions on page ii of this document. 89

Exercise 8

After a close review of the class definitions and AML constructs described in the previous
section, create a class definition for a mass-properties-class inheriting from material-properties-
class. The mass-properties-class is inherited into the missile-body-component-class. The mass-
properties-class assumes the mass-source-object is an object of dimension 2 (surface). The
mass-properties-class has the following properties:

• mass-source-object which supplies a geometric object to all of its innate properties. This
property is set dynamically at instantiation.

• surface-area which calls the method volume-of-object on the mass-source-object,
• mass which is calculated by multiplying the material-thickness, the material-density and the

surface-area together. Add an “error check” using the when construct to ensure that the
mass-source-object property is not nil.

Augment the classes inheriting from missile-body-component-class to set the formula of the
mass-source-object property to be !superior. This can be implemented in the missile-body-
component-class and will be inherited into its sub-classes.

Augment the missile-geometry-class by adding two output properties:

• missile-body-components which contains a list of subobjects of class missile-body-
component-class,

• missile-body-mass which loops through the missile-body-components and sums their mass.

Use or duplication of this information is subject to the restrictions on page ii of this document. 90

Exercise 8 Solution

(in-package :aml)

(define-class material-properties-class
 :inherit-from (object)
 :properties (
 ;;English units assumed
 material-thickness (default 0.01) ;ft
 material-name (default 'alu minum) ;symbol
 material-density (default 165. 0) ;lb/ft^3
)
)

(define-class mass-properties-class
 :inherit-from (material-properties-class)
 :properties (
 mass-source-object nil
 ;;volume-of-object assumed to be onl y surface area here
 surface-area (when ^mass-source-obj ect
 (volume-of-object ^ mass-source-object)
)
 mass (when ^surface-area
 (* ^surface-area
 ^material-dens ity
 ^material-thic kness
)
)
)
)

(define-class missile-body-component-class
 :inherit-from (mass-properties-class)
 :properties (
 ;;assumes this class will be mixed w ith a geometric class
 mass-source-object !superior
)
)

(define-class spherical-nose-class
 :inherit-from (difference-object missile-body-com ponent-class)
 :properties (
 ;;user defined properties
 missile-nose-radius (default 1.0)

 ;;internal properties
 object-list (list ^complete-sphere ^ missile-body-object)
 (complete-sphere :class 'sphere-obje ct
 diameter (* ^^missile-nose-radiu s 2.0)
 solid? nil
)
 (missile-body-object :class 'cylinde r-object
 ;;* 2.0 ensures the cylinder height is large enough
 height (* ^^missile-nose-radiu s 2.0)
 diameter (* ^^missile-nose-radiu s 2.0)
 orientation (list
 (rotate 90 '(0 1 0))
 (translate (list (/ ^h eight 2.0) 0 0))
)
)
)
)

(define-class open-conical-nose-class
 :inherit-from (open-cone-object missile-body-comp onent-class)

Use or duplication of this information is subject to the restrictions on page ii of this document. 91

 :properties (
 ;;user defined properties
 missile-nose-length (default 2.0)
 missile-nose-radius (default 1.0)

 ;;internal properties
 height ^missile-nose-le ngth
 diameter (* ^missile-nose -radius 2.0)
 orientation (list
 (rotate -90 '(0 1 0))
)
)
)

(define-class open-cylindrical-body-class
 :inherit-from (open-cylinder-object missile-body- component-class)
 :properties (

)
)

(define-class open-truncated-cone-body-class
 :inherit-from (open-truncated-cone-object missile -body-component-class)
 :properties (

)
)

(define-class hexagonal-profile-class
 :inherit-from (polygon-object)
 :properties (
 ;;user defined properties
 width (default 1.0)
 height (default 0.2)

 ;;internal properties
 vertices (let* (
 (half-w (/ ^width 2.0))
 (half-h (/ ^heigh t 2.0))
 (sixth-w (/ ^width 6.0))
)
 (list
 (list half-w 0.0 0.0)
 (list sixth-w half-h 0 .0)
 (list (- sixth-w) half -h 0.0)
 (list (- half-w) 0.0 0 .0)
 (list (- sixth-w) (- h alf-h) 0.0)
 (list sixth-w (- half- h) 0.0)
 ;;last point will be c losed automatically
)
)
)
)

(define-class fin-profile-class
 :inherit-from (hexagonal-profile-class)
 :properties (
 ;;user defined properties
 fin-cord (default 1.0)
 fin-thickness (default 0.2)

 ;;internal properties
 width ^fin-cord
 height ^fin-thickness
)
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 92

(define-class fin-class
 :inherit-from (capped-surface-object)
 :properties (
 ;;user defined properties
 fin-cord (default 1.0)
 fin-thickness (default 0.2)
 fin-span (default 3.0)

 ;;internal properties
 solid? nil
 source-object ^fin-extrusion

 (fin-profile :class 'fin-profile-cla ss

)

 (fin-extrusion :class 'extrusion-obj ect
 swept-object ^^fin-profile
 distance ^^fin-span
 vector '(0.0 0.0 1.0)
)
)
)

(define-class fin-array-class
 :inherit-from (circular-array-object)
 :properties (
 ;;user defined properties
 fin-cord (default 1.0)
 fin-thickness (default 0.2)
 fin-span (default 3.0)
 fin-span-offset (default 2.0)
 fin-quantity (default 4)

 ;;internal properties
 source-object ^fin-source
 diameter (* 2.0 ^fin-span- offset)
 quantity ^fin-quantity
 ref-point '(0.0 0.0 0.0)
 center '(0.0 0.0 0.0)
 rotate-axis '(0.0 0.0 1.0)

 (fin-source :class 'fin-class
 orientation (list
 (rotate 90.0 '(0 1 0))
)
)
)
)

(define-class missile-geometry-class
 :inherit-from (object)
 :properties (
 ;;user defined properties
 missile-general-body-radius (default 1.0)
 missile-general-body-thickness (default 0.01)

 missile-nose-length (default 2.0)
 missile-nose-radius (default ^missile-general-b ody-radius)
 missile-nose-type (default 'sphere)
 ;; options are 'sphere or 'cone

 missile-mid-body-length (default 14.0)
 missile-mid-body-radius (default ^missile-general -body-radius)

 missile-aft-body-length (default 2.0)
 missile-aft-body-start-radius (default ^missile-g eneral-body-radius)

Use or duplication of this information is subject to the restrictions on page ii of this document. 93

 missile-aft-body-end-radius (default 0.75)

 fin-distance-along-axis (default 12.0)
 fin-cord (default 1.0)
 fin-thickness (default 0.2)
 fin-span (default 2.0)
 fin-span-offset (default ^mis sile-general-body-radius)
 fin-quantity (default 4)

 display-coord-systems? (default nil)

 ;;output
 missile-body-components (children !superior
 :class 'missile-body-component-class)
 missile-body-mass (loop
 for kid in ^missile-body-components
 sum (the mass (:from kid))
)
)
 :subobjects (
 (missile-coordinate-system :class 'c oordinate-system-class
 display? ^^display-coord-systems?
 origin (list 0.0 0.0 0.0)
)
 (nose-coordinate-system :class 'coor dinate-system-class
 display? ^^display-coord-systems?
 origin (if (equal ^^missile-nose -type 'cone)
 (list (* 0.5 ^^missile-nose-length) 0.0 0.0)
 (list ^^missile-nose-radius 0.0 0.0)
)
 reference-coordinate-system ^^miss ile-coordinate-system
)
 (nose :class (case !missile-nose-typ e
 (sphere 'spherical- nose-class)
 (cone 'open-conic al-nose-class)
 (t 'spherical- nose-class)
)
 material-thickness ^^missile-general-body-thi ckness
 reference-coordinate-system ^^nose -coordinate-system
)
 (mid-body-coordinate-system :class 'coordinat e-system-class
 display? ^^display-coord-systems?
 origin (if (equal ^^missile-nose-t ype 'cone)
 (list (+ (/ ^^missile-nose-length 2.0)
 (/ ^^missile-mid-body-length 2.0)
)
 0.0
 0.0)
 (list (/ ^^missile-mid-body-length 2.0) 0.0 0.0)
)
 reference-coordinate-system ^^nose- coordinate-system
)
 (mid-body :class 'open-cylindrical-b ody-class
 diameter (* ^^missile-mid-body- radius 2.0)
 height ^^missile-mid-body-leng th
 material-thickness ^^missile-general-body-thi ckness
 orientation (list
 (rotate 90 '(0 1 0))
)
 reference-coordinate-system ^^mid- body-coordinate-system
)
 (aft-body-coordinate-system :class ' coordinate-system-class
 display? ^^display-coord-systems?
 origin (list
 (+ (/ ^^missile-mid-body-length 2.0)
 (/ ^^missile-aft-body-length 2.0)
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 94

 0.0
 0.0)
 reference-coordinate-system ^^mid- body-coordinate-system
)
 (aft-body :class 'open-truncated-con e-body-class
 start-diameter (* ^^missile-aft- body-start-radius 2.0)
 end-diameter (* ^^missile-aft-b ody-end-radius 2.0)
 height ^^missile-aft-bo dy-length
 material-thickness ^^missile-general-body-thic kness
 orientation (list
 (rotate 90 '(0 1 0))
)
 reference-coordinate-system ^^aft- body-coordinate-system
)
 (fins :class 'fin-array-class
 orientation (list
 (rotate 90 '(0 1 0))
 (translate (list ^^fin-distance-along-axis
 0.0
 0.0)
)
)
 reference-coordinate-system ^^missile-coordina te-system
)
)
)

Code Explanation

The developer creates a generic mass-properties-class and inherits it into the missile-body-
component-class. This also promotes code re-use and modular design as the generic class can be
instantiated by itself or inherited into other user-defined classes in the future. This class is
slightly different than the material-properties-class because of the mass-source-object. This
allows a user to instantiate this class independently from any object and “point” to an other
object by setting the mass-source-object property dynamically at instantiation or at runtime. The
other properties in the mass-properties-class contain a when statement before their main
execution in order to trap errors. Notice that the method volume-of-object is expected to return a
surface area in this particular class. This could be augmented very easily with a case statement
or a series of if statements.

Notice how the missile-body-component-class helps in this situation. With the simple addition of
the mass-properties-class, all of the missile components receive the functionality from the mass-
properties-class. The mass-source-object could also be set at each instance of the missile-body-
component-class. This is a developer decision that may be considered more of a matter of
“style” rather than modeling “correctness”.

The missile-geometry-class now has the two output properties. The missile-body-components
property could be referred to in other objects or properties that need these specific objects. This
becomes more efficient if these objects are needed in several places because a the reference will
be used to obtain the objects instead of making an other call to the children method. The select-
object function could also be used here if some desired objects are located in objects within the
children.

Note that the code for the missile-body-mass could have simply been given as follows:

(+ (the mass (:from ^nose))
 (the mass (:from ^mid-body))
 (the mass (:from ^aft-body)))

Use or duplication of this information is subject to the restrictions on page ii of this document. 95

This is certainly simpler than the loop given in the exercise, however it is extremely limited. For
example, with the simple addition of the masses by direct the references, the missile component
names can not change without changing the code. Also, the code would have to be changed any
time the a user adds a new body component to be included in the mass calculation. The use of
children satisfies all of these concerns because it will always have a dependency on the missile’s
children. Each time a child is added or deleted, the children method will make the missile-body-
mass become unbound. This practice of using the methods such as children or functions like
select-object enables the program to become dynamic/adaptive and allow a user to dynamically
create a tree structure with properties and formulas that automatically update based on demand.

Use or duplication of this information is subject to the restrictions on page ii of this document. 96

3. Introduction to AML Graphical User Interface (GU I) Design

3.1 Preview
Using AML, the application developer can build graphical user interfaces using AML classes,
functions and tools. Building a user interface in AML can be done at different levels. If the
developer is looking for maximum design flexibility and control, the GUI development procedure
can be at the base level, i.e. GUI components are built one by one and linked to the application
model through user-defined methods and functions. This process requires the most development
time. This functionality is documented in the AML Model Interface Design Manual in the
chapter titled "Base Classes and Tools".

On the other hand, GUI development can be at a much higher level if the developer decides to
use a set of standard AML property classes that are capable of automatically interfacing an AML
model providing most of the standard control that a user requires from an application. This
reduces development time dramatically. This functionality is documented in the AML Model
Interface Design Manual in the chapter titled "Model Interface Classes and Techniques". Mixing
functionality and objects from both of these sections is allowed and also recommended for some
applications.

3.2 Automated Model Interface Design
This section introduces a portion of the automatic GUI generation capabilities. Using the AML
GUI classes and functionality, the developer has ultimate control over the functionality and the
aesthetics of the GUI as well as the communication between the GUI and the model. For large
applications however, this may be undesirable due to the fact that the developer has more code to
design and debug. If the developer follows some standard design techniques and use some
advanced application forms, the GUI-specific widgets, functions or GUI-model communication
are done automatically with the AML model interface property classes and some of the advanced
GUI forms available within AML. Developed using standard AML base GUI classes, the model
interface system revolves around the following idea: the developer builds a model with enough
knowledge in its objects and properties (Property nature, behavior and rules) so that advanced
GUI classes can provide all the functionality expected from a graphical user interface without
requiring any programming. For that purpose, a set of property classes are given in AML that,
when used in the context of what is defined as a data-model, contain enough knowledge to
automatically generate their own user interface. It is suggested at this stage, the developer refers
to the introduction section of the Model Interface Design manual for further reference.

The concept of a data-model is introduced here to aid in the user interface design and general
AML model organization: The part of an AML model typically represented by a set of properties
that are meant to be available to the user of an AML application usually through a graphical user
interface. These properties are typically instances of model-interface-property-class introduced
below. These classes implement the expanded property specification mentioned earlier in the
manual.

Use or duplication of this information is subject to the restrictions on page ii of this document. 97

Model-interface-property-class [Class]

This is the super-class of all model-interface property classes. This class is typically not
instantiated by the user.

Inherit-from: property-object

Properties:

Available? Flag (t or nil) specifying if the property is available/usable, usually based
on the current values of the other data-model properties. A non-available
property is grayed out by the GUI.

Label String specifying the label of the property. The label is typically used by
the GUI. Default formula is (write-to-string (object-name (the
superior)).

� Note that the formula slot for any class inheriting from model-interface-property-
class must be specified otherwise the formula will be set to nil. In order to keep the
original formula from the inherited class, set the formula to :inherit-formula.

Computed-data-property-class [Class]

This class is used for general-purpose properties whose values are not supposed to be edited by
the user. These properties are typically output properties.

Inherit-from: model-interface-property-class

Editable-data-property-class [Class]

This class is used for general-purpose properties whose values are to be edited by the user. These
properties are typically input properties.

Inherit-from: model-interface-property-class

Flag-property-class [Class]

This class is used for “flag” properties that expect a value of t or nil. These properties are
typically represented in the GUI with a toggle button.

Inherit-from : model-interface-property-class

Use or duplication of this information is subject to the restrictions on page ii of this document. 98

Option-property-class [Class]

This class is used for properties whose value is equal to one element of a list of available options.
These properties can be represented with an option menu, a radio button group, or a combo box.
A combo box is typically used whenever the value of the option-property-class is allowed to be
different for any of the available options.

Inherit-from: model-interface-property-class

Properties:

Labels-list List of strings specifying a label for each option. Label-list is ignored
when mode is ‘combo because a user is allowed to edit an option making
options and labels one entity.

Mode GUI mode specifying the GUI representation of the property. Allowed
values are ‘radio,’menu, and ’combo (See Section 3 of the Model
Interface Design Manual for corresponding GUI Widgets). Default
formula is ‘radio.

 Options-list List of available options.

Data-model-node-mixin [Class]

This class is designed to represent a node of a data model. It contains application-specific
knowledge about the node it represents. It also manages the properties of that node that are part
of the data-model and hence that should be a part of the application GUI. Data-model-node-
mixin is typically inherited into user defined classes. Standard application forms (described in the
Model Interface Design Manual) make use of data model nodes for the automatic generation of
model GUIs. Application forms that contain data-model in their class name are typically
designed to interface data-model-node-mixins.

Inherit-from: object

Properties:

Available? Default formula is (Default t). When nil, does not allow GUI
access to the property-object-list of the node from the data
model tree.

Label: Label of the node as displayed in the GUI data model tree.

Property-objects-list List of model-interface-property instances that define the data-
model properties of this node. Properties included in this list will
be available in the automatically generated forms that use data-
model-node-mixin. The list follows the same format of the
property-objects-list of ui-multiple-property-subform-class.

Use or duplication of this information is subject to the restrictions on page ii of this document. 99

See also: ui-multiple-property-subform-class, ui-data-model-tree-inspection-class, ui-data-model-main-
form-class.

Example:

Below is the class definition of a box, a cylinder and their union. They can be instantiated as a
data-model that one of the application forms defined later can point to. Figure 19 shows the
end result.

(define-class box-data-model-class
 :inherit-from(box-object data-model-node-mixin)
 :properties(
 property-objects-list
 (list
 (list (the superior depth self) '(automatic-app ly? t))
 (the superior height self)
 (the superior width self)
)
)
)

(define-class cylinder-data-model-class
 :inherit-from(cylinder-object data-model-node-mix in)
 :properties(
 property-objects-list
 (list
 (the superior diameter self)
 (the superior height self)
)
 diameter 1.0
 height 8.0
)
)

(define-class union-data-model-class
 :inherit-from(union-object data-model-node-mixin)
 :properties(
 label "Union of Box and Cylinder"
 property-objects-list
 (list
 (the superior simplify? self)
 (the superior render self)
)
 (simplify? :class 'flag-property-class
 formula t
)
 (render :class 'option-property-class
 options-list '(boundary shaded facet)
 mode 'menu
 formula :inherit-formula
)
 object-list (list ^box ^cylinder)
)
 :subobjects(
 (cylinder :class 'cylinder-data-model-class
 label "Cylinder node"
)
 (box :class 'box-data-model-class
 label "Box Node"
)
)
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 100

Figure 19

property-names-to-inspect [Method]

This method is automatically called by the system when an object is opened for inspection or
editing if no property-objects are defined in the property-objects-list. The AML developer can
redefine this method on any class to specify the properties that are visible when an instance of
that class is opened for "inspection" (Given that the "Show all" toggle on the object inspection
form is off). This method should always return a list of property names. This method is pre-
defined on a number of AML classes, it returns nil for all other classes. When it returns nil, all
properties will be visible. The "Show all" toggle button can always be toggled on to show all
properties on the inspection form.

Example:
(define-method property-names-to-inspect box-object ()
 '(height width depth color render line-type)
)

Upon inspecting an instance of a box-object, the inspect form will only show the properties
defined in this method. Similar results occur when editing an instance of a box-object as seen in
the following figures.

Use or duplication of this information is subject to the restrictions on page ii of this document. 101

Editing an instance of a box-object with the property-names-to-inspect method redefined.

Inspecting an instance of a box-object with the property-names-to-inspect method redefined.

Use or duplication of this information is subject to the restrictions on page ii of this document. 102

Exercise 9

After a close review of the class definitions and AML constructs described in the previous
section, create a class definition for a data model called missile-geometry-data-model-class
inheriting from data-model-node-mixin and missile-geometry-class. Overwrite the properties for
the needed properties to create the form shown in Figure 20. Use the :inherit-formula
specification for each of the properties’ formula to allow the base class’ formula to be used. All
of the properties shown are instances of editable-data-property-class with the exception of the
missile-nose-type (class option-property-class), missile-body-mass (class computed-data-
property-class), and display-coord-systems? which is an instance of a flag-property-class. Make
the missile-nose-length available only if the missile-nose-type is a conical nose. The missile-
nose-type should use the automatic-apply? property in the init-form portion of the property-
objects-list so that the missile-nose-length property updates as the user interactively modifies
missile-nose-type without pressing the Apply button. The missile-body-mass should use the
automatic-demand? property in the init-form portion of the property-objects-list so that the
missile-body-mass property does not demand the value of the missile-body-mass without the user
clicking on the “!” button. Also separate the properties into their respective functional areas by
using text strings in the property-objects-list as shown in Figure 20.

Figure 20

Use or duplication of this information is subject to the restrictions on page ii of this document. 103

Exercise 9 Solution

(define-class missile-geometry-data-model-class
 :inherit-from (missile-geometry-class data-model- node-mixin)
 :properties (
 property-objects-list
 (list
 "General Parameters"
 (the superior missile-general-body- radius self)
 (the superior missile-general-body- thickness self)
 (the superior display-coord-systems ? self)
 "Nose"
 (the superior missile-nose-length s elf)
 (list
 (the superior missile-nose-type s elf)
 '(automatic-apply? t)
)
 "Mid and Aft Body"
 (the superior missile-mid-body-leng th self)
 (the superior missile-aft-body-leng th self)
 (the superior missile-aft-body-end- radius self)
 "Fins"
 (the superior fin-distance-along-ax is self)
 (the superior fin-cord self)
 (the superior fin-thickness self)
 (the superior fin-span self)
 (the superior fin-quantity self)
 "Output"
 (list
 (the superior missile-body-mass self)
 '(automatic-demand? nil)
)
)
 label "Missile Geometry Data"

 (missile-general-body-radius :class 'editable-dat a-property-class
 label "General Body Radius"
 formula :inherit-formula
)
 (missile-general-body-thickness :class 'editable- data-property-class
 label "General Body Thickness"
 formula :inherit-formula
)
 (missile-nose-length :class 'editable-data-proper ty-class
 label "Nose Length"
 formula :inherit-formula
 available? (equal ^missile-nose-typ e 'cone)
)
 (missile-nose-type :class 'option-property-class
 label "Nose Type"
 mode 'menu
 formula :inherit-formula
 options-list '(sphere cone)
 labels-list '("Spherical" "Conical")
)
 (missile-mid-body-length :class 'editable-data-pr operty-class
 label "Mid Body Length"
 formula :inherit-formula
)
 (missile-aft-body-length :class 'editable-data-pr operty-class
 label "Aft Body Length"
 formula :inherit-formula
)
 (missile-aft-body-end-radius :class 'editable-dat a-property-class

Use or duplication of this information is subject to the restrictions on page ii of this document. 104

 label "Aft Body End Radius"
 formula :inherit-formula
)
 (fin-distance-along-axis :class 'editable-data-pr operty-class
 label "Fin Dist. Along Axis"
 formula :inherit-formula
)
 (fin-cord :class 'editable-data-property-class
 label "Fin Chord"
 formula :inherit-formula
)
 (fin-thickness :class 'editable-data-property-cla ss
 label "Fin Thickness"
 formula :inherit-formula
)
 (fin-span :class 'editable-data-property-class
 label "Fin Span"
 formula :inherit-formula
)
 (fin-quantity :class 'editable-data-property-clas s
 label "Fin Quantity"
 formula :inherit-formula
)
 (missile-body-mass :class 'computed-data-property -class
 label "Body Mass"
 formula :inherit-formula
)
 (display-coord-systems? :class 'flag-property-cla ss
 label "Display coordinate systems"
 formula :inherit-formula
)
)
)

Code Explanation

The missile-geometry-data-model-class had all of the behavior of the missile-geometry-class
with the additional ability to show these properties in an automatically generated user interface.
A user can now modify these properties easily by pressing the apply button on the data model
form. Notice how the intelligence is placed in the model so that the missile-nose-length is not
available when the missile-nose-type is spherical. The apply button knows to not apply any
changes to unavailable buttons and apply changes (if any were made) to the available buttons.
Notice the order of the property-objects-list which corresponds to the order that the buttons are
instantiated from top to bottom.

Notice the use of :inherit-formula within all of the data properties. This allows for the
specification of the formula in the original class that is inherited into the data model
representation. Formulas can be overwritten in the data model, however it is not required, and
often is not needed because of the :inherit-formula functionality.

Use or duplication of this information is subject to the restrictions on page ii of this document. 105

4. AML Source Code Management (AML Systems)
This section of the manual introduces the concepts and syntax of systems in AML. The
management of source code is accomplished through the definition of systems. A system is a set
of source code files that are grouped together. Defining a system allows the code in a system to
be treated as a module that may be loaded, compiled, and archived as a single entity. Compiling
systems archives the source code with the binary files so updating older versions is possible by
using the archived code. A system also compiles binaries for multiple platforms within a version
to allow different platforms to be operating with the same system version. A system may require
other systems to automatically load before loading or compiling itself. Organizing code into
systems that may be loaded is a methodology for the reuse of code. A logical path is a reference
to files and directories in the system. The logical path file stores the logical path references,
making modification easy. These references are converted by the use of the logical-path
function.

New AML Constructs

The following AML concepts and constructs are used in this section:

• logical path files
• logical-path
• define-system
• compile-system
• load-system

Logical Paths File

AML has the capability of defining logical-path-reference variables to locate resources on the
file system. They are defined in logical paths files. On Unix platform, a user logical paths file
(logical.paths) can be created under the user’s home directory. On WINDOWS platforms, a
logical paths file (logical.pth) exists under the AML directory. The user can append entries to
this file and make modifications as necessary. The logical paths file contains lines with logical-
path-reference and corresponding path definitions. These can be direct or relative as shown
below.

:home ~/
:tmp /tmp/
:missile :home missile/

Compiler directives can be used in a logical paths file and amidst AML source code to
distinguish between a WINDOWS and a non-WINDOWS entry in the following way:

#-WINDOWS
:home ~/
#+WINDOWS
:home c:\users\user1\

A #+WINDOWS directive specifies that the following line is only visible on WINDOWS
machines, while a #-WINDOWS directive specifies the the following line is only visible on non-
WINDOWS machines. Directives should not be followed by logical path entries on the same
line, and only one directive per line is allowed.

Use or duplication of this information is subject to the restrictions on page ii of this document. 106

logical-path [Function]

logical-path is a function that uses the logical paths file to convert a logical-path-reference to a
path definition. The path definition is a string that is retrieved from the logical paths file. If the
logical path reference does not exist in the logical paths file, the function returns nil.

Format:

(logical-path logical-path-name [file-name-1 ... file-name-n])

Arguments:

logical-path-name The name of a logical path reference defined in logical paths
file.

file-name A string that is concatenated to logical-path-name reference.

Examples:

On the Windows platform …

AML> (logical-path :home)
"c:\\users\\user1\\"
AML> (logical-path :temp)
"c:\\temp\\"
AML> (logical-path :temp "mesh-01" "nodes.dat")
"c:\\temp\\mesh-01\\nodes.dat"

On the UNIX platform …

AML> (logical-path :home)
"/users/user1/"
AML> (logical-path :temp)
"/tmp/"
AML> (logical-path :temp "mesh-01" "nodes.dat")
"/tmp/mesh-01/nodes.dat"

Note: On the Windows platform, file paths must have double slashes. The logical-path
function takes care of this for the user.

DEFINE-SYSTEM [Function]

The define-system construct is the main mechanism for creating systems. The definition should
appear in a system definition file named system.def. The system.def must be in the directory
returned when (logical-path :system-name) is executed. The system-name must be an entry in the
logical path file for the system to be found for compiling or loading.

Format:

(define-system system-name [:require-systems ’()] [:files ’()])

Use or duplication of this information is subject to the restrictions on page ii of this document. 107

Arguments:

system-name The name of the system being defined. It is recommended that the
system have a keyword name to make it package independent.

require-systems
A list of system names that must be loaded before the system being
defined may be compiled or loaded.

files A list of files that comprise the system. The files may be located in the
same directory as the system.def file or in a subdirectory named sources
only.

Example:
(define-system :MY-SYSTEM
:require-systems ’(:base-system :extension-system)
:files ’(
 “file1.aml”
 “file2.aml”
 “file3.aml”
)
)

A directory structure for a system, named my-system, would look something like the following:

/home/
 apps/
 my-system/
 system.def ;; File containing the system definit ion.
 sources/
 file1.aml ;; Source code file.
 file2.aml ;; Source code file.
 file3.aml ;; Source code file.

In this example, the logical path file entry for my-system must be:

:my-system /home/apps/my-system/

compile-system [Function]

When a system is compiled the source code is read from the files specified in define-system.
Compilation of a system will create system versions (archives) that contain the source from time
of compile and the binary files created by those source files. Binary files are created in a
subdirectory named for the machine type in the system version subdirectory. That subdirectory
will be used by load-system to load the binary files. A system tracks the binary files created and
will not compile source files that have not changed since the last being compiled unless the
force? keyword is t. Only the newest version or a new version may be compiled.

Format:

(COMPILE-SYSTEM system-name [:force? nil] [:forget? nil] [:new? nil])

Use or duplication of this information is subject to the restrictions on page ii of this document. 108

Arguments:

system-name The name of a system to compile. The system name must be an entry
that is found in the logical.paths file.

force? Default is nil which only compiles files that have changed since the last
compile. A t value will compile all files in the system.

forget? This keyword controls the redefinition of a system. The default is nil
which will not read the system.def file after the first compile or load. If
forget? is supplied as t the system.def file will be reread. Note: Changes
made to a system.def file of a loaded system will not be recognized
unless forget? is t.

new? Defaults to nil. When t, creates a new system archive. If new? is nil the
system will be archived and compiled into the newest system archive.

Examples:
; The following compiles the system files the first time on a Sun
; machine and creates MY-SYSTEM-1 subdirectory stru cture shown below.
AML> (compile-system :my-system)
/home/
 apps/
 my-system/
 system.def File containing the system definition .
 sources/
 file1.aml Source code file.
 file2.aml Source code file.
 file3.aml Source code file.
 MY-SYSTEM-1/
 system.def
 sources/
 file1.aml Archived source code file.
 file2.aml Archived source code file.
 file3.aml Archived source code file.
 SUN-bins-a/
 file1.sbin Archived binary file.
 file2.sbin Archived binary file.
 file3.sbin Archived binary file.
; The following reads the system.def file and compi les only changed
; or uncompiled files into the existing version.
AML> (compile-system :my-system :forget? t :force? nil :new? nil)

load-system [Function]

When a system is loaded the binary files that were created during the last compilation are loaded
if no version number is supplied. When a version number is supplied the binaries for the machine
will be loaded from a compile that may not be the newest. This allows versions to be in
production and newer versions to be under development. If the source code is changed the
changes will not be loaded until after a compile-system is performed. A system also tracks the
version of the binary files that are loaded so that successive loading of the same system will not
take time to load files that are unchanged.

Use or duplication of this information is subject to the restrictions on page ii of this document. 109

Format:

(LOAD-SYSTEM system-name [:forget? nil] [:version nil])

Arguments:

system-name The name of a system to load. The system name must be an entry that is
found in the logical path file.

forget? This keyword controls the redefinition of a system. The default is nil
which will not read the system.def file after the first compile or load. If
forget? is supplied as t the system.def file will be read.

version This keyword specifies the version of the binaries which will be loaded.
The default value of nil will load the latest version.

Note: Changes made to a system.def file of a loaded system will not be recognized unless forget?
is t.

Example:
AML> (load-system :my-system)
;;; Loading source file "/home/apps/system/MY-SYSTE M-1/sysdef.def"
Loading system MY-SYSTEM...
;;; Loading binary file "/home/apps/system/MY-SYSTE M-1/SUN-bins-a/
file1.sbin"
;;; Loading binary file "/home/apps/system/ MY-SYST EM-1/SUN-bins-a/
file2.sbin"
;;; Loading binary file "/home/apps/system/ MY-SYST EM-1/SUN-bins-a/
file3.sbin"
MY-SYSTEM System loaded.
;; Loading again will not reload files that have no t be recompiled.
AML> (load-system :my-system)
Loading system MY-SYSTEM...
Skip loading: /home/apps/system/MY-SYSTEM-1/SUN-bin s-a/file1.sbin
already loaded.
Skip loading: /home/apps/system/MY-SYSTEM-1/SUN-bin s-a/file2.sbin
already loaded.
Skip loading: /home/apps/system/MY-SYSTEM-1/SUN-bin s-a/file3.sbin
already loaded.
MY-SYSTEM System loaded.

See Also:

compile-system-file

Use or duplication of this information is subject to the restrictions on page ii of this document. 110

Exercise 10

Take the code from the previous exercise and divide it into functional groupings of classes and
place them into different files based on their grouping. Define a system called :missile-training-
system that requires the files from the functional groupings. Modify your logical path file to
have a corresponding entry for the location of the system. Compile this system, exit from AML
and practice loading the system. You do not have to exit, but it demonstrates the ease loading a
system from scratch and having all of the class definitions in memory.

The following table shows a suggested functional grouping of the classes from the previous
exercise. The order of the files in the system.def file should follow the order given in the table.

Classes Filename

• material-properties-class
• mass-properties-class

base-functionality.aml

• hexagonal-profile-class
• fin-profile-class
• fin-class
• fin-array-class

fins.aml

• missile-body-component-class
• spherical-nose-class
• open-conical-nose-class
• open-cylindrical-body-class
• open-truncated-cone-body-class

missile-body-components.aml

• missile-geometry-class missile-geometry.aml

• missile-geometry-data-model-class missile-interface.aml

Use or duplication of this information is subject to the restrictions on page ii of this document. 111

Exercise 10 Solution

(in-package :aml)

(define-system :missile-training-system
 :files '(
 "base-functionality.aml"
 "fins.aml"
 "missile-body-components.aml"
 "missile-geometry.aml"
 “missile-interface.aml”
)
)

Code Explanation

The system loads/compiles the files in order from top to bottom. It is important to know the
order of files because some files may contain items that require other classes/functions/methods
to be previously loaded.

Use or duplication of this information is subject to the restrictions on page ii of this document. 112

5. Defining Functions and Methods
This section of the manual presents some topics that are useful to a developer such as:

• defining functions with defun
• defining methods with define-method

5.1 Defining Functions

defun [Construct]

The defun construct is used to define a function, or procedure in AML.

Format:

(DEFUN function-name ([args]) [body])

Arguments:

function-name The function name must be a symbol (given without a quote).

args Arguments for the function.

body The action(s) the function performs.

Examples:
(defun quadratic-formula (a b c)
 (let* (
 (radical (- (expt b 2) (* 4 a c)))
 (denominator (* 2 a))
 (numerator-plus (+ (- b) (sqrt radical)))
 (numerator-minus (- (- b) (sqrt radical)))
)
 (list
 (/ numerator-plus denominator)
 (/ numerator-minus denominator))
)
)
AML> (quadratic-formula 1 3 2)
(-1.0f0 -2.0f0)

Notes:

There are more ways to use arguments than shown above such as “keywords” and “optional”
arguments. Time permitting, these may be covered in the training class.

Use or duplication of this information is subject to the restrictions on page ii of this document. 113

5.2 Defining Methods

define-method [Construct]

A method is an operation (function) that is defined specifically for a class. For example suppose
the method volume is defined for each of the classes box-object, cylinder-object, and sphere-
object. This method calculates the volume for an object. By calling the volume method with an
instance of one of those classes, the correct operation will be executed automatically and the
volume of the instance returned. Inheriting from a class that has methods defined for it will also
inherit the methods. The following construct is used for defining methods in AML.

� The referencing is modified to start at the instance used as the first argument of the
method call.

Notes: Do not use self as a variable within define-methods because self is locally bound by the
system to be the instance used to call the method. Within a method defined on an object other
than a property-object, (the) returns the object itself. Within a method defined on an instance of
property-object (or anything that inherits from property-object), (the) returns the value of the
property.

Format:

(DEFINE-METHOD method-name class ([args]) [body])

Arguments:

method-name The method name must be a symbol (given without a quote).

class The class for which the method is written.

args Arguments for the method.

body The action(s) the method performs.

Examples:

(define-class EXAMPLE-BOX-CLASS
 :inherit-from (box-object)
 :properties (
 height 3.5
 width 4.1
 depth (* 1.8 ^height)

 box-weight (weight !superior 0.3)
)
)

(define-method WEIGHT BOX-OBJECT (density)
 (let* (
 (volume (* (the height) (the width) (the depth)))
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 114

 (* density volume)
)
)

(define-method WEIGHT CYLINDER-OBJECT (density)
 (let* (
 (volume (/ (* pi (the diameter) (the diameter) (the height))
 4.0))
)
 (* density volume)
)
)

AML> (create-model 'EXAMPLE-BOX-CLASS)
#<EXAMPLE-BOX-CLASS @ #x21a2975a>
AML> (the box-weight)
27.121499999999994
AML> (create-model 'box-object)
#<BOX-OBJECT @ #x223b2a62>
AML> (weight (the) 8.4)
8.4
AML> (create-model 'cylinder-object)
#<CYLINDER-OBJECT @ #x223c194a>
AML> (weight (the) 1.0)
1.5707963267948966

(define-method WEIGHT GRAPHIC-OBJECT (density)
 (let* (
 (volume (volume-of-object (the)))
)
 (* density volume)))

(define-class INTERSECTION-EXAMPLE-CLASS

:inherit-from (intersection-object)
:properties (
 object-list (list ^part ^shaft)
 (part :class 'box-object
 solid? t
)
 (shaft :class 'cone-object
 height 4.0
 diameter 2.0
 solid? t
)
)
)

AML> (create-model 'intersection-example-class)
#<INTERSECTION-EXAMPLE #x19FFB44>
AML> (weight (the) 1.0)
0.744320226850907

� Notes:

• There are more ways to use arguments than shown above such as “keywords” and “optional”
arguments. Time permitting, these may be covered in the training class.

• A define-method may not be defined for a class that has not been previously defined and
loaded into memory. It is suggested that methods immediately follow the classes they are
defined for.

• Define-methods are defined for classes but are executed by calling the method with an
instance of the class for which it is defined .

Use or duplication of this information is subject to the restrictions on page ii of this document. 115

• The most specific method for the instance will be used. Consider the example given for
define-class. If a method has been defined for table-top (which inherits from box-object)
which has the same name as one defined for box-object, the method on table-top will take
precedence when called on an instance of table-top.

Use or duplication of this information is subject to the restrictions on page ii of this document. 116

6. Low Level User Interface Design
This section introduces some basic low level AML user interface design techniques through an
example and an exercise. It is useful to go first through some naming conventions:

1- Widget: A user interface entity (i.e. a button, a menu…) that is usually an instance of an
AML class.

2- Form: A widget used to group other widgets, can be a stand-alone window or a
subobject of another form.

3- Top-level Form: A form that is a stand-alone window, i.e. not a subobject of another
form.

4- Component: A widget that is not used to group other widgets. It is typically a
subobject of a form.

5- Layout: An object used to group top-level forms. Top-level forms are typically subobjects
of a layout.

6- An instance of class X is an instance of X or of any class that inherits from X.

6.1.1 Positioning and Sizing
Below are the class definitions of ui-widget, ui-group, ui-form-class. Except for ui-form-class,
these two classes should not be instantiated by the developer. Ui-widget is the super-class of all
widget classes and Ui-group is the super-class of all form classes. For the purpose of this
introductory section, the definitions below do not show all the properties of the classes described
and focus only on positioning and sizing. Advanced sizing and positioning properties are also
defined with the classes ui-grid-form-mixin and ui-grid-component-mixin (and their subclasses)
but will not be covered in this section. Please refer to the GUI Base Classes Manual for complete
reference.

UI-WIDGET [Class]

Ui-widget is the super-class of all widgets. A widget is a GUI entity that has the capability to control its own
size/position and appearance attributes. Unless stated otherwise, all GUI widgets are instantiated as
subobjects of a ui-group instance. All ui-widget instances (i.e. instances of classes that inherit from ui-
widget) base their position and size on the properties x-offset, y-offset, width, height and measurement.

Inherit-from: ui-root

Properties:

 Gray?: Defaults to nil. When t, the widget is disabled and appears grayed out.

Measurement: Defaults to (default 'percentage). Can take a value of 'pixels or 'percentage.
When 'pixels, the x-offset, y-offset, width and height of the widget represents
pixel values. When 'percentage, the x-offset, y-offset, width and height of the
widget represents a percentage value of the width/height of the superior object of

Use or duplication of this information is subject to the restrictions on page ii of this document. 117

the ui-widget instance. Also, when a percentage measurement is specified, the
widget is attached to its parent, i.e. the widget grows and shrinks with its parent
window when that window is resized with the mouse.

X-offset: Defaults to 0. Integer representing the offset of the widget from the left side of
its parent.

Y-offset: Defaults to 0. Integer representing the offset of the widget from the top side of its
parent.

 Width: Defaults to 10. Integer specifying the width of the widget.

 Height: Defaults to 10. Integer specifying the height of the widget.

UI-GROUP [Class]

Ui-group is the Superclass of all form classes. Typically, a class that ui-group inherits into is instantiated as
a parent object to other widgets and can manage their position, size, appearance, property values and
callbacks. A group can also be a subobject of another group.

Inherit-from: ui-widget

UI-FORM-CLASS [Class]

A ui-form-class is a ui-group that can be instantiated as a top-level form or as a subobject of another ui-
group. A Ui-form-class is typically instantiated as a top-level form. When displayed, it is automatically
created inside a stand-alone window with a border and a title bar. A ui-form-class instance, when a top-level
form, ignores the value of its measurement property: Its x-offset, y-offset, width and height properties are
pixel values. However, setting the measurement property of a top-level form is very useful since the
measurement property value of its children widgets is directly derived from their parent form.

Inherit-from: ui-group

Note: For efficiency purposes, if the developer wishes to define a form that will only be instantiated as a
subobject of another form, it is recommeded to use ui-subform-class instead of ui-form-class. Refer to the
GUI Base Classes reference manual.

Use or duplication of this information is subject to the restrictions on page ii of this document. 118

Top-level form’s y-offset

Top-level
form’s height

Top-level form’s x-offset

Top-level form’s width

Instance of ui-action-button-
class (Inherits from ui-widget)

Height

Width

Screen

X-offset

Y-offset

Top-level form’s y-offset

Top-level
form’s height

Top-level form’s x-offset

Top-level form’s width

Instance of ui-action-button-
class (Inherits from ui-widget)

Height

Width

Screen

X-offset

Y-offset

Figure 21

A top-level form is a parent (superior) to a group of components and other forms. Figure 21
shows a form with only one component. Below is the source code that defines its class and
instantiates it as a subobject of the layout instance “(the interface forms)”. Please refer to
“Layouts” later in this section.

(define-class test-form-class
 :inherit-from(ui-form-class)
 :properties(
 label “Ui-form-class Instance”
 x-offset 300
 y-offset 200
 width 300
 height 300
 measurement ‘percentage
)
 :subobjects(
 (button :class ‘ui-action-button-class
 x-offset 40
 y-offset 40
 width 50
 height 10
)

;; when not specified, the measurement property is derived
;; from the superior.

)
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 119

AML> (add-object (the interface forms) ‘test-form ‘test -form-class)
#<TEST-FORM-CLASS @ #x21c6b3fa>
AML> (display (the interface forms test-form))
T

Please refer to the class hierarchy tree of the GUI base classes reference manual for available component
and form classes. The manual contains description of the purpose and behavior of all instantiable widgets as
well as source code examples.

6.1.2 Layouts
A well-designed AML application should separate its GUI object tree from the model tree. An AML
application developer should group its top-level forms in layouts. A layout of class ui-layout-class is
typically instantiated as a subobject of the existing “(the model-manager inteface)” object. “(The model
manager interface)” is defined with the purpose of being the parent of all GUI layouts.

Example

Given that application-form1-class, application-form2-class… are application form classes defined by the
application developer, below is an example of defining and instantiating a layout.

(define-class missile-design-system-layout
 :inherit-from(ui-layout-class)
 :properties(
 ;; new developer defined properties
 screen-size (get-screen-size)
 viewport-x-offset 10
 viewport-y-offset 20
 viewport-width (- (first ^screen-size) 20)
 viewport-height (- (second ^ screen-size) 20)
)
 :subobjects(
 (form1 :class ‘application-form1-class
 x-offset ^^viewport-x-offset
 y-offset ^^viewport-y-offset
 width 500
 height 500
 label “Form 1 version 1”
)
 (form2 :class ‘application-form2-class
 x-offset ^^viewport-x-offset
 y-offset ^^viewport-y-offset
 width 500
 height 500
 label “Form 2 version 1”
)
 …etc
)
)
(add-object (the interface) ‘missile-design-layout ‘missile-design-layout-class)
(display (the interface missile-design-layout form1))
…etc

Refer to the classes: ui-layout-class, ui-form-class and the methods display, hide, raise and update in the
GUI base classes reference manual.

Use or duplication of this information is subject to the restrictions on page ii of this document. 120

6.1.3 Box Model Example
The following example shows a box model managed by a form. Thanks to the apply-action,
cancel-action, ui-apply-button-class, ui-action-button-class features, as well as the AML
dependency mechanism, building a user interface to manage a model does not necessarily require
the definition of specialized methods or functions.

In the following example, the box-model-form requires the existence of a current model of class
box-model.

The apply button applies the widget values of the form to the box model properties, i.e. no
change is made to the box model unless the apply button is pressed. The cancel button resets the
widget values of the form to the current property values of the box model, i.e. to the values that
were last applied. The form can be a subobject of any ui-layout-class instance (see ui-layout-
class). For the sake of this example, it will be instantiated as a subobject of “(the model-manager
interface forms)”.

(define-class box-model
 :inherit-from(box-object)
)

(define-class box-model-form-class
 :inherit-from(ui-form-class)
 :properties(
 ;; Property created to keep a pointer to the box m odel
 ;; being modeled.
 ;; Note: The function root-object does not establi sh any
 ;; dependency, therefore the current-model propert y needs
 ;; to be smashed whenever the root object changes
 current-model (let* ((current-model (root-object))
)
 (when (typep current-model ’box-model)
 current-model))
 x-offset 50
 y-offset 50
 height 280
 width 250
 label "Box Model"
 measurement ’percentage ;; This is the default for mula anyway
)
 :subobjects(
 (bdepth :class ’ui-labeled-field-class
 x-offset 0 y-offset 0 width 100 height 10
 label "Depth"
 content (if ^^current-model (the depth (:from ^^ current-model))
 "N/A")

apply-action (when ^^current-model
’(change-value
(the depth (:from ^^current-model))
(get-value (the superior))))
cancel-action ’(smash-value ^content)
)

 (bheight :class ’ui-labeled-field-class
x-offset 0 y-offset 10 width 100 height 10
label "Height"

 content (if ^^current-model
 (the height (:from ^^current-model)) "N/A")

apply-action (when ^^current-model
 ’(change-value

(the height (:from ^^current-model))
(get-value (the superior))))
cancel-action ’(smash-value ^content)

)

Use or duplication of this information is subject to the restrictions on page ii of this document. 121

 (bwidth :class ’ui-labeled-field-class
 x-offset 0 y-offset 20 width 100 height 10
 label "Width"
 content (if ^^current-model
 (the width (:from ^^current-model)) "N/A")
 apply-action (when ^^current-model
 ’(change-value
 (the width (:from ^^current-model))
 (get-value (the superior))))
 cancel-action ’(smash-value ^content)
)
 (solid? :class ’ui-toggle-button-class

x-offset 0 y-offset 30 width 100 height 10
label "Solid"
status (when ^^current-model
 (the solid? (:from ^^current-model)))
apply-action (when ^^current-model

’(change-value
(the solid? (:from ^^current-model))
^status))

 cancel-action ’(smash-value ^status)
)
(render :class ’ui-radio-buttons-class
 x-offset 0 y-offset 40 width 100 height 10

 labels-list ’("Wire" "Shaded" "Isoline")

 status (when ^^current-model
 (case (the render (:from ^^current-model))
 (’boundary 0)
 (’shaded 1)
 (’isoline 2)))
 apply-action (when (and ^^current-model ^status)
 ’(change-value
 (the render (:from ^^current-model))
 (nth ^status (list ’boundary ’shaded ’isolin e))))
 cancel-action ’(smash-value ^status)
)
 (apply :class ’ui-apply-button-class
 x-offset 0 y-offset 90 width 25 height 10
)
 (cancel :class ’ui-cancel-button-class
 x-offset 25 y-offset 90 width 25 height 10
 update-form? t)
 (draw :class ’ui-action-button-class
 x-offset 50 y-offset 90 width 25 height 10
 label "Draw"
 button1-action (when ^^current-model
 ’(draw ^^current-model))
 button3-action (when ^^current-model
 ’(undraw ^^current-model))
)
 (close :class ’ui-action-button-class
 x-offset 75 y-offset 90 width 25 height 10
 label "Close"
 button1-action ’(hide (the superior superior))
)
)
)

;; The following is a sample function to instantiat e the form and display it or
;; to display it only if it has already been create d. This function can be modified
;; by the developer to allow other parameters for t he form properties

(defun display-box-model-form (box-model)
 (let* (
 (layout (the interface forms))
 (form (or
 (the box-model-form (:from layout :error nil))
 (add-object layout ‘box-model-form ‘box-model-f orm-class)
))
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 122

 (when form
 (change-value (the current-model (:from form)) bo x-model)
 (display form))
)
)

;; To create the model and display the form:
(create-model ‘box-model)

(display-box-model-form (root-object))
;; The function root-object returns the current mod el which is the box-model
;; we just created.

6.1.4 Optional Exercise
As an exercise that combines both ui-base-classes and ui-advanced-classes techniques, define and
instantiate the form in Figure 22 to interface the missile-data-model-class model. Figure 22 also shows the
class of the different widgets on the form.

Hints:

1- The class ui-model-tree’s main input property is root-object that should point to the missile model
instance.

2- The class ui-model-tree’s main output property is selected-item that always hold the instance of the
user selected object. (i.e. the object that the user selected by a mouse left-click)

3- The class ui-multiple-property-subform-class does not require the existence of a data-model-node-
mixin. It only needs a list of current property objects specified in the property property-objects-list.
Refer the Model Interface Manual for a description of the format of property-objects-list and an
example.

4- Use the ui-model-tree’s button1-action to assign the current property-object-list of the ui-multiple-
property-subform-class.

Use or duplication of this information is subject to the restrictions on page ii of this document. 123

5- The class ui-apply-button-class relies on the property apply-form to be linked to the form/subform
it should apply.

6- The class ui-cancel-button-class relies on the property cancel-form to be linked to the
form/subform it should reset.

7- If any modification occurs in the model, the method update should be called on the form in order
to reflect the change.

8- The ui-graphic-control-form-class should point to the instance of ui-canvas-class in order to
activate it. Each canvas needs to be activated to become the current-display. The canvas can also
be programmatically activated using the method activate-display after displaying the form. Refer
to ui-canvas-class in the GUI Base Classes manual.

Note:

1- It is usually not efficient to create one instance of ui-multiple-property-subform-class with a
property-objects-list that gets extensively modified at runtime because this leads to a lot of widget
recreation and deletion. However, this will be accepted for the sake of this exercise.

2- The functionality that this form provides the user with already exists (and more) with ui-data-
model-main-form, so defining it here is only for the sake of exercise.

Figure 22: Form showing the class names of its constituents

Ui-multiple-property-subform-class

Ui-model-tree

Ui-apply-button-class

Ui-cancel-button-class

Ui-message-field-class

Ui-radio-buttons-class

Ui-graphic-control-form-class

Ui-action-button-class

Ui-canvas-class

Ui-action-button-class

Use or duplication of this information is subject to the restrictions on page ii of this document. 124

7. Meshing and Analysis
Assuming the missile axis body component geometry has been created, an analysis portion of the
model can be created. In this section, the missile geometry will be “tagged” and “meshed” to
create input for a Nastran modal analysis. These concepts are explained in the following
sections.

� The AML/Patran interface, AML/Analysis interface, and the AML/Nastran interface are
not included in the standard AML release. They are additional AML modules that must
be loaded separately. Therefore this functionality is not documented in the AML
reference manual. These sections serve only as a portion of the systems’ documentation.

To perform the exercises in this section, you must have the analysis-module-
pack-type-2 module loaded .

Use or duplication of this information is subject to the restrictions on page ii of this document. 125

7.1 Attribute Tagging
The methodology of geometry attribute tagging and tag propagation allows resultant geometry
from a boolean operation to refer back to the tags attached to the original geometry. In the
context of meshing, attaching tag attributes to the geometry serves two purposes. The first
purpose is to control mesh refinement on individual parts of the resultant geometry. The second
is to provide the ability to query for mesh entities from the tagged geometry once the mesh has
been generated.

New AML Constructs

• tagging-object
• get-dimension-tags

TAGGING-OBJECT

The tagging-object implements geometry attribute tagging and tag propagation through geometric
operations. All geometric classes that inherit from this class will be tagged.

NOTE: The tagging-object must be the first element in the :inherit-from (...) list.

Properties:

id-tag An identifier used to associate geometry with the object. This value is
set by the system and should be only queried not set at this point. The
value is set after the geom property has been demanded. This value
should not be manually overwritten or changed.

tag-dimensions This determines which entities of the geometry is to be tagged. The
default nil means a solid object tags the solid, a surface tags the surfaces,
a wire tags the edges, and points tags points. If the value is a list '(0 1 2
3), all points, edges, surfaces, solids associated with a geometry will be
tagged.

tag-attributes Attribute list associated with the object. At present, these attributes are
used in the context of meshing. The list includes in order: maximum
edge size, minimum edge size, curvature refinement value (0 for off
2 for on), curvature approximation error (in a percentage), segment
value (0 for off 1 for on), segment size, and entity tolerance. Default
is '(0.25 0.0625 0 0.1 0 10.0 1.0e-5). By default, these attributes will be
applied to all tagged points, edges, faces, and solids associated with the
geometry. At the current release, only the maximum edge size
attribute is used. The others are reserved.

overwrite-other-tags? This property determines whether the object will use its own
tags or if it will use tags passed on to it. This is only relevant
for objects that get tags passed to them, for example, boolean

Use or duplication of this information is subject to the restrictions on page ii of this document. 126

objects, sweep objects, geom-copy objects, sub-geom objects,
etc. Hence if this property is set to t for a geom-copy-object, its
geom will have its own tags, and if it is nil, its geom will have
the tags of the source object. Note that even if it is set to t, only
the tags on sub-geoms of dimensions included in the tag-
dimensions property will be overwritten.

GET-DIMENSION-TAGS [Method]

This method returns a list of tag attributes for all entities tagged on the geometry with a certain
geometric dimension (1D, 2D, or 3D).

Format:

(get-dimension-tags object dimension)

Arguments:

object Instance of type tagging-object.

dimension Integer value of 1, 2, or 3.

Example:

(define-class tag-example-class
 :inherit-from (object)
 :properties (
 min-box-elem-size 0.06
 min-cyl-elem-size 0.03

 box-tags (get-dimension-tags ^box 1)
 cylinder-tags (get-dimension-tags ^cylinder 1)
 union-tags (get-dimension-tags ^box-cyl-union 1)
)
 :subobjects (
 (box :class '(tagging-object box-obj ect)
 tag-dimensions '(1 2)
 tag-attributes (list ^^min-box- elem-size .1
 0 0.1 0 20 .0 1.0e-5)
)
 (cylinder :class '(tagging-object cy linder-object)
 diameter 0.3
 tag-dimensions '(1 2)
 tag-attributes (list ^^min -cyl-elem-size .1
 0 0.1 0 20.0 1.0e-5)
 orientation (list (tran slate '(0 0 1.5)))
)
 (box-cyl-union :class '(tagging-obje ct union-object)
 object-list (list ^ box ^cylinder)
 tag-dimensions '(1 2)
 overwrite-other-tags? nil
)
)
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 127

> (create-model 'tag-example-class)
#<TAG-EXAMPLE-CLASS @ #x233375fa>
> (the box-tags)
((20073039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20074039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20075039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20076039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20077039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20078039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20079039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20080039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20081039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20082039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20083039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20084039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0))
> (the cylinder-tags)
((20085040 0.03 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20086040 0.03 0.1 0 0.1 0 20.0 10.0e-6 0))
> (the union-tags)
 ((20086040 0.03 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20073039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20074039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20075039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20076039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20077039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20078039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20079039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20080039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20081039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20082039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20083039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20084039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
 (20085040 0.03 0.1 0 0.1 0 20.0 10.0e-6 0))
> (change-value (the box-cyl-union overwrite-other- tags?) t)
T
> (the union-tags)
((20087041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
 (20088041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
 (20089041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
 (20090041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
 (20091041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
 (20092041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
 (20093041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
 (20094041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
 (20095041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
 (20096041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
 (20097041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
 (20098041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
 (20099041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
 (20100041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0))

The tag-union-example object illustrates tag propagation for the union of a box and a cylinder
and the use of element size refinement to refine the tags on the edges of the cylinder. Since the
overwrite-other-tags? property on the union is set to nil in the beginning, any edge tags passed
from the box or the cylinder to the union will not be overwritten by the tags set on the union.
Notice that once the overwrite-other-tags? property was changed to t, the union object’s tags
were used by the defaults given from the initial class definition of tagging-object. It is important
to note that this example must have the simplify? property in the box-cyl-union set to t because
the common face between the box and cylinder needs to be included in the model.

Use or duplication of this information is subject to the restrictions on page ii of this document. 128

7.2 Meshing
Meshing of a geometric model in AML is achieved through a single class, the patran-mesh-
interface-class. The geometry to be meshed is given to this object and it in turn creates the
necessary information to pass to the meshing process.

New AML Constructs

• patran-mesh-interface-class
• meshdb-class
• load-mesh
• draw-mesh
• logical-path entries for the :patran-meshdb-interface meshing system

PAVER-MESH-CLASS [CLASS]

This object is used to generate a mesh for a specified geometric object. After the mesh is
generated, the query objects described below can be used to retrieve nodes, edges, faces, and
regions from the mesh.

Properties:

object-to-mesh The geometric object which is to be meshed. Default is nil.

logical-path An entry in the logical path file which points to the path to
which all mesh files are written. Default is :meshes.

mesh When demanded, this property generates the mesh and returns t
when the mesh operation was successful.

solid-mesh? Determines if the mesh is a solid mesh or a surface mesh.
Default is t for a solid mesh.

MESHDB-CLASS [CLASS]

An instance of this class is a mesh database used to store mesh data generated by an instance of
the patran-mesh-interface-class.

Properties:

db-id An ID of the mesh database. This should not be set or changed
by the user.

db-name Name of the mesh database (string).

LOAD-MESH [Method]

This method retrieves the mesh data from the mesh files and adds objects under the paver-mesh-
class object which are used to display the mesh boundaries and edges.

Use or duplication of this information is subject to the restrictions on page ii of this document. 129

Format:

(load-mesh object)

Arguments:

object An instance of type paver-mesh-class.

DRAW-MESH [Method]

This method is used to visualize the mesh boundaries and edges.

Format:

(draw-mesh mesh-object [:visible? t] [:boundary? nil] [:shade? nil] [:update? nil])

Arguments:

visible? Keyword which determines whether the drawn mesh is visible or not.
Default is t.

edge? Keyword which determines if the mesh edges are drawn. Default is nil.

boundary? Keyword which determines if the faces on the boundary of the mesh are
drawn. Default is nil.

shade? Keyword which determines if the boundary faces of the mesh are
shaded. Default is nil.

update? This keyword determines whether the graphics window is updated once
the mesh has been drawn. Default is t.

Example:

(define-class mesh-example-class
 :inherit-from (object)
 :properties (
 min-box-elem-size 0.06
 min-cyl-elem-size 0.03
 box-tags (get-dimension-tags ^box 1)
 cylinder-tags (get-dimension-tags ^cylinder 1)
 union-tags (get-dimension-tags ^box-cyl-uni on 1)
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 130

 :subobjects (
 (box :class '(tagging-object box-object)
 tag-dimensions '(1 2)
 tag-attributes (list
 ^^min-box-elem-size
 .1
 0
 0.1
 0
 20.0
 1.0e-5
)
)
 (cylinder :class '(tagging-object cylinder- object)
 diameter 0.3
 tag-dimensions '(1 2)
 tag-attributes (list ^^min-cyl-elem-size
 .1
 0
 0.1
 0
 20.0
 1.0e-5)
 orientation (list
 (translate '(0 0 1.5))
)
)
 (split-cylinder-sheet :class 'sheet-object
 width (* 2 (the superior superior cylinder height))
 height (* 2 (the superior superior cylinde r diameter))
 orientation (list
 (rotate 90 :y)
 (translate (list
 0
 0
 (half ^width)
)
)
)
)
 (imprinted-cylinder :class 'geometry-with-s plit-periodic-faces-
class
 source-object ^^cylinder

)
 (box-cyl-union :class '(tagging-object unio n-object)
 object-list (list
 ^^box
 ^^imprinted-cylinder
)
 tag-dimensions '(1 2)
 overwrite-other-tags? nil
 simplify? nil
)
 (mesh-database :class 'meshdb-class
)
 (analysis-mesh :class 'paver-mesh-class
 mesh-database-object ^^mesh-database
 object-to-mesh ^^box-cyl-union
 solid-mesh? nil
)
)
)
AML> (create-model 'mesh-example-class)
#<MESH-EXAMPLE-CLASS @ #x22f43032>

Use or duplication of this information is subject to the restrictions on page ii of this document. 131

Use or duplication of this information is subject to the restrictions on page ii of this document. 132

7.3 Mesh Queries
Meshes can be filtered so that only certain portions of them are shown, along with their options
for being display. The different query objects facilitate this feature of AML.

New AML Constructs

• mesh-query-class
• write-data-file
• mesh-nodes-query-class
• mesh-elements-2d-query-class

MESH-QUERY-CLASS [Class]

All query objects inherit from mesh-query-class. This class should not be instantiated. It is only
documented to show the origination place of the common properties within the mesh queries.

Properties:

mesh-object Object of type paver-mesh-class containing mesh information.
Default is nil.

mesh-database-object Object of type meshdb-class containing the stored mesh
information. Default is nil.

tagged-object-list List of tagged objects from which mesh entities are to be
retrieved.

tag-dimensions-list Determines the type of mesh entity to be retrieved from the
objects specified in the tagged-object-list property. 0 for nodes,
1 for edges, 2 for faces, and 3 for solids.

MESH-NODES-QUERY-CLASS [Class]

This object can be used to retrieve nodes from the objects specified in the tagged-object-list
property.

Inherit-From:

 mesh-query-class

Properties:

num-nodes Number of nodes in the mesh query.

mesh-entities-list A list of the node ids in the mesh query.

MESH-ELEMENTS-2D-QUERY-CLASS [Class]

Use or duplication of this information is subject to the restrictions on page ii of this document. 133

This object can be used to retrieve mesh faces from the objects specified in the tagged-object-list
property.

Inherit-From:

 mesh-query-object

Properties:

num-elements Number of elements in the mesh query.

mesh-entities-list A list of the element ids in the mesh query.

type-list Set to '(:triangle :quad), specifying that triangular and
quadrilateral elements may exist in the surface query.

tag-dimensions-list Set to ‘(2) specifying that geometry entities of
dimension 2 are corresponding to the surface mesh
query.

Example:

(define-class mesh-queries-example-class

 :inherit-from (object)

 :properties (

 min-box-elem-size 0.06

 min-cyl-elem-size 0.03

 box-tags (get-dimension-tags ^box 1)

 cylinder-tags (get-dimension-tags ^c ylinder 1)

 union-tags (get-dimension-tags ^box- cyl-union 1)

)

 :subobjects (

 (box :class '(tagging-object box-obj ect)

 tag-dimensions '(1 2)

 tag-attributes (list ^^min-box-e lem-size .1

 0 0.1 0 20. 0 1.0e-5)

)

 (cylinder :class '(tagging-object cy linder-object)

 diameter 0.3

 tag-dimensions '(1 2)

Use or duplication of this information is subject to the restrictions on page ii of this document. 134

 tag-attributes (list ^^min-cyl-e lem-size .1

 0 0.1 0 20. 0 1.0e-5)

 orientation (list (translate '(0 0 1.5)))

)

 (split-cylinder-sheet :class 'sheet- object

 width (* 2 (the superior superior cylinder
height))

 height (* 2 (the superior superior cylinde r
diameter))

 orientation (list

 (rotate 90 :y)

 (translate (list

 0

 0

 (half ^width)

)

)

)

)

 (imprinted-cylinder :class 'geometry-with-s plit-periodic-faces-
class

 source-object ^^cylinder

)

 (box-cyl-union :class '(tagging-obje ct union-object)

 object-list (list ^^box ^^imprin ted-cylinder)

 tag-dimensions '(1 2)

 overwrite-other-tags? nil

 simplify? nil

)

 (mesh-database :class 'meshdb-class

)

Use or duplication of this information is subject to the restrictions on page ii of this document. 135

 (analysis-mesh :class 'paver-mesh-cl ass

 mesh-database-object ^^mesh-data base

 object-to-mesh ^^box-cyl-union

 solid-mesh? nil

)

 (box-elements :class 'mesh-elements- 2d-query-class

 tagged-object-list (list ^^box)

 mesh-object ^^analysis-mesh

 color 'magenta

 render 'boundary-shaded

)

 (cylinder-nodes :class 'mesh-nodes-q uery-class

 tagged-object-list (list ^^cylin der)

 mesh-object ^^analysis-mesh

 color 'green

)

)

)

Code Explanation

The box-elements and cylinder-nodes objects allow the user to view the respective portions of the
mesh from the analysis-mesh object. These can be used to specify various regions of a part
representing different materials or specific properties of a part.

Use or duplication of this information is subject to the restrictions on page ii of this document. 136

Exercise 3a

After a close review of the class definitions and AML constructs described in the previous
section, create a meshing model for the missile geometry used in exercise 3.

Two underlying classes need to be defined with tagging to ensure the appropriate tagging
properties will be propagated in the model; they are ‘(tagging-object open-truncated-cone-class)
and ‘(tagging-object open-cone-split-class). Create the ‘(tagging-object open-truncated-cone-
class) in order to provide a “tagged” counterpart to the open-truncated-cone-object. Create the
‘(tagging-object open-cone-split-class) such that it will embed an edge in the nose object
(essentially dividing it into two symmetric topological pieces) to ensure the meshing program can
automatically pave a mesh on the cone. Modify the missile-geometry-class to have three
properties to control each body component’s maximum element size as given in the tag-
attributes property. Create a missile-mesh-model-class to encapsulate a geometric entity to
mesh, a surface :hex mesh, along with element and node queries for each of the missile body
components.

Use the following Instance diagram as a guide to build the necessary classes.

Instance Diagrams for Exercise 3a
tagged-open-truncated-cone-class [tagging-object open-truncated-cone-object]

missile-general-body-radius
missile-nose-length
missile-nose-radius
missile-mid-body-length

tagged-open-cone-split-class [tagging-object imprint-class]

height
diameter
target-object
tool-object-list
splitting-plane [sheet-object]
cone [open-cone-object]

missile-geometry-class [object]

missile-general-body-radius
missile-nose-length
missile-nose-radius
missile-mid-body-length
missile-mid-body-radius
missile-aft-body-length
missile-aft-body-start-radius
missile-aft-body-end-radius
missile-nose-max-element-size
missile-mid-body-max-element-size
missile-aft-body-max-element-size
missile-coordinate-system [coordinate-system-class]
nose-coordinate-system [coordinate-system-class]

origin
reference-coordinate-system

nose [tagged-open-cone-split-class]
diameter
height
orientation
reference-coordinate-system
max-element-size
tag-dimensions
tag-attributes

Use or duplication of this information is subject to the restrictions on page ii of this document. 137

mid-body-coordinate-system [coordinate-system-class]
origin
reference-coordinate-system

mid-body [tagged-open-cylinder-object]
diameter
height
orientation
reference-coordinate-system
max-element-size
tag-dimensions
tag-attributes

aft-body-coordinate-system [coordinate-system-class]
origin
reference-coordinate-system

aft-body [tagged-open-truncated-cone-object]
start-diameter
end-diameter
height
orientation
reference-coordinate-system
max-element-size
tag-dimensions
tag-attributes

missile-mesh-model-class
nose-object
mid-body-object
aft-body-object
sewn-missile-body [sewn-object]

object-list
missile-body-mesh [patran-mesh-object]

object-to-mesh
element-shape
solid-mesh?

missile-nose-elements [patran-2d-mesh-entities-query-object]
tagged-object-list
mesh-object

missile-mid-body-elements [patran-2d-mesh-entities-query-object]
tagged-object-list
mesh-object

missile-aft-body-elements [patran-2d-mesh-entities-query-object]
tagged-object-list
mesh-object

missile-nose-nodes [patran-0d-mesh-entities-query-object]
tagged-object-list
mesh-object

missile-mid-body-nodes [patran-0d-mesh-entities-query-object]
tagged-object-list
mesh-object

missile-aft-body-nodes [patran-0d-mesh-entities-query-object]
tagged-object-list
mesh-object

missile-model-class

geometry [missile-geometry-class]
meshing [missile-mesh-model-class]

nose-object
mid-body-object
aft-body-object

Use or duplication of this information is subject to the restrictions on page ii of this document. 138

Exercise 3a Solution

(in-package :aml)

(define-class tagged-open-truncated-cone-class
 :inherit-from (tagging-object open-truncated-cone -object)
)

(define-class tagged-open-cone-split-class
 :inherit-from (tagging-object imprint-class)
 :properties (
 height 1.0
 diameter 1.0

 target-object ^cone
 tool-object-list (list ^splitting-plane)
 (splitting-plane :class 'sheet-object
 height ^^diameter
 width ^^height
 orientation (list (rotate 90 '(0 1 0)))
)
 (cone :class 'open-cone-object
 height ^^height
 diamter ^^diameter
)
)
)

(define-class missile-geometry-class
 :inherit-from (object)
 :properties (
 missile-general-body-radius 1.0

 missile-nose-length 2.0
 missile-nose-radius ^mi ssile-general-body-radius

 missile-mid-body-length 14. 0
 missile-mid-body-radius ^mi ssile-general-body-radius

 missile-aft-body-length 2.0
 missile-aft-body-start-radius ^mi ssile-general-body-radius
 missile-aft-body-end-radius 0.7 5

 missile-nose-max-element-size 0.1
 missile-mid-body-max-element-size 0.25
 missile-aft-body-max-element-size 0.25

)
 :subobjects (
 (missile-coordinate-system :class 'c oordinate-system-class
 origin (list 0.0 0.0 0.0)
)

 (nose-coordinate-system :class 'coor dinate-system-class
 origin (list (* 0.5 ^^missile-n ose-length) 0.0 0.0)
 reference-coordinate-system ^^miss ile-coordinate-system
)

 (nose :class ' tagged-open-cone-split-class
 height ^^missile-nose -length
 diameter (* ^^missile-n ose-radius 2.0)
 orientation (list
 (rotate -90 ' (0 1 0))
)
 reference-coordinate-system ^^nose -coordinate-system

Use or duplication of this information is subject to the restrictions on page ii of this document. 139

 max-element-size ^^missile-nose-ma x-element-size
 tag-dimensions '(1 2)
 tag-attributes (list ^max-element-size 0.06 25 0 0.1 0 10.0 1.0e-5 0)
)

 (mid-body-coordinate-system :class ' coordinate-system-class
 origin (list
 (+ (/ ^^missile -nose-length 2.0)
 (/ ^^missile -mid-body-length 2.0)
)
 0.0
 0.0)
 reference-coordinate-system ^^nose- coordinate-system
)

 (mid-body :class ' tagged-open-cylinder-object
 diameter (* ^^miss ile-mid-body-radius 2.0)
 height ^^miss ile-mid-body-length
 orientation (list
 (rota te 90 '(0 1 0))
)
 reference-coordinate-system ^^mid- body-coordinate-system
 max-element-size ^^missile-mid-bod y-max-element-size
 tag-dimensions '(1 2)
 tag-attributes (list ^max-element-size 0.06 25 0 0.1 0 10.0 1.0e-5 0)
)

 (aft-body-coordinate-system :class ' coordinate-system-class
 origin (list
 (+ (/ ^^missile-mid-body-
length 2.0)
 (/ ^^missile-aft-body-
length 2.0)
)
 0.0
 0.0)
 reference-coordinate-system ^^mid- body-coordinate-system
)

 (aft-body :class ' tagged-open-truncated-cone-class
 start-diameter (* ^^missile-af t-body-start-radius 2.0)
 end-diameter (* ^^missile-af t-body-end-radius 2.0)
 height ^^miss ile-aft-body-length
 orientation (list
 (rota te 90 '(0 1 0))
)
 reference-coordinate-system ^^aft- body-coordinate-system
 max-element-size ^^missile-aft-bod y-max-element-size
 tag-dimensions '(1 2)
 tag-attributes (list ^max-element-size 0.06 25 0 0.1 0 10.0 1.0e-5 0)
)

)
)

(define-class missile-mesh-model-class
 :inherit-from (object)
 :properties (
 nose-object nil
 mid-body-object nil
 aft-body-object nil
 (node-set :class 'analysis-node-set-class
 query-objects-list (list (the nodes-query (:fr om
^^missile-body-mesh)))
)
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 140

 :subobjects (
 (sewn-missile-body :class 'sewn-obje ct
 object-list (list
 ^^nose-object
 ^^mid-body-object
 ^^aft-body-object
)
)
 (imprint-sewn-missile-body :class 'geometry-with-s plit-periodic-faces-class
 source-object ^^sewn-missile-bo dy
)
 (mesh-database :class 'meshdb-class
)
 (missile-body-mesh :class 'paver-mesh-class
 object-to-mesh ^^sewn-missile-bo dy
 mesh-database-object ^^mesh-database
 element-shape :hex
 solid-mesh? nil
)

 (missile-nose-elements :class 'mesh-elements -2d-query-class
 tagged-object-list (list ^^nose-obj ect)
 mesh-object ^^missile-body-m esh
 color 'cyan
 render 'boundary-shaded
)

 (missile-mid-body-elements :class 'mesh-element s-2d-query-class
 tagged-object-list (list ^^mid-body -object)
 mesh-object ^^missile-body-m esh
 color 'yellow
 render 'boundary-shaded
)

 (missile-aft-body-elements :class 'mesh-element s-2d-query-class
 tagged-object-list (list ^^aft-body -object)
 mesh-object ^^missile-body-m esh
 color 'magenta
 render 'boundary-shaded
)

 (missile-nose-nodes :class 'mesh-nodes-query-cl ass
 tagged-object-list (list ^^nose-obj ect)
 mesh-object ^^missile-body-m esh
 color 'green
)

 (missile-mid-body-nodes :class 'mesh-nodes-quer y-class
 tagged-object-list (list ^^mid-body -object)
 mesh-object ^^missile-body-m esh
 color 'magenta
)

 (missile-aft-body-nodes :class 'mesh-nodes-quer y-class
 tagged-object-list (list ^^aft-body -object)
 mesh-object ^^missile-body-m esh
 color 'lightblue
)
)
)

(define-class missile-model-class
 :inherit-from (object)

Use or duplication of this information is subject to the restrictions on page ii of this document. 141

 :properties (

)
 :subobjects (
 (geometry :class 'missile-geometry-class

)

 (meshing :class 'missile-mesh-model-class
 nose-object (the nose (:from ^^geometry))
 mid-body-object (the mid-body (:from ^^geomet ry))
 aft-body-object (the aft-body (:from ^^geomet ry))
)

)
)

Code Explanation

Two underlying classes were defined to ensure the appropriate tagging properties are propagated
in the model. They are controlled through the max-element-size property on each instance of a
tagging-object which uses a the-reference to obtain a value given in the missile-geometry-class.
In the tagged-open-truncated cone-class, notice that tagging-object is specified first in the
inheritance list. This ensures the proper attribute tagging and propagation through the model as
Boolean operations are performed on the geometry. The tagged-open-cone-split-class needs to
be defined to embed an edge in the nose object to ensure the meshing program can automatically
pave a mesh on the cone. The meshing application fails without this embedded edge, thus
demonstrating the focus on preparing various representations of geometry and topology for the
meshing and analysis models. The tagged-open-cone-split-class uses an imprint-class to place
an edge in the parametric domain space of the cone. Internally, the meshing application needs to
have this in order to create a successful “paved” mesh.

The missile-mesh-model has three “pointer” properties that will be overwritten on instantiation to
point to the nose, mid-body, or aft-body respectively. This technique enables the ability to make
this class more modular and robust. The sewn-missile-body creates one piece of geometry that
contains all of the individually tagged entities to be passed to the meshing application. The mesh
is interfaced through the missile-body-mesh object which specifies a “hex” surface mesh. This
object manages all communication with the meshing application and organizes data for the
individual queries. The 0D and 2D queries respectively interrogate the mesh for the nodes and
elements corresponding within each tagged geometric object.

Use or duplication of this information is subject to the restrictions on page ii of this document. 142

7.4 Finite Element Analysis
The following AML code demonstrates a typical analysis model using the AML Nastran
Interface. It shows the typical classes used in an AML analysis such as interfaces with
NASTRAN, ANSYS, and LSDYNA. The analysis interfaces are based on a system called
:analysis-interface which is the core virtual layer to the various applications. The model is
created using classes/methods/functions from this system and classes exist within the various
application interfaces (e.g. :nastran-interface) that can interrogate the base analysis
classes/methods/functions for specific implementation.

New AML Constructs

• analysis-model-class
• material-catalog-class
• analysis-property-set-2d-type-1-class
• analysis-element-set-2d-type-1-class
• analysis load classes
• analysis constraint classes
• analysis-load-case-class
• nastran-analysis-class
• analysis-post-processing-structural-linear-static-nastran-class

ANALYSIS-MODEL-CLASS [Class]

This is the base class which manages communication and all interfaces with the analysis
application. All node sets, element sets, property sets, load cases (boundary conditions), analysis
types, and materials are specified in this class. When instantiated, application specific analysis
classes query the properties of this class to determine their respective interfaces to the AML
model.

Various analyses are available in the different application implementations. They are described
below with their corresponding AML keyword used in the analysis-type property of the analysis-
model-class, a description, and their corresponding analysis type in Nastran and Ansys:

AML Keyword Description Nastran
“SOL”

Ansys
“ANTYPE”

:modal Normal Modes Analysis (Frequency
Response)

103 2

:buckling Static Buckling Analysis 105 1
:linear-static Linear Static Structural Analysis

(Stress/Deflection)
101 0

:static-aeroelastic-
response

Static Aeroelastic Response
(Aero/Structural Coupling)

144 N/A

Properties

analysis-type Specifies the type of analysis to be performed. This is listed
in the AML Keyword column of the table above.

Use or duplication of this information is subject to the restrictions on page ii of this document. 143

mesh-object A reference to an instance of a patran-mesh-interface-class
(default nil)

material-catalog-object A reference to an instance of an material-catalog-class
(default nil)

load-case-objects-list A list of instances of load case objects which inherit from
analysis-load-case-class (default nil)

materials-list A list specifying the materials used within the instances of
the analysis-property-set-class (default nil)

property-set-objects-list A list of instances of property set objects which inherit from
analysis-property-set-class (default nil)

element-set-3d-objects-list A list of instances of solid element set objects which inherit
from analysis-element-set-3d-class (default nil)

element-set-2d-objects-list A list of instances of surface element set objects which
inherit from analysis-element-set-2d-class (default nil)

element-set-1d-objects-list A list of instances of bar/beam/rod element set objects
which inherit from analysis-element-set-1d-class (default
nil)

node-set-objects-list A list of instances of class analysis-node-set-class.

MATERIAL-CATALOG-CLASS [Class]

The AML analysis interface supports the use of a simple material catalog data file. The file is
written in XML format with tags for the attributes of the material. Following the format of the
sample data file below, the file can be customized to include any number of materials. The
:analysis-interface contains a sample material file named “materials.xml” and is referenced by
(system-resource :material-catalog "data" "materials.xml"). A portion of it is shown below.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="tsiMaterialC atalog.xsl"?>
<tsiMaterialCatalog xmlns:xsi="http://www.w3.org/2001/XMLSchema-instanc e"
xsi:noNamespaceSchemaLocation="tsiMaterialCatalog.x sd">
 <materialCatalogVersion>1.0</materialCatalogVers ion>
 <materialCatalogComments>Standard materials cata log</materialCatalogComments>
 <materials>
 <material name="steel" type="steel">
 <materialType>linear-elastic</materialType >
 <materialClass>isotropic</materialClass>
 <materialComments></materialComments>
 <materialProperties>
 <materialProperty name="elastic-modulus " value="2.973332E7" units="(lb (in -2))"
description="youngs modulus"></materialProperty>
 <materialProperty name="poissons-ratio" value="0.29" units="nil"
description=""></materialProperty>
 <materialProperty name="mass-density" v alue="0.28" units="(lb (in -3))"
description=""></materialProperty>
 <materialProperty name="shear-modulus" value="1.15245E7" units="(lb (in -2))"
description=""></materialProperty>
 </materialProperties>
 </material>
 <material name="aluminum" type="aluminum">
 <materialType>linear-elastic</materialType >
 <materialClass>isotropic</materialClass>
 <materialComments></materialComments>
 <materialProperties>
 <materialProperty name="elastic-modulus " value="1.06E7" units="(lb (in -2))"
description="youngs modulus"></materialProperty>

Use or duplication of this information is subject to the restrictions on page ii of this document. 144

 <materialProperty name="poissons-ratio" value="0.33" units="nil"
description=""></materialProperty>
 <materialProperty name="mass-density" v alue="0.098" units="(lb (in -3))"
description=""></materialProperty>
 <materialProperty name="shear-modulus" value="4.0E6" units="(lb (in -2))"
description=""></materialProperty>
 </materialProperties>
 </material>
 <material name="t300/5208" type="graphite/epo xy">
 <materialType>linear-elastic</materialType >
 <materialClass>orthotropic</materialClass>
 <materialComments></materialComments>
 <materialProperties>
 <materialProperty name="elastic-modulus -longitudinal" value="2.625E7" units="(lbf (in -
2))" description=""></materialProperty>
 <materialProperty name="elastic-modulus -lateral" value="1.494E6" units="(lbf (in -2))"
description=""></materialProperty>
 <materialProperty name="shear-modulus" value="1.04E6" units="(lbf (in -2))"
description=""></materialProperty>
 <materialProperty name="poissons-ratio" value="0.28" units="nil"
description=""></materialProperty>
 <materialProperty name="mass-density" v alue="1.6" units="(g (cm -3))"
description=""></materialProperty>
 <materialProperty name="ply-thickness" value="0.005" units="(in)"
description=""></materialProperty>
 </materialProperties>
 </material>
 </materials>
</tsiMaterialCatalog>

Properties

material-catalog-file-name A string containing the full path to the material file (default
(system-resource :material-catalog "data" "materials.xml"))

ANALYSIS-NODE-SET-CLASS [Class]

The analysis-node-set-class contains information a list of nodes queries. This class is used to
specify which nodes will eventually be used in an analysis by setting the node-set-objects-list
property on an instance of the analysis-model-class. Typically there will be one instance of
analysis-node-set-class per instance of patran-mesh-interface-class, and the query-objects-list
property of the analysis-node-set-class will simply contain a list of the single nodes-query
subobject of the patran-mesh-interface-class instance.

Properties

query-objects-list A list of instances of mesh-nodes-query-class.

ANALYSIS-PROPERTY-SET-2D-TYPE-1-CLASS [Class]

The analysis-property-set-class contains information about and specifies certain material
properties of a geometry representation of a part and is inherited (mixed) into all property set
classes. These properties depend on the type of geometry being defined. For example, sheet
metal could be represented using the analysis-property-set-2d-type-1-class. Each usage comes
with a set of specific assumptions. In the case of the analysis-property-set-2d-type-1-class, it is
assumed that the material is isotropic with a constant thickness. Other types of property sets are
available which have other material properties and assumptions (differentiated by the “type”
specified in the class name).

Use or duplication of this information is subject to the restrictions on page ii of this document. 145

Inherit From

analysis-property-set-class

Properties

material-catalog-object A reference to an instance of material-catalog-class. This
property comes from the analysis-property-set-class (default
nil)

material-name The name of the material given in the material catalog
(default nil)

thickness A number specifying the thickness of the material. The
thickness is assumed constant. (default 1.0)

ANALYSIS-ELEMENT-SET-2D-TYPE-1-CLASS [Class]

The analysis-element-set-class contains information about and specifies the element type
representing a portion geometry on a part and is inherited (mixed) into all element set classes.
These elements depend on the type of geometry being specified. For example, sheet metal could
be represented using the analysis-element-set-2d-type-1-class. These are also known as 2D,
“shell”, or “plate” elements. Each usage comes with a set of specific assumptions. In the case of
the analysis-element-set-2d-type-1-class, it is assumed that the element is either three or four
sided (tri or quad) in shape consisting of three or four nodes. The shape and number of nodes are
dictated by the elements derived from the corresponding mesh query. The material property
behavior of the elements is specified through the link to an instance of a analysis-property-set-
class. Other types of element sets are available which have other assumptions (differentiated by
the “type” specified in the class name).

Inherit From

analysis-element-set-class

Properties

property-set-object A reference to an instance of an analysis-property-set-class.
This property comes from the analysis-element-set-class
(default nil)

query-objects-list A list of references to instances of a mesh-query-class. This
property comes from the analysis-element-set-class. The
elements specified in these queries objects will be
represented in the analysis with the material properties
specified in the property-set-object. (default nil)

ANALYSIS LOAD CLASSES [Class]

A load in a finite element model could be force, moment, pressure, heat, magnetic flux, etc. This
class serves as a general class that is inherited into all other load classes. Several loading classes

Use or duplication of this information is subject to the restrictions on page ii of this document. 146

are available to represent various physical loading situations such as: analysis-load-force-nodal-
class, analysis-load-force-distributed-uniformly-nodal-class, analysis-load-moment-nodal-class,
analysis-load-force-distributed-class, analysis-load-moment-distributed-class, analysis-load-
force-distributed-1d-class, and analysis-load-pressure-2d-3d-class.

Properties

target-object A reference to an instance of a mesh-query-class. This
represents the region of the geometry where the load is
applied. (default nil)

load-vector A list of x, y, and z components of the load vector. For
example � (list 10.45 0.86 34.5) (default nil)

ANALYSIS CONSTRAINT CLASSES [Class]

A constraint in a finite element model constrains the model in some way such as restricting
motion in translation or rotation, or constraining two points to be coincident throughout the
simulation. This class serves as a general class that is inherited into all other constraint classes.
Two constraint classes are available to represent various physical constraint situations such as:
analysis-constraint-displacement-class and analysis-constraint-displacement-type-2-class.

Properties

target-object A reference to an instance of a mesh-query-object. This
represents the region of the geometry where the constraint is
applied. (default nil)

tx A number specifying the amount of translational
displacement allowed in the x-direction. (default nil)

ty A number specifying the amount of translational
displacement allowed in the y-direction. (default nil)

tz A number specifying the amount of translational
displacement allowed in the z-direction. (default nil)

mx A number specifying the amount of rotational displacement
allowed in the x-direction. (default nil)

my A number specifying the amount of rotational displacement
allowed in the y-direction. (default nil)

mz A number specifying the amount of rotational displacement
allowed in the z-direction. (default nil)

ANALYSIS-LOAD-CASE-CLASS [Class]

In finite element analyses, a part is often loaded and constrained in several combinations of
ways. Each combination represents a load case which consists of a set of loads and a set of
constraints. This class manages these boundary conditions.

Use or duplication of this information is subject to the restrictions on page ii of this document. 147

Inherit From

analysis-element-set-class

Properties

constraint-objects-list A list of references to instances of an analysis-constraint-
class. (default nil)

load-objects-list A list of references to instances of an analysis-load-class.
(default nil)

ANALYSIS-POST-PROCESSING-STRUCTURAL-LINEAR-STATIC-N ASTRAN-CLASS [Class]

This class produces post processing plots from a linear-static analysis in Nastran.

Properties

mesh-database-object Refers to an instance of meshdb-class.

mesh-query-objects-list A list of mesh queries on which post processing results will
be displayed.

analysis-interface-nastran-object Refers to an instance of nastran-
analysis-class.

NASTRAN-ANALYSIS-CLASS [Class]

This class manages all communication between an instance of an analysis-model-class and the
MSC Nastran software application, enables the writing of a bulk data file (deck), and enables the
running of Nastran.

Properties

analysis-model-object A references to an instances of an analysis-model-class. All
nodes, elements, properties, load cases (boundary
conditions), analysis types, and materials are obtained from
the object specified in this property. (default nil)

analysis-directory A string specifying the path to the directory where all files
relating to this analysis will be written. Default is (logical-
path :nastran-data ^model-name)

nastran-file-name A string specifying the file name of the file (deck) in which
the analysis data (cards) will be written. Default is (format
nil "~a.bdf" ^model-name)

data-file When demanded, this property will call a method that will
demand all information necessary to pass to the external
application and write the data file (deck) to the location
specified with the analysis-directory and nastran-file-name.

Use or duplication of this information is subject to the restrictions on page ii of this document. 148

run-nastran@ When demanded, this property will demand the data-file
property and run Nastran using the command given in the
nastran-command property with the specified data file
(deck). The default location for the command is (logical-
path :nastran-path "nastran").

Example

(in-package :aml)

(define-class analysis-geometry-test-class

 :inherit-from (object)

 :properties (

 simple-beam-width 20.0

 simple-beam-height 1.0

 loaded-node-coords (list (/ ^simple- beam-width 2.0)

 (/ ^simple- beam-height -2.0)

 0.0)

)

 :subobjects (

 (simple-beam :class '(tagging-object sheet-object)

 width ^^simple-beam-width

 height ^^simple-beam-height

)

 (fixed-edge :class '(tagging-object line-object)

 point1 (list (/ ^^simple-beam-wi dth -2.0)

 (/ ^^simple-beam-he ight -2.0)

 0.0)

 point2 (list (/ ^^simple-beam-wi dth -2.0)

 (/ ^^simple-beam-he ight 2.0)

 0.0)

)

 (loaded-point :class 'point-object

Use or duplication of this information is subject to the restrictions on page ii of this document. 149

 coordinates ^^loaded-node-coords

)

 (imprinted-simple-beam :class 'impri nt-class

 target-object ^^simple-beam

 tool-object-list (list ^^fixed-e dge ^^loaded-point)

)

)

)

(define-class analysis-mesh-test-class

 :inherit-from (object)

 :properties (

 geometry-model-object

 (default nil)

 (node-set :class 'analysis-node-set- class

 query-objects-list (list (the nodes-query (:from ^^simple-beam-mesh)))

)

)

 :subobjects (

 (mesh-database :class 'meshdb-class)

 (simple-beam-mesh :class 'paver-mesh -class

 object-to-mesh (the imprinted-si mple-beam

 (:from ^^geomet ry-model-object))

 mesh-database-object ^^mesh-data base

 element-shape :hex

 solid-mesh? nil

)

 (simple-beam-elements :class 'mesh-e lements-2d-query-class

 tagged-object-list (list

 (the simple-beam (:fr om ^^geometry-model-object))

Use or duplication of this information is subject to the restrictions on page ii of this document. 150

)

 mesh-object ^^simple-beam -mesh

)

 (fixed-nodes :class 'mesh-nodes-quer y-class

 tagged-object-list (list

 (the fixed-edge (:f rom ^^geometry-model-object))

)

 mesh-object ^^simple-beam -mesh

)

 (loaded-nodes :class 'mesh-query-nod es-from-interface-class

 interface-object (the loaded-point (: from ^^geometry-model-object)

)

 mesh-object ^^simple-beam-m esh

)

)

)

(define-class analysis-model-test-class

 :inherit-from (analysis-model-class)

 :properties (

 mesh-model-object (default nil)

 z-load (default - 100.0)

 geometry-model (default n il)

 analysis-type (default n il)

 load-case-objects-list (list ^loa d-case-1)

 materials-list (list 'ste el)

 element-set-2d-objects-list (list ^ simple-beam-elements)

 property-set-objects-list (list ^ simple-beam-properties)

 material-catalog-object ^material-ca talog

 mesh-object (the simple-beam-mesh (: from ^mesh-model-object))

Use or duplication of this information is subject to the restrictions on page ii of this document. 151

 node-set-objects-list (list (the node-set (:from ^mesh-model-object)))

)

 :subobjects (

 (material-catalog :class 'material-c atalog-class

)

 (simple-beam-properties

 :class 'analysis-property-set-2d-ty pe-1-class

 material-name "Steel"

 thickness 0.3

)

 (simple-beam-elements

 :class 'analysis-element-set-2d-typ e-1-class

 query-objects-list (list

 (the simple-beam-elements (:from ^^mesh-model-object)))

 property-set-object ^^simple-beam-p roperties

)

 (fixed-nodes-constraint

 :class 'analysis-constraint-displac ement-class

 target-object (the fixed-nodes (:from ^^mesh-model-object))

 tx 0.0

 ty 0.0

 tz 0.0

 mx 0.0

 my 0.0

 mz 0.0

)

 (nodal-load :class 'analysis-load-fo rce-nodal-class

 target-object (the loaded-nodes

 (:from ^^mesh-model -object))

Use or duplication of this information is subject to the restrictions on page ii of this document. 152

 load-vector (list 0.0 0.0 ^^z-load)

)

 (load-case-1

 :class 'analysis-load-case-class

 load-objects-list (list ^nodal-load)

 constraint-objects-list (list ^^fix ed-nodes-constraint)

)

 (nastran-interface :class 'nastran-a nalysis-class

 analysis-model-object ^superior

 nastran-file-name "SIMPLE-BEAM.b df"

 nastran-version (nth 2 '(:nei-nastra n :msc-nastran :nx-nastran))

)

)

)

(define-class post-processing-test-class

 :inherit-from (analysis-post-processing-structura l-linear-static-nastran-
class)

 :properties (

 mesh-model-object (default nil)

 analysis-model-object (default nil)

 mesh-database-object (the mesh-datab ase

 (:from ^mesh- model-object))

 mesh-query-objects-list (list (the s imple-beam-elements

 (:fr om ^mesh-model-object)))

 analysis-interface-nastran-object (the nastran-interface
 (:from ^analysis-model-object))

)

)

(define-class analysis-test-class

Use or duplication of this information is subject to the restrictions on page ii of this document. 153

 :inherit-from (object)

 :properties (

)

 :subobjects (

 (geometry-model :class 'analysis-geo metry-test-class

)

 (mesh-model :class 'analysis-mesh-te st-class

 geometry-model-object ^^geometry -model

)

 (analysis :class 'analysis-model-tes t-class

 analysis-type :linear-static

 mesh-model-object ^^mesh-model

)

 (post-processing :class 'post-proces sing-test-class

 mesh-model-object ^^mesh-mod el

 analysis-model-object ^^analysis

)

)

)

Use or duplication of this information is subject to the restrictions on page ii of this document. 154

Exercise 3b

Given the above example of the AML Analysis Interface, create an analysis model for a modal
analysis of the missile geometry and mesh given in Exercise 3a and add it as a subobject to the
missile-model-class. The model tree hierarchy should resemble the following figure.

The steps needed to running the Missile Analysis Model are given below:

In AML:

• Create a model of the missile-model-class
• Inspect, draw, modify the model as needed
• Demand (the analysis nastran-model run-nastran@) property to run the Nastran analysis.
This will automatically demand the geometry, mesh and appropriate queries and create a files
called nastran-model.xdb and nastran-model.bdf in the analysis directory. This file contains the
results of the analysis.

Use or duplication of this information is subject to the restrictions on page ii of this document. 155

Exercise 3b Solution

(in-package :aml)

(define-class missile-analysis-model-class
 :inherit-from (analysis-model-class)
 :properties (
 nose-mesh-query nil
 mid-mesh-query nil
 aft-mesh-query nil
 mesh-object nil

 ;;internal properties specific to the analy sis-model-class
 property-set-objects-list (list
 ^nose-property-set
 ^mid-property-set
 ^aft-property-set
)
 element-set-2d-objects-list (list
 ^nose-element-set
 ^mid-element-set
 ^aft-element-set
)

 load-case-objects-list nil

 material-catalog-object ^material-catalo g
 materials-list (list 'steel)

 analysis-type :modal
)
 :subobjects (
 (material-catalog :class 'material-c atalog-class
)

 (nose-element-set :class 'analysis-eleme nt-set-2d-type-1-class
 query-objects-list (list ^^nose-mesh-query)
 property-set-object ^^nose-property-set
)

 (mid-element-set :class 'analysis-elemen t-set-2d-type-1-class
 query-objects-list (list ^^mid-mesh-query)
 property-set-object ^^mid-property-set
)

 (aft-element-set :class 'analysis-element-s et-2d-type-1-class
 query-objects-list (list ^^aft-mesh-query)
 property-set-object ^^aft-property-set
)

 (nose-property-set :class 'analysis-prop erty-set-2d-type-1-class
 material-name "Steel"
 thickness 0.3
)

 (mid-property-set :class 'analysis-prope rty-set-2d-type-1-class
 material-name "Steel"
 thickness 0.3
)

 (aft-property-set :class 'analysis-property -set-2d-type-1-class
 material-name 'steel

Use or duplication of this information is subject to the restrictions on page ii of this document. 156

 thickness 0.3
)

 (nastran-model :class 'nastran-analysis-cla ss
 analysis-model-object ^superior
)
)
)

(define-class missile-model-class
 :inherit-from (object)
 :properties (

)
 :subobjects (

 (geometry :class 'missile-geometry-class

)

 (meshing :class 'missile-mesh-model-class
 nose-object (the nose (:from ^^geometry))
 mid-body-object (the mid-body (:from ^^geomet ry))
 aft-body-object (the aft-body (:from ^^geomet ry))
)

 (analysis :class 'missile-analysis-model-cla ss
 nose-mesh-query (the missile-nose-elements (:fro m ^^meshing))
 mid-mesh-query (the missile-mid-body-elements (:from ^^meshing))
 aft-mesh-query (the missile-aft-body-elements (:from ^^meshing))
 mesh-object (the missile-body-mesh (:from ^^ meshing))
 node-set-objects-list (list (the node-set (:from ^^meshing)))
)
 (post-processing :class 'analysis-post-processi ng-structural-normal-
modes-nastran-class
 mesh-database-object (the mesh-database (:from ^ ^meshing))
 mesh-query-objects-list (list (the nose-mesh-que ry
 (:from ^^analysis))
 (the mid-mesh-query
 (:from ^^analysis))
 (the aft-mesh-query
 (:from ^^analysis)))
 analysis-interface-nastran-object (the nastran-m odel
 (:from ^^analysis))
 nodes-quantity (get-number-of-nodes (the missile -body-mesh
 (:from ^^meshing)))
)
)
)

Code Explanation

The analysis model is generated and demonstrated with a Nastran interface object. For example,
an Ansys interface object could also be added very easily with a few lines of code, and the
complete analysis could be performed in Ansys without having to redo the analysis model!
Demanding the run-nastran@ property will demand all of the geometry, mesh, mesh queries,
materials, property sets, and element sets, needed to write the data file and run the analysis in
Nastran. Instructions are given to post process the model in MSC Patran. AML also has a
module for post processing including classes for extracting data from files, creating contour color
plots, vector plots, graphs, and animations. These are not covered in this manual.

Use or duplication of this information is subject to the restrictions on page ii of this document. 157

� Any change to the geometry or material properties (for example) will automatically
smash the mesh and analysis objects/properties so that all dependencies are
automatically managed. The model could now be used in conjunction with AML’s
optimization and design trade study analysis classes/tools to vary certain design variables
to obtain optimized objectives or explore the design space.

Use or duplication of this information is subject to the restrictions on page ii of this document. 158

8. Exporting and Visualizing AML models in XML form at

AMEnterprise is a web-enabled environment for
defining, managing, and publishing all aspects of an
engineering project. It is an integrated suite consisting
of: AMPublish, AMCentral, and AMViews, three
integral modules for publishing, managing, and
distributing complete product engineering data models.
Geometric as well as non-geometric data relevant to
product design details and associated processes can be
released and distributed for viewing and inspection
through a controlled-access environment.
AMEnterprise facilitates collaboration among
participants involved in a product engineering design.

AMCentral is a web application server providing
project and user management functions. It controls the
data flow among globally dispersed team members and
application tools. AMCentral manages the releases of
product and process data models. It provides key
functionality for project data warehouse access control,
version tracking, and data processing. AMCentral
manages, processes, and catalogues product and process
design changes. AMCentral provides key management
and control functionality that include the ability to:

• Access part and process models and data over the web
• Link evaluation requests to associated applications and process the requested changes
• Provide notification of change requests and approvals to owners and clients (workflow)
• Manage the repository of project data, results, and design logs
• Manage models and data access privileges
• Track activity and usage on user and project levels

AMViews is an XML based browsing and inspection environment. It provides access to the
AMCentral published products catalog to view and inspect available design alternatives from any
remote location. The AMViews browser features a 3D interactive part geometry inspector and a
customizable graphical user interface that can be exported from any AML-based application.
With AMViews, product models, process data, and analysis/simulation results can be viewed and
annotated, and alternative evaluation of parameters can be requested. AMViews key
functionality includes:

• Viewing and annotations of product models and process data
• Requesting the evaluation of alternative design parameters
• Evaluation and comparison of published design and process data alternatives

Use or duplication of this information is subject to the restrictions on page ii of this document. 159

AMPublish is a facility that allows the exporting of XML-based models from AML. It provides
the facility to capture and publish trade studies and simulation results. It enables the
documentation and annotation of a product and process design and provides the release of such
documentation in an XML-based part model. The XML exporting facility within the AMPublish
is customizable through a unique suite of AML based XML export methods. The AMCentral
web application server facilitates the management of these models. AMViews enables the
inspection and evaluation of the model alternative releases.

Portions of the AMPublish functionality can be accessed in AML through the :aml-xml and :xml-
parser systems. Loading the :aml-xml system will automatically load the :xml-parser system.
This section describes some of the functionality available to export AML models and supporting
data in XML format and visualize them with AMViews. The general concept involves
specifying a hierarchy of objects within a model and respective properties on those objects for
export into an XML standard format. The system allows the exporting of objects, subobjects,
properties, geometry, and supporting data such as data files (Ex. Excel, Word, Acrobat,
PowerPoint, Visualizations, etc.) to a compact and portable format.

Methods & Properties to define to export XML [Methods and Properties]

The following constructs can be defined as methods on a class or defined as properties within a
class to specify how the model will be exported. They are arranged with default behavior such
that all objects will be exported with their respective geometry if available. For each object that
is to be exported, add either a property or a method as given below:

Method/Property Name Default
Formula

Description

aml-xml-object-export? t Decides whether or not to export an object.
This can be t or nil.

aml-xml-object-exported-subobjects t List of subobjects to be exported. Three
options are available:
nil => Do not write out any subobjects
t => Go to each child and check the value
returned from its aml-xml-object-export?
property or method.
List of subobjects => Instances to be exported

aml-xml-object-exported-attributes nil List of property names to export in symbol
form.

aml-xml-object-export-geometry? t Decides whether or not to export an object’s
geometry. This can be t or nil.

The aforementioned methods/properties are most commonly defined. Other methods/properties
are available as shown below. If not defined, they will be called using the default formula given
in the table below.

Use or duplication of this information is subject to the restrictions on page ii of this document. 160

Method/Property Name Default Formula Description

aml-xml-object-name (object-name self) Name of object to be written.
This needs to be a symbol or a
string.

aml-xml-object-type (type-of self) Type of object to be written.
This needs to be a symbol or a
string.

aml-xml-object-description (the label :error nil) Description of object that
shows up as a tooltip for the
object in the tree. This needs to
be a string.

aml-xml-object-attribute-name (object-name
 attribute-object)

Define this method to write the
name of the attribute. This
needs to be a symbol or a string.

aml-xml-object-attribute-value (the (:from attribute-
object))

Define this method to write the
value of the attribute.

aml-xml-object-attribute-
description

(or
 (the aml-xml-object-
description
(:from attribute-object
:error nil
:relation nil))
 (the label (:from
attribute-object :error
nil
:relation nil)))

Define this method to write the
tooltip description of attribute.
This needs to be a string.

aml-xml-object-get-geometry-
ids

(list
 (list
 (get-geom (the))
 (the color)
 (the line-width)
 (the line-type)
 (the render))
)

This is used to collect geometry
for an object that will be written
to the geometry file if aml-xml-
object-export-geometry-file? is
true. This is a list of lists, each
list corresponding to geometric
information on a geom. Each
list is a list consisting of (geom-
id color line-width line-type
render). By default the method
returns a list of a list of the
object's: get-geom (or simple-
geom geom), color, line-width,
line-type, and render properties.

Use or duplication of this information is subject to the restrictions on page ii of this document. 161

AML-XML-OBJECT-EXPORT [Method]

Call this method on the object that will form the root of the XML model. This will write an
XML file (.xml) along with a geometry file (.xgl).

Format:

(aml-xml-object-export object xml-file-name
&key export-geometry?export-geometry-file-name aml-model-name
aml-model-file-name loaded-systems init-function)

Arguments:

Object An instance that will form the root of the XML model.

xml-file-name Full path and file name to the xml file. This should have a
.xml extension.

export-geometry? The default is set to t. If t, the method will write the .xgl
geometry file.

export-geometry-file-name The full path and file name to the geometry file. This
defaults to “file.xgl” if xml-file-name is “file.xml”.

aml-model-name Name of the model (used only as an ID). This defaults to
nil.

aml-model-file-name AML model path name that should be loaded to recreate this
XML model. This defaults to nil.

loaded-systems AML systems to be loaded before loading this model. This
defaults to nil.

init-function Initialization function that should be called before retrieving
the model. This defaults to nil.

Exporting Editable Attributes [Methods and Properti es]

When visualized and annotated in AMviews, a model can be queried and modified for off-line
collaboration and editing. If specified using the following methods or properties (written on
property-objects), these exported properties/attributes can be changed by the user and saved into
a new XML model. This new XML model can then be retrieved by an active AMcentral server,
executed with the new configuration and modifications and re-saved with the new results
obtained from the new configuration.

Method/Property Name Default Formula Description

aml-xml-object-attribute-type nil This will be used in the future
for option-properties,
application-types, etc.

Use or duplication of this information is subject to the restrictions on page ii of this document. 162

aml-xml-object-attribute-editable? nil If set to t, it writes the attribute
as editable, and a new value can
be specified within AMviews
for the attribute.

aml-xml-object-attribute-the-reference (find-tree (the)) This is written for editable
properties to enable the
automatic update of an AML
model with new values entered
through AMviews

Use or duplication of this information is subject to the restrictions on page ii of this document. 163

Exercise 11

Given the aforementioned methods, create an XML export model of the missile-model-class
given in exercise 3b. This will include the geometry, mesh, and analysis models of the missile.
The AMviews model hierarchy should resemble the following figure.

Export all of the geometry and objects in the hierarchy and specifically, export the following
attributes from their respective classes:

1)missile-geometry-class: missile-general-body-radius, missile-nose-length, missile-nose-radius,
missile-mid-body-length, missile-mid-body-radius, missile-aft-body-length, missile-aft-body-
start-radius, missile-aft-body-end-radius, missile-nose-max-element-size, missile-mid-body-max-
element-size, missile-aft-body-max-element-size
2)patran-mesh-object: object-to-mesh, element-shape, solid-mesh?
3)analysis-property-set-class: material-name, thickness

Create a method that exports the complete missile model for various configurations of the missile
and view the resulting XML models in AMviews.

Use or duplication of this information is subject to the restrictions on page ii of this document. 164

Exercise 11 Solution

(in-package :aml)

;;(load-system :aml-xml)

(define-method
 aml-xml-object-exported-attributes
 missile-geometry-class ()
 '(
 missile-general-body-radius
 missile-nose-length
 missile-nose-radius
 missile-mid-body-length
 missile-mid-body-radius
 missile-aft-body-length
 missile-aft-body-start-radius
 missile-aft-body-end-radius
 missile-nose-max-element-size
 missile-mid-body-max-element-size
 missile-aft-body-max-element-size
)
)

(define-method
 aml-xml-object-exported-attributes
 analysis-property-set-class ()
 '(
 material-name
 thickness
)
)

(define-method
 aml-xml-object-exported-attributes
 patran-mesh-interface-class ()
 '(
 object-to-mesh
 element-shape
 solid-mesh?
)
)

(define-method
 missile-xml-export
 missile-model-class (directory file-name-prefix)
 (aml-xml-object-export
 self
 (format nil "~a.xml" (logical-path directory fil e-name-prefix))
 :export-geometry? t
)
)

(define-method
 missile-xml-export-configurations
 missile-model-class
 (directory file-name-prefix property-object-to-var y property-variance-list)
 (loop
 for i from 1
 for prop-value in property-variance-list
 do (change-property-value property-object-to-va ry prop-value)
 (missile-xml-export self directory
 (format nil "~a-~d" file-nam e-prefix i))
)
)

Use or duplication of this information is subject to the restrictions on page ii of this document. 165

;;; (load-system :aml-xml)
;;; (create-model 'missile-model :class 'missile-mo del-class)
;;; (missile-xml-export-configurations
;;; (the)
;;; (logical-path :temp)
;;; "missile"
;;; (the geometry missile-mid-body-length self)
;;; '(15 20 25)
;;;)

Code Explanation

All of the objects in the AML model hierarchy are exported by default including the geometry
for any object which has geometry. To make the XML model more informative, various
properties and values from the geometry, mesh, and analysis are exported. These properties
describe the configuration of the missile model at the time of the export, thus creating a
configuration. Drawing the various objects in the hierarchy shows that geometry as well as mesh
information was exported and stored for that configuration. The analysis was not run during the
export process. This could have been accomplished simply by exporting the run-nastran@
property from the nastran-model object. Additionally, the data file deck generated for the
Nastran run could have been stored with the XML file for later use or verification. If AML was
used for post processing of this model, those results could have also been stored in the XML file
along with visualizations of the model. This is shown below in some sample screen shots.

Use or duplication of this information is subject to the restrictions on page ii of this document. 166

9. Additional Useful AML Constructs

The following AML constructs are mentioned to give the user insight into a portion of important
AML functions and methods not covered (or not covered in their entirety) in the AML Basic
Training class. At this point, the trainee should be able to use the AML Reference Manual for
further information on following AML constructs.

New AML Constructs

• select-object � query the model tree hierarchy
• get-object � interactively select an object from the screen
• change-value � change a property’s value
• change-formula � change a property’s formula
• get-formula � get a property’s formula without demanding the property’s value
• format � output to files, standard out, streams
• with-open-file � input/output to files
• inheritance-list � object’s inheritance history list
• object-name � returns the object’s name in symbol form
• read-from-string � takes a string and converts it to the corresponding AML entity
• debugging � functions such as trace, and using the * from the command prompt
• describe � runtime description of a function/method/class or an object
• apropos � query for a particular symbol in a function/method/class or an object defined in

the current AML session
• print-tree � view the tree in the AML editor
• find-tree � returns the symbol representation of the the reference
• trace-from � places the reference at the specified object
• i-depend-on � list of objects/properties that depend on the specified object
• i-affect � list of objects/properties that affect on the specified object

Use or duplication of this information is subject to the restrictions on page ii of this document. 167

10. After the AML Basic Training

10.1 Contacting TechnoSoft Inc.
The AML Basic Training course contains a considerable amount of information. Therefore the
trainee may have questions while working on an application after the training. Questions
specific to the following areas should be submitted to their respective email addresses.

Questions/Comments about: Email address:

AML specific to the training manual and
course

training-support@technosoft.com

Other AML functions/methods/classes customer-support@technosoft.com

Bugs in AML functions/methods/classes bugs@technosoft.com

AML reference manual (including
undocumented functions/methods/classes)

manual@technosoft.com

10.2 Advanced Training Topics
The advanced training course is given on a user-specific basis depending on their intended
application. The advanced course covers topics such as:

• advanced geometric classes and operations,
• the virtual geometry layer,
• advanced graphics and visualization,
• dimensioning and graphing,
• advanced user interface building,
• foreign function interactions,
• advanced debugging techniques,
• file input/output,
• data tables,
• writing advanced methods and functions,
• event classes,
• attribute tagging,
• meshing classes and querying,
• and other topics specific to the users' application.

11. Notes

