AML
Basic Training
Manual

//

EKTECHNOSOFI‘ INC.

TechnoSoft AML Basic Training

Manual:Version 3.06

Technaoft Inc.
11180 Reed Hartman Highway
Cincinnati, OH 45242

Copyright © 1992-2012 by TechnoSoft Inc.

All rights reserved.

No part of this publication may be reproduced,edan a retrieval system, or transmitted, in any
form or by means, electronic, mechanical, photosapyecording, or otherwise, without written
permission of TechnoSoft Inc. Information contaimedein is solely for your information and is
not offered or to be construed as a warranty otraotual obligation.

1.

2.

3.

6.

17

20

Introduction 1
1.1 Training Manual Organization, Syntax and Style 1
1.2 AML Introduction 1

1.2.1 AML Modeling 1

1.2.2 Why object-oriented Methodology? 1

1.2.2.1 Objects/Subobjects 2
1.2.2.2 Classes 3
1.2.2.3 Methods 5

1.2.3 How Can AML Enable a Developer? 5
1.3 Training Manual Syntax and Style 6

Missile Case Study — AML Modeling Practices and Geatry Creation 7
2.1 Explanation 7
2.2 The Final Geometry 8
2.3 The Missile Geometry Class with Coordinate Systems 9

2.3.1 Starting AML: 16

2.3.2 AML Text Editing with XEmacs:

2.3.3 Starting the AML user Interface:

2.3.4 Ending an AML session: 21
2.4 The Missile Geometry Class with Coordinate Systemsnd Components 24
2.5 The Missile Geometry Class with Parametrically Degined Components 33
2.6 The Missile Geometry Class with Optional Nose Type 42
2.7 Geometric Booleans Enhance the Missile Geometry Gla 53
2.8 Creation of a Fin Profile, Fin Extrusion, and Fin Array 61
2.9 Missile Geometry with a Fin Array and Material Properties 75
2.10 Final Missile Geometry and Mass Properties 83

Introduction to AML Graphical User Interface (GUIDesign 96
3.1 Preview 96
3.2 Automated Model Interface Design 96

4. AML Source Code Management (AML Systems) 105
5. Defining Functions and Methods 112
5.1 Defining Functions 112
5.2 Defining Methods 113

Low Level User Interface Design 116

6.1.1 Positioning and Sizing 116

6.1.2 Layouts 119

6.1.3 Box Model Example 120

6.1.4 Optional Exercise 122

Meshing and Analysis 124

7.

7.1
7.2
7.3
7.4

8. Exporting and Visualizing AML models in XML format

Attribute Tagging

Meshing

Mesh Queries

Finite Element Analysis

9. Additional Useful AML Constructs

10.

10.1 Contacting TechnoSoft Inc.
10.2 Advanced Training Topics

11.

After the AML Basic Training

Notes

125
128

132

142
158
166
167

167
167

1. Introduction

1.1 Training Manual Organization, Syntax and Style

This Manual is an introduction and overview to TeaBoft's Adaptive Modeling Language
(AML) for designers and engineers. TechnoSoft péghit for AML student/developer use in
conjunction with instructor lecture and hands-orreises covering AML applications. Like so
many software tools, hands-on experience makeséakaescriptions more meaningful. With an
instructor, students can ask questions and getasefeeded.

AML has many more facilities than those describedhis Manual. Once students master and
understand exercises included in this Manual, iiéybe better able to understand and use other
AML extensions given in the AML Reference Manuabtivelop their applications.

After covering an introduction to modeling, objenthitecture, and AML, the instructor will
introduce each exercise. After the instructoriglaxation, students should attempt to work the
exercise on their own. Anyone needing assistamee receive it from the instructor on an
individual basis.

1.2 AML Introduction

1.2.1 AML Modeling

Adaptive Modeling Language (AML) is a modeling lalage for concurrent engineering. AML
provides a paradigm for modeling and organizin@lvéngineering knowledge required for
integrating and automating entire engineering cy/flem design to production.

AML is based on the concept of object-oriented pragming. In object-oriented programming,
the building blocks of applications are objecteythare not procedures or functions. In this
introduction, the principles of object-oriented gramming and the advantages of the
methodology over traditional programming technig(@scedural, modular) are introduced.

1.2.2 Why object-oriented Methodology?

Most software today is designed and implementesbtee a certain problem. The programmer
starts by examining the task to be performed angldps a strategy to deal with the task using
subroutines and procedures that don't reflect tiysigal world. This makes code maintenance
quite difficult and inefficient. With object-oriéed programming, the programmer starts by
examining the aspects of the real world that nedzktmodeled in order to perform the task. The
models developed use objects that reflect the palysiorld. Because the structure of the object-
oriented software reflects the real world, conceafitation, maintenance, and modification of the
software can be easily performed.

Using object-oriented technology, one can consteuchodel of some aspect of a company’s
operation. The model reflects real world entittasl operations and can be used to solve a
number of related problems (reuse).

Object-oriented Methodology relies on the followimgchanisms or principles

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 1

* Objects

 Classes
¢ |Inheritance
« Methods

Understanding these mechanisms will lead to annsteleding of the object-oriented paradigm.

1.2.2.1 Objects/Subobjects

The basic building units of the object-orientedaagh are objects. An object, in this paradigm,
is a uniform representation of a real world entityn the object-oriented approach, the
programmer thinks in terms of physical world obgeahd the new data structures (objects) are
defined in terms of real world objects. Objects d@ thought of as data abstractions that
contain a collection of related data elements (priigps and sub-objects) and a set of procedures
(methods) that operate on the object elementseddbhave the following essential features:

» Obijects interact with one another; this is achielrganessage passing. Message passing in
AML is basically a call to a method that is asstadawith the object to be communicated
with. In AML an object can communicate with anatlobject by changing the value of an
attribute that is associated with the object tetm@municated with.

» Every object in the system has a unique ideni@pject identity is the property in the object
that distinguishes the object from all other olgeitt the system. In an object-oriented
system the object identity is unique and independethe value of the object attributes.

* In an object-oriented approach, the units of endagisn are objects. An object
encapsulates state information (data) and beh&pmrations). Operations are just a way of
changing the state of an object.

» If an object is logically related to one or morgealts, then there is an association between
the objects. Associations can be implemented uaitriputes or by using an object to
represent the association.

» It is possible to build composite objects. A comsip® object is one which consist of parts
which themselves are objects (object-subobjecttiogla For example a car is made of
doors, body panels, frame, windshields, etc., whad part is an object.

The following is an example of problem decompositighere the user is asked to build a model
of a desk using an object-oriented programminguagg. The user can break the problem up
according to Figure 1 where the desk has a topl plaftepanel, right panel, and a modesty panel.
After the objects that need to be modeled are ifiledithe user can start working on the model.

Simple part hierarchy (object-subobject)

Desk

Top Pane / \/Iodesty Pan

| Left Pane | Right Pane |

Figure 1

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 2

In the desk example, the panel objects are althHgithe same. It would be a waste of time and
effort to define each panel separately. It is mefecient to define a generic panel and
instantiate the generic panel to reflect the sthtespecific panel.

1.2.2.2 Classes

In the object-oriented paradigm the tool for cregthew data types is the class. A class can be
thought of as a template that is used to createctdbje.g., class is a recipe for making a cake,
while an object is a cake that was made usingabipe). The objects belonging to a particular
class are said to be instances of the class.

Classes allow objects to be defined in a very ifficmanner. The methods and variables for a
class are defined once, in the class definitiorachEinstance of the class contains the actual
value of the variables. The following conceptsessential to understanding classes:

A class defines the structural definition of inste® of the class. The class defines the names of
attributes (state) and methods (behavior) of araitijelonging to this class.

Classes are used to create objects (instancesla$s). An object belongs to exactly one class,
while a class can have a number of instances.

Inheritance is a very important mechanism for cldefnition. A class can be defined in terms
of existing classes establishing a superclass elas relationship. A subclass inherits the
attributes and operations of the superclass(esranddd attributes and operations. A subclass
can be thought of as a specialization of the slg&sc For example, assume that a user is to
model a number of cars (sedan, coupe, hatchbgckThese cars have the same basic features (4
wheels, front windshield, ...). To model the sgstthe user can define a superclass called
AUTOMOBILE that the rest of the classes inheritnfro The simple class hierarchy is illustrated
in Figure 2.

Simple class hierarchy (superclass-subclass)

(AUTOMOBILE)

(sepban] (HATCHBACK

Figure 2

A class can inherit from more than one class. Thigferred to as multiple inheritance. This is
the case when a class of objects has to play raltgdes. For example, a dolphin class can
inherit from fish class and mammal class. A foreroéa site may play a dual role, functioning
both as a supervisor and as a builder. When nheiliiineritance occurs a tree-like structure can
be developed to describe the class hierarchy (ggpee=3). This class hierarchy is important in
resolving conflicts; conflicts occur because sul@sses can have the same attribute and/or
operation names. The conflicts have to be resdbeddre generating the final class definition.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 3

Multiple inheritance, Dolphin has properties offFend Mammal

(MAMMAL]
/

(DOLPHIN j

Figure 3

In the Desk example, the programmer is likely teate a panel class that inherits from a BOX
class (assume that there is a predefined clasedc&8DX). All the panels will be object
instances of the panel class (all panels havedine $asic shape).

classPANEL
inherit-from BOX
properties

width 10.0
height 8.0
depth 1.0

The panel class can then be used to define thdspande desk.

classDESK
inherit-from
properties

subobjects
{left-panel classpanel
width ..
height ..
depth ...
orient appropriately
}
{right-panelclasspanel
width ..
height ..
depth ...
orient appropriately

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 4

1.2.2.3 Methods

In the object-oriented approach, the basic buildtarks are objects. The objects that make a
model need to communicate with one another byraalihethods (operation) that are associated
with the object to be modified. In object-orientesiminology objects communicate with one
another through messages. A message is simphetedving object combined with the name of
one of its methods. One of the advantages of usiethods is that they allow for name reuse
(overloading).

In AML a different class represents each kind adrgetric shape. Through overloading, the user
can use the same name for the drawing method iy elass. In AML, to draw a graphic object
all the user has to do is invoke draw on the objedie drawn. So to draw line-1 (line-1 is an
object of type line) the user invokes (draw linetb)draw an arc the user invokes (draw arc-1)
etc. So if the user defines a new class LENSud®er can define a draw method on the class.
This allows user defined classes to behave in #mesmanor as system defined classes. If
overloading was not available, then the user woddd to give a different operation name for
drawing objects of different classes. Thus, towdi line, the user may have a draw-line
operation, to draw an arc a draw-arc operation magguired and so on. Depending on the
object class, the user will then have to call thprapriate operation. Name reuse (overloading)
allows for the design of simple and elegant code.

1.2.3 How Can AML Enable a Developer?

TechnoSoft designed AML to support several spedifiections. AML provides an extended
modeling foundation that allows designers to ma@lednge of physical and non-physical factors
within a single AML model. For example, an AML n&ctan carry object and component costs
as object properties so designers can directlyriohte how design decisions affect costs. Also,
manufacturing processes can be included as obyatten AML models. Objects can have
properties linked together in complex dependenci#en a property of an object is changed,
AML automatically notifies all other properties agyent on that property so they are consistent
with the new value when re-demanded. AML can fats¥ model design parameters to software
packages outside AML. For example, a designerintnface a life cycle estimation software
package with his AML design to compute the pariticipated life as a property of the part. The
designer can interface the expected life propergy tost model.

AML includes the following functions to support dggers.

* An object architecture-modeling paradigm allowsigiesrs to model in familiar terms.
* Full supported and portable between UNIX and Wing@tforms (running natively)
* Single underlying object oriented architecture

* Open architecture for foreign applications’ seasiesegration

* Innate Ul builder

* Common syntax throughout the different modules

* Real time dependency tracking

* Demand driven computation

* Full support of IGES/STEP/DXF

» Support of various geometric Modelers with full rerbdompatibility

» Dynamic objects and model builder

* Mixed wireframe, surface, and solid modeling

» Automatic dimensioning and detailing

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 5

* Analysis modeling and meshing

* Activity based cost and operational modeling

* Model configuration management and visualization

» Distributed and collaborative modeling over a netwaf heterogeneous machines

In summary, AML is not limited to creating geomedli designs. AML is a highly usable design
tool that designers can address physical aspectmamfdesign as well as broader problems
related to physical design.

1.3 Training Manual Syntax and Style

The format and style of the text in this manual vépresent different things. Tlitalicized text

is used to differentiate AML code from English werdithin normal text. Example code is
represented with the following fonts:

Example code in courier font .
Return values from AML given in bold courier font.

This manual presents AML programming through a cdgdy. Each section of the case studies
has the following format:

» Title of the current step in the model creation,
» Brief explanation of the part model and its purpimsthe model,
* New AML constructs used in creating this model part
» Exercises and,
* Proposed solutions to the exercises with
e example code and
» code explanation.

v Special topics or statements are highlighted withaheckmark symbol.

Each new object or AML construct is explained, watkamples, before the code is given. The
code is developed step by step, making small asggtw finally complete a certain objective.
(Please note that the new AML constructs may haeeenproperties than are given in this
manual.) The files build upon each other, changilightly, while introducing new topics and
more efficient methodologies of programming in AMLL.is very important to create these files
in AML, and create the model while following alomgth the manual. Each file builds upon the
previous file, therefore minimal typing is involvedrhe best way to learn AML is to practice
writing and using AML. Follow along in the exampland focus on understanding each step
before moving on to the next exercise.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 6

2. Missile Case Study — AML Modeling Practices and Geometry
Creation

2.1 Explanation

The case study used in this manual shows the furaiity of AML through examples. The
study demonstrates the basic process by which ala®r/engineer solves a problem using
geometric reasoning and software integration wikhLA

The missile case study involves modeling a simpksite-like air vehicle. The training manual
shows class function and method syntax and usage with application to the missisigh
development. The goal is to produce a model thatdcbe used for simple design simulation,
analysis, and “producability” assessment. The ld@ez models the geometry of the missile and
learns how to integrate the geometry with othemelats of the design process. The training
manual and instructor give simple examples to aungitiese topics.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 7

2.2 The Final Geometry
Figure 4 shows the final geometry of the missilergetry model.

Final geometry

-

<

Figure 4

By the end of this case study, you will be ablecteate the geometry in Figure 4, set up a
parametric Finite Element Mesh and Analysis, plibtlee model in a standard format for light-
weight distributed modeling and visualization, mgmaource code, all enabling the automatic
design and analysis of this model in a matter obads!

The following sections develop each component @ rtfissile model (the coordinate systems,
nose, body section, aft section, fins), tag, mestglyze and publish the model for off-line
collaboration and visualization.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 8

2.3 The Missile Geometry Class with Coordinate Systems

Each missile component is positioned on the ovenabkile geometry using a coordinate system.
Figure 5 shows these coordinate systems in thail fiositions with respect to an overall missile
coordinate system. This overall missile coordinggstem serves as a base reference for the
entire missile geometry. For example, a user rakg this missile geometry and position it on an
airplane model using this coordinate system fafarence point.

Missile Coordinate Systems

NOSE—COCIa }INA‘IE—SYSTEM WMO-BC0Y-C i :R[]NATE—SYSTEM AFT—BODY—CY, i E INATE—S1STEM
Figure 5

Note that themissile-coordinate-systeis not labeled in Figure 5.

New AML Constructs

This section covers the AML construction syntaxdefining a class and/or object. In addition,
the following AML concepts and constructs are used:

* evaluating expressions
» list, quote,quoted lists
* object
» define-class
» specifying inheritance
» specifying properties
* specifying subobjects
» coordinate-system-class
* create-model
e starting and exiting AML
» overall model development procedures

Opening Comments

* AML is not case-sensitive.

» Data typing is not verified upon compilation in AMhut some data types are expected such
as a string, symbol, list, number, or an object.

* AML is both an interpreted and compiled language.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 9

EXPRESSIONS

AML uses prefix notation to evaluate expressiofi$iat means that the operator appears first
followed by the arguments. Evaluation of the argata occurs before the arithmetic operation.
This allows embedding of calculations within otleatculations, also known as nesting. AML
uses typical coding notations for multiplication,(division (/), addition (+), and subtraction (-).
Many other arithmetic, trigonometric, and vectodanatrix functions are available in AML.
Please see the AML Reference Manual for furtheudwmntation of these functions.

Examples:

AML>(- 1 2)

-1

AML>(* 3 4)

12

AML>(/ 4 -2)

-2

AML>(+ (-1 2) (*34))
11

The entire syntax for the last example above isxaression that returns the value of 11, and the
argumentg- 1 2)and(* 3 4) are expressions that return -1 and 12, respegtivighe arguments -
1 and 12 are also considered expressions whichnrétamselves.

LISTS

A list is a collection of elements. Examples stdiare: (1 2 3), (a b c), ("Bob" "Jim" "Steve"),
(1 a"Bob"). A list may be specified in any of ttudlowing three formats.

Format:

(list argl arg? ... argn)
or

(quote argl arg?2 ... argn)
or

‘(argl arg? ... argn)

Creating a list:

‘(1 2 3) and (list 1 2 3) both create a list camitag integer elements of 1, 2, and 3. However, the
two means of specifying the list are not identiddking the functiorlist ...) causes each

element in the list to be evaluated. When us{ng.), AML will not evalutate the elements
inside of the parenthesis. The exanfikt 1 2 3)returns the same result'és 2 3)because each
of the elements evaluates to themselves. The drdligp (* 1 2) (- 2 3) (+ 3 4))yeturns (2 -1 7)
because AML evaluated each element inside the list.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 10

Examples:

With p1 defined as 1,
p2 defined as 2,
p3 defined as 3,

AML> '(p1 p2 p3)

(P1P2P3)

AML> (list p1 p2 p3)

123)

AML> (list
(+plp2p3)
(-plp2p3)
(* p1 p2 p3)
(/ p1 p2 p3)

)
(6 -4 6 1/6)

Some list extraction and query functions afiest, rest, last, nth, and length

(first list)

(rest list)

(last list)

(nth index list)

(length list)

Note: nth returns the element in the list in the positiorafied by the index. The index of

the first element is O (zero). If the index goeydnd the length of the list, the result
nil is returned. The functiofirst returns the first element in the list. It is eguéent
to nthwith an index of O (zero).

Note: The functionsrest andlast both return lists.Restreturns everything except the first
element in the listLastreturns a list containing only the last elementhia list.

Examples:

AML> (first '(a b c))

A

AML> (rest '(abc))

(BC) o Note: This is a list.
AML> (last ‘(abc))

©) o Note: This is a list.
AML> (first (last '(a b c))

Cc

AML> (nth0'(abc))

A

AML> (nth1'(abc))

B

AML> (nth 1 (nth O (list '(1 2 3) "hello")))
2

AML> (nth 3'(abc))

NIL

AML> (length '(a b c))

3

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 11

OBJECT [Class]

Objectis the highest level class from which user-definkedses should inherit. While
developing AML source code, classes should notrinfrem any class that is a super-class of
object

Objectis primarily used to define classes which will hatve any associated geometry or graphic
representation. Often, this class is used to deafiasses which will be mixed with other classes
when defining objects. Most of the predefined stssin AML haveobjectas a super-class.

DEFINE-CLASS [Construct]

Define-classa fundamental AML construct, is used to desctfilmestructure of new classes. All
predefined and user-defined AML classes are defisay this construct, including those in the
user interface, meshing, and analysis moduleseoAML syntax. In anylefine-classthe
following may be specified:

1) The class or classes from which the new class dhoberit (superclasses). This is required
for all new class definitions.

2) The properties of the new class and their form(d#sibutes).
3) The subobjects of the new class (children).

The properties and subobjects given in the claBsitien add to those that exist in the
definitions of the classes super-classes. Praseaind subobjects from the super-classes will be
replaced (overwritten) if they have the same nasnang given in the new class definition.

Once defined using theefine-clasconstruct, instances of new classes can be cre&esiting
an instance is done using ttreate-modebndadd-objectcommands.Create-modeWill create
a new instance of the class and make that insthuec®p of a new model (root object of the
model). Add-objectis used to create an instance of a class as d@gabof an object that
already exists.

Format:
(DEFINE-CLASS class-name
sinherit-from ()
[:properties (property-specifications)]
[:subobjects (subobject-specification-lists)]

)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 12

Arguments:
class-name Any symbol giving the name of the diessg defined.
sinherit-from A list of predefined classes thissdanherits from.

‘properties A list of property specifications. Bagpecification may be a simple
property/formula pair or an object specificatiost kkcontaining the name,
class, and property/formula pairs for the propefdject.

:subobjects A list of subobject specification listsntaining the name, class, and
property/formula pairs for each subobject.

Notes:

* The class used in the specification for a subolgeet property object must be the name of a
pre-defined class he code will not compile if the class has not begreviously defined

» Using a class name as a subobject name or a pyapsrte can be confusing and should be
avoided.

» All properties and subobjects mustum@quely namedwithin the scope of a class definition.

Example:
(define-class EXAMPLE-SUBOBJECT-CLASS
:inherit-from (object)
:properties (
id "ousi12"
part-number 2.0

)

(define-class EXAMPLE-MODEL-CLASS
:inherit-from (object)
:properties (
model-name "Model For AML Basic Training"

:subobjects (
(sub-1 :class 'example-subobject-class
part-number 3.0

(sub-2 :class 'example-subobject-class
id "22184"
)

)

The subobjects refer to their “container objectttasr parent or superior. Theexample-
model-classs the superior ofub-landsub-2andsub-1andsub-2are condideredhildren of
example-model-class

Specifying Inheritance

Inheritance is a mechanism for class reuse. Thraugdritance, a class will have all of the same
properties, subobjects, and methods as the cléssieis inherits from (its superclasses). The
sinherit-from section of thelefine-classonstruct accepts a list of classes to be used as
superclasses. If a property, subobject, or meth@udsent in more than one of the superclasses,
the order of precedence is from left to right.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 13

Example:

(define-class MATERIAL-CLASS
:inherit-from (object)
:properties (
material '‘wood
density 0.0
)

)

(define-class EXAMPLE-SUBOBJECT-CLASS
:inherit-from (material-class)
:properties (

id "ous12"
part-number 2.0
material 'steel

)
)

(define-class EXAMPLE-MODEL-CLASS
:inherit-from (object)
:properties (
model-name "Model For AML Basic Training”

:subobjects (
(sub-1 :class 'example-subobject-class

part-number 3.0

(sub-2 :class 'example-subobject-class
id "22184"
material ‘aluminum

)

Specifying Properties

The optionatpropertiessection of thalefine-classonstruct is used to assign properties and

their associated formulas to classes. Propertigsh@apecified as a simple property/formula as
shown in thedefine-clasexample or as a property object specification I@rpd later in the
manual). The properties may be the names of nepepties to be added to the class or names of
properties that are in the superclasses. If theesare the same as those in superclasses they are
considered overriding properties. The property gjpations are used as the defaults during the
creation of instances.

v The formula of a property can be a function cakfmod call, any calculation, or simple

value that gets evaluated. These include functioman programs, or even making calls to
Fortran or “C".

Specifying Subobjects

The optionatsubobjectssection of thalefine-classonstruct must be a list of subobject
specifications. The subobjects are created asnossathat are children of the class being
defined. The form of the subobjects requires tiieiong format:

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 14

(subobject-instance-name :class class-to-be-inatadtproperty-specifications)

The subobject-instance-name is any symbol thatheitome the name of the instance that is
created from the specification. The class-to-b¢amsated may be any expression that evaluates
to a class name in symbol form.

The property specifications at the subobject levelexactly the same as tipeopertieslevel for
define-class

COORDINATE-SYSTEM-CLASS [Class]

Thecoordinate-system-claggovides a cartesian orthogonal reference framedén be used to
position other objects in a model. It adds a Wsibdicator of the coordinate frame position and
orientation and is used as a reference frame faratbjects (including oth@oordinate-system-
classobjects). Acoordinate-system-clagibject is drawn as a set of axes in the local ang z
directions; a box displaying x, y, and z; and thene of the coordinate-system-class object.
These components can be individually turned oftfie Z-axis Yector-R is assumed to be the
cross product ofector-iandvector-j

Properties:
origin The origin property specifies the positidrtte origin of thecoordinate-
system-clasebject. Defaults to '(0 0 0).
vector-i The direction of the x-axis of tle®ordinate-system-classDefaults to
'100).
vector-j The direction of the y-axis of tle®ordinate-system-classDefaults to
‘010).
Examples:

(define-class ANGLED-COORDINATE-SYSTEM-CLASS
:inherit-from (coordinate-system-class)
:properties (
origin ‘(3 1.03 6)
vector-i ‘(1 1 0)
vector-j ‘(-1 1 0)
)

)
(define-class SET-OF-COORDINATE-SYSTEMS-CLASS

:inherit-from (object)
:subobjects (

(coord-sys-1 :class 'coordinate-syst em-class
(coord-sys-2 :class 'angled-coordina te-system-class
(coord-sys-3 :class 'coordinate-syst em-class

origin '(120)

vector-i '(0 1 0)
vector-j '(-1 0 0)
)

)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 15

CREATE-MODEL [Function]

Create-model allows the user to create a new m@ughntiate a class) based on the class given
in the nameargument. This creates a model (an instance, lalswn as an “object”) of a
particular class. This instance becomes the cumadel, also known as the “root” of the tree.
In AML, all models are placed in a part hierarcligts that all user defined models are children
of themodel-manager Themodel-managehas one predefined subobject caile@rfacewhich

is the object where all of the AML user interfadgezts are stored. Thmodel-managers the
absolute root of all AML objects. To select theiwas user defined models, use the function
select-model

Format:
(CREATE-MODEL class-name)

Arguments:

class-name The name for the model being creategnnol form; the name must be
a valid pre-defined class name.

Examples:

(define-class MATERIAL-CLASS
:inherit-from (object)
:properties (
material '‘wood
density 0.0
)

)

AML> (create-model 'material-class)
#<MATERIAL-CLASS @ #x2224280a>

See Also:

select-model
delete-model

Starting AML, Text Editing, and Exiting AML

AML runs natively on both Unix and Windows platfasm TechnoSoft supports AML for Intel
based PC machines as well as Hewlett Packard, Silicpn Graphics, and IBM UNIX
machines. AML applications are totally portabléween the two platforms.

2.3.1 Starting AML.:

For the Windows based machines, double click orAtté& icon on the desktop (if available), or
find the AML Program Group from the Windows "Staft'Programs” | "AML" button. Options
are provided to start AML with XEmacs (typicallyrfdevelopment use) or from a standard

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 16

command prompt window (typically for run-time use)f the XEmacs option isj g
selected, the XEmacs application will start forttegiting purposes. Clicking or
the “Run AML” button will start the AML active comamd prompt buffer inside the==2
XEmacs environment.

2.3.2 AML Text Editing with XEmacs:

GNU XEmacs is a free, portable, extensible textoedi Free means that everyone may use and
redistribute it without a licensing fee. Portableans that it runs on many machines under many
different operating systems. Extensible means ybatcan customize all aspects of its usage
(key bindings, fonts, colors, windows and menusgchnoSoft has customized XEmacs to best
suite the AML syntax and has incorporated an acteenmand prompt in the XEmacs
environment.

Notation: This section uses standard XEmacs notation to idbeskeystrokes:

C-x X represents a key, depress both the congphbkd x at the same time.
M-x depress both the meta (also known as “Alt"Yy ked x at the same time.
C-M-x depress the control key, the meta key aatithe same time.

RET The return key.

SPC The space bar.

ESC The escape key.

Files, Buffers and Windows: XEmacs has three intimately related data structures

Files: A file is the actual file on disk. You are newtiting a file. Rather, you read a
copy into XEmacs to initialize a buffer and write@py of a buffer to a file to save it.

Buffers: The buffer is the basic editing unit. One bufferresponds to one piece of text
being edited. XEmacs can have any number of ffetive at any moment, but only a
single buffer selected. This is the buffer thauryaursor is in, and where typed
commands take effect. A Buffer is deletable anétitey a buffer does not delete the file
on disk (though you may lose any editing changesrgade if you do not save first).

Windows: A window is a view of a buffer. Due to limitedrsen space, all buffers may
not be viewed at once. You can split the screerizbntally or vertically, into as many
windows as you like and view a different bufferdach window. It is also possible to
have several windows viewing different portiongted same buffer. Deleting a window
in no way deletes the buffer associated with thedaw. Each window has its own
mode line, but there is still only one minibufféing minibuffer is described later).

Mode Line: The last line at the bottom of a buffer is an infiational, non removable mode
line. It displays important information including:

0 The state of the buffer: modified (a pair of aistes), unmodified (hyphens), or
read-only (a pair of % signs).

o0 The name of the file edited (*scratch* is a buffi@ailable for non file work).
0 The major mode (in parentheses).
0 The amount of the file seen on the screen:

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 17

All - The entire file.
Top - The top of the file.
Bot - The bottom of the file.

Percentage - NN% indicates the percentage of theakiove the top of
the window.

O O O O

The Minibuffer: The blank line below the mode line is the minibuff Emacs uses the
minibuffer to display messages. XEmacs also reguegiut from the user at the minibuffer (it
may want you to type yes or no in answer to a guesthe name of a file to edit, the long name
of a command, etc.).

Help: XEmacs has extensive online help, most of whichvesilable via the help kefz-h. C-h
is a prefix key. Type C-h twice to see a list obsommands; type it three times to get a window
describing all the subcommands.

Commands to Manipulate Files:

C-x C-fFind-file. Displays a file in a buffer for ediin Execution of this command
prompts for the name of the file. If that fileagailable in another buffer, it switches to
that buffer and does not actually read in theffiben disk again. If not, find-file creates
a new buffer named for the file, and initializesvith a copy of the file. In either case,
the current window becomes a buffer containingciv@ents of the requested file (or
current editing of that file). If no file exist#)e buffer is named after the file you
attempted to find and saving the buffer createdithe

C-x C-sSave-buffer. Saves a file. More accurately, itegra copy of the current buffer
out to the disk, overwriting the buffer's file andndling backup versions.

C-x w Save-buffer-as. Saves the current buffer to a fllee user is prompted for the
file's location.

Commands to Manipulate Buffers:

C-x b Switch-to-buffer. Prompts for a buffer name andtses the buffer of the
current window to that buffer. It does not chatfyewindow configuration. A new
buffer name creates a new empty buffer. The nefebis empty (even if the new name
corresponds to a filename).

C-xC-b List-buffers. Pops up a window that lists all larff and provides:
buffer-name, modification state, size in bytes,anapjode and the possible file the
buffer is visiting.

C-x k Kill-buffer. Prompts for a buffer name and remoties entire data structure for
that buffer from XEmacs. The command provides gmootunity to save a modified
buffer. Note that this in no way removes or deddtee associated file, if any.

Commands to Control Display:

C-v Scroll-up. Scrolls forward (towards the end of fite) a windowful or a
specified number of lines. By default XEmacs lesatveo lines of context from the
previous screen.

M-v Scroll-down. Just like C-v, but scrolls backwards.

Cl Recenter. Clears the screen and redisplays, isgythle location where the

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 18

cursor is residing to the vertical center of theeeo
C-x 1 Display Single Buffer.
C-x 2 Split screen horizontally.

Undoing Changes:

C-xu Undo. Undo editing, backward in time. XEmacs idiite undo ability, so
that even long chains of commands can be undortemaxs has redo capability
that allows for reverse direction while undoinggrgby undoing the undo.

Completion, Deleting and Killing:

To save typing, XEmacs offers various forms of clatipn: this means XEmacs tries to
complete partially typed file names, command namés, To invoke completion, try typing
TAB or SPC.

Emacs provides deletion commands based on thealeghjects above. Deletion means to
remove text from the buffer without saving it. Madeletion commands operate on small
amounts of text. Killing saves the removed texstorage. You can retrieve (referred to as
yank) the text at any time.

Characters and Lines

C-d Delete-char. Deletes the character after the curso

DEL Delete-backward-char. Deletes the character béffi@eursor.

C-k Kill-line. Kills to the end of the current linephincluding the new-line. Thus,
if you are at the beginning of a line, it takes t@«'s to kill the whole line and close up
the white space.

Yanking:

Yanking is an other term for retrieving killed texthis is what some systems call pasting. The
usual way to move or copy text is to kill it anethto yank it one or more times. You can kill in
one buffer, switch to another and yank the texteahelo get back previous kills, move around
the kill ring (stack). Start with C-y to get theost recent kill, and then use M-y to move to the
previous spot in the kill ring by replacing thetjyanked text with the previous kill. Subsequent
M-y's move around the ring, each time replacing yaeked text. Stop at the text of interest.
Any other command (a motion command, self-inseryttaing) breaks the cycling of the kill ring,
and the next C-y yanks the most recent kill again.

C-y Yank. Yank last killed text.
M-y Yank-pop. Replace re-inserted killed text with firevious killed text.

Searching:

Emacs has a variety of unusual and extremely paleséarch and replace commands.
Incremental search is the most important. Begitnaremental search by typing in a character.
As each additional character is typed, XEmacs famat$ shows where that string of characters is
found.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 19

C-s Isearch-forward. Incremental search forward.
C-r Isearch-backward. Incremental search backward.

To stop searching, either hit RET or type any otkEmacs command (which will both stop the
search and execute the command). Start the s&artihe next match by typing another C-s at
any point. Reverse the search by typing C-r. NMothe search by using DEL to delete and
change the character string.

Query Replace:

Query-replace (bound to M-%) is the most importaotnmand for replacing text. This
command prompts you for the text to replace, the te replace it with, and then searches and
replaces within the current buffer.

M-% string RET newstringRET

Query-replace is interactive: at each match, and prompt for decision what to do. The
following options are available:

SPC Replace the occurrence witewstring

DEL Skip the next occurrence without replacing tms.

RET Terminate query-replace without performing tieiplacement.
ESC Same as RET.

. (Period) Perform this replacement but then teat@nhe query-replace.

! Perform this replacement and all the rest inbiliéer without asking.
.Emacs file:

As XEmacs starts, it initializes by reading thenfaes” file. XEmacs loads any customizations,
such as macros, found in the file. The .emacgdileritten in the XEmacs Lisp language, which
is not to be confused with the AML.

References:

This section contains material taken from the Emat®rial (Copyright (c) 1985 Free Software
Foundation Richard M. Stallman. GNU Emacs Manu@lambridge, MA: Free Software
Foundation. The complete text is also availabléhenWWWw).

2.3.3 Starting the AML user Interface:

To start the AML user interface, tyaml) at the command prompt. The XEmac¢s
environment also has a button (shown at the ritfiat}) performs the same command. In@
addition to displaying the AML user interface, thisitton will also minimize the
XEmacs environment.

4" Menu: Technosoft - AML Yersion 4.0 -0l x|

Models Options Graphics Lawout Edit Help

AMLGUI

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 20

This function will bring up the AML menu header ahown above) which allows easy access
to AML models, layouts and other options when iatéing with a model.

2.3.4 Ending an AML session:
The user may end the AML session by two methods:

1. The @uit) function closes the complete AML application prexéncluding the command
prompt and the AML user interface. The editor remmeactive (without an active AML
command prompt buffer).

2. If the AML menu header bar is displayed, press "Bletl| "Exit AML", and then confirm
the exit. Note that this is the preferred mecharo$ exiting AML if the AML user interface
has been started.

Overall Model Development Procedure

The overall procedure in model development involhesfollowing steps:

e start the AML application,

» edit file(s) to make class definitions etc.,

» load the files into AML’'s memory

» start the AML user interface,

» choose a layout from the "Layout" pull-down menutioe menu header bar,
» instantiate the classes usicigate-modebr add-object

» and inspect/edit/manipulate the results in the Adtlvironment.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 21

Exercise 1

After a close review of the class definitions anilA constructs described in the previous
section, develop the class definition for the niésgeometry class only usimgordinate-system-
class Create a class called missile-geometry-classritihg fromobject The class should not
have any properties. It will have four instancés ocoordinate-system-clasdass. Specify the
origin property of each instance to position each coatdisystem instance along the x-axis with
a distance of 0.0, 1.0, 9.0, and 17.0 from thesile-coordinate-systemFigure 6 shows the
instance diagram for the desired hierarchy. Tlggested names for the class/subobjects are
given first and the class types are given in sqbaaekets [].

Instance Diagram for Exercise 1

missile-geometry-class | object]
missile-cqqrdinate-system [coordinate-system-class]
nose-cgé}%fi?late-system [coordinate-system-class]
mid-bog;-%fcl)qordinate-system [coordinate-system-class]
aft-bod)?-r;:gggrdinate-system [coordinate-system-class]
origin

Figure 6

Follow these steps to create the class and instetthe object:

» Start the AML application by double clicking on tA®IL icon,

* Open a new file for AML source code editing,

* Insert the lingin-package :amlpt the beginning of the AML source code file (thstructor
will explain this after the exercise),

» Define the class as specified above in the new file

e Save the file to the hard disk,

* Load the file into AML memory so that AML knows tlikefinition of amissile-geometry-
class

* Ensure that you have the appropriate AML inspecimerface forms displayed (Ex. Menu
Form | Layout | AML Main Modeling Form),

» Create an instance ofnaissile-geometry-claassingcreate-modeht the command prompt,

» Verify that the model tree is current and showsitis¢ance of anissile-geometry-clagsist
created,

* Inspect, draw, and modify the instance just cresébeshow some changes in the geometry
using the AML browsing interface.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 22

Exercise 1 Solution
(in-package :aml)

(define-class missile-geometry-class
:inherit-from (object)
:properties (

:subobjects (
(missile-coordinate-system :class 'c oordinate-system-class
origin (list 0.0 0.0 0.0)
)

(nose-coordinate-system :class ‘coor dinate-system-class
origin (list 1.0 0.0 0.0)

)

(mid-body-coordinate-system :class ' coordinate-system-class
origin (list 9.0 0.0 0.0)

)

(aft-body-coordinate-system :class ' coordinate-system-class
origin (list 17.0 0.0 0.0)
)

)

Code Explanation

The first line of any AML source code file must pe-package :aml). This function tells the
compiler to treat the following code as classeshoes$/functions organized under a certain
bundle of specialized AML functionality. An in-dépdiscussion ofpackagess beyond the
scope of this manual and can be covered in thenaedkatraining.

As specified with a standard class definition, thissile-geometry-clasmherits fromobject
Four coordinate system subobjects are defined witque names. Each of the subobjects is an
instance of acoordinate-system-claswith the origin property overwritten from the innate
definition of (0 O 0).

Notice that all classes in AML must inherit fronms® other class. These classes can be standard
classes that are innate in the AML class librarypie-defined user-defined classes. The user
may notice that some classes hav®hjector a—classsuffix. As AML evolves, new classes are
being added with aclasssuffix. The developer is encouraged to useckasssuffix when
defining his/her own classes.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 23

2.4 The Missile Geometry Class with Coordinate Systems and Components

Figure 7 shows the missile geometry with three comapits: a conical nose, a cylindrical mid-
body, and a truncated conical aft-body. The ne&eg & creating the missile geometry is to use
some of the innate geometric primitives in AML tepresent the missile’s thin-shelled body
components.

Missile Nose (Conical), Mid-Body, and Aft-Body

o JE—D
i
=]

LQ.OO ! 1400 — 200

Figure 7

100

—

Note: The missile body’s radius is 1.0 and thebafty’s exit radius is 0.75.

New AML Constructs

The following AML concepts and constructs are usetthis section:

* position-object

» graphic-object

* open-cone-object

* open-cylinder-object

* open-truncated-cone-object

» orientation functions

* keywords in constructs

* create-mode(using keywords)
* AML documentation

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 24

4 The following classesgfaphic-object and position-objgcare base component classes
which are inherited into classes that a user caplaly within a "display canvas". Each has its
own specific purpose and provides certain propertigt a user can manipulate in a subclass
such as changing an object's color, or the wag/riémdered.

POSITION-OBJECT [Class]

Theposition-objeciprovides the ability for objects to be orientegpace. All geometry is
created with its own local origin at the absolgkipal) origin,’(0.0 0.0 0.0) by default.

Properties:
orientation The list of orientation commands usegdsition the object (see section
on orientation)
GRAPHIC-OBJECT [Class]

All objects that have geometry and graphics assediaith them inherit frongraphic-object

Inherit-From:
position-object
Properties:
color The value may be a symbol, a string, or tadighree numbers between
0 and 1 specifying the red, green, and blue commsnef the color.
Default is“white” . Other examples afevhite, or‘(0.2 1 0.5)
display? When t, an instance of this class wilchpable of being drawn. When
nil, an instance cannot be displayed. Default t.
render ‘boundary for wireframe graphicsshadedfor a shaded representation,

and 'facet to connect the surface facets with lines. Othmiioas are
available such aboundary-shadedand'facet-shaded

line-width The width of the lines used to draw tigect.
line-type The style of the lines used to draw thgeot.

OPEN-CONE-OBJECT [Class]

An open-cone-objeds defined as an open ended hollow cone.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 25

Inherit-From:

graphic-object

Properties:
diameter The diameter of the end circle. Defadt O.
height The height is defined parallel to the z-akisfault 2.0.
OPEN-CYLINDER-OBJECT [Class]
An open-cylinder-objecis a open ended hollow cylinder.
Inherit-From:
graphic-object
Properties:
diameter The diameter of the cylinder. Default 1.0
height The height is defined parallel to the z-axiefault 2.0.
Example:
(define-class OPEN-COLUMN-CLASS
:inherit-from (open-cylinder-object)
:properties (
diameter 40.0
height 150.0
color ‘white
)
)
See Also:
pipe-object
OPEN-TRUNCATED-CONE-OBJECT [Class]
An open-truncated-cone-objeist defined as an open ended hollow frustum ofreeco
Inherit-From:
graphic-object
Use or duplication of this information is subjeetthe restrictions on page ii of this document. 26

Properties:

start-diameter The diameter of the start face & ttuncated cone located in the
negative z-direction space. Default is 1.0.

end-diameter The diameter of the end face of tnecated cone located in the positive
z-direction space. Default is 1.0.

height The height of the truncated cone. Defauk.0.

Orientation Functions

All objects which inherit fronposition-objecitan be oriented in model space. An object’s
orientation can consist of any combination of tfatiens and rotations. This orientation may be
“built-into” the object through its class definitipor applied to the object after instantiation
(creation) through the orientation form in the AMtaphical user interface.

The format of the orientation property is as follows:
orientation (list (operation-1 args)

(operation-2 args)

v The formula fororientationcannot be defined as a quoted list (*) becauseniot
evaluated in the same manner as other properties.

Consider the example of apen-cylinder-objectranslated and rotated away from its original
position.
(define-class example-cyl-class
:inherit-from (open-cylinder-object)
:properties (
orientation (list (translate '(5.0 0.0 0.0))
(rotate 45.0 '(0.0 1.0 0.0))
)

Theorientationproperty specifies that the cylinder should fisttranslated a distance of 5.0
along the x-axis (of the global coordinate fran#djer that, it is rotated by 45.0 degrees about
the y-axis, or the vector (0 1 0) of the global oate frame. The orientation operations are
built into the object, therefore any instance a$ thbject will be immediately transformed to the
new orientation on creation. Note that the ordethefoperations in orientation is important.
Reversal of the operations,

orientation (list (rotate 45.0 '(0.0 1.0 0.0))
(translate '(5.0 0.0 0.0))

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 27

will result in a different final orientation. Thientation functions can contain expressions
which will be evaluated when the object is creat&tus, to move thepen-cylinder-object
along the x-axis by a distance equal to twicgiéeneterand then rotate it, the following
orientation can be used usititg referencing (see next section for explanation):

orientation (list (translate (list (* 2.0 ~diame ter) 0.0 0.0)
(rotate 45.0 '(0.0 1.0 0.0))
)

Example:

(define-class example-cyl-object
:inherit-from (open-cylinder-object)
:properties (
orientation (list (translate '(5.0 0.0 0.0))
(rotate 45.0 '(0.0 1.0 0.0))
(translate '(2.0 1.0 0.0))
(rotate 25.0 '(0 0 1))

)

Keywords

Within both methods and functions, there are argumthat are not required at the time of the
functions execution. They simply have a defauitdition which they evaluate to in the event
that they are not provided by the user/develofiérese keywords help to maintain the ease of
programming in AML, without limiting its overall fictionality. When called in a method or
function, a colon : is placed before the keywohe, keyword is given and then the keyword's
argument is given. In the following example theentation commantranslatehas a keyword
calleddistancethat is called with a value of 3.158.

Example:

(define-class example-cyl-class

:inherit-from (open-cylinder-object)

:properties (
orientation (list (translate '(1.0 0.0 0.0) :dist ance 3.158))
)

CREATE-MODEL [Function]

As has been previously showateate-modeéllows the user to create a new model based on the
specified class. Now that the topic of keywords haen covered, this function is revisited to
demonstrate further capability availablecieate-model

Format:
(CREATE-MODEL name [:class class-name])

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 28

Arguments:

name A symbol describing the user defined naméhi®model being created.
If the class argument is not supplied, the nametrbasa valid class
name.

:class A symbol describing the class name. Thaulefalue for class is the

name. A valid class name is required.

Examples:

AML> (create-model 'model-1 :class 'object)
#<OBJECT @ #x2224280a>

This creates a model nameunbdel-1of classobject

AML Documentation

AML Reference Manual:

TechnoSoft encourages AML developers to use the ARdkerence Manual for questions about
AML syntax or class structure. For quick refereribe AML Reference Manual contains:

» atable of contents which separates the entire alavith respect to content,
* an index which separates AML constructs into

¢ General Constructs,

 Classes,

¢ Functions,

* And Methods.

Runtime Documentation:

AML has several methods of providing help whileast AML command prompt. In going
through this training manual, the AML developer nfayd the AML runtime documentation
functionality useful. TechnoSoft suggests using dipropos and describeat the command
prompt. aproposfinds all text in the current AML session that ntes a given symbol.
describeprints information about a given object.

AML>(describe ‘create-model)
CREATE-MODEL is a SYMBOL.

It is unbound.
It is EXTERNAL in the TechnoSoft package and acce ssible in the
Adaptive-Modeling-Language, CHISELS, and VirtualGeo metryLayer packages.
Its function binding is #<Function CREATE-MODEL>
The function takes arguments (NAME &KEY CLASS D ELETABLE? INIT-FORM)

AML>(create-model 'missile-geometry-class)
#<MISSILE-GEOMETRY-CLASS @ #x21ec4322>
AML>(expand (the))

NIL

AML>(describe (the))

DEFINE-CLASS PROPERTIES:

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 29

DEFINE-CLASS SUBOBJECTS:

MISSILE-COORDINATE-SYSTEM #<COORDINATE-SYSTEM-CLASS>
NOSE-COORDINATE-SYSTEM #<COORDINATE-SYSTEM-CLASS>
MID-BODY-COORDINATE-SYSTEM #<COORDINATE-SYSTEM-CL2S>
AFT-BODY-COORDINATE-SYSTEM #<COORDINATE-SYSTEM-CIIS>

NIL

AML>(apropos 'missile)

MISSILE
MISSILE-GEOMETRY-CLASS
MISSILE-COORDINATE-SYSTEM

v The trainee is encouraged to look in the AML refeee manual to view the

documentation on the various orientation commands.

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

30

Exercise 2

After a close review of the class definitions anilA constructs described in the previous
section, augment the class definition for the rfeésgieometry class using instances of
coordinate-system-classopen-cone-object open-cylinder-object and open-truncated-cone-
objectas subobjects in thaissile-geometry-classNote that Figure 8 shows properties that will
need to be changed in the various objects to nfakenissile geometry given in Figure 7. These
objects have more properties than shown here, Hrget are only the ones you will need to
change.

Instance Diagram for Exercise 2

missile-geometry-class | object]

missile-coordinate-system [coordinate-system-class]

nose-coordinate-system [coordinate-system-class]
origin

nose [open-cone-object]
diameter
height
orientation

mid-body-coordinate-system [coordinate-system-class]
origin

mid-body [open-cylinder-object]
diameter
height
orientation

aft-body-coordinate-system [coordinate-system-class]
origin

aft-body [open-truncated-cone-object]

start-diameter
end-diameter
height
orientation

Figure 8

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 31

Exercise 2 Solution
(in-package :aml)

(define-class missile-geometry-class
:inherit-from (object)
‘properties (

)
:subobjects (
(missile-coordinate-system :class 'c
origin (list 0.0 0.0 0.0)
)

oordinate-system-class

(nose-coordinate-system :class 'coor dinate-system-class
origin (list 1.0 0.0 0.0)
)

(nose :class 'open-cone-object

height 2.0

diameter 2.0

orientation (list
(rotate -90 ' (010))
(translate (I ist 1.0 0.0 0.0))
)

)

(mid-body-coordinate-system :class '
origin (list 9.0 0.0 0.0)
)

coordinate-system-class

(mid-body :class 'open-cylinder-obje ct
diameter 2.0
height 14.0
orientation (list
(rotate 9 0'(010)
(translat e (list 9.0 0.0 0.0))
)

)

(aft-body-coordinate-system :class '

coordinate-system-class

origin (list 17.00.00.0)
(aft-body :class 'open-truncated-con e-object
start-diameter 2.0
end-diameter 15
height 2.0
orientation (list
(rotate 9 0'(010)
(translat e (list 17.0 0.0 0.0))
)
)

Code Explanation

Note that thanissile-geometry-clagsow has several subobjects that have hard-codgubpres.

To change the geometric configuration of the mesghe user would have to individually inspect
each object and change the values, or the develep@ld have to create a user interface link to
each property in the various locations throughrniwelel. Also, most of the properties rely on
each other and should be parametrically linkechsauser/developer does not have to manage all
of the locations where the information is used.e@rstance of this can be seen in the missile's
radius controls the radii of the nose, mid-body #re start diameter of the aft-body.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 32

2.5 The Missile Geometry Class with Parametrically Designed Components

The next step in creating the missile geometry isttgment the missile’s design by creating
parametric relations to certain "top-level" propgtfrom which the components will derive their
necessary information. The coordinate systemsaldth drive the placement of the components
to further promote the parametric design.

New AML Constructs

The following AML concepts and constructs are uisettis section:

» Data Model Concept (Common Computational Model)
» thereferencing

* theshortcut... “I”

e superior

e superiorshortcut... “V

» reference-coordinate-systgmoperty inposition-object

Organizing Data in a Central Location - Data ModelConcept

AML provides a Knowledge Based Engineering (KBEstsyn for modeling and capturing
knowledge from different engineering domain disicips. Products, Methods, and Processes are
represented in a common computational object hibyamodel facilitating the reuse of the
product as well process knowledge. It captures@ngdnizes the vital engineering knowledge
and processes within a unified distributed obje@rded part model enabling the seamless
integration of engineering tools to automate théremngineering cycle from conceptual design
to production. With this in mind, it is a commoraptice to organize common properties and
objects of an AML model or class at one “place”hirit the model so other properties and
objects can access them easily. The propertiesidhmntain knowledge/data about the
particular class such that all of the subobjectd sibling properties can access the common
information. In the case of thmissile-geometry-classhe nose mid-bodyand aft-body each
need themissile-general-body-radiugroperty. This concept can be expanded to suehsaas
cost analysis relying on the geometric and matgriaperties of an object, the stress analysis of
an object relying on the geometric, material, apadl properties within a model, and several
other examples.

THE Referencing

theis an AML construct which interrogates an objextifs properties and subobjects. A
developer can ugbereferencing to “get” properties, objects, or valaé properties from other
places in the instance hierarchy and to “descritieére they are located in the the instance
hierarchy. For example, consider an instance hibyeof an airplane shown below in an
“instance diagram” where capitalized words represéjects and lower case words represent
properties of those objects:

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 33

AIRPLANE [Level 1]

maximum-speed [Level 2]
wing-span [Level 2]
number-of-engines [Level 2]
WINGS [Level 2]
WING-0001 [Level 3]
span [Level 4]
WING-0002 [Level 3]
span [Level 4]
RIBS [Level 4]
RIB-0001 [Level 5]
length [Level 6]
width [Level 6]
FUSELAGE [Level 2]
length [Level 3]
radius [Level 3]
TAIL-SECTION [Level 2]
ELEVATOR [Level 3]

deflection-angle [Level 4]

Assuming this hierarchy, the developer can naviga®ugh the instances and propertiesthia
referencing. Conceptuallyhe referencing has start point and an end point. diftepoint is the
name of the target object or property. The staintpvaries depending on where thee
reference is coded. From the AML promitte referencing “starts” from the root object in the
model tree. When writing code in fildhe referencing starts from the current “level” in tinee.
Frommethodgdescribed in the “Optional Topics” section ofstmianual)the referencing starts
from the instance the method is called on.

Assume the developer starts at &IRPLANElevel, and wants to obtain the value storedpan
from one of theNINGS The following call is made from the command ppbdrtassuming the
current model is thAIRPLANE

AML>(the airplane wings wing-0001 span)
40.21

Assume the developer starts at thi&RPLANEIlevel, and wants to obtain the object stored in
WING-0001

AML>(the airplane wings wing-0001)
#<WING-CLASS #x214H658>

This call returns an the instance ofveng-classwhich is an object data type versus the float data
type returned in the previous example.

A the reference will continue to look up the tree forabject or property with the name of the
target. It will go up to the superior superior ¢§ own level, and then look at that object's
children or properties to find the target. If dsefound, the value of that property is returned.
Otherwise, the a similar operation is performedgbing up another “superior” until it reaches
the root of the tree. If it does not find the &t ghe returns an error value.

Format:

(the name-1 name-2 ... name-n)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 34

Examples:

(define-class MATERIAL-CLASS
:inherit-from (object)
:properties (
material ‘wood
density 0.0
)

)

(define-class EXAMPLE-SUBOBJECT-CLASS
:inherit-from (material-class)
:properties (

id "ous12"
part-number 2.0
material 'steel

)
)

(define-class EXAMPLE-MODEL-CLASS
:inherit-from (object)
:properties (
model-name "Model For AML Basic Training"
id "ougiz2B4”

:subobjects (
(sub-1 :class 'example-subobject-class

part-number 3.0

(sub-2 :class 'example-subobject-class
id "Z77184"
material ‘aluminum
)

)

AML> (create-model 'example-model-class)

#<EXAMPLE-MODEL-CLASS #x214H658> =>returns the object ..
AML> (the)

#<EXAMPLE-MODEL-CLASS #x214H658> =returns the object ..
AML> (the example-model-class)

#<EXAMPLE-MODEL-CLASS #x214H658> =>returns the object ..
AML>(the example-model-class id)

"0ou8i12B4” =returns the value of the property ...
AML>(the example-model-class sub-1 id)

"ous812” =>returns the value of the property ...

AML>(the example-model-class sub-1)
#<EXAMPLE-SUBOBJECT-CLASS @ #x21clfdea> =>returns the object ..
AML> (the example-model-class sub-1 material)

STEEL =>returns the value of the property ...
AML> (the example-model-class sub-2 material)
ALUMINUM =>returns the value of the property ...
See Also:
Default

. an instance
. an instance
. an instance
a string

a string

. an instance
a symbol

a symbol

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

35

I Shortcut

To produce more readable code, and to reduce typixd has a shortcut fathe specified with
an exclamation point). The best way to introduce this shortcut is kgmeple, but as a general
rule Ixyzis exactly the same #&he xyz) Note that no spaces are allowed in this shortcut
between the exclamation point and dyz

Examples:

Assuming the same model is at the robt-object) or current-model

AML> (the example-model-class)
#<EXAMPLE-MODEL-CLASS #x214H658>
AML> !lexample-model-class
#<EXAMPLE-MODEL-CLASS #x214H658>
AML> (the subl part-number)

3

AML> !subl part-number
#<EXAMPLE-SUBOBJECT-CLASS #x692H003>

Notice how thepart-numberargument given in the last example is ignored bseaspaces are
not allowed with the exclamation point shortcut.

SUPERIOR

Thesuperiorproperty makethe referencing more efficient and helps produce meaglable
code. Essentially, eacluperiortakes ahereference up one level. Note that this still the
reference and will continue to search up the tréedbes not find the target one level above
itself.

Example:

Assume the following class definitions:

(define-class EXAMPLE-SUBOBJECT-CLASS
:inherit-from (object)
:properties (
id “‘ousg12”
part-number 2.0
district-code nil

)

)

(define-class EXAMPLE-MODEL-CLASS

:inherit-from (object)

:properties (
model-name "Model For AML Basic Training "
code 45242

:subobjects (
(sub-1 :class ‘example-subobject-class
id (the superior superior sub-2 id)
part-number 3.0

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 36

district-code (the superior superior code)

)

(sub-2 :class ‘example-subobject-class
id “Z72184”
district-code (the superior superior code)

)

Thedistrict-codeof sub-landsub-2get their values from their parents parexiample-model-
class. This is just one illustration that shows automatdwlata flow in AML with the use of
superior superior

Theid of sub-2gets its value from redefinition at instantiat@sa subobject texapmle-model-
class. Theid of sub-1gets its value by employing a the-reference tadhe sub-2

There is also a shortcut for teaperiorin AML specified with & (read as “the superior). The
shortcut is defined as:

xyz= (the superior xyzand

Mxyz= (the superior superior xygnd so on ...

Examples:

(define-class EXAMPLE-MODEL-CLASS

:inherit-from (object)

:properties (
category “example models”
code 45242

:subobjects (
(sub-1 :class ‘example-subobject-class

id (the superior superior sub-2 id)
part-number 3.0
district-code Mcode

)

(sub-2 :class ‘example-subobject-class

id “Z7184”
district-code ~code
)
))
Note: Notice that the formula o$ub-1 idcould not change due to the nature of its the-

reference (it would need spaces in betweerstifie2andid which is not allowed).

POSITION-OBJECT (expanded to showreference-coordinate-systém [Class]

Theposition-objecfprovides the ability for objects to be orientedpace. Theosition-object
definition is expanded here to show tieéerence-coordinate-systgonoperty which allows an
object to orient itself with respect to an instan€acoordinate-system-class

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 37

Properties:

orientation The list of orientation commands useg@dsition the object (see section
on orientation)

reference-coordinate-system
Specifies theeoordinate-system-classbject which will be the reference
frame for this object. Theeference-coordinate-systeproperty must
point to an object of classoordinate-system-classA value of nil
indicates that the global reference frame shoulddesl. If theeference-
coordinate-systenrefers to any object which does not inherit from
coordinate-system-classhe global frame will be used. By default, the
reference frame is global. (Defaultsrtib)

Examples:
The following example uses laox-objectto demonstrate the use of theference-coordinate-
systenproperty. Note that in AML, a box's local origglocated at its centroid.

(define-class reference-coordinate-system-example-c lass
:inherit-from (object)
:properties (

:subobjects (

(absolute-coordinate-system :class coordinate-system-class
(box-without-orientation :class 'box -object
(box-coordinate-system :class 'coord inate-system-class

origin (list 2.5 0.0 0.0)
vector-i (list 1.0 1.0 0.0)
vector-j (list -1.0 1.0 0.0)

(box-with-ref-coord-sys :class 'box- object
reference-coordinate-system ~box-c oordinate-system
(box-with-orientation :class 'box-ob ject
reference-coordinate-system ~box-c oordinate-system
orientation (list

(translate (list 1.0 2 .00.0))

)
)
)

/
BOX OORD\NME/S EM|
TE— TE—SYSTI TR
ABSOLUTE: 007 RONATE—SYSTEM

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 38

Exercise 3

After a close review of the class definitions anilA constructs described in the previous
section, use¢hereferencing to augment the clasgssile-geometry-clag®e contain the following
properties with their given values/formulas:

» missile-general-body-radiu® 1.0

* missile-nose-lengtk> 2.0

* missile-nose-radiu® parameterize to missile-general-body-radius

e missile-mid-body-length> 14.0

* missile-mid-body-radius> parameterize to missile-general-body-radius

* missile-aft-body-length> 2.0

* missile-aft-body-start-radiu® parameterize to missile-general-body-radius
* missile-aft-body-end-radiu® 0.75

Use thereference-coordinate-systepmoperty of each class that inherits frpwsition-objectto
parameterize the missile's orientation. Thissile-coordinate-systeis the driving orientation
device for the entire missile geometry. Thie-body-coordinate-systeshould reference the
mid-body-coordinate-systemhich references theose-coordinate-systemhich references the
missile-coordinate-system Each missile geometry component should alsorerte their
respectively named coordinate-system. Figure Qvshihe instance diagram for the desired
hierarchy.

Instance Diagram for Exercise 3

missile-geometry-class [object]
missile-general-body-radius
missile-nose-length
missile-nose-radius
missile-mid-body-length
missile-mid-body-radius
missile-aft-body-length
missile-aft-body-start-radius
missile-aft-body-end-radius

missile-coordinate-system [coordinate-system-class]
nose-coordinate-system [coordinate-system-class]
origin

reference-coordinate-system
nose [open-cone-object]
diameter
height
orientation
reference-coordinate-system
mid-body-coordinate-system [coordinate-system-class]
origin
reference-coordinate-system
mid-body [open-cylinder-object]
diameter
height
orientation
reference-coordinate-system
aft-body-coordinate-system [coordinate-system-class]
origin
reference-coordinate-system
aft-body [open-truncated-cone-object]
start-diameter
end-diameter
height
orientation
reference-coordinate-system

Figure 9

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 39

Exercise 3 Solution
(in-package :aml)

(define-class missile-geometry-class
:inherit-from (object)
:properties (
missile-general-body-radius 1.0

missile-nose-length 2.0
missile-nose-radius Amissil
missile-mid-body-length 14.0
missile-mid-body-radius Amissil
missile-aft-body-length 2.0

missile-aft-body-start-radius ~ “missil
missile-aft-body-end-radius 0.75

:subobjects (

(missile-coordinate-system :class 'c
origin (list 0.0 0.0 0.0)

(nose-coordinate-system :class 'coor

e-general-body-radius

e-general-body-radius

e-general-body-radius

oordinate-system-class

dinate-system-class

origin (list (* 0.5 “missile-nose-length) 0.0 0.0)

reference-coordinate-system ~miss

)

(nose :class 'open-cone-object

ile-coordinate-system

height Mmissile-nose-length
diameter (* Mmissile-nose-radius 2.0)
orientation (list
(rotate -90" (010))
reference-coordinate-system ~*nose -coordinate-system
)
(mid-body-coordinate-system :class ' coordinate-system-class
origin (list
(+ (/ Mmissile -nose-length 2.0)
(/ Mmissile -mid-body-length 2.0)
)
0.0
0.0)
reference-coordinate-system ~nose- coordinate-system
)
(mid-body :class 'open-cylinder-obje ct
diameter (* Mmissile-mid-body-radius 2.0)
height Mmissile-mid-body-length
orientation (list
(rotate 90 '(0 10))

reference-coordinate-system ~mid-

)
(aft-body-coordinate-system :class '
origin (list
(+ (/ Mmissile-
(/ Mmissile-
)

body-coordinate-system

coordinate-system-class

mid-body-length 2.0)
aft-body-length 2.0)

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

40

0.0

0.0)
reference-coordinate-system ~mid- body-coordinate-system
)
(aft-body :class 'open-truncated-con e-object
start-diameter (* Mmissile-aft-body-start-radius 2.0)
end-diameter (* Mmissile-aft-body-end-radius 2.0)
height Mmissile-aft-body-length
orientation (list
(rotate 90 '(0 10)
reference-coordinate-system *aft- body-coordinate-system

)
)
)

Code Explanation

The missile-geometry-classow has several properties that allow a user mrobthe geometric
parameters from one location. The subobjects hmeperties that refer to these top-level
properties vighereferences. Thedhereferences create dependencies on their respeatiyet
properties or objects. AML manages these depemeeactomatically without the need for any
further user/developer interactions. When the lémel properties change, the respective
properties in the subobjects will become “unboun@i&aning that they are no longer valid.
Upon need (also known as being demanded), the pgypdormula will be recalculated thus
making the property “bound”. This is known as deddriven calculation. Properties and
objects in AML are only calculated or instantiateldlen demanded.

4 Notice how the property missile-general-body-radiaatrols the radii of the nose, mid-
body, and the start diameter of the aft-body. Tdésnonstrates the power of a common
computational model. All requirements and data banobtained and interfaced from one
common location. All parameters that may need thfsrmation can obtain it from one

consistently located place and all dependencieawtmmatically managed internally.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 41

2.6 The Missile Geometry Class with Optional Nose Type

Figure 10 shows the missile geometry with threemments: a spherical nose, a cylindrical mid-
body, and a truncated conical aft-body. The n&ef &1 creating the missile geometry is to
augment the missile’s design components with thi@opf having a spherical shaped nose.
This introduces the AML syntax for using conditicared enabling various options to the user.

Missile Nose (Spherical), Mid-Body, and Aft-Body

sl
. =
L N d
L =
.
T

Figure 10

New AML Constructs

The following AML concepts and constructs are uisettis section:

 case
o if
o default

» solid-object
» sphere-object
e comments

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 42

CASE [Function]

Thecasestatement compares a test-key to a number of&ey®valuates the expressions that
are included with the first matching key.

Format:
(CASE test-key (keyl expressions) [(key2 expresgiar{(keyN expressions)]

Arguments:
test-key Any expression that will evaluate to aulethat gets compared against
all of the keys.This value must be a symbol or a number.
key A symbol or list of symbols or numbers thatlviaé compared to test-

key. If the value is a list the key-test is comphlte each of the keys in
the list. A key of t may be included as the last teeoperate as a default
that will match in all instances.

expressions Any number of expressions to be evaduidtthe key matches the test-
key.

Examples:

AML> (case 3
(1 "Value: One")
(2 "Value: Two")
(3 "Value: Three")
(t "Value: Unknown"))
"Value: Three"
AML> (case 5
(1 "Value: One")
(2 "Value: Two")
(3 "Value: Three")
(t "Value: Unknown"))
"Value: Unknown"
AML>(case 5
(1 "Value: One")
(2 "Value: Two")
(3 "Value: Three")
)
NIL
AML>(case nil
(john (+23))
(steve (+6 3))
(mark (+83))
(t "Value: Unknown")

"Value: Unknown"
AML>(case 'cone
(cone ‘'open-cone-object)
(sphere 'sphere-object)
(t ‘'open-cone-object))
OPEN-CONE-OBJECT
AML>(define-class conditional-subobject-class
:inherit-from (object)
‘properties (

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 43

subobject-class-type 'box

:subobjects (

(sub-1 :class (case !subobject-cla ss-type
(box 'box-objec t)
(cone ‘'open-cone -object)
(sphere 'sphere-ob ject)
(t ‘'open-cone -object))
)
)
)
See Also:
Cond
IF [Function]

If the test-expressiors not nil, thetrue-expressiomlause is evaluated and if ttest-expression
is nil, thefalse-expressionlause is evaluated. THese-expressionlause is optional and will
return nil if not included. Because it only alloasingle expression for theie-expressiomnd
false-expressionlauses, it is sometimes necessary to ygegn statement, which treats many
expressions as a single function, for one of tloéeseses.

v Usenil to represent a false value in AML. The only eggien or data entity in AML
that is false isil; all others are true. This means a number, agcobpr a list are all true.

Format:

(IF test-expression true-expression [false-expoedki

Arguments:
test-expression Any expression that will be useddetermine whether to
evaluate thérue-expressiomr false- expressian
true-expression Any single expression that will bealuated whentest-
expressiors not nil.
false-expression Any optional single expression ti#l be evaluated when the
test-expressiors nil.
Examples:
AML>(if (= 2 3) "This is true." "This is false.")
"This is false."

AML>(if (< 2 3) (+ 3 5) (- 35))
8

AML> (if (> 2 3) (+ 3 5))

NIL

AML>(if t (list “abc” 1 2) nil)
(“abc” 1 2)

AML> (if nil (list “abc” 1 2) nil)
NIL

AML> (if (+ 1 2 3) (list “abc” 1 2))

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 44

(“abc” 1 2)

See Also:

and
or
when
equal
not
progn

DEFAULT [Function]

When specified as the formula for a propedtgfaultwill look up the tree for an object with a
property with the same name. If one is found, thiee of that property is returned. Otherwise,
the specified default-formula is used.

v The use oflefaultcreates a dependency and “climbs” the tree hibyastmilar to ahe
reference.

Format:
(DEFAULT [default-formulal)

Arguments:

default-formula
If the search up the tree for a property with treme name is
unsuccessful, the formula specified here will bedudf no formula is
specified, the default will be @opup-typein

Example:

(define-class DEFAULT-TEST-CLASS
:inherit-from (object)
:properties (

height 15

width 10

depth 6

material 'steel

:subobjects (
(box1 :class 'box-object
height (default 13)
width 9
density 6
surface-finish (default '(smooth 0.001))

(box2 :class 'box-object
height 11
depth (default 5)
material (default 'wood)

)
)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 45

AML>(create-model 'default-test-class)
#<DEFAULT-TEST-CLASS #x19A38EC>
AML>(the height)

15

AML>(the box1 height)

15

AML>(the box1 width)

9

AML>(the box1 depth)

6

AML>(the box2 depth)

6

AML>(the box2 material)

STEEL

AML>(the box2 width)

10

AML>(the box1 surface-finish)
(SMOOTH 0.001)

v The use oflefaultis highly encouraged in AML. This can provide mdanctional
advantages in writing and integrating classes.s&lage explained below:

» With specifically named properties, classes maynbegrated together with little or no need
to manually enter specifithe references to similarly named properties “above’ property
usingdefaultin its formula.

» This promotes modular and dynamic design. You roake general classes that “obtain”
properties from objects “above” them without spieaifly creatingthe references.

 The use of long, specific property name is enccestagdefault takes advantage of this
practice to enable less code writing. This calo @ioovide undesired results in properties
such agliameter andheightin such classes aylinder-object sphere andbox-object

» As mentioned above, some properties may have the same within a hierarchy. This may
lead to the property located “below” getting thdugafrom “above”. This is seen in the
default-test-clasexample wherdthe box1 depth)s not specifically written in the code.
However, the default formula oflepth from a box-object uses thedefault function.
Therefore, it will look “up” the tree for an othproperty callediepth

SOLID-OBJECT [Class]

Solid-objectprovides three dimensional geometric primitiveealt§ a property to determine if
the geometry is solid or a hollow shell.

Inherit-From:
object
Properties:
solid? When true, the geometry will be a solid. aWmil, the geometry will be

created as a hollow shell. Changing the propert§y gause the
geometry to update. Default t.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 46

v Note the use of a question mark “?” in g@id? property. This is a convention in
AML modelling that denotes a property typically Biating to true or falset Er nil).

When creating user-defined classes, this praciieésp encouraged.

SPHERE-OBJECT

[Class]

The sphere-objecinay be defined as a geometric shell or solid.irf®gthesolid? property to

true will create a solid.

Inherit-From:
graphic-object, solid-object
Properties:
diameter Default 1.0
Example:

(define-class BEACH-BALL-CLASS
:inherit-from (sphere-object)
:properties (

diameter 25
color ‘blue
render 'shaded
solid? nil

)

Comments

Comments in AML are specified with a semicolon “Any words, numbers, expressions, or
characters after the semicolon will be ignoredhsycompiler until the beginning of the next

line.

Examples:

AML>(+ 5 1) ;you may type after the semicolon

6

AML>(define-class BEACH-BALL-CLASS
:inherit-from (sphere-object)
‘properties (

;;user defined properties

diameter 2.5
color ‘blue
render 'shaded

;;internal properties

solid? nil
radius (/ ~diameter 2)
)

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

47

Exercise 4

After a close review of the class definitions anillA constructs described in the previous
section, define two new classes for to be insttadias nose objects and two new classes for the
mid-body and aft-body respectively.

Figure 11 shows the instance diagram for a claésdcspherical-nose-claswhich inherits from
sphere-object Figure 11 also shows the instance diagram fdass callecconical-nose-class
which inherits fromopen-cone-object Give each of these classes the necessary pespéot
effectively usedefault when they are instantiated in th@ssile-geometry-class Augment the
class definition for the missile geometry classise instances apherical-nose-classindopen-
conical-nose-class Add a property callethissile-nose-typthat contains a symbol data type for
a formula. The symbol can be eitisphereor ‘cone Thenosesubobject’'s class type will
depend on this property’s value. In this examfile, coordinate system of tis@herical-nose-
classis located at the flat face of the object, notister.

Some of the properties in the classes can effdgtiuse default especially if they are
specifically named. Change these properties sothiear formulas will take advantage of the
default functionality, “look up”, to obtain values from nsilarly named properties when
instantiated inside of an other object. Nametyssile-nose-radiysandmissile-nose-lengtban
take advantage of trdefaultfunctionality.

Instance Diagrams for Exercise 4

spherical-nose-class [sphere-object]
missile-nose-radius
diameter

open-conical-nose-class [open-cone-object]

missile-nose-length
missile-nose-radius
height

diameter
orientation

open-cylindrical-body-class [open-cylinder-object]
open-truncated-cone-body-class [open-truncated-cone-object]

missile-geometry-class | object]
missile-general-body-radius
missile-nose-length
missile-nose-radius
missile-nose-type
missile-mid-body-length
missile-mid-body-radius
missile-aft-body-length
missile-aft-body-start-radius
missile-aft-body-end-radius

missile-coordinate-system [coordinate-system-class]
nose-coordinate-system [coordinate-system-class]
origin
reference-coordinate-system
nose [spherical-nose-class or open-conical-nose-class]
reference-coordinate-system
mid-body-coordinate-system [coordinate-system-class]
origin

reference-coordinate-system

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 48

mid-body [open-cylindrical-body-class]
diameter
height
orientation
reference-coordinate-system
aft-body-coordinate-system [coordinate-system-class]
origin
reference-coordinate-system
aft-body [open-truncated-cone-body-class]
start-diameter
end-diameter
height
orientation
reference-coordinate-system

Figure 11

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

49

Exercise 4 Solution
(in-package :aml)

(define-class spherical-nose-class
:inherit-from (sphere-object)
‘properties (
;;user defined properties
missile-nose-radius (default 1.0)

;;internal properties
solid? nil
diameter (* “missile-nose -radius 2.0)
)
)

(define-class open-conical-nose-class
:inherit-from (open-cone-object)
:properties (

;;user defined properties
missile-nose-length (default 2.0)
missile-nose-radius (default 1.0)

;;internal properties

height missile-nose-le ngth
diameter (* “missile-nose -radius 2.0)
orientation (list

(rotate -90 '(0 10))

)
)

)

(define-class open-cylindrical-body-class
:inherit-from (open-cylinder-object)
‘properties (

)
)

(define-class open-truncated-cone-body-class
:inherit-from (open-truncated-cone-object)
‘properties (

)
)

(define-class missile-geometry-class
:inherit-from (object)
:properties (
;;user defined properties

missile-general-body-radius (default 1.0)
missile-nose-length (default 2.0)
missile-nose-radius (default “missile-general-body-radius)

missile-nose-type (default 'sphere)
;; options are 'sphere or 'cone

missile-mid-body-length (default 14.0)

missile-mid-body-radius (default “missile-general-body-radius)
missile-aft-body-length (default 2.0)
missile-aft-body-start-radius (default “missile-general-body-radius)
missile-aft-body-end-radius (default 0.75)

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

:subobjects (

(missile-coordinate-system :class 'c oordinate-system-class
origin (list 0.0 0.0 0.0)

)

(nose-coordinate-system :class 'coor dinate-system-class
origin (if (equal Mmissile-nose-type ‘cone)

(list (* 0.5 ~missile-nose-length) 0.0 0.0)
(list ~missile-nose-radius 0.0 0.0)

reference-coordinate-system ~miss ile-coordinate-system
)
(nose :class (case Imissile-nose-type
(sphere 'spherical- nose-class)
(cone ‘'open-conic al-nose-class)
(t 'spherical- nose-class)
reference-coordinate-system ~*nose -coordinate-system
)
(mid-body-coordinate-system :class ' coordinate-system-class
origin (if (equal M missile-nose-type 'cone)

(list (+ (/ ~missile-nose-length 2.0)
(/ Mmissile-mid-body-length 2.0)

)
0.0
0.0)

(list (/ Mmissile-mid-body-length 2.0) 0.0
reference-coordinate-system ~nose- coordinate-system
)

(mid-body :class ‘open-cylindrical-body-class
diameter (* Mmissile-mid-body- radius 2.0)
height Mmissile-mid-body-leng th

orientation (list
(rotate 90 '(0 1 0))

reference-coordinate-system ~mid- body-coordinate-system
)
(aft-body-coordinate-system :class ' coordinate-system-class

origin (list
(+ (/ Mmissile-mid-body-length 2.0)
(/ Mmissile-aft-body-length 2.0)

0.0
0.0)
reference-coordinate-system ~mid- body-coordinate-system
)
(aft-body :class ‘open-truncated-cone-body-class
start-diameter (* Mmissile-aft- body-start-radius 2.0)
end-diameter (* Mmissile-aft-b ody-end-radius 2.0)
height Mmissile-aft-bo dy-length
orientation (list
(rotate 90 '(010))
reference-coordinate-system " aft- body-coordinate-system
)
)

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

0.0)

51

Code Explanation

The missile-geometry-classow gives the user the ability to choose a nope.tyThe nose’s
class depends on thmissile-nose-typeproperty via acase statement. Notice th@ose-
coordinate-system origiproperty also depends on thessile-nose-typ&ith anif condition in
order to keep the nose tip aligned with thessile-coordinate-systemThe mid-bodyand aft-
body subobjects inherit from a separate class to alkimilar functionality for future
development as used in the nose-type options. dBweloper could provide other classes to
instantiate with a dependency onmassile-mid-body-type@roperty ora missile-aft-body-type
property. This shows the extensibility of AML asdme typical programming practices for
enhancing future code.

The nosesubobject uses theefault functionality in themissile-nose-radiugnd missile-nose-
lengthproperties. The code could also be written dsvid:

(nose :class (case Imissile-nose-type

(sphere 'spherical- nose-class)

(cone ‘'open-conic al-nose-class)

(t 'spherical- nose-class)
missile-nose-radius ~missile-nos e-radius
missile-nose-length ~missile-nos e-length
reference-coordinate-system ~*nose -coordinate-system

)
However, this would always add th@ssile-nose-lengthroperty to thenoseobject when it is an

instance ofpherical-nose-classlass when it is not needed. This also elimindtesneed to re-
specify the relationships with the data model prbes “above”.

The missile-nose-coordinate-systarigin could use a&asestatement depending on tiréssile-
nose-typenstead of using aif statement. Theasestatement may promote more robust code if
other nose types are added in the future.

Notice how the model behaves when changingntissile-nose-typeroperty. Simply pressing
the ‘regeri button will not draw the nose after the nose ty@es been changed. This occurs
because the nose instance has been “smashed’kradem as being made “unbound”. At this
point, the complete nose instance is invalid, v@rsome particular geometry related properties
being invalid. The fegeri command only regenerates objects in the graplindow where the
properties that are needed for drawing have beeasised. To remedy this, the user should
“draw” the nose object again after changing the nose type

v Properties should not refer to objects or propgribich are located outside of their
class’ scope. The class should be able to bentigtad in a “stand-alone” state
allowing it to be placed in the model heirarchyay location.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 52

2.7 Geometric Booleans Enhance the Missile Geometry Class

The next step in creating the missile geometry iautgment the missile’s design components so
they are all thin shelled objects. In this caselgthe objects are modeled in a simplified
manufacturing representation. The current geonmatigtel is not accurate because the spherical
nose is positioned inside of the mid-body. Thetmsercise introduces geometric booleans to
eliminate the unneeded geometry. Figure 12 shbevsaemparison of the nose geometry before
and after a difference operation with the mid-body.

Geometry Comparison of the nose boolean

Figure 12

New AML Constructs

The following AML concepts and constructs are uisetthis section:

* expanded property specification
* construction objects

* cylinder-object

» difference-object

Expanded Property Specification

4 Properties are also objects. They can have piepdhtemselves and also inherit from
any predefined AML class. The specification isakalike the subobject specification. For
related information, please see the PROPERTY OBJX=§&tion of the AML Reference
Manual.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 53

All properties specified using the abbreviated ayrdre created as objects of clpsgperty-

object This class has two propertiégstmulaandvalue In the abbreviated syntax, you are
actually specifying the formula property of a pragebject.

Format:

(name
:class class-name
prop-1 formula-1

prop-n formula-n

Arguments:
name The name of the subobject.
class-name A predefined (by the user, or inheyed#dfined) AML class, for
example:box-object
prop-x The name of a property defined ondleess-name
formula-x The formula which is replacing tlikefine-classformula for property
prop-x
Example:

;;defined using brief form of property specificatio n
(define-class EXAMPLE-MODEL-CLASS
:inherit-from (object)
:properties (
category 'example
code (if (equal “category ‘example)
45242
45789
)

)

;;redefined using expanded form of property specifi cation
(define-class EXAMPLE-MODEL-CLASS
:inherit-from (object)
:properties (
(category :class 'property-object
formula 'example

(code :class 'property-object
formula (if (equal ~category ‘example)
45242
45789

)
value 45111
)

4 Please see thdifference-objectexplanation below for an additional example ofsthi
functionality used with construction objects.

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

54

CYLINDER-OBJECT [Class]

A cylinder-objectcan be either a solid cylinder or a hollow cyliidt shell. It is hollow if the
solid? property evaluates tail and solid otherwise.

Inherit-From:
open-cylinder-object, solid-object
Properties:
diameter The diameter of the cylinder. Default 1.0
height The height is defined parallel to the zsakiefault 2.0.

CONSTRUCTION OBJECTS

This is a term commonly employed to refer to olgésttbobjects that are needed to create the
resultant geometry of booleans, for example.

DIFFERENCE-OBJECT [Class]

Thedifference-objectakes a list of objects in thabject-list Starting with the first object in the
object-list it removes the parts of its geometry which irgetsvith the subsequent objects in the
list.

Properties:

object-list The list of objects which are to befelienced. Note that the order of the
objects determines the final geometry.

Example:

(define-class TUBE-CLASS
:inherit-from (difference-object)
:properties (
inner-diameter 0.5
outer-diameter 1.0
height 1.0
render 'shaded

object-list (list “stock ~hole)

(stock :class ‘cylinder-object
height height
diameter Mouter-diameter
solid? t

(hole :class 'cylinder-object
height height
diameter Minner-diameter

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 55

solid? t

)
See Also:

Union-object
Trim-object
Sewn-object
Assembly-object
Group-object
Intersection-object
Divide-object
Sub-geom-object

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

56

Exercise 5

After a close review of the class definitions anillA constructs described in the previous
section, augment thgpherical-nose-clast inherits from adifference-object The augmented
spherical-nose-claslsas two construction objects in its propertie® namedomplete-spheres

of classsphere-objecand the other nameadissile-body-objecis of classcylinder-object The
missile-body-objects a solid cylinder so that the portion of tbemplete-spheravhich lies
inside themissile-body-objecis removed. Add a property to th@ssile-geometry-classalled
display-coord-systems?This property is used to control the abilitytbé coordinate systems in
the subobjects to be drawn. Add a corresponthiegeference in each of the coordinate system
subobjectsdisplay? property to depend on this property. Figure 18wsha portion of the
instance diagram for this exercise.

Instance Diagram for Exercise 5

spherical-nose-class [difference-object]

missile-nose-radius

object-list

complete-sphere [sphere-object]
diameter

missile-body-object [cylinder-object]
diameter
height
orientation

Figure 13

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 57

Exercise 5 Solution
(in-package :aml)

(define-class spherical-nose-class
:inherit-from (difference-object)
‘properties (
;;user defined properties
missile-nose-radius (default 1.0)

;;internal properties

object-list (list "complete-sphere »
(complete-sphere :class 'sphere-obje
diameter (* “missile-nose-radiu
solid? il

(missile-body-object :class ‘cylinde
height (* “missile-nose-radiu
;;ensures the cylinder
diameter (* “missile-nose-radiu
orientation (list
(rotate 90 '(0 1 0))
(translate (list (/ ~h

)

(define-class open-conical-nose-class
:inherit-from (open-cone-object)
:properties (

;;user defined properties
missile-nose-length (default 2.0)
missile-nose-radius (default 1.0)

;;internal properties

height Amissile-nose-le
diameter (* “missile-nose
orientation (list

(rotate -90 '(0

)
)

)

(define-class open-cylindrical-body-class
:inherit-from (open-cylinder-object)
:properties (

)
)

(define-class open-truncated-cone-body-class
:inherit-from (open-truncated-cone-object)
:properties (

)
)

(define-class missile-geometry-class
:inherit-from (object)
:properties (
;;user defined properties

missile-general-body-radius (default 1.0)

missile-nose-length (default 2.0)

missile-body-object)
ct
s 2.0)

r-object

s 2.0)

is large enough
s 2.0)

eight 2.0) 0 0))

ngth
-radius 2.0)

10)

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

58

missile-nose-radius (default “missile-general-b
missile-nose-type (default 'sphere)

;; options are 'sphere or 'cone

missile-mid-body-length (default 14.0)
missile-mid-body-radius (default *missile-general

missile-aft-body-length (default 2.0)
missile-aft-body-start-radius (default “missile-g
missile-aft-body-end-radius (default 0.75)

display-coord-systems? (default nil)

:subobjects (
(missile-coordinate-system :class 'c
display? "display-coord-systems?
origin (list 0.0 0.0 0.0)
)

(nose-coordinate-system :class 'coor
display? Mdisplay-coord-systems?
origin (if (equal ~missile-nose-

ody-radius)

-body-radius)

eneral-body-radius)

oordinate-system-class

dinate-system-class

type ‘cone)

(list (* 0.5 ~missile-nose-length) 0.0 0.0)

(list ~missile-nose-radius 0.0 0.0)

reference-coordinate-system ~'miss

)

(nose :class (case !missile-nose-typ
(sphere 'spherical-
(cone ‘'open-conic
(t 'spherical-

reference-coordinate-system ~*nose

)

(mid-body-coordinate-system :class '
display? "display-coord-systems?
origin (if (equal “missile-nose-t

(list (+ (/ ~missile-nose-length 2.0)

ile-coordinate-system

e
nose-class)
al-nose-class)
nose-class)

-coordinate-system

coordinate-system-class

ype ‘cone)

(/ Mmissile-mid-body-length 2.0)

)
0.0
0.0)

(list (/ Mmissile-mid-body-length 2.0) 0.0

reference-coordinate-system ~nose-

)

(mid-body :class 'open-cylindrical-b
diameter (* Mmissile-mid-body-
height Mmissile-mid-body-leng
orientation (list
(rotate 90 '(0 1 0))

reference-coordinate-system ~mid-

)

(aft-body-coordinate-system :class '
display? Mdisplay-coord-systems?
origin (list

coordinate-system

ody-class
radius 2.0)
th

body-coordinate-system

coordinate-system-class

(+ (/ Mmissile-mid-body-length 2.0)
(/ Mmissile-aft-body-length 2.0)

0.0
0.0)

0.0)

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

59

reference-coordinate-system ~mid- body-coordinate-system

)

(aft-body :class 'open-truncated-con e-body-class
start-diameter (* Mmissile-aft- body-start-radius 2.0)
end-diameter (* Mmissile-aft-b ody-end-radius 2.0)
height Mmissile-aft-bo dy-length
orientation (list

(rotate 90 '(010))
reference-coordinate-system *aft- body-coordinate-system

)
)

Code Explanation

Notice how thespherical-nose-clasdoes not have any subobjects. The complete-spirate
missile-body-object are considered “object progsiti They are more of a means to get to an
end product, rather than the end product. Theyanstruction objects used to create the final
difference-object These objects can be considered as a mechamigs heeded to achieve the
final geometry just as a height, width, and depéhreeeded to draw a box.

The subobjects of a class should typically not sedufor utility operations. Subobjects should
be used to represent parts of a whole assembly.ex@mple, think of modeling a bearing with
its internal components. The main class “beariwguld have subobjects “inner-race”, “outer-
race”, “rollers”, and “cage”. Each of these “subrtg” creates the whole bearing object,
therefore they should be subobjects.

When drawn (and expanded) an instance sgleerical-nose-clasdoesn’t have subobjects. The
object only has properties. Some of the propedresnstances giroperty-object and others are
geometric objects. Note that object propertiesnanger drawn when their parent is drawn. They
may, however, be drawn by specifically callingraw method on them.

At this point in our modeling, we may not want teesthe coordinate systems of the missile
components. Therefore, tlksplay-coord-systems@roperty is added at the top-level of the
missile-geometry-clas® control theirdisplay? property from one location. Some may argue
that the coordinate systems are construction abjétat are used to build and orient the
components. In some cases this is true, but ysuallicoordinate system is useful to have
displayed in a part tree and to have the abilitdraw it easily. Notice the practice of having a
guestion mark at the end of any property that eatakita or nil.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 60

2.8 Creation of a Fin Profile, Fin Extrusion, and Fin Array

The next step in creating the missile geometrg idavelop class definitions for aerodynamic
control fins. In this case study, the fins arep@mple and used for demonstration purposes.
The fins are produced from a hexagonal profile thaixtruded and then arrayed circularly.
Figure 14 shows the fin profile and its dimensidfigure 15 shows the extruded profile, and
Figure 16 shows the extruded fin in a circularyarra

Fin Profile

!

) Fin Thickness

v

A

v

Fin Chord

Figure 14

Fin Extrusion

Fin Span

Figure 15

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 61

Fin Circular Array

Figure 16

New AML Constructs

The following AML concepts and constructs are uisettis section:

o let*

* polygon-object

* extrusion-object

» capped-surface-object
» circular-array-object

* name-generator

e generate-name

» add-object

Use or duplication of this information is subjeatthe restrictions on page ii of this document.

62

LET* [Construct]

Thelet* form is the most common mechanism for creatinglloariables. Théet* construct
binds values to the variables in sequence whicmm#at a variable may use a variable
previously defined in the sanet* variable assignment.

Format:
(LET* (var-assignments) body)

Arguments:
var-assignments The let clauses are a list ofalbei formula lists and/or
variables.
body Any number of expressions to be evaluatetiwihe context of
the assigned variables. The return value of teedapression
will be returned from théet* function.
Examples:
AML>(LET* (@ 3.0)
(b (*2a))
(+1.0b)
)
7.0
AML>(LET* (@ 3.0)
;b (*2a))
(print @)
(/ba)
(print b)
(+1.0b)
)
3.0
6.0
7.0

v Note that order matters in the variable assignrolenises. As seen in the previous
examplea must be declared befobe
The following example shows an implementation @& tuadratic formula. Thexptfunction

raises the first argument to the power given ingbeond argument. Tlsgrt function takes the
square root of the first argument.

AML>(LET* ((a 1)
(b 3)
(c 2)
(radical (- (exptb 2) (*4 ac)))
(denominator *2a
(numerator-plus (+ (- b) (sqgrt radical)))

(numerator-minus (- (- b) (sqrt radical)))

)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 63

(list
(/ numerator-plus denominator)
(/ numerator-minus denominator))

(-1.0 -2.0)

POLYGON-OBJECT [Class]

Thepolygon-objecis a polygon composed of line segments. If théices do not specify a
closed polygon, the system will automatically castribe start and end points.

Properties:
vertices The list of points defining the segmerftshe polygon-object. Default
nil. These vertices must be planadiihensions 2.
dimension The dimension determines if the objeet 15l entity (an outline) or a 2d
entity (a surface). The default value is 1 for 1d.
Example:

(define-class EXAMPLE-POLYGON-CLASS
:inherit-from (polygon-object)
:properties (

vertices (
(0.00.00.0)
(1.00.0 0.0)
(1.01.00.0)
(0.01.00.0)
)

dimension 2

)
)

;;demonstrates the use of let* in a property
(define-class RECTANGLE-CLASS
:inherit-from (polygon-object)
:properties (
x-dim (default 1.0)
y-dim (default 1.0)

vertices (let* (
(half-x (* 0.5 ~x-dim))
(half-y (* 0.5 ~y-dim))
)

(list
(list half-x half-y 0.0)
(list (- half-x) half-y 0.0)
(list (- half-x) (- half-y) 0.0)
(list half-x (- half-y) 0.0)
)

dimension 2

)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 64

EXTRUSION-OBJECT [Class]

Theextrusion-objecsweeps an object along a vector. The resultinghgéy may be a solid or
surface and capped or not capped. When the geoisednjid it must be capped.

Properties:

swept-object The object that is to be extruded.

vector The list of x, y, and z vector componeritthe direction to extrude.
distance The length of extrusion.
Example:

(define-class RECTANGLE-CLASS
:inherit-from (polygon-object)
:properties (

x-dim (default 1.0)
y-dim (default 1.0)

vertices (let* (
(half-x (* 0.5 ~x-dim))
(half-y (* 0.5 y-dim))
)

(list
(list half-x half-y 0.0)
(list (- half-x) half-y 0.0)
(list (- half-x) (- half-y) 0.0)
(list half-x (- half-y) 0.0)
)

dimension 2

)
)

(define-class EXAMPLE-BAR-EXTRUSION-CLASS
:inherit-from (extrusion-object)
:properties (

x-dim (default 1.0)

y-dim (default 1.0)
bar-length (default 10)
swept-object ~profile
vector ‘(0.00.01.0)
distance "bar-length

(profile :class ‘rectangle-class)

)
)

CAPPED-SURFACE-OBJECT [Class]

A capped-surface-objetakes an open surface (such agp@n-cylinder-objector askin-
surface-from-curves-object.) as a source-object, and creates either peckgurface (solid? =
nil) or a solid bounded by the capped surface {8ati t).

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 65

Properties:
source-object An instance of the open surfacepo ca

solid? Defaultt to create a capped solid. Wheih, the surface is only capped
and no solid geometry is created.

CIRCULAR-ARRAY-OBJECT [Class]

The array is created by making copies of the gegnoétthesource-objecand placing them in a
circle around theenterat the giverdiameter The circle is normal to thetate-axis The first
copy is translated along thenslate-axisand then rotated about theate-axiscounter-
clockwise by thestart-angle Subsequent copies are each placed at a furtbetereclockwise
position incremented nepeat-angle Thecircular-array-objectcreates a single geometric
assembly-objeciThe array is similar to tharcular-clonified-objectobject except that there is
only one object with a representation that is th@glete array geometry. If individual geometry
is required, use tharcular-clonified-object

Properties:

source-object The object to be copied.

diameter The size of the circle of which the copiéls be placed about. Default
1.0.
start-angle The angle at which to place the firstyaelement (with reference to the

translate-axi$. Default 0.0.

repeat-angle The angular spacing between two catise@array elements. Default
360 !quantity)

translate-axis The reference vector for positioningfirst copy. Default is the x-axis.

rotate-axis Defines the axis perpendicular to tlame of the circular array. Default
is the y-axis.

rotate-clones? Default, it decides whether or not the copies will be wndlially
rotated as they are laid out in the circular patter

center The center of the circular pattern, it digato the center of theource-
object

guantity The number of copies to create. Default 1.

assembly? t for creating an assembly and for creating a union. The default value
ist.

ref-point The local point on theource-object(and each copy) that lies on the

described circle. It defaults to the center ofsbarce-object

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 66

Rotate-Axis

)

Start-Angle

Translate-Axis

See Also:

circular-clonified-object
linear-clonified-object
linear-array-object
series-object

v The following class and methods are introducedrtompte the use of dynamic object
addition. As previously stated, tlieeate-modefunction can be used to instantiate a
class. However, a typical application will have ttoncept of a model as the mechanism
to encapsulate an entire design. Thus an applitatiay have one, two, or three models
and could have hundreds or thousands of objectsirvthose models. In addition,
create-modeperforms other functions such as selecting theeatimodel and setting the
the tracing to the currently created model. Theretheename-generatoclass and the
add-objectmethod are shown and their use is encouraged rioxen though the AML
constructdefine-methods not introduced until the "Optional Topics" gort of this
manual, the user will use methods throughout tamitryg course such atraw, shade
andexpand

NAME-GENERATOR [Class]

This class provides the ability to generate unigammes by appending numbers to the end of the
names. This can be used when the user adds sebzats to a model without specifically
naming each object manually (or writing an algaritto do this). Especially for debugging, a
user can create a model of typeme-generatoand dynamically add objects to this model
without having to specifically name all of the ottie Thename-generatoclass has methods to
automatically perform and manage the naming sugfeasrate-name

Properties:

previous-name-list
This property is used to store the names and dumaémbers of names
that have been generated. Defaiilt

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 67

auto-naming? A value of will cause thegenerate-namamethod to automatically
generate the next name for the prefix specifiegalie ofnil will cause
thegenerate-namenethod to prompt the user to enter a name. Difaul

GENERATE-NAME [Method]

Thegeneratename method is used to append an incremental gofthe name supplied.

Format:
(GENERATE-NAME instance name)

Arguments:

Instance An instance oframe-generatoclass.

name The base name to which the numbered suféigpended.
Example:

AML>(create-model ‘name-generator)
#<NAME-GENERATOR @ #x117792a>
AML>(generate-name (the) ‘box)
BOX-0001

AML>(generate-name (the) ‘box)
BOX-0002

AML>(generate-name (the) ‘box)
BOX-0003

AML>(generate-name (the) ‘cylinder)
CYLINDER-0001
AML>(generate-name (the) ‘cylinder)
CYLINDER-0002
AML>(generate-name (the) ‘cylinder)
CYLINDER-0003
AML>(generate-name (the) ‘box)
BOX-0004

AML>(add-object (the) (generate-name (the) ‘box) ‘box- object)
#<BOX-OBJECT @ #x1c07552>

AML> (object-name *)

BOX-0005

Note: When at the AML command prompt, thesymbol returns the return value from the
function/method previously called. This can beduae an argument to AML functions/methods.

ADD-OBJECT [Method]

Add-objectinstantiates a class and adds the object to tigetanstance specified in thparent
argument with the name given in themeargument.

Format:
(ADD-OBJECT parent name class)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 68

Arguments:

parent The object instance that the new objectlwiladded to.

name The name of the object instance to be added.

class The class of the object instance to be added.
Examples:

AML>(create-model ‘name-generator)

#<NAME-GENERATOR @ #x117792a>

AML>(add-object (the) ‘sphere-0001 ‘sphere-object)

#<SPHERE-OBJECT @ #x522567a>

AML>(add-object (the) ‘cylinder-0001 ‘open-cylinder-ob ject)
#<OPEN-CYLINDER-OBJECT @ #x392887a>

AML>(create-model ‘name-generator)

#<NAME-GENERATOR @ #x182579f>

AML>(add-object (the) ‘sphere-0064 ‘sphere-object)

#<SPHERE-OBJECT @ #x21f3f7a2>

AML>(add-object (the) ‘cylinder-0185 ‘open-cylinder-ob ject)
#<OPEN-CYLINDER-OBJECT @ #x21f5d5b2>

AML>(add-object (the) (generate-name (the)‘cyl) ‘open-

#<OPEN-CYLINDER-OBJECT @ #x21f5f1b1>

AML>(add-object (the) (generate-name (the)‘cyl) ‘open-

#<OPEN-CYLINDER-OBJECT @ #x44b5d511>

cylinder-object)

cylinder-object)

Whereas performing the following commands wouldhteea different tree structure.

AML>(create-model ‘name-generator)

#<NAME-GENERATOR @ #x117792a>

AML>(create-model ‘sphere-0001 :class ‘sphere-object)

#<SPHERE-OBJECT @ #x522567a>

AML>(create-model ‘cylinder-0001 :class ‘open-cylinder -object)
#<OPEN-CYLINDER-OBJECT @ #x392887a>

AML>(create-model ‘name-generator)

#<NAME-GENERATOR @ #x182519f>

AML>(create-model ‘sphere-0064 :class ‘sphere-object)

#<SPHERE-OBJECT @ #x21f3f3a2>

AML>(create-model ‘cylinder-0185 :class ‘open-cylinder -object)
#<OPEN-CYLINDER-OBJECT @ #x21f9d5b2>

Notice the differences

in the tree structures belowhe createmodel

automatically rename the first instance of tiagne-generatoas seen below:

commands will

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

69

- [MOBECMAHNAGER" — {MODECMANAGER

= MaME-GEMERATOR-O
SPHERE-00O1
CrLIMDER-0007

SPHERE-00G4
CvLIMDER-0M85

= MamME-GEMERATOR e MAME-GEMERATOR
SPHERE-00G4
CvLINDER-0185 —& SPHERE-0001
Cv'L-00071 —& CvLIMDER-D007
CrL-0002 —e MAME-GEMERATOR-1
_’
_’

v Notice how the two methodologies of instantiatioaate different results. The process
of creating models should be considered as if tlelehrepresents one version of a
complete system/application. The process of addijegcts allows a user to dynamically
build an instance hierarchy. Typically a user/deper would usereate-modeto create
one version of the application and then utilazed-objectto create the bulk of an
application underneath one model. Also note thderw using create-model a
user/developer would then have to usdect-modelto change between the various
models whereas withdd-object all objects can be located within the same model.

v Notice how thegenerate-namenethod automatically generates a hame based e g
prefix. The trainee is encouraged to refer to AL Reference Manual for a further
description ofgenerate-name

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 70

Exercise 6

After a close review of the class definitions andlAconstructs described in the previous
section, create the following class definitions:

» hexagonal-profile-claspplygon-objedt

» fin-profile-class hexagonal-profile-clags
» fin-class fapped-surface-object

» fin-array-classdircular-array-object

Use thdet* construct in the formula of theerticesin thehexagonal-profile-classThe
dimensions for théexagonal-profile-clasassume that each panel’s chord projection to the x
axis is 1/3 of the total chord. Therticesin thehexagonal-profile-classhould depend on a
genericheightandwidth property with respective default values of 1.0 &rfl This class is the
base class inherited into a more spedifieprofile-classwhich adds some “fin-specific”
properties calledin-chord andfin-thicknesghat feed the generigidthandheightproperties
respectively.

Thefin-classinherits from acapped-surface-objeend contains two object properties calfied
profile andfin-extrusion Thefin-extrusionuses théin-profile as aswept-object Thefin-class
has a property calldgth-spanthat specifies the length of the fin.

Thefin-array-classinherits fromcircular-array-classand uses an instance diirzclassas a
source object. Thdiametershould be twice the size of a user-defined prepsaliedfin-span-
offsetwhich will later be set equal to tieissile-general-body-radiusAlso give thdin-array-
classa property callefin-quantityto specify the number of fins in the array.

ote that all o in-xxxxxproperties are given (repeated) in each o ek leadin

v Note that all of thé propert g peated h of theselsleading
up to thefin-class This is shown here to demonstrate the pracficeeating classes
that can stand alone and are modular.

Instead of performing areate-modebperation to make a new instance of ithissile-geometry-
class create a model of @me-generatoand then continue to add new instances ofrfssile-
geometry-clasgo the name-generatobject usingadd-objectas you continue in the training
course. The instructor will demonstrate how tdqren this through the user interface. The user
interface will automatically name the objects asi yld them by calling thgenerate-name
method on th@ame-generator Figure 17 shows the instance diagram.

Instance Diagram for Exercise 6

hexagonal-profile-class [polygon-object]
width
height
vertices

fin-profile-class [hexagonal-profile-class]
fin-cord
fin-thickness
width
height

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 71

fin-class [capped-surface-object]
fin-cord
fin-thickness
fin-span
solid?
source-object
fin-profile [fin-profile-class]
fin-extrusion [extrusion-object]
swept-object
distance
vector

fin-array-class [circular-array-object]

fin-cord

fin-thickness

fin-span

fin-span-offset

fin-quantity

source-object

diameter

quantity

ref-point

center

rotate-axis

fin-source [fin-class]
orientation

Figure 17

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

Exercise 6 Solution
(in-package :aml)

(define-class hexagonal-profile-class
:inherit-from (polygon-object)
:properties (

;;user defined properties
width (default 1.0)
height (default 0.2)

;;internal properties
vertices (let* (
(half-w (/ “width
(half-h (/ “heigh
(sixth-w (/ “width
)
(list
(list half-w 0.0 0.0)
(list sixth-w half-h 0
(list (- sixth-w) half
(list (- half-w) 0.0 0
(list (- sixth-w) (- h
(list sixth-w (- half-
;;last point will be ¢
)
)

)

(define-class fin-profile-class

:inherit-from (hexagonal-profile-class)

:properties (
;;user defined properties
fin-cord (default 1.0)
fin-thickness (default 0.2)

;;internal properties

width ~in-cord
height ~in-thickness
)

)

(define-class fin-class
:inherit-from (capped-surface-object)
:properties (
;;user defined properties

fin-cord (default 1.0)
fin-thickness (default 0.2)
fin-span (default 3.0)

;;internal properties
solid? nil

source-object ~fin-extrusion

(fin-profile :class 'fin-profile-cla

)

(fin-extrusion :class 'extrusion-obj

swept-object Mfin-profile

distance AMfin-span
vector '(0.00.01.0)
)
)

2.0)
£2.0))
6.0))

.0)

-h 0.0)

.0)

alf-h) 0.0)

h) 0.0)

losed automatically

S

ect

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

73

(define-class fin-array-class
:inherit-from (circular-array-object)
:properties (

;;user defined properties

fin-cord (default 1.0)
fin-thickness (default 0.2)
fin-span (default 3.0)
fin-span-offset (default 2.0)
fin-quantity (default 4)

;;internal properties
source-object “fin-source

diameter (* 2.0 Min-span- offset)
quantity ~Min-quantity
ref-point '(0.00.00.0)
center '(0.00.00.0)

rotate-axis '(0.00.01.0)

(fin-source :class 'fin-class
orientation (list
(rotate 90.0'(01 0)

)

Code Explanation

The developer creates a genehiexagonal-profile-clas$efore creating thén-profile-class
This promotes code re-use and modular design agetieric class can be instantiated by itself or
inherited into other user-defined classes in thiar&u Thelet* construct organizes the formula
for the verticesto make the code more readable and efficienthdfcode did not have thet*,

the computer would have to evaluate several exacfbal calculations repeatedly, thus making
the code inefficient. On the other hand, a devaighould not try to use too many variables in a
let* if they are not necessary because that will cansecessary memory allocation.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 74

2.9 Missile Geometry with a Fin Array and Material Properties

Figure 18 shows the missile geometry with a firmwarrThe fin array is oriented with respect to
themissile-coordinate-system this case study. This section of the manusd aitroduces
some additional properties to the missile companeiat amaterial-properties-classThis is a
user-defined class that is extensible beyond tbhpescovered in this case study. The class
simply gives each component a material name, natdickness, and material density. This
class demonstrates a use of multiple inheritance.

Missile Geometry with a Fin Array

'S

74

Figure 18

New AML Constructs

The following AML concepts and constructs are uisetthis section:

* multiple-inheritance

Multiple Inheritance

Inheritance is a mechanism for class reuse. Thrinlgdritance, a class will have all of the same
properties, subobjects, and methods as the claisae# inherits from (its superclasses). The
sinherit-from keyword accepts a list of classes to be used asrclasses. If a property,
subobject, or method is present in more than ortbesuperclasses, the order of precedence is
from left to right. If an inherit-from statement contains the ligox-object cylinder-objectjhe
box-objectgeometry will be created. If the order of the Isteversed tdcylinder-object box-

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 75

object), the cylinder-objectgeometry will be created.Note: It is not good code writing
practice to inherit from two classes that havegraphic-objectas a superclass.

Example:

(define-class material-class
:inherit-from (object)
:properties (
density 1.0
material ‘wood
color 'blue
)

)

(define-class multiple-inheritance-example-class
:inherit-from (material-class box-object)
:properties (

depth 2.0
width 3.0
height 1.0

density 2.649

)
)

AML uses the concept of “first come, first servélhus the class given first in thi@herit-from
statement will take precedence over any classengifter. Eventhough they are not shown, the
multiple-inheritance-example-clagsis properties afolor (set to 'blue) andhaterial (set to

‘wood). This can be demonstrated usingdéscribefunction at the command prompt as
follows.

> (create-model 'multiple-inheritance-example-class
#<MULTIPLE-INHERITANCE-EXAMPLE-CLASS @ #x22f5bc2a>
> (describe (the))

DEFINE-CLASS PROPERTIES:

DEPTH | Unbound |

COLOR | Unbound |

LAYER | Unbound |

GEOM | Unbound |
RENDER | Unbound |
REFERENCE-OBJECT | Unbound |
POSITION | Unbound |
LINE-TYPE | Unbound |
SOLID? | Unbound |
DENSITY | Unbound |
WIDTH | Unbound |
DISPLAY? | Unbound |
REFERENCE-COORDINATE-SYSTEM | Unbound |
MATERIAL | Unbound |
HEIGHT | Unbound |
LINE-WIDTH | Unbound |
ORIENTATION | Unbound |

DEFINE-CLASS SUBOBJECTS:
NIL

> (the color)

BLUE

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 76

Exercise 7

After a close review of the AML constructs descdlde the previous section, create the
following class definitions:

* material-properties-classljjeci
* missile-body-component-class@terial-properties-clags

Thematerial-properties-claswill have three propertiesnaterial-thicknesgdefault 0.01)
material-name (default ‘aluminunnaterial-density (default 165.0)

Add a property calledhissile-general-body-thickness themissile-geometry-classAugment all
of the body component classes so they inherit fruasile-body-component-clas:d update
their respective instances by addingaterial-thicknesproperty which references thassile-
general-body-thicknessAdd an instance din-array-classto themissile-geometry-class

Orient this with respect to thmissile-coordinate-systeusing a property in theaissile-
geometry-classalledfin-distance-along-axiguse(default 12.0). Add the necessary properties
of afin-array-classto themissile-geometry-clagsa order to best use thiefaultfunctionality.

The user may choose to create a separate coordiysttam for thdin-array-classinstance for
orientation and positioning, but this example ubesnissile-coordinate-systeas areference-
coordinate-system

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 77

Exercise 7 Solution

(in-package :aml)

(define-class material-properties-class

:inherit-from (object)

‘properties (
;;English units assumed
material-thickness (default 0.01
material-name (default ‘alu
material-density (default 165.
)

)

(define-class missile-body-component-class
:inherit-from (material-properties-class)
:properties (

)
)

(define-class spherical-nose-class
:inherit-from (difference-object
:properties (

;;user defined properties
missile-nose-radius (default 1.0)

;;internal properties
object-list (list "complete-sphere »

(complete-sphere :class 'sphere-obje

diameter (* “missile-nose-radiu
solid? il

(missile-body-object :class ‘cylinde
;;* 2.0 ensures the cylinder height
height (* “missile-nose-radiu
diameter (* “missile-nose-radiu
orientation (list
(rotate 90 '(0 1 0))
(translate (list (/ ~h

)

(define-class open-conical-nose-class
:inherit-from (open-cone-object
‘properties (

;;user defined properties
missile-nose-length (default 2.0)
missile-nose-radius (default 1.0)

;;internal properties

height Amissile-nose-le
diameter (* “missile-nose
orientation (list
(rotate -90 '(0
)
)

)

(define-class open-cylindrical-body-class
:inherit-from (open-cylinder-object
:properties (

) Tt
minum) ;symbol
0) b/fth3

missile-body-component-class)

missile-body-object)
ct
s 2.0)

r-object

is large enough
s 2.0)

s 2.0)

eight 2.0) 0 0))

missile-body-component-class)

ngth
-radius 2.0)

10))

missile-body-component-class)

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

)

(define-class open-truncated-cone-body-class

:inherit-from (open-truncated-cone-object missile-body-component-class

‘properties (

)
)

(define-class hexagonal-profile-class
:inherit-from (polygon-object)
:properties (

;;user defined properties
width (default 1.0)
height (default 0.2)

;;internal properties
vertices (let* (

(half-w (/ *width 2.0))
(half-h (/ “heigh t 2.0))
(sixth-w (/ *width 6.0))
(list
(list half-w 0.0 0.0)
(list sixth-w half-h O .0)
(list (- sixth-w) half -h 0.0)
(list (- half-w) 0.0 0 .0)
(list (- sixth-w) (- h alf-h) 0.0)
(list sixth-w (- half- h) 0.0)

;;last point will be ¢

)
)

)

(define-class fin-profile-class

:inherit-from (hexagonal-profile-class)

:properties (
;;user defined properties
fin-cord (default 1.0)
fin-thickness (default 0.2)

;;internal properties

width ~in-cord
height Min-thickness
)

)

(define-class fin-class
:inherit-from (capped-surface-object)
‘properties (
;;user defined properties

fin-cord (default 1.0)
fin-thickness (default 0.2)
fin-span (default 3.0)

;;internal properties
solid? nil

source-object ~Mfin-extrusion

(fin-profile :class 'fin-profile-cla

)

losed automatically

SS

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

79

(fin-extrusion :class 'extrusion-obj ect
swept-object Mfin-profile

distance Mfin-span
vector '(0.00.01.0)
)
)

)

(define-class fin-array-class
:inherit-from (circular-array-object)
:properties (

;;user defined properties

fin-cord (default 1.0)
fin-thickness (default 0.2)
fin-span (default 3.0)
fin-span-offset (default 2.0)
fin-quantity (default 4)

;;internal properties
source-object “fin-source

diameter (* 2.0 Min-span- offset)
quantity Min-quantity

ref-point '(0.00.00.0)

center '(0.00.00.0)

rotate-axis '(0.00.01.0)

repeat-angle (/ 360.0 ~in-qua ntity)

(fin-source :class 'fin-class
orientation (list
(rotate 90.0'(01 0)

)

)

(define-class missile-geometry-class
:inherit-from (object)
‘properties (
;;user defined properties
missile-general-body-radius (default 1.0)
missile-general-body-thickness (default 0.01)

missile-nose-length (default 2.0)
missile-nose-radius (default “missile-general-b ody-radius)
missile-nose-type (default 'sphere)

;; options are 'sphere or 'cone

missile-mid-body-length (default 14.0)
missile-mid-body-radius (default *missile-general -body-radius)

missile-aft-body-length (default 2.0)
missile-aft-body-start-radius (default “missile-g eneral-body-radius)
missile-aft-body-end-radius (default 0.75)

fin-distance-along-axis (default 12.0)

fin-cord (default 1.0)

fin-thickness (default 0.2)

fin-span (default 2.0)

fin-span-offset (default *mis sile-general-body-radius)
fin-quantity (default 4)

display-coord-systems? (default nil)

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

:subobjects (
(missile-coordinate-system :class 'c oordinate-system-class
display? "display-coord-systems?
origin (list 0.0 0.0 0.0)
)

(nose-coordinate-system :class ‘coor dinate-system-class
display? *display-coord-systems?
origin (if (equal M missile-nose -type 'cone)

(list (* 0.5 ~missile-nose-length) 0.0 0.0
(list ~missile-nose-radius 0.0 0.0)

reference-coordinate-system ~miss ile-coordinate-system
)
(nose :class (case 'missile-nose-typ e
(sphere 'spherical- nose-class)
(cone ‘'open-conic al-nose-class)
(t 'spherical- nose-class)
material-thickness ~“missile-general-body-thi ckness
reference-coordinate-system ~*nose -coordinate-system
)
(mid-body-coordinate-system :class ' coordinate-system-class
display? "display-coord-systems?
origin (if (equal ~missile-nose-t ype ‘cone)

ist (+ missile-nose-length 2.
li / Mmissil | h2.0
(/ Mmissile-mid-body-length 2.0)

0.0
0.0)
(list (/ Mmissile-mid-body-length 2.0) 0.0
reference-coordinate-system ~nose- coordinate-system
)
(mid-body :class 'open-cylindrical-b ody-class
diameter (* Mmissile-mid-body- radius 2.0)
height Mmissile-mid-body-leng th
material-thickness ~*missile-general-body-thi ckness

orientation (list
(rotate 90 '(0 1 0))
)

reference-coordinate-system ~mid- body-coordinate-system
)
(aft-body-coordinate-system :class ' coordinate-system-class

display? *display-coord-systems?
origin (list
(+ (/ Mmissile-mid-body-length 2.0)
(/ Mmissile-aft-body-length 2.0)

0.0
0.0)
reference-coordinate-system ~mid- body-coordinate-system

)

(aft-body :class 'open-truncated-con e-body-class
start-diameter (* Mmissile-aft- body-start-radius 2.0)
end-diameter (* Mmissile-aft-b ody-end-radius 2.0)
height Mmissile-aft-bo dy-length

material-thickness *missile-general-body-thic kness
orientation (list
(rotate 90 '(010))

)

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

0.0)

81

reference-coordinate-system *aft- body-coordinate-system

(fins :class ‘fin-array-class
orientation (list
(rotate 90 '(0 1 0))
(translate (list Mfin-distance-along-axis

0.0
0.0)
)
)
reference-coordinate-system ~missile-coordina te-system

)

Code Explanation

The developer creates a genentaterial-properties-classefore creating thenissile-body-
component-class This promotes code re-use and modular desigthegeneric class can be
instantiated by itself or inherited into other udefined classes in the future. The inheritance
capability will provide advantages in the next exses because we now have a common class
from which all of the body components inherit. JFtalso can be helpful when using class
“filters” during object selections from graphic toee.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 82

2.10 Final Missile Geometry and Mass Properties

This section of the manual introduces some additiproperties to the missile components via a
mass-properties-classThis is a user-defined class that is extendiblgond the scope covered in
this case study. The class gives each componmasa and a surface area property. When
collected in a property at the top-level of thissile-geometry-clasthis demonstrates the use of
loop, and some geometric queries.

New AML Constructs

The following AML concepts and constructs are uisettis section:

» children

* volume-of-object
* when

* loop

» thereferencing (expanded explanation)

CHILDREN [Method]

Returns the immediate subobjects of an instanase tthat this method returns a list of objects,
not the names of the objects

Format:
(CHILDREN instance [:class t])

Arguments:

instance The object instance whose subobjectswaiuto find.

:class If a class is specified, only children irtireg from that class will be
returned. Default i$ for all classes. Note, a list of classes may akso
specified here.

Example:

Assume that you have the following tree structuherg each object inherits from the class of its
name:

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 83

=10l x|

4 Model Tree

é""? bow-object-0001
Elv biow-object-0002
i e oylinder-object-0001

P & point-object-0001
‘e cylinder-object-0002

AML> (create-model ‘children-example-model)

<CHI LDREN- EXAMPLE- MODEL #x1B88768>

AML>(children (the))

(#<BOX-OBJECT #x1A68338>)

AML>(children (the box-object-1))

(#<BOX-OBJECT #x1A8FDB8> #<CYLINDER-OBJECT #x1AC32D 8>)
AML>(children (the box-object-1 box-object-2) :class ' point-object)
(#<POINT-OBJECT #x1AB2048>)

Notice that thechildren method returns a list of object instances (hantildébe objects).
See Also:
children € (has more keywords)

subobjects € method returns object names instead of object
select-object < function to query/return all objects "under" anestij

VOLUME-OF-OBJECT graphic-object [Method]

The value returned by this method depends on themiion of the object. If the objects’s
dimension is 1, then the length is returned. Ifdbgcts’s dimension is 2, then the surface area is
returned. If the objects’s dimension is 3, thenwbkeime is returned.

Format:
(VOLUME-OF-OBJECT instance)

Arguments:

instance An instance of a graphic object.

Example:

(define-class EXAMPLE-BOX-CLASS
:inherit-from (box-object)
:properties (
height 3.5
width 4.1
depth (* 1.8 ~height)

volume (volume-of-object !superior)

)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 84

AML>(create-model 'EXAMPLE-BOX-CLASS)
#<EXAMPLE-BOX-CLASS @ #x21a2975a>
AML>(the height)

35

AML>(the volume)

90.40500258922566

AML>(create-model 'BOX-OBJECT)
#<BOX-OBJECT @ #x28a4575b>
AML>(volume-of-object (the))

1.0

(define-class EXAMPLE-LINE-CLASS
:inherit-from (line-object)
:properties (
pointl '(0 0 0)
point2 '(2.4 6.7 8.4)

length (volume-of-object !superior)

)
AML>(create-model 'EXAMPLE-LINE-CLASS)
#<EXAMPLE-LINE-CLASS @ #x21a8dc7a>
AML>(the length)
11.009540930176211
AML>(create-model 'cylinder-object)
#<CYLINDER-OBJECT @ #x58b1fb2b>
AML>(volume-of-object (the))
1.570796326794895

See Also:

normal-to-face

center-of-object

dimension

several functions/classes to calculate tangency

when [Function]

The when statement is a conditional that evaluatest and if the result is not nil then all of the
expressions of the body are evaluated.

Format:
(WHEN test body)

Arguments:
test Any expression that will be used to determitether to evaluate the
body.
body Any number of expressions to be evaluated visinis true. The return
value of the last expression is returned fromwhenfunction.
Examples:
AML> (when (= 2 3)
(+23)

(print (/ 6 3))

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 85

(*34)
)

NIL

AML> (when (< 2 3)
(+23)
(print (/ 6 3))
(*34)
)

2

12

AML> (when ‘false
(+23)
(print (/ 6 3))
(*34)
)

2
12

LOOP

The loop facility may be used for virtually all iggions required. Due to the versatility of the
loop statement, there are many control parameteatsare used to perform required tasks. These
control parameters are discussed according to filnedtion.

Iteration Control

The following iteration controls must precede otlo@p arguments except for thdth, initially,
andfinally arguments. There can be any number of iteratiotrals in a single loop statement.
The iterations occur simultaneously and the lodpfimish when any one of the iterations is
completed. Seopin AML Reference Manual for more details.

for

The for argument is a general increment (decrentamtiyol. There are a number of paramenters
that can be used to control how iteration shoutit@de. The parameters are used with the loop's
for control to accomplish many different types tefation.

Examples:
AML> (loop forifrom O to 3
do (print i))
0
1
2
3
NIL
See Also:

FROM, TO, DOWNTO, UPTO
DOWNFROM, UPFROM
BY

THEN
IN

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 86

VALUE ACCUMULATION

The resulting accumulated value will be returnedhgyloop statement. When more than one
accumulation is needed in a single loop statenteninto parameter is needed to create a local
variable to hold the results of the accumulatidihese accumulated values need to be returned,
use thdinally andreturn statements. Sdeopin AML Reference Manual for more details.

sum

Thesumargument accumulates a running total of its patame

Examples:
AML> (loop for i from 1 to 10
sum i)
55

AML>(loop foriin'(245689)
collect (+i2)

)
(46781011)

See Also:

append
collect
count
maximize
minimize

Conditional Execution

when

Thewhenargument is used to perform some operations wheemdition is true.

Examples:

AML> (loop for i from O to 10 by 3
when (evenp i)

do (print i)
collect i)
0
6
(03609)

AML> (loop for i from O to 10 by 3
when (evenp i)
do (printi) and
collect i)

0

6

(06)

AML>

See Also:

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 87

loop (more details)

THE Referencing with :from keyword

Thethereference construct has several keywords to augitsefianctionality. One keyword
introduced here igrom which sets the starting point instance thareference to the specified
object or property given after thieom keyword. This argument must evaluate to an olgect
property. Notice that all keywords irtlze reference are given inside one set of parentteses
distinguish the end of the instance traversal paththe start of the keywords.

Format:

(the name-1 name-2 ... name-n (:from (the nameniera ... name-m)))
Examples:

Assuming a tree structure as follows ...

AIRPLANE [Level 1]
maximum-speed [Level 2]
wing-span [Level 2]
number-of-engines [Level 2]
WINGS [Level 2]

WING-0001 [Level 3]
span [Level 4]
WING-0002 [Level 3]
span [Level 4]
RIBS [Level 4]
RIB-0001 [Level 5]
length [Level 6]
width [Level 6]

AML> (the airplane wings wing-0001 span)
40.1
AML> (the span (:from (the airplane wings wing-0001)))
40.1
AML> (children (the airplane wings))
(#<WING-CLASS #x1A8FDB8> #<WING-CLASS #x1AC32D8>)
AML> (loop
for wing-kid in (children (the airplane wings))
sum (the span (:from wing-kid))

80.2

v Notice that theving-kidlocal variable is used within theop construct. Thaving-kid
variable evaluates to an instance of a wing clagba& a span can be queried from it.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 88

Exercise 8

After a close review of the class definitions andlAconstructs described in the previous
section, create a class definition for a mass-pt@seclass inheriting frormaterial-properties-
class The mass-properties-class is inherited intantiesile-body-component-class. The mass-
properties-class assumes thass-source-obje@ an object of dimension 2 (surface). The
mass-properties-class has the following properties:

* mass-source-objeathich supplies a geometric object to all of iteate properties. This
property is set dynamically at instantiation.

» surface-areawhich calls the methodolume-of-objecbn themass-source-object

* masswhich is calculated by multiplying theaterial-thicknessthe material-densityand the
surface-areatogether. Add an “error check” using thden construct to ensure that the
mass-source-objegroperty is nonil.

Augment the classes inheriting framssile-body-component-clagsset the formula of the
mass-source-objegroperty to bésuperior. This can be implemented in thressile-body-
component-clasand will be inherited into its sub-classes.

Augment thamissile-geometry-cladsy adding two output properties:

* missile-body-componentsvhich contains a list of subobjects of classssile-body-
component-class
* missile-body-masahich loops through thenissile-body-componenésd sums their mass.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 89

Exercise 8 Solution
(in-package :aml)

(define-class material-properties-class
:inherit-from (object)
:properties (
;;English units assumed
material-thickness (default 0.01

material-name (default ‘alu
material-density (default 165.
)

)

(define-class mass-properties-class
:inherit-from (material-properties-class)
‘properties (

mass-source-object nil

;;volume-of-object assumed to be onl
surface-area (when “mass-source-obj

(volume-of-object »
)
mass (when ~surface-area
(* "surface-area
"material-dens
“material-thic

)
)
)
)
(define-class missile-body-component-class
:inherit-from (mass-properties-class

‘properties (

;;assumes this class will be mixed w

mass-source-object !superior

)
)

(define-class spherical-nose-class

:inherit-from (difference-object missile-body-com

‘properties (
;;user defined properties
missile-nose-radius (default 1.0)

;;internal properties
object-list (list "complete-sphere »

(complete-sphere :class 'sphere-obje

diameter (* “missile-nose-radiu
solid? il

(missile-body-object :class ‘cylinde
;¥ 2.0 ensures the cylinder height
height (* “missile-nose-radiu
diameter (* “missile-nose-radiu
orientation (list
(rotate 90 (0 1 0))
(translate (list (/ ~h

)

(define-class open-conical-nose-class

:inherit-from (open-cone-object missile-body-comp

) ift
minum) ;symbol
0) ;Ib/fth3

y surface area here
ect
mass-source-object)

ity
kness

ith a geometric class

ponent-class)

missile-body-object)
ct
s 2.0)

r-object

is large enough
s 2.0)

s 2.0)

eight 2.0) 0 0))

onent-class)

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

90

:properties (
;;user defined properties
missile-nose-length (default 2.0)
missile-nose-radius (default 1.0)

;;internal properties

height missile-nose-le
diameter (* “missile-nose
orientation (list

(rotate -90 '(0

)

(define-class open-cylindrical-body-class
:inherit-from (open-cylinder-object missile-body-
:properties (

)
)

(define-class open-truncated-cone-body-class
:inherit-from (open-truncated-cone-object missile
:properties (

)
)

(define-class hexagonal-profile-class
:inherit-from (polygon-object)
:properties (

;;user defined properties
width (default 1.0)
height (default 0.2)

;;internal properties
vertices (let* (
(half-w (/ “width
(half-h (/ “heigh
(sixth-w (/ “width
)
(list
(list half-w 0.0 0.0)
(list sixth-w half-h 0
(list (- sixth-w) half
(list (- half-w) 0.0 0
(list (- sixth-w) (- h
(list sixth-w (- half-
;;last point will be ¢
)
)

)

(define-class fin-profile-class
:inherit-from (hexagonal-profile-class)
:properties (

;;user defined properties
fin-cord (default 1.0)
fin-thickness (default 0.2)

;;internal properties

width ~in-cord
height ~in-thickness
)

ngth
-radius 2.0)

10))

component-class)

-body-component-class)

2.0)
£2.0))
6.0))

.0)

-h 0.0)

.0)

alf-h) 0.0)

h) 0.0)

losed automatically

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

91

(define-class fin-class
:inherit-from (capped-surface-object)
:properties (
;;user defined properties
fin-cord (default 1.0)
fin-thickness (default 0.2)
fin-span (default 3.0)

;;internal properties
solid? nil
source-object ~fin-extrusion

(fin-profile :class 'fin-profile-cla ss
)

(fin-extrusion :class 'extrusion-obj ect
swept-object Mfin-profile

distance AMfin-span

vector '(0.00.01.0)

)

)

)

(define-class fin-array-class
:inherit-from (circular-array-object)
:properties (

;;user defined properties

fin-cord (default 1.0)
fin-thickness (default 0.2)
fin-span (default 3.0)
fin-span-offset (default 2.0)
fin-quantity (default 4)

;;internal properties
source-object “fin-source

diameter (* 2.0 AMin-span- offset)
quantity ~Min-quantity
ref-point '(0.00.00.0)
center '(0.00.00.0)

rotate-axis '(0.00.01.0)

(fin-source :class 'fin-class
orientation (list
(rotate 90.0'(01 0)
)

)

(define-class missile-geometry-class
:inherit-from (object)
:properties (
;;user defined properties
missile-general-body-radius (default 1.0)
missile-general-body-thickness (default 0.01)

missile-nose-length (default 2.0)
missile-nose-radius (default “missile-general-b ody-radius)
missile-nose-type (default 'sphere)

;; options are 'sphere or 'cone

missile-mid-body-length (default 14.0)
missile-mid-body-radius (default *missile-general -body-radius)

missile-aft-body-length (default 2.0)
missile-aft-body-start-radius (default “missile-g eneral-body-radius)

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

missile-aft-body-end-radius (default 0.75)

fin-distance-along-axis (default 12.0)

fin-cord (default 1.0)

fin-thickness (default 0.2)

fin-span (default 2.0)

fin-span-offset (default *mis sile-general-body-radius)
fin-quantity (default 4)

display-coord-systems? (default nil)

;;output
missile-body-components (children !superior
:class 'missile-body-component-class)
missile-body-mass (loop
for kid in “missile-body-components
sum (the mass (:from kid))

)

:subobjects (
(missile-coordinate-system :class 'c oordinate-system-class
display? "display-coord-systems?
origin (list 0.0 0.0 0.0)

(nose-coordinate-system :class ‘coor dinate-system-class
display? Mdisplay-coord-systems?
origin (if (equal Mmissile-nose -type ‘cone)

(list (* 0.5 ~“missile-nose-length) 0.0 0.0
(list ~missile-nose-radius 0.0 0.0)

reference-coordinate-system ~miss ile-coordinate-system
(nose :class (case !missile-nose-typ e
(sphere 'spherical- nose-class)
(cone ‘'open-conic al-nose-class)
(t 'spherical- nose-class)
material-thickness ~missile-general-body-thi ckness
reference-coordinate-system ~*nose -coordinate-system
(mid-body-coordinate-system :class 'coordinat e-system-class
display? "display-coord-systems?
origin (if (equal ~missile-nose-t ype ‘cone)

ist (+ missile-nose-length 2.
li / Mmissil | h2.0
(/ Mmissile-mid-body-length 2.0)

0.0
0.0)
(list (/ Mmissile-mid-body-length 2.0) 0.0 0.0)
reference-coordinate-system ~nose- coordinate-system
(mid-body :class 'open-cylindrical-b ody-class
diameter (* Mmissile-mid-body- radius 2.0)
height Mmissile-mid-body-leng th
material-thickness ~missile-general-body-thi ckness

orientation (list
(rotate 90 (0 1 0))

reference-coordinate-system ~mid- body-coordinate-system

(aft-body-coordinate-system :class ' coordinate-system-class
display? Mdisplay-coord-systems?
origin (list
(+ (/ Mmissile-mid-body-length 2.0)
(/ Mmissile-aft-body-length 2.0)
)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 93

0.0

0.0)
reference-coordinate-system ~mid- body-coordinate-system
(aft-body :class 'open-truncated-con e-body-class
start-diameter (* Mmissile-aft- body-start-radius 2.0)
end-diameter (* Mmissile-aft-b ody-end-radius 2.0)
height Mmissile-aft-bo dy-length
material-thickness *missile-general-body-thic kness
orientation (list
(rotate 90 '(010))

reference-coordinate-system *aft- body-coordinate-system

(fins :class 'fin-array-class
orientation (list
(rotate 90 '(0 1 0))
(translate (list Mfin-distance-along-axis
0.0
0.0)

)

reference-coordinate-system ~missile-coordina te-system

)
)

Code Explanation

The developer creates a genem@ass-properties-clasand inherits it into themissile-body-
component-classThis also promotes code re-use and modular desighe generic class can be
instantiated by itself or inherited into other udefined classes in the future. This class is
slightly different than thematerial-properties-clasdecause of thenass-source-object This
allows a user to instantiate this class indepemgdrdam any object and “point” to an other
object by setting thenass-source-obje@roperty dynamically at instantiation or at rurgimrhe
other properties in thenass-properties-clasgontain awhen statement before their main
execution in order to trap errors. Notice thatiethodvolume-of-objecis expected to return a
surface area in this particular class. This cdddaugmented very easily withcasestatement

or a series off statements.

Notice how themissile-body-component-clabslps in this situation. With the simple additian
the mass-properties-clasall of the missile components receive the fun@ldgy from themass-
properties-class Themass-source-objecould also be set at each instance ofntigsile-body-
component-class This is a developer decision that may be comedienore of a matter of
“style” rather than modeling “correctness”.

The missile-geometry-classow has the two output properties. Tinessile-body-components
property could be referred to in other objects rpprties that need these specific objects. This
becomes more efficient if these objects are ne@udsdveral places becaus¢ha reference will

be used to obtain the objects instead of makingther call to thehildren method. Theselect-
objectfunction could also be used here if some desirgectd are located in objects within the
children.

Note that the code for thmissile-body-massould have simply been given as follows:

(+ (the mass (:from ~nose))
(the mass (:from ~*mid-body))
(the mass (:from "aft-body)))

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 94

This is certainly simpler than the loop given ie #xercise, however it is extremely limited. For
example, with the simple addition of the masseslibgctthe references, the missile component
names can not change without changing the codeo, Afhe code would have to be changed any
time the a user adds a new body component to lbedied in the mass calculation. The use of
children satisfies all of these concerns because it wilbgs have a dependency on the missile’s
children. Each time a child is added or deletedchildren method will make thenissile-body-
massbecome unbound. This practice of using the metlmath a<hildren or functions like
select-objecenables the program to become dynamic/adaptiveahowd a user to dynamically
create a tree structure with properties and formthiat automatically update based on demand.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 95

3. Introduction to AML Graphical User Interface (GU) Design

3.1 Preview

Using AML, the application developer can build dnagal user interfaces using AML classes,
functions and tools. Building a user interface iMIA can be done at different levels. If the
developer is looking for maximum design flexibildynd control, the GUI development procedure
can be at the base level, i.e. GUI components aitedne by one and linked to the application
model through user-defined methods and functiohss process requires the most development
time. This functionality is documented in the AMUodel Interface Design Manual in the
chapter titled "Base Classes and Tools".

On the other hand, GUI development can be at a rhigiier level if the developer decides to
use a set of standard AML property classes thata@pable of automatically interfacing an AML
model providing most of the standard control thatiser requires from an application. This
reduces development time dramatically. This fuorality is documented in the AML Model
Interface Design Manual in the chapter titled "Mola¢erface Classes and Techniques”. Mixing
functionality and objects from both of these sedids allowed and also recommended for some
applications.

3.2 Automated Model Interface Design

This section introduces a portion of the autom@tidl generation capabilities. Using the AML
GUI classes and functionality, the developer haisnate control over the functionality and the
aesthetics of the GUI as well as the communicabtietween the GUI and the model. For large
applications however, this may be undesirable dubd fact that the developer has more code to
design and debug. If the developer follows som&dsted design techniques and use some
advanced application forms, the GUI-specific widgdtinctions or GUI-model communication
are done automatically with the AML model interfamreperty classes and some of the advanced
GUI forms available within AML. Developed using stiard AML base GUI classes, the model
interface system revolves around the following idba& developer builds a model with enough
knowledge in its objects and properties (Propegture, behavior and rules) so that advanced
GUI classes can provide all the functionality expdcfrom a graphical user interface without
requiring any programming. For that purpose, aogiroperty classes are given in AML that,
when used in the context of what is defined adata-model contain enough knowledge to
automatically generate their own user interfacés Huggested at this stage, the developer refers
to the introduction section of tiModel Interface Desigmanual for further reference.

The concept of a@ata-modelis introduced here to aid in the user interfacsigteand general
AML model organizationThe part of an AML model typically representedébget of properties
that are meant to be available to the user of ar Alplication usually through a graphical user
interface. These properties are typically instanaamodel-interface-property-clasatroduced
below. These classes implement the expanded pyopeecification mentioned earlier in the
manual.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 96

Model-interface-property-class [Class]

This is the super-class of afthodel-interfaceproperty classes. This class is typically not
instantiated by the user.

Inherit-from: property-object

Properties:

Available? Flagt(or nil) specifying if the property is available/usablsually based
on the current values of the otfdata-modeproperties. A non-available
property is grayed out by the GUI.

Label String specifying the label of the propefithe label is typically used by
the GUI. Default formula is (write-to-string (object-name (the
superior)).

v Note that thdormulaslot for any class inheriting fromodel-interface-property-
y g property
classmust be specified otherwise tfiemulawill be set tonil. In order to keep the
original formula from the inherited class, set thenulato :inherit-formula

Computed-data-property-class [Class]

This class is used for general-purpose properttesse values are not supposed to be edited by
the user. These properties are typically outpup@riies.

Inherit-from: model-interface-property-class

Editable-data-property-class [Class]

This class is used for general-purpose properttesse values are to be edited by the user. These
properties are typically input properties.

Inherit-from: model-interface-property-class

Flag-property-class [Class]

This class is used for “flag” properties that expacvalue of t or nil. These properties are
typically represented in the GUI with a toggle butt

Inherit-from : model-interface-property-class

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 97

Option-property-class [Class]

This class is used for properties whoséueis equal to one element of a list of availablaays.
These properties can be represented with an optenmu, a radio button group, or a combo box.
A combo box is typically used whenever trdue of the option-property-classs allowed to be
different for any of the available options.

Inherit-from: model-interface-property-class

Properties:

Labels-list List of strings specifying a label feach optionLabel-listis ignored
whenmodeis ‘combobecause a user is allowed to edit an option making
options and labels one entity.

Mode GUI mode specifying the GUI representatiorthad property. Allowed

values are‘radio,’menu, and 'combo (See Section 3 of the Model
Interface Design Manual for corresponding GUI Widge Default
formula is‘radio.

Options-list List of available options.

Data-model-node-mixin [Class]

This class is designed to represent a node of a uidel. It contains application-specific
knowledge about the node it represents. It alsoages the properties of that node that are part
of the data-modeland hence that should be a part of the applicaBbh. Data-model-node-
mixinis typically inherited into user defined classesn8ard application forms (described in the
Model Interface Design Manual) make use of dataehaddes for the automatic generation of
model GUIs. Application forms that contamtata-modelin their class name are typically
designed to interfacgata-model-node-mix&

Inherit-from: object

Properties:

Available? Default formula igDefault t). When nil, does not allow GUI
access to theproperty-object-listof the node from the data
model tree.

Label: Label of the node as displayed in the Gathdnodel tree.

Property-objects-list List ofmodel-interface-propertynstances that define trdata-
modelproperties of this node. Properties included is tisit will
be available in the automatically generated forned tisedata-
model-node-mixin The list follows the same format of the
property-objects-lisbf ui-multiple-property-subform-class

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 98

See also: ui-multiple-property-subform-class, utedmodel-tree-inspection-class, ui-data-model-main-
form-class.

Example:

Below is the class definition of a box, a cylingerd their union. They can be instantiated as a
data-modelthat one of thepplication forms defined later can point to. Figure 19 shows the
end result.

(define-class box-data-model-class
:inherit-from(box-object data-model-node-mixin)
:properties(
property-objects-list
(list

(list (the superior depth self) '(automatic-app ly? t))
(the superior height self)
(the superior width self)

)
)

(define-class cylinder-data-model-class
:inherit-from(cylinder-object data-model-node-mix in)
:properties(
property-objects-list
(list
(the superior diameter self)
(the superior height self)

diameter 1.0
height 8.0
)

)

(define-class union-data-model-class
:inherit-from(union-object data-model-node-mixin)
:properties(

label "Union of Box and Cylinder"
property-objects-list
(list
(the superior simplify? self)
(the superior render self)

(simplify? :class 'flag-property-class
formula t

(render :class 'option-property-class
options-list '(boundary shaded facet)
mode 'menu
formula :inherit-formula

object-list (list “box ~cylinder)

:subobjects(
(cylinder :class 'cylinder-data-model-class
label "Cylinder node"

(box :class 'box-data-model-class
label "Box Node"

)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 99

i’ Technosoft - AML Yersion 4.3.11 : Main Modeling Form oy =] 9]
Model Options

Graphics Display

Model Tree Work Area: Union of Box and Cylinder

v simplify?

@ Cylndernode

4 BoxNode render shaded -

vV X @B X BTl A

Made Data Madel = S
B EHQOE Lk 2 @0 ME [¥

&~ Edit L + " E: ol

- Adl:l = S'S:;D - V::::rame The selected node (Linion of Boz and Cylinder] has been opened for ediing. 5|
" Shade Undraw " Delete

I~ Al? Madel Update J

Figure 19

property-names-to-inspect [Method]

This method is automatically called by the systelremvan object is opened for inspection or
editing if no property-objects are defined in fh@perty-objects-listThe AML developer can
redefine this method on any class to specify ttupgurties that are visible when an instance of
that class is opened for "inspection” (Given tl tShow all' toggle on the object inspection
form is off). This method should always return st lof property names. This method is pre-
defined on a number of AML classes, it returnsfoilall other classes. When it returns nil, all
properties will be visible. The "Show all" toggleitton can always be toggled on to show all
properties on the inspection form.

Example:

(define-method property-names-to-inspect box-object 0
‘(height width depth color render line-type)
)

Upon inspecting an instance ofb@x-object the inspect form will only show the properties
defined in this method. Similar results occur wieeliting an instance ofl@ox-objectas seen in
the following figures.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 100

----- 4 box-object

Model Tree ‘Work Area: Box-Object

Height
‘width
Depth
Color
Render

Line-Type

1.0

1.0

1.0

it

‘boundary

i

Editing an instance of laox-objectwith theproperty-names-to-inspentethod redefined.

S=1 1l +F 7omOE+4

DObject Name: box-object Class: box-object

V' Demand Value

Property | > | Walue
height 1.0

width 1.0

depth 1.0

color “white’*
render ‘boundary
line-type

Inspecting an instance ofb@x-objectwith theproperty-names-to-inspentethod redefined.

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

101

Exercise 9

After a close review of the class definitions antlA constructs described in the previous
section, create a class definition for a data mamgled missile-geometry-data-model-class
inheriting fromdata-model-node-mixiandmissile-geometry-classOverwrite the properties for
the needed properties to create the form shownigur& 20. Use theinherit-formula
specification for each of the properties’ formutaatlow the base class’ formula to be used. All
of the properties shown are instancesditable-data-property-claswith the exception of the
missile-nose-type (class option-property-clags missile-body-mass(class computed-data-
property-clasy anddisplay-coord-systems#hich is an instance offeag-property-class Make
the missile-nose-lengtlavailable only if themissile-nose-typé a conical nose. Thmissile-
nose-typeshould use theautomatic-apply?property in theinit-form portion of theproperty-
objects-listso that themissile-nose-lengtiproperty updates as the user interactively maglifie
missile-nose-typavithout pressing the Apply button. Threissile-body-masshould use the
automatic-demanddroperty in theinit-form portion of theproperty-objects-listso that the
missile-body-masgroperty does not demand the value ofrhigsile-body-maswithout the user
clicking on the “I” button. Also separate the peofies into their respective functional areas by
using text strings in thproperty-objects-lisas shown in Figure 20.

i’ Technosoft - AML Yersion 4.3.11 : Main Modeling Form oy =] 9]

Model Options

Work Area: Missile Geometiy Data

Graphics Display

General Parameters
General Body Radius]
General Body Thicknsss o0
[Display coordinate systems

Mose

Wz Tt pherical

tid and Aft Body
Mid Body Length 14.0

Aft Bady Length

il

&ft Body End Radius

=

5

Fins.

Fin Dist. Alang Aiis 120
Fin Chord

Fin Thickness

Fin Span

Fin Quantity

===
=l m| =

Output

Body Mass 173 7927 243645568 !

vV X Z @B Xl P

Made Data Madel =
& r r
- :g = ‘D"'S:;E‘ - E:I:':’F":ame The selected node (Missie Geomely Dala) has been opened for ediing. 5|
€ Shade € Uncraw Delste

e Al Mol Update il

Figure 20

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 102

Exercise 9 Solution

(define-class missile-geometry-data-model-class
:inherit-from (missile-geometry-class data-model-
:properties (

property-objects-list
(list
"General Parameters"”
(the superior missile-general-body-
(the superior missile-general-body-
(the superior display-coord-systems
"Nose"
(the superior missile-nose-length s
(list
(the superior missile-nose-type s
‘(automatic-apply? t)

"Mid and Aft Body"
(the superior missile-mid-body-leng
(the superior missile-aft-body-leng
(the superior missile-aft-body-end-
"Fins"
(the superior fin-distance-along-ax
(the superior fin-cord self)
(the superior fin-thickness self)
(the superior fin-span self)
(the superior fin-quantity self)
"Output”
(list
(the superior missile-body-mass self)
'(automatic-demand? nil)

)

label "Missile Geometry Data"

(missile-general-body-radius :class 'editable-dat
label "General Body Radius"
formula :inherit-formula

(missile-general-body-thickness :class 'editable-
label "General Body Thickness"
formula :inherit-formula

(missile-nose-length :class 'editable-data-proper
label "Nose Length"

formula :inherit-formula

available? (equal “missile-nose-typ

(missile-nose-type :class 'option-property-class
label "Nose Type"

mode 'menu

formula :inherit-formula

options-list '(sphere cone)

labels-list '("Spherical" "Conical"

(missile-mid-body-length :class 'editable-data-pr
label "Mid Body Length"
formula :inherit-formula

(missile-aft-body-length :class 'editable-data-pr
label "Aft Body Length"
formula :inherit-formula

(missile-aft-body-end-radius :class 'editable-dat

node-mixin)

radius self)
thickness self)
? self)

elf)
elf)

th self)
th self)
radius self)

is self)

a-property-class

data-property-class

ty-class

e 'cone)

operty-class

operty-class

a-property-class

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

103

label "Aft Body End Radius"
formula :inherit-formula

(fin-distance-along-axis :class 'editable-data-pr operty-class
label "Fin Dist. Along Axis"
formula :inherit-formula

(fin-cord :class 'editable-data-property-class
label "Fin Chord"
formula :inherit-formula

(fin-thickness :class 'editable-data-property-cla ss
label "Fin Thickness"
formula :inherit-formula

(fin-span :class 'editable-data-property-class
label "Fin Span”
formula :inherit-formula

(fin-quantity :class 'editable-data-property-clas s
label "Fin Quantity"
formula :inherit-formula

(missile-body-mass :class 'computed-data-property -class
label "Body Mass"
formula :inherit-formula

(display-coord-systems? :class 'flag-property-cla ss
label "Display coordinate systems"
formula :inherit-formula

)
)

Code Explanation

The missile-geometry-data-model-clagsd all of the behavior of theissile-geometry-class
with the additional ability to show these propestia an automatically generated user interface.
A user can now modify these properties easily ®sging theapply button on thedata model
form. Notice how the intelligence is placed in the mlosb that themissile-nose-lengtis not
available when themissile-nose-typés spherical. Theapply button knows to not apply any
changes to unavailable buttons and apply chanfesyiwere made) to the available buttons.
Notice the order of thproperty-objects-lisivhich corresponds to the order that the buttoes ar
instantiated from top to bottom.

Notice the use ofinherit-formula within all of the data properties. This allowsr fthe
specification of the formula in the original clasisat is inherited into the data model
representation. Formulas can be overwritten indd&a model, however it is not required, and
often is not needed because of fin@erit-formulafunctionality.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 104

4. AML Source Code Management (AML Systems)

This section of the manual introduces the concaptssyntax of systems in AML. The
management of source code is accomplished thrdwgtfinition of systems. A system is a set
of source code files that are grouped togetheringf a system allows the code in a system to
be treated as a module that may be loaded, compitetarchived as a single entity. Compiling
systems archives the source code with the binkey $io updating older versions is possible by
using the archived code. A system also compileartdn for multiple platforms within a version
to allow different platforms to be operating wittetsame system version. A system may require
other systems to automatically load before loadingompiling itself. Organizing code into
systems that may be loaded is a methodology forahee of code. A logical path is a reference
to files and directories in the system. The logfath file stores the logical path references,
making modification easy. These references areaned by the use of tHegical-path

function.

New AML Constructs

The following AML concepts and constructs are uisettis section:

* logical path files
* logical-path

» define-system

» compile-system
* load-system

Logical Paths File

AML has the capability of defining logical-path-eeénce variables to locate resources on the
file system. They are defined in logical pathsdil®n Unix platform, a user logical paths file
(logical.paths)can be created under the user’'s home directorf@DOWS platforms, a
logical paths filglogical.pth)exists under the AML directory. The user can apentries to
this file and make modifications as necessary. [dgeeal paths file contains lines with logical-
path-reference and corresponding path definitioftsese can be direct or relative as shown
below.

:home ~/
tmp /tmp/
:missile :home missile/

Compiler directives can be used in a logical péithsand amidst AML source code to
distinguish between a WINDOWS and a non-WINDOW S Syeint the following way:

#WINDOWS

:home ~/
#+WINDOWS

:home c:\users\userl\

A #+WINDOWS directive specifies that the followifige is only visible on WINDOWS
machines, while a #-WINDOWS directive specifies the following line is only visible on non-
WINDOWS machines. Directives should not be follovilgdogical path entries on the same
line, and only one directive per line is allowed.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 105

logical-path [Function]

logical-pathis a function that uses the logical paths filedowert a logical-path-reference to a
path definition. The path definition is a stringiths retrieved from the logical paths file. If the
logical path reference does not exist in the ldgiedhs file, the function returns nil.

Format:

(logical-path logical-path-name [file-name-1 .lefhame-n])

Arguments:
logical-path-name The name of a logical path refeeedefined in logical paths
file.
file-name A string that is concatenated to logjath-name reference.
Examples:

On the Windows platform ...

AML>(logical-path :home)

"c:\\users\user1\"

AML>(logical-path :temp)

"c:\\temp\\"

AML>(logical-path :temp "mesh-01" "nodes.dat")
"c:\temp\\mesh-01\\nodes.dat"

On the UNIX platform ...

AML> (logical-path :home)

"lusers/userl/"

AML> (logical-path :temp)

"tmp/"

AML> (logical-path :temp "mesh-01" "nodes.dat")
"tmp/mesh-01/nodes.dat"

Note: On the Windows platform, file paths must have dewdashes. Thiegical-path
function takes care of this for the user.

DEFINE-SYSTEM [Function]

Thedefine-systermonstruct is the main mechanism for creating systéihe definition should
appear in a system definition file namggtem.defThesystem.defust be in the directory
returned wherflogical-path :system-name& executed. The system-name must be an enthein t
logical path file for the system to be found fongmling or loading.

Format:

(define-system system-name [:require-systems:¥i)é$ '()])

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 106

Arguments:

system-name The name of the system being defites dlecommended that the
system have a keyword name to make it package émdizmt.

require-systems
A list of system names that must be loaded befbee dystem being
defined may be compiled or loaded.

files A list of files that comprise the system. Tiles may be located in the
same directory as the system.def file or in a gelothry named sources
only.
Example:

(define-system :MY-SYSTEM
require-systems '(:base-system :extension-system)
files ’(
“filel.aml”
“file2.aml”
“file3.aml”
)
)

A directory structure for a system, nanmag-systenmwould look something like the following:

/home/
apps/
my-system/
system.def ;; File containing the system definit ion.
sources/

filel.aml ;; Source code file.
file2.aml ;; Source code file.
file3.aml ;; Source code file.

In this example, the logical path file entry foy-systenmust be:

:my-system /home/apps/my-system/

compile-system [Function]

When a system is compiled the source code is readthe files specified idefine-system
Compilation of a system will create system versi@rshives) that contain the source from time
of compile and the binary files created by thosgre®files. Binary files are created in a
subdirectory named for the machine type in theesgstersion subdirectory. That subdirectory
will be used byload-systento load the binary files. A system tracks the byrfdes created and
will not compile source files that have not changette the last being compiled unless the
force?keyword is t. Only the newest version or a nevsieT may be compiled.

Format:

(COMPILE-SYSTEM system-name [:force? nil] [:forgeti® [:new? nil])

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 107

Arguments:

system-name The name of a system to compile. Thrsyname must be an entry
that is found in the logical.paths file.

force? Default is nil which only compiles files thHzave changed since the last
compile. A t value will compile all files in the stem.

forget? This keyword controls the redefinition ofsgstem. The default is nil
which will not read the system.def file after thistf compile or load. If
forget?is supplied as t the system.def file will be reke&lote: Changes
made to a system.def file of a loaded system woll lne recognized
unlessforget?is t.

new? Defaults to nil. When t, creates a new systerhive. Ifnew?is nil the
system will be archived and compiled into the neawgstem archive.

Examples:
; The following compiles the system files the first time on a Sun
; machine and creates MY-SYSTEM-1 subdirectory stru cture shown below.
AML> (compile-system :my-system)
/home/
apps/
my-system/
system.def File containing the system definition
sources/
filel.aml Source code file.
file2.aml Source code file.
file3.aml Source code file.
MY-SYSTEM-1/
system.def
sources/
filel.aml Archived source code file.
file2.aml Archived source code file.
file3.aml Archived source code file.
SUN-bins-a/
filel.shin Archived binary file.
file2.shin Archived binary file.
file3.shin Archived binary file.
; The following reads the system.def file and compi les only changed
; or uncompiled files into the existing version.
AML> (compile-system :my-system :forget? t :force? nil :new? nil)
load-system [Function]

When a system is loaded the binary files that weeated during the last compilation are loaded
if no version number is supplied. When a versiomber is supplied the binaries for the machine
will be loaded from a compile that may not be tlegvast. This allows versions to be in
production and newer versions to be under develapnifehe source code is changed the
changes will not be loaded until aftecampile-systerns performed. A system also tracks the
version of the binary files that are loaded so thaicessive loading of the same system will not
take time to load files that are unchanged.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 108

Format:
(LOAD-SYSTEM system-name [:forget? nil] [:versioii]r)

Arguments:

system-name The name of a system to load. Themnsysene must be an entry that is
found in the logical path file.

forget? This keyword controls the redefinition ofsgstem. The default isil
which will not read the system.def file after thistf compile or load. If
forget?is supplied asthe system.def file will be read.

version This keyword specifies the version of theabies which will be loaded.
The default value afil will load the latest version.

Note: Changes made to a system.def file of a loade@sysaill not be recognized unleBwget?
ist.

Example:

AML> (load-system :my-system)

;;; Loading source file "/Thome/apps/system/MY-SYSTE M-1/sysdef.def"
Loading system MY-SYSTEM...

;;; Loading binary file "/home/apps/system/MY-SYSTE M-1/SUN-bins-a/
filel.sbin"

;;; Loading binary file "/home/apps/system/ MY-SYST EM-1/SUN-bins-a/
file2.sbin"

;;; Loading binary file "/home/apps/system/ MY-SYST EM-1/SUN-bins-a/
file3.shin"

MY-SYSTEM System loaded.

;; Loading again will not reload files that have no t be recompiled.
AML> (load-system :my-system)

Loading system MY-SYSTEM...

Skip loading: /home/apps/system/MY-SYSTEM-1/SUN-bin s-alfilel.shin
already loaded.
Skip loading: /home/apps/system/MY-SYSTEM-1/SUN-bin s-alfile2.shin
already loaded.
Skip loading: /home/apps/system/MY-SYSTEM-1/SUN-bin s-alfile3.shin

already loaded.
MY-SYSTEM System loaded.

See Also:

compile-system-file

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 109

Exercise 10

Take the code from the previous exercise and diitidgo functional groupings of classes and
place them into different files based on their gniog. Define a system calledhissile-training-
systemthat requires the files from the functional growgs. Modify your logical path file to
have a corresponding entry for the location ofdhgtem. Compile this system, exit from AML
and practice loading the system. You do not hawexit, but it demonstrates the ease loading a
system from scratch and having all of the clasgd&ns in memory.

The following table shows a suggested functionaluging of the classes from the previous
exercise. The order of the files in thystem.defile should follow the order given in the table.

Classes Filename
* material-properties-class base-functionality.aml
* mass-properties-class
* hexagonal-profile-class fins.aml
» fin-profile-class
+ fin-class
» fin-array-class
* missile-body-component-class missile-body-components.aml

» spherical-nose-class

* open-conical-nose-class

* open-cylindrical-body-class

» open-truncated-cone-body-class

* missile-geometry-class missile-geometry.aml

* missile-geometry-data-model-class missile-interface.aml

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 110

Exercise 10 Solution

(in-package :aml)

(define-system :missile-training-system
files '(
"base-functionality.aml”
"fins.aml"
"missile-body-components.aml”
"missile-geometry.aml”
“missile-interface.aml”

)

Code Explanation

The system loads/compiles the files in order fromto bottom. It is important to know the
order of files because some files may contain itdrasrequire other classes/functions/methods
to be previously loaded.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 111

5. Defining Functions and Methods
This section of the manual presents some topidsatiegauseful to a developer such as:

» defining functions witrdefun
» defining methods witldefine-method

5.1 Defining Functions

defun [Construct]

Thedefunconstruct is used to define a function, or procedin AML.
Format:
(DEFUN function-name ([args]) [body])

Arguments:

function-name The function name must be a symhbweé(gwithout a quote).

args Arguments for the function.
body The action(s) the function performs.
Examples:

(defun quadratic-formula (a b c)
(let* (

(radical (- (exptb 2) (*4 ac)))
(denominator (*2a))
(numerator-plus (+ (- b) (sqrt radical)))
(numerator-minus (- (- b) (sqrt radical)))
)
(list

(/ numerator-plus denominator)
(/ numerator-minus denominator))

)

)
AML>(quadratic-formula 1 3 2)
(-1.0f0 -2.0f0)

Notes:

There are more ways to use arguments than showeahah as “keywords” and “optional”
arguments. Time permitting, these may be covareld training class.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 112

5.2 Defining Methods

define-method [Construct]

A method is an operation (function) that is defirspecifically for a class. For example suppose
the methodrolumeis defined for each of the clasdmsx-objectcylinder-object andsphere-

object This method calculates the volume for an obj&st.calling thevolumemethod with an
instance of one of those classes, the correct tpenaill be executed automatically and the
volume of the instance returned. Inheriting froiass that has methods defined for it will also
inherit the methods. The following construct iedior defining methods in AML.

v Thereferencing is modified to start at the instanseduas the first argument of the
method call.

Notes: Do not useselfas a variable within define-methods becasedéis locally bound by the
system to be the instance used to call the metkigithin a method defined on an object other
than a property-objectthe) returns the object itself. Within a method defirmedan instance of
property-objecior anything that inherits fromroperty-objec), (the)returns the value of the

property.
Format:
(DEFINE-METHOD method-name class ([args]) [body])

Arguments:

method-name The method hame must be a symbol (giitbout a quote).

class The class for which the method is written.

args Arguments for the method.

body The action(s) the method performs.
Examples:

(define-class EXAMPLE-BOX-CLASS
:inherit-from (box-object)
‘properties (
height 3.5
width 4.1
depth (* 1.8 ~height)

box-weight (weight !superior 0.3)
)
(define-method WEIGHT BOX-OBJECT (density)

(let* (
(volume (* (the height) (the width) (the depth)))
)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 113

v

(* density volume)

)

(define-method WEIGHT CYLINDER-OBJECT (density)
(let* (
(volume (/ (* pi (the diameter) (the diameter) (
4.0))

(* density volume)

)

AML>(create-model 'EXAMPLE-BOX-CLASS)
#<EXAMPLE-BOX-CLASS @ #x21a2975a>
AML>(the box-weight)
27.121499999999994

AML>(create-model 'box-object)
#<BOX-OBJECT @ #x223b2a62>
AML>(weight (the) 8.4)

8.4

AML> (create-model ‘cylinder-object)
#<CYLINDER-OBJECT @ #x223c194a>
AML>(weight (the) 1.0)
1.5707963267948966

(define-method WEIGHT GRAPHIC-OBJECT (density)
(let* (
(volume (volume-of-object (the)))

(* density volume)))

(define-class INTERSECTION-EXAMPLE-CLASS
:inherit-from (intersection-object)
:properties (
object-list (list “part *shaft)
(part :class 'box-object
solid? t

(shaft :class ‘cone-object
height 4.0
diameter 2.0
solid? t

)
)

AML>(create-model 'intersection-example-class)
#<INTERSECTION-EXAMPLE #x19FFB44>
AML> (weight (the) 1.0)

0.744320226850907

Notes:

There are more ways to use arguments than showre alnech as “keywords” and “optional”
arguments. Time permitting, these may be covareld training class.

A define-method may not be defined for a class tie not been previously defined and
loaded into memory. It is suggested that methodsuddiately follow the classes they are

defined for.

Define-methods are defined for classes but areutgdcby calling the method with an

instance of the class for which it is defined .

the height))

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

* The most specific method for the instance will s2di Consider the example given for
define-class. If a method has been defined forettdy (which inherits fronbox-objec)
which has the same name as one defineddsrobject the method on table-top will take
precedence when called on an instance of table-top.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 115

6. Low Level User Interface Design

This section introduces some basic low level AMlerumterface design techniques through an
example and an exercise. It is useful to go fireiugh some naming conventions:

1- Widget: A user interface entity (i.e. a buttanmenu...) that is usually an instance of an
AML class.
2- Form: A widget used to group other widgets, d¢Bn a stand-alone window or a

subobject of another form.

3- Top-levelForm: A form that is a stand-alone window, i.e. @osubobject of another
form.
4- Component: A widget that is not used to groupeptwidgets. It is typically a

subobject of a form.

5- Layout: An object used to grotpp-levelforms. Top-levelforms are typically subobjects
of a layout.
6- An instance of class is an instance of or of any class that inherits from X.

6.1.1 Positioning and Sizing

Below are the class definitions of-widget ui-group, ui-form-classExcept forui-form-class
these two classes should not be instantiated bgeheloperUi-widgetis the super-class of all
widget classes antli-group is the super-class of all form classes. For thepgae of this
introductory section, the definitions below do sbbw all the properties of the classes described
and focus only on positioning and sizing. Advans&ing and positioning properties are also
defined with the classas-grid-form-mixinand ui-grid-component-mixir{and their subclasses)
but will not be covered in this sectidPlease refer to theUI Base Classelslanual for complete
reference.

UI-WIDGET [Class]

Ui-widgetis the super-class of all widgets. A widget is@l@ntity that has the capability to control itsrow
size/position and appearance attributes. Unlesedstatherwise, all GUI widgets are instantiated as
subobjects of aii-group instance. Allui-widgetinstances (i.e. instances of classes that inhexin Li-
widge) base their position and size on the properieffset, y-offset, width, heighhdmeasurement

Inherit-from: ui-root
Properties:
Gray?: Defaults to nil. When t, the widget isadiled and appears grayed out.
Measurement: Defaults t@default 'percentage)Can take a value of 'pixels or 'percentage.
When 'pixels, thex-offset, y-offset, widtland height of the widget represents

pixel values. When 'percentage, tkoffset, y-offset, widtnd height of the
widget represents a percentage value of the widitih of the superior object of

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 116

the ui-widget instance. Also, when a percentage measurememeified, the
widget is attached to its parent, i.e. the widgeig and shrinks with its parent
window when that window is resized with the mouse.

X-offset: Defaults td0. Integer representing the offset of the widgetrfrihe left side of
its parent.
Y-offset: Defaults td. Integer representing the offset of the widgeirfihe top side of its
parent.
Width: Defaults tdlO. Integer specifying the width of the widget.
Height: Defaults td 0. Integer specifying the height of the widget.
UI-GROUP [Class]

Ui-group s the Superclass of all form classes. Typicallglass thati-groupinherits into is instantiated as
a parent object to other widgets and can manage plosition, size, appearance, property values and
callbacks. A grougan also be a subobject of another group.

Inherit-from: ui-widget

UI-FORM-CLASS [Class]

A ui-form-classis aui-group that can be instantiated agap-levelform or as a subobject of anothdr
group. A Ui-form-classis typically instantiated as @p-levelform. When displayed, it is automatically
created inside a stand-alone window with a borddratitle bar. Aui-form-classinstance, when top-level
form, ignores the value of itheasuremenproperty: Itsx-offset, y-offset, widthnd heightproperties are
pixel values. However, setting the measurement gatgpof atop-level form is very useful since the
measurement property value of its children widgetirectly derived from their parent form.

Inherit-from: ui-group

Note: For efficiency purposes, if the developer wishedeine a form that will only be instantiated as a
subobject of another form, it is recommeded to uissubform-classnstead ofui-form-class Refer to the
GUI Base Classeference manual.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 117

Top-level form’s y-offset S
Instance of ui-action-button-

class (Inherits from ui-widget)

Top-level form’s x-offset

Bl 4 Ui-form-class Instance

Y-offset

Height

— > | ; |
Action Button I
X-offset

Top-level
form’s height

A

Width

A
A\ 4

Top-level form’s width

Screen

Figure 21

A top-levelform is a parent (superior) to a group of compdsi@nd other forms. Figure 21
shows a form with only one component. Below isgbarce code that defines its class and

instantiates it as a subobject of the layout insted(the interface forms)’Please refer to
“Layouts” later in this section.

(define-class test-form-class
:inherit-from(ui-form-class)
:properties(
label “Ui-form-class Instance”
x-offset 300
y-offset 200
width 300
height 300
measurement ‘percentage

:subobjects(
(button :class ‘ui-action-button-class
x-offset 40
y-offset 40
width 50
height 10

;;» when not specified, the measurement property is derived
;; from the superior.

)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 118

AM_> (add-object (the interface forms) ‘test-form ‘test -form-class)
#<TEST- FORM CLASS @ #x21c6b3fa>

AM_> (display (the interface forms test-form))

T

Please refer to the class hierarchy tree ofGhl base classeseference manual for available component
and form classes. The manual contains descripfidimeopurpose and behavior of all instantiable widgas
well as source code examples.

6.1.2 Layouts

A well-designed AML application should separate G&JI object tree from the model tree. An AML
application developer should group igp-level forms in layouts. A layout of classi-layout-classis
typically instantiated as a subobject of the emgstiithe model-manager inteface)bbject.“(The model
manager interface)is defined with the purpose of being the parerdlbGUI layouts.

Example

Given thatapplication-form1-class, application-form2-classare application form classes defined by the
application developer, below is an example of defirand instantiating a layout.

(define-class missile-design-system-layout

:inherit-from(ui-layout-class)

:properties(
;; new developer defined properties
screen-size (get-screen-size)
viewport-x-offset 10
viewport-y-offset 20
viewport-width (- (first Ascreen-size) 20)
viewport-height (- (second " screen-size) 20)

:subobjects(

(form1 :class ‘application-form1-class
x-offset Mviewport-x-offset
y-offset Mviewport-y-offset
width 500
height 500
label “Form 1 version 1”

(form2 :class ‘application-form2-class
x-offset Mviewport-x-offset
y-offset Mviewport-y-offset

width 500
height 500
label “Form 2 version 1”
)
...etc
)
(add-object (the interface) ‘missile-design-layout ‘missile-design-layout-class)
(display (the interface missile-design-layout form1)

...etc

Refer to the classesi-layout-class ui-form-classand the methoddisplay, hide, raise andupdatein the
GUI base classes reference manual.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 119

6.1.3 Box Model Example

The following example shows a box model managedilfgrm. Thanks to thapply-action,
cancel-action, ui-apply-button-class, ui-actiondmm-class features, as well as the AML
dependency mechanism, building a user interfaceaioage a model does not necessarily require
the definition of specialized methods or functions.

In the following example, thbox-model-fornrequires the existence of a current model of class
box-model

The apply button applies the widget values of the form to Hux model properties, i.e. no
change is made to the box model unlessatiyy button is pressed. Theancelbutton resets the
widget values of the form to the current properjues of the box model, i.e. to the values that
were last applied. The form can be a subobjectngfla-layout-classinstance(see ui-layout-
class) For the sake of this example, it will be instatead as a subobject {the model-manager
interface forms)”.

(define-class box-model
:inherit-from(box-object)

)

(define-class box-model-form-class
:inherit-from(ui-form-class)

:properties(

;; Property created to keep a pointer to the box m odel

;; being modeled.

;; Note: The function root-object does not establi sh any
;; dependency, therefore the current-model propert y heeds

;; to be smashed whenever the root object changes
current-model (let* ((current-model (root-object))

(when (typep current-model 'box-model)
current-model))
x-offset 50
y-offset 50
height 280
width 250
label "Box Model"
measurement 'percentage ;; This is the default for mula anyway

:subobjects(
(bdepth :class 'ui-labeled-field-class

x-offset 0 y-offset 0 width 100 height 10

label "Depth"

content (if Mcurrent-model (the depth (:from ™M current-model))

"N/A")

apply-action (when current-model
‘(change-value
(the depth (:from current-model))
(get-value (the superior))))
cancel-action '(smash-value ~content)

(bheight :class 'ui-labeled-field-class
x-offset 0 y-offset 10 width 100 height 10
label "Height"
content (if Mcurrent-model
(the height (:from “current-model)) "N/A")
apply-action (when current-model
‘(change-value

(the height (:from “current-model))
(get-value (the superior))))
cancel-action ’(smash-value “content)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 120

(bwidth :class 'ui-labeled-field-class
x-offset 0 y-offset 20 width 100 height 10
label "Width"
content (if Mcurrent-model
(the width (:from “current-model)) "N/A")
apply-action (when current-model
'(change-value
(the width (:from current-model))
(get-value (the superior))))
cancel-action ’(smash-value ~content)

(solid? :class 'ui-toggle-button-class
x-offset 0 y-offset 30 width 100 height 10
label "Solid"
status (when current-model
(the solid? (:from current-model)))
apply-action (when current-model
‘(change-value

(the solid? (:from *current-model))

Astatus))
cancel-action '(smash-value “status)

(render :class 'ui-radio-buttons-class
x-offset 0 y-offset 40 width 100 height 10
labels-list '("Wire" "Shaded" "Isoline")

status (when current-model
(case (the render (:from *current-model))
('boundary 0)
('shaded 1)
(isoline 2)))
apply-action (when (and “current-model "status)
'(change-value
(the render (:from *current-model))
(nth ~status (list 'boundary 'shaded 'isolin
cancel-action '(smash-value “status)

(apply :class 'ui-apply-button-class
x-offset 0 y-offset 90 width 25 height 10
)

(cancel :class 'ui-cancel-button-class
x-offset 25 y-offset 90 width 25 height 10
update-form? t)
(draw :class 'ui-action-button-class
x-offset 50 y-offset 90 width 25 height 10
label "Draw"
buttonl-action (when *current-model
‘(draw Mcurrent-model))
button3-action (when *current-model
'(undraw Mcurrent-model))

(close :class 'ui-action-button-class
x-offset 75 y-offset 90 width 25 height 10
label "Close"
buttonl-action '(hide (the superior superior))

)
)

;; The following is a sample function to instantiat
;; to display it only if it has already been create

(defun display-box-model-form (box-model)
(let* (
(layout (the interface forms))
(form (or
(the box-model-form (:from layout :error nil))
(add-object layout ‘box-model-form ‘box-model-f

)

e the form and display it or
d. This function can be modified
;; by the developer to allow other parameters for t he form properties

orm-class)

e)))

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

121

(when form
(change-value (the current-model (:from form)) bo x-model)
(display form))

)

;; To create the model and display the form:
(create-model‘box-model)

(display-box-model-form (root-object))
;; The function root-object returns the current mod el which is the box-model
;; we just created.

4" Box Model =] B3
Depth 1.0

Height 1.0

Width 1.0

¥ solid

i+ Wire i~ Shaded " Izoline

ARl | Cancel

6.1.4 Optional Exercise

As an exercise that combines batirbase-classesand ui-advanced-classesechniques, define and
instantiate the form in Figure 22 to interface thissile-data-model-classodel. Figure 22 also shows the
class of the different widgets on the form.

Hints:

1- The clasaui-model-treés main input property isoot-objectthat should point to the missile model
instance.

2- The classii-model-tree’smain output property iselected-itenthat always hold the instance of the
user selected object. (i.e. the object that the silected by a mouse left-click)

3- The classii-multiple-property-subform-clastoes not require the existence afata-model-node-
mixin. It only needs a list of current property objespecified in the propertyroperty-objects-list
Refer theModel Interface Manualor a description of the format g@iroperty-objects-lisand an
example.

4- Use theui-model-tree’s buttonl-actioto assign the curreproperty-object-lisof theui-multiple-
property-subform-class

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 122

5- The clasaii-apply-button-classelies on the propertgpply-formto be linked to the form/subform
it should apply.

6- The classui-cancel-button-classrelies on the propertycancel-formto be linked to the
form/subform it should reset.

7- If any modification occurs in the model, the methgatlateshould be called on the form in order
to reflect the change.

8- The ui-graphic-control-form-classshould point to the instance of-canvas-classn order to
activate it. Each canvas needs to be activate@torbe thecurrent-display The canvas can also
be programmatically activated using the methatlvate-displayafter displaying the form. Refer
to ui-canvas-clasin theGUI Base Classesanual.

Note:
1- 1t is usually not efficient to create one instarmfeui-multiple-property-subform-claswith a
property-objects-listhat gets extensively modified at runtime becabgeleads to a lot of widget

recreation and deletion. However, this will be gted for the sake of this exercise.

2- The functionality that this form provides the usdth already exists (and more) withi-data-
model-main-formso defining it here is only for the sake of exszc

Figure 22: Form showing the class names of its cditsents

7 Main Form =] &
Model Tree Work Area
= MISSILE-GEOMETRY-CLASS
<+ MISSILE-COORDINATE-SYSTEM
+ NOSE-COORDINATE-SYSTEM
+ NOSE
+ MID-BODV-COORDINATE-SYSTEM
-+ MID-BODY
% AFT-BODV-COORDINATE-SYSTEM
<+ AFT-BODY
Ui-mode-tree
Ui-multiple-property-subform-class 3
Ui-canva-clas:
GO @ T ; .
s Ui-graphic-contro-form-clas:
. Clear ‘ Undraw| Shade |
- - Ui-apply-buttor-clas:
Ui-radio-buttons-class Interactive node has been set to: Rotate view
Press and hold byttonl to rotste
CTRL
SHET 1 1
2T { Ui-messac-field-clas:
 Inspect & Draw

Ui-action-button-class

m Apply | Cancel | Close
/

Ui-cancel-button-class

| Ui-actior-buttor-clas: |

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 123

7. Meshing and Analysis

Assuming the missile axis body component geomedsylieen created, an analysis portion of the
model can be created. In this section, the migmlemetry will be “tagged” and “meshed” to
create input for a Nastran modal analysis. Theaesgcepts are explained in the following
sections.

E!v geomelkry
mizsile-coordinate-system
noge-coordinate-system
[l
mid-body-coordinate-system
rid-body
aft-body-coordinate-system
aft-body

eshing
sewn-mizzile-body
mizsile-body-mesh
rigzile-nose-elements
mizzile-mid-bodp-elements
mizsile-aft-body-elements
rigzile-nose-nodes
migzile-mid-bodp-nodes
mizsile-aft-body-nodes

halysiz

maternial-catalog

noze-element-zet

rnid-elermemt-set
aft-element-zet
noze-property-set
rid-property-zet
aft-property-zet
nastran-model

PP EE LS LT ot LI bbbt et b

v The AML/Patran interface, AML/Analysis interfacenchthe AML/Nastran interface are
not included in the standard AML release. Theyaditional AML modules that must
be loaded separately. Therefore this functionaétynot documented in the AML
reference manual. These sections serve only egiarpof the systems’ documentation.

To perform the exercises in this section, you must have the analysis-module-
pack-type-2 module loaded .

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 124

7.1 Attribute Tagging

The methodology of geometry attribute tagging aagl propagation allows resultant geometry
from a boolean operation to refer back to the fafisched to the original geometry. In the
context of meshing, attaching tag attributes to geemetry serves two purposes. The first
purpose is to control mesh refinement on individueatts of the resultant geometry. The second
is to provide the ability to query for mesh enstigom the tagged geometry once the mesh has
been generated.

New AML Constructs

» tagging-object
» get-dimension-tags

TAGGING-OBJECT

The tagging-object implements geometry attributgitag and tag propagation through geometric
operations. All geometric classes that inherit fithis class will be tagged.

NOTE: Thetagging-objecimust be the first element in thiaherit-from (...)list.

Properties:

id-tag An identifier used to associate geometnhwite object. This value is
set by the system and should be only queried roatsthis point. The
value is set after thgeomproperty has been demandedhis value
should not be manually overwritten or changed.

tag-dimensions This determines which entities & ¢fgometry is to be tagged. The
defaultnil means a solid object tags the solid, a surfacettagsurfaces,
a wire tags the edges, and points tags pointthelf/alue is a lis{0 1 2
3), all points, edges, surfaces, solids associat#d avgeometry will be
tagged.

tag-attributes Attribute list associated with tHgest. At present, these attributes are
used in the context of meshinghe list includes in order: maximum
edge size, minimum edge size, curvature refinememalue (0 for off
2 for on), curvature approximation error (in a percentage), segment
value (0 for off 1 for on), segment size, and ergittolerance. Default
is '(0.25 0.0625 0 0.1 0 10.0 1.0e-By default, these attributes will be
applied to all tagged points, edges, faces, andssabksociated with the
geometry. At the current release, only the maximum edge size
attribute is used. The others are reserved.

overwrite-other-tags? This property determines whietthe object will use its own
tags or if it will use tags passed on toTihis is only relevant
for objects that get tags passed to them, for exartgy boolean

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 125

objects, sweep objects, geom-copy objects, sub-geohjects,

etc. Hence if this property is set tdor ageom-copy-objecits

geom will have its own tags, and if it mél, its geom will have
the tags of the source object. Note that evenif get tat, only

the tags on sub-geoms of dimensions included in tHe

dimensiongproperty will be overwritten.

GET-DIMENSION-TAGS [Method]

This method returns a list of tag attributes fdreattities tagged on the geometry with a certain
geometric dimension (1D, 2D, or 3D).

Format:
(get-dimension-tags object dimension)

Arguments:

object Instance of typagging-object

dimension Integer value of 1, 2, or 3.
Example:

(define-class tag-example-class
:inherit-from (object)
:properties (
min-box-elem-size 0.06
min-cyl-elem-size 0.03

box-tags (get-dimension-tags “box 1)
cylinder-tags (get-dimension-tags “cylinder 1)
union-tags (get-dimension-tags box-cyl-union 1)
:subobjects (
(box :class '(tagging-object box-obj ect)
tag-dimensions '(1 2)
tag-attributes (list ~*min-box- elem-size .1
00.1020 .0 1.0e-5)
(cylinder :class '(tagging-object cy linder-object)
diameter 0.3
tag-dimensions '(1 2)
tag-attributes (list ~*min -cyl-elem-size .1
0 0.1 0 20.0 1.0e-5)
orientation (list (tran slate '(0 0 1.5)))
(box-cyl-union :class '(tagging-obje ct union-object)
object-list (list» box “cylinder)
tag-dimensions '(1 2)
overwrite-other-tags? nil
)
)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 126

> (create-model 'tag-example-class)
#<TAG-EXAMPLE-CLASS @ #x233375fa>
> (the box-tags)

((20073039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20074039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20075039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20076039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20077039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20078039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20079039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20080039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20081039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20082039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20083039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20084039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0))
> (the cylinder-tags)

((20085040 0.03 0.1 0 0.1 0 20.0 10.0e-6 0)
(20086040 0.03 0.1 0 0.1 0 20.0 10.0e-6 0))
> (the union-tags)

((20086040 0.03 0.1 0 0.1 0 20.0 10.0e-6 0)
(20073039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20074039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20075039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20076039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20077039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20078039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20079039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20080039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20081039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20082039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20083039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20084039 0.06 0.1 0 0.1 0 20.0 10.0e-6 0)
(20085040 0.03 0.1 0 0.1 0 20.0 10.0e-6 0))
> (change-value (the box-cyl-union overwrite-other- tags?) t)

> (the union-tags)

((20087041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
(20088041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
(20089041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
(20090041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
(20091041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
(20092041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
(20093041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
(20094041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
(20095041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
(20096041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
(20097041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
(20098041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
(20099041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0)
(20100041 0.25 0.0625 0 0.1 0 10.0 10.0e-6 0))

The tag-union-examplebject illustrates tag propagation for the unidradox and a cylinder
and the use of element size refinement to refieetdlys on the edges of the cylinder. Since the
overwrite-other-tagsdroperty on the union is set tdl in the beginning, any edge tags passed
from the box or the cylinder to the union will neé¢ overwritten by the tags set on the union.
Notice that once theverwrite-other-tags?property was changed to the union object’s tags
were used by the defaults given from the initialssl definition otagging-object It is important

to note that this example must have simaplify? property in thebox-cyl-unionset tot because
the common face between thexandcylinderneeds to be included in the model.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 127

7.2 Meshing

Meshing of a geometric model in AML is achievedotigh a single class, thgatran-mesh-
interface-class The geometry to be meshed is given to this alged it in turn creates the
necessary information to pass to the meshing psoces

New AML Constructs

» patran-mesh-interface-class

* meshdb-class

* load-mesh

* draw-mesh

» logical-path entries for thepatran-meshdb-interfaceeshing system

PAVER-MESH-CLASS [CLASS]

This object is used to generate a mesh for a spdcgeometric object. After the mesh is
generated, the query objects described below camsbd to retrieve nodes, edges, faces, and
regions from the mesh.

Properties:
object-to-mesh The geometric object which is torteshed. Default isil.
logical-path An entry in the logical path file whigoints to the path to
which all mesh files are written. Default:ieeshes
mesh When demanded, this property generates thie amesreturns
when the mesh operation was successful.
solid-mesh? Determines if the mesh is a solid meska surface mesh.
Default ist for a solid mesh.
MESHDB-CLASS [CLASS]

An instance of this class is a mesh database wsstbite mesh data generated by an instance of
the patran-mesh-interface-class.

Properties:
db-id An ID of the mesh database. This should mosét or changed
by the user.
db-name Name of the mesh database (string).
LOAD-MESH [Method]

This method retrieves the mesh data from the mitksshdnd adds objects under theever-mesh-
class objectvhich are used to display the mesh boundariesdgéds.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 128

Format:
(load-mesh object)
Arguments:

object An instance of typgaver-mesh-class

DRAW-MESH [Method]

This method is used to visualize the mesh bounslamne edges.

Format:

(draw-mesh mesh-object [:visible? t] [:boundamyiP[:shade? nil] [:update? nil])

Arguments:
visible? Keyword which determines whether the dranesh is visible or not.
Default ist.
edge? Keyword which determines if the mesh edges@wn. Default isil.
boundary? Keyword which determines if the faceshenboundary of the mesh are
drawn. Default isil.
shade? Keyword which determines if the boundaryedaof the mesh are
shaded. Default isil.
update? This keyword determines whether the graphindow is updated once
the mesh has been drawn. Defaultt is
Example:

(define-class mesh-example-class

:inherit-from (object)

:properties (
min-box-elem-size 0.06
min-cyl-elem-size 0.03
box-tags (get-dimension-tags “box 1)
cylinder-tags (get-dimension-tags “cylinder 1)
union-tags (get-dimension-tags "box-cyl-uni onl)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 129

:subobjects (

(box :class '(tagging-object box-object)
tag-dimensions '(1 2)
tag-attributes (list

AMmin-box-elem-size
1
0
0.1
0
20.0
1.0e-5

)

(cylinder :class '(tagging-object cylinder- object)
diameter 0.3
tag-dimensions '(1 2)
tag-attributes (list “min-cyl-elem-size
1
0
0.1
0
20.0
1.0e-5)
orientation (list
(translate '(0 0 1.5))

)

(split-cylinder-sheet :class 'sheet-object
width (* 2 (the superior superior cylinder height))
height (* 2 (the superior superior cylinde r diameter))

orientation (list
(rotate 90 :y)
(translate (list

0
(half ~width)
)
)
)
(imprinted-cylinder :class 'geometry-with-s plit-periodic-faces-

class
source-object Mcylinder

(box-cyl-union :class '(tagging-object unio n-object)
object-list (list
Mpox
Mimprinted-cylinder

tag-dimensions '(1 2)
overwrite-other-tags? nil
simplify? nil

(mesh-database :class 'meshdb-class

(analysis-mesh :class 'paver-mesh-class
mesh-database-object ~*mesh-database
object-to-mesh *box-cyl-union
solid-mesh? nil
)

)

AML>(create-model 'mesh-example-class)
#<MESH-EXAMPLE-CLASS @ #x22f43032>

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 130

A7
o,

2

e TV

SRR

SR

s

FavavisTATAS

DR S AT

TSN

o

o

%y

FoA
i

=

Cavis
pis,
P vimi T o

e

i
i
b
¥

«:?
LR
[
€l
5
‘AY
i ALy,
<

‘4vA"""

=

o
e

e

L
o
v,
iy,
Tay,

vy,
i)

A
o i A VW
e S e
e e
O e e
i Doty 7
ey
s ratind
s

A
o
5

i

=
o
ﬁ'
i,
SRS

o

S

i
5
)
5]

vas

T
AR
vt

el

=

=3
5
i,

o
ST
Ly
XNy

N
o,

T
=

e

7

SEEs

i

5

I,

e

AT
- =

et
L
=
oy,
ANy
i)

=

&
5
A
o

Ry

=

=
AN

7

[
T

: %!
IS
HE T AT
A A T,
i
BT

:
T

=
SE
Ny

iy
ISy
5

e
Y,
i,
N

Tl
%
U
b

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

131

7.3 Mesh Queries

Meshes can be filtered so that only certain postiohthem are shown, along with their options
for being display. The different query objectsiliate this feature of AML.

New AML Constructs

* mesh-query-class

* write-data-file

* mesh-nodes-query-class

* mesh-elements-2d-query-class

MESH-QUERY-CLASS [Class]

All query objects inherit fronmesh-query-classhis class should not be instantiated. It is/onl
documented to show the origination place of theroomproperties within the mesh queries.

Properties:

mesh-object Object of typpaver-mesh-classontaining mesh information.
Default isnil.

mesh-database-object Object of typeeshdb-classcontaining the stored mesh
information. Default isil.

tagged-object-list List of tagged objects from whimesh entities are to be
retrieved.

tag-dimensions-list Determines the type of meslhityend be retrieved from the
objects specified in theagged-object-lisproperty. 0 for nodes,
1 for edges, 2 for faces, and 3 for solids.

MESH-NODES-QUERY-CLASS [Class]

This object can be used to retrieve nodes fromathjects specified in theagged-object-list
property.

Inherit-From:
mesh-query-class

Properties:

num-nodes Number of nodes in the mesh query.

mesh-entities-list A list of the node ids in thesh query.

MESH-ELEMENTS-2D-QUERY-CLASS [Class]

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 132

This object can be used to retrieve mesh faces fnenobjects specified in thiegged-object-list
property.

Inherit-From:
mesh-query-object
Properties:
num-elements Number of elements in the mesh query
mesh-entities-list A list of the element ids i tmesh query.
type-list Set to '(:triangle :quad), specifyingathriangular and
guadrilateral elements may exist in the surfaceyque
tag-dimensions-list Set to ‘(2) specifying that getry entities of
dimension 2 are corresponding to the surface mesh
query.
Example:

(define-class mesh-queries-example-class
:inherit-from (object)
:properties (
min-box-elem-size 0.06
min-cyl-elem-size 0.03

box-tags (get-dimension-tags “box 1)

cylinder-tags (get-dimension-tags “c ylinder 1)
union-tags (get-dimension-tags "box- cyl-union 1)
)

:subobjects (
(box :class '(tagging-object box-obj ect)

tag-dimensions '(1 2)

tag-attributes (list ~'min-box-e lem-size .1
00.10 20. 0 1.0e-5)
)
(cylinder :class '(tagging-object cy linder-object)
diameter 0.3

tag-dimensions '(1 2)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 133

tag-attributes (list “min-cyl-e lem-size .1

00.10 20. 0 1.0e-5)
orientation (list (translate '(0 01.5))
)
(split-cylinder-sheet :class 'sheet- object
width (* 2 (the superior superior cylinder
height))
height (* 2 (the superior superior cylinde r
diameter))
orientation (list
(rotate 90 :y)
(translate (list
0
0
(half "width)
)
)
)
)
(imprinted-cylinder :class 'geometry-with-s plit-periodic-faces-
class
source-object Mcylinder
)

(box-cyl-union :class '(tagging-obje ct union-object)
object-list (list “box Mimprin ted-cylinder)
tag-dimensions '(1 2)
overwrite-other-tags? nil
simplify? nil
)

(mesh-database :class 'meshdb-class
)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 134

(analysis-mesh :class 'paver-mesh-cl ass
mesh-database-object ~*mesh-data base
object-to-mesh *box-cyl-union
solid-mesh? nil
)

(box-elements :class 'mesh-elements- 2d-query-class
tagged-object-list (list ~box)
mesh-object Manalysis-mesh
color 'magenta

render 'boundary-shaded

)
(cylinder-nodes :class 'mesh-nodes-q uery-class
tagged-object-list (list *cylin der)

mesh-object Manalysis-mesh

color 'green

)

)

Code Explanation

Thebox-elementandcylinder-nodebjects allow the user to view the respectiveiposg of the
mesh from theanalysis-meslobject. These can be used to specify variouonsgof a part
representing different materials or specific proigsrof a part.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 135

Exercise 3a

After a close review of the class definitions anilA constructs described in the previous
section, create a meshing model for the missilengdy used in exercise 3.

Two underlying classes need to be defined with itagdo ensure the appropriate tagging
properties will be propagated in the model; they'@agging-object open-truncated-cone-class)
and ‘(tagging-object open-cone-split-class)Create thé(tagging-object open-truncated-cone-
class)in order to provide a “tagged” counterpart to tpen-truncated-cone-objecCreate the
‘(tagging-object open-cone-split-classuch that it will embed an edge in the nose object
(essentially dividing it into two symmetric topologl pieces) to ensure the meshing program can
automatically pave a mesh on the cone. Maodify ithissile-geometry-clasto have three
properties to control each body component’s maximelement size as given in thag-
attributes property. Create anissile-mesh-model-clag® encapsulate a geometric entity to
mesh, a surfacéhex mesh, along with element and node queries for @ache missile body
components.

Use the following Instance diagram as a guide ftilibe necessary classes.

Instance Diagrams for Exercise 3a

tagged-open-truncated-cone-class [t aggi ng- obj ect open-truncat ed- cone-obj ect]
missile-general-body-radius
missile-nose-length
missile-nose-radius
missile-mid-body-length

tagged-open-cone-split-class [t aggi ng- obj ect i nprint-cl ass]
height
diameter
target-object
tool-object-list
splitting-plane [sheet - obj ect]
cone [open-cone-object]

missile-geometry-class [object]
missile-general-body-radius
missile-nose-length
missile-nose-radius
missile-mid-body-length
missile-mid-body-radius
missile-aft-body-length
missile-aft-body-start-radius
missile-aft-body-end-radius
missile-nose-max-element-size
missile-mid-body-max-element-size
missile-aft-body-max-element-size

missile-coordinate-system [coordinate-system-class]
nose-coordinate-system [coordinate-system-class]
origin

reference-coordinate-system

nose [tagged-open-cone-split-class]
diameter
height
orientation
reference-coordinate-system
max-element-size
tag-dimensions
tag-attributes

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 136

mid-body-coordinate-system [coordinate-system-class]
origin
reference-coordinate-system
mid-body [tagged- open-cyl i nder-obj ect]
diameter
height
orientation
reference-coordinate-system
max-element-size
tag-dimensions
tag-attributes
aft-body-coordinate-system [coordinate-system-class]
origin
reference-coordinate-system
aft-body [tagged-open-truncated-cone-object]
start-diameter
end-diameter
height
orientation
reference-coordinate-system
max-element-size
tag-dimensions
tag-attributes

missile-mesh-model-class
nose-object
mid-body-object
aft-body-object

sewn-missile-body [sewn- obj ect]
object-list
missile-body-mesh [pat r an- mesh- obj ect]

object-to-mesh
element-shape
solid-mesh?

missile-nose-elements [patran- 2d- nesh-entiti es-query-object]

tagged-object-list
mesh-object

missile-mid-body-elements [patran- 2d- nesh-entiti es-query-object]

tagged-object-list
mesh-object

missile-aft-body-elements [patran- 2d- nesh-entiti es-query-object]

tagged-object-list
mesh-object

missile-nose-nodes [patran-0d- mesh-entities-query-object]

tagged-object-list
mesh-object

missile-mid-body-nodes [patran-0d- mesh-entities-query-object]

tagged-object-list
mesh-object

missile-aft-body-nodes [patran-0d- mesh-entities-query-object]

tagged-object-list
mesh-object

missile-model-class
geometry [missile-geometry-class]
meshing [missile-mesh-model-class]
nose-object
mid-body-object
aft-body-object

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

137

Exercise 3a Solution
(in-package :aml)

(define-class tagged-open-truncated-cone-class
:inherit-from (tagging-object open-truncated-cone

)

(define-class tagged-open-cone-split-class
:inherit-from (tagging-object imprint-class)
:properties (

height 1.0
diameter 1.0

target-object “cone
tool-object-list (list ~splitting-plane)
(splitting-plane :class 'sheet-object
height ~diameter
width ~height
orientation (list (rotate 90 '(0 1 0)))

(cone :class 'open-cone-object
height ~height
diamter Mdiameter
)
)
)

(define-class missile-geometry-class
:inherit-from (object)
:properties (
missile-general-body-radius 1.0

missile-nose-length 2.0
missile-nose-radius mi
missile-mid-body-length 14.
missile-mid-body-radius mi

missile-aft-body-length 2.0
missile-aft-body-start-radius ~ ~mi
missile-aft-body-end-radius 0.7

missile-nose-max-element-size
missile-mid-body-max-element-size
missile-aft-body-max-element-size

:subobjects (
(missile-coordinate-system :class 'c
origin (list 0.0 0.0 0.0)
)

(nose-coordinate-system :class 'coor
origin (list (* 0.5 Mmissile-n
reference-coordinate-system ~miss

)

(nose :class '
height Mmissile-nose
diameter (* Mmissile-n
orientation (list

(rotate -90'

reference-coordinate-system ~*nose

tagged-open-cone-split-class

-object)

ssile-general-body-radius

0
ssile-general-body-radius

ssile-general-body-radius
5
0.1

0.25
0.25

oordinate-system-class

dinate-system-class
ose-length) 0.0 0.0)
ile-coordinate-system

-length
ose-radius 2.0)

010y

-coordinate-system

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

138

max-element-size Mmissile-nose-ma
tag-dimensions (1 2)

tag-attributes (list "max-element-size 0.06

(mid-body-coordinate-system :class '

origin (list
(+ (/ Mmissile
(/ Mmissile
)
0.0
0.0)
reference-coordinate-system ~nose-
)
(mid-body :class "'
diameter (* Mmiss
height Mmiss
orientation (list

(rota

reference-coordinate-system ~mid-
max-element-size Mmissile-mid-bod
tag-dimensions (1 2)
tag-attributes (list "max-element-size 0.06

(aft-body-coordinate-system :class '

origin (list
+
length 2.0)
(
length 2.0)
)
0.0
0.0)
reference-coordinate-system ~mid-
)

(aft-body :class '
start-diameter (* “missile-af
end-diameter (* Mmissile-af

height AMmiss
orientation (list
(rota

reference-coordinate-system *aft-
max-element-size Mmissile-aft-bod
tag-dimensions (1 2)
tag-attributes (list "max-element-size 0.06

)

(define-class missile-mesh-model-class

‘inherit-from (object)

:properties (
nose-object nil
mid-body-object nil
aft-body-object nil

(node-set :class 'analysis-node-set-class
query-objects-list (list (the nodes-query (:fr

Mmissile-body-mesh)))

)

x-element-size

2500.1010.0 1.0e-50)
coordinate-system-class

-nose-length 2.0)
-mid-body-length 2.0)

coordinate-system

tagged-open-cylinder-object

ile-mid-body-radius 2.0)
ile-mid-body-length

te 90 '(0 1 0))

body-coordinate-system
y-max-element-size

2500.1010.01.0e-50)

coordinate-system-class
Mmissile-mid-body-

Mmissile-aft-body-

body-coordinate-system

tagged-open-truncated-cone-class

t-body-start-radius 2.0)
t-body-end-radius 2.0)
ile-aft-body-length

te 90 '(0 1 0))

body-coordinate-system
y-max-element-size

2500.1010.01.0e-50)

om

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

139

:subobjects (
(sewn-missile-body :class 'sewn-obje
object-list (list
Mnose-object
Mmid-body-object
Maft-body-object
)

(imprint-sewn-missile-body :class 'geometry-with-s
source-object Msewn-missile-bo

(mesh-database :class 'meshdb-class

(missile-body-mesh :class 'paver-mesh-class
object-to-mesh *sewn-missile-bo

mesh-database-object ~*mesh-database

element-shape :hex
solid-mesh? nil

)

(missile-nose-elements :class 'mesh-elements
tagged-object-list (list ~*nose-obj

mesh-object Mmissile-body-m
color ‘cyan

render 'boundary-shaded

)

(missile-mid-body-elements :class 'mesh-element
tagged-object-list (list ~*mid-body
mesh-object Mmissile-body-m
color 'yellow
render 'boundary-shaded

)

(missile-aft-body-elements :class 'mesh-element
tagged-object-list (list Maft-body
mesh-object AMmissile-body-m
color 'magenta
render 'boundary-shaded

)

(missile-nose-nodes :class 'mesh-nodes-query-cl
tagged-object-list (list ~*nose-obj
mesh-object Mmissile-body-m
color 'green

)

(missile-mid-body-nodes :class 'mesh-nodes-quer
tagged-object-list (list ~*mid-body
mesh-object Mmissile-body-m
color 'magenta

)

(missile-aft-body-nodes :class 'mesh-nodes-quer
tagged-object-list (list Maft-body
mesh-object Mmissile-body-m
color 'lightblue
)

)
)

(define-class missile-model-class
:inherit-from (object)

ct

plit-periodic-faces-class
dy

dy

-2d-query-class
ect)
esh

s-2d-query-class
-object)
esh

s-2d-query-class
-object)
esh

ass
ect)
esh

y-class
-object)
esh

y-class
-object)
esh

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

140

‘properties (

:subobjects (
(geometry :class 'missile-geometry-class

)

(meshing :class 'missile-mesh-model-class
nose-object (the nose (:from "geometry))
mid-body-object (the mid-body (:from geomet ry))
aft-body-object (the aft-body (:from ~geomet ry))
)

Code Explanation

Two underlying classes were defined to ensure pipeopriate tagging properties are propagated
in the model. They are controlled through thax-element-sizproperty on each instance of a
tagging-objectwhich uses @hereference to obtain a value given in thessile-geometry-class

In the tagged-open-truncated cone-classotice thattagging-objectis specified first in the
inheritance list. This ensures the proper attaliagging and propagation through the model as
Boolean operations are performed on the geomelihe tagged-open-cone-split-claseeds to

be defined to embed an edge in the nose objectsiare the meshing program can automatically
pave a mesh on the cone. The meshing applicatit® Without this embedded edge, thus
demonstrating the focus on preparing various remtasions of geometry and topology for the
meshing and analysis models. Tagged-open-cone-split-clagses anmprint-classto place

an edge in the parametric domain space of the cbrernally, the meshing application needs to
have this in order to create a successful “paveeim

Themissile-mesh-modélas three “pointer” properties that will be oveitten on instantiation to
point to thenose, mid-body, or aft-bodgspectively. This technique enables the abilitynake

this class more modular and robust. HBesn-missile-bodgreates one piece of geometry that
contains all of the individually tagged entitieshi® passed to the meshing application. The mesh
is interfaced through thmissile-body-meshbject which specifies a “hex” surface mesh. This
object manages all communication with the meshipglieation and organizes data for the
individual queries. The OD and 2D queries respebtiinterrogate the mesh for the nodes and
elements corresponding within each tagged geomajact.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 141

7.4 Finite Element Analysis

The following AML code demonstrates a typical as@éymodel using the AML Nastran
Interface. It shows the typical classes used inAML analysis such as interfaces with
NASTRAN, ANSYS, and LSDYNA. The analysis interfacare based on a system called
:analysis-interfacewhich is the core virtual layer to the various liggiions. The model is
created using classes/methods/functions from tygses and classes exist within the various
application interfaces (e.g:nastran-interfacg that can interrogate the base analysis
classes/methods/functions for specific implemearati

New AML Constructs

e analysis-model-class

* material-catalog-class

e analysis-property-set-2d-type-1-class

» analysis-element-set-2d-type-1-class

» analysis load classes

» analysis constraint classes

» analysis-load-case-class

* nastran-analysis-class

» analysis-post-processing-structural-linear-statiastran-class

ANALYSIS-MODEL-CLASS [Class]

This is the base class which manages communicatiah all interfaces with the analysis
application. All node sets, element sets, propsetg, load cases (boundary conditions), analysis
types, and materials are specified in this clagfhen instantiated, application specific analysis
classes query the properties of this class to ahiner their respective interfaces to the AML
model.

Various analyses are available in the differentiappon implementations. They are described
below with their corresponding AML keyword usedlire analysis-typeroperty of theanalysis-
model-classa description, and their corresponding analygis in Nastran and Ansys:

AML Keyword Description Nastran Ansys
“SOL” | “ANTYPE”

:modal Normal Modes Analysis (Frequency | 103 2
Response)

:buckling Static Buckling Analysis 105 1

:linear-static Linear Static Structural Analysis 101 0
(Stress/Deflection)

:static-aeroelastic- Static Aeroelastic Response 144 N/A

response (Aero/Structural Coupling)

Properties

analysis-type Specifies the type of analysis tpédormed. This is listed

in the AML Keyword column of the table above.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 142

mesh-object A reference to an instance pl&ran-mesh-interface-class

(default nil)

material-catalog-object A reference to an instalmfean material-catalog-class
(default nil)

load-case-objects-list A list of instances of lazbe objects which inherit from

analysis-load-case-clagsglefault nil)

materials-list A list specifying the materials usedhin the instances of
the analysis-property-set-clagglefault nil)

property-set-objects-list A list of instances obperty set objects which inherit from
analysis-property-set-clagslefault nil)

element-set-3d-objects-list A list of instancessolid element set objects which inherit
from analysis-element-set-3d-cla@sefault nil)

element-set-2d-objects-list A list of instances suffface element set objects which
inherit fromanalysis-element-set-2d-cla@efault nil)

element-set-1d-objects-list A list of instances lmdr/beam/rod element set objects
which inherit from analysis-element-set-1d-clagglefault
nil)

node-set-objects-list A list of instances of clasalysis-node-set-class

MATERIAL-CATALOG-CLASS [Class]

The AML analysis interface supports the use ofrapté material catalog data file. The file is
written in XML format with tags for the attributed the material. Following the format of the
sample data file below, the file can be customimednclude any number of materials. The
:analysis-interfacecontains a sample material file named “materiaif.>and is referenced by
(system-resource :material-catalog "data" "matenahl"). A portion of it is shown below.

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl" href="tsiMaterialC atalog.xsl"?>
<tsiMaterialCatalog xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instanc e"
xsi:noNamespaceSchemalocation="tsiMaterialCatalog.x sd">

<materialCatalogVersion>1.0</materialCatalogVers ion>

<materialCatalogComments>Standard materials cata log</materialCatalogComments>

<materials>

<material name="steel" type="steel">
<materialType>linear-elastic</materialType >

<materialClass>isotropic</materialClass>
<materialComments></materialComments>
<materialProperties>

<materialProperty name="elastic-modulus " value="2.973332E7" units="(lb (in -2))"
description="youngs modulus"></materialProperty>

<materialProperty name="poissons-ratio" value="0.29" units="nil"
description=""></materialProperty>

<materialProperty name="mass-density" \Y alue="0.28" units="(Ib (in -3))"
description=""></materialProperty>

<materialProperty name="shear-modulus" value="1.15245E7" units="(Ib (in -2))"

description=""></materialProperty>
</materialProperties>
</material>
<material name="aluminum" type="aluminum">
<materialType>linear-elastic</materialType >
<materialClass>isotropic</materialClass>
<materialComments></materialComments>
<materialProperties>
<materialProperty name="elastic-modulus " value="1.06E7" units="(Ib (in -2))"
description="youngs modulus"></materialProperty>

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 143

<materialProperty name="poissons-ratio" value="0.33" units="nil"
description=""></materialProperty>

<materialProperty name="mass-density" \Y alue="0.098" units="(Ib (in -3)"
description=""></materialProperty>
<materialProperty name="shear-modulus" value="4.0E6" units="(Ib (in -2))"

description=""></materialProperty>

</materialProperties>

</material>

<material name="t300/5208" type="graphite/epo xy">
<materialType>linear-elastic</materialType >
<materialClass>orthotropic</materialClass>
<materialComments></materialComments>
<materialProperties>

<materialProperty name="elastic-modulus -longitudinal" value="2.625E7" units="(Ibf (in -
2))" description=""></materialProperty>

<materialProperty name="elastic-modulus -lateral" value="1.494E6" units="(Ibf (in -2))"
description=""></materialProperty>

<materialProperty name="shear-modulus" value="1.04E6" units="(Ibf (in -2)"
description=""></materialProperty>

<materialProperty name="poissons-ratio" value="0.28" units="nil"
description=""></materialProperty>

<materialProperty name="mass-density" \Y alue="1.6" units="(g (cm -3))"
description=""></materialProperty>

<materialProperty name="ply-thickness" value="0.005" units="(in)"

description=""></materialProperty>
</materialProperties>
</material>
</materials>
</tsiMaterialCatalog>

Properties

material-catalog-file-name A string containing fiod path to the material file (default
(system-resource :material-catalog "data" "matsahl™))

ANALYSIS-NODE-SET-CLASS [Class]

The analysis-node-set-clagontains information a list of nodes queries. Tdless is used to
specify which nodes will eventually be used in aalgsis by setting the node-set-objects-list
property on an instance of ttenalysis-model-classTypically there will be one instance of
analysis-node-set-clagser instance opatran-mesh-interface-clasand the query-objects-list
property of theanalysis-node-set-claswill simply contain a list of the single nodes-gue
subobject of th@atran-mesh-interface-clagsstance.

Properties
guery-objects-list A list of instances wiesh-nodes-querglass.
ANALYSIS-PROPERTY-SET-2D-TYPE-1-CLASS [Class]

The analysis-property-set-clasgontains information about and specifies certaiatamal
properties of a geometry representation of a paditia inherited (mixed) into all property set
classes. These properties depend on the typeoohajey being defined. For example, sheet
metal could be represented using #malysis-property-set-2d-type-1-clas&ach usage comes
with a set of specific assumptions. In the casthetnalysis-property-set-2d-type-1-classis
assumed that the material is isotropic with a camtsthickness. Other types of property sets are
available which have other material properties asdumptions (differentiated by the “type”
specified in the class name).

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 144

Inherit From

analysis-property-set-class

Properties

material-catalog-object A reference to an instaoicenaterial-catalog-class This
property comes from thenalysis-property-set-clagslefault

nil)

material-name The name of the material given in nhmeterial catalog
(default nil)

thickness A number specifying the thickness of thaterial. The

thickness is assumed constant. (default 1.0)

ANALYSIS-ELEMENT-SET-2D-TYPE-1-CLASS [Class]

The analysis-element-set-classontains information about and specifies the efgmigype
representing a portion geometry on a part andhesrited (mixed) into all element set classes.
These elements depend on the type of geometry lspiecjfied. For example, sheet metal could
be represented using tlamalysis-element-set-2d-type-1-clas¥hese are also known as 2D,
“shell”, or “plate” elements. Each usage comeswitset of specific assumptions. In the case of
the analysis-element-set-2d-type-1-clagisis assumed that the element is either threéoor
sided (tri or quad) in shape consisting of threéoar nodes. The shape and number of nodes are
dictated by the elements derived from the corredpmnmesh query. The material property
behavior of the elements is specified through thie fo an instance of analysis-property-set-
class.Other types of element sets are available whicle lnther assumptions (differentiated by
the “type” specified in the class name).

Inherit From

analysis-element-set-class

Properties
property-set-object A reference to an instancenddrealysis-property-set-class
This property comes from thanalysis-element-set-class
(default nil)
query-objects-list A list of references to instasio# amesh-query-classThis
property comes from thenalysis-element-set-clas3he
elements specified in these queries objects will be
represented in the analysis with the material pitogse
specified in theproperty-set-object (default nil)
ANALYSIS LOAD CLASSES [Class]

A load in a finite element model could be force,memt, pressure, heat, magnetic flux, etc. This
class serves as a general class that is inhentedhil other load classes. Several loading ckasse

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 145

are available to represent various physical loaditgations such astnalysis-load-force-nodal-
class, analysis-load-force-distributed-uniformlyead-class, analysis-load-moment-nodal-class,
analysis-load-force-distributed-class, analysisdemoment-distributed-class, analysis-load-
force-distributed-1d-clas@ndanalysis-load-pressure-2d-3d-class

Properties
target-object A reference to an instance ofmash-query-class This
represents the region of the geometry where thd iea
applied. (default nil)
load-vector A list of x, y, and z components of flead vector. For
example> (list 10.45 0.86 34.5)default nil)
ANALYSIS CONSTRAINT CLASSES [Class]

A constraint in a finite element model constraihe tmodel in some way such as restricting
motion in translation or rotation, or constrainibgo points to be coincident throughout the
simulation. This class serves as a general chagd4 inherited into all other constraint classes.
Two constraint classes are available to represanows physical constraint situations such as:
analysis-constraint-displacement-clasd analysis-constraint-displacement-type-2-class

Properties
target-object A reference to an instance ofmash-query-object This
represents the region of the geometry where thetant is
applied. (default nil)
tx A number specifying the amount of translational
displacement allowed in the x-direction. (defauilf n
ty A number specifying the amount of translational
displacement allowed in the y-direction. (defauilt n
tz A number specifying the amount of translational
displacement allowed in the z-direction. (defadllk n
mx A number specifying the amount of rotationalpthsement
allowed in the x-direction. (default nil)
my A number specifying the amount of rotationalpthsement
allowed in the y-direction. (default nil)
mz A number specifying the amount of rotationapthsement
allowed in the z-direction. (default nil)
ANALYSIS-LOAD-CASE-CLASS [Class]

In finite element analyses, a part is often loaded constrained in several combinations of
ways. Each combination represents a load casehwdunsists of a set of loads and a set of
constraints. This class manages these boundadjtiors.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 146

Inherit From

analysis-element-set-class

Properties
constraint-objects-list A list of references totareces of aranalysis-constraint-
class (default nil)
load-objects-list A list of references to instanadsan analysis-load-class

(default nil)

ANALYSIS-POST-PROCESSING-STRUCTURAL-LINEAR-STATIC-N ASTRAN-CLASS [Class]

This class produces post processing plots fromeati-static analysis in Nastran.

Properties
mesh-database-object Refers to an instanogeshdb-class
mesh-query-objects-list A list of mesh queries driclr post processing results will
be displayed.
analysis-interface-nastran-object Refers to antam® of nastran-

analysis-class

NASTRAN-ANALYSIS-CLASS [Class]

This class manages all communication between aarnios of amnalysis-model-clasand the
MSC Nastran software application, enables the mgitf a bulk data file (deck), and enables the
running of Nastran.

Properties

analysis-model-object A references to an instant@s analysis-model-classAll
nodes, elements, properties, load cases (boundary
conditions), analysis types, and materials areiobthfrom
the object specified in this property. (defaul) nil

analysis-directory A string specifying the pathtihe directory where all files
relating to this analysis will be written. Defaist(logical-
path :nastran-data “model-name)

nastran-file-name A string specifying the file naofehe file (deck) in which
the analysis data (cards) will be written. Defasifformat
nil "~a.bdf" “model-name)

data-file When demanded, this property will calinethod that will

demand all information necessary to pass to thereat
application and write the data file (deck) to thoedtion
specified with thenalysis-directoryandnastran-file-name

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 147

run-nastran@ When demanded, this property will demthe data-file
property and run Nastran using the command givethén
nastran-commandproperty with the specified data file
(deck). The default location for the commandlggical-
path :nastran-path "nastran").

Example

(in-package :aml)

(define-class analysis-geometry-test-class
:inherit-from (object)
:properties (

simple-beam-width 20.0

simple-beam-height 1.0

loaded-node-coords (list (/ *simple-

(/ "simple-
0.0)
)
:subobjects (
(simple-beam :class '(tagging-object
width "simple-beam-width
height Msimple-beam-height
)
(fixed-edge :class '(tagging-object
pointl (list (/ Msimple-beam-wi
(/ Msimple-beam-he
0.0)

point2 (list (/ Msimple-beam-wi
(/ Msimple-beam-he
0.0)

)

(loaded-point :class 'point-object

beam-width 2.0)

beam-height -2.0)

sheet-object)

line-object)
dth -2.0)

ight -2.0)

dth -2.0)

ight 2.0)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 148

coordinates “loaded-node-coords
)
(imprinted-simple-beam :class 'impri nt-class
target-object "simple-beam
tool-object-list (list Mfixed-e dge "loaded-point)

)

(define-class analysis-mesh-test-class
:inherit-from (object)
:properties (

geometry-model-object

(default nil)
(node-set :class 'analysis-node-set- class
query-objects-list (list (the nodes-query (:from Msimple-beam-mesh)))
)
)

:subobjects (

(mesh-database :class 'meshdb-class)
(simple-beam-mesh :class 'paver-mesh -class
object-to-mesh (the imprinted-si mple-beam
(:from ~“geomet ry-model-object))
mesh-database-object ~*mesh-data base

element-shape :hex
solid-mesh? nil
)
(simple-beam-elements :class 'mesh-e lements-2d-query-class
tagged-object-list (list

(the simple-beam (:fr om geometry-model-object))

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 149

mesh-object Msimple-beam
)
(fixed-nodes :class 'mesh-nodes-quer
tagged-object-list (list
(the fixed-edge (:f
)
mesh-object Msimple-beam
)
(loaded-nodes :class 'mesh-query-nod
interface-object (the loaded-point (:
)
mesh-object Msimple-beam-m

)

(define-class analysis-model-test-class
:inherit-from (analysis-model-class)

:properties (

mesh-model-object (default
z-load (default -
geometry-model (default n
analysis-type (default n

load-case-objects-list (list “loa
materials-list (list 'ste
element-set-2d-objects-list (list »
property-set-objects-list (list »
material-catalog-object “material-ca

mesh-object (the simple-beam-mesh (:

-mesh

y-class

rom ~geometry-model-object))

-mesh

es-from-interface-class

from *geometry-model-object)

esh

nil)

100.0)

il)

il)

d-case-1)

el)
simple-beam-elements)
simple-beam-properties)
talog

from “mesh-model-object))

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

150

node-set-objects-list (list (the node-set
)
:subobjects (
(material-catalog :class 'material-c
)
(simple-beam-properties
:class 'analysis-property-set-2d-ty
material-name "Steel"
thickness 0.3
)
(simple-beam-elements
:class 'analysis-element-set-2d-typ
query-objects-list (list
(the simple-beam-elements (:from
property-set-object Msimple-beam-p
)
(fixed-nodes-constraint
:class 'analysis-constraint-displac
target-object (the fixed-nodes (:from
tx 0.0
ty 0.0
tz 0.0
mx 0.0
my 0.0
mz 0.0

)

(nodal-load :class 'analysis-load-fo
target-object (the loaded-nodes

(:from “mesh-model

(:from “mesh-model-object)))

atalog-class

pe-1-class

e-1-class

Mmesh-model-object)))

roperties

ement-class

mesh-model-object))

rce-nodal-class

-object))

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

151

load-vector (list 0.0 0.0 Mz-load)

)

(load-case-1

:class 'analysis-load-case-class

load-objects-list (list “nodal-load

constraint-objects-list (list Mfix

)

(nastran-interface :class 'nastran-a
analysis-model-object “superior
nastran-file-name "SIMPLE-BEAM.b

nastran-version (nth 2 '(:nei-nastra

)

(define-class post-processing-test-class

:inherit-from (analysis-post-processing-structura
class)

:properties (
mesh-model-object (default nil)
analysis-model-object (default nil)
mesh-database-object (the mesh-datab
(:from “mesh-
mesh-query-objects-list (list (the s
(:fr

analysis-interface-nastran-object

(define-class analysis-test-class

)

ed-nodes-constraint)

nalysis-class

df"

n :msc-nastran :nx-nastran))

I-linear-static-nastran-

ase
model-object))
imple-beam-elements

om “mesh-model-object)))

(the nastran-interface
(:from ~analysis-model-object))

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

152

:inherit-from (object)
:properties (
)

:subobjects (

(geometry-model :class 'analysis-geo metry-test-class
)

(mesh-model :class 'analysis-mesh-te st-class
geometry-model-object “geometry -model
)

(analysis :class 'analysis-model-tes t-class

analysis-type :linear-static

mesh-model-object ~mesh-model

)
(post-processing :class 'post-proces sing-test-class
mesh-model-object **mesh-mod el

analysis-model-object Manalysis

)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 153

Exercise 3b

Given the above example of the AML Analysis Integacreate an analysis model for a modal
analysis of the missile geometry and mesh giveBxercise 3a and add it as a subobject to the
missile-model-classThe model tree hierarchy should resemble tHeviahg figure.

Elv geomekny

----- ¢ missile-coordinate-spstem
----- ¢ hoge-coordinate-system
----- ¢ nose

----- 4 mid-bodp-coordinate-system
----- & mid-body

----- ¢ aft-body-coordinate-spstem
----- ¢ aft-body

B meshing

----- ¢ sewn-missile-body

----- ¢ mizsile-body-mesh

----- & mizzile-noze-elements

----- ¢ mizsile-mid-body-elements
----- 4 mizsile-aft-bodu-elements
----- ¢ migzile-noze-nodes

----- ¢ missile-mid-body-nodes

----- ¢ mizsile-aft-bodp-nodes
B analysis

B-f> material-catalog
----- ¢ hoze-element-set
----- ¢ mid-element-zet
----- ¢ aft-element-zet
----- % hose-property-set
----- & mid-property-zet
----- ¢ aft-property-zet
----- ¢ hastran-model

The steps needed to running the Missile Analysisidlare given below:
In AML:

» Create a model of thaissile-model-class

* Inspect, draw, modify the model as needed

» Demand (the analysis nastran-model run-nastran@yepty to run the Nastran analysis.
This will automatically demand the geometry, mesti appropriate queries and create a files
called nastran-model.xdb and nastran-model.bdiéranalysis directory. This file contains the
results of the analysis.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 154

Exercise 3b Solution
(in-package :aml)
(define-class missile-analysis-model-class

‘inherit-from (analysis-model-class)
:properties (

nose-mesh-query nil
mid-mesh-query nil
aft-mesh-query nil
mesh-object nil

;;internal properties specific to the analy

property-set-objects-list (list
~nose-property-set
mid-property-set
~aft-property-set

element-set-2d-objects-list (list
“nose-element-set
mid-element-set
"aft-element-set

)

load-case-objects-list nil

material-catalog-object “material-catalo
materials-list (list 'steel)

analysis-type :modal

:subobjects (
(material-catalog :class 'material-c

(nose-element-set :class 'analysis-eleme
guery-objects-list (list ~nose-mesh-query)
property-set-object ~nose-property-set

)

(mid-element-set :class 'analysis-elemen
query-objects-list (list *mid-mesh-query)
property-set-object ~'mid-property-set

)

(aft-element-set :class 'analysis-element-s
query-objects-list (list Maft-mesh-query)
property-set-object Maft-property-set

)

(nose-property-set :class 'analysis-prop
material-name "Steel"
thickness 0.3

)

(mid-property-set :class 'analysis-prope
material-name "Steel"
thickness 0.3

)

(aft-property-set :class 'analysis-property
material-name 'steel

sis-model-class

atalog-class

nt-set-2d-type-1-class

t-set-2d-type-1-class

et-2d-type-1-class

erty-set-2d-type-1-class

rty-set-2d-type-1-class

-set-2d-type-1-class

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 155

thickness 0.3
)

(nastran-model :class 'nastran-analysis-cla ss
analysis-model-object “superior

)
)

(define-class missile-model-class
:inherit-from (object)
:properties (
:subobjects (
(geometry :class 'missile-geometry-class

)

(meshing :class 'missile-mesh-model-class
nose-object (the nose (:from ~geometry))

mid-body-object (the mid-body (:from ~geomet ry))
aft-body-object (the aft-body (:from ~geomet ry))
)
(analysis :class 'missile-analysis-model-cla Ss
nose-mesh-query (the missile-nose-elements (:fro m "meshing))
mid-mesh-query (the missile-mid-body-elements (:from ~meshing))
aft-mesh-query (the missile-aft-body-elements (:from *meshing))
mesh-object (the missile-body-mesh (:from meshing))
node-set-objects-list (list (the node-set (:from Mmeshing)))
(post-processing :class 'analysis-post-processi ng-structural-normal-
modes-nastran-class
mesh-database-object (the mesh-database (:from » “meshing))
mesh-query-objects-list (list (the nose-mesh-que ry

(:from Manalysis))
(the mid-mesh-query

(:from Manalysis))
(the aft-mesh-query

(:from Manalysis)))

analysis-interface-nastran-object (the nastran-m odel
(:from Manalysis))
nodes-quantity (get-number-of-nodes (the missile -body-mesh

(:from ~“meshing)))

)
)
)

Code Explanation

The analysis model is generated and demonstrathdavilastran interface object. For example,
an Ansys interface object could also be added easily with a few lines of code, and the
complete analysis could be performed in Ansys withibaving to redo the analysis model!
Demanding thaun-nastran@property will demand all of the geometry, mesh simgueries,
materials, property sets, and element sets, netededite the data file and run the analysis in
Nastran. Instructions are given to post processntiodel in MSC Patran. AML also has a
module for post processing including classes foragting data from files, creating contour color
plots, vector plots, graphs, and animations. Theseot covered in this manual.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 156

Any change to the geometry or material properties €xample) will automatically
smash the mesh and analysis objects/properties hat &ll dependencies are
automatically managed. The model could now be usedonjunction with AML'’s

optimization and design trade study analysis ckdssels to vary certain design variables
to obtain optimized objectives or explore the desigace.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 157

8. Exporting and Visualizing AML models in XML form at

AMEnterprise is a web-enabled environment fer=
defining, managing, and publishing all aspects of a
engineering project. It is an integrated suitesisting
of: AMPublish, AMCentral, and AMViews, three-
integral modules for publishing, managing, and
distributing complete product engineering data nmde
Geometric as well as non-geometric data relevant-to - \
product design details and associated processebecan.
released and distributed for viewing and inspection”
through a controlled-access environment.
AMEnterprise facilitates collaboration = among
participants involved in a product engineering gesi

i1 Stress
Wleh £8 Yoo buet Fams Db Dw

AMCentral is a web application server providing Saas
project and user management functions. It contitas [
data flow among globally dispersed team members a
application tools. AMCentral manages the releades:
product and process data models. It provides ke
functionality for project data warehouse accesgrogn |:
version tracking, and data processing. AMCent
manages, processes, and catalogues product aresprgc: - -
design changes. AMCentral provides key managemént

and control functionality that include the abiltty.

» Access part and process models and data over the we

» Link evaluation requests to associated applicationsprocess the requested changes
» Provide notification of change requests and apgsaeeowners and clients (workflow)
» Manage the repository of project data, results,dexign logs

* Manage models and data access privileges

» Track activity and usage on user and project levels

AMViews is an XML based browsing and inspection iemwvment. It provides access to the
AMCentral published products catalog to view argpect available design alternatives from any
remote location. The AMViews browser features ai@ractive part geometry inspector and a
customizable graphical user interface that can xporeed from any AML-based application.
With AMViews, product models, process data, andyaigsimulation results can be viewed and
annotated, and alternative evaluation of parametams be requested. AMViews key
functionality includes:

* Viewing and annotations of product models and msakata
* Requesting the evaluation of alternative desigampeters
» Evaluation and comparison of published design andgss data alternatives

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 158

AMPublish is a facility that allows the exportingg ¥ML-based models from AML. It provides
the facility to capture and publish trade studiexl ssimulation results. It enables the
documentation and annotation of a product and godesign and provides the release of such
documentation in an XML-based part model. The X&Mporting facility within the AMPublish

is customizable through a unique suite of AML baX&dlL export methods. The AMCentral
web application server facilitates the managemédnthese models. AMViews enables the
inspection and evaluation of the model alternateleases.

Portions of the AMPublish functionality can be ags®d in AML through theaml-xmland:xml-
parser systems. Loading theml-xml system will automatically load theml-parsersystem.
This section describes some of the functionalitgilable to export AML models and supporting
data in XML format and visualize them with AMViews.The general concept involves
specifying a hierarchy of objects within a modetl arspective properties on those objects for
export into an XML standard format. The systenowali the exporting of objects, subobjects,
properties, geometry, and supporting data such aa @lles (Ex. Excel, Word, Acrobat,
PowerPoint, Visualizations, etc.) to a compact podable format.

Methods & Properties to define to export XML [Methods and Properties]

The following constructs can be defined as metlwdsa class or defined as properties within a
class to specify how the model will be exportecheyl are arranged with default behavior such
that all objects will be exported with their respree geometry if available. For each object that
is to be exported, add either a property or a nteésogiven below:

Method/Property Name Default Description
Formula
aml-xml-object-export? t Decides whether or not to export an object.

This can bé or nil.

aml-xml-object-exported-subobjects| t List of subobjects to be exported. Three
options are available:

nil => Do not write out any subobjects

t => Go to each child and check the value
returned from itaml-xml-object-export?
property or method.

List of subobjects => Instances to be exported

aml-xml-object-exported-attributes | N List of property names to export in symbol
form.
aml-xml-object-export-geometry? |t Decides whether or not to export an object’s

geometry. This can keor nil.

The aforementioned methods/properties are most amiynilefined. Other methods/properties
are available as shown below. If not defined, thvl/be called using the default formula given
in the table below.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 159

Method/Property Name

Default Formula

Description

aml-xml-object-name

(object-name self)

Name of object to be written.
This needs to be a symbol or &
string.

aml-xml-object-type

(type-of self)

Type of object to be written.
This needs to be a symbol or &
string.

aml-xml-object-description

(the label :error nil)

Description of object that
shows up as a tooltip for the

object in the tree. This needs to

be a string.

aml-xml-object-attribute-nam¢

h (object-name
attribute-object)

Define this method to write the
name of the attribute. This

needs to be a symbol or a string.
aml-xml-object-attribute-valug (the (:from attribute- Define this method to write the
object)) .
value of the attribute.
aml-xml-object-attribute- (or , Define this method to write the
.. (the aml-xml-object- . - .
description description tooltip description of attribute.
(:from attribute-object This needs to be a string.
:error nil
:relation nil))
(the label (:from
attribute-object :error
nil
:rglation nil)))
aml-xml-object-get-geometry- (é'hsstt This is used to collect geometny
ids (get-geom (the)) for an object that'wil_l be written
(the color) to the geometry file iaml-xml-
(the line-width) iect- - filei
(the line-type) object e)_<p<')rt ggometry fileid
(the render)) true. This is a list of lists, each
list corresponding to geometrig
information on a geom. Each
list is a list consisting of (geom-
id color line-width line-type
render). By default the method
returns a list of a list of the
object's: get-geom (or simple-
geom geom), color, line-width,
line-type, and render properties.

Use or duplication of this information is subjeetthe restrictions on page ii of this document.

160

AML-XML-OBJECT-EXPORT [Method]

Call this method on the object that will form theot of the XML model. This will write an
XML file (.xml) along with a geometry file (.xgl).

Format:

(aml-xml-object-export object xml-file-name
&key export-geometry?export-geometry-file-name amodel-name
aml-model-file-name loaded-systems init-function)

Arguments:
Object An instance that will form the root of tk&IL model.
xml-file-name Full path and file name to the xiité. This should have a
xml extension.
export-geometry? The default is setttolf t, the method will write the .xgl

geometry file.

export-geometry-file-name The full path and filemea to the geometry file. This
defaults to “file.xgl” if xml-file-names “file.xml".

aml-model-name Name of the model (used only asbDan [This defaults to
nil.

aml-model-file-name AML model path name that shduddoaded to recreate this
XML model. This defaults tail.

loaded-systems AML systems to be loaded beforéingathis model. This
defaults tanil.

init-function Initialization function that shouloe called before retrieving

the model. This defaults tol.

Exporting Editable Attributes [Methods and Properties]

When visualized and annotated in AMviews, a model be queried and modified for off-line
collaboration and editing. If specified using #udlowing methods or properties (written on
property-objects), these exported properties/aiteip can be changed by the user and saved into
a new XML model. This new XML model can then btieved by an active AMcentral server,
executed with the new configuration and modificasicand re-saved with the new results
obtained from the new configuration.

Method/Property Name Default Formula Description
aml-xml-object-attribute-type nil This will be used in the future

for option-properties,
application-types, etc.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 161

aml-xml-object-attribute-editable? | N

If set tot, it writes the attribute
as editable, and a new value ¢
be specified within AMviews
for the attribute.

an

aml-xml-object-attribute-the-reference (find-tree (the))

This is written for editable
properties to enable the
automatic update of an AML
model with new values entere
through AMviews

)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 162

Exercise 11

Given the aforementioned methods, create an XMLodxmodel of themissile-model-class
given in exercise 3b. This will include the georpetnesh, and analysis models of the missile.
The AMviews model hierarchy should resemble thiofing figure.

e =l8lx]

File Dimension Note

@ ¥ missile-model (3)
© ¥ geomelry (7}
+ missile-coordinate-system
+ nose-coordinate-systerm
+ nose
+ mid-body-coordinate-systemn
+ mid-hody
+ aft-body-coordinate-system
+ aft-body
@ ¥ meshing (8)
+ sewn-missile-body
+ missile-body-mesh
+ missile-nose-elements
+ missile-rmid-body-elerments
+ missile-aft-body-elements
+ migsile-nose-nodes
+ missile-mid-body-nodes
+ missile-af-body-nodes
@ ¥ analysis (3)
® p material-catalog (5)
+ nose-elament-set
+ mid-glement-set
+ af-element-set
+ nose-propert-set
+ mid-propert-set
+ aft-property-set
+ nastran-model

) Draw () UnDraw @ Inspect
Render Type Line Type Line Width
DT - i
Mare | Altribute
y-radius 10

T 3 T e o i

clear ” undraw " shade || unshade ” inspect ||Main\Mnduw v|

Zoom: Press left mouse button and drag the mouse vertically to zoom in{up) or out{down) =1 y= 1

Export all of the geometry and objects in the henmg and specifically, export the following
attributes from their respective classes:

1)missile-geometry-classmissile-general-body-radius, missile-nose-lengtissile-nose-radius,
missile-mid-body-length, missile-mid-body-radiugssile-aft-body-length, missile-aft-body-
start-radius, missile-aft-body-end-radius, missitse-max-element-size, missile-mid-body-max-
element-size, missile-aft-body-max-element-size

2)patran-mesh-object: object-to-mesh, element-shape, solid-mesh?
3)analysis-property-set-classmaterial-name, thickness

Create a method that exports the complete misslgeirfor various configurations of the missile
and view the resulting XML models in AMviews.

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 163

Exercise 11 Solution
(in-package :aml)
;;(load-system :aml-xml)

(define-method
aml-xml-object-exported-attributes
missile-geometry-class ()

(
missile-general-body-radius
missile-nose-length
missile-nose-radius
missile-mid-body-length
missile-mid-body-radius
missile-aft-body-length
missile-aft-body-start-radius
missile-aft-body-end-radius
missile-nose-max-element-size
missile-mid-body-max-element-size
missile-aft-body-max-element-size
)

)

(define-method
aml-xml-object-exported-attributes
analysis-property-set-class ()

material-name
thickness
)

)

(define-method
aml-xml-object-exported-attributes
patran-mesh-interface-class ()

object-to-mesh
element-shape
solid-mesh?
)

)

(define-method
missile-xml-export
missile-model-class (directory file-name-prefix)
(aml-xml-object-export

self

(format nil "~a.xml" (logical-path directory fil e-name-prefix))
.:export-geometry? t

)

(define-method
missile-xml-export-configurations
missile-model-class

(directory file-name-prefix property-object-to-var y property-variance-list)
(loop

forifrom 1

for prop-value in property-variance-list

do (change-property-value property-object-to-va ry prop-value)

(missile-xml-export self directory

(format nil "~a-~d" file-nam e-prefix i))

)

)

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 164

i (load-system :aml-xml)

i (create-model 'missile-model :class 'missile-mo del-class)
;51 (missile-xml-export-configurations

i (the)

;» (logical-path :temp)

;s "missile”

;i (the geometry missile-mid-body-length self)

;o '(15 20 25)
i)

Code Explanation

All of the objects in the AML model hierarchy areperted by default including the geometry
for any object which has geometry. To make the Xktbdel more informative, various
properties and values from the geometry, mesh, aaradysis are exported. These properties
describe the configuration of the missile modelttad time of the export, thus creating a
configuration. Drawing the various objects in therarchy shows that geometry as well as mesh
information was exported and stored for that canfigjon. The analysis was not run during the
export process. This could have been accompligeply by exporting theun-nastrar@
property from thenastran-modelobject. Additionally, the data file deck genetdhti®r the
Nastran run could have been stored with the XMé fdr later use or verification. If AML was
used for post processing of this model, those teswluld have also been stored in the XML file
along with visualizations of the model. This i®®m below in some sample screen shots.

4" Mesh with Color Mapping Display. 4" TechnoSoft - AML - KBE Beam Design / Analysis Feedback Model

oS Belaadbhd:dFEe

Options Clear Undiaw Shade Unshade Refresh Regen Activate

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 165

9. Additional Useful AML Constructs

The following AML constructs are mentioned to gihe user insight into a portion of important
AML functions and methods not covered (or not cedein their entirety) in the AML Basic
Training class. At this point, the trainee shob&lable to use the AML Reference Manual for
further information on following AML constructs.

New AML Constructs

» select-object> query the model tree hierarchy

» get-object> interactively select an object from the screen

» change-value> change a property’s value

» change-formula> change a property’s formula

» get-formula> get a property’s formula without demanding thepemy’s value

» format-> output to files, standard out, streams

» with-open-file> input/output to files

» inheritance-list> object’s inheritance history list

» object-name> returns the object’'s name in symbol form

» read-from-string> takes a string and converts it to the correspandiML entity

» debugging> functions such asace, and using th& from the command prompt

» describe> runtime description of a function/method/clasaworobject

e apropos-> query for a particular symbol in a function/mettaass or an object defined in
the current AML session

e print-tree > view the tree in the AML editor

» find-tree—> returns the symbol representation of thereference

» trace-from-> placeghereference at the specified object

» i-depend-on> list of objects/properties that depend on the ifijgelcobject

» i-affect—> list of objects/properties that affect on the siied object

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 166

10. After the AML Basic Training

10.1 Contacting TechnoSoft Inc.

The AML Basic Training course contains a consideramount of information. Therefore the
trainee may have questions while working on an iappbn after the training. Questions
specific to the following areas should be submittetheir respective email addresses.

Questions/Comments about: Email address:

AML specific to the training manual andraining-support@technosoft.com
course

Other AML functions/methods/classes customer-support@technosoft.com
Bugs in AML functions/methods/classes bugs@technosoft.com
AML reference manual (includingmanual@technosoft.com

undocumented functions/methods/classes)

10.2 Advanced Training Topics

The advanced training course is given on a usesifdpéasis depending on their intended
application. The advanced course covers topids asc

» advanced geometric classes and operations,
» the virtual geometry layer,

» advanced graphics and visualization,

» dimensioning and graphing,

» advanced user interface building,

» foreign function interactions,

» advanced debugging techniques,

» file input/output,

* data tables,

* writing advanced methods and functions,

* event classes,

» attribute tagging,

* meshing classes and querying,

» and other topics specific to the users' application

Use or duplication of this information is subjeetthe restrictions on page ii of this document. 167

11. Notes

