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Abstract

Background

This thesis is a result of a master’s degree in Mechanical Engineering at The Norwegian
University of Science and Technology, Department of Engineering Design and Materials.

Objective

The main objective of the thesis is to, in cooperation with Kongsberg Automotive (KA),
establish a methodology for physical vibration testing using a shaker table. A concept
shall be designed and manufactured. Physical vibration testing are to be correlated with
analyses using finite element methods. Relevant methods are linear dynamic calculations
in both time domain and frequency domain.

Results

The thesis describes the linear dynamics for performing random vibration analysis and
fatigue calculation methods for dynamic systems subjected to a random load.

Four analyses are performed on different test objects, showing expected trends for the
specific methods regarding estimated fatigue life.

Notes

As a consequence of unforeseen events, the physical testing at KA’s lab was not completed
according to the initial plan. The thesis objective is therefore aimed towards the theory
and methods of fatigue life calculation due to random vibration loading in the FEA
environment.

Thesis Supervisors

Bjørn Haugen Associate Professor
Department of Engineering Design and Materials, NTNU

Ketil Pettersen Structural Analyst
Kongsberg Automotive
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Sammendrag

Bakgrunn

Denne rapporten er et resultat av en maskiningeniør mastergrad utført ved Norges
Teknisk-Naturvitenskapelige Universitet, Institutt for Produktutvikling og Materialer.

Mål

Hovedmålet med masteroppgaven er å etablere en metode for fysisk vibrasjonstesting
ved bruk av et ristebord i samarbeid med Kongsberg Automotive (KA). Et konsept skal
designes og produseres, og fysisk vibrasjonstesting skal korreleres med analyser ved bruk
av elementmetoden. Relevante metoder innenfor temaet er lineærdynamikk i både tids-
og frekvensplanet.

Resultat

Masteroppgaven tar for seg vibrasjonsanalyse ved bruk av lineærdynamikk og metoder
for å beregne utmatting for et dynamisk system påvørt en varierende last.

Fire analyser er utført på ulike test objekter av ulik geometri for å vise forventede trender
for de spesifikke beregningsmetodene iht å estimere levetid.

Notis

Som en konsekvens av uforutsette hendelser ble ikke fysisk vibrasjonstesting utført ved
KAs lab. Masteroppgaven er dermed rettet mot teorien og metodene bak analysene og
levetidsberegningene som er gjennomført.

Veiledere

Bjørn Haugen Førsteamanuensis
Institutt for Produktutvikling og Materialer, NTNU

Ketil Pettersen Strukturell Analytiker
Kongsberg Automotive
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1. Introduction

1.1 Background

Any system, structure or component will at some point be subjected to some form of load.
In the design process it is absolutely critical to identify possible scenarios the product can
or will experience. From analyses, prototyping and testing a statement of how capable
the product is to withstand different loads can be obtained.

Whether the product is a suspension component of a automotive vehicle or the internal
structure of a airplane wing there are probably many hours, days or even years of
development before the product is commercially released. The consequences of a airplane
wing to structurally fail in operation are of immense proportions. The reason of failure
can be traced to faults in the manufacturing process, sudden impacts of high magnitude,
or frequent loads of relatively small but varying magnitude. The last allegation is often
referred to as vibrations.

Expected fatigue life of a structure is obtained by processing random time histories,
defining random variables using statistical approaches, and performing linear dynamic
fatigue life analyses in the FE environment.

This thesis describes and investigates the methods of fatigue life estimation for a structure
subjected to a random vibration load.

1.2 Thesis Outline

The thesis begins with giving an introduction to relevant theory of linear dynamics,
followed by a description of available procedures for solving linear dynamic problems in
the finite element environment. Methods of characterizing a random dynamic event and
a description of statistical variables are presented in chapter 3. Random dynamic events
in both time and frequency domain are described together with methods for creating
analysis input data and fatigue calculation methods.

1
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General procedures for physical vibration testing, fixture requirements and placement of
sensors are presented chapter 4.

Chapters 5 and 6 describes the modeled problem case and the analysis setup used for
analyses presented in the thesis. Results from one of the four performed analyses and
fatigue calculations are thoroughly presented in chapter 7.

Finally the conclusion and suggestions of further work are presented in chapters 9 and 10.

Large figures, results from the remaining analyses, mechanical drawings and assignment
description are listed in the appendix.

1.3 Software Used

• Abaqus/CAE, general-purpose finite element program used for analysis of static
and dynamic problems. Dassault Systèmes.

• Solidworks, solid modeling CAD and CAE software program. Dassault Systèmes.

• Microsoft Excel, spreadsheet application used for processing output data and creating
response plots.



2. Linear Dynamics

2.1 Introduction

A problem is considered dynamic when the inertial forces that results from structural
accelerations are both significant and are varying rapidly in time. The inertial forces are
proportional to the structure’s mass and acceleration.

The general dynamic problem can be described as

P − I = Mü (2.1)

Where P is the external forces, I is the internal forces and Mü is the inertial forces. The
expression is know as the equation of motion, or dynamic equation of equilibrium, and
applies to the behaviour of all mechanical systems containing all non-linearities.

A derivative of this expression is the equation of static equilibrium by setting the accelera-
tion, ü, equal to 0.

P − I = Mü = 0 (2.2)

When assumed that the resulting motion of imbalance between internal and external
forces is small compared with the internal elastic forces, the response can be considered
quasi-static. This applies for systems where the external load vary slowly with time and
the inertial forces are small or zero.

P − I = Mü ≈ 0 (2.3)

3
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In linear dynamics, the internal forces are linearly dependent on the nodal displacements,
accelerations and velocities. When including damping in the system, the dynamic equation
of equilibrium can be rewritten as

I = Cu̇+Ku (2.4)

By inserting equation (2.4) in the dynamic equation of equilibrium, (2.1), the complete
equation of motion is written as

Mü+ Cu̇+Ku = P (2.5)

Mü can now be described as the internal resistance, derived from F=ma. Cu̇ is the
damping resistance, derived from F=Cv. Ku is the spring resistance, derived from F=Kx.
This equation is often applied in matrix form, specially for multi degree of freedom
(MDOF) systems, and referred to as the matrix equation of motion for linear dynamics.

Mü + Cu̇ + Ku = P (2.6)

Now M is the system mass matrix, C is the damping matrix, K is the stiffness matrix,
u is the vector of nodal unknowns (displacement, acceleration, velocity). For a linear
dynamic problem both mass, damping and stiffness is considered constant. They are not
considered constant if the problem is non-linear. This makes the linear dynamic problem
more efficient to solve, but could give inaccurate results in certain cases where external
forces or resultant displacements are significantly large.

2.1.1 Single Degree of Freedom System

If considering an undamped single degree of freedom (SDOF) system by setting Cu̇ = 0
in equation (2.5) gives

Mü(t) +Ku(t) = P (t) (2.7)

Assuming the solution on following form

u(t) = Asin(ωt) (2.8)

ü(t) = −ω2Asin(ωt) (2.9)



2.1. INTRODUCTION 5

The natural frequency of the system is found by inserting equations of displacement (2.8)
and acceleration (2.9) in the equation of motion and setting P(t)=0.

−Mω2Asin(ωt) +KAsin(ωt) = P (t) = 0 (2.10)

Cleaning up and sorting equation (2.10) gives

(−Mω2 +K)Asin(ωt) = 0 (2.11)

This means that either Asin(ωt) = 0 or −Mω2 + K = 0. And by solving with regard
of ω the well known equation for the natural frequency of a undamped SDOF system is
found, as shown in equation (2.12).

ωn =

√
K

M
, frequency in rad/s (2.12)

fn =
1

2π

√
K

M
, frequency in Hz (2.13)

Tn = 2π

√
K

M
, natural period in seconds (2.14)

The natural period, Tn, is useful for low frequencies. Often used in context of wave motion
on offshore structures.

If still considering the undamped SDOF system, but now with an applied sinusoidal force
represented by equation (2.15)

P (t) = Fsin(wt) (2.15)

Inserted in equation (2.11) gives

(−Mω2 +K)Asin(ωt) = P (t) = Fsin(wt) (2.16)

Dividing by sin(ωt) on both sides

(−Mω2 +K)A = F (2.17)
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If solving with regard of A yields the frequency response function (FRF) shown in equation
(2.18).

A(ω) =
1

(−Mω2 +K)
· F (2.18)

Figure 2.1 shows the plotted FRF. The peak amplitude, located at the natural frequency,
fn, tends towards infinity because of zero damping in the system.

Figure 2.1: FRF plot

The FRF plot is divided in three sections. Where the response in the first section, f = 0
to f = 1

3fn, is affected by the structural stiffness of the system. Rule of thumb in
engineering processes is often to consider this as the static or quasi-static region, where
such assumptions are acceptable. The second section the response is affected by the
damping in the system, hence if decreasing damping the peak tends towards infinity. In
the third section the response is affected by the systems inertia.
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2.1.2 Multi Degree of Freedom System

From equation (2.6), a freely vibrating undamped MDOF system can be described as

Mr̈ + Kr = 0 (2.19)

By assuming the solution on following form

r = resinωt (2.20)

r̈ = −ω2resinωt (2.21)

And by inserting (2.20) and (2.21) in (2.19) gives

(K− ω2M)resinωt = 0, where ω 6= 0 and re 6= 0 (2.22)

ω = 0 and re = 0 are obvious solutions, but not of interest. This because ω = 0 gives a
eigenfrequency of 0 and re = 0 means that the system is not i motion. In order to fulfill
these criteria, the coefficient matrix must be singular, hence the determinant must be zero

|K− ω2M| = 0 (2.23)

Equation (2.23) is only valid for certain values for ω. These are representing the systems
eigenfrequencies. The number of possible eigenfrequencies depends on the number of
degrees of freedom in the system, i.e. a system with 20 degrees of freedom will have 20
eigenfrequencies.

For each ω a corresponding nodal displacement vector can be found from equation (2.22).
The exact value can not be calculated, but the relation between the vector components
can be found. These vectors are referred to as eigenvectors, which is used to characterize
the mode shapes of the system by plotting the relative displacement for each node.
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2.1.3 Damping

When introducing damping to the system, the peak amplitude of motion around the
resonance frequencies will be limited. The significant effect on peak response by damping
is shown in figure 2.2. The maximum dynamic response amplitude can be estimated by
multiplying the static response with the dynamic amplification factor, Q.

Figure 2.2: Effect of damping on the response

Q =
1

2ξ
(2.24)

ξ is known as the critical damping fraction, which is the ratio of critical damping in
percentage. The reason for using ξ is that for many systems the damping value will change
depending on geometry, stiffness, inertia etc. But the critical damping fraction will stay
relatively constant, at least it is assumed constant for most linear dynamic systems. The
effect of damping on the system’s response is evident, and as ξ approaches 1 the system
is considered critically damped.

The expression origins from equations (2.25) and (2.26) and is governed by mass, M, and
stiffness, K.

Ccrit = 2
√
MK (2.25)
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ξ =
C

Ccrit
=

C

2
√
MK

(2.26)

The natural frequency of a system will also be reduced when introducing damping
according to equation (2.27).

fd = fn
√

1− ξ2 (2.27)

2.2 Linear Dynamics in FEA

A linear dynamic analysis is based on the idea of linear perturbation analyses. This means
that the linear response is in general based on the analysis of small perturbations about a
preloaded state [1].

If the linear response assumptions are applicable, the dynamic response can be ap-
proximated by a linear combination of the response of a subset of the system’s normal
modes. Where the normal modes are the mode shapes associated with the system’s
eigenfrequencies.

The procedures are described according to the procedures available in Abaqus/CAE which
uses the Abaqus/Standard solver [2] [3]. The procedures and theory of linear dynamics
are in most cases directly applicable for other FEA software such as MSC/Nastran, Ansys
and LS-Dyna.

2.2.1 Eigenvalue Extraction

This is the initial step for all mode-based linear perturbation type of analyses. The
purpose is to extract the eigenfrequencies and mode shapes that shows the harmonic
oscillation of the structure. There are no external load applied, and the result shows how
the structure will behave if set to vibrate freely in the designated frequency range. A
eigenvalue extraction step is, depending on the complexity of the model, cheap regarding
CPU time.

Both real and complex eigenvalues can be extracted. The difference relies on whether
damping is inactive or active in the step. For real eigenvalues, damping is not active
and the mass and stiffness matrix is symmetric. Complex eigenvalue extraction is only
possible to perform after a real eigenvalue extraction step. For complex eigenvalues,
viscous damping and antisymmetric matrices can be solved and is often used in dynamic
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stability analysis. The eigenvalue extraction procedure can be assumed undamped for
systems with no, or very little external and/or material damping.

Abaqus/Standard provides three eigensolvers. Automatic multi-level substructuring
(AMS) eigensolver, a reduction method suited for large systems where a large set of
eigenvalues are desired. Subspace iteration and Lanczos eigensolvers are both iterative
methods suited for systems where a smaller set of eigenvalues are needed.

Both Lanczos and Subspace iteration eigensolvers outputs, in addition to eigenvalues, the
modal participation factors and effective modal mass. The modal participation factor
indicates the level of motion represented in the eigenvector of a specific mode. Effective
modal mass is a variable of indicating the mass in motion related to a specific mode. By
summing the effective modal mass in one direction over the total number of modes gives
the system’s total mass minus mass at kinematically restrained degrees of freedom. Both
variables are presented by values in the global coordinate system.

AMS eigensolver only outputs the generalized mass in addition to eigenvalues.

2.2.2 Transient Modal Dynamics

Transient modal dynamics is a mode-based linear perturbation transient procedure. The
procedure calculates the response for a system subjected to linear vibrations expressed in
form of a time history. It is not required to include damping in order to obtain bounded
solutions, unless the excitation is a single harmonic corresponding to a natural frequency
of the system.

Time domain transient solutions are obtained with a time integration numerical algorithm
where the integration time is user-specified and an amplitude curve describes the excitation
time history.

If there are non-linearities in the system that are important to consider, a direct integration
method can be used by employing modal subspace projection. This method gives accurate
results, but is not very computational efficient. For either method it is very important to
ensure that enough eigenmodes are included in the modal analysis to ensure an accurate
representation of the system’s response.

2.2.3 Response Spectrum

Response spectrum is a mode-based linear perturbation procedure which estimates the
peak linear response of a structure subjected to a base excitation in the frequency domain.
The response is defined as a function of the natural frequencies with a response spectrum.
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The mode shapes are considered to behave as simple oscillators, each responding at its
natural frequency. The peak response of each mode is computed, based on the user
defined response spectrum. By combining the peak response of each mode makes it
possible to estimate the system’s peak response. The combination procedures are often
predetermined and designed to be conservative.

This method is therefore often used when a conservative, worst-case-scenario estimate of
the peak response is desired for design purposes.

2.2.4 Steady-State Dynamics

In a steady-state dynamics (SSD) analysis the applied load and structural response vary
harmonically with time, and the solution is performed in the frequency domain. SSD
analysis is only valid for linear systems since the response behaviour over each harmonic
cycle in time is linear. The SSD analysis calculates the solution for the response over a
range of excitation frequencies, often referred to as a sine-sweep.

Either structural or external damping must be included to ensure a bonded solution when
an excitation frequency coincides with a natural frequency of the system, otherwise the
peak amplitude will tend towards infinity. The analysis can bias the excitation frequencies
toward the values that generate a response peak.

There are three SSD procedures available in Abaqus/Standard, all linear perturbation
procedures used to find the linearized response to a system subjected to a harmonic base
excitation.

• Direct-solution calculates the response from the physical DOFs of the model
directly. It is the most computationally expensive procedure. If frequency-dependent
or viscoelastic effects are included, the solution is by far the most accurate.

• Subspace-based based on the projection of the SSD equations on a subspace of
selected modes of the undamped system. The procedure presents a compromise
by providing a computationally effective solution where frequency-dependent or
viscoelastic effects can be included, but not giving as accurate results as the direct-
solution procedure.

• Mode-based calculates the response based on the eigenfrequencies and modes. It is
significantly cheaper than both previous procedures, but is less accurate. Although
the mode-based SSD analysis gives representable results if frequency-dependent or
viscoelastic effects can be assumed negligible.
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2.2.5 Random Response

Random response is also a mode-based linear perturbation procedure in the frequency
domain. But unlike the mode-based SSD analysis, random response is based on prediction
of the system response when subjected to a random base excitation. The base excitation
is defined by a power spectral density (PSD) function [4]. The procedure calculates, based
on the extracted eigenfrequencies and modes, PSD functions of response variables and
their corresponding root mean square (RMS) values.

Random response analysis is a useful method for identifying critical regions in context
of random vibration fatigue analysis. A RMS plot of stress for the last increment will
indicate stress concentration regions in the structure. Random response analysis is often
performed in order to get an overview of critical regions to be further investigated in a
SSD analysis.



3. Stochastic Process

Dynamic systems can either be characterized as deterministic or stochastic. Where a
deterministic system will always give the same output from a given initial state or starting
condition, provided that no random variables are influencing the future states of the
system.

Vibrations can in certain circumstances be deterministic. For instance if the system is
subjected to a harmonic vibration load where both frequency and amplitude is constant,
or not varying rapidly with time. Such harmonic vibrations are often described by a sine
wave function, and referred to as narrow band because it is consisting of one predominant
excitation frequency.

Vibrations in nature are behaving randomly. In order to replicate a lifelike scenario this
random behaviour must be taken into account. These type of vibrations are stochastic
and referred to as random vibrations. Stochastic systems are unpredictable in that manner
that the future states of the system can not be precisely calculated. Therefore it is
necessary to introduce statistical data and methods in order to assume and possibly
predict the future states.

This chapter addresses the difference between the time and frequency domain, methods
of processing measured data from random events, and using these data as an input for a
linear dynamic analysis.

3.1 Random Vibration

Random vibration can generally be characterised as motion that varies randomly with
time where the amplitude can not be expressed in terms of a deterministic mathematical
function. Unlike narrow band, random vibration is composed of a continuous spectrum of
frequencies. Random vibration is white noise which is a stationary process where mean
magnitude, RMS magnitude and probability distribution of signal magnitude are variables
independent of time.

13
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The most obvious characteristic of random vibration is that it is non-periodic.
A knowledge of the past history of random motion is adequate to predict the
probability of occurrence of various acceleration and displacement magnitudes,
but it is not sufficient to predict the precise magnitude at a specific instant.

D. Steinberg, “Vibration Analysis for Electronic Equipment”, Wiley-Interscience,
New York, 1988

Figure 3.1 below shows a generated random acceleration signal with a zero mean and units
of G and seconds. The signal is not taken from physical measurements, but generated
specifically for this example.

Figure 3.1: Typical random vibration signal

The root mean squared (RMS) is a statistical value used to describe a random signal.
The RMS value of the signal is equal to the standard deviation value if the mean is zero,
i.e the signal fluctuates about the zero axis. The standard deviation is represented by
sigma, σ. Typical kurtosis value for a random vibration time history is 3, where a pure
sinusoidal time history has a kurtosis value of 1.5 [5]



3.1. RANDOM VIBRATION 15

Parameter Value
Sample duration 4.0 sec
Number of samples 8000
Mean 0
RMS 7.53 GRMS
Standard deviation 7.53
Kurtosis 2.98
Maximum 30.91 G
Minimum -28.43 G

Table 3.1: Statistical parameters for the random vibration signal

The relationship between peak amplitude, RMS and sigma is given in equation (3.1). The
term GRMS is an abbreviation for root mean square acceleration when amplitude is in
units of G.

Peak (G)
GRMS

= Peak value in terms of σ (3.1)

The peak value for the random signal is therefore

30.91 Peak (G)
7.53 GRMS

= 4.11σ

By dividing the entire random signal by the GRMS, the amplitude can be plotted in
terms of σ, figure 3.2.

Figure 3.2: Random vibration signal expressed in σ-limits
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As stated earlier, the amplitude at a given time in the random vibration time history
cannot be calculated. But the probability that the amplitude is within or outside certain
limits can be statistically expressed. These probability values are given in table 3.2.
According to the theory of statistical probability the amplitude should be within ± 1σ
limits 68.26% of the time, within ± 2σ limits 95.45% of the time, and within ± 3σ limits
99.73% of the time.

Statistical Probabilities for a Normal Distribution with Zero Mean
Probability inside ± 1σ limits = 68.27%
Probability outside ± 1σ limits = 31.73%

Probability inside ± 2σ limits = 95.45%
Probability outside ± 2σ limits = 4.55%

Probability inside ± 3σ limits = 99.73%
Probability outside ± 3σ limits = 0.27%

Probability inside ± [1σ to 2σ] limits = 27.18%
Probability inside ± [2σ to 3σ] limits = 4.28%

Table 3.2: Statistical probability for normal distribution

The histogram of a random vibration time history, shown in figure 3.3, has a bell-shaped
curve and is an approximate example of a Gaussian or normal distribution following the
statistical properties applied in table 3.2.

Figure 3.3: Histogram showing amplitude distribution
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The histogram gives an indication of what amplitudes that is present in the signal. Typical
assumption is that random vibrations has a peak value of 3σ for common design purposes.
Where amplitudes inside ± 3σ limits can be described as probable loads, and amplitudes
outside ± 3σ limits might be considered as the hundred-year-wave and unlikely to occur
during the service time of the structure or component.

3.1.1 Time and Frequency Domain

Measured response is generally expressed with a time history signal. If this signal is made
of constant amplitude cycles (narrow band) fatigue life can be estimated by referring to a
S-N diagram and using the Palmgren-Miner linear damage theory to calculate the relative
damage index [6].

Physical vibration measurements are rarely in compliance with this ideal amplitude cycle
signal, but are characterized by random amplitudes and frequencies in a given time period.
A method for counting fatigue cycles from a random time history is the Rainflow cycle
counting method [7]. Rainflow counting combined with Miner’s rule makes it possible to
assess the fatigue life of a system subjected to complex loading. These calculations are
performed in the time domain since both inputs and outputs are specified in a time span,
or derivatives of, with specified length.

The frequency domain provides an alternative representation of a time history where the
amplitude is given by a function of frequency. Information about a random dynamic
event, such as random vibrations, are easier to read in a frequency plot. By utilizing the
fast fourier transformation (FFT) a time history is converted to the frequency domain.
Random vibration fatigue analysis in the frequency domain is performed by either a
random response or SSD analysis procedure followed by a so called PSD analysis [8] [9].
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3.2 Converting a Time History

3.2.1 Fourier Analysis

Fourier suggested that any signal wave that repeats its self can be decomposed into several
sine waves of different amplitude and frequency [10]. Thus by adding the series of sine
waves together it is possible to recreate the original signal. For demonstration a square
wave signal is considered as shown in figure 3.4.

Figure 3.4: Example square signal

By assuming this signal is composed of a series of sine waves on following form

( 1

n+ 1

)
Asin

[
(n+ 1)θ

]
where A =

4

π
and n = 0, 2, 4, 6... (3.2)

Figure 3.5 shows the example when adding the corresponding sine waves together. The red
curve shows the replicated signal, and already with only four sine waves the characteristics
of the square signal is evident. By adding the infinite number of sine waves together, the
square signal will be fully recreated.
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Figure 3.5: The concept of Fourier analysis

From this example the FFT amplitude is easily obtained by plotting the frequency and
amplitude of each sine wave, as shown in figure 3.6.

Figure 3.6: FFT amplitude plot

The example shows the FFT transform graphically. The fourier analysis outputs actually
a series of complex values on a+ bi form, where the FFT magnitude is

√
a2 + b2. The

FFT amplitude is then found through equation (3.3).
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FFTamplitude = FFTmagnitude ·
2

N
(3.3)

Where N is the number of samples in the time history.

3.2.2 Creating an input PSD

From equation (3.4) the FFT amplitude is converted to PSD amplitude. And by plotting
the PSD amplitude over the frequency range, the input PSD is created.

PSDamplitude =
(
FFTamplitude

)2
· 1

2df
(3.4)

df =
S

N
(3.5)

N is the number of samples and S is the sampling rate. The sampling rate is defined from
the Nyquist Frequency shown in equation (3.6) which states that the maximum frequency
of the PSD function can not exceed half the sampling rate frequency.

S = 2 · PSDmax (3.6)

The PSD function will always have units of squared over hertz, which comes from equation
(3.4), where the FFT amplitude is squared and divided on df [11].

For a second demonstration lets consider the random signal from section 3.1 (figure 3.1).
In this case, the signal have units of G and will give a PSD function with units of G2/Hz.
It is shown to be a very much random signal because of its kurtosis and standard deviation
value.

This could for instance represent the vertical vibrations measured in a car traveling on a
uneven and bumpy road. If an engineer is set to perform analysis on a car component,
this signal can be used in order to represent the vibrations the component must withstand.
In order to perform an efficient analysis in the frequency domain this signal must be
converted into a PSD representing input acceleration load over frequency.

By performing a FFT transformation and using equations (3.3) to (3.6), the input PSD
is created. The same PSD can be converted back to a time history by simply using the
inverse FFT. Although the regenerated time history will not be exactly the same as the
original signal, it should be statistically equivalent. The PSD created from the random
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time history is shown in figure 3.7, where the blue line represents the directly plotted PSD
curve and the orange line represents the modified PSD which is averaged and "cleaned
up" in order to make it tidier and easier to process in the analysis.

Figure 3.7: Created PSD from random vibration signal

The created PSD can be controlled by checking the GRMS values of the time history
versus the GRMS value of the created PSD. These should ideally be identical, but this is
not always possible and is dependent on the signal resolution and number of data points.
The calculated GRMS for the random time history and both PSDs is shown in table 3.3.

Plot GRMS-value
Random Signal (fig. 3.1) 7.53
Created PSD (fig. 3.7) 7.50
Modified PSD (fig. 3.7) 7.50

Table 3.3: GRMS value check

Table 3.3 shows very good correlation between the GRMS for the original random time
history and the modified PSD. This modified PSD will be used as input load for the linear
dynamic analyses performed and described in section 6.2.
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3.3 Vibration Fatigue Calculation

3.3.1 The Transfer Function

SSD analysis gives outputs in form of transfer functions. The transfer function builds
on the theory of linearity. If a structure is subjected to a sinusoidal force the structure
will respond with a sinusoidal displacement at the same frequency. Where the system’s
linear response is proportional to an increase in amplitude of the forcing function. The
transfer function is defined as response per input load at each frequency. It is therefore
possible to predict the system’s response by multiplying the transfer function with the
amplitude of the load. The response can be in any form as long as the relationships are
linear; displacement, acceleration, stress, strain etc.

In order to get the transfer function in correct units for a PSD analysis, the response
parameter must be squared. The relationship between the transfer function, input PSD
and response PSD is shown in equation (3.7) with regard of the stress response used for
fatigue analysis.

[
MPa

G︸ ︷︷ ︸
Transfer Function

]2
× G2

Hz︸︷︷︸
Input PSD

=
MPa2

Hz︸ ︷︷ ︸
Response PSD

(3.7)

3.3.2 The PSD Moments

When performing fatigue analysis for a structural system in the frequency domain it
is necessary to extract the spectral moments of the stress response PSD. This is often
referred to as the nth moments of the PSD function. Equation (3.8) is used for calculating
the relevant spectral moments from a one sided PSD.

mn =

∫ ∞
0

fnG(f)df =
∑

fk
nGk(f)δf (3.8)

Where G(f) is the one sided PSD in units of Hertz and f the given frequency.
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Figure 3.8: Calculating moments from response PSD

In theory an infinite number of moments can be calculated, but for fatigue analysis it is rep-
resentative to only calculate the zeroth, first, second and fourth moment (m0,m1,m2,m4).
SO Rice [12] developed in 1954 the important relation between the number of upward
zero crossings per second, E[0], and number of peaks per second, E[P], for a random
signal expressed by the spectral moments from a one sided PSD. The relation is shown in
equations (3.9) and (3.10).

E[0] =

√
m2

m0
; E[P ] =

√
m4

m2
(3.9)

γ =
E[0]

E[P ]
=

√
m2

2

m0m4
(3.10)

γ is the irregularity factor which have a value between 0 and 1, depending on E[0] and
E[P]. As γ converges towards 1, the process is considered narrow band. A pure narrow
band response is easily identified by its characteristic single peaked PSD function.

The RMS value indicates how much "energy" the PSD function contains. The RMS is
calculated by the square root of the zeroth moment, which basically is the integral of the
single sided PSD, G(f).

rms =
√
m0 =

√∫ ∞
0

G(f)df (3.11)
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3.3.3 Probability Density Function

A probability density function (pdf) is used for storing response histogram information.
For fatigue analysis the pdf of stress ranges is most used since stress response is of highest
interest. The pdf of stress ranges has the annotation p(S), and the random vibration
fatigue calculation methods presented in this thesis are based on calculating pdf’s of
stress ranges.

3.3.4 Expected Fatigue Damage

Expected fatigue damage, E[D], is calculated through equation (3.12), and is based on
the calculation of the pdf of stress ranges.

E[D] =
E[P ] · T

k

∫ ∞
0

Smp(S)dS (3.12)

By calculating the number of stress cycles, N(S), the total fatigue life in seconds, T, can
be estimated through equation (3.14).

N(S) = E[P ] · T · p(S) (3.13)

T =
N(S)

E[P ] · p(S)
(3.14)

Where k and m are material fatigue parameters obtained from a S-N diagram.

3.3.5 Narrow-Band Method

The narrow band method was developed by Bendat in 1964 [13]. It was the first frequency
domain method for predicting fatigue damage directly from a response PSD. A limitation
of the method is that it is only suitable for a narrow band response, hence the name. The
solution assumes that the pdf of stress amplitudes is equal to the pdf of peaks. When
utilizing this method on a wide band response, the solution will be very conservative.
The reason for this is that a wide band process is characterized by its positive troughs
and negative peaks. The narrow band method ignores the positive troughs and negative
peaks by matching all positive peaks with corresponding troughs even though they don’t
actually form stress cycles. In short terms, the narrow band method converts a wide band
response to a narrow-band response.
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p(S)NB =
S

4m0
e

−S2

8m0 (3.15)

E[D] =
E[P ] · T

k

∫
Sm ·

[
S

4m0
e

−S2

8m0

]
dS (3.16)

N(S) = E[P ] · T ·
[
S

4m0
e

−S2

8m0

]
(3.17)

N is the expected number of cycles of stress range S over the period of T seconds. m0 is
the zeroth moment of the response PSD, E[P] is the expected number of peaks and the
term inside the brackets is the Rayleigh probability distribution.

3.3.6 Steinberg Solution

Steinberg based the solution on the assumption that all stress cycles occur with no
greater range than 6 RMS. The distribution of stress ranges follows a Gaussian or normal
distribution (see table 3.2). The pdf of stress ranges is found through equation (3.18).

p(S)S = 0.683 · 2RMS + 0.271 · 4RMS + 0.043 · 6RMS (3.18)

N(S) = E[P ] · T ·

∣∣∣∣∣
0.683 · 2RMS

+0.271 · 4RMS
+0.043 · 6RMS

(3.19)

3.3.7 The Dirlik Method

The Dirlik method was developed by Dirlik in 1985 [14]. It is an empirical closed form
expression for the pdf of rainflow ranges which was obtained using computer simulations
to model the signals using the Monte Carlo technique. It is shown to be the most accurate
method of calculating fatigue damage caused by vibrations for any process. The method
is predicting fatigue life directly from a PSD based on its nth moments, mn, and was
theoretically verified by Bishop in 1988 [15].

The Dirlik formula for the pdf of stress ranges is given in equation (3.20).
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p(S)D =

D1
Q e

−Z
Q + D2Z

R2 e
−Z2

2R2 +D3Ze
−Z2

2

2
√
m0

(3.20)

Z =
S

2
√
m0

; R =
γ − xm −D2

1− γ −D1 +D1
2 (3.21)

Q =
5(γ −D3 − (D2R))

4D1
; xm =

m1

m0

√
m2

m4
(3.22)

D1 =
2(xm − γ2)

1 + γ2
; D2 =

1− γ −D1 +D1
2

1−R
; D3 = 1−D1 −D2 (3.23)

E[D] =
i∑ ni
Ni

=

i∑ E[P ] · T · p(Si) dS
k · Si−b

=
T · E[P ]

k

∫ ∞
0

Sm · p(S) dS (3.24)

N(Si) = E[P ] · T · p(Si) dS (3.25)

3.4 Accelerated Vibration Testing

The methods of converting a random vibration event from the time domain to the
frequency domain is discussed earlier. The signal represent a certain load condition
depending on the environmental conditions during the physical measurements. When
performing vibration fatigue analysis or testing on a component using this random signal
as input load, the test engineer or analyst must decide for how long the component should
withstand this type of load. If the original random signal represent a moderate vibration
event, the test time required might be unreasonably long. In order to make the test more
efficient and reduce operation cost the test can be accelerated by increasing the input
acceleration PSD. It is very important that this accelerated test ensures that the same
damage is being applied as if the component is in service. The methods presented are
therefore only valid and acceptable within the specified limits.

3.4.1 Miner-Palmgren Hypothesis

The most common method of accelerating a input PSD in order to achieve a reduction in
test duration is the Miner-Palmgren hypothesis [16] by using a fatigue-based power law
relationship to relate exposure time and amplitude.
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t2
t1

=

[
S1
S2︸︷︷︸

exaggeration factor

]m
(3.26)

t1 = equivalent test time
t2 = in-service time for specified condition
S1 = RMS at test condition
S2 = RMS at in-service condition
m = slope coefficient from S-N diagram

Alternatively equation (3.26) can be written in terms of the PSD function amplitudes at
the certain frequency, f . This can often be more convenient since most random vibration
events are already expressed on this form. The derived equation is shown in (3.27) below.

t2
t1

=

[
W (f)1
W (f)2︸ ︷︷ ︸

exaggeration factor

]m/2
(3.27)

W (f)1 = PSD amplitude at test condition, g2/Hz
W (f)2 = PSD amplitude at in-service condition, g2/Hz

By recommendations, the exaggeration factors should be within a certain value that is
consistent with the constraints of in-service time and desired test time. In general should
S1/S2 ≤ 1.4 and W (f)1/W (f)2 ≤ 2.0 in order to meet this requirement.

An alternative method is Halfpenny’s method on synthesized PSDs for accelerated
vibration testing [17]. This method builds on the theory of Biot’s shock response spectrum
(SRS), Miles’ extreme response spectrum (ERS) and Lalanne’s fatigue damage spectrum
(FDS). This is a more extensive method that requires several calculation operations, but
is proven to be more accurate than the Miner-Palmgren hypothesis.

3.4.2 Biot’s Shock Response Spectrum

Biot [18] researched in 1932 the effect of earthquakes by assuming the response of a single
degree of freedom (SDOF) system. The response is narrow band, and dominated by a
single peak at the natural frequency of the system. The system behaves quasi-static at
frequencies below the natural frequency, while the response is attenuated at frequencies
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above the natural frequency. At the natural frequency the system responds dynamically
and is amplified with a maximum response limited by damping in the system.

Although Biot did not know the actual natural frequency of the system in advance, he
reasoned that he could create a response spectrum by sweeping the natural frequency
and plotting maximum response over a range of natural frequencies. Biot [19] published
in 1933 a paper on earthquake analysis, and used the term Shock Spectrum for the first
time. This is now often referred to as the Shock Response Spectrum (SRS) and can be
expressed as acceleration or displacement response. In context of fatigue analysis, it is
the displacement response that is of highest interest because fatigue crack initiation and
growth is a result of cyclic release of strain energy. The displacement response has a
proportional connection with the energy that leads to fatigue failure, although in most
cases it is the acceleration that is providing the input load to the system.

The SRS is given by equation (3.28) for an undamped system, and (3.29) for a damped
system.

SA =
∣∣∣ω ∫ t

0
üb(τ)sinω(t− τ)dτ

∣∣∣
max

undamped system (3.28)

SA =
∣∣∣ω ∫ t

0
üb(τ)e−ξω(t−τ)sinω(t− τ)dτ

∣∣∣
max

damped system (3.29)

3.4.3 Miles’ Extreme Response Spectrum

Miles [20] presented in 1953 an equation where he derived a spectrum of the RMS
acceleration response to a random input PSD applied to a SDOF system with the
natural frequency, fn. The formula is given in equation (3.30). Halfpenny [8] showed a
modification of this formula which gives the corresponding displacement spectrum shown
in equation (3.31).

GẌRMS(fn) =

√
π

2
· fn ·Q ·GZ̈(fn) (3.30)

GXRMS(fn) =
GẌRMS(fn)

(2π · fn)2
(3.31)

Where GZ̈(fn) is the acceleration input PSD amplitude at frequency fn and Q is the
dynamic amplification factor.



3.4. ACCELERATED VIBRATION TESTING 29

Miles suggested using the Gaussian approximation to the amplitude distribution in order
to estimate the extreme response. And by multiplying the spectrum with for instance
the factor 3, the statistical 99.97% highest local amplitude acceleration or displacement
response can be estimated.

Bendat [13] found in 1964 that the amplitude distribution for a narrow band response is
not Gaussian, but Rayleigh distributed. Lalanne [21] came in 1978 up with a refinement to
Miles equation by substituting the Rayleigh probability function. Lalannes equation (3.32)
is known as the maximax response spectrum (MRS) or the extreme response spectrum
(ERS), and gives the most likely extreme response amplitude of a SDOF system excited
by a random input PSD for a time span of T seconds. Halfpenny [8] showed the modified
expression in terms of displacement, equation (3.33).

ERSacc(fn) =
√
π · fn ·Q ·GZ̈(fn) · ln(fn · T ) (3.32)

ERSdisp(fn) =
ERSacc(fn)

(2π · fn)2
(3.33)

The ERS is similar to the time domain SRS. Even though both spectra in essence is
providing the same information, SRS is most used for determining the maximum response
to a transient shock of high damage to the system, where ERS is used for estimating the
expected response to a long lasting vibration loading.

3.4.4 Lalanne’s Fatigue Damage Spectrum

Lalanne [22] proposed in 2002 the fatigue damage spectrum (FDS) whilst working on the
ERS hypothesis. This was a continuation of initial work of Bendat and Rice with purpose
of determining fatigue damage from a response PSD of stress directly. Lalanne came up
with a closed form calculation for the FDS directly from the acceleration PSD, given in
equation (3.34).

FDS(fn) = fn · T ·
Kb

C
·

[
Q ·GZ̈(fn)

2(2π · fn)3

] b
2

· Γ
(

1 +
b

2

)
(3.34)

Γ(g) =

∞∫
0

x(g−1) · e−xdx (3.35)
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Where K is the stiffness of the system, Γ() is the Gamma function defined by equation
(3.35), b and C are fatigue parameters describing the Wöhler line from a S-N diagram.

The total lifetime fatigue damage is found by summing all FDS over the life of the
component.

3.4.5 Halfpenny’s Synthesized PSD

The method for accelerated frequency domain testing based on the FDS and SRS for
creating a synthesized PSD was presented by Halfpenny in 2006 [8] [17]. Halfpenny have
used this method in a number of projects with considerable success, and can be further
studied in Mission Profiling and Test Synthesis Based on Fatigue Damage Spectrum [23].
He found the relationship between the FDS, SRS and ERS in context of accelerating an
input PSD for testing.

By inverting equation (3.34) the synthesized test PSD is obtained, shown in equation
(3.36).

Gsynth(fn) =
2(2π · fn)3

Q
·

[
k · ΣFDS(fn) · C

Kb · fn · Teq · Γ(1 + b/2)

]2/b

(3.36)

Where ΣFDS(fn) is the lifetime FDS, Teq is the required test duration and k is the
combined factor of safety. k is the product of the safety factor obtained from equations
below depending on whether a Gaussian-normal or Log-normal distribution is assumed.

Gaussian-normal probability:

k =
1 +

√
1− (1− a′2 · VR2) · (1− a′2 · VE2)

(1− a′2 · VR2)
(3.37)

ktest = 1 +
a′√
n · VR

(3.38)

Log-normal probability:

k = exp

{
a′

2 ·
√
ln[(1 + VE

2)(1 + VR
2)]− ln

[√
1 + VE

2

1 + VR
2

]}
(3.39)

ktest = exp

{
a′√
n
·
√
ln(1 + VR

2)

}
(3.40)
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Where a’ is the probability of success (1 - probability if failure), σR is the standard
deviation of strength, and σE is the standard deviation of loading environment damage.

Variability of strength VR =
σR
R̄

(3.41)

Variability of loading environment damage VE =
σE
Ē

(3.42)

These statistical factors of safety are necessary in order to account for applied load
variations and variations in fatigue strength of the component.

The synthesized test PSD can be verified and investigated by comparing test FDS with the
lifetime FDS. As well as test ERS should be compared with the ERS and SRS measured
over the lifetime of the component. In order to ensure that all likely maximum values are
covered in the test, the test ERS should ideally be greater than the lifetime ERS. But at
the same time be less than the lifetime SRS in order to reduce the risk of failure due to
unlikely high loading conditions during the test.



4. Vibration Testing

4.1 Vibration Testing Procedure

Common procedure for physical vibration testing is to first perform a sine-sweep test.
The load is represented by a sinusoidal with constant 1G amplitude over a frequency
range. By measuring acceleration and displacement the response amplification is found.
If there are no extreme amplifications in the system, a random vibration test is then
performed with a certain input PSD load curve. Where the input PSD is either derived
from physical measurements, customer spec or design standard. Following function testing
of the component are necessary to check whether it could withstand the random vibration
load or not.

By performing random vibration tests with strain gauges makes it possible to obtain a
strain response PSD from the test. A stress response PSD can then be achieved and
it is possible to perform fatigue calculations of the component. The expected damage
calculated is then the damage occurred within the specified test duration.

4.1.1 Fixture Requirements

The dynamic behaviour of a vibration test fixture is critical for the outcome of the test.
The ideal test fixture will transmit the vibration motion from the shaker table to the
test object with zero distortion at all frequencies within the test range. It is important
that the fixture itself does not amplify or reduce the dynamic response of the test object.
General rule of thumb is to have a fixture design which first eigenfrequency is twice the
maximum test frequency.

Center of gravity should always be as low as possible and located as close to the center
axis of the shaker table as possible in order to reduce risk of inducing bending loads. This
is specially important for a single-axis operating shaker table as illustrated in figure 4.1.
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Figure 4.1: Illustration of single-axis shaker table

Important factors when designing a fixture for vibration testing

• Mass - Low weight and low center of gravity.

• Stiffness - First eigenfrequency should be twice max test frequency.

• Positioning - Center of gravity at the center axis of shaker table.

• Dynamic behaviour - Investigate mode shapes and response amplification within
the scheduled test frequency range.

4.1.2 Placement of Sensors

Typical sensors used for vibration testing are accelerometers of either single-axis or multi-
axis type, depending on the desired output measurement data. For vibration fatigue
testing additional use of strain gauges are required in order to measure strain during the
test period.

Depending on the type of vibration testing to be executed, an eigenfrequency analysis of
the component and visualizing the mode shapes gives an approximate indication of where
to place sensors.

This can be sufficient enough for a SSD sine-sweep type of vibration test where the load
amplitude is constant over the entire frequency range.
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For a random vibration test where the input load amplitude is varying at different
frequencies. The dynamic response can be very much different compared with the
response during a sine-sweep test.

It will in this case be necessary to perform either a random response or SSD analysis and
obtaining the response PSDs of acceleration and displacement. Resonance frequencies
are identified by distinctive peaks in the response plot. Each resonance frequency have a
corresponding mode shape. Response peaks located at non-resonance frequencies will not
have a related mode shape.

By knowing the excited mode shapes, it is also possible to accurately place sensors in
regions of interest. Critical stress regions will be identified through a RMS stress plot.
These regions are then labeled and mounted strain gauges to monitor strain during the
test.



5. Designing The Problem

A test design for performing both physical vibration testing and linear dynamic analyses
were created. The model design is intended to be very simple in order to easily identify
critical regions and dynamic behaviour. The model were designed based on the following
criteria:

• Manufacturability - Both fixture and test object(s) should be easy and cheap to
manufacture.

• Tuneability - It should be possible to test different test objects of various geometry.

• Weight - The overall weight of the complete assembly should be low in order to
reduce risk of overloading the shaker table.

• Stiffness - The fixture must be stiff enough in order to isolate the test object(s).

• Complexity - The test object(s) should have distinct stress concentration regions
and have various dynamic behaviour.

5.1 Test Object Design

Four test object designs were decided, all manufactured in the same material but with
different geometry. The specifications are given in table 5.1. The purpose of different
test objects is to investigate the dynamic response and behaviour for different geometries.
Mechanical drawings are presented in appendix C.
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Test object specifications
Name Thickness Material Description
TP04 4mm 6082-T6 Straight plate with no cutouts
TP04C 4mm 6082-T6 Circular cutouts at center of length
TP06 6mm 6082-T6 Straight plate with no cutouts
TP06C 6mm 6082-T6 Circular cutouts at center of length

Table 5.1: Test object specifications

Variable Value
ρ 2.7E-09 Mg/mm3

E 69000 MPa
ν 0.35
K 361.86 MPa
m 0.14183

Table 5.2: Material properties of 6082-T6

5.2 Fixture Design

The fixture consists of two parts. A base which is bolted onto the shaker table, and a top
which secures the test plates by clamping them together. To reduce test time the fixture
can hold two test objects at the time, provided equal thickness. Mechanical drawings are
presented in appendix C.

Figure 5.1: CAD rendering of test design
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For the analysis performed in this thesis, where the frequency range is 0 to 2000 Hz, the
first eigenfrequncy of the fixture should, according to previous statement, be at 4000
Hz or higher. A frequency analysis were performed on the fixture design to check the
eigenfrequencies. Result is shown in table 5.3 below.

Mode Frequency [Hz]
1 5264.1
2 6607.5
3 8658.5
4 10756
5 12084

Table 5.3: Fixture eigenfrequencies

The results shows that the first eigenfrequency are above the stated lower limit.

A second analysis of the fixture were performed. Now with added rigid body point mass
representing the mass of two test objects.

Figure 5.2: Analysis including two point masses

Mode Frequency [Hz]
1 2132.6
2 2616.0
3 3295.1
4 3945.3
5 7499.2

Table 5.4: Fixture eigenfrequencies with two point masses
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The first eigenfrequency are almost within the test frequency range when including two
point masses presenting the heaviest test objects, TP06. This will most certainly affect
the dynamic response and result in unpredictable results.

A third eigenfrequency analysis were performed by including only one test object. The
eigenfrequencies are listed in table 5.5.

Figure 5.3: Analysis including single point mass

Mode Frequency [Hz]
1 2423.7
2 3265.4
3 7273.0
4 9265.8
5 11451.0

Table 5.5: Fixture eigenfrequencies with single point mass

The eigenfrequencies are still drastically reduced compared with the first eigenfrequency
analysis. The first eigenfrequency is located above the test frequency range, but can affect
the dynamic response of the system. This will be investigated when outputting analysis
results.



6. Linear Dynamic FE Analysis

The most common procedures for random vibration analysis in the FEA environment are
steady-state dynamics and random response types of analysis. Both analysis procedures
will in essence achieve the same results depending on the input variables, requested
outputs and post-processing methods.

This chapter describes how the system was defined and how to perform linear dynamic
analyses in Abaqus/CAE using Abaqus/Standard with input loads in form of random
vibrations. The object is to compare results obtained from SSD and random response.

6.1 Pre-Processing Input Data

6.1.1 Units

Abaqus/CAE is a "unitless" system, where it is up to the user to define the units. It
is important to keep this in mind and always be consistent when specifying inputs and
variables in order to get correct output units. Table 6.1 below shows the unit system
used.

Quantity Unit (SI)
Length mm
Force N
Mass 106g (Mg)
Density Mg/mm3

Stress MPa
Time sec
Energy 10−3J (mJ)

Table 6.1: Units used in analysis
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6.1.2 Mesh

In order to find a suitable mesh type and density for the model, a mesh convergence
test was performed. The mesh convergence test is here used to check which mesh that
gives best results with regard of bending. The object is to measure tip displacement for a
cantilever beam subjected to a vertical static load at the freely moving end. By comparing
the measured tip displacement with the theoretical maximum static tip displacement
gives an indication of mesh quality. All measured values and total CPU time are given in
table A.1 in appendix A.1. The table gives a good overview of which element definitions
that will result in both accurate and efficient analysis.

Figure 6.1: Mesh convergence plot

The test shows that the 4-node linear tethrahedron elements (C3D4) are not suitable
because it is to stiff, even for high mesh density and small elements. 10-node quadratic
tethrahedron elements (C3D10) gives good results for coarse mesh density, but is signifi-
cantly slower and less effective than most of the hex element types with same density.

The 8-node hex element with reduced integration (C3D8R) gives good results if the
mesh density is relatively fine, and have at least 4 elements through the thickness. The
20-node hex element with reduced integration (C3D20R) is not as vulnerable for number
of elements through the thickness, and gives good results even with a more coarse mesh
density. The table below shows the two best element definitions where both displacement
deviation and total CPU time are considered as important factors.
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Element Definition Deviation Tot CPU Time [sec]
C3D8R (50x10x4) 3.4 % 2.1
C3D20R (40x8x2) 2.8 % 4.3

Table 6.2: Mesh types suitable for analysis

Most linear dynamic analysis procedures are mode-based. It is therefore important to
use high enough mesh density to give an accurate representation of the mode shapes
associated to the structure’s natural frequencies. Figure 6.2 shows the difference between
a coarse and fine mesh, where it is obvious that the fine mesh gives a better visualisation
of the mode shape and will result in a better representation of the system’s response.

Figure 6.2: Mesh density and mode shape

6.1.3 Boundary Conditions

The shaker table is assumed to be infinitely stiff compared to the fixture. A fixed boundary
condition is applied at the surface where the fixture is in contact with shaker table. The
definition of the boundary condition is given in equation (6.1) and applied to the surface
shown in figure 6.3.

U1 = U2 = U3 = UR1 = UR2 = UR3 = 0 (6.1)
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Figure 6.3: Fixed boundary condition region

This means that all nodes at the surface will have zero relative displacement. Which in
reality is not perfectly representable, but assumed sufficiently accurate for the purpose of
the analysis.

6.1.4 Constraints

The parts interact by a surface-to-surface mesh tie constraint. Active degrees of freedom
and translational and rotational motion is equal for the surface pairs. Surface pairs are
composed by a slave and master surface, where nodes are tied only when inside the
position tolerances defined in the tie constraint properties.
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Figure 6.4: Slave surfaces

Figure 6.5: Master surfaces
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6.1.5 Load Case

The stationary random vibration load is defined according to the input PSD in table 6.3
and figure 6.6. The PSD data origins from the transformed random signal in previous
section 3.2.2.

Real [G2/Hz] Imaginary Frequency [Hz]
0 0 50

0.02 0 50
0.03 0 500
0.03 0 2000

Table 6.3: Input PSD definition

Figure 6.6: Input PSD plot
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6.2 Performing Modal Analysis in Abaqus/CAE

This section gives a detailed step-by-step description of how to perform both a random
response and SSD analysis in Abaqus/CAE. Although the user interface will be different
depending on the analysis software being used, but as mentioned before, the methods of
performing these analyses are often very similar.

6.2.1 Eigenvalue Extraction

As mentioned in section 2.2 earlier, all linear perturbation steps requires an initial
frequency or eigenvalue extraction step. In the step editor window the eigensolver and
frequency range are user specified parameters. The eigensolver type must be chosen
according to the problem size. For this specific problem size, solver type Lanczos is used.

It is critical that the specified frequency range is defined according to the SSD or random
response step frequency ranges. Frequencies to be extracted can either be defined by
number of requested eigenmodes, or by a start and end frequency. This is up to the
user to choose, but it can be beneficial to define the frequency range by a start and end
frequency to ensure that all natural frequencies are covered for the following step.

6.2.2 Steady-State Dynamics

A mode-based SSD step is created by choosing linear perturbation and steady-state
dynamics, modal in the create step dialog box. Frequency range, number of points, bias
and damping is specified in the step editor.

Figure 6.7 shows the main steps for performing a SSD fatigue analysis in Abaqus/CAE.

Figure 6.7: Steady-state dynamics procedure
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The step editor

The frequency range is simply set by a start and stop frequency value. Note that the range
can not exceed the frequency range specified in the previous eigenvalue extraction step.
This because the mode-based SSD is entirely dependant on the system’s eigenfrequencies
and modes in order to calculate the response.

The number of points defines the output resolution. Higher value gives more calculation
points and denser output response curves. By default this is set to 20, which means that
the interval between mode n and mode n+ 1 is divided into 20 calculation points.

The bias parameter alter the spacing between the points, where a bias of 1 gives equal spac-
ing in the entire interval and bias above 1 gives closer spacing towards the eigenfrequencies.
Typical values are 20 to 50 number of points and bias value of 3 to 5.

Damping can either be defined as direct modal, composite modal, Rayleigh or structural
specified over a range of modes or frequencies. For this analysis direct modal damping is
chosen for a range of frequencies. The damping is set to be equal over the entire range by
setting the critical damping fraction, ξ, for the system.

Variable Value
f1 1 Hz
f2 2000 Hz
N o P 50
Bias 3
ξ 0.04
Load 9810 mm/s2

(sine-sweep)

Table 6.4: Input variables for SSD analysis

Specifying the input load

The load is specified by a acceleration base motion and a tabular input where the frequency
spectrum is defined. The range of the sine-sweep and amplitude is respectively set to
0-2000 Hz and 9810 (mm/s2).

Base motions are applied as a boundary condition. The degree-of-freedom decides in
which direction the base motion will act. Abaqus automatically finds the previous defined
fixed boundary condition and use this as the base where the motion is to be applied. The
amplitude can be scaled by a factor, and is here set to default value of 1.
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Defining output requests

In mode-based SSD analysis the output variables are complex values with real and
imaginary components. It is therefore important to choose magnitude for numeric form
in the result options in order to plot the absolute valued response curve used for post-
processing and fatigue life calculation. Either max principal or Von-Mises stress at an
integration point can be outputted. Acceleration and displacement response is plotted to
visualize the dynamic behaviour of the system.

The direct output from a SSD analysis is on transfer function form, and must be squared
and then multiplied with the input PSD to obtain the response PSD. The stress response
PSD is exported to an external data processing routine in order to perform fatigue life
calculation.

6.2.3 Random Response

The random response analysis setup procedures are very similar to SSD. The step is
created by choosing linear perturbation and random response in the create step dialog
box.

Figure 6.8 shows the main steps for performing a random response fatigue analysis in
Abaqus/CAE.

Figure 6.8: Random response procedure
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The step editor

The frequency range, number of points, bias and damping is specified similar to the SSD
step.

Variable Value
f1 1 Hz
f2 2000 Hz
N o P 50
Bias 3
ξ 0.04
Input Load PSD-definition

Table 6.5: Input variables for random response analysis

Specifying the input load

As opposed to the input load for a SSD analysis (sine-sweep), the input load is now
defined directly by the input PSD function. The input PSD is created as a PSD definition
type amplitude. Specification units is set to gravity (base motion) with reference gravity
of 9810 (mm/s2). Both real and imaginary values at each frequency can be used. In most
cases only real values are defined, and the imaginary column is left with zeros.

The base motion is applied in the same way as for the SSD analysis. But for a random
response analysis the cross-correlation between applied nodal loads or base motions can
be specified as correlated or uncorrelated, as well as scaling factor of real and imaginary
values. The correlation type is not of importance for this case since there is only one
acting load on the system.

Defining output requests

Random response analysis calculates the PSDs and corresponding RMS values of response
variables directly. These variables are displacement, acceleration, strain, stress etc. A
disadvantage with random response compared with SSD is that it is not possible to output
max principal stress, only in-plane stress presented in the global coordinate system. But
at the same time it is possible to create a RMS color plot of stress showing critical regions
in the model where fatigue most likely will occur.

Good practice is to first run a random response analysis and create a RMS stress color
plot, then taking notice of critical elements and run a SSD analysis with max principal
stress response output from critical regions.
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6.3 Post-Processing Output Data

Many FEA applications does not have an embedded fatigue analysis module. Output
data must then be post-processed in an external data processing routine. This section
will address the steps from modifying and exporting data from Abaqus/CAE and creating
response PSD curves of displacement, acceleration and stress.

6.3.1 Eigenvalue Extraction

The .dat file which is automatically generated when submitting an analysis contains data
from the solved eigenvalue problem. Eigenvalues, modal participation factors and effective
modal mass for the modes within the specified range are presented here.

6.3.2 Steady-State Dynamics

When executing a SSD analysis the input is sinusoidal with amplitude of 1G. The output
from a SSD analysis is the transfer function, described in section 3.3.1, on response-per-
input form.

In order to calculate the response PSD for the system, the transfer function is squared
and multiplied with the input PSD. It is important that df is constant for all data series,
which in most cases requires interpolation of the data. This can be done directly in
Abaqus visualization module by choosing create XY data and operate on XY data.

6.3.3 Random Response

A random response type analysis gives outputs on PSD form directly. Stress output
available is in-plane stress variables, which for fatigue analysis is not directly applicable.
The main advantage of the random response analysis is the possibility to output the RMS
values of available response variables.



7. FEA Results

From performing eigenvalue analysis on the fixture, all analyses are performed with only
one test object. This results in four analysis cases, where both random response and SSD
procedures was performed.

The results presented are from analysis of model TP04C, where results for the other
models are presented in appendix B, Linear Dynamic FEA Results.

Figure 7.1 shows the CAD model submitted for analysis.

Figure 7.1: CAD model showing fixture and TP04C

50
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7.1 Eigenvalue Extraction Data

Tables 7.1 to 7.3 shows the eigenvalue output for model TP04C. For this model there are
five eigenmodes within the specified frequency range. The modal participation factors
and effective modal mass are presented with regard of the global coordinate system.

Eigenvalue Output (TP04C)
Mode Eigenvalue Frequency [Hz] Generalized Mass

1 2.43783E+05 78.582 1.98971E-05
2 8.83401E+06 473.04 2.35153E-05
3 1.40013E+07 595.53 1.77448E-05
4 2.01852E+07 715.05 1.18218E-05
5 7.39362E+07 1368.5 2.27777E-05

Table 7.1: Eigenvalue output

Modal Participation Factors (TP04C)
Mode X-Comp Y-Comp Z-Comp X-Rot Y-Rot Z-Rot

1 -5.63941E-03 3.80836E-04 1.5393 38.481 -276.63 8.52601E-02
2 4.32105E-02 -6.23223E-03 -0.83481 -20.862 64.767 -1.3140
3 1.19689E-03 1.5398 -3.10521E-03 -3.0494 0.34381 289.26
4 -5.18287E-04 -8.82132E-03 -3.40665E-04 24.924 2.49889E-02 -1.3395
5 -0.20145 -6.86862E-04 0.51760 12.925 -30.031 0.38450

Table 7.2: Modal participation factors

Effective Modal Mass (TP04C)
Mode X-Comp Y-Comp Z-Comp X-Rot Y-Rot Z-Rot

1 6.32786E-10 2.88580E-12 4.71437E-05 2.94631E-02 1.5226 1.44638E-07
2 4.39067E-08 9.13350E-10 1.63880E-05 1.02342E-02 9.86406E-02 4.05991E-05
3 2.54203E-11 4.20711E-05 1.71101E-10 1.65009E-04 2.09757E-06 1.4848
4 3.17560E-12 9.19923E-10 1.37196E-12 7.34397E-03 7.38207E-09 2.12108E-05
5 9.24344E-07 1.07461E-11 6.10237E-06 3.80497E-03 2.05422E-02 3.36750E-06

TOTAL 9.68912E-07 4.20729E-05 6.96342E-05 5.10112E-02 1.6418 1.4849

Table 7.3: Effective modal mass (Mg)

Because the random vibration is a vertically applied excitation, the effective modal mass
in z-direction will obviously be of great importance. Table 7.3 shows the first two modes
are dominated by vertical motion, which is the most critical because of strain build-up
due to the geometry of the model. But also motion in y-direction can have significant
effect if present. This is seen at the third mode, where a large part of the relative mass is
present. By plotting acceleration and displacement for each direction at a specific node
the actual motion behaviour of the model can be studied in detail. This is presented in
the next section.
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7.2 Modal Analysis Results

7.2.1 RMS Plots

RMS of response variables are obtained from a random response analysis. Critical stress
concentration regions are detected plotting RMS of stress for the entire model. RS11,
RMS of stress in the longitudinal direction (x-direction), is most critical. Figure 7.2 shows
RS11, where red color is indicating high stress values. RMS of in-plane stress at critical
point for the corresponding directions is shown in figure 7.3.

Figure 7.2: RS11 color plot

Figure 7.3: RMS of stress at critical integration point
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7.2.2 Transfer Functions

Resonance frequencies are shown as distinctive peaks in the response plots. From studying
the eigenvalue output and effective modal mass the peaks are expected to appear, where
the first eigenfrequency is resulting in highest acceleration response amplitude.

The acceleration transfer function obtained from the SSD analysis shows acceleration
output per input load. Since the input load is defined with units of mm/s2, the output is
also presented in units of mm/s2. Dividing output on gravitational constant (g = 9810
mm/s2) over the entire frequency range, shows acceleration in units of G per input G,
figure 7.4.

Figure 7.4: Acceleration transfer function (G/G) (log-log)

Since the input load is 1G, the acceleration amplification is shown by dividing the response
by 1, figure 7.5. The valleys located in the interval of 900 to 950 Hz shows anti-resonance
in the system.
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Figure 7.5: Tip acceleration amplification (log-log)

Since the specimen has a circular cut-out in the middle region, both vertical and trans-
verse motion will result in stress contributions. As expected, the vertical acceleration
amplification is the most significant and have a peak amplitude at the first resonance
frequency of almost 20 G at the tip.

The displacement transfer function is shown in figure 7.6 and shows displacement response
in all three directions at the tip of the specimen. The tip displacement plot is following the
same trend as the acceleration plot, with a predominant peak at the first eigenfrequency.

Figure 7.6: Displacement transfer function (mm/G) (log-log)
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The resulting max principal stress transfer function is plotted in figure 7.7 below and
shows the resulting stress at the most critical point of the specimen subjected to the 1G
input load. The critical point is located from the RMS color plot (figure 7.2).

Figure 7.7: Max principal stress (MPa/G) (log-log)

The plot shows that the greatest stress contribution in the specimen occurs at the first
resonance frequency, which is expected from studying the acceleration and displacement
response.

7.2.3 Response PSDs

All following response PSDs are plotted for both random response and SSD analysis
procedures. The red dotted line corresponding to random response values, and blue solid
line corresponding to SSD values.

Both curves match for most frequencies inside the range, but some deviations are present at
certain frequencies. This is a common phenomenon related to the individual interpolation
of the discrete data series. The deviations are here denoted as insignificant, and accepted
for further processing.
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Figure 7.8: Vertical tip acceleration response, RR vs SSD (log-log)

Seen from both acceleration and displacement response PSDs, the anti-resonance frequency
at 950 Hz results in a valley with amplitude drastically lower than the peak amplitudes.

Figure 7.9: Vertical tip displacement response, RR vs SSD (log-log)

It is in essence only necessary to obtain the stress response PSD in order to perform
fatigue life calculations. But both acceleration and displacement response PSDs are
valuable in order to understand and visualize the dynamic behaviour of the system when
subjected to the specified random excitation load.
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Figure 7.10: Maximum stress response RR vs SSD (log-log)

Evident deviations at the end of the frequency range is shown in the stress response PSDs.
The amplitude variations in this area are considered very low compared with the peak
amplitudes, and is therefore considered to not influence the fatigue calculation results.

7.3 Fatigue Life Calculation

The moments m0 to m4 from the stress response PSD (figure 7.10) are calculated and
shown in table 7.4 below. The RMS of stress from both random response and SSD analysis
shows good conformity.

PSD Moments Value
Random m0 1.24E+01 MPa2

Response m1 1.77E+03 MPa2

m2 5.17E+05 MPa2

m4 1.18E+11 MPa2

RMS 3.519 MPa
Steady- m0 1.19E+01 MPa2

State m1 1.73E+03 MPa2

Dynamics m2 5.18E+05 MPa2

m4 1.26E+11 MPa2

RMS 3.444 MPa

Table 7.4: PSD moments and RMS values
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7.3.1 Hand Calculation in Frequency Domain

A simple hand calculation approach can in many situations be a good starting point in
order to get an idea of expected fatigue life and whether the analysed component are in
the ballpark of the requirements or not.

Simplified PSD Approach

The stress response PSD shown in figure 7.10 have three distinctive peaks. The first
at 78.6 Hz with amplitude 9.92E-01 MPa2/Hz, the second at 473.0 Hz with amplitude
3.41E-02 MPa2/Hz and third at 1375.8 Hz with amplitude 1.82E-05 MPa2/Hz.

Peak Nr Stress Amplitude Frequency
1 9.92E-01 MPa2/Hz 78.6 Hz
2 3.41E-02 MPa2/Hz 473.0 Hz
3 1.82E-05 MPa2/Hz 1375.8 Hz

Table 7.5: Stress amplitudes from stress response PSD

By creating a simplified stress response PSD where the peaks are represented as columns
of a certain amplitude and width, df , the original signal can be assumed composed of a
number of sine waves. Where each column represents one sine wave of certain amplitude
and frequency.

The stress response PSD is therefore simplified into the bar chart shown in figure 7.11.
Where the df is calculated through equation (7.1).
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Figure 7.11: Simplified stress response PSD

√
(ΣPeakn+1) · df = RMS for n = [0,∞ > (7.1)

Solving for df gives df = 11.56 Hz. The stress ranges are then calculated through equation
(7.2).

√
Peakn · df ·

√
2 · 2 = Magnitude of sine wave n (7.2)

√
(9.92E − 01) · 11.56 ·

√
2 · 2 = 9.5791 MPa (first sine wave)√

(3.41E − 02) · 11.56 ·
√

2 · 2 = 1.7758 MPa (second sine wave)√
(1.82E − 05) · 11.56 ·

√
2 · 2 = 0.0410 MPa (third sine wave)

This gives that at 78.58 cycles per second the stress range is 9.579 MPa, at 473.04 cycles
per second the stress range is 11.355 MPa, and at 1375.8 cycles per second the stress
range is 11.396 MPa.

Cycles per Second Stress Range
78.58 9.579 MPa
473.04 11.355 MPa
1375.8 11.396 MPa

Table 7.6: Sine wave stress ranges (magnitudes)
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The S-N data for 6082-T6 aluminium alloy is on the form N(S) = S
K

( 1
−m

). Where N(S)
is the number of cycles to failure at the stress level, S. K and m are material constants
shown in material properties table 5.2.

Stress Range Cycles to Failure
9.579 MPa 1.31E+11
11.355 MPa 3.94E+10
11.396 MPa 3.84E+10

Table 7.7: Cycles to failure for corresponding stress ranges

E[D] =
Cycles per Second
Cycles to Failure

(7.3)

E[D] =
78.58

1.31E + 11
+

473.04

3.94E + 10
+

1375.8

3.84E + 10
= 4.84E − 08

T =
1

E[D]
(7.4)

This yields a fatigue life of 2.06E+07 seconds.

Direct RMS Approach

The same sinusoidal approach can be assumed for estimating fatigue life in the frequency
domain by calculating the equivalent sine wave magnitude from the RMS value. The sine
wave magnitude is equal to the stress range.

RMS ·
√

2 · 2 = Stress Range (7.5)

3.444 ·
√

2 · 2 = 9.741 MPa

Stress Range Cycles to Failure
9.741 MPa 1.17E+11

Table 7.8: Cycles to failure for corresponding stress range
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E[D] =
1375.8

1.17E + 11
= 1.17E − 08

This yields a fatigue life of 8.50E+07 seconds.

7.3.2 Computer Based Calculations

The fatigue life results presented are based on the fatigue calculation methods described
in section 3.3.

The table below summarizes the obtained fatigue life in seconds for the different methods.

Method Fatigue Life [sec]
Narrow Band RR 1.15E+07

SSD 1.29E+07
Steinberg RR 2.22E+07

SSD 2.49E+07
Dirlik RR 9.35E+07

SSD 1.06E+08

Table 7.9: Fatigue life obtained from computer based methods

All methods of fatigue life estimation shows good correlation. Narrow band method yields
the lowest fatigue life, which is expected since it is proven to be very conservative for wide
band response PSDs. Although the stress response PSD obtained from max principal
stress in the SSD analysis is very close to narrow band, because of its predominant peak
at the first resonance frequency. This will result in less deviations between narrow band
and Dirlik.

7.3.3 High Amplitude Cycle Hypothesis

As calculated in section 3.1, the standard deviation of the random vibration time history
is 4.11σ.

The fatigue life calculations performed in the previous section needs to be scaled accord-
ingly in order to account for the possibility of high amplitude cycles. As mentioned, the
typical assumption is that random vibrations has a peak value of 3σ for common design
purposes.

The following values are retrieved from the max principal stress PSD. And the relationship
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between σ and RMS is shown in table 7.10 because the original random vibration signal
have a zero mean.

RMS = 3.44 MPa
2σ = 2 · RMS
3σ = 3 · RMS

Table 7.10: RMS and σ relationship

The RMS of a response PSD is known through (7.6).

RMS =
√
m0 (7.6)

This means that the following applies

n ·RMS = n ·
√
m0 =

√
n2 ·m0 (7.7)

In order to obtain the stress response PSD for ranges inside ±[1σ to 2σ] and ±[2σ to 3σ],
the entire PSD must be multiplied by 22 and 32 respectively. Which basically is the same
as multiplying the PSD moments with the same factors.

The resulting moments for the corresponding σ-limits are listed below.

Limit m0 m1 m2 m4 RMS
Inside ±1σ 1.19E+01 1.73E+03 5.18E+05 1.26E+11 3.44

Inside ±[1σ to 2σ] 4.75E+01 6.94E+03 2.07E+06 5.05E+11 6.89
Inside ±[2σ to 3σ] 1.07E+02 1.56E+04 4.66E+06 1.14E+12 10.33

Table 7.11: Max principal stress response PSD moments

By utilizing the Dirlik method yields three values of estimated fatigue damage, E[D],
represented for the different σ-limits.

Limit E[D]
Inside ±1σ 1.39E-08

Inside ±[1σ to 2σ] 1.84E-06
Inside ±[2σ to 3σ] 3.21E-05

Table 7.12: Estimated damage using Dirlik method

The statistical probabilities for a Gaussian or normal distribution with zero mean applies.
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Limit E[D]
Inside ±1σ (1.39E-08 · 0.6827)
Inside ±2σ (1.39E-08 · 0.6827) + (1.84E-06 · 0.2718)
Inside ±3σ (1.39E-08 · 0.6827) + (1.84E-06 · 0.2718) + (3.21E-05 · 0.0428)

Table 7.13: Total estimated damage from statistical probabilities

This yields the estimated fatigue life of the component inside the corresponding limits
shown in table 7.14.

Limit E[D] Fatigue Life [sec]
Inside ±1σ 9.47E-09 1.06E+08
Inside ±2σ 5.10E-07 1.96E+06
Inside ±3σ 1.88E-06 5.31E+05

Table 7.14: Total fatigue life for corresponding limits

From the table above an evident reduction in fatigue life is shown when taking the
probability of high amplitude cycles into account.

7.4 Summary of Fatigue Life Results

This section presents a summary of fatigue life calculations using each method with regard
of max principal stress response PSDs for all test objects.

Figure 7.12: Fatigue life for different calculation methods
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Total fatigue life time is generally higher for the plates with cut-outs. This is because
the cut-out section creates a different bending shape, and will have lower stress values at
critical regions. A different geometry which would induce higher stress values could be
beneficial in order to cause greater variation of fatigue life.

Figure 7.12 shows how conservative the narrow band method are for all test objects
compared with the Dirlik method.

By plotting the fatigue life of each component for σ-limits up to ±3σ shows the most
critical reduction of fatigue life are when including ±2σ.

Fatigue Life in Seconds
Limit TP04 TP04C TP06 TP06C

Inside ±1σ 9.73E+07 1.06E+08 1.93E+08 2.03E+08
Inside ±2σ 1.81E+06 1.96E+06 3.59E+06 3.78E+06
Inside ±3σ 4.90E+05 5.31E+05 9.73E+05 1.02E+06

Table 7.15: Total fatigue life for corresponding limits

Figure 7.13: Fatigue life for ±1σ to ±3σ limits



8. Discussion

8.1 Boundary Conditions and Interactions

The fixed boundary condition is applied to the entire surface where fixture is in contact
with shaker table. This is assumed reasonable for the analyses performed. But it can
result in an unnatural increase of stiffness for the system. Bolts to be used are 12.9 grade
alloy steel bolts, which compared to 6082-T6 aluminium are significantly stiffer. A model
where bolt interaction are modelled could be performed in order to investigate the effect
of variation in system response. This would have been carried out if great deviations
between obtained response through FEA and physical vibration testing were present. As
mentioned, physical testing was unfortunately not performed, and it is therefore difficult
to correlate and verify the FEA model.

8.2 Response and Fatigue Life

Both random response and steady-state dynamics analyses was performed in the frequency
domain using same input variable values to obtain comparable results. The response
curves shows deviation at certain frequencies, specially in the stress response PSD plots.
This is mainly because stress response output from random response is in-plane stress,
while SSD outputs max principal stress. Because of the geometry and input load this is a
reasonable comparison because the resulting stress are of highest value in the longitudinal
direction. This is again shown in the fatigue life calculations, where the results are very
close to each other.

Since the output data are discrete, not continuous, deviations will be present because
of interpolation. In order to reduce this source of error, the analysis resolution can be
increased by increasing number of calculation points. Several analyses with different
output resolution was performed. The presented results shows the best compromise of
resolution, conformity and CPU time.

Five fatigue life calculation methods are performed simultaneously for each test specimen,
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where all methods gives relatively equal results. Although the vulnerability of the narrow
band method is evident, where the stress response PSDs are of narrow band character,
the narrow band method still yields the most conservative fatigue life results. Hand
calculations by creating a simplified stress response PSD is shown to give good approximate
results.

A different geometry of the test objects could been carried out in order to induce greater
stress and fatigue life variance.

8.3 Fixture Design

The concern about fixture stiffness were investigated through the four analyses. Longi-
tudinal acceleration response at the top of the fixture indicates movement which will
influence the results. Figure 8.1 shows fixture response for each analysis.

Figure 8.1: Fixture acceleration response in longitudinal x-axis (log-log)

Maximum peak response for the 4mm plates are less than 0.1G, and can be considered
insignificant for the analysis results.

For the 6mm plates the maximum response are above 0.1G, and for TP06C maximum
peak response are almost 6G. This will affect the results greatly, and a different fixture
design should be used for this specific analysis/test.

The calculated fatigue life are therefore considered reliable for TP04C and TP04, debatable
for TP06, and non-reliable for TP06C. Expected fatigue life for TP06C will be higher
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than the obtained results because of fixture deformation. A stiffer and more rigid fixture
will give accurate and reliable results for all test objects.



9. Conclusion

This thesis have investigated methods of estimating fatigue life of a component subjected
to a random vibration load. From converting a measured signal from the time to frequency
domain and characterization of a random signal, to using a random dynamic event as load
case for a random vibration analysis. Important factors when designing vibration test
fixtures, placement of sensors and linear dynamic analysis in Abaqus/CAE are clarified.

Fatigue life estimations are considered reliable for analyses performed on models TP04
and TP04C, while considered debatable for TP06 and non-reliable for TP06C. This based
on the fixture design and measured fixture response for each analysis.

Unfortunately, because of unforeseen events, the shaker testing at Kongsberg Automotive
could not be performed according to the plan. This results in that fatigue life estimations
needs verification by performing physical vibration testing and correlation with the FE
analyses. Expected possible error sources are boundary conditions, constraints and mesh.
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10. Further Work

In the course of working with this thesis, there have been identified issues that needs
further work.

Fixture design does not satisfy the criteria stated, and is shown to give inaccurate results
for two of the test objects. A better fixture design should be used in order to reduce
response amplification during testing and analysis of the specified test objects.

Physical vibration testing on shaker table should be performed in order to correlate
both the FE model and analysis input variables. Both sine-sweep and random vibration
tests should be performed and compared with output response curves obtained from the
FE analyses. This will verify the results presented in this thesis, and reveal necessary
modifications of FE analysis setup to adjust the output response accordingly.
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A.1 Linear Dynamic FE Analysis

Table A.1: Mesh convergence table
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B.1 Model TP04

Figure B.1: CAD model showing fixture and TP04

B.1.1 Eigenvalue Extraction Data

Eigenvalue Output (TP04)
Mode Eigenvalue Frequency [Hz] Generalized Mass

1 2.59910E+05 81.139 2.13857E-05
2 1.00337E+07 504.14 2.15290E-05
3 2.31576E+07 765.89 1.36402E-05
4 2.41478E+07 782.09 2.23452E-05
5 7.78043E+07 1403.9 2.14790E-05

Table B.1: Eigenvalue output

Modal Participation Factors (TP04)
Mode X-Comp Y-Comp Z-Comp X-Rot Y-Rot Z-Rot

1 -6.04744E-03 -4.21797E-04 1.5679 -70.555 -275.51 -0.21579
2 4.87676E-02 4.97429E-03 -0.87757 39.485 64.238 2.0627
3 -7.33677E-04 -0.13819 -3.41821E-04 -25.465 3.50628E-02 -24.976
4 -1.08602E-04 1.5631 3.71395E-04 -4.5286 -0.17101 277.65
5 -0.22321 5.21998E-03 0.53117 -23.895 -30.623 -4.2727

Table B.2: Modal participation factors

Effective Modal Mass (TP04)
Mode X-Comp Y-Comp Z-Comp X-Rot Y-Rot Z-Rot

1 7.82110E-10 3.80480E-12 5.25748E-05 0.10646 1.6233 9.95871E-07
2 5.12019E-08 5.32704E-10 1.65799E-05 3.35650E-02 8.88401E-02 9.16020E-05
3 7.34227E-12 2.60484E-07 1.59374E-12 8.84532E-03 1.67692E-08 8.50853E-03
4 2.63549E-13 5.45975E-05 3.08217E-12 4.58268E-04 6.53503E-07 1.7225
5 1.07014E-06 5.85263E-10 6.06011E-06 1.22642E-02 2.01421E-02 3.92126E-04

TOTAL 1.12213E-06 5.48591E-05 7.52148E-05 0.16159 1.7323 1.7315

Table B.3: Effective modal mass (Mg)
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B.1.2 Modal Analysis Results

RMS Plots

Figure B.2: RS11 color plot

Figure B.3: RMS of stress at critical integration point
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Transfer Functions

Figure B.4: Acceleration transfer function (G/G) (log-log)

Figure B.5: Displacement transfer function (mm/G) (log-log)
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Figure B.6: Max principal stress (MPa/G) (log-log)

Response PSDs

Figure B.7: Vertical tip acceleration response, RR vs SSD (log-log)
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Figure B.8: Vertical tip displacement response, RR vs SSD (log-log)

Figure B.9: Maximum stress response RR vs SSD (log-log)
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B.1.3 Fatigue Life Calculation

PSD Moments Value
Random m0 1.27E+01 MPa2

Response m1 1.22E+03 MPa2

m2 2.28E+05 MPa2

m4 1.22E+11 MPa2

RMS 3.563 MPa
Steady- m0 1.33E+01 MPa2

State m1 1.29E+03 MPa2

Dynamics m2 2.45E+05 MPa2

m4 1.32E+11 MPa2

RMS 3.651 MPa

Table B.4: PSD moments and RMS values

Hand Calculation in Frequency Domain - Simplified PSD Approach

Peak Nr Stress Amplitude Frequency
1 1.30E+00 MPa2 81.1 Hz
2 7.51E-03 MPa2 504.1 Hz
3 1.29E-04 MPa2 1407.3 Hz

Table B.5: Stress amplitudes from stress response PSD

Stress Range Cycles to Failure
10.296 MPa 7.93E+10
11.078 MPa 4.74E+10
11.180 MPa 4.44E+10

Table B.6: Cycles to failure for corresponding stress ranges

This gives a fatigue life of 2.31E+07 seconds.

Hand Calculation in Frequency Domain - Direct RMS Approach

Stress Range Cycles to Failure
10.328 MPa 7.76E+10

Table B.7: Cycles to failure for corresponding stress range

This gives a fatigue life of 5.51E+07 seconds.
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Computer Based Calculations

Method Fatigue Life [sec]
Narrow Band RR 6.83E+06

SSD 5.71E+06
Steinberg RR 1.31E+07

SSD 1.07E+07
Dirlik RR 1.17E+08

SSD 9.73E+07

Table B.8: Fatigue life obtained from computer based methods

B.1.4 High Amplitude Cycle Hypothesis

Limit E[D] Fatigue Life [sec]
Inside ±1σ 1.03E-08 9.73E+07
Inside ±2σ 5.53E-07 1.81E+06
Inside ±3σ 2.04E-06 4.90E+05

Table B.9: Total fatigue life for corresponding limits
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B.2 Model TP06

Figure B.10: CAD model showing fixture and TP06

B.2.1 Eigenvalue Extraction Data

Eigenvalue Output (TP06)
Mode Eigenvalue Frequency [Hz] Generalized Mass

1 5.72289E+05 120.40 3.22638E-05
2 2.18789E+07 744.45 3.35349E-05
3 2.27643E+07 759.36 3.53268E-05
4 4.90898E+07 1115.1 2.07203E-05

Table B.10: Eigenvalue output

Modal Participation Factors (TP06)
Mode X-Comp Y-Comp Z-Comp X-Rot Y-Rot Z-Rot

1 -1.53336E-02 -1.41890E-03 1.5678 -70.548 -275.09 -0.62694
2 0.12700 0.25259 -0.85622 37.812 62.290 47.833
3 -1.15591E-02 1.5189 0.13335 -10.410 -9.9362 268.15
4 -2.60153E-03 1.60189E-02 -7.72158E-04 -26.012 6.07200E-02 1.8739

Table B.11: Modal participation factors

Effective Modal Mass (TP06)
Mode X-Comp Y-Comp Z-Comp X-Rot Y-Rot Z-Rot

1 7.58580E-09 6.49563E-11 7.93032E-05 0.16058 2.4415 1.26814E-05
2 5.40926E-07 2.13965E-06 2.45847E-05 4.79475E-02 0.13012 7.67264E-02
3 4.72012E-09 8.15034E-05 6.28182E-07 3.82825E-03 3.48776E-03 2.5402
4 1.40234E-10 5.31692E-09 1.23540E-11 1.40203E-02 7.63939E-08 7.27577E-05

TOTAL 5.53372E-07 8.36484E-05 1.04516E-04 0.22637 2.5751 2.6170

Table B.12: Effective modal mass
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B.2.2 Modal Analysis Results

RMS Plots

Figure B.11: RS11 color plot

Figure B.12: RMS of stress at critical integration point
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Transfer Functions

Figure B.13: Acceleration transfer function (G/G) (log-log)

Figure B.14: Displacement transfer function (mm/G) (log-log)
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Figure B.15: Max principal stress (MPa/G) (log-log)

Response PSDs

Figure B.16: Vertical tip acceleration response, RR vs SSD (log-log)
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Figure B.17: Vertical tip displacement response, RR vs SSD (log-log)

Figure B.18: Maximum stress response RR vs SSD (log-log)
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B.2.3 Fatigue Life Calculation

PSD Moments Value
Random m0 9.65E+00 MPa2

Response m1 1.31E+03 MPa2

m2 2.92E+05 MPa2

m4 1.10E+11 MPa2

RMS 3.107 MPa
Steady- m0 9.88E+00 MPa2

State m1 1.36E+03 MPa2

Dynamics m2 3.13E+05 MPa2

m4 1.21E+11 MPa2

RMS 3.144 MPa

Table B.13: PSD moments and RMS values

Hand Calculation in Frequency Domain - Simplified PSD Approach

Peak Nr Stress Amplitude Frequency
1 6.29E-01 MPa2 120.4 Hz
2 3.06E-03 MPa2 747.6 Hz

Table B.14: Stress amplitudes from stress response PSD

Stress Range Cycles to Failure
8.863 MPa 2.28E+11
9.481 MPa 1.42E+11

Table B.15: Cycles to failure for corresponding stress ranges

This gives a fatigue life of 1.73E+08 seconds.

Hand Calculation in Frequency Domain - Direct RMS Approach

Stress Range Cycles to Failure
8.892 MPa 2.23E+11

Table B.16: Cycles to failure for corresponding stress range

This gives a fatigue life of 2.99E+08 seconds.
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Computer Based Calculations

Method Fatigue Life [sec]
Narrow Band RR 2.18E+07

SSD 1.98E+07
Steinberg RR 4.70E+07

SSD 4.22E+07
Dirlik RR 2.13E+08

SSD 1.93E+08

Table B.17: Fatigue life obtained from computer based methods

B.2.4 High Amplitude Cycle Hypothesis

Limit E[D] Fatigue Life [sec]
Inside ±1σ 5.17E-09 1.93E+08
Inside ±2σ 2.78E-07 3.59E+06
Inside ±3σ 1.03E-06 9.73E+05

Table B.18: Total fatigue life for corresponding limits
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B.3 Model TP06C

Figure B.19: CAD model showing fixture and TP06C

B.3.1 Eigenvalue Extraction Data

Eigenvalue Output (TP06C)
Mode Eigenvalue Frequency [Hz] Generalized Mass

1 5.36469E+05 116.57 2.99797E-05
2 1.35705E+07 586.30 2.69457E-05
3 1.91692E+07 696.82 3.57137E-05
4 4.23941E+07 1036.3 1.80262E-05
5 1.55115E+08 1982.2 3.84651E-05

Table B.19: Eigenvalue output

Modal Participation Factors (TP06C)
Mode X-Comp Y-Comp Z-Comp X-Rot Y-Rot Z-Rot

1 -1.42728E-02 1.28248E-03 1.5397 38.489 -276.35 0.28942
2 -5.58447E-03 1.5448 1.33578E-02 -4.2281 -0.83642 288.88
3 0.11264 1.63924E-02 -0.83574 -20.952 64.562 2.6065
4 -1.87867E-03 -4.81846E-03 -7.79969E-04 24.998 6.80783E-02 -0.25739
5 -1.0676 1.24108E-02 0.48851 12.132 -32.099 3.6486

Table B.20: Modal participation factors

Effective Modal Mass (TP06C)
Mode X-Comp Y-Comp Z-Comp X-Rot Y-Rot Z-Rot

1 6.10726E-09 4.93096E-11 7.10727E-05 4.44127E-02 2.2895 2.51115E-06
2 8.40335E-10 6.43041E-05 4.80794E-09 4.81702E-04 1.88510E-05 2.2486
3 4.53167E-07 9.59669E-09 2.49444E-05 1.56774E-02 0.14887 2.42628E-04
4 6.36218E-11 4.18525E-10 1.09663E-11 1.12644E-02 8.35452E-08 1.19422E-06
5 4.38405E-05 5.92473E-09 9.17927E-06 5.66178E-03 3.96334E-02 5.12061E-04

TOTAL 4.43007E-05 6.43201E-05 1.05201E-04 7.74979E-02 2.4780 2.2494

Table B.21: Effective modal mass (Mg)
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B.3.2 Modal Analysis Results

RMS Plots

Figure B.20: RS11 color plot

Figure B.21: RMS of stress at critical integration point
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Transfer Functions

Figure B.22: Acceleration transfer function (G/G) (log-log)

Figure B.23: Displacement transfer function (mm/G) (log-log)
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Figure B.24: Max principal stress (MPa/G) (log-log)

Response PSDs

Figure B.25: Vertical tip acceleration response, RR vs SSD (log-log)
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Figure B.26: Vertical tip displacement response, RR vs SSD (log-log)

Figure B.27: Maximum stress response RR vs SSD (log-log)
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B.3.3 Fatigue Life Calculation

PSD Moments Value
Random m0 9.40E+00 MPa2

Response m1 1.99E+03 MPa2

m2 8.55E+05 MPa2

m4 3.93E+11 MPa2

RMS 3.066 MPa
Steady- m0 8.85E+00 MPa2

State m1 1.94E+03 MPa2

Dynamics m2 8.56E+05 MPa2

m4 4.08E+11 MPa2

RMS 2.975 MPa

Table B.22: PSD moments and RMS values

Hand Calculation in Frequency Domain - Simplified PSD Approach

Peak Nr Stress Amplitude Frequency
1 4.95E-01 MPa2 116.6 Hz
2 1.79E-02 MPa2 694.3 Hz

Table B.23: Stress amplitudes from stress response PSD

Stress Range Cycles to Failure
8.520 MPa 3.02E+11
10.141 MPa 8.83E+10

Table B.24: Cycles to failure for corresponding stress ranges

This gives a fatigue life of 1.21E+08 seconds.

Hand Calculation in Frequency Domain - Direct RMS Approach

Stress Range Cycles to Failure
8.672 MPa 2.66E+11

Table B.25: Cycles to failure for corresponding stress range

This gives a fatigue life of 3.83E+08 seconds.
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Computer Based Calculations

Method Fatigue Life [sec]
Narrow Band RR 2.17E+07

SSD 2.65E+07
Steinberg RR 4.72E+07

SSD 5.92E+07
Dirlik RR 1.69E+08

SSD 2.03E+08

Table B.26: Fatigue life obtained from computer based methods

B.3.4 High Amplitude Cycle Hypothesis

Limit E[D] Fatigue Life [sec]
Inside ±1σ 4.92E-09 2.03E+08
Inside ±2σ 2.65E-07 3.78E+06
Inside ±3σ 9.78E-07 1.02E+06

Table B.27: Total fatigue life for corresponding limits
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