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Preface 
 
This report is the result of thesis work carried out at Norwegian University of Science and 
Technology (NTNU), for the Department of Engineering Design and Materials, during the 
spring semester of 2015. The extent of the thesis is 30 ECTS, expanding over a time frame of 
20 weeks. The Master thesis is the conclusion of a five-year integrated Master of Science-
program in Mechanical Engineering provided by NTNU. The work in this report is continued 
from the project thesis written autumn 2014, and hence certain parts are referred to the project 
rather than being elaborated in this report. 
 
Parts of the modeling work have been executed in good cooperation with Ph.D. candidate 
Jørn Skogsrud. There has also been collaboration with Aksel L.L. Kvaal and Brage D. 
Snartland, who did similar physical experiments. Section 4.7 is dedicated to a comparison of 
results, and is a mutual section for all reports.  
 
A compulsory risk evaluation was performed at the start of the semester, and this document 
can be found in Appendix D. 
 
 
 
 

 
 
 

Marie Jørum 
Trondheim, June 2015 
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ATOMISTIC MODELING OF FRACTURE MECHANICS TESTING 
 
Atomistisk modellering av bruddmekanisk prøving 
 
Modeling of the material properties at the nanoscale has become a reality. We have efficient 
and reliable programs, such as LAMMPS, and supercomputers, such as VILJE, available. In 
this Thesis the goal is to model nanosized cantilever beams with cracks in order to 
understand the detailed fracture mechanisms unfolding in the process zone at the crack tip. 
The material chosen is pure iron 
 
 
The following tasks shall be performed 
 
-Review the application of cantilever beam geometries in fracture mechanics, and the 
various requirements to obtain reliable results. Extend the application to the nanosize, and 
discuss the expected effects as a result of this change in dimensions. 
 
-Review previous reports on atomistic fracture mechanics modeling. Highlight the main 
findings and challenges. Present a plan for your own modeling. 
 
-Perform atomistic modeling and examine the effect of crystallographic orientations and the 
temperature. Other parameters, such as deformation rate, crack size and specimen size can 
also be included if time permits. 
 
-Perform a detailed analysis of the processes accounting for the deformation and fracture in 
the process zone. This includes a detailed quantification of the dislocation activity 
 
-Compare with experiments, based on FIB and nanomechanical testing. 
 
 
Three weeks after start of the thesis work, an A3 sheet illustrating the work is to be handed 
in. A template for this presentation is available on the IPM’s web site under the menu 
“Masteroppgave” (http://www.ntnu.no/ipm/masteroppgave). This sheet should be updated 
one week before the Master’s thesis is submitted. 
 
Performing a risk assessment of the planned work is obligatory. Known main activities must 
be risk assessed before they start, and the form must be handed in within 3 weeks of 
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Abstract 
 
Nanomechanical testing has become a well-acclaimed way of researching material properties. 
Today, with supercomputers and advanced programming codes for Molecular Dynamics 
(MD) available, there is also the possibility of creating computational models of nano-sized 
specimens, such as pillars and cantilevers. MD gives us an opportunity to go into the very 
depths of the material: the atoms, and explore the mechanisms in a way not achievable in a 
physical test specimen. As the oil and gas activity is increasing in the Arctic region, MD is 
becoming a viable tool for exploring materials under difficult circumstances, and see how 
they are affected by external factors such as very low temperature. 
 
An atomistic model of a full-3D, nano-sized, pre-notched cantilever beam has been made. It 
has a simulated indenter force embedded, and MD simulations have been performed to deflect 
the beam and initiate crack growth. The crucial process zone in front of the crack has been 
investigated with respect to linear elastic fracture mechanics, elastic-plastic fracture 
mechanics and plastic deformation mechanisms such as dislocations and twinning. The effect 
of crystallographic orientation, crack geometry and loading rate has been studied. The stress 
intensity factor K has been calculated with three different approaches. In addition, the J-
integral and energy release rate 𝒢 have been computed. 
 
The cantilevers proved to be highly affected by crystallographic orientation, displaying very 
different behavior from orientation to orientation. The loading rate did not appear to notably 
affect the fracture behavior, however, the two loading rates investigated are not highly 
different from each other, especially when compared to physical experiments. An even longer 
simulation would be exciting to examine, if time allows in future research. Two different 
crack geometries were also compared, one sharp and one round. The difference in crack 
geometry didn’t affect the overall behavior of the crack growth as much, but in general, the 
sharp crack produced cleaner, more brittle crack growth. 
 
The quantitative results showed that the K-calculations have expected results, based on 
previously obtained results. The energy release rate was obtained, and combined with the 
measured Crack Tip Opening Displacement (CTOD) used to find values for the yield stress, 
which fell within the expected range. The values acquired for J were compared with  𝒢, and 
found to be a bit high. Some refining of the method used to obtain J is probably needed for 
the values to be more precise on this level. 
 
The atomistic model was compared to physical testing of a cantilever beam. The calculated K 
and J were lower for the modeled cantilever than for the physical ones, which was explained 
by the difference in loading rate, notch geometry, specimen size and material purity.  
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Sammendrag 
 
Nanomekanisk testing har blitt en anerkjent måte å undersøke et materials egenskaper. Nå, 
med tilgjengelig høyteknologi som superdatamaskiner og avansert programkode for 
molekylærdynamiske (MD) beregninger, finnes muligheter for å lage datamodeller av prøver 
helt ned til nanostørrelse. Med MD får man muligheten til å gå inn i selve dybden i materialet: 
atomene, og man får undersøkt mekanismene på en måte som ikke er oppnåelig i en fysisk 
prøve. Med den stadig voksende olje og gass-aktiviteten i Arktis, er MD et stadig mer 
pålitelig verktøy for utforsking av materialer i vanskelige miljø, og se hvordan de blir påvirket 
av utenforliggende faktorer som veldig lav temperatur. 
 
Det ble laget en atomistisk modell i nanostørrelse og full 3D av en utkragerbjelke med sprekk. 
Den har en innebygget last for simulering av indenter, og bruddmekaniske forsøk ble utført 
ved hjelp av MD-beregninger: bjelken ble nedbøyd for å igangsette sprekkvekst. Den kritiske 
sonen foran sprekkfronten ble undersøkt med tanke på lineærelastisk bruddmekanikk, 
elastiskplastisk bruddmekanikk og plastisk deformasjon i form av dislokasjoner og twinning. 
Påvirkning av krystallografisk orientering, sprekkgeometri og deformasjonshastighet ble 
vurdert. Spenningsintensitetsfaktoren K ble funnet med tre forskjellige tilnærmingsmetoder. I 
tillegg ble J-integralet og energifrigivelsesrate 𝒢 regnet ut.  
 
Utkragerbjelkene viste seg å bli svært påvirket av orientering, og utviste forskjellig oppførsel 
seg i mellom. Deformasjonshastigheten påvirket ikke bruddoppførselen nevneverdig, men de 
to hastighetene som ble testet er ikke veldig forskjellige i det store bildet, særlig ikke 
sammenlignet med fysiske forsøk. En enda lenger simulering ville vært spennende å se 
utfallet av, om tiden tillater i fremtidig arbeid. To forskjellige sprekkgeometrier ble 
sammenlignet, en skarp og en rund. Forskjellen i sprekk påvirket ikke den generelle 
sprekkoppførselen i stor grad, men den skarpe sprekken produserte litt sprøere og renere 
sprekkvekst. 
 
De kvantitative resultatene fortalte at utregningene for K ga forventede, rimelige utfall, basert 
på tidligere oppnådde resultater. Energifrigivelsesraten ble funnet, og kombinert med den 
målte CTOD ble det kalkulert verdier for flytspenning, verdier som falt fint innenfor forventet 
intervall. De oppnådde verdiene for J ble sammenlignet med 𝒢, og funnet litt høye. Metoden 
brukt for å finne J må sannsynligvis gjennom en justeringsprosess for å bli mer nøyaktig i 
denne typen simuleringer. 
 
Den atomistiske modellen ble sammenlignet med fysiske forsøk. De oppnådde verdiene for K 
og J viste seg lavere for modellen enn for de fysiske prøvene, noe som ble forklart ved 
forskjell i deformasjonshastighet, sprekkgeometri, prøvestørrelse og materialets renhet. 
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Nomenclature 
 
a Notch Depth 
E Young’s Modulus of Elasticity 
𝒢  Energy Release Rate 
J J-Integral 
K Stress Intensity Factor 
KQ Conditional Stress Intensity Factor 
KIC Critical Stress Intensity Factor 
L Bending Length 
w Specimen Width 
Å Ångstrøm, 10-10 m 
γs Surface Energy 
γus Unstable Stacking Energy 
δ Crack Tip Opening Displacement 
ε Strain 
ν Poisson’s Ratio 
σ Stress 
σy  Yield Stress 
BCC Body-Centered Cubic 
BOP Bond-Order Potential 
CMOD Crack Mouth Opening Displacement 
CTOD Crack Tip Opening Displacement 
EAM Embedded Atom Method 
EPFM Elastic-Plastic Fracture Mechanics 
FCC Face-Centered Cubic 
HCP Hexagonal Close-Packed 
LAMMPS Large-Scale Atomic/Molecular Massively Parallel Simulator 
LEFM Linear Elastic Fracture Mechanics 
MD Molecular Dynamics 
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1 Introduction 
 
The Arctic region is becoming more and more important for the modern oil and gas industry. 
This is a part of the world known for its particularly rough environment, with temperatures 
down to -60°C, ice accumulation and harsh weather. Engineering materials today are not 
designed for these conditions, and because of the growing activity in the Arctic there is an 
increasing need to find out how materials behave when paired with this environment. Today’s 
technology and high-end supercomputers allow us to explore materials in a way not even 
comprehensible a couple of decades ago. Molecular dynamics (MD) break the material down 
to the atomic level, and we get to see how each atom performs under certain constraints and 
conditions. It allows us to choose atoms with certain characteristics, such as high energy, high 
stress etc. This gives a wonderful opportunity to explore the material in a way that is not 
achievable in a physical specimen.  
 
The main objective of this thesis is to examine an atomic model of a pre-notched cantilever 
beam, and to research the fracture mechanisms at the process zone near the crack tip. Load is 
applied to deflect the beam and initiate crack growth, and then the fracture behavior can be 
analyzed in a detailed way. Fracture occurs by either a brittle or a ductile manner, and which 
one wins the competition between the two is not always easy to figure out. Similar physical 
experiments are done concurrently in the lab, and the purpose is to match the simulations to 
physical experiments as closely as possible. Certain factors tend to affect the outcome, such as 
the orientation of the crystals, temperature and loading rate. A schematic illustration of the 
procedure is presented in Figure 1. 
 

 
Figure 1: A schematic illustration of the procedure done in this thesis, from physical cantilever 

on the nanoscale to atomistic model. 

 
In the work presented in this report, the effect of crystallographic orientation, loading rate and 
crack geometry are investigated. An analysis of the dislocation activity has been performed. 
The stress intensity factor K and the J-integral were calculated for the cantilevers. Three 
approaches to the geometric shape factors were considered in these calculations. The 
relationships between J, K and energy release rate 𝒢 were further explored to obtain values for 
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the yield stress. In addition, a section is dedicated to the comparison of the atomistic model 
and physical cantilever beams. 
 
There are still many obstacles to overcome before the atomistic world truly meets the physical 
world. MD simulations are dependent on computational power, and this provides limitations 
in both sample size and run time. But the technology is improving every day, and so far, MD 
simulations and atomistic modeling serve as a good tool in materials science.  
 
The contents of this report is organized as follows: In chapter 2, the relevant background 
theory to understand the results is presented, including a summary of previous findings in 
atomistic modeling of fracture in order to highlight some expected, or unexpected, results. 
Chapter 3 presents the model and simulation details used to perform the work. In chapter 4, 
the results of the simulations and calculations are presented and discussed with regards to 
theory and previously obtained results. The findings are concluded in chapter 5, and a 
proposal for further work on the subject is listed in chapter 6. 
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2 Theoretical Background 
This chapter will present relevant background theory, explaining the observations later done 
in the experiments, as well as the methods used for analysis of the results. As the chosen 
material in this thesis is pure iron, the theory focuses on properties for body-centered cubic 
(BCC) crystals.  
 
The chapter starts off by giving a brief introduction to molecular dynamics, as this is the main 
tool used to perform the work in this thesis. It is followed by an overview of the BCC crystal, 
explaining the crystallographic planes and directions embedded in a unit cell. These planes 
and directions are important in the next section, where plastic deformation mechanisms such 
as dislocation and twinning are presented. After this the main fracture mechanisms are 
summarized, and then the methods for obtaining stress intensity factor K and the J-integral are 
presented in detail. These methods are divided into two sections, one for linear elastic fracture 
mechanics and one for elastic-plastic fracture mechanics. Lastly, a summary of previous 
findings in atomistic modeling of fracture is found in section 2.7. The results obtained in the 
thesis work are later compared and discussed with regards to the theory presented here.  

2.1 Molecular Dynamics 
 
Molecular Dynamics (MD) has the purpose of simulating the trajectory of atoms. It does so 
by utilizing Newton’s second law of motion over a series of discrete time steps. For an 
ensemble of N particles, equation (1) is integrated for each particle i=1…N. 
 
 𝐹! = 𝑚!𝑎! (1) 
 
where 𝑚! is the mass of each particle i, 𝑎! its acceleration and 𝐹!   the force acting upon it due 
to interaction with other atoms. A molecular dynamics simulation gives us information of 
atom positions 𝑟! , velocities 𝑣!  and accelerations 𝑎! , which in turn can be used to study 
material behavior [1]. 
 
A molecular dynamics simulation can be broken down into three work packages: input, 
simulation and output, visualized in Figure 2.  
 

 
Figure 2:  The three steps of molecular dynamics, with keywords of a typical input and output. 
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The input, in the form of a script, is where all parameters are defined, such as interatomic 
potential, model geometry, forces, boundary conditions etc., in addition to choosing what data 
to output. The second work package, the simulation, is in itself divided into two parts: 
relaxation and production. The purpose of the relaxation phase is to redistribute the energy so 
that the atoms reach their equilibrium state. The production part is the recording of necessary 
data. The output data comes in two forms: the log file and the dump file. The log file is a text 
file containing quantitative data; in the case of this thesis data such as beam deflection, load, 
CTOD/CMOD measurements etc. The dump file is used for visualization of the model, and 
typically outputs positions, energy, stress, among other things, for each atom at each chosen 
time step. 
 
A more detailed description of the technicalities of MD is described in the project work [2] 
preceding this thesis. 
 

2.1.1 Interatomic Potentials 
 
Interatomic potentials for iron are usually of the Embedded Atom Method (EAM) type [3], 
though some Bond-Order Potentials (BOP) also exists. The EAM potential is quite 
computationally inexpensive, and as it is known to correctly predict the sixfold symmetry of 
screw dislocation cores it is well suited for simulations where dislocation emission is 
expected. The BOP differs from the EAM potential by taking directional bonding into 
consideration. This makes it more accurate, but also more computationally expensive, and it is 
sometimes needed in special cases that require a high level of accuracy.  
 

2.2 Crystallography 
 
Iron forms a body-centered cubic (BCC) crystal, where a unit cell is recognized by the sharing 
of atoms with surrounding crystals in all eight corners, in addition to having an atom in the 
center of the crystal, depicted in Figure 3. 
 

 
Figure 3: The BCC crystal: (a) full hard-sphere, (b) reduced-sphere unit cell, (c) the BCC unit 

cell in an array of crystals. Adapted from [4] 
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Within a crystal structure, there are several planes and directions that have great significance 
when it comes to a material’s properties. Crystallographic directions are effectively vectors in 
terms of lattice dimensions abc corresponding to a global coordinate system xyz, as shown in 
Figure 4. A specific direction is put in square brackets … , whereas angle brackets …  
represent a family of directions, i.e. directions that are symmetrically equivalent. Negative 
indices are denoted with a bar over the current index. For example, 100 , 
010 ,   001 ,   100 ,   010  and   001  are equivalent and belong in the 100  family [4]. 

 
Crystallographic planes are specified by Miller indices (hkl). The Miller indices describe the 
orientation of a plane or a set of planes within a lattice in relation to the unit cell. 
Correspondingly to the crystallographic directions, a specific plane is put in parentheses (…), 
and a family of symmetrically equivalent planes are put in braces {…}. Parallel planes are 
equivalent and have the same indices. An interesting feature of cubic crystals is that a 
direction and a plane with the same indices are perpendicular to one another [4].  
 

 
Figure 4: Three common directions, [100], [110] and [111] shown inside a unit cell for reference. 

Adapted from [4]. 

2.3 Dislocation Theory 
 
Metallic materials generally deform in two manners: elastic and plastic. Elastic deformation 
is reversible and exhibits linear behavior, while plastic deformation is irreversible and 
permanent and will occur after a certain stress limit is exceeded. An insight into the plastic 
deformation of BCC, such as dislocations and twinning, is presented in this section, with the 
main focus being on dislocations and their characteristics. A tool used to analyze dislocations 
in atomistic models is presented briefly towards the end of the section. 
 
Plastic deformation usually happens due to a mechanism called dislocation, which occurs 
when adjacent atomic layers move relative to one another; their atomic bonds break and they 
re-bond with new neighboring atoms. Dislocations tend to happen along the densest packed 
atomic directions and planes within the crystal, also known as slip systems. There are two 
main dislocations types: screw dislocations and edge dislocations, depicted in Figure 5 [4]. 
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Dislocations with both screw and edge characteristics are called mixed dislocations. Pure 
edge and screw dislocations are rarely seen in physical experiments; most observed 
dislocations are of mixed nature [5]. 
 

 
Figure 5: (a) Edge dislocation. (b) Screw dislocation. τ is shear stress. Note that the net plastic 

deformation is the same for both mechanisms. Adapted from [4]. 

 
A characteristic shear stress is required for slip to happen. Consider Figure 6, where a 
cylindrical crystal is loaded in tension. The tensile stress for such a configuration is 𝜎 = 𝑃/𝐴, 
with A being the top surface area of the cylinder. The force P has a component in the slip 
direction, 𝑃 cos 𝜆, working on the slip plane area 𝐴/ cos𝜙. This yields that the shear stress τ, 
resolved on the slip plane is 

 𝜏 =
𝑃
𝐴 cos 𝜆 cos𝜙 (2) 

 	    
Where P is the applied force, A is the relevant area, λ is the angle between the force and the 
slip direction and ϕ is the angle between the force and the normal direction to the slip plane, 
all depicted in Figure 6. The quantity cos 𝜆 cos𝜙 is called the Schmid factor. If 𝑃! is the 
critical force at the point of slip, then 𝜏! is the corresponding, critical resolved shear stress 
(CRSS) for slip [5].  
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Figure 6: Depiction of slip. P is the acting force. Adapted from [5]. 

An important factor when considering dislocations is the Burgers vector, usually denoted b. b 
is a vector, describing the magnitude and direction of lattice distortion caused by dislocations. 
It is obtained by drawing an atom-to-atom path containing the relevant dislocation through 
only non-distorted crystals; see Figure 7. This path is known as the Burgers circuit, and the 
vector needed to complete the circuit is the Burgers vector [5].  
 
 

 
Figure 7: (a) Burgers circuit in an edge dislocation, (b) the same circuit on a perfect crystal, with 

Burgers vector described. (c) Burgers circuit in a screw dislocation, (d) the same circuit and 
Burgers vector shown, in a perfect crystal lattice. Adapted from [5] 
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For an edge dislocation, the Burgers vector is perpendicular to the dislocation line, whereas 
for a screw dislocation Burgers vector is parallel to the dislocation line. A mixed dislocation 
will thus have a Burgers vector with an arbitrary angle to the dislocation line [5]. 
 
Dislocations move in two ways: glide or climb. Glide is considered conservative motion, and 
occurs when the dislocation moves on the surface containing both the Burgers vector and the 
dislocation line. Climb, or non-conservative motion happens when the dislocation moves out 
of the glide plane, and thus normal to Burgers vector [5]. 

2.3.1 Deformation of BCC Metals 
 
The slip systems for BCC materials are displayed in Table 1. The Burgers vector for a perfect 
slip dislocation, i.e. the shortest lattice vector, is of the type !

!
111 .  

 
Table 1: The available slip systems for BCC materials. Adapted from [4]. 

Slip Plane Slip Direction Number of Slip Systems 
{110} 111  12 
{211} 111  12 
{321} 111  24 

 
It is of particular interest that three {110}, three {211} and six {321} planes intersect on the 
same 111  direction, allowing screw dislocations to move on different planes of the same 
family or combinations of plane families, favored by the applied stress. This makes BCC 
dislocations complicated, and often poorly defined. Another interesting feature of the BCC 
crystal is its asymmetry of slip: the slip system activated due to compression is not the same 
as the system activated by tension. Hence, the shear stress needed to move a dislocation in a 
certain direction would not move the dislocation similarly in the opposite direction[5].  
 
In certain dislocation networks, another set of perfect dislocations for BCC materials are 
occasionally observed; those with Burgers vector 100 . These are believed to occur from a 
combination of two perfect !

!
111  dislocations [5]: 

 
 1

2 111 +
1
2 111 → 100  

(3) 

 

2.3.2 Dislocation Loops 
 
A dislocation cannot end in a perfect crystal, and will therefore keep going until it meets a 
defect or a surface, or it will create a full loop. The loops can consist of edge or screw, as well 
as mixed characteristics. Dislocations loops are thought to nucleate with a Burgers vector 
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!
!
110  on {110} planes. These partial dislocation loops strive to become perfect, so they 

shear at an early stage of growth, and become perfect by two possible reactions; equations (4) 
and (5) [5]. 
 
 1

2 110 +
1
2 001 →

1
2 111  

(4) 

 
 1

2 110 +
1
2 110 → 100  

(5) 

 

2.3.3 Twinning 
 
Twinning is another form of metal deformation, known to occur in BCC material when it is 
deformed under high strain rate and/or low temperature. As an MD simulation is known for 
its high deformation rate, twinning is expected to occur in the present work. When twinning 
occurs, the atoms move in such a way that the new atomic structure mirrors the original 
structure, see Figure 8. BCC twinning happens on 112 111  systems. The required shear to 
produce a twin in this system is obtained by a displacement of !

!
111  on 112  planes, i.e. 

the Burgers vector for a twin dislocation is  !
!
111  [5]. 

 

 
Figure 8: (s) Slip and (b) twinning. τ is shear stress. Adapted from [4]. 

2.3.4 Crystal Analysis Tool 
 
A tool to detect and consider dislocations in atomistic simulation is the Crystal Analysis Tool. 
This is a computer code developed by Alexander Stukowski [6] [7] to analyze the output of 
atomistic simulations of solids. It will read a LAMMPS dump file, and implement algorithms 
to identify lattice structures and defect structures formed by atoms. The code is used in this 
work to detect dislocation lines and identify their Burgers vector, by the use of the 
Dialocation Extraction Algorithm (DXA).  
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2.4 Fracture Mechanisms 
 
Modern fracture mechanics is usually divided into two parts: linear-elastic fracture mechanics 
(LEFM), and elastic-plastic fracture mechanics (EPFM). LEFM is based on material 
deformation that obeys Hooke’s law1, and works well for those cases. However, it’s restricted 
in its use for nonlinear material, as it requires the structure’s global behavior to be linear and 
elastic. This is where the EPFM comes in, with parameters that take nonlinear and plastic 
behavior into consideration, and thus making it more applicable for engineering problems [8].  
 
A material fractures when the energy in the system is high enough to break the atomic bonds. 
The fracture mechanism is either ductile or brittle. These two mechanisms are further 
explained in the following sections.  
 

2.4.1 Brittle Fracture 
 
On an atomic level, brittle fracture is characterized by repetitive bond breaking. It is 
recognized by rapid, unstable crack propagation, and little plastic deformation. Most metallic 
materials that break in a brittle manner do so by cleavage fracture, a transgranular mechanism 
that crosses grain boundaries and move along specific crystallographic planes. The preferred 
cleavage planes are those with the lowest packing density (note: the opposite of preferred slip 
planes), as the spacing between planes is greater and hence fewer bonds must be broken for 
the cleavage to propagate [8]. 
 

2.4.2 Ductile Fracture 
 
Ductile materials usually fail by micro void coalescence, due to either inclusions or second-
phase particles. The crack growth is generally slow, and a considerable amount of plasticity 
develops at the crack front. The plastic zone near the crack tip dominates, and the materials 
resistance to fracture increases as the crack grows. On the atomic level, ductile crack growth 
is recognized as the shearing of adjacent atomic layers, initiating dislocation emission [9]. 
 

2.4.3 Triaxiality 
 
Many engineering problems today are simplified by changing a three-dimensional state of 
stress into a biaxial stress problem. These stress states are referred to as plane strain and plane 
stress, respectively. Plane stress generally describes thin specimens, where one of the stress 
components is zero. Plane strain is applied to thicker specimens, and one of the strain vectors 
is set to be zero. Plane stress situations are much easier to handle computationally, but they 
are not very realistic.  
 

                                                
1 Hooke’s law: 𝜎 = 𝐸𝜀   
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A thick, cracked specimen has significantly larger stresses near the crack front than in the 
bulk material. The elevated stresses normal to the crack plane, e.g. x-direction, will cause the 
y- and z-directions to want to contract. They will, however, be restricted to do so by the 
surrounding material, causing a triaxial state of stress in front of the crack in the middle of the 
specimen. The stress in the crack front direction will decrease closer to the free edge of the 
specimen, and on the very edge there will be a state of plane stress [8]. 
 
Tunneling is a phenomenon derived from triaxial problem, when a crack grows faster in the 
middle of the specimen due to the triaxial state and elevated stress there, making a tunnel-like 
crack growth [8]. 
 

2.5 Linear Elastic Fracture Mechanics 
This section is dedicated to the introduction of two typical LEFM parameters, the stress 
intensity factor K and the energy release rate 𝒢. The methods, which will be used later to 
obtain K, are presented, and the relationship between 𝒢 and K is identified. 

2.5.1 Stress Intensity Factor 
 
The stress intensity factor K is one of the most important factors in linear elastic fracture 
mechanics. K describes the stress field very close to the crack tip, where the process zone is 
dominated by the !

!
 singularity. K is usually denoted I, II or III based on what mode of 

loading is applied to the specimen, where mode I is tensile loading, mode II is in-plane shear 
and mode III is out-of-plane shear.  
 
The critical stress intensity factor is given as  
 
 𝐾!" = 𝜎! 𝜋𝑎 ∙ 𝐹 (6) 
 
where 𝜎! is the critical stress at fracture, a is the crack size and F is a geometric factor. Within 
certain validity criteria [10], see equation (7), 𝐾!"  can be viewed as a material specific 
parameter and qualifies as the material’s fracture toughness.  
 
 

𝑤,𝑎, (ℎ − 𝑎)   ≥ 2.5
𝐾!"
𝜎!

!

 
(7) 

 
where w is the specimen thickness, a is the notch depth, h is the height of the specimen and 𝜎! 
is the yield stress. Equation (7) is derived from the plastic zone size being proportional to 
𝐾!"! /𝜎!!, and the thickness, ligament size and notch depth need to be considerably bigger than 
the plastic zone for LEFM to be applied. If the calculated K-value does not fall within these 
criteria, it is usually denoted 𝐾!, the conditional K, and cannot be quantified as the specific 
material’s fracture toughness. For specimens on the nanoscale, it is often difficult to obtain 
parameters that match equation (7) due to very small sizes and large stress values. It is 
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therefore a good assumption to denote the K in equation (6) with a Q, and rather check the 
outcome’s validity with eq. (7) to see if it can be classified as 𝐾!". 
 
The literature reports many findings on K-calculations, and there are some different 
approaches to the geometric factor F. Many reports are based on a cantilever beam with 
square cross section, and to the best of author’s knowledge only two papers report pentagonal 
cross section beams; Zhao et al. [11] and Di Maio and Roberts [12]. 
 
Zhao et al. used the following approach to obtain values for 𝐾! 
 
 𝐾! = 𝜎! 𝜋𝑎 ∙ 𝐹

𝑎
ℎ  (8) 

 
 
 𝜎! =

𝑃𝐿𝑦
𝐼  (9) 

 
where P is applied load, L is the length from notch to indenter center, y is the vertical distance 
between the upper surface and the neutral plane and I is the moment of inertia for the beam’s 
cross section. I and y are given by equations (10) and (11), respectively. 
 
 

𝐼 =
𝑤ℎ!

12 + 𝑦 −
ℎ
2

!

ℎ𝑤 +
𝑤!

288+
𝑤!

4
ℎ
6 + (ℎ − 𝑦)

!

 
(10) 

 
 

𝑦 =
ℎ!𝑤
2 + 𝑤

!

4 ℎ + 𝑤6

ℎ𝑤 + 𝑤
!

4

 
(11) 

 
h and w are shown in Figure 9 (a). The geometric factor is given by 
 
 𝐹

𝑎
ℎ = 1.122− 1.121

𝑎
ℎ + 3.74

𝑎
ℎ

!
+ 3.873

𝑎
ℎ

!
 

−19.05
𝑎
ℎ

!
+ 22.55

𝑎
ℎ

!
 

(12) 

 
Di Maio and Roberts altered the cross section parameters a little; making the height half the 
size, see Figure 9 (b). For this geometry they proposed the following solution for the 
geometric factor 
 
 𝐹

𝑎
ℎ = 1.85− 3.38

𝑎
ℎ + 13.24

𝑎
ℎ

!
− 23.26

𝑎
ℎ

!
+ 16.8

𝑎
ℎ

!
 

(13) 

 
Wurster et al. [13] have a different approach. They use the ASTM E-399 [10] standard to 
obtain 𝐾!, defined as 
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 𝐾! =

𝑃!𝐿
𝑤ℎ!/! ∙ 𝐹

𝑎
ℎ  

(14) 

 
where 𝑃! is the critical force as determined by said standard, L, a, w and h are depicted in 

Figure 10 and 𝐹 !
!

 is given by 

 
 

𝐹
𝑎
ℎ = 4

3 𝑎
ℎ

!.!
1.23− 𝑎

ℎ 1− 𝑎
ℎ −6.09+ 13.96 𝑎

ℎ − 14.05 𝑎
ℎ

!

2 1+ 2 𝑎
ℎ 1− 𝑎

ℎ
!.!  

(15) 

 
This factor is however intended for a beam with a square cross section, and needs some 
modification for usage on pentagonal cross section. One way to modify is to add the mean 
height of the triangular part below the square to the original height h in the calculations, and 
by this averaging the cross section area with a new value h*: 
 
 ℎ ∗= ℎ +

𝑤
4  (16) 

   
h* is also depicted in Figure 9. The cantilevers in this thesis have a pentagonal cross section, 
but a lot of the work that is described in the upcoming section is based on the Wurster 
approach, and thus this approximation is included. 

 

 
Figure 9: The two different cross section of the beam: (a) cross section for equation (12); (b) 

cross section for eq. (13). (c) is a graphical depiction of h*, used in eq. (15) 
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Figure 10: The parameters used in equations (8)-(15). The blue circle on the top beam surface is 
the point of the simulated indenter force, and the blue lines closer to the support wall represent 

the crack. 

 
 

2.5.2 Energy Release Rate  
 
Another important LEFM parameter is the energy release rate  𝒢. This is the energy needed to 
create two new surfaces, i.e. the energy needed for crack extension in a brittle material 
 
 𝒢 = 2𝛾! (17) 
 
where 𝛾! is the material’s characteristic surface energy. At the moment of fracture, 𝒢 = 𝒢!, 
the critical energy release rate, which is a measure for fracture toughness. 
 
𝒢 is uniquely related to K in the following way 
 
 

𝒢 =
𝐾!!

𝐸′  
(18) 

 
where 𝐸! = 𝐸 for plane stress, 𝐸! = 𝐸/(1− 𝜈!) for plane strain, and 𝜈 is Poisson’s ratio. 
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2.6 Elastic-Plastic Fracture Mechanics 
This section introduces EPFM parameters J-integral and Crack Tip Opening Displacement. A 
short background and a procedure for obtaining the J-integral are presented, and the 
relationship between EPFM and LEFM parameters are also recognized. 

2.6.1 J-integral 
 
The J contour integral was introduced by Rice in 1968 [14], and has become an important 
fracture characterizing parameter for nonlinear materials. He applied deformation plasticity to 
crack analysis in a nonlinear material, and showed that the nonlinear energy release rate J 
could be written as a path-independent integral along an arbitrary path Γ around the crack tip:  
 
 

𝐽 =    𝑤 𝑑𝑦 − 𝑇!
𝜕𝑢!
𝜕𝑥 𝑑𝑠

  

!
 

(19) 

 
where w is the strain energy density, 𝑇!    is the tractions vector components, 𝑢!  is the 
components of the displacement vector and ds is the length increment along the contour Γ. 
 
The definition for the energy release rate is the same for nonlinear materials as it is for linear 
elastic materials. This yields that in the case of a linear elastic material, 𝐽 = 𝒢, and  
 
 

𝐽 =
𝐾!!

𝐸′  
(20) 

 
Rice & Rosengren [15] and Hutchinson [16] also concluded that the J-integral could be used 
to characterize stress and strain near the crack tip in nonlinear materials, thus J is also valid as 
a stress intensity factor.  
 
To this day, most of the experiments done on micro-sized cantilever beams have not 
considered the elastic-plastic J-integral in their research, and mostly focused on the linear 
elastic stress intensity factor K. However, Wurster et al. [13] did include J-calculations in 
their fracture toughness research. They used the old ASTM standard for fracture toughness to 
calculate J, as the new standard requires a comprehensive knowledge of the crack extension 
and this is difficult to obtain in physical experiments. In atomistic modeling, however, a 
detailed view of the crack extension is easily managed. According to the newer ASTM 
standard for measurement of fracture toughness [17], J is the sum of its elastic component  𝐽!" 
and its plastic component 𝐽!": 
 
 𝐽 =    𝐽!" + 𝐽!" (21) 
   
The components are defined as 
 
 
 𝐽 =

𝐾!(1− 𝜈!)
𝐸 +

𝜂𝐴!"
𝑤(ℎ − 𝑎!)

 
(22) 
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where K is calculated from equations (8)-(15), ν is Poisson’s ratio, 𝜂 is a constant equal to 1.9 
[17], and 𝐴!" is the area under the load-displacement curve, as depicted in Figure 11. w is the 
specimen thickness, h is the specimen height and 𝑎! is the initial notch depth, all depicted in 
Figure 10. 
 

 
Figure 11: Depiction of the 𝑨𝒑𝒍  parameter used in equation (). The triangle created by the 

original loading slope is subtracted from the full area, as this is regarded elastic contribution 
and already contained in 𝑱𝒆𝒍. 

 
By turning around equation (20), a new 𝐾! can be calculated based on the obtained value for J 
[13]: 
 
 
 

𝐾!,! =
𝐽𝐸

1− 𝜈! 
(23) 

 
where E is Young’s modulus and ν is Poisson’s ratio. J can, as K, be considered a parameter 
specific for the material in question, if fitting into the following validity criterion [13]: 
 
 

𝑤, (ℎ − 𝑎!) >
25𝐽!"
𝜎!

 
(24) 

 
where 𝜎! is the yield stress.  
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The most common single-specimen test method to obtain monitoring of the crack growth is to 
use the unloading compliance method. With this, the crack length is computed at regular 
intervals throughout the test procedure by partially unloading the specimen and measuring the 
compliance. As the crack grows, the specimen becomes more compliant, i.e. less stiff [8]. 
Wurster et al. [13] calculated J for every unloading step, and plotted J against crack growth 
Δa.  
 

2.6.2 Crack Tip Opening Displacement 
 
In 1961, Wells [18] proposed that the opening of the crack tip could be a useful measure in 
the decision of fracture toughness in elastic-plastic materials, a parameter today well known 
as the Crack Tip Opening Displacement (CTOD). There are two common definitions of 
CTOD: the 90° CTOD and the blunting CTOD, see Figure 12. The former is defined as the 
intersection of a 90-degree vertex of the crack flanges, whereas the latter is based on the 
displacement of the crack surfaces at the point of the original crack tip [8]. 
 
 

 
Figure 12: CTOD definitions; δ is CTOD. (a) 90° CTOD, also shows CMOD graphically, (b) 

blunting CTOD. The stippled line indicate original crack tip. 

 
In small-scale yielding, the CTOD is related to the linear elastic parameters 𝐾! and 𝒢:  
 
 

𝐶𝑇𝑂𝐷 = 𝛿 =
𝐾!!(1− 𝜈!)
𝑚𝜎!𝐸

=
𝒢
𝑚𝜎!

 
(25) 

 
where δ is CTOD, 𝜎!  is the yield stress and m is a dimensionless constant that is 
approximately 1.0 for plane stress and 2.0 for plane strain conditions [8]. The small-scale 
relation 𝐽 = 𝒢 then yields 
 
 𝐽 = 𝑚𝜎!𝛿 (26) 
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In an atomistic model, the measuring of CTOD is easily done by choosing the atoms near the 
crack tip, and outputting the distance between them. This would be correlating to the blunting 
CTOD described in Figure 12. 
 
A similar parameter also used in various toughness calculations is the Crack Mouth Opening 
Displacement (CMOD), which measures the opening at the top of the crack rather than the 
tip. CMOD is also depicted in Figure 12. 
 

2.7 Atomistic Modeling of Fracture 
 
Many reports have been made on atomistic simulations of fracture in BCC iron over the 
recent years. There are a number of different parameters one can take into consideration, such 
as crystallographic orientations, interatomic potentials, loading rate, temperature, etc. A 
collection of previous studies will be presented here. To the best of the author’s knowledge, 
an atomistic model of a full cantilever beam has not been done, and the studies reviewed here 
is similar in crack geometry, i.e. through-thickness edge cracks. The results show that the 
brittle vs. ductile response of a crack under plane strain conditions to a large extent depends 
on the crystallographic direction of the crack and the available slip systems.  
 
Some of the very first to present results from MD simulations were DeCelis et al. [19] in 
1983, where a pair potential was used to obtain a fully brittle cleavage fracture for α-iron, 
consistent with the Griffith energy solution.  
 
Gordon et al. [20] presented a thorough comparison of 4 different interatomic potentials, with 
5 different orientations. This research showed very little deviation with respect to the different 
potential in the same orientation; only one orientation had different behavior with respect to 
the potentials, though the orientation in itself showed high significance for fracture behavior.  
 
Machová and Beltz [21] simulated a (001)[110] crack with two different crack lengths, using 
a Finnis-Sinclair N-body potential. The longer crack experienced cleavage along the (001) 
crack plane, whereas the shorter crack displayed twinning in the “easy twinning” system 
112 111 , accompanied by slow, subcritical crack growth. 

 
Hora et al. [22] compared a central (001)[010] crack with an (001)[110] edge crack, for 
temperatures 0 K and 300 K using a Finnis-Sinclair N-body potential. The central crack 
exhibited brittle crack growth on 0 K, but at 300 K displayed two different slip patterns. 
These patterns were found to be at 45° and 26.565° angles, on {101} and {112} planes, 
respectively. The edge crack showed, along with crack initiation, unstable stacking faults 
which would later turn into twinning in the 111 112  slip systems.  
 
Vatne et al. [23] did simulations using the quasicontinuum (QC) method on similar models as 
the ones presented, with an EAM potential at 0 K. Four different crack orientations were 
explored in a thin specimen. For the (010)[101] and the (110)[001] crack, brittle propagation 
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in the crack plane was observed. The (010)[001] crack also displayed brittle crack 
propagation, but in a 45° angle from the crack front. In the (011)[011] crack there was 
dislocation emission on the 112 111  slip system blunting the crack tip, and in turn no 
brittle crack propagation. These simulations were done in 2D, but was later extended by 
Vatne et al. [24] to full 3D simulations under loading modes I, II and III. Similar behavior 
was observed, implying that a 2D simulation will be sufficient for many simulation problems. 
The emission of full dislocation loops, however, is obviously not seen in 2D simulations and 
need 3D to be analyzed.  
 
Ersland et al. [25] compared a through-thickness crack with an enclosed penny-shaped crack, 
the latter to explore the effect on a non-straight crack. This paper also compared the effect of 
full 3D simulations vs. quasi-3D. Both geometries were done with the crack plane located on 
three different crystallographic planes: the {100}, {110} and the {111} planes. The through-
thickness crack had its crack front in two different directions for each crack plane. What was 
observed in the full 3D penny-shaped cracks was a small change in the crack shape, allowing 
for FCC formation, dislocation emission and twinning to happen, concluding that the material 
organizes itself so that the crack will favor blunting and grow as little as possible.  
 

2.7.1 Brittle vs. Ductile Response 
 
As stated in section 2.4, the crack tip response is basically a competition between atom bond 
breaking and dislocation emission, and which mechanism wins this competition is dependent 
on the ratio of theoretical shear strength to theoretical tensile strength, a criterion proposed by 
Kelly et al. [26] already in 1967. Rice & Thomson [27] took this into consideration and 
included the dislocation processes in their research, as plastic growth does not happen without 
the emission of dislocations.  
 
In 1992, Rice [28] introduced a new parameter: the unstable stacking energy 𝛾!", defined as a 
material’s resistance to dislocation nucleation. He found that the level of stress intensities 
needed to nucleate dislocations is proportional to 𝛾!".  𝛾!" is a parameter specific for its 
material, and is used to derive a new stress intensity factor 𝐾! for dislocation emission, i.e. 
ductile crack growth, in contrast to 𝐾! for cleavage which is based on the Griffith surface 
energy 𝛾!. Hence, in theory, if the applied stress intensity 𝐾! exceeds 𝐾!, the material will fail 
by cleavage, and if the applied stress exceeds 𝐾! dislocations will emit and produce ductile 
growth [22].  𝐾! is defined by combining equations (17) and (18): 
 
 
 

𝐾! =
2𝛾!𝐸
1− 𝜈! 

(27) 
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and 𝐾! is defined as  
 
 𝐾! = 2𝛾!"𝜇 1+ 𝜈 𝑌  (28) 
 
 
where µ is the shear modulus and Y is a geometric factor depending on the angle of 
dislocation emission (slip plane angle and direction of sliding) [9].  
Both surface energies and unstable stacking energies are defined within the interatomic 
potentials used in atomistic simulations. The energies for relevant crystallographic planes for 
an EAM Mendelev-II potential are listed in Table 2.  
 
Ersland et al. [9, 25], while studying the crack tip response of an embedded penny-shaped 
crack, discovered that even though the energy obtained in the system was lower than the 
expected Griffith energy for cleavage, the initially round crack changed shape into a 
hexagonal shape, to easier allow for the crack to emit dislocations and blunt, instead of failing 
by cleavage. 
 
Table 2: List of surface energies and unstable stacking energies for Fe in the Mendelev-II 
potential [20]. 

Plane 𝛾!   𝐽/𝑚!  𝛾!"   𝐽/𝑚!  
{110} 1.65 0.663 
{112} 1.91 0.770 
{123} 1.87 0.755 
{100} 1.79  
{111} 2.00  

 
Based on ranking of the surface energies, {110}, {100} and {123} planes will be the 
preferred cleavage planes, in that order.  
 
NOTE: Due to time limitations, 𝛾!   is not considered further in the results section, but is still 
mentioned here, as it is deemed and important field of research and an interesting aspect to 
look further into in upcoming work. 
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3 Modeling and Simulation 
 
The work in this thesis was based on a model developed during the project work of autumn 
2014 [2], with some necessary alterations done to account for different parameters, e.g. 
crystallographic orientations.  This chapter will describe the model and the main aspects of 
how it’s made, as well as the details for the simulations that have been performed. The model 
is a full-3D cantilever beam, connected to a support wall that is fixed to simulate the 
surrounding bulk material in a physical iron test specimen. The procedure is illustrated in 
Figure 1 in the Introduction chapter. 
 
The bottom edge of the pentagonal cross section was rounded off to eliminate unwanted 
dislocations, see Figure 13. The model is set to be periodic in the y- and z-direction to 
simulate the support wall being indefinitely large, and non-periodic and shrink-wrapped in the 
x-direction, so the simulation box will move with moving atoms but no atoms will cross over 
boundaries. An example of the input script is found in Appendix C. 
 

 
Figure 13: Cross section view of the beam displaying the rounded part at the bottom of the 

pentagonal shape. The x-direction is coming out of the paper plane. 
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Two different cross-sections were investigated, as described in section 2.5.1. The first cross-
section is a square with an added triangle at the underside, previously depicted in Figure 9 in 
section 2.5.1. The second is a pentagon that is cut out of an initial square, also depicted in 
Figure 9. The second cross section was made on request for comparison purposes with 
specific, physical experiments performed concurrently in the Nanomechanical Lab at NTNU, 
whereas the main cantilevers with the first cross section aim to simulate micro-cantilever 
experiments in general. 
 
The crack is atomistically sharp, and is simulated by assigning certain atoms into two groups 
on each side of the crack, and turning off the atomic interaction between them. To measure 
the CTOD/CMOD, atoms on each side of the crack were assigned to separate groups, and the 
distance between them calculated. These atoms lie on a line along the full beam width, and 
the distance between them are calculated from the mean x- and y-value.  
 
The model was made so that the crack front was along the z-axis, the crack plane was the yz-
plane, and thus the x-axis was perpendicular to the crack plane; see Figure 14. To examine the 
effect of crystallographic orientation, four different orientation systems were chosen for the 
crack plane and crack front; these are presented in Table 3. The crack plane and crack front 
direction are depicted with a reference unit cell for each orientation in Figure 15.  
 

 
  Figure 14: Description of crack plane and crack front. 
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Table 3: The four orientations chosen for the main simulations. 

Orientation Crack plane Crack front 
1 (100)  001   
2 (110) 001   
3 (101) 101   
4 100    011  

 
 

 
 
 

  
(1) (2) 

  
(3) (4) 

Figure 15: Schematic drawing of the crack plane and crack front orientation within a BCC 
crystal, denoted by orientation number from Table 3. 
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The indenter force deflecting the beam was simulated by applying a gradually increasing load 
to a group of atoms in a hemisphere close to the end of the beam. This gives a load-controlled 
experiment, where the load is connected to the time steps, and the end load is reached on the 
last time step. The end value for the load is chosen based on results from project work [2] and 
test simulations, as the load just after crack initiation for the corresponding cantilever. An 
overview of the simulations, number of time steps and total load is shown in Table 4. The 
load is applied to each atom in the given group. This value is multiplied with the number of 
atoms in the group, and also transformed into nN. Constant parameters for all simulations are 
listed in Table 5. 
 
 
 
Table 4: An overview of the successful simulations.  

Cantilever Orientation Time 
steps 

h [Å] End load per 
atom [eV/Å] 

“Indenter” 
atoms 

End load 
total [nN] 

1 1 1 000 000 400  0.0035 181 636 1017.16 

2 2 1 000 000 400 0.0035 182 201 1020.33 

3 3 1 000 000 400 0.0035 181 688 1017.45 

4 4 1 000 000 400 0.0035 182 201 1020.33 

5 2 2 000 000 400 0.0035 182 201 1020.33 

6 4 2 000 000 400 0.0035 182 201 1020.33 

7 1 1 000 000 200 0.0013 181 636 236.13 

 
Table 5: The constant parameters used in all simulations. 

Constant parameters 
a/h 0.3 
Temperature 300 K 
Time step 0.0015 picoseconds 
Relaxation 200 000 time steps 
Material BCC α-iron 
Potential EAM Mendelev-II 

 
 
For the remaining dimensions of the beam, see Figure 16. Here are also the x-, y- and z-axes 
represented in red arrows, placed in the origin of the beam.  
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Figure 16: Dimensions of the cantilever beam, and the coordinate system placed in the origin. 

The z-axis is coming out of the paper plane. The hemisphere close to the end of the beam 
includes the atoms representing the indenter force. 

 
Based on the findings described in section 2.7, some expected results, i.e. favored cleavage 
and slip systems, are presented in Table 6. 
 
 
Table 6: Some preferred cleavage planes and slip systems for the orientations in question. The 
given angle is the one between the crack plane and the slip plane, normal to the crack front 
direction [9]. 

Orientation (plane)[front 
direction] 

Event System/plane Angle (°) 

1 100 001   Cleavage 
Cleavage 

100   
110   

0 
±45 

2 110 001   Cleavage 110   0 
3 101 101   Cleavage 

Slip/twin 
Slip/twin 

110   
112 111     
112 111   

0 
±54.7 
±125.3 

4 100 011   Cleavage 
Slip/twin 

100   
112 111   

0 
±35.3 

 
 
Given that the simulations contain up to 30 million atoms, visualizing the full beam demands 
a very powerful computer. To ease the visualization process, different dump files were made 
with various amounts of atoms, as fewer atoms demand less of the computer power. The 
frequency of dumping out the different files is shown in Table 7. Alpha dump dumped all 
atoms that are not characterized as BCC, including the atoms on the whole beam surface. Beta 
dump excluded the surface atoms of the beam geometry, but kept the surface atoms in the 
notch.  
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Table 7: The frequency of the different dumping styles. 

Dump Every n time step 
All atoms 100 000 
2/3 length 50 000 
Alpha 2 500 
Beta 500 

 
 
The program used for the simulations is the Large-scale Atomic/Molecular Massively Parallel 
Simulator (LAMMPS) [29], and the data are visualized in the Open Visualization Tool 
(OVITO) [30]. For more on how these programs work, please refer to project thesis [2]. The 
supercomputer Vilje, located on NTNU and run by NOTUR, was used to run the simulations. 
Vilje has 1404 nodes à 16 cores, giving a total of 22464 cores, and a 44 TB memory.  
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4 Results and Discussion 
 
The results presented in this chapter are acquired from the simulations presented in Table 4 in 
the previous chapter. Cantilevers 1-4 are the main targets for the results section. They have 
the same run time and the same beam cross section, and only differ by crystallographic 
orientation. Cantilever 7 has a different cross section and the same orientation as cantilever 1, 
and is utilized in section 4.7 where it is compared to physical experiments. Cantilevers 5 and 
6 are used in section 4.2 that focuses on different loading rates.  
 
The structure of this chapter is thought to reflect chapter 2 in the best way possible. Firstly, 
the effect of crystallographic orientation is presented, focusing on cantilevers 1-4.  Then the 
loading rate and crack geometry is considered, before a dislocation analysis is performed 
using the Crystal Analysis Tool. The LEFM and EPFM approaches are following, calculating 
stress intensity factor K, energy release rate 𝒢 and J-integral. The relationships between these 
parameters are utilized to obtain values for the yield stress 𝜎!. A comparison with physical 
experiments has been executed, and is presented in section 4.7.  
 

4.1 Effect of Crystallographic Orientation 
NOTE: For the graph shown in this section, the values have been truncated at 𝐶𝑇𝑂𝐷 = 50  Å. 
The CTOD is measured by calculating the distance between two lines of atoms on each side 
of the crack. The initial distance between these lines are subtracted prior to further processing 
of the results.  
 
CTOD vs. displacement shows a significant displacement before there is any significant 
change in CTOD. This means that the beam is bending quite a bit before the crack starts to 
grow. What we see from Figure 17 is that cantilevers 2 and 3 and cantilevers 1 and 4, 
respectively, start propagating at the same displacement. Cantilever 3 does however get the 
most displacement, implying that the CTOD and crack growth doesn’t influence overall 
deformation as much as the deflection of the beam. The opposite is observed for cantilever 4, 
for which the CTOD increases almost completely independent of the displacement on the 
graph after crack initiation.  
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Figure 17: CTOD vs. displacement for the four different orientations, run over 1 million time 

steps. 

 
 
In the elastic part of the simulation there is a development of non-BCC atoms near the crack 
tip. This is caused by the high stresses and strains pulling the crystal out of its desired cubic 
structure, and therefore causing LAMMPS to identify the atom as non-BCC. It is assumed 
that this is the plastic zone emerging on the crack front, and this will further be referred to as 
plasticity in the descriptions. The main results and findings of the four different cantilevers 
are presented on the next pages, including the main dislocation activity observed. A more 
detailed analysis of the dislocation activity is performed in section 4.4. The following figures 
include mid-beam (z = 200 Å) crack growth for all cantilevers, in addition to a depiction of 
the edge at the same time step (z = 0). For a full through-thickness growth depiction of 
cantilevers 1-4, see Appendix B. 
 
Orientation 1, 100 001  
 
Orientation 1 has the crack plane on (100), and the crack front along the [001] direction. 
Plasticity develops in an angle of about 45° from the crack tip. The first bonds break shortly 
before the crack starts to propagate, quickly followed by the first dislocation emission 
observed at CTOD = 3.4 Å. The crack propagates in a brittle manner, and stepwise. After 
some crack growth along the crack plane, the crack cleaves along the 110  plane at an angle 
of 136.1°, depicted in Figure 18. At CTOD = 19.8 Å, FCC transformation in front of the 
angled cleavage is causing the crack to blunt. The crack growth happens only in the middle of 
the beam; the edges are blunted, also depicted in Figure 18. Twinning occurs at CTOD = 15.3 
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Å in z = 400 Å, and shortly after also in z = 0. The twinning occurs on the expected {112} 
plane. This cantilever shows similar crack growth behavior as observed in [23], [24] and [31] 
for the same orientation, and the cleavage plane is also expected according to Table 6. Hora et 
al. [22] observed slip at angles 45° and 26.565° when exploring the same orientation in a 
central crack on 300 K, inconsistent with what is observed here.  
 

 
Figure 18: Crack growth for cantilever 1. (a) z = 200 Å and CTOD = 5.4 Å, (b) z = 200 Å and 
CTOD = 10.4 Å, (c) z = 0 and CTOD = 10.4 Å. Coloring is done by CNA, where blue is BCC, 
green is FCC, red is HCP and white is unidentified structure. 

 
Orientation 2, 110 001  
 
Orientation 2 has the crack plane on (110), and the crack front along the [001] direction. 
Plasticity develops almost perpendicular to the crack. Twinning starts in z = 400 Å at CTOD 
= 4 Å, while a twinning plane develops in z = 0 when CTOD = 7 Å. As in cantilever 1, the 
twinning happens on {112} planes. The crack grows visibly faster where the twinning is most 
developed, and therefore displays uneven growth before the twinning happens on both sides. 
The crack grows in a brittle manner in the middle, forming a triangle below the crack front. 
Dislocations emit from the twinning planes, blunting the crack below aforementioned 
triangle. It is apparent that the twinning and dislocation emission is relaxing the crack, 
causing it to blunt rather than propagate by cleavage. The edges of the crack are also blunted, 
which is the opposite of the behavior in the middle of the beam thickness, as portrayed in 
Figure 19. 
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Figure 19: Crack growth for cantilever 2, at CTOD = 8.5 Å. (a) z = 200 Å, (b) z = 0. Coloring is 
done by CNA, where blue is BCC, green is FCC and white is unidentified structure. Note the 

twinning plane visible at the edge. 

 
Orientation 3, 101 101  
 
Orientation 3 has the crack plane on 101 , and the crack front along the [101] direction. No 
plasticity of significance is developing before the crack tip starts to emit dislocations. First 
dislocation emits from z = 0 at CTOD = 3.1 Å, and loops towards the support wall, closely 
followed by another dislocation initiating in the middle of the beam and looping in the 
opposite x-direction. These dislocations release themselves completely from the crack tip and 
take place in rows at an angle of 52-58° on each side of the crack tip. From Table 6, slip is 
expected in an angle of 54.7°, so this shows good correlation. After several dislocations have 
travelled in this direction, they start to move upwards in positive y-direction, at an angle of 
128.5° from the crack plane, still in good agreement with the expected result of 125.3° in 
Table 6. This orientation has the 112 111  slip system in the “anti-twinning” orientation 
[21]. This means slip is expected as dislocation emission rather than twinning, which is also 
what is observed here. 
 
Orientation 3 exhibits less plastic development before dislocation emission and crack growth 
– and subsequently displays a significantly different behavior than the other orientations. The 
plasticity development happens due to high stress tearing the crystal out of their shape, 
making them characterized as non-BCC, and these high stresses are enough to initiate 
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propagation. In orientation 3 the stresses seem to be better distributed, as there is significantly 
less development of plasticity preceding the crack growth.   
 
This orientation experiences quite heavy dislocation emission from the bottom of the beam. It 
was discovered late in the process that the rounding part had failed for this beam, and this 
might be the reason for this. 
 

 
Figure 20: Crack growth for cantilever 3 at CTOD = 24.3 Å. (a) z = 200 Å, (b) z = 0. Coloring is 

done by CNA, where blue is BCC and white is unidentified structure. 

Orientation 4, 100 011  
 
Orientation 4 has the crack plane on (100), and the crack front along the 011  direction. 
Plasticity develops in no particular angle, just located below the crack front. The crack starts 
propagating in a brittle manner, slowly at first and then fast, along the (100) plane. The 
cleavage extends almost all the way to the edges. This one is by far the most brittle of the four 
orientations. At CTOD = 16.8 Å dislocations start to emit from the corners of the cleavage, 
looping towards the middle and hence blunting the crack in a triangular shape, though it is 
still brittle in the middle. This behavior is similar to that of orientation 2, only the initial 
cleavage fracture extended farther out on the edges and propagated longer before the 
triangular blunting.  The edges are initially held together by a thin layer of atoms and a few, 
short dislocations on the edge of the cleavage fracture, but they are not blunted enough to 
withhold a fracture and this beam is the only one breaking all the way through. In Figure 21 
(b), the edge is still being withheld by the small dislocations that are also visible as white 
atoms. However, a view of the full fracture is found in Appendix B. 
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Figure 21: Crack growth for cantilever 4 at CTOD = 9.5 Å. (a) z = 200 Å, (b) z = 0. Coloring is 
done by CNA, where blue is BCC, green is FCC and white is unidentified structure. Note the 

small dislocations meeting the edge in (b). 

 
The cantilevers tend to behave as expected, based on previous results. The behavior of the 
cantilevers are very similar to that observed in mode I loading by Vatne et al. [24] in 3D and 
also by Vatne et al. [23] in 2D. However, when reviewing the results obtained by Gordon et 
al. [20] for the same orientations and potential, only cantilever 4 exhibits the same behavior. 
They obtained ductile crack growth in orientation 2, and brittle in orientation 3, opposite of 
what is seen here. Orientation 4 has previously shown dependence on crack length: the longer 
crack propagated by cleavage, whereas shorter cracks developed twinning [21]. The crack 
length can therefore be explored further, to see if the same tendencies will be observed in the 
cantilever model, as the crack length researched here produced only cleavage.  
 
All the cantilevers displaying cleavage fracture are doing so by propagating stepwise, like 
they are collecting enough energy to propagate further. The behavior is not reminiscent of 
unstable fracture, even though brittle fracture is usually known as unstable. Ersland et al. [25] 
observed that the penny-shaped cracks changed shape to easier emit dislocations and develop 
mechanical twins: the material was doing its best to avoid crack growth. This may also be the 
case for the cracks in the cantilever beams: even the very brittle will eventually emit 
dislocations or start twinning to relax the crack and slow down the growth.  



 33 

 
In cantilevers 1 and 2, the edges are blunted regardless of the crack growing in the middle. 
This is due to the triaxiality of the beam, where the plane stress state on the edges withholds 
the growth, causing behavior reminiscent of tunneling. Tunneling was also observed in 
physical cantilevers in [13]. Cantilever 4 breaks all the way through, and cantilever 3 is as 
ductile in the middle as it is on the edges, implying that those two are not as affected by the 
triaxial state as cantilevers 1 and 2. This is also visible when looking at the cross sections for 
the beams at the end of the simulation, cantilevers 1 and 2 display considerable contraction at 
the crack edges, whereas cantilevers 3 and 4 look the same as pre-simulation, see Figure 22. 
 

    
(1) (2) (3) (4) 

Figure 22: Last frame of all cantilevers, denoted by their respective number. The cut has been 
made at the crack for all cantilevers. Cantilevers 1 and 2 contract visibly, whereas 3 and 4 

remain straight on the edges. 

 

4.2 Effect of Loading Rate 
 
As mentioned in chapter 3, orientations 2 & 4 were run with two different strain rates, over 
both 1 million and 2 million time steps, corresponding to cantilevers 2, 4, 5 and 6. The load 
vs. CTOD curves for the four simulations are shown in Figure 23. The 2 million jobs were 
aborted some time before the max load was reached, but as they had gone considerably longer 
than initiation they were deemed to be good for use anyway. This will, however, affect the 
plots, as the max load is lower for the simulations that did not completely finish.  
 
The plots in Figure 23 show that the crack growth behavior is similar for the two orientations. 
It does seem however that cantilevers 5 and 6 show a more abrupt crack initiation, compared 
to cantilevers 2 and 4, which seem to initiate more smoothly. When the critical load is 
reached, cantilever 5 and 6 have been loaded for about twice as long as cantilevers 2 and 4, 
which might influence on the initiation behavior.  
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Figure 23: L-CTOD curves for orientations 2 and 4 over 1 and 2 million time steps. 

 
Looking at the highest mutual load for all of them, 800 nN, it is evident that the cracks with 
the lowest loading rate have grown the most. This is also easy to spot when looking at 
maximum CTOD for the cantilevers, how the 2 million ones have grown more at their non-
maximum load than the 1 million cantilevers have at their maximum.  
 
It is already mentioned that the behavior seems to be similar for the two loading rates, and this 
is also confirmed when looking at the visualizations in OVITO. The beams exhibit pretty 
much identic behavior. The two loading rates are still both very high, and not highly different, 
when compared to physical experiments. This may explain the similarity in crack behavior. 
An even longer simulation would be interesting to see, but is also limited by computational 
power. 
 

4.3 Effect of Crack Geometry 
 
PhD candidate Jørn Skogsrud performed similar simulations concurrently with the work 
performed for this thesis. Instead of making an atomistically sharp crack, he created a crack 
with a certain width and a rounded crack front, closer to what a crack would be looking like 
when made by for instance Focused Ion Beam milling. The parameters for the cantilevers 
were otherwise the same. The two initial crack can be seen in Figure 24. The models with the 
rounded crack were run over 2 million time steps, twice as long as the sharp crack 
simulations. However, as the two different strain rates didn’t have much influence on fracture 
behavior, as explained in the previous section, it is reasonable to assume that this comparison 
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still holds. Due to the different loading making the time steps un-relatable, a comparison was 
made based on similar displacement of the beams, the respective displacements listed in Table 
8. The difference in the displacements is due to availability of dump files. It should be 
mentioned, that even though these comparisons are assumed to be reasonable, any differences 
might still be explained with the difference in loading rate and displacements. 
 

  
(a) (b) 

Figure 24: The two crack geometries before any deformation, (a) is atomistically sharp, (b) is 
rounded and with a certain distance (11-16 Å) between the walls. 

Table 8: The different crack geometries and their respective displacements at the time of 
comparison. 

Crack Orientation Crack Width [Å] Displacement [Å] 
Sharp 1 0 240 

2 0 193 
3 0 314 
4 0 245 

Round 1 11 263 
2 16 188 
3 16 338 
4 11 226 
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Figure 25: The four orientations, their respective number in parenthesis, with two different 

crack geometries, the sharp crack to the left and the blunted crack to the right. 

 
As is presented in Figure 25, the two different crack types propagated in slightly different 
ways.  This is probably due to the higher build-up of stresses in an atomistically sharp crack. 
The most similar are orientations 3 and 4. For the rounded crack, orientation 4 has some 
leftover “debris” from the original crack, but still shows very straight, brittle growth, if not as 
clean as the sharp crack produces. Orientation 3 is even more blunted, with less crack growth, 
with a rounded crack. The correlated displacements in orientation 2 are on different sides of 
the initiation point. However, the blunted version has a “kink” in the crack wall itself, 
something that is not seen for any of the other cantilevers. The kink develops due to 
dislocations trailing across the back of the crack wall. This naturally contributes to CMOD 
growth and overall increased displacement, and explains why the similar displacements for 
the two beams are on each side of the initiation point. Orientation 1 shows angled behavior 
for both beams, but the sharp crack produces much cleaner, more brittle growth than the 
blunted crack. In addition, the angle is sharper for the sharp crack cantilever. The crack 
geometry definitely affects the crack growth, which is expected due to the different 
distribution of stress. However, the general behavior of the cantilever is not very different 
between the two crack types.  
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4.4 Dislocation Analysis 
 
A dislocation analysis was made for cantilevers 1-4, using the Crystal Analysis Tool (CAT). 
CAT reads a full dump file, not an alpha or beta file, and the first available dump file after 
crack initiation was chosen for the dislocation analysis. This section presents the CAT 
analysis of cantilevers 1-4, shown alongside the same time step in the beta dump file. The 
beta file is either colored by atom position or potential energy, based on which color-coding 
best described the dislocation. The directions of the x-, y- and z-axes are given for each 
cantilever. Two CAT files was made for cantilever 4, to account for both the small 
dislocations accompanying the crack growth, and the dislocation loops that emit later in the 
simulation. CAT returns all detected dislocations in a file that is visualized in OVITO. 
Dislocations with Burgers vector !

!
111  are shown in green, and the dislocations with 

Burgers vector 100  are shown in purple.  
 
Cantilever 1 
𝑥𝑦𝑧 = 100 010 001   
 
The first dislocation in cantilever 1 takes place before any significant crack propagation has 
started. The initial dislocations emit from the crack edges, like the one depicted in Figure 26. 
Probably the most interesting feature in the dislocation activity in cantilever 1 is the 
combination of dislocations, creating significant 100  Burgers vectors.  
 

  
(a) (b) 

Figure 26: Dislocation development for cantilever 1 at CTOD = 5.4 Å. (a) shows the dislocation, 
colored by X-position, blue being closest and red farthest away. (b) shows the dislocation 

extracted, from the same position. 
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Cantilever 2 
𝑥𝑦𝑧 = 110 110 001   
 
For cantilever 2, both dislocations and twinning are happening concurrently with crack 
initiation. The long dislocation in Figure 27, colored mostly in blue, emits from z = 0 (left 
side in figure), before any twinning has occurred. In z = 400 Å (right side in Figure 27) 
twinning develops first, and the second dislocation emits from the bottom of the twinning 
plane. After substantial crack growth, both twinning planes emit dislocations regularly. Figure 
27 also shows the uneven crack growth mentioned in section 4.1, the crack has clearly grown 
more underneath the most developed twinning plane. 
 

 

 
Figure 27: Dislocation development in cantilever 2 at CTOD = 8.5 Å. Top picture is colored by 

X-position, with blue being closest and red farthest away. The z-axis is aligned with original 
crack front. Bottom picture is the extracted dislocation from CAT.  
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Cantilever 3 
𝑥𝑦𝑧 = 101 010 101   
 
Cantilever 3 has perhaps the most regular dislocation pattern of all the cantilevers. They emit 
from the crack tip, release themselves completely and follow the 112 111  slip planes at 
angles of 52-58°, as edge dislocations on each side of the crack tip. They go out on both sides 
of the tip, and moving downwards in a negative y-direction at first, see Figure 28. Late in the 
simulation, at CTOD = 38.9 Å, a new slip plane is activated, and the dislocations start moving 
in the positive y-direction in an angle of 128.5° with respect to the crack plane. 
 
As mentioned in section 4.1, the rounding part at the bottom of the pentagonal cross section 
beam did not happen for this cantilever. Many dislocations emit from the corner of the beam 
and the support wall, and the lack of rounding is thought to abet this behavior. These locations 
portray the same type of behavior, lying organized in rows, but it is quite easy to detect which 
dislocations are coming from the tip or not. The dislocations detected from the bottom corner 
of the beam are partly cut out of the picture in Figure 29, but have been kept in Figure 28 to 
illustrate.  
 

 
 

Figure 28: Visualization of the activated slip planes in cantilever 3. Note the separate slip plane 
occurring from the bottom of the unrounded beam geometry. The support wall is on the  

right-hand side in this figure. 
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Figure 29: Dislocation development for cantilever 3 at CTOD = 7.5 Å. Top picture is colored by 
potential energy; bottom picture shows the extracted dislocations. The bottom two dislocations 
that have been partly cut out of the picture come from the corner of the beam and support wall 

and are deemed unimportant for the crack growth. 
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Cantilever 4 
𝑥𝑦𝑧 = 100 011 011   
 
Cantilever 4 has the least development of dislocations. There are small dislocations towards 
the edges of the beam, as is visible in Figure 30. These dislocations cross each other, and 
some even combine into a 100  Burgers vector dislocation, see Figure 31. After substantial 
crack growth, the dislocations emit as full loops; they relax the crack and slow down the 
growth. These loops can be seen in Figure 32. These dislocations emit very similarly on each 
side, and in general this cantilever shows very even, symmetric behavior. This symmetry is 
also clear for the cleavage propagation and the small dislocations shown in Figure 30. 

 

 

Figure 30: Dislocation development for cantilever 4 at CTOD = 9.5 Å, viewed from the end of 
the beam.  Top picture is colored by potential energy. 
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Figure 31: Dislocation development for cantilever 4 at CTOD = 9.5 Å, viewed from below the 

crack.  Left pictures are colored by Y-position. 
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Figure 32: Dislocation development for cantilever 4 at CTOD = 21.9 Å. Top picture is colored by 

potential energy, and the z-axis is aligned with original crack front. Bottom picture shows the 
extracted dislocations from the CAT.  

 
The beams emit mostly !

!
111  dislocations, and very different dislocation behavior between 

the orientations. The 100  dislocations come from two dislocations that merge. This is 
explained in section 2.3.1, and shown in Figure 33. The dislocations are generally of mixed 
character, though on some of the dislocations it is possible to spot screw and edge dislocation 
behavior, at emission point and at the beam edge, respectively. One example of this is 
depicted in Figure 34, for cantilever 3.  
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Figure 33: Development of a dislocation with 𝟏𝟎𝟎  Burgers vector, when two dislocations 

merge into one. 

 
Figure 34: The red arrows represent the direction of the Burgers vector at emission point and at 

the edge. The Burgers vectors near the crack tip are parallel to the dislocation, and thus 
represent screw dislocations, whereas the remaining vectors are perpendicular to the dislocation 

and represent edge dislocations. 

 
Since the CAT relies on a full dump file to do its analysis, one is limited to every 50 000th 
time step. To give some supplementary info, the first dislocation event is therefore found in 
OVITO for each cantilever. The corresponding point on the CTOD-displacement curve is 
then found and illustrated in Figure 35. 
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Figure 35: First dislocation event for cantilevers 1-4, placed on the related spot on the  

CTOD-displacement curve. 

What we see in Figure 35 is that for cantilevers 1-3, the first dislocation event is happening 
around the point of initiation. Cantilever 4, however, has substantial crack growth before the 
first dislocation loop emits. This means that all the stress collected at the crack tip contributes 
to the cleavage fracture rather than dislocation nucleation. Cantilever 4 also emits dislocations 
from both edges at the same time, whereas the dislocations in beams 1-3 generally start near 
one of the edges. 
 
 

4.5 Linear Elastic Fracture Mechanics Approach 

4.5.1 Stress Intensity Factor  
 
The stress intensity factor K is calculated at the point of crack initiation for cantilevers 1-4. 
This is keeping in line with the project work done preceding this thesis [2]. The three 
geometric shape factors presented in section 2.5.1 are applied to all cantilevers. As these 
calculations are done on a singular point where there is no significant crack growth, both the 
a/h-ratio in the shape factors and the initial crack length a are used at initial values. 
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Table 9: Calculated 𝑲𝑸 values at point of crack initiation. 

𝑲𝑸   𝑴𝑷𝒂 𝒎  Load [nN] Wurster2 Di Maio3 Zhao4 
Cantilever 1 580 0.88 1.19 0.95 
Cantilever 2 737 1.11 1.52 1.21 
Cantilever 3 748 1.13 1.54 1.23 
Cantilever 4 609 0.92 1.25 1.00 

 
Table 9 shows the calculated 𝐾! values for cantilever 1-4 and 7. The values are well within 
the expected range, based on project work [2] and previous findings [20, 25, 31]. The Di Maio 
approach gives the largest values. The shape factor proposed by Di Maio and Roberts was 
based on a different width to height-ratio than Zhao’s approach, and this might explain the 
increase in values. The Wurster approach gives the lowest numbers, though not by much. The 
small deviation might again be explained by the shape factor being based on a different cross 
section, and the adjustment made to try and meet the criteria, ref. section 2.5.1.  
 
Cantilever 1 was researched in 2014 at a temperature of 5 K [2], and the Zhao approach was 
used to calculate K at the point of initiation. This research gave 𝐾!!!" = 1.03  𝑀𝑃𝑎 𝑚, a 
value higher than the currently obtained value at 300 K. The physical parameters for these 
models were the same with the exception of the rounding part at the bottom of the pentagonal, 
but the loading is different. The beam at 5 K was run to a higher load, and the crack initiated 
at 838 nN. The loading for the more recent 300 K beam simulations was adjusted based on the 
previous 5 K research, and this will influence the values. 
 
 

4.5.2 Energy Release Rate  
 
The theoretical Griffith criterion for the energy release rate 𝒢!" = 2𝛾! was compared to the K-

based energy release rate 𝒢 = !!(!!!!)
!

. The values for 𝛾! are found in [20], and the elasticity 
modulus values for the different orientation systems are obtained from [25]. It is reasonable to 
assume that the theoretical energy release rate will not be on point, as it is based on perfectly 
brittle materials such as glass. Table 10 shows 𝒢 obtained for each K in Table 9. 
 
 
 
 
 
 
 

                                                
2 Equations (14)-(16) 
3 Equations (8)-(11), (13) 
4 Equations (8)-(12) 
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Table 10: Theoretical vs. calculated energy release rate for cantilevers 1-4. 

 𝜸𝒔  [𝑱/𝒎𝟐] 𝓖𝑮𝒓  [𝑵/𝒎] E [GPa] 𝓖𝑾𝒖  𝓖𝑫𝒊𝑴  𝓖𝒁𝒉𝒂𝒐     
Cantilever 1(!"")  1.79 3.58 131 5.32 9.86 6.30 
Cantilever 1(!!") 1.65 3.30 202 4.15 7.69 4.91 
Cantilever 2(!!") 1.65 3.30 202 5.58 10.35 6.61 
Cantilever 3(!!") 1.65 3.30 204 5.69 10.54 6.73 
Cantilever 4(!"") 1.79 3.58 132 5.83 10.80 6.90 

 
What is clear in Table 10 is that the obtained values for  𝒢 imply a tougher material than the 
Griffith criterion suggests, i.e. a higher energy level is needed for the material to break. 
Especially the Di Maio approach gives a very large outcome, deviating far from the Zhao and 
Wurster approaches which are more alike. The values obtained by the Di Maio approach may 
thus not be completely reliable. Pure iron has a tendency to emit dislocations and twinning, 
and as seen in the simulations performed, even brittle crack growth experiences dislocation 
emission. Dislocations require energy to move, and this will go into the consideration of 𝒢. 
This is also explained in [8], where the Griffith equation is modified to 
 
 

𝜎! =
2𝐸 𝛾! + 𝛾!

𝜋𝑎

!/!

 
(29) 

 
where 𝜎! is the fracture stress and 𝛾! is the plastic work per unit area of surface created. 𝛾! is 
typically much larger than 𝛾!. Ersland et al. [9] defines the total work of fracture, including 
plastic deformation and irreversible work, as 𝛾!"", and in turn 𝒢! = 2𝛾!"". Based on the 
results in Table 10, 𝛾!"" is lying in the range of 2.5 - 3.5 N/m for the Wurster and Zhao 
approaches, which is considerably larger than 𝛾!. 
 
In cantilever 1, the crack changes direction and starts to grow on a (110) plane rather than 
along the crack plane (100), which is expected due to its lower surface energy. Due to the 
anisotropy of a BCC crystal, the modulus of elasticity changes for different orientations. Both 
(100) and (110) planes have been considered on the calculations of 𝒢, and shown in Table 10. 
The calculations for the (110) plane have been made at the point of direction change rather 
than the first initiation. By considering the new crack direction, the values for the energy 
release rate decrease notably.  It is reasonable that the 𝒢 is lower; since the crack decides to 
change direction, but it is questionable whether this is a more valid value to consider, as this 
cantilever exhibit both substantial dislocation emission and twinning.  
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4.6 Elastic-Plastic Fracture Mechanics Approach 

4.6.1 J-integral 
 
In a physical experiment on cantilevers, the beam is unloaded regularly to measure the 
compliance, and the J-integral is calculated based on the ligament size at these points. As the 
cantilevers modeled in this thesis do not unload, calculation points were chosen by a regular 
pattern: the closest 50 000th time step before initiation, and every 50 000 time step throughout 
the simulation. This was chosen based on accessible dump files of all atoms around the crack. 
One J for each K-approach is calculated for every step, and the shape factor is taking crack 
growth, i.e. a changing a/h-ratio, into consideration. The procedure for the J-calculations is 
explained in section 2.6.1. The crack growth is found by measuring the ligament, i.e. the 
length from the deepest crack point to the lowest point on the beam, for every step.  
 
Figure 36 on the next page shows the calculated J-values plotted against the measured crack 
growth for cantilevers 1-4. The shape factor largely influence the outcome of J, with the Zhao 
approach being particularly sensitive to the growing crack. The three methods are most 
coherent for cantilever 3, the most ductile orientation of the four. This is also the only 
orientation, for which the Zhao approach does not give the highest values. This makes sense, 
as the Zhao approach is obviously very sensitive to crack propagation, and cantilever 3 does 
not propagate as the other cantilevers do.  
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Figure 36: J vs. crack growth for cantilevers 1-4. The full size plots are included in Appendix A.  

 
Very few reports have been made on the J-integral in atomistic modeling. Jin and Yuan [32] 
modeled 2D graphene and assessed the J-integral, but graphene and iron are fundamentally 
different and their results are not comparable. Zimmerman and Jones [33] applied the J-
integral to atomistic simulations of BCC iron, and reported values of 3.42 and 3.78 J/m2, for 
first and second dislocation emission, respectively. The J-values obtained in this report is not 
based on dislocation emission specifically, but even so, the values reported in [33] are 
considerably lower. Zimmerman and Jones used a different approach than is used here; they 
applied the actual integral on given paths around the crack. Wurster et al. [13], which a lot of 
this work is based on, gets values for J in the range of about 150-1400 J/m2. These are 
however calculated for physical cantilevers and may not be comparable with the atomistic 
models. If we were to compare them nonetheless, the atomistic models gain lower J-values 
than physical cantilever, with the exception of cantilever 4. As cantilever 4 is cracking almost 
all the way through, crack growth and a/h-ratio is severely affected, obviously. This gives 
extremely high values for J, the highest almost 20 000 J/m2, which is not a good number for 
measuring fracture toughness.  
 
In general, the values obtained for J seem to be quite large. When compared to the energy 
release rate, the values should be quite similar during the elastic part of the simulation, 
according to theory [8]. Figure 37 shows the values for J at step 1, which is still before 
initiation, compared to 𝒢, which is calculated at the point of initiation. This small difference 
in calculation parameters is not considered to be of high relevance to the outcome. It is clear 
from the comparison that the J-integral gives much larger values for fracture toughness than 
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𝒢. Given that 𝒢 is calculated from K, and K is already argued to be quite reasonable, the J-
values may be higher than they should be for this kind of experiment. What one has here, is 
an approach made for continuum mechanics applied directly to an atomistic model, and many 
approximations are done. For example, the choice of evaluation points due to lack of 
unloading may influence on the outcome of J. A refining of the method is probably needed 
for the J-integral to be more precise in atomistic simulations. It may be worth looking into 
obtaining it by creating a path and calculating the integral over it. 
 

  

  
Figure 37: Energy release rate 𝓖 compared to the J-integral for cantilevers 1-4. Both energy 

release rate and J-integral are given in J/m2. (1) is Wurster approach, (2) is Di Maio approach 
and (3) is Zhao approach. 
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Effect of constant shape factor 
 
Figure 38 shows the calculated J-values when crack growth is not taken into consideration, 
for cantilever 1. Compared to the plots for cantilever 1 in Figure 36, the obtained values for J 
are much lower, and will therefore give a more conservative result. This also concludes the 
Zhao approach’s sensitivity for crack growth. The general look of the plots on Figure 38 is 
much more similar to that of orientation 3 in Figure 36. 
 
 

 
Figure 38: J vs. crack growth for cantilever 1, with a constant shape factor and crack depth a. 

 

4.6.2 Stress Intensity Factor  
 
A new value for K was obtained by the use of J and equation (23). The value for 𝐾!,! is 
chosen at evaluation point 2 of the J-calculations, and shown in Figure 39 compared to its 
corresponding 𝐾! found by the LEFM approach. The evaluation point was chosen due to it 
being the first point after crack initiation, as J has not been calculated at exactly the initiation 
point.  
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Figure 39: The two different K-values for cantilevers 1-4, at evaluation point 2. (1) is Wurster 

approach, (2) is Di Maio approach and (3) is Zhao approach. 

 
The trend in Figure 39 is that the J-based K is higher than the LEFM-based K. This is 
expected, due to the fact that J grows with a growing crack, and the LEFM approach is only 
valid for the linear elastic part of the simulation. The Di Maio approach also gives the largest 
outcome, which is consistent with what is already presented in section 4.5.1. It is interesting 
to observe that the highest values, both LEFM and J-based, occur in cantilever 2, since 
cantilever 3 displays the most resistance to crack growth. Contrary to what one would expect, 
the difference in fracture behavior does not influence much on the calculations. 
 

4.6.3 Crack Tip Opening Displacement 
 
The energy release rate 𝒢 and the measured CTOD value at the point of initiation is utilized 
further by calculating a value for the yield stress 𝜎! by the use of equation (25). Even though 
the crack growth at this point is set to be zero, the crack has still started to open, hence the 
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available value for CTOD. The results are shown in Table 11. Based on the crack behavior of 
the cantilever beams, a state of plane strain is assumed, and the m mentioned in equation (25) 
is set to be 2.0 [8]. 

Table 11: The calculated values for yield stress 𝝈𝒚. 

 CTOD [Å] 𝝈𝒚,𝒕𝒉𝒆𝒐𝒓𝒚 
[GPa] 

𝝈𝒚,𝑾𝒖𝒓𝒔𝒕𝒆𝒓 
[GPa] 

𝝈𝒚,𝑫𝒊𝑴𝒂𝒊𝒐    
[GPa] 

𝝈𝒚,𝒁𝒉𝒂𝒐 
[GPa] 

Cantilever 1(100) 4.15 4.31 6.40 11.87 7.58 
Cantilever 1(110) 6.45 2.56 3.22 5.96 3.81 
Cantilever 2 2.99 5.52 9.34 17.31 11.06 
Cantilever 3 3.86 4.28 7.37 13.66 8.72 
Cantilever 4 2.82 6.35 10.33 19.15 12.23 

 
Based on simulations done on pure iron nanopillars [34], the yield stress was expected to lie 
in the 8-10 GPa range. As expected based on the obtained values for 𝒢, the Di Maio method 
gives very high yield stress values, whereas the other two methods produce numbers for the 
yield stress that are well within the expected values. Going back to section 4.5.2, this would 
suggest that the calculated values for 𝒢 are reasonable, agreeing with the notion that the 
simplest Griffith criterion is not well fitted for this kind of experiment. It also implies that the 
measuring of CTOD is a good procedure. As previously discussed in section 4.6.1, the J-
values seemed a bit high compared to the values for 𝒢. When concluding that 𝒢 is reasonable, 
that will also suggest that the values for J are higher than they should. It is also reasonable to 
conclude that the Di Maio approach is not the most reliable for these calculations.  
 
Cantilever 1 grows on two different planes; first (100) and then it changes to the (110) plane. 
The values calculated for this beam is done at the point of crack initiation for (100), and at the 
point of direction change for (110). The lower energy release rates presented in section 4.5.2 
will obviously provide a lower yield stress. The yield stresses for cantilever 1(110) are way 
below what is expected. This might be due to the fact that it is obtained at a point after what 
can be conceived as yield in the specimen, but there is no evident reason why this beam 
should display a lower yield stress than the other beams.  
 
The validity of 𝐾! was checked based on the obtained yield stress values, by the use of 
equation (7). Excluding the values for the Di Maio approach and the lowest yield stresses for 
cantilever 1, the validity was checked for the highest and lowest yield stress, and their 
corresponding K-value. For the lowest yield stress (Wurster approach, cantilever 1), w, a and 
(h-a) need to be larger than 473 Å, hence this K is not valid as 𝐾!". For the highest yield stress 
(Zhao approach, cantilever 4), the same parameters need to be larger than 167 Å. This would 
be OK for (h-a) and w, but the notch depth at 120 Å is still too small for the value to be 
defined as 𝐾!". 
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4.7 Comparison with Physical Experiments 
NOTE: This section is written in cooperation with Brage D. Snartland and Aksel L.L. Kvaal, 
and will as a whole also appear in their theses. 
 
M. Jørum has in this thesis been modeling pure iron cantilevers atomistically at room 
temperature, and B.D. Snartland [35] and A.L.L. Kvaal [36] have been loading pure iron 
cantilevers. This section is dedicated to identify possible correlations between practical 
experiments and atomistic modeling. The cantilevers are pentagonal, calculations have been 
executed based on the same assumptions, and using the same methods. Detailed theory related 
to atomistic modeling and fracture mechanics is described in Jørum's Master thesis, and 
theory related to material behavior and fracture mechanics is described in Snartland's and 
Kvaal's Master theses. 
 
Figure 40 shows the calculated or measured crack growth for both pure iron cantilevers and a 
modeled cantilever. The modeled cantilever is connected to the right hand side y-axis due to 
its smaller size resulting in smaller values. There is a clear correlation in crack behavior for 
the cantilevers. All cantilevers exhibit slow crack growth after the initial unloading steps, 
before accelerating at the later unloading steps. Note that the modeled cantilever does not 
unload, and the measuring steps are chosen according to simulation time steps.  
 
 

 
Figure 40: Crack growth for physical pure iron cantilevers compared to atomistic model of 

cantilever beam. 
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Figure 41 shows J-Δa curves for the atomistically modeled cantilever and both pure iron 
cantilevers. Both the pure iron cantilevers have higher J-values than the simulated cantilever, 
meaning that the modeled cantilever is less tough than the pure iron cantilevers. A possible 
explanation is the difference in loading rate, which is significantly larger for the atomistic 
model. The modeled notch is also atomistically sharp, while the machined notches are 
substantially blunter. A sharp tip requires less energy to propagate a crack compared to a 
blunt tip. 
 

 
Figure 41: J vs. crack growth for physical cantilever and atomistic model of cantilever beam. 

 
Figure 42 shows the critical stress intensity factors for the different cantilevers, taken after the 
largest jump in crack growth. The K-values are lower for the modeled cantilever than the 
machined cantilevers. This was expected due to the differences in the calculated J-values, 
already, and is also attributed to the differences in loading rate and notch geometry. 
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Figure 42: 𝑲𝑸,𝑱 for physical cantilever and atomistic model of cantilever beam. The value is 

calculated with Wurster and Di Maio approaches, at the step after most crack growth (step 4 for 
atomistic model). 

 
The real cantilevers and the modeled cantilever displayed similar deformation behavior. 
However, the notch geometry, loading rate and specimen size influence the quantitative data 
obtained. The loading rate is significantly different; the machined cantilevers are loaded by a 
unit of µm/min, while the modeled beams are loaded by a real time rate of m/s. The different 
notch geometries are strongly affecting the fracture properties of the cantilevers, which is in 
accordance with literature [37, 38]. The size is typically differing by one order of magnitude. 
Another aspect to consider is that the modeled material is perfect and defect-free, whereas the 
pure iron used to machine cantilevers in the lab contains several types of defects; these affect 
the material properties and fracture behavior.  
 

4.8 Remarks 
 
There are many obstacles to cross when going from continuum mechanics to the atomistic 
level. MD simulations depend on computational power, and even though the computers are 
getting more powerful every year, there is still a long way to go before MD meet physical 
experiments. The deformation rate used in simulations is usually in the 108 s-1 order of 
magnitude, whereas a similar physical experiment will be performed at the order of 10-3 s-1. 
High deformation rate is known to affect the material behavior during fracture, and the rate 
obtained in MD simulations is particularly high. The time steps need to be small enough to 
capture the highest frequency motion of the vibrating atom bonds, giving a typical time step 
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value in the order of femtoseconds (fs, 1x10-15 s). In the case of this thesis, the time step is set 
to be 1.5 fs. This gives a simulation of 1 million time steps a real time of 1x10-9 s, namely 1 
nanosecond.  

Size is another issue, again limited by computational power. The largest reasonable 
simulation scenario lies at approximately 50 million atoms, suggesting a three-dimensional 
box of about 50 nm3, whereas the smallest reasonable volume for equivalent testing in the 
laboratory would be closer to 5000 nm3.  
 
Another aspect is the potentials used for atomistic simulations. There are a vast number of 
potentials to choose from, but they are all approximations to the real material and will always 
have some limitations. For instance, as mentioned in section 2.1.1, the EAM potential does 
not take directional bonding into consideration, whereas the more accurate bond-order 
potential requires such a high level of computational power for it to be a reasonable choice in 
many applications. In addition, while there are well-developed potentials for pure materials, 
there are still no potentials for the classic engineering material: steel. This means that the 
simulations performed in this work are done in pure iron, in contrast to a structure in the 
Arctic that would most likely be made of steel. 
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5 Conclusion 
 
Molecular Dynamics simulations have been conducted to highlight the fracture behavior of a 
full-3D cantilever beam on the nano scale. The effect of crystallographic orientations, crack 
geometry and loading rate was researched, and both stress intensity factor K and J-integral 
were calculated for the cantilevers. In general, the behavior of the beam seems to agree with 
continuum theory, and shows promise of being a realistic model for further research. 
 
Crystallographic orientation proved to have high influence on the general fracture behavior of 
the cantilever beams. They all showed signs of continuum mechanics manners, which is 
interesting due to the very small sample size. Two of the beams were influenced by a triaxial 
stress state, causing the crack to cleave in the middle of the model, yet blunt the crack tip on 
the edges. The remaining two cantilevers displayed ductile and brittle fracture respectively. 
The behavior of the cantilever beams with the different orientations was discussed with 
regards to relevant theory and previous studies on similar models, and showed generally good 
agreement with previous findings.  
 
Two different loading rates were investigated, with simulations running over 1 million time 
steps and 2 million time steps, respectively. The difference in loading rate did not in any 
particular way influence the fracture behavior. The difference between the two loading rates 
may be too small for it to be very significant, as the loading rate is still very high. Due to 
computational time being quite long for these large models, no longer attempts were made in 
this report, but would be interesting to look further into.  
 
Two different crack geometries were investigated, by the cooperation with concurrent Ph.D. 
work. A sharper crack produced more brittle, clean crack growth, but the general crack 
behavior showed the same trends. 
 
Stress intensity factor KQ was obtained for cantilevers 1-4, giving expected values for the 
most part. The K values were used further, by calculating the energy release rate 𝒢, and 
comparing it to the theoretical energy release rate as given by the Griffith criterion. The Di 
Maio approach to the problem gave very large values, about three times the Griffith values, 
whereas the Wurster and Zhao approaches gave values about 1.5 times the Griffith value. This 
yields that the Griffith criterion is not valid for materials that are not perfectly brittle, which is 
in good agreement with theory. 
 
J was computed for cantilevers 1-4, including all three shape factors considered. The values 
are highly affected by their corresponding shape factor. When calculating J, crack growth Δa 
and thus an increasing a/h-ratio was taken into consideration, and especially the Zhao 
approach showed high sensitivity to crack growth. The effect of keeping the shape factor at 
constant a and a/h values was displayed for cantilever 1, and proved to give a more 
conservative result than for a changing shape factor. The values for J was compared to the 
energy release rate 𝒢, and concluded to be slightly higher than expected. The method for 
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obtaining J in these kinds of simulations will probably need some adjustments to be a better 
measure. 
 
The measured CTOD was connected to the calculated values for energy release rate 𝒢 to find 
prospective values for the yield stress σy. The Di Maio approach was disqualified in this 
calculation, as it returned unreasonably large values for yield stress. The Zhao and Wurster 
approaches, however, returned very good values well within what has been obtained in 
atomistic modeling of nanopillars. This implies that the acquired values for 𝒢 are good and 
valid. The yield stress was in turn used to check the validity of KQ as KIc, but it was deemed 
not valid. 
 
The atomistic model was compared to similar, physical experiments. The values for J and KQ,J 
were plotted against one another, and showed that the atomistic model had lower values, 
indicating a lower stress needed to initiate crack propagation. This was probably caused by 
the substantial difference in loading rate, as well as notch geometry and size effects. 
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6 Further Work 
 
The journey of atomistic modeling has only just begun, and with the ever-evolving 
technology it will be interesting to watch the development of these kinds of simulations. If 
time had allowed, more aspects of this work would have been interesting to research further.  
 
Considering this work is meant for investigating the Arctic environment, the effect of 
temperature should definitely be researched better. It is common to do MD simulations at 
temperatures of 0 K, but as this temperature is not really feasible in real life, the range from 
0°C to -100°C is more interesting.  
 
Computational time is an issue with MD simulations, even running on a high-class 
supercomputer, a simulation over 1 million time steps takes several days to finish. But if time 
allows, an as low as possible loading rate would be highly interesting to study, as loading rate 
is one of the biggest factors limiting MD from real life experiments. 
 
The crack tip response is mentioned in the background part of this thesis, but was not taken 
into consideration when analyzing results. The effect of stacking faults is a very interesting 
field to look into.  
 
An attempt to unload the beam, similar to what is done in the lab, was done while working 
with this thesis. A special dump file for restarting the simulation was put out regularly, and 
then the simulation was reversed from the current load. There were issues with the boundary 
conditions, and the attempt was categorized as a failure, but it would be interesting to see if 
this will have any impact on the full deformation process of the beam. 
 
A lot of other factors could be taken into consideration when doing these kinds of 
computational experiments, such as other orientations, specimen size, notch depth and general 
beam geometry. The deflection could also be displacement controlled instead of load 
controlled.  
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Appendix A: J-Δa Plots 
This appendix contains the full-sized version of the plots shown in Figure 36 in section 4.6.1. 
 

 
Figure 43: J-Δa plots for cantilever 1. 

 
Figure 44: J-Δa plots for cantilever2. 
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Figure 45: J-Δa plots for cantilever 3. 

 

 
Figure 46: J-Δa plots for cantilever 4. 
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Appendix B: Through-thickness Crack Growth 
The following figure illustrates the growth for cantilevers 1-4 at both edges and in the center 
of the beam, at CTOD values ranging from 35-39 Å. 
 

 
Figure 47: Through-thickness crack growth for cantilevers 1-4. CTOD(1) = 36.9 Å, CTOD(2) = 

35.4 Å, CTOD(3) = 38.9 Å, CTOD(4) = 39.6 Å. 
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Appendix C: Input Script 
The following is an example of the input script for cantilever 1. 
 
##############################################################
################### 
# Simulation of a fib-milled beam with crack    
 # 
# Beam party script made by the awesome duo of Marie and Jørn
   # 
##############################################################
################### 
 
# Dimensions and boundary conditions 
#package  gpu 1 force 
package  omp 8 
processors * 4 2 
dimension 3 
boundary s p p # Choose the type of boundary conditions to 
use in x-, y- and z-direction 
units  metal # Determines the units that all 
properties will be given in 
 
# Define variables 
variable        filename string orient1_round_short   # Define 
ending of filename, to change name of log and dump files 
further down 
variable        latlength equal 2.85896  # Unit cell length 
used for iron 
variable temp equal 300.0 
variable        xlatfactor equal 1.0    # Normalization factor 
for y lattice direction. 
variable        ylatfactor equal 1.0    # Normalization factor 
for x lattice direction. 
variable zlatfactor equal 1.0 # Normalization factor for z 
lattice direction. 
 
variable scale equal 20/${latlength} 
variable height equal ceil(${scale}*20/${ylatfactor}) 
variable heightx equal ceil(${scale}*20/${xlatfactor})  
variable  w equal ceil(${scale}*20/${zlatfactor}) 
variable halfw equal $w/2 
variable crackwall equal ${heightx}*1 
variable crackbeam equal ${heightx}*3 
variable length equal ${crackwall}+${crackbeam} 
variable high equal ${height}*0.75 
variable sidewidth equal $w*0.3 
variable low equal ${high}+${height} 
variable loose equal ceil(${scale}*0.2)/${xlatfactor} 
variable fix equal ceil(${scale}*0.1)/${xlatfactor} 
variable wall equal ${loose}+${fix} 
variable a equal ${height}*0.3 
variable ctodL equal round(${crackwall})-2 
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variable ctodR equal round(${crackwall})+2 
variable ctodCL equal ${ctodL}+0.2 
variable ctodCR equal ${ctodR}-0.2 
variable  left equal ${crackwall}-2 
variable  right equal ${crackwall}+2 
variable H1_hi equal 0.1/${ylatfactor} 
variable H1_lo equal -0.1/${ylatfactor} 
variable H2_hi equal -round($a*0.3)+0.1/${ylatfactor} 
variable H2_lo equal -round($a*0.3)-0.1/${ylatfactor} 
variable H3_hi equal -round($a*0.85)+0.1/${ylatfactor} 
variable H3_lo equal -round($a*0.85)-0.1/${ylatfactor} 
variable H4_hi equal -round($a)+0.1/${ylatfactor} 
variable H4_lo equal -round($a)-0.1/${ylatfactor} 
 
variable radius equal $w*0.25*(${zlatfactor}/${xlatfactor}) 
 
variable highz equal $w+${sidewidth} 
variable theta equal 45 
 
variable  cornerlength equal ${length}-0.5*${heightx} 
variable cornerheight equal ${height}*0.2 
 
variable        ts equal 0.0015  
variable        trelax equal 200000  # Time-steps to relax 
system initially 
variable        trun equal 1000000   # Time-steps we wish to 
run deformation  
variable  ramp equal -ramp(0.0,0.0035) 
 
 
# Create geometry and atoms 
 
lattice  bcc ${latlength} orient x 1 0 0 orient y 0 1 0 
orient z 0 0 1 # Orient bjelkefest! 
region  box block -${wall} ${length} -${low} ${high} -
${sidewidth} ${highz}  # Size of the system in x-, y- and z-
direction, in units of the lattice unit length 
create_box 7 box   # Create the system box 
region  bjelke block 0 ${length} -${height} 0 0 $w   
#Bjelkeutsikker 
region  feste block -${wall} 0 INF INF INF INF   
#Bakstykke 
variable yz equal 
0.5*$w*tan(${theta}*3.14/180)*(${zlatfactor}/${ylatfactor}) 
variable peak equal -${height}-${yz} 
variable peak2 equal -${height}+${yz} 
 
 
## variables for the rounding part 
variable        round_r equal $w/4*${zlatfactor} # the radius 
for the rounding part 
variable        round_highy equal ${round_r}/${ylatfactor} 



 73 

variable        round_lowy equal -${height}-
${round_r}/${ylatfactor} 
variable        round_highz equal $w+${round_r}/${zlatfactor} 
variable        round_lowz equal -${round_r}/${zlatfactor} 
variable round_ry equal ${round_r}/${ylatfactor} 
variable round_rx equal ${round_r}/${xlatfactor} 
variable round_rz equal ${round_r}/${zlatfactor} 
 
region          cyl_hiy cylinder z ${round_rx} ${round_highy} 
${round_rx} INF INF side out 
region          cyl_loy cylinder z ${round_rx} ${round_lowy} 
${round_rx} INF INF side out 
region          cyl_hiz cylinder y ${round_rx} ${round_highz} 
${round_rx} INF INF side out 
region          cyl_loz cylinder y ${round_rx} ${round_lowz} 
${round_rx} INF INF side out 
region          round_block block 0 ${round_rx} ${round_lowy} 
${round_highy} ${round_lowz} ${round_highz} 
region          round intersect 5 cyl_hiy cyl_loy cyl_hiz 
cyl_loz round_block 
 
variable beardroundy equal ${peak}+${round_ry}/sin((90-
${theta})*3.14/180)/${ylatfactor} 
variable beardboxy equal ${peak}+${round_ry}*(1/sin((90-
${theta})*3.14/180)-sin((90-${theta})*3.14/180))/${ylatfactor} 
 
region  cyl_beard cylinder x ${beardroundy} ${halfw} 
${round_ry} 0 INF side out 
#region  cyl_beard2 cylinder x ${beardroundy} ${halfw} 
${round_rz} 20 INF side in 
region  box_beard block 0 INF INF ${beardboxy} INF INF 
side in 
 
region  beardcut intersect 2 cyl_beard box_beard 
 
 
 
# A = (xhi-xlo,0,0); B = (xy,yhi-ylo,0); C = (xz,yz,zhi-zlo) 
region   bottomL prism 0 ${length} -${height} ${peak2} 0 
${halfw} 0 0 -${yz} 
region   bottomR prism 0 ${length} ${peak} -${height} 
${halfw} $w 0 0 ${yz} 
 
region  total union 5 round bjelke feste bottomL bottomR  
create_atoms 1 region total   # Create the atoms inside the 
system box 
 
delete_atoms region beardcut 
 
 
# Potential 
mass  * 55.845  # Atom mass 
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pair_style      eam/fs 
pair_style      eam/fs/omp 
pair_coeff      * * Fe_2.eam.fs Fe Fe Fe Fe Fe Fe Fe 
 
# Define groups 
region   fixed block -${wall} -${loose} INF INF INF INF    
#Fixed atoms 
group   fixed region fixed 
group  mobile subtract all fixed 
region  leftcrack block ${left} ${crackwall} -$a 0 INF 
INF  #Left of crack 
group  leftcrack region leftcrack 
region  rightcrack block ${crackwall} ${right} -$a 0 INF 
INF   #Right of crack 
group  rightcrack region rightcrack 
region  ctodL1 block ${ctodL} ${ctodCL} ${H1_lo} 
${H1_hi} INF INF 
region  ctodL2 block ${ctodL} ${ctodCL} ${H2_lo} 
${H2_hi} INF INF  
region  ctodL3 block ${ctodL} ${ctodCL} ${H3_lo} 
${H3_hi} INF INF 
region  ctodL4 block ${ctodL} ${ctodCL} ${H4_lo} 
${H4_hi} INF INF 
region  ctodR1 block ${ctodCR} ${ctodR} ${H1_lo} 
${H1_hi} INF INF 
region  ctodR2 block ${ctodCR} ${ctodR} ${H2_lo} 
${H2_hi} INF INF 
region  ctodR3 block ${ctodCR} ${ctodR} ${H3_lo} 
${H3_hi} INF INF 
region  ctodR4 block ${ctodCR} ${ctodR} ${H4_lo} 
${H4_hi} INF INF 
#region   corner block ${cornerlength} ${length} -
${cornerheight} 0 INF INF 
region  corner sphere ${cornerlength} 0 ${halfw} 
${radius} 
group  corner region corner 
#region   sprekk block ${crackwall} ${crackwall} -$a 0 INF 
INF 
#group  sprekk region sprekk 
#delete_atoms group sprekk  
 
# Define which atoms to dump 
variable        dumplength equal (2/3)*${length} 
region   dump block 0 ${dumplength} INF INF INF INF 
group  mdump region dump 
 
group  ctodL1 region ctodL1 
group  ctodL2 region ctodL2 
group  ctodL3 region ctodL3 
group  ctodL4 region ctodL4 
 
group  ctodR1 region ctodR1 
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group  ctodR2 region ctodR2 
group  ctodR3 region ctodR3 
group  ctodR4 region ctodR4 
 
group  ctodR union ctodR1 ctodR2 ctodR3 ctodR4 
group  ctodL union ctodL1 ctodL2 ctodL3 ctodL4 
 
set  group fixed type 2 
set  group leftcrack type 3 
set   group rightcrack type 4 
set  group corner type 5 
set  group ctodR type 6 
set  group ctodL type 7 
 
# Define some computes to be used for system and atom output 
during simulation run 
compute  myTemp mobile temp  
compute         pot all pe/atom       # Computes 
potential energy per atom 
compute   stress all stress/atom NULL # Computes virial stress 
per atom 
variable mises atom "0.707106781 * sqrt( (c_stress[1] - 
c_stress[2])^2 + (c_stress[2] - c_stress[3])^2 + (c_stress[1] 
- c_stress[3])^2 + 6*(c_stress[4]^2 + c_stress[5]^2 + 
c_stress[6]^2))" # Computes the von Mises stress for each atom 
 
compute  ctodL1x ctodL1 reduce ave x 
compute  ctodL1y ctodL1 reduce ave y 
compute  ctodL2x ctodL2 reduce ave x 
compute  ctodL2y ctodL2 reduce ave y 
compute  ctodL3x ctodL3 reduce ave x 
compute  ctodL3y ctodL3 reduce ave y 
compute  ctodL4x ctodL4 reduce ave x 
compute  ctodL4y ctodL4 reduce ave y 
 
compute  ctodR1x ctodR1 reduce ave x 
compute  ctodR1y ctodR1 reduce ave y 
compute  ctodR2x ctodR2 reduce ave x 
compute  ctodR2y ctodR2 reduce ave y 
compute  ctodR3x ctodR3 reduce ave x 
compute  ctodR3y ctodR3 reduce ave y 
compute  ctodR4x ctodR4 reduce ave x 
compute  ctodR4y ctodR4 reduce ave y 
 
compute  cornerx corner reduce ave x 
compute  cornery corner reduce ave y 
 
variable ctod1 equal sqrt((sqrt((c_ctodL1x)^2)-
sqrt((c_ctodR1x)^2))^2+(sqrt((c_ctodL1y)^2)-
sqrt((c_ctodR1y)^2))^2) 
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variable ctod2 equal sqrt((sqrt((c_ctodL2x)^2)-
sqrt((c_ctodR2x)^2))^2+(sqrt((c_ctodL2y)^2)-
sqrt((c_ctodR2y)^2))^2) 
variable ctod3 equal sqrt((sqrt((c_ctodL3x)^2)-
sqrt((c_ctodR3x)^2))^2+(sqrt((c_ctodL3y)^2)-
sqrt((c_ctodR3y)^2))^2) 
variable ctod4 equal sqrt((sqrt((c_ctodL4x)^2)-
sqrt((c_ctodR4x)^2))^2+(sqrt((c_ctodL4y)^2)-
sqrt((c_ctodR4y)^2))^2) 
 
# Initial velocities 
velocity mobile create ${temp} 887723 
 
 
# Fix to be used during relaxation 
fix  1 mobile npt temp ${temp} ${temp} 0.1 drag 2.0 y 0.0 
0.0 1.0 z 0.0 0.0 1.0 drag 2.0 couple none   # Use NPT 
ensemble with zero pressure in y- and z-directions 
#fix  1 all nvt temp ${temp} ${temp} 0.1 drag 2.0 
 
# Set timestep and temperature 
timestep ${ts} 
thermo  200 
 
# fix CNA stuff 
compute         cna all cna/atom 3.46 
compute         current all reduce sum c_cna 
thermo_style    custom step temp c_current 
run   0 
variable cnaatom atom "c_cna == 3" 
group   bcc variable cnaatom 
 
# fix back thermo output 
thermo_style custom step temp pxx pyy pzz ly v_ramp cpu 
v_ctod1 v_ctod2 v_ctod3 v_ctod4 c_cornerx c_cornery c_ctodL1x 
c_ctodR1x c_ctodL1y c_ctodR1y c_ctodL2x c_ctodR2x c_ctodL2y 
c_ctodR2y c_ctodL3x c_ctodR3x c_ctodL3y c_ctodR3y c_ctodL4x 
c_ctodR4x c_ctodL4y c_ctodR4y 
thermo_modify temp myTemp 
thermo_modify  lost warn 
 
# Relax the simulation with a crack 
neigh_modify exclude type 3 4 
delete_atoms overlap 0.01 all all 
fix             balance all balance 100000 1.05 shift x 20 
1.05 
fix             yzbal all balance ${trelax} 1.05 shift yz 20 
1.05 
 
# Dump properties for each atom to file dump.indent 
dump  1 mdump custom 50000 mdump.${filename}.* id type xs 
ys zs c_pot v_mises 
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dump  2 all custom 100000 dump.${filename}.* id type xs ys 
zs c_pot v_mises 
fix  fixatoms fixed setforce 0.0 0.0 0.0 
 
run   ${trelax} 
 
reset_timestep 0 
 
dump   bccdump bcc custom 500 dump.beta.${filename}.* 
id type xs ys zs c_pot v_mises c_cna 
dump   alphadump all custom 2500 
dump.alpha.${filename}.* id type xs ys zs c_pot v_mises c_cna 
dump_modify  bccdump thresh c_cna != 3 
dump_modify alphadump thresh c_cna != 3 
 
restart  200000 restart.${filename}.* 
 
 
# Run with deformation 
unfix  1 
fix  1 mobile nvt temp ${temp} ${temp} 0.1 drag 2.0     
fix  move corner addforce 0.0 v_ramp 0.0 
log  log.${filename}    # Write to logfile 
run  ${trun}  # Number of timesteps to run with these 
conditions 
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Appendix D: Risk Evaluation 
Here follows the obligatory risk evaluation performed in the beginning of the semester. 
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